title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Learning detectors of malicious web requests for intrusion detection in network traffic
stat.ML cs.LG
This paper proposes a generic classification system designed to detect security threats based on the behavior of malware samples. The system relies on statistical features computed from proxy log fields to train detectors using a database of malware samples. The behavior detectors serve as basic reusable building blocks of the multi-level detection architecture. The detectors identify malicious communication exploiting encrypted URL strings and domains generated by a Domain Generation Algorithm (DGA) which are frequently used in Command and Control (C&C), phishing, and click fraud. Surprisingly, very precise detectors can be built given only a limited amount of information extracted from a single proxy log. This way, the computational requirements of the detectors are kept low which allows for deployment on a wide range of security devices and without depending on traffic context such as DNS logs, Whois records, webpage content, etc. Results on several weeks of live traffic from 100+ companies having 350k+ hosts show correct detection with a precision exceeding 95% of malicious flows, 95% of malicious URLs and 90% of infected hosts. In addition, a comparison with a signature and rule-based solution shows that our system is able to detect significant amount of new threats.
Lukas Machlica and Karel Bartos and Michal Sofka
null
1702.0253
null
null
A Modified Construction for a Support Vector Classifier to Accommodate Class Imbalances
stat.ML cs.LG
Given a training set with binary classification, the Support Vector Machine identifies the hyperplane maximizing the margin between the two classes of training data. This general formulation is useful in that it can be applied without regard to variance differences between the classes. Ignoring these differences is not optimal, however, as the general SVM will give the class with lower variance an unjustifiably wide berth. This increases the chance of misclassification of the other class and results in an overall loss of predictive performance. An alternate construction is proposed in which the margins of the separating hyperplane are different for each class, each proportional to the standard deviation of its class along the direction perpendicular to the hyperplane. The construction agrees with the SVM in the case of equal class variances. This paper will then examine the impact to the dual representation of the modified constraint equations.
Matt Parker, Colin Parker
null
1702.02555
null
null
Causal Regularization
cs.LG cs.AI cs.NE stat.ML
In application domains such as healthcare, we want accurate predictive models that are also causally interpretable. In pursuit of such models, we propose a causal regularizer to steer predictive models towards causally-interpretable solutions and theoretically study its properties. In a large-scale analysis of Electronic Health Records (EHR), our causally-regularized model outperforms its L1-regularized counterpart in causal accuracy and is competitive in predictive performance. We perform non-linear causality analysis by causally regularizing a special neural network architecture. We also show that the proposed causal regularizer can be used together with neural representation learning algorithms to yield up to 20% improvement over multilayer perceptron in detecting multivariate causation, a situation common in healthcare, where many causal factors should occur simultaneously to have an effect on the target variable.
Mohammad Taha Bahadori, Krzysztof Chalupka, Edward Choi, Robert Chen, Walter F. Stewart, Jimeng Sun
null
1702.02604
null
null
Character-level Deep Conflation for Business Data Analytics
cs.CL cs.LG
Connecting different text attributes associated with the same entity (conflation) is important in business data analytics since it could help merge two different tables in a database to provide a more comprehensive profile of an entity. However, the conflation task is challenging because two text strings that describe the same entity could be quite different from each other for reasons such as misspelling. It is therefore critical to develop a conflation model that is able to truly understand the semantic meaning of the strings and match them at the semantic level. To this end, we develop a character-level deep conflation model that encodes the input text strings from character level into finite dimension feature vectors, which are then used to compute the cosine similarity between the text strings. The model is trained in an end-to-end manner using back propagation and stochastic gradient descent to maximize the likelihood of the correct association. Specifically, we propose two variants of the deep conflation model, based on long-short-term memory (LSTM) recurrent neural network (RNN) and convolutional neural network (CNN), respectively. Both models perform well on a real-world business analytics dataset and significantly outperform the baseline bag-of-character (BoC) model.
Zhe Gan, P. D. Singh, Ameet Joshi, Xiaodong He, Jianshu Chen, Jianfeng Gao, Li Deng
null
1702.0264
null
null
EEG Representation Using Multi-instance Framework on The Manifold of Symmetric Positive Definite Matrices for EEG-based Computer Aided Diagnosis
cs.LG
The generalization and robustness of an electroencephalogram (EEG)-based computer aided diagnostic system are crucial requirements in actual clinical practice. To reach these goals, we propose a new EEG representation that provides a more realistic view of brain functionality by applying multi-instance (MI) framework to consider the non-stationarity of the EEG signal. The non-stationary characteristic of EEG is considered by describing the signal as a bag of relevant and irrelevant concepts. The concepts are provided by a robust representation of homogenous segments of EEG signal using spatial covariance matrices. Due to the nonlinear geometry of the space of covariance matrices, we determine the boundaries of the homogeneous segments based on adaptive segmentation of the signal in a Riemannian framework. Each subject is described as a bag of covariance matrices of homogenous segments and the bag-level discriminative information is used for classification. To evaluate the performance of the proposed approach, we examine it in attention deficit hyperactivity/bipolar mood disorder detection and depression/normal diagnosis applications. Experimental results confirm the superiority of the proposed approach, which is gained due to the robustness of covariance descriptor, the effectiveness of Riemannian geometry, and the benefits of considering the inherent non-stationary nature of the brain.
Khadijeh Sadatnejad, Saeed S. Ghidary, Reza Rostami, and Reza Kazemi
null
1702.02655
null
null
Inductive Pairwise Ranking: Going Beyond the n log(n) Barrier
cs.LG cs.IT math.IT stat.ML
We study the problem of ranking a set of items from nonactively chosen pairwise preferences where each item has feature information with it. We propose and characterize a very broad class of preference matrices giving rise to the Feature Low Rank (FLR) model, which subsumes several models ranging from the classic Bradley-Terry-Luce (BTL) (Bradley and Terry 1952) and Thurstone (Thurstone 1927) models to the recently proposed blade-chest (Chen and Joachims 2016) and generic low-rank preference (Rajkumar and Agarwal 2016) models. We use the technique of matrix completion in the presence of side information to develop the Inductive Pairwise Ranking (IPR) algorithm that provably learns a good ranking under the FLR model, in a sample-efficient manner. In practice, through systematic synthetic simulations, we confirm our theoretical findings regarding improvements in the sample complexity due to the use of feature information. Moreover, on popular real-world preference learning datasets, with as less as 10% sampling of the pairwise comparisons, our method recovers a good ranking.
U.N. Niranjan, Arun Rajkumar
null
1702.02661
null
null
Energy Saving Additive Neural Network
cs.NE cs.AI cs.LG
In recent years, machine learning techniques based on neural networks for mobile computing become increasingly popular. Classical multi-layer neural networks require matrix multiplications at each stage. Multiplication operation is not an energy efficient operation and consequently it drains the battery of the mobile device. In this paper, we propose a new energy efficient neural network with the universal approximation property over space of Lebesgue integrable functions. This network, called, additive neural network, is very suitable for mobile computing. The neural structure is based on a novel vector product definition, called ef-operator, that permits a multiplier-free implementation. In ef-operation, the "product" of two real numbers is defined as the sum of their absolute values, with the sign determined by the sign of the product of the numbers. This "product" is used to construct a vector product in $R^N$. The vector product induces the $l_1$ norm. The proposed additive neural network successfully solves the XOR problem. The experiments on MNIST dataset show that the classification performances of the proposed additive neural networks are very similar to the corresponding multi-layer perceptron and convolutional neural networks (LeNet).
Arman Afrasiyabi, Ozan Yildiz, Baris Nasir, Fatos T. Yarman Vural and A. Enis Cetin
null
1702.02676
null
null
Rate Optimal Estimation and Confidence Intervals for High-dimensional Regression with Missing Covariates
stat.ML cs.LG stat.ME
Although a majority of the theoretical literature in high-dimensional statistics has focused on settings which involve fully-observed data, settings with missing values and corruptions are common in practice. We consider the problems of estimation and of constructing component-wise confidence intervals in a sparse high-dimensional linear regression model when some covariates of the design matrix are missing completely at random. We analyze a variant of the Dantzig selector [9] for estimating the regression model and we use a de-biasing argument to construct component-wise confidence intervals. Our first main result is to establish upper bounds on the estimation error as a function of the model parameters (the sparsity level s, the expected fraction of observed covariates $\rho_*$, and a measure of the signal strength $\|\beta^*\|_2$). We find that even in an idealized setting where the covariates are assumed to be missing completely at random, somewhat surprisingly and in contrast to the fully-observed setting, there is a dichotomy in the dependence on model parameters and much faster rates are obtained if the covariance matrix of the random design is known. To study this issue further, our second main contribution is to provide lower bounds on the estimation error showing that this discrepancy in rates is unavoidable in a minimax sense. We then consider the problem of high-dimensional inference in the presence of missing data. We construct and analyze confidence intervals using a de-biased estimator. In the presence of missing data, inference is complicated by the fact that the de-biasing matrix is correlated with the pilot estimator and this necessitates the design of a new estimator and a novel analysis. We also complement our mathematical study with extensive simulations on synthetic and semi-synthetic data that show the accuracy of our asymptotic predictions for finite sample sizes.
Yining Wang, Jialei Wang, Sivaraman Balakrishnan, Aarti Singh
null
1702.02686
null
null
A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models
stat.ML cs.LG cs.PF
Estimating multiple sparse Gaussian Graphical Models (sGGMs) jointly for many related tasks (large $K$) under a high-dimensional (large $p$) situation is an important task. Most previous studies for the joint estimation of multiple sGGMs rely on penalized log-likelihood estimators that involve expensive and difficult non-smooth optimizations. We propose a novel approach, FASJEM for \underline{fa}st and \underline{s}calable \underline{j}oint structure-\underline{e}stimation of \underline{m}ultiple sGGMs at a large scale. As the first study of joint sGGM using the Elementary Estimator framework, our work has three major contributions: (1) We solve FASJEM through an entry-wise manner which is parallelizable. (2) We choose a proximal algorithm to optimize FASJEM. This improves the computational efficiency from $O(Kp^3)$ to $O(Kp^2)$ and reduces the memory requirement from $O(Kp^2)$ to $O(K)$. (3) We theoretically prove that FASJEM achieves a consistent estimation with a convergence rate of $O(\log(Kp)/n_{tot})$. On several synthetic and four real-world datasets, FASJEM shows significant improvements over baselines on accuracy, computational complexity, and memory costs.
Beilun Wang, Ji Gao, Yanjun Qi
null
1702.02715
null
null
Joint Discovery of Object States and Manipulation Actions
cs.CV cs.LG
Many human activities involve object manipulations aiming to modify the object state. Examples of common state changes include full/empty bottle, open/closed door, and attached/detached car wheel. In this work, we seek to automatically discover the states of objects and the associated manipulation actions. Given a set of videos for a particular task, we propose a joint model that learns to identify object states and to localize state-modifying actions. Our model is formulated as a discriminative clustering cost with constraints. We assume a consistent temporal order for the changes in object states and manipulation actions, and introduce new optimization techniques to learn model parameters without additional supervision. We demonstrate successful discovery of seven manipulation actions and corresponding object states on a new dataset of videos depicting real-life object manipulations. We show that our joint formulation results in an improvement of object state discovery by action recognition and vice versa.
Jean-Baptiste Alayrac, Josev Sivic, Ivan Laptev, Simon Lacoste-Julien
null
1702.02738
null
null
Graph Based Relational Features for Collective Classification
cs.IR cs.AI cs.LG
Statistical Relational Learning (SRL) methods have shown that classification accuracy can be improved by integrating relations between samples. Techniques such as iterative classification or relaxation labeling achieve this by propagating information between related samples during the inference process. When only a few samples are labeled and connections between samples are sparse, collective inference methods have shown large improvements over standard feature-based ML methods. However, in contrast to feature based ML, collective inference methods require complex inference procedures and often depend on the strong assumption of label consistency among related samples. In this paper, we introduce new relational features for standard ML methods by extracting information from direct and indirect relations. We show empirically on three standard benchmark datasets that our relational features yield results comparable to collective inference methods. Finally we show that our proposal outperforms these methods when additional information is available.
