title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Label Distribution Learning Machine
null
Although Label Distribution Learning (LDL) has witnessed extensive classification applications, it faces the challenge of objective mismatch – the objective of LDL mismatches that of classification, which has seldom been noticed in existing studies. Our goal is to solve the objective mismatch and improve the classification performance of LDL. Specifically, we extend the margin theory to LDL and propose a new LDL method called \textbf{L}abel \textbf{D}istribution \textbf{L}earning \textbf{M}achine (LDLM). First, we define the label distribution margin and propose the \textbf{S}upport \textbf{V}ector \textbf{R}egression \textbf{M}achine (SVRM) to learn the optimal label. Second, we propose the adaptive margin loss to learn label description degrees. In theoretical analysis, we develop a generalization theory for the SVRM and analyze the generalization of LDLM. Experimental results validate the better classification performance of LDLM.
Jing Wang, Xin Geng
null
null
2,021
icml
Deep Generative Learning via Schrödinger Bridge
null
We propose to learn a generative model via entropy interpolation with a Schr{ö}dinger Bridge. The generative learning task can be formulated as interpolating between a reference distribution and a target distribution based on the Kullback-Leibler divergence. At the population level, this entropy interpolation is characterized via an SDE on [0,1] with a time-varying drift term. At the sample level, we derive our Schr{ö}dinger Bridge algorithm by plugging the drift term estimated by a deep score estimator and a deep density ratio estimator into the Euler-Maruyama method. Under some mild smoothness assumptions of the target distribution, we prove the consistency of both the score estimator and the density ratio estimator, and then establish the consistency of the proposed Schr{ö}dinger Bridge approach. Our theoretical results guarantee that the distribution learned by our approach converges to the target distribution. Experimental results on multimodal synthetic data and benchmark data support our theoretical findings and indicate that the generative model via Schr{ö}dinger Bridge is comparable with state-of-the-art GANs, suggesting a new formulation of generative learning. We demonstrate its usefulness in image interpolation and image inpainting.
Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, Can Yang
null
null
2,021
icml
Optimal Non-Convex Exact Recovery in Stochastic Block Model via Projected Power Method
null
In this paper, we study the problem of exact community recovery in the symmetric stochastic block model, where a graph of $n$ vertices is randomly generated by partitioning the vertices into $K \ge 2$ equal-sized communities and then connecting each pair of vertices with probability that depends on their community memberships. Although the maximum-likelihood formulation of this problem is discrete and non-convex, we propose to tackle it directly using projected power iterations with an initialization that satisfies a partial recovery condition. Such an initialization can be obtained by a host of existing methods. We show that in the logarithmic degree regime of the considered problem, the proposed method can exactly recover the underlying communities at the information-theoretic limit. Moreover, with a qualified initialization, it runs in $\mO(n\log^2n/\log\log n)$ time, which is competitive with existing state-of-the-art methods. We also present numerical results of the proposed method to support and complement our theoretical development.
Peng Wang, Huikang Liu, Zirui Zhou, Anthony Man-Cho So
null
null
2,021
icml
A Modular Analysis of Provable Acceleration via Polyak’s Momentum: Training a Wide ReLU Network and a Deep Linear Network
null
Incorporating a so-called “momentum” dynamic in gradient descent methods is widely used in neural net training as it has been broadly observed that, at least empirically, it often leads to significantly faster convergence. At the same time, there are very few theoretical guarantees in the literature to explain this apparent acceleration effect. Even for the classical strongly convex quadratic problems, several existing results only show Polyak’s momentum has an accelerated linear rate asymptotically. In this paper, we first revisit the quadratic problems and show a non-asymptotic accelerated linear rate of Polyak’s momentum. Then, we provably show that Polyak’s momentum achieves acceleration for training a one-layer wide ReLU network and a deep linear network, which are perhaps the two most popular canonical models for studying optimization and deep learning in the literature. Prior works (Du et al. 2019) and (Wu et al. 2019) showed that using vanilla gradient descent, and with an use of over-parameterization, the error decays as $(1- \Theta(\frac{1}{ \kappa’}))^t$ after $t$ iterations, where $\kappa’$ is the condition number of a Gram Matrix. Our result shows that with the appropriate choice of parameters Polyak’s momentum has a rate of $(1-\Theta(\frac{1}{\sqrt{\kappa’}}))^t$. For the deep linear network, prior work (Hu et al. 2020) showed that vanilla gradient descent has a rate of $(1-\Theta(\frac{1}{\kappa}))^t$, where $\kappa$ is the condition number of a data matrix. Our result shows an acceleration rate $(1- \Theta(\frac{1}{\sqrt{\kappa}}))^t$ is achievable by Polyak’s momentum. This work establishes that momentum does indeed speed up neural net training.
Jun-Kun Wang, Chi-Heng Lin, Jacob D Abernethy
null
null
2,021
icml
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
null
Despite their overwhelming capacity to overfit, deep neural networks trained by specific optimization algorithms tend to generalize relatively well to unseen data. Recently, researchers explained it by investigating the implicit bias of optimization algorithms. A remarkable progress is the work (Lyu & Li, 2019), which proves gradient descent (GD) maximizes the margin of homogeneous deep neural networks. Except the first-order optimization algorithms like GD, adaptive algorithms such as AdaGrad, RMSProp and Adam are popular owing to their rapid training process. Mean-while, numerous works have provided empirical evidence that adaptive methods may suffer from poor generalization performance. However, theoretical explanation for the generalization of adaptive optimization algorithms is still lacking. In this paper, we study the implicit bias of adaptive optimization algorithms on homogeneous neural networks. In particular, we study the convergent direction of parameters when they are optimizing the logistic loss. We prove that the convergent direction of Adam and RMSProp is the same as GD, while for AdaGrad, the convergent direction depends on the adaptive conditioner. Technically, we provide a unified framework to analyze convergent direction of adaptive optimization algorithms by constructing novel and nontrivial adaptive gradient flow and surrogate margin. The theoretical findings explain the superiority on generalization of exponential moving average strategy that is adopted by RMSProp and Adam. To the best of knowledge, it is the first work to study the convergent direction of adaptive optimizations on non-linear deep neural networks
Bohan Wang, Qi Meng, Wei Chen, Tie-Yan Liu
null
null
2,021
icml
Robust Inference for High-Dimensional Linear Models via Residual Randomization
null
We propose a residual randomization procedure designed for robust inference using Lasso estimates in the high-dimensional setting. Compared to earlier work that focuses on sub-Gaussian errors, the proposed procedure is designed to work robustly in settings that also include heavy-tailed covariates and errors. Moreover, our procedure can be valid under clustered errors, which is important in practice, but has been largely overlooked by earlier work. Through extensive simulations, we illustrate our method’s wider range of applicability as suggested by theory. In particular, we show that our method outperforms state-of-art methods in challenging, yet more realistic, settings where the distribution of covariates is heavy-tailed or the sample size is small, while it remains competitive in standard, “well behaved" settings previously studied in the literature.
Y. Samuel Wang, Si Kai Lee, Panos Toulis, Mladen Kolar
null
null
2,021
icml
Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time
null
Recent years have witnessed the success of multi-agent reinforcement learning, which has motivated new research directions for mean-field control (MFC) and mean-field game (MFG), as the multi-agent system can be well approximated by a mean-field problem when the number of agents grows to be very large. In this paper, we study the policy gradient (PG) method for the linear-quadratic mean-field control and game, where we assume each agent has identical linear state transitions and quadratic cost functions. While most recent works on policy gradient for MFC and MFG are based on discrete-time models, we focus on a continuous-time model where some of our analyzing techniques could be valuable to the interested readers. For both the MFC and the MFG, we provide PG update and show that it converges to the optimal solution at a linear rate, which is verified by a synthetic simulation. For the MFG, we also provide sufficient conditions for the existence and uniqueness of the Nash equilibrium.
Weichen Wang, Jiequn Han, Zhuoran Yang, Zhaoran Wang
null
null
2,021
icml
Robust Learning for Data Poisoning Attacks
null
We investigate the robustness of stochastic approximation approaches against data poisoning attacks. We focus on two-layer neural networks with ReLU activation and show that under a specific notion of separability in the RKHS induced by the infinite-width network, training (finite-width) networks with stochastic gradient descent is robust against data poisoning attacks. Interestingly, we find that in addition to a lower bound on the width of the network, which is standard in the literature, we also require a distribution-dependent upper bound on the width for robust generalization. We provide extensive empirical evaluations that support and validate our theoretical results.
Yunjuan Wang, Poorya Mianjy, Raman Arora
null
null
2,021
icml
ConvexVST: A Convex Optimization Approach to Variance-stabilizing Transformation
null
The variance-stabilizing transformation (VST) problem is to transform heteroscedastic data to homoscedastic data so that they are more tractable for subsequent analysis. However, most of the existing approaches focus on finding an analytical solution for a certain parametric distribution, which severely limits the applications, because simple distributions cannot faithfully describe the real data while more complicated distributions cannot be analytically solved. In this paper, we converted the VST problem into a convex optimization problem, which can always be efficiently solved, identified the specific structure of the convex problem, which further improved the efficiency of the proposed algorithm, and showed that any finite discrete distributions and the discretized version of any continuous distributions from real data can be variance-stabilized in an easy and nonparametric way. We demonstrated the new approach on bioimaging data and achieved superior performance compared to peer algorithms in terms of not only the variance homoscedasticity but also the impact on subsequent analysis such as denoising. Source codes are available at https://github.com/yu-lab-vt/ConvexVST.
Mengfan Wang, Boyu Lyu, Guoqiang Yu
null
null
2,021
icml
SCC: an efficient deep reinforcement learning agent mastering the game of StarCraft II
null
AlphaStar, the AI that reaches GrandMaster level in StarCraft II, is a remarkable milestone demonstrating what deep reinforcement learning can achieve in complex Real-Time Strategy (RTS) games. However, the complexities of the game, algorithms and systems, and especially the tremendous amount of computation needed are big obstacles for the community to conduct further research in this direction. We propose a deep reinforcement learning agent, StarCraft Commander (SCC). With order of magnitude less computation, it demonstrates top human performance defeating GrandMaster players in test matches and top professional players in a live event. Moreover, it shows strong robustness to various human strategies and discovers novel strategies unseen from human plays. In this paper, we’ll share the key insights and optimizations on efficient imitation learning and reinforcement learning for StarCraft II full game.
Xiangjun Wang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang, Wei Zhang, Weimin Li, Xiongjun Pi, Jujie He, Chao Gao, Haitao Long, Quan Yuan
null
null
2,021
icml
UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data
null
In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both labeled and unlabeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 26.9% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also verified on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.
Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang
null
null
2,021
icml
Quantum algorithms for reinforcement learning with a generative model
null
Reinforcement learning studies how an agent should interact with an environment to maximize its cumulative reward. A standard way to study this question abstractly is to ask how many samples an agent needs from the environment to learn an optimal policy for a $\gamma$-discounted Markov decision process (MDP). For such an MDP, we design quantum algorithms that approximate an optimal policy ($\pi^*$), the optimal value function ($v^*$), and the optimal $Q$-function ($q^*$), assuming the algorithms can access samples from the environment in quantum superposition. This assumption is justified whenever there exists a simulator for the environment; for example, if the environment is a video game or some other program. Our quantum algorithms, inspired by value iteration, achieve quadratic speedups over the best-possible classical sample complexities in the approximation accuracy ($\epsilon$) and two main parameters of the MDP: the effective time horizon ($\frac{1}{1-\gamma}$) and the size of the action space ($A$). Moreover, we show that our quantum algorithm for computing $q^*$ is optimal by proving a matching quantum lower bound.
Daochen Wang, Aarthi Sundaram, Robin Kothari, Ashish Kapoor, Martin Roetteler
null
null
2,021
icml
An exact solver for the Weston-Watkins SVM subproblem
null
Recent empirical evidence suggests that the Weston-Watkins support vector machine is among the best performing multiclass extensions of the binary SVM. Current state-of-the-art solvers repeatedly solve a particular subproblem approximately using an iterative strategy. In this work, we propose an algorithm that solves the subproblem exactly using a novel reparametrization of the Weston-Watkins dual problem. For linear WW-SVMs, our solver shows significant speed-up over the state-of-the-art solver when the number of classes is large. Our exact subproblem solver also allows us to prove linear convergence of the overall solver.
