title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Preserving Differential Privacy Between Features in Distributed Estimation
stat.ML cs.CR cs.DC cs.LG
Privacy is crucial in many applications of machine learning. Legal, ethical and societal issues restrict the sharing of sensitive data making it difficult to learn from datasets that are partitioned between many parties. One important instance of such a distributed setting arises when information about each record in the dataset is held by different data owners (the design matrix is "vertically-partitioned"). In this setting few approaches exist for private data sharing for the purposes of statistical estimation and the classical setup of differential privacy with a "trusted curator" preparing the data does not apply. We work with the notion of $(\epsilon,\delta)$-distributed differential privacy which extends single-party differential privacy to the distributed, vertically-partitioned case. We propose PriDE, a scalable framework for distributed estimation where each party communicates perturbed random projections of their locally held features ensuring $(\epsilon,\delta)$-distributed differential privacy is preserved. For $\ell_2$-penalized supervised learning problems PriDE has bounded estimation error compared with the optimal estimates obtained without privacy constraints in the non-distributed setting. We confirm this empirically on real world and synthetic datasets.
Christina Heinze-Deml, Brian McWilliams, Nicolai Meinshausen
10.1002/sta4.189
1703.00403
null
null
Detecting Adversarial Samples from Artifacts
stat.ML cs.LG
Deep neural networks (DNNs) are powerful nonlinear architectures that are known to be robust to random perturbations of the input. However, these models are vulnerable to adversarial perturbations--small input changes crafted explicitly to fool the model. In this paper, we ask whether a DNN can distinguish adversarial samples from their normal and noisy counterparts. We investigate model confidence on adversarial samples by looking at Bayesian uncertainty estimates, available in dropout neural networks, and by performing density estimation in the subspace of deep features learned by the model. The result is a method for implicit adversarial detection that is oblivious to the attack algorithm. We evaluate this method on a variety of standard datasets including MNIST and CIFAR-10 and show that it generalizes well across different architectures and attacks. Our findings report that 85-93% ROC-AUC can be achieved on a number of standard classification tasks with a negative class that consists of both normal and noisy samples.
Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, Andrew B. Gardner
null
1703.0041
null
null
Virtual-to-real Deep Reinforcement Learning: Continuous Control of Mobile Robots for Mapless Navigation
cs.RO cs.AI cs.LG
We present a learning-based mapless motion planner by taking the sparse 10-dimensional range findings and the target position with respect to the mobile robot coordinate frame as input and the continuous steering commands as output. Traditional motion planners for mobile ground robots with a laser range sensor mostly depend on the obstacle map of the navigation environment where both the highly precise laser sensor and the obstacle map building work of the environment are indispensable. We show that, through an asynchronous deep reinforcement learning method, a mapless motion planner can be trained end-to-end without any manually designed features and prior demonstrations. The trained planner can be directly applied in unseen virtual and real environments. The experiments show that the proposed mapless motion planner can navigate the nonholonomic mobile robot to the desired targets without colliding with any obstacles.
Lei Tai, Giuseppe Paolo and Ming Liu
null
1703.0042
null
null
Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization
math.OC cs.LG stat.ML
In this paper, we develop a new accelerated stochastic gradient method for efficiently solving the convex regularized empirical risk minimization problem in mini-batch settings. The use of mini-batches is becoming a golden standard in the machine learning community, because mini-batch settings stabilize the gradient estimate and can easily make good use of parallel computing. The core of our proposed method is the incorporation of our new "double acceleration" technique and variance reduction technique. We theoretically analyze our proposed method and show that our method much improves the mini-batch efficiencies of previous accelerated stochastic methods, and essentially only needs size $\sqrt{n}$ mini-batches for achieving the optimal iteration complexities for both non-strongly and strongly convex objectives, where $n$ is the training set size. Further, we show that even in non-mini-batch settings, our method achieves the best known convergence rate for both non-strongly and strongly convex objectives.
Tomoya Murata and Taiji Suzuki
null
1703.00439
null
null
Fast k-Nearest Neighbour Search via Prioritized DCI
cs.LG cs.AI cs.DS cs.IR stat.ML
Most exact methods for k-nearest neighbour search suffer from the curse of dimensionality; that is, their query times exhibit exponential dependence on either the ambient or the intrinsic dimensionality. Dynamic Continuous Indexing (DCI) offers a promising way of circumventing the curse and successfully reduces the dependence of query time on intrinsic dimensionality from exponential to sublinear. In this paper, we propose a variant of DCI, which we call Prioritized DCI, and show a remarkable improvement in the dependence of query time on intrinsic dimensionality. In particular, a linear increase in intrinsic dimensionality, or equivalently, an exponential increase in the number of points near a query, can be mostly counteracted with just a linear increase in space. We also demonstrate empirically that Prioritized DCI significantly outperforms prior methods. In particular, relative to Locality-Sensitive Hashing (LSH), Prioritized DCI reduces the number of distance evaluations by a factor of 14 to 116 and the memory consumption by a factor of 21.
Ke Li and Jitendra Malik
null
1703.0044
null
null
Learning to Optimize Neural Nets
cs.LG cs.AI math.OC stat.ML
Learning to Optimize is a recently proposed framework for learning optimization algorithms using reinforcement learning. In this paper, we explore learning an optimization algorithm for training shallow neural nets. Such high-dimensional stochastic optimization problems present interesting challenges for existing reinforcement learning algorithms. We develop an extension that is suited to learning optimization algorithms in this setting and demonstrate that the learned optimization algorithm consistently outperforms other known optimization algorithms even on unseen tasks and is robust to changes in stochasticity of gradients and the neural net architecture. More specifically, we show that an optimization algorithm trained with the proposed method on the problem of training a neural net on MNIST generalizes to the problems of training neural nets on the Toronto Faces Dataset, CIFAR-10 and CIFAR-100.
Ke Li and Jitendra Malik
null
1703.00441
null
null
OptNet: Differentiable Optimization as a Layer in Neural Networks
cs.LG cs.AI math.OC stat.ML
This paper presents OptNet, a network architecture that integrates optimization problems (here, specifically in the form of quadratic programs) as individual layers in larger end-to-end trainable deep networks. These layers encode constraints and complex dependencies between the hidden states that traditional convolutional and fully-connected layers often cannot capture. We explore the foundations for such an architecture: we show how techniques from sensitivity analysis, bilevel optimization, and implicit differentiation can be used to exactly differentiate through these layers and with respect to layer parameters; we develop a highly efficient solver for these layers that exploits fast GPU-based batch solves within a primal-dual interior point method, and which provides backpropagation gradients with virtually no additional cost on top of the solve; and we highlight the application of these approaches in several problems. In one notable example, the method is learns to play mini-Sudoku (4x4) given just input and output games, with no a-priori information about the rules of the game; this highlights the ability of OptNet to learn hard constraints better than other neural architectures.
Brandon Amos, J. Zico Kolter
null
1703.00443
null
null
Reinforcement Learning for Pivoting Task
cs.RO cs.LG
In this work we propose an approach to learn a robust policy for solving the pivoting task. Recently, several model-free continuous control algorithms were shown to learn successful policies without prior knowledge of the dynamics of the task. However, obtaining successful policies required thousands to millions of training episodes, limiting the applicability of these approaches to real hardware. We developed a training procedure that allows us to use a simple custom simulator to learn policies robust to the mismatch of simulation vs robot. In our experiments, we demonstrate that the policy learned in the simulator is able to pivot the object to the desired target angle on the real robot. We also show generalization to an object with different inertia, shape, mass and friction properties than those used during training. This result is a step towards making model-free reinforcement learning available for solving robotics tasks via pre-training in simulators that offer only an imprecise match to the real-world dynamics.
Rika Antonova, Silvia Cruciani, Christian Smith, Danica Kragic
null
1703.00472
null
null
Truth and Regret in Online Scheduling
cs.GT cs.AI cs.DS cs.LG
We consider a scheduling problem where a cloud service provider has multiple units of a resource available over time. Selfish clients submit jobs, each with an arrival time, deadline, length, and value. The service provider's goal is to implement a truthful online mechanism for scheduling jobs so as to maximize the social welfare of the schedule. Recent work shows that under a stochastic assumption on job arrivals, there is a single-parameter family of mechanisms that achieves near-optimal social welfare. We show that given any such family of near-optimal online mechanisms, there exists an online mechanism that in the worst case performs nearly as well as the best of the given mechanisms. Our mechanism is truthful whenever the mechanisms in the given family are truthful and prompt, and achieves optimal (within constant factors) regret. We model the problem of competing against a family of online scheduling mechanisms as one of learning from expert advice. A primary challenge is that any scheduling decisions we make affect not only the payoff at the current step, but also the resource availability and payoffs in future steps. Furthermore, switching from one algorithm (a.k.a. expert) to another in an online fashion is challenging both because it requires synchronization with the state of the latter algorithm as well as because it affects the incentive structure of the algorithms. We further show how to adapt our algorithm to a non-clairvoyant setting where job lengths are unknown until jobs are run to completion. Once again, in this setting, we obtain truthfulness along with asymptotically optimal regret (within poly-logarithmic factors).
Shuchi Chawla, Nikhil Devanur, Janardhan Kulkarni, Rad Niazadeh
null
1703.00484
null
null
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
cs.LG cs.AI
The selection, development, or comparison of machine learning methods in data mining can be a difficult task based on the target problem and goals of a particular study. Numerous publicly available real-world and simulated benchmark datasets have emerged from different sources, but their organization and adoption as standards have been inconsistent. As such, selecting and curating specific benchmarks remains an unnecessary burden on machine learning practitioners and data scientists. The present study introduces an accessible, curated, and developing public benchmark resource to facilitate identification of the strengths and weaknesses of different machine learning methodologies. We compare meta-features among the current set of benchmark datasets in this resource to characterize the diversity of available data. Finally, we apply a number of established machine learning methods to the entire benchmark suite and analyze how datasets and algorithms cluster in terms of performance. This work is an important first step towards understanding the limitations of popular benchmarking suites and developing a resource that connects existing benchmarking standards to more diverse and efficient standards in the future.
Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, Jason H. Moore
null
1703.00512
null
null
Understanding Synthetic Gradients and Decoupled Neural Interfaces
cs.LG cs.NE
When training neural networks, the use of Synthetic Gradients (SG) allows layers or modules to be trained without update locking - without waiting for a true error gradient to be backpropagated - resulting in Decoupled Neural Interfaces (DNIs). This unlocked ability of being able to update parts of a neural network asynchronously and with only local information was demonstrated to work empirically in Jaderberg et al (2016). However, there has been very little demonstration of what changes DNIs and SGs impose from a functional, representational, and learning dynamics point of view. In this paper, we study DNIs through the use of synthetic gradients on feed-forward networks to better understand their behaviour and elucidate their effect on optimisation. We show that the incorporation of SGs does not affect the representational strength of the learning system for a neural network, and prove the convergence of the learning system for linear and deep linear models. On practical problems we investigate the mechanism by which synthetic gradient estimators approximate the true loss, and, surprisingly, how that leads to drastically different layer-wise representations. Finally, we also expose the relationship of using synthetic gradients to other error approximation techniques and find a unifying language for discussion and comparison.
