title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Finite-Time Analysis of Kernelised Contextual Bandits
cs.LG stat.ML
We tackle the problem of online reward maximisation over a large finite set of actions described by their contexts. We focus on the case when the number of actions is too big to sample all of them even once. However we assume that we have access to the similarities between actions' contexts and that the expected reward is an arbitrary linear function of the contexts' images in the related reproducing kernel Hilbert space (RKHS). We propose KernelUCB, a kernelised UCB algorithm, and give a cumulative regret bound through a frequentist analysis. For contextual bandits, the related algorithm GP-UCB turns out to be a special case of our algorithm, and our finite-time analysis improves the regret bound of GP-UCB for the agnostic case, both in the terms of the kernel-dependent quantity and the RKHS norm of the reward function. Moreover, for the linear kernel, our regret bound matches the lower bound for contextual linear bandits.
Michal Valko, Nathaniel Korda, Remi Munos, Ilias Flaounas, Nelo Cristianini
null
1309.6869
null
null
Integrating Document Clustering and Topic Modeling
cs.LG cs.CL cs.IR stat.ML
Document clustering and topic modeling are two closely related tasks which can mutually benefit each other. Topic modeling can project documents into a topic space which facilitates effective document clustering. Cluster labels discovered by document clustering can be incorporated into topic models to extract local topics specific to each cluster and global topics shared by all clusters. In this paper, we propose a multi-grain clustering topic model (MGCTM) which integrates document clustering and topic modeling into a unified framework and jointly performs the two tasks to achieve the overall best performance. Our model tightly couples two components: a mixture component used for discovering latent groups in document collection and a topic model component used for mining multi-grain topics including local topics specific to each cluster and global topics shared across clusters.We employ variational inference to approximate the posterior of hidden variables and learn model parameters. Experiments on two datasets demonstrate the effectiveness of our model.
Pengtao Xie, Eric P. Xing
null
1309.6874
null
null
Active Learning with Expert Advice
cs.LG stat.ML
Conventional learning with expert advice methods assumes a learner is always receiving the outcome (e.g., class labels) of every incoming training instance at the end of each trial. In real applications, acquiring the outcome from oracle can be costly or time consuming. In this paper, we address a new problem of active learning with expert advice, where the outcome of an instance is disclosed only when it is requested by the online learner. Our goal is to learn an accurate prediction model by asking the oracle the number of questions as small as possible. To address this challenge, we propose a framework of active forecasters for online active learning with expert advice, which attempts to extend two regular forecasters, i.e., Exponentially Weighted Average Forecaster and Greedy Forecaster, to tackle the task of active learning with expert advice. We prove that the proposed algorithms satisfy the Hannan consistency under some proper assumptions, and validate the efficacy of our technique by an extensive set of experiments.
Peilin Zhao, Steven Hoi, Jinfeng Zhuang
null
1309.6875
null
null
Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence
stat.ML cs.LG
In this paper, we present the Bennett-type generalization bounds of the learning process for i.i.d. samples, and then show that the generalization bounds have a faster rate of convergence than the traditional results. In particular, we first develop two types of Bennett-type deviation inequality for the i.i.d. learning process: one provides the generalization bounds based on the uniform entropy number; the other leads to the bounds based on the Rademacher complexity. We then adopt a new method to obtain the alternative expressions of the Bennett-type generalization bounds, which imply that the bounds have a faster rate o(N^{-1/2}) of convergence than the traditional results O(N^{-1/2}). Additionally, we find that the rate of the bounds will become faster in the large-deviation case, which refers to a situation where the empirical risk is far away from (at least not close to) the expected risk. Finally, we analyze the asymptotical convergence of the learning process and compare our analysis with the existing results.
Chao Zhang
null
1309.6876
null
null
Estimating Undirected Graphs Under Weak Assumptions
math.ST cs.LG stat.ML stat.TH
We consider the problem of providing nonparametric confidence guarantees for undirected graphs under weak assumptions. In particular, we do not assume sparsity, incoherence or Normality. We allow the dimension $D$ to increase with the sample size $n$. First, we prove lower bounds that show that if we want accurate inferences with low assumptions then there are limitations on the dimension as a function of sample size. When the dimension increases slowly with sample size, we show that methods based on Normal approximations and on the bootstrap lead to valid inferences and we provide Berry-Esseen bounds on the accuracy of the Normal approximation. When the dimension is large relative to sample size, accurate inferences for graphs under low assumptions are not possible. Instead we propose to estimate something less demanding than the entire partial correlation graph. In particular, we consider: cluster graphs, restricted partial correlation graphs and correlation graphs.
Larry Wasserman, Mladen Kolar and Alessandro Rinaldo
null
1309.6933
null
null
Stock price direction prediction by directly using prices data: an empirical study on the KOSPI and HSI
cs.CE cs.LG q-fin.ST
The prediction of a stock market direction may serve as an early recommendation system for short-term investors and as an early financial distress warning system for long-term shareholders. Many stock prediction studies focus on using macroeconomic indicators, such as CPI and GDP, to train the prediction model. However, daily data of the macroeconomic indicators are almost impossible to obtain. Thus, those methods are difficult to be employed in practice. In this paper, we propose a method that directly uses prices data to predict market index direction and stock price direction. An extensive empirical study of the proposed method is presented on the Korean Composite Stock Price Index (KOSPI) and Hang Seng Index (HSI), as well as the individual constituents included in the indices. The experimental results show notably high hit ratios in predicting the movements of the individual constituents in the KOSPI and HIS.
Yanshan Wang
10.1504/IJBIDM.2014.065091
1309.7119
null
null
Detecting Fake Escrow Websites using Rich Fraud Cues and Kernel Based Methods
cs.CY cs.LG
The ability to automatically detect fraudulent escrow websites is important in order to alleviate online auction fraud. Despite research on related topics, fake escrow website categorization has received little attention. In this study we evaluated the effectiveness of various features and techniques for detecting fake escrow websites. Our analysis included a rich set of features extracted from web page text, image, and link information. We also proposed a composite kernel tailored to represent the properties of fake websites, including content duplication and structural attributes. Experiments were conducted to assess the proposed features, techniques, and kernels on a test bed encompassing nearly 90,000 web pages derived from 410 legitimate and fake escrow sites. The combination of an extended feature set and the composite kernel attained over 98% accuracy when differentiating fake sites from real ones, using the support vector machines algorithm. The results suggest that automated web-based information systems for detecting fake escrow sites could be feasible and may be utilized as authentication mechanisms.
Ahmed Abbasi and Hsinchun Chen
null
1309.7261
null
null
Evaluating Link-Based Techniques for Detecting Fake Pharmacy Websites
cs.CY cs.LG
Fake online pharmacies have become increasingly pervasive, constituting over 90% of online pharmacy websites. There is a need for fake website detection techniques capable of identifying fake online pharmacy websites with a high degree of accuracy. In this study, we compared several well-known link-based detection techniques on a large-scale test bed with the hyperlink graph encompassing over 80 million links between 15.5 million web pages, including 1.2 million known legitimate and fake pharmacy pages. We found that the QoC and QoL class propagation algorithms achieved an accuracy of over 90% on our dataset. The results revealed that algorithms that incorporate dual class propagation as well as inlink and outlink information, on page-level or site-level graphs, are better suited for detecting fake pharmacy websites. In addition, site-level analysis yielded significantly better results than page-level analysis for most algorithms evaluated.
Ahmed Abbasi, Siddharth Kaza and F. Mariam Zahedi
null
1309.7266
null
null
Bayesian Inference in Sparse Gaussian Graphical Models
stat.ML cs.LG
One of the fundamental tasks of science is to find explainable relationships between observed phenomena. One approach to this task that has received attention in recent years is based on probabilistic graphical modelling with sparsity constraints on model structures. In this paper, we describe two new approaches to Bayesian inference of sparse structures of Gaussian graphical models (GGMs). One is based on a simple modification of the cutting-edge block Gibbs sampler for sparse GGMs, which results in significant computational gains in high dimensions. The other method is based on a specific construction of the Hamiltonian Monte Carlo sampler, which results in further significant improvements. We compare our fully Bayesian approaches with the popular regularisation-based graphical LASSO, and demonstrate significant advantages of the Bayesian treatment under the same computing costs. We apply the methods to a broad range of simulated data sets, and a real-life financial data set.
Peter Orchard, Felix Agakov, Amos Storkey
10.1017/S0956796814000057
1309.7311
null
null
Stochastic Online Shortest Path Routing: The Value of Feedback
cs.NI cs.LG math.OC
This paper studies online shortest path routing over multi-hop networks. Link costs or delays are time-varying and modeled by independent and identically distributed random processes, whose parameters are initially unknown. The parameters, and hence the optimal path, can only be estimated by routing packets through the network and observing the realized delays. Our aim is to find a routing policy that minimizes the regret (the cumulative difference of expected delay) between the path chosen by the policy and the unknown optimal path. We formulate the problem as a combinatorial bandit optimization problem and consider several scenarios that differ in where routing decisions are made and in the information available when making the decisions. For each scenario, we derive a tight asymptotic lower bound on the regret that has to be satisfied by any online routing policy. These bounds help us to understand the performance improvements we can expect when (i) taking routing decisions at each hop rather than at the source only, and (ii) observing per-link delays rather than end-to-end path delays. In particular, we show that (i) is of no use while (ii) can have a spectacular impact. Three algorithms, with a trade-off between computational complexity and performance, are proposed. The regret upper bounds of these algorithms improve over those of the existing algorithms, and they significantly outperform state-of-the-art algorithms in numerical experiments.
M. Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, Mikael Johansson
null
1309.7367
null
null
Optimal Hybrid Channel Allocation:Based On Machine Learning Algorithms
cs.NI cs.LG
Recent advances in cellular communication systems resulted in a huge increase in spectrum demand. To meet the requirements of the ever-growing need for spectrum, efficient utilization of the existing resources is of utmost importance. Channel Allocation, has thus become an inevitable research topic in wireless communications. In this paper, we propose an optimal channel allocation scheme, Optimal Hybrid Channel Allocation (OHCA) for an effective allocation of channels. We improvise upon the existing Fixed Channel Allocation (FCA) technique by imparting intelligence to the existing system by employing the multilayer perceptron technique.
K Viswanadh and Dr.G Rama Murthy
null
1309.7439
null
null
Structured learning of sum-of-submodular higher order energy functions
cs.CV cs.LG stat.ML
Submodular functions can be exactly minimized in polynomial time, and the special case that graph cuts solve with max flow \cite{KZ:PAMI04} has had significant impact in computer vision \cite{BVZ:PAMI01,Kwatra:SIGGRAPH03,Rother:GrabCut04}. In this paper we address the important class of sum-of-submodular (SoS) functions \cite{Arora:ECCV12,Kolmogorov:DAM12}, which can be efficiently minimized via a variant of max flow called submodular flow \cite{Edmonds:ADM77}. SoS functions can naturally express higher order priors involving, e.g., local image patches; however, it is difficult to fully exploit their expressive power because they have so many parameters. Rather than trying to formulate existing higher order priors as an SoS function, we take a discriminative learning approach, effectively searching the space of SoS functions for a higher order prior that performs well on our training set. We adopt a structural SVM approach \cite{Joachims/etal/09a,Tsochantaridis/etal/04} and formulate the training problem in terms of quadratic programming; as a result we can efficiently search the space of SoS priors via an extended cutting-plane algorithm. We also show how the state-of-the-art max flow method for vision problems \cite{Goldberg:ESA11} can be modified to efficiently solve the submodular flow problem. Experimental comparisons are made against the OpenCV implementation of the GrabCut interactive segmentation technique \cite{Rother:GrabCut04}, which uses hand-tuned parameters instead of machine learning. On a standard dataset \cite{Gulshan:CVPR10} our method learns higher order priors with hundreds of parameter values, and produces significantly better segmentations. While our focus is on binary labeling problems, we show that our techniques can be naturally generalized to handle more than two labels.
