title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
The duality structure gradient descent algorithm: analysis and applications to neural networks
cs.LG math.OC
The training of deep neural networks is typically carried out using some form of gradient descent, often with great success. However, existing non-asymptotic analyses of first-order optimization algorithms typically employ a gradient smoothness assumption that is too strong to be applicable in the case of deep neural networks. To address this, we propose an algorithm named duality structure gradient descent (DSGD) that is amenable to non-asymptotic performance analysis, under mild assumptions on the training set and network architecture. The algorithm can be viewed as a form of layer-wise coordinate descent, where at each iteration the algorithm chooses one layer of the network to update. The decision of what layer to update is done in a greedy fashion, based on a rigorous lower bound on the improvement of the objective function for each choice of layer. In the analysis, we bound the time required to reach approximate stationary points, in both the deterministic and stochastic settings. The convergence is measured in terms of a parameter-dependent family of norms that is derived from the network architecture and designed to confirm a smoothness-like property on the gradient of the training loss function. We empirically demonstrate the effectiveness of DSGD in several neural network training scenarios.
Thomas Flynn
null
1708.00523
null
null
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
stat.ML cs.LG
NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.
Bjarke Felbo, Alan Mislove, Anders S{\o}gaard, Iyad Rahwan and Sune Lehmann
10.18653/v1/D17-1169
1708.00524
null
null
End-to-End Neural Segmental Models for Speech Recognition
cs.CL cs.LG cs.SD
Segmental models are an alternative to frame-based models for sequence prediction, where hypothesized path weights are based on entire segment scores rather than a single frame at a time. Neural segmental models are segmental models that use neural network-based weight functions. Neural segmental models have achieved competitive results for speech recognition, and their end-to-end training has been explored in several studies. In this work, we review neural segmental models, which can be viewed as consisting of a neural network-based acoustic encoder and a finite-state transducer decoder. We study end-to-end segmental models with different weight functions, including ones based on frame-level neural classifiers and on segmental recurrent neural networks. We study how reducing the search space size impacts performance under different weight functions. We also compare several loss functions for end-to-end training. Finally, we explore training approaches, including multi-stage vs. end-to-end training and multitask training that combines segmental and frame-level losses.
Hao Tang, Liang Lu, Lingpeng Kong, Kevin Gimpel, Karen Livescu, Chris Dyer, Noah A. Smith, Steve Renals
10.1109/JSTSP.2017.2752462
1708.00531
null
null
On $w$-mixtures: Finite convex combinations of prescribed component distributions
cs.LG
We consider the space of $w$-mixtures which is defined as the set of finite statistical mixtures sharing the same prescribed component distributions closed under convex combinations. The information geometry induced by the Bregman generator set to the Shannon negentropy on this space yields a dually flat space called the mixture family manifold. We show how the Kullback-Leibler (KL) divergence can be recovered from the corresponding Bregman divergence for the negentropy generator: That is, the KL divergence between two $w$-mixtures amounts to a Bregman Divergence (BD) induced by the Shannon negentropy generator. Thus the KL divergence between two Gaussian Mixture Models (GMMs) sharing the same Gaussian components is equivalent to a Bregman divergence. This KL-BD equivalence on a mixture family manifold implies that we can perform optimal KL-averaging aggregation of $w$-mixtures without information loss. More generally, we prove that the statistical skew Jensen-Shannon divergence between $w$-mixtures is equivalent to a skew Jensen divergence between their corresponding parameters. Finally, we state several properties, divergence identities, and inequalities relating to $w$-mixtures.
Frank Nielsen and Richard Nock
null
1708.00568
null
null
Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data
cs.NE cs.LG
The conventional CNN, widely used for two-dimensional images, however, is not directly applicable to non-regular geometric surface, such as a cortical thickness. We propose Geometric CNN (gCNN) that deals with data representation over a spherical surface and renders pattern recognition in a multi-shell mesh structure. The classification accuracy for sex was significantly higher than that of SVM and image based CNN. It only uses MRI thickness data to classify gender but this method can expand to classify disease from other MRI or fMRI data
Si-Baek Seong, Chongwon Pae, and Hae-Jeong Park
null
1708.00587
null
null
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
cs.AI cs.LG math.AP stat.ML
While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from {\em small} data. In particular, we introduce \emph{hidden physics models}, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schr\"odinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
Maziar Raissi and George Em Karniadakis
10.1016/j.jcp.2017.11.039
1708.00588
null
null
Controllable Generative Adversarial Network
cs.LG cs.CV stat.ML
Recently introduced generative adversarial network (GAN) has been shown numerous promising results to generate realistic samples. The essential task of GAN is to control the features of samples generated from a random distribution. While the current GAN structures, such as conditional GAN, successfully generate samples with desired major features, they often fail to produce detailed features that bring specific differences among samples. To overcome this limitation, here we propose a controllable GAN (ControlGAN) structure. By separating a feature classifier from a discriminator, the generator of ControlGAN is designed to learn generating synthetic samples with the specific detailed features. Evaluated with multiple image datasets, ControlGAN shows a power to generate improved samples with well-controlled features. Furthermore, we demonstrate that ControlGAN can generate intermediate features and opposite features for interpolated and extrapolated input labels that are not used in the training process. It implies that ControlGAN can significantly contribute to the variety of generated samples.
Minhyeok Lee and Junhee Seok
null
1708.00598
null
null
Exact Tensor Completion from Sparsely Corrupted Observations via Convex Optimization
cs.LG cs.CV cs.IT math.IT stat.ML
This paper conducts a rigorous analysis for provable estimation of multidimensional arrays, in particular third-order tensors, from a random subset of its corrupted entries. Our study rests heavily on a recently proposed tensor algebraic framework in which we can obtain tensor singular value decomposition (t-SVD) that is similar to the SVD for matrices, and define a new notion of tensor rank referred to as the tubal rank. We prove that by simply solving a convex program, which minimizes a weighted combination of tubal nuclear norm, a convex surrogate for the tubal rank, and the $\ell_1$-norm, one can recover an incoherent tensor exactly with overwhelming probability, provided that its tubal rank is not too large and that the corruptions are reasonably sparse. Interestingly, our result includes the recovery guarantees for the problems of tensor completion (TC) and tensor principal component analysis (TRPCA) under the same algebraic setup as special cases. An alternating direction method of multipliers (ADMM) algorithm is presented to solve this optimization problem. Numerical experiments verify our theory and real-world applications demonstrate the effectiveness of our algorithm.
Jonathan Q. Jiang, Michael K. Ng
null
1708.00601
null
null
ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
cs.LG cs.AI cs.NE
Deep neural networks have become ubiquitous for applications related to visual recognition and language understanding tasks. However, it is often prohibitive to use typical neural networks on devices like mobile phones or smart watches since the model sizes are huge and cannot fit in the limited memory available on such devices. While these devices could make use of machine learning models running on high-performance data centers with CPUs or GPUs, this is not feasible for many applications because data can be privacy sensitive and inference needs to be performed directly "on" device. We introduce a new architecture for training compact neural networks using a joint optimization framework. At its core lies a novel objective that jointly trains using two different types of networks--a full trainer neural network (using existing architectures like Feed-forward NNs or LSTM RNNs) combined with a simpler "projection" network that leverages random projections to transform inputs or intermediate representations into bits. The simpler network encodes lightweight and efficient-to-compute operations in bit space with a low memory footprint. The two networks are trained jointly using backpropagation, where the projection network learns from the full network similar to apprenticeship learning. Once trained, the smaller network can be used directly for inference at low memory and computation cost. We demonstrate the effectiveness of the new approach at significantly shrinking the memory requirements of different types of neural networks while preserving good accuracy on visual recognition and text classification tasks. We also study the question "how many neural bits are required to solve a given task?" using the new framework and show empirical results contrasting model predictive capacity (in bits) versus accuracy on several datasets.
Sujith Ravi
null
1708.0063
null
null
On the Importance of Consistency in Training Deep Neural Networks
cs.LG cs.AI cs.CV cs.NE
We explain that the difficulties of training deep neural networks come from a syndrome of three consistency issues. This paper describes our efforts in their analysis and treatment. The first issue is the training speed inconsistency in different layers. We propose to address it with an intuitive, simple-to-implement, low footprint second-order method. The second issue is the scale inconsistency between the layer inputs and the layer residuals. We explain how second-order information provides favorable convenience in removing this roadblock. The third and most challenging issue is the inconsistency in residual propagation. Based on the fundamental theorem of linear algebra, we provide a mathematical characterization of the famous vanishing gradient problem. Thus, an important design principle for future optimization and neural network design is derived. We conclude this paper with the construction of a novel contractive neural network.
Chengxi Ye, Yezhou Yang, Cornelia Fermuller, Yiannis Aloimonos
null
1708.00631
null
null
A Multi-Objective Learning to re-Rank Approach to Optimize Online Marketplaces for Multiple Stakeholders
cs.IR cs.LG
Multi-objective recommender systems address the difficult task of recommending items that are relevant to multiple, possibly conflicting, criteria. However these systems are most often designed to address the objective of one single stakeholder, typically, in online commerce, the consumers whose input and purchasing decisions ultimately determine the success of the recommendation systems. In this work, we address the multi-objective, multi-stakeholder, recommendation problem involving one or more objective(s) per stakeholder. In addition to the consumer stakeholder, we also consider two other stakeholders; the suppliers who provide the goods and services for sale and the intermediary who is responsible for helping connect consumers to suppliers via its recommendation algorithms. We analyze the multi-objective, multi-stakeholder, problem from the point of view of the online marketplace intermediary whose objective is to maximize its commission through its recommender system. We define a multi-objective problem relating all our three stakeholders which we solve with a novel learning-to-re-rank approach that makes use of a novel regularization function based on the Kendall tau correlation metric and its kernel version; given an initial ranking of item recommendations built for the consumer, we aim to re-rank it such that the new ranking is also optimized for the secondary objectives while staying close to the initial ranking. We evaluate our approach on a real-world dataset of hotel recommendations provided by Expedia where we show the effectiveness of our approach against a business-rules oriented baseline model.
Phong Nguyen, John Dines and Jan Krasnodebski
null
1708.00651
null
null
Fairness-aware machine learning: a perspective
cs.AI cs.CY cs.LG stat.ML
Algorithms learned from data are increasingly used for deciding many aspects in our life: from movies we see, to prices we pay, or medicine we get. Yet there is growing evidence that decision making by inappropriately trained algorithms may unintentionally discriminate people. For example, in automated matching of candidate CVs with job descriptions, algorithms may capture and propagate ethnicity related biases. Several repairs for selected algorithms have already been proposed, but the underlying mechanisms how such discrimination happens from the computational perspective are not yet scientifically understood. We need to develop theoretical understanding how algorithms may become discriminatory, and establish fundamental machine learning principles for prevention. We need to analyze machine learning process as a whole to systematically explain the roots of discrimination occurrence, which will allow to devise global machine learning optimization criteria for guaranteed prevention, as opposed to pushing empirical constraints into existing algorithms case-by-case. As a result, the state-of-the-art will advance from heuristic repairing, to proactive and theoretically supported prevention. This is needed not only because law requires to protect vulnerable people. Penetration of big data initiatives will only increase, and computer science needs to provide solid explanations and accountability to the public, before public concerns lead to unnecessarily restrictive regulations against machine learning.
Indre Zliobaite
null
1708.00754
null
null
Streaming kernel regression with provably adaptive mean, variance, and regularization
stat.ML cs.LG
We consider the problem of streaming kernel regression, when the observations arrive sequentially and the goal is to recover the underlying mean function, assumed to belong to an RKHS. The variance of the noise is not assumed to be known. In this context, we tackle the problem of tuning the regularization parameter adaptively at each time step, while maintaining tight confidence bounds estimates on the value of the mean function at each point. To this end, we first generalize existing results for finite-dimensional linear regression with fixed regularization and known variance to the kernel setup with a regularization parameter allowed to be a measurable function of past observations. Then, using appropriate self-normalized inequalities we build upper and lower bound estimates for the variance, leading to Bersntein-like concentration bounds. The later is used in order to define the adaptive regularization. The bounds resulting from our technique are valid uniformly over all observation points and all time steps, and are compared against the literature with numerical experiments. Finally, the potential of these tools is illustrated by an application to kernelized bandits, where we revisit the Kernel UCB and Kernel Thompson Sampling procedures, and show the benefits of the novel adaptive kernel tuning strategy.
