title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
End-to-End Joint Learning of Natural Language Understanding and Dialogue Manager
cs.CL cs.LG
Natural language understanding and dialogue policy learning are both essential in conversational systems that predict the next system actions in response to a current user utterance. Conventional approaches aggregate separate models of natural language understanding (NLU) and system action prediction (SAP) as a pipeline that is sensitive to noisy outputs of error-prone NLU. To address the issues, we propose an end-to-end deep recurrent neural network with limited contextual dialogue memory by jointly training NLU and SAP on DSTC4 multi-domain human-human dialogues. Experiments show that our proposed model significantly outperforms the state-of-the-art pipeline models for both NLU and SAP, which indicates that our joint model is capable of mitigating the affects of noisy NLU outputs, and NLU model can be refined by error flows backpropagating from the extra supervised signals of system actions.
Xuesong Yang, Yun-Nung Chen, Dilek Hakkani-Tur, Paul Crook, Xiujun Li, Jianfeng Gao, Li Deng
null
1612.00913
null
null
Positive blood culture detection in time series data using a BiLSTM network
cs.LG cs.NE q-bio.QM stat.ML
The presence of bacteria or fungi in the bloodstream of patients is abnormal and can lead to life-threatening conditions. A computational model based on a bidirectional long short-term memory artificial neural network, is explored to assist doctors in the intensive care unit to predict whether examination of blood cultures of patients will return positive. As input it uses nine monitored clinical parameters, presented as time series data, collected from 2177 ICU admissions at the Ghent University Hospital. Our main goal is to determine if general machine learning methods and more specific, temporal models, can be used to create an early detection system. This preliminary research obtains an area of 71.95% under the precision recall curve, proving the potential of temporal neural networks in this context.
Leen De Baets, Joeri Ruyssinck, Thomas Peiffer, Johan Decruyenaere, Filip De Turck, Femke Ongenae, Tom Dhaene
null
1612.00962
null
null
Estimating latent feature-feature interactions in large feature-rich graphs
cs.SI cs.LG stat.ML
Real-world complex networks describe connections between objects; in reality, those objects are often endowed with some kind of features. How does the presence or absence of such features interplay with the network link structure? Although the situation here described is truly ubiquitous, there is a limited body of research dealing with large graphs of this kind. Many previous works considered homophily as the only possible transmission mechanism translating node features into links. Other authors, instead, developed more sophisticated models, that are able to handle complex feature interactions, but are unfit to scale to very large networks. We expand on the MGJ model, where interactions between pairs of features can foster or discourage link formation. In this work, we will investigate how to estimate the latent feature-feature interactions in this model. We shall propose two solutions: the first one assumes feature independence and it is essentially based on Naive Bayes; the second one, which relaxes the independence assumption assumption, is based on perceptrons. In fact, we show it is possible to cast the model equation in order to see it as the prediction rule of a perceptron. We analyze how classical results for the perceptrons can be interpreted in this context; then, we define a fast and simple perceptron-like algorithm for this task, which can process $10^8$ links in minutes. We then compare these two techniques, first with synthetic datasets that follows our model, gaining evidence that the Naive independence assumptions are detrimental in practice. Secondly, we consider a real, large-scale citation network where each node (i.e., paper) can be described by different types of characteristics; there, our algorithm can assess how well each set of features can explain the links, and thus finding meaningful latent feature-feature interactions.
Corrado Monti and Paolo Boldi
null
1612.00984
null
null
Hypothesis Transfer Learning via Transformation Functions
stat.ML cs.LG
We consider the Hypothesis Transfer Learning (HTL) problem where one incorporates a hypothesis trained on the source domain into the learning procedure of the target domain. Existing theoretical analysis either only studies specific algorithms or only presents upper bounds on the generalization error but not on the excess risk. In this paper, we propose a unified algorithm-dependent framework for HTL through a novel notion of transformation function, which characterizes the relation between the source and the target domains. We conduct a general risk analysis of this framework and in particular, we show for the first time, if two domains are related, HTL enjoys faster convergence rates of excess risks for Kernel Smoothing and Kernel Ridge Regression than those of the classical non-transfer learning settings. Experiments on real world data demonstrate the effectiveness of our framework.
Simon Shaolei Du, Jayanth Koushik, Aarti Singh, and Barnabas Poczos
null
1612.0102
null
null
Large scale modeling of antimicrobial resistance with interpretable classifiers
q-bio.GN cs.LG stat.ML
Antimicrobial resistance is an important public health concern that has implications in the practice of medicine worldwide. Accurately predicting resistance phenotypes from genome sequences shows great promise in promoting better use of antimicrobial agents, by determining which antibiotics are likely to be effective in specific clinical cases. In healthcare, this would allow for the design of treatment plans tailored for specific individuals, likely resulting in better clinical outcomes for patients with bacterial infections. In this work, we present the recent work of Drouin et al. (2016) on using Set Covering Machines to learn highly interpretable models of antibiotic resistance and complement it by providing a large scale application of their method to the entire PATRIC database. We report prediction results for 36 new datasets and present the Kover AMR platform, a new web-based tool allowing the visualization and interpretation of the generated models.
Alexandre Drouin, Fr\'ed\'eric Raymond, Ga\"el Letarte St-Pierre, Mario Marchand, Jacques Corbeil, Fran\c{c}ois Laviolette
null
1612.0103
null
null
Modeling trajectories of mental health: challenges and opportunities
stat.ML cs.LG stat.AP
More than two thirds of mental health problems have their onset during childhood or adolescence. Identifying children at risk for mental illness later in life and predicting the type of illness is not easy. We set out to develop a platform to define subtypes of childhood social-emotional development using longitudinal, multifactorial trait-based measures. Subtypes discovered through this study could ultimately advance psychiatric knowledge of the early behavioural signs of mental illness. To this extent we have examined two types of models: latent class mixture models and GP-based models. Our findings indicate that while GP models come close in accuracy of predicting future trajectories, LCMMs predict the trajectories as well in a fraction of the time. Unfortunately, neither of the models are currently accurate enough to lead to immediate clinical impact. The available data related to the development of childhood mental health is often sparse with only a few time points measured and require novel methods with improved efficiency and accuracy.
Lauren Erdman, Ekansh Sharma, Eva Unternahrer, Shantala Hari Dass, Kieran ODonnell, Sara Mostafavi, Rachel Edgar, Michael Kobor, Helene Gaudreau, Michael Meaney, Anna Goldenberg
null
1612.01055
null
null
Algorithmic Songwriting with ALYSIA
cs.AI cs.LG cs.MM cs.SD
This paper introduces ALYSIA: Automated LYrical SongwrIting Application. ALYSIA is based on a machine learning model using Random Forests, and we discuss its success at pitch and rhythm prediction. Next, we show how ALYSIA was used to create original pop songs that were subsequently recorded and produced. Finally, we discuss our vision for the future of Automated Songwriting for both co-creative and autonomous systems.
Margareta Ackerman and David Loker
null
1612.01058
null
null
Trained Ternary Quantization
cs.LG
Deep neural networks are widely used in machine learning applications. However, the deployment of large neural networks models can be difficult to deploy on mobile devices with limited power budgets. To solve this problem, we propose Trained Ternary Quantization (TTQ), a method that can reduce the precision of weights in neural networks to ternary values. This method has very little accuracy degradation and can even improve the accuracy of some models (32, 44, 56-layer ResNet) on CIFAR-10 and AlexNet on ImageNet. And our AlexNet model is trained from scratch, which means it's as easy as to train normal full precision model. We highlight our trained quantization method that can learn both ternary values and ternary assignment. During inference, only ternary values (2-bit weights) and scaling factors are needed, therefore our models are nearly 16x smaller than full-precision models. Our ternary models can also be viewed as sparse binary weight networks, which can potentially be accelerated with custom circuit. Experiments on CIFAR-10 show that the ternary models obtained by trained quantization method outperform full-precision models of ResNet-32,44,56 by 0.04%, 0.16%, 0.36%, respectively. On ImageNet, our model outperforms full-precision AlexNet model by 0.3% of Top-1 accuracy and outperforms previous ternary models by 3%.
Chenzhuo Zhu, Song Han, Huizi Mao, William J. Dally
null
1612.01064
null
null
Enhancing Use Case Points Estimation Method Using Soft Computing Techniques
cs.SE cs.AI cs.LG
Software estimation is a crucial task in software engineering. Software estimation encompasses cost, effort, schedule, and size. The importance of software estimation becomes critical in the early stages of the software life cycle when the details of software have not been revealed yet. Several commercial and non-commercial tools exist to estimate software in the early stages. Most software effort estimation methods require software size as one of the important metric inputs and consequently, software size estimation in the early stages becomes essential. One of the approaches that has been used for about two decades in the early size and effort estimation is called use case points. Use case points method relies on the use case diagram to estimate the size and effort of software projects. Although the use case points method has been widely used, it has some limitations that might adversely affect the accuracy of estimation. This paper presents some techniques using fuzzy logic and neural networks to improve the accuracy of the use case points method. Results showed that an improvement up to 22% can be obtained using the proposed approach.
Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho
null
1612.01078
null
null
Deep Learning of Robotic Tasks without a Simulator using Strong and Weak Human Supervision
cs.AI cs.LG cs.RO
We propose a scheme for training a computerized agent to perform complex human tasks such as highway steering. The scheme is designed to follow a natural learning process whereby a human instructor teaches a computerized trainee. The learning process consists of five elements: (i) unsupervised feature learning; (ii) supervised imitation learning; (iii) supervised reward induction; (iv) supervised safety module construction; and (v) reinforcement learning. We implemented the last four elements of the scheme using deep convolutional networks and applied it to successfully create a computerized agent capable of autonomous highway steering over the well-known racing game Assetto Corsa. We demonstrate that the use of the last four elements is essential to effectively carry out the steering task using vision alone, without access to a driving simulator internals, and operating in wall-clock time. This is made possible also through the introduction of a safety network, a novel way for preventing the agent from performing catastrophic mistakes during the reinforcement learning stage.
Bar Hilleli and Ran El-Yaniv
null
1612.01086
null
null
Learning to superoptimize programs - Workshop Version
cs.LG
Superoptimization requires the estimation of the best program for a given computational task. In order to deal with large programs, superoptimization techniques perform a stochastic search. This involves proposing a modification of the current program, which is accepted or rejected based on the improvement achieved. The state of the art method uses uniform proposal distributions, which fails to exploit the problem structure to the fullest. To alleviate this deficiency, we learn a proposal distribution over possible modifications using Reinforcement Learning. We provide convincing results on the superoptimization of "Hacker's Delight" programs.
Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H.S.Torr, Pushmeet Kohli
null
1612.01094
null
null
Robust nonparametric nearest neighbor random process clustering
cs.LG cs.IT math.IT stat.ML
We consider the problem of clustering noisy finite-length observations of stationary ergodic random processes according to their generative models without prior knowledge of the model statistics and the number of generative models. Two algorithms, both using the $L^1$-distance between estimated power spectral densities (PSDs) as a measure of dissimilarity, are analyzed. The first one, termed nearest neighbor process clustering (NNPC), relies on partitioning the nearest neighbor graph of the observations via spectral clustering. The second algorithm, simply referred to as $k$-means (KM), consists of a single $k$-means iteration with farthest point initialization and was considered before in the literature, albeit with a different dissimilarity measure. We prove that both algorithms succeed with high probability in the presence of noise and missing entries, and even when the generative process PSDs overlap significantly, all provided that the observation length is sufficiently large. Our results quantify the tradeoff between the overlap of the generative process PSDs, the observation length, the fraction of missing entries, and the noise variance. Finally, we provide extensive numerical results for synthetic and real data and find that NNPC outperforms state-of-the-art algorithms in human motion sequence clustering.
