title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Classroom Video Assessment and Retrieval via Multiple Instance Learning
cs.IR cs.CY cs.LG
We propose a multiple instance learning approach to content-based retrieval of classroom video for the purpose of supporting human assessing the learning environment. The key element of our approach is a mapping between the semantic concepts of the assessment system and features of the video that can be measured using techniques from the fields of computer vision and speech analysis. We report on a formative experiment in content-based video retrieval involving trained experts in the Classroom Assessment Scoring System, a widely used framework for assessment and improvement of learning environments. The results of this experiment suggest that our approach has potential application to productivity enhancement in assessment and to broader retrieval tasks.
Qifeng Qiao and Peter A. Beling
null
1403.6248
null
null
Updating Formulas and Algorithms for Computing Entropy and Gini Index from Time-Changing Data Streams
cs.AI cs.LG
Despite growing interest in data stream mining the most successful incremental learners, such as VFDT, still use periodic recomputation to update attribute information gains and Gini indices. This note provides simple incremental formulas and algorithms for computing entropy and Gini index from time-changing data streams.
Blaz Sovdat
null
1403.6348
null
null
Evaluating topic coherence measures
cs.LG cs.CL cs.IR
Topic models extract representative word sets - called topics - from word counts in documents without requiring any semantic annotations. Topics are not guaranteed to be well interpretable, therefore, coherence measures have been proposed to distinguish between good and bad topics. Studies of topic coherence so far are limited to measures that score pairs of individual words. For the first time, we include coherence measures from scientific philosophy that score pairs of more complex word subsets and apply them to topic scoring.
Frank Rosner, Alexander Hinneburg, Michael R\"oder, Martin Nettling, Andreas Both
null
1403.6397
null
null
Multi-agent Inverse Reinforcement Learning for Two-person Zero-sum Games
cs.GT cs.AI cs.LG
The focus of this paper is a Bayesian framework for solving a class of problems termed multi-agent inverse reinforcement learning (MIRL). Compared to the well-known inverse reinforcement learning (IRL) problem, MIRL is formalized in the context of stochastic games, which generalize Markov decision processes to game theoretic scenarios. We establish a theoretical foundation for competitive two-agent zero-sum MIRL problems and propose a Bayesian solution approach in which the generative model is based on an assumption that the two agents follow a minimax bi-policy. Numerical results are presented comparing the Bayesian MIRL method with two existing methods in the context of an abstract soccer game. Investigation centers on relationships between the extent of prior information and the quality of learned rewards. Results suggest that covariance structure is more important than mean value in reward priors.
Xiaomin Lin and Peter A. Beling and Randy Cogill
10.1109/TCIAIG.2017.2679115
1403.6508
null
null
Variance-Constrained Actor-Critic Algorithms for Discounted and Average Reward MDPs
cs.LG math.OC stat.ML
In many sequential decision-making problems we may want to manage risk by minimizing some measure of variability in rewards in addition to maximizing a standard criterion. Variance related risk measures are among the most common risk-sensitive criteria in finance and operations research. However, optimizing many such criteria is known to be a hard problem. In this paper, we consider both discounted and average reward Markov decision processes. For each formulation, we first define a measure of variability for a policy, which in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we derive a formula for computing its gradient. We then devise actor-critic algorithms that operate on three timescales - a TD critic on the fastest timescale, a policy gradient (actor) on the intermediate timescale, and a dual ascent for Lagrange multipliers on the slowest timescale. In the discounted setting, we point out the difficulty in estimating the gradient of the variance of the return and incorporate simultaneous perturbation approaches to alleviate this. The average setting, on the other hand, allows for an actor update using compatible features to estimate the gradient of the variance. We establish the convergence of our algorithms to locally risk-sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in a traffic signal control application.
Prashanth L.A. and Mohammad Ghavamzadeh
null
1403.6530
null
null
DeepWalk: Online Learning of Social Representations
cs.SI cs.LG
We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide $F_1$ scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.
Bryan Perozzi, Rami Al-Rfou and Steven Skiena
10.1145/2623330.2623732
1403.6652
null
null
Beyond L2-Loss Functions for Learning Sparse Models
stat.ML cs.CV cs.LG math.OC
Incorporating sparsity priors in learning tasks can give rise to simple, and interpretable models for complex high dimensional data. Sparse models have found widespread use in structure discovery, recovering data from corruptions, and a variety of large scale unsupervised and supervised learning problems. Assuming the availability of sufficient data, these methods infer dictionaries for sparse representations by optimizing for high-fidelity reconstruction. In most scenarios, the reconstruction quality is measured using the squared Euclidean distance, and efficient algorithms have been developed for both batch and online learning cases. However, new application domains motivate looking beyond conventional loss functions. For example, robust loss functions such as $\ell_1$ and Huber are useful in learning outlier-resilient models, and the quantile loss is beneficial in discovering structures that are the representative of a particular quantile. These new applications motivate our work in generalizing sparse learning to a broad class of convex loss functions. In particular, we consider the class of piecewise linear quadratic (PLQ) cost functions that includes Huber, as well as $\ell_1$, quantile, Vapnik, hinge loss, and smoothed variants of these penalties. We propose an algorithm to learn dictionaries and obtain sparse codes when the data reconstruction fidelity is measured using any smooth PLQ cost function. We provide convergence guarantees for the proposed algorithm, and demonstrate the convergence behavior using empirical experiments. Furthermore, we present three case studies that require the use of PLQ cost functions: (i) robust image modeling, (ii) tag refinement for image annotation and retrieval and (iii) computing empirical confidence limits for subspace clustering.
Karthikeyan Natesan Ramamurthy, Aleksandr Y. Aravkin, Jayaraman J. Thiagarajan
null
1403.6706
null
null
Comparison of Multi-agent and Single-agent Inverse Learning on a Simulated Soccer Example
cs.LG cs.GT
We compare the performance of Inverse Reinforcement Learning (IRL) with the relative new model of Multi-agent Inverse Reinforcement Learning (MIRL). Before comparing the methods, we extend a published Bayesian IRL approach that is only applicable to the case where the reward is only state dependent to a general one capable of tackling the case where the reward depends on both state and action. Comparison between IRL and MIRL is made in the context of an abstract soccer game, using both a game model in which the reward depends only on state and one in which it depends on both state and action. Results suggest that the IRL approach performs much worse than the MIRL approach. We speculate that the underperformance of IRL is because it fails to capture equilibrium information in the manner possible in MIRL.
Xiaomin Lin and Peter A. Beling and Randy Cogill
null
1403.6822
null
null
Online Learning of k-CNF Boolean Functions
cs.LG
This paper revisits the problem of learning a k-CNF Boolean function from examples in the context of online learning under the logarithmic loss. In doing so, we give a Bayesian interpretation to one of Valiant's celebrated PAC learning algorithms, which we then build upon to derive two efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF Boolean function. We analyze the loss of our methods, and show that the cumulative log-loss can be upper bounded, ignoring logarithmic factors, by a polynomial function of the size of each example.
Joel Veness and Marcus Hutter
null
1403.6863
null
null
Automatic Segmentation of Broadcast News Audio using Self Similarity Matrix
cs.SD cs.LG cs.MM
Generally audio news broadcast on radio is com- posed of music, commercials, news from correspondents and recorded statements in addition to the actual news read by the newsreader. When news transcripts are available, automatic segmentation of audio news broadcast to time align the audio with the text transcription to build frugal speech corpora is essential. We address the problem of identifying segmentation in the audio news broadcast corresponding to the news read by the newsreader so that they can be mapped to the text transcripts. The existing techniques produce sub-optimal solutions when used to extract newsreader read segments. In this paper, we propose a new technique which is able to identify the acoustic change points reliably using an acoustic Self Similarity Matrix (SSM). We describe the two pass technique in detail and verify its performance on real audio news broadcast of All India Radio for different languages.
Sapna Soni and Ahmed Imran and Sunil Kumar Kopparapu
null
1403.6901
null
null
Closed-Form Training of Conditional Random Fields for Large Scale Image Segmentation
cs.LG cs.CV
We present LS-CRF, a new method for very efficient large-scale training of Conditional Random Fields (CRFs). It is inspired by existing closed-form expressions for the maximum likelihood parameters of a generative graphical model with tree topology. LS-CRF training requires only solving a set of independent regression problems, for which closed-form expression as well as efficient iterative solvers are available. This makes it orders of magnitude faster than conventional maximum likelihood learning for CRFs that require repeated runs of probabilistic inference. At the same time, the models learned by our method still allow for joint inference at test time. We apply LS-CRF to the task of semantic image segmentation, showing that it is highly efficient, even for loopy models where probabilistic inference is problematic. It allows the training of image segmentation models from significantly larger training sets than had been used previously. We demonstrate this on two new datasets that form a second contribution of this paper. They consist of over 180,000 images with figure-ground segmentation annotations. Our large-scale experiments show that the possibilities of CRF-based image segmentation are far from exhausted, indicating, for example, that semi-supervised learning and the use of non-linear predictors are promising directions for achieving higher segmentation accuracy in the future.
