title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Hybrid Clustering based on Content and Connection Structure using Joint Nonnegative Matrix Factorization
cs.LG stat.ML
We present a hybrid method for latent information discovery on the data sets containing both text content and connection structure based on constrained low rank approximation. The new method jointly optimizes the Nonnegative Matrix Factorization (NMF) objective function for text clustering and the Symmetric NMF (SymNMF) objective function for graph clustering. We propose an effective algorithm for the joint NMF objective function, based on a block coordinate descent (BCD) framework. The proposed hybrid method discovers content associations via latent connections found using SymNMF. The method can also be applied with a natural conversion of the problem when a hypergraph formulation is used or the content is associated with hypergraph edges. Experimental results show that by simultaneously utilizing both content and connection structure, our hybrid method produces higher quality clustering results compared to the other NMF clustering methods that uses content alone (standard NMF) or connection structure alone (SymNMF). We also present some interesting applications to several types of real world data such as citation recommendations of papers. The hybrid method proposed in this paper can also be applied to general data expressed with both feature space vectors and pairwise similarities and can be extended to the case with multiple feature spaces or multiple similarity measures.
Rundong Du, Barry Drake, Haesun Park
null
1703.09646
null
null
Structural Damage Identification Using Artificial Neural Network and Synthetic data
cs.LG cs.CE
This paper presents real-time vibration based identification technique using measured frequency response functions(FRFs) under random vibration loading. Artificial Neural Networks (ANNs) are trained to map damage fingerprints to damage characteristic parameters. Principal component statistical analysis(PCA) technique was used to tackle the problem of high dimensionality and high noise of data, which is common for industrial structures. The present study considers Crack, Rivet hole expansion and redundant uniform mass as damages on the structure. Frequency response function data after being reduced in size using PCA is fed to individual neural networks to localize and predict the severity of damage on the structure. The system of ANNs trained with both numerical and experimental model data to make the system reliable and robust. The methodology is applied to a numerical model of stiffened panel structure, where damages are confined close to the stiffener. The results showed that, in all the cases considered, it is possible to localize and predict severity of the damage occurrence with very good accuracy and reliability.
Divya Shyam Singha, G.B.L. Chowdarya, D Roy Mahapatraa
null
1703.09651
null
null
Inverse Reinforcement Learning from Summary Data
cs.LG cs.AI stat.ML
Inverse reinforcement learning (IRL) aims to explain observed strategic behavior by fitting reinforcement learning models to behavioral data. However, traditional IRL methods are only applicable when the observations are in the form of state-action paths. This assumption may not hold in many real-world modeling settings, where only partial or summarized observations are available. In general, we may assume that there is a summarizing function $\sigma$, which acts as a filter between us and the true state-action paths that constitute the demonstration. Some initial approaches to extending IRL to such situations have been presented, but with very specific assumptions about the structure of $\sigma$, such as that only certain state observations are missing. This paper instead focuses on the most general case of the problem, where no assumptions are made about the summarizing function, except that it can be evaluated. We demonstrate that inference is still possible. The paper presents exact and approximate inference algorithms that allow full posterior inference, which is particularly important for assessing parameter uncertainty in this challenging inference situation. Empirical scalability is demonstrated to reasonably sized problems, and practical applicability is demonstrated by estimating the posterior for a cognitive science RL model based on an observed user's task completion time only.
Antti Kangasr\"a\"asi\"o, Samuel Kaski
10.1007/s10994-018-5730-4
1703.097
null
null
Collective Anomaly Detection based on Long Short Term Memory Recurrent Neural Network
cs.LG cs.CR
Intrusion detection for computer network systems becomes one of the most critical tasks for network administrators today. It has an important role for organizations, governments and our society due to its valuable resources on computer networks. Traditional misuse detection strategies are unable to detect new and unknown intrusion. Besides, anomaly detection in network security is aim to distinguish between illegal or malicious events and normal behavior of network systems. Anomaly detection can be considered as a classification problem where it builds models of normal network behavior, which it uses to detect new patterns that significantly deviate from the model. Most of the cur- rent research on anomaly detection is based on the learning of normally and anomaly behaviors. They do not take into account the previous, re- cent events to detect the new incoming one. In this paper, we propose a real time collective anomaly detection model based on neural network learning and feature operating. Normally a Long Short Term Memory Recurrent Neural Network (LSTM RNN) is trained only on normal data and it is capable of predicting several time steps ahead of an input. In our approach, a LSTM RNN is trained with normal time series data before performing a live prediction for each time step. Instead of considering each time step separately, the observation of prediction errors from a certain number of time steps is now proposed as a new idea for detecting collective anomalies. The prediction errors from a number of the latest time steps above a threshold will indicate a collective anomaly. The model is built on a time series version of the KDD 1999 dataset. The experiments demonstrate that it is possible to offer reliable and efficient for collective anomaly detection.
Loic Bontemps, Van Loi Cao, James McDermott, Nhien-An Le-Khac
null
1703.09752
null
null
Unifying the Stochastic Spectral Descent for Restricted Boltzmann Machines with Bernoulli or Gaussian Inputs
stat.ML cs.LG
Stochastic gradient descent based algorithms are typically used as the general optimization tools for most deep learning models. A Restricted Boltzmann Machine (RBM) is a probabilistic generative model that can be stacked to construct deep architectures. For RBM with Bernoulli inputs, non-Euclidean algorithm such as stochastic spectral descent (SSD) has been specifically designed to speed up the convergence with improved use of the gradient estimation by sampling methods. However, the existing algorithm and corresponding theoretical justification depend on the assumption that the possible configurations of inputs are finite, like binary variables. The purpose of this paper is to generalize SSD for Gaussian RBM being capable of mod- eling continuous data, regardless of the previous assumption. We propose the gradient descent methods in non-Euclidean space of parameters, via de- riving the upper bounds of logarithmic partition function for RBMs based on Schatten-infinity norm. We empirically show that the advantage and improvement of SSD over stochastic gradient descent (SGD).
Kai Fan
null
1703.09766
null
null
Particle Filtering for PLCA model with Application to Music Transcription
stat.ML cs.LG cs.SD
Automatic Music Transcription (AMT) consists in automatically estimating the notes in an audio recording, through three attributes: onset time, duration and pitch. Probabilistic Latent Component Analysis (PLCA) has become very popular for this task. PLCA is a spectrogram factorization method, able to model a magnitude spectrogram as a linear combination of spectral vectors from a dictionary. Such methods use the Expectation-Maximization (EM) algorithm to estimate the parameters of the acoustic model. This algorithm presents well-known inherent defaults (local convergence, initialization dependency), making EM-based systems limited in their applications to AMT, particularly in regards to the mathematical form and number of priors. To overcome such limits, we propose in this paper to employ a different estimation framework based on Particle Filtering (PF), which consists in sampling the posterior distribution over larger parameter ranges. This framework proves to be more robust in parameter estimation, more flexible and unifying in the integration of prior knowledge in the system. Note-level transcription accuracies of 61.8 $\%$ and 59.5 $\%$ were achieved on evaluation sound datasets of two different instrument repertoires, including the classical piano (from MAPS dataset) and the marovany zither, and direct comparisons to previous PLCA-based approaches are provided. Steps for further development are also outlined.
D. Cazau, G. Revillon, W. Yuancheng, O. Adam
null
1703.09772
null
null
Two-Stream RNN/CNN for Action Recognition in 3D Videos
cs.CV cs.LG
The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.
Rui Zhao, Haider Ali, Patrick van der Smagt
10.1109/IROS.2017.8206288
1703.09783
null
null
Perception Driven Texture Generation
cs.CV cs.AI cs.LG
This paper investigates a novel task of generating texture images from perceptual descriptions. Previous work on texture generation focused on either synthesis from examples or generation from procedural models. Generating textures from perceptual attributes have not been well studied yet. Meanwhile, perceptual attributes, such as directionality, regularity and roughness are important factors for human observers to describe a texture. In this paper, we propose a joint deep network model that combines adversarial training and perceptual feature regression for texture generation, while only random noise and user-defined perceptual attributes are required as input. In this model, a preliminary trained convolutional neural network is essentially integrated with the adversarial framework, which can drive the generated textures to possess given perceptual attributes. An important aspect of the proposed model is that, if we change one of the input perceptual features, the corresponding appearance of the generated textures will also be changed. We design several experiments to validate the effectiveness of the proposed method. The results show that the proposed method can produce high quality texture images with desired perceptual properties.
Yanhai Gan, Huifang Chi, Ying Gao, Jun Liu, Guoqiang Zhong, Junyu Dong
null
1703.09784
null
null
Deceiving Google's Cloud Video Intelligence API Built for Summarizing Videos
cs.CV cs.LG
Despite the rapid progress of the techniques for image classification, video annotation has remained a challenging task. Automated video annotation would be a breakthrough technology, enabling users to search within the videos. Recently, Google introduced the Cloud Video Intelligence API for video analysis. As per the website, the system can be used to "separate signal from noise, by retrieving relevant information at the video, shot or per frame" level. A demonstration website has been also launched, which allows anyone to select a video for annotation. The API then detects the video labels (objects within the video) as well as shot labels (description of the video events over time). In this paper, we examine the usability of the Google's Cloud Video Intelligence API in adversarial environments. In particular, we investigate whether an adversary can subtly manipulate a video in such a way that the API will return only the adversary-desired labels. For this, we select an image, which is different from the video content, and insert it, periodically and at a very low rate, into the video. We found that if we insert one image every two seconds, the API is deceived into annotating the video as if it only contained the inserted image. Note that the modification to the video is hardly noticeable as, for instance, for a typical frame rate of 25, we insert only one image per 50 video frames. We also found that, by inserting one image per second, all the shot labels returned by the API are related to the inserted image. We perform the experiments on the sample videos provided by the API demonstration website and show that our attack is successful with different videos and images.
Hossein Hosseini, Baicen Xiao and Radha Poovendran
null
1703.09793
null
null
Disruptive Event Classification using PMU Data in Distribution Networks
cs.LG cs.SY
Proliferation of advanced metering devices with high sampling rates in distribution grids, e.g., micro-phasor measurement units ({\mu}PMU), provides unprecedented potentials for wide-area monitoring and diagnostic applications, e.g., situational awareness, health monitoring of distribution assets. Unexpected disruptive events interrupting the normal operation of assets in distribution grids can eventually lead to permanent failure with expensive replacement cost over time. Therefore, disruptive event classification provides useful information for preventive maintenance of the assets in distribution networks. Preventive maintenance provides wide range of benefits in terms of time, avoiding unexpected outages, maintenance crew utilization, and equipment replacement cost. In this paper, a PMU-data-driven framework is proposed for classification of disruptive events in distribution networks. The two disruptive events, i.e., malfunctioned capacitor bank switching and malfunctioned regulator on-load tap changer (OLTC) switching are considered and distinguished from the normal abrupt load change in distribution grids. The performance of the proposed framework is verified using the simulation of the events in the IEEE 13-bus distribution network. The event classification is formulated using two different algorithms as; i) principle component analysis (PCA) together with multi-class support vector machine (SVM), and ii) autoencoder along with softmax classifier. The results demonstrate the effectiveness of the proposed algorithms and satisfactory classification accuracies.