Michael Tschannen and Helmut B\"olcskei
10.1109/TSP.2017.2736513
1612.01103
null
null
Properties and Bayesian fitting of restricted Boltzmann machines
stat.ML cs.LG
A restricted Boltzmann machine (RBM) is an undirected graphical model constructed for discrete or continuous random variables, with two layers, one hidden and one visible, and no conditional dependency within a layer. In recent years, RBMs have risen to prominence due to their connection to deep learning. By treating a hidden layer of one RBM as the visible layer in a second RBM, a deep architecture can be created. RBMs are thought to thereby have the ability to encode very complex and rich structures in data, making them attractive for supervised learning. However, the generative behavior of RBMs is largely unexplored and typical fitting methodology does not easily allow for uncertainty quantification in addition to point estimates. In this paper, we discuss the relationship between RBM parameter specification in the binary case and model properties such as degeneracy, instability and uninterpretability. We also describe the associated difficulties that can arise with likelihood-based inference and further discuss the potential Bayes fitting of such (highly flexible) models, especially as Gibbs sampling (quasi-Bayes) methods are often advocated for the RBM model structure.
Andee Kaplan, Daniel Nordman, and Stephen Vardeman
10.1002/sam.11396
1612.01158
null
null
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision (Short Version)
cs.CL cs.AI cs.LG
Extending the success of deep neural networks to natural language understanding and symbolic reasoning requires complex operations and external memory. Recent neural program induction approaches have attempted to address this problem, but are typically limited to differentiable memory, and consequently cannot scale beyond small synthetic tasks. In this work, we propose the Manager-Programmer-Computer framework, which integrates neural networks with non-differentiable memory to support abstract, scalable and precise operations through a friendly neural computer interface. Specifically, we introduce a Neural Symbolic Machine, which contains a sequence-to-sequence neural "programmer", and a non-differentiable "computer" that is a Lisp interpreter with code assist. To successfully apply REINFORCE for training, we augment it with approximate gold programs found by an iterative maximum likelihood training process. NSM is able to learn a semantic parser from weak supervision over a large knowledge base. It achieves new state-of-the-art performance on WebQuestionsSP, a challenging semantic parsing dataset, with weak supervision. Compared to previous approaches, NSM is end-to-end, therefore does not rely on feature engineering or domain specific knowledge.
Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao
null
1612.01197
null
null
Intra-day Activity Better Predicts Chronic Conditions
stat.ML cs.LG
In this work we investigate intra-day patterns of activity on a population of 7,261 users of mobile health wearable devices and apps. We show that: (1) using intra-day step and sleep data recorded from passive trackers significantly improves classification performance on self-reported chronic conditions related to mental health and nervous system disorders, (2) Convolutional Neural Networks achieve top classification performance vs. baseline models when trained directly on multivariate time series of activity data, and (3) jointly predicting all condition classes via multi-task learning can be leveraged to extract features that generalize across data sets and achieve the highest classification performance.
Tom Quisel, David C. Kale, Luca Foschini
null
1612.012
null
null
Optimal and Adaptive Off-policy Evaluation in Contextual Bandits
stat.ML cs.LG
We study the off-policy evaluation problem---estimating the value of a target policy using data collected by another policy---under the contextual bandit model. We consider the general (agnostic) setting without access to a consistent model of rewards and establish a minimax lower bound on the mean squared error (MSE). The bound is matched up to constants by the inverse propensity scoring (IPS) and doubly robust (DR) estimators. This highlights the difficulty of the agnostic contextual setting, in contrast with multi-armed bandits and contextual bandits with access to a consistent reward model, where IPS is suboptimal. We then propose the SWITCH estimator, which can use an existing reward model (not necessarily consistent) to achieve a better bias-variance tradeoff than IPS and DR. We prove an upper bound on its MSE and demonstrate its benefits empirically on a diverse collection of data sets, often outperforming prior work by orders of magnitude.
Yu-Xiang Wang and Alekh Agarwal and Miroslav Dudik
null
1612.01205
null
null
Deep Metric Learning via Facility Location
cs.CV cs.LG
Learning the representation and the similarity metric in an end-to-end fashion with deep networks have demonstrated outstanding results for clustering and retrieval. However, these recent approaches still suffer from the performance degradation stemming from the local metric training procedure which is unaware of the global structure of the embedding space. We propose a global metric learning scheme for optimizing the deep metric embedding with the learnable clustering function and the clustering metric (NMI) in a novel structured prediction framework. Our experiments on CUB200-2011, Cars196, and Stanford online products datasets show state of the art performance both on the clustering and retrieval tasks measured in the NMI and Recall@K evaluation metrics.
Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, Kevin Murphy
null
1612.01213
null
null
Known Unknowns: Uncertainty Quality in Bayesian Neural Networks
stat.ML cs.LG cs.NE
We evaluate the uncertainty quality in neural networks using anomaly detection. We extract uncertainty measures (e.g. entropy) from the predictions of candidate models, use those measures as features for an anomaly detector, and gauge how well the detector differentiates known from unknown classes. We assign higher uncertainty quality to candidate models that lead to better detectors. We also propose a novel method for sampling a variational approximation of a Bayesian neural network, called One-Sample Bayesian Approximation (OSBA). We experiment on two datasets, MNIST and CIFAR10. We compare the following candidate neural network models: Maximum Likelihood, Bayesian Dropout, OSBA, and --- for MNIST --- the standard variational approximation. We show that Bayesian Dropout and OSBA provide better uncertainty information than Maximum Likelihood, and are essentially equivalent to the standard variational approximation, but much faster.
Ramon Oliveira, Pedro Tabacof, Eduardo Valle
null
1612.01251
null
null
Deep Image Category Discovery using a Transferred Similarity Function
cs.CV cs.LG
Automatically discovering image categories in unlabeled natural images is one of the important goals of unsupervised learning. However, the task is challenging and even human beings define visual categories based on a large amount of prior knowledge. In this paper, we similarly utilize prior knowledge to facilitate the discovery of image categories. We present a novel end-to-end network to map unlabeled images to categories as a clustering network. We propose that this network can be learned with contrastive loss which is only based on weak binary pair-wise constraints. Such binary constraints can be learned from datasets in other domains as transferred similarity functions, which mimic a simple knowledge transfer. We first evaluate our experiments on the MNIST dataset as a proof of concept, based on predicted similarities trained on Omniglot, showing a 99\% accuracy which significantly outperforms clustering based approaches. Then we evaluate the discovery performance on Cifar-10, STL-10, and ImageNet, which achieves both state-of-the-art accuracy and shows it can be scalable to various large natural images.
Yen-Chang Hsu, Zhaoyang Lv, Zsolt Kira
null
1612.01253
null
null
Deep Symbolic Representation Learning for Heterogeneous Time-series Classification
cs.LG stat.ML
In this paper, we consider the problem of event classification with multi-variate time series data consisting of heterogeneous (continuous and categorical) variables. The complex temporal dependencies between the variables combined with sparsity of the data makes the event classification problem particularly challenging. Most state-of-art approaches address this either by designing hand-engineered features or breaking up the problem over homogeneous variates. In this work, we propose and compare three representation learning algorithms over symbolized sequences which enables classification of heterogeneous time-series data using a deep architecture. The proposed representations are trained jointly along with the rest of the network architecture in an end-to-end fashion that makes the learned features discriminative for the given task. Experiments on three real-world datasets demonstrate the effectiveness of the proposed approaches.
Shengdong Zhang and Soheil Bahrampour and Naveen Ramakrishnan and Mohak Shah
null
1612.01254
null
null
Cryptocurrency Portfolio Management with Deep Reinforcement Learning
cs.LG
Portfolio management is the decision-making process of allocating an amount of fund into different financial investment products. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. This paper presents a model-less convolutional neural network with historic prices of a set of financial assets as its input, outputting portfolio weights of the set. The network is trained with 0.7 years' price data from a cryptocurrency exchange. The training is done in a reinforcement manner, maximizing the accumulative return, which is regarded as the reward function of the network. Backtest trading experiments with trading period of 30 minutes is conducted in the same market, achieving 10-fold returns in 1.8 months' periods. Some recently published portfolio selection strategies are also used to perform the same back-tests, whose results are compared with the neural network. The network is not limited to cryptocurrency, but can be applied to any other financial markets.
Zhengyao Jiang, Jinjun Liang
null
1612.01277
null
null
Message Passing Multi-Agent GANs
cs.CV cs.AI cs.LG cs.NE
Communicating and sharing intelligence among agents is an important facet of achieving Artificial General Intelligence. As a first step towards this challenge, we introduce a novel framework for image generation: Message Passing Multi-Agent Generative Adversarial Networks (MPM GANs). While GANs have recently been shown to be very effective for image generation and other tasks, these networks have been limited to mostly single generator-discriminator networks. We show that we can obtain multi-agent GANs that communicate through message passing to achieve better image generation. The objectives of the individual agents in this framework are two fold: a co-operation objective and a competing objective. The co-operation objective ensures that the message sharing mechanism guides the other generator to generate better than itself while the competing objective encourages each generator to generate better than its counterpart. We analyze and visualize the messages that these GANs share among themselves in various scenarios. We quantitatively show that the message sharing formulation serves as a regularizer for the adversarial training. Qualitatively, we show that the different generators capture different traits of the underlying data distribution.
Arnab Ghosh and Viveka Kulharia and Vinay Namboodiri
null
1612.01294
null
null
Ranking Biomarkers Through Mutual Information
stat.ML cs.LG stat.AP
We study information theoretic methods for ranking biomarkers. In clinical trials there are two, closely related, types of biomarkers: predictive and prognostic, and disentangling them is a key challenge. Our first step is to phrase biomarker ranking in terms of optimizing an information theoretic quantity. This formalization of the problem will enable us to derive rankings of predictive/prognostic biomarkers, by estimating different, high dimensional, conditional mutual information terms. To estimate these terms, we suggest efficient low dimensional approximations, and we derive an empirical Bayes estimator, which is suitable for small or sparse datasets. Finally, we introduce a new visualisation tool that captures the prognostic and the predictive strength of a set of biomarkers. We believe this representation will prove to be a powerful tool in biomarker discovery.
Konstantinos Sechidis, Emily Turner, Paul D. Metcalfe, James Weatherall and Gavin Brown
null
1612.01316
null
null
A One class Classifier based Framework using SVDD : Application to an Imbalanced Geological Dataset
cs.LG stat.AP stat.ML
Evaluation of hydrocarbon reservoir requires classification of petrophysical properties from available dataset. However, characterization of reservoir attributes is difficult due to the nonlinear and heterogeneous nature of the subsurface physical properties. In this context, present study proposes a generalized one class classification framework based on Support Vector Data Description (SVDD) to classify a reservoir characteristic water saturation into two classes (Class high and Class low) from four logs namely gamma ray, neutron porosity, bulk density, and P sonic using an imbalanced dataset. A comparison is carried out among proposed framework and different supervised classification algorithms in terms of g metric means and execution time. Experimental results show that proposed framework has outperformed other classifiers in terms of these performance evaluators. It is envisaged that the classification analysis performed in this study will be useful in further reservoir modeling.
Soumi Chaki, Akhilesh Kumar Verma, Aurobinda Routray, William K. Mohanty, Mamata Jenamani
null
1612.01349
null
null
Diagnostic Prediction Using Discomfort Drawings
cs.LG
In this paper, we explore the possibility to apply machine learning to make diagnostic predictions using discomfort drawings. A discomfort drawing is an intuitive way for patients to express discomfort and pain related symptoms. These drawings have proven to be an effective method to collect patient data and make diagnostic decisions in real-life practice. A dataset from real-world patient cases is collected for which medical experts provide diagnostic labels. Next, we extend a factorized multimodal topic model, Inter-Battery Topic Model (IBTM), to train a system that can make diagnostic predictions given an unseen discomfort drawing. Experimental results show reasonable predictions of diagnostic labels given an unseen discomfort drawing. The positive result indicates a significant potential of machine learning to be used for parts of the pain diagnostic process and to be a decision support system for physicians and other health care personnel.