Audrey Durand, Odalric-Ambrym Maillard, Joelle Pineau
null
1708.00768
null
null
Dynamic Entity Representations in Neural Language Models
cs.CL cs.LG
Understanding a long document requires tracking how entities are introduced and evolve over time. We present a new type of language model, EntityNLM, that can explicitly model entities, dynamically update their representations, and contextually generate their mentions. Our model is generative and flexible; it can model an arbitrary number of entities in context while generating each entity mention at an arbitrary length. In addition, it can be used for several different tasks such as language modeling, coreference resolution, and entity prediction. Experimental results with all these tasks demonstrate that our model consistently outperforms strong baselines and prior work.
Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, Noah A. Smith
null
1708.00781
null
null
Variational Generative Stochastic Networks with Collaborative Shaping
cs.LG
We develop an approach to training generative models based on unrolling a variational auto-encoder into a Markov chain, and shaping the chain's trajectories using a technique inspired by recent work in Approximate Bayesian computation. We show that the global minimizer of the resulting objective is achieved when the generative model reproduces the target distribution. To allow finer control over the behavior of the models, we add a regularization term inspired by techniques used for regularizing certain types of policy search in reinforcement learning. We present empirical results on the MNIST and TFD datasets which show that our approach offers state-of-the-art performance, both quantitatively and from a qualitative point of view.
Philip Bachman and Doina Precup
null
1708.00805
null
null
Adversarial-Playground: A Visualization Suite Showing How Adversarial Examples Fool Deep Learning
cs.CR cs.AI cs.LG
Recent studies have shown that attackers can force deep learning models to misclassify so-called "adversarial examples": maliciously generated images formed by making imperceptible modifications to pixel values. With growing interest in deep learning for security applications, it is important for security experts and users of machine learning to recognize how learning systems may be attacked. Due to the complex nature of deep learning, it is challenging to understand how deep models can be fooled by adversarial examples. Thus, we present a web-based visualization tool, Adversarial-Playground, to demonstrate the efficacy of common adversarial methods against a convolutional neural network (CNN) system. Adversarial-Playground is educational, modular and interactive. (1) It enables non-experts to compare examples visually and to understand why an adversarial example can fool a CNN-based image classifier. (2) It can help security experts explore more vulnerability of deep learning as a software module. (3) Building an interactive visualization is challenging in this domain due to the large feature space of image classification (generating adversarial examples is slow in general and visualizing images are costly). Through multiple novel design choices, our tool can provide fast and accurate responses to user requests. Empirically, we find that our client-server division strategy reduced the response time by an average of 1.5 seconds per sample. Our other innovation, a faster variant of JSMA evasion algorithm, empirically performed twice as fast as JSMA and yet maintains a comparable evasion rate. Project source code and data from our experiments available at: https://github.com/QData/AdversarialDNN-Playground
Andrew P. Norton, Yanjun Qi
null
1708.00807
null
null
Audio Super Resolution using Neural Networks
cs.SD cs.LG
We introduce a new audio processing technique that increases the sampling rate of signals such as speech or music using deep convolutional neural networks. Our model is trained on pairs of low and high-quality audio examples; at test-time, it predicts missing samples within a low-resolution signal in an interpolation process similar to image super-resolution. Our method is simple and does not involve specialized audio processing techniques; in our experiments, it outperforms baselines on standard speech and music benchmarks at upscaling ratios of 2x, 4x, and 6x. The method has practical applications in telephony, compression, and text-to-speech generation; it demonstrates the effectiveness of feed-forward convolutional architectures on an audio generation task.
Volodymyr Kuleshov, S. Zayd Enam, Stefano Ermon
null
1708.00853
null
null
Machine learning for neural decoding
q-bio.NC cs.LG stat.ML
Despite rapid advances in machine learning tools, the majority of neural decoding approaches still use traditional methods. Modern machine learning tools, which are versatile and easy to use, have the potential to significantly improve decoding performance. This tutorial describes how to effectively apply these algorithms for typical decoding problems. We provide descriptions, best practices, and code for applying common machine learning methods, including neural networks and gradient boosting. We also provide detailed comparisons of the performance of various methods at the task of decoding spiking activity in motor cortex, somatosensory cortex, and hippocampus. Modern methods, particularly neural networks and ensembles, significantly outperform traditional approaches, such as Wiener and Kalman filters. Improving the performance of neural decoding algorithms allows neuroscientists to better understand the information contained in a neural population and can help advance engineering applications such as brain machine interfaces.
Joshua I. Glaser, Ari S. Benjamin, Raeed H. Chowdhury, Matthew G. Perich, Lee E. Miller, Konrad P. Kording
null
1708.00909
null
null
On the convergence properties of a $K$-step averaging stochastic gradient descent algorithm for nonconvex optimization
cs.LG cs.DC stat.ML
Despite their popularity, the practical performance of asynchronous stochastic gradient descent methods (ASGD) for solving large scale machine learning problems are not as good as theoretical results indicate. We adopt and analyze a synchronous K-step averaging stochastic gradient descent algorithm which we call K-AVG. We establish the convergence results of K-AVG for nonconvex objectives and explain why the K-step delay is necessary and leads to better performance than traditional parallel stochastic gradient descent which is a special case of K-AVG with $K=1$. We also show that K-AVG scales better than ASGD. Another advantage of K-AVG over ASGD is that it allows larger stepsizes. On a cluster of $128$ GPUs, K-AVG is faster than ASGD implementations and achieves better accuracies and faster convergence for \cifar dataset.
Fan Zhou and Guojing Cong
10.24963/ijcai.2018/447
1708.01012
null
null
Sensor Transformation Attention Networks
cs.LG cs.CV
Recent work on encoder-decoder models for sequence-to-sequence mapping has shown that integrating both temporal and spatial attention mechanisms into neural networks increases the performance of the system substantially. In this work, we report on the application of an attentional signal not on temporal and spatial regions of the input, but instead as a method of switching among inputs themselves. We evaluate the particular role of attentional switching in the presence of dynamic noise in the sensors, and demonstrate how the attentional signal responds dynamically to changing noise levels in the environment to achieve increased performance on both audio and visual tasks in three commonly-used datasets: TIDIGITS, Wall Street Journal, and GRID. Moreover, the proposed sensor transformation network architecture naturally introduces a number of advantages that merit exploration, including ease of adding new sensors to existing architectures, attentional interpretability, and increased robustness in a variety of noisy environments not seen during training. Finally, we demonstrate that the sensor selection attention mechanism of a model trained only on the small TIDIGITS dataset can be transferred directly to a pre-existing larger network trained on the Wall Street Journal dataset, maintaining functionality of switching between sensors to yield a dramatic reduction of error in the presence of noise.
Stefan Braun, Daniel Neil, Enea Ceolini, Jithendar Anumula, Shih-Chii Liu
null
1708.01015
null
null
Applying advanced machine learning models to classify electro-physiological activity of human brain for use in biometric identification
cs.LG
In this article we present the results of our research related to the study of correlations between specific visual stimulation and the elicited brain's electro-physiological response collected by EEG sensors from a group of participants. We will look at how the various characteristics of visual stimulation affect the measured electro-physiological response of the brain and describe the optimal parameters found that elicit a steady-state visually evoked potential (SSVEP) in certain parts of the cerebral cortex where it can be reliably perceived by the electrode of the EEG device. After that, we continue with a description of the advanced machine learning pipeline model that can perform confident classification of the collected EEG data in order to (a) reliably distinguish signal from noise (about 85% validation score) and (b) reliably distinguish between EEG records collected from different human participants (about 80% validation score). Finally, we demonstrate that the proposed method works reliably even with an inexpensive (less than $100) consumer-grade EEG sensing device and with participants who do not have previous experience with EEG technology (EEG illiterate). All this in combination opens up broad prospects for the development of new types of consumer devices, [e.g.] based on virtual reality helmets or augmented reality glasses where EEG sensor can be easily integrated. The proposed method can be used to improve an online user experience by providing [e.g.] password-less user identification for VR / AR applications. It can also find a more advanced application in intensive care units where collected EEG data can be used to classify the level of conscious awareness of patients during anesthesia or to automatically detect hardware failures by classifying the input signal as noise.
Iaroslav Omelianenko
null
1708.01167
null
null
DSOD: Learning Deeply Supervised Object Detectors from Scratch
cs.CV cs.LG
We present Deeply Supervised Object Detector (DSOD), a framework that can learn object detectors from scratch. State-of-the-art object objectors rely heavily on the off-the-shelf networks pre-trained on large-scale classification datasets like ImageNet, which incurs learning bias due to the difference on both the loss functions and the category distributions between classification and detection tasks. Model fine-tuning for the detection task could alleviate this bias to some extent but not fundamentally. Besides, transferring pre-trained models from classification to detection between discrepant domains is even more difficult (e.g. RGB to depth images). A better solution to tackle these two critical problems is to train object detectors from scratch, which motivates our proposed DSOD. Previous efforts in this direction mostly failed due to much more complicated loss functions and limited training data in object detection. In DSOD, we contribute a set of design principles for training object detectors from scratch. One of the key findings is that deep supervision, enabled by dense layer-wise connections, plays a critical role in learning a good detector. Combining with several other principles, we develop DSOD following the single-shot detection (SSD) framework. Experiments on PASCAL VOC 2007, 2012 and MS COCO datasets demonstrate that DSOD can achieve better results than the state-of-the-art solutions with much more compact models. For instance, DSOD outperforms SSD on all three benchmarks with real-time detection speed, while requires only 1/2 parameters to SSD and 1/10 parameters to Faster RCNN. Our code and models are available at: https://github.com/szq0214/DSOD .
Zhiqiang Shen and Zhuang Liu and Jianguo Li and Yu-Gang Jiang and Yurong Chen and Xiangyang Xue
null
1708.01241
null
null
Independently Controllable Factors
cs.LG cs.AI stat.ML
It has been postulated that a good representation is one that disentangles the underlying explanatory factors of variation. However, it remains an open question what kind of training framework could potentially achieve that. Whereas most previous work focuses on the static setting (e.g., with images), we postulate that some of the causal factors could be discovered if the learner is allowed to interact with its environment. The agent can experiment with different actions and observe their effects. More specifically, we hypothesize that some of these factors correspond to aspects of the environment which are independently controllable, i.e., that there exists a policy and a learnable feature for each such aspect of the environment, such that this policy can yield changes in that feature with minimal changes to other features that explain the statistical variations in the observed data. We propose a specific objective function to find such factors and verify experimentally that it can indeed disentangle independently controllable aspects of the environment without any extrinsic reward signal.
Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau, Doina Precup, Yoshua Bengio
null
1708.01289
null
null
Effective sketching methods for value function approximation
cs.LG
High-dimensional representations, such as radial basis function networks or tile coding, are common choices for policy evaluation in reinforcement learning. Learning with such high-dimensional representations, however, can be expensive, particularly for matrix methods, such as least-squares temporal difference learning or quasi-Newton methods that approximate matrix step-sizes. In this work, we explore the utility of sketching for these two classes of algorithms. We highlight issues with sketching the high-dimensional features directly, which can incur significant bias. As a remedy, we demonstrate how to use sketching more sparingly, with only a left-sided sketch, that can still enable significant computational gains and the use of these matrix-based learning algorithms that are less sensitive to parameters. We empirically investigate these algorithms, in four domains with a variety of representations. Our aim is to provide insights into effective use of sketching in practice.
Yangchen Pan, Erfan Sadeqi Azer and Martha White
null
1708.01298
null
null
CASSL: Curriculum Accelerated Self-Supervised Learning
cs.RO cs.CV cs.LG
Recent self-supervised learning approaches focus on using a few thousand data points to learn policies for high-level, low-dimensional action spaces. However, scaling this framework for high-dimensional control require either scaling up the data collection efforts or using a clever sampling strategy for training. We present a novel approach - Curriculum Accelerated Self-Supervised Learning (CASSL) - to train policies that map visual information to high-level, higher- dimensional action spaces. CASSL orders the sampling of training data based on control dimensions: the learning and sampling are focused on few control parameters before other parameters. The right curriculum for learning is suggested by variance-based global sensitivity analysis of the control space. We apply our CASSL framework to learning how to grasp using an adaptive, underactuated multi-fingered gripper, a challenging system to control. Our experimental results indicate that CASSL provides significant improvement and generalization compared to baseline methods such as staged curriculum learning (8% increase) and complete end-to-end learning with random exploration (14% improvement) tested on a set of novel objects.