Yutong Wang, Clayton Scott
null
null
2,021
icml
Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing
null
The Laplacian representation recently gains increasing attention for reinforcement learning as it provides succinct and informative representation for states, by taking the eigenvectors of the Laplacian matrix of the state-transition graph as state embeddings. Such representation captures the geometry of the underlying state space and is beneficial to RL tasks such as option discovery and reward shaping. To approximate the Laplacian representation in large (or even continuous) state spaces, recent works propose to minimize a spectral graph drawing objective, which however has infinitely many global minimizers other than the eigenvectors. As a result, their learned Laplacian representation may differ from the ground truth. To solve this problem, we reformulate the graph drawing objective into a generalized form and derive a new learning objective, which is proved to have eigenvectors as its unique global minimizer. It enables learning high-quality Laplacian representations that faithfully approximate the ground truth. We validate this via comprehensive experiments on a set of gridworld and continuous control environments. Moreover, we show that our learned Laplacian representations lead to more exploratory options and better reward shaping.
Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, Jiashi Feng
null
null
2,021
icml
Learning to Weight Imperfect Demonstrations
null
This paper investigates how to weight imperfect expert demonstrations for generative adversarial imitation learning (GAIL). The agent is expected to perform behaviors demonstrated by experts. But in many applications, experts could also make mistakes and their demonstrations would mislead or slow the learning process of the agent. Recently, existing methods for imitation learning from imperfect demonstrations mostly focus on using the preference or confidence scores to distinguish imperfect demonstrations. However, these auxiliary information needs to be collected with the help of an oracle, which is usually hard and expensive to afford in practice. In contrast, this paper proposes a method of learning to weight imperfect demonstrations in GAIL without imposing extensive prior information. We provide a rigorous mathematical analysis, presenting that the weights of demonstrations can be exactly determined by combining the discriminator and agent policy in GAIL. Theoretical analysis suggests that with the estimated weights the agent can learn a better policy beyond those plain expert demonstrations. Experiments in the Mujoco and Atari environments demonstrate that the proposed algorithm outperforms baseline methods in handling imperfect expert demonstrations.
Yunke Wang, Chang Xu, Bo Du, Honglak Lee
null
null
2,021
icml
Inferring serial correlation with dynamic backgrounds
null
Sequential data with serial correlation and an unknown, unstructured, and dynamic background is ubiquitous in neuroscience, psychology, and econometrics. Inferring serial correlation for such data is a fundamental challenge in statistics. We propose a Total Variation (TV) constrained least square estimator coupled with hypothesis tests to infer the serial correlation in the presence of unknown and unstructured dynamic background. The TV constraint on the dynamic background encourages a piecewise constant structure, which can approximate a wide range of dynamic backgrounds. The tuning parameter is selected via the Ljung-Box test to control the bias-variance trade-off. We establish a non-asymptotic upper bound for the estimation error through variational inequalities. We also derive a lower error bound via Fano’s method and show the proposed method is near-optimal. Numerical simulation and a real study in psychology demonstrate the excellent performance of our proposed method compared with the state-of-the-art.
Song Wei, Yao Xie, Dobromir Rahnev
null
null
2,021
icml
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
null
Multi-task learning (MTL) aims to improve the generalization of several related tasks by learning them jointly. As a comparison, in addition to the joint training scheme, modern meta-learning allows unseen tasks with limited labels during the test phase, in the hope of fast adaptation over them. Despite the subtle difference between MTL and meta-learning in the problem formulation, both learning paradigms share the same insight that the shared structure between existing training tasks could lead to better generalization and adaptation. In this paper, we take one important step further to understand the close connection between these two learning paradigms, through both theoretical analysis and empirical investigation. Theoretically, we first demonstrate that MTL shares the same optimization formulation with a class of gradient-based meta-learning (GBML) algorithms. We then prove that for over-parameterized neural networks with sufficient depth, the learned predictive functions of MTL and GBML are close. In particular, this result implies that the predictions given by these two models are similar over the same unseen task. Empirically, we corroborate our theoretical findings by showing that, with proper implementation, MTL is competitive against state-of-the-art GBML algorithms on a set of few-shot image classification benchmarks. Since existing GBML algorithms often involve costly second-order bi-level optimization, our first-order MTL method is an order of magnitude faster on large-scale datasets such as mini-ImageNet. We believe this work could help bridge the gap between these two learning paradigms, and provide a computationally efficient alternative to GBML that also supports fast task adaptation.
Haoxiang Wang, Han Zhao, Bo Li
null
null
2,021
icml
Decision-Making Under Selective Labels: Optimal Finite-Domain Policies and Beyond
null
Selective labels are a common feature of high-stakes decision-making applications, referring to the lack of observed outcomes under one of the possible decisions. This paper studies the learning of decision policies in the face of selective labels, in an online setting that balances learning costs against future utility. In the homogeneous case in which individuals’ features are disregarded, the optimal decision policy is shown to be a threshold policy. The threshold becomes more stringent as more labels are collected; the rate at which this occurs is characterized. In the case of features drawn from a finite domain, the optimal policy consists of multiple homogeneous policies in parallel. For the general infinite-domain case, the homogeneous policy is extended by using a probabilistic classifier and bootstrapping to provide its inputs. In experiments on synthetic and real data, the proposed policies achieve consistently superior utility with no parameter tuning in the finite-domain case and lower parameter sensitivity in the general case.
Dennis Wei
null
null
2,021
icml
Meta-learning Hyperparameter Performance Prediction with Neural Processes
null
The surrogate that predicts the performance of hyperparameters has been a key component for sequential model-based hyperparameter optimization. In practical applications, a trial of a hyper-parameter configuration may be so costly that a surrogate is expected to return an optimal configuration with as few trials as possible. Observing that human experts draw on their expertise in a machine learning model by trying configurations that once performed well on other datasets, we are inspired to build a trial-efficient surrogate by transferring the meta-knowledge learned from historical trials on other datasets. We propose an end-to-end surrogate named as Transfer NeuralProcesses (TNP) that learns a comprehensive set of meta-knowledge, including the parameters of historical surrogates, historical trials, and initial configurations for other datasets. Experiments on extensive OpenML datasets and three computer vision datasets demonstrate that the proposed algorithm achieves state-of-the-art performance in at least one order of magnitude less trials.
Ying Wei, Peilin Zhao, Junzhou Huang
null
null
2,021
icml
A Unified Generative Adversarial Network Training via Self-Labeling and Self-Attention
null
We propose a novel GAN training scheme that can handle any level of labeling in a unified manner. Our scheme introduces a form of artificial labeling that can incorporate manually defined labels, when available, and induce an alignment between them. To define the artificial labels, we exploit the assumption that neural network generators can be trained more easily to map nearby latent vectors to data with semantic similarities, than across separate categories. We use generated data samples and their corresponding artificial conditioning labels to train a classifier. The classifier is then used to self-label real data. To boost the accuracy of the self-labeling, we also use the exponential moving average of the classifier. However, because the classifier might still make mistakes, especially at the beginning of the training, we also refine the labels through self-attention, by using the labeling of real data samples only when the classifier outputs a high classification probability score. We evaluate our approach on CIFAR-10, STL-10 and SVHN, and show that both self-labeling and self-attention consistently improve the quality of generated data. More surprisingly, we find that the proposed scheme can even outperform class-conditional GANs.
Tomoki Watanabe, Paolo Favaro
null
null
2,021
icml
Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
null
We formally study how contrastive learning learns the feature representations for neural networks by investigating its feature learning process. We consider the case where our data are comprised of two types of features: the sparse features which we want to learn from, and the dense features we want to get rid of. Theoretically, we prove that contrastive learning using ReLU networks provably learns the desired features if proper augmentations are adopted. We present an underlying principle called feature decoupling to explain the effects of augmentations, where we theoretically characterize how augmentations can reduce the correlations of dense features between positive samples while keeping the correlations of sparse features intact, thereby forcing the neural networks to learn from the self-supervision of sparse features. Empirically, we verified that the feature decoupling principle matches the underlying mechanism of contrastive learning in practice.
Zixin Wen, Yuanzhi Li
null
null
2,021
icml
Learning de-identified representations of prosody from raw audio
null
We propose a method for learning de-identified prosody representations from raw audio using a contrastive self-supervised signal. Whereas prior work has relied on conditioning models with bottlenecks, we introduce a set of inductive biases that exploit the natural structure of prosody to minimize timbral information and decouple prosody from speaker representations. Despite aggressive downsampling of the input and having no access to linguistic information, our model performs comparably to state-of-the-art speech representations on DAMMP, a new benchmark we introduce for spoken language understanding. We use minimum description length probing to show that our representations have selectively learned the subcomponents of non-timbral prosody, and that the product quantizer naturally disentangles them without using bottlenecks. We derive an information-theoretic definition of speech de-identifiability and use it to demonstrate that our prosody representations are less identifiable than the other speech representations.
Jack Weston, Raphael Lenain, Udeepa Meepegama, Emil Fristed
null
null
2,021
icml
Prediction-Centric Learning of Independent Cascade Dynamics from Partial Observations
null
Spreading processes play an increasingly important role in modeling for diffusion networks, information propagation, marketing and opinion setting. We address the problem of learning of a spreading model such that the predictions generated from this model are accurate and could be subsequently used for the optimization, and control of diffusion dynamics. We focus on a challenging setting where full observations of the dynamics are not available, and standard approaches such as maximum likelihood quickly become intractable for large network instances. We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach, which is able to learn parameters of the effective spreading model given only limited information on the activation times of nodes in the network. The popular Independent Cascade model is used to illustrate our approach. We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model. We develop a systematic procedure for learning a mixture of models which further improves the prediction quality.
Mateusz Wilinski, Andrey Lokhov
null
null
2,021
icml
A Structured Observation Distribution for Generative Biological Sequence Prediction and Forecasting
null
Generative probabilistic modeling of biological sequences has widespread existing and potential application across biology and biomedicine, from evolutionary biology to epidemiology to protein design. Many standard sequence analysis methods preprocess data using a multiple sequence alignment (MSA) algorithm, one of the most widely used computational methods in all of science. However, as we show in this article, training generative probabilistic models with MSA preprocessing leads to statistical pathologies in the context of sequence prediction and forecasting. To address these problems, we propose a principled drop-in alternative to MSA preprocessing in the form of a structured observation distribution (the "MuE" distribution). We prove theoretically that the MuE distribution comprehensively generalizes popular methods for inferring biological sequence alignments, and provide a precise characterization of how such biological models have differed from natural language latent alignment models. We show empirically that models that use the MuE as an observation distribution outperform comparable methods across a variety of datasets, and apply MuE models to a novel problem for generative probabilistic sequence models: forecasting pathogen evolution.
Eli N Weinstein, Debora Marks
null
null
2,021
icml
Which transformer architecture fits my data? A vocabulary bottleneck in self-attention
null
After their successful debut in natural language processing, Transformer architectures are now becoming the de-facto standard in many domains. An obstacle for their deployment over new modalities is the architectural configuration: the optimal depth-to-width ratio has been shown to dramatically vary across data types (i.e., 10x larger over images than over language). We theoretically predict the existence of an embedding rank bottleneck that limits the contribution of self-attention width to the Transformer expressivity. We thus directly tie the input vocabulary size and rank to the optimal depth-to-width ratio, since a small vocabulary size or rank dictates an added advantage of depth over width. We empirically demonstrate the existence of this bottleneck and its implications on the depth-to-width interplay of Transformer architectures, linking the architecture variability across domains to the often glossed-over usage of different vocabulary sizes or embedding ranks in different domains. As an additional benefit, our rank bottlenecking framework allows us to identify size redundancies of 25%-50% in leading NLP models such as ALBERT and T5.