Cheng Zhang, Hedvig Kjellstrom, Bo C. Bertilson
null
1612.01356
null
null
An Asymptotically Optimal Contextual Bandit Algorithm Using Hierarchical Structures
cs.LG
We propose online algorithms for sequential learning in the contextual multi-armed bandit setting. Our approach is to partition the context space and then optimally combine all of the possible mappings between the partition regions and the set of bandit arms in a data driven manner. We show that in our approach, the best mapping is able to approximate the best arm selection policy to any desired degree under mild Lipschitz conditions. Therefore, we design our algorithms based on the optimal adaptive combination and asymptotically achieve the performance of the best mapping as well as the best arm selection policy. This optimality is also guaranteed to hold even in adversarial environments since we do not rely on any statistical assumptions regarding the contexts or the loss of the bandit arms. Moreover, we design efficient implementations for our algorithms in various hierarchical partitioning structures such as lexicographical or arbitrary position splitting and binary trees (and several other partitioning examples). For instance, in the case of binary tree partitioning, the computational complexity is only log-linear in the number of regions in the finest partition. In conclusion, we provide significant performance improvements by introducing upper bounds (w.r.t. the best arm selection policy) that are mathematically proven to vanish in the average loss per round sense at a faster rate compared to the state-of-the-art. Our experimental work extensively covers various scenarios ranging from bandit settings to multi-class classification with real and synthetic data. In these experiments, we show that our algorithms are highly superior over the state-of-the-art techniques while maintaining the introduced mathematical guarantees and a computationally decent scalability.
Mohammadreza Mohaghegh Neyshabouri, Kaan Gokcesu, Huseyin Ozkan and Suleyman S. Kozat
null
1612.01367
null
null
Implicit Modeling -- A Generalization of Discriminative and Generative Approaches
cs.LG
We propose a new modeling approach that is a generalization of generative and discriminative models. The core idea is to use an implicit parameterization of a joint probability distribution by specifying only the conditional distributions. The proposed scheme combines the advantages of both worlds -- it can use powerful complex discriminative models as its parts, having at the same time better generalization capabilities. We thoroughly evaluate the proposed method for a simple classification task with artificial data and illustrate its advantages for real-word scenarios on a semantic image segmentation problem.
Dmitrij Schlesinger and Carsten Rother
null
1612.01397
null
null
Learning Adversary-Resistant Deep Neural Networks
cs.LG
Deep neural networks (DNNs) have proven to be quite effective in a vast array of machine learning tasks, with recent examples in cyber security and autonomous vehicles. Despite the superior performance of DNNs in these applications, it has been recently shown that these models are susceptible to a particular type of attack that exploits a fundamental flaw in their design. This attack consists of generating particular synthetic examples referred to as adversarial samples. These samples are constructed by slightly manipulating real data-points in order to "fool" the original DNN model, forcing it to mis-classify previously correctly classified samples with high confidence. Addressing this flaw in the model is essential if DNNs are to be used in critical applications such as those in cyber security. Previous work has provided various learning algorithms to enhance the robustness of DNN models, and they all fall into the tactic of "security through obscurity". This means security can be guaranteed only if one can obscure the learning algorithms from adversaries. Once the learning technique is disclosed, DNNs protected by these defense mechanisms are still susceptible to adversarial samples. In this work, we investigate this issue shared across previous research work and propose a generic approach to escalate a DNN's resistance to adversarial samples. More specifically, our approach integrates a data transformation module with a DNN, making it robust even if we reveal the underlying learning algorithm. To demonstrate the generality of our proposed approach and its potential for handling cyber security applications, we evaluate our method and several other existing solutions on datasets publicly available. Our results indicate that our approach typically provides superior classification performance and resistance in comparison with state-of-art solutions.
Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G. Ororbia II, Xinyu Xing, Xue Liu, C. Lee Giles
null
1612.01401
null
null
Semi-Supervised Learning via Sparse Label Propagation
cs.LG stat.ML
This work proposes a novel method for semi-supervised learning from partially labeled massive network-structured datasets, i.e., big data over networks. We model the underlying hypothesis, which relates data points to labels, as a graph signal, defined over some graph (network) structure intrinsic to the dataset. Following the key principle of supervised learning, i.e., similar inputs yield similar outputs, we require the graph signals induced by labels to have small total variation. Accordingly, we formulate the problem of learning the labels of data points as a non-smooth convex optimization problem which amounts to balancing between the empirical loss, i.e., the discrepancy with some partially available label information, and the smoothness quantified by the total variation of the learned graph signal. We solve this optimization problem by appealing to a recently proposed preconditioned variant of the popular primal-dual method by Pock and Chambolle, which results in a sparse label propagation algorithm. This learning algorithm allows for a highly scalable implementation as message passing over the underlying data graph. By applying concepts of compressed sensing to the learning problem, we are also able to provide a transparent sufficient condition on the underlying network structure such that accurate learning of the labels is possible. We also present an implementation of the message passing formulation allows for a highly scalable implementation in big data frameworks.
Alexander Jung, Alfred O. Hero III, Alexandru Mara, and Saeed Jahromi
null
1612.01414
null
null
Zeroth-order Asynchronous Doubly Stochastic Algorithm with Variance Reduction
cs.LG
Zeroth-order (derivative-free) optimization attracts a lot of attention in machine learning, because explicit gradient calculations may be computationally expensive or infeasible. To handle large scale problems both in volume and dimension, recently asynchronous doubly stochastic zeroth-order algorithms were proposed. The convergence rate of existing asynchronous doubly stochastic zeroth order algorithms is $O(\frac{1}{\sqrt{T}})$ (also for the sequential stochastic zeroth-order optimization algorithms). In this paper, we focus on the finite sums of smooth but not necessarily convex functions, and propose an asynchronous doubly stochastic zeroth-order optimization algorithm using the accelerated technology of variance reduction (AsyDSZOVR). Rigorous theoretical analysis show that the convergence rate can be improved from $O(\frac{1}{\sqrt{T}})$ the best result of existing algorithms to $O(\frac{1}{T})$. Also our theoretical results is an improvement to the ones of the sequential stochastic zeroth-order optimization algorithms.
Bin Gu and Zhouyuan Huo and Heng Huang
null
1612.01425
null
null
Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction
cs.SI cs.LG
Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction.
Seyed Mohammad Taheri, Hamidreza Mahyar, Mohammad Firouzi, Elahe Ghalebi K., Radu Grosu, Ali Movaghar
10.1145/3041021.3051153
1612.01428
null
null
Understanding and Optimizing the Performance of Distributed Machine Learning Applications on Apache Spark
cs.DC cs.LG
In this paper we explore the performance limits of Apache Spark for machine learning applications. We begin by analyzing the characteristics of a state-of-the-art distributed machine learning algorithm implemented in Spark and compare it to an equivalent reference implementation using the high performance computing framework MPI. We identify critical bottlenecks of the Spark framework and carefully study their implications on the performance of the algorithm. In order to improve Spark performance we then propose a number of practical techniques to alleviate some of its overheads. However, optimizing computational efficiency and framework related overheads is not the only key to performance -- we demonstrate that in order to get the best performance out of any implementation it is necessary to carefully tune the algorithm to the respective trade-off between computation time and communication latency. The optimal trade-off depends on both the properties of the distributed algorithm as well as infrastructure and framework-related characteristics. Finally, we apply these technical and algorithmic optimizations to three different distributed linear machine learning algorithms that have been implemented in Spark. We present results using five large datasets and demonstrate that by using the proposed optimizations, we can achieve a reduction in the performance difference between Spark and MPI from 20x to 2x.
Celestine D\"unner, Thomas Parnell, Kubilay Atasu, Manolis Sifalakis, Haralampos Pozidis
10.1109/BigData.2017.8257942
1612.01437
null
null
Support vector regression model for BigData systems
cs.DC cs.LG cs.PF
Nowadays Big Data are becoming more and more important. Many sectors of our economy are now guided by data-driven decision processes. Big Data and business intelligence applications are facilitated by the MapReduce programming model while, at infrastructural layer, cloud computing provides flexible and cost effective solutions for allocating on demand large clusters. In such systems, capacity allocation, which is the ability to optimally size minimal resources for achieve a certain level of performance, is a key challenge to enhance performance for MapReduce jobs and minimize cloud resource costs. In order to do so, one of the biggest challenge is to build an accurate performance model to estimate job execution time of MapReduce systems. Previous works applied simulation based models for modeling such systems. Although this approach can accurately describe the behavior of Big Data clusters, it is too computationally expensive and does not scale to large system. We try to overcome these issues by applying machine learning techniques. More precisely we focus on Support Vector Regression (SVR) which is intrinsically more robust w.r.t other techniques, like, e.g., neural networks, and less sensitive to outliers in the training set. To better investigate these benefits, we compare SVR to linear regression.
Alessandro Maria Rizzi
null
1612.01458
null
null
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
stat.ML cs.LG
Deep neural networks (NNs) are powerful black box predictors that have recently achieved impressive performance on a wide spectrum of tasks. Quantifying predictive uncertainty in NNs is a challenging and yet unsolved problem. Bayesian NNs, which learn a distribution over weights, are currently the state-of-the-art for estimating predictive uncertainty; however these require significant modifications to the training procedure and are computationally expensive compared to standard (non-Bayesian) NNs. We propose an alternative to Bayesian NNs that is simple to implement, readily parallelizable, requires very little hyperparameter tuning, and yields high quality predictive uncertainty estimates. Through a series of experiments on classification and regression benchmarks, we demonstrate that our method produces well-calibrated uncertainty estimates which are as good or better than approximate Bayesian NNs. To assess robustness to dataset shift, we evaluate the predictive uncertainty on test examples from known and unknown distributions, and show that our method is able to express higher uncertainty on out-of-distribution examples. We demonstrate the scalability of our method by evaluating predictive uncertainty estimates on ImageNet.
Balaji Lakshminarayanan, Alexander Pritzel and Charles Blundell
null
1612.01474
null
null
Generalized RBF kernel for incomplete data
cs.LG stat.ML
We construct $\bf genRBF$ kernel, which generalizes the classical Gaussian RBF kernel to the case of incomplete data. We model the uncertainty contained in missing attributes making use of data distribution and associate every point with a conditional probability density function. This allows to embed incomplete data into the function space and to define a kernel between two missing data points based on scalar product in $L_2$. Experiments show that introduced kernel applied to SVM classifier gives better results than other state-of-the-art methods, especially in the case when large number of features is missing. Moreover, it is easy to implement and can be used together with any kernel approaches with no additional modifications.
{\L}ukasz Struski, Marek \'Smieja, Jacek Tabor
null
1612.0148
null
null
A Nonparametric Latent Factor Model For Location-Aware Video Recommendations
stat.ML cs.LG
We are interested in learning customers' video preferences from their historic viewing patterns and geographical location. We consider a Bayesian latent factor modeling approach for this task. In order to tune the complexity of the model to best represent the data, we make use of Bayesian nonparameteric techniques. We describe an inference technique that can scale to large real-world data sets. Finally we show results obtained by applying the model to a large internal Netflix data set, that illustrates that the model was able to capture interesting relationships between viewing patterns and geographical location.