Alexander Fix and Thorsten Joachims and Sam Park and Ramin Zabih
null
1309.7512
null
null
On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations
cs.LG
In this paper we describe how MAP inference can be used to sample efficiently from Gibbs distributions. Specifically, we provide means for drawing either approximate or unbiased samples from Gibbs' distributions by introducing low dimensional perturbations and solving the corresponding MAP assignments. Our approach also leads to new ways to derive lower bounds on partition functions. We demonstrate empirically that our method excels in the typical "high signal - high coupling" regime. The setting results in ragged energy landscapes that are challenging for alternative approaches to sampling and/or lower bounds.
Tamir Hazan, Subhransu Maji and Tommi Jaakkola
null
1309.7598
null
null
Context-aware recommendations from implicit data via scalable tensor factorization
cs.LG cs.IR
Albeit the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be automatically transformed to the implicit case if scalability should be maintained. There are few implicit feedback benchmark data sets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS applies a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. We also present two approximate and faster variants of iTALS using coordinate descent and conjugate gradient methods at learning. The method also allows us to incorporate various contextual information into the model while maintaining its computational efficiency. We present two context-aware variants of iTALS incorporating seasonality and item purchase sequentiality into the model to distinguish user behavior at different time intervals, and product types with different repetitiveness. Experiments run on six data sets shows that iTALS clearly outperforms context-unaware models and context aware baselines, while it is on par with factorization machines (beats 7 times out of 12 cases) both in terms of recall and MAP.
Bal\'azs Hidasi, Domonkos Tikk
null
1309.7611
null
null
An upper bound on prototype set size for condensed nearest neighbor
cs.LG stat.ML
The condensed nearest neighbor (CNN) algorithm is a heuristic for reducing the number of prototypical points stored by a nearest neighbor classifier, while keeping the classification rule given by the reduced prototypical set consistent with the full set. I present an upper bound on the number of prototypical points accumulated by CNN. The bound originates in a bound on the number of times the decision rule is updated during training in the multiclass perceptron algorithm, and thus is independent of training set size.
Eric Christiansen
null
1309.7676
null
null
An Extensive Experimental Study on the Cluster-based Reference Set Reduction for speeding-up the k-NN Classifier
cs.LG
The k-Nearest Neighbor (k-NN) classification algorithm is one of the most widely-used lazy classifiers because of its simplicity and ease of implementation. It is considered to be an effective classifier and has many applications. However, its major drawback is that when sequential search is used to find the neighbors, it involves high computational cost. Speeding-up k-NN search is still an active research field. Hwang and Cho have recently proposed an adaptive cluster-based method for fast Nearest Neighbor searching. The effectiveness of this method is based on the adjustment of three parameters. However, the authors evaluated their method by setting specific parameter values and using only one dataset. In this paper, an extensive experimental study of this method is presented. The results, which are based on five real life datasets, illustrate that if the parameters of the method are carefully defined, one can achieve even better classification performance.
Stefanos Ougiaroglou, Georgios Evangelidis, Dimitris A. Dervos
null
1309.7750
null
null
On statistics, computation and scalability
stat.ML cs.LG math.ST stat.TH
How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.
Michael I. Jordan
10.3150/12-BEJSP17
1309.7804
null
null
Linear Regression from Strategic Data Sources
cs.GT cs.LG math.ST stat.TH
Linear regression is a fundamental building block of statistical data analysis. It amounts to estimating the parameters of a linear model that maps input features to corresponding outputs. In the classical setting where the precision of each data point is fixed, the famous Aitken/Gauss-Markov theorem in statistics states that generalized least squares (GLS) is a so-called "Best Linear Unbiased Estimator" (BLUE). In modern data science, however, one often faces strategic data sources, namely, individuals who incur a cost for providing high-precision data. In this paper, we study a setting in which features are public but individuals choose the precision of the outputs they reveal to an analyst. We assume that the analyst performs linear regression on this dataset, and individuals benefit from the outcome of this estimation. We model this scenario as a game where individuals minimize a cost comprising two components: (a) an (agent-specific) disclosure cost for providing high-precision data; and (b) a (global) estimation cost representing the inaccuracy in the linear model estimate. In this game, the linear model estimate is a public good that benefits all individuals. We establish that this game has a unique non-trivial Nash equilibrium. We study the efficiency of this equilibrium and we prove tight bounds on the price of stability for a large class of disclosure and estimation costs. Finally, we study the estimator accuracy achieved at equilibrium. We show that, in general, Aitken's theorem does not hold under strategic data sources, though it does hold if individuals have identical disclosure costs (up to a multiplicative factor). When individuals have non-identical costs, we derive a bound on the improvement of the equilibrium estimation cost that can be achieved by deviating from GLS, under mild assumptions on the disclosure cost functions.
Nicolas Gast, Stratis Ioannidis, Patrick Loiseau, and Benjamin Roussillon
null
1309.7824
null
null
A Statistical Learning Based System for Fake Website Detection
cs.CY cs.LG
Existing fake website detection systems are unable to effectively detect fake websites. In this study, we advocate the development of fake website detection systems that employ classification methods grounded in statistical learning theory (SLT). Experimental results reveal that a prototype system developed using SLT-based methods outperforms seven existing fake website detection systems on a test bed encompassing 900 real and fake websites.
Ahmed Abbasi, Zhu Zhang and Hsinchun Chen
null
1309.7958
null
null
Exploration and Exploitation in Visuomotor Prediction of Autonomous Agents
cs.LG cs.CV math.DS
This paper discusses various techniques to let an agent learn how to predict the effects of its own actions on its sensor data autonomously, and their usefulness to apply them to visual sensors. An Extreme Learning Machine is used for visuomotor prediction, while various autonomous control techniques that can aid the prediction process by balancing exploration and exploitation are discussed and tested in a simple system: a camera moving over a 2D greyscale image.
Laurens Bliek
null
1309.7959
null
null
On the Feature Discovery for App Usage Prediction in Smartphones
cs.LG
With the increasing number of mobile Apps developed, they are now closely integrated into daily life. In this paper, we develop a framework to predict mobile Apps that are most likely to be used regarding the current device status of a smartphone. Such an Apps usage prediction framework is a crucial prerequisite for fast App launching, intelligent user experience, and power management of smartphones. By analyzing real App usage log data, we discover two kinds of features: The Explicit Feature (EF) from sensing readings of built-in sensors, and the Implicit Feature (IF) from App usage relations. The IF feature is derived by constructing the proposed App Usage Graph (abbreviated as AUG) that models App usage transitions. In light of AUG, we are able to discover usage relations among Apps. Since users may have different usage behaviors on their smartphones, we further propose one personalized feature selection algorithm. We explore minimum description length (MDL) from the training data and select those features which need less length to describe the training data. The personalized feature selection can successfully reduce the log size and the prediction time. Finally, we adopt the kNN classification model to predict Apps usage. Note that through the features selected by the proposed personalized feature selection algorithm, we only need to keep these features, which in turn reduces the prediction time and avoids the curse of dimensionality when using the kNN classifier. We conduct a comprehensive experimental study based on a real mobile App usage dataset. The results demonstrate the effectiveness of the proposed framework and show the predictive capability for App usage prediction.
Zhung-Xun Liao, Shou-Chung Li, Wen-Chih Peng, Philip S Yu
null
1309.7982
null
null
An information measure for comparing top $k$ lists
cs.IT cs.LG math.IT
Comparing the top $k$ elements between two or more ranked results is a common task in many contexts and settings. A few measures have been proposed to compare top $k$ lists with attractive mathematical properties, but they face a number of pitfalls and shortcomings in practice. This work introduces a new measure to compare any two top k lists based on measuring the information these lists convey. Our method investigates the compressibility of the lists, and the length of the message to losslessly encode them gives a natural and robust measure of their variability. This information-theoretic measure objectively reconciles all the main considerations that arise when measuring (dis-)similarity between lists: the extent of their non-overlapping elements in each of the lists; the amount of disarray among overlapping elements between the lists; the measurement of displacement of actual ranks of their overlapping elements.
Arun Konagurthu and James Collier
null
1310.0110
null
null
Incoherence-Optimal Matrix Completion
cs.IT cs.LG math.IT stat.ML
This paper considers the matrix completion problem. We show that it is not necessary to assume joint incoherence, which is a standard but unintuitive and restrictive condition that is imposed by previous studies. This leads to a sample complexity bound that is order-wise optimal with respect to the incoherence parameter (as well as to the rank $r$ and the matrix dimension $n$ up to a log factor). As a consequence, we improve the sample complexity of recovering a semidefinite matrix from $O(nr^{2}\log^{2}n)$ to $O(nr\log^{2}n)$, and the highest allowable rank from $\Theta(\sqrt{n}/\log n)$ to $\Theta(n/\log^{2}n)$. The key step in proof is to obtain new bounds on the $\ell_{\infty,2}$-norm, defined as the maximum of the row and column norms of a matrix. To illustrate the applicability of our techniques, we discuss extensions to SVD projection, structured matrix completion and semi-supervised clustering, for which we provide order-wise improvements over existing results. Finally, we turn to the closely-related problem of low-rank-plus-sparse matrix decomposition. We show that the joint incoherence condition is unavoidable here for polynomial-time algorithms conditioned on the Planted Clique conjecture. This means it is intractable in general to separate a rank-$\omega(\sqrt{n})$ positive semidefinite matrix and a sparse matrix. Interestingly, our results show that the standard and joint incoherence conditions are associated respectively with the information (statistical) and computational aspects of the matrix decomposition problem.
Yudong Chen
10.1109/TIT.2015.2415195
1310.0154
null
null
Deep and Wide Multiscale Recursive Networks for Robust Image Labeling
cs.CV cs.LG
Feedforward multilayer networks trained by supervised learning have recently demonstrated state of the art performance on image labeling problems such as boundary prediction and scene parsing. As even very low error rates can limit practical usage of such systems, methods that perform closer to human accuracy remain desirable. In this work, we propose a new type of network with the following properties that address what we hypothesize to be limiting aspects of existing methods: (1) a `wide' structure with thousands of features, (2) a large field of view, (3) recursive iterations that exploit statistical dependencies in label space, and (4) a parallelizable architecture that can be trained in a fraction of the time compared to benchmark multilayer convolutional networks. For the specific image labeling problem of boundary prediction, we also introduce a novel example weighting algorithm that improves segmentation accuracy. Experiments in the challenging domain of connectomic reconstruction of neural circuity from 3d electron microscopy data show that these "Deep And Wide Multiscale Recursive" (DAWMR) networks lead to new levels of image labeling performance. The highest performing architecture has twelve layers, interwoven supervised and unsupervised stages, and uses an input field of view of 157,464 voxels ($54^3$) to make a prediction at each image location. We present an associated open source software package that enables the simple and flexible creation of DAWMR networks.