Noam Wies, Yoav Levine, Daniel Jannai, Amnon Shashua
null
null
2,021
icml
On Reinforcement Learning with Adversarial Corruption and Its Application to Block MDP
null
We study reinforcement learning (RL) in episodic tabular MDPs with adversarial corruptions, where some episodes can be adversarially corrupted. When the total number of corrupted episodes is known, we propose an algorithm, Corruption Robust Monotonic Value Propagation (\textsf{CR-MVP}), which achieves a regret bound of $\tilde{O}\left(\left(\sqrt{SAK}+S^2A+CSA)\right)\polylog(H)\right)$, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $K$ is the number of episodes, and $C$ is the corruption level. We also provide a corresponding lower bound, which indicates that our upper bound is tight. Finally, as an application, we study RL with rich observations in the block MDP model. We provide the first algorithm that achieves a $\sqrt{K}$-type regret in this setting and is computationally efficient.
Tianhao Wu, Yunchang Yang, Simon Du, Liwei Wang
null
null
2,021
icml
Temporally Correlated Task Scheduling for Sequence Learning
null
Sequence learning has attracted much research attention from the machine learning community in recent years. In many applications, a sequence learning task is usually associated with multiple temporally correlated auxiliary tasks, which are different in terms of how much input information to use or which future step to predict. For example, (i) in simultaneous machine translation, one can conduct translation under different latency (i.e., how many input words to read/wait before translation); (ii) in stock trend forecasting, one can predict the price of a stock in different future days (e.g., tomorrow, the day after tomorrow). While it is clear that those temporally correlated tasks can help each other, there is a very limited exploration on how to better leverage multiple auxiliary tasks to boost the performance of the main task. In this work, we introduce a learnable scheduler to sequence learning, which can adaptively select auxiliary tasks for training depending on the model status and the current training data. The scheduler and the model for the main task are jointly trained through bi-level optimization. Experiments show that our method significantly improves the performance of simultaneous machine translation and stock trend forecasting.
Xueqing Wu, Lewen Wang, Yingce Xia, Weiqing Liu, Lijun Wu, Shufang Xie, Tao Qin, Tie-Yan Liu
null
null
2,021
icml
Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach
null
Recommendation models can effectively estimate underlying user interests and predict one’s future behaviors by factorizing an observed user-item rating matrix into products of two sets of latent factors. However, the user-specific embedding factors can only be learned in a transductive way, making it difficult to handle new users on-the-fly. In this paper, we propose an inductive collaborative filtering framework that contains two representation models. The first model follows conventional matrix factorization which factorizes a group of key users’ rating matrix to obtain meta latents. The second model resorts to attention-based structure learning that estimates hidden relations from query to key users and learns to leverage meta latents to inductively compute embeddings for query users via neural message passing. Our model enables inductive representation learning for users and meanwhile guarantees equivalent representation capacity as matrix factorization. Experiments demonstrate that our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users which are commonly encountered in open-world recommender systems.
Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha
null
null
2,021
icml
Explore Visual Concept Formation for Image Classification
null
Human beings acquire the ability of image classification through visual concept learning, in which the process of concept formation involves intertwined searches of common properties and concept descriptions. However, in most image classification algorithms using deep convolutional neural network (ConvNet), the representation space is constructed under the premise that concept descriptions are fixed as one-hot codes, which limits the mining of properties and the ability of identifying unseen samples. Inspired by this, we propose a learning strategy of visual concept formation (LSOVCF) based on the ConvNet, in which the two intertwined parts of concept formation, i.e. feature extraction and concept description, are learned together. First, LSOVCF takes sample response in the last layer of ConvNet to induct concept description being assumed as Gaussian distribution, which is part of the training process. Second, the exploration and experience loss is designed for optimization, which adopts experience cache pool to speed up convergence. Experiments show that LSOVCF improves the ability of identifying unseen samples on cifar10, STL10, flower17 and ImageNet based on several backbones, from the classic VGG to the SOTA Ghostnet. The code is available at \url{https://github.com/elvintanhust/LSOVCF}.
Shengzhou Xiong, Yihua Tan, Guoyou Wang
null
null
2,021
icml
RNNRepair: Automatic RNN Repair via Model-based Analysis
null
Deep neural networks are vulnerable to adversarial attacks. Due to their black-box nature, it is rather challenging to interpret and properly repair these incorrect behaviors. This paper focuses on interpreting and repairing the incorrect behaviors of Recurrent Neural Networks (RNNs). We propose a lightweight model-based approach (RNNRepair) to help understand and repair incorrect behaviors of an RNN. Specifically, we build an influence model to characterize the stateful and statistical behaviors of an RNN over all the training data and to perform the influence analysis for the errors. Compared with the existing techniques on influence function, our method can efficiently estimate the influence of existing or newly added training samples for a given prediction at both sample level and segmentation level. Our empirical evaluation shows that the proposed influence model is able to extract accurate and understandable features. Based on the influence model, our proposed technique could effectively infer the influential instances from not only an entire testing sequence but also a segment within that sequence. Moreover, with the sample-level and segment-level influence relations, RNNRepair could further remediate two types of incorrect predictions at the sample level and segment level.
Xiaofei Xie, Wenbo Guo, Lei Ma, Wei Le, Jian Wang, Lingjun Zhou, Yang Liu, Xinyu Xing
null
null
2,021
icml
Learning While Playing in Mean-Field Games: Convergence and Optimality
null
We study reinforcement learning in mean-field games. To achieve the Nash equilibrium, which consists of a policy and a mean-field state, existing algorithms require obtaining the optimal policy while fixing any mean-field state. In practice, however, the policy and the mean-field state evolve simultaneously, as each agent is learning while playing. To bridge such a gap, we propose a fictitious play algorithm, which alternatively updates the policy (learning) and the mean-field state (playing) by one step of policy optimization and gradient descent, respectively. Despite the nonstationarity induced by such an alternating scheme, we prove that the proposed algorithm converges to the Nash equilibrium with an explicit convergence rate. To the best of our knowledge, it is the first provably efficient algorithm that achieves learning while playing via alternating updates.
Qiaomin Xie, Zhuoran Yang, Zhaoran Wang, Andreea Minca
null
null
2,021
icml
Deep Reinforcement Learning amidst Continual Structured Non-Stationarity
null
As humans, our goals and our environment are persistently changing throughout our lifetime based on our experiences, actions, and internal and external drives. In contrast, typical reinforcement learning problem set-ups consider decision processes that are stationary across episodes. Can we develop reinforcement learning algorithms that can cope with the persistent change in the former, more realistic problem settings? While on-policy algorithms such as policy gradients in principle can be extended to non-stationary settings, the same cannot be said for more efficient off-policy algorithms that replay past experiences when learning. In this work, we formalize this problem setting, and draw upon ideas from the online learning and probabilistic inference literature to derive an off-policy RL algorithm that can reason about and tackle such lifelong non-stationarity. Our method leverages latent variable models to learn a representation of the environment from current and past experiences, and performs off-policy RL with this representation. We further introduce several simulation environments that exhibit lifelong non-stationarity, and empirically find that our approach substantially outperforms approaches that do not reason about environment shift.
Annie Xie, James Harrison, Chelsea Finn
null
null
2,021
icml
A Hybrid Variance-Reduced Method for Decentralized Stochastic Non-Convex Optimization
null
This paper considers decentralized stochastic optimization over a network of $n$ nodes, where each node possesses a smooth non-convex local cost function and the goal of the networked nodes is to find an $\epsilon$-accurate first-order stationary point of the sum of the local costs. We focus on an online setting, where each node accesses its local cost only by means of a stochastic first-order oracle that returns a noisy version of the exact gradient. In this context, we propose a novel single-loop decentralized hybrid variance-reduced stochastic gradient method, called GT-HSGD, that outperforms the existing approaches in terms of both the oracle complexity and practical implementation. The GT-HSGD algorithm implements specialized local hybrid stochastic gradient estimators that are fused over the network to track the global gradient. Remarkably, GT-HSGD achieves a network topology-independent oracle complexity of $O(n^{-1}\epsilon^{-3})$ when the required error tolerance $\epsilon$ is small enough, leading to a linear speedup with respect to the centralized optimal online variance-reduced approaches that operate on a single node. Numerical experiments are provided to illustrate our main technical results.
Ran Xin, Usman Khan, Soummya Kar
null
null
2,021
icml
Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization
null
We focus on prediction problems with structured outputs that are subject to output validity constraints, e.g. pseudocode-to-code translation where the code must compile. While labeled input-output pairs are expensive to obtain, "unlabeled" outputs, i.e. outputs without corresponding inputs, are freely available (e.g. code on GitHub) and provide information about output validity. Pre-training captures this structure by training a denoiser to denoise corrupted versions of unlabeled outputs. We first show that standard fine-tuning after pre-training destroys some of this structure. We then propose composed fine-tuning, which trains a predictor composed with the pre-trained denoiser. Importantly, the denoiser is fixed to preserve output structure. Like standard fine-tuning, the predictor is also initialized with the pre-trained denoiser. We prove for two-layer ReLU networks that composed fine-tuning significantly reduces the complexity of the predictor, thus improving generalization. Empirically, we show that composed fine-tuning improves over standard fine-tuning on two pseudocode-to-code translation datasets (3% and 6% relative). The improvement is magnified on out-of-distribution (OOD) examples (4% and 25% relative), suggesting that reducing predictor complexity improves OOD extrapolation.
Sang Michael Xie, Tengyu Ma, Percy Liang
null
null
2,021
icml
Interpretable Stein Goodness-of-fit Tests on Riemannian Manifold
null
In many applications, we encounter data on Riemannian manifolds such as torus and rotation groups. Standard statistical procedures for multivariate data are not applicable to such data. In this study, we develop goodness-of-fit testing and interpretable model criticism methods for general distributions on Riemannian manifolds, including those with an intractable normalization constant. The proposed methods are based on extensions of kernel Stein discrepancy, which are derived from Stein operators on Riemannian manifolds. We discuss the connections between the proposed tests with existing ones and provide a theoretical analysis of their asymptotic Bahadur efficiency. Simulation results and real data applications show the validity and usefulness of the proposed methods.
Wenkai Xu, Takeru Matsuda
null
null
2,021
icml
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
null
It is well-known that stochastic gradient noise (SGN) acts as implicit regularization for deep learning and is essentially important for both optimization and generalization of deep networks. Some works attempted to artificially simulate SGN by injecting random noise to improve deep learning. However, it turned out that the injected simple random noise cannot work as well as SGN, which is anisotropic and parameter-dependent. For simulating SGN at low computational costs and without changing the learning rate or batch size, we propose the Positive-Negative Momentum (PNM) approach that is a powerful alternative to conventional Momentum in classic optimizers. The introduced PNM method maintains two approximate independent momentum terms. Then, we can control the magnitude of SGN explicitly by adjusting the momentum difference. We theoretically prove the convergence guarantee and the generalization advantage of PNM over Stochastic Gradient Descent (SGD). By incorporating PNM into the two conventional optimizers, SGD with Momentum and Adam, our extensive experiments empirically verified the significant advantage of the PNM-based variants over the corresponding conventional Momentum-based optimizers. Code: \url{https://github.com/zeke-xie/Positive-Negative-Momentum}.
Zeke Xie, Li Yuan, Zhanxing Zhu, Masashi Sugiyama
null
null
2,021
icml
Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings
null
Sparse regression has recently been applied to enable transfer learning from very limited data. We study an extension of this approach to unsupervised learning—in particular, learning word embeddings from unstructured text corpora using low-rank matrix factorization. Intuitively, when transferring word embeddings to a new domain, we expect that the embeddings change for only a small number of words—e.g., the ones with novel meanings in that domain. We propose a novel group-sparse penalty that exploits this sparsity to perform transfer learning when there is very little text data available in the target domain—e.g., a single article of text. We prove generalization bounds for our algorithm. Furthermore, we empirically evaluate its effectiveness, both in terms of prediction accuracy in downstream tasks as well as in terms of interpretability of the results.