Wojciech Marian Czarnecki, Grzegorz \'Swirszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals, Koray Kavukcuoglu
null
1703.00522
null
null
Human Interaction with Recommendation Systems
stat.ML cs.LG
Many recommendation algorithms rely on user data to generate recommendations. However, these recommendations also affect the data obtained from future users. This work aims to understand the effects of this dynamic interaction. We propose a simple model where users with heterogeneous preferences arrive over time. Based on this model, we prove that naive estimators, i.e. those which ignore this feedback loop, are not consistent. We show that consistent estimators are efficient in the presence of myopic agents. Our results are validated using extensive simulations.
Sven Schmit and Carlos Riquelme
null
1703.00535
null
null
Model-Independent Online Learning for Influence Maximization
cs.LG
We consider influence maximization (IM) in social networks, which is the problem of maximizing the number of users that become aware of a product by selecting a set of "seed" users to expose the product to. While prior work assumes a known model of information diffusion, we propose a novel parametrization that not only makes our framework agnostic to the underlying diffusion model, but also statistically efficient to learn from data. We give a corresponding monotone, submodular surrogate function, and show that it is a good approximation to the original IM objective. We also consider the case of a new marketer looking to exploit an existing social network, while simultaneously learning the factors governing information propagation. For this, we propose a pairwise-influence semi-bandit feedback model and develop a LinUCB-based bandit algorithm. Our model-independent analysis shows that our regret bound has a better (as compared to previous work) dependence on the size of the network. Experimental evaluation suggests that our framework is robust to the underlying diffusion model and can efficiently learn a near-optimal solution.
Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks Lakshmanan, Mark Schmidt
null
1703.00557
null
null
An Analytical Formula of Population Gradient for two-layered ReLU network and its Applications in Convergence and Critical Point Analysis
cs.LG
In this paper, we explore theoretical properties of training a two-layered ReLU network $g(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^K \sigma(\mathbf{w}_j^T\mathbf{x})$ with centered $d$-dimensional spherical Gaussian input $\mathbf{x}$ ($\sigma$=ReLU). We train our network with gradient descent on $\mathbf{w}$ to mimic the output of a teacher network with the same architecture and fixed parameters $\mathbf{w}^*$. We show that its population gradient has an analytical formula, leading to interesting theoretical analysis of critical points and convergence behaviors. First, we prove that critical points outside the hyperplane spanned by the teacher parameters ("out-of-plane") are not isolated and form manifolds, and characterize in-plane critical-point-free regions for two ReLU case. On the other hand, convergence to $\mathbf{w}^*$ for one ReLU node is guaranteed with at least $(1-\epsilon)/2$ probability, if weights are initialized randomly with standard deviation upper-bounded by $O(\epsilon/\sqrt{d})$, consistent with empirical practice. For network with many ReLU nodes, we prove that an infinitesimal perturbation of weight initialization results in convergence towards $\mathbf{w}^*$ (or its permutation), a phenomenon known as spontaneous symmetric-breaking (SSB) in physics. We assume no independence of ReLU activations. Simulation verifies our findings.
Yuandong Tian
null
1703.0056
null
null
Signal-based Bayesian Seismic Monitoring
cs.LG physics.geo-ph
Detecting weak seismic events from noisy sensors is a difficult perceptual task. We formulate this task as Bayesian inference and propose a generative model of seismic events and signals across a network of spatially distributed stations. Our system, SIGVISA, is the first to directly model seismic waveforms, allowing it to incorporate a rich representation of the physics underlying the signal generation process. We use Gaussian processes over wavelet parameters to predict detailed waveform fluctuations based on historical events, while degrading smoothly to simple parametric envelopes in regions with no historical seismicity. Evaluating on data from the western US, we recover three times as many events as previous work, and reduce mean location errors by a factor of four while greatly increasing sensitivity to low-magnitude events.
David A. Moore and Stuart J. Russell
null
1703.00561
null
null
MoleculeNet: A Benchmark for Molecular Machine Learning
cs.LG physics.chem-ph stat.ML
Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm.
Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing and Vijay Pande
null
1703.00564
null
null
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
cs.LG cs.NE stat.ML
We show that training of generative adversarial network (GAN) may not have good generalization properties; e.g., training may appear successful but the trained distribution may be far from target distribution in standard metrics. However, generalization does occur for a weaker metric called neural net distance. It is also shown that an approximate pure equilibrium exists in the discriminator/generator game for a special class of generators with natural training objectives when generator capacity and training set sizes are moderate. This existence of equilibrium inspires MIX+GAN protocol, which can be combined with any existing GAN training, and empirically shown to improve some of them.
Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, Yi Zhang
null
1703.00573
null
null
Active Learning for Accurate Estimation of Linear Models
stat.ML cs.LG
We explore the sequential decision making problem where the goal is to estimate uniformly well a number of linear models, given a shared budget of random contexts independently sampled from a known distribution. The decision maker must query one of the linear models for each incoming context, and receives an observation corrupted by noise levels that are unknown, and depend on the model instance. We present Trace-UCB, an adaptive allocation algorithm that learns the noise levels while balancing contexts accordingly across the different linear functions, and derive guarantees for simple regret in both expectation and high-probability. Finally, we extend the algorithm and its guarantees to high dimensional settings, where the number of linear models times the dimension of the contextual space is higher than the total budget of samples. Simulations with real data suggest that Trace-UCB is remarkably robust, outperforming a number of baselines even when its assumptions are violated.
Carlos Riquelme, Mohammad Ghavamzadeh, Alessandro Lazaric
null
1703.00579
null
null
Positive-Unlabeled Learning with Non-Negative Risk Estimator
cs.LG stat.ML
From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.
Ryuichi Kiryo, Gang Niu, Marthinus C. du Plessis, and Masashi Sugiyama
null
1703.00593
null
null
In Search of an Entity Resolution OASIS: Optimal Asymptotic Sequential Importance Sampling
cs.LG cs.DB stat.ML
Entity resolution (ER) presents unique challenges for evaluation methodology. While crowdsourcing platforms acquire ground truth, sound approaches to sampling must drive labelling efforts. In ER, extreme class imbalance between matching and non-matching records can lead to enormous labelling requirements when seeking statistically consistent estimates for rigorous evaluation. This paper addresses this important challenge with the OASIS algorithm: a sampler and F-measure estimator for ER evaluation. OASIS draws samples from a (biased) instrumental distribution, chosen to ensure estimators with optimal asymptotic variance. As new labels are collected OASIS updates this instrumental distribution via a Bayesian latent variable model of the annotator oracle, to quickly focus on unlabelled items providing more information. We prove that resulting estimates of F-measure, precision, recall converge to the true population values. Thorough comparisons of sampling methods on a variety of ER datasets demonstrate significant labelling reductions of up to 83% without loss to estimate accuracy.
Neil G. Marchant and Benjamin I. P. Rubinstein
null
1703.00617
null
null
Traffic-Aware Transmission Mode Selection in D2D-enabled Cellular Networks with Token System
cs.IT cs.LG math.IT
We consider a D2D-enabled cellular network where user equipments (UEs) owned by rational users are incentivized to form D2D pairs using tokens. They exchange tokens electronically to "buy" and "sell" D2D services. Meanwhile the devices have the ability to choose the transmission mode, i.e. receiving data via cellular links or D2D links. Thus taking the different benefits brought by diverse traffic types as a prior, the UEs can utilize their tokens more efficiently via transmission mode selection. In this paper, the optimal transmission mode selection strategy as well as token collection policy are investigated to maximize the long-term utility in the dynamic network environment. The optimal policy is proved to be a threshold strategy, and the thresholds have a monotonicity property. Numerical simulations verify our observations and the gain from transmission mode selection is observed.
Yiling Yuan, Tao Yang, Hui Feng, Bo Hu, Jianqiu Zhang, Bin Wang and Qiyong Lu
null
1703.0066
null
null
Introduction to Nonnegative Matrix Factorization
cs.NA cs.CV cs.LG math.OC stat.ML
In this paper, we introduce and provide a short overview of nonnegative matrix factorization (NMF). Several aspects of NMF are discussed, namely, the application in hyperspectral imaging, geometry and uniqueness of NMF solutions, complexity, algorithms, and its link with extended formulations of polyhedra. In order to put NMF into perspective, the more general problem class of constrained low-rank matrix approximation problems is first briefly introduced.
Nicolas Gillis
null
1703.00663
null
null
Adaptive Matching for Expert Systems with Uncertain Task Types
cs.AI cs.LG stat.ML
A matching in a two-sided market often incurs an externality: a matched resource may become unavailable to the other side of the market, at least for a while. This is especially an issue in online platforms involving human experts as the expert resources are often scarce. The efficient utilization of experts in these platforms is made challenging by the fact that the information available about the parties involved is usually limited. To address this challenge, we develop a model of a task-expert matching system where a task is matched to an expert using not only the prior information about the task but also the feedback obtained from the past matches. In our model the tasks arrive online while the experts are fixed and constrained by a finite service capacity. For this model, we characterize the maximum task resolution throughput a platform can achieve. We show that the natural greedy approaches where each expert is assigned a task most suitable to her skill is suboptimal, as it does not internalize the above externality. We develop a throughput optimal backpressure algorithm which does so by accounting for the `congestion' among different task types. Finally, we validate our model and confirm our theoretical findings with data-driven simulations via logs of Math.StackExchange, a StackOverflow forum dedicated to mathematics.
Virag Shah, Lennart Gulikers, Laurent Massoulie, Milan Vojnovic
null
1703.00674
null
null
A Unifying View of Explicit and Implicit Feature Maps of Graph Kernels
cs.LG stat.ML
Non-linear kernel methods can be approximated by fast linear ones using suitable explicit feature maps allowing their application to large scale problems. We investigate how convolution kernels for structured data are composed from base kernels and construct corresponding feature maps. On this basis we propose exact and approximative feature maps for widely used graph kernels based on the kernel trick. We analyze for which kernels and graph properties computation by explicit feature maps is feasible and actually more efficient. In particular, we derive approximative, explicit feature maps for state-of-the-art kernels supporting real-valued attributes including the GraphHopper and graph invariant kernels. In extensive experiments we show that our approaches often achieve a classification accuracy close to the exact methods based on the kernel trick, but require only a fraction of their running time. Moreover, we propose and analyze algorithms for computing random walk, shortest-path and subgraph matching kernels by explicit and implicit feature maps. Our theoretical results are confirmed experimentally by observing a phase transition when comparing running time with respect to label diversity, walk lengths and subgraph size, respectively.
Nils M. Kriege, Marion Neumann, Christopher Morris, Kristian Kersting, Petra Mutzel
10.1007/s10618-019-00652-0
1703.00676
null
null
Mixing Complexity and its Applications to Neural Networks
cs.LG
We suggest analyzing neural networks through the prism of space constraints. We observe that most training algorithms applied in practice use bounded memory, which enables us to use a new notion introduced in the study of space-time tradeoffs that we call mixing complexity. This notion was devised in order to measure the (in)ability to learn using a bounded-memory algorithm. In this paper we describe how we use mixing complexity to obtain new results on what can and cannot be learned using neural networks.