Gary B. Huang and Viren Jain
null
1310.0354
null
null
Online Learning of Dynamic Parameters in Social Networks
math.OC cs.LG cs.SI stat.ML
This paper addresses the problem of online learning in a dynamic setting. We consider a social network in which each individual observes a private signal about the underlying state of the world and communicates with her neighbors at each time period. Unlike many existing approaches, the underlying state is dynamic, and evolves according to a geometric random walk. We view the scenario as an optimization problem where agents aim to learn the true state while suffering the smallest possible loss. Based on the decomposition of the global loss function, we introduce two update mechanisms, each of which generates an estimate of the true state. We establish a tight bound on the rate of change of the underlying state, under which individuals can track the parameter with a bounded variance. Then, we characterize explicit expressions for the steady state mean-square deviation(MSD) of the estimates from the truth, per individual. We observe that only one of the estimators recovers the optimal MSD, which underscores the impact of the objective function decomposition on the learning quality. Finally, we provide an upper bound on the regret of the proposed methods, measured as an average of errors in estimating the parameter in a finite time.
Shahin Shahrampour, Alexander Rakhlin, Ali Jadbabaie
null
1310.0432
null
null
Summary Statistics for Partitionings and Feature Allocations
cs.LG stat.ML
Infinite mixture models are commonly used for clustering. One can sample from the posterior of mixture assignments by Monte Carlo methods or find its maximum a posteriori solution by optimization. However, in some problems the posterior is diffuse and it is hard to interpret the sampled partitionings. In this paper, we introduce novel statistics based on block sizes for representing sample sets of partitionings and feature allocations. We develop an element-based definition of entropy to quantify segmentation among their elements. Then we propose a simple algorithm called entropy agglomeration (EA) to summarize and visualize this information. Experiments on various infinite mixture posteriors as well as a feature allocation dataset demonstrate that the proposed statistics are useful in practice.
I\c{s}{\i}k Bar{\i}\c{s} Fidaner and Ali Taylan Cemgil
null
1310.0509
null
null
Learning Lambek grammars from proof frames
cs.LG cs.AI cs.LO math.LO
In addition to their limpid interface with semantics, categorial grammars enjoy another important property: learnability. This was first noticed by Buskowsky and Penn and further studied by Kanazawa, for Bar-Hillel categorial grammars. What about Lambek categorial grammars? In a previous paper we showed that product free Lambek grammars where learnable from structured sentences, the structures being incomplete natural deductions. These grammars were shown to be unlearnable from strings by Foret and Le Nir. In the present paper we show that Lambek grammars, possibly with product, are learnable from proof frames that are incomplete proof nets. After a short reminder on grammatical inference \`a la Gold, we provide an algorithm that learns Lambek grammars with product from proof frames and we prove its convergence. We do so for 1-valued also known as rigid Lambek grammars with product, since standard techniques can extend our result to $k$-valued grammars. Because of the correspondence between cut-free proof nets and normal natural deductions, our initial result on product free Lambek grammars can be recovered. We are sad to dedicate the present paper to Philippe Darondeau, with whom we started to study such questions in Rennes at the beginning of the millennium, and who passed away prematurely. We are glad to dedicate the present paper to Jim Lambek for his 90 birthday: he is the living proof that research is an eternal learning process.
Roberto Bonato and Christian Retor\'e
null
1310.0576
null
null
Pseudo-Marginal Bayesian Inference for Gaussian Processes
stat.ML cs.LG stat.ME
The main challenges that arise when adopting Gaussian Process priors in probabilistic modeling are how to carry out exact Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.
Maurizio Filippone and Mark Girolami
null
1310.0740
null
null
Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming
cs.IT cs.LG math.IT math.NA math.ST stat.ML stat.TH
Statistical inference and information processing of high-dimensional data often require efficient and accurate estimation of their second-order statistics. With rapidly changing data, limited processing power and storage at the acquisition devices, it is desirable to extract the covariance structure from a single pass over the data and a small number of stored measurements. In this paper, we explore a quadratic (or rank-one) measurement model which imposes minimal memory requirements and low computational complexity during the sampling process, and is shown to be optimal in preserving various low-dimensional covariance structures. Specifically, four popular structural assumptions of covariance matrices, namely low rank, Toeplitz low rank, sparsity, jointly rank-one and sparse structure, are investigated, while recovery is achieved via convex relaxation paradigms for the respective structure. The proposed quadratic sampling framework has a variety of potential applications including streaming data processing, high-frequency wireless communication, phase space tomography and phase retrieval in optics, and non-coherent subspace detection. Our method admits universally accurate covariance estimation in the absence of noise, as soon as the number of measurements exceeds the information theoretic limits. We also demonstrate the robustness of this approach against noise and imperfect structural assumptions. Our analysis is established upon a novel notion called the mixed-norm restricted isometry property (RIP-$\ell_{2}/\ell_{1}$), as well as the conventional RIP-$\ell_{2}/\ell_{2}$ for near-isotropic and bounded measurements. In addition, our results improve upon the best-known phase retrieval (including both dense and sparse signals) guarantees using PhaseLift with a significantly simpler approach.
Yuxin Chen and Yuejie Chi and Andrea Goldsmith
null
1310.0807
null
null
Electricity Market Forecasting via Low-Rank Multi-Kernel Learning
stat.ML cs.LG cs.SY
The smart grid vision entails advanced information technology and data analytics to enhance the efficiency, sustainability, and economics of the power grid infrastructure. Aligned to this end, modern statistical learning tools are leveraged here for electricity market inference. Day-ahead price forecasting is cast as a low-rank kernel learning problem. Uniquely exploiting the market clearing process, congestion patterns are modeled as rank-one components in the matrix of spatio-temporally varying prices. Through a novel nuclear norm-based regularization, kernels across pricing nodes and hours can be systematically selected. Even though market-wide forecasting is beneficial from a learning perspective, it involves processing high-dimensional market data. The latter becomes possible after devising a block-coordinate descent algorithm for solving the non-convex optimization problem involved. The algorithm utilizes results from block-sparse vector recovery and is guaranteed to converge to a stationary point. Numerical tests on real data from the Midwest ISO (MISO) market corroborate the prediction accuracy, computational efficiency, and the interpretative merits of the developed approach over existing alternatives.
Vassilis Kekatos and Yu Zhang and Georgios B. Giannakis
10.1109/JSTSP.2014.2336611
1310.0865
null
null
Multiple Kernel Learning in the Primal for Multi-modal Alzheimer's Disease Classification
cs.LG cs.CE
To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this work, we propose a novel multiple kernel learning framework to combine multi-modal features for AD classification, which is scalable and easy to implement. Contrary to the usual way of solving the problem in the dual space, we look at the optimization from a new perspective. By conducting Fourier transform on the Gaussian kernel, we explicitly compute the mapping function, which leads to a more straightforward solution of the problem in the primal space. Furthermore, we impose the mixed $L_{21}$ norm constraint on the kernel weights, known as the group lasso regularization, to enforce group sparsity among different feature modalities. This actually acts as a role of feature modality selection, while at the same time exploiting complementary information among different kernels. Therefore it is able to extract the most discriminative features for classification. Experiments on the ADNI data set demonstrate the effectiveness of the proposed method.
Fayao Liu, Luping Zhou, Chunhua Shen, Jianping Yin
null
1310.0890
null
null
Efficient pedestrian detection by directly optimize the partial area under the ROC curve
cs.CV cs.LG
Many typical applications of object detection operate within a prescribed false-positive range. In this situation the performance of a detector should be assessed on the basis of the area under the ROC curve over that range, rather than over the full curve, as the performance outside the range is irrelevant. This measure is labelled as the partial area under the ROC curve (pAUC). Effective cascade-based classification, for example, depends on training node classifiers that achieve the maximal detection rate at a moderate false positive rate, e.g., around 40% to 50%. We propose a novel ensemble learning method which achieves a maximal detection rate at a user-defined range of false positive rates by directly optimizing the partial AUC using structured learning. By optimizing for different ranges of false positive rates, the proposed method can be used to train either a single strong classifier or a node classifier forming part of a cascade classifier. Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our approach, and we show that it is possible to train state-of-the-art pedestrian detectors using the proposed structured ensemble learning method.
Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel
null
1310.0900
null
null
Compressed Counting Meets Compressed Sensing
stat.ME cs.DS cs.IT cs.LG math.IT
Compressed sensing (sparse signal recovery) has been a popular and important research topic in recent years. By observing that natural signals are often nonnegative, we propose a new framework for nonnegative signal recovery using Compressed Counting (CC). CC is a technique built on maximally-skewed p-stable random projections originally developed for data stream computations. Our recovery procedure is computationally very efficient in that it requires only one linear scan of the coordinates. Our analysis demonstrates that, when 0<p<=0.5, it suffices to use M= O(C/eps^p log N) measurements so that all coordinates will be recovered within eps additive precision, in one scan of the coordinates. The constant C=1 when p->0 and C=pi/2 when p=0.5. In particular, when p->0 the required number of measurements is essentially M=K\log N, where K is the number of nonzero coordinates of the signal.
Ping Li, Cun-Hui Zhang, Tong Zhang
null
1310.1076
null
null
Clustering on Multiple Incomplete Datasets via Collective Kernel Learning
cs.LG
Multiple datasets containing different types of features may be available for a given task. For instance, users' profiles can be used to group users for recommendation systems. In addition, a model can also use users' historical behaviors and credit history to group users. Each dataset contains different information and suffices for learning. A number of clustering algorithms on multiple datasets were proposed during the past few years. These algorithms assume that at least one dataset is complete. So far as we know, all the previous methods will not be applicable if there is no complete dataset available. However, in reality, there are many situations where no dataset is complete. As in building a recommendation system, some new users may not have a profile or historical behaviors, while some may not have a credit history. Hence, no available dataset is complete. In order to solve this problem, we propose an approach called Collective Kernel Learning to infer hidden sample similarity from multiple incomplete datasets. The idea is to collectively completes the kernel matrices of incomplete datasets by optimizing the alignment of the shared instances of the datasets. Furthermore, a clustering algorithm is proposed based on the kernel matrix. The experiments on both synthetic and real datasets demonstrate the effectiveness of the proposed approach. The proposed clustering algorithm outperforms the comparison algorithms by as much as two times in normalized mutual information.
Weixiang Shao (1), Xiaoxiao Shi (1) and Philip S. Yu (1) ((1) University of Illinois at Chicago)
null
1310.1177
null
null
Labeled Directed Acyclic Graphs: a generalization of context-specific independence in directed graphical models
stat.ML cs.AI cs.LG
We introduce a novel class of labeled directed acyclic graph (LDAG) models for finite sets of discrete variables. LDAGs generalize earlier proposals for allowing local structures in the conditional probability distribution of a node, such that unrestricted label sets determine which edges can be deleted from the underlying directed acyclic graph (DAG) for a given context. Several properties of these models are derived, including a generalization of the concept of Markov equivalence classes. Efficient Bayesian learning of LDAGs is enabled by introducing an LDAG-based factorization of the Dirichlet prior for the model parameters, such that the marginal likelihood can be calculated analytically. In addition, we develop a novel prior distribution for the model structures that can appropriately penalize a model for its labeling complexity. A non-reversible Markov chain Monte Carlo algorithm combined with a greedy hill climbing approach is used for illustrating the useful properties of LDAG models for both real and synthetic data sets.