Adithyavairavan Murali, Lerrel Pinto, Dhiraj Gandhi, Abhinav Gupta
null
1708.01354
null
null
Variance-Reduced Stochastic Learning under Random Reshuffling
cs.LG math.OC stat.ML
Several useful variance-reduced stochastic gradient algorithms, such as SVRG, SAGA, Finito, and SAG, have been proposed to minimize empirical risks with linear convergence properties to the exact minimizer. The existing convergence results assume uniform data sampling with replacement. However, it has been observed in related works that random reshuffling can deliver superior performance over uniform sampling and, yet, no formal proofs or guarantees of exact convergence exist for variance-reduced algorithms under random reshuffling. This paper makes two contributions. First, it resolves this open issue and provides the first theoretical guarantee of linear convergence under random reshuffling for SAGA; the argument is also adaptable to other variance-reduced algorithms. Second, under random reshuffling, the paper proposes a new amortized variance-reduced gradient (AVRG) algorithm with constant storage requirements compared to SAGA and with balanced gradient computations compared to SVRG. AVRG is also shown analytically to converge linearly.
Bicheng Ying and Kun Yuan and Ali H. Sayed
null
1708.01383
null
null
Variance-Reduced Stochastic Learning by Networked Agents under Random Reshuffling
cs.LG math.OC stat.ML
A new amortized variance-reduced gradient (AVRG) algorithm was developed in \cite{ying2017convergence}, which has constant storage requirement in comparison to SAGA and balanced gradient computations in comparison to SVRG. One key advantage of the AVRG strategy is its amenability to decentralized implementations. In this work, we show how AVRG can be extended to the network case where multiple learning agents are assumed to be connected by a graph topology. In this scenario, each agent observes data that is spatially distributed and all agents are only allowed to communicate with direct neighbors. Moreover, the amount of data observed by the individual agents may differ drastically. For such situations, the balanced gradient computation property of AVRG becomes a real advantage in reducing idle time caused by unbalanced local data storage requirements, which is characteristic of other reduced-variance gradient algorithms. The resulting diffusion-AVRG algorithm is shown to have linear convergence to the exact solution, and is much more memory efficient than other alternative algorithms. In addition, we propose a mini-batch strategy to balance the communication and computation efficiency for diffusion-AVRG. When a proper batch size is employed, it is observed in simulations that diffusion-AVRG is more computationally efficient than exact diffusion or EXTRA while maintaining almost the same communication efficiency.
Kun Yuan, Bicheng Ying, Jiageng Liu, and Ali H. Sayed
null
1708.01384
null
null
The All-Paths and Cycles Graph Kernel
cs.LG
With the recent rise in the amount of structured data available, there has been considerable interest in methods for machine learning with graphs. Many of these approaches have been kernel methods, which focus on measuring the similarity between graphs. These generally involving measuring the similarity of structural elements such as walks or paths. Borgwardt and Kriegel proposed the all-paths kernel but emphasized that it is NP-hard to compute and infeasible in practice, favouring instead the shortest-path kernel. In this paper, we introduce a new algorithm for computing the all-paths kernel which is very efficient and enrich it further by including the simple cycles as well. We demonstrate how it is feasible even on large datasets to compute all the paths and simple cycles up to a moderate length. We show how to count labelled paths/simple cycles between vertices of a graph and evaluate a labelled path and simple cycles kernel. Extensive evaluations on a variety of graph datasets demonstrate that the all-paths and cycles kernel has superior performance to the shortest-path kernel and state-of-the-art performance overall.
P.-L. Giscard and R. C. Wilson
null
1708.0141
null
null
Distributed Solution of Large-Scale Linear Systems via Accelerated Projection-Based Consensus
cs.LG cs.DC math.NA
Solving a large-scale system of linear equations is a key step at the heart of many algorithms in machine learning, scientific computing, and beyond. When the problem dimension is large, computational and/or memory constraints make it desirable, or even necessary, to perform the task in a distributed fashion. In this paper, we consider a common scenario in which a taskmaster intends to solve a large-scale system of linear equations by distributing subsets of the equations among a number of computing machines/cores. We propose an accelerated distributed consensus algorithm, in which at each iteration every machine updates its solution by adding a scaled version of the projection of an error signal onto the nullspace of its system of equations, and where the taskmaster conducts an averaging over the solutions with momentum. The convergence behavior of the proposed algorithm is analyzed in detail and analytically shown to compare favorably with the convergence rate of alternative distributed methods, namely distributed gradient descent, distributed versions of Nesterov's accelerated gradient descent and heavy-ball method, the block Cimmino method, and ADMM. On randomly chosen linear systems, as well as on real-world data sets, the proposed method offers significant speed-up relative to all the aforementioned methods. Finally, our analysis suggests a novel variation of the distributed heavy-ball method, which employs a particular distributed preconditioning, and which achieves the same theoretical convergence rate as the proposed consensus-based method.
Navid Azizan-Ruhi, Farshad Lahouti, Salman Avestimehr, Babak Hassibi
null
1708.01413
null
null
Exploring the Function Space of Deep-Learning Machines
cond-mat.dis-nn cs.LG
The function space of deep-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a deep-learning machine. Using physics-inspired methods we study both sparsely and densely-connected architectures to discover a layer-wise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and observe phase transitions as the error increases.
Bo Li and David Saad
10.1103/PhysRevLett.120.248301
1708.01422
null
null
Brain Responses During Robot-Error Observation
cs.HC cs.LG cs.RO
Brain-controlled robots are a promising new type of assistive device for severely impaired persons. Little is however known about how to optimize the interaction of humans and brain-controlled robots. Information about the human's perceived correctness of robot performance might provide a useful teaching signal for adaptive control algorithms and thus help enhancing robot control. Here, we studied whether watching robots perform erroneous vs. correct action elicits differential brain responses that can be decoded from single trials of electroencephalographic (EEG) recordings, and whether brain activity during human-robot interaction is modulated by the robot's visual similarity to a human. To address these topics, we designed two experiments. In experiment I, participants watched a robot arm pour liquid into a cup. The robot performed the action either erroneously or correctly, i.e. it either spilled some liquid or not. In experiment II, participants observed two different types of robots, humanoid and non-humanoid, grabbing a ball. The robots either managed to grab the ball or not. We recorded high-resolution EEG during the observation tasks in both experiments to train a Filter Bank Common Spatial Pattern (FBCSP) pipeline on the multivariate EEG signal and decode for the correctness of the observed action, and for the type of the observed robot. Our findings show that it was possible to decode both correctness and robot type for the majority of participants significantly, although often just slightly, above chance level. Our findings suggest that non-invasive recordings of brain responses elicited when observing robots indeed contain decodable information about the correctness of the robot's action and the type of observed robot.
Dominik Welke, Joos Behncke, Marina Hader, Robin Tibor Schirrmeister, Andreas Sch\"onau, Boris E{\ss}mann, Oliver M\"uller, Wolfram Burgard, Tonio Ball
10.17185/duepublico/44533
1708.01465
null
null
A Latent Variable Model for Two-Dimensional Canonical Correlation Analysis and its Variational Inference
cs.CV cs.LG stat.ML
Describing the dimension reduction (DR) techniques by means of probabilistic models has recently been given special attention. Probabilistic models, in addition to a better interpretability of the DR methods, provide a framework for further extensions of such algorithms. One of the new approaches to the probabilistic DR methods is to preserving the internal structure of data. It is meant that it is not necessary that the data first be converted from the matrix or tensor format to the vector format in the process of dimensionality reduction. In this paper, a latent variable model for matrix-variate data for canonical correlation analysis (CCA) is proposed. Since in general there is not any analytical maximum likelihood solution for this model, we present two approaches for learning the parameters. The proposed methods are evaluated using the synthetic data in terms of convergence and quality of mappings. Also, real data set is employed for assessing the proposed methods with several probabilistic and none-probabilistic CCA based approaches. The results confirm the superiority of the proposed methods with respect to the competing algorithms. Moreover, this model can be considered as a framework for further extensions.
Mehran Safayani and Saeid Momenzadeh
10.1007/s00500-020-04906-8
1708.01519
null
null
Lifelong Learning with Dynamically Expandable Networks
cs.LG
We propose a novel deep network architecture for lifelong learning which we refer to as Dynamically Expandable Network (DEN), that can dynamically decide its network capacity as it trains on a sequence of tasks, to learn a compact overlapping knowledge sharing structure among tasks. DEN is efficiently trained in an online manner by performing selective retraining, dynamically expands network capacity upon arrival of each task with only the necessary number of units, and effectively prevents semantic drift by splitting/duplicating units and timestamping them. We validate DEN on multiple public datasets under lifelong learning scenarios, on which it not only significantly outperforms existing lifelong learning methods for deep networks, but also achieves the same level of performance as the batch counterparts with substantially fewer number of parameters. Further, the obtained network fine-tuned on all tasks obtained significantly better performance over the batch models, which shows that it can be used to estimate the optimal network structure even when all tasks are available in the first place.
Jaehong Yoon, Eunho Yang, Jeongtae Lee, Sung Ju Hwang
null
1708.01547
null
null
Identification of Probabilities
cs.LG cs.AI
Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a probabilistic model from a sample. The practical problems of such inference are substantial: the brain has limited data and restricted computational resources. But there is a more fundamental question: is the problem of inferring a probabilistic model from a sample possible even in principle? We explore this question and find some surprisingly positive and general results. First, for a broad class of probability distributions characterised by computability restrictions, we specify a learning algorithm that will almost surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large class of dependent sequences, we specify an algorithm which identifies in the limit a computable measure for which the sequence is typical, in the sense of Martin-Lof (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We analyse the associated predictions in both cases. We also briefly consider special cases, including language learning, and wider theoretical implications for psychology.
Paul M.B. Vitanyi (CWI and University of Amsterdam) and Nick Chater (Behavioural Science Group, Warwick Business School, University of Warwick, Coventry, UK)
10.1016/j.jmp.2006.10.002
1708.01611
null
null
3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks
cs.CV cs.AI cs.LG stat.ML
The success of various applications including robotics, digital content creation, and visualization demand a structured and abstract representation of the 3D world from limited sensor data. Inspired by the nature of human perception of 3D shapes as a collection of simple parts, we explore such an abstract shape representation based on primitives. Given a single depth image of an object, we present 3D-PRNN, a generative recurrent neural network that synthesizes multiple plausible shapes composed of a set of primitives. Our generative model encodes symmetry characteristics of common man-made objects, preserves long-range structural coherence, and describes objects of varying complexity with a compact representation. We also propose a method based on Gaussian Fields to generate a large scale dataset of primitive-based shape representations to train our network. We evaluate our approach on a wide range of examples and show that it outperforms nearest-neighbor based shape retrieval methods and is on-par with voxel-based generative models while using a significantly reduced parameter space.
Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, Derek Hoiem
null
1708.01648
null
null
HTM-MAT: An online prediction software toolbox based on cortical machine learning algorithm
cs.NE cs.LG
HTM-MAT is a MATLAB based toolbox for implementing cortical learning algorithms (CLA) including related cortical-like algorithms that possesses spatiotemporal properties. CLA is a suite of predictive machine learning algorithms developed by Numenta Inc. and is based on the hierarchical temporal memory (HTM). This paper presents an implementation of HTM-MAT with several illustrative examples including several toy datasets and compared with two sequence learning applications employing state-of-the-art algorithms - the recurrentjs based on the Long Short-Term Memory (LSTM) algorithm and OS-ELM which is based on an online sequential version of the Extreme Learning Machine. The performance of HTM-MAT using two historical benchmark datasets and one real world dataset is also compared with one of the existing sequence learning applications, the OS-ELM. The results indicate that HTM-MAT predictions are indeed competitive and can outperform OS-ELM in sequential prediction tasks.
V.I. Anireh and EN Osegi
null
1708.01659
null
null
An Effective Training Method For Deep Convolutional Neural Network
cs.LG cs.AI stat.ML
In this paper, we propose the nonlinearity generation method to speed up and stabilize the training of deep convolutional neural networks. The proposed method modifies a family of activation functions as nonlinearity generators (NGs). NGs make the activation functions linear symmetric for their inputs to lower model capacity, and automatically introduce nonlinearity to enhance the capacity of the model during training. The proposed method can be considered an unusual form of regularization: the model parameters are obtained by training a relatively low-capacity model, that is relatively easy to optimize at the beginning, with only a few iterations, and these parameters are reused for the initialization of a higher-capacity model. We derive the upper and lower bounds of variance of the weight variation, and show that the initial symmetric structure of NGs helps stabilize training. We evaluate the proposed method on different frameworks of convolutional neural networks over two object recognition benchmark tasks (CIFAR-10 and CIFAR-100). Experimental results showed that the proposed method allows us to (1) speed up the convergence of training, (2) allow for less careful weight initialization, (3) improve or at least maintain the performance of the model at negligible extra computational cost, and (4) easily train a very deep model.