Michal Moshkovitz, Naftali Tishby
null
1703.00729
null
null
Distributed Bayesian Matrix Factorization with Limited Communication
stat.ML cs.DC cs.LG cs.NA stat.ME
Bayesian matrix factorization (BMF) is a powerful tool for producing low-rank representations of matrices and for predicting missing values and providing confidence intervals. Scaling up the posterior inference for massive-scale matrices is challenging and requires distributing both data and computation over many workers, making communication the main computational bottleneck. Embarrassingly parallel inference would remove the communication needed, by using completely independent computations on different data subsets, but it suffers from the inherent unidentifiability of BMF solutions. We introduce a hierarchical decomposition of the joint posterior distribution, which couples the subset inferences, allowing for embarrassingly parallel computations in a sequence of at most three stages. Using an efficient approximate implementation, we show improvements empirically on both real and simulated data. Our distributed approach is able to achieve a speed-up of almost an order of magnitude over the full posterior, with a negligible effect on predictive accuracy. Our method outperforms state-of-the-art embarrassingly parallel MCMC methods in accuracy, and achieves results competitive to other available distributed and parallel implementations of BMF.
Xiangju Qin, Paul Blomstedt, Eemeli Lepp\"aaho, Pekka Parviainen, Samuel Kaski
10.1007/s10994-019-05778-2
1703.00734
null
null
Wireless Interference Identification with Convolutional Neural Networks
cs.LG cs.CV
The steadily growing use of license-free frequency bands requires reliable coexistence management for deterministic medium utilization. For interference mitigation, proper wireless interference identification (WII) is essential. In this work we propose the first WII approach based upon deep convolutional neural networks (CNNs). The CNN naively learns its features through self-optimization during an extensive data-driven GPU-based training process. We propose a CNN example which is based upon sensing snapshots with a limited duration of 12.8 {\mu}s and an acquisition bandwidth of 10 MHz. The CNN differs between 15 classes. They represent packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE 802.15.1 with overlapping frequency channels within the 2.4 GHz ISM band. We show that the CNN outperforms state-of-the-art WII approaches and has a classification accuracy greater than 95% for signal-to-noise ratio of at least -5 dB.
Malte Schmidt, Dimitri Block, Uwe Meier
10.1109/indin.2017.8104767
1703.00737
null
null
Predicting Rankings of Software Verification Competitions
cs.LG cs.SE
Software verification competitions, such as the annual SV-COMP, evaluate software verification tools with respect to their effectivity and efficiency. Typically, the outcome of a competition is a (possibly category-specific) ranking of the tools. For many applications, such as building portfolio solvers, it would be desirable to have an idea of the (relative) performance of verification tools on a given verification task beforehand, i.e., prior to actually running all tools on the task. In this paper, we present a machine learning approach to predicting rankings of tools on verification tasks. The method builds upon so-called label ranking algorithms, which we complement with appropriate kernels providing a similarity measure for verification tasks. Our kernels employ a graph representation for software source code that mixes elements of control flow and program dependence graphs with abstract syntax trees. Using data sets from SV-COMP, we demonstrate our rank prediction technique to generalize well and achieve a rather high predictive accuracy. In particular, our method outperforms a recently proposed feature-based approach of Demyanova et al. (when applied to rank predictions).
Mike Czech, Eyke H\"ullermeier, Marie-Christine Jakobs, Heike Wehrheim
null
1703.00757
null
null
Attentive Recurrent Comparators
cs.CV cs.LG
Rapid learning requires flexible representations to quickly adopt to new evidence. We develop a novel class of models called Attentive Recurrent Comparators (ARCs) that form representations of objects by cycling through them and making observations. Using the representations extracted by ARCs, we develop a way of approximating a \textit{dynamic representation space} and use it for one-shot learning. In the task of one-shot classification on the Omniglot dataset, we achieve the state of the art performance with an error rate of 1.5\%. This represents the first super-human result achieved for this task with a generic model that uses only pixel information.
Pranav Shyam and Shubham Gupta and Ambedkar Dukkipati
null
1703.00767
null
null
A Generic Online Parallel Learning Framework for Large Margin Models
cs.CL cs.LG
To speed up the training process, many existing systems use parallel technology for online learning algorithms. However, most research mainly focus on stochastic gradient descent (SGD) instead of other algorithms. We propose a generic online parallel learning framework for large margin models, and also analyze our framework on popular large margin algorithms, including MIRA and Structured Perceptron. Our framework is lock-free and easy to implement on existing systems. Experiments show that systems with our framework can gain near linear speed up by increasing running threads, and with no loss in accuracy.
Shuming Ma and Xu Sun
null
1703.00786
null
null
A Robust Adaptive Stochastic Gradient Method for Deep Learning
cs.LG
Stochastic gradient algorithms are the main focus of large-scale optimization problems and led to important successes in the recent advancement of the deep learning algorithms. The convergence of SGD depends on the careful choice of learning rate and the amount of the noise in stochastic estimates of the gradients. In this paper, we propose an adaptive learning rate algorithm, which utilizes stochastic curvature information of the loss function for automatically tuning the learning rates. The information about the element-wise curvature of the loss function is estimated from the local statistics of the stochastic first order gradients. We further propose a new variance reduction technique to speed up the convergence. In our experiments with deep neural networks, we obtained better performance compared to the popular stochastic gradient algorithms.
Caglar Gulcehre, Jose Sotelo, Marcin Moczulski, Yoshua Bengio
null
1703.00788
null
null
Unsupervised Steganalysis Based on Artificial Training Sets
cs.MM cs.LG
In this paper, an unsupervised steganalysis method that combines artificial training setsand supervised classification is proposed. We provide a formal framework for unsupervisedclassification of stego and cover images in the typical situation of targeted steganalysis (i.e.,for a known algorithm and approximate embedding bit rate). We also present a completeset of experiments using 1) eight different image databases, 2) image features based on RichModels, and 3) three different embedding algorithms: Least Significant Bit (LSB) matching,Highly undetectable steganography (HUGO) and Wavelet Obtained Weights (WOW). Weshow that the experimental results outperform previous methods based on Rich Models inthe majority of the tested cases. At the same time, the proposed approach bypasses theproblem of Cover Source Mismatch -when the embedding algorithm and bit rate are known-, since it removes the need of a training database when we have a large enough testing set.Furthermore, we provide a generic proof of the proposed framework in the machine learningcontext. Hence, the results of this paper could be extended to other classification problemssimilar to steganalysis.
Daniel Lerch-Hostalot and David Meg\'ias
10.1016/j.engappai.2015.12.013
1703.00796
null
null
Opening the Black Box of Deep Neural Networks via Information
cs.LG
Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work proposed to analyze DNNs in the \textit{Information Plane}; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer. In this work we follow up on this idea and demonstrate the effectiveness of the Information-Plane visualization of DNNs. Our main results are: (i) most of the training epochs in standard DL are spent on {\emph compression} of the input to efficient representation and not on fitting the training labels. (ii) The representation compression phase begins when the training errors becomes small and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error into a stochastic relaxation, or random diffusion, constrained by the training error value. (iii) The converged layers lie on or very close to the Information Bottleneck (IB) theoretical bound, and the maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB self-consistent equations. This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is dramatically reduced when adding more hidden layers. Thus the main advantage of the hidden layers is computational. This can be explained by the reduced relaxation time, as this it scales super-linearly (exponentially for simple diffusion) with the information compression from the previous layer.
Ravid Shwartz-Ziv and Naftali Tishby
null
1703.0081
null
null
Robust Communication-Optimal Distributed Clustering Algorithms
cs.DS cs.DC cs.LG
In this work, we study the $k$-median and $k$-means clustering problems when the data is distributed across many servers and can contain outliers. While there has been a lot of work on these problems for worst-case instances, we focus on gaining a finer understanding through the lens of beyond worst-case analysis. Our main motivation is the following: for many applications such as clustering proteins by function or clustering communities in a social network, there is some unknown target clustering, and the hope is that running a $k$-median or $k$-means algorithm will produce clusterings which are close to matching the target clustering. Worst-case results can guarantee constant factor approximations to the optimal $k$-median or $k$-means objective value, but not closeness to the target clustering. Our first result is a distributed algorithm which returns a near-optimal clustering assuming a natural notion of stability, namely, approximation stability [Balcan et. al 2013], even when a constant fraction of the data are outliers. The communication complexity is $\tilde O(sk+z)$ where $s$ is the number of machines, $k$ is the number of clusters, and $z$ is the number of outliers. Next, we show this amount of communication cannot be improved even in the setting when the input satisfies various non-worst-case assumptions. We give a matching $\Omega(sk+z)$ lower bound on the communication required both for approximating the optimal $k$-means or $k$-median cost up to any constant, and for returning a clustering that is close to the target clustering in Hamming distance. These lower bounds hold even when the data satisfies approximation stability or other common notions of stability, and the cluster sizes are balanced. Therefore, $\Omega(sk+z)$ is a communication bottleneck, even for real-world instances.
Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, and David Woodruff
null
1703.0083
null
null
Meta Networks
cs.LG stat.ML
Neural networks have been successfully applied in applications with a large amount of labeled data. However, the task of rapid generalization on new concepts with small training data while preserving performances on previously learned ones still presents a significant challenge to neural network models. In this work, we introduce a novel meta learning method, Meta Networks (MetaNet), that learns a meta-level knowledge across tasks and shifts its inductive biases via fast parameterization for rapid generalization. When evaluated on Omniglot and Mini-ImageNet benchmarks, our MetaNet models achieve a near human-level performance and outperform the baseline approaches by up to 6% accuracy. We demonstrate several appealing properties of MetaNet relating to generalization and continual learning.
Tsendsuren Munkhdalai and Hong Yu
null
1703.00837
null
null
Encrypted accelerated least squares regression
stat.ML cs.LG
Information that is stored in an encrypted format is, by definition, usually not amenable to statistical analysis or machine learning methods. In this paper we present detailed analysis of coordinate and accelerated gradient descent algorithms which are capable of fitting least squares and penalised ridge regression models, using data encrypted under a fully homomorphic encryption scheme. Gradient descent is shown to dominate in terms of encrypted computational speed, and theoretical results are proven to give parameter bounds which ensure correctness of decryption. The characteristics of encrypted computation are empirically shown to favour a non-standard acceleration technique. This demonstrates the possibility of approximating conventional statistical regression methods using encrypted data without compromising privacy.
Pedro M. Esperan\c{c}a, Louis J. M. Aslett, Chris C. Holmes
null
1703.00839
null
null
Exact Topology Reconstruction of Radial Dynamical Systems with Applications to Distribution System of the Power Grid
cs.LG cs.SY
In this article we present a method to reconstruct the interconnectedness of dynamically related stochastic processes, where the interactions are bi-directional and the underlying topology is a tree. Our approach is based on multivariate Wiener filtering which recovers spurious edges apart from the true edges in the topology reconstruction. The main contribution of this work is to show that all spurious links obtained using Wiener filtering can be eliminated if the underlying topology is a tree based on which we present a three stage network reconstruction procedure for trees. We illustrate the effectiveness of the method developed by applying it on a typical distribution system of the electric grid.