Johan Pensar, Henrik Nyman, Timo Koski and Jukka Corander
10.1007/s10618-014-0355-0
1310.1187
null
null
Learning ambiguous functions by neural networks
cs.NE cs.LG physics.data-an
It is not, in general, possible to have access to all variables that determine the behavior of a system. Having identified a number of variables whose values can be accessed, there may still be hidden variables which influence the dynamics of the system. The result is model ambiguity in the sense that, for the same (or very similar) input values, different objective outputs should have been obtained. In addition, the degree of ambiguity may vary widely across the whole range of input values. Thus, to evaluate the accuracy of a model it is of utmost importance to create a method to obtain the degree of reliability of each output result. In this paper we present such a scheme composed of two coupled artificial neural networks: the first one being responsible for outputting the predicted value, whereas the other evaluates the reliability of the output, which is learned from the error values of the first one. As an illustration, the scheme is applied to a model for tracking slopes in a straw chamber and to a credit scoring model.
Rui Ligeiro and R. Vilela Mendes
10.1007/s00500-017-2525-7
1310.1250
null
null
Weakly supervised clustering: Learning fine-grained signals from coarse labels
stat.ML cs.LG
Consider a classification problem where we do not have access to labels for individual training examples, but only have average labels over subpopulations. We give practical examples of this setup and show how such a classification task can usefully be analyzed as a weakly supervised clustering problem. We propose three approaches to solving the weakly supervised clustering problem, including a latent variables model that performs well in our experiments. We illustrate our methods on an analysis of aggregated elections data and an industry data set that was the original motivation for this research.
Stefan Wager, Alexander Blocker, Niall Cardin
10.1214/15-AOAS812
1310.1363
null
null
Sequential Monte Carlo Bandits
stat.ML cs.LG stat.ME
In this paper we propose a flexible and efficient framework for handling multi-armed bandits, combining sequential Monte Carlo algorithms with hierarchical Bayesian modeling techniques. The framework naturally encompasses restless bandits, contextual bandits, and other bandit variants under a single inferential model. Despite the model's generality, we propose efficient Monte Carlo algorithms to make inference scalable, based on recent developments in sequential Monte Carlo methods. Through two simulation studies, the framework is shown to outperform other empirical methods, while also naturally scaling to more complex problems for which existing approaches can not cope. Additionally, we successfully apply our framework to online video-based advertising recommendation, and show its increased efficacy as compared to current state of the art bandit algorithms.
Michael Cherkassky and Luke Bornn
null
1310.1404
null
null
Narrowing the Gap: Random Forests In Theory and In Practice
stat.ML cs.LG
Despite widespread interest and practical use, the theoretical properties of random forests are still not well understood. In this paper we contribute to this understanding in two ways. We present a new theoretically tractable variant of random regression forests and prove that our algorithm is consistent. We also provide an empirical evaluation, comparing our algorithm and other theoretically tractable random forest models to the random forest algorithm used in practice. Our experiments provide insight into the relative importance of different simplifications that theoreticians have made to obtain tractable models for analysis.
Misha Denil, David Matheson, Nando de Freitas
null
1310.1415
null
null
Randomized Approximation of the Gram Matrix: Exact Computation and Probabilistic Bounds
math.NA cs.LG stat.ML
Given a real matrix A with n columns, the problem is to approximate the Gram product AA^T by c << n weighted outer products of columns of A. Necessary and sufficient conditions for the exact computation of AA^T (in exact arithmetic) from c >= rank(A) columns depend on the right singular vector matrix of A. For a Monte-Carlo matrix multiplication algorithm by Drineas et al. that samples outer products, we present probabilistic bounds for the 2-norm relative error due to randomization. The bounds depend on the stable rank or the rank of A, but not on the matrix dimensions. Numerical experiments illustrate that the bounds are informative, even for stringent success probabilities and matrices of small dimension. We also derive bounds for the smallest singular value and the condition number of matrices obtained by sampling rows from orthonormal matrices.
John T. Holodnak, Ilse C. F. Ipsen
null
1310.1502
null
null
Contraction Principle based Robust Iterative Algorithms for Machine Learning
cs.LG stat.ML
Iterative algorithms are ubiquitous in the field of data mining. Widely known examples of such algorithms are the least mean square algorithm, backpropagation algorithm of neural networks. Our contribution in this paper is an improvement upon this iterative algorithms in terms of their respective performance metrics and robustness. This improvement is achieved by a new scaling factor which is multiplied to the error term. Our analysis shows that in essence, we are minimizing the corresponding LASSO cost function, which is the reason of its increased robustness. We also give closed form expressions for the number of iterations for convergence and the MSE floor of the original cost function for a minimum targeted value of the L1 norm. As a concluding theme based on the stochastic subgradient algorithm, we give a comparison between the well known Dantzig selector and our algorithm based on contraction principle. By these simulations we attempt to show the optimality of our approach for any widely used parent iterative optimization problem.
Rangeet Mitra, Amit Kumar Mishra
null
1310.1518
null
null
CAM: Causal additive models, high-dimensional order search and penalized regression
stat.ME cs.LG stat.ML
We develop estimation for potentially high-dimensional additive structural equation models. A key component of our approach is to decouple order search among the variables from feature or edge selection in a directed acyclic graph encoding the causal structure. We show that the former can be done with nonregularized (restricted) maximum likelihood estimation while the latter can be efficiently addressed using sparse regression techniques. Thus, we substantially simplify the problem of structure search and estimation for an important class of causal models. We establish consistency of the (restricted) maximum likelihood estimator for low- and high-dimensional scenarios, and we also allow for misspecification of the error distribution. Furthermore, we develop an efficient computational algorithm which can deal with many variables, and the new method's accuracy and performance is illustrated on simulated and real data.
Peter B\"uhlmann, Jonas Peters, Jan Ernest
10.1214/14-AOS1260
1310.1533
null
null
Learning Hidden Structures with Relational Models by Adequately Involving Rich Information in A Network
cs.LG cs.SI stat.ML
Effectively modelling hidden structures in a network is very practical but theoretically challenging. Existing relational models only involve very limited information, namely the binary directional link data, embedded in a network to learn hidden networking structures. There is other rich and meaningful information (e.g., various attributes of entities and more granular information than binary elements such as "like" or "dislike") missed, which play a critical role in forming and understanding relations in a network. In this work, we propose an informative relational model (InfRM) framework to adequately involve rich information and its granularity in a network, including metadata information about each entity and various forms of link data. Firstly, an effective metadata information incorporation method is employed on the prior information from relational models MMSB and LFRM. This is to encourage the entities with similar metadata information to have similar hidden structures. Secondly, we propose various solutions to cater for alternative forms of link data. Substantial efforts have been made towards modelling appropriateness and efficiency, for example, using conjugate priors. We evaluate our framework and its inference algorithms in different datasets, which shows the generality and effectiveness of our models in capturing implicit structures in networks.
Xuhui Fan, Richard Yi Da Xu, Longbing Cao, Yin Song
null
1310.1545
null
null
MINT: Mutual Information based Transductive Feature Selection for Genetic Trait Prediction
cs.LG cs.CE
Whole genome prediction of complex phenotypic traits using high-density genotyping arrays has attracted a great deal of attention, as it is relevant to the fields of plant and animal breeding and genetic epidemiology. As the number of genotypes is generally much bigger than the number of samples, predictive models suffer from the curse-of-dimensionality. The curse-of-dimensionality problem not only affects the computational efficiency of a particular genomic selection method, but can also lead to poor performance, mainly due to correlation among markers. In this work we proposed the first transductive feature selection method based on the MRMR (Max-Relevance and Min-Redundancy) criterion which we call MINT. We applied MINT on genetic trait prediction problems and showed that in general MINT is a better feature selection method than the state-of-the-art inductive method mRMR.
Dan He, Irina Rish, David Haws, Simon Teyssedre, Zivan Karaman, Laxmi Parida
null
1310.1659
null
null
A Deep and Tractable Density Estimator
stat.ML cs.LG
The Neural Autoregressive Distribution Estimator (NADE) and its real-valued version RNADE are competitive density models of multidimensional data across a variety of domains. These models use a fixed, arbitrary ordering of the data dimensions. One can easily condition on variables at the beginning of the ordering, and marginalize out variables at the end of the ordering, however other inference tasks require approximate inference. In this work we introduce an efficient procedure to simultaneously train a NADE model for each possible ordering of the variables, by sharing parameters across all these models. We can thus use the most convenient model for each inference task at hand, and ensembles of such models with different orderings are immediately available. Moreover, unlike the original NADE, our training procedure scales to deep models. Empirically, ensembles of Deep NADE models obtain state of the art density estimation performance.
Benigno Uria, Iain Murray, Hugo Larochelle
null
1310.1757
null
null
Parallel coordinate descent for the Adaboost problem
cs.LG math.OC stat.ML
We design a randomised parallel version of Adaboost based on previous studies on parallel coordinate descent. The algorithm uses the fact that the logarithm of the exponential loss is a function with coordinate-wise Lipschitz continuous gradient, in order to define the step lengths. We provide the proof of convergence for this randomised Adaboost algorithm and a theoretical parallelisation speedup factor. We finally provide numerical examples on learning problems of various sizes that show that the algorithm is competitive with concurrent approaches, especially for large scale problems.
Olivier Fercoq
10.1109/ICMLA.2013.72
1310.1840
null
null
Discriminative Features via Generalized Eigenvectors
cs.LG stat.ML
Representing examples in a way that is compatible with the underlying classifier can greatly enhance the performance of a learning system. In this paper we investigate scalable techniques for inducing discriminative features by taking advantage of simple second order structure in the data. We focus on multiclass classification and show that features extracted from the generalized eigenvectors of the class conditional second moments lead to classifiers with excellent empirical performance. Moreover, these features have attractive theoretical properties, such as inducing representations that are invariant to linear transformations of the input. We evaluate classifiers built from these features on three different tasks, obtaining state of the art results.
Nikos Karampatziakis, Paul Mineiro
null
1310.1934
null
null
Bayesian Optimization With Censored Response Data
cs.AI cs.LG stat.ML
Bayesian optimization (BO) aims to minimize a given blackbox function using a model that is updated whenever new evidence about the function becomes available. Here, we address the problem of BO under partially right-censored response data, where in some evaluations we only obtain a lower bound on the function value. The ability to handle such response data allows us to adaptively censor costly function evaluations in minimization problems where the cost of a function evaluation corresponds to the function value. One important application giving rise to such censored data is the runtime-minimizing variant of the algorithm configuration problem: finding settings of a given parametric algorithm that minimize the runtime required for solving problem instances from a given distribution. We demonstrate that terminating slow algorithm runs prematurely and handling the resulting right-censored observations can substantially improve the state of the art in model-based algorithm configuration.