Alexander Kolesnikov, Matthieu Guillaumin, Vittorio Ferrari and Christoph H. Lampert
null
1403.7057
null
null
Conclusions from a NAIVE Bayes Operator Predicting the Medicare 2011 Transaction Data Set
cs.LG cs.CY physics.data-an
Introduction: The United States Federal Government operates one of the worlds largest medical insurance programs, Medicare, to ensure payment for clinical services for the elderly, illegal aliens and those without the ability to pay for their care directly. This paper evaluates the Medicare 2011 Transaction Data Set which details the transfer of funds from Medicare to private and public clinical care facilities for specific clinical services for the operational year 2011. Methods: Data mining was conducted to establish the relationships between reported and computed transaction values in the data set to better understand the drivers of Medicare transactions at a programmatic level. Results: The models averaged 88 for average model accuracy and 38 for average Kappa during training. Some reported classes are highly independent from the available data as their predictability remains stable regardless of redaction of supporting and contradictory evidence. DRG or procedure type appears to be unpredictable from the available financial transaction values. Conclusions: Overlay hypotheses such as charges being driven by the volume served or DRG being related to charges or payments is readily false in this analysis despite 28 million Americans being billed through Medicare in 2011 and the program distributing over 70 billion in this transaction set alone. It may be impossible to predict the dependencies and data structures the payer of last resort without data from payers of first and second resort. Political concerns about Medicare would be better served focusing on these first and second order payer systems as what Medicare costs is not dependent on Medicare itself.
Nick Williams
null
1403.7087
null
null
A study on cost behaviors of binary classification measures in class-imbalanced problems
cs.LG
This work investigates into cost behaviors of binary classification measures in a background of class-imbalanced problems. Twelve performance measures are studied, such as F measure, G-means in terms of accuracy rates, and of recall and precision, balance error rate (BER), Matthews correlation coefficient (MCC), Kappa coefficient, etc. A new perspective is presented for those measures by revealing their cost functions with respect to the class imbalance ratio. Basically, they are described by four types of cost functions. The functions provides a theoretical understanding why some measures are suitable for dealing with class-imbalanced problems. Based on their cost functions, we are able to conclude that G-means of accuracy rates and BER are suitable measures because they show "proper" cost behaviors in terms of "a misclassification from a small class will cause a greater cost than that from a large class". On the contrary, F1 measure, G-means of recall and precision, MCC and Kappa coefficient measures do not produce such behaviors so that they are unsuitable to serve our goal in dealing with the problems properly.
Bao-Gang Hu and Wei-Ming Dong
null
1403.7100
null
null
Data Generators for Learning Systems Based on RBF Networks
stat.ML cs.AI cs.LG
There are plenty of problems where the data available is scarce and expensive. We propose a generator of semi-artificial data with similar properties to the original data which enables development and testing of different data mining algorithms and optimization of their parameters. The generated data allow a large scale experimentation and simulations without danger of overfitting. The proposed generator is based on RBF networks, which learn sets of Gaussian kernels. These Gaussian kernels can be used in a generative mode to generate new data from the same distributions. To assess quality of the generated data we evaluated the statistical properties of the generated data, structural similarity and predictive similarity using supervised and unsupervised learning techniques. To determine usability of the proposed generator we conducted a large scale evaluation using 51 UCI data sets. The results show a considerable similarity between the original and generated data and indicate that the method can be useful in several development and simulation scenarios. We analyze possible improvements in classification performance by adding different amounts of generated data to the training set, performance on high dimensional data sets, and conditions when the proposed approach is successful.
Marko Robnik-\v{S}ikonja
10.1109/TNNLS.2015.2429711
1403.7308
null
null
Distributed Reconstruction of Nonlinear Networks: An ADMM Approach
math.OC cs.DC cs.LG cs.SY
In this paper, we present a distributed algorithm for the reconstruction of large-scale nonlinear networks. In particular, we focus on the identification from time-series data of the nonlinear functional forms and associated parameters of large-scale nonlinear networks. Recently, a nonlinear network reconstruction problem was formulated as a nonconvex optimisation problem based on the combination of a marginal likelihood maximisation procedure with sparsity inducing priors. Using a convex-concave procedure (CCCP), an iterative reweighted lasso algorithm was derived to solve the initial nonconvex optimisation problem. By exploiting the structure of the objective function of this reweighted lasso algorithm, a distributed algorithm can be designed. To this end, we apply the alternating direction method of multipliers (ADMM) to decompose the original problem into several subproblems. To illustrate the effectiveness of the proposed methods, we use our approach to identify a network of interconnected Kuramoto oscillators with different network sizes (500~100,000 nodes).
Wei Pan, Aivar Sootla and Guy-Bart Stan
null
1403.7429
null
null
Approximate Decentralized Bayesian Inference
cs.LG
This paper presents an approximate method for performing Bayesian inference in models with conditional independence over a decentralized network of learning agents. The method first employs variational inference on each individual learning agent to generate a local approximate posterior, the agents transmit their local posteriors to other agents in the network, and finally each agent combines its set of received local posteriors. The key insight in this work is that, for many Bayesian models, approximate inference schemes destroy symmetry and dependencies in the model that are crucial to the correct application of Bayes' rule when combining the local posteriors. The proposed method addresses this issue by including an additional optimization step in the combination procedure that accounts for these broken dependencies. Experiments on synthetic and real data demonstrate that the decentralized method provides advantages in computational performance and predictive test likelihood over previous batch and distributed methods.
Trevor Campbell and Jonathan P. How
null
1403.7471
null
null
DimmWitted: A Study of Main-Memory Statistical Analytics
cs.DB cs.LG math.OC stat.ML
We perform the first study of the tradeoff space of access methods and replication to support statistical analytics using first-order methods executed in the main memory of a Non-Uniform Memory Access (NUMA) machine. Statistical analytics systems differ from conventional SQL-analytics in the amount and types of memory incoherence they can tolerate. Our goal is to understand tradeoffs in accessing the data in row- or column-order and at what granularity one should share the model and data for a statistical task. We study this new tradeoff space, and discover there are tradeoffs between hardware and statistical efficiency. We argue that our tradeoff study may provide valuable information for designers of analytics engines: for each system we consider, our prototype engine can run at least one popular task at least 100x faster. We conduct our study across five architectures using popular models including SVMs, logistic regression, Gibbs sampling, and neural networks.
Ce Zhang and Christopher R\'e
null
1403.7550
null
null
Relevant Feature Selection Model Using Data Mining for Intrusion Detection System
cs.CR cs.LG
Network intrusions have become a significant threat in recent years as a result of the increased demand of computer networks for critical systems. Intrusion detection system (IDS) has been widely deployed as a defense measure for computer networks. Features extracted from network traffic can be used as sign to detect anomalies. However with the huge amount of network traffic, collected data contains irrelevant and redundant features that affect the detection rate of the IDS, consumes high amount of system resources, and slowdown the training and testing process of the IDS. In this paper, a new feature selection model is proposed; this model can effectively select the most relevant features for intrusion detection. Our goal is to build a lightweight intrusion detection system by using a reduced features set. Deleting irrelevant and redundant features helps to build a faster training and testing process, to have less resource consumption as well as to maintain high detection rates. The effectiveness and the feasibility of our feature selection model were verified by several experiments on KDD intrusion detection dataset. The experimental results strongly showed that our model is not only able to yield high detection rates but also to speed up the detection process.
Ayman I. Madbouly, Amr M. Gody, Tamer M. Barakat
10.14445/22315381/IJETT-V9P296
1403.7726
null
null
Optimal Cooperative Cognitive Relaying and Spectrum Access for an Energy Harvesting Cognitive Radio: Reinforcement Learning Approach
cs.NI cs.IT cs.LG math.IT
In this paper, we consider a cognitive setting under the context of cooperative communications, where the cognitive radio (CR) user is assumed to be a self-organized relay for the network. The CR user and the PU are assumed to be energy harvesters. The CR user cooperatively relays some of the undelivered packets of the primary user (PU). Specifically, the CR user stores a fraction of the undelivered primary packets in a relaying queue (buffer). It manages the flow of the undelivered primary packets to its relaying queue using the appropriate actions over time slots. Moreover, it has the decision of choosing the used queue for channel accessing at idle time slots (slots where the PU's queue is empty). It is assumed that one data packet transmission dissipates one energy packet. The optimal policy changes according to the primary and CR users arrival rates to the data and energy queues as well as the channels connectivity. The CR user saves energy for the PU by taking the responsibility of relaying the undelivered primary packets. It optimally organizes its own energy packets to maximize its payoff as time progresses.