Immanuel Bayer, Uwe Nagel, Steffen Rendle
10.1007/978-3-319-18032-8_35
1702.02817
null
null
Minimax Lower Bounds for Ridge Combinations Including Neural Nets
stat.ML cs.LG
Estimation of functions of $ d $ variables is considered using ridge combinations of the form $ \textstyle\sum_{k=1}^m c_{1,k} \phi(\textstyle\sum_{j=1}^d c_{0,j,k}x_j-b_k) $ where the activation function $ \phi $ is a function with bounded value and derivative. These include single-hidden layer neural networks, polynomials, and sinusoidal models. From a sample of size $ n $ of possibly noisy values at random sites $ X \in B = [-1,1]^d $, the minimax mean square error is examined for functions in the closure of the $ \ell_1 $ hull of ridge functions with activation $ \phi $. It is shown to be of order $ d/n $ to a fractional power (when $ d $ is of smaller order than $ n $), and to be of order $ (\log d)/n $ to a fractional power (when $ d $ is of larger order than $ n $). Dependence on constraints $ v_0 $ and $ v_1 $ on the $ \ell_1 $ norms of inner parameter $ c_0 $ and outer parameter $ c_1 $, respectively, is also examined. Also, lower and upper bounds on the fractional power are given. The heart of the analysis is development of information-theoretic packing numbers for these classes of functions.
Jason M. Klusowski and Andrew R. Barron
null
1702.02828
null
null
Coordinated Online Learning With Applications to Learning User Preferences
cs.LG stat.ML
We study an online multi-task learning setting, in which instances of related tasks arrive sequentially, and are handled by task-specific online learners. We consider an algorithmic framework to model the relationship of these tasks via a set of convex constraints. To exploit this relationship, we design a novel algorithm -- COOL -- for coordinating the individual online learners: Our key idea is to coordinate their parameters via weighted projections onto a convex set. By adjusting the rate and accuracy of the projection, the COOL algorithm allows for a trade-off between the benefit of coordination and the required computation/communication. We derive regret bounds for our approach and analyze how they are influenced by these trade-off factors. We apply our results on the application of learning users' preferences on the Airbnb marketplace with the goal of incentivizing users to explore under-reviewed apartments.
Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause
null
1702.02849
null
null
Multi-feature classifiers for burst detection in single EEG channels from preterm infants
q-bio.NC cs.LG
The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain activity evolves rapidly during postnatal life, these solutions might be under-performing with increasing PMA. In this work we focused on preterm infants reaching term ages (PMA $\geq$ 36 weeks) using multi-feature classification on a single EEG channel. Five EEG burst detectors relying on different machine learning approaches were compared: Logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (kNN), support vector machines (SVM) and thresholding (Th). Classifiers were trained by visually labeled EEG recordings from 14 very preterm infants (born after 28 weeks of gestation) with 36 - 41 weeks PMA. The most performing classifiers reached about 95\% accuracy (kNN, SVM and LR) whereas Th obtained 84\%. Compared to human-automatic agreements, LR provided the highest scores (Cohen's kappa = 0.71) and the best computational efficiency using only three EEG features. Applying this classifier in a test database of 21 infants $\geq$ 36 weeks PMA, we show that long EEG bursts and short inter-bust periods are characteristic of infants with the highest PMA and weights. In view of these results, LR-based burst detection could be a suitable tool to study maturation in monitoring or portable devices using a single EEG channel.
X. Navarro, F. Por\'ee, M. Kuchenbuch, M. Chavez, A. Beuch\'ee, G. Carrault
10.1088/1741-2552/aa714a
1702.02873
null
null
Policy Learning with Observational Data
math.ST cs.LG econ.EM stat.ML stat.TH
In many areas, practitioners seek to use observational data to learn a treatment assignment policy that satisfies application-specific constraints, such as budget, fairness, simplicity, or other functional form constraints. For example, policies may be restricted to take the form of decision trees based on a limited set of easily observable individual characteristics. We propose a new approach to this problem motivated by the theory of semiparametrically efficient estimation. Our method can be used to optimize either binary treatments or infinitesimal nudges to continuous treatments, and can leverage observational data where causal effects are identified using a variety of strategies, including selection on observables and instrumental variables. Given a doubly robust estimator of the causal effect of assigning everyone to treatment, we develop an algorithm for choosing whom to treat, and establish strong guarantees for the asymptotic utilitarian regret of the resulting policy.
Susan Athey and Stefan Wager
null
1702.02896
null
null
Online and Offline Domain Adaptation for Reducing BCI Calibration Effort
cs.LG cs.HC
Many real-world brain-computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However, because different subjects have different neural responses to even the same stimulus, it is very difficult to build a generic ERP classifier whose parameters fit all subjects. The classifier needs to be calibrated for each individual subject, using some labeled subject-specific data. This paper proposes both online and offline weighted adaptation regularization (wAR) algorithms to reduce this calibration effort, i.e., to minimize the amount of labeled subject-specific EEG data required in BCI calibration, and hence to increase the utility of the BCI system. We demonstrate using a visually-evoked potential oddball task and three different EEG headsets that both online and offline wAR algorithms significantly outperform several other algorithms. Moreover, through source domain selection, we can reduce their computational cost by about 50%, making them more suitable for real-time applications.
Dongrui Wu
10.1109/THMS.2016.2608931
1702.02897
null
null
Driver Drowsiness Estimation from EEG Signals Using Online Weighted Adaptation Regularization for Regression (OwARR)
cs.LG cs.HC
One big challenge that hinders the transition of brain-computer interfaces (BCIs) from laboratory settings to real-life applications is the availability of high-performance and robust learning algorithms that can effectively handle individual differences, i.e., algorithms that can be applied to a new subject with zero or very little subject-specific calibration data. Transfer learning and domain adaptation have been extensively used for this purpose. However, most previous works focused on classification problems. This paper considers an important regression problem in BCI, namely, online driver drowsiness estimation from EEG signals. By integrating fuzzy sets with domain adaptation, we propose a novel online weighted adaptation regularization for regression (OwARR) algorithm to reduce the amount of subject-specific calibration data, and also a source domain selection (SDS) approach to save about half of the computational cost of OwARR. Using a simulated driving dataset with 15 subjects, we show that OwARR and OwARR-SDS can achieve significantly smaller estimation errors than several other approaches. We also provide comprehensive analyses on the robustness of OwARR and OwARR-SDS.
Dongrui Wu, Vernon J. Lawhern, Stephen Gordon, Brent J. Lance, Chin-Teng Lin
10.1109/TFUZZ.2016.2633379
1702.02901
null
null
Switching EEG Headsets Made Easy: Reducing Offline Calibration Effort Using Active Weighted Adaptation Regularization
cs.LG cs.HC
Electroencephalography (EEG) headsets are the most commonly used sensing devices for Brain-Computer Interface. In real-world applications, there are advantages to extrapolating data from one user session to another. However, these advantages are limited if the data arise from different hardware systems, which often vary between application spaces. Currently, this creates a need to recalibrate classifiers, which negatively affects people's interest in using such systems. In this paper, we employ active weighted adaptation regularization (AwAR), which integrates weighted adaptation regularization (wAR) and active learning, to expedite the calibration process. wAR makes use of labeled data from the previous headset and handles class-imbalance, and active learning selects the most informative samples from the new headset to label. Experiments on single-trial event-related potential classification show that AwAR can significantly increase the classification accuracy, given the same number of labeled samples from the new headset. In other words, AwAR can effectively reduce the number of labeled samples required from the new headset, given a desired classification accuracy, suggesting value in collating data for use in wide scale transfer-learning applications.
Dongrui Wu, Vernon J. Lawhern, W. David Hairston, Brent J. Lance
10.1109/TNSRE.2016.2544108
1702.02906
null
null
Spatial Filtering for EEG-Based Regression Problems in Brain-Computer Interface (BCI)
cs.LG cs.HC
Electroencephalogram (EEG) signals are frequently used in brain-computer interfaces (BCIs), but they are easily contaminated by artifacts and noises, so preprocessing must be done before they are fed into a machine learning algorithm for classification or regression. Spatial filters have been widely used to increase the signal-to-noise ratio of EEG for BCI classification problems, but their applications in BCI regression problems have been very limited. This paper proposes two common spatial pattern (CSP) filters for EEG-based regression problems in BCI, which are extended from the CSP filter for classification, by making use of fuzzy sets. Experimental results on EEG-based response speed estimation from a large-scale study, which collected 143 sessions of sustained-attention psychomotor vigilance task data from 17 subjects during a 5-month period, demonstrate that the two proposed spatial filters can significantly increase the EEG signal quality. When used in LASSO and k-nearest neighbors regression for user response speed estimation, the spatial filters can reduce the root mean square estimation error by 10.02-19.77%, and at the same time increase the correlation to the true response speed by 19.39-86.47%.
Dongrui Wu, Jung-Tai King, Chun-Hsiang Chuang, Chin-Teng Lin, Tzyy-Ping Jung
null
1702.02914
null
null
Fixing an error in Caponnetto and de Vito (2007)
stat.ML cs.LG math.ST stat.TH
The seminal paper of Caponnetto and de Vito (2007) provides minimax-optimal rates for kernel ridge regression in a very general setting. Its proof, however, contains an error in its bound on the effective dimensionality. In this note, we explain the mistake, provide a correct bound, and show that the main theorem remains true.
Danica J. Sutherland
null
1702.02982
null
null
Multi-step Off-policy Learning Without Importance Sampling Ratios
cs.LG
To estimate the value functions of policies from exploratory data, most model-free off-policy algorithms rely on importance sampling, where the use of importance sampling ratios often leads to estimates with severe variance. It is thus desirable to learn off-policy without using the ratios. However, such an algorithm does not exist for multi-step learning with function approximation. In this paper, we introduce the first such algorithm based on temporal-difference (TD) learning updates. We show that an explicit use of importance sampling ratios can be eliminated by varying the amount of bootstrapping in TD updates in an action-dependent manner. Our new algorithm achieves stability using a two-timescale gradient-based TD update. A prior algorithm based on lookup table representation called Tree Backup can also be retrieved using action-dependent bootstrapping, becoming a special case of our algorithm. In two challenging off-policy tasks, we demonstrate that our algorithm is stable, effectively avoids the large variance issue, and can perform substantially better than its state-of-the-art counterpart.
Ashique Rupam Mahmood, Huizhen Yu, Richard S. Sutton
null
1702.03006
null
null
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
cs.MA cs.AI cs.GT cs.LG
Matrix games like Prisoner's Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Cooperativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, Thore Graepel
null
1702.03037
null
null
Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities
cs.LG
The follow the leader (FTL) algorithm, perhaps the simplest of all online learning algorithms, is known to perform well when the loss functions it is used on are convex and positively curved. In this paper we ask whether there are other "lucky" settings when FTL achieves sublinear, "small" regret. In particular, we study the fundamental problem of linear prediction over a non-empty convex, compact domain. Amongst other results, we prove that the curvature of the boundary of the domain can act as if the losses were curved: In this case, we prove that as long as the mean of the loss vectors have positive lengths bounded away from zero, FTL enjoys a logarithmic growth rate of regret, while, e.g., for polytope domains and stochastic data it enjoys finite expected regret. Building on a previously known meta-algorithm, we also get an algorithm that simultaneously enjoys the worst-case guarantees and the bound available for FTL.
Ruitong Huang, Tor Lattimore, Andr\'as Gy\"orgy, Csaba Szepesv\'ari
null
1702.0304
null
null
Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning
cs.LG
In recent years, neural networks have enjoyed a renaissance as function approximators in reinforcement learning. Two decades after Tesauro's TD-Gammon achieved near top-level human performance in backgammon, the deep reinforcement learning algorithm DQN achieved human-level performance in many Atari 2600 games. The purpose of this study is twofold. First, we propose two activation functions for neural network function approximation in reinforcement learning: the sigmoid-weighted linear unit (SiLU) and its derivative function (dSiLU). The activation of the SiLU is computed by the sigmoid function multiplied by its input. Second, we suggest that the more traditional approach of using on-policy learning with eligibility traces, instead of experience replay, and softmax action selection with simple annealing can be competitive with DQN, without the need for a separate target network. We validate our proposed approach by, first, achieving new state-of-the-art results in both stochastic SZ-Tetris and Tetris with a small 10$\times$10 board, using TD($\lambda$) learning and shallow dSiLU network agents, and, then, by outperforming DQN in the Atari 2600 domain by using a deep Sarsa($\lambda$) agent with SiLU and dSiLU hidden units.
Stefan Elfwing, Eiji Uchibe and Kenji Doya
null
1702.03118
null
null
Supervised Learning Based Algorithm Selection for Deep Neural Networks
cs.DC cs.LG
Many recent deep learning platforms rely on third-party libraries (such as cuBLAS) to utilize the computing power of modern hardware accelerators (such as GPUs). However, we observe that they may achieve suboptimal performance because the library functions are not used appropriately. In this paper, we target at optimizing the operations of multiplying a matrix with the transpose of another matrix (referred to as NT operation hereafter), which contribute about half of the training time of fully connected deep neural networks. Rather than directly calling the library function, we propose a supervised learning based algorithm selection approach named MTNN, which uses a gradient boosted decision tree to select one from two alternative NT implementations intelligently: (1) calling the cuBLAS library function; (2) calling our proposed algorithm TNN that uses an efficient out-of-place matrix transpose. We evaluate the performance of MTNN on two modern GPUs: NVIDIA GTX 1080 and NVIDIA Titan X Pascal. MTNN can achieve 96\% of prediction accuracy with very low computational overhead, which results in an average of 54\% performance improvement on a range of NT operations. To further evaluate the impact of MTNN on the training process of deep neural networks, we have integrated MTNN into a popular deep learning platform Caffe. Our experimental results show that the revised Caffe can outperform the original one by an average of 28\%. Both MTNN and the revised Caffe are open-source.