Kan Xu, Xuanyi Zhao, Hamsa Bastani, Osbert Bastani
null
null
2,021
icml
Conformal prediction interval for dynamic time-series
null
We develop a method to construct distribution-free prediction intervals for dynamic time-series, called \Verb|EnbPI| that wraps around any bootstrap ensemble estimator to construct sequential prediction intervals. \Verb|EnbPI| is closely related to the conformal prediction (CP) framework but does not require data exchangeability. Theoretically, these intervals attain finite-sample, \textit{approximately valid} marginal coverage for broad classes of regression functions and time-series with strongly mixing stochastic errors. Computationally, \Verb|EnbPI| avoids overfitting and requires neither data-splitting nor training multiple ensemble estimators; it efficiently aggregates bootstrap estimators that have been trained. In general, \Verb|EnbPI| is easy to implement, scalable to producing arbitrarily many prediction intervals sequentially, and well-suited to a wide range of regression functions. We perform extensive real-data analyses to demonstrate its effectiveness.
Chen Xu, Yao Xie
null
null
2,021
icml
Mediated Uncoupled Learning: Learning Functions without Direct Input-output Correspondences
null
Ordinary supervised learning is useful when we have paired training data of input $X$ and output $Y$. However, such paired data can be difficult to collect in practice. In this paper, we consider the task of predicting $Y$ from $X$ when we have no paired data of them, but we have two separate, independent datasets of $X$ and $Y$ each observed with some mediating variable $U$, that is, we have two datasets $S_X = \{(X_i, U_i)\}$ and $S_Y = \{(U’_j, Y’_j)\}$. A naive approach is to predict $U$ from $X$ using $S_X$ and then $Y$ from $U$ using $S_Y$, but we show that this is not statistically consistent. Moreover, predicting $U$ can be more difficult than predicting $Y$ in practice, e.g., when $U$ has higher dimensionality. To circumvent the difficulty, we propose a new method that avoids predicting $U$ but directly learns $Y = f(X)$ by training $f(X)$ with $S_{X}$ to predict $h(U)$ which is trained with $S_{Y}$ to approximate $Y$. We prove statistical consistency and error bounds of our method and experimentally confirm its practical usefulness.
Ikko Yamane, Junya Honda, Florian Yger, Masashi Sugiyama
null
null
2,021
icml
Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth
null
Graph Neural Networks (GNNs) have been studied through the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs’ training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, Kenji Kawaguchi
null
null
2,021
icml
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming
null
Predicting molecular conformations (or 3D structures) from molecular graphs is a fundamental problem in many applications. Most existing approaches are usually divided into two steps by first predicting the distances between atoms and then generating a 3D structure through optimizing a distance geometry problem. However, the distances predicted with such two-stage approaches may not be able to consistently preserve the geometry of local atomic neighborhoods, making the generated structures unsatisfying. In this paper, we propose an end-to-end solution for molecular conformation prediction called ConfVAE based on the conditional variational autoencoder framework. Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program. Extensive experiments on several benchmark data sets prove the effectiveness of our proposed approach over existing state-of-the-art approaches. Code is available at \url{https://github.com/MinkaiXu/ConfVAE-ICML21}.
Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli, Jian Tang
null
null
2,021
icml
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
null
The recent work by Rendle et al. (2020), based on empirical observations, argues that matrix-factorization collaborative filtering (MCF) compares favorably to neural collaborative filtering (NCF), and conjectures the dot product’s superiority over the feed-forward neural network as similarity function. In this paper, we address the comparison rigorously by answering the following questions: 1. what is the limiting expressivity of each model; 2. under the practical gradient descent, to which solution does each optimization path converge; 3. how would the models generalize under the inductive and transductive learning setting. Our results highlight the similar expressivity for the overparameterized NCF and MCF as kernelized predictors, and reveal the relation between their optimization paths. We further show their different generalization behaviors, where MCF and NCF experience specific tradeoff and comparison in the transductive and inductive collaborative filtering setting. Lastly, by showing a novel generalization result, we reveal the critical role of correcting exposure bias for model evaluation in the inductive setting. Our results explain some of the previously observed conflicts, and we provide synthetic and real-data experiments to shed further insights to this topic.
Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan
null
null
2,021
icml
Self-supervised Graph-level Representation Learning with Local and Global Structure
null
This paper studies unsupervised/self-supervised whole-graph representation learning, which is critical in many tasks such as molecule properties prediction in drug and material discovery. Existing methods mainly focus on preserving the local similarity structure between different graph instances but fail to discover the global semantic structure of the entire data set. In this paper, we propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning. Specifically, besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters. An efficient online expectation-maximization (EM) algorithm is further developed for learning the model. We evaluate GraphLoG by pre-training it on massive unlabeled graphs followed by fine-tuning on downstream tasks. Extensive experiments on both chemical and biological benchmark data sets demonstrate the effectiveness of the proposed approach.
Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, Jian Tang
null
null
2,021
icml
On Perceptual Lossy Compression: The Cost of Perceptual Reconstruction and An Optimal Training Framework
null
Lossy compression algorithms are typically designed to achieve the lowest possible distortion at a given bit rate. However, recent studies show that pursuing high perceptual quality would lead to increase of the lowest achievable distortion (e.g., MSE). This paper provides nontrivial results theoretically revealing that, 1) the cost of achieving perfect perception quality is exactly a doubling of the lowest achievable MSE distortion, 2) an optimal encoder for the “classic” rate-distortion problem is also optimal for the perceptual compression problem, 3) distortion loss is unnecessary for training a perceptual decoder. Further, we propose a novel training framework to achieve the lowest MSE distortion under perfect perception constraint at a given bit rate. This framework uses a GAN with discriminator conditioned on an MSE-optimized encoder, which is superior over the traditional framework using distortion plus adversarial loss. Experiments are provided to verify the theoretical finding and demonstrate the superiority of the proposed training framework.
Zeyu Yan, Fei Wen, Rendong Ying, Chao Ma, Peilin Liu
null
null
2,021
icml
CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee
null
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and meanwhile avoids violation of certain constraints on a number of expected total costs. In general, such SRL problems have nonconvex objective functions subject to multiple nonconvex constraints, and hence are very challenging to solve, particularly to provide a globally optimal policy. Many popular SRL algorithms adopt a primal-dual structure which utilizes the updating of dual variables for satisfying the constraints. In contrast, we propose a primal approach, called constraint-rectified policy optimization (CRPO), which updates the policy alternatingly between objective improvement and constraint satisfaction. CRPO provides a primal-type algorithmic framework to solve SRL problems, where each policy update can take any variant of policy optimization step. To demonstrate the theoretical performance of CRPO, we adopt natural policy gradient (NPG) for each policy update step and show that CRPO achieves an $\mathcal{O}(1/\sqrt{T})$ convergence rate to the global optimal policy in the constrained policy set and an $\mathcal{O}(1/\sqrt{T})$ error bound on constraint satisfaction. This is the first finite-time analysis of primal SRL algorithms with global optimality guarantee. Our empirical results demonstrate that CRPO can outperform the existing primal-dual baseline algorithms significantly.
Tengyu Xu, Yingbin Liang, Guanghui Lan
null
null
2,021
icml
Tensor Programs IV: Feature Learning in Infinite-Width Neural Networks
null
As its width tends to infinity, a deep neural network’s behavior under gradient descent can become simplified and predictable (e.g. given by the Neural Tangent Kernel (NTK)), if it is parametrized appropriately (e.g. the NTK parametrization). However, we show that the standard and NTK parametrizations of a neural network do not admit infinite-width limits that can *learn* features, which is crucial for pretraining and transfer learning such as with BERT. We propose simple modifications to the standard parametrization to allow for feature learning in the limit. Using the *Tensor Programs* technique, we derive explicit formulas for such limits. On Word2Vec and few-shot learning on Omniglot via MAML, two canonical tasks that rely crucially on feature learning, we compute these limits exactly. We find that they outperform both NTK baselines and finite-width networks, with the latter approaching the infinite-width feature learning performance as width increases.
Greg Yang, Edward J. Hu
null
null
2,021
icml
Voice2Series: Reprogramming Acoustic Models for Time Series Classification
null
Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper we propose Voice2Serie (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 31 different time series tasks we show that V2S outperforms or is on part with state-of-the-art methods on 22 tasks, and improves their average accuracy by 1.72%. We further provide theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification.
Chao-Han Huck Yang, Yun-Yun Tsai, Pin-Yu Chen
null
null
2,021
icml
Learning Optimal Auctions with Correlated Valuations from Samples
null
In single-item auction design, it is well known due to Cremer and McLean that when bidders’ valuations are drawn from a correlated prior distribution, the auctioneer can extract full social surplus as revenue. However, in most real-world applications, the prior is usually unknown and can only be learned from historical data. In this work, we investigate the robustness of the optimal auction with correlated valuations via sample complexity analysis. We prove upper and lower bounds on the number of samples from the unknown prior required to learn a (1-epsilon)-approximately optimal auction. Our results reinforce the common belief that optimal correlated auctions are sensitive to the distribution parameters and hard to learn unless the prior distribution is well-behaved.
Chunxue Yang, Xiaohui Bei
null
null
2,021
icml
Exact Gap between Generalization Error and Uniform Convergence in Random Feature Models
null
Recent work showed that there could be a large gap between the classical uniform convergence bound and the actual test error of zero-training-error predictors (interpolators) such as deep neural networks. To better understand this gap, we study the uniform convergence in the nonlinear random feature model and perform a precise theoretical analysis on how uniform convergence depends on the sample size and the number of parameters. We derive and prove analytical expressions for three quantities in this model: 1) classical uniform convergence over norm balls, 2) uniform convergence over interpolators in the norm ball (recently proposed by \citet{zhou2021uniform}), and 3) the risk of minimum norm interpolator. We show that, in the setting where the classical uniform convergence bound is vacuous (diverges to $\infty$), uniform convergence over the interpolators still gives a non-trivial bound of the test error of interpolating solutions. We also showcase a different setting where classical uniform convergence bound is non-vacuous, but uniform convergence over interpolators can give an improved sample complexity guarantee. Our result provides a first exact comparison between the test errors and uniform convergence bounds for interpolators beyond simple linear models.
Zitong Yang, Yu Bai, Song Mei
null
null
2,021
icml
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection
null
We investigate the adversarial robustness of CNNs from the perspective of channel-wise activations. By comparing normally trained and adversarially trained models, we observe that adversarial training (AT) robustifies CNNs by aligning the channel-wise activations of adversarial data with those of their natural counterparts. However, the channels that are \textit{negatively-relevant} (NR) to predictions are still over-activated when processing adversarial data. Besides, we also observe that AT does not result in similar robustness for all classes. For the robust classes, channels with larger activation magnitudes are usually more \textit{positively-relevant} (PR) to predictions, but this alignment does not hold for the non-robust classes. Given these observations, we hypothesize that suppressing NR channels and aligning PR ones with their relevances further enhances the robustness of CNNs under AT. To examine this hypothesis, we introduce a novel mechanism, \textit{i.e.}, \underline{C}hannel-wise \underline{I}mportance-based \underline{F}eature \underline{S}election (CIFS). The CIFS manipulates channels’ activations of certain layers by generating non-negative multipliers to these channels based on their relevances to predictions. Extensive experiments on benchmark datasets including CIFAR10 and SVHN clearly verify the hypothesis and CIFS’s effectiveness of robustifying CNNs.
Hanshu Yan, Jingfeng Zhang, Gang Niu, Jiashi Feng, Vincent Tan, Masashi Sugiyama
null
null
2,021
icml
Tensor Programs IIb: Architectural Universality Of Neural Tangent Kernel Training Dynamics
null
Yang (2020) recently showed that the Neural Tangent Kernel (NTK) at initialization has an infinite-width limit for a large class of architectures including modern staples such as ResNet and Transformers. However, their analysis does not apply to training. Here, we show the same neural networks (in the so-called NTK parametrization) during training follow a kernel gradient descent dynamics in function space, where the kernel is the infinite-width NTK. This completes the proof of the architectural universality of NTK behavior. To achieve this result, we apply the Tensor Programs technique: Write the entire SGD dynamics inside a Tensor Program and analyze it via the Master Theorem. To facilitate this proof, we develop a graphical notation for Tensor Programs, which we believe is also an important contribution toward the pedagogy and exposition of the Tensor Programs technique.