Ahmed El Shafie and Tamer Khattab and Hussien Saad and Amr Mohamed
null
1403.7735
null
null
Sharpened Error Bounds for Random Sampling Based $\ell_2$ Regression
cs.LG cs.NA stat.ML
Given a data matrix $X \in R^{n\times d}$ and a response vector $y \in R^{n}$, suppose $n>d$, it costs $O(n d^2)$ time and $O(n d)$ space to solve the least squares regression (LSR) problem. When $n$ and $d$ are both large, exactly solving the LSR problem is very expensive. When $n \gg d$, one feasible approach to speeding up LSR is to randomly embed $y$ and all columns of $X$ into a smaller subspace $R^c$; the induced LSR problem has the same number of columns but much fewer number of rows, and it can be solved in $O(c d^2)$ time and $O(c d)$ space. We discuss in this paper two random sampling based methods for solving LSR more efficiently. Previous work showed that the leverage scores based sampling based LSR achieves $1+\epsilon$ accuracy when $c \geq O(d \epsilon^{-2} \log d)$. In this paper we sharpen this error bound, showing that $c = O(d \log d + d \epsilon^{-1})$ is enough for achieving $1+\epsilon$ accuracy. We also show that when $c \geq O(\mu d \epsilon^{-2} \log d)$, the uniform sampling based LSR attains a $2+\epsilon$ bound with positive probability.
Shusen Wang
null
1403.7737
null
null
Multi-label Ferns for Efficient Recognition of Musical Instruments in Recordings
cs.LG cs.SD
In this paper we introduce multi-label ferns, and apply this technique for automatic classification of musical instruments in audio recordings. We compare the performance of our proposed method to a set of binary random ferns, using jazz recordings as input data. Our main result is obtaining much faster classification and higher F-score. We also achieve substantial reduction of the model size.
Miron B. Kursa, Alicja A. Wieczorkowska
null
1403.7746
null
null
Auto-encoders: reconstruction versus compression
cs.NE cs.IT cs.LG math.IT
We discuss the similarities and differences between training an auto-encoder to minimize the reconstruction error, and training the same auto-encoder to compress the data via a generative model. Minimizing a codelength for the data using an auto-encoder is equivalent to minimizing the reconstruction error plus some correcting terms which have an interpretation as either a denoising or contractive property of the decoding function. These terms are related but not identical to those used in denoising or contractive auto-encoders [Vincent et al. 2010, Rifai et al. 2011]. In particular, the codelength viewpoint fully determines an optimal noise level for the denoising criterion.
Yann Ollivier
null
1403.7752
null
null
Sparse K-Means with $\ell_{\infty}/\ell_0$ Penalty for High-Dimensional Data Clustering
stat.ML cs.LG stat.ME
Sparse clustering, which aims to find a proper partition of an extremely high-dimensional data set with redundant noise features, has been attracted more and more interests in recent years. The existing studies commonly solve the problem in a framework of maximizing the weighted feature contributions subject to a $\ell_2/\ell_1$ penalty. Nevertheless, this framework has two serious drawbacks: One is that the solution of the framework unavoidably involves a considerable portion of redundant noise features in many situations, and the other is that the framework neither offers intuitive explanations on why this framework can select relevant features nor leads to any theoretical guarantee for feature selection consistency. In this article, we attempt to overcome those drawbacks through developing a new sparse clustering framework which uses a $\ell_{\infty}/\ell_0$ penalty. First, we introduce new concepts on optimal partitions and noise features for the high-dimensional data clustering problems, based on which the previously known framework can be intuitively explained in principle. Then, we apply the suggested $\ell_{\infty}/\ell_0$ framework to formulate a new sparse k-means model with the $\ell_{\infty}/\ell_0$ penalty ($\ell_0$-k-means for short). We propose an efficient iterative algorithm for solving the $\ell_0$-k-means. To deeply understand the behavior of $\ell_0$-k-means, we prove that the solution yielded by the $\ell_0$-k-means algorithm has feature selection consistency whenever the data matrix is generated from a high-dimensional Gaussian mixture model. Finally, we provide experiments with both synthetic data and the Allen Developing Mouse Brain Atlas data to support that the proposed $\ell_0$-k-means exhibits better noise feature detection capacity over the previously known sparse k-means with the $\ell_2/\ell_1$ penalty ($\ell_1$-k-means for short).
Xiangyu Chang, Yu Wang, Rongjian Li, Zongben Xu
null
1403.7890
null
null
Privacy Tradeoffs in Predictive Analytics
cs.CR cs.LG
Online services routinely mine user data to predict user preferences, make recommendations, and place targeted ads. Recent research has demonstrated that several private user attributes (such as political affiliation, sexual orientation, and gender) can be inferred from such data. Can a privacy-conscious user benefit from personalization while simultaneously protecting her private attributes? We study this question in the context of a rating prediction service based on matrix factorization. We construct a protocol of interactions between the service and users that has remarkable optimality properties: it is privacy-preserving, in that no inference algorithm can succeed in inferring a user's private attribute with a probability better than random guessing; it has maximal accuracy, in that no other privacy-preserving protocol improves rating prediction; and, finally, it involves a minimal disclosure, as the prediction accuracy strictly decreases when the service reveals less information. We extensively evaluate our protocol using several rating datasets, demonstrating that it successfully blocks the inference of gender, age and political affiliation, while incurring less than 5% decrease in the accuracy of rating prediction.
Stratis Ioannidis, Andrea Montanari, Udi Weinsberg, Smriti Bhagat, Nadia Fawaz, Nina Taft
null
1403.8084
null
null
Coding for Random Projections and Approximate Near Neighbor Search
cs.LG cs.DB cs.DS stat.CO
This technical note compares two coding (quantization) schemes for random projections in the context of sub-linear time approximate near neighbor search. The first scheme is based on uniform quantization while the second scheme utilizes a uniform quantization plus a uniformly random offset (which has been popular in practice). The prior work compared the two schemes in the context of similarity estimation and training linear classifiers, with the conclusion that the step of random offset is not necessary and may hurt the performance (depending on the similarity level). The task of near neighbor search is related to similarity estimation with importance distinctions and requires own study. In this paper, we demonstrate that in the context of near neighbor search, the step of random offset is not needed either and may hurt the performance (sometimes significantly so, depending on the similarity and other parameters).
Ping Li, Michael Mitzenmacher, Anshumali Shrivastava
null
1403.8144
null
null
Using HMM in Strategic Games
cs.GT cs.IR cs.LG
In this paper we describe an approach to resolve strategic games in which players can assume different types along the game. Our goal is to infer which type the opponent is adopting at each moment so that we can increase the player's odds. To achieve that we use Markov games combined with hidden Markov model. We discuss a hypothetical example of a tennis game whose solution can be applied to any game with similar characteristics.
Mario Benevides (Federal University of Rio de Janeiro), Isaque Lima (Federal University of Rio de Janeiro), Rafael Nader (Federal University of Rio de Janeiro), Pedro Rougemont (Federal University of Rio de Janeiro)
10.4204/EPTCS.144.6
1404.0086
null
null
Efficient Algorithms and Error Analysis for the Modified Nystrom Method
cs.LG
Many kernel methods suffer from high time and space complexities and are thus prohibitive in big-data applications. To tackle the computational challenge, the Nystr\"om method has been extensively used to reduce time and space complexities by sacrificing some accuracy. The Nystr\"om method speedups computation by constructing an approximation of the kernel matrix using only a few columns of the matrix. Recently, a variant of the Nystr\"om method called the modified Nystr\"om method has demonstrated significant improvement over the standard Nystr\"om method in approximation accuracy, both theoretically and empirically. In this paper, we propose two algorithms that make the modified Nystr\"om method practical. First, we devise a simple column selection algorithm with a provable error bound. Our algorithm is more efficient and easier to implement than and nearly as accurate as the state-of-the-art algorithm. Second, with the selected columns at hand, we propose an algorithm that computes the approximation in lower time complexity than the approach in the previous work. Furthermore, we prove that the modified Nystr\"om method is exact under certain conditions, and we establish a lower error bound for the modified Nystr\"om method.