Iman Niazazari and Hanif Livani
null
1703.098
null
null
A Deep Compositional Framework for Human-like Language Acquisition in Virtual Environment
cs.CL cs.LG
We tackle a task where an agent learns to navigate in a 2D maze-like environment called XWORLD. In each session, the agent perceives a sequence of raw-pixel frames, a natural language command issued by a teacher, and a set of rewards. The agent learns the teacher's language from scratch in a grounded and compositional manner, such that after training it is able to correctly execute zero-shot commands: 1) the combination of words in the command never appeared before, and/or 2) the command contains new object concepts that are learned from another task but never learned from navigation. Our deep framework for the agent is trained end to end: it learns simultaneously the visual representations of the environment, the syntax and semantics of the language, and the action module that outputs actions. The zero-shot learning capability of our framework results from its compositionality and modularity with parameter tying. We visualize the intermediate outputs of the framework, demonstrating that the agent truly understands how to solve the problem. We believe that our results provide some preliminary insights on how to train an agent with similar abilities in a 3D environment.
Haonan Yu, Haichao Zhang, and Wei Xu
null
1703.09831
null
null
Theory II: Landscape of the Empirical Risk in Deep Learning
cs.LG cs.CV cs.NE
Previous theoretical work on deep learning and neural network optimization tend to focus on avoiding saddle points and local minima. However, the practical observation is that, at least in the case of the most successful Deep Convolutional Neural Networks (DCNNs), practitioners can always increase the network size to fit the training data (an extreme example would be [1]). The most successful DCNNs such as VGG and ResNets are best used with a degree of "overparametrization". In this work, we characterize with a mix of theory and experiments, the landscape of the empirical risk of overparametrized DCNNs. We first prove in the regression framework the existence of a large number of degenerate global minimizers with zero empirical error (modulo inconsistent equations). The argument that relies on the use of Bezout theorem is rigorous when the RELUs are replaced by a polynomial nonlinearity (which empirically works as well). As described in our Theory III [2] paper, the same minimizers are degenerate and thus very likely to be found by SGD that will furthermore select with higher probability the most robust zero-minimizer. We further experimentally explored and visualized the landscape of empirical risk of a DCNN on CIFAR-10 during the entire training process and especially the global minima. Finally, based on our theoretical and experimental results, we propose an intuitive model of the landscape of DCNN's empirical loss surface, which might not be as complicated as people commonly believe.
Qianli Liao and Tomaso Poggio
null
1703.09833
null
null
Inverse Risk-Sensitive Reinforcement Learning
cs.LG stat.ML
We address the problem of inverse reinforcement learning in Markov decision processes where the agent is risk-sensitive. In particular, we model risk-sensitivity in a reinforcement learning framework by making use of models of human decision-making having their origins in behavioral psychology, behavioral economics, and neuroscience. We propose a gradient-based inverse reinforcement learning algorithm that minimizes a loss function defined on the observed behavior. We demonstrate the performance of the proposed technique on two examples, the first of which is the canonical Grid World example and the second of which is a Markov decision process modeling passengers' decisions regarding ride-sharing. In the latter, we use pricing and travel time data from a ride-sharing company to construct the transition probabilities and rewards of the Markov decision process.
Lillian J. Ratliff and Eric Mazumdar
null
1703.09842
null
null
Multi-Scale Dense Networks for Resource Efficient Image Classification
cs.LG
In this paper we investigate image classification with computational resource limits at test time. Two such settings are: 1. anytime classification, where the network's prediction for a test example is progressively updated, facilitating the output of a prediction at any time; and 2. budgeted batch classification, where a fixed amount of computation is available to classify a set of examples that can be spent unevenly across "easier" and "harder" inputs. In contrast to most prior work, such as the popular Viola and Jones algorithm, our approach is based on convolutional neural networks. We train multiple classifiers with varying resource demands, which we adaptively apply during test time. To maximally re-use computation between the classifiers, we incorporate them as early-exits into a single deep convolutional neural network and inter-connect them with dense connectivity. To facilitate high quality classification early on, we use a two-dimensional multi-scale network architecture that maintains coarse and fine level features all-throughout the network. Experiments on three image-classification tasks demonstrate that our framework substantially improves the existing state-of-the-art in both settings.
Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten and Kilian Q. Weinberger
null
1703.09844
null
null
Solar Power Forecasting Using Support Vector Regression
cs.LG cs.CE stat.AP
Generation and load balance is required in the economic scheduling of generating units in the smart grid. Variable energy generations, particularly from wind and solar energy resources, are witnessing a rapid boost, and, it is anticipated that with a certain level of their penetration, they can become noteworthy sources of uncertainty. As in the case of load demand, energy forecasting can also be used to mitigate some of the challenges that arise from the uncertainty in the resource. While wind energy forecasting research is considered mature, solar energy forecasting is witnessing a steadily growing attention from the research community. This paper presents a support vector regression model to produce solar power forecasts on a rolling basis for 24 hours ahead over an entire year, to mimic the practical business of energy forecasting. Twelve weather variables are considered from a high-quality benchmark dataset and new variables are extracted. The added value of the heat index and wind speed as additional variables to the model is studied across different seasons. The support vector regression model performance is compared with artificial neural networks and multiple linear regression models for energy forecasting.
Mohamed Abuella and Badrul Chowdhury
null
1703.09851
null
null
LabelBank: Revisiting Global Perspectives for Semantic Segmentation
cs.CV cs.AI cs.LG
Semantic segmentation requires a detailed labeling of image pixels by object category. Information derived from local image patches is necessary to describe the detailed shape of individual objects. However, this information is ambiguous and can result in noisy labels. Global inference of image content can instead capture the general semantic concepts present. We advocate that holistic inference of image concepts provides valuable information for detailed pixel labeling. We propose a generic framework to leverage holistic information in the form of a LabelBank for pixel-level segmentation. We show the ability of our framework to improve semantic segmentation performance in a variety of settings. We learn models for extracting a holistic LabelBank from visual cues, attributes, and/or textual descriptions. We demonstrate improvements in semantic segmentation accuracy on standard datasets across a range of state-of-the-art segmentation architectures and holistic inference approaches.
Hexiang Hu, Zhiwei Deng, Guang-Tong Zhou, Fei Sha, Greg Mori
null
1703.09891
null
null
Grouped Convolutional Neural Networks for Multivariate Time Series
cs.LG
Analyzing multivariate time series data is important for many applications such as automated control, fault diagnosis and anomaly detection. One of the key challenges is to learn latent features automatically from dynamically changing multivariate input. In visual recognition tasks, convolutional neural networks (CNNs) have been successful to learn generalized feature extractors with shared parameters over the spatial domain. However, when high-dimensional multivariate time series is given, designing an appropriate CNN model structure becomes challenging because the kernels may need to be extended through the full dimension of the input volume. To address this issue, we present two structure learning algorithms for deep CNN models. Our algorithms exploit the covariance structure over multiple time series to partition input volume into groups. The first algorithm learns the group CNN structures explicitly by clustering individual input sequences. The second algorithm learns the group CNN structures implicitly from the error backpropagation. In experiments with two real-world datasets, we demonstrate that our group CNNs outperform existing CNN based regression methods.
Subin Yi, Janghoon Ju, Man-Ki Yoon, Jaesik Choi
null
1703.09938
null
null
Efficient Private ERM for Smooth Objectives
cs.LG cs.DS stat.ML
In this paper, we consider efficient differentially private empirical risk minimization from the viewpoint of optimization algorithms. For strongly convex and smooth objectives, we prove that gradient descent with output perturbation not only achieves nearly optimal utility, but also significantly improves the running time of previous state-of-the-art private optimization algorithms, for both $\epsilon$-DP and $(\epsilon, \delta)$-DP. For non-convex but smooth objectives, we propose an RRPSGD (Random Round Private Stochastic Gradient Descent) algorithm, which provably converges to a stationary point with privacy guarantee. Besides the expected utility bounds, we also provide guarantees in high probability form. Experiments demonstrate that our algorithm consistently outperforms existing method in both utility and running time.
Jiaqi Zhang, Kai Zheng, Wenlong Mou, Liwei Wang
null
1703.09947
null
null
Marginal likelihood based model comparison in Fuzzy Bayesian Learning
stat.ML cs.LG
In a recent paper [1] we introduced the Fuzzy Bayesian Learning (FBL) paradigm where expert opinions can be encoded in the form of fuzzy rule bases and the hyper-parameters of the fuzzy sets can be learned from data using a Bayesian approach. The present paper extends this work for selecting the most appropriate rule base among a set of competing alternatives, which best explains the data, by calculating the model evidence or marginal likelihood. We explain why this is an attractive alternative over simply minimizing a mean squared error metric of prediction and show the validity of the proposition using synthetic examples and a real world case study in the financial services sector.
Indranil Pan and Dirk Bester
null
1703.09956
null
null
Cohesion-based Online Actor-Critic Reinforcement Learning for mHealth Intervention
cs.LG
In the wake of the vast population of smart device users worldwide, mobile health (mHealth) technologies are hopeful to generate positive and wide influence on people's health. They are able to provide flexible, affordable and portable health guides to device users. Current online decision-making methods for mHealth assume that the users are completely heterogeneous. They share no information among users and learn a separate policy for each user. However, data for each user is very limited in size to support the separate online learning, leading to unstable policies that contain lots of variances. Besides, we find the truth that a user may be similar with some, but not all, users, and connected users tend to have similar behaviors. In this paper, we propose a network cohesion constrained (actor-critic) Reinforcement Learning (RL) method for mHealth. The goal is to explore how to share information among similar users to better convert the limited user information into sharper learned policies. To the best of our knowledge, this is the first online actor-critic RL for mHealth and first network cohesion constrained (actor-critic) RL method in all applications. The network cohesion is important to derive effective policies. We come up with a novel method to learn the network by using the warm start trajectory, which directly reflects the users' property. The optimization of our model is difficult and very different from the general supervised learning due to the indirect observation of values. As a contribution, we propose two algorithms for the proposed online RLs. Apart from mHealth, the proposed methods can be easily applied or adapted to other health-related tasks. Extensive experiment results on the HeartSteps dataset demonstrates that in a variety of parameter settings, the proposed two methods obtain obvious improvements over the state-of-the-art methods.
Feiyun Zhu, Peng Liao, Xinliang Zhu, Yaowen Yao and Junzhou Huang
null
1703.10039
null
null
Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games
cs.AI cs.LG
Many artificial intelligence (AI) applications often require multiple intelligent agents to work in a collaborative effort. Efficient learning for intra-agent communication and coordination is an indispensable step towards general AI. In this paper, we take StarCraft combat game as a case study, where the task is to coordinate multiple agents as a team to defeat their enemies. To maintain a scalable yet effective communication protocol, we introduce a Multiagent Bidirectionally-Coordinated Network (BiCNet ['bIknet]) with a vectorised extension of actor-critic formulation. We show that BiCNet can handle different types of combats with arbitrary numbers of AI agents for both sides. Our analysis demonstrates that without any supervisions such as human demonstrations or labelled data, BiCNet could learn various types of advanced coordination strategies that have been commonly used by experienced game players. In our experiments, we evaluate our approach against multiple baselines under different scenarios; it shows state-of-the-art performance, and possesses potential values for large-scale real-world applications.
Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long, Jun Wang
null
1703.10069
null
null
Position-based Content Attention for Time Series Forecasting with Sequence-to-sequence RNNs
cs.LG cs.NE
We propose here an extended attention model for sequence-to-sequence recurrent neural networks (RNNs) designed to capture (pseudo-)periods in time series. This extended attention model can be deployed on top of any RNN and is shown to yield state-of-the-art performance for time series forecasting on several univariate and multivariate time series.