Frank Hutter and Holger Hoos and Kevin Leyton-Brown
null
1310.1947
null
null
Least Squares Revisited: Scalable Approaches for Multi-class Prediction
cs.LG stat.ML
This work provides simple algorithms for multi-class (and multi-label) prediction in settings where both the number of examples n and the data dimension d are relatively large. These robust and parameter free algorithms are essentially iterative least-squares updates and very versatile both in theory and in practice. On the theoretical front, we present several variants with convergence guarantees. Owing to their effective use of second-order structure, these algorithms are substantially better than first-order methods in many practical scenarios. On the empirical side, we present a scalable stagewise variant of our approach, which achieves dramatic computational speedups over popular optimization packages such as Liblinear and Vowpal Wabbit on standard datasets (MNIST and CIFAR-10), while attaining state-of-the-art accuracies.
Alekh Agarwal, Sham M. Kakade, Nikos Karampatziakis, Le Song, Gregory Valiant
null
1310.1949
null
null
Fast Multi-Instance Multi-Label Learning
cs.LG
In many real-world tasks, particularly those involving data objects with complicated semantics such as images and texts, one object can be represented by multiple instances and simultaneously be associated with multiple labels. Such tasks can be formulated as multi-instance multi-label learning (MIML) problems, and have been extensively studied during the past few years. Existing MIML approaches have been found useful in many applications; however, most of them can only handle moderate-sized data. To efficiently handle large data sets, in this paper we propose the MIMLfast approach, which first constructs a low-dimensional subspace shared by all labels, and then trains label specific linear models to optimize approximated ranking loss via stochastic gradient descent. Although the MIML problem is complicated, MIMLfast is able to achieve excellent performance by exploiting label relations with shared space and discovering sub-concepts for complicated labels. Experiments show that the performance of MIMLfast is highly competitive to state-of-the-art techniques, whereas its time cost is much less; particularly, on a data set with 20K bags and 180K instances, MIMLfast is more than 100 times faster than existing MIML approaches. On a larger data set where none of existing approaches can return results in 24 hours, MIMLfast takes only 12 minutes. Moreover, our approach is able to identify the most representative instance for each label, and thus providing a chance to understand the relation between input patterns and output label semantics.
Sheng-Jun Huang and Zhi-Hua Zhou
null
1310.2049
null
null
Distributed Coordinate Descent Method for Learning with Big Data
stat.ML cs.DC cs.LG math.OC
In this paper we develop and analyze Hydra: HYbriD cooRdinAte descent method for solving loss minimization problems with big data. We initially partition the coordinates (features) and assign each partition to a different node of a cluster. At every iteration, each node picks a random subset of the coordinates from those it owns, independently from the other computers, and in parallel computes and applies updates to the selected coordinates based on a simple closed-form formula. We give bounds on the number of iterations sufficient to approximately solve the problem with high probability, and show how it depends on the data and on the partitioning. We perform numerical experiments with a LASSO instance described by a 3TB matrix.
Peter Richt\'arik and Martin Tak\'a\v{c}
null
1310.2059
null
null
Predicting Students' Performance Using ID3 And C4.5 Classification Algorithms
cs.CY cs.LG
An educational institution needs to have an approximate prior knowledge of enrolled students to predict their performance in future academics. This helps them to identify promising students and also provides them an opportunity to pay attention to and improve those who would probably get lower grades. As a solution, we have developed a system which can predict the performance of students from their previous performances using concepts of data mining techniques under Classification. We have analyzed the data set containing information about students, such as gender, marks scored in the board examinations of classes X and XII, marks and rank in entrance examinations and results in first year of the previous batch of students. By applying the ID3 (Iterative Dichotomiser 3) and C4.5 classification algorithms on this data, we have predicted the general and individual performance of freshly admitted students in future examinations.
Kalpesh Adhatrao, Aditya Gaykar, Amiraj Dhawan, Rohit Jha and Vipul Honrao
10.5121/ijdkp.2013.3504
1310.2071
null
null
Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization
stat.ML cs.LG math.OC
Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of the columns of the input nonnegative matrix approximately containing all columns. In this paper, we propose a preconditioning based on semidefinite programming making the input matrix well-conditioned. This in turn can improve significantly the performance of near-separable NMF algorithms which is illustrated on the popular successive projection algorithm (SPA). The new preconditioned SPA is provably more robust to noise, and outperforms SPA on several synthetic data sets. We also show how an active-set method allow us to apply the preconditioning on large-scale real-world hyperspectral images.
Nicolas Gillis and Stephen A. Vavasis
10.1137/130940670
1310.2273
null
null
Improved Bayesian Logistic Supervised Topic Models with Data Augmentation
cs.LG cs.CL stat.AP stat.ML
Supervised topic models with a logistic likelihood have two issues that potentially limit their practical use: 1) response variables are usually over-weighted by document word counts; and 2) existing variational inference methods make strict mean-field assumptions. We address these issues by: 1) introducing a regularization constant to better balance the two parts based on an optimization formulation of Bayesian inference; and 2) developing a simple Gibbs sampling algorithm by introducing auxiliary Polya-Gamma variables and collapsing out Dirichlet variables. Our augment-and-collapse sampling algorithm has analytical forms of each conditional distribution without making any restricting assumptions and can be easily parallelized. Empirical results demonstrate significant improvements on prediction performance and time efficiency.
Jun Zhu, Xun Zheng, Bo Zhang
null
1310.2408
null
null
Discriminative Relational Topic Models
cs.LG cs.IR stat.ML
Many scientific and engineering fields involve analyzing network data. For document networks, relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in common real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving the prediction performance, and the time efficiency can be dramatically improved with a simple fast approximation method.
Ning Chen, Jun Zhu, Fei Xia, Bo Zhang
null
1310.2409
null
null
M-Power Regularized Least Squares Regression
stat.ML cs.LG math.PR
Regularization is used to find a solution that both fits the data and is sufficiently smooth, and thereby is very effective for designing and refining learning algorithms. But the influence of its exponent remains poorly understood. In particular, it is unclear how the exponent of the reproducing kernel Hilbert space~(RKHS) regularization term affects the accuracy and the efficiency of kernel-based learning algorithms. Here we consider regularized least squares regression (RLSR) with an RKHS regularization raised to the power of m, where m is a variable real exponent. We design an efficient algorithm for solving the associated minimization problem, we provide a theoretical analysis of its stability, and we compare its advantage with respect to computational complexity, speed of convergence and prediction accuracy to the classical kernel ridge regression algorithm where the regularization exponent m is fixed at 2. Our results show that the m-power RLSR problem can be solved efficiently, and support the suggestion that one can use a regularization term that grows significantly slower than the standard quadratic growth in the RKHS norm.
Julien Audiffren (LIF), Hachem Kadri (LIF)
null
1310.2451
null
null
A Sparse and Adaptive Prior for Time-Dependent Model Parameters
stat.ML cs.AI cs.LG
We consider the scenario where the parameters of a probabilistic model are expected to vary over time. We construct a novel prior distribution that promotes sparsity and adapts the strength of correlation between parameters at successive timesteps, based on the data. We derive approximate variational inference procedures for learning and prediction with this prior. We test the approach on two tasks: forecasting financial quantities from relevant text, and modeling language contingent on time-varying financial measurements.
Dani Yogatama and Bryan R. Routledge and Noah A. Smith
null
1310.2627
null
null
Localized Iterative Methods for Interpolation in Graph Structured Data
cs.LG
In this paper, we present two localized graph filtering based methods for interpolating graph signals defined on the vertices of arbitrary graphs from only a partial set of samples. The first method is an extension of previous work on reconstructing bandlimited graph signals from partially observed samples. The iterative graph filtering approach very closely approximates the solution proposed in the that work, while being computationally more efficient. As an alternative, we propose a regularization based framework in which we define the cost of reconstruction to be a combination of smoothness of the graph signal and the reconstruction error with respect to the known samples, and find solutions that minimize this cost. We provide both a closed form solution and a computationally efficient iterative solution of the optimization problem. The experimental results on the recommendation system datasets demonstrate effectiveness of the proposed methods.
Sunil K. Narang, Akshay Gadde, Eduard Sanou and Antonio Ortega
null
1310.2646
null
null
Analyzing Big Data with Dynamic Quantum Clustering
physics.data-an cs.LG physics.comp-ph
How does one search for a needle in a multi-dimensional haystack without knowing what a needle is and without knowing if there is one in the haystack? This kind of problem requires a paradigm shift - away from hypothesis driven searches of the data - towards a methodology that lets the data speak for itself. Dynamic Quantum Clustering (DQC) is such a methodology. DQC is a powerful visual method that works with big, high-dimensional data. It exploits variations of the density of the data (in feature space) and unearths subsets of the data that exhibit correlations among all the measured variables. The outcome of a DQC analysis is a movie that shows how and why sets of data-points are eventually classified as members of simple clusters or as members of - what we call - extended structures. This allows DQC to be successfully used in a non-conventional exploratory mode where one searches data for unexpected information without the need to model the data. We show how this works for big, complex, real-world datasets that come from five distinct fields: i.e., x-ray nano-chemistry, condensed matter, biology, seismology and finance. These studies show how DQC excels at uncovering unexpected, small - but meaningful - subsets of the data that contain important information. We also establish an important new result: namely, that big, complex datasets often contain interesting structures that will be missed by many conventional clustering techniques. Experience shows that these structures appear frequently enough that it is crucial to know they can exist, and that when they do, they encode important hidden information. In short, we not only demonstrate that DQC can be flexibly applied to datasets that present significantly different challenges, we also show how a simple analysis can be used to look for the needle in the haystack, determine what it is, and find what this means.
M. Weinstein, F. Meirer, A. Hume, Ph. Sciau, G. Shaked, R. Hofstetter, E. Persi, A. Mehta, and D. Horn
null
1310.2700
null
null
Lemma Mining over HOL Light
cs.AI cs.DL cs.LG cs.LO
Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of all lemmas in the core HOL Light library, adding thousands of the best lemmas to the pool of named statements that can be re-used in later proofs. The usefulness of the new lemmas is then evaluated by comparing the performance of automated proving of the core HOL Light theorems with and without such added lemmas.
Cezary Kaliszyk and Josef Urban
null
1310.2797
null
null
MizAR 40 for Mizar 40
cs.AI cs.DL cs.LG cs.LO cs.MS
As a present to Mizar on its 40th anniversary, we develop an AI/ATP system that in 30 seconds of real time on a 14-CPU machine automatically proves 40% of the theorems in the latest official version of the Mizar Mathematical Library (MML). This is a considerable improvement over previous performance of large- theory AI/ATP methods measured on the whole MML. To achieve that, a large suite of AI/ATP methods is employed and further developed. We implement the most useful methods efficiently, to scale them to the 150000 formulas in MML. This reduces the training times over the corpus to 1-3 seconds, allowing a simple practical deployment of the methods in the online automated reasoning service for the Mizar users (MizAR).