Shusen Wang, Zhihua Zhang
null
1404.0138
null
null
Household Electricity Demand Forecasting -- Benchmarking State-of-the-Art Methods
cs.LG stat.AP
The increasing use of renewable energy sources with variable output, such as solar photovoltaic and wind power generation, calls for Smart Grids that effectively manage flexible loads and energy storage. The ability to forecast consumption at different locations in distribution systems will be a key capability of Smart Grids. The goal of this paper is to benchmark state-of-the-art methods for forecasting electricity demand on the household level across different granularities and time scales in an explorative way, thereby revealing potential shortcomings and find promising directions for future research in this area. We apply a number of forecasting methods including ARIMA, neural networks, and exponential smoothening using several strategies for training data selection, in particular day type and sliding window based strategies. We consider forecasting horizons ranging between 15 minutes and 24 hours. Our evaluation is based on two data sets containing the power usage of individual appliances at second time granularity collected over the course of several months. The results indicate that forecasting accuracy varies significantly depending on the choice of forecasting methods/strategy and the parameter configuration. Measured by the Mean Absolute Percentage Error (MAPE), the considered state-of-the-art forecasting methods rarely beat corresponding persistence forecasts. Overall, we observed MAPEs in the range between 5 and >100%. The average MAPE for the first data set was ~30%, while it was ~85% for the other data set. These results show big room for improvement. Based on the identified trends and experiences from our experiments, we contribute a detailed discussion of promising future research.
Andreas Veit, Christoph Goebel, Rohit Tidke, Christoph Doblander and Hans-Arno Jacobsen
null
1404.0200
null
null
Active Deformable Part Models
cs.CV cs.LG
This paper presents an active approach for part-based object detection, which optimizes the order of part filter evaluations and the time at which to stop and make a prediction. Statistics, describing the part responses, are learned from training data and are used to formalize the part scheduling problem as an offline optimization. Dynamic programming is applied to obtain a policy, which balances the number of part evaluations with the classification accuracy. During inference, the policy is used as a look-up table to choose the part order and the stopping time based on the observed filter responses. The method is faster than cascade detection with deformable part models (which does not optimize the part order) with negligible loss in accuracy when evaluated on the PASCAL VOC 2007 and 2010 datasets.
Menglong Zhu, Nikolay Atanasov, George J. Pappas, Kostas Daniilidis
null
1404.0334
null
null
A Deep Representation for Invariance And Music Classification
cs.SD cs.LG stat.ML
Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this paper we propose the use of such computational modules for extracting invariant and discriminative audio representations. Building on a theory of invariance in hierarchical architectures, we propose a novel, mid-level representation for acoustical signals, using the empirical distributions of projections on a set of templates and their transformations. Under the assumption that, by construction, this dictionary of templates is composed from similar classes, and samples the orbit of variance-inducing signal transformations (such as shift and scale), the resulting signature is theoretically guaranteed to be unique, invariant to transformations and stable to deformations. Modules of projection and pooling can then constitute layers of deep networks, for learning composite representations. We present the main theoretical and computational aspects of a framework for unsupervised learning of invariant audio representations, empirically evaluated on music genre classification.
Chiyuan Zhang, Georgios Evangelopoulos, Stephen Voinea, Lorenzo Rosasco, Tomaso Poggio
10.1109/ICASSP.2014.6854954
1404.0400
null
null
Learning Two-input Linear and Nonlinear Analog Functions with a Simple Chemical System
q-bio.MN cs.LG
The current biochemical information processing systems behave in a predetermined manner because all features are defined during the design phase. To make such unconventional computing systems reusable and programmable for biomedical applications, adaptation, learning, and self-modification based on external stimuli would be highly desirable. However, so far, it has been too challenging to implement these in wet chemistries. In this paper we extend the chemical perceptron, a model previously proposed by the authors, to function as an analog instead of a binary system. The new analog asymmetric signal perceptron learns through feedback and supports Michaelis-Menten kinetics. The results show that our perceptron is able to learn linear and nonlinear (quadratic) functions of two inputs. To the best of our knowledge, it is the first simulated chemical system capable of doing so. The small number of species and reactions and their simplicity allows for a mapping to an actual wet implementation using DNA-strand displacement or deoxyribozymes. Our results are an important step toward actual biochemical systems that can learn and adapt.
Peter Banda, Christof Teuscher
10.1007/978-3-319-08123-6_2
1404.0427
null
null
Cellular Automata and Its Applications in Bioinformatics: A Review
cs.CE cs.LG
This paper aims at providing a survey on the problems that can be easily addressed by cellular automata in bioinformatics. Some of the authors have proposed algorithms for addressing some problems in bioinformatics but the application of cellular automata in bioinformatics is a virgin field in research. None of the researchers has tried to relate the major problems in bioinformatics and find a common solution. Extensive literature surveys were conducted. We have considered some papers in various journals and conferences for conduct of our research. This paper provides intuition towards relating various problems in bioinformatics logically and tries to attain a common frame work for addressing the same.
Pokkuluri Kiran Sree, Inampudi Ramesh Babu, SSSN Usha Devi N
null
1404.0453
null
null
piCholesky: Polynomial Interpolation of Multiple Cholesky Factors for Efficient Approximate Cross-Validation
cs.LG cs.NA
The dominant cost in solving least-square problems using Newton's method is often that of factorizing the Hessian matrix over multiple values of the regularization parameter ($\lambda$). We propose an efficient way to interpolate the Cholesky factors of the Hessian matrix computed over a small set of $\lambda$ values. This approximation enables us to optimally minimize the hold-out error while incurring only a fraction of the cost compared to exact cross-validation. We provide a formal error bound for our approximation scheme and present solutions to a set of key implementation challenges that allow our approach to maximally exploit the compute power of modern architectures. We present a thorough empirical analysis over multiple datasets to show the effectiveness of our approach.
Da Kuang, Alex Gittens, Raffay Hamid
null
1404.0466
null
null
A probabilistic estimation and prediction technique for dynamic continuous social science models: The evolution of the attitude of the Basque Country population towards ETA as a case study
cs.LG
In this paper, we present a computational technique to deal with uncertainty in dynamic continuous models in Social Sciences. Considering data from surveys, the method consists of determining the probability distribution of the survey output and this allows to sample data and fit the model to the sampled data using a goodness-of-fit criterion based on the chi-square-test. Taking the fitted parameters non-rejected by the chi-square-test, substituting them into the model and computing their outputs, we build 95% confidence intervals in each time instant capturing uncertainty of the survey data (probabilistic estimation). Using the same set of obtained model parameters, we also provide a prediction over the next few years with 95% confidence intervals (probabilistic prediction). This technique is applied to a dynamic social model describing the evolution of the attitude of the Basque Country population towards the revolutionary organization ETA.
Juan-Carlos Cort\'es, Francisco-J. Santonja, Ana-C. Tarazona, Rafael-J. Villanueva, Javier Villanueva-Oller
null
1404.0649
null
null
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
cs.CV cs.LG
We present techniques for speeding up the test-time evaluation of large convolutional networks, designed for object recognition tasks. These models deliver impressive accuracy but each image evaluation requires millions of floating point operations, making their deployment on smartphones and Internet-scale clusters problematic. The computation is dominated by the convolution operations in the lower layers of the model. We exploit the linear structure present within the convolutional filters to derive approximations that significantly reduce the required computation. Using large state-of-the-art models, we demonstrate we demonstrate speedups of convolutional layers on both CPU and GPU by a factor of 2x, while keeping the accuracy within 1% of the original model.
Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, Rob Fergus
null
1404.0736
null
null
Subspace Learning from Extremely Compressed Measurements
stat.ML cs.LG
We consider learning the principal subspace of a large set of vectors from an extremely small number of compressive measurements of each vector. Our theoretical results show that even a constant number of measurements per column suffices to approximate the principal subspace to arbitrary precision, provided that the number of vectors is large. This result is achieved by a simple algorithm that computes the eigenvectors of an estimate of the covariance matrix. The main insight is to exploit an averaging effect that arises from applying a different random projection to each vector. We provide a number of simulations confirming our theoretical results.
Akshay Krishnamurthy, Martin Azizyan, Aarti Singh
null
1404.0751
null
null
The Least Wrong Model Is Not in the Data
cs.LG
The true process that generated data cannot be determined when multiple explanations are possible. Prediction requires a model of the probability that a process, chosen randomly from the set of candidate explanations, generates some future observation. The best model includes all of the information contained in the minimal description of the data that is not contained in the data. It is closely related to the Halting Problem and is logarithmic in the size of the data. Prediction is difficult because the ideal model is not computable, and the best computable model is not "findable." However, the error from any approximation can be bounded by the size of the description using the model.