Greg Yang, Etai Littwin
null
null
2,021
icml
LARNet: Lie Algebra Residual Network for Face Recognition
null
Face recognition is an important yet challenging problem in computer vision. A major challenge in practical face recognition applications lies in significant variations between profile and frontal faces. Traditional techniques address this challenge either by synthesizing frontal faces or by pose invariant learning. In this paper, we propose a novel method with Lie algebra theory to explore how face rotation in the 3D space affects the deep feature generation process of convolutional neural networks (CNNs). We prove that face rotation in the image space is equivalent to an additive residual component in the feature space of CNNs, which is determined solely by the rotation. Based on this theoretical finding, we further design a Lie Algebraic Residual Network (LARNet) for tackling pose robust face recognition. Our LARNet consists of a residual subnet for decoding rotation information from input face images, and a gating subnet to learn rotation magnitude for controlling the strength of the residual component contributing to the feature learning process. Comprehensive experimental evaluations on both frontal-profile face datasets and general face recognition datasets convincingly demonstrate that our method consistently outperforms the state-of-the-art ones.
Xiaolong Yang, Xiaohong Jia, Dihong Gong, Dong-Ming Yan, Zhifeng Li, Wei Liu
null
null
2,021
icml
BASGD: Buffered Asynchronous SGD for Byzantine Learning
null
Distributed learning has become a hot research topic due to its wide application in cluster-based large-scale learning, federated learning, edge computing and so on. Most traditional distributed learning methods typically assume no failure or attack. However, many unexpected cases, such as communication failure and even malicious attack, may happen in real applications. Hence, Byzantine learning (BL), which refers to distributed learning with failure or attack, has recently attracted much attention. Most existing BL methods are synchronous, which are impractical in some applications due to heterogeneous or offline workers. In these cases, asynchronous BL (ABL) is usually preferred. In this paper, we propose a novel method, called buffered asynchronous stochastic gradient descent (BASGD), for ABL. To the best of our knowledge, BASGD is the first ABL method that can resist malicious attack without storing any instances on server. Compared with those methods which need to store instances on server, BASGD has a wider scope of application. BASGD is proved to be convergent, and be able to resist failure or attack. Empirical results show that BASGD significantly outperforms vanilla asynchronous stochastic gradient descent (ASGD) and other ABL baselines when there exists failure or attack on workers.
Yi-Rui Yang, Wu-Jun Li
null
null
2,021
icml
Representation Matters: Offline Pretraining for Sequential Decision Making
null
The recent success of supervised learning methods on ever larger offline datasets has spurred interest in the reinforcement learning (RL) field to investigate whether the same paradigms can be translated to RL algorithms. This research area, known as offline RL, has largely focused on offline policy optimization, aiming to find a return-maximizing policy exclusively from offline data. In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making. We aim to answer the question, what unsupervised objectives applied to offline datasets are able to learn state representations which elevate performance on downstream tasks, whether those downstream tasks be online RL, imitation learning from expert demonstrations, or even offline policy optimization based on the same offline dataset? Through a variety of experiments utilizing standard offline RL datasets, we find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms that otherwise yield mediocre performance on their own. Extensive ablations further provide insights into what components of these unsupervised objectives {–} e.g., reward prediction, continuous or discrete representations, pretraining or finetuning {–} are most important and in which settings.
Mengjiao Yang, Ofir Nachum
null
null
2,021
icml
Accelerating Safe Reinforcement Learning with Constraint-mismatched Baseline Policies
null
We consider the problem of reinforcement learning when provided with (1) a baseline control policy and (2) a set of constraints that the learner must satisfy. The baseline policy can arise from demonstration data or a teacher agent and may provide useful cues for learning, but it might also be sub-optimal for the task at hand, and is not guaranteed to satisfy the specified constraints, which might encode safety, fairness or other application-specific requirements. In order to safely learn from baseline policies, we propose an iterative policy optimization algorithm that alternates between maximizing expected return on the task, minimizing distance to the baseline policy, and projecting the policy onto the constraint-satisfying set. We analyze our algorithm theoretically and provide a finite-time convergence guarantee. In our experiments on five different control tasks, our algorithm consistently outperforms several state-of-the-art baselines, achieving 10 times fewer constraint violations and 40% higher reward on average.
Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, Peter J Ramadge
null
null
2,021
icml
SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks
null
In this paper, we propose a conceptually simple but very effective attention module for Convolutional Neural Networks (ConvNets). In contrast to existing channel-wise and spatial-wise attention modules, our module instead infers 3-D attention weights for the feature map in a layer without adding parameters to the original networks. Specifically, we base on some well-known neuroscience theories and propose to optimize an energy function to find the importance of each neuron. We further derive a fast closed-form solution for the energy function, and show that the solution can be implemented in less than ten lines of code. Another advantage of the module is that most of the operators are selected based on the solution to the defined energy function, avoiding too many efforts for structure tuning. Quantitative evaluations on various visual tasks demonstrate that the proposed module is flexible and effective to improve the representation ability of many ConvNets. Our code is available at Pytorch-SimAM.
Lingxiao Yang, Ru-Yuan Zhang, Lida Li, Xiaohua Xie
null
null
2,021
icml
Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss
null
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundamental approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach, and codes are available at https://github.com/yangxue0827/RotationDetection.
Xue Yang, Junchi Yan, Qi Ming, Wentao Wang, Xiaopeng Zhang, Qi Tian
null
null
2,021
icml
Backpropagated Neighborhood Aggregation for Accurate Training of Spiking Neural Networks
null
While Backpropagation (BP) has been applied to spiking neural networks (SNNs) achieving encouraging results, a key challenge involved is to backpropagate a differentiable continuous-valued loss over layers of spiking neurons exhibiting discontinuous all-or-none firing activities. Existing methods deal with this difficulty by introducing compromises that come with their own limitations, leading to potential performance degradation. We propose a novel BP-like method, called neighborhood aggregation (NA), which computes accurate error gradients guiding weight updates that may lead to discontinuous modifications of firing activities. NA achieves this goal by aggregating the error gradient over multiple spike trains in the neighborhood of the present spike train of each neuron. The employed aggregation is based on a generalized finite difference approximation with a proposed distance metric quantifying the similarity between a given pair of spike trains. Our experiments show that the proposed NA algorithm delivers state-of-the-art performance for SNN training on several datasets including CIFAR10.
Yukun Yang, Wenrui Zhang, Peng Li
null
null
2,021
icml
When All We Need is a Piece of the Pie: A Generic Framework for Optimizing Two-way Partial AUC
null
The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge that a skillful classifier should simultaneously embrace a high TPR and a low FPR, we turn to study a more general variant called Two-way Partial AUC (TPAUC), where only the region with $\mathsf{TPR} \ge \alpha, \mathsf{FPR} \le \beta$ is included in the area. Moreover, a recent work shows that the TPAUC is essentially inconsistent with the existing Partial AUC metrics where only the FPR range is restricted, opening a new problem to seek solutions to leverage high TPAUC. Motivated by this, we present the first trial in this paper to optimize this new metric. The critical challenge along this course lies in the difficulty of performing gradient-based optimization with end-to-end stochastic training, even with a proper choice of surrogate loss. To address this issue, we propose a generic framework to construct surrogate optimization problems, which supports efficient end-to-end training with deep-learning. Moreover, our theoretical analyses show that: 1) the objective function of the surrogate problems will achieve an upper bound of the original problem under mild conditions, and 2) optimizing the surrogate problems leads to good generalization performance in terms of TPAUC with a high probability. Finally, empirical studies over several benchmark datasets speak to the efficacy of our framework.
Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, Qingming Huang
null
null
2,021
icml
HAWQ-V3: Dyadic Neural Network Quantization
null
Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values. This hidden cost limits the latency improvement realized by quantizing Neural Networks. To address this, we present HAWQ-V3, a novel mixed-precision integer-only quantization framework. The contributions of HAWQ-V3 are the following: (i) An integer-only inference where the entire computational graph is performed only with integer multiplication, addition, and bit shifting, without any floating point operations or even integer division; (ii) A novel hardware-aware mixed-precision quantization method where the bit-precision is calculated by solving an integer linear programming problem that balances the trade-off between model perturbation and other constraints, e.g., memory footprint and latency; (iii) Direct hardware deployment and open source contribution for 4-bit uniform/mixed-precision quantization in TVM, achieving an average speed up of 1.45x for uniform 4-bit, as compared to uniform 8-bit for ResNet50 on T4 GPUs; and (iv) extensive evaluation of the proposed methods on ResNet18/50 and InceptionV3, for various model compression levels with/without mixed precision. For ResNet50, our INT8 quantization achieves an accuracy of 77.58%, which is 2.68% higher than prior integer-only work, and our mixed-precision INT4/8 quantization can reduce INT8 latency by 23% and still achieve 76.73% accuracy. Our framework and the TVM implementation have been open sourced (HAWQ, 2020).
Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael Mahoney, Kurt Keutzer
null
null
2,021
icml
Improving Gradient Regularization using Complex-Valued Neural Networks
null
Gradient regularization is a neural network defense technique that requires no prior knowledge of an adversarial attack and that brings only limited increase in training computational complexity. A form of complex-valued neural network (CVNN) is proposed to improve the performance of gradient regularization on classification tasks of real-valued input in adversarial settings. The activation derivatives of each layer of the CVNN are dependent on the combination of inputs to the layer, and locally stable representations can be learned for inputs the network is trained on. Furthermore, the properties of the CVNN parameter derivatives resist decrease of performance on the standard objective that is caused by competition with the gradient regularization objective. Experimental results show that the performance of gradient regularized CVNN surpasses that of real-valued neural networks with comparable storage and computational complexity. Moreover, gradient regularized complex-valued networks exhibit robust performance approaching that of real-valued networks trained with multi-step adversarial training.
Eric C Yeats, Yiran Chen, Hai Li
null
null
2,021
icml
Regret and Cumulative Constraint Violation Analysis for Online Convex Optimization with Long Term Constraints
null
This paper considers online convex optimization with long term constraints, where constraints can be violated in intermediate rounds, but need to be satisfied in the long run. The cumulative constraint violation is used as the metric to measure constraint violations, which excludes the situation that strictly feasible constraints can compensate the effects of violated constraints. A novel algorithm is first proposed and it achieves an $\mathcal{O}(T^{\max\{c,1-c\}})$ bound for static regret and an $\mathcal{O}(T^{(1-c)/2})$ bound for cumulative constraint violation, where $c\in(0,1)$ is a user-defined trade-off parameter, and thus has improved performance compared with existing results. Both static regret and cumulative constraint violation bounds are reduced to $\mathcal{O}(\log(T))$ when the loss functions are strongly convex, which also improves existing results. %In order to bound the regret with respect to any comparator sequence, In order to achieve the optimal regret with respect to any comparator sequence, another algorithm is then proposed and it achieves the optimal $\mathcal{O}(\sqrt{T(1+P_T)})$ regret and an $\mathcal{O}(\sqrt{T})$ cumulative constraint violation, where $P_T$ is the path-length of the comparator sequence. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.
Xinlei Yi, Xiuxian Li, Tao Yang, Lihua Xie, Tianyou Chai, Karl Johansson
null
null
2,021
icml
Continuous-time Model-based Reinforcement Learning
null
Model-based reinforcement learning (MBRL) approaches rely on discrete-time state transition models whereas physical systems and the vast majority of control tasks operate in continuous-time. To avoid time-discretization approximation of the underlying process, we propose a continuous-time MBRL framework based on a novel actor-critic method. Our approach also infers the unknown state evolution differentials with Bayesian neural ordinary differential equations (ODE) to account for epistemic uncertainty. We implement and test our method on a new ODE-RL suite that explicitly solves continuous-time control systems. Our experiments illustrate that the model is robust against irregular and noisy data, and can solve classic control problems in a sample-efficient manner.