Shaohuai Shi, Pengfei Xu, Xiaowen Chu
null
1702.03192
null
null
Adaptive and Resilient Soft Tensegrity Robots
cs.RO cs.LG cs.SY
Living organisms intertwine soft (e.g., muscle) and hard (e.g., bones) materials, giving them an intrinsic flexibility and resiliency often lacking in conventional rigid robots. The emerging field of soft robotics seeks to harness these same properties in order to create resilient machines. The nature of soft materials, however, presents considerable challenges to aspects of design, construction, and control -- and up until now, the vast majority of gaits for soft robots have been hand-designed through empirical trial-and-error. This manuscript describes an easy-to-assemble tensegrity-based soft robot capable of highly dynamic locomotive gaits and demonstrating structural and behavioral resilience in the face of physical damage. Enabling this is the use of a machine learning algorithm able to discover effective gaits with a minimal number of physical trials. These results lend further credence to soft-robotic approaches that seek to harness the interaction of complex material dynamics in order to generate a wealth of dynamical behaviors.
John Rieffel and Jean-Baptiste Mouret
null
1702.03258
null
null
A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines
cs.LG cond-mat.dis-nn cs.NE stat.ML
Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP) mean-field approximation of widely-connected systems with weak interactions coming from spin-glass theory. While the TAP approach has been extensively studied for fully-visible binary spin systems, our construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin systems with bounded support. In our numerical experiments, we demonstrate the effective deterministic training of our proposed models and are able to show interesting features of unsupervised learning which could not be directly observed with sampling. Additionally, we demonstrate how to utilize our TAP-based framework for leveraging trained RBMs as joint priors in denoising problems.
Eric W. Tramel and Marylou Gabri\'e and Andre Manoel and Francesco Caltagirone and Florent Krzakala
10.1103/PhysRevX.8.041006
1702.0326
null
null
Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
cs.LG
Batch Normalization is quite effective at accelerating and improving the training of deep models. However, its effectiveness diminishes when the training minibatches are small, or do not consist of independent samples. We hypothesize that this is due to the dependence of model layer inputs on all the examples in the minibatch, and different activations being produced between training and inference. We propose Batch Renormalization, a simple and effective extension to ensure that the training and inference models generate the same outputs that depend on individual examples rather than the entire minibatch. Models trained with Batch Renormalization perform substantially better than batchnorm when training with small or non-i.i.d. minibatches. At the same time, Batch Renormalization retains the benefits of batchnorm such as insensitivity to initialization and training efficiency.
Sergey Ioffe
null
1702.03275
null
null
Generative Mixture of Networks
cs.LG stat.ML
A generative model based on training deep architectures is proposed. The model consists of K networks that are trained together to learn the underlying distribution of a given data set. The process starts with dividing the input data into K clusters and feeding each of them into a separate network. After few iterations of training networks separately, we use an EM-like algorithm to train the networks together and update the clusters of the data. We call this model Mixture of Networks. The provided model is a platform that can be used for any deep structure and be trained by any conventional objective function for distribution modeling. As the components of the model are neural networks, it has high capability in characterizing complicated data distributions as well as clustering data. We apply the algorithm on MNIST hand-written digits and Yale face datasets. We also demonstrate the clustering ability of the model using some real-world and toy examples.
Ershad Banijamali, Ali Ghodsi, Pascal Poupart
null
1702.03307
null
null
Batch Policy Gradient Methods for Improving Neural Conversation Models
stat.ML cs.LG
We study reinforcement learning of chatbots with recurrent neural network architectures when the rewards are noisy and expensive to obtain. For instance, a chatbot used in automated customer service support can be scored by quality assurance agents, but this process can be expensive, time consuming and noisy. Previous reinforcement learning work for natural language processing uses on-policy updates and/or is designed for on-line learning settings. We demonstrate empirically that such strategies are not appropriate for this setting and develop an off-policy batch policy gradient method (BPG). We demonstrate the efficacy of our method via a series of synthetic experiments and an Amazon Mechanical Turk experiment on a restaurant recommendations dataset.
Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter
null
1702.03334
null
null
Training Deep Neural Networks via Optimization Over Graphs
cs.LG cs.DC
In this work, we propose to train a deep neural network by distributed optimization over a graph. Two nonlinear functions are considered: the rectified linear unit (ReLU) and a linear unit with both lower and upper cutoffs (DCutLU). The problem reformulation over a graph is realized by explicitly representing ReLU or DCutLU using a set of slack variables. We then apply the alternating direction method of multipliers (ADMM) to update the weights of the network layerwise by solving subproblems of the reformulated problem. Empirical results suggest that the ADMM-based method is less sensitive to overfitting than the stochastic gradient descent (SGD) and Adam methods.
Guoqiang Zhang and W. Bastiaan Kleijn
null
1702.0338
null
null
Parallel Long Short-Term Memory for Multi-stream Classification
cs.LG cs.CL
Recently, machine learning methods have provided a broad spectrum of original and efficient algorithms based on Deep Neural Networks (DNN) to automatically predict an outcome with respect to a sequence of inputs. Recurrent hidden cells allow these DNN-based models to manage long-term dependencies such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). Nevertheless, these RNNs process a single input stream in one (LSTM) or two (Bidirectional LSTM) directions. But most of the information available nowadays is from multistreams or multimedia documents, and require RNNs to process these information synchronously during the training. This paper presents an original LSTM-based architecture, named Parallel LSTM (PLSTM), that carries out multiple parallel synchronized input sequences in order to predict a common output. The proposed PLSTM method could be used for parallel sequence classification purposes. The PLSTM approach is evaluated on an automatic telecast genre sequences classification task and compared with different state-of-the-art architectures. Results show that the proposed PLSTM method outperforms the baseline n-gram models as well as the state-of-the-art LSTM approach.
Mohamed Bouaziz, Mohamed Morchid, Richard Dufour, Georges Linar\`es, Renato De Mori
null
1702.03402
null
null
A Collective, Probabilistic Approach to Schema Mapping: Appendix
cs.DB cs.LG
In this appendix we provide additional supplementary material to "A Collective, Probabilistic Approach to Schema Mapping." We include an additional extended example, supplementary experiment details, and proof for the complexity result stated in the main paper.
Angelika Kimmig, Alex Memory, Renee J. Miller, Lise Getoor
null
1702.03447
null
null
Enabling Robots to Communicate their Objectives
cs.RO cs.LG
The overarching goal of this work is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. Since a robot's behavior is often a direct result of its underlying objective function, our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. While people naturally develop such a mental model over time through observing the robot act, this familiarization process may be lengthy. Our approach reduces this time by having the robot model how people infer objectives from observed behavior, and then it selects those behaviors that are maximally informative. The problem of computing a posterior over objectives from observed behavior is known as Inverse Reinforcement Learning (IRL), and has been applied to robots learning human objectives. We consider the problem where the roles of human and robot are swapped. Our main contribution is to recognize that unlike robots, humans will not be exact in their IRL inference. We thus introduce two factors to define candidate approximate-inference models for human learning in this setting, and analyze them in a user study in the autonomous driving domain. We show that certain approximate-inference models lead to the robot generating example behaviors that better enable users to anticipate what it will do in novel situations. Our results also suggest, however, that additional research is needed in modeling how humans extrapolate from examples of robot behavior.
Sandy H. Huang, David Held, Pieter Abbeel, Anca D. Dragan
10.15607/RSS.2017.XIII.059
1702.03465
null
null
Concept Drift Adaptation by Exploiting Historical Knowledge
cs.LG
Incremental learning with concept drift has often been tackled by ensemble methods, where models built in the past can be re-trained to attain new models for the current data. Two design questions need to be addressed in developing ensemble methods for incremental learning with concept drift, i.e., which historical (i.e., previously trained) models should be preserved and how to utilize them. A novel ensemble learning method, namely Diversity and Transfer based Ensemble Learning (DTEL), is proposed in this paper. Given newly arrived data, DTEL uses each preserved historical model as an initial model and further trains it with the new data via transfer learning. Furthermore, DTEL preserves a diverse set of historical models, rather than a set of historical models that are merely accurate in terms of classification accuracy. Empirical studies on 15 synthetic data streams and 4 real-world data streams (all with concept drifts) demonstrate that DTEL can handle concept drift more effectively than 4 other state-of-the-art methods.
Yu Sun, Ke Tang, Zexuan Zhu, Xin Yao
null
1702.035
null
null
On Consistency of Compressive Spectral Clustering
stat.ML cs.IT cs.LG math.IT
Spectral clustering is one of the most popular methods for community detection in graphs. A key step in spectral clustering algorithms is the eigen decomposition of the $n{\times}n$ graph Laplacian matrix to extract its $k$ leading eigenvectors, where $k$ is the desired number of clusters among $n$ objects. This is prohibitively complex to implement for very large datasets. However, it has recently been shown that it is possible to bypass the eigen decomposition by computing an approximate spectral embedding through graph filtering of random signals. In this paper, we analyze the working of spectral clustering performed via graph filtering on the stochastic block model. Specifically, we characterize the effects of sparsity, dimensionality and filter approximation error on the consistency of the algorithm in recovering planted clusters.
Muni Sreenivas Pydi and Ambedkar Dukkipati
null
1702.03522
null
null
Similarity Preserving Representation Learning for Time Series Clustering
cs.AI cs.LG
A considerable amount of clustering algorithms take instance-feature matrices as their inputs. As such, they cannot directly analyze time series data due to its temporal nature, usually unequal lengths, and complex properties. This is a great pity since many of these algorithms are effective, robust, efficient, and easy to use. In this paper, we bridge this gap by proposing an efficient representation learning framework that is able to convert a set of time series with various lengths to an instance-feature matrix. In particular, we guarantee that the pairwise similarities between time series are well preserved after the transformation, thus the learned feature representation is particularly suitable for the time series clustering task. Given a set of $n$ time series, we first construct an $n\times n$ partially-observed similarity matrix by randomly sampling $\mathcal{O}(n \log n)$ pairs of time series and computing their pairwise similarities. We then propose an efficient algorithm that solves a non-convex and NP-hard problem to learn new features based on the partially-observed similarity matrix. By conducting extensive empirical studies, we show that the proposed framework is more effective, efficient, and flexible, compared to other state-of-the-art time series clustering methods.
Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, Inderjit S. Dhillon
null
1702.03584
null
null
Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection
cs.LG cs.DS stat.ML
In the Best-$k$-Arm problem, we are given $n$ stochastic bandit arms, each associated with an unknown reward distribution. We are required to identify the $k$ arms with the largest means by taking as few samples as possible. In this paper, we make progress towards a complete characterization of the instance-wise sample complexity bounds for the Best-$k$-Arm problem. On the lower bound side, we obtain a novel complexity term to measure the sample complexity that every Best-$k$-Arm instance requires. This is derived by an interesting and nontrivial reduction from the Best-$1$-Arm problem. We also provide an elimination-based algorithm that matches the instance-wise lower bound within doubly-logarithmic factors. The sample complexity of our algorithm strictly dominates the state-of-the-art for Best-$k$-Arm (module constant factors).
Lijie Chen, Jian Li, Mingda Qiao
null
1702.03605
null
null
A Multi-model Combination Approach for Probabilistic Wind Power Forecasting
cs.LG stat.AP
Short-term probabilistic wind power forecasting can provide critical quantified uncertainty information of wind generation for power system operation and control. As the complicated characteristics of wind power prediction error, it would be difficult to develop a universal forecasting model dominating over other alternative models. Therefore, a novel multi-model combination (MMC) approach for short-term probabilistic wind generation forecasting is proposed in this paper to exploit the advantages of different forecasting models. The proposed approach can combine different forecasting models those provide different kinds of probability density functions to improve the probabilistic forecast accuracy. Three probabilistic forecasting models based on the sparse Bayesian learning, kernel density estimation and beta distribution fitting are used to form the combined model. The parameters of the MMC model are solved based on Bayesian framework. Numerical tests illustrate the effectiveness of the proposed MMC approach.