Oscar Stiffelman
null
1404.0789
null
null
Bayes and Naive Bayes Classifier
cs.LG
The Bayesian Classification represents a supervised learning method as well as a statistical method for classification. Assumes an underlying probabilistic model and it allows us to capture uncertainty about the model in a principled way by determining probabilities of the outcomes. This Classification is named after Thomas Bayes (1702-1761), who proposed the Bayes Theorem. Bayesian classification provides practical learning algorithms and prior knowledge and observed data can be combined. Bayesian Classification provides a useful perspective for understanding and evaluating many learning algorithms. It calculates explicit probabilities for hypothesis and it is robust to noise in input data. In statistical classification the Bayes classifier minimises the probability of misclassification. That was a visual intuition for a simple case of the Bayes classifier, also called: 1)Idiot Bayes 2)Naive Bayes 3)Simple Bayes
Vikramkumar (B092633), Vijaykumar B (B091956), Trilochan (B092654)
null
1404.0933
null
null
Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information
cs.NI cs.LG stat.ML
In this paper, we address the problem of reconstructing coverage maps from path-loss measurements in cellular networks. We propose and evaluate two kernel-based adaptive online algorithms as an alternative to typical offline methods. The proposed algorithms are application-tailored extensions of powerful iterative methods such as the adaptive projected subgradient method and a state-of-the-art adaptive multikernel method. Assuming that the moving trajectories of users are available, it is shown how side information can be incorporated in the algorithms to improve their convergence performance and the quality of the estimation. The complexity is significantly reduced by imposing sparsity-awareness in the sense that the algorithms exploit the compressibility of the measurement data to reduce the amount of data which is saved and processed. Finally, we present extensive simulations based on realistic data to show that our algorithms provide fast, robust estimates of coverage maps in real-world scenarios. Envisioned applications include path-loss prediction along trajectories of mobile users as a building block for anticipatory buffering or traffic offloading.
Martin Kasparick, Renato L. G. Cavalcante, Stefan Valentin, Slawomir Stanczak, Masahiro Yukawa
10.1109/TVT.2015.2453391
1404.0979
null
null
Parallel Support Vector Machines in Practice
cs.LG
In this paper, we evaluate the performance of various parallel optimization methods for Kernel Support Vector Machines on multicore CPUs and GPUs. In particular, we provide the first comparison of algorithms with explicit and implicit parallelization. Most existing parallel implementations for multi-core or GPU architectures are based on explicit parallelization of Sequential Minimal Optimization (SMO)---the programmers identified parallelizable components and hand-parallelized them, specifically tuned for a particular architecture. We compare these approaches with each other and with implicitly parallelized algorithms---where the algorithm is expressed such that most of the work is done within few iterations with large dense linear algebra operations. These can be computed with highly-optimized libraries, that are carefully parallelized for a large variety of parallel platforms. We highlight the advantages and disadvantages of both approaches and compare them on various benchmark data sets. We find an approximate implicitly parallel algorithm which is surprisingly efficient, permits a much simpler implementation, and leads to unprecedented speedups in SVM training.
Stephen Tyree, Jacob R. Gardner, Kilian Q. Weinberger, Kunal Agrawal, John Tran
null
1404.1066
null
null
A Tutorial on Principal Component Analysis
cs.LG stat.ML
Principal component analysis (PCA) is a mainstay of modern data analysis - a black box that is widely used but (sometimes) poorly understood. The goal of this paper is to dispel the magic behind this black box. This manuscript focuses on building a solid intuition for how and why principal component analysis works. This manuscript crystallizes this knowledge by deriving from simple intuitions, the mathematics behind PCA. This tutorial does not shy away from explaining the ideas informally, nor does it shy away from the mathematics. The hope is that by addressing both aspects, readers of all levels will be able to gain a better understanding of PCA as well as the when, the how and the why of applying this technique.
Jonathon Shlens
null
1404.1100
null
null
Scalable Planning and Learning for Multiagent POMDPs: Extended Version
cs.AI cs.LG
Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems.
Christopher Amato, Frans A. Oliehoek
null
1404.1140
null
null
AIS-MACA- Z: MACA based Clonal Classifier for Splicing Site, Protein Coding and Promoter Region Identification in Eukaryotes
cs.CE cs.LG
Bioinformatics incorporates information regarding biological data storage, accessing mechanisms and presentation of characteristics within this data. Most of the problems in bioinformatics and be addressed efficiently by computer techniques. This paper aims at building a classifier based on Multiple Attractor Cellular Automata (MACA) which uses fuzzy logic with version Z to predict splicing site, protein coding and promoter region identification in eukaryotes. It is strengthened with an artificial immune system technique (AIS), Clonal algorithm for choosing rules of best fitness. The proposed classifier can handle DNA sequences of lengths 54,108,162,252,354. This classifier gives the exact boundaries of both protein and promoter regions with an average accuracy of 90.6%. This classifier can predict the splicing site with 97% accuracy. This classifier was tested with 1, 97,000 data components which were taken from Fickett & Toung , EPDnew, and other sequences from a renowned medical university.
Pokkuluri Kiran Sree, Inampudi Ramesh Babu, SSSN Usha Devi N
null
1404.1144
null
null
Hierarchical Dirichlet Scaling Process
cs.LG
We present the \textit{hierarchical Dirichlet scaling process} (HDSP), a Bayesian nonparametric mixed membership model. The HDSP generalizes the hierarchical Dirichlet process (HDP) to model the correlation structure between metadata in the corpus and mixture components. We construct the HDSP based on the normalized gamma representation of the Dirichlet process, and this construction allows incorporating a scaling function that controls the membership probabilities of the mixture components. We develop two scaling methods to demonstrate that different modeling assumptions can be expressed in the HDSP. We also derive the corresponding approximate posterior inference algorithms using variational Bayes. Through experiments on datasets of newswire, medical journal articles, conference proceedings, and product reviews, we show that the HDSP results in a better predictive performance than labeled LDA, partially labeled LDA, and author topic model and a better negative review classification performance than the supervised topic model and SVM.
Dongwoo Kim, Alice Oh
10.1007/s10994-016-5621-5
1404.1282
null
null
Understanding Machine-learned Density Functionals
physics.chem-ph cs.LG physics.comp-ph stat.ML
Kernel ridge regression is used to approximate the kinetic energy of non-interacting fermions in a one-dimensional box as a functional of their density. The properties of different kernels and methods of cross-validation are explored, and highly accurate energies are achieved. Accurate {\em constrained optimal densities} are found via a modified Euler-Lagrange constrained minimization of the total energy. A projected gradient descent algorithm is derived using local principal component analysis. Additionally, a sparse grid representation of the density can be used without degrading the performance of the methods. The implications for machine-learned density functional approximations are discussed.
Li Li, John C. Snyder, Isabelle M. Pelaschier, Jessica Huang, Uma-Naresh Niranjan, Paul Duncan, Matthias Rupp, Klaus-Robert M\"uller, Kieron Burke
null
1404.1333
null
null
Optimal learning with Bernstein Online Aggregation
stat.ML cs.LG math.ST stat.TH
We introduce a new recursive aggregation procedure called Bernstein Online Aggregation (BOA). The exponential weights include an accuracy term and a second order term that is a proxy of the quadratic variation as in Hazan and Kale (2010). This second term stabilizes the procedure that is optimal in different senses. We first obtain optimal regret bounds in the deterministic context. Then, an adaptive version is the first exponential weights algorithm that exhibits a second order bound with excess losses that appears first in Gaillard et al. (2014). The second order bounds in the deterministic context are extended to a general stochastic context using the cumulative predictive risk. Such conversion provides the main result of the paper, an inequality of a novel type comparing the procedure with any deterministic aggregation procedure for an integrated criteria. Then we obtain an observable estimate of the excess of risk of the BOA procedure. To assert the optimality, we consider finally the iid case for strongly convex and Lipschitz continuous losses and we prove that the optimal rate of aggregation of Tsybakov (2003) is achieved. The batch version of the BOA procedure is then the first adaptive explicit algorithm that satisfies an optimal oracle inequality with high probability.
Olivier Wintenberger (LSTA)
null
1404.1356
null
null
Orthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion
cs.LG math.NA stat.ML
In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix pursuit iteration, and find satisfactory results in a few iterations. Another advantage of our proposed algorithm is that it has only one tunable parameter, which is the rank. It is easy to understand and to use by the user. This becomes especially important in large-scale learning problems. In addition, we rigorously show that both versions achieve a linear convergence rate, which is significantly better than the previous known results. We also empirically compare the proposed algorithms with several state-of-the-art matrix completion algorithms on many real-world datasets, including the large-scale recommendation dataset Netflix as well as the MovieLens datasets. Numerical results show that our proposed algorithm is more efficient than competing algorithms while achieving similar or better prediction performance.