Cagatay Yildiz, Markus Heinonen, Harri Lähdesmäki
null
null
2,021
icml
Improved OOD Generalization via Adversarial Training and Pretraing
null
Recently, learning a model that generalizes well on out-of-distribution (OOD) data has attracted great attention in the machine learning community. In this paper, after defining OOD generalization by Wasserstein distance, we theoretically justify that a model robust to input perturbation also generalizes well on OOD data. Inspired by previous findings that adversarial training helps improve robustness, we show that models trained by adversarial training have converged excess risk on OOD data. Besides, in the paradigm of pre-training then fine-tuning, we theoretically justify that the input perturbation robust model in the pre-training stage provides an initialization that generalizes well on downstream OOD data. Finally, various experiments conducted on image classification and natural language understanding tasks verify our theoretical findings.
Mingyang Yi, Lu Hou, Jiacheng Sun, Lifeng Shang, Xin Jiang, Qun Liu, Zhiming Ma
null
null
2,021
icml
Conditional Temporal Neural Processes with Covariance Loss
null
We introduce a novel loss function, Covariance Loss, which is conceptually equivalent to conditional neural processes and has a form of regularization so that is applicable to many kinds of neural networks. With the proposed loss, mappings from input variables to target variables are highly affected by dependencies of target variables as well as mean activation and mean dependencies of input and target variables. This nature enables the resulting neural networks to become more robust to noisy observations and recapture missing dependencies from prior information. In order to show the validity of the proposed loss, we conduct extensive sets of experiments on real-world datasets with state-of-the-art models and discuss the benefits and drawbacks of the proposed Covariance Loss.
Boseon Yoo, Jiwoo Lee, Janghoon Ju, Seijun Chung, Soyeon Kim, Jaesik Choi
null
null
2,021
icml
Distributed Nyström Kernel Learning with Communications
null
We study the statistical performance for distributed kernel ridge regression with Nyström (DKRR-NY) and with Nyström and iterative solvers (DKRR-NY-PCG) and successfully derive the optimal learning rates, which can improve the ranges of the number of local processors $p$ to the optimal in existing state-of-art bounds. More precisely, our theoretical analysis show that DKRR-NY and DKRR-NY-PCG achieve the same learning rates as the exact KRR requiring essentially $\mathcal{O}(|D|^{1.5})$ time and $\mathcal{O}(|D|)$ memory with relaxing the restriction on $p$ in expectation, where $|D|$ is the number of data, which exhibits the average effectiveness of multiple trials. Furthermore, for showing the generalization performance in a single trial, we deduce the learning rates for DKRR-NY and DKRR-NY-PCG in probability. Finally, we propose a novel algorithm DKRR-NY-CM based on DKRR-NY, which employs a communication strategy to further improve the learning performance, whose effectiveness of communications is validated in theoretical and experimental analysis.
Rong Yin, Weiping Wang, Dan Meng
null
null
2,021
icml
SinIR: Efficient General Image Manipulation with Single Image Reconstruction
null
We propose SinIR, an efficient reconstruction-based framework trained on a single natural image for general image manipulation, including super-resolution, editing, harmonization, paint-to-image, photo-realistic style transfer, and artistic style transfer. We train our model on a single image with cascaded multi-scale learning, where each network at each scale is responsible for image reconstruction. This reconstruction objective greatly reduces the complexity and running time of training, compared to the GAN objective. However, the reconstruction objective also exacerbates the output quality. Therefore, to solve this problem, we further utilize simple random pixel shuffling, which also gives control over manipulation, inspired by the Denoising Autoencoder. With quantitative evaluation, we show that SinIR has competitive performance on various image manipulation tasks. Moreover, with a much simpler training objective (i.e., reconstruction), SinIR is trained 33.5 times faster than SinGAN (for 500x500 images) that solves similar tasks. Our code is publicly available at github.com/YooJiHyeong/SinIR.
Jihyeong Yoo, Qifeng Chen
null
null
2,021
icml
Adversarial Purification with Score-based Generative Models
null
While adversarial training is considered as a standard defense method against adversarial attacks for image classifiers, adversarial purification, which purifies attacked images into clean images with a standalone purification, model has shown promises as an alternative defense method. Recently, an EBM trained with MCMC has been highlighted as a purification model, where an attacked image is purified by running a long Markov-chain using the gradients of the EBM. Yet, the practicality of the adversarial purification using an EBM remains questionable because the number of MCMC steps required for such purification is too large. In this paper, we propose a novel adversarial purification method based on an EBM trained with DSM. We show that an EBM trained with DSM can quickly purify attacked images within a few steps. We further introduce a simple yet effective randomized purification scheme that injects random noises into images before purification. This process screens the adversarial perturbations imposed on images by the random noises and brings the images to the regime where the EBM can denoise well. We show that our purification method is robust against various attacks and demonstrate its state-of-the-art performances.
Jongmin Yoon, Sung Ju Hwang, Juho Lee
null
null
2,021
icml
Whittle Networks: A Deep Likelihood Model for Time Series
null
While probabilistic circuits have been extensively explored for tabular data, less attention has been paid to time series. Here, the goal is to estimate joint densities among the entire time series and, in turn, determining, for instance, conditional independence relations between them. To this end, we propose the first probabilistic circuits (PCs) approach for modeling the joint distribution of multivariate time series, called Whittle sum-product networks (WSPNs). WSPNs leverage the Whittle approximation, casting the likelihood in the frequency domain, and place a complex-valued sum-product network, the most prominent PC, over the frequencies. The conditional independence relations among the time series can then be determined efficiently in the spectral domain. Moreover, WSPNs can naturally be placed into the deep neural learning stack for time series, resulting in Whittle Networks, opening the likelihood toolbox for training deep neural models and inspecting their behaviour. Our experiments show that Whittle Networks can indeed capture complex dependencies between time series and provide a useful measure of uncertainty for neural networks.
Zhongjie Yu, Fabrizio G Ventola, Kristian Kersting
null
null
2,021
icml
Learning Generalized Intersection Over Union for Dense Pixelwise Prediction
null
Intersection over union (IoU) score, also named Jaccard Index, is one of the most fundamental evaluation methods in machine learning. The original IoU computation cannot provide non-zero gradients and thus cannot be directly optimized by nowadays deep learning methods. Several recent works generalized IoU for bounding box regression, but they are not straightforward to adapt for pixelwise prediction. In particular, the original IoU fails to provide effective gradients for the non-overlapping and location-deviation cases, which results in performance plateau. In this paper, we propose PixIoU, a generalized IoU for pixelwise prediction that is sensitive to the distance for non-overlapping cases and the locations in prediction. We provide proofs that PixIoU holds many nice properties as the original IoU. To optimize the PixIoU, we also propose a loss function that is proved to be submodular, hence we can apply the Lovász functions, the efficient surrogates for submodular functions for learning this loss. Experimental results show consistent performance improvements by learning PixIoU over the original IoU for several different pixelwise prediction tasks on Pascal VOC, VOT-2020 and Cityscapes.
Jiaqian Yu, Jingtao Xu, Yiwei Chen, Weiming Li, Qiang Wang, Byungin Yoo, Jae-Joon Han
null
null
2,021
icml
Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity
null
Deep AUC (area under the ROC curve) Maximization (DAM) has attracted much attention recently due to its great potential for imbalanced data classification. However, the research on Federated Deep AUC Maximization (FDAM) is still limited. Compared with standard federated learning (FL) approaches that focus on decomposable minimization objectives, FDAM is more complicated due to its minimization objective is non-decomposable over individual examples. In this paper, we propose improved FDAM algorithms for heterogeneous data by solving the popular non-convex strongly-concave min-max formulation of DAM in a distributed fashion, which can also be applied to a class of non-convex strongly-concave min-max problems. A striking result of this paper is that the communication complexity of the proposed algorithm is a constant independent of the number of machines and also independent of the accuracy level, which improves an existing result by orders of magnitude. The experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets, and on medical chest X-ray images from different organizations. Our experiment shows that the performance of FDAM using data from multiple hospitals can improve the AUC score on testing data from a single hospital for detecting life-threatening diseases based on chest radiographs.
Zhuoning Yuan, Zhishuai Guo, Yi Xu, Yiming Ying, Tianbao Yang
null
null
2,021
icml
Deep Latent Graph Matching
null
Deep learning for graph matching (GM) has emerged as an important research topic due to its superior performance over traditional methods and insights it provides for solving other combinatorial problems on graph. While recent deep methods for GM extensively investigated effective node/edge feature learning or downstream GM solvers given such learned features, there is little existing work questioning if the fixed connectivity/topology typically constructed using heuristics (e.g., Delaunay or k-nearest) is indeed suitable for GM. From a learning perspective, we argue that the fixed topology may restrict the model capacity and thus potentially hinder the performance. To address this, we propose to learn the (distribution of) latent topology, which can better support the downstream GM task. We devise two latent graph generation procedures, one deterministic and one generative. Particularly, the generative procedure emphasizes the across-graph consistency and thus can be viewed as a matching-guided co-generative model. Our methods deliver superior performance over previous state-of-the-arts on public benchmarks, hence supporting our hypothesis.
Tianshu Yu, Runzhong Wang, Junchi Yan, Baoxin Li
null
null
2,021
icml
Neural Tangent Generalization Attacks
null
The remarkable performance achieved by Deep Neural Networks (DNNs) in many applications is followed by the rising concern about data privacy and security. Since DNNs usually require large datasets to train, many practitioners scrape data from external sources such as the Internet. However, an external data owner may not be willing to let this happen, causing legal or ethical issues. In this paper, we study the generalization attacks against DNNs, where an attacker aims to slightly modify training data in order to spoil the training process such that a trained network lacks generalizability. These attacks can be performed by data owners and protect data from unexpected use. However, there is currently no efficient generalization attack against DNNs due to the complexity of a bilevel optimization involved. We propose the Neural Tangent Generalization Attack (NTGA) that, to the best of our knowledge, is the first work enabling clean-label, black-box generalization attack against DNNs. We conduct extensive experiments, and the empirical results demonstrate the effectiveness of NTGA. Our code and perturbed datasets are available at: https://github.com/lionelmessi6410/ntga.
Chia-Hung Yuan, Shan-Hung Wu
null
null
2,021
icml
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
null
Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at https://github.com/mlpen/YOSO.
Zhanpeng Zeng, Yunyang Xiong, Sathya Ravi, Shailesh Acharya, Glenn M Fung, Vikas Singh
null
null
2,021
icml
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
null
Several practical applications of reinforcement learning involve an agent learning from past data without the possibility of further exploration. Often these applications require us to 1) identify a near optimal policy or to 2) estimate the value of a target policy. For both tasks we derive exponential information-theoretic lower bounds in discounted infinite horizon MDPs with a linear function representation for the action value function even if 1) realizability holds, 2) the batch algorithm observes the exact reward and transition functions, and 3) the batch algorithm is given the best a priori data distribution for the problem class. Our work introduces a new ‘oracle + batch algorithm’ framework to prove lower bounds that hold for every distribution. The work shows an exponential separation between batch and online reinforcement learning.
Andrea Zanette
null
null
2,021
icml
Grey-box Extraction of Natural Language Models
null
Model extraction attacks attempt to replicate a target machine learning model by querying its inference API. State-of-the-art attacks are learning-based and construct replicas by supervised training on the target model’s predictions, but an emerging class of attacks exploit algebraic properties to obtain high-fidelity replicas using orders of magnitude fewer queries. So far, these algebraic attacks have been limited to neural networks with few hidden layers and ReLU activations. In this paper we present algebraic and hybrid algebraic/learning-based attacks on large-scale natural language models. We consider a grey-box setting, targeting models with a pre-trained (public) encoder followed by a single (private) classification layer. Our key findings are that (i) with a frozen encoder, high-fidelity extraction is possible with a small number of in-distribution queries, making extraction attacks indistinguishable from legitimate use; (ii) when the encoder is fine-tuned, a hybrid learning-based/algebraic attack improves over the learning-based state-of-the-art without requiring additional queries.