Yagmur G. Cinar, Hamid Mirisaee, Parantapa Goswami, Eric Gaussier, Ali Ait-Bachir, and Vadim Strijov
null
1703.10089
null
null
Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
cs.LG
The inverse mapping of GANs'(Generative Adversarial Nets) generator has a great potential value.Hence, some works have been developed to construct the inverse function of generator by directly learning or adversarial learning.While the results are encouraging, the problem is highly challenging and the existing ways of training inverse models of GANs have many disadvantages, such as hard to train or poor performance.Due to these reasons, we propose a new approach based on using inverse generator ($IG$) model as encoder and pre-trained generator ($G$) as decoder of an AutoEncoder network to train the $IG$ model. In the proposed model, the difference between the input and output, which are both the generated image of pre-trained GAN's generator, of AutoEncoder is directly minimized. The optimizing method can overcome the difficulty in training and inverse model of an non one-to-one function.We also applied the inverse model of GANs' generators to image searching and translation.The experimental results prove that the proposed approach works better than the traditional approaches in image searching.
Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv
null
1703.10094
null
null
The Top 10 Topics in Machine Learning Revisited: A Quantitative Meta-Study
cs.LG cs.AI stat.ML
Which topics of machine learning are most commonly addressed in research? This question was initially answered in 2007 by doing a qualitative survey among distinguished researchers. In our study, we revisit this question from a quantitative perspective. Concretely, we collect 54K abstracts of papers published between 2007 and 2016 in leading machine learning journals and conferences. We then use machine learning in order to determine the top 10 topics in machine learning. We not only include models, but provide a holistic view across optimization, data, features, etc. This quantitative approach allows reducing the bias of surveys. It reveals new and up-to-date insights into what the 10 most prolific topics in machine learning research are. This allows researchers to identify popular topics as well as new and rising topics for their research.
Patrick Glauner, Manxing Du, Victor Paraschiv, Andrey Boytsov, Isabel Lopez Andrade, Jorge Meira, Petko Valtchev, Radu State
null
1703.10121
null
null
Priv'IT: Private and Sample Efficient Identity Testing
cs.DS cs.CR cs.IT cs.LG math.IT math.ST stat.TH
We develop differentially private hypothesis testing methods for the small sample regime. Given a sample $\cal D$ from a categorical distribution $p$ over some domain $\Sigma$, an explicitly described distribution $q$ over $\Sigma$, some privacy parameter $\varepsilon$, accuracy parameter $\alpha$, and requirements $\beta_{\rm I}$ and $\beta_{\rm II}$ for the type I and type II errors of our test, the goal is to distinguish between $p=q$ and $d_{\rm{TV}}(p,q) \geq \alpha$. We provide theoretical bounds for the sample size $|{\cal D}|$ so that our method both satisfies $(\varepsilon,0)$-differential privacy, and guarantees $\beta_{\rm I}$ and $\beta_{\rm II}$ type I and type II errors. We show that differential privacy may come for free in some regimes of parameters, and we always beat the sample complexity resulting from running the $\chi^2$-test with noisy counts, or standard approaches such as repetition for endowing non-private $\chi^2$-style statistics with differential privacy guarantees. We experimentally compare the sample complexity of our method to that of recently proposed methods for private hypothesis testing.
Bryan Cai, Constantinos Daskalakis, Gautam Kamath
null
1703.10127
null
null
Tacotron: Towards End-to-End Speech Synthesis
cs.CL cs.LG cs.SD
A text-to-speech synthesis system typically consists of multiple stages, such as a text analysis frontend, an acoustic model and an audio synthesis module. Building these components often requires extensive domain expertise and may contain brittle design choices. In this paper, we present Tacotron, an end-to-end generative text-to-speech model that synthesizes speech directly from characters. Given <text, audio> pairs, the model can be trained completely from scratch with random initialization. We present several key techniques to make the sequence-to-sequence framework perform well for this challenging task. Tacotron achieves a 3.82 subjective 5-scale mean opinion score on US English, outperforming a production parametric system in terms of naturalness. In addition, since Tacotron generates speech at the frame level, it's substantially faster than sample-level autoregressive methods.
Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob Clark, Rif A. Saurous
null
1703.10135
null
null
Enter the Matrix: Safely Interruptible Autonomous Systems via Virtualization
cs.AI cs.LG
Autonomous systems that operate around humans will likely always rely on kill switches that stop their execution and allow them to be remote-controlled for the safety of humans or to prevent damage to the system. It is theoretically possible for an autonomous system with sufficient sensor and effector capability that learn online using reinforcement learning to discover that the kill switch deprives it of long-term reward and thus learn to disable the switch or otherwise prevent a human operator from using the switch. This is referred to as the big red button problem. We present a technique that prevents a reinforcement learning agent from learning to disable the kill switch. We introduce an interruption process in which the agent's sensors and effectors are redirected to a virtual simulation where it continues to believe it is receiving reward. We illustrate our technique in a simple grid world environment.
Mark O. Riedl, Brent Harrison
null
1703.10284
null
null
From Deep to Shallow: Transformations of Deep Rectifier Networks
cs.LG stat.ML
In this paper, we introduce transformations of deep rectifier networks, enabling the conversion of deep rectifier networks into shallow rectifier networks. We subsequently prove that any rectifier net of any depth can be represented by a maximum of a number of functions that can be realized by a shallow network with a single hidden layer. The transformations of both deep rectifier nets and deep residual nets are conducted to demonstrate the advantages of the residual nets over the conventional neural nets and the advantages of the deep neural nets over the shallow neural nets. In summary, for two rectifier nets with different depths but with same total number of hidden units, the corresponding single hidden layer representation of the deeper net is much more complex than the corresponding single hidden representation of the shallower net. Similarly, for a residual net and a conventional rectifier net with the same structure except for the skip connections in the residual net, the corresponding single hidden layer representation of the residual net is much more complex than the corresponding single hidden layer representation of the conventional net.
Senjian An, Farid Boussaid, Mohammed Bennamoun, and Jiankun Hu
null
1703.10355
null
null
Simplified End-to-End MMI Training and Voting for ASR
cs.LG cs.CL cs.NE
A simplified speech recognition system that uses the maximum mutual information (MMI) criterion is considered. End-to-end training using gradient descent is suggested, similarly to the training of connectionist temporal classification (CTC). We use an MMI criterion with a simple language model in the training stage, and a standard HMM decoder. Our method compares favorably to CTC in terms of performance, robustness, decoding time, disk footprint and quality of alignments. The good alignments enable the use of a straightforward ensemble method, obtained by simply averaging the predictions of several neural network models, that were trained separately end-to-end. The ensemble method yields a considerable reduction in the word error rate.
Lior Fritz, David Burshtein
null
1703.10356
null
null
On Fundamental Limits of Robust Learning
cs.LG stat.ML
We consider the problems of robust PAC learning from distributed and streaming data, which may contain malicious errors and outliers, and analyze their fundamental complexity questions. In particular, we establish lower bounds on the communication complexity for distributed robust learning performed on multiple machines, and on the space complexity for robust learning from streaming data on a single machine. These results demonstrate that gaining robustness of learning algorithms is usually at the expense of increased complexities. As far as we know, this work gives the first complexity results for distributed and online robust PAC learning.
Jiashi Feng
null
1703.10444
null
null
Application of a Shallow Neural Network to Short-Term Stock Trading
cs.NE cs.LG
Machine learning is increasingly prevalent in stock market trading. Though neural networks have seen success in computer vision and natural language processing, they have not been as useful in stock market trading. To demonstrate the applicability of a neural network in stock trading, we made a single-layer neural network that recommends buying or selling shares of a stock by comparing the highest high of 10 consecutive days with that of the next 10 days, a process repeated for the stock's year-long historical data. A chi-squared analysis found that the neural network can accurately and appropriately decide whether to buy or sell shares for a given stock, showing that a neural network can make simple decisions about the stock market.
Abhinav Madahar, Yuze Ma, and Kunal Patel
null
1703.10458
null
null
On Bayesian Exponentially Embedded Family for Model Order Selection
stat.ML cs.LG
In this paper, we derive a Bayesian model order selection rule by using the exponentially embedded family method, termed Bayesian EEF. Unlike many other Bayesian model selection methods, the Bayesian EEF can use vague proper priors and improper noninformative priors to be objective in the elicitation of parameter priors. Moreover, the penalty term of the rule is shown to be the sum of half of the parameter dimension and the estimated mutual information between parameter and observed data. This helps to reveal the EEF mechanism in selecting model orders and may provide new insights into the open problems of choosing an optimal penalty term for model order selection and choosing a good prior from information theoretic viewpoints. The important example of linear model order selection is given to illustrate the algorithms and arguments. Lastly, the Bayesian EEF that uses Jeffreys prior coincides with the EEF rule derived by frequentist strategies. This shows another interesting relationship between the frequentist and Bayesian philosophies for model selection.
Zhenghan Zhu and Steven Kay
10.1109/TSP.2017.2781642
1703.10513
null
null
The Informativeness of K -Means for Learning Mixture Models
stat.ML cs.IT cs.LG math.IT stat.ME
The learning of mixture models can be viewed as a clustering problem. Indeed, given data samples independently generated from a mixture of distributions, we often would like to find the {\it correct target clustering} of the samples according to which component distribution they were generated from. For a clustering problem, practitioners often choose to use the simple $k$-means algorithm. $k$-means attempts to find an {\it optimal clustering} that minimizes the sum-of-squares distance between each point and its cluster center. In this paper, we consider fundamental (i.e., information-theoretic) limits of the solutions (clusterings) obtained by optimizing the sum-of-squares distance. In particular, we provide sufficient conditions for the closeness of any optimal clustering and the correct target clustering assuming that the data samples are generated from a mixture of spherical Gaussian distributions. We also generalize our results to log-concave distributions. Moreover, we show that under similar or even weaker conditions on the mixture model, any optimal clustering for the samples with reduced dimensionality is also close to the correct target clustering. These results provide intuition for the informativeness of $k$-means (with and without dimensionality reduction) as an algorithm for learning mixture models.
Zhaoqiang Liu, Vincent Y. F. Tan
10.1109/TIT.2019.2927560
1703.10534
null
null
Bootstrapping Labelled Dataset Construction for Cow Tracking and Behavior Analysis
cs.CV cs.AI cs.LG
This paper introduces a new approach to the long-term tracking of an object in a challenging environment. The object is a cow and the environment is an enclosure in a cowshed. Some of the key challenges in this domain are a cluttered background, low contrast and high similarity between moving objects which greatly reduces the efficiency of most existing approaches, including those based on background subtraction. Our approach is split into object localization, instance segmentation, learning and tracking stages. Our solution is compared to a range of semi-supervised object tracking algorithms and we show that the performance is strong and well suited to subsequent analysis. We present our solution as a first step towards broader tracking and behavior monitoring for cows in precision agriculture with the ultimate objective of early detection of lameness.
Aram Ter-Sarkisov and Robert Ross and John Kelleher
null
1703.10571
null
null
Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity
cs.LG physics.chem-ph stat.ML
Empirical scoring functions based on either molecular force fields or cheminformatics descriptors are widely used, in conjunction with molecular docking, during the early stages of drug discovery to predict potency and binding affinity of a drug-like molecule to a given target. These models require expert-level knowledge of physical chemistry and biology to be encoded as hand-tuned parameters or features rather than allowing the underlying model to select features in a data-driven procedure. Here, we develop a general 3-dimensional spatial convolution operation for learning atomic-level chemical interactions directly from atomic coordinates and demonstrate its application to structure-based bioactivity prediction. The atomic convolutional neural network is trained to predict the experimentally determined binding affinity of a protein-ligand complex by direct calculation of the energy associated with the complex, protein, and ligand given the crystal structure of the binding pose. Non-covalent interactions present in the complex that are absent in the protein-ligand sub-structures are identified and the model learns the interaction strength associated with these features. We test our model by predicting the binding free energy of a subset of protein-ligand complexes found in the PDBBind dataset and compare with state-of-the-art cheminformatics and machine learning-based approaches. We find that all methods achieve experimental accuracy and that atomic convolutional networks either outperform or perform competitively with the cheminformatics based methods. Unlike all previous protein-ligand prediction systems, atomic convolutional networks are end-to-end and fully-differentiable. They represent a new data-driven, physics-based deep learning model paradigm that offers a strong foundation for future improvements in structure-based bioactivity prediction.