You Lin, Ming Yang, Can Wan, Jianhui Wang, Yonghua Song
null
1702.03613
null
null
Coresets for Kernel Regression
cs.LG cs.DS
Kernel regression is an essential and ubiquitous tool for non-parametric data analysis, particularly popular among time series and spatial data. However, the central operation which is performed many times, evaluating a kernel on the data set, takes linear time. This is impractical for modern large data sets. In this paper we describe coresets for kernel regression: compressed data sets which can be used as proxy for the original data and have provably bounded worst case error. The size of the coresets are independent of the raw number of data points, rather they only depend on the error guarantee, and in some cases the size of domain and amount of smoothing. We evaluate our methods on very large time series and spatial data, and demonstrate that they incur negligible error, can be constructed extremely efficiently, and allow for great computational gains.
Yan Zheng and Jeff M. Phillips
null
1702.03644
null
null
Is Big Data Sufficient for a Reliable Detection of Non-Technical Losses?
cs.LG cs.AI
Non-technical losses (NTL) occur during the distribution of electricity in power grids and include, but are not limited to, electricity theft and faulty meters. In emerging countries, they may range up to 40% of the total electricity distributed. In order to detect NTLs, machine learning methods are used that learn irregular consumption patterns from customer data and inspection results. The Big Data paradigm followed in modern machine learning reflects the desire of deriving better conclusions from simply analyzing more data, without the necessity of looking at theory and models. However, the sample of inspected customers may be biased, i.e. it does not represent the population of all customers. As a consequence, machine learning models trained on these inspection results are biased as well and therefore lead to unreliable predictions of whether customers cause NTL or not. In machine learning, this issue is called covariate shift and has not been addressed in the literature on NTL detection yet. In this work, we present a novel framework for quantifying and visualizing covariate shift. We apply it to a commercial data set from Brazil that consists of 3.6M customers and 820K inspection results. We show that some features have a stronger covariate shift than others, making predictions less reliable. In particular, previous inspections were focused on certain neighborhoods or customer classes and that they were not sufficiently spread among the population of customers. This framework is about to be deployed in a commercial product for NTL detection.
Patrick Glauner, Angelo Migliosi, Jorge Meira, Petko Valtchev, Radu State, Franck Bettinger
null
1702.03767
null
null
DNN Filter Bank Cepstral Coefficients for Spoofing Detection
cs.SD cs.CR cs.LG
With the development of speech synthesis techniques, automatic speaker verification systems face the serious challenge of spoofing attack. In order to improve the reliability of speaker verification systems, we develop a new filter bank based cepstral feature, deep neural network filter bank cepstral coefficients (DNN-FBCC), to distinguish between natural and spoofed speech. The deep neural network filter bank is automatically generated by training a filter bank neural network (FBNN) using natural and synthetic speech. By adding restrictions on the training rules, the learned weight matrix of FBNN is band-limited and sorted by frequency, similar to the normal filter bank. Unlike the manually designed filter bank, the learned filter bank has different filter shapes in different channels, which can capture the differences between natural and synthetic speech more effectively. The experimental results on the ASVspoof {2015} database show that the Gaussian mixture model maximum-likelihood (GMM-ML) classifier trained by the new feature performs better than the state-of-the-art linear frequency cepstral coefficients (LFCC) based classifier, especially on detecting unknown attacks.
Hong Yu, Zheng-Hua Tan, Zhanyu Ma, Jun Guo
null
1702.03791
null
null
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
cs.LG math.OC math.PR stat.ML
Stochastic Gradient Langevin Dynamics (SGLD) is a popular variant of Stochastic Gradient Descent, where properly scaled isotropic Gaussian noise is added to an unbiased estimate of the gradient at each iteration. This modest change allows SGLD to escape local minima and suffices to guarantee asymptotic convergence to global minimizers for sufficiently regular non-convex objectives (Gelfand and Mitter, 1991). The present work provides a nonasymptotic analysis in the context of non-convex learning problems, giving finite-time guarantees for SGLD to find approximate minimizers of both empirical and population risks. As in the asymptotic setting, our analysis relates the discrete-time SGLD Markov chain to a continuous-time diffusion process. A new tool that drives the results is the use of weighted transportation cost inequalities to quantify the rate of convergence of SGLD to a stationary distribution in the Euclidean $2$-Wasserstein distance.
Maxim Raginsky, Alexander Rakhlin, Matus Telgarsky
null
1702.03849
null
null
Next-Step Conditioned Deep Convolutional Neural Networks Improve Protein Secondary Structure Prediction
cs.LG q-bio.BM
Recently developed deep learning techniques have significantly improved the accuracy of various speech and image recognition systems. In this paper we show how to adapt some of these techniques to create a novel chained convolutional architecture with next-step conditioning for improving performance on protein sequence prediction problems. We explore its value by demonstrating its ability to improve performance on eight-class secondary structure prediction. We first establish a state-of-the-art baseline by adapting recent advances in convolutional neural networks which were developed for vision tasks. This model achieves 70.0% per amino acid accuracy on the CB513 benchmark dataset without use of standard performance-boosting techniques such as ensembling or multitask learning. We then improve upon this state-of-the-art result using a novel chained prediction approach which frames the secondary structure prediction as a next-step prediction problem. This sequential model achieves 70.3% Q8 accuracy on CB513 with a single model; an ensemble of these models produces 71.4% Q8 accuracy on the same test set, improving upon the previous overall state of the art for the eight-class secondary structure problem. Our models are implemented using TensorFlow, an open-source machine learning software library available at TensorFlow.org; we aim to release the code for these experiments as part of the TensorFlow repository.
Akosua Busia and Navdeep Jaitly
null
1702.03865
null
null
Cognitive Mapping and Planning for Visual Navigation
cs.CV cs.AI cs.LG cs.RO
We introduce a neural architecture for navigation in novel environments. Our proposed architecture learns to map from first-person views and plans a sequence of actions towards goals in the environment. The Cognitive Mapper and Planner (CMP) is based on two key ideas: a) a unified joint architecture for mapping and planning, such that the mapping is driven by the needs of the task, and b) a spatial memory with the ability to plan given an incomplete set of observations about the world. CMP constructs a top-down belief map of the world and applies a differentiable neural net planner to produce the next action at each time step. The accumulated belief of the world enables the agent to track visited regions of the environment. We train and test CMP on navigation problems in simulation environments derived from scans of real world buildings. Our experiments demonstrate that CMP outperforms alternate learning-based architectures, as well as, classical mapping and path planning approaches in many cases. Furthermore, it naturally extends to semantically specified goals, such as 'going to a chair'. We also deploy CMP on physical robots in indoor environments, where it achieves reasonable performance, even though it is trained entirely in simulation.
Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, Jitendra Malik
null
1702.0392
null
null
Soft Weight-Sharing for Neural Network Compression
stat.ML cs.LG
The success of deep learning in numerous application domains created the de- sire to run and train them on mobile devices. This however, conflicts with their computationally, memory and energy intense nature, leading to a growing interest in compression. Recent work by Han et al. (2015a) propose a pipeline that involves retraining, pruning and quantization of neural network weights, obtaining state-of-the-art compression rates. In this paper, we show that competitive compression rates can be achieved by using a version of soft weight-sharing (Nowlan & Hinton, 1992). Our method achieves both quantization and pruning in one simple (re-)training procedure. This point of view also exposes the relation between compression and the minimum description length (MDL) principle.
Karen Ullrich, Edward Meeds, Max Welling
null
1702.04008
null
null
Is a Data-Driven Approach still Better than Random Choice with Naive Bayes classifiers?
cs.LG stat.ML
We study the performance of data-driven, a priori and random approaches to label space partitioning for multi-label classification with a Gaussian Naive Bayes classifier. Experiments were performed on 12 benchmark data sets and evaluated on 5 established measures of classification quality: micro and macro averaged F1 score, Subset Accuracy and Hamming loss. Data-driven methods are significantly better than an average run of the random baseline. In case of F1 scores and Subset Accuracy - data driven approaches were more likely to perform better than random approaches than otherwise in the worst case. There always exists a method that performs better than a priori methods in the worst case. The advantage of data-driven methods against a priori methods with a weak classifier is lesser than when tree classifiers are used.
Piotr Szyma\'nski and Tomasz Kajdanowicz
null
1702.04013
null
null
Mutual Kernel Matrix Completion
cs.LG cs.NA stat.ML
With the huge influx of various data nowadays, extracting knowledge from them has become an interesting but tedious task among data scientists, particularly when the data come in heterogeneous form and have missing information. Many data completion techniques had been introduced, especially in the advent of kernel methods. However, among the many data completion techniques available in the literature, studies about mutually completing several incomplete kernel matrices have not been given much attention yet. In this paper, we present a new method, called Mutual Kernel Matrix Completion (MKMC) algorithm, that tackles this problem of mutually inferring the missing entries of multiple kernel matrices by combining the notions of data fusion and kernel matrix completion, applied on biological data sets to be used for classification task. We first introduced an objective function that will be minimized by exploiting the EM algorithm, which in turn results to an estimate of the missing entries of the kernel matrices involved. The completed kernel matrices are then combined to produce a model matrix that can be used to further improve the obtained estimates. An interesting result of our study is that the E-step and the M-step are given in closed form, which makes our algorithm efficient in terms of time and memory. After completion, the (completed) kernel matrices are then used to train an SVM classifier to test how well the relationships among the entries are preserved. Our empirical results show that the proposed algorithm bested the traditional completion techniques in preserving the relationships among the data points, and in accurately recovering the missing kernel matrix entries. By far, MKMC offers a promising solution to the problem of mutual estimation of a number of relevant incomplete kernel matrices.
Tsuyoshi Kato and Rachelle Rivero
null
1702.04077
null
null
Practical Learning of Predictive State Representations
stat.ML cs.LG
Over the past decade there has been considerable interest in spectral algorithms for learning Predictive State Representations (PSRs). Spectral algorithms have appealing theoretical guarantees; however, the resulting models do not always perform well on inference tasks in practice. One reason for this behavior is the mismatch between the intended task (accurate filtering or prediction) and the loss function being optimized by the algorithm (estimation error in model parameters). A natural idea is to improve performance by refining PSRs using an algorithm such as EM. Unfortunately it is not obvious how to apply apply an EM style algorithm in the context of PSRs as the Log Likelihood is not well defined for all PSRs. We show that it is possible to overcome this problem using ideas from Predictive State Inference Machines. We combine spectral algorithms for PSRs as a consistent and efficient initialization with PSIM-style updates to refine the resulting model parameters. By combining these two ideas we develop Inference Gradients, a simple, fast, and robust method for practical learning of PSRs. Inference Gradients performs gradient descent in the PSR parameter space to optimize an inference-based loss function like PSIM. Because Inference Gradients uses a spectral initialization we get the same consistency benefits as PSRs. We show that Inference Gradients outperforms both PSRs and PSIMs on real and synthetic data sets.
Carlton Downey, Ahmed Hefny, Geoffrey Gordon
null
1702.04121
null
null
Gaussian-Dirichlet Posterior Dominance in Sequential Learning
stat.ML cs.LG math.PR
We consider the problem of sequential learning from categorical observations bounded in [0,1]. We establish an ordering between the Dirichlet posterior over categorical outcomes and a Gaussian posterior under observations with N(0,1) noise. We establish that, conditioned upon identical data with at least two observations, the posterior mean of the categorical distribution will always second-order stochastically dominate the posterior mean of the Gaussian distribution. These results provide a useful tool for the analysis of sequential learning under categorical outcomes.
Ian Osband and Benjamin Van Roy
null
1702.04126
null
null
Crossmatching variable objects with the Gaia data
astro-ph.IM cs.LG
Tens of millions of new variable objects are expected to be identified in over a billion time series from the Gaia mission. Crossmatching known variable sources with those from Gaia is crucial to incorporate current knowledge, understand how these objects appear in the Gaia data, train supervised classifiers to recognise known classes, and validate the results of the Variability Processing and Analysis Coordination Unit (CU7) within the Gaia Data Analysis and Processing Consortium (DPAC). The method employed by CU7 to crossmatch variables for the first Gaia data release includes a binary classifier to take into account positional uncertainties, proper motion, targeted variability signals, and artefacts present in the early calibration of the Gaia data. Crossmatching with a classifier makes it possible to automate all those decisions which are typically made during visual inspection. The classifier can be trained with objects characterized by a variety of attributes to ensure similarity in multiple dimensions (astrometry, photometry, time-series features), with no need for a-priori transformations to compare different photometric bands, or of predictive models of the motion of objects to compare positions. Other advantages as well as some disadvantages of the method are discussed. Implementation steps from the training to the assessment of the crossmatch classifier and selection of results are described.