Cezary Kaliszyk and Josef Urban
10.1007/s10817-015-9330-8
1310.2805
null
null
Gibbs Max-margin Topic Models with Data Augmentation
stat.ML cs.LG stat.CO stat.ME
Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of the non-smoothness of the margin loss. Existing approaches to building max-margin supervised topic models rely on an iterative procedure to solve multiple latent SVM subproblems with additional mean-field assumptions on the desired posterior distributions. This paper presents an alternative approach by defining a new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a latent variable Gibbs classifier to discover hidden topic representations for various tasks, including classification, regression and multi-task learning. Gibbs max-margin supervised topic models minimize an expected margin loss, which is an upper bound of the existing margin loss derived from an expected prediction rule. By introducing augmented variables and integrating out the Dirichlet variables analytically by conjugacy, we develop simple Gibbs sampling algorithms with no restricting assumptions and no need to solve SVM subproblems. Furthermore, each step of the "augment-and-collapse" Gibbs sampling algorithms has an analytical conditional distribution, from which samples can be easily drawn. Experimental results demonstrate significant improvements on time efficiency. The classification performance is also significantly improved over competitors on binary, multi-class and multi-label classification tasks.
Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang
null
1310.2816
null
null
Feature Selection with Annealing for Computer Vision and Big Data Learning
stat.ML cs.CV cs.LG math.ST stat.TH
Many computer vision and medical imaging problems are faced with learning from large-scale datasets, with millions of observations and features. In this paper we propose a novel efficient learning scheme that tightens a sparsity constraint by gradually removing variables based on a criterion and a schedule. The attractive fact that the problem size keeps dropping throughout the iterations makes it particularly suitable for big data learning. Our approach applies generically to the optimization of any differentiable loss function, and finds applications in regression, classification and ranking. The resultant algorithms build variable screening into estimation and are extremely simple to implement. We provide theoretical guarantees of convergence and selection consistency. In addition, one dimensional piecewise linear response functions are used to account for nonlinearity and a second order prior is imposed on these functions to avoid overfitting. Experiments on real and synthetic data show that the proposed method compares very well with other state of the art methods in regression, classification and ranking while being computationally very efficient and scalable.
Adrian Barbu, Yiyuan She, Liangjing Ding, Gary Gramajo
10.1109/TPAMI.2016.2544315
1310.2880
null
null
Feedback Detection for Live Predictors
stat.ME cs.LG stat.ML
A predictor that is deployed in a live production system may perturb the features it uses to make predictions. Such a feedback loop can occur, for example, when a model that predicts a certain type of behavior ends up causing the behavior it predicts, thus creating a self-fulfilling prophecy. In this paper we analyze predictor feedback detection as a causal inference problem, and introduce a local randomization scheme that can be used to detect non-linear feedback in real-world problems. We conduct a pilot study for our proposed methodology using a predictive system currently deployed as a part of a search engine.
Stefan Wager, Nick Chamandy, Omkar Muralidharan, and Amir Najmi
null
1310.2931
null
null
Spontaneous Analogy by Piggybacking on a Perceptual System
cs.AI cs.LG
Most computational models of analogy assume they are given a delineated source domain and often a specified target domain. These systems do not address how analogs can be isolated from large domains and spontaneously retrieved from long-term memory, a process we call spontaneous analogy. We present a system that represents relational structures as feature bags. Using this representation, our system leverages perceptual algorithms to automatically create an ontology of relational structures and to efficiently retrieve analogs for new relational structures from long-term memory. We provide a demonstration of our approach that takes a set of unsegmented stories, constructs an ontology of analogical schemas (corresponding to plot devices), and uses this ontology to efficiently find analogs within new stories, yielding significant time-savings over linear analog retrieval at a small accuracy cost.
Marc Pickett and David W. Aha
null
1310.2955
null
null
Scaling Graph-based Semi Supervised Learning to Large Number of Labels Using Count-Min Sketch
cs.LG
Graph-based Semi-supervised learning (SSL) algorithms have been successfully used in a large number of applications. These methods classify initially unlabeled nodes by propagating label information over the structure of graph starting from seed nodes. Graph-based SSL algorithms usually scale linearly with the number of distinct labels (m), and require O(m) space on each node. Unfortunately, there exist many applications of practical significance with very large m over large graphs, demanding better space and time complexity. In this paper, we propose MAD-SKETCH, a novel graph-based SSL algorithm which compactly stores label distribution on each node using Count-min Sketch, a randomized data structure. We present theoretical analysis showing that under mild conditions, MAD-SKETCH can reduce space complexity at each node from O(m) to O(log m), and achieve similar savings in time complexity as well. We support our analysis through experiments on multiple real world datasets. We observe that MAD-SKETCH achieves similar performance as existing state-of-the-art graph- based SSL algorithms, while requiring smaller memory footprint and at the same time achieving up to 10x speedup. We find that MAD-SKETCH is able to scale to datasets with one million labels, which is beyond the scope of existing graph- based SSL algorithms.
Partha Pratim Talukdar, William Cohen
null
1310.2959
null
null
Bandits with Switching Costs: T^{2/3} Regret
cs.LG math.PR
We study the adversarial multi-armed bandit problem in a setting where the player incurs a unit cost each time he switches actions. We prove that the player's $T$-round minimax regret in this setting is $\widetilde{\Theta}(T^{2/3})$, thereby closing a fundamental gap in our understanding of learning with bandit feedback. In the corresponding full-information version of the problem, the minimax regret is known to grow at a much slower rate of $\Theta(\sqrt{T})$. The difference between these two rates provides the \emph{first} indication that learning with bandit feedback can be significantly harder than learning with full-information feedback (previous results only showed a different dependence on the number of actions, but not on $T$.) In addition to characterizing the inherent difficulty of the multi-armed bandit problem with switching costs, our results also resolve several other open problems in online learning. One direct implication is that learning with bandit feedback against bounded-memory adaptive adversaries has a minimax regret of $\widetilde{\Theta}(T^{2/3})$. Another implication is that the minimax regret of online learning in adversarial Markov decision processes (MDPs) is $\widetilde{\Theta}(T^{2/3})$. The key to all of our results is a new randomized construction of a multi-scale random walk, which is of independent interest and likely to prove useful in additional settings.
Ofer Dekel, Jian Ding, Tomer Koren, Yuval Peres
null
1310.2997
null
null
A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition
cs.LG cs.CL stat.ML
This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches.
Roland Maas, Christian Huemmer, Armin Sehr, Walter Kellermann
null
1310.3099
null
null
Deep Multiple Kernel Learning
stat.ML cs.LG
Deep learning methods have predominantly been applied to large artificial neural networks. Despite their state-of-the-art performance, these large networks typically do not generalize well to datasets with limited sample sizes. In this paper, we take a different approach by learning multiple layers of kernels. We combine kernels at each layer and then optimize over an estimate of the support vector machine leave-one-out error rather than the dual objective function. Our experiments on a variety of datasets show that each layer successively increases performance with only a few base kernels.
Eric Strobl, Shyam Visweswaran
10.1109/ICMLA.2013.84
1310.3101
null
null
Visualizing Bags of Vectors
cs.IR cs.CL cs.LG
The motivation of this work is two-fold - a) to compare between two different modes of visualizing data that exists in a bag of vectors format b) to propose a theoretical model that supports a new mode of visualizing data. Visualizing high dimensional data can be achieved using Minimum Volume Embedding, but the data has to exist in a format suitable for computing similarities while preserving local distances. This paper compares the visualization between two methods of representing data and also proposes a new method providing sample visualizations for that method.
Sriramkumar Balasubramanian and Raghuram Reddy Nagireddy
null
1310.3333
null
null
Joint Indoor Localization and Radio Map Construction with Limited Deployment Load
cs.NI cs.LG
One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment efforts required to construct the radio maps through fingerprinting. In this paper, we aim to design an indoor localization scheme that can be directly employed without building a full fingerprinted radio map of the indoor environment. By accumulating the information of localized RSSs, this scheme can also simultaneously construct the radio map with limited calibration. To design this scheme, we employ a source data set that possesses the same spatial correlation of the RSSs in the indoor environment under study. The knowledge of this data set is then transferred to a limited number of calibration fingerprints and one or several RSS observations with unknown locations, in order to perform direct localization of these observations using manifold alignment. We test two different source data sets, namely a simulated radio propagation map and the environments plan coordinates. For moving users, we exploit the correlation of their observations to improve the localization accuracy. The online testing in two indoor environments shows that the plan coordinates achieve better results than the simulated radio maps, and a negligible degradation with 70-85% reduction in calibration load.
Sameh Sorour, Yves Lostanlen, Shahrokh Valaee
null
1310.3407
null
null
Predicting Social Links for New Users across Aligned Heterogeneous Social Networks
cs.SI cs.LG physics.soc-ph
Online social networks have gained great success in recent years and many of them involve multiple kinds of nodes and complex relationships. Among these relationships, social links among users are of great importance. Many existing link prediction methods focus on predicting social links that will appear in the future among all users based upon a snapshot of the social network. In real-world social networks, many new users are joining in the service every day. Predicting links for new users are more important. Different from conventional link prediction problems, link prediction for new users are more challenging due to the following reasons: (1) differences in information distributions between new users and the existing active users (i.e., old users); (2) lack of information from the new users in the network. We propose a link prediction method called SCAN-PS (Supervised Cross Aligned Networks link prediction with Personalized Sampling), to solve the link prediction problem for new users with information transferred from both the existing active users in the target network and other source networks through aligned accounts. We proposed a within-target-network personalized sampling method to process the existing active users' information in order to accommodate the differences in information distributions before the intra-network knowledge transfer. SCAN-PS can also exploit information in other source networks, where the user accounts are aligned with the target network. In this way, SCAN-PS could solve the cold start problem when information of these new users is total absent in the target network.
Jiawei Zhang, Xiangnan Kong, Philip S. Yu
null
1310.3492
null
null
Identifying Influential Entries in a Matrix
cs.NA cs.LG stat.ML
For any matrix A in R^(m x n) of rank \rho, we present a probability distribution over the entries of A (the element-wise leverage scores of equation (2)) that reveals the most influential entries in the matrix. From a theoretical perspective, we prove that sampling at most s = O ((m + n) \rho^2 ln (m + n)) entries of the matrix (see eqn. (3) for the precise value of s) with respect to these scores and solving the nuclear norm minimization problem on the sampled entries, reconstructs A exactly. To the best of our knowledge, these are the strongest theoretical guarantees on matrix completion without any incoherence assumptions on the matrix A. From an experimental perspective, we show that entries corresponding to high element-wise leverage scores reveal structural properties of the data matrix that are of interest to domain scientists.
Abhisek Kundu, Srinivas Nambirajan, Petros Drineas
null
1310.3556
null
null
An Extreme Learning Machine Approach to Predicting Near Chaotic HCCI Combustion Phasing in Real-Time
cs.LG cs.CE
Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with $\epsilon$-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acausual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines.
Adam Vaughan and Stanislav V. Bohac
null
1310.3567
null
null
Predicting college basketball match outcomes using machine learning techniques: some results and lessons learned
cs.LG stat.AP
Most existing work on predicting NCAAB matches has been developed in a statistical context. Trusting the capabilities of ML techniques, particularly classification learners, to uncover the importance of features and learn their relationships, we evaluated a number of different paradigms on this task. In this paper, we summarize our work, pointing out that attributes seem to be more important than models, and that there seems to be an upper limit to predictive quality.