Santiago Zanella-Beguelin, Shruti Tople, Andrew Paverd, Boris Köpf
null
null
2,021
icml
Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization?
null
Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and confirm the functional lottery ticket hypothesis: the full network contains a subnetwork with proper structure that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the functional structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.
Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, Aaron Courville
null
null
2,021
icml
Understanding Failures in Out-of-Distribution Detection with Deep Generative Models
null
Deep generative models (DGMs) seem a natural fit for detecting out-of-distribution (OOD) inputs, but such models have been shown to assign higher probabilities or densities to OOD images than images from the training distribution. In this work, we explain why this behavior should be attributed to model misestimation. We first prove that no method can guarantee performance beyond random chance without assumptions on which out-distributions are relevant. We then interrogate the typical set hypothesis, the claim that relevant out-distributions can lie in high likelihood regions of the data distribution, and that OOD detection should be defined based on the data distribution’s typical set. We highlight the consequences implied by assuming support overlap between in- and out-distributions, as well as the arbitrariness of the typical set for OOD detection. Our results suggest that estimation error is a more plausible explanation than the misalignment between likelihood-based OOD detection and out-distributions of interest, and we illustrate how even minimal estimation error can lead to OOD detection failures, yielding implications for future work in deep generative modeling and OOD detection.
Lily Zhang, Mark Goldstein, Rajesh Ranganath
null
null
2,021
icml
Three Operator Splitting with a Nonconvex Loss Function
null
We consider the problem of minimizing the sum of three functions, one of which is nonconvex but differentiable, and the other two are convex but possibly nondifferentiable. We investigate the Three Operator Splitting method (TOS) of Davis & Yin (2017) with an aim to extend its theoretical guarantees for this nonconvex problem template. In particular, we prove convergence of TOS with nonasymptotic bounds on its nonstationarity and infeasibility errors. In contrast with the existing work on nonconvex TOS, our guarantees do not require additional smoothness assumptions on the terms comprising the objective; hence they cover instances of particular interest where the nondifferentiable terms are indicator functions. We also extend our results to a stochastic setting where we have access only to an unbiased estimator of the gradient. Finally, we illustrate the effectiveness of the proposed method through numerical experiments on quadratic assignment problems.
Alp Yurtsever, Varun Mangalick, Suvrit Sra
null
null
2,021
icml
Near Optimal Reward-Free Reinforcement Learning
null
We study the reward-free reinforcement learning framework, which is particularly suitable for batch reinforcement learning and scenarios where one needs policies for multiple reward functions. This framework has two phases: in the exploration phase, the agent collects trajectories by interacting with the environment without using any reward signal; in the planning phase, the agent needs to return a near-optimal policy for arbitrary reward functions. %This framework is suitable for batch RL setting and the setting where there are multiple reward functions of interes We give a new efficient algorithm, \textbf{S}taged \textbf{S}ampling + \textbf{T}runcated \textbf{P}lanning (\algoname), which interacts with the environment at most $O\left( \frac{S^2A}{\epsilon^2}\poly\log\left(\frac{SAH}{\epsilon}\right) \right)$ episodes in the exploration phase, and guarantees to output a near-optimal policy for arbitrary reward functions in the planning phase, where $S$ is the size of state space, $A$ is the size of action space, $H$ is the planning horizon, and $\epsilon$ is the target accuracy relative to the total reward. Notably, our sample complexity scales only \emph{logarithmically} with $H$, in contrast to all existing results which scale \emph{polynomially} with $H$. Furthermore, this bound matches the minimax lower bound $\Omega\left(\frac{S^2A}{\epsilon^2}\right)$ up to logarithmic factors. Our results rely on three new techniques : 1) A new sufficient condition for the dataset to plan for an $\epsilon$-suboptimal policy % for any totally bounded reward function ; 2) A new way to plan efficiently under the proposed condition using soft-truncated planning; 3) Constructing extended MDP to maximize the truncated accumulative rewards efficiently.
Zihan Zhang, Simon Du, Xiangyang Ji
null
null
2,021
icml
Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons
null
It is well-known that standard neural networks, even with a high classification accuracy, are vulnerable to small $\ell_\infty$-norm bounded adversarial perturbations. Although many attempts have been made, most previous works either can only provide empirical verification of the defense to a particular attack method, or can only develop a certified guarantee of the model robustness in limited scenarios. In this paper, we seek for a new approach to develop a theoretically principled neural network that inherently resists $\ell_\infty$ perturbations. In particular, we design a novel neuron that uses $\ell_\infty$-distance as its basic operation (which we call $\ell_\infty$-dist neuron), and show that any neural network constructed with $\ell_\infty$-dist neurons (called $\ell_{\infty}$-dist net) is naturally a 1-Lipschitz function with respect to $\ell_\infty$-norm. This directly provides a rigorous guarantee of the certified robustness based on the margin of prediction outputs. We then prove that such networks have enough expressive power to approximate any 1-Lipschitz function with robust generalization guarantee. We further provide a holistic training strategy that can greatly alleviate optimization difficulties. Experimental results show that using $\ell_{\infty}$-dist nets as basic building blocks, we consistently achieve state-of-the-art performance on commonly used datasets: 93.09% certified accuracy on MNIST ($\epsilon=0.3$), 35.42% on CIFAR-10 ($\epsilon=8/255$) and 16.31% on TinyImageNet ($\epsilon=1/255$).
Bohang Zhang, Tianle Cai, Zhou Lu, Di He, Liwei Wang
null
null
2,021
icml
Poolingformer: Long Document Modeling with Pooling Attention
null
In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.
Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, Weizhu Chen
null
null
2,021
icml
FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning
null
Value decomposition recently injects vigorous vitality into multi-agent actor-critic methods. However, existing decomposed actor-critic methods cannot guarantee the convergence of global optimum. In this paper, we present a novel multi-agent actor-critic method, FOP, which can factorize the optimal joint policy induced by maximum-entropy multi-agent reinforcement learning (MARL) into individual policies. Theoretically, we prove that factorized individual policies of FOP converge to the global optimum. Empirically, in the well-known matrix game and differential game, we verify that FOP can converge to the global optimum for both discrete and continuous action spaces. We also evaluate FOP on a set of StarCraft II micromanagement tasks, and demonstrate that FOP substantially outperforms state-of-the-art decomposed value-based and actor-critic methods.
Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, Zongqing Lu
null
null
2,021
icml
Learning from Noisy Labels with No Change to the Training Process
null
There has been much interest in recent years in developing learning algorithms that can learn accurate classifiers from data with noisy labels. A widely-studied noise model is that of \emph{class-conditional noise} (CCN), wherein a label $y$ is flipped to a label $\tilde{y}$ with some associated noise probability that depends on both $y$ and $\tilde{y}$. In the multiclass setting, all previously proposed algorithms under the CCN model involve changing the training process, by introducing a ‘noise-correction’ to the surrogate loss to be minimized over the noisy training examples. In this paper, we show that this is really unnecessary: one can simply perform class probability estimation (CPE) on the noisy examples, e.g. using a standard (multiclass) logistic regression algorithm, and then apply noise-correction only in the final prediction step. This means that the training algorithm itself does not need any change, and one can simply use standard off-the-shelf implementations with no modification to the code for training. Our approach can handle general multiclass loss matrices, including the usual 0-1 loss but also other losses such as those used for ordinal regression problems. We also provide a quantitative regret transfer bound, which bounds the target regret on the true distribution in terms of the CPE regret on the noisy distribution; in doing so, we extend the notion of strong properness introduced for binary losses by Agarwal (2014) to the multiclass case. Our bound suggests that the sample complexity of learning under CCN increases as the noise matrix approaches singularity. We also provide fixes and potential improvements for noise estimation methods that involve computing anchor points. Our experiments confirm our theoretical findings.
Mingyuan Zhang, Jane Lee, Shivani Agarwal
null
null
2,021
icml
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
null
Differentiable ARchiTecture Search(DARTS) has recently become the mainstream in the neural architecture search (NAS) due to its efficiency and simplicity. With a gradient-based bi-level optimization, DARTS alternately optimizes the inner model weights and the outer architecture parameter in a weight-sharing supernet. A key challenge to the scalability and quality of the learned architectures is the need for differentiating through the inner-loop optimisation. While much has been discussed about several potentially fatal factors in DARTS, the architecture gradient, a.k.a. hypergradient, has received less attention. In this paper, we tackle the hypergradient computation in DARTS based on the implicit function theorem, making it only depends on the obtained solution to the inner-loop optimization and agnostic to the optimization path. To further reduce the computational requirements, we formulate a stochastic hypergradient approximation for differentiable NAS, and theoretically show that the architecture optimization with the proposed method is expected to converge to a stationary point. Comprehensive experiments on two NAS benchmark search spaces and the common NAS search space verify the effectiveness of our proposed method. It leads to architectures outperforming, with large margins, those learned by the baseline methods.
Miao Zhang, Steven W. Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, Reza Haffari
null
null
2,021
icml
Towards Better Robust Generalization with Shift Consistency Regularization
null
While adversarial training becomes one of the most promising defending approaches against adversarial attacks for deep neural networks, the conventional wisdom through robust optimization may usually not guarantee good generalization for robustness. Concerning with robust generalization over unseen adversarial data, this paper investigates adversarial training from a novel perspective of shift consistency in latent space. We argue that the poor robust generalization of adversarial training is owing to the significantly dispersed latent representations generated by training and test adversarial data, as the adversarial perturbations push the latent features of natural examples in the same class towards diverse directions. This is underpinned by the theoretical analysis of the robust generalization gap, which is upper-bounded by the standard one over the natural data and a term of feature inconsistent shift caused by adversarial perturbation {–} a measure of latent dispersion. Towards better robust generalization, we propose a new regularization method {–} shift consistency regularization (SCR) {–} to steer the same-class latent features of both natural and adversarial data into a common direction during adversarial training. The effectiveness of SCR in adversarial training is evaluated through extensive experiments over different datasets, such as CIFAR-10, CIFAR-100, and SVHN, against several competitive methods.
Shufei Zhang, Zhuang Qian, Kaizhu Huang, Qiufeng Wang, Rui Zhang, Xinping Yi
null
null
2,021
icml
Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization
null
Many weakly supervised classification methods employ a noise transition matrix to capture the class-conditional label corruption. To estimate the transition matrix from noisy data, existing methods often need to estimate the noisy class-posterior, which could be unreliable due to the overconfidence of neural networks. In this work, we propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously, without relying on the error-prone noisy class-posterior estimation. Concretely, inspired by the characteristics of the stochastic label corruption process, we propose total variation regularization, which encourages the predicted probabilities to be more distinguishable from each other. Under mild assumptions, the proposed method yields a consistent estimator of the transition matrix. We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.
Yivan Zhang, Gang Niu, Masashi Sugiyama
null
null
2,021
icml
Differentiable Dynamic Quantization with Mixed Precision and Adaptive Resolution
null
Model quantization is challenging due to many tedious hyper-parameters such as precision (bitwidth), dynamic range (minimum and maximum discrete values) and stepsize (interval between discrete values). Unlike prior arts that carefully tune these values, we present a fully differentiable approach to learn all of them, named Differentiable Dynamic Quantization (DDQ), which has several benefits. (1) DDQ is able to quantize challenging lightweight architectures like MobileNets, where different layers prefer different quantization parameters. (2) DDQ is hardware-friendly and can be easily implemented using low-precision matrix-vector multiplication, making it capable in many hardware such as ARM. (3) Extensive experiments show that DDQ outperforms prior arts on many networks and benchmarks, especially when models are already efficient and compact. e.g., DDQ is the first approach that achieves lossless 4-bit quantization for MobileNetV2 on ImageNet.