Lorenzo Rimoldini, Krzysztof Nienartowicz, Maria S\"uveges, Jonathan Charnas, Leanne P. Guy, Gr\'egory Jevardat de Fombelle, Berry Holl, Isabelle Lecoeur-Ta\"ibi, Nami Mowlavi, Diego Ord\'o\~nez-Blanco, and Laurent Eyer
null
1702.04165
null
null
On Detecting Adversarial Perturbations
stat.ML cs.AI cs.CV cs.LG
Machine learning and deep learning in particular has advanced tremendously on perceptual tasks in recent years. However, it remains vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system while being quasi-imperceptible to a human. In this work, we propose to augment deep neural networks with a small "detector" subnetwork which is trained on the binary classification task of distinguishing genuine data from data containing adversarial perturbations. Our method is orthogonal to prior work on addressing adversarial perturbations, which has mostly focused on making the classification network itself more robust. We show empirically that adversarial perturbations can be detected surprisingly well even though they are quasi-imperceptible to humans. Moreover, while the detectors have been trained to detect only a specific adversary, they generalize to similar and weaker adversaries. In addition, we propose an adversarial attack that fools both the classifier and the detector and a novel training procedure for the detector that counteracts this attack.
Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff
null
1702.04267
null
null
Exploring loss function topology with cyclical learning rates
cs.LG cs.NE
We present observations and discussion of previously unreported phenomena discovered while training residual networks. The goal of this work is to better understand the nature of neural networks through the examination of these new empirical results. These behaviors were identified through the application of Cyclical Learning Rates (CLR) and linear network interpolation. Among these behaviors are counterintuitive increases and decreases in training loss and instances of rapid training. For example, we demonstrate how CLR can produce greater testing accuracy than traditional training despite using large learning rates. Files to replicate these results are available at https://github.com/lnsmith54/exploring-loss
Leslie N. Smith and Nicholay Topin
null
1702.04283
null
null
Small Boxes Big Data: A Deep Learning Approach to Optimize Variable Sized Bin Packing
cs.LG stat.ML
Bin Packing problems have been widely studied because of their broad applications in different domains. Known as a set of NP-hard problems, they have different vari- ations and many heuristics have been proposed for obtaining approximate solutions. Specifically, for the 1D variable sized bin packing problem, the two key sets of optimization heuristics are the bin assignment and the bin allocation. Usually the performance of a single static optimization heuristic can not beat that of a dynamic one which is tailored for each bin packing instance. Building such an adaptive system requires modeling the relationship between bin features and packing perform profiles. The primary drawbacks of traditional AI machine learnings for this task are the natural limitations of feature engineering, such as the curse of dimensionality and feature selection quality. We introduce a deep learning approach to overcome the drawbacks by applying a large training data set, auto feature selection and fast, accurate labeling. We show in this paper how to build such a system by both theoretical formulation and engineering practices. Our prediction system achieves up to 89% training accuracy and 72% validation accuracy to select the best heuristic that can generate a better quality bin packing solution.
Feng Mao, Edgar Blanco, Mingang Fu, Rohit Jain, Anurag Gupta, Sebastien Mancel, Rong Yuan, Stephen Guo, Sai Kumar, Yayang Tian
null
1702.04415
null
null
Efficient Multitask Feature and Relationship Learning
cs.LG cs.AI
We consider a multitask learning problem, in which several predictors are learned jointly. Prior research has shown that learning the relations between tasks, and between the input features, together with the predictor, can lead to better generalization and interpretability, which proved to be useful for applications in many domains. In this paper, we consider a formulation of multitask learning that learns the relationships both between tasks and between features, represented through a task covariance and a feature covariance matrix, respectively. First, we demonstrate that existing methods proposed for this problem present an issue that may lead to ill-posed optimization. We then propose an alternative formulation, as well as an efficient algorithm to optimize it. Using ideas from optimization and graph theory, we propose an efficient coordinate-wise minimization algorithm that has a closed form solution for each block subproblem. Our experiments show that the proposed optimization method is orders of magnitude faster than its competitors. We also provide a nonlinear extension that is able to achieve better generalization than existing methods.
Han Zhao, Otilia Stretcu, Alex Smola, Geoff Gordon
null
1702.04423
null
null
Robust Stochastic Configuration Networks with Kernel Density Estimation
cs.NE cs.LG stat.ML
Neural networks have been widely used as predictive models to fit data distribution, and they could be implemented through learning a collection of samples. In many applications, however, the given dataset may contain noisy samples or outliers which may result in a poor learner model in terms of generalization. This paper contributes to a development of robust stochastic configuration networks (RSCNs) for resolving uncertain data regression problems. RSCNs are built on original stochastic configuration networks with weighted least squares method for evaluating the output weights, and the input weights and biases are incrementally and randomly generated by satisfying with a set of inequality constrains. The kernel density estimation (KDE) method is employed to set the penalty weights for each training samples, so that some negative impacts, caused by noisy data or outliers, on the resulting learner model can be reduced. The alternating optimization technique is applied for updating a RSCN model with improved penalty weights computed from the kernel density estimation function. Performance evaluation is carried out by a function approximation, four benchmark datasets and a case study on engineering application. Comparisons to other robust randomised neural modelling techniques, including the probabilistic robust learning algorithm for neural networks with random weights and improved RVFL networks, indicate that the proposed RSCNs with KDE perform favourably and demonstrate good potential for real-world applications.
Dianhui Wang, Ming Li
null
1702.04459
null
null
Frustratingly Short Attention Spans in Neural Language Modeling
cs.CL cs.AI cs.LG cs.NE
Neural language models predict the next token using a latent representation of the immediate token history. Recently, various methods for augmenting neural language models with an attention mechanism over a differentiable memory have been proposed. For predicting the next token, these models query information from a memory of the recent history which can facilitate learning mid- and long-range dependencies. However, conventional attention mechanisms used in memory-augmented neural language models produce a single output vector per time step. This vector is used both for predicting the next token as well as for the key and value of a differentiable memory of a token history. In this paper, we propose a neural language model with a key-value attention mechanism that outputs separate representations for the key and value of a differentiable memory, as well as for encoding the next-word distribution. This model outperforms existing memory-augmented neural language models on two corpora. Yet, we found that our method mainly utilizes a memory of the five most recent output representations. This led to the unexpected main finding that a much simpler model based only on the concatenation of recent output representations from previous time steps is on par with more sophisticated memory-augmented neural language models.
Micha{\l} Daniluk, Tim Rockt\"aschel, Johannes Welbl, Sebastian Riedel
null
1702.04521
null
null
On the Discrepancy Between Kleinberg's Clustering Axioms and $k$-Means Clustering Algorithm Behavior
cs.LG cs.AI
This paper investigates the validity of Kleinberg's axioms for clustering functions with respect to the quite popular clustering algorithm called $k$-means. While Kleinberg's axioms have been discussed heavily in the past, we concentrate here on the case predominantly relevant for $k$-means algorithm, that is behavior embedded in Euclidean space. We point at some contradictions and counter intuitiveness aspects of this axiomatic set within $\mathbb{R}^m$ that were evidently not discussed so far. Our results suggest that apparently without defining clearly what kind of clusters we expect we will not be able to construct a valid axiomatic system. In particular we look at the shape and the gaps between the clusters. Finally we demonstrate that there exist several ways to reconcile the formulation of the axioms with their intended meaning and that under this reformulation the axioms stop to be contradictory and the real-world $k$-means algorithm conforms to this axiomatic system.
Robert K{\l}opotek and Mieczys{\l}aw K{\l}opotek
null
1702.04577
null
null
A Spacetime Approach to Generalized Cognitive Reasoning in Multi-scale Learning
cs.AI cs.LG
In modern machine learning, pattern recognition replaces realtime semantic reasoning. The mapping from input to output is learned with fixed semantics by training outcomes deliberately. This is an expensive and static approach which depends heavily on the availability of a very particular kind of prior raining data to make inferences in a single step. Conventional semantic network approaches, on the other hand, base multi-step reasoning on modal logics and handcrafted ontologies, which are ad hoc, expensive to construct, and fragile to inconsistency. Both approaches may be enhanced by a hybrid approach, which completely separates reasoning from pattern recognition. In this report, a quasi-linguistic approach to knowledge representation is discussed, motivated by spacetime structure. Tokenized patterns from diverse sources are integrated to build a lightly constrained and approximately scale-free network. This is then be parsed with very simple recursive algorithms to generate `brainstorming' sets of reasoned knowledge.
Mark Burgess
null
1702.04638
null
null
Generative Temporal Models with Memory
cs.LG cs.NE stat.ML
We consider the general problem of modeling temporal data with long-range dependencies, wherein new observations are fully or partially predictable based on temporally-distant, past observations. A sufficiently powerful temporal model should separate predictable elements of the sequence from unpredictable elements, express uncertainty about those unpredictable elements, and rapidly identify novel elements that may help to predict the future. To create such models, we introduce Generative Temporal Models augmented with external memory systems. They are developed within the variational inference framework, which provides both a practical training methodology and methods to gain insight into the models' operation. We show, on a range of problems with sparse, long-term temporal dependencies, that these models store information from early in a sequence, and reuse this stored information efficiently. This allows them to perform substantially better than existing models based on well-known recurrent neural networks, like LSTMs.
Mevlana Gemici, Chia-Chun Hung, Adam Santoro, Greg Wayne, Shakir Mohamed, Danilo J. Rezende, David Amos, Timothy Lillicrap
null
1702.04649
null
null
Distributed deep learning on edge-devices: feasibility via adaptive compression
cs.LG
A large portion of data mining and analytic services use modern machine learning techniques, such as deep learning. The state-of-the-art results by deep learning come at the price of an intensive use of computing resources. The leading frameworks (e.g., TensorFlow) are executed on GPUs or on high-end servers in datacenters. On the other end, there is a proliferation of personal devices with possibly free CPU cycles; this can enable services to run in users' homes, embedding machine learning operations. In this paper, we ask the following question: Is distributed deep learning computation on WAN connected devices feasible, in spite of the traffic caused by learning tasks? We show that such a setup rises some important challenges, most notably the ingress traffic that the servers hosting the up-to-date model have to sustain. In order to reduce this stress, we propose adaComp, a novel algorithm for compressing worker updates to the model on the server. Applicable to stochastic gradient descent based approaches, it combines efficient gradient selection and learning rate modulation. We then experiment and measure the impact of compression, device heterogeneity and reliability on the accuracy of learned models, with an emulator platform that embeds TensorFlow into Linux containers. We report a reduction of the total amount of data sent by workers to the server by two order of magnitude (e.g., 191-fold reduction for a convolutional network on the MNIST dataset), when compared to a standard asynchronous stochastic gradient descent, while preserving model accuracy.
Corentin Hardy, Erwan Le Merrer and Bruno Sericola
null
1702.04683
null
null
Nearest Labelset Using Double Distances for Multi-label Classification
stat.ML cs.LG
Multi-label classification is a type of supervised learning where an instance may belong to multiple labels simultaneously. Predicting each label independently has been criticized for not exploiting any correlation between labels. In this paper we propose a novel approach, Nearest Labelset using Double Distances (NLDD), that predicts the labelset observed in the training data that minimizes a weighted sum of the distances in both the feature space and the label space to the new instance. The weights specify the relative tradeoff between the two distances. The weights are estimated from a binomial regression of the number of misclassified labels as a function of the two distances. Model parameters are estimated by maximum likelihood. NLDD only considers labelsets observed in the training data, thus implicitly taking into account label dependencies. Experiments on benchmark multi-label data sets show that the proposed method on average outperforms other well-known approaches in terms of Hamming loss, 0/1 loss, and multi-label accuracy and ranks second after ECC on the F-measure.
Hyukjun Gweon and Matthias Schonlau and Stefan Steiner
null
1702.04684
null
null
Support Vector Machines and generalisation in HEP
physics.data-an cs.LG hep-ex
We review the concept of Support Vector Machines (SVMs) and discuss examples of their use in a number of scenarios. Several SVM implementations have been used in HEP and we exemplify this algorithm using the Toolkit for Multivariate Analysis (TMVA) implementation. We discuss examples relevant to HEP including background suppression for $H\to\tau^+\tau^-$ at the LHC with several different kernel functions. Performance benchmarking leads to the issue of generalisation of hyper-parameter selection. The avoidance of fine tuning (over training or over fitting) in MVA hyper-parameter optimisation, i.e. the ability to ensure generalised performance of an MVA that is independent of the training, validation and test samples, is of utmost importance. We discuss this issue and compare and contrast performance of hold-out and k-fold cross-validation. We have extended the SVM functionality and introduced tools to facilitate cross validation in TMVA and present results based on these improvements.