Saurav Talukdar, Deepjyoti Deka, Donatello Materassi and Murti V. Salapaka
null
1703.00847
null
null
Learning the Structure of Generative Models without Labeled Data
cs.LG stat.ML
Curating labeled training data has become the primary bottleneck in machine learning. Recent frameworks address this bottleneck with generative models to synthesize labels at scale from weak supervision sources. The generative model's dependency structure directly affects the quality of the estimated labels, but selecting a structure automatically without any labeled data is a distinct challenge. We propose a structure estimation method that maximizes the $\ell_1$-regularized marginal pseudolikelihood of the observed data. Our analysis shows that the amount of unlabeled data required to identify the true structure scales sublinearly in the number of possible dependencies for a broad class of models. Simulations show that our method is 100$\times$ faster than a maximum likelihood approach and selects $1/4$ as many extraneous dependencies. We also show that our method provides an average of 1.5 F1 points of improvement over existing, user-developed information extraction applications on real-world data such as PubMed journal abstracts.
Stephen H. Bach, Bryan He, Alexander Ratner, Christopher R\'e
null
1703.00854
null
null
Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources
cs.CV cs.LG stat.ML
Our goal is to design architectures that retain the groundbreaking performance of CNNs for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational resources. To this end, we make the following contributions: (a) we are the first to study the effect of neural network binarization on localization tasks, namely human pose estimation and face alignment. We exhaustively evaluate various design choices, identify performance bottlenecks, and more importantly propose multiple orthogonal ways to boost performance. (b) Based on our analysis, we propose a novel hierarchical, parallel and multi-scale residual architecture that yields large performance improvement over the standard bottleneck block while having the same number of parameters, thus bridging the gap between the original network and its binarized counterpart. (c) We perform a large number of ablation studies that shed light on the properties and the performance of the proposed block. (d) We present results for experiments on the most challenging datasets for human pose estimation and face alignment, reporting in many cases state-of-the-art performance. Code can be downloaded from https://www.adrianbulat.com/binary-cnn-landmarks
Adrian Bulat and Georgios Tzimiropoulos
10.1109/ICCV.2017.400
1703.00862
null
null
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
cs.LG cs.CV stat.ML
We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.
Tuan Anh Le, Atilim Gunes Baydin, Robert Zinkov, Frank Wood
null
1703.00868
null
null
How to Escape Saddle Points Efficiently
cs.LG math.OC stat.ML
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the well-known convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are non-degenerate, all second-order stationary points are local minima, and our result thus shows that perturbed gradient descent can escape saddle points almost for free. Our results can be directly applied to many machine learning applications, including deep learning. As a particular concrete example of such an application, we show that our results can be used directly to establish sharp global convergence rates for matrix factorization. Our results rely on a novel characterization of the geometry around saddle points, which may be of independent interest to the non-convex optimization community.
Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, Michael I. Jordan
null
1703.00887
null
null
Being Robust (in High Dimensions) Can Be Practical
cs.LG cs.DS cs.IT math.IT stat.ML
Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.
Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart
null
1703.00893
null
null
Toward Controlled Generation of Text
cs.LG cs.AI cs.CL stat.ML
Generic generation and manipulation of text is challenging and has limited success compared to recent deep generative modeling in visual domain. This paper aims at generating plausible natural language sentences, whose attributes are dynamically controlled by learning disentangled latent representations with designated semantics. We propose a new neural generative model which combines variational auto-encoders and holistic attribute discriminators for effective imposition of semantic structures. With differentiable approximation to discrete text samples, explicit constraints on independent attribute controls, and efficient collaborative learning of generator and discriminators, our model learns highly interpretable representations from even only word annotations, and produces realistic sentences with desired attributes. Quantitative evaluation validates the accuracy of sentence and attribute generation.
Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, Eric P. Xing
null
1703.00955
null
null
A Laplacian Framework for Option Discovery in Reinforcement Learning
cs.LG cs.AI
Representation learning and option discovery are two of the biggest challenges in reinforcement learning (RL). Proto-value functions (PVFs) are a well-known approach for representation learning in MDPs. In this paper we address the option discovery problem by showing how PVFs implicitly define options. We do it by introducing eigenpurposes, intrinsic reward functions derived from the learned representations. The options discovered from eigenpurposes traverse the principal directions of the state space. They are useful for multiple tasks because they are discovered without taking the environment's rewards into consideration. Moreover, different options act at different time scales, making them helpful for exploration. We demonstrate features of eigenpurposes in traditional tabular domains as well as in Atari 2600 games.
Marlos C. Machado and Marc G. Bellemare and Michael Bowling
null
1703.00956
null
null
Self-Paced Multitask Learning with Shared Knowledge
stat.ML cs.LG
This paper introduces self-paced task selection to multitask learning, where instances from more closely related tasks are selected in a progression of easier-to-harder tasks, to emulate an effective human education strategy, but applied to multitask machine learning. We develop the mathematical foundation for the approach based on iterative selection of the most appropriate task, learning the task parameters, and updating the shared knowledge, optimizing a new bi-convex loss function. This proposed method applies quite generally, including to multitask feature learning, multitask learning with alternating structure optimization, etc. Results show that in each of the above formulations self-paced (easier-to-harder) task selection outperforms the baseline version of these methods in all the experiments.
Keerthiram Murugesan, Jaime Carbonell
null
1703.00977
null
null
Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
cs.SY cs.LG cs.SE
Cyber-physical systems (CPS), such as automotive systems, are starting to include sophisticated machine learning (ML) components. Their correctness, therefore, depends on properties of the inner ML modules. While learning algorithms aim to generalize from examples, they are only as good as the examples provided, and recent efforts have shown that they can produce inconsistent output under small adversarial perturbations. This raises the question: can the output from learning components can lead to a failure of the entire CPS? In this work, we address this question by formulating it as a problem of falsifying signal temporal logic (STL) specifications for CPS with ML components. We propose a compositional falsification framework where a temporal logic falsifier and a machine learning analyzer cooperate with the aim of finding falsifying executions of the considered model. The efficacy of the proposed technique is shown on an automatic emergency braking system model with a perception component based on deep neural networks.
Tommaso Dreossi, Alexandre Donz\'e, Sanjit A. Seshia
null
1703.00978
null
null
Belief Propagation in Conditional RBMs for Structured Prediction
cs.LG cs.CV stat.ML
Restricted Boltzmann machines~(RBMs) and conditional RBMs~(CRBMs) are popular models for a wide range of applications. In previous work, learning on such models has been dominated by contrastive divergence~(CD) and its variants. Belief propagation~(BP) algorithms are believed to be slow for structured prediction on conditional RBMs~(e.g., Mnih et al. [2011]), and not as good as CD when applied in learning~(e.g., Larochelle et al. [2012]). In this work, we present a matrix-based implementation of belief propagation algorithms on CRBMs, which is easily scalable to tens of thousands of visible and hidden units. We demonstrate that, in both maximum likelihood and max-margin learning, training conditional RBMs with BP as the inference routine can provide significantly better results than current state-of-the-art CD methods on structured prediction problems. We also include practical guidelines on training CRBMs with BP, and some insights on the interaction of learning and inference algorithms for CRBMs.
Wei Ping, Alexander Ihler
null
1703.00986
null
null
Optimization of distributions differences for classification
cs.LG stat.ML
In this paper we introduce a new classification algorithm called Optimization of Distributions Differences (ODD). The algorithm aims to find a transformation from the feature space to a new space where the instances in the same class are as close as possible to one another while the gravity centers of these classes are as far as possible from one another. This aim is formulated as a multiobjective optimization problem that is solved by a hybrid of an evolutionary strategy and the Quasi-Newton method. The choice of the transformation function is flexible and could be any continuous space function. We experiment with a linear and a non-linear transformation in this paper. We show that the algorithm can outperform 6 other state-of-the-art classification methods, namely naive Bayes, support vector machines, linear discriminant analysis, multi-layer perceptrons, decision trees, and k-nearest neighbors, in 12 standard classification datasets. Our results show that the method is less sensitive to the imbalanced number of instances comparing to these methods. We also show that ODD maintains its performance better than other classification methods in these datasets, hence, offers a better generalization ability.
Mohammad Reza Bonyadi, Quang M. Tieng, David C. Reutens
null
1703.00989
null
null
Co-Clustering for Multitask Learning
stat.ML cs.LG
This paper presents a new multitask learning framework that learns a shared representation among the tasks, incorporating both task and feature clusters. The jointly-induced clusters yield a shared latent subspace where task relationships are learned more effectively and more generally than in state-of-the-art multitask learning methods. The proposed general framework enables the derivation of more specific or restricted state-of-the-art multitask methods. The paper also proposes a highly-scalable multitask learning algorithm, based on the new framework, using conjugate gradient descent and generalized \textit{Sylvester equations}. Experimental results on synthetic and benchmark datasets show that the proposed method systematically outperforms several state-of-the-art multitask learning methods.
Keerthiram Murugesan, Jaime Carbonell, Yiming Yang
null
1703.00994
null
null
Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction
cs.LG
Tracking congestion throughout the network road is a critical component of Intelligent transportation network management systems. Understanding how the traffic flows and short-term prediction of congestion occurrence due to rush-hour or incidents can be beneficial to such systems to effectively manage and direct the traffic to the most appropriate detours. Many of the current traffic flow prediction systems are designed by utilizing a central processing component where the prediction is carried out through aggregation of the information gathered from all measuring stations. However, centralized systems are not scalable and fail provide real-time feedback to the system whereas in a decentralized scheme, each node is responsible to predict its own short-term congestion based on the local current measurements in neighboring nodes. We propose a decentralized deep learning-based method where each node accurately predicts its own congestion state in real-time based on the congestion state of the neighboring stations. Moreover, historical data from the deployment site is not required, which makes the proposed method more suitable for newly installed stations. In order to achieve higher performance, we introduce a regularized Euclidean loss function that favors high congestion samples over low congestion samples to avoid the impact of the unbalanced training dataset. A novel dataset for this purpose is designed based on the traffic data obtained from traffic control stations in northern California. Extensive experiments conducted on the designed benchmark reflect a successful congestion prediction.
Mohammadhani Fouladgar, Mostafa Parchami, Ramez Elmasri, Amir Ghaderi
10.1109/IJCNN.2017.7966128
1703.01006
null
null
Active Learning for Cost-Sensitive Classification
cs.LG stat.ML
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each label's cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that could be the best, ignoring the sure losers. We prove COAL can be efficiently implemented for any regression family that admits squared loss optimization; it also enjoys strong guarantees with respect to predictive performance and labeling effort. We empirically compare COAL to passive learning and several active learning baselines, showing significant improvements in labeling effort and test cost on real-world datasets.
Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daume III, John Langford
null
1703.01014
null
null
Unsupervised Basis Function Adaptation for Reinforcement Learning
cs.AI cs.LG stat.ML
When using reinforcement learning (RL) algorithms to evaluate a policy it is common, given a large state space, to introduce some form of approximation architecture for the value function (VF). The exact form of this architecture can have a significant effect on the accuracy of the VF estimate, however, and determining a suitable approximation architecture can often be a highly complex task. Consequently there is a large amount of interest in the potential for allowing RL algorithms to adaptively generate approximation architectures. We investigate a method of adapting approximation architectures which uses feedback regarding the frequency with which an agent has visited certain states to guide which areas of the state space to approximate with greater detail. This method is "unsupervised" in the sense that it makes no direct reference to reward or the VF estimate. We introduce an algorithm based upon this idea which adapts a state aggregation approximation architecture on-line. A common method of scoring a VF estimate is to weight the squared Bellman error of each state-action by the probability of that state-action occurring. Adopting this scoring method, and assuming $S$ states, we demonstrate theoretically that - provided (1) the number of cells $X$ in the state aggregation architecture is of order $\sqrt{S}\log_2{S}\ln{S}$ or greater, (2) the policy and transition function are close to deterministic, and (3) the prior for the transition function is uniformly distributed - our algorithm, used in conjunction with a suitable RL algorithm, can guarantee a score which is arbitrarily close to zero as $S$ becomes large. It is able to do this despite having only $O(X \log_2S)$ space complexity and negligible time complexity. The results take advantage of certain properties of the stationary distributions of Markov chains.