Joseph Gomes, Bharath Ramsundar, Evan N. Feinberg, Vijay S. Pande
null
1703.10603
null
null
Diving into the shallows: a computational perspective on large-scale shallow learning
stat.ML cs.LG
In this paper we first identify a basic limitation in gradient descent-based optimization methods when used in conjunctions with smooth kernels. An analysis based on the spectral properties of the kernel demonstrates that only a vanishingly small portion of the function space is reachable after a polynomial number of gradient descent iterations. This lack of approximating power drastically limits gradient descent for a fixed computational budget leading to serious over-regularization/underfitting. The issue is purely algorithmic, persisting even in the limit of infinite data. To address this shortcoming in practice, we introduce EigenPro iteration, based on a preconditioning scheme using a small number of approximately computed eigenvectors. It can also be viewed as learning a new kernel optimized for gradient descent. It turns out that injecting this small (computationally inexpensive and SGD-compatible) amount of approximate second-order information leads to major improvements in convergence. For large data, this translates into significant performance boost over the standard kernel methods. In particular, we are able to consistently match or improve the state-of-the-art results recently reported in the literature with a small fraction of their computational budget. Finally, we feel that these results show a need for a broader computational perspective on modern large-scale learning to complement more traditional statistical and convergence analyses. In particular, many phenomena of large-scale high-dimensional inference are best understood in terms of optimization on infinite dimensional Hilbert spaces, where standard algorithms can sometimes have properties at odds with finite-dimensional intuition. A systematic analysis concentrating on the approximation power of such algorithms within a budget of computation may lead to progress both in theory and practice.
Siyuan Ma, Mikhail Belkin
null
1703.10622
null
null
Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention
cs.CV cs.LG
Deep neural perception and control networks are likely to be a key component of self-driving vehicles. These models need to be explainable - they should provide easy-to-interpret rationales for their behavior - so that passengers, insurance companies, law enforcement, developers etc., can understand what triggered a particular behavior. Here we explore the use of visual explanations. These explanations take the form of real-time highlighted regions of an image that causally influence the network's output (steering control). Our approach is two-stage. In the first stage, we use a visual attention model to train a convolution network end-to-end from images to steering angle. The attention model highlights image regions that potentially influence the network's output. Some of these are true influences, but some are spurious. We then apply a causal filtering step to determine which input regions actually influence the output. This produces more succinct visual explanations and more accurately exposes the network's behavior. We demonstrate the effectiveness of our model on three datasets totaling 16 hours of driving. We first show that training with attention does not degrade the performance of the end-to-end network. Then we show that the network causally cues on a variety of features that are used by humans while driving.
Jinkyu Kim and John Canny
null
1703.10631
null
null
Reliable Decision Support using Counterfactual Models
stat.ML cs.AI cs.LG
Decision-makers are faced with the challenge of estimating what is likely to happen when they take an action. For instance, if I choose not to treat this patient, are they likely to die? Practitioners commonly use supervised learning algorithms to fit predictive models that help decision-makers reason about likely future outcomes, but we show that this approach is unreliable, and sometimes even dangerous. The key issue is that supervised learning algorithms are highly sensitive to the policy used to choose actions in the training data, which causes the model to capture relationships that do not generalize. We propose using a different learning objective that predicts counterfactuals instead of predicting outcomes under an existing action policy as in supervised learning. To support decision-making in temporal settings, we introduce the Counterfactual Gaussian Process (CGP) to predict the counterfactual future progression of continuous-time trajectories under sequences of future actions. We demonstrate the benefits of the CGP on two important decision-support tasks: risk prediction and "what if?" reasoning for individualized treatment planning.
Peter Schulam and Suchi Saria
null
1703.10651
null
null
Near Perfect Protein Multi-Label Classification with Deep Neural Networks
q-bio.BM cs.LG stat.ML
Artificial neural networks (ANNs) have gained a well-deserved popularity among machine learning tools upon their recent successful applications in image- and sound processing and classification problems. ANNs have also been applied for predicting the family or function of a protein, knowing its residue sequence. Here we present two new ANNs with multi-label classification ability, showing impressive accuracy when classifying protein sequences into 698 UniProt families (AUC=99.99%) and 983 Gene Ontology classes (AUC=99.45%).
Balazs Szalkai and Vince Grolmusz
null
1703.10663
null
null
QoS-Aware Multi-Armed Bandits
cs.LG cs.SE
Motivated by runtime verification of QoS requirements in self-adaptive and self-organizing systems that are able to reconfigure their structure and behavior in response to runtime data, we propose a QoS-aware variant of Thompson sampling for multi-armed bandits. It is applicable in settings where QoS satisfaction of an arm has to be ensured with high confidence efficiently, rather than finding the optimal arm while minimizing regret. Preliminary experimental results encourage further research in the field of QoS-aware decision making.
Lenz Belzner, Thomas Gabor
10.1109/FAS-W.2016.36
1703.10669
null
null
Applying Ricci Flow to High Dimensional Manifold Learning
cs.LG
Traditional manifold learning algorithms often bear an assumption that the local neighborhood of any point on embedded manifold is roughly equal to the tangent space at that point without considering the curvature. The curvature indifferent way of manifold processing often makes traditional dimension reduction poorly neighborhood preserving. To overcome this drawback we propose a new algorithm called RF-ML to perform an operation on the manifold with help of Ricci flow before reducing the dimension of manifold.
Yangyang Li and Ruqian Lu
null
1703.10675
null
null
BEGAN: Boundary Equilibrium Generative Adversarial Networks
cs.LG stat.ML
We propose a new equilibrium enforcing method paired with a loss derived from the Wasserstein distance for training auto-encoder based Generative Adversarial Networks. This method balances the generator and discriminator during training. Additionally, it provides a new approximate convergence measure, fast and stable training and high visual quality. We also derive a way of controlling the trade-off between image diversity and visual quality. We focus on the image generation task, setting a new milestone in visual quality, even at higher resolutions. This is achieved while using a relatively simple model architecture and a standard training procedure.
David Berthelot, Thomas Schumm, Luke Metz
null
1703.10717
null
null
Fundamental Conditions for Low-CP-Rank Tensor Completion
cs.LG cs.NA math.NA stat.ML
We consider the problem of low canonical polyadic (CP) rank tensor completion. A completion is a tensor whose entries agree with the observed entries and its rank matches the given CP rank. We analyze the manifold structure corresponding to the tensors with the given rank and define a set of polynomials based on the sampling pattern and CP decomposition. Then, we show that finite completability of the sampled tensor is equivalent to having a certain number of algebraically independent polynomials among the defined polynomials. Our proposed approach results in characterizing the maximum number of algebraically independent polynomials in terms of a simple geometric structure of the sampling pattern, and therefore we obtain the deterministic necessary and sufficient condition on the sampling pattern for finite completability of the sampled tensor. Moreover, assuming that the entries of the tensor are sampled independently with probability $p$ and using the mentioned deterministic analysis, we propose a combinatorial method to derive a lower bound on the sampling probability $p$, or equivalently, the number of sampled entries that guarantees finite completability with high probability. We also show that the existing result for the matrix completion problem can be used to obtain a loose lower bound on the sampling probability $p$. In addition, we obtain deterministic and probabilistic conditions for unique completability. It is seen that the number of samples required for finite or unique completability obtained by the proposed analysis on the CP manifold is orders-of-magnitude lower than that is obtained by the existing analysis on the Grassmannian manifold.
Morteza Ashraphijuo, Xiaodong Wang
null
1703.1074
null
null
Diabetic Retinopathy Detection via Deep Convolutional Networks for Discriminative Localization and Visual Explanation
cs.CV cs.LG cs.NE
We proposed a deep learning method for interpretable diabetic retinopathy (DR) detection. The visual-interpretable feature of the proposed method is achieved by adding the regression activation map (RAM) after the global averaging pooling layer of the convolutional networks (CNN). With RAM, the proposed model can localize the discriminative regions of an retina image to show the specific region of interest in terms of its severity level. We believe this advantage of the proposed deep learning model is highly desired for DR detection because in practice, users are not only interested with high prediction performance, but also keen to understand the insights of DR detection and why the adopted learning model works. In the experiments conducted on a large scale of retina image dataset, we show that the proposed CNN model can achieve high performance on DR detection compared with the state-of-the-art while achieving the merits of providing the RAM to highlight the salient regions of the input image.
Zhiguang Wang, Jianbo Yang
null
1703.10757
null
null
Bi-class classification of humpback whale sound units against complex background noise with Deep Convolution Neural Network
stat.ML cs.LG cs.SD
Automatically detecting sound units of humpback whales in complex time-varying background noises is a current challenge for scientists. In this paper, we explore the applicability of Convolution Neural Network (CNN) method for this task. In the evaluation stage, we present 6 bi-class classification experimentations of whale sound detection against different background noise types (e.g., rain, wind). In comparison to classical FFT-based representation like spectrograms, we showed that the use of image-based pretrained CNN features brought higher performance to classify whale sounds and background noise.
Cazau Dorian, Riwal Lefort, Julien Bonnel, Jean-Luc Zarader and Olivier Adam
null
1703.10887
null
null
Feature functional theory - binding predictor (FFT-BP) for the blind prediction of binding free energies
q-bio.QM cs.LG physics.chem-ph
We present a feature functional theory - binding predictor (FFT-BP) for the protein-ligand binding affinity prediction. The underpinning assumptions of FFT-BP are as follows: i) representability: there exists a microscopic feature vector that can uniquely characterize and distinguish one protein-ligand complex from another; ii) feature-function relationship: the macroscopic features, including binding free energy, of a complex is a functional of microscopic feature vectors; and iii) similarity: molecules with similar microscopic features have similar macroscopic features, such as binding affinity. Physical models, such as implicit solvent models and quantum theory, are utilized to extract microscopic features, while machine learning algorithms are employed to rank the similarity among protein-ligand complexes. A large variety of numerical validations and tests confirms the accuracy and robustness of the proposed FFT-BP model. The root mean square errors (RMSEs) of FFT-BP blind predictions of a benchmark set of 100 complexes, the PDBBind v2007 core set of 195 complexes and the PDBBind v2015 core set of 195 complexes are 1.99, 2.02 and 1.92 kcal/mol, respectively. Their corresponding Pearson correlation coefficients are 0.75, 0.80, and 0.78, respectively.
Bao Wang, Zhixiong Zhao, Duc D. Nguyen, Guo-Wei Wei
null
1703.10927
null
null
Sentence Simplification with Deep Reinforcement Learning
cs.CL cs.LG
Sentence simplification aims to make sentences easier to read and understand. Most recent approaches draw on insights from machine translation to learn simplification rewrites from monolingual corpora of complex and simple sentences. We address the simplification problem with an encoder-decoder model coupled with a deep reinforcement learning framework. Our model, which we call {\sc Dress} (as shorthand for {\bf D}eep {\bf RE}inforcement {\bf S}entence {\bf S}implification), explores the space of possible simplifications while learning to optimize a reward function that encourages outputs which are simple, fluent, and preserve the meaning of the input. Experiments on three datasets demonstrate that our model outperforms competitive simplification systems.