Ehtsham Elahi
null
1612.01481
null
null
Towards the Limit of Network Quantization
cs.CV cs.LG cs.NE
Network quantization is one of network compression techniques to reduce the redundancy of deep neural networks. It reduces the number of distinct network parameter values by quantization in order to save the storage for them. In this paper, we design network quantization schemes that minimize the performance loss due to quantization given a compression ratio constraint. We analyze the quantitative relation of quantization errors to the neural network loss function and identify that the Hessian-weighted distortion measure is locally the right objective function for the optimization of network quantization. As a result, Hessian-weighted k-means clustering is proposed for clustering network parameters to quantize. When optimal variable-length binary codes, e.g., Huffman codes, are employed for further compression, we derive that the network quantization problem can be related to the entropy-constrained scalar quantization (ECSQ) problem in information theory and consequently propose two solutions of ECSQ for network quantization, i.e., uniform quantization and an iterative solution similar to Lloyd's algorithm. Finally, using the simple uniform quantization followed by Huffman coding, we show from our experiments that the compression ratios of 51.25, 22.17 and 40.65 are achievable for LeNet, 32-layer ResNet and AlexNet, respectively.
Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee
null
1612.01543
null
null
Improving the Performance of Neural Networks in Regression Tasks Using Drawering
cs.LG cs.AI cs.NE stat.ML
The method presented extends a given regression neural network to make its performance improve. The modification affects the learning procedure only, hence the extension may be easily omitted during evaluation without any change in prediction. It means that the modified model may be evaluated as quickly as the original one but tends to perform better. This improvement is possible because the modification gives better expressive power, provides better behaved gradients and works as a regularization. The knowledge gained by the temporarily extended neural network is contained in the parameters shared with the original neural network. The only cost is an increase in learning time.
Konrad Zolna
null
1612.01589
null
null
Deterministic and Probabilistic Conditions for Finite Completability of Low-Tucker-Rank Tensor
cs.NA cs.IT cs.LG math.IT
We investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries, for finite completability of a low-rank tensor given some components of its Tucker rank. In order to find the deterministic necessary and sufficient conditions, we propose an algebraic geometric analysis on the Tucker manifold, which allows us to incorporate multiple rank components in the proposed analysis in contrast with the conventional geometric approaches on the Grassmannian manifold. This analysis characterizes the algebraic independence of a set of polynomials defined based on the sampling pattern, which is closely related to finite completion. Probabilistic conditions are then studied and a lower bound on the sampling probability is given, which guarantees that the proposed deterministic conditions on the sampling patterns for finite completability hold with high probability. Furthermore, using the proposed geometric approach for finite completability, we propose a sufficient condition on the sampling pattern that ensures there exists exactly one completion for the sampled tensor.
Morteza Ashraphijuo and Vaneet Aggarwal and Xiaodong Wang
null
1612.01597
null
null
Distributed Gaussian Learning over Time-varying Directed Graphs
math.OC cs.LG cs.MA cs.SY stat.ML
We present a distributed (non-Bayesian) learning algorithm for the problem of parameter estimation with Gaussian noise. The algorithm is expressed as explicit updates on the parameters of the Gaussian beliefs (i.e. means and precision). We show a convergence rate of $O(1/k)$ with the constant term depending on the number of agents and the topology of the network. Moreover, we show almost sure convergence to the optimal solution of the estimation problem for the general case of time-varying directed graphs.
Angelia Nedi\'c, Alex Olshevsky and C\'esar A. Uribe
null
1612.016
null
null
Efficient Non-oblivious Randomized Reduction for Risk Minimization with Improved Excess Risk Guarantee
cs.LG
In this paper, we address learning problems for high dimensional data. Previously, oblivious random projection based approaches that project high dimensional features onto a random subspace have been used in practice for tackling high-dimensionality challenge in machine learning. Recently, various non-oblivious randomized reduction methods have been developed and deployed for solving many numerical problems such as matrix product approximation, low-rank matrix approximation, etc. However, they are less explored for the machine learning tasks, e.g., classification. More seriously, the theoretical analysis of excess risk bounds for risk minimization, an important measure of generalization performance, has not been established for non-oblivious randomized reduction methods. It therefore remains an open problem what is the benefit of using them over previous oblivious random projection based approaches. To tackle these challenges, we propose an algorithmic framework for employing non-oblivious randomized reduction method for general empirical risk minimizing in machine learning tasks, where the original high-dimensional features are projected onto a random subspace that is derived from the data with a small matrix approximation error. We then derive the first excess risk bound for the proposed non-oblivious randomized reduction approach without requiring strong assumptions on the training data. The established excess risk bound exhibits that the proposed approach provides much better generalization performance and it also sheds more insights about different randomized reduction approaches. Finally, we conduct extensive experiments on both synthetic and real-world benchmark datasets, whose dimension scales to $O(10^7)$, to demonstrate the efficacy of our proposed approach.
Yi Xu, Haiqin Yang, Lijun Zhang, Tianbao Yang
null
1612.01663
null
null
Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses
cs.LG cond-mat.dis-nn cond-mat.stat-mech cs.NE q-bio.NC
Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.
Haiping Huang
10.1088/1742-5468/aa6ddc
1612.01717
null
null
Factored Contextual Policy Search with Bayesian Optimization
cs.LG cs.AI cs.RO stat.ML
Scarce data is a major challenge to scaling robot learning to truly complex tasks, as we need to generalize locally learned policies over different "contexts". Bayesian optimization approaches to contextual policy search (CPS) offer data-efficient policy learning that generalize over a context space. We propose to improve data-efficiency by factoring typically considered contexts into two components: target-type contexts that correspond to a desired outcome of the learned behavior, e.g. target position for throwing a ball; and environment type contexts that correspond to some state of the environment, e.g. initial ball position or wind speed. Our key observation is that experience can be directly generalized over target-type contexts. Based on that we introduce Factored Contextual Policy Search with Bayesian Optimization for both passive and active learning settings. Preliminary results show faster policy generalization on a simulated toy problem. A full paper extension is available at arXiv:1904.11761
Peter Karkus, Andras Kupcsik, David Hsu, Wee Sun Lee
null
1612.01746
null
null
Video Ladder Networks
cs.LG cs.CV stat.ML
We present the Video Ladder Network (VLN) for efficiently generating future video frames. VLN is a neural encoder-decoder model augmented at all layers by both recurrent and feedforward lateral connections. At each layer, these connections form a lateral recurrent residual block, where the feedforward connection represents a skip connection and the recurrent connection represents the residual. Thanks to the recurrent connections, the decoder can exploit temporal summaries generated from all layers of the encoder. This way, the top layer is relieved from the pressure of modeling lower-level spatial and temporal details. Furthermore, we extend the basic version of VLN to incorporate ResNet-style residual blocks in the encoder and decoder, which help improving the prediction results. VLN is trained in self-supervised regime on the Moving MNIST dataset, achieving competitive results while having very simple structure and providing fast inference.
Francesco Cricri, Xingyang Ni, Mikko Honkala, Emre Aksu, Moncef Gabbouj
null
1612.01756
null
null
Control Matching via Discharge Code Sequences
cs.LG
In this paper, we consider the patient similarity matching problem over a cancer cohort of more than 220,000 patients. Our approach first leverages on Word2Vec framework to embed ICD codes into vector-valued representation. We then propose a sequential algorithm for case-control matching on this representation space of diagnosis codes. The novel practice of applying the sequential matching on the vector representation lifted the matching accuracy measured through multiple clinical outcomes. We reported the results on a large-scale dataset to demonstrate the effectiveness of our method. For such a large dataset where most clinical information has been codified, the new method is particularly relevant.
Dang Nguyen, Wei Luo, Dinh Phung, Svetha Venkatesh
null
1612.01812
null
null
Combinatorial semi-bandit with known covariance
cs.LG
The combinatorial stochastic semi-bandit problem is an extension of the classical multi-armed bandit problem in which an algorithm pulls more than one arm at each stage and the rewards of all pulled arms are revealed. One difference with the single arm variant is that the dependency structure of the arms is crucial. Previous works on this setting either used a worst-case approach or imposed independence of the arms. We introduce a way to quantify the dependency structure of the problem and design an algorithm that adapts to it. The algorithm is based on linear regression and the analysis develops techniques from the linear bandit literature. By comparing its performance to a new lower bound, we prove that it is optimal, up to a poly-logarithmic factor in the number of pulled arms.
R\'emy Degenne, Vianney Perchet
null
1612.01859
null
null
Microseismic events enhancement and detection in sensor arrays using autocorrelation based filtering
physics.geo-ph cs.LG eess.SP
Passive microseismic data are commonly buried in noise, which presents a significant challenge for signal detection and recovery. For recordings from a surface sensor array where each trace contains a time-delayed arrival from the event, we propose an autocorrelation-based stacking method that designs a denoising filter from all the traces, as well as a multi-channel detection scheme. This approach circumvents the issue of time aligning the traces prior to stacking because every trace's autocorrelation is centered at zero in the lag domain. The effect of white noise is concentrated near zero lag, so the filter design requires a predictable adjustment of the zero-lag value. Truncation of the autocorrelation is employed to smooth the impulse response of the denoising filter. In order to extend the applicability of the algorithm, we also propose a noise prewhitening scheme that addresses cases with colored noise. The simplicity and robustness of this method are validated with synthetic and real seismic traces.
Entao Liu, Lijun Zhu, Anupama Govinda Raj, James H. McClellan, Abdullatif Al-Shuhail, SanLinn I. Kaka, Naveed Iqbal
null
1612.01884
null
null
Invariant Representations for Noisy Speech Recognition
cs.CL cs.CV cs.LG cs.SD stat.ML
Modern automatic speech recognition (ASR) systems need to be robust under acoustic variability arising from environmental, speaker, channel, and recording conditions. Ensuring such robustness to variability is a challenge in modern day neural network-based ASR systems, especially when all types of variability are not seen during training. We attempt to address this problem by encouraging the neural network acoustic model to learn invariant feature representations. We use ideas from recent research on image generation using Generative Adversarial Networks and domain adaptation ideas extending adversarial gradient-based training. A recent work from Ganin et al. proposes to use adversarial training for image domain adaptation by using an intermediate representation from the main target classification network to deteriorate the domain classifier performance through a separate neural network. Our work focuses on investigating neural architectures which produce representations invariant to noise conditions for ASR. We evaluate the proposed architecture on the Aurora-4 task, a popular benchmark for noise robust ASR. We show that our method generalizes better than the standard multi-condition training especially when only a few noise categories are seen during training.
Dmitriy Serdyuk, Kartik Audhkhasi, Phil\'emon Brakel, Bhuvana Ramabhadran, Samuel Thomas, Yoshua Bengio
null
1612.01928
null
null
A Probabilistic Framework for Deep Learning
stat.ML cs.LG cs.NE
We develop a probabilistic framework for deep learning based on the Deep Rendering Mixture Model (DRMM), a new generative probabilistic model that explicitly capture variations in data due to latent task nuisance variables. We demonstrate that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in deep convolutional neural networks (DCNs), providing a first principles derivation. Our framework provides new insights into the successes and shortcomings of DCNs as well as a principled route to their improvement. DRMM training via the Expectation-Maximization (EM) algorithm is a powerful alternative to DCN back-propagation, and initial training results are promising. Classification based on the DRMM and other variants outperforms DCNs in supervised digit classification, training 2-3x faster while achieving similar accuracy. Moreover, the DRMM is applicable to semi-supervised and unsupervised learning tasks, achieving results that are state-of-the-art in several categories on the MNIST benchmark and comparable to state of the art on the CIFAR10 benchmark.
Ankit B. Patel, Tan Nguyen, Richard G. Baraniuk
null
1612.01936
null
null
Semi-Supervised Learning with the Deep Rendering Mixture Model
stat.ML cs.LG cs.NE
Semi-supervised learning algorithms reduce the high cost of acquiring labeled training data by using both labeled and unlabeled data during learning. Deep Convolutional Networks (DCNs) have achieved great success in supervised tasks and as such have been widely employed in the semi-supervised learning. In this paper we leverage the recently developed Deep Rendering Mixture Model (DRMM), a probabilistic generative model that models latent nuisance variation, and whose inference algorithm yields DCNs. We develop an EM algorithm for the DRMM to learn from both labeled and unlabeled data. Guided by the theory of the DRMM, we introduce a novel non-negativity constraint and a variational inference term. We report state-of-the-art performance on MNIST and SVHN and competitive results on CIFAR10. We also probe deeper into how a DRMM trained in a semi-supervised setting represents latent nuisance variation using synthetically rendered images. Taken together, our work provides a unified framework for supervised, unsupervised, and semi-supervised learning.