Zhaoyang Zhang, Wenqi Shao, Jinwei Gu, Xiaogang Wang, Ping Luo
null
null
2,021
icml
Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation
null
Boundary based blackbox attack has been recognized as practical and effective, given that an attacker only needs to access the final model prediction. However, the query efficiency of it is in general high especially for high dimensional image data. In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency. In particular, we propose a theoretical framework to analyze and show three key characteristics to improve the query efficiency. We prove that there exists an optimal scale for projective gradient estimation. Our framework also explains the satisfactory performance achieved by existing boundary black-box attacks. Based on our theoretical framework, we propose Progressive-Scale enabled projective Boundary Attack (PSBA) to improve the query efficiency via progressive scaling techniques. In particular, we employ Progressive-GAN to optimize the scale of projections, which we call PSBA-PGAN. We evaluate our approach on both spatial and frequency scales. Extensive experiments on MNIST, CIFAR-10, CelebA, and ImageNet against different models including a real-world face recognition API show that PSBA-PGAN significantly outperforms existing baseline attacks in terms of query efficiency and attack success rate. We also observe relatively stable optimal scales for different models and datasets. The code is publicly available at https://github.com/AI-secure/PSBA.
Jiawei Zhang, Linyi Li, Huichen Li, Xiaolu Zhang, Shuang Yang, Bo Li
null
null
2,021
icml
Deep Coherent Exploration for Continuous Control
null
In policy search methods for reinforcement learning (RL), exploration is often performed by injecting noise either in action space at each step independently or in parameter space over each full trajectory. In prior work, it has been shown that with linear policies, a more balanced trade-off between these two exploration strategies is beneficial. However, that method did not scale to policies using deep neural networks. In this paper, we introduce deep coherent exploration, a general and scalable exploration framework for deep RL algorithms for continuous control, that generalizes step-based and trajectory-based exploration. This framework models the last layer parameters of the policy network as latent variables and uses a recursive inference step within the policy update to handle these latent variables in a scalable manner. We find that deep coherent exploration improves the speed and stability of learning of A2C, PPO, and SAC on several continuous control tasks.
Yijie Zhang, Herke Van Hoof
null
null
2,021
icml
MetaCURE: Meta Reinforcement Learning with Empowerment-Driven Exploration
null
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, Chongjie Zhang
null
null
2,021
icml
World Model as a Graph: Learning Latent Landmarks for Planning
null
Planning, the ability to analyze the structure of a problem in the large and decompose it into interrelated subproblems, is a hallmark of human intelligence. While deep reinforcement learning (RL) has shown great promise for solving relatively straightforward control tasks, it remains an open problem how to best incorporate planning into existing deep RL paradigms to handle increasingly complex environments. One prominent framework, Model-Based RL, learns a world model and plans using step-by-step virtual rollouts. This type of world model quickly diverges from reality when the planning horizon increases, thus struggling at long-horizon planning. How can we learn world models that endow agents with the ability to do temporally extended reasoning? In this work, we propose to learn graph-structured world models composed of sparse, multi-step transitions. We devise a novel algorithm to learn latent landmarks that are scattered (in terms of reachability) across the goal space as the nodes on the graph. In this same graph, the edges are the reachability estimates distilled from Q-functions. On a variety of high-dimensional continuous control tasks ranging from robotic manipulation to navigation, we demonstrate that our method, named L3P, significantly outperforms prior work, and is oftentimes the only method capable of leveraging both the robustness of model-free RL and generalization of graph-search algorithms. We believe our work is an important step towards scalable planning in reinforcement learning.
Lunjun Zhang, Ge Yang, Bradly C Stadie
null
null
2,021
icml
Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample Complexity
null
In this paper we consider the problem of learning an $\epsilon$-optimal policy for a discounted Markov Decision Process (MDP). Given an MDP with $S$ states, $A$ actions, the discount factor $\gamma \in (0,1)$, and an approximation threshold $\epsilon > 0$, we provide a model-free algorithm to learn an $\epsilon$-optimal policy with sample complexity $\tilde{O}(\frac{SA\ln(1/p)}{\epsilon^2(1-\gamma)^{5.5}})$ \footnote{In this work, the notation $\tilde{O}(\cdot)$ hides poly-logarithmic factors of $S,A,1/(1-\gamma)$, and $1/\epsilon$.} and success probability $(1-p)$. For small enough $\epsilon$, we show an improved algorithm with sample complexity $\tilde{O}(\frac{SA\ln(1/p)}{\epsilon^2(1-\gamma)^{3}})$. While the first bound improves upon all known model-free algorithms and model-based ones with tight dependence on $S$, our second algorithm beats all known sample complexity bounds and matches the information theoretic lower bound up to logarithmic factors.
Zihan Zhang, Yuan Zhou, Xiangyang Ji
null
null
2,021
icml
Joining datasets via data augmentation in the label space for neural networks
null
Most, if not all, modern deep learning systems restrict themselves to a single dataset for neural network training and inference. In this article, we are interested in systematic ways to join datasets that are made of similar purposes. Unlike previous published works that ubiquitously conduct the dataset joining in the uninterpretable latent vectorial space, the core to our method is an augmentation procedure in the label space. The primary challenge to address the label space for dataset joining is the discrepancy between labels: non-overlapping label annotation sets, different labeling granularity or hierarchy and etc. Notably we propose a new technique leveraging artificially created knowledge graph, recurrent neural networks and policy gradient that successfully achieve the dataset joining in the label space. Empirical results on both image and text classification justify the validity of our approach.
Junbo Zhao, Mingfeng Ou, Linji Xue, Yunkai Cui, Sai Wu, Gang Chen
null
null
2,021
icml
Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation
null
In this paper, we study meta learning for support (i.e., the set of non-zero entries) recovery in high-dimensional precision matrix estimation where we reduce the sufficient sample complexity in a novel task with the information learned from other auxiliary tasks. In our setup, each task has a different random true precision matrix, each with a possibly different support. We assume that the union of the supports of all the true precision matrices (i.e., the true support union) is small in size. We propose to pool all the samples from different tasks, and \emph{improperly} estimate a single precision matrix by minimizing the $\ell_1$-regularized log-determinant Bregman divergence. We show that with high probability, the support of the \emph{improperly} estimated single precision matrix is equal to the true support union, provided a sufficient number of samples per task $n \in O((\log N)/K)$, for $N$-dimensional vectors and $K$ tasks. That is, one requires less samples per task when more tasks are available. We prove a matching information-theoretic lower bound for the necessary number of samples, which is $n \in \Omega((\log N)/K)$, and thus, our algorithm is minimax optimal. Then for the novel task, we prove that the minimization of the $\ell_1$-regularized log-determinant Bregman divergence with the additional constraint that the support is a subset of the estimated support union could reduce the sufficient sample complexity of successful support recovery to $O(\log(|S_{\text{off}}|))$ where $|S_{\text{off}}|$ is the number of off-diagonal elements in the support union and is much less than $N$ for sparse matrices. We also prove a matching information-theoretic lower bound of $\Omega(\log(|S_{\text{off}}|))$ for the necessary number of samples.
Qian Zhang, Yilin Zheng, Jean Honorio
null
null
2,021
icml
Towards Distraction-Robust Active Visual Tracking
null
In active visual tracking, it is notoriously difficult when distracting objects appear, as distractors often mislead the tracker by occluding the target or bringing a confusing appearance. To address this issue, we propose a mixed cooperative-competitive multi-agent game, where a target and multiple distractors form a collaborative team to play against a tracker and make it fail to follow. Through learning in our game, diverse distracting behaviors of the distractors naturally emerge, thereby exposing the tracker’s weakness, which helps enhance the distraction-robustness of the tracker. For effective learning, we then present a bunch of practical methods, including a reward function for distractors, a cross-modal teacher-student learning strategy, and a recurrent attention mechanism for the tracker. The experimental results show that our tracker performs desired distraction-robust active visual tracking and can be well generalized to unseen environments. We also show that the multi-agent game can be used to adversarially test the robustness of trackers.
Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, Yizhou Wang
null
null
2,021
icml
Few-Shot Neural Architecture Search
null
Efficient evaluation of a network architecture drawn from a large search space remains a key challenge in Neural Architecture Search (NAS). Vanilla NAS evaluates each architecture by training from scratch, which gives the true performance but is extremely time-consuming. Recently, one-shot NAS substantially reduces the computation cost by training only one supernetwork, a.k.a. supernet, to approximate the performance of every architecture in the search space via weight-sharing. However, the performance estimation can be very inaccurate due to the co-adaption among operations. In this paper, we propose few-shot NAS that uses multiple supernetworks, called sub-supernet, each covering different regions of the search space to alleviate the undesired co-adaption. Compared to one-shot NAS, few-shot NAS improves the accuracy of architecture evaluation with a small increase of evaluation cost. With only up to 7 sub-supernets, few-shot NAS establishes new SoTAs: on ImageNet, it finds models that reach 80.5% top-1 accuracy at 600 MB FLOPS and 77.5% top-1 accuracy at 238 MFLOPS; on CIFAR10, it reaches 98.72% top-1 accuracy without using extra data or transfer learning. In Auto-GAN, few-shot NAS outperforms the previously published results by up to 20%. Extensive experiments show that few-shot NAS significantly improves various one-shot methods, including 4 gradient-based and 6 search-based methods on 3 different tasks in NasBench-201 and NasBench1-shot-1.
Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, Tian Guo
null
null
2,021
icml
Calibrate Before Use: Improving Few-shot Performance of Language Models
null
GPT-3 can perform numerous tasks when provided a natural language prompt that contains a few training examples. We show that this type of few-shot learning can be unstable: the choice of prompt format, training examples, and even the order of the examples can cause accuracy to vary from near chance to near state-of-the-art. We demonstrate that this instability arises from the bias of language models towards predicting certain answers, e.g., those that are placed near the end of the prompt or are common in the pre-training data. To mitigate this, we first estimate the model’s bias towards each answer by asking for its prediction when given a training prompt and a content-free test input such as "N/A". We then fit calibration parameters that cause the prediction for this input to be uniform across answers. On a diverse set of tasks, this contextual calibration procedure substantially improves GPT-3 and GPT-2’s accuracy (up to 30.0% absolute) across different choices of the prompt, while also making learning considerably more stable.
Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, Sameer Singh
null
null
2,021
icml
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
null
We propose a Multiscale Invertible Generative Network (MsIGN) and associated training algorithm that leverages multiscale structure to solve high-dimensional Bayesian inference. To address the curse of dimensionality, MsIGN exploits the low-dimensional nature of the posterior, and generates samples from coarse to fine scale (low to high dimension) by iteratively upsampling and refining samples. MsIGN is trained in a multi-stage manner to minimize the Jeffreys divergence, which avoids mode dropping in high-dimensional cases. On two high-dimensional Bayesian inverse problems, we show superior performance of MsIGN over previous approaches in posterior approximation and multiple mode capture. On the natural image synthesis task, MsIGN achieves superior performance in bits-per-dimension over baseline models and yields great interpret-ability of its neurons in intermediate layers.
Shumao Zhang, Pengchuan Zhang, Thomas Y Hou
null
null
2,021
icml
Two Heads are Better Than One: Hypergraph-Enhanced Graph Reasoning for Visual Event Ratiocination
null
Even with a still image, humans can ratiocinate various visual cause-and-effect descriptions before, at present, and after, as well as beyond the given image. However, it is challenging for models to achieve such task–the visual event ratiocination, owing to the limitations of time and space. To this end, we propose a novel multi-modal model, Hypergraph-Enhanced Graph Reasoning. First it represents the contents from the same modality as a semantic graph and mines the intra-modality relationship, therefore breaking the limitations in the spatial domain. Then, we introduce the Graph Self-Attention Enhancement. On the one hand, this enables semantic graph representations from different modalities to enhance each other and captures the inter-modality relationship along the line. On the other hand, it utilizes our built multi-modal hypergraphs in different moments to boost individual semantic graph representations, and breaks the limitations in the temporal domain. Our method illustrates the case of "two heads are better than one" in the sense that semantic graph representations with the help of the proposed enhancement mechanism are more robust than those without. Finally, we re-project these representations and leverage their outcomes to generate textual cause-and-effect descriptions. Experimental results show that our model achieves significantly higher performance in comparison with other state-of-the-arts.
Wenbo Zheng, Lan Yan, Chao Gou, Fei-Yue Wang
null
null
2,021
icml