Edward W. Barker and Charl J. Ras
null
1703.01026
null
null
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction
cs.LG
Researchers have demonstrated state-of-the-art performance in sequential decision making problems (e.g., robotics control, sequential prediction) with deep neural network models. One often has access to near-optimal oracles that achieve good performance on the task during training. We demonstrate that AggreVaTeD --- a policy gradient extension of the Imitation Learning (IL) approach of (Ross & Bagnell, 2014) --- can leverage such an oracle to achieve faster and better solutions with less training data than a less-informed Reinforcement Learning (RL) technique. Using both feedforward and recurrent neural network predictors, we present stochastic gradient procedures on a sequential prediction task, dependency-parsing from raw image data, as well as on various high dimensional robotics control problems. We also provide a comprehensive theoretical study of IL that demonstrates we can expect up to exponentially lower sample complexity for learning with AggreVaTeD than with RL algorithms, which backs our empirical findings. Our results and theory indicate that the proposed approach can achieve superior performance with respect to the oracle when the demonstrator is sub-optimal.
Wen Sun, Arun Venkatraman, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell
null
1703.0103
null
null
Learning Robot Activities from First-Person Human Videos Using Convolutional Future Regression
cs.RO cs.AI cs.CV cs.LG
We design a new approach that allows robot learning of new activities from unlabeled human example videos. Given videos of humans executing the same activity from a human's viewpoint (i.e., first-person videos), our objective is to make the robot learn the temporal structure of the activity as its future regression network, and learn to transfer such model for its own motor execution. We present a new deep learning model: We extend the state-of-the-art convolutional object detection network for the representation/estimation of human hands in training videos, and newly introduce the concept of using a fully convolutional network to regress (i.e., predict) the intermediate scene representation corresponding to the future frame (e.g., 1-2 seconds later). Combining these allows direct prediction of future locations of human hands and objects, which enables the robot to infer the motor control plan using our manipulation network. We experimentally confirm that our approach makes learning of robot activities from unlabeled human interaction videos possible, and demonstrate that our robot is able to execute the learned collaborative activities in real-time directly based on its camera input.
Jangwon Lee and Michael S. Ryoo
null
1703.0104
null
null
Adversarial Examples for Semantic Image Segmentation
stat.ML cs.CR cs.CV cs.LG cs.NE
Machine learning methods in general and Deep Neural Networks in particular have shown to be vulnerable to adversarial perturbations. So far this phenomenon has mainly been studied in the context of whole-image classification. In this contribution, we analyse how adversarial perturbations can affect the task of semantic segmentation. We show how existing adversarial attackers can be transferred to this task and that it is possible to create imperceptible adversarial perturbations that lead a deep network to misclassify almost all pixels of a chosen class while leaving network prediction nearly unchanged outside this class.
Volker Fischer, Mummadi Chaithanya Kumar, Jan Hendrik Metzen, Thomas Brox
null
1703.01101
null
null
Differentially Private Bayesian Learning on Distributed Data
stat.ML cs.CR cs.LG stat.CO
Many applications of machine learning, for example in health care, would benefit from methods that can guarantee privacy of data subjects. Differential privacy (DP) has become established as a standard for protecting learning results. The standard DP algorithms require a single trusted party to have access to the entire data, which is a clear weakness. We consider DP Bayesian learning in a distributed setting, where each party only holds a single sample or a few samples of the data. We propose a learning strategy based on a secure multi-party sum function for aggregating summaries from data holders and the Gaussian mechanism for DP. Our method builds on an asymptotically optimal and practically efficient DP Bayesian inference with rapidly diminishing extra cost.
Mikko Heikkil\"a and Eemil Lagerspetz and Samuel Kaski and Kana Shimizu and Sasu Tarkoma and Antti Honkela
null
1703.01106
null
null
On the Behavior of Convolutional Nets for Feature Extraction
cs.NE cs.AI cs.LG stat.ML
Deep neural networks are representation learning techniques. During training, a deep net is capable of generating a descriptive language of unprecedented size and detail in machine learning. Extracting the descriptive language coded within a trained CNN model (in the case of image data), and reusing it for other purposes is a field of interest, as it provides access to the visual descriptors previously learnt by the CNN after processing millions of images, without requiring an expensive training phase. Contributions to this field (commonly known as feature representation transfer or transfer learning) have been purely empirical so far, extracting all CNN features from a single layer close to the output and testing their performance by feeding them to a classifier. This approach has provided consistent results, although its relevance is limited to classification tasks. In a completely different approach, in this paper we statistically measure the discriminative power of every single feature found within a deep CNN, when used for characterizing every class of 11 datasets. We seek to provide new insights into the behavior of CNN features, particularly the ones from convolutional layers, as this can be relevant for their application to knowledge representation and reasoning. Our results confirm that low and middle level features may behave differently to high level features, but only under certain conditions. We find that all CNN features can be used for knowledge representation purposes both by their presence or by their absence, doubling the information a single CNN feature may provide. We also study how much noise these features may include, and propose a thresholding approach to discard most of it. All these insights have a direct application to the generation of CNN embedding spaces.
Dario Garcia-Gasulla, Ferran Par\'es, Armand Vilalta, Jonatan Moreno, Eduard Ayguad\'e, Jes\'us Labarta, Ulises Cort\'es, Toyotaro Suzumura
null
1703.01127
null
null
Dynamic State Warping
cs.LG
The ubiquity of sequences in many domains enhances significant recent interest in sequence learning, for which a basic problem is how to measure the distance between sequences. Dynamic time warping (DTW) aligns two sequences by nonlinear local warping and returns a distance value. DTW shows superior ability in many applications, e.g. video, image, etc. However, in DTW, two points are paired essentially based on point-to-point Euclidean distance (ED) without considering the autocorrelation of sequences. Thus, points with different semantic meanings, e.g. peaks and valleys, may be matched providing their coordinate values are similar. As a result, DTW is sensitive to noise and poorly interpretable. This paper proposes an efficient and flexible sequence alignment algorithm, dynamic state warping (DSW). DSW converts each time point into a latent state, which endows point-wise autocorrelation information. Alignment is performed by using the state sequences. Thus DSW is able to yield alignment that is semantically more interpretable than that of DTW. Using one nearest neighbor classifier, DSW shows significant improvement on classification accuracy in comparison to ED (70/85 wins) and DTW (74/85 wins). We also empirically demonstrate that DSW is more robust and scales better to long sequences than ED and DTW.
Zhichen Gong, Huanhuan Chen
null
1703.01141
null
null
Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity
cs.LG stat.ML
Learning the directed acyclic graph (DAG) structure of a Bayesian network from observational data is a notoriously difficult problem for which many hardness results are known. In this paper we propose a provably polynomial-time algorithm for learning sparse Gaussian Bayesian networks with equal noise variance --- a class of Bayesian networks for which the DAG structure can be uniquely identified from observational data --- under high-dimensional settings. We show that $O(k^4 \log p)$ number of samples suffices for our method to recover the true DAG structure with high probability, where $p$ is the number of variables and $k$ is the maximum Markov blanket size. We obtain our theoretical guarantees under a condition called Restricted Strong Adjacency Faithfulness, which is strictly weaker than strong faithfulness --- a condition that other methods based on conditional independence testing need for their success. The sample complexity of our method matches the information-theoretic limits in terms of the dependence on $p$. We show that our method out-performs existing state-of-the-art methods for learning Gaussian Bayesian networks in terms of recovering the true DAG structure while being comparable in speed to heuristic methods.
Asish Ghoshal and Jean Honorio
null
1703.01196
null
null
Stochastic Separation Theorems
cs.LG cs.AI
The problem of non-iterative one-shot and non-destructive correction of unavoidable mistakes arises in all Artificial Intelligence applications in the real world. Its solution requires robust separation of samples with errors from samples where the system works properly. We demonstrate that in (moderately) high dimension this separation could be achieved with probability close to one by linear discriminants. Surprisingly, separation of a new image from a very large set of known images is almost always possible even in moderately high dimensions by linear functionals, and coefficients of these functionals can be found explicitly. Based on fundamental properties of measure concentration, we show that for $M<a\exp(b{n})$ random $M$-element sets in $\mathbb{R}^n$ are linearly separable with probability $p$, $p>1-\vartheta$, where $1>\vartheta>0$ is a given small constant. Exact values of $a,b>0$ depend on the probability distribution that determines how the random $M$-element sets are drawn, and on the constant $\vartheta$. These {\em stochastic separation theorems} provide a new instrument for the development, analysis, and assessment of machine learning methods and algorithms in high dimension. Theoretical statements are illustrated with numerical examples.
A.N. Gorban, I.Y. Tyukin
10.1016/j.neunet.2017.07.014
1703.01203
null
null
Learning Graphical Games from Behavioral Data: Sufficient and Necessary Conditions
cs.LG
In this paper we obtain sufficient and necessary conditions on the number of samples required for exact recovery of the pure-strategy Nash equilibria (PSNE) set of a graphical game from noisy observations of joint actions. We consider sparse linear influence games --- a parametric class of graphical games with linear payoffs, and represented by directed graphs of n nodes (players) and in-degree of at most k. We show that one can efficiently recover the PSNE set of a linear influence game with $O(k^2 \log n)$ samples, under very general observation models. On the other hand, we show that $\Omega(k \log n)$ samples are necessary for any procedure to recover the PSNE set from observations of joint actions.
Asish Ghoshal and Jean Honorio
null
1703.01218
null
null
Denoising Adversarial Autoencoders
cs.CV cs.LG stat.ML
Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularisation during training to shape the distribution of the encoded data in latent space. We suggest denoising adversarial autoencoders, which combine denoising and regularisation, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of adversarial autoencoders. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance, and can synthesise samples that are more consistent with the input data than those trained without a corruption process.
Antonia Creswell, Anil Anthony Bharath
null
1703.0122
null
null
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization
cs.RO cs.LG cs.SY
In practice, the parameters of control policies are often tuned manually. This is time-consuming and frustrating. Reinforcement learning is a promising alternative that aims to automate this process, yet often requires too many experiments to be practical. In this paper, we propose a solution to this problem by exploiting prior knowledge from simulations, which are readily available for most robotic platforms. Specifically, we extend Entropy Search, a Bayesian optimization algorithm that maximizes information gain from each experiment, to the case of multiple information sources. The result is a principled way to automatically combine cheap, but inaccurate information from simulations with expensive and accurate physical experiments in a cost-effective manner. We apply the resulting method to a cart-pole system, which confirms that the algorithm can find good control policies with fewer experiments than standard Bayesian optimization on the physical system only.
Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas Krause, Stefan Schaal, Sebastian Trimpe
10.1109/ICRA.2017.7989186
1703.0125
null
null
Machine Learning on Sequential Data Using a Recurrent Weighted Average
stat.ML cs.LG
Recurrent Neural Networks (RNN) are a type of statistical model designed to handle sequential data. The model reads a sequence one symbol at a time. Each symbol is processed based on information collected from the previous symbols. With existing RNN architectures, each symbol is processed using only information from the previous processing step. To overcome this limitation, we propose a new kind of RNN model that computes a recurrent weighted average (RWA) over every past processing step. Because the RWA can be computed as a running average, the computational overhead scales like that of any other RNN architecture. The approach essentially reformulates the attention mechanism into a stand-alone model. The performance of the RWA model is assessed on the variable copy problem, the adding problem, classification of artificial grammar, classification of sequences by length, and classification of the MNIST images (where the pixels are read sequentially one at a time). On almost every task, the RWA model is found to outperform a standard LSTM model.
Jared Ostmeyer and Lindsay Cowell
10.1016/j.neucom.2018.11.066
1703.01253
null
null
EX2: Exploration with Exemplar Models for Deep Reinforcement Learning
cs.LG
Deep reinforcement learning algorithms have been shown to learn complex tasks using highly general policy classes. However, sparse reward problems remain a significant challenge. Exploration methods based on novelty detection have been particularly successful in such settings but typically require generative or predictive models of the observations, which can be difficult to train when the observations are very high-dimensional and complex, as in the case of raw images. We propose a novelty detection algorithm for exploration that is based entirely on discriminatively trained exemplar models, where classifiers are trained to discriminate each visited state against all others. Intuitively, novel states are easier to distinguish against other states seen during training. We show that this kind of discriminative modeling corresponds to implicit density estimation, and that it can be combined with count-based exploration to produce competitive results on a range of popular benchmark tasks, including state-of-the-art results on challenging egocentric observations in the vizDoom benchmark.
Justin Fu and John D. Co-Reyes, and Sergey Levine
null
1703.0126
null
null
Multi-step Reinforcement Learning: A Unifying Algorithm
cs.AI cs.LG
Unifying seemingly disparate algorithmic ideas to produce better performing algorithms has been a longstanding goal in reinforcement learning. As a primary example, TD($\lambda$) elegantly unifies one-step TD prediction with Monte Carlo methods through the use of eligibility traces and the trace-decay parameter $\lambda$. Currently, there are a multitude of algorithms that can be used to perform TD control, including Sarsa, $Q$-learning, and Expected Sarsa. These methods are often studied in the one-step case, but they can be extended across multiple time steps to achieve better performance. Each of these algorithms is seemingly distinct, and no one dominates the others for all problems. In this paper, we study a new multi-step action-value algorithm called $Q(\sigma)$ which unifies and generalizes these existing algorithms, while subsuming them as special cases. A new parameter, $\sigma$, is introduced to allow the degree of sampling performed by the algorithm at each step during its backup to be continuously varied, with Sarsa existing at one extreme (full sampling), and Expected Sarsa existing at the other (pure expectation). $Q(\sigma)$ is generally applicable to both on- and off-policy learning, but in this work we focus on experiments in the on-policy case. Our results show that an intermediate value of $\sigma$, which results in a mixture of the existing algorithms, performs better than either extreme. The mixture can also be varied dynamically which can result in even greater performance.
Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Holland, Richard S. Sutton
null
1703.01327
null
null
Generative Poisoning Attack Method Against Neural Networks
cs.CR cs.LG stat.ML
Poisoning attack is identified as a severe security threat to machine learning algorithms. In many applications, for example, deep neural network (DNN) models collect public data as the inputs to perform re-training, where the input data can be poisoned. Although poisoning attack against support vector machines (SVM) has been extensively studied before, there is still very limited knowledge about how such attack can be implemented on neural networks (NN), especially DNNs. In this work, we first examine the possibility of applying traditional gradient-based method (named as the direct gradient method) to generate poisoned data against NNs by leveraging the gradient of the target model w.r.t. the normal data. We then propose a generative method to accelerate the generation rate of the poisoned data: an auto-encoder (generator) used to generate poisoned data is updated by a reward function of the loss, and the target NN model (discriminator) receives the poisoned data to calculate the loss w.r.t. the normal data. Our experiment results show that the generative method can speed up the poisoned data generation rate by up to 239.38x compared with the direct gradient method, with slightly lower model accuracy degradation. A countermeasure is also designed to detect such poisoning attack methods by checking the loss of the target model.
Chaofei Yang, Qing Wu, Hai Li, Yiran Chen
null
1703.0134
null
null
Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles
cs.AI cs.LG stat.ML
We study contextual linear bandit problems under feature uncertainty; they are noisy with missing entries. To address the challenges of the noise, we analyze Bayesian oracles given observed noisy features. Our Bayesian analysis finds that the optimal hypothesis can be far from the underlying realizability function, depending on the noise characteristics, which are highly non-intuitive and do not occur for classical noiseless setups. This implies that classical approaches cannot guarantee a non-trivial regret bound. Therefore, we propose an algorithm that aims at the Bayesian oracle from observed information under this model, achieving $\tilde{O}(d\sqrt{T})$ regret bound when there is a large number of arms. We demonstrate the proposed algorithm using synthetic and real-world datasets.
Jung-hun Kim and Se-Young Yun and Minchan Jeong and Jun Hyun Nam and Jinwoo Shin and Richard Combes
null
1703.01347
null
null
Convex Geometry of the Generalized Matrix-Fractional Function
math.OC cs.LG stat.ML
Generalized matrix-fractional (GMF) functions are a class of matrix support functions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix optimization problems associated with inverse problems, regularization and learning. In this paper we dramatically simplify the support function representation for GMF functions as well as the representation of their subdifferentials. These new representations allow the ready computation of a range of important related geometric objects whose formulations were previously unavailable.
James V. Burke, Yuan Gao, Tim Hoheisel
null
1703.01363
null
null
Axiomatic Attribution for Deep Networks
cs.LG
We study the problem of attributing the prediction of a deep network to its input features, a problem previously studied by several other works. We identify two fundamental axioms---Sensitivity and Implementation Invariance that attribution methods ought to satisfy. We show that they are not satisfied by most known attribution methods, which we consider to be a fundamental weakness of those methods. We use the axioms to guide the design of a new attribution method called Integrated Gradients. Our method requires no modification to the original network and is extremely simple to implement; it just needs a few calls to the standard gradient operator. We apply this method to a couple of image models, a couple of text models and a chemistry model, demonstrating its ability to debug networks, to extract rules from a network, and to enable users to engage with models better.
Mukund Sundararajan, Ankur Taly, Qiqi Yan
null
1703.01365
null
null
Recurrent Poisson Factorization for Temporal Recommendation
cs.SI cs.LG stat.ML
Poisson factorization is a probabilistic model of users and items for recommendation systems, where the so-called implicit consumer data is modeled by a factorized Poisson distribution. There are many variants of Poisson factorization methods who show state-of-the-art performance on real-world recommendation tasks. However, most of them do not explicitly take into account the temporal behavior and the recurrent activities of users which is essential to recommend the right item to the right user at the right time. In this paper, we introduce Recurrent Poisson Factorization (RPF) framework that generalizes the classical PF methods by utilizing a Poisson process for modeling the implicit feedback. RPF treats time as a natural constituent of the model and brings to the table a rich family of time-sensitive factorization models. To elaborate, we instantiate several variants of RPF who are capable of handling dynamic user preferences and item specification (DRPF), modeling the social-aspect of product adoption (SRPF), and capturing the consumption heterogeneity among users and items (HRPF). We also develop a variational algorithm for approximate posterior inference that scales up to massive data sets. Furthermore, we demonstrate RPF's superior performance over many state-of-the-art methods on synthetic dataset, and large scale real-world datasets on music streaming logs, and user-item interactions in M-Commerce platforms.
Seyed Abbas Hosseini, Keivan Alizadeh, Ali Khodadadi, Ali Arabzadeh, Mehrdad Farajtabar, Hongyuan Zha, Hamid R. Rabiee
null
1703.01442
null
null
Learning Deep Matrix Representations
cs.LG
We present a new distributed representation in deep neural nets wherein the information is represented in native form as a matrix. This differs from current neural architectures that rely on vector representations. We consider matrices as central to the architecture and they compose the input, hidden and output layers. The model representation is more compact and elegant -- the number of parameters grows only with the largest dimension of the incoming layer rather than the number of hidden units. We derive several new deep networks: (i) feed-forward nets that map an input matrix into an output matrix, (ii) recurrent nets which map a sequence of input matrices into a sequence of output matrices. We also reinterpret existing models for (iii) memory-augmented networks and (iv) graphs using matrix notations. For graphs we demonstrate how the new notations lead to simple but effective extensions with multiple attentions. Extensive experiments on handwritten digits recognition, face reconstruction, sequence to sequence learning, EEG classification, and graph-based node classification demonstrate the efficacy and compactness of the matrix architectures.
Kien Do, Truyen Tran, Svetha Venkatesh
null
1703.01454
null
null
Chain-NN: An Energy-Efficient 1D Chain Architecture for Accelerating Deep Convolutional Neural Networks
cs.AR cs.LG
Deep convolutional neural networks (CNN) have shown their good performances in many computer vision tasks. However, the high computational complexity of CNN involves a huge amount of data movements between the computational processor core and memory hierarchy which occupies the major of the power consumption. This paper presents Chain-NN, a novel energy-efficient 1D chain architecture for accelerating deep CNNs. Chain-NN consists of the dedicated dual-channel process engines (PE). In Chain-NN, convolutions are done by the 1D systolic primitives composed of a group of adjacent PEs. These systolic primitives, together with the proposed column-wise scan input pattern, can fully reuse input operand to reduce the memory bandwidth requirement for energy saving. Moreover, the 1D chain architecture allows the systolic primitives to be easily reconfigured according to specific CNN parameters with fewer design complexity. The synthesis and layout of Chain-NN is under TSMC 28nm process. It costs 3751k logic gates and 352KB on-chip memory. The results show a 576-PE Chain-NN can be scaled up to 700MHz. This achieves a peak throughput of 806.4GOPS with 567.5mW and is able to accelerate the five convolutional layers in AlexNet at a frame rate of 326.2fps. 1421.0GOPS/W power efficiency is at least 2.5 to 4.1x times better than the state-of-the-art works.
Shihao Wang, Dajiang Zhou, Xushen Han, Takeshi Yoshimura
null
1703.01457
null
null
Adversarial Generation of Real-time Feedback with Neural Networks for Simulation-based Training
cs.LG cs.HC stat.ML
Simulation-based training (SBT) is gaining popularity as a low-cost and convenient training technique in a vast range of applications. However, for a SBT platform to be fully utilized as an effective training tool, it is essential that feedback on performance is provided automatically in real-time during training. It is the aim of this paper to develop an efficient and effective feedback generation method for the provision of real-time feedback in SBT. Existing methods either have low effectiveness in improving novice skills or suffer from low efficiency, resulting in their inability to be used in real-time. In this paper, we propose a neural network based method to generate feedback using the adversarial technique. The proposed method utilizes a bounded adversarial update to minimize a L1 regularized loss via back-propagation. We empirically show that the proposed method can be used to generate simple, yet effective feedback. Also, it was observed to have high effectiveness and efficiency when compared to existing methods, thus making it a promising option for real-time feedback generation in SBT.