Tan Nguyen, Wanjia Liu, Ethan Perez, Richard G. Baraniuk, Ankit B. Patel
null
1612.01942
null
null
Segmental Convolutional Neural Networks for Detection of Cardiac Abnormality With Noisy Heart Sound Recordings
cs.SD cs.LG stat.ML
Heart diseases constitute a global health burden, and the problem is exacerbated by the error-prone nature of listening to and interpreting heart sounds. This motivates the development of automated classification to screen for abnormal heart sounds. Existing machine learning-based systems achieve accurate classification of heart sound recordings but rely on expert features that have not been thoroughly evaluated on noisy recordings. Here we propose a segmental convolutional neural network architecture that achieves automatic feature learning from noisy heart sound recordings. Our experiments show that our best model, trained on noisy recording segments acquired with an existing hidden semi-markov model-based approach, attains a classification accuracy of 87.5% on the 2016 PhysioNet/CinC Challenge dataset, compared to the 84.6% accuracy of the state-of-the-art statistical classifier trained and evaluated on the same dataset. Our results indicate the potential of using neural network-based methods to increase the accuracy of automated classification of heart sound recordings for improved screening of heart diseases.
Yuhao Zhang, Sandeep Ayyar, Long-Huei Chen, Ethan J. Li
null
1612.01943
null
null
Core Sampling Framework for Pixel Classification
cs.CV cs.LG
The intermediate map responses of a Convolutional Neural Network (CNN) contain information about an image that can be used to extract contextual knowledge about it. In this paper, we present a core sampling framework that is able to use these activation maps from several layers as features to another neural network using transfer learning to provide an understanding of an input image. Our framework creates a representation that combines features from the test data and the contextual knowledge gained from the responses of a pretrained network, processes it and feeds it to a separate Deep Belief Network. We use this representation to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained VGG-16 model to perform segmentation on the BAERI dataset of Synthetic Aperture Radar(SAR) imagery and the CAMVID dataset.
Manohar Karki, Robert DiBiano, Saikat Basu, Supratik Mukhopadhyay
null
1612.01981
null
null
Local Group Invariant Representations via Orbit Embeddings
cs.LG stat.ML
Invariance to nuisance transformations is one of the desirable properties of effective representations. We consider transformations that form a \emph{group} and propose an approach based on kernel methods to derive local group invariant representations. Locality is achieved by defining a suitable probability distribution over the group which in turn induces distributions in the input feature space. We learn a decision function over these distributions by appealing to the powerful framework of kernel methods and generate local invariant random feature maps via kernel approximations. We show uniform convergence bounds for kernel approximation and provide excess risk bounds for learning with these features. We evaluate our method on three real datasets, including Rotated MNIST and CIFAR-10, and observe that it outperforms competing kernel based approaches. The proposed method also outperforms deep CNN on Rotated-MNIST and performs comparably to the recently proposed group-equivariant CNN.
Anant Raj, Abhishek Kumar, Youssef Mroueh, P. Thomas Fletcher, Bernhard Sch\"olkopf
null
1612.01988
null
null
Statistical and Computational Guarantees of Lloyd's Algorithm and its Variants
math.ST cs.LG stat.ML stat.TH
Clustering is a fundamental problem in statistics and machine learning. Lloyd's algorithm, proposed in 1957, is still possibly the most widely used clustering algorithm in practice due to its simplicity and empirical performance. However, there has been little theoretical investigation on the statistical and computational guarantees of Lloyd's algorithm. This paper is an attempt to bridge this gap between practice and theory. We investigate the performance of Lloyd's algorithm on clustering sub-Gaussian mixtures. Under an appropriate initialization for labels or centers, we show that Lloyd's algorithm converges to an exponentially small clustering error after an order of $\log n$ iterations, where $n$ is the sample size. The error rate is shown to be minimax optimal. For the two-mixture case, we only require the initializer to be slightly better than random guess. In addition, we extend the Lloyd's algorithm and its analysis to community detection and crowdsourcing, two problems that have received a lot of attention recently in statistics and machine learning. Two variants of Lloyd's algorithm are proposed respectively for community detection and crowdsourcing. On the theoretical side, we provide statistical and computational guarantees of the two algorithms, and the results improve upon some previous signal-to-noise ratio conditions in literature for both problems. Experimental results on simulated and real data sets demonstrate competitive performance of our algorithms to the state-of-the-art methods.
Yu Lu and Harrison H. Zhou
null
1612.02099
null
null
Predictive Business Process Monitoring with LSTM Neural Networks
stat.AP cs.DB cs.LG cs.NE stat.ML
Predictive business process monitoring methods exploit logs of completed cases of a process in order to make predictions about running cases thereof. Existing methods in this space are tailor-made for specific prediction tasks. Moreover, their relative accuracy is highly sensitive to the dataset at hand, thus requiring users to engage in trial-and-error and tuning when applying them in a specific setting. This paper investigates Long Short-Term Memory (LSTM) neural networks as an approach to build consistently accurate models for a wide range of predictive process monitoring tasks. First, we show that LSTMs outperform existing techniques to predict the next event of a running case and its timestamp. Next, we show how to use models for predicting the next task in order to predict the full continuation of a running case. Finally, we apply the same approach to predict the remaining time, and show that this approach outperforms existing tailor-made methods.
Niek Tax, Ilya Verenich, Marcello La Rosa, Marlon Dumas
10.1007/978-3-319-59536-8_30
1612.0213
null
null
Mode Regularized Generative Adversarial Networks
cs.LG cs.AI cs.CV cs.NE
Although Generative Adversarial Networks achieve state-of-the-art results on a variety of generative tasks, they are regarded as highly unstable and prone to miss modes. We argue that these bad behaviors of GANs are due to the very particular functional shape of the trained discriminators in high dimensional spaces, which can easily make training stuck or push probability mass in the wrong direction, towards that of higher concentration than that of the data generating distribution. We introduce several ways of regularizing the objective, which can dramatically stabilize the training of GAN models. We also show that our regularizers can help the fair distribution of probability mass across the modes of the data generating distribution, during the early phases of training and thus providing a unified solution to the missing modes problem.
Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, Wenjie Li
null
1612.02136
null
null
Measuring the non-asymptotic convergence of sequential Monte Carlo samplers using probabilistic programming
cs.AI cs.LG stat.ML
A key limitation of sampling algorithms for approximate inference is that it is difficult to quantify their approximation error. Widely used sampling schemes, such as sequential importance sampling with resampling and Metropolis-Hastings, produce output samples drawn from a distribution that may be far from the target posterior distribution. This paper shows how to upper-bound the symmetric KL divergence between the output distribution of a broad class of sequential Monte Carlo (SMC) samplers and their target posterior distributions, subject to assumptions about the accuracy of a separate gold-standard sampler. The proposed method applies to samplers that combine multiple particles, multinomial resampling, and rejuvenation kernels. The experiments show the technique being used to estimate bounds on the divergence of SMC samplers for posterior inference in a Bayesian linear regression model and a Dirichlet process mixture model.
Marco F. Cusumano-Towner, Vikash K. Mansinghka
null
1612.02161
null
null
Model-based Adversarial Imitation Learning
stat.ML cs.LG
Generative adversarial learning is a popular new approach to training generative models which has been proven successful for other related problems as well. The general idea is to maintain an oracle $D$ that discriminates between the expert's data distribution and that of the generative model $G$. The generative model is trained to capture the expert's distribution by maximizing the probability of $D$ misclassifying the data it generates. Overall, the system is \emph{differentiable} end-to-end and is trained using basic backpropagation. This type of learning was successfully applied to the problem of policy imitation in a model-free setup. However, a model-free approach does not allow the system to be differentiable, which requires the use of high-variance gradient estimations. In this paper we introduce the Model based Adversarial Imitation Learning (MAIL) algorithm. A model-based approach for the problem of adversarial imitation learning. We show how to use a forward model to make the system fully differentiable, which enables us to train policies using the (stochastic) gradient of $D$. Moreover, our approach requires relatively few environment interactions, and fewer hyper-parameters to tune. We test our method on the MuJoCo physics simulator and report initial results that surpass the current state-of-the-art.
Nir Baram, Oron Anschel, Shie Mannor
null
1612.02179
null
null
Fast Adaptation in Generative Models with Generative Matching Networks
stat.ML cs.LG
Despite recent advances, the remaining bottlenecks in deep generative models are necessity of extensive training and difficulties with generalization from small number of training examples. We develop a new generative model called Generative Matching Network which is inspired by the recently proposed matching networks for one-shot learning in discriminative tasks. By conditioning on the additional input dataset, our model can instantly learn new concepts that were not available in the training data but conform to a similar generative process. The proposed framework does not explicitly restrict diversity of the conditioning data and also does not require an extensive inference procedure for training or adaptation. Our experiments on the Omniglot dataset demonstrate that Generative Matching Networks significantly improve predictive performance on the fly as more additional data is available and outperform existing state of the art conditional generative models.
Sergey Bartunov, Dmitry P. Vetrov
null
1612.02192
null
null
A Communication-Efficient Parallel Method for Group-Lasso
cs.LG stat.ML
Group-Lasso (gLasso) identifies important explanatory factors in predicting the response variable by considering the grouping structure over input variables. However, most existing algorithms for gLasso are not scalable to deal with large-scale datasets, which are becoming a norm in many applications. In this paper, we present a divide-and-conquer based parallel algorithm (DC-gLasso) to scale up gLasso in the tasks of regression with grouping structures. DC-gLasso only needs two iterations to collect and aggregate the local estimates on subsets of the data, and is provably correct to recover the true model under certain conditions. We further extend it to deal with overlappings between groups. Empirical results on a wide range of synthetic and real-world datasets show that DC-gLasso can significantly improve the time efficiency without sacrificing regression accuracy.
Binghong Chen, Jun Zhu
null
1612.02222
null
null
Large-Margin Softmax Loss for Convolutional Neural Networks
stat.ML cs.LG
Cross-entropy loss together with softmax is arguably one of the most common used supervision components in convolutional neural networks (CNNs). Despite its simplicity, popularity and excellent performance, the component does not explicitly encourage discriminative learning of features. In this paper, we propose a generalized large-margin softmax (L-Softmax) loss which explicitly encourages intra-class compactness and inter-class separability between learned features. Moreover, L-Softmax not only can adjust the desired margin but also can avoid overfitting. We also show that the L-Softmax loss can be optimized by typical stochastic gradient descent. Extensive experiments on four benchmark datasets demonstrate that the deeply-learned features with L-softmax loss become more discriminative, hence significantly boosting the performance on a variety of visual classification and verification tasks.
Weiyang Liu, Yandong Wen, Zhiding Yu, Meng Yang
null
1612.02295
null
null
Spatially Adaptive Computation Time for Residual Networks
cs.CV cs.LG
This paper proposes a deep learning architecture based on Residual Network that dynamically adjusts the number of executed layers for the regions of the image. This architecture is end-to-end trainable, deterministic and problem-agnostic. It is therefore applicable without any modifications to a wide range of computer vision problems such as image classification, object detection and image segmentation. We present experimental results showing that this model improves the computational efficiency of Residual Networks on the challenging ImageNet classification and COCO object detection datasets. Additionally, we evaluate the computation time maps on the visual saliency dataset cat2000 and find that they correlate surprisingly well with human eye fixation positions.
Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, Ruslan Salakhutdinov
null
1612.02297
null
null
Extend natural neighbor: a novel classification method with self-adaptive neighborhood parameters in different stages
cs.AI cs.LG
Various kinds of k-nearest neighbor (KNN) based classification methods are the bases of many well-established and high-performance pattern-recognition techniques, but both of them are vulnerable to their parameter choice. Essentially, the challenge is to detect the neighborhood of various data sets, while utterly ignorant of the data characteristic. This article introduces a new supervised classification method: the extend natural neighbor (ENaN) method, and shows that it provides a better classification result without choosing the neighborhood parameter artificially. Unlike the original KNN based method which needs a prior k, the ENaNE method predicts different k in different stages. Therefore, the ENaNE method is able to learn more from flexible neighbor information both in training stage and testing stage, and provide a better classification result.
Ji Feng, Qingsheng Zhu, Jinlong Huang, Lijun Yang
null
1612.0231
null
null
Robust Low-Complexity Randomized Methods for Locating Outliers in Large Matrices
cs.IT cs.LG math.IT stat.ML
This paper examines the problem of locating outlier columns in a large, otherwise low-rank matrix, in settings where {}{the data} are noisy, or where the overall matrix has missing elements. We propose a randomized two-step inference framework, and establish sufficient conditions on the required sample complexities under which these methods succeed (with high probability) in accurately locating the outliers for each task. Comprehensive numerical experimental results are provided to verify the theoretical bounds and demonstrate the computational efficiency of the proposed algorithm.
Xingguo Li and Jarvis Haupt
null
1612.02334
null
null
An Information-theoretic Approach to Machine-oriented Music Summarization
cs.IR cs.LG cs.SD
Music summarization allows for higher efficiency in processing, storage, and sharing of datasets. Machine-oriented approaches, being agnostic to human consumption, optimize these aspects even further. Such summaries have already been successfully validated in some MIR tasks. We now generalize previous conclusions by evaluating the impact of generic summarization of music from a probabilistic perspective. We estimate Gaussian distributions for original and summarized songs and compute their relative entropy, in order to measure information loss incurred by summarization. Our results suggest that relative entropy is a good predictor of summarization performance in the context of tasks relying on a bag-of-features model. Based on this observation, we further propose a straightforward yet expressive summarizer, which minimizes relative entropy with respect to the original song, that objectively outperforms previous methods and is better suited to avoid potential copyright issues.
Francisco Raposo, David Martins de Matos, Ricardo Ribeiro
10.1016/j.patrec.2019.03.014
1612.0235
null
null
Improving the Performance of Neural Machine Translation Involving Morphologically Rich Languages
cs.CL cs.LG cs.NE
The advent of the attention mechanism in neural machine translation models has improved the performance of machine translation systems by enabling selective lookup into the source sentence. In this paper, the efficiencies of translation using bidirectional encoder attention decoder models were studied with respect to translation involving morphologically rich languages. The English - Tamil language pair was selected for this analysis. First, the use of Word2Vec embedding for both the English and Tamil words improved the translation results by 0.73 BLEU points over the baseline RNNSearch model with 4.84 BLEU score. The use of morphological segmentation before word vectorization to split the morphologically rich Tamil words into their respective morphemes before the translation, caused a reduction in the target vocabulary size by a factor of 8. Also, this model (RNNMorph) improved the performance of neural machine translation by 7.05 BLEU points over the RNNSearch model used over the same corpus. Since the BLEU evaluation of the RNNMorph model might be unreliable due to an increase in the number of matching tokens per sentence, the performances of the translations were also compared by means of human evaluation metrics of adequacy, fluency and relative ranking. Further, the use of morphological segmentation also improved the efficacy of the attention mechanism.
Krupakar Hans, R S Milton
null
1612.02482
null
null
Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets
cs.AI cs.LG stat.ML
Providing accurate predictions is challenging for machine learning algorithms when the number of features is larger than the number of samples in the data. Prior knowledge can improve machine learning models by indicating relevant variables and parameter values. Yet, this prior knowledge is often tacit and only available from domain experts. We present a novel approach that uses interactive visualization to elicit the tacit prior knowledge and uses it to improve the accuracy of prediction models. The main component of our approach is a user model that models the domain expert's knowledge of the relevance of different features for a prediction task. In particular, based on the expert's earlier input, the user model guides the selection of the features on which to elicit user's knowledge next. The results of a controlled user study show that the user model significantly improves prior knowledge elicitation and prediction accuracy, when predicting the relative citation counts of scientific documents in a specific domain.
Luana Micallef, Iiris Sundin, Pekka Marttinen, Muhammad Ammad-ud-din, Tomi Peltola, Marta Soare, Giulio Jacucci, Samuel Kaski
null
1612.02487
null
null
Bridging Medical Data Inference to Achilles Tendon Rupture Rehabilitation
cs.LG stat.AP
Imputing incomplete medical tests and predicting patient outcomes are crucial for guiding the decision making for therapy, such as after an Achilles Tendon Rupture (ATR). We formulate the problem of data imputation and prediction for ATR relevant medical measurements into a recommender system framework. By applying MatchBox, which is a collaborative filtering approach, on a real dataset collected from 374 ATR patients, we aim at offering personalized medical data imputation and prediction. In this work, we show the feasibility of this approach and discuss potential research directions by conducting initial qualitative evaluations.
An Qu and Cheng Zhang and Paul Ackermann and Hedvig Kjellstr\"om
null
1612.0249
null
null
Prediction with a Short Memory
cs.LG cs.AI cs.CC stat.ML
We consider the problem of predicting the next observation given a sequence of past observations, and consider the extent to which accurate prediction requires complex algorithms that explicitly leverage long-range dependencies. Perhaps surprisingly, our positive results show that for a broad class of sequences, there is an algorithm that predicts well on average, and bases its predictions only on the most recent few observation together with a set of simple summary statistics of the past observations. Specifically, we show that for any distribution over observations, if the mutual information between past observations and future observations is upper bounded by $I$, then a simple Markov model over the most recent $I/\epsilon$ observations obtains expected KL error $\epsilon$---and hence $\ell_1$ error $\sqrt{\epsilon}$---with respect to the optimal predictor that has access to the entire past and knows the data generating distribution. For a Hidden Markov Model with $n$ hidden states, $I$ is bounded by $\log n$, a quantity that does not depend on the mixing time, and we show that the trivial prediction algorithm based on the empirical frequencies of length $O(\log n/\epsilon)$ windows of observations achieves this error, provided the length of the sequence is $d^{\Omega(\log n/\epsilon)}$, where $d$ is the size of the observation alphabet. We also establish that this result cannot be improved upon, even for the class of HMMs, in the following two senses: First, for HMMs with $n$ hidden states, a window length of $\log n/\epsilon$ is information-theoretically necessary to achieve expected $\ell_1$ error $\sqrt{\epsilon}$. Second, the $d^{\Theta(\log n/\epsilon)}$ samples required to estimate the Markov model for an observation alphabet of size $d$ is necessary for any computationally tractable learning algorithm, assuming the hardness of strongly refuting a certain class of CSPs.
Vatsal Sharan, Sham Kakade, Percy Liang, Gregory Valiant
null
1612.02526
null
null
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
stat.ML cs.CV cs.LG q-bio.NC
Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people and deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of "brain-predicted age" as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. Brain-predicted age represents an accurate, highly reliable and genetically-valid phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings.
James H Cole, Rudra PK Poudel, Dimosthenis Tsagkrasoulis, Matthan WA Caan, Claire Steves, Tim D Spector, Giovanni Montana
null
1612.02572
null
null
Towards Information-Seeking Agents
cs.LG
We develop a general problem setting for training and testing the ability of agents to gather information efficiently. Specifically, we present a collection of tasks in which success requires searching through a partially-observed environment, for fragments of information which can be pieced together to accomplish various goals. We combine deep architectures with techniques from reinforcement learning to develop agents that solve our tasks. We shape the behavior of these agents by combining extrinsic and intrinsic rewards. We empirically demonstrate that these agents learn to search actively and intelligently for new information to reduce their uncertainty, and to exploit information they have already acquired.
Philip Bachman and Alessandro Sordoni and Adam Trischler
null
1612.02605
null
null
Evaluating the Performance of ANN Prediction System at Shanghai Stock Market in the Period 21-Sep-2016 to 11-Oct-2016
q-fin.ST cs.LG stat.ML
This research evaluates the performance of an Artificial Neural Network based prediction system that was employed on the Shanghai Stock Exchange for the period 21-Sep-2016 to 11-Oct-2016. It is a follow-up to a previous paper in which the prices were predicted and published before September 21. Stock market price prediction remains an important quest for investors and researchers. This research used an Artificial Intelligence system, being an Artificial Neural Network that is feedforward multi-layer perceptron with error backpropagation for prediction, unlike other methods such as technical, fundamental or time series analysis. While these alternative methods tend to guide on trends and not the exact likely prices, neural networks on the other hand have the ability to predict the real value prices, as was done on this research. Nonetheless, determination of suitable network parameters remains a challenge in neural network design, with this research settling on a configuration of 5:21:21:1 with 80% training data or 4-year of training data as a good enough model for stock prediction, as already determined in a previous research by the author. The comparative results indicate that neural network can predict typical stock market prices with mean absolute percentage errors that are as low as 1.95% over the ten prediction instances that was studied in this research.
Barack Wamkaya Wanjawa
null
1612.02666
null
null
Towards better decoding and language model integration in sequence to sequence models
cs.NE cs.CL cs.LG stat.ML
The recently proposed Sequence-to-Sequence (seq2seq) framework advocates replacing complex data processing pipelines, such as an entire automatic speech recognition system, with a single neural network trained in an end-to-end fashion. In this contribution, we analyse an attention-based seq2seq speech recognition system that directly transcribes recordings into characters. We observe two shortcomings: overconfidence in its predictions and a tendency to produce incomplete transcriptions when language models are used. We propose practical solutions to both problems achieving competitive speaker independent word error rates on the Wall Street Journal dataset: without separate language models we reach 10.6% WER, while together with a trigram language model, we reach 6.7% WER.
Jan Chorowski and Navdeep Jaitly
null
1612.02695
null
null
A note on the triangle inequality for the Jaccard distance
cs.DM cs.IR cs.LG stat.ML
Two simple proofs of the triangle inequality for the Jaccard distance in terms of nonnegative, monotone, submodular functions are given and discussed.
Sven Kosub
null
1612.02696
null
null
CrowdMI: Multiple Imputation via Crowdsourcing
cs.LG cs.HC stat.ML
Can humans impute missing data with similar proficiency as machines? This is the question we aim to answer in this paper. We present a novel idea of converting observations with missing data in to a survey questionnaire, which is presented to crowdworkers for completion. We replicate a multiple imputation framework by having multiple unique crowdworkers complete our questionnaire. Experimental results demonstrate that using our method, it is possible to generate valid imputations for qualitative and quantitative missing data, with results comparable to imputations generated by complex statistical models.
Lovedeep Gondara
null
1612.02707
null
null
Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks
cs.SI cs.DS cs.LG stat.ML
A typical viral marketing model identifies influential users in a social network to maximize a single product adoption assuming unlimited user attention, campaign budgets, and time. In reality, multiple products need campaigns, users have limited attention, convincing users incurs costs, and advertisers have limited budgets and expect the adoptions to be maximized soon. Facing these user, monetary, and timing constraints, we formulate the problem as a submodular maximization task in a continuous-time diffusion model under the intersection of a matroid and multiple knapsack constraints. We propose a randomized algorithm estimating the user influence in a network ($|\mathcal{V}|$ nodes, $|\mathcal{E}|$ edges) to an accuracy of $\epsilon$ with $n=\mathcal{O}(1/\epsilon^2)$ randomizations and $\tilde{\mathcal{O}}(n|\mathcal{E}|+n|\mathcal{V}|)$ computations. By exploiting the influence estimation algorithm as a subroutine, we develop an adaptive threshold greedy algorithm achieving an approximation factor $k_a/(2+2 k)$ of the optimal when $k_a$ out of the $k$ knapsack constraints are active. Extensive experiments on networks of millions of nodes demonstrate that the proposed algorithms achieve the state-of-the-art in terms of effectiveness and scalability.