Albrecht Zimmermann, Sruthi Moorthy and Zifan Shi
null
1310.3607
null
null
Scalable Verification of Markov Decision Processes
cs.DS cs.DC cs.LG cs.LO
Markov decision processes (MDP) are useful to model concurrent process optimisation problems, but verifying them with numerical methods is often intractable. Existing approximative approaches do not scale well and are limited to memoryless schedulers. Here we present the basis of scalable verification for MDPSs, using an O(1) memory representation of history-dependent schedulers. We thus facilitate scalable learning techniques and the use of massively parallel verification.
Axel Legay, Sean Sedwards and Louis-Marie Traonouez
null
1310.3609
null
null
Variance Adjusted Actor Critic Algorithms
stat.ML cs.LG cs.SY
We present an actor-critic framework for MDPs where the objective is the variance-adjusted expected return. Our critic uses linear function approximation, and we extend the concept of compatible features to the variance-adjusted setting. We present an episodic actor-critic algorithm and show that it converges almost surely to a locally optimal point of the objective function.
Aviv Tamar, Shie Mannor
null
1310.3697
null
null
Ridge Fusion in Statistical Learning
stat.ML cs.LG stat.CO
We propose a penalized likelihood method to jointly estimate multiple precision matrices for use in quadratic discriminant analysis and model based clustering. A ridge penalty and a ridge fusion penalty are used to introduce shrinkage and promote similarity between precision matrix estimates. Block-wise coordinate descent is used for optimization, and validation likelihood is used for tuning parameter selection. Our method is applied in quadratic discriminant analysis and semi-supervised model based clustering.
Bradley S. Price, Charles J. Geyer, and Adam J. Rothman
null
1310.3892
null
null
Demystifying Information-Theoretic Clustering
cs.LG cs.IT math.IT physics.data-an stat.ML
We propose a novel method for clustering data which is grounded in information-theoretic principles and requires no parametric assumptions. Previous attempts to use information theory to define clusters in an assumption-free way are based on maximizing mutual information between data and cluster labels. We demonstrate that this intuition suffers from a fundamental conceptual flaw that causes clustering performance to deteriorate as the amount of data increases. Instead, we return to the axiomatic foundations of information theory to define a meaningful clustering measure based on the notion of consistency under coarse-graining for finite data.
Greg Ver Steeg, Aram Galstyan, Fei Sha, Simon DeDeo
null
1310.4210
null
null
Exact Learning of RNA Energy Parameters From Structure
q-bio.BM cs.LG
We consider the problem of exact learning of parameters of a linear RNA energy model from secondary structure data. A necessary and sufficient condition for learnability of parameters is derived, which is based on computing the convex hull of union of translated Newton polytopes of input sequences. The set of learned energy parameters is characterized as the convex cone generated by the normal vectors to those facets of the resulting polytope that are incident to the origin. In practice, the sufficient condition may not be satisfied by the entire training data set; hence, computing a maximal subset of training data for which the sufficient condition is satisfied is often desired. We show that problem is NP-hard in general for an arbitrary dimensional feature space. Using a randomized greedy algorithm, we select a subset of RNA STRAND v2.0 database that satisfies the sufficient condition for separate A-U, C-G, G-U base pair counting model. The set of learned energy parameters includes experimentally measured energies of A-U, C-G, and G-U pairs; hence, our parameter set is in agreement with the Turner parameters.
Hamidreza Chitsaz, Mohammad Aminisharifabad
null
1310.4223
null
null
On Measure Concentration of Random Maximum A-Posteriori Perturbations
cs.LG math.PR
The maximum a-posteriori (MAP) perturbation framework has emerged as a useful approach for inference and learning in high dimensional complex models. By maximizing a randomly perturbed potential function, MAP perturbations generate unbiased samples from the Gibbs distribution. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. More efficient algorithms use sequential sampling strategies based on the expected value of low dimensional MAP perturbations. This paper develops new measure concentration inequalities that bound the number of samples needed to estimate such expected values. Applying the general result to MAP perturbations can yield a more efficient algorithm to approximate sampling from the Gibbs distribution. The measure concentration result is of general interest and may be applicable to other areas involving expected estimations.
Francesco Orabona, Tamir Hazan, Anand D. Sarwate, Tommi Jaakkola
null
1310.4227
null
null
Multilabel Consensus Classification
stat.ML cs.LG
In the era of big data, a large amount of noisy and incomplete data can be collected from multiple sources for prediction tasks. Combining multiple models or data sources helps to counteract the effects of low data quality and the bias of any single model or data source, and thus can improve the robustness and the performance of predictive models. Out of privacy, storage and bandwidth considerations, in certain circumstances one has to combine the predictions from multiple models or data sources to obtain the final predictions without accessing the raw data. Consensus-based prediction combination algorithms are effective for such situations. However, current research on prediction combination focuses on the single label setting, where an instance can have one and only one label. Nonetheless, data nowadays are usually multilabeled, such that more than one label have to be predicted at the same time. Direct applications of existing prediction combination methods to multilabel settings can lead to degenerated performance. In this paper, we address the challenges of combining predictions from multiple multilabel classifiers and propose two novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and MLCM-a (MLCM for microAUC). These algorithms can capture label correlations that are common in multilabel classifications, and optimize corresponding performance metrics. Experimental results on popular multilabel classification tasks verify the theoretical analysis and effectiveness of the proposed methods.
Sihong Xie and Xiangnan Kong and Jing Gao and Wei Fan and Philip S.Yu
null
1310.4252
null
null
Bayesian Information Sharing Between Noise And Regression Models Improves Prediction of Weak Effects
stat.ML cs.LG
We consider the prediction of weak effects in a multiple-output regression setup, when covariates are expected to explain a small amount, less than $\approx 1%$, of the variance of the target variables. To facilitate the prediction of the weak effects, we constrain our model structure by introducing a novel Bayesian approach of sharing information between the regression model and the noise model. Further reduction of the effective number of parameters is achieved by introducing an infinite shrinkage prior and group sparsity in the context of the Bayesian reduced rank regression, and using the Bayesian infinite factor model as a flexible low-rank noise model. In our experiments the model incorporating the novelties outperformed alternatives in genomic prediction of rich phenotype data. In particular, the information sharing between the noise and regression models led to significant improvement in prediction accuracy.
Jussi Gillberg, Pekka Marttinen, Matti Pirinen, Antti J Kangas, Pasi Soininen, Marjo-Riitta J\"arvelin, Mika Ala-Korpela, Samuel Kaski
null
1310.4362
null
null
Inference, Sampling, and Learning in Copula Cumulative Distribution Networks
stat.ML cs.LG
The cumulative distribution network (CDN) is a recently developed class of probabilistic graphical models (PGMs) permitting a copula factorization, in which the CDF, rather than the density, is factored. Despite there being much recent interest within the machine learning community about copula representations, there has been scarce research into the CDN, its amalgamation with copula theory, and no evaluation of its performance. Algorithms for inference, sampling, and learning in these models are underdeveloped compared those of other PGMs, hindering widerspread use. One advantage of the CDN is that it allows the factors to be parameterized as copulae, combining the benefits of graphical models with those of copula theory. In brief, the use of a copula parameterization enables greater modelling flexibility by separating representation of the marginals from the dependence structure, permitting more efficient and robust learning. Another advantage is that the CDN permits the representation of implicit latent variables, whose parameterization and connectivity are not required to be specified. Unfortunately, that the model can encode only latent relationships between variables severely limits its utility. In this thesis, we present inference, learning, and sampling for CDNs, and further the state-of-the-art. First, we explain the basics of copula theory and the representation of copula CDNs. Then, we discuss inference in the models, and develop the first sampling algorithm. We explain standard learning methods, propose an algorithm for learning from data missing completely at random (MCAR), and develop a novel algorithm for learning models of arbitrary treewidth and size. Properties of the models and algorithms are investigated through Monte Carlo simulations. We conclude with further discussion of the advantages and limitations of CDNs, and suggest future work.
Stefan Douglas Webb
null
1310.4456
null
null
The BeiHang Keystroke Dynamics Authentication System
cs.CR cs.LG
Keystroke Dynamics is an important biometric solution for person authentication. Based upon keystroke dynamics, this paper designs an embedded password protection device, develops an online system, collects two public databases for promoting the research on keystroke authentication, exploits the Gabor filter bank to characterize keystroke dynamics, and provides benchmark results of three popular classification algorithms, one-class support vector machine, Gaussian classifier, and nearest neighbour classifier.
Juan Liu, Baochang Zhang, Linlin Shen, Jianzhuang Liu, Jason Zhao
null
1310.4485
null
null
Multiple Attractor Cellular Automata (MACA) for Addressing Major Problems in Bioinformatics
cs.CE cs.LG
CA has grown as potential classifier for addressing major problems in bioinformatics. Lot of bioinformatics problems like predicting the protein coding region, finding the promoter region, predicting the structure of protein and many other problems in bioinformatics can be addressed through Cellular Automata. Even though there are some prediction techniques addressing these problems, the approximate accuracy level is very less. An automated procedure was proposed with MACA (Multiple Attractor Cellular Automata) which can address all these problems. The genetic algorithm is also used to find rules with good fitness values. Extensive experiments are conducted for reporting the accuracy of the proposed tool. The average accuracy of MACA when tested with ENCODE, BG570, HMR195, Fickett and Tongue, ASP67 datasets is 78%.
Pokkuluri Kiran Sree, Inampudi Ramesh Babu and SSSN Usha Devi Nedunuri
null
1310.4495
null
null
Distributed Representations of Words and Phrases and their Compositionality
cs.CL cs.LG stat.ML
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean
null
1310.4546
null
null
Discriminative Link Prediction using Local Links, Node Features and Community Structure
cs.LG cs.SI physics.soc-ph
A link prediction (LP) algorithm is given a graph, and has to rank, for each node, other nodes that are candidates for new linkage. LP is strongly motivated by social search and recommendation applications. LP techniques often focus on global properties (graph conductance, hitting or commute times, Katz score) or local properties (Adamic-Adar and many variations, or node feature vectors), but rarely combine these signals. Furthermore, neither of these extremes exploit link densities at the intermediate level of communities. In this paper we describe a discriminative LP algorithm that exploits two new signals. First, a co-clustering algorithm provides community level link density estimates, which are used to qualify observed links with a surprise value. Second, links in the immediate neighborhood of the link to be predicted are not interpreted at face value, but through a local model of node feature similarities. These signals are combined into a discriminative link predictor. We evaluate the new predictor using five diverse data sets that are standard in the literature. We report on significant accuracy boosts compared to standard LP methods (including Adamic-Adar and random walk). Apart from the new predictor, another contribution is a rigorous protocol for benchmarking and reporting LP algorithms, which reveals the regions of strengths and weaknesses of all the predictors studied here, and establishes the new proposal as the most robust.