Zheng Wang, Ming-Jun Lai, Zhaosong Lu, Wei Fan, Hasan Davulcu and Jieping Ye
null
1404.1377
null
null
An Efficient Feature Selection in Classification of Audio Files
cs.LG
In this paper we have focused on an efficient feature selection method in classification of audio files. The main objective is feature selection and extraction. We have selected a set of features for further analysis, which represents the elements in feature vector. By extraction method we can compute a numerical representation that can be used to characterize the audio using the existing toolbox. In this study Gain Ratio (GR) is used as a feature selection measure. GR is used to select splitting attribute which will separate the tuples into different classes. The pulse clarity is considered as a subjective measure and it is used to calculate the gain of features of audio files. The splitting criterion is employed in the application to identify the class or the music genre of a specific audio file from testing database. Experimental results indicate that by using GR the application can produce a satisfactory result for music genre classification. After dimensionality reduction best three features have been selected out of various features of audio file and in this technique we will get more than 90% successful classification result.
Jayita Mitra and Diganta Saha
null
1404.1491
null
null
Ensemble Committees for Stock Return Classification and Prediction
stat.ML cs.LG
This paper considers a portfolio trading strategy formulated by algorithms in the field of machine learning. The profitability of the strategy is measured by the algorithm's capability to consistently and accurately identify stock indices with positive or negative returns, and to generate a preferred portfolio allocation on the basis of a learned model. Stocks are characterized by time series data sets consisting of technical variables that reflect market conditions in a previous time interval, which are utilized produce binary classification decisions in subsequent intervals. The learned model is constructed as a committee of random forest classifiers, a non-linear support vector machine classifier, a relevance vector machine classifier, and a constituent ensemble of k-nearest neighbors classifiers. The Global Industry Classification Standard (GICS) is used to explore the ensemble model's efficacy within the context of various fields of investment including Energy, Materials, Financials, and Information Technology. Data from 2006 to 2012, inclusive, are considered, which are chosen for providing a range of market circumstances for evaluating the model. The model is observed to achieve an accuracy of approximately 70% when predicting stock price returns three months in advance.
James Brofos
null
1404.1492
null
null
A Compression Technique for Analyzing Disagreement-Based Active Learning
cs.LG stat.ML
We introduce a new and improved characterization of the label complexity of disagreement-based active learning, in which the leading quantity is the version space compression set size. This quantity is defined as the size of the smallest subset of the training data that induces the same version space. We show various applications of the new characterization, including a tight analysis of CAL and refined label complexity bounds for linear separators under mixtures of Gaussians and axis-aligned rectangles under product densities. The version space compression set size, as well as the new characterization of the label complexity, can be naturally extended to agnostic learning problems, for which we show new speedup results for two well known active learning algorithms.
Yair Wiener, Steve Hanneke, Ran El-Yaniv
null
1404.1504
null
null
Exploring the power of GPU's for training Polyglot language models
cs.LG cs.CL
One of the major research trends currently is the evolution of heterogeneous parallel computing. GP-GPU computing is being widely used and several applications have been designed to exploit the massive parallelism that GP-GPU's have to offer. While GPU's have always been widely used in areas of computer vision for image processing, little has been done to investigate whether the massive parallelism provided by GP-GPU's can be utilized effectively for Natural Language Processing(NLP) tasks. In this work, we investigate and explore the power of GP-GPU's in the task of learning language models. More specifically, we investigate the performance of training Polyglot language models using deep belief neural networks. We evaluate the performance of training the model on the GPU and present optimizations that boost the performance on the GPU.One of the key optimizations, we propose increases the performance of a function involved in calculating and updating the gradient by approximately 50 times on the GPU for sufficiently large batch sizes. We show that with the above optimizations, the GP-GPU's performance on the task increases by factor of approximately 3-4. The optimizations we made are generic Theano optimizations and hence potentially boost the performance of other models which rely on these operations.We also show that these optimizations result in the GPU's performance at this task being now comparable to that on the CPU. We conclude by presenting a thorough evaluation of the applicability of GP-GPU's for this task and highlight the factors limiting the performance of training a Polyglot model on the GPU.
Vivek Kulkarni, Rami Al-Rfou', Bryan Perozzi, Steven Skiena
null
1404.1521
null
null
Sparse Coding: A Deep Learning using Unlabeled Data for High - Level Representation
cs.LG cs.NE
Sparse coding algorithm is an learning algorithm mainly for unsupervised feature for finding succinct, a little above high - level Representation of inputs, and it has successfully given a way for Deep learning. Our objective is to use High - Level Representation data in form of unlabeled category to help unsupervised learning task. when compared with labeled data, unlabeled data is easier to acquire because, unlike labeled data it does not follow some particular class labels. This really makes the Deep learning wider and applicable to practical problems and learning. The main problem with sparse coding is it uses Quadratic loss function and Gaussian noise mode. So, its performs is very poor when binary or integer value or other Non- Gaussian type data is applied. Thus first we propose an algorithm for solving the L1 - regularized convex optimization algorithm for the problem to allow High - Level Representation of unlabeled data. Through this we derive a optimal solution for describing an approach to Deep learning algorithm by using sparse code.
R. Vidya, Dr.G.M.Nasira, R. P. Jaia Priyankka
10.1109/WCCCT.2014.69
1404.1559
null
null
Fast Supervised Hashing with Decision Trees for High-Dimensional Data
cs.CV cs.LG
Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the Hamming space. Non-linear hash functions have demonstrated the advantage over linear ones due to their powerful generalization capability. In the literature, kernel functions are typically used to achieve non-linearity in hashing, which achieve encouraging retrieval performance at the price of slow evaluation and training time. Here we propose to use boosted decision trees for achieving non-linearity in hashing, which are fast to train and evaluate, hence more suitable for hashing with high dimensional data. In our approach, we first propose sub-modular formulations for the hashing binary code inference problem and an efficient GraphCut based block search method for solving large-scale inference. Then we learn hash functions by training boosted decision trees to fit the binary codes. Experiments demonstrate that our proposed method significantly outperforms most state-of-the-art methods in retrieval precision and training time. Especially for high-dimensional data, our method is orders of magnitude faster than many methods in terms of training time.
Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, David Suter
10.1109/CVPR.2014.253
1404.1561
null
null
The Power of Online Learning in Stochastic Network Optimization
math.OC cs.LG cs.SY
In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, $\mathtt{OLAC}$ and $\mathtt{OLAC2}$, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: $\mathtt{OLAC}$ and $\mathtt{OLAC2}$ achieve the near-optimal $[O(\epsilon), O([\log(1/\epsilon)]^2)]$ utility-delay tradeoff and $\mathtt{OLAC2}$ possesses an $O(\epsilon^{-2/3})$ convergence time. $\mathtt{OLAC}$ and $\mathtt{OLAC2}$ are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice.
Longbo Huang, Xin Liu, Xiaohong Hao
null
1404.1592
null
null
A Denoising Autoencoder that Guides Stochastic Search
cs.NE cs.LG
An algorithm is described that adaptively learns a non-linear mutation distribution. It works by training a denoising autoencoder (DA) online at each generation of a genetic algorithm to reconstruct a slowly decaying memory of the best genotypes so far. A compressed hidden layer forces the autoencoder to learn hidden features in the training set that can be used to accelerate search on novel problems with similar structure. Its output neurons define a probability distribution that we sample from to produce offspring solutions. The algorithm outperforms a canonical genetic algorithm on several combinatorial optimisation problems, e.g. multidimensional 0/1 knapsack problem, MAXSAT, HIFF, and on parameter optimisation problems, e.g. Rastrigin and Rosenbrock functions.
Alexander W. Churchill and Siddharth Sigtia and Chrisantha Fernando
null
1404.1614
null
null
Notes on Generalized Linear Models of Neurons
cs.NE cs.LG q-bio.NC
Experimental neuroscience increasingly requires tractable models for analyzing and predicting the behavior of neurons and networks. The generalized linear model (GLM) is an increasingly popular statistical framework for analyzing neural data that is flexible, exhibits rich dynamic behavior and is computationally tractable (Paninski, 2004; Pillow et al., 2008; Truccolo et al., 2005). What follows is a brief summary of the primary equations governing the application of GLM's to spike trains with a few sentences linking this work to the larger statistical literature. Latter sections include extensions of a basic GLM to model spatio-temporal receptive fields as well as network activity in an arbitrary numbers of neurons.