Yang Jiang, Zeyang Dou, Qun Hao, Jie Cao, Kun Gao, Xi Chen
null
1708.01666
null
null
Training Deep AutoEncoders for Collaborative Filtering
stat.ML cs.LG
This paper proposes a novel model for the rating prediction task in recommender systems which significantly outperforms previous state-of-the art models on a time-split Netflix data set. Our model is based on deep autoencoder with 6 layers and is trained end-to-end without any layer-wise pre-training. We empirically demonstrate that: a) deep autoencoder models generalize much better than the shallow ones, b) non-linear activation functions with negative parts are crucial for training deep models, and c) heavy use of regularization techniques such as dropout is necessary to prevent over-fiting. We also propose a new training algorithm based on iterative output re-feeding to overcome natural sparseness of collaborate filtering. The new algorithm significantly speeds up training and improves model performance. Our code is available at https://github.com/NVIDIA/DeepRecommender
Oleksii Kuchaiev, Boris Ginsburg
null
1708.01715
null
null
Inception Score, Label Smoothing, Gradient Vanishing and -log(D(x)) Alternative
cs.LG cs.AI cs.CV stat.ML
In this article, we mathematically study several GAN related topics, including Inception score, label smoothing, gradient vanishing and the -log(D(x)) alternative. --- An advanced version is included in arXiv:1703.02000 "Activation Maximization Generative Adversarial Nets". Please refer Section 6 in 1703.02000 for detailed analysis on Inception Score, and refer its appendix for the discussions on Label Smoothing, Gradient Vanishing and -log(D(x)) Alternative.
Zhiming Zhou, Weinan Zhang, Jun Wang
null
1708.01729
null
null
Boosting Variational Inference: an Optimization Perspective
cs.LG cs.AI stat.ML
Variational inference is a popular technique to approximate a possibly intractable Bayesian posterior with a more tractable one. Recently, boosting variational inference has been proposed as a new paradigm to approximate the posterior by a mixture of densities by greedily adding components to the mixture. However, as is the case with many other variational inference algorithms, its theoretical properties have not been studied. In the present work, we study the convergence properties of this approach from a modern optimization viewpoint by establishing connections to the classic Frank-Wolfe algorithm. Our analyses yields novel theoretical insights regarding the sufficient conditions for convergence, explicit rates, and algorithmic simplifications. Since a lot of focus in previous works for variational inference has been on tractability, our work is especially important as a much needed attempt to bridge the gap between probabilistic models and their corresponding theoretical properties.
Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar R\"atsch
null
1708.01733
null
null
An aggregating strategy for shifting experts in discrete sequence prediction
cs.LG
We study how we can adapt a predictor to a non-stationary environment with advises from multiple experts. We study the problem under complete feedback when the best expert changes over time from a decision theoretic point of view. Proposed algorithm is based on popular exponential weighing method with exponential discounting. We provide theoretical results bounding regret under the exponential discounting setting. Upper bound on regret is derived for finite time horizon problem. Numerical verification of different real life datasets are provided to show the utility of proposed algorithm.
Vishnu Raj and Sheetal Kalyani
null
1708.01744
null
null
e-QRAQ: A Multi-turn Reasoning Dataset and Simulator with Explanations
cs.LG cs.AI cs.CL
In this paper we present a new dataset and user simulator e-QRAQ (explainable Query, Reason, and Answer Question) which tests an Agent's ability to read an ambiguous text; ask questions until it can answer a challenge question; and explain the reasoning behind its questions and answer. The User simulator provides the Agent with a short, ambiguous story and a challenge question about the story. The story is ambiguous because some of the entities have been replaced by variables. At each turn the Agent may ask for the value of a variable or try to answer the challenge question. In response the User simulator provides a natural language explanation of why the Agent's query or answer was useful in narrowing down the set of possible answers, or not. To demonstrate one potential application of the e-QRAQ dataset, we train a new neural architecture based on End-to-End Memory Networks to successfully generate both predictions and partial explanations of its current understanding of the problem. We observe a strong correlation between the quality of the prediction and explanation.
Clemens Rosenbaum, Tian Gao, Tim Klinger
null
1708.01776
null
null
Efficient Contextual Bandits in Non-stationary Worlds
cs.LG stat.ML
Most contextual bandit algorithms minimize regret against the best fixed policy, a questionable benchmark for non-stationary environments that are ubiquitous in applications. In this work, we develop several efficient contextual bandit algorithms for non-stationary environments by equipping existing methods for i.i.d. problems with sophisticated statistical tests so as to dynamically adapt to a change in distribution. We analyze various standard notions of regret suited to non-stationary environments for these algorithms, including interval regret, switching regret, and dynamic regret. When competing with the best policy at each time, one of our algorithms achieves regret $\mathcal{O}(\sqrt{ST})$ if there are $T$ rounds with $S$ stationary periods, or more generally $\mathcal{O}(\Delta^{1/3}T^{2/3})$ where $\Delta$ is some non-stationarity measure. These results almost match the optimal guarantees achieved by an inefficient baseline that is a variant of the classic Exp4 algorithm. The dynamic regret result is also the first one for efficient and fully adversarial contextual bandit. Furthermore, while the results above require tuning a parameter based on the unknown quantity $S$ or $\Delta$, we also develop a parameter free algorithm achieving regret $\min\{S^{1/4}T^{3/4}, \Delta^{1/5}T^{4/5}\}$. This improves and generalizes the best existing result $\Delta^{0.18}T^{0.82}$ by Karnin and Anava (2016) which only holds for the two-armed bandit problem.
Haipeng Luo and Chen-Yu Wei and Alekh Agarwal and John Langford
null
1708.01799
null
null
An Information-Theoretic Optimality Principle for Deep Reinforcement Learning
cs.AI cs.LG stat.ML
We methodologically address the problem of Q-value overestimation in deep reinforcement learning to handle high-dimensional state spaces efficiently. By adapting concepts from information theory, we introduce an intrinsic penalty signal encouraging reduced Q-value estimates. The resultant algorithm encompasses a wide range of learning outcomes containing deep Q-networks as a special case. Different learning outcomes can be demonstrated by tuning a Lagrange multiplier accordingly. We furthermore propose a novel scheduling scheme for this Lagrange multiplier to ensure efficient and robust learning. In experiments on Atari, our algorithm outperforms other algorithms (e.g. deep and double deep Q-networks) in terms of both game-play performance and sample complexity. These results remain valid under the recently proposed dueling architecture.
Felix Leibfried, Jordi Grau-Moya and Haitham Bou-Ammar
null
1708.01867
null
null
Probabilistic Generative Adversarial Networks
cs.LG stat.ML
We introduce the Probabilistic Generative Adversarial Network (PGAN), a new GAN variant based on a new kind of objective function. The central idea is to integrate a probabilistic model (a Gaussian Mixture Model, in our case) into the GAN framework which supports a new kind of loss function (based on likelihood rather than classification loss), and at the same time gives a meaningful measure of the quality of the outputs generated by the network. Experiments with MNIST show that the model learns to generate realistic images, and at the same time computes likelihoods that are correlated with the quality of the generated images. We show that PGAN is better able to cope with instability problems that are usually observed in the GAN training procedure. We investigate this from three aspects: the probability landscape of the discriminator, gradients of the generator, and the perfect discriminator problem.
Hamid Eghbal-zadeh, Gerhard Widmer
null
1708.01886
null
null
Universally consistent predictive distributions
cs.LG
This paper describes simple universally consistent procedures of probability forecasting that satisfy a natural property of small-sample validity, under the assumption that the observations are produced independently in the IID fashion.
Vladimir Vovk
null
1708.01902
null
null
Empathy in Bimatrix Games
cs.GT cs.LG
Although the definition of what empathetic preferences exactly are is still evolving, there is a general consensus in the psychology, science and engineering communities that the evolution toward players' behaviors in interactive decision-making problems will be accompanied by the exploitation of their empathy, sympathy, compassion, antipathy, spitefulness, selfishness, altruism, and self-abnegating states in the payoffs. In this article, we study one-shot bimatrix games from a psychological game theory viewpoint. A new empathetic payoff model is calculated to fit empirical observations and both pure and mixed equilibria are investigated. For a realized empathy structure, the bimatrix game is categorized among four generic class of games. Number of interesting results are derived. A notable level of involvement can be observed in the empathetic one-shot game compared the non-empathetic one and this holds even for games with dominated strategies. Partial altruism can help in breaking symmetry, in reducing payoff-inequality and in selecting social welfare and more efficient outcomes. By contrast, partial spite and self-abnegating may worsen payoff equity. Empathetic evolutionary game dynamics are introduced to capture the resulting empathetic evolutionarily stable strategies under wide range of revision protocols including Brown-von Neumann-Nash, Smith, imitation, replicator, and hybrid dynamics. Finally, mutual support and Berge solution are investigated and their connection with empathetic preferences are established. We show that pure altruism is logically inconsistent, only by balancing it with some partial selfishness does it create a consistent psychology.
Brian Powers and Michalis Smyrnakis and Hamidou Tembine
null
1708.0191
null
null
Training of Deep Neural Networks based on Distance Measures using RMSProp
cs.LG cs.AI stat.ML
The vanishing gradient problem was a major obstacle for the success of deep learning. In recent years it was gradually alleviated through multiple different techniques. However the problem was not really overcome in a fundamental way, since it is inherent to neural networks with activation functions based on dot products. In a series of papers, we are going to analyze alternative neural network structures which are not based on dot products. In this first paper, we revisit neural networks built up of layers based on distance measures and Gaussian activation functions. These kinds of networks were only sparsely used in the past since they are hard to train when using plain stochastic gradient descent methods. We show that by using Root Mean Square Propagation (RMSProp) it is possible to efficiently learn multi-layer neural networks. Furthermore we show that when appropriately initialized these kinds of neural networks suffer much less from the vanishing and exploding gradient problem than traditional neural networks even for deep networks.
Thomas Kurbiel and Shahrzad Khaleghian
null
1708.01911
null
null
A Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
stat.ML cs.LG cs.NA
In recent years, randomized methods for numerical linear algebra have received growing interest as a general approach to large-scale problems. Typically, the essential ingredient of these methods is some form of randomized dimension reduction, which accelerates computations, but also creates random approximation error. In this way, the dimension reduction step encodes a tradeoff between cost and accuracy. However, the exact numerical relationship between cost and accuracy is typically unknown, and consequently, it may be difficult for the user to precisely know (1) how accurate a given solution is, or (2) how much computation is needed to achieve a given level of accuracy. In the current paper, we study randomized matrix multiplication (sketching) as a prototype setting for addressing these general problems. As a solution, we develop a bootstrap method for \emph{directly estimating} the accuracy as a function of the reduced dimension (as opposed to deriving worst-case bounds on the accuracy in terms of the reduced dimension). From a computational standpoint, the proposed method does not substantially increase the cost of standard sketching methods, and this is made possible by an "extrapolation" technique. In addition, we provide both theoretical and empirical results to demonstrate the effectiveness of the proposed method.
Miles E. Lopes and Shusen Wang and Michael W. Mahoney
null
1708.01945
null
null
Learning Theory of Distributed Regression with Bias Corrected Regularization Kernel Network
cs.LG stat.ML
Distributed learning is an effective way to analyze big data. In distributed regression, a typical approach is to divide the big data into multiple blocks, apply a base regression algorithm on each of them, and then simply average the output functions learnt from these blocks. Since the average process will decrease the variance, not the bias, bias correction is expected to improve the learning performance if the base regression algorithm is a biased one. Regularization kernel network is an effective and widely used method for nonlinear regression analysis. In this paper we will investigate a bias corrected version of regularization kernel network. We derive the error bounds when it is applied to a single data set and when it is applied as a base algorithm in distributed regression. We show that, under certain appropriate conditions, the optimal learning rates can be reached in both situations.
Zhengchu Guo, Lei Shi and Qiang Wu
null
1708.0196
null
null
Why Adaptively Collected Data Have Negative Bias and How to Correct for It
stat.ML cs.LG
From scientific experiments to online A/B testing, the previously observed data often affects how future experiments are performed, which in turn affects which data will be collected. Such adaptivity introduces complex correlations between the data and the collection procedure. In this paper, we prove that when the data collection procedure satisfies natural conditions, then sample means of the data have systematic \emph{negative} biases. As an example, consider an adaptive clinical trial where additional data points are more likely to be tested for treatments that show initial promise. Our surprising result implies that the average observed treatment effects would underestimate the true effects of each treatment. We quantitatively analyze the magnitude and behavior of this negative bias in a variety of settings. We also propose a novel debiasing algorithm based on selective inference techniques. In experiments, our method can effectively reduce bias and estimation error.