Adrian Bevan, Rodrigo Gamboa Go\~ni, Jon Hays, Tom Stevenson
10.1088/1742-6596/898/7/072021
1702.04686
null
null
Linear Time Computation of Moments in Sum-Product Networks
cs.LG cs.AI
Bayesian online algorithms for Sum-Product Networks (SPNs) need to update their posterior distribution after seeing one single additional instance. To do so, they must compute moments of the model parameters under this distribution. The best existing method for computing such moments scales quadratically in the size of the SPN, although it scales linearly for trees. This unfortunate scaling makes Bayesian online algorithms prohibitively expensive, except for small or tree-structured SPNs. We propose an optimal linear-time algorithm that works even when the SPN is a general directed acyclic graph (DAG), which significantly broadens the applicability of Bayesian online algorithms for SPNs. There are three key ingredients in the design and analysis of our algorithm: 1). For each edge in the graph, we construct a linear time reduction from the moment computation problem to a joint inference problem in SPNs. 2). Using the property that each SPN computes a multilinear polynomial, we give an efficient procedure for polynomial evaluation by differentiation without expanding the network that may contain exponentially many monomials. 3). We propose a dynamic programming method to further reduce the computation of the moments of all the edges in the graph from quadratic to linear. We demonstrate the usefulness of our linear time algorithm by applying it to develop a linear time assume density filter (ADF) for SPNs.
Han Zhao, Geoff Gordon
null
1702.04767
null
null
Training Language Models Using Target-Propagation
cs.CL cs.LG cs.NE
While Truncated Back-Propagation through Time (BPTT) is the most popular approach to training Recurrent Neural Networks (RNNs), it suffers from being inherently sequential (making parallelization difficult) and from truncating gradient flow between distant time-steps. We investigate whether Target Propagation (TPROP) style approaches can address these shortcomings. Unfortunately, extensive experiments suggest that TPROP generally underperforms BPTT, and we end with an analysis of this phenomenon, and suggestions for future work.
Sam Wiseman, Sumit Chopra, Marc'Aurelio Ranzato, Arthur Szlam, Ruoyu Sun, Soumith Chintala, Nicolas Vasilache
null
1702.0477
null
null
Precise Recovery of Latent Vectors from Generative Adversarial Networks
cs.LG cs.NE stat.ML
Generative adversarial networks (GANs) transform latent vectors into visually plausible images. It is generally thought that the original GAN formulation gives no out-of-the-box method to reverse the mapping, projecting images back into latent space. We introduce a simple, gradient-based technique called stochastic clipping. In experiments, for images generated by the GAN, we precisely recover their latent vector pre-images 100% of the time. Additional experiments demonstrate that this method is robust to noise. Finally, we show that even for unseen images, our method appears to recover unique encodings.
Zachary C. Lipton, Subarna Tripathi
null
1702.04782
null
null
Learning to Use Learners' Advice
cs.LG
In this paper, we study a variant of the framework of online learning using expert advice with limited/bandit feedback. We consider each expert as a learning entity, seeking to more accurately reflecting certain real-world applications. In our setting, the feedback at any time $t$ is limited in a sense that it is only available to the expert $i^t$ that has been selected by the central algorithm (forecaster), \emph{i.e.}, only the expert $i^t$ receives feedback from the environment and gets to learn at time $t$. We consider a generic black-box approach whereby the forecaster does not control or know the learning dynamics of the experts apart from knowing the following no-regret learning property: the average regret of any expert $j$ vanishes at a rate of at least $O(t_j^{\regretRate-1})$ with $t_j$ learning steps where $\regretRate \in [0, 1]$ is a parameter. In the spirit of competing against the best action in hindsight in multi-armed bandits problem, our goal here is to be competitive w.r.t. the cumulative losses the algorithm could receive by following the policy of always selecting one expert. We prove the following hardness result: without any coordination between the forecaster and the experts, it is impossible to design a forecaster achieving no-regret guarantees. In order to circumvent this hardness result, we consider a practical assumption allowing the forecaster to "guide" the learning process of the experts by filtering/blocking some of the feedbacks observed by them from the environment, \emph{i.e.}, not allowing the selected expert $i^t$ to learn at time $t$ for some time steps. Then, we design a novel no-regret learning algorithm \algo for this problem setting by carefully guiding the feedbacks observed by experts. We prove that \algo achieves the worst-case expected cumulative regret of $O(\Time^\frac{1}{2 - \regretRate})$ after $\Time$ time steps.
Adish Singla, Hamed Hassani, Andreas Krause
null
1702.04825
null
null
Dynamic Partition Models
stat.ML cs.LG
We present a new approach for learning compact and intuitive distributed representations with binary encoding. Rather than summing up expert votes as in products of experts, we employ for each variable the opinion of the most reliable expert. Data points are hence explained through a partitioning of the variables into expert supports. The partitions are dynamically adapted based on which experts are active. During the learning phase we adopt a smoothed version of this model that uses separate mixtures for each data dimension. In our experiments we achieve accurate reconstructions of high-dimensional data points with at most a dozen experts.
Marc Goessling, Yali Amit
null
1702.04832
null
null
Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging
stat.ML cs.LG cs.NA
We address the statistical and optimization impacts of the classical sketch and Hessian sketch used to approximately solve the Matrix Ridge Regression (MRR) problem. Prior research has quantified the effects of classical sketch on the strictly simpler least squares regression (LSR) problem. We establish that classical sketch has a similar effect upon the optimization properties of MRR as it does on those of LSR: namely, it recovers nearly optimal solutions. By contrast, Hessian sketch does not have this guarantee, instead, the approximation error is governed by a subtle interplay between the "mass" in the responses and the optimal objective value. For both types of approximation, the regularization in the sketched MRR problem results in significantly different statistical properties from those of the sketched LSR problem. In particular, there is a bias-variance trade-off in sketched MRR that is not present in sketched LSR. We provide upper and lower bounds on the bias and variance of sketched MRR, these bounds show that classical sketch significantly increases the variance, while Hessian sketch significantly increases the bias. Empirically, sketched MRR solutions can have risks that are higher by an order-of-magnitude than those of the optimal MRR solutions. We establish theoretically and empirically that model averaging greatly decreases the gap between the risks of the true and sketched solutions to the MRR problem. Thus, in parallel or distributed settings, sketching combined with model averaging is a powerful technique that quickly obtains near-optimal solutions to the MRR problem while greatly mitigating the increased statistical risk incurred by sketching.
Shusen Wang and Alex Gittens and Michael W. Mahoney
null
1702.04837
null
null
Generalizing Jensen and Bregman divergences with comparative convexity and the statistical Bhattacharyya distances with comparable means
cs.IT cs.LG math.IT
Comparative convexity is a generalization of convexity relying on abstract notions of means. We define the Jensen divergence and the Jensen diversity from the viewpoint of comparative convexity, and show how to obtain the generalized Bregman divergences as limit cases of skewed Jensen divergences. In particular, we report explicit formula of these generalized Bregman divergences when considering quasi-arithmetic means. Finally, we introduce a generalization of the Bhattacharyya statistical distances based on comparative means using relative convexity.
Frank Nielsen and Richard Nock
null
1702.04877
null
null
Reflexive Regular Equivalence for Bipartite Data
cs.LG cs.AI stat.ML
Bipartite data is common in data engineering and brings unique challenges, particularly when it comes to clustering tasks that impose on strong structural assumptions. This work presents an unsupervised method for assessing similarity in bipartite data. Similar to some co-clustering methods, the method is based on regular equivalence in graphs. The algorithm uses spectral properties of a bipartite adjacency matrix to estimate similarity in both dimensions. The method is reflexive in that similarity in one dimension is used to inform similarity in the other. Reflexive regular equivalence can also use the structure of transitivities -- in a network sense -- the contribution of which is controlled by the algorithm's only free-parameter, $\alpha$. The method is completely unsupervised and can be used to validate assumptions of co-similarity, which are required but often untested, in co-clustering analyses. Three variants of the method with different normalizations are tested on synthetic data. The method is found to be robust to noise and well-suited to asymmetric co-similar structure, making it particularly informative for cluster analysis and recommendation in bipartite data of unknown structure. In experiments, the convergence and speed of the algorithm are found to be stable for different levels of noise. Real-world data from a network of malaria genes are analyzed, where the similarity produced by the reflexive method is shown to out-perform other measures' ability to correctly classify genes.
Aaron Gerow, Mingyang Zhou, Stan Matwin, Feng Shi
null
1702.04956
null
null
Unbiased Online Recurrent Optimization
cs.NE cs.LG
The novel Unbiased Online Recurrent Optimization (UORO) algorithm allows for online learning of general recurrent computational graphs such as recurrent network models. It works in a streaming fashion and avoids backtracking through past activations and inputs. UORO is computationally as costly as Truncated Backpropagation Through Time (truncated BPTT), a widespread algorithm for online learning of recurrent networks. UORO is a modification of NoBackTrack that bypasses the need for model sparsity and makes implementation easy in current deep learning frameworks, even for complex models. Like NoBackTrack, UORO provides unbiased gradient estimates; unbiasedness is the core hypothesis in stochastic gradient descent theory, without which convergence to a local optimum is not guaranteed. On the contrary, truncated BPTT does not provide this property, leading to possible divergence. On synthetic tasks where truncated BPTT is shown to diverge, UORO converges. For instance, when a parameter has a positive short-term but negative long-term influence, truncated BPTT diverges unless the truncation span is very significantly longer than the intrinsic temporal range of the interactions, while UORO performs well thanks to the unbiasedness of its gradients.
Corentin Tallec and Yann Ollivier
null
1702.05043
null
null
Discovering objects and their relations from entangled scene representations
cs.LG cs.CV
Our world can be succinctly and compactly described as structured scenes of objects and relations. A typical room, for example, contains salient objects such as tables, chairs and books, and these objects typically relate to each other by their underlying causes and semantics. This gives rise to correlated features, such as position, function and shape. Humans exploit knowledge of objects and their relations for learning a wide spectrum of tasks, and more generally when learning the structure underlying observed data. In this work, we introduce relation networks (RNs) - a general purpose neural network architecture for object-relation reasoning. We show that RNs are capable of learning object relations from scene description data. Furthermore, we show that RNs can act as a bottleneck that induces the factorization of objects from entangled scene description inputs, and from distributed deep representations of scene images provided by a variational autoencoder. The model can also be used in conjunction with differentiable memory mechanisms for implicit relation discovery in one-shot learning tasks. Our results suggest that relation networks are a potentially powerful architecture for solving a variety of problems that require object relation reasoning.
David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, Peter Battaglia
null
1702.05068
null
null
Semi-supervised Learning for Discrete Choice Models
stat.ML cs.LG
We introduce a semi-supervised discrete choice model to calibrate discrete choice models when relatively few requests have both choice sets and stated preferences but the majority only have the choice sets. Two classic semi-supervised learning algorithms, the expectation maximization algorithm and the cluster-and-label algorithm, have been adapted to our choice modeling problem setting. We also develop two new algorithms based on the cluster-and-label algorithm. The new algorithms use the Bayesian Information Criterion to evaluate a clustering setting to automatically adjust the number of clusters. Two computational studies including a hotel booking case and a large-scale airline itinerary shopping case are presented to evaluate the prediction accuracy and computational effort of the proposed algorithms. Algorithmic recommendations are rendered under various scenarios.
Jie Yang, Sergey Shebalov, Diego Klabjan
null
1702.05137
null
null
Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies
stat.ML cs.CR cs.LG
Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the EM algorithm to simultaneously incorporate the Geometric Entropy Minimization principle for identifying statistical anomalies, and the Maximum Entropy Discrimination principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.
Elizabeth Hou, Kumar Sricharan, and Alfred O. Hero
null
1702.05148
null
null
RIPML: A Restricted Isometry Property based Approach to Multilabel Learning
cs.IR cs.LG stat.ML
The multilabel learning problem with large number of labels, features, and data-points has generated a tremendous interest recently. A recurring theme of these problems is that only a few labels are active in any given datapoint as compared to the total number of labels. However, only a small number of existing work take direct advantage of this inherent extreme sparsity in the label space. By the virtue of Restricted Isometry Property (RIP), satisfied by many random ensembles, we propose a novel procedure for multilabel learning known as RIPML. During the training phase, in RIPML, labels are projected onto a random low-dimensional subspace followed by solving a least-square problem in this subspace. Inference is done by a k-nearest neighbor (kNN) based approach. We demonstrate the effectiveness of RIPML by conducting extensive simulations and comparing results with the state-of-the-art linear dimensionality reduction based approaches.