Abir De, Niloy Ganguly, Soumen Chakrabarti
null
1310.4579
null
null
Minimax rates in permutation estimation for feature matching
math.ST cs.LG stat.TH
The problem of matching two sets of features appears in various tasks of computer vision and can be often formalized as a problem of permutation estimation. We address this problem from a statistical point of view and provide a theoretical analysis of the accuracy of several natural estimators. To this end, the minimax rate of separation is investigated and its expression is obtained as a function of the sample size, noise level and dimension. We consider the cases of homoscedastic and heteroscedastic noise and establish, in each case, tight upper bounds on the separation distance of several estimators. These upper bounds are shown to be unimprovable both in the homoscedastic and heteroscedastic settings. Interestingly, these bounds demonstrate that a phase transition occurs when the dimension $d$ of the features is of the order of the logarithm of the number of features $n$. For $d=O(\log n)$, the rate is dimension free and equals $\sigma (\log n)^{1/2}$, where $\sigma$ is the noise level. In contrast, when $d$ is larger than $c\log n$ for some constant $c>0$, the minimax rate increases with $d$ and is of the order $\sigma(d\log n)^{1/4}$. We also discuss the computational aspects of the estimators and provide empirical evidence of their consistency on synthetic data. Finally, we show that our results extend to more general matching criteria.
Olivier Collier and Arnak S. Dalalyan
null
1310.4661
null
null
On the Bayes-optimality of F-measure maximizers
stat.ML cs.LG
The F-measure, which has originally been introduced in information retrieval, is nowadays routinely used as a performance metric for problems such as binary classification, multi-label classification, and structured output prediction. Optimizing this measure is a statistically and computationally challenging problem, since no closed-form solution exists. Adopting a decision-theoretic perspective, this article provides a formal and experimental analysis of different approaches for maximizing the F-measure. We start with a Bayes-risk analysis of related loss functions, such as Hamming loss and subset zero-one loss, showing that optimizing such losses as a surrogate of the F-measure leads to a high worst-case regret. Subsequently, we perform a similar type of analysis for F-measure maximizing algorithms, showing that such algorithms are approximate, while relying on additional assumptions regarding the statistical distribution of the binary response variables. Furthermore, we present a new algorithm which is not only computationally efficient but also Bayes-optimal, regardless of the underlying distribution. To this end, the algorithm requires only a quadratic (with respect to the number of binary responses) number of parameters of the joint distribution. We illustrate the practical performance of all analyzed methods by means of experiments with multi-label classification problems.
Willem Waegeman, Krzysztof Dembczynski, Arkadiusz Jachnik, Weiwei Cheng, Eyke Hullermeier
null
1310.4849
null
null
Text Classification For Authorship Attribution Analysis
cs.DL cs.CL cs.LG
Authorship attribution mainly deals with undecided authorship of literary texts. Authorship attribution is useful in resolving issues like uncertain authorship, recognize authorship of unknown texts, spot plagiarism so on. Statistical methods can be used to set apart the approach of an author numerically. The basic methodologies that are made use in computational stylometry are word length, sentence length, vocabulary affluence, frequencies etc. Each author has an inborn style of writing, which is particular to himself. Statistical quantitative techniques can be used to differentiate the approach of an author in a numerical way. The problem can be broken down into three sub problems as author identification, author characterization and similarity detection. The steps involved are pre-processing, extracting features, classification and author identification. For this different classifiers can be used. Here fuzzy learning classifier and SVM are used. After author identification the SVM was found to have more accuracy than Fuzzy classifier. Later combined the classifiers to obtain a better accuracy when compared to individual SVM and fuzzy classifier.
M. Sudheep Elayidom, Chinchu Jose, Anitta Puthussery, Neenu K Sasi
10.5121/acij.2013.4501
1310.4909
null
null
A novel sparsity and clustering regularization
cs.LG cs.CV stat.ML
We propose a novel SPARsity and Clustering (SPARC) regularizer, which is a modified version of the previous octagonal shrinkage and clustering algorithm for regression (OSCAR), where, the proposed regularizer consists of a $K$-sparse constraint and a pair-wise $\ell_{\infty}$ norm restricted on the $K$ largest components in magnitude. The proposed regularizer is able to separably enforce $K$-sparsity and encourage the non-zeros to be equal in magnitude. Moreover, it can accurately group the features without shrinking their magnitude. In fact, SPARC is closely related to OSCAR, so that the proximity operator of the former can be efficiently computed based on that of the latter, allowing using proximal splitting algorithms to solve problems with SPARC regularization. Experiments on synthetic data and with benchmark breast cancer data show that SPARC is a competitive group-sparsity inducing regularizer for regression and classification.
Xiangrong Zeng and M\'ario A. T. Figueiredo
null
1310.4945
null
null
Learning Tensors in Reproducing Kernel Hilbert Spaces with Multilinear Spectral Penalties
cs.LG
We present a general framework to learn functions in tensor product reproducing kernel Hilbert spaces (TP-RKHSs). The methodology is based on a novel representer theorem suitable for existing as well as new spectral penalties for tensors. When the functions in the TP-RKHS are defined on the Cartesian product of finite discrete sets, in particular, our main problem formulation admits as a special case existing tensor completion problems. Other special cases include transfer learning with multimodal side information and multilinear multitask learning. For the latter case, our kernel-based view is instrumental to derive nonlinear extensions of existing model classes. We give a novel algorithm and show in experiments the usefulness of the proposed extensions.
Marco Signoretto and Lieven De Lathauwer and Johan A.K. Suykens
null
1310.4977
null
null
Online Classification Using a Voted RDA Method
cs.LG stat.ML
We propose a voted dual averaging method for online classification problems with explicit regularization. This method employs the update rule of the regularized dual averaging (RDA) method, but only on the subsequence of training examples where a classification error is made. We derive a bound on the number of mistakes made by this method on the training set, as well as its generalization error rate. We also introduce the concept of relative strength of regularization, and show how it affects the mistake bound and generalization performance. We experimented with the method using $\ell_1$ regularization on a large-scale natural language processing task, and obtained state-of-the-art classification performance with fairly sparse models.
Tianbing Xu, Jianfeng Gao, Lin Xiao, Amelia Regan
null
1310.5007
null
null
Thompson Sampling in Dynamic Systems for Contextual Bandit Problems
cs.LG
We consider the multiarm bandit problems in the timevarying dynamic system for rich structural features. For the nonlinear dynamic model, we propose the approximate inference for the posterior distributions based on Laplace Approximation. For the context bandit problems, Thompson Sampling is adopted based on the underlying posterior distributions of the parameters. More specifically, we introduce the discount decays on the previous samples impact and analyze the different decay rates with the underlying sample dynamics. Consequently, the exploration and exploitation is adaptively tradeoff according to the dynamics in the system.
Tianbing Xu, Yaming Yu, John Turner, Amelia Regan
null
1310.5008
null
null
A Theoretical and Experimental Comparison of the EM and SEM Algorithm
cs.LG stat.ML
In this paper we provide a new analysis of the SEM algorithm. Unlike previous work, we focus on the analysis of a single run of the algorithm. First, we discuss the algorithm for general mixture distributions. Second, we consider Gaussian mixture models and show that with high probability the update equations of the EM algorithm and its stochastic variant are almost the same, given that the input set is sufficiently large. Our experiments confirm that this still holds for a large number of successive update steps. In particular, for Gaussian mixture models, we show that the stochastic variant runs nearly twice as fast.
Johannes Bl\"omer, Kathrin Bujna, and Daniel Kuntze
null
1310.5034
null
null
Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex Programs in Machine Learning
cs.NA cs.LG math.OC stat.ML
Many problems in machine learning and other fields can be (re)for-mulated as linearly constrained separable convex programs. In most of the cases, there are multiple blocks of variables. However, the traditional alternating direction method (ADM) and its linearized version (LADM, obtained by linearizing the quadratic penalty term) are for the two-block case and cannot be naively generalized to solve the multi-block case. So there is great demand on extending the ADM based methods for the multi-block case. In this paper, we propose LADM with parallel splitting and adaptive penalty (LADMPSAP) to solve multi-block separable convex programs efficiently. When all the component objective functions have bounded subgradients, we obtain convergence results that are stronger than those of ADM and LADM, e.g., allowing the penalty parameter to be unbounded and proving the sufficient and necessary conditions} for global convergence. We further propose a simple optimality measure and reveal the convergence rate of LADMPSAP in an ergodic sense. For programs with extra convex set constraints, with refined parameter estimation we devise a practical version of LADMPSAP for faster convergence. Finally, we generalize LADMPSAP to handle programs with more difficult objective functions by linearizing part of the objective function as well. LADMPSAP is particularly suitable for sparse representation and low-rank recovery problems because its subproblems have closed form solutions and the sparsity and low-rankness of the iterates can be preserved during the iteration. It is also highly parallelizable and hence fits for parallel or distributed computing. Numerical experiments testify to the advantages of LADMPSAP in speed and numerical accuracy.
Zhouchen Lin, Risheng Liu, Huan Li
null
1310.5035
null
null
Distributional semantics beyond words: Supervised learning of analogy and paraphrase
cs.LG cs.AI cs.CL cs.IR
There have been several efforts to extend distributional semantics beyond individual words, to measure the similarity of word pairs, phrases, and sentences (briefly, tuples; ordered sets of words, contiguous or noncontiguous). One way to extend beyond words is to compare two tuples using a function that combines pairwise similarities between the component words in the tuples. A strength of this approach is that it works with both relational similarity (analogy) and compositional similarity (paraphrase). However, past work required hand-coding the combination function for different tasks. The main contribution of this paper is that combination functions are generated by supervised learning. We achieve state-of-the-art results in measuring relational similarity between word pairs (SAT analogies and SemEval~2012 Task 2) and measuring compositional similarity between noun-modifier phrases and unigrams (multiple-choice paraphrase questions).
Peter D. Turney
null
1310.5042
null
null
On the Suitable Domain for SVM Training in Image Coding
cs.CV cs.LG stat.ML
Conventional SVM-based image coding methods are founded on independently restricting the distortion in every image coefficient at some particular image representation. Geometrically, this implies allowing arbitrary signal distortions in an $n$-dimensional rectangle defined by the $\varepsilon$-insensitivity zone in each dimension of the selected image representation domain. Unfortunately, not every image representation domain is well-suited for such a simple, scalar-wise, approach because statistical and/or perceptual interactions between the coefficients may exist. These interactions imply that scalar approaches may induce distortions that do not follow the image statistics and/or are perceptually annoying. Taking into account these relations would imply using non-rectangular $\varepsilon$-insensitivity regions (allowing coupled distortions in different coefficients), which is beyond the conventional SVM formulation. In this paper, we report a condition on the suitable domain for developing efficient SVM image coding schemes. We analytically demonstrate that no linear domain fulfills this condition because of the statistical and perceptual inter-coefficient relations that exist in these domains. This theoretical result is experimentally confirmed by comparing SVM learning in previously reported linear domains and in a recently proposed non-linear perceptual domain that simultaneously reduces the statistical and perceptual relations (so it is closer to fulfilling the proposed condition). These results highlight the relevance of an appropriate choice of the image representation before SVM learning.
Gustavo Camps-Valls, Juan Guti\'errez, Gabriel G\'omez-P\'erez, Jes\'us Malo
null
1310.5082
null
null
Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods
stat.ML cs.LG
Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring.
Jer\'onimo Arenas-Garc\'ia, Kaare Brandt Petersen, Gustavo Camps-Valls, Lars Kai Hansen
10.1109/MSP.2013.2250591
1310.5089
null
null