Jonathon Shlens
null
1404.1999
null
null
Optimistic Risk Perception in the Temporal Difference error Explains the Relation between Risk-taking, Gambling, Sensation-seeking and Low Fear
cs.LG q-bio.NC
Understanding the affective, cognitive and behavioural processes involved in risk taking is essential for treatment and for setting environmental conditions to limit damage. Using Temporal Difference Reinforcement Learning (TDRL) we computationally investigated the effect of optimism in risk perception in a variety of goal-oriented tasks. Optimism in risk perception was studied by varying the calculation of the Temporal Difference error, i.e., delta, in three ways: realistic (stochastically correct), optimistic (assuming action control), and overly optimistic (assuming outcome control). We show that for the gambling task individuals with 'healthy' perception of control, i.e., action optimism, do not develop gambling behaviour while individuals with 'unhealthy' perception of control, i.e., outcome optimism, do. We show that high intensity of sensations and low levels of fear co-occur due to optimistic risk perception. We found that overly optimistic risk perception (outcome optimism) results in risk taking and in persistent gambling behaviour in addition to high intensity of sensations. We discuss how our results replicate risk-taking related phenomena.
Joost Broekens and Tim Baarslag
null
1404.2078
null
null
Efficiency of conformalized ridge regression
cs.LG stat.ML
Conformal prediction is a method of producing prediction sets that can be applied on top of a wide range of prediction algorithms. The method has a guaranteed coverage probability under the standard IID assumption regardless of whether the assumptions (often considerably more restrictive) of the underlying algorithm are satisfied. However, for the method to be really useful it is desirable that in the case where the assumptions of the underlying algorithm are satisfied, the conformal predictor loses little in efficiency as compared with the underlying algorithm (whereas being a conformal predictor, it has the stronger guarantee of validity). In this paper we explore the degree to which this additional requirement of efficiency is satisfied in the case of Bayesian ridge regression; we find that asymptotically conformal prediction sets differ little from ridge regression prediction intervals when the standard Bayesian assumptions are satisfied.
Evgeny Burnaev and Vladimir Vovk
null
1404.2083
null
null
Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers
cs.RO cs.LG
The success of the human-robot co-worker team in a flexible manufacturing environment where robots learn from demonstration heavily relies on the correct and safe operation of the robot. How this can be achieved is a challenge that requires addressing both technical as well as human-centric research questions. In this paper we discuss the state of the art in safety assurance, existing as well as emerging standards in this area, and the need for new approaches to safety assurance in the context of learning machines. We then focus on robotic learning from demonstration, the challenges these techniques pose to safety assurance and indicate opportunities to integrate safety considerations into algorithms "by design". Finally, from a human-centric perspective, we stipulate that, to achieve high levels of safety and ultimately trust, the robotic co-worker must meet the innate expectations of the humans it works with. It is our aim to stimulate a discussion focused on the safety aspects of human-in-the-loop robotics, and to foster multidisciplinary collaboration to address the research challenges identified.
Kerstin Eder, Chris Harper, Ute Leonards
10.1109/ROMAN.2014.6926328
1404.2229
null
null
Power System Parameters Forecasting Using Hilbert-Huang Transform and Machine Learning
cs.LG stat.ML
A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. Apart from introduction and references the paper is organized as follows. The section 2 presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learning-based algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting.
Victor Kurbatsky, Nikita Tomin, Vadim Spiryaev, Paul Leahy, Denis Sidorov and Alexei Zhukov
null
1404.2353
null
null
A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning
cs.DC cs.AI cs.LG stat.ML
Learning sparse combinations is a frequent theme in machine learning. In this paper, we study its associated optimization problem in the distributed setting where the elements to be combined are not centrally located but spread over a network. We address the key challenges of balancing communication costs and optimization errors. To this end, we propose a distributed Frank-Wolfe (dFW) algorithm. We obtain theoretical guarantees on the optimization error $\epsilon$ and communication cost that do not depend on the total number of combining elements. We further show that the communication cost of dFW is optimal by deriving a lower-bound on the communication cost required to construct an $\epsilon$-approximate solution. We validate our theoretical analysis with empirical studies on synthetic and real-world data, which demonstrate that dFW outperforms both baselines and competing methods. We also study the performance of dFW when the conditions of our analysis are relaxed, and show that dFW is fairly robust.
Aur\'elien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan, Fei Sha
null
1404.2644
null
null
Open problem: Tightness of maximum likelihood semidefinite relaxations
math.OC cs.LG stat.ML
We have observed an interesting, yet unexplained, phenomenon: Semidefinite programming (SDP) based relaxations of maximum likelihood estimators (MLE) tend to be tight in recovery problems with noisy data, even when MLE cannot exactly recover the ground truth. Several results establish tightness of SDP based relaxations in the regime where exact recovery from MLE is possible. However, to the best of our knowledge, their tightness is not understood beyond this regime. As an illustrative example, we focus on the generalized Procrustes problem.
Afonso S. Bandeira and Yuehaw Khoo and Amit Singer
null
1404.2655
null
null
A New Clustering Approach for Anomaly Intrusion Detection
cs.DC cs.CR cs.LG
Recent advances in technology have made our work easier compare to earlier times. Computer network is growing day by day but while discussing about the security of computers and networks it has always been a major concerns for organizations varying from smaller to larger enterprises. It is true that organizations are aware of the possible threats and attacks so they always prepare for the safer side but due to some loopholes attackers are able to make attacks. Intrusion detection is one of the major fields of research and researchers are trying to find new algorithms for detecting intrusions. Clustering techniques of data mining is an interested area of research for detecting possible intrusions and attacks. This paper presents a new clustering approach for anomaly intrusion detection by using the approach of K-medoids method of clustering and its certain modifications. The proposed algorithm is able to achieve high detection rate and overcomes the disadvantages of K-means algorithm.
Ravi Ranjan and G. Sahoo
10.5121/ijdkp.2014.4203
1404.2772
null
null
A Networks and Machine Learning Approach to Determine the Best College Coaches of the 20th-21st Centuries
stat.AP cs.LG cs.SI
Our objective is to find the five best college sports coaches of past century for three different sports. We decided to look at men's basketball, football, and baseball. We wanted to use an approach that could definitively determine team skill from the games played, and then use a machine-learning algorithm to calculate the correct coach skills for each team in a given year. We created a networks-based model to calculate team skill from historical game data. A digraph was created for each year in each sport. Nodes represented teams, and edges represented a game played between two teams. The arrowhead pointed towards the losing team. We calculated the team skill of each graph using a right-hand eigenvector centrality measure. This way, teams that beat good teams will be ranked higher than teams that beat mediocre teams. The eigenvector centrality rankings for most years were well correlated with tournament performance and poll-based rankings. We assumed that the relationship between coach skill $C_s$, player skill $P_s$, and team skill $T_s$ was $C_s \cdot P_s = T_s$. We then created a function to describe the probability that a given score difference would occur based on player skill and coach skill. We multiplied the probabilities of all edges in the network together to find the probability that the correct network would occur with any given player skill and coach skill matrix. We was able to determine player skill as a function of team skill and coach skill, eliminating the need to optimize two unknown matrices. The top five coaches in each year were noted, and the top coach of all time was calculated by dividing the number of times that coach ranked in the yearly top five by the years said coach had been active.
Tian-Shun Jiang, Zachary Polizzi, Christopher Yuan
null
1404.2885
null
null
Thoughts on a Recursive Classifier Graph: a Multiclass Network for Deep Object Recognition
cs.CV cs.LG cs.NE
We propose a general multi-class visual recognition model, termed the Classifier Graph, which aims to generalize and integrate ideas from many of today's successful hierarchical recognition approaches. Our graph-based model has the advantage of enabling rich interactions between classes from different levels of interpretation and abstraction. The proposed multi-class system is efficiently learned using step by step updates. The structure consists of simple logistic linear layers with inputs from features that are automatically selected from a large pool. Each newly learned classifier becomes a potential new feature. Thus, our feature pool can consist both of initial manually designed features as well as learned classifiers from previous steps (graph nodes), each copied many times at different scales and locations. In this manner we can learn and grow both a deep, complex graph of classifiers and a rich pool of features at different levels of abstraction and interpretation. Our proposed graph of classifiers becomes a multi-class system with a recursive structure, suitable for deep detection and recognition of several classes simultaneously.
Marius Leordeanu and Rahul Sukthankar
null
1404.2903
null
null
Gradient-based Laplacian Feature Selection
cs.LG
Analysis of high dimensional noisy data is of essence across a variety of research fields. Feature selection techniques are designed to find the relevant feature subset that can facilitate classification or pattern detection. Traditional (supervised) feature selection methods utilize label information to guide the identification of relevant feature subsets. In this paper, however, we consider the unsupervised feature selection problem. Without the label information, it is particularly difficult to identify a small set of relevant features due to the noisy nature of real-world data which corrupts the intrinsic structure of the data. Our Gradient-based Laplacian Feature Selection (GLFS) selects important features by minimizing the variance of the Laplacian regularized least squares regression model. With $\ell_1$ relaxation, GLFS can find a sparse subset of features that is relevant to the Laplacian manifolds. Extensive experiments on simulated, three real-world object recognition and two computational biology datasets, have illustrated the power and superior performance of our approach over multiple state-of-the-art unsupervised feature selection methods. Additionally, we show that GLFS selects a sparser set of more relevant features in a supervised setting outperforming the popular elastic net methodology.