Akshay Soni and Yashar Mehdad
null
1702.05181
null
null
Completing a joint PMF from projections: a low-rank coupled tensor factorization approach
cs.LG cs.DM stat.ML
There has recently been considerable interest in completing a low-rank matrix or tensor given only a small fraction (or few linear combinations) of its entries. Related approaches have found considerable success in the area of recommender systems, under machine learning. From a statistical estimation point of view, the gold standard is to have access to the joint probability distribution of all pertinent random variables, from which any desired optimal estimator can be readily derived. In practice high-dimensional joint distributions are very hard to estimate, and only estimates of low-dimensional projections may be available. We show that it is possible to identify higher-order joint PMFs from lower-order marginalized PMFs using coupled low-rank tensor factorization. Our approach features guaranteed identifiability when the full joint PMF is of low-enough rank, and effective approximation otherwise. We provide an algorithmic approach to compute the sought factors, and illustrate the merits of our approach using rating prediction as an example.
Nikos Kargas, Nicholas D. Sidiropoulos
null
1702.05184
null
null
The Simulator: Understanding Adaptive Sampling in the Moderate-Confidence Regime
cs.LG stat.ML
We propose a novel technique for analyzing adaptive sampling called the {\em Simulator}. Our approach differs from the existing methods by considering not how much information could be gathered by any fixed sampling strategy, but how difficult it is to distinguish a good sampling strategy from a bad one given the limited amount of data collected up to any given time. This change of perspective allows us to match the strength of both Fano and change-of-measure techniques, without succumbing to the limitations of either method. For concreteness, we apply our techniques to a structured multi-arm bandit problem in the fixed-confidence pure exploration setting, where we show that the constraints on the means imply a substantial gap between the moderate-confidence sample complexity, and the asymptotic sample complexity as $\delta \to 0$ found in the literature. We also prove the first instance-based lower bounds for the top-k problem which incorporate the appropriate log-factors. Moreover, our lower bounds zero-in on the number of times each \emph{individual} arm needs to be pulled, uncovering new phenomena which are drowned out in the aggregate sample complexity. Our new analysis inspires a simple and near-optimal algorithm for the best-arm and top-k identification, the first {\em practical} algorithm of its kind for the latter problem which removes extraneous log factors, and outperforms the state-of-the-art in experiments.
Max Simchowitz and Kevin Jamieson and Benjamin Recht
null
1702.05186
null
null
Cloud-based Deep Learning of Big EEG Data for Epileptic Seizure Prediction
cs.LG stat.ML
Developing a Brain-Computer Interface~(BCI) for seizure prediction can help epileptic patients have a better quality of life. However, there are many difficulties and challenges in developing such a system as a real-life support for patients. Because of the nonstationary nature of EEG signals, normal and seizure patterns vary across different patients. Thus, finding a group of manually extracted features for the prediction task is not practical. Moreover, when using implanted electrodes for brain recording massive amounts of data are produced. This big data calls for the need for safe storage and high computational resources for real-time processing. To address these challenges, a cloud-based BCI system for the analysis of this big EEG data is presented. First, a dimensionality-reduction technique is developed to increase classification accuracy as well as to decrease the communication bandwidth and computation time. Second, following a deep-learning approach, a stacked autoencoder is trained in two steps for unsupervised feature extraction and classification. Third, a cloud-computing solution is proposed for real-time analysis of big EEG data. The results on a benchmark clinical dataset illustrate the superiority of the proposed patient-specific BCI as an alternative method and its expected usefulness in real-life support of epilepsy patients.
Mohammad-Parsa Hosseini, Hamid Soltanian-Zadeh, Kost Elisevich, and Dario Pompili
null
1702.05192
null
null
Solving Equations of Random Convex Functions via Anchored Regression
cs.LG cs.IT math.IT math.OC math.PR stat.ML
We consider the question of estimating a solution to a system of equations that involve convex nonlinearities, a problem that is common in machine learning and signal processing. Because of these nonlinearities, conventional estimators based on empirical risk minimization generally involve solving a non-convex optimization program. We propose anchored regression, a new approach based on convex programming that amounts to maximizing a linear functional (perhaps augmented by a regularizer) over a convex set. The proposed convex program is formulated in the natural space of the problem, and avoids the introduction of auxiliary variables, making it computationally favorable. Working in the native space also provides great flexibility as structural priors (e.g., sparsity) can be seamlessly incorporated. For our analysis, we model the equations as being drawn from a fixed set according to a probability law. Our main results provide guarantees on the accuracy of the estimator in terms of the number of equations we are solving, the amount of noise present, a measure of statistical complexity of the random equations, and the geometry of the regularizer at the true solution. We also provide recipes for constructing the anchor vector (that determines the linear functional to maximize) directly from the observed data.
Sohail Bahmani and Justin Romberg
null
1702.05327
null
null
Predicting Surgery Duration with Neural Heteroscedastic Regression
stat.ML cs.LG cs.NE
Scheduling surgeries is a challenging task due to the fundamental uncertainty of the clinical environment, as well as the risks and costs associated with under- and over-booking. We investigate neural regression algorithms to estimate the parameters of surgery case durations, focusing on the issue of heteroscedasticity. We seek to simultaneously estimate the duration of each surgery, as well as a surgery-specific notion of our uncertainty about its duration. Estimating this uncertainty can lead to more nuanced and effective scheduling strategies, as we are able to schedule surgeries more efficiently while allowing an informed and case-specific margin of error. Using surgery records %from the UC San Diego Health System, from a large United States health system we demonstrate potential improvements on the order of 20% (in terms of minutes overbooked) compared to current scheduling techniques. Moreover, we demonstrate that surgery durations are indeed heteroscedastic. We show that models that estimate case-specific uncertainty better fit the data (log likelihood). Additionally, we show that the heteroscedastic predictions can more optimally trade off between over and under-booking minutes, especially when idle minutes and scheduling collisions confer disparate costs.
Nathan Ng, Rodney A Gabriel, Julian McAuley, Charles Elkan, Zachary C Lipton
null
1702.05386
null
null
A Random Matrix Approach to Neural Networks
math.PR cs.LG
This article studies the Gram random matrix model $G=\frac1T\Sigma^{\rm T}\Sigma$, $\Sigma=\sigma(WX)$, classically found in the analysis of random feature maps and random neural networks, where $X=[x_1,\ldots,x_T]\in{\mathbb R}^{p\times T}$ is a (data) matrix of bounded norm, $W\in{\mathbb R}^{n\times p}$ is a matrix of independent zero-mean unit variance entries, and $\sigma:{\mathbb R}\to{\mathbb R}$ is a Lipschitz continuous (activation) function --- $\sigma(WX)$ being understood entry-wise. By means of a key concentration of measure lemma arising from non-asymptotic random matrix arguments, we prove that, as $n,p,T$ grow large at the same rate, the resolvent $Q=(G+\gamma I_T)^{-1}$, for $\gamma>0$, has a similar behavior as that met in sample covariance matrix models, involving notably the moment $\Phi=\frac{T}n{\mathbb E}[G]$, which provides in passing a deterministic equivalent for the empirical spectral measure of $G$. Application-wise, this result enables the estimation of the asymptotic performance of single-layer random neural networks. This in turn provides practical insights into the underlying mechanisms into play in random neural networks, entailing several unexpected consequences, as well as a fast practical means to tune the network hyperparameters.
Cosme Louart, Zhenyu Liao, Romain Couillet
null
1702.05419
null
null
Maximally Correlated Principal Component Analysis
stat.ML cs.IT cs.LG math.IT
In the era of big data, reducing data dimensionality is critical in many areas of science. Widely used Principal Component Analysis (PCA) addresses this problem by computing a low dimensional data embedding that maximally explain variance of the data. However, PCA has two major weaknesses. Firstly, it only considers linear correlations among variables (features), and secondly it is not suitable for categorical data. We resolve these issues by proposing Maximally Correlated Principal Component Analysis (MCPCA). MCPCA computes transformations of variables whose covariance matrix has the largest Ky Fan norm. Variable transformations are unknown, can be nonlinear and are computed in an optimization. MCPCA can also be viewed as a multivariate extension of Maximal Correlation. For jointly Gaussian variables we show that the covariance matrix corresponding to the identity (or the negative of the identity) transformations majorizes covariance matrices of non-identity functions. Using this result we characterize global MCPCA optimizers for nonlinear functions of jointly Gaussian variables for every rank constraint. For categorical variables we characterize global MCPCA optimizers for the rank one constraint based on the leading eigenvector of a matrix computed using pairwise joint distributions. For a general rank constraint we propose a block coordinate descend algorithm and show its convergence to stationary points of the MCPCA optimization. We compare MCPCA with PCA and other state-of-the-art dimensionality reduction methods including Isomap, LLE, multilayer autoencoders (neural networks), kernel PCA, probabilistic PCA and diffusion maps on several synthetic and real datasets. We show that MCPCA consistently provides improved performance compared to other methods.
Soheil Feizi and David Tse
null
1702.05471
null
null
Beyond the Hazard Rate: More Perturbation Algorithms for Adversarial Multi-armed Bandits
cs.LG cs.GT stat.ML
Recent work on follow the perturbed leader (FTPL) algorithms for the adversarial multi-armed bandit problem has highlighted the role of the hazard rate of the distribution generating the perturbations. Assuming that the hazard rate is bounded, it is possible to provide regret analyses for a variety of FTPL algorithms for the multi-armed bandit problem. This paper pushes the inquiry into regret bounds for FTPL algorithms beyond the bounded hazard rate condition. There are good reasons to do so: natural distributions such as the uniform and Gaussian violate the condition. We give regret bounds for both bounded support and unbounded support distributions without assuming the hazard rate condition. We also disprove a conjecture that the Gaussian distribution cannot lead to a low-regret algorithm. In fact, it turns out that it leads to near optimal regret, up to logarithmic factors. A key ingredient in our approach is the introduction of a new notion called the generalized hazard rate.
Zifan Li, Ambuj Tewari
null
1702.05536
null
null
Dataset Augmentation in Feature Space
stat.ML cs.LG
Dataset augmentation, the practice of applying a wide array of domain-specific transformations to synthetically expand a training set, is a standard tool in supervised learning. While effective in tasks such as visual recognition, the set of transformations must be carefully designed, implemented, and tested for every new domain, limiting its re-use and generality. In this paper, we adopt a simpler, domain-agnostic approach to dataset augmentation. We start with existing data points and apply simple transformations such as adding noise, interpolating, or extrapolating between them. Our main insight is to perform the transformation not in input space, but in a learned feature space. A re-kindling of interest in unsupervised representation learning makes this technique timely and more effective. It is a simple proposal, but to-date one that has not been tested empirically. Working in the space of context vectors generated by sequence-to-sequence models, we demonstrate a technique that is effective for both static and sequential data.
Terrance DeVries, Graham W. Taylor
null
1702.05538
null
null
Bi-Level Online Control without Regret
math.OC cs.LG cs.SY
This paper considers a bi-level discrete-time control framework with real-time constraints, consisting of several local controllers and a central controller. The objective is to bridge the gap between the online convex optimization and real-time control literature by proposing an online control algorithm with small dynamic regret, which is a natural performance criterion in nonstationary environments related to real-time control problems. We illustrate how the proposed algorithm can be applied to real-time control of power setpoints in an electrical grid.
Andrey Bernstein
null
1702.05548
null
null
On the Equivalence of Holographic and Complex Embeddings for Link Prediction
cs.LG
We show the equivalence of two state-of-the-art link prediction/knowledge graph completion methods: Nickel et al's holographic embedding and Trouillon et al.'s complex embedding. We first consider a spectral version of the holographic embedding, exploiting the frequency domain in the Fourier transform for efficient computation. The analysis of the resulting method reveals that it can be viewed as an instance of the complex embedding with certain constraints cast on the initial vectors upon training. Conversely, any complex embedding can be converted to an equivalent holographic embedding.
Katsuhiko Hayashi and Masashi Shimbo
null
1702.05563
null
null
Thresholding based Efficient Outlier Robust PCA
cs.LG
We consider the problem of outlier robust PCA (OR-PCA) where the goal is to recover principal directions despite the presence of outlier data points. That is, given a data matrix $M^*$, where $(1-\alpha)$ fraction of the points are noisy samples from a low-dimensional subspace while $\alpha$ fraction of the points can be arbitrary outliers, the goal is to recover the subspace accurately. Existing results for \OR-PCA have serious drawbacks: while some results are quite weak in the presence of noise, other results have runtime quadratic in dimension, rendering them impractical for large scale applications. In this work, we provide a novel thresholding based iterative algorithm with per-iteration complexity at most linear in the data size. Moreover, the fraction of outliers, $\alpha$, that our method can handle is tight up to constants while providing nearly optimal computational complexity for a general noise setting. For the special case where the inliers are obtained from a low-dimensional subspace with additive Gaussian noise, we show that a modification of our thresholding based method leads to significant improvement in recovery error (of the subspace) even in the presence of a large fraction of outliers.