Xingxing Zhang, Mirella Lapata
null
1703.10931
null
null
Comparison of multi-task convolutional neural network (MT-CNN) and a few other methods for toxicity prediction
q-bio.QM cs.LG stat.ML
Toxicity analysis and prediction are of paramount importance to human health and environmental protection. Existing computational methods are built from a wide variety of descriptors and regressors, which makes their performance analysis difficult. For example, deep neural network (DNN), a successful approach in many occasions, acts like a black box and offers little conceptual elegance or physical understanding. The present work constructs a common set of microscopic descriptors based on established physical models for charges, surface areas and free energies to assess the performance of multi-task convolutional neural network (MT-CNN) architectures and a few other approaches, including random forest (RF) and gradient boosting decision tree (GBDT), on an equal footing. Comparison is also given to convolutional neural network (CNN) and non-convolutional deep neural network (DNN) algorithms. Four benchmark toxicity data sets (i.e., endpoints) are used to evaluate various approaches. Extensive numerical studies indicate that the present MT-CNN architecture is able to outperform the state-of-the-art methods.
Kedi Wu, Guo-Wei Wei
null
1703.10951
null
null
Learning Visual Servoing with Deep Features and Fitted Q-Iteration
cs.LG cs.AI cs.RO
Visual servoing involves choosing actions that move a robot in response to observations from a camera, in order to reach a goal configuration in the world. Standard visual servoing approaches typically rely on manually designed features and analytical dynamics models, which limits their generalization capability and often requires extensive application-specific feature and model engineering. In this work, we study how learned visual features, learned predictive dynamics models, and reinforcement learning can be combined to learn visual servoing mechanisms. We focus on target following, with the goal of designing algorithms that can learn a visual servo using low amounts of data of the target in question, to enable quick adaptation to new targets. Our approach is based on servoing the camera in the space of learned visual features, rather than image pixels or manually-designed keypoints. We demonstrate that standard deep features, in our case taken from a model trained for object classification, can be used together with a bilinear predictive model to learn an effective visual servo that is robust to visual variation, changes in viewing angle and appearance, and occlusions. A key component of our approach is to use a sample-efficient fitted Q-iteration algorithm to learn which features are best suited for the task at hand. We show that we can learn an effective visual servo on a complex synthetic car following benchmark using just 20 training trajectory samples for reinforcement learning. We demonstrate substantial improvement over a conventional approach based on image pixels or hand-designed keypoints, and we show an improvement in sample-efficiency of more than two orders of magnitude over standard model-free deep reinforcement learning algorithms. Videos are available at http://rll.berkeley.edu/visual_servoing .
Alex X. Lee, Sergey Levine, Pieter Abbeel
null
1703.11
null
null
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
cs.LG
One of the defining properties of deep learning is that models are chosen to have many more parameters than available training data. In light of this capacity for overfitting, it is remarkable that simple algorithms like SGD reliably return solutions with low test error. One roadblock to explaining these phenomena in terms of implicit regularization, structural properties of the solution, and/or easiness of the data is that many learning bounds are quantitatively vacuous when applied to networks learned by SGD in this "deep learning" regime. Logically, in order to explain generalization, we need nonvacuous bounds. We return to an idea by Langford and Caruana (2001), who used PAC-Bayes bounds to compute nonvacuous numerical bounds on generalization error for stochastic two-layer two-hidden-unit neural networks via a sensitivity analysis. By optimizing the PAC-Bayes bound directly, we are able to extend their approach and obtain nonvacuous generalization bounds for deep stochastic neural network classifiers with millions of parameters trained on only tens of thousands of examples. We connect our findings to recent and old work on flat minima and MDL-based explanations of generalization.
Gintare Karolina Dziugaite, Daniel M. Roy
null
1703.11008
null
null
Spectral Methods for Nonparametric Models
cs.LG stat.ML
Nonparametric models are versatile, albeit computationally expensive, tool for modeling mixture models. In this paper, we introduce spectral methods for the two most popular nonparametric models: the Indian Buffet Process (IBP) and the Hierarchical Dirichlet Process (HDP). We show that using spectral methods for the inference of nonparametric models are computationally and statistically efficient. In particular, we derive the lower-order moments of the IBP and the HDP, propose spectral algorithms for both models, and provide reconstruction guarantees for the algorithms. For the HDP, we further show that applying hierarchical models on dataset with hierarchical structure, which can be solved with the generalized spectral HDP, produces better solutions to that of flat models regarding likelihood performance.
Hsiao-Yu Fish Tung and Chao-Yuan Wu and Manzil Zaheer and Alexander J. Smola
null
1704.00003
null
null
On the Reliable Detection of Concept Drift from Streaming Unlabeled Data
stat.ML cs.AI cs.LG
Classifiers deployed in the real world operate in a dynamic environment, where the data distribution can change over time. These changes, referred to as concept drift, can cause the predictive performance of the classifier to drop over time, thereby making it obsolete. To be of any real use, these classifiers need to detect drifts and be able to adapt to them, over time. Detecting drifts has traditionally been approached as a supervised task, with labeled data constantly being used for validating the learned model. Although effective in detecting drifts, these techniques are impractical, as labeling is a difficult, costly and time consuming activity. On the other hand, unsupervised change detection techniques are unreliable, as they produce a large number of false alarms. The inefficacy of the unsupervised techniques stems from the exclusion of the characteristics of the learned classifier, from the detection process. In this paper, we propose the Margin Density Drift Detection (MD3) algorithm, which tracks the number of samples in the uncertainty region of a classifier, as a metric to detect drift. The MD3 algorithm is a distribution independent, application independent, model independent, unsupervised and incremental algorithm for reliably detecting drifts from data streams. Experimental evaluation on 6 drift induced datasets and 4 additional datasets from the cybersecurity domain demonstrates that the MD3 approach can reliably detect drifts, with significantly fewer false alarms compared to unsupervised feature based drift detectors. The reduced false alarms enables the signaling of drifts only when they are most likely to affect classification performance. As such, the MD3 approach leads to a detection scheme which is credible, label efficient and general in its applicability.
Tegjyot Singh Sethi, Mehmed Kantardzic
null
1704.00023
null
null
Improved Training of Wasserstein GANs
cs.LG stat.ML
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville
null
1704.00028
null
null
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
cs.CV cs.LG
We describe a method to produce a network where current methods such as DeepFool have great difficulty producing adversarial samples. Our construction suggests some insights into how deep networks work. We provide a reasonable analyses that our construction is difficult to defeat, and show experimentally that our method is hard to defeat with both Type I and Type II attacks using several standard networks and datasets. This SafetyNet architecture is used to an important and novel application SceneProof, which can reliably detect whether an image is a picture of a real scene or not. SceneProof applies to images captured with depth maps (RGBD images) and checks if a pair of image and depth map is consistent. It relies on the relative difficulty of producing naturalistic depth maps for images in post processing. We demonstrate that our SafetyNet is robust to adversarial examples built from currently known attacking approaches.
Jiajun Lu, Theerasit Issaranon, David Forsyth
null
1704.00103
null
null
Assortment Optimization under Unknown MultiNomial Logit Choice Models
cs.LG
Motivated by e-commerce, we study the online assortment optimization problem. The seller offers an assortment, i.e. a subset of products, to each arriving customer, who then purchases one or no product from her offered assortment. A customer's purchase decision is governed by the underlying MultiNomial Logit (MNL) choice model. The seller aims to maximize the total revenue in a finite sales horizon, subject to resource constraints and uncertainty in the MNL choice model. We first propose an efficient online policy which incurs a regret $\tilde{O}(T^{2/3})$, where $T$ is the number of customers in the sales horizon. Then, we propose a UCB policy that achieves a regret $\tilde{O}(T^{1/2})$. Both regret bounds are sublinear in the number of assortments.
Wang Chi Cheung, David Simchi-Levi
null
1704.00108
null
null
Snapshot Ensembles: Train 1, get M for free
cs.LG
Ensembles of neural networks are known to be much more robust and accurate than individual networks. However, training multiple deep networks for model averaging is computationally expensive. In this paper, we propose a method to obtain the seemingly contradictory goal of ensembling multiple neural networks at no additional training cost. We achieve this goal by training a single neural network, converging to several local minima along its optimization path and saving the model parameters. To obtain repeated rapid convergence, we leverage recent work on cyclic learning rate schedules. The resulting technique, which we refer to as Snapshot Ensembling, is simple, yet surprisingly effective. We show in a series of experiments that our approach is compatible with diverse network architectures and learning tasks. It consistently yields lower error rates than state-of-the-art single models at no additional training cost, and compares favorably with traditional network ensembles. On CIFAR-10 and CIFAR-100 our DenseNet Snapshot Ensembles obtain error rates of 3.4% and 17.4% respectively.
Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, Kilian Q. Weinberger
null
1704.00109
null
null
Clustering-based Source-aware Assessment of True Robustness for Learning Models
cs.LG
We introduce a novel validation framework to measure the true robustness of learning models for real-world applications by creating source-inclusive and source-exclusive partitions in a dataset via clustering. We develop a robustness metric derived from source-aware lower and upper bounds of model accuracy even when data source labels are not readily available. We clearly demonstrate that even on a well-explored dataset like MNIST, challenging training scenarios can be constructed under the proposed assessment framework for two separate yet equally important applications: i) more rigorous learning model comparison and ii) dataset adequacy evaluation. In addition, our findings not only promise a more complete identification of trade-offs between model complexity, accuracy and robustness but can also help researchers optimize their efforts in data collection by identifying the less robust and more challenging class labels.
Ozsel Kilinc, Ismail Uysal
null
1704.00158
null
null
Faster Subgradient Methods for Functions with H\"olderian Growth
math.OC cs.LG cs.NA math.NA
The purpose of this manuscript is to derive new convergence results for several subgradient methods applied to minimizing nonsmooth convex functions with H\"olderian growth. The growth condition is satisfied in many applications and includes functions with quadratic growth and weakly sharp minima as special cases. To this end there are three main contributions. First, for a constant and sufficiently small stepsize, we show that the subgradient method achieves linear convergence up to a certain region including the optimal set, with error of the order of the stepsize. Second, if appropriate problem parameters are known, we derive a decaying stepsize which obtains a much faster convergence rate than is suggested by the classical $O(1/\sqrt{k})$ result for the subgradient method. Thirdly we develop a novel "descending stairs" stepsize which obtains this faster convergence rate and also obtains linear convergence for the special case of weakly sharp functions. We also develop an adaptive variant of the "descending stairs" stepsize which achieves the same convergence rate without requiring an error bound constant which is difficult to estimate in practice.
Patrick R. Johnstone and Pierre Moulin
10.1007/s10107-018-01361-0
1704.00196
null
null
Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification
cs.CL cs.AI cs.LG stat.ML
Implicit discourse relation classification is of great challenge due to the lack of connectives as strong linguistic cues, which motivates the use of annotated implicit connectives to improve the recognition. We propose a feature imitation framework in which an implicit relation network is driven to learn from another neural network with access to connectives, and thus encouraged to extract similarly salient features for accurate classification. We develop an adversarial model to enable an adaptive imitation scheme through competition between the implicit network and a rival feature discriminator. Our method effectively transfers discriminability of connectives to the implicit features, and achieves state-of-the-art performance on the PDTB benchmark.
Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu, Eric P. Xing
null
1704.00217
null
null
Online and Stable Learning of Analysis Operators
cs.LG math.NA
In this paper four iterative algorithms for learning analysis operators are presented. They are built upon the same optimisation principle underlying both Analysis K-SVD and Analysis SimCO. The Forward and Sequential Analysis Operator Learning (FAOL and SAOL) algorithms are based on projected gradient descent with optimally chosen step size. The Implicit AOL (IAOL) algorithm is inspired by the implicit Euler scheme for solving ordinary differential equations and does not require to choose a step size. The fourth algorithm, Singular Value AOL (SVAOL), uses a similar strategy as Analysis K-SVD while avoiding its high computational cost. All algorithms are proven to decrease or preserve the target function in each step and a characterisation of their stationary points is provided. Further they are tested on synthetic and image data, compared to Analysis SimCO and found to give better recovery rates and faster decay of the objective function respectively. In a final denoising experiment the presented algorithms are again shown to perform similar to or better than the state-of-the-art algorithm ASimCO.
Michael Sandbichler, Karin Schnass
null
1704.00227
null
null
Aligned Image-Word Representations Improve Inductive Transfer Across Vision-Language Tasks
cs.CV cs.AI cs.LG cs.NE stat.ML
An important goal of computer vision is to build systems that learn visual representations over time that can be applied to many tasks. In this paper, we investigate a vision-language embedding as a core representation and show that it leads to better cross-task transfer than standard multi-task learning. In particular, the task of visual recognition is aligned to the task of visual question answering by forcing each to use the same word-region embeddings. We show this leads to greater inductive transfer from recognition to VQA than standard multitask learning. Visual recognition also improves, especially for categories that have relatively few recognition training labels but appear often in the VQA setting. Thus, our paper takes a small step towards creating more general vision systems by showing the benefit of interpretable, flexible, and trainable core representations.
Tanmay Gupta, Kevin Shih, Saurabh Singh, and Derek Hoiem
null
1704.0026
null
null
Understanding Concept Drift
cs.LG
Concept drift is a major issue that greatly affects the accuracy and reliability of many real-world applications of machine learning. We argue that to tackle concept drift it is important to develop the capacity to describe and analyze it. We propose tools for this purpose, arguing for the importance of quantitative descriptions of drift in marginal distributions. We present quantitative drift analysis techniques along with methods for communicating their results. We demonstrate their effectiveness by application to three real-world learning tasks.
Geoffrey I. Webb, Loong Kuan Lee, Fran\c{c}ois Petitjean, Bart Goethals
null
1704.00362
null
null
Provable Inductive Robust PCA via Iterative Hard Thresholding
cs.LG cs.IT math.IT stat.ML
The robust PCA problem, wherein, given an input data matrix that is the superposition of a low-rank matrix and a sparse matrix, we aim to separate out the low-rank and sparse components, is a well-studied problem in machine learning. One natural question that arises is that, as in the inductive setting, if features are provided as input as well, can we hope to do better? Answering this in the affirmative, the main goal of this paper is to study the robust PCA problem while incorporating feature information. In contrast to previous works in which recovery guarantees are based on the convex relaxation of the problem, we propose a simple iterative algorithm based on hard-thresholding of appropriate residuals. Under weaker assumptions than previous works, we prove the global convergence of our iterative procedure; moreover, it admits a much faster convergence rate and lesser computational complexity per iteration. In practice, through systematic synthetic and real data simulations, we confirm our theoretical findings regarding improvements obtained by using feature information.
U.N. Niranjan, Arun Rajkumar, Theja Tulabandhula
null
1704.00367
null
null
Hidden Two-Stream Convolutional Networks for Action Recognition
cs.CV cs.LG cs.MM
Analyzing videos of human actions involves understanding the temporal relationships among video frames. State-of-the-art action recognition approaches rely on traditional optical flow estimation methods to pre-compute motion information for CNNs. Such a two-stage approach is computationally expensive, storage demanding, and not end-to-end trainable. In this paper, we present a novel CNN architecture that implicitly captures motion information between adjacent frames. We name our approach hidden two-stream CNNs because it only takes raw video frames as input and directly predicts action classes without explicitly computing optical flow. Our end-to-end approach is 10x faster than its two-stage baseline. Experimental results on four challenging action recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet v1.2 show that our approach significantly outperforms the previous best real-time approaches.
Yi Zhu, Zhenzhong Lan, Shawn Newsam, Alexander G. Hauptmann
null
1704.00389
null
null
On Kernelized Multi-armed Bandits
cs.LG
We consider the stochastic bandit problem with a continuous set of arms, with the expected reward function over the arms assumed to be fixed but unknown. We provide two new Gaussian process-based algorithms for continuous bandit optimization-Improved GP-UCB (IGP-UCB) and GP-Thomson sampling (GP-TS), and derive corresponding regret bounds. Specifically, the bounds hold when the expected reward function belongs to the reproducing kernel Hilbert space (RKHS) that naturally corresponds to a Gaussian process kernel used as input by the algorithms. Along the way, we derive a new self-normalized concentration inequality for vector- valued martingales of arbitrary, possibly infinite, dimension. Finally, experimental evaluation and comparisons to existing algorithms on synthetic and real-world environments are carried out that highlight the favorable gains of the proposed strategies in many cases.
Sayak Ray Chowdhury and Aditya Gopalan
null
1704.00445
null
null
Clustering in Hilbert simplex geometry
cs.LG cs.CV
Clustering categorical distributions in the finite-dimensional probability simplex is a fundamental task met in many applications dealing with normalized histograms. Traditionally, the differential-geometric structures of the probability simplex have been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the dualistic information-geometric structure induced by a smooth dissimilarity measure, the Kullback-Leibler divergence. In this work, we introduce for clustering tasks a novel computationally-friendly framework for modeling geometrically the probability simplex: The {\em Hilbert simplex geometry}. In the Hilbert simplex geometry, the distance is the non-separable Hilbert's metric distance which satisfies the property of information monotonicity with distance level set functions described by polytope boundaries. We show that both the Aitchison and Hilbert simplex distances are norm distances on normalized logarithmic representations with respect to the $\ell_2$ and variation norms, respectively. We discuss the pros and cons of those different statistical modelings, and benchmark experimentally these different kind of geometries for center-based $k$-means and $k$-center clustering. Furthermore, since a canonical Hilbert distance can be defined on any bounded convex subset of the Euclidean space, we also consider Hilbert's geometry of the elliptope of correlation matrices and study its clustering performances compared to Fr\"obenius and log-det divergences.
Frank Nielsen and Ke Sun
10.1007/978-3-030-02520-5_11
1704.00454
null
null
Are Key-Foreign Key Joins Safe to Avoid when Learning High-Capacity Classifiers?
cs.DB cs.LG
Machine learning (ML) over relational data is a booming area of the database industry and academia. While several projects aim to build scalable and fast ML systems, little work has addressed the pains of sourcing data and features for ML tasks. Real-world relational databases typically have many tables (often, dozens) and data scientists often struggle to even obtain and join all possible tables that provide features for ML. In this context, Kumar et al. showed recently that key-foreign key dependencies (KFKDs) between tables often lets us avoid such joins without significantly affecting prediction accuracy--an idea they called avoiding joins safely. While initially controversial, this idea has since been used by multiple companies to reduce the burden of data sourcing for ML. But their work applied only to linear classifiers. In this work, we verify if their results hold for three popular complex classifiers: decision trees, SVMs, and ANNs. We conduct an extensive experimental study using both real-world datasets and simulations to analyze the effects of avoiding KFK joins on such models. Our results show that these high-capacity classifiers are surprisingly and counter-intuitively more robust to avoiding KFK joins compared to linear classifiers, refuting an intuition from the prior work's analysis. We explain this behavior intuitively and identify open questions at the intersection of data management and ML theoretical research. All of our code and datasets are available for download from http://cseweb.ucsd.edu/~arunkk/hamlet.
Vraj Shah, Arun Kumar, Xiaojin Zhu
null
1704.00485
null
null
A New Measure of Conditional Dependence
stat.ML cs.LG
Measuring conditional dependencies among the variables of a network is of great interest to many disciplines. This paper studies some shortcomings of the existing dependency measures in detecting direct causal influences or their lack of ability for group selection to capture strong dependencies and accordingly introduces a new statistical dependency measure to overcome them. This measure is inspired by Dobrushin's coefficients and based on the fact that there is no dependency between $X$ and $Y$ given another variable $Z$, if and only if the conditional distribution of $Y$ given $X=x$ and $Z=z$ does not change when $X$ takes another realization $x'$ while $Z$ takes the same realization $z$. We show the advantages of this measure over the related measures in the literature. Moreover, we establish the connection between our measure and the integral probability metric (IPM) that helps to develop estimators of the measure with lower complexity compared to other relevant information theoretic based measures. Finally, we show the performance of this measure through numerical simulations.
Jalal Etesami, Kun Zhang, Negar Kiyavash
null
1704.00607
null
null
Semi-Supervised Generation with Cluster-aware Generative Models
stat.ML cs.AI cs.LG
Deep generative models trained with large amounts of unlabelled data have proven to be powerful within the domain of unsupervised learning. Many real life data sets contain a small amount of labelled data points, that are typically disregarded when training generative models. We propose the Cluster-aware Generative Model, that uses unlabelled information to infer a latent representation that models the natural clustering of the data, and additional labelled data points to refine this clustering. The generative performances of the model significantly improve when labelled information is exploited, obtaining a log-likelihood of -79.38 nats on permutation invariant MNIST, while also achieving competitive semi-supervised classification accuracies. The model can also be trained fully unsupervised, and still improve the log-likelihood performance with respect to related methods.
Lars Maal{\o}e and Marco Fraccaro and Ole Winther
null
1704.00637
null
null
Local nearest neighbour classification with applications to semi-supervised learning
math.ST cs.CV cs.LG stat.ME stat.TH
We derive a new asymptotic expansion for the global excess risk of a local-$k$-nearest neighbour classifier, where the choice of $k$ may depend upon the test point. This expansion elucidates conditions under which the dominant contribution to the excess risk comes from the decision boundary of the optimal Bayes classifier, but we also show that if these conditions are not satisfied, then the dominant contribution may arise from the tails of the marginal distribution of the features. Moreover, we prove that, provided the $d$-dimensional marginal distribution of the features has a finite $\rho$th moment for some $\rho > 4$ (as well as other regularity conditions), a local choice of $k$ can yield a rate of convergence of the excess risk of $O(n^{-4/(d+4)})$, where $n$ is the sample size, whereas for the standard $k$-nearest neighbour classifier, our theory would require $d \geq 5$ and $\rho > 4d/(d-4)$ finite moments to achieve this rate. These results motivate a new $k$-nearest neighbour classifier for semi-supervised learning problems, where the unlabelled data are used to obtain an estimate of the marginal feature density, and fewer neighbours are used for classification when this density estimate is small. Our worst-case rates are complemented by a minimax lower bound, which reveals that the local, semi-supervised $k$-nearest neighbour classifier attains the minimax optimal rate over our classes for the excess risk, up to a subpolynomial factor in $n$. These theoretical improvements over the standard $k$-nearest neighbour classifier are also illustrated through a simulation study.
Timothy I. Cannings, Thomas B. Berrett and Richard J. Samworth
null
1704.00642
null
null
Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations
cs.LG cs.CV
We present a new approach to learn compressible representations in deep architectures with an end-to-end training strategy. Our method is based on a soft (continuous) relaxation of quantization and entropy, which we anneal to their discrete counterparts throughout training. We showcase this method for two challenging applications: Image compression and neural network compression. While these tasks have typically been approached with different methods, our soft-to-hard quantization approach gives results competitive with the state-of-the-art for both.
Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini and Luc Van Gool
null
1704.00648
null
null
No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis
cs.LG math.OC stat.ML
In this paper we develop a new framework that captures the common landscape underlying the common non-convex low-rank matrix problems including matrix sensing, matrix completion and robust PCA. In particular, we show for all above problems (including asymmetric cases): 1) all local minima are also globally optimal; 2) no high-order saddle points exists. These results explain why simple algorithms such as stochastic gradient descent have global converge, and efficiently optimize these non-convex objective functions in practice. Our framework connects and simplifies the existing analyses on optimization landscapes for matrix sensing and symmetric matrix completion. The framework naturally leads to new results for asymmetric matrix completion and robust PCA.
Rong Ge, Chi Jin, Yi Zheng
null
1704.00708
null
null
Multi-Advisor Reinforcement Learning
cs.LG cs.AI stat.ML
We consider tackling a single-agent RL problem by distributing it to $n$ learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the egocentric planning overestimates values of states where the other advisors disagree, and the agnostic planning is inefficient around danger zones. We introduce a novel approach called empathic and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task.
Romain Laroche and Mehdi Fatemi and Joshua Romoff and Harm van Seijen
null
1704.00756
null
null
Geometric Insights into Support Vector Machine Behavior using the KKT Conditions
stat.ML cs.LG
The support vector machine (SVM) is a powerful and widely used classification algorithm. This paper uses the Karush-Kuhn-Tucker conditions to provide rigorous mathematical proof for new insights into the behavior of SVM. These insights provide perhaps unexpected relationships between SVM and two other linear classifiers: the mean difference and the maximal data piling direction. For example, we show that in many cases SVM can be viewed as a cropped version of these classifiers. By carefully exploring these connections we show how SVM tuning behavior is affected by characteristics including: balanced vs. unbalanced classes, low vs. high dimension, separable vs. non-separable data. These results provide further insights into tuning SVM via cross-validation by explaining observed pathological behavior and motivating improved cross-validation methodology. Finally, we also provide new results on the geometry of complete data piling directions in high dimensional space.
Iain Carmichael and J.S. Marron
null
1704.00767
null
null
A comparative study of counterfactual estimators
stat.ML cs.LG
We provide a comparative study of several widely used off-policy estimators (Empirical Average, Basic Importance Sampling and Normalized Importance Sampling), detailing the different regimes where they are individually suboptimal. We then exhibit properties optimal estimators should possess. In the case where examples have been gathered using multiple policies, we show that fused estimators dominate basic ones but can still be improved.
Thomas Nedelec, Nicolas Le Roux and Vianney Perchet
null
1704.00773
null
null
Brief Notes on Hard Takeoff, Value Alignment, and Coherent Extrapolated Volition
cs.AI cs.CY cs.LG
I make some basic observations about hard takeoff, value alignment, and coherent extrapolated volition, concepts which have been central in analyses of superintelligent AI systems.
Gopal P. Sarma
null
1704.00783
null
null
Online and Linear-Time Attention by Enforcing Monotonic Alignments
cs.LG cs.CL
Recurrent neural network models with an attention mechanism have proven to be extremely effective on a wide variety of sequence-to-sequence problems. However, the fact that soft attention mechanisms perform a pass over the entire input sequence when producing each element in the output sequence precludes their use in online settings and results in a quadratic time complexity. Based on the insight that the alignment between input and output sequence elements is monotonic in many problems of interest, we propose an end-to-end differentiable method for learning monotonic alignments which, at test time, enables computing attention online and in linear time. We validate our approach on sentence summarization, machine translation, and online speech recognition problems and achieve results competitive with existing sequence-to-sequence models.
Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck
null
1704.00784
null
null
Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data
stat.ML cs.LG
Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust \emph{time series cluster kernel} (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.
Karl {\O}yvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz and Robert Jenssen
null
1704.00794
null
null
On the Properties of the Softmax Function with Application in Game Theory and Reinforcement Learning
math.OC cs.LG
In this paper, we utilize results from convex analysis and monotone operator theory to derive additional properties of the softmax function that have not yet been covered in the existing literature. In particular, we show that the softmax function is the monotone gradient map of the log-sum-exp function. By exploiting this connection, we show that the inverse temperature parameter determines the Lipschitz and co-coercivity properties of the softmax function. We then demonstrate the usefulness of these properties through an application in game-theoretic reinforcement learning.
Bolin Gao, Lacra Pavel
null
1704.00805
null
null
Polynomial Time and Sample Complexity for Non-Gaussian Component Analysis: Spectral Methods
cs.LG math.PR stat.ML
The problem of Non-Gaussian Component Analysis (NGCA) is about finding a maximal low-dimensional subspace $E$ in $\mathbb{R}^n$ so that data points projected onto $E$ follow a non-gaussian distribution. Although this is an appropriate model for some real world data analysis problems, there has been little progress on this problem over the last decade. In this paper, we attempt to address this state of affairs in two ways. First, we give a new characterization of standard gaussian distributions in high-dimensions, which lead to effective tests for non-gaussianness. Second, we propose a simple algorithm, \emph{Reweighted PCA}, as a method for solving the NGCA problem. We prove that for a general unknown non-gaussian distribution, this algorithm recovers at least one direction in $E$, with sample and time complexity depending polynomially on the dimension of the ambient space. We conjecture that the algorithm actually recovers the entire $E$.
Yan Shuo Tan, Roman Vershynin
null
1704.01041
null
null
Homotopy Parametric Simplex Method for Sparse Learning
cs.LG math.OC stat.ML
High dimensional sparse learning has imposed a great computational challenge to large scale data analysis. In this paper, we are interested in a broad class of sparse learning approaches formulated as linear programs parametrized by a {\em regularization factor}, and solve them by the parametric simplex method (PSM). Our parametric simplex method offers significant advantages over other competing methods: (1) PSM naturally obtains the complete solution path for all values of the regularization parameter; (2) PSM provides a high precision dual certificate stopping criterion; (3) PSM yields sparse solutions through very few iterations, and the solution sparsity significantly reduces the computational cost per iteration. Particularly, we demonstrate the superiority of PSM over various sparse learning approaches, including Dantzig selector for sparse linear regression, LAD-Lasso for sparse robust linear regression, CLIME for sparse precision matrix estimation, sparse differential network estimation, and sparse Linear Programming Discriminant (LPD) analysis. We then provide sufficient conditions under which PSM always outputs sparse solutions such that its computational performance can be significantly boosted. Thorough numerical experiments are provided to demonstrate the outstanding performance of the PSM method.
Haotian Pang, Robert Vanderbei, Han Liu, Tuo Zhao
null
1704.01079
null
null
Probabilistic Search for Structured Data via Probabilistic Programming and Nonparametric Bayes
cs.AI cs.DB cs.LG stat.ML
Databases are widespread, yet extracting relevant data can be difficult. Without substantial domain knowledge, multivariate search queries often return sparse or uninformative results. This paper introduces an approach for searching structured data based on probabilistic programming and nonparametric Bayes. Users specify queries in a probabilistic language that combines standard SQL database search operators with an information theoretic ranking function called predictive relevance. Predictive relevance can be calculated by a fast sparse matrix algorithm based on posterior samples from CrossCat, a nonparametric Bayesian model for high-dimensional, heterogeneously-typed data tables. The result is a flexible search technique that applies to a broad class of information retrieval problems, which we integrate into BayesDB, a probabilistic programming platform for probabilistic data analysis. This paper demonstrates applications to databases of US colleges, global macroeconomic indicators of public health, and classic cars. We found that human evaluators often prefer the results from probabilistic search to results from a standard baseline.
Feras Saad, Leonardo Casarsa, Vikash Mansinghka
null
1704.01087
null
null
Satellite Image-based Localization via Learned Embeddings
cs.RO cs.CV cs.LG
We propose a vision-based method that localizes a ground vehicle using publicly available satellite imagery as the only prior knowledge of the environment. Our approach takes as input a sequence of ground-level images acquired by the vehicle as it navigates, and outputs an estimate of the vehicle's pose relative to a georeferenced satellite image. We overcome the significant viewpoint and appearance variations between the images through a neural multi-view model that learns location-discriminative embeddings in which ground-level images are matched with their corresponding satellite view of the scene. We use this learned function as an observation model in a filtering framework to maintain a distribution over the vehicle's pose. We evaluate our method on different benchmark datasets and demonstrate its ability localize ground-level images in environments novel relative to training, despite the challenges of significant viewpoint and appearance variations.
Dong-Ki Kim and Matthew R. Walter
null
1704.01133
null
null
DyVEDeep: Dynamic Variable Effort Deep Neural Networks
cs.NE cs.CV cs.LG
Deep Neural Networks (DNNs) have advanced the state-of-the-art in a variety of machine learning tasks and are deployed in increasing numbers of products and services. However, the computational requirements of training and evaluating large-scale DNNs are growing at a much faster pace than the capabilities of the underlying hardware platforms that they are executed upon. In this work, we propose Dynamic Variable Effort Deep Neural Networks (DyVEDeep) to reduce the computational requirements of DNNs during inference. Previous efforts propose specialized hardware implementations for DNNs, statically prune the network, or compress the weights. Complementary to these approaches, DyVEDeep is a dynamic approach that exploits the heterogeneity in the inputs to DNNs to improve their compute efficiency with comparable classification accuracy. DyVEDeep equips DNNs with dynamic effort mechanisms that, in the course of processing an input, identify how critical a group of computations are to classify the input. DyVEDeep dynamically focuses its compute effort only on the critical computa- tions, while skipping or approximating the rest. We propose 3 effort knobs that operate at different levels of granularity viz. neuron, feature and layer levels. We build DyVEDeep versions for 5 popular image recognition benchmarks - one for CIFAR-10 and four for ImageNet (AlexNet, OverFeat and VGG-16, weight-compressed AlexNet). Across all benchmarks, DyVEDeep achieves 2.1x-2.6x reduction in the number of scalar operations, which translates to 1.8x-2.3x performance improvement over a Caffe-based implementation, with < 0.5% loss in accuracy.
Sanjay Ganapathy, Swagath Venkataramani, Balaraman Ravindran, Anand Raghunathan
null
1704.01137
null
null
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
cs.CV cs.CR cs.LG
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by \emph{adversarial examples} that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, \emph{feature squeezing}, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives. This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
Weilin Xu, David Evans, Yanjun Qi
10.14722/ndss.2018.23198
1704.01155
null
null
On the Unreported-Profile-is-Negative Assumption for Predictive Cheminformatics
cs.LG physics.chem-ph stat.ML
In cheminformatics, compound-target binding profiles has been a main source of data for research. For data repositories that only provide positive profiles, a popular assumption is that unreported profiles are all negative. In this paper, we caution audience not to take this assumption for granted, and present empirical evidence of its ineffectiveness from a machine learning perspective. Our examination is based on a setting where binding profiles are used as features to train predictive models; we show (1) prediction performance degrades when the assumption fails and (2) explicit recovery of unreported profiles improves prediction performance. In particular, we propose a framework that jointly recovers profiles and learns predictive model, and show it achieves further performance improvement. The presented study not only suggests applying matrix recovery methods to recover unreported profiles, but also initiates a new missing feature problem which we called Learning with Positive and Unknown Features.
Chao Lan, Sai Nivedita Chandrasekaran, Jun Huan
null
1704.01184
null
null
Neural Message Passing for Quantum Chemistry
cs.LG
Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach the limits of the approach. In this paper, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we believe future work should focus on datasets with larger molecules or more accurate ground truth labels.