Nan Du, Yingyu Liang, Maria-Florina Balcan, Manuel Gomez-Rodriguez, Hongyuan Zha, Le Song
null
1612.02712
null
null
Learning in the Machine: Random Backpropagation and the Deep Learning Channel
cs.LG cs.AI cs.NE
Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.
Pierre Baldi, Peter Sadowski, Zhiqin Lu
null
1612.02734
null
null
Controlling Robot Morphology from Incomplete Measurements
cs.RO cs.AI cs.LG cs.SY
Mobile robots with complex morphology are essential for traversing rough terrains in Urban Search & Rescue missions (USAR). Since teleoperation of the complex morphology causes high cognitive load of the operator, the morphology is controlled autonomously. The autonomous control measures the robot state and surrounding terrain which is usually only partially observable, and thus the data are often incomplete. We marginalize the control over the missing measurements and evaluate an explicit safety condition. If the safety condition is violated, tactile terrain exploration by the body-mounted robotic arm gathers the missing data.
Martin Pecka, Karel Zimmermann, Michal Rein\v{s}tein, Tom\'a\v{s} Svoboda
10.1109/TIE.2016.2580125
1612.02739
null
null
Coupling Distributed and Symbolic Execution for Natural Language Queries
cs.LG cs.AI cs.CL cs.NE cs.SE
Building neural networks to query a knowledge base (a table) with natural language is an emerging research topic in deep learning. An executor for table querying typically requires multiple steps of execution because queries may have complicated structures. In previous studies, researchers have developed either fully distributed executors or symbolic executors for table querying. A distributed executor can be trained in an end-to-end fashion, but is weak in terms of execution efficiency and explicit interpretability. A symbolic executor is efficient in execution, but is very difficult to train especially at initial stages. In this paper, we propose to couple distributed and symbolic execution for natural language queries, where the symbolic executor is pretrained with the distributed executor's intermediate execution results in a step-by-step fashion. Experiments show that our approach significantly outperforms both distributed and symbolic executors, exhibiting high accuracy, high learning efficiency, high execution efficiency, and high interpretability.
Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin
null
1612.02741
null
null
Protein-Ligand Scoring with Convolutional Neural Networks
stat.ML cs.LG q-bio.BM
Computational approaches to drug discovery can reduce the time and cost associated with experimental assays and enable the screening of novel chemotypes. Structure-based drug design methods rely on scoring functions to rank and predict binding affinities and poses. The ever-expanding amount of protein-ligand binding and structural data enables the use of deep machine learning techniques for protein-ligand scoring. We describe convolutional neural network (CNN) scoring functions that take as input a comprehensive 3D representation of a protein-ligand interaction. A CNN scoring function automatically learns the key features of protein-ligand interactions that correlate with binding. We train and optimize our CNN scoring functions to discriminate between correct and incorrect binding poses and known binders and non-binders. We find that our CNN scoring function outperforms the AutoDock Vina scoring function when ranking poses both for pose prediction and virtual screening.
Matthew Ragoza (1), Joshua Hochuli (1), Elisa Idrobo (2), Jocelyn Sunseri (1) and David Ryan Koes (1) ((1) University of Pittsburgh, (2) The College of New Jersey)
10.1021/acs.jcim.6b00740
1612.02751
null
null
Improved generator objectives for GANs
cs.LG stat.ML
We present a framework to understand GAN training as alternating density ratio estimation and approximate divergence minimization. This provides an interpretation for the mismatched GAN generator and discriminator objectives often used in practice, and explains the problem of poor sample diversity. We also derive a family of generator objectives that target arbitrary $f$-divergences without minimizing a lower bound, and use them to train generative image models that target either improved sample quality or greater sample diversity.
Ben Poole, Alexander A. Alemi, Jascha Sohl-Dickstein, Anelia Angelova
null
1612.0278
null
null
Interactive Prior Elicitation of Feature Similarities for Small Sample Size Prediction
cs.LG cs.HC
Regression under the "small $n$, large $p$" conditions, of small sample size $n$ and large number of features $p$ in the learning data set, is a recurring setting in which learning from data is difficult. With prior knowledge about relationships of the features, $p$ can effectively be reduced, but explicating such prior knowledge is difficult for experts. In this paper we introduce a new method for eliciting expert prior knowledge about the similarity of the roles of features in the prediction task. The key idea is to use an interactive multidimensional-scaling (MDS) type scatterplot display of the features to elicit the similarity relationships, and then use the elicited relationships in the prior distribution of prediction parameters. Specifically, for learning to predict a target variable with Bayesian linear regression, the feature relationships are used to construct a Gaussian prior with a full covariance matrix for the regression coefficients. Evaluation of our method in experiments with simulated and real users on text data confirm that prior elicitation of feature similarities improves prediction accuracy. Furthermore, elicitation with an interactive scatterplot display outperforms straightforward elicitation where the users choose feature pairs from a feature list.
Homayun Afrabandpey, Tomi Peltola, Samuel Kaski
10.1145/3079628.3079698
1612.02802
null
null
The Physical Systems Behind Optimization Algorithms
cs.LG math.OC stat.ML
We use differential equations based approaches to provide some {\it \textbf{physics}} insights into analyzing the dynamics of popular optimization algorithms in machine learning. In particular, we study gradient descent, proximal gradient descent, coordinate gradient descent, proximal coordinate gradient, and Newton's methods as well as their Nesterov's accelerated variants in a unified framework motivated by a natural connection of optimization algorithms to physical systems. Our analysis is applicable to more general algorithms and optimization problems {\it \textbf{beyond}} convexity and strong convexity, e.g. Polyak-\L ojasiewicz and error bound conditions (possibly nonconvex).
Lin F. Yang, R. Arora, V. Braverman, Tuo Zhao
null
1612.02803
null
null
Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification
cs.LG cs.AI cs.IR stat.ML
In this paper, we study the problem of author identification under double-blind review setting, which is to identify potential authors given information of an anonymized paper. Different from existing approaches that rely heavily on feature engineering, we propose to use network embedding approach to address the problem, which can automatically represent nodes into lower dimensional feature vectors. However, there are two major limitations in recent studies on network embedding: (1) they are usually general-purpose embedding methods, which are independent of the specific tasks; and (2) most of these approaches can only deal with homogeneous networks, where the heterogeneity of the network is ignored. Hence, challenges faced here are two folds: (1) how to embed the network under the guidance of the author identification task, and (2) how to select the best type of information due to the heterogeneity of the network. To address the challenges, we propose a task-guided and path-augmented heterogeneous network embedding model. In our model, nodes are first embedded as vectors in latent feature space. Embeddings are then shared and jointly trained according to task-specific and network-general objectives. We extend the existing unsupervised network embedding to incorporate meta paths in heterogeneous networks, and select paths according to the specific task. The guidance from author identification task for network embedding is provided both explicitly in joint training and implicitly during meta path selection. Our experiments demonstrate that by using path-augmented network embedding with task guidance, our model can obtain significantly better accuracy at identifying the true authors comparing to existing methods.
Ting Chen and Yizhou Sun
null
1612.02814
null
null
Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis
stat.ML cs.LG
A multi-way factor analysis model is introduced for tensor-variate data of any order. Each data item is represented as a (sparse) sum of Kruskal decompositions, a Kruskal-factor analysis (KFA). KFA is nonparametric and can infer both the tensor-rank of each dictionary atom and the number of dictionary atoms. The model is adapted for online learning, which allows dictionary learning on large data sets. After KFA is introduced, the model is extended to a deep convolutional tensor-factor analysis, supervised by a Bayesian SVM. The experiments section demonstrates the improvement of KFA over vectorized approaches (e.g., BPFA), tensor decompositions, and convolutional neural networks (CNN) in multi-way denoising, blind inpainting, and image classification. The improvement in PSNR for the inpainting results over other methods exceeds 1dB in several cases and we achieve state of the art results on Caltech101 image classification.
Andrew Stevens, Yunchen Pu, Yannan Sun, Greg Spell, Lawrence Carin
null
1612.02842
null
null
Learning Representations by Stochastic Meta-Gradient Descent in Neural Networks
cs.LG cs.AI stat.ML
Representations are fundamental to artificial intelligence. The performance of a learning system depends on the type of representation used for representing the data. Typically, these representations are hand-engineered using domain knowledge. More recently, the trend is to learn these representations through stochastic gradient descent in multi-layer neural networks, which is called backprop. Learning the representations directly from the incoming data stream reduces the human labour involved in designing a learning system. More importantly, this allows in scaling of a learning system for difficult tasks. In this paper, we introduce a new incremental learning algorithm called crossprop, which learns incoming weights of hidden units based on the meta-gradient descent approach, that was previously introduced by Sutton (1992) and Schraudolph (1999) for learning step-sizes. The final update equation introduces an additional memory parameter for each of these weights and generalizes the backprop update equation. From our experiments, we show that crossprop learns and reuses its feature representation while tackling new and unseen tasks whereas backprop relearns a new feature representation.
Vivek Veeriah, Shangtong Zhang, Richard S. Sutton
null
1612.02879
null
null
A Review of Intelligent Practices for Irrigation Prediction
cs.LG cs.NE
Population growth and increasing droughts are creating unprecedented strain on the continued availability of water resources. Since irrigation is a major consumer of fresh water, wastage of resources in this sector could have strong consequences. To address this issue, irrigation water management and prediction techniques need to be employed effectively and should be able to account for the variabilities present in the environment. The different techniques surveyed in this paper can be classified into two categories: computational and statistical. Computational methods deal with scientific correlations between physical parameters whereas statistical methods involve specific prediction algorithms that can be used to automate the process of irrigation water prediction. These algorithms interpret semantic relationships between the various parameters of temperature, pressure, evapotranspiration etc. and store them as numerical precomputed entities specific to the conditions and the area used as the data for the training corpus used to train it. We focus on reviewing the computational methods used to determine Evapotranspiration and its implications. We compare the efficiencies of different data mining and machine learning methods implemented in this area, such as Logistic Regression, Decision Tress Classifier, SysFor, Support Vector Machine(SVM), Fuzzy Logic techniques, Artifical Neural Networks(ANNs) and various hybrids of Genetic Algorithms (GA) applied to irrigation prediction. We also recommend a possible technique for the same based on its superior results in other such time series analysis tasks.
Hans Krupakar, Akshay Jayakumar, Dhivya G
null
1612.02893
null
null
Environmental Modeling Framework using Stacked Gaussian Processes
cs.LG stat.ML
A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first and second-order moments of a Gaussian process with uncertain inputs using squared exponential and polynomial kernels, approximated expectations of quantities of interests that require an arbitrary composition of functions can be obtained. The StackedGP model is extended to any number of layers and nodes per layer, and it provides flexibility in kernel selection for the input nodes. The proposed nonparametric stacked model is validated using synthetic datasets, and its performance in model composition and cascading predictions is measured in two applications using real data.
Kareem Abdelfatah, Junshu Bao, Gabriel Terejanu
null
1612.02897
null
null
A series of maximum entropy upper bounds of the differential entropy
cs.IT cs.CV cs.LG math.IT
We present a series of closed-form maximum entropy upper bounds for the differential entropy of a continuous univariate random variable and study the properties of that series. We then show how to use those generic bounds for upper bounding the differential entropy of Gaussian mixture models. This requires to calculate the raw moments and raw absolute moments of Gaussian mixtures in closed-form that may also be handy in statistical machine learning and information theory. We report on our experiments and discuss on the tightness of those bounds.