Xinkun Nie, Xiaoying Tian, Jonathan Taylor, James Zou
null
1708.01977
null
null
Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks
cs.CV cs.LG
Fashion landmarks are functional key points defined on clothes, such as corners of neckline, hemline, and cuff. They have been recently introduced as an effective visual representation for fashion image understanding. However, detecting fashion landmarks are challenging due to background clutters, human poses, and scales. To remove the above variations, previous works usually assumed bounding boxes of clothes are provided in training and test as additional annotations, which are expensive to obtain and inapplicable in practice. This work addresses unconstrained fashion landmark detection, where clothing bounding boxes are not provided in both training and test. To this end, we present a novel Deep LAndmark Network (DLAN), where bounding boxes and landmarks are jointly estimated and trained iteratively in an end-to-end manner. DLAN contains two dedicated modules, including a Selective Dilated Convolution for handling scale discrepancies, and a Hierarchical Recurrent Spatial Transformer for handling background clutters. To evaluate DLAN, we present a large-scale fashion landmark dataset, namely Unconstrained Landmark Database (ULD), consisting of 30K images. Statistics show that ULD is more challenging than existing datasets in terms of image scales, background clutters, and human poses. Extensive experiments demonstrate the effectiveness of DLAN over the state-of-the-art methods. DLAN also exhibits excellent generalization across different clothing categories and modalities, making it extremely suitable for real-world fashion analysis.
Sijie Yan, Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, Xiaoou Tang
null
1708.02044
null
null
Nonconvex Sparse Logistic Regression with Weakly Convex Regularization
cs.LG stat.ML
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.
Xinyue Shen, Yuantao Gu
10.1109/TSP.2018.2824289
1708.02059
null
null
Measuring Catastrophic Forgetting in Neural Networks
cs.AI cs.CV cs.LG
Deep neural networks are used in many state-of-the-art systems for machine perception. Once a network is trained to do a specific task, e.g., bird classification, it cannot easily be trained to do new tasks, e.g., incrementally learning to recognize additional bird species or learning an entirely different task such as flower recognition. When new tasks are added, typical deep neural networks are prone to catastrophically forgetting previous tasks. Networks that are capable of assimilating new information incrementally, much like how humans form new memories over time, will be more efficient than re-training the model from scratch each time a new task needs to be learned. There have been multiple attempts to develop schemes that mitigate catastrophic forgetting, but these methods have not been directly compared, the tests used to evaluate them vary considerably, and these methods have only been evaluated on small-scale problems (e.g., MNIST). In this paper, we introduce new metrics and benchmarks for directly comparing five different mechanisms designed to mitigate catastrophic forgetting in neural networks: regularization, ensembling, rehearsal, dual-memory, and sparse-coding. Our experiments on real-world images and sounds show that the mechanism(s) that are critical for optimal performance vary based on the incremental training paradigm and type of data being used, but they all demonstrate that the catastrophic forgetting problem has yet to be solved.
Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan
null
1708.02072
null
null
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls
cs.LG cs.DS math.OC stat.ML
We propose a rank-$k$ variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation ($1$-SVD) in Frank-Wolfe with a top-$k$ singular-vector computation ($k$-SVD), which can be done by repeatedly applying $1$-SVD $k$ times. Alternatively, our algorithm can be viewed as a rank-$k$ restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most $k$. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.
Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li
null
1708.02105
null
null
Regularizing and Optimizing LSTM Language Models
cs.CL cs.LG cs.NE
Recurrent neural networks (RNNs), such as long short-term memory networks (LSTMs), serve as a fundamental building block for many sequence learning tasks, including machine translation, language modeling, and question answering. In this paper, we consider the specific problem of word-level language modeling and investigate strategies for regularizing and optimizing LSTM-based models. We propose the weight-dropped LSTM which uses DropConnect on hidden-to-hidden weights as a form of recurrent regularization. Further, we introduce NT-ASGD, a variant of the averaged stochastic gradient method, wherein the averaging trigger is determined using a non-monotonic condition as opposed to being tuned by the user. Using these and other regularization strategies, we achieve state-of-the-art word level perplexities on two data sets: 57.3 on Penn Treebank and 65.8 on WikiText-2. In exploring the effectiveness of a neural cache in conjunction with our proposed model, we achieve an even lower state-of-the-art perplexity of 52.8 on Penn Treebank and 52.0 on WikiText-2.
Stephen Merity, Nitish Shirish Keskar, Richard Socher
null
1708.02182
null
null
PowerAI DDL
cs.DC cs.AI cs.LG
As deep neural networks become more complex and input datasets grow larger, it can take days or even weeks to train a deep neural network to the desired accuracy. Therefore, distributed Deep Learning at a massive scale is a critical capability, since it offers the potential to reduce the training time from weeks to hours. In this paper, we present a software-hardware co-optimized distributed Deep Learning system that can achieve near-linear scaling up to hundreds of GPUs. The core algorithm is a multi-ring communication pattern that provides a good tradeoff between latency and bandwidth and adapts to a variety of system configurations. The communication algorithm is implemented as a library for easy use. This library has been integrated into Tensorflow, Caffe, and Torch. We train Resnet-101 on Imagenet 22K with 64 IBM Power8 S822LC servers (256 GPUs) in about 7 hours to an accuracy of 33.8 % validation accuracy. Microsoft's ADAM and Google's DistBelief results did not reach 30 % validation accuracy for Imagenet 22K. Compared to Facebook AI Research's recent paper on 256 GPU training, we use a different communication algorithm, and our combined software and hardware system offers better communication overhead for Resnet-50. A PowerAI DDL enabled version of Torch completed 90 epochs of training on Resnet 50 for 1K classes in 50 minutes using 64 IBM Power8 S822LC servers (256 GPUs).
Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, Dheeraj Sreedhar
null
1708.02188
null
null
Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning
cs.AI cs.LG
Intrinsically motivated spontaneous exploration is a key enabler of autonomous developmental learning in human children. It enables the discovery of skill repertoires through autotelic learning, i.e. the self-generation, self-selection, self-ordering and self-experimentation of learning goals. We present an algorithmic approach called Intrinsically Motivated Goal Exploration Processes (IMGEP) to enable similar properties of autonomous learning in machines. The IMGEP architecture relies on several principles: 1) self-generation of goals, generalized as parameterized fitness functions; 2) selection of goals based on intrinsic rewards; 3) exploration with incremental goal-parameterized policy search and exploitation with a batch learning algorithm; 4) systematic reuse of information acquired when targeting a goal for improving towards other goals. We present a particularly efficient form of IMGEP, called AMB, that uses a population-based policy and an object-centered spatio-temporal modularity. We provide several implementations of this architecture and demonstrate their ability to automatically generate a learning curriculum within several experimental setups. One of these experiments includes a real humanoid robot exploring multiple spaces of goals with several hundred continuous dimensions and with distractors. While no particular target goal is provided to these autotelic agents, this curriculum allows the discovery of diverse skills that act as stepping stones for learning more complex skills, e.g. nested tool use.
S\'ebastien Forestier, R\'emy Portelas, Yoan Mollard, Pierre-Yves Oudeyer
null
1708.0219
null
null
Image Quality Assessment Techniques Show Improved Training and Evaluation of Autoencoder Generative Adversarial Networks
cs.CV cs.LG
We propose a training and evaluation approach for autoencoder Generative Adversarial Networks (GANs), specifically the Boundary Equilibrium Generative Adversarial Network (BEGAN), based on methods from the image quality assessment literature. Our approach explores a multidimensional evaluation criterion that utilizes three distance functions: an $l_1$ score, the Gradient Magnitude Similarity Mean (GMSM) score, and a chrominance score. We show that each of the different distance functions captures a slightly different set of properties in image space and, consequently, requires its own evaluation criterion to properly assess whether the relevant property has been adequately learned. We show that models using the new distance functions are able to produce better images than the original BEGAN model in predicted ways.
Michael O. Vertolli and Jim Davies
null
1708.02237
null
null
Parallelizing Over Artificial Neural Network Training Runs with Multigrid
cs.NA cs.LG
Artificial neural networks are a popular and effective machine learning technique. Great progress has been made parallelizing the expensive training phase of an individual network, leading to highly specialized pieces of hardware, many based on GPU-type architectures, and more concurrent algorithms such as synthetic gradients. However, the training phase continues to be a bottleneck, where the training data must be processed serially over thousands of individual training runs. This work considers a multigrid reduction in time (MGRIT) algorithm that is able to parallelize over the thousands of training runs and converge to the exact same solution as traditional training would provide. MGRIT was originally developed to provide parallelism for time evolution problems that serially step through a finite number of time-steps. This work recasts the training of a neural network similarly, treating neural network training as an evolution equation that evolves the network weights from one step to the next. Thus, this work concerns distributed computing approaches for neural networks, but is distinct from other approaches which seek to parallelize only over individual training runs. The work concludes with supporting numerical results for two model problems.
Jacob B. Schroder
null
1708.02276
null
null
Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification
cs.CV cs.LG stat.ML
Person Re-Identification (person re-id) is a crucial task as its applications in visual surveillance and human-computer interaction. In this work, we present a novel joint Spatial and Temporal Attention Pooling Network (ASTPN) for video-based person re-identification, which enables the feature extractor to be aware of the current input video sequences, in a way that interdependency from the matching items can directly influence the computation of each other's representation. Specifically, the spatial pooling layer is able to select regions from each frame, while the attention temporal pooling performed can select informative frames over the sequence, both pooling guided by the information from distance matching. Experiments are conduced on the iLIDS-VID, PRID-2011 and MARS datasets and the results demonstrate that this approach outperforms existing state-of-art methods. We also analyze how the joint pooling in both dimensions can boost the person re-id performance more effectively than using either of them separately.
Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu Chang, Pan Zhou
null
1708.02286
null
null
Reinforced Video Captioning with Entailment Rewards
cs.CL cs.AI cs.CV cs.LG
Sequence-to-sequence models have shown promising improvements on the temporal task of video captioning, but they optimize word-level cross-entropy loss during training. First, using policy gradient and mixed-loss methods for reinforcement learning, we directly optimize sentence-level task-based metrics (as rewards), achieving significant improvements over the baseline, based on both automatic metrics and human evaluation on multiple datasets. Next, we propose a novel entailment-enhanced reward (CIDEnt) that corrects phrase-matching based metrics (such as CIDEr) to only allow for logically-implied partial matches and avoid contradictions, achieving further significant improvements over the CIDEr-reward model. Overall, our CIDEnt-reward model achieves the new state-of-the-art on the MSR-VTT dataset.
Ramakanth Pasunuru, Mohit Bansal
null
1708.023
null
null
Shortcut-Stacked Sentence Encoders for Multi-Domain Inference
cs.CL cs.AI cs.LG
We present a simple sequential sentence encoder for multi-domain natural language inference. Our encoder is based on stacked bidirectional LSTM-RNNs with shortcut connections and fine-tuning of word embeddings. The overall supervised model uses the above encoder to encode two input sentences into two vectors, and then uses a classifier over the vector combination to label the relationship between these two sentences as that of entailment, contradiction, or neural. Our Shortcut-Stacked sentence encoders achieve strong improvements over existing encoders on matched and mismatched multi-domain natural language inference (top non-ensemble single-model result in the EMNLP RepEval 2017 Shared Task (Nangia et al., 2017)). Moreover, they achieve the new state-of-the-art encoding result on the original SNLI dataset (Bowman et al., 2015).
Yixin Nie, Mohit Bansal
null
1708.02312
null
null
GPLAC: Generalizing Vision-Based Robotic Skills using Weakly Labeled Images
cs.LG cs.CV cs.RO
We tackle the problem of learning robotic sensorimotor control policies that can generalize to visually diverse and unseen environments. Achieving broad generalization typically requires large datasets, which are difficult to obtain for task-specific interactive processes such as reinforcement learning or learning from demonstration. However, much of the visual diversity in the world can be captured through passively collected datasets of images or videos. In our method, which we refer to as GPLAC (Generalized Policy Learning with Attentional Classifier), we use both interaction data and weakly labeled image data to augment the generalization capacity of sensorimotor policies. Our method combines multitask learning on action selection and an auxiliary binary classification objective, together with a convolutional neural network architecture that uses an attentional mechanism to avoid distractors. We show that pairing interaction data from just a single environment with a diverse dataset of weakly labeled data results in greatly improved generalization to unseen environments, and show that this generalization depends on both the auxiliary objective and the attentional architecture that we propose. We demonstrate our results in both simulation and on a real robotic manipulator, and demonstrate substantial improvement over standard convolutional architectures and domain adaptation methods.