Yeshwanth Cherapanamjeri and Prateek Jain and Praneeth Netrapalli
null
1702.05571
null
null
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
cs.LG math.OC stat.ML
We study the Stochastic Gradient Langevin Dynamics (SGLD) algorithm for non-convex optimization. The algorithm performs stochastic gradient descent, where in each step it injects appropriately scaled Gaussian noise to the update. We analyze the algorithm's hitting time to an arbitrary subset of the parameter space. Two results follow from our general theory: First, we prove that for empirical risk minimization, if the empirical risk is point-wise close to the (smooth) population risk, then the algorithm achieves an approximate local minimum of the population risk in polynomial time, escaping suboptimal local minima that only exist in the empirical risk. Second, we show that SGLD improves on one of the best known learnability results for learning linear classifiers under the zero-one loss.
Yuchen Zhang, Percy Liang, Moses Charikar
null
1702.05575
null
null
Revisiting Perceptron: Efficient and Label-Optimal Learning of Halfspaces
cs.LG stat.ML
It has been a long-standing problem to efficiently learn a halfspace using as few labels as possible in the presence of noise. In this work, we propose an efficient Perceptron-based algorithm for actively learning homogeneous halfspaces under the uniform distribution over the unit sphere. Under the bounded noise condition~\cite{MN06}, where each label is flipped with probability at most $\eta < \frac 1 2$, our algorithm achieves a near-optimal label complexity of $\tilde{O}\left(\frac{d}{(1-2\eta)^2}\ln\frac{1}{\epsilon}\right)$ in time $\tilde{O}\left(\frac{d^2}{\epsilon(1-2\eta)^3}\right)$. Under the adversarial noise condition~\cite{ABL14, KLS09, KKMS08}, where at most a $\tilde \Omega(\epsilon)$ fraction of labels can be flipped, our algorithm achieves a near-optimal label complexity of $\tilde{O}\left(d\ln\frac{1}{\epsilon}\right)$ in time $\tilde{O}\left(\frac{d^2}{\epsilon}\right)$. Furthermore, we show that our active learning algorithm can be converted to an efficient passive learning algorithm that has near-optimal sample complexities with respect to $\epsilon$ and $d$.
Songbai Yan and Chicheng Zhang
null
1702.05581
null
null
Riemannian stochastic variance reduced gradient algorithm with retraction and vector transport
cs.LG math.OC stat.ML
In recent years, stochastic variance reduction algorithms have attracted considerable attention for minimizing the average of a large but finite number of loss functions. This paper proposes a novel Riemannian extension of the Euclidean stochastic variance reduced gradient (R-SVRG) algorithm to a manifold search space. The key challenges of averaging, adding, and subtracting multiple gradients are addressed with retraction and vector transport. For the proposed algorithm, we present a global convergence analysis with a decaying step size as well as a local convergence rate analysis with a fixed step size under some natural assumptions. In addition, the proposed algorithm is applied to the computation problem of the Riemannian centroid on the symmetric positive definite (SPD) manifold as well as the principal component analysis and low-rank matrix completion problems on the Grassmann manifold. The results show that the proposed algorithm outperforms the standard Riemannian stochastic gradient descent algorithm in each case.
Hiroyuki Sato, Hiroyuki Kasai, Bamdev Mishra
10.1137/17M1116787
1702.05594
null
null
Deep Stochastic Configuration Networks with Universal Approximation Property
cs.LG cs.NE
This paper develops a randomized approach for incrementally building deep neural networks, where a supervisory mechanism is proposed to constrain the random assignment of the weights and biases, and all the hidden layers have direct links to the output layer. A fundamental result on the universal approximation property is established for such a class of randomized leaner models, namely deep stochastic configuration networks (DeepSCNs). A learning algorithm is presented to implement DeepSCNs with either specific architecture or self-organization. The read-out weights attached with all direct links from each hidden layer to the output layer are evaluated by the least squares method. Given a set of training examples, DeepSCNs can speedily produce a learning representation, that is, a collection of random basis functions with the cascaded inputs together with the read-out weights. An empirical study on a function approximation is carried out to demonstrate some properties of the proposed deep learner model.
Dianhui Wang, Ming Li
null
1702.05639
null
null
On Loss Functions for Deep Neural Networks in Classification
cs.LG
Deep neural networks are currently among the most commonly used classifiers. Despite easily achieving very good performance, one of the best selling points of these models is their modular design - one can conveniently adapt their architecture to specific needs, change connectivity patterns, attach specialised layers, experiment with a large amount of activation functions, normalisation schemes and many others. While one can find impressively wide spread of various configurations of almost every aspect of the deep nets, one element is, in authors' opinion, underrepresented - while solving classification problems, vast majority of papers and applications simply use log loss. In this paper we try to investigate how particular choices of loss functions affect deep models and their learning dynamics, as well as resulting classifiers robustness to various effects. We perform experiments on classical datasets, as well as provide some additional, theoretical insights into the problem. In particular we show that L1 and L2 losses are, quite surprisingly, justified classification objectives for deep nets, by providing probabilistic interpretation in terms of expected misclassification. We also introduce two losses which are not typically used as deep nets objectives and show that they are viable alternatives to the existing ones.
Katarzyna Janocha, Wojciech Marian Czarnecki
null
1702.05659
null
null
Quadratic Upper Bound for Recursive Teaching Dimension of Finite VC Classes
cs.LG cs.AI stat.ML
In this work we study the quantitative relation between the recursive teaching dimension (RTD) and the VC dimension (VCD) of concept classes of finite sizes. The RTD of a concept class $\mathcal C \subseteq \{0, 1\}^n$, introduced by Zilles et al. (2011), is a combinatorial complexity measure characterized by the worst-case number of examples necessary to identify a concept in $\mathcal C$ according to the recursive teaching model. For any finite concept class $\mathcal C \subseteq \{0,1\}^n$ with $\mathrm{VCD}(\mathcal C)=d$, Simon & Zilles (2015) posed an open problem $\mathrm{RTD}(\mathcal C) = O(d)$, i.e., is RTD linearly upper bounded by VCD? Previously, the best known result is an exponential upper bound $\mathrm{RTD}(\mathcal C) = O(d \cdot 2^d)$, due to Chen et al. (2016). In this paper, we show a quadratic upper bound: $\mathrm{RTD}(\mathcal C) = O(d^2)$, much closer to an answer to the open problem. We also discuss the challenges in fully solving the problem.
Lunjia Hu, Ruihan Wu, Tianhong Li, Liwei Wang
null
1702.05677
null
null
An Adaptivity Hierarchy Theorem for Property Testing
cs.DS cs.LG
Adaptivity is known to play a crucial role in property testing. In particular, there exist properties for which there is an exponential gap between the power of \emph{adaptive} testing algorithms, wherein each query may be determined by the answers received to prior queries, and their \emph{non-adaptive} counterparts, in which all queries are independent of answers obtained from previous queries. In this work, we investigate the role of adaptivity in property testing at a finer level. We first quantify the degree of adaptivity of a testing algorithm by considering the number of "rounds of adaptivity" it uses. More accurately, we say that a tester is $k$-(round) adaptive if it makes queries in $k+1$ rounds, where the queries in the $i$'th round may depend on the answers obtained in the previous $i-1$ rounds. Then, we ask the following question: Does the power of testing algorithms smoothly grow with the number of rounds of adaptivity? We provide a positive answer to the foregoing question by proving an adaptivity hierarchy theorem for property testing. Specifically, our main result shows that for every $n\in \mathbb{N}$ and $0 \le k \le n^{0.99}$ there exists a property $\mathcal{P}_{n,k}$ of functions for which (1) there exists a $k$-adaptive tester for $\mathcal{P}_{n,k}$ with query complexity $\tilde{O}(k)$, yet (2) any $(k-1)$-adaptive tester for $\mathcal{P}_{n,k}$ must make $\Omega(n)$ queries. In addition, we show that such a qualitative adaptivity hierarchy can be witnessed for testing natural properties of graphs.
Clement Canonne and Tom Gur
null
1702.05678
null
null
Non-negative Tensor Factorization for Human Behavioral Pattern Mining in Online Games
cs.LG cs.HC cs.SI physics.soc-ph
Multiplayer online battle arena has become a popular game genre. It also received increasing attention from our research community because they provide a wealth of information about human interactions and behaviors. A major problem is extracting meaningful patterns of activity from this type of data, in a way that is also easy to interpret. Here, we propose to exploit tensor decomposition techniques, and in particular Non-negative Tensor Factorization, to discover hidden correlated behavioral patterns of play in a popular game: League of Legends. We first collect the entire gaming history of a group of about one thousand players, totaling roughly $100K$ matches. By applying our methodological framework, we then separate players into groups that exhibit similar features and playing strategies, as well as similar temporal trajectories, i.e., behavioral progressions over the course of their gaming history: this will allow us to investigate how players learn and improve their skills.
Anna Sapienza, Alessandro Bessi, Emilio Ferrara
null
1702.05695
null
null
Online Robust Principal Component Analysis with Change Point Detection
cs.LG cs.CV stat.AP stat.CO stat.ML
Robust PCA methods are typically batch algorithms which requires loading all observations into memory before processing. This makes them inefficient to process big data. In this paper, we develop an efficient online robust principal component methods, namely online moving window robust principal component analysis (OMWRPCA). Unlike existing algorithms, OMWRPCA can successfully track not only slowly changing subspace but also abruptly changed subspace. By embedding hypothesis testing into the algorithm, OMWRPCA can detect change points of the underlying subspaces. Extensive simulation studies demonstrate the superior performance of OMWRPCA compared with other state-of-art approaches. We also apply the algorithm for real-time background subtraction of surveillance video.
Wei Xiao, Xiaolin Huang, Jorge Silva, Saba Emrani and Arin Chaudhuri
null
1702.05698
null
null
Collaborative Deep Reinforcement Learning
cs.LG
Besides independent learning, human learning process is highly improved by summarizing what has been learned, communicating it with peers, and subsequently fusing knowledge from different sources to assist the current learning goal. This collaborative learning procedure ensures that the knowledge is shared, continuously refined, and concluded from different perspectives to construct a more profound understanding. The idea of knowledge transfer has led to many advances in machine learning and data mining, but significant challenges remain, especially when it comes to reinforcement learning, heterogeneous model structures, and different learning tasks. Motivated by human collaborative learning, in this paper we propose a collaborative deep reinforcement learning (CDRL) framework that performs adaptive knowledge transfer among heterogeneous learning agents. Specifically, the proposed CDRL conducts a novel deep knowledge distillation method to address the heterogeneity among different learning tasks with a deep alignment network. Furthermore, we present an efficient collaborative Asynchronous Advantage Actor-Critic (cA3C) algorithm to incorporate deep knowledge distillation into the online training of agents, and demonstrate the effectiveness of the CDRL framework using extensive empirical evaluation on OpenAI gym.
Kaixiang Lin, Shu Wang and Jiayu Zhou
null
1702.05796
null
null
Compressive Embedding and Visualization using Graphs
cs.LG stat.ML
Visualizing high-dimensional data has been a focus in data analysis communities for decades, which has led to the design of many algorithms, some of which are now considered references (such as t-SNE for example). In our era of overwhelming data volumes, the scalability of such methods have become more and more important. In this work, we present a method which allows to apply any visualization or embedding algorithm on very large datasets by considering only a fraction of the data as input and then extending the information to all data points using a graph encoding its global similarity. We show that in most cases, using only $\mathcal{O}(\log(N))$ samples is sufficient to diffuse the information to all $N$ data points. In addition, we propose quantitative methods to measure the quality of embeddings and demonstrate the validity of our technique on both synthetic and real-world datasets.
Johan Paratte, Nathana\"el Perraudin, Pierre Vandergheynst
null
1702.05815
null
null
Robust Sparse Estimation Tasks in High Dimensions
cs.LG cs.DS
In this paper we initiate the study of whether or not sparse estimation tasks can be performed efficiently in high dimensions, in the robust setting where an $\eps$-fraction of samples are corrupted adversarially. We study the natural robust version of two classical sparse estimation problems, namely, sparse mean estimation and sparse PCA in the spiked covariance model. For both of these problems, we provide the first efficient algorithms that provide non-trivial error guarantees in the presence of noise, using only a number of samples which is similar to the number required for these problems without noise. In particular, our sample complexities are sublinear in the ambient dimension $d$. Our work also suggests evidence for new computational-vs-statistical gaps for these problems (similar to those for sparse PCA without noise) which only arise in the presence of noise.
Jerry Li
null
1702.0586
null
null