Bo Wang and Anna Goldenberg
null
1404.2948
null
null
A Tutorial on Independent Component Analysis
cs.LG stat.ML
Independent component analysis (ICA) has become a standard data analysis technique applied to an array of problems in signal processing and machine learning. This tutorial provides an introduction to ICA based on linear algebra formulating an intuition for ICA from first principles. The goal of this tutorial is to provide a solid foundation on this advanced topic so that one might learn the motivation behind ICA, learn why and when to apply this technique and in the process gain an introduction to this exciting field of active research.
Jonathon Shlens
null
1404.2986
null
null
Bayesian image segmentations by Potts prior and loopy belief propagation
cs.CV cond-mat.dis-nn cond-mat.stat-mech cs.LG stat.ML
This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in LBP's for Potts models influence our hyperparameter estimation procedures.
Kazuyuki Tanaka, Shun Kataoka, Muneki Yasuda, Yuji Waizumi and Chiou-Ting Hsu
10.7566/JPSJ.83.124002
1404.3012
null
null
On the Ground Validation of Online Diagnosis with Twitter and Medical Records
cs.SI cs.CL cs.LG
Social media has been considered as a data source for tracking disease. However, most analyses are based on models that prioritize strong correlation with population-level disease rates over determining whether or not specific individual users are actually sick. Taking a different approach, we develop a novel system for social-media based disease detection at the individual level using a sample of professionally diagnosed individuals. Specifically, we develop a system for making an accurate influenza diagnosis based on an individual's publicly available Twitter data. We find that about half (17/35 = 48.57%) of the users in our sample that were sick explicitly discuss their disease on Twitter. By developing a meta classifier that combines text analysis, anomaly detection, and social network analysis, we are able to diagnose an individual with greater than 99% accuracy even if she does not discuss her health.
Todd Bodnar, Victoria C Barclay, Nilam Ram, Conrad S Tucker, Marcel Salath\'e
10.1145/2567948.2579272
1404.3026
null
null
Pareto-Path Multi-Task Multiple Kernel Learning
cs.LG
A traditional and intuitively appealing Multi-Task Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing amongst tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a Multi-Objective Optimization (MOO) problem, which considers the concurrent optimization of all task objectives involved in the Multi-Task Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel Support Vector Machine (SVM) MT-MKL framework, that considers an implicitly-defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving better classification performance, when compared to other similar MTL approaches.
Cong Li, Michael Georgiopoulos, Georgios C. Anagnostopoulos
10.1109/TNNLS.2014.2309939
1404.3190
null
null
Compressive classification and the rare eclipse problem
cs.LG cs.IT math.IT math.ST stat.TH
This paper addresses the fundamental question of when convex sets remain disjoint after random projection. We provide an analysis using ideas from high-dimensional convex geometry. For ellipsoids, we provide a bound in terms of the distance between these ellipsoids and simple functions of their polynomial coefficients. As an application, this theorem provides bounds for compressive classification of convex sets. Rather than assuming that the data to be classified is sparse, our results show that the data can be acquired via very few measurements yet will remain linearly separable. We demonstrate the feasibility of this approach in the context of hyperspectral imaging.
Afonso S. Bandeira and Dustin G. Mixon and Benjamin Recht
null
1404.3203
null
null
Cost-Effective HITs for Relative Similarity Comparisons
cs.CV cs.LG
Similarity comparisons of the form "Is object a more similar to b than to c?" are useful for computer vision and machine learning applications. Unfortunately, an embedding of $n$ points is specified by $n^3$ triplets, making collecting every triplet an expensive task. In noticing this difficulty, other researchers have investigated more intelligent triplet sampling techniques, but they do not study their effectiveness or their potential drawbacks. Although it is important to reduce the number of collected triplets, it is also important to understand how best to display a triplet collection task to a user. In this work we explore an alternative display for collecting triplets and analyze the monetary cost and speed of the display. We propose best practices for creating cost effective human intelligence tasks for collecting triplets. We show that rather than changing the sampling algorithm, simple changes to the crowdsourcing UI can lead to much higher quality embeddings. We also provide a dataset as well as the labels collected from crowd workers.
Michael J. Wilber and Iljung S. Kwak and Serge J. Belongie
null
1404.3291
null
null
Near-optimal sample compression for nearest neighbors
cs.LG cs.CC
We present the first sample compression algorithm for nearest neighbors with non-trivial performance guarantees. We complement these guarantees by demonstrating almost matching hardness lower bounds, which show that our bound is nearly optimal. Our result yields new insight into margin-based nearest neighbor classification in metric spaces and allows us to significantly sharpen and simplify existing bounds. Some encouraging empirical results are also presented.
Lee-Ad Gottlieb and Aryeh Kontorovich and Pinhas Nisnevitch
null
1404.3368
null
null
Complexity theoretic limitations on learning DNF's
cs.LG cs.CC
Using the recently developed framework of [Daniely et al, 2014], we show that under a natural assumption on the complexity of refuting random K-SAT formulas, learning DNF formulas is hard. Furthermore, the same assumption implies the hardness of learning intersections of $\omega(\log(n))$ halfspaces, agnostically learning conjunctions, as well as virtually all (distribution free) learning problems that were previously shown hard (under complexity assumptions).
Amit Daniely and Shai Shalev-Shwatz
null
1404.3378
null
null
Generalized version of the support vector machine for binary classification problems: supporting hyperplane machine
cs.LG stat.ML
In this paper there is proposed a generalized version of the SVM for binary classification problems in the case of using an arbitrary transformation x -> y. An approach similar to the classic SVM method is used. The problem is widely explained. Various formulations of primal and dual problems are proposed. For one of the most important cases the formulae are derived in detail. A simple computational example is demonstrated. The algorithm and its implementation is presented in Octave language.
E. G. Abramov, A. B. Komissarov, D. A. Kornyakov
null
1404.3415
null
null
Anytime Hierarchical Clustering
stat.ML cs.IR cs.LG
We propose a new anytime hierarchical clustering method that iteratively transforms an arbitrary initial hierarchy on the configuration of measurements along a sequence of trees we prove for a fixed data set must terminate in a chain of nested partitions that satisfies a natural homogeneity requirement. Each recursive step re-edits the tree so as to improve a local measure of cluster homogeneity that is compatible with a number of commonly used (e.g., single, average, complete) linkage functions. As an alternative to the standard batch algorithms, we present numerical evidence to suggest that appropriate adaptations of this method can yield decentralized, scalable algorithms suitable for distributed/parallel computation of clustering hierarchies and online tracking of clustering trees applicable to large, dynamically changing databases and anomaly detection.
Omur Arslan and Daniel E. Koditschek
null
1404.3439
null
null
Random forests with random projections of the output space for high dimensional multi-label classification
stat.ML cs.LG
We adapt the idea of random projections applied to the output space, so as to enhance tree-based ensemble methods in the context of multi-label classification. We show how learning time complexity can be reduced without affecting computational complexity and accuracy of predictions. We also show that random output space projections may be used in order to reach different bias-variance tradeoffs, over a broad panel of benchmark problems, and that this may lead to improved accuracy while reducing significantly the computational burden of the learning stage.
Arnaud Joly, Pierre Geurts, Louis Wehenkel
10.1007/978-3-662-44848-9_39
1404.3581
null
null
Hybrid Conditional Gradient - Smoothing Algorithms with Applications to Sparse and Low Rank Regularization
math.OC cs.LG stat.ML
We study a hybrid conditional gradient - smoothing algorithm (HCGS) for solving composite convex optimization problems which contain several terms over a bounded set. Examples of these include regularization problems with several norms as penalties and a norm constraint. HCGS extends conditional gradient methods to cases with multiple nonsmooth terms, in which standard conditional gradient methods may be difficult to apply. The HCGS algorithm borrows techniques from smoothing proximal methods and requires first-order computations (subgradients and proximity operations). Unlike proximal methods, HCGS benefits from the advantages of conditional gradient methods, which render it more efficient on certain large scale optimization problems. We demonstrate these advantages with simulations on two matrix optimization problems: regularization of matrices with combined $\ell_1$ and trace norm penalties; and a convex relaxation of sparse PCA.
Andreas Argyriou and Marco Signoretto and Johan Suykens
null
1404.3591
null
null
PCANet: A Simple Deep Learning Baseline for Image Classification?
cs.CV cs.LG cs.NE
In this work, we