Avi Singh, Larry Yang, Sergey Levine
null
1708.02313
null
null
EnLLVM: Ensemble Based Nonlinear Bayesian Filtering Using Linear Latent Variable Models
stat.CO cs.LG
Real-time nonlinear Bayesian filtering algorithms are overwhelmed by data volume, velocity and increasing complexity of computational models. In this paper, we propose a novel ensemble based nonlinear Bayesian filtering approach which only requires a small number of simulations and can be applied to high-dimensional systems in the presence of intractable likelihood functions. The proposed approach uses linear latent projections to estimate the joint probability distribution between states, parameters, and observables using a mixture of Gaussian components generated by the reconstruction error for each ensemble member. Since it leverages the computational machinery behind linear latent variable models, it can achieve fast implementations without the need to compute high-dimensional sample covariance matrices. The performance of the proposed approach is compared with the performance of ensemble Kalman filter on a high-dimensional Lorenz nonlinear dynamical system.
Xiao Lin, Gabriel Terejanu
null
1708.0234
null
null
Learning how to Active Learn: A Deep Reinforcement Learning Approach
cs.CL cs.AI cs.LG
Active learning aims to select a small subset of data for annotation such that a classifier learned on the data is highly accurate. This is usually done using heuristic selection methods, however the effectiveness of such methods is limited and moreover, the performance of heuristics varies between datasets. To address these shortcomings, we introduce a novel formulation by reframing the active learning as a reinforcement learning problem and explicitly learning a data selection policy, where the policy takes the role of the active learning heuristic. Importantly, our method allows the selection policy learned using simulation on one language to be transferred to other languages. We demonstrate our method using cross-lingual named entity recognition, observing uniform improvements over traditional active learning.
Meng Fang, Yuan Li and Trevor Cohn
null
1708.02383
null
null
Robust Conditional Probabilities
cs.LG
Conditional probabilities are a core concept in machine learning. For example, optimal prediction of a label $Y$ given an input $X$ corresponds to maximizing the conditional probability of $Y$ given $X$. A common approach to inference tasks is learning a model of conditional probabilities. However, these models are often based on strong assumptions (e.g., log-linear models), and hence their estimate of conditional probabilities is not robust and is highly dependent on the validity of their assumptions. Here we propose a framework for reasoning about conditional probabilities without assuming anything about the underlying distributions, except knowledge of their second order marginals, which can be estimated from data. We show how this setting leads to guaranteed bounds on conditional probabilities, which can be calculated efficiently in a variety of settings, including structured-prediction. Finally, we apply them to semi-supervised deep learning, obtaining results competitive with variational autoencoders.
Yoav Wald, Amir Globerson
null
1708.02406
null
null
Fast Low-Rank Bayesian Matrix Completion with Hierarchical Gaussian Prior Models
cs.LG stat.ML
The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.
Linxiao Yang, Jun Fang, Huiping Duan, Hongbin Li and Bing Zeng
10.1109/TSP.2018.2816575
1708.02455
null
null
Multiscale Strategies for Computing Optimal Transport
cs.LG
This paper presents a multiscale approach to efficiently compute approximate optimal transport plans between point sets. It is particularly well-suited for point sets that are in high-dimensions, but are close to being intrinsically low-dimensional. The approach is based on an adaptive multiscale decomposition of the point sets. The multiscale decomposition yields a sequence of optimal transport problems, that are solved in a top-to-bottom fashion from the coarsest to the finest scale. We provide numerical evidence that this multiscale approach scales approximately linearly, in time and memory, in the number of nodes, instead of quadratically or worse for a direct solution. Empirically, the multiscale approach results in less than one percent relative error in the objective function. Furthermore, the multiscale plans constructed are of interest by themselves as they may be used to introduce novel features and notions of distances between point sets. An analysis of sets of brain MRI based on optimal transport distances illustrates the effectiveness of the proposed method on a real world data set. The application demonstrates that multiscale optimal transport distances have the potential to improve on state-of-the-art metrics currently used in computational anatomy.
Samuel Gerber and Mauro Maggioni
null
1708.02469
null
null
Learning non-parametric Markov networks with mutual information
cs.LG cs.IT math.IT stat.ML
We propose a method for learning Markov network structures for continuous data without invoking any assumptions about the distribution of the variables. The method makes use of previous work on a non-parametric estimator for mutual information which is used to create a non-parametric test for multivariate conditional independence. This independence test is then combined with an efficient constraint-based algorithm for learning the graph structure. The performance of the method is evaluated on several synthetic data sets and it is shown to learn considerably more accurate structures than competing methods when the dependencies between the variables involve non-linearities.
Janne Lepp\"a-aho, Santeri R\"ais\"anen, Xiao Yang, Teemu Roos
null
1708.02497
null
null
Parametric Adversarial Divergences are Good Losses for Generative Modeling
cs.LG stat.ML
Parametric adversarial divergences, which are a generalization of the losses used to train generative adversarial networks (GANs), have often been described as being approximations of their nonparametric counterparts, such as the Jensen-Shannon divergence, which can be derived under the so-called optimal discriminator assumption. In this position paper, we argue that despite being "non-optimal", parametric divergences have distinct properties from their nonparametric counterparts which can make them more suitable for learning high-dimensional distributions. A key property is that parametric divergences are only sensitive to certain aspects/moments of the distribution, which depend on the architecture of the discriminator and the loss it was trained with. In contrast, nonparametric divergences such as the Kullback-Leibler divergence are sensitive to moments ignored by the discriminator, but they do not necessarily correlate with sample quality (Theis et al., 2016). Similarly, we show that mutual information can lead to unintuitive interpretations, and explore more intuitive alternatives based on parametric divergences. We conclude that parametric divergences are a flexible framework for defining statistical quantities relevant to a specific modeling task.
Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal Vincent, Simon Lacoste-Julien
null
1708.02511
null
null
Stochastic Optimization with Bandit Sampling
cs.LG cs.AI math.OC stat.ML
Many stochastic optimization algorithms work by estimating the gradient of the cost function on the fly by sampling datapoints uniformly at random from a training set. However, the estimator might have a large variance, which inadvertently slows down the convergence rate of the algorithms. One way to reduce this variance is to sample the datapoints from a carefully selected non-uniform distribution. In this work, we propose a novel non-uniform sampling approach that uses the multi-armed bandit framework. Theoretically, we show that our algorithm asymptotically approximates the optimal variance within a factor of 3. Empirically, we show that using this datapoint-selection technique results in a significant reduction in the convergence time and variance of several stochastic optimization algorithms such as SGD, SVRG and SAGA. This approach for sampling datapoints is general, and can be used in conjunction with any algorithm that uses an unbiased gradient estimation -- we expect it to have broad applicability beyond the specific examples explored in this work.
Farnood Salehi, L. Elisa Celis and Patrick Thiran
null
1708.02544
null
null
Multi-Generator Generative Adversarial Nets
cs.LG cs.AI stat.ML
We propose a new approach to train the Generative Adversarial Nets (GANs) with a mixture of generators to overcome the mode collapsing problem. The main intuition is to employ multiple generators, instead of using a single one as in the original GAN. The idea is simple, yet proven to be extremely effective at covering diverse data modes, easily overcoming the mode collapse and delivering state-of-the-art results. A minimax formulation is able to establish among a classifier, a discriminator, and a set of generators in a similar spirit with GAN. Generators create samples that are intended to come from the same distribution as the training data, whilst the discriminator determines whether samples are true data or generated by generators, and the classifier specifies which generator a sample comes from. The distinguishing feature is that internal samples are created from multiple generators, and then one of them will be randomly selected as final output similar to the mechanism of a probabilistic mixture model. We term our method Mixture GAN (MGAN). We develop theoretical analysis to prove that, at the equilibrium, the Jensen-Shannon divergence (JSD) between the mixture of generators' distributions and the empirical data distribution is minimal, whilst the JSD among generators' distributions is maximal, hence effectively avoiding the mode collapse. By utilizing parameter sharing, our proposed model adds minimal computational cost to the standard GAN, and thus can also efficiently scale to large-scale datasets. We conduct extensive experiments on synthetic 2D data and natural image databases (CIFAR-10, STL-10 and ImageNet) to demonstrate the superior performance of our MGAN in achieving state-of-the-art Inception scores over latest baselines, generating diverse and appealing recognizable objects at different resolutions, and specializing in capturing different types of objects by generators.
Quan Hoang, Tu Dinh Nguyen, Trung Le and Dinh Phung
null
1708.02556
null
null
Belief Propagation, Bethe Approximation and Polynomials
cs.LG cs.DS cs.IT math.IT stat.ML
Factor graphs are important models for succinctly representing probability distributions in machine learning, coding theory, and statistical physics. Several computational problems, such as computing marginals and partition functions, arise naturally when working with factor graphs. Belief propagation is a widely deployed iterative method for solving these problems. However, despite its significant empirical success, not much is known about the correctness and efficiency of belief propagation. Bethe approximation is an optimization-based framework for approximating partition functions. While it is known that the stationary points of the Bethe approximation coincide with the fixed points of belief propagation, in general, the relation between the Bethe approximation and the partition function is not well understood. It has been observed that for a few classes of factor graphs, the Bethe approximation always gives a lower bound to the partition function, which distinguishes them from the general case, where neither a lower bound, nor an upper bound holds universally. This has been rigorously proved for permanents and for attractive graphical models. Here we consider bipartite normal factor graphs and show that if the local constraints satisfy a certain analytic property, the Bethe approximation is a lower bound to the partition function. We arrive at this result by viewing factor graphs through the lens of polynomials. In this process, we reformulate the Bethe approximation as a polynomial optimization problem. Our sufficient condition for the lower bound property to hold is inspired by recent developments in the theory of real stable polynomials. We believe that this way of viewing factor graphs and its connection to real stability might lead to a better understanding of belief propagation and factor graphs in general.
Damian Straszak and Nisheeth K. Vishnoi
null
1708.02581
null
null
Cascade Adversarial Machine Learning Regularized with a Unified Embedding
stat.ML cs.LG
Injecting adversarial examples during training, known as adversarial training, can improve robustness against one-step attacks, but not for unknown iterative attacks. To address this challenge, we first show iteratively generated adversarial images easily transfer between networks trained with the same strategy. Inspired by this observation, we propose cascade adversarial training, which transfers the knowledge of the end results of adversarial training. We train a network from scratch by injecting iteratively generated adversarial images crafted from already defended networks in addition to one-step adversarial images from the network being trained. We also propose to utilize embedding space for both classification and low-level (pixel-level) similarity learning to ignore unknown pixel level perturbation. During training, we inject adversarial images without replacing their corresponding clean images and penalize the distance between the two embeddings (clean and adversarial). Experimental results show that cascade adversarial training together with our proposed low-level similarity learning efficiently enhances the robustness against iterative attacks, but at the expense of decreased robustness against one-step attacks. We show that combining those two techniques can also improve robustness under the worst case black box attack scenario.
Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay
null
1708.02582
null
null
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
cs.LG cs.AI cs.RO
Model-free deep reinforcement learning algorithms have been shown to be capable of learning a wide range of robotic skills, but typically require a very large number of samples to achieve good performance. Model-based algorithms, in principle, can provide for much more efficient learning, but have proven difficult to extend to expressive, high-capacity models such as deep neural networks. In this work, we demonstrate that medium-sized neural network models can in fact be combined with model predictive control (MPC) to achieve excellent sample complexity in a model-based reinforcement learning algorithm, producing stable and plausible gaits to accomplish various complex locomotion tasks. We also propose using deep neural network dynamics models to initialize a model-free learner, in order to combine the sample efficiency of model-based approaches with the high task-specific performance of model-free methods. We empirically demonstrate on MuJoCo locomotion tasks that our pure model-based approach trained on just random action data can follow arbitrary trajectories with excellent sample efficiency, and that our hybrid algorithm can accelerate model-free learning on high-speed benchmark tasks, achieving sample efficiency gains of 3-5x on swimmer, cheetah, hopper, and ant agents. Videos can be found at https://sites.google.com/view/mbmf
Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, Sergey Levine
null
1708.02596
null
null
Real Time Analytics: Algorithms and Systems
cs.DB cs.LG
Velocity is one of the 4 Vs commonly used to characterize Big Data. In this regard, Forrester remarked the following in Q3 2014: "The high velocity, white-water flow of data from innumerable real-time data sources such as market data, Internet of Things, mobile, sensors, click-stream, and even transactions remain largely unnavigated by most firms. The opportunity to leverage streaming analytics has never been greater." Example use cases of streaming analytics include, but not limited to: (a) visualization of business metrics in real-time (b) facilitating highly personalized experiences (c) expediting response during emergencies. Streaming analytics is extensively used in a wide variety of domains such as healthcare, e-commerce, financial services, telecommunications, energy and utilities, manufacturing, government and transportation. In this tutorial, we shall present an in-depth overview of streaming analytics - applications, algorithms and platforms - landscape. We shall walk through how the field has evolved over the last decade and then discuss the current challenges - the impact of the other three Vs, viz., Volume, Variety and Veracity, on Big Data streaming analytics. The tutorial is intended for both researchers and practitioners in the industry. We shall also present state-of-the-affairs of streaming analytics at Twitter.