Xingjun Ma, Sudanthi Wijewickrema, Shuo Zhou, Yun Zhou, Zakaria Mhammedi, Stephen O'Leary, James Bailey
null
1703.0146
null
null
Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation
cs.RO cs.LG
Appearance changes due to weather and seasonal conditions represent a strong impediment to the robust implementation of machine learning systems in outdoor robotics. While supervised learning optimises a model for the training domain, it will deliver degraded performance in application domains that underlie distributional shifts caused by these changes. Traditionally, this problem has been addressed via the collection of labelled data in multiple domains or by imposing priors on the type of shift between both domains. We frame the problem in the context of unsupervised domain adaptation and develop a framework for applying adversarial techniques to adapt popular, state-of-the-art network architectures with the additional objective to align features across domains. Moreover, as adversarial training is notoriously unstable, we first perform an extensive ablation study, adapting many techniques known to stabilise generative adversarial networks, and evaluate on a surrogate classification task with the same appearance change. The distilled insights are applied to the problem of free-space segmentation for motion planning in autonomous driving.
Markus Wulfmeier, Alex Bewley and Ingmar Posner
null
1703.01461
null
null
Sharp bounds for population recovery
cs.DS cs.LG math.ST stat.TH
The population recovery problem is a basic problem in noisy unsupervised learning that has attracted significant research attention in recent years [WY12,DRWY12, MS13, BIMP13, LZ15,DST16]. A number of different variants of this problem have been studied, often under assumptions on the unknown distribution (such as that it has restricted support size). In this work we study the sample complexity and algorithmic complexity of the most general version of the problem, under both bit-flip noise and erasure noise model. We give essentially matching upper and lower sample complexity bounds for both noise models, and efficient algorithms matching these sample complexity bounds up to polynomial factors.
Anindya De and Ryan O'Donnell and Rocco Servedio
null
1703.01474
null
null
Machine Learning Friendly Set Version of Johnson-Lindenstrauss Lemma
cs.DS cs.LG
In this paper we make a novel use of the Johnson-Lindenstrauss Lemma. The Lemma has an existential form saying that there exists a JL transformation $f$ of the data points into lower dimensional space such that all of them fall into predefined error range $\delta$. We formulate in this paper a theorem stating that we can choose the target dimensionality in a random projection type JL linear transformation in such a way that with probability $1-\epsilon$ all of them fall into predefined error range $\delta$ for any user-predefined failure probability $\epsilon$. This result is important for applications such a data clustering where we want to have a priori dimensionality reducing transformation instead of trying out a (large) number of them, as with traditional Johnson-Lindenstrauss Lemma. In particular, we take a closer look at the $k$-means algorithm and prove that a good solution in the projected space is also a good solution in the original space. Furthermore, under proper assumptions local optima in the original space are also ones in the projected space. We define also conditions for which clusterability property of the original space is transmitted to the projected space, so that special case algorithms for the original space are also applicable in the projected space.
Mieczys{\l}aw A. K{\l}opotek
null
1703.01507
null
null
Using Graphs of Classifiers to Impose Declarative Constraints on Semi-supervised Learning
cs.LG cs.CL stat.ML
We propose a general approach to modeling semi-supervised learning (SSL) algorithms. Specifically, we present a declarative language for modeling both traditional supervised classification tasks and many SSL heuristics, including both well-known heuristics such as co-training and novel domain-specific heuristics. In addition to representing individual SSL heuristics, we show that multiple heuristics can be automatically combined using Bayesian optimization methods. We experiment with two classes of tasks, link-based text classification and relation extraction. We show modest improvements on well-studied link-based classification benchmarks, and state-of-the-art results on relation-extraction tasks for two realistic domains.
Lidong Bing and William W. Cohen and Bhuwan Dhingra
null
1703.01557
null
null
LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
cs.CV cs.LG
We present LR-GAN: an adversarial image generation model which takes scene structure and context into account. Unlike previous generative adversarial networks (GANs), the proposed GAN learns to generate image background and foregrounds separately and recursively, and stitch the foregrounds on the background in a contextually relevant manner to produce a complete natural image. For each foreground, the model learns to generate its appearance, shape and pose. The whole model is unsupervised, and is trained in an end-to-end manner with gradient descent methods. The experiments demonstrate that LR-GAN can generate more natural images with objects that are more human recognizable than DCGAN.
Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh
null
1703.0156
null
null
Graph sampling with determinantal processes
cs.LG cs.SI stat.ML
We present a new random sampling strategy for k-bandlimited signals defined on graphs, based on determinantal point processes (DPP). For small graphs, ie, in cases where the spectrum of the graph is accessible, we exhibit a DPP sampling scheme that enables perfect recovery of bandlimited signals. For large graphs, ie, in cases where the graph's spectrum is not accessible, we investigate, both theoretically and empirically, a sub-optimal but much faster DPP based on loop-erased random walks on the graph. Preliminary experiments show promising results especially in cases where the number of measurements should stay as small as possible and for graphs that have a strong community structure. Our sampling scheme is efficient and can be applied to graphs with up to $10^6$ nodes.
Nicolas Tremblay, Pierre-Olivier Amblard, Simon Barthelm\'e
null
1703.01594
null
null
A Theory of Output-Side Unsupervised Domain Adaptation
cs.LG stat.ML
When learning a mapping from an input space to an output space, the assumption that the sample distribution of the training data is the same as that of the test data is often violated. Unsupervised domain shift methods adapt the learned function in order to correct for this shift. Previous work has focused on utilizing unlabeled samples from the target distribution. We consider the complementary problem in which the unlabeled samples are given post mapping, i.e., we are given the outputs of the mapping of unknown samples from the shifted domain. Two other variants are also studied: the two sided version, in which unlabeled samples are give from both the input and the output spaces, and the Domain Transfer problem, which was recently formalized. In all cases, we derive generalization bounds that employ discrepancy terms.
Tomer Galanti, Lior Wolf
null
1703.01606
null
null
Improving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications
cs.LG stat.ML
We study combinatorial multi-armed bandit with probabilistically triggered arms (CMAB-T) and semi-bandit feedback. We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of $1/p^*$, where $p^*$ is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability modulated (TPM) bounded smoothness condition into the general CMAB-T framework, and show that many applications such as influence maximization bandit and combinatorial cascading bandit satisfy this TPM condition. As a result, we completely remove the factor of $1/p^*$ from the regret bounds, achieving significantly better regret bounds for influence maximization and cascading bandits than before. Finally, we provide lower bound results showing that the factor $1/p^*$ is unavoidable for general CMAB-T problems, suggesting that the TPM condition is crucial in removing this factor.
Qinshi Wang and Wei Chen
null
1703.0161
null
null
Neural Machine Translation and Sequence-to-sequence Models: A Tutorial
cs.CL cs.LG stat.ML
This tutorial introduces a new and powerful set of techniques variously called "neural machine translation" or "neural sequence-to-sequence models". These techniques have been used in a number of tasks regarding the handling of human language, and can be a powerful tool in the toolbox of anyone who wants to model sequential data of some sort. The tutorial assumes that the reader knows the basics of math and programming, but does not assume any particular experience with neural networks or natural language processing. It attempts to explain the intuition behind the various methods covered, then delves into them with enough mathematical detail to understand them concretely, and culiminates with a suggestion for an implementation exercise, where readers can test that they understood the content in practice.
Graham Neubig
null
1703.01619
null
null
Data-Dependent Stability of Stochastic Gradient Descent
cs.LG
We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD), and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worst-case constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non-convex problems. In the convex case, we show that the bound on the generalization error depends on the risk at the initialization point. In the non-convex case, we prove that the expected curvature of the objective function around the initialization point has crucial influence on the generalization error. In both cases, our results suggest a simple data-driven strategy to stabilize SGD by pre-screening its initialization. As a corollary, our results allow us to show optimistic generalization bounds that exhibit fast convergence rates for SGD subject to a vanishing empirical risk and low noise of stochastic gradient.
Ilja Kuzborskij, Christoph H. Lampert
null
1703.01678
null
null
Multi-Objective Non-parametric Sequential Prediction
cs.LG
Online-learning research has mainly been focusing on minimizing one objective function. In many real-world applications, however, several objective functions have to be considered simultaneously. Recently, an algorithm for dealing with several objective functions in the i.i.d. case has been presented. In this paper, we extend the multi-objective framework to the case of stationary and ergodic processes, thus allowing dependencies among observations. We first identify an asymptomatic lower bound for any prediction strategy and then present an algorithm whose predictions achieve the optimal solution while fulfilling any continuous and convex constraining criterion.
Guy Uziel and Ran El-Yaniv
null
1703.0168
null
null
Third-Person Imitation Learning
cs.LG
Reinforcement learning (RL) makes it possible to train agents capable of achieving sophisticated goals in complex and uncertain environments. A key difficulty in reinforcement learning is specifying a reward function for the agent to optimize. Traditionally, imitation learning in RL has been used to overcome this problem. Unfortunately, hitherto imitation learning methods tend to require that demonstrations are supplied in the first-person: the agent is provided with a sequence of states and a specification of the actions that it should have taken. While powerful, this kind of imitation learning is limited by the relatively hard problem of collecting first-person demonstrations. Humans address this problem by learning from third-person demonstrations: they observe other humans perform tasks, infer the task, and accomplish the same task themselves. In this paper, we present a method for unsupervised third-person imitation learning. Here third-person refers to training an agent to correctly achieve a simple goal in a simple environment when it is provided a demonstration of a teacher achieving the same goal but from a different viewpoint; and unsupervised refers to the fact that the agent receives only these third-person demonstrations, and is not provided a correspondence between teacher states and student states. Our methods primary insight is that recent advances from domain confusion can be utilized to yield domain agnostic features which are crucial during the training process. To validate our approach, we report successful experiments on learning from third-person demonstrations in a pointmass domain, a reacher domain, and inverted pendulum.
Bradly C. Stadie, Pieter Abbeel, Ilya Sutskever
null
1703.01703
null
null
Measuring Sample Quality with Kernels
stat.ML cs.LG
Approximate Markov chain Monte Carlo (MCMC) offers the promise of more rapid sampling at the cost of more biased inference. Since standard MCMC diagnostics fail to detect these biases, researchers have developed computable Stein discrepancy measures that provably determine the convergence of a sample to its target distribution. This approach was recently combined with the theory of reproducing kernels to define a closed-form kernel Stein discrepancy (KSD) computable by summing kernel evaluations across pairs of sample points. We develop a theory of weak convergence for KSDs based on Stein's method, demonstrate that commonly used KSDs fail to detect non-convergence even for Gaussian targets, and show that kernels with slowly decaying tails provably determine convergence for a large class of target distributions. The resulting convergence-determining KSDs are suitable for comparing biased, exact, and deterministic sample sequences and simpler to compute and parallelize than alternative Stein discrepancies. We use our tools to compare biased samplers, select sampler hyperparameters, and improve upon existing KSD approaches to one-sample hypothesis testing and sample quality improvement.