Frank Nielsen and Richard Nock
null
1612.02954
null
null
BaTFLED: Bayesian Tensor Factorization Linked to External Data
stat.ML cs.LG q-bio.QM
The vast majority of current machine learning algorithms are designed to predict single responses or a vector of responses, yet many types of response are more naturally organized as matrices or higher-order tensor objects where characteristics are shared across modes. We present a new machine learning algorithm BaTFLED (Bayesian Tensor Factorization Linked to External Data) that predicts values in a three-dimensional response tensor using input features for each of the dimensions. BaTFLED uses a probabilistic Bayesian framework to learn projection matrices mapping input features for each mode into latent representations that multiply to form the response tensor. By utilizing a Tucker decomposition, the model can capture weights for interactions between latent factors for each mode in a small core tensor. Priors that encourage sparsity in the projection matrices and core tensor allow for feature selection and model regularization. This method is shown to far outperform elastic net and neural net models on 'cold start' tasks from data simulated in a three-mode structure. Additionally, we apply the model to predict dose-response curves in a panel of breast cancer cell lines treated with drug compounds that was used as a Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge.
Nathan H Lazar, Mehmet G\"onen, Kemal S\"onmez
null
1612.02965
null
null
Clipper: A Low-Latency Online Prediction Serving System
cs.DC cs.LG
Machine learning is being deployed in a growing number of applications which demand real-time, accurate, and robust predictions under heavy query load. However, most machine learning frameworks and systems only address model training and not deployment. In this paper, we introduce Clipper, a general-purpose low-latency prediction serving system. Interposing between end-user applications and a wide range of machine learning frameworks, Clipper introduces a modular architecture to simplify model deployment across frameworks and applications. Furthermore, by introducing caching, batching, and adaptive model selection techniques, Clipper reduces prediction latency and improves prediction throughput, accuracy, and robustness without modifying the underlying machine learning frameworks. We evaluate Clipper on four common machine learning benchmark datasets and demonstrate its ability to meet the latency, accuracy, and throughput demands of online serving applications. Finally, we compare Clipper to the TensorFlow Serving system and demonstrate that we are able to achieve comparable throughput and latency while enabling model composition and online learning to improve accuracy and render more robust predictions.
Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gonzalez, Ion Stoica
null
1612.03079
null
null
Advancing Bayesian Optimization: The Mixed-Global-Local (MGL) Kernel and Length-Scale Cool Down
cs.LG cs.AI stat.ML
Bayesian Optimization (BO) has become a core method for solving expensive black-box optimization problems. While much research focussed on the choice of the acquisition function, we focus on online length-scale adaption and the choice of kernel function. Instead of choosing hyperparameters in view of maximum likelihood on past data, we propose to use the acquisition function to decide on hyperparameter adaptation more robustly and in view of the future optimization progress. Further, we propose a particular kernel function that includes non-stationarity and local anisotropy and thereby implicitly integrates the efficiency of local convex optimization with global Bayesian optimization. Comparisons to state-of-the art BO methods underline the efficiency of these mechanisms on global optimization benchmarks.
Kim Peter Wabersich and Marc Toussaint
null
1612.03117
null
null
Phase transitions in Restricted Boltzmann Machines with generic priors
cond-mat.dis-nn cs.LG physics.data-an stat.ML
We study Generalised Restricted Boltzmann Machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as Generalised Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalisation in a teacher-student scenario of unsupervised learning.
Adriano Barra, Giuseppe Genovese, Peter Sollich, Daniele Tantari
10.1103/PhysRevE.96.042156
1612.03132
null
null
Testing Ising Models
cs.DS cs.IT cs.LG math.IT math.PR math.ST stat.TH
Given samples from an unknown multivariate distribution $p$, is it possible to distinguish whether $p$ is the product of its marginals versus $p$ being far from every product distribution? Similarly, is it possible to distinguish whether $p$ equals a given distribution $q$ versus $p$ and $q$ being far from each other? These problems of testing independence and goodness-of-fit have received enormous attention in statistics, information theory, and theoretical computer science, with sample-optimal algorithms known in several interesting regimes of parameters. Unfortunately, it has also been understood that these problems become intractable in large dimensions, necessitating exponential sample complexity. Motivated by the exponential lower bounds for general distributions as well as the ubiquity of Markov Random Fields (MRFs) in the modeling of high-dimensional distributions, we initiate the study of distribution testing on structured multivariate distributions, and in particular the prototypical example of MRFs: the Ising Model. We demonstrate that, in this structured setting, we can avoid the curse of dimensionality, obtaining sample and time efficient testers for independence and goodness-of-fit. One of the key technical challenges we face along the way is bounding the variance of functions of the Ising model.
Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath
null
1612.03147
null
null
Optimal mean-based algorithms for trace reconstruction
cs.CC cs.DS cs.LG
In the (deletion-channel) trace reconstruction problem, there is an unknown $n$-bit source string $x$. An algorithm is given access to independent traces of $x$, where a trace is formed by deleting each bit of~$x$ independently with probability~$\delta$. The goal of the algorithm is to recover~$x$ exactly (with high probability), while minimizing samples (number of traces) and running time. Previously, the best known algorithm for the trace reconstruction problem was due to Holenstein~et~al.; it uses $\exp(\tilde{O}(n^{1/2}))$ samples and running time for any fixed $0 < \delta < 1$. It is also what we call a "mean-based algorithm", meaning that it only uses the empirical means of the individual bits of the traces. Holenstein~et~al.~also gave a lower bound, showing that any mean-based algorithm must use at least $n^{\tilde{\Omega}(\log n)}$ samples. In this paper we improve both of these results, obtaining matching upper and lower bounds for mean-based trace reconstruction. For any constant deletion rate $0 < \delta < 1$, we give a mean-based algorithm that uses $\exp(O(n^{1/3}))$ time and traces; we also prove that any mean-based algorithm must use at least $\exp(\Omega(n^{1/3}))$ traces. In fact, we obtain matching upper and lower bounds even for $\delta$ subconstant and $\rho := 1-\delta$ subconstant: when $(\log^3 n)/n \ll \delta \leq 1/2$ the bound is $\exp(-\Theta(\delta n)^{1/3})$, and when $1/\sqrt{n} \ll \rho \leq 1/2$ the bound is $\exp(-\Theta(n/\rho)^{1/3})$. Our proofs involve estimates for the maxima of Littlewood polynomials on complex disks. We show that these techniques can also be used to perform trace reconstruction with random insertions and bit-flips in addition to deletions. We also find a surprising result: for deletion probabilities $\delta > 1/2$, the presence of insertions can actually help with trace reconstruction.
Anindya De and Ryan O'Donnell and Rocco Servedio
null
1612.03148
null
null
Testing Bayesian Networks
cs.DS cs.IT cs.LG math.IT math.ST stat.TH
This work initiates a systematic investigation of testing high-dimensional structured distributions by focusing on testing Bayesian networks -- the prototypical family of directed graphical models. A Bayesian network is defined by a directed acyclic graph, where we associate a random variable with each node. The value at any particular node is conditionally independent of all the other non-descendant nodes once its parents are fixed. Specifically, we study the properties of identity testing and closeness testing of Bayesian networks. Our main contribution is the first non-trivial efficient testing algorithms for these problems and corresponding information-theoretic lower bounds. For a wide range of parameter settings, our testing algorithms have sample complexity sublinear in the dimension and are sample-optimal, up to constant factors.
Clement Canonne, Ilias Diakonikolas, Daniel Kane, Alistair Stewart
null
1612.03156
null
null
Square Hellinger Subadditivity for Bayesian Networks and its Applications to Identity Testing
cs.LG cs.IT math.IT math.PR math.ST stat.ML stat.TH
We show that the square Hellinger distance between two Bayesian networks on the same directed graph, $G$, is subadditive with respect to the neighborhoods of $G$. Namely, if $P$ and $Q$ are the probability distributions defined by two Bayesian networks on the same DAG, our inequality states that the square Hellinger distance, $H^2(P,Q)$, between $P$ and $Q$ is upper bounded by the sum, $\sum_v H^2(P_{\{v\} \cup \Pi_v}, Q_{\{v\} \cup \Pi_v})$, of the square Hellinger distances between the marginals of $P$ and $Q$ on every node $v$ and its parents $\Pi_v$ in the DAG. Importantly, our bound does not involve the conditionals but the marginals of $P$ and $Q$. We derive a similar inequality for more general Markov Random Fields. As an application of our inequality, we show that distinguishing whether two Bayesian networks $P$ and $Q$ on the same (but potentially unknown) DAG satisfy $P=Q$ vs $d_{\rm TV}(P,Q)>\epsilon$ can be performed from $\tilde{O}(|\Sigma|^{3/4(d+1)} \cdot n/\epsilon^2)$ samples, where $d$ is the maximum in-degree of the DAG and $\Sigma$ the domain of each variable of the Bayesian networks. If $P$ and $Q$ are defined on potentially different and potentially unknown trees, the sample complexity becomes $\tilde{O}(|\Sigma|^{4.5} n/\epsilon^2)$, whose dependence on $n, \epsilon$ is optimal up to logarithmic factors. Lastly, if $P$ and $Q$ are product distributions over $\{0,1\}^n$ and $Q$ is known, the sample complexity becomes $O(\sqrt{n}/\epsilon^2)$, which is optimal up to constant factors.
Constantinos Daskalakis, Qinxuan Pan
null
1612.03164
null
null
Low-Rank Inducing Norms with Optimality Interpretations
math.OC cs.LG stat.ML
Optimization problems with rank constraints appear in many diverse fields such as control, machine learning and image analysis. Since the rank constraint is non-convex, these problems are often approximately solved via convex relaxations. Nuclear norm regularization is the prevailing convexifying technique for dealing with these types of problem. This paper introduces a family of low-rank inducing norms and regularizers which includes the nuclear norm as a special case. A posteriori guarantees on solving an underlying rank constrained optimization problem with these convex relaxations are provided. We evaluate the performance of the low-rank inducing norms on three matrix completion problems. In all examples, the nuclear norm heuristic is outperformed by convex relaxations based on other low-rank inducing norms. For two of the problems there exist low-rank inducing norms that succeed in recovering the partially unknown matrix, while the nuclear norm fails. These low-rank inducing norms are shown to be representable as semi-definite programs. Moreover, these norms have cheaply computable proximal mappings, which makes it possible to also solve problems of large size using first-order methods.
Christian Grussler and Pontus Giselsson
10.1137/17M1115770
1612.03186
null
null
DeepCancer: Detecting Cancer through Gene Expressions via Deep Generative Learning
cs.AI cs.LG q-bio.GN
Transcriptional profiling on microarrays to obtain gene expressions has been used to facilitate cancer diagnosis. We propose a deep generative machine learning architecture (called DeepCancer) that learn features from unlabeled microarray data. These models have been used in conjunction with conventional classifiers that perform classification of the tissue samples as either being cancerous or non-cancerous. The proposed model has been tested on two different clinical datasets. The evaluation demonstrates that DeepCancer model achieves a very high precision score, while significantly controlling the false positive and false negative scores.
Rajendra Rana Bhat, Vivek Viswanath, Xiaolin Li
null
1612.03211
null
null
Towards deep learning with spiking neurons in energy based models with contrastive Hebbian plasticity
cs.LG cs.NE q-bio.NC
In machine learning, error back-propagation in multi-layer neural networks (deep learning) has been impressively successful in supervised and reinforcement learning tasks. As a model for learning in the brain, however, deep learning has long been regarded as implausible, since it relies in its basic form on a non-local plasticity rule. To overcome this problem, energy-based models with local contrastive Hebbian learning were proposed and tested on a classification task with networks of rate neurons. We extended this work by implementing and testing such a model with networks of leaky integrate-and-fire neurons. Preliminary results indicate that it is possible to learn a non-linear regression task with hidden layers, spiking neurons and a local synaptic plasticity rule.
Thomas Mesnard, Wulfram Gerstner, Johanni Brea
null
1612.03214
null
null