Arun Kejariwal, Sanjeev Kulkarni and Karthik Ramasamy
null
1708.02621
null
null
Protecting Genomic Privacy by a Sequence-Similarity Based Obfuscation Method
cs.CR cs.LG
In the post-genomic era, large-scale personal DNA sequences are produced and collected for genetic medical diagnoses and new drug discovery, which, however, simultaneously poses serious challenges to the protection of personal genomic privacy. Existing genomic privacy-protection methods are either time-consuming or with low accuracy. To tackle these problems, this paper proposes a sequence similarity-based obfuscation method, namely IterMegaBLAST, for fast and reliable protection of personal genomic privacy. Specifically, given a randomly selected sequence from a dataset of DNA sequences, we first use MegaBLAST to find its most similar sequence from the dataset. These two aligned sequences form a cluster, for which an obfuscated sequence was generated via a DNA generalization lattice scheme. These procedures are iteratively performed until all of the sequences in the dataset are clustered and their obfuscated sequences are generated. Experimental results on two benchmark datasets demonstrate that under the same degree of anonymity, IterMegaBLAST significantly outperforms existing state-of-the-art approaches in terms of both utility accuracy and time complexity.
Shibiao Wan, Man-Wai Mak and Sun-Yuan Kung
null
1708.02629
null
null
Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis
stat.ML cs.LG stat.AP
Anomaly detection in database management systems (DBMSs) is difficult because of increasing number of statistics (stat) and event metrics in big data system. In this paper, I propose an automatic DBMS diagnosis system that detects anomaly periods with abnormal DB stat metrics and finds causal events in the periods. Reconstruction error from deep autoencoder and statistical process control approach are applied to detect time period with anomalies. Related events are found using time series similarity measures between events and abnormal stat metrics. After training deep autoencoder with DBMS metric data, efficacy of anomaly detection is investigated from other DBMSs containing anomalies. Experiment results show effectiveness of proposed model, especially, batch temporal normalization layer. Proposed model is used for publishing automatic DBMS diagnosis reports in order to determine DBMS configuration and SQL tuning.
Doyup Lee
10.1109/ICMLA.2017.0-126
1708.02635
null
null
TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks
cs.DC cs.LG
We present a framework for specifying, training, evaluating, and deploying machine learning models. Our focus is on simplifying cutting edge machine learning for practitioners in order to bring such technologies into production. Recognizing the fast evolution of the field of deep learning, we make no attempt to capture the design space of all possible model architectures in a domain- specific language (DSL) or similar configuration language. We allow users to write code to define their models, but provide abstractions that guide develop- ers to write models in ways conducive to productionization. We also provide a unifying Estimator interface, making it possible to write downstream infrastructure (e.g. distributed training, hyperparameter tuning) independent of the model implementation. We balance the competing demands for flexibility and simplicity by offering APIs at different levels of abstraction, making common model architectures available out of the box, while providing a library of utilities designed to speed up experimentation with model architectures. To make out of the box models flexible and usable across a wide range of problems, these canned Estimators are parameterized not only over traditional hyperparameters, but also using feature columns, a declarative specification describing how to interpret input data. We discuss our experience in using this framework in re- search and production environments, and show the impact on code health, maintainability, and development speed.
Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens Mewald, Illia Polosukhin, Georgios Roumpos, D Sculley, Jamie Smith, David Soergel, Yuan Tang, Philipp Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie
10.1145/3097983.3098171
1708.02637
null
null
Extractor-Based Time-Space Lower Bounds for Learning
cs.LG cs.CC
A matrix $M: A \times X \rightarrow \{-1,1\}$ corresponds to the following learning problem: An unknown element $x \in X$ is chosen uniformly at random. A learner tries to learn $x$ from a stream of samples, $(a_1, b_1), (a_2, b_2) \ldots$, where for every $i$, $a_i \in A$ is chosen uniformly at random and $b_i = M(a_i,x)$. Assume that $k,\ell, r$ are such that any submatrix of $M$ of at least $2^{-k} \cdot |A|$ rows and at least $2^{-\ell} \cdot |X|$ columns, has a bias of at most $2^{-r}$. We show that any learning algorithm for the learning problem corresponding to $M$ requires either a memory of size at least $\Omega\left(k \cdot \ell \right)$, or at least $2^{\Omega(r)}$ samples. The result holds even if the learner has an exponentially small success probability (of $2^{-\Omega(r)}$). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least $\Omega\left((\log |X|) \cdot (\log |A|)\right)$ or an exponential number of samples, achieving a tight $\Omega\left((\log |X|) \cdot (\log |A|)\right)$ lower bound on the size of the memory, rather than a bound of $\Omega\left(\min\left\{(\log |X|)^2,(\log |A|)^2\right\}\right)$ obtained in previous works [R17,MM17b]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on [R17] that gave a general technique for proving memory-samples lower bounds.
Sumegha Garg, Ran Raz, Avishay Tal
null
1708.02639
null
null
Time-Space Tradeoffs for Learning from Small Test Spaces: Learning Low Degree Polynomial Functions
cs.LG cs.CC
We develop an extension of recently developed methods for obtaining time-space tradeoff lower bounds for problems of learning from random test samples to handle the situation where the space of tests is signficantly smaller than the space of inputs, a class of learning problems that is not handled by prior work. This extension is based on a measure of how matrices amplify the 2-norms of probability distributions that is more refined than the 2-norms of these matrices. As applications that follow from our new technique, we show that any algorithm that learns $m$-variate homogeneous polynomial functions of degree at most $d$ over $\mathbb{F}_2$ from evaluations on randomly chosen inputs either requires space $\Omega(mn)$ or $2^{\Omega(m)}$ time where $n=m^{\Theta(d)}$ is the dimension of the space of such functions. These bounds are asymptotically optimal since they match the tradeoffs achieved by natural learning algorithms for the problems.
Paul Beame, Shayan Oveis Gharan and Xin Yang
null
1708.0264
null
null
Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
cs.CL cs.LG
This article offers an empirical study on the different ways of encoding Chinese, Japanese, Korean (CJK) and English languages for text classification. Different encoding levels are studied, including UTF-8 bytes, characters, words, romanized characters and romanized words. For all encoding levels, whenever applicable, we provide comparisons with linear models, fastText and convolutional networks. For convolutional networks, we compare between encoding mechanisms using character glyph images, one-hot (or one-of-n) encoding, and embedding. In total there are 473 models, using 14 large-scale text classification datasets in 4 languages including Chinese, English, Japanese and Korean. Some conclusions from these results include that byte-level one-hot encoding based on UTF-8 consistently produces competitive results for convolutional networks, that word-level n-grams linear models are competitive even without perfect word segmentation, and that fastText provides the best result using character-level n-gram encoding but can overfit when the features are overly rich.
Xiang Zhang, Yann LeCun
null
1708.02657
null
null
Gradient-enhanced kriging for high-dimensional problems
cs.LG stat.ML
Surrogate models provide a low computational cost alternative to evaluating expensive functions. The construction of accurate surrogate models with large numbers of independent variables is currently prohibitive because it requires a large number of function evaluations. Gradient-enhanced kriging has the potential to reduce the number of function evaluations for the desired accuracy when efficient gradient computation, such as an adjoint method, is available. However, current gradient-enhanced kriging methods do not scale well with the number of sampling points due to the rapid growth in the size of the correlation matrix where new information is added for each sampling point in each direction of the design space. They do not scale well with the number of independent variables either due to the increase in the number of hyperparameters that needs to be estimated. To address this issue, we develop a new gradient-enhanced surrogate model approach that drastically reduced the number of hyperparameters through the use of the partial-least squares method that maintains accuracy. In addition, this method is able to control the size of the correlation matrix by adding only relevant points defined through the information provided by the partial-least squares method. To validate our method, we compare the global accuracy of the proposed method with conventional kriging surrogate models on two analytic functions with up to 100 dimensions, as well as engineering problems of varied complexity with up to 15 dimensions. We show that the proposed method requires fewer sampling points than conventional methods to obtain the desired accuracy, or provides more accuracy for a fixed budget of sampling points. In some cases, we get over 3 times more accurate models than a bench of surrogate models from the literature, and also over 3200 times faster than standard gradient-enhanced kriging models.
Mohamed Amine Bouhlel and Joaquim R. R. A. Martins
null
1708.02663
null
null
Proceedings of the 2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017)
stat.ML cs.LG
This is the Proceedings of the 2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017), which was held in Sydney, Australia, August 10, 2017. Invited speakers were Tony Jebara, Pang Wei Koh, and David Sontag.
Been Kim, Dmitry M. Malioutov, Kush R. Varshney, Adrian Weller
null
1708.02666
null
null
Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
stat.ML cs.CG cs.LG math.FA math.ST stat.TH
This article concerns the expressive power of depth in neural nets with ReLU activations and bounded width. We are particularly interested in the following questions: what is the minimal width $w_{\text{min}}(d)$ so that ReLU nets of width $w_{\text{min}}(d)$ (and arbitrary depth) can approximate any continuous function on the unit cube $[0,1]^d$ aribitrarily well? For ReLU nets near this minimal width, what can one say about the depth necessary to approximate a given function? Our approach to this paper is based on the observation that, due to the convexity of the ReLU activation, ReLU nets are particularly well-suited for representing convex functions. In particular, we prove that ReLU nets with width $d+1$ can approximate any continuous convex function of $d$ variables arbitrarily well. These results then give quantitative depth estimates for the rate of approximation of any continuous scalar function on the $d$-dimensional cube $[0,1]^d$ by ReLU nets with width $d+3.$
Boris Hanin
10.3390/math7100992
1708.02691
null
null
Optimal Identity Testing with High Probability
cs.DS cs.IT cs.LG math.IT math.ST stat.TH
We study the problem of testing identity against a given distribution with a focus on the high confidence regime. More precisely, given samples from an unknown distribution $p$ over $n$ elements, an explicitly given distribution $q$, and parameters $0< \epsilon, \delta < 1$, we wish to distinguish, {\em with probability at least $1-\delta$}, whether the distributions are identical versus $\varepsilon$-far in total variation distance. Most prior work focused on the case that $\delta = \Omega(1)$, for which the sample complexity of identity testing is known to be $\Theta(\sqrt{n}/\epsilon^2)$. Given such an algorithm, one can achieve arbitrarily small values of $\delta$ via black-box amplification, which multiplies the required number of samples by $\Theta(\log(1/\delta))$. We show that black-box amplification is suboptimal for any $\delta = o(1)$, and give a new identity tester that achieves the optimal sample complexity. Our new upper and lower bounds show that the optimal sample complexity of identity testing is \[ \Theta\left( \frac{1}{\epsilon^2}\left(\sqrt{n \log(1/\delta)} + \log(1/\delta) \right)\right) \] for any $n, \varepsilon$, and $\delta$. For the special case of uniformity testing, where the given distribution is the uniform distribution $U_n$ over the domain, our new tester is surprisingly simple: to test whether $p = U_n$ versus $d_{\mathrm TV}(p, U_n) \geq \varepsilon$, we simply threshold $d_{\mathrm TV}(\widehat{p}, U_n)$, where $\widehat{p}$ is the empirical probability distribution. The fact that this simple "plug-in" estimator is sample-optimal is surprising, even in the constant $\delta$ case. Indeed, it was believed that such a tester would not attain sublinear sample complexity even for constant values of $\varepsilon$ and $\delta$.
Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price
null
1708.02728
null
null
Gaussian Prototypical Networks for Few-Shot Learning on Omniglot
cs.LG cs.CV cs.NE stat.ML
We propose a novel architecture for $k$-shot classification on the Omniglot dataset. Building on prototypical networks, we extend their architecture to what we call Gaussian prototypical networks. Prototypical networks learn a map between images and embedding vectors, and use their clustering for classification. In our model, a part of the encoder output is interpreted as a confidence region estimate about the embedding point, and expressed as a Gaussian covariance matrix. Our network then constructs a direction and class dependent distance metric on the embedding space, using uncertainties of individual data points as weights. We show that Gaussian prototypical networks are a preferred architecture over vanilla prototypical networks with an equivalent number of parameters. We report state-of-the-art performance in 1-shot and 5-shot classification both in 5-way and 20-way regime (for 5-shot 5-way, we are comparable to previous state-of-the-art) on the Omniglot dataset. We explore artificially down-sampling a fraction of images in the training set, which improves our performance even further. We therefore hypothesize that Gaussian prototypical networks might perform better in less homogeneous, noisier datasets, which are commonplace in real world applications.
Stanislav Fort
null
1708.02735
null
null
A Data Prism: Semi-Verified Learning in the Small-Alpha Regime
cs.LG cs.IT math.IT
We consider a model of unreliable or crowdsourced data where there is an underlying set of $n$ binary variables, each evaluator contributes a (possibly unreliable or adversarial) estimate of the values of some subset of $r$ of the variables, and the learner is given the true value of a constant number of variables. We show that, provided an $\alpha$-fraction of the evaluators are "good" (either correct, or with independent noise rate $p < 1/2$), then the true values of a $(1-\epsilon)$ fraction of the $n$ underlying variables can be deduced as long as $\alpha > 1/(2-2p)^r$. This setting can be viewed as an instance of the semi-verified learning model introduced in [CSV17], which explores the tradeoff between the number of items evaluated by each worker and the fraction of good evaluators. Our results require the number of evaluators to be extremely large, $>n^r$, although our algorithm runs in linear time, $O_{r,\epsilon}(n)$, given query access to the large dataset of evaluations. This setting and results can also be viewed as examining a general class of semi-adversarial CSPs with a planted assignment. This parameter regime where the fraction of reliable data is small, is relevant to a number of practical settings. For example, settings where one has a large dataset of customer preferences, with each customer specifying preferences for a small (constant) number of items, and the goal is to ascertain the preferences of a specific demographic of interest. Our results show that this large dataset (which lacks demographic information) can be leveraged together with the preferences of the demographic of interest for a constant number of randomly selected items, to recover an accurate estimate of the entire set of preferences. In this sense, our results can be viewed as a "data prism" allowing one to extract the behavior of specific cohorts from a large, mixed, dataset.
Michela Meister and Gregory Valiant
null
1708.0274
null
null
Non-Adaptive Randomized Algorithm for Group Testing
cs.LG
We study the problem of group testing with a non-adaptive randomized algorithm in the random incidence design (RID) model where each entry in the test is chosen randomly independently from $\{0,1\}$ with a fixed probability $p$. The property that is sufficient and necessary for a unique decoding is the separability of the tests, but unfortunately no linear time algorithm is known for such tests. In order to achieve linear-time decodable tests, the algorithms in the literature use the disjunction property that gives almost optimal number of tests. We define a new property for the tests which we call semi-disjunction property. We show that there is a linear time decoding for such test and for $d\to \infty$ the number of tests converges to the number of tests with the separability property and is therefore optimal (in the RID model). Our analysis shows that, in the RID model, the number of tests in our algorithm is better than the one with the disjunction property even for small $d$.
Nader H. Bshouty, Nuha Diab, Shada R. Kawar, Robert J. Shahla
null
1708.02787
null
null
Simulated Annealing with Levy Distribution for Fast Matrix Factorization-Based Collaborative Filtering
cs.LG cs.IR stat.ML
Matrix factorization is one of the best approaches for collaborative filtering, because of its high accuracy in presenting users and items latent factors. The main disadvantages of matrix factorization are its complexity, and being very hard to be parallelized, specially with very large matrices. In this paper, we introduce a new method for collaborative filtering based on Matrix Factorization by combining simulated annealing with levy distribution. By using this method, good solutions are achieved in acceptable time with low computations, compared to other methods like stochastic gradient descent, alternating least squares, and weighted non-negative matrix factorization.
Mostafa A. Shehata, Mohammad Nassef and Amr A. Badr
null
1708.02867
null
null
Spectral Dynamics of Learning Restricted Boltzmann Machines
cond-mat.dis-nn cond-mat.stat-mech cs.LG
The Restricted Boltzmann Machine (RBM), an important tool used in machine learning in particular for unsupervized learning tasks, is investigated from the perspective of its spectral properties. Starting from empirical observations, we propose a generic statistical ensemble for the weight matrix of the RBM and characterize its mean evolution. This let us show how in the linear regime, in which the RBM is found to operate at the beginning of the training, the statistical properties of the data drive the selection of the unstable modes of the weight matrix. A set of equations characterizing the non-linear regime is then derived, unveiling in some way how the selected modes interact in later stages of the learning procedure and defining a deterministic learning curve for the RBM.
Aur\'elien Decelle, Giancarlo Fissore and Cyril Furtlehner
10.1209/0295-5075/119/60001
1708.02917
null
null
The Tensor Memory Hypothesis
cs.AI cs.LG q-bio.NC stat.ML
We discuss memory models which are based on tensor decompositions using latent representations of entities and events. We show how episodic memory and semantic memory can be realized and discuss how new memory traces can be generated from sensory input: Existing memories are the basis for perception and new memories are generated via perception. We relate our mathematical approach to the hippocampal memory indexing theory. We describe the first detailed mathematical models for the complete processing pipeline from sensory input and its semantic decoding, i.e., perception, to the formation of episodic and semantic memories and their declarative semantic decodings. Our main hypothesis is that perception includes an active semantic decoding process, which relies on latent representations of entities and predicates, and that episodic and semantic memories depend on the same decoding process. We contribute to the debate between the leading memory consolidation theories, i.e., the standard consolidation theory (SCT) and the multiple trace theory (MTT). The latter is closely related to the complementary learning systems (CLS) framework. In particular, we show explicitly how episodic memory can teach the neocortex to form a semantic memory, which is a core issue in MTT and CLS.
Volker Tresp and Yunpu Ma
null
1708.02918
null
null
Enabling Massive Deep Neural Networks with the GraphBLAS
cs.DC cs.LG
Deep Neural Networks (DNNs) have emerged as a core tool for machine learning. The computations performed during DNN training and inference are dominated by operations on the weight matrices describing the DNN. As DNNs incorporate more stages and more nodes per stage, these weight matrices may be required to be sparse because of memory limitations. The GraphBLAS.org math library standard was developed to provide high performance manipulation of sparse weight matrices and input/output vectors. For sufficiently sparse matrices, a sparse matrix library requires significantly less memory than the corresponding dense matrix implementation. This paper provides a brief description of the mathematics underlying the GraphBLAS. In addition, the equations of a typical DNN are rewritten in a form designed to use the GraphBLAS. An implementation of the DNN is given using a preliminary GraphBLAS C library. The performance of the GraphBLAS implementation is measured relative to a standard dense linear algebra library implementation. For various sizes of DNN weight matrices, it is shown that the GraphBLAS sparse implementation outperforms a BLAS dense implementation as the weight matrix becomes sparser.
Jeremy Kepner, Manoj Kumar, Jos\'e Moreira, Pratap Pattnaik, Mauricio Serrano, Henry Tufo
10.1109/HPEC.2017.8091098
1708.02937
null
null
Convergence of Unregularized Online Learning Algorithms
cs.LG
In this paper we study the convergence of online gradient descent algorithms in reproducing kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition and a necessary condition for the convergence of excess generalization errors in expectation. A sufficient condition for the almost sure convergence is also given. With high probability, we provide explicit convergence rates of the excess generalization errors for both averaged iterates and the last iterate, which in turn also imply convergence rates with probability one. To our best knowledge, this is the first high-probability convergence rate for the last iterate of online gradient descent algorithms without strong convexity. Without any boundedness assumptions on iterates, our results are derived by a novel use of two measures of the algorithm's one-step progress, respectively by generalization errors and by distances in RKHSs, where the variances of the involved martingales are cancelled out by the descent property of the algorithm.
Yunwen Lei, Lei Shi and Zheng-Chu Guo
null
1708.02939
null
null
Anomaly Detection on Graph Time Series
cs.LG cs.NE stat.ML
In this paper, we use variational recurrent neural network to investigate the anomaly detection problem on graph time series. The temporal correlation is modeled by the combination of recurrent neural network (RNN) and variational inference (VI), while the spatial information is captured by the graph convolutional network. In order to incorporate external factors, we use feature extractor to augment the transition of latent variables, which can learn the influence of external factors. With the target function as accumulative ELBO, it is easy to extend this model to on-line method. The experimental study on traffic flow data shows the detection capability of the proposed method.
Daniel Hsu
null
1708.02975
null
null
Hierarchically-Attentive RNN for Album Summarization and Storytelling
cs.CL cs.AI cs.CV cs.LG
We address the problem of end-to-end visual storytelling. Given a photo album, our model first selects the most representative (summary) photos, and then composes a natural language story for the album. For this task, we make use of the Visual Storytelling dataset and a model composed of three hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode the album photos, select representative (summary) photos, and compose the story. Automatic and human evaluations show our model achieves better performance on selection, generation, and retrieval than baselines.
Licheng Yu and Mohit Bansal and Tamara L. Berg
null
1708.02977
null
null
Tikhonov Regularization for Long Short-Term Memory Networks
cs.LG cs.NE stat.ML
It is a well-known fact that adding noise to the input data often improves network performance. While the dropout technique may be a cause of memory loss, when it is applied to recurrent connections, Tikhonov regularization, which can be regarded as the training with additive noise, avoids this issue naturally, though it implies regularizer derivation for different architectures. In case of feedforward neural networks this is straightforward, while for networks with recurrent connections and complicated layers it leads to some difficulties. In this paper, a Tikhonov regularizer is derived for Long-Short Term Memory (LSTM) networks. Although it is independent of time for simplicity, it considers interaction between weights of the LSTM unit, which in theory makes it possible to regularize the unit with complicated dependences by using only one parameter that measures the input data perturbation. The regularizer that is proposed in this paper has three parameters: one to control the regularization process, and other two to maintain computation stability while the network is being trained. The theory developed in this paper can be applied to get such regularizers for different recurrent neural networks with Hadamard products and Lipschitz continuous functions.
Andrei Turkin
null
1708.02979
null
null
Non-stationary Stochastic Optimization under $L_{p,q}$-Variation Measures
stat.ML cs.LG
We consider a non-stationary sequential stochastic optimization problem, in which the underlying cost functions change over time under a variation budget constraint. We propose an $L_{p,q}$-variation functional to quantify the change, which yields less variation for dynamic function sequences whose changes are constrained to short time periods or small subsets of input domain. Under the $L_{p,q}$-variation constraint, we derive both upper and matching lower regret bounds for smooth and strongly convex function sequences, which generalize previous results in Besbes et al. (2015). Furthermore, we provide an upper bound for general convex function sequences with noisy gradient feedback, which matches the optimal rate as $p\to\infty$. Our results reveal some surprising phenomena under this general variation functional, such as the curse of dimensionality of the function domain. The key technical novelties in our analysis include affinity lemmas that characterize the distance of the minimizers of two convex functions with bounded Lp difference, and a cubic spline based construction that attains matching lower bounds.
Xi Chen, Yining Wang, Yu-Xiang Wang
null
1708.0302
null
null
Using Deep Neural Networks to Automate Large Scale Statistical Analysis for Big Data Applications
stat.ML cs.LG stat.CO
Statistical analysis (SA) is a complex process to deduce population properties from analysis of data. It usually takes a well-trained analyst to successfully perform SA, and it becomes extremely challenging to apply SA to big data applications. We propose to use deep neural networks to automate the SA process. In particular, we propose to construct convolutional neural networks (CNNs) to perform automatic model selection and parameter estimation, two most important SA tasks. We refer to the resulting CNNs as the neural model selector and the neural model estimator, respectively, which can be properly trained using labeled data systematically generated from candidate models. Simulation study shows that both the selector and estimator demonstrate excellent performances. The idea and proposed framework can be further extended to automate the entire SA process and have the potential to revolutionize how SA is performed in big data analytics.
Rongrong Zhang, Wei Deng, Michael Yu Zhu
null
1708.03027
null
null