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl
null
1704.01212
null
null
Linear Additive Markov Processes
cs.LG stat.ML
We introduce LAMP: the Linear Additive Markov Process. Transitions in LAMP may be influenced by states visited in the distant history of the process, but unlike higher-order Markov processes, LAMP retains an efficient parametrization. LAMP also allows the specific dependence on history to be learned efficiently from data. We characterize some theoretical properties of LAMP, including its steady-state and mixing time. We then give an algorithm based on alternating minimization to learn LAMP models from data. Finally, we perform a series of real-world experiments to show that LAMP is more powerful than first-order Markov processes, and even holds its own against deep sequential models (LSTMs) with a negligible increase in parameter complexity.
Ravi Kumar, Maithra Raghu, Tamas Sarlos, Andrew Tomkins
null
1704.01255
null
null
Geometry of Factored Nuclear Norm Regularization
cs.NA cs.IT cs.LG math.IT math.OC
This work investigates the geometry of a nonconvex reformulation of minimizing a general convex loss function $f(X)$ regularized by the matrix nuclear norm $\|X\|_*$. Nuclear-norm regularized matrix inverse problems are at the heart of many applications in machine learning, signal processing, and control. The statistical performance of nuclear norm regularization has been studied extensively in literature using convex analysis techniques. Despite its optimal performance, the resulting optimization has high computational complexity when solved using standard or even tailored fast convex solvers. To develop faster and more scalable algorithms, we follow the proposal of Burer-Monteiro to factor the matrix variable $X$ into the product of two smaller rectangular matrices $X=UV^T$ and also replace the nuclear norm $\|X\|_*$ with $(\|U\|_F^2+\|V\|_F^2)/2$. In spite of the nonconvexity of the factored formulation, we prove that when the convex loss function $f(X)$ is $(2r,4r)$-restricted well-conditioned, each critical point of the factored problem either corresponds to the optimal solution $X^\star$ of the original convex optimization or is a strict saddle point where the Hessian matrix has a strictly negative eigenvalue. Such a geometric structure of the factored formulation allows many local search algorithms to converge to the global optimum with random initializations.
Qiuwei Li, Zhihui Zhu and Gongguo Tang
null
1704.01265
null
null
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
cs.LG cs.AI cs.SD
Generative models in vision have seen rapid progress due to algorithmic improvements and the availability of high-quality image datasets. In this paper, we offer contributions in both these areas to enable similar progress in audio modeling. First, we detail a powerful new WaveNet-style autoencoder model that conditions an autoregressive decoder on temporal codes learned from the raw audio waveform. Second, we introduce NSynth, a large-scale and high-quality dataset of musical notes that is an order of magnitude larger than comparable public datasets. Using NSynth, we demonstrate improved qualitative and quantitative performance of the WaveNet autoencoder over a well-tuned spectral autoencoder baseline. Finally, we show that the model learns a manifold of embeddings that allows for morphing between instruments, meaningfully interpolating in timbre to create new types of sounds that are realistic and expressive.
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, Mohammad Norouzi
null
1704.01279
null
null
Revisiting the problem of audio-based hit song prediction using convolutional neural networks
cs.SD cs.LG stat.ML
Being able to predict whether a song can be a hit has impor- tant applications in the music industry. Although it is true that the popularity of a song can be greatly affected by exter- nal factors such as social and commercial influences, to which degree audio features computed from musical signals (whom we regard as internal factors) can predict song popularity is an interesting research question on its own. Motivated by the recent success of deep learning techniques, we attempt to ex- tend previous work on hit song prediction by jointly learning the audio features and prediction models using deep learning. Specifically, we experiment with a convolutional neural net- work model that takes the primitive mel-spectrogram as the input for feature learning, a more advanced JYnet model that uses an external song dataset for supervised pre-training and auto-tagging, and the combination of these two models. We also consider the inception model to characterize audio infor- mation in different scales. Our experiments suggest that deep structures are indeed more accurate than shallow structures in predicting the popularity of either Chinese or Western Pop songs in Taiwan. We also use the tags predicted by JYnet to gain insights into the result of different models.
Li-Chia Yang, Szu-Yu Chou, Jen-Yu Liu, Yi-Hsuan Yang, Yi-An Chen
null
1704.0128
null
null
On Generalization and Regularization in Deep Learning
stat.ML cs.LG math.ST stat.TH
Why do large neural network generalize so well on complex tasks such as image classification or speech recognition? What exactly is the role regularization for them? These are arguably among the most important open questions in machine learning today. In a recent and thought provoking paper [C. Zhang et al.] several authors performed a number of numerical experiments that hint at the need for novel theoretical concepts to account for this phenomenon. The paper stirred quit a lot of excitement among the machine learning community but at the same time it created some confusion as discussions on OpenReview.net testifies. The aim of this pedagogical paper is to make this debate accessible to a wider audience of data scientists without advanced theoretical knowledge in statistical learning. The focus here is on explicit mathematical definitions and on a discussion of relevant concepts, not on proofs for which we provide references.
Pirmin Lemberger
null
1704.01312
null
null
Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade
cs.CV cs.LG
We propose a novel deep layer cascade (LC) method to improve the accuracy and speed of semantic segmentation. Unlike the conventional model cascade (MC) that is composed of multiple independent models, LC treats a single deep model as a cascade of several sub-models. Earlier sub-models are trained to handle easy and confident regions, and they progressively feed-forward harder regions to the next sub-model for processing. Convolutions are only calculated on these regions to reduce computations. The proposed method possesses several advantages. First, LC classifies most of the easy regions in the shallow stage and makes deeper stage focuses on a few hard regions. Such an adaptive and 'difficulty-aware' learning improves segmentation performance. Second, LC accelerates both training and testing of deep network thanks to early decisions in the shallow stage. Third, in comparison to MC, LC is an end-to-end trainable framework, allowing joint learning of all sub-models. We evaluate our method on PASCAL VOC and Cityscapes datasets, achieving state-of-the-art performance and fast speed.
Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, Xiaoou Tang
null
1704.01344
null
null
Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework
cs.AI cs.LG cs.MA
In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.
Cl\'ement Moulin-Frier, Jordi-Ysard Puigb\`o, Xerxes D. Arsiwalla, Mart\`i Sanchez-Fibla, Paul F. M. J. Verschure
null
1704.01407
null
null
Multi-Label Learning with Global and Local Label Correlation
cs.LG cs.AI
It is well-known that exploiting label correlations is important to multi-label learning. Existing approaches either assume that the label correlations are global and shared by all instances; or that the label correlations are local and shared only by a data subset. In fact, in the real-world applications, both cases may occur that some label correlations are globally applicable and some are shared only in a local group of instances. Moreover, it is also a usual case that only partial labels are observed, which makes the exploitation of the label correlations much more difficult. That is, it is hard to estimate the label correlations when many labels are absent. In this paper, we propose a new multi-label approach GLOCAL dealing with both the full-label and the missing-label cases, exploiting global and local label correlations simultaneously, through learning a latent label representation and optimizing label manifolds. The extensive experimental studies validate the effectiveness of our approach on both full-label and missing-label data.
Yue Zhu and James T. Kwok and Zhi-Hua Zhou
null
1704.01415
null
null
The Many Faces of Link Fraud
cs.SI cs.LG
Most past work on social network link fraud detection tries to separate genuine users from fraudsters, implicitly assuming that there is only one type of fraudulent behavior. But is this assumption true? And, in either case, what are the characteristics of such fraudulent behaviors? In this work, we set up honeypots ("dummy" social network accounts), and buy fake followers (after careful IRB approval). We report the signs of such behaviors including oddities in local network connectivity, account attributes, and similarities and differences across fraud providers. Most valuably, we discover and characterize several types of fraud behaviors. We discuss how to leverage our insights in practice by engineering strongly performing entropy-based features and demonstrating high classification accuracy. Our contributions are (a) instrumentation: we detail our experimental setup and carefully engineered data collection process to scrape Twitter data while respecting API rate-limits, (b) observations on fraud multimodality: we analyze our honeypot fraudster ecosystem and give surprising insights into the multifaceted behaviors of these fraudster types, and (c) features: we propose novel features that give strong (>0.95 precision/recall) discriminative power on ground-truth Twitter data.
Neil Shah, Hemank Lamba, Alex Beutel, Christos Faloutsos
null
1704.0142
null
null
AMIDST: a Java Toolbox for Scalable Probabilistic Machine Learning
cs.LG stat.ML
The AMIDST Toolbox is a software for scalable probabilistic machine learning with a spe- cial focus on (massive) streaming data. The toolbox supports a flexible modeling language based on probabilistic graphical models with latent variables and temporal dependencies. The specified models can be learnt from large data sets using parallel or distributed implementa- tions of Bayesian learning algorithms for either streaming or batch data. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continu- ous variables from a wide range of probability distributions. AMIDST also leverages existing functionality and algorithms by interfacing to software tools such as Flink, Spark, MOA, Weka, R and HUGIN. AMIDST is an open source toolbox written in Java and available at http://www.amidsttoolbox.com under the Apache Software License version 2.0.
Andr\'es R. Masegosa, Ana M. Mart\'inez, Dar\'io Ramos-L\'opez, Rafael Caba\~nas, Antonio Salmer\'on, Thomas D. Nielsen, Helge Langseth, Anders L. Madsen
10.1016/j.knosys.2018.09.019
1704.01427
null
null
Learning to Generate Reviews and Discovering Sentiment
cs.LG cs.CL cs.NE
We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.
Alec Radford, Rafal Jozefowicz, Ilya Sutskever
null
1704.01444
null
null
Comparison Based Nearest Neighbor Search
stat.ML cs.DS cs.LG
We consider machine learning in a comparison-based setting where we are given a set of points in a metric space, but we have no access to the actual distances between the points. Instead, we can only ask an oracle whether the distance between two points $i$ and $j$ is smaller than the distance between the points $i$ and $k$. We are concerned with data structures and algorithms to find nearest neighbors based on such comparisons. We focus on a simple yet effective algorithm that recursively splits the space by first selecting two random pivot points and then assigning all other points to the closer of the two (comparison tree). We prove that if the metric space satisfies certain expansion conditions, then with high probability the height of the comparison tree is logarithmic in the number of points, leading to efficient search performance. We also provide an upper bound for the failure probability to return the true nearest neighbor. Experiments show that the comparison tree is competitive with algorithms that have access to the actual distance values, and needs less triplet comparisons than other competitors.
Siavash Haghiri, Debarghya Ghoshdastidar and Ulrike von Luxburg
null
1704.0146
null
null
Automatic Breast Ultrasound Image Segmentation: A Survey
cs.CV cs.LG
Breast cancer is one of the leading causes of cancer death among women worldwide. In clinical routine, automatic breast ultrasound (BUS) image segmentation is very challenging and essential for cancer diagnosis and treatment planning. Many BUS segmentation approaches have been studied in the last two decades, and have been proved to be effective on private datasets. Currently, the advancement of BUS image segmentation seems to meet its bottleneck. The improvement of the performance is increasingly challenging, and only few new approaches were published in the last several years. It is the time to look at the field by reviewing previous approaches comprehensively and to investigate the future directions. In this paper, we study the basic ideas, theories, pros and cons of the approaches, group them into categories, and extensively review each category in depth by discussing the principles, application issues, and advantages/disadvantages.
Min Xian, Yingtao Zhang, H.D. Cheng, Fei Xu, Boyu Zhang, Jianrui Ding
null
1704.01472
null
null