Jackson Gorham and Lester Mackey
null
1703.01717
null
null
Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
cs.LG
Exploration in complex domains is a key challenge in reinforcement learning, especially for tasks with very sparse rewards. Recent successes in deep reinforcement learning have been achieved mostly using simple heuristic exploration strategies such as $\epsilon$-greedy action selection or Gaussian control noise, but there are many tasks where these methods are insufficient to make any learning progress. Here, we consider more complex heuristics: efficient and scalable exploration strategies that maximize a notion of an agent's surprise about its experiences via intrinsic motivation. We propose to learn a model of the MDP transition probabilities concurrently with the policy, and to form intrinsic rewards that approximate the KL-divergence of the true transition probabilities from the learned model. One of our approximations results in using surprisal as intrinsic motivation, while the other gives the $k$-step learning progress. We show that our incentives enable agents to succeed in a wide range of environments with high-dimensional state spaces and very sparse rewards, including continuous control tasks and games in the Atari RAM domain, outperforming several other heuristic exploration techniques.
Joshua Achiam, Shankar Sastry
null
1703.01732
null
null
A Correlative Denoising Autoencoder to Model Social Influence for Top-N Recommender System
cs.IR cs.LG cs.SI
In recent years, there are numerous works been proposed to leverage the techniques of deep learning to improve social-aware recommendation performance. In most cases, it requires a larger number of data to train a robust deep learning model, which contains a lot of parameters to fit training data. However, both data of user ratings and social networks are facing critical sparse problem, which makes it not easy to train a robust deep neural network model. Towards this problem, we propose a novel Correlative Denoising Autoencoder (CoDAE) method by taking correlations between users with multiple roles into account to learn robust representations from sparse inputs of ratings and social networks for recommendation. We develop the CoDAE model by utilizing three separated autoencoders to learn user features with roles of rater, truster and trustee, respectively. Especially, on account of that each input unit of user vectors with roles of truster and trustee is corresponding to a particular user, we propose to utilize shared parameters to learn common information of the units that corresponding to same users. Moreover, we propose a related regularization term to learn correlations between user features that learnt by the three subnetworks of CoDAE model. We further conduct a series of experiments to evaluate the proposed method on two public datasets for Top-N recommendation task. The experimental results demonstrate that the proposed model outperforms state-of-the-art algorithms on rank-sensitive metrics of MAP and NDCG.
Yiteng Pan, Fazhi He, Haiping Yu
10.1007/s11704-019-8123-3
1703.0176
null
null
Building a Regular Decision Boundary with Deep Networks
cs.CV cs.LG
In this work, we build a generic architecture of Convolutional Neural Networks to discover empirical properties of neural networks. Our first contribution is to introduce a state-of-the-art framework that depends upon few hyper parameters and to study the network when we vary them. It has no max pooling, no biases, only 13 layers, is purely convolutional and yields up to 95.4% and 79.6% accuracy respectively on CIFAR10 and CIFAR100. We show that the nonlinearity of a deep network does not need to be continuous, non expansive or point-wise, to achieve good performance. We show that increasing the width of our network permits being competitive with very deep networks. Our second contribution is an analysis of the contraction and separation properties of this network. Indeed, a 1-nearest neighbor classifier applied on deep features progressively improves with depth, which indicates that the representation is progressively more regular. Besides, we defined and analyzed local support vectors that separate classes locally. All our experiments are reproducible and code is available online, based on TensorFlow.
Edouard Oyallon
null
1703.01775
null
null
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
cs.NE cs.LG stat.ML
The recently proposed Temporal Ensembling has achieved state-of-the-art results in several semi-supervised learning benchmarks. It maintains an exponential moving average of label predictions on each training example, and penalizes predictions that are inconsistent with this target. However, because the targets change only once per epoch, Temporal Ensembling becomes unwieldy when learning large datasets. To overcome this problem, we propose Mean Teacher, a method that averages model weights instead of label predictions. As an additional benefit, Mean Teacher improves test accuracy and enables training with fewer labels than Temporal Ensembling. Without changing the network architecture, Mean Teacher achieves an error rate of 4.35% on SVHN with 250 labels, outperforming Temporal Ensembling trained with 1000 labels. We also show that a good network architecture is crucial to performance. Combining Mean Teacher and Residual Networks, we improve the state of the art on CIFAR-10 with 4000 labels from 10.55% to 6.28%, and on ImageNet 2012 with 10% of the labels from 35.24% to 9.11%.
Antti Tarvainen and Harri Valpola
null
1703.0178
null
null
Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms
cs.SD cs.LG cs.MM cs.NE
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as well but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.
Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, Juhan Nam
null
1703.01789
null
null
Multi-Level and Multi-Scale Feature Aggregation Using Pre-trained Convolutional Neural Networks for Music Auto-tagging
cs.NE cs.LG cs.MM cs.SD
Music auto-tagging is often handled in a similar manner to image classification by regarding the 2D audio spectrogram as image data. However, music auto-tagging is distinguished from image classification in that the tags are highly diverse and have different levels of abstractions. Considering this issue, we propose a convolutional neural networks (CNN)-based architecture that embraces multi-level and multi-scaled features. The architecture is trained in three steps. First, we conduct supervised feature learning to capture local audio features using a set of CNNs with different input sizes. Second, we extract audio features from each layer of the pre-trained convolutional networks separately and aggregate them altogether given a long audio clip. Finally, we put them into fully-connected networks and make final predictions of the tags. Our experiments show that using the combination of multi-level and multi-scale features is highly effective in music auto-tagging and the proposed method outperforms previous state-of-the-arts on the MagnaTagATune dataset and the Million Song Dataset. We further show that the proposed architecture is useful in transfer learning.
Jongpil Lee, Juhan Nam
10.1109/LSP.2017.2713830
1703.01793
null
null
Orthogonalized ALS: A Theoretically Principled Tensor Decomposition Algorithm for Practical Use
cs.LG stat.ML
The popular Alternating Least Squares (ALS) algorithm for tensor decomposition is efficient and easy to implement, but often converges to poor local optima---particularly when the weights of the factors are non-uniform. We propose a modification of the ALS approach that is as efficient as standard ALS, but provably recovers the true factors with random initialization under standard incoherence assumptions on the factors of the tensor. We demonstrate the significant practical superiority of our approach over traditional ALS for a variety of tasks on synthetic data---including tensor factorization on exact, noisy and over-complete tensors, as well as tensor completion---and for computing word embeddings from a third-order word tri-occurrence tensor.
Vatsal Sharan, Gregory Valiant
null
1703.01804
null
null
All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation
cs.CV cs.LG cs.NE
Deep neural network is difficult to train and this predicament becomes worse as the depth increases. The essence of this problem exists in the magnitude of backpropagated errors that will result in gradient vanishing or exploding phenomenon. We show that a variant of regularizer which utilizes orthonormality among different filter banks can alleviate this problem. Moreover, we design a backward error modulation mechanism based on the quasi-isometry assumption between two consecutive parametric layers. Equipped with these two ingredients, we propose several novel optimization solutions that can be utilized for training a specific-structured (repetitively triple modules of Conv-BNReLU) extremely deep convolutional neural network (CNN) WITHOUT any shortcuts/ identity mappings from scratch. Experiments show that our proposed solutions can achieve distinct improvements for a 44-layer and a 110-layer plain networks on both the CIFAR-10 and ImageNet datasets. Moreover, we can successfully train plain CNNs to match the performance of the residual counterparts. Besides, we propose new principles for designing network structure from the insights evoked by orthonormality. Combined with residual structure, we achieve comparative performance on the ImageNet dataset.
Di Xie and Jiang Xiong and Shiliang Pu
null
1703.01827
null
null
Decomposable Submodular Function Minimization: Discrete and Continuous
cs.LG cs.DS
This paper investigates connections between discrete and continuous approaches for decomposable submodular function minimization. We provide improved running time estimates for the state-of-the-art continuous algorithms for the problem using combinatorial arguments. We also provide a systematic experimental comparison of the two types of methods, based on a clear distinction between level-0 and level-1 algorithms.
Alina Ene and Huy L. Nguyen and L\'aszl\'o A. V\'egh
null
1703.0183
null
null
Generative and Discriminative Text Classification with Recurrent Neural Networks
stat.ML cs.CL cs.LG
We empirically characterize the performance of discriminative and generative LSTM models for text classification. We find that although RNN-based generative models are more powerful than their bag-of-words ancestors (e.g., they account for conditional dependencies across words in a document), they have higher asymptotic error rates than discriminatively trained RNN models. However we also find that generative models approach their asymptotic error rate more rapidly than their discriminative counterparts---the same pattern that Ng & Jordan (2001) proved holds for linear classification models that make more naive conditional independence assumptions. Building on this finding, we hypothesize that RNN-based generative classification models will be more robust to shifts in the data distribution. This hypothesis is confirmed in a series of experiments in zero-shot and continual learning settings that show that generative models substantially outperform discriminative models.
Dani Yogatama, Chris Dyer, Wang Ling, Phil Blunsom
null
1703.01898
null
null
Near-Optimal Closeness Testing of Discrete Histogram Distributions
cs.DS cs.IT cs.LG math.IT math.ST stat.TH
We investigate the problem of testing the equivalence between two discrete histograms. A {\em $k$-histogram} over $[n]$ is a probability distribution that is piecewise constant over some set of $k$ intervals over $[n]$. Histograms have been extensively studied in computer science and statistics. Given a set of samples from two $k$-histogram distributions $p, q$ over $[n]$, we want to distinguish (with high probability) between the cases that $p = q$ and $\|p-q\|_1 \geq \epsilon$. The main contribution of this paper is a new algorithm for this testing problem and a nearly matching information-theoretic lower bound. Specifically, the sample complexity of our algorithm matches our lower bound up to a logarithmic factor, improving on previous work by polynomial factors in the relevant parameters. Our algorithmic approach applies in a more general setting and yields improved sample upper bounds for testing closeness of other structured distributions as well.
Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin
null
1703.01913
null
null
Metric Learning for Generalizing Spatial Relations to New Objects
cs.RO cs.AI cs.LG
Human-centered environments are rich with a wide variety of spatial relations between everyday objects. For autonomous robots to operate effectively in such environments, they should be able to reason about these relations and generalize them to objects with different shapes and sizes. For example, having learned to place a toy inside a basket, a robot should be able to generalize this concept using a spoon and a cup. This requires a robot to have the flexibility to learn arbitrary relations in a lifelong manner, making it challenging for an expert to pre-program it with sufficient knowledge to do so beforehand. In this paper, we address the problem of learning spatial relations by introducing a novel method from the perspective of distance metric learning. Our approach enables a robot to reason about the similarity between pairwise spatial relations, thereby enabling it to use its previous knowledge when presented with a new relation to imitate. We show how this makes it possible to learn arbitrary spatial relations from non-expert users using a small number of examples and in an interactive manner. Our extensive evaluation with real-world data demonstrates the effectiveness of our method in reasoning about a continuous spectrum of spatial relations and generalizing them to new objects.
Oier Mees, Nichola Abdo, Mladen Mazuran, Wolfram Burgard
null
1703.01946
null
null
Network Inference via the Time-Varying Graphical Lasso
cs.LG cs.SI math.OC
Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability.
David Hallac, Youngsuk Park, Stephen Boyd, Jure Leskovec
null
1703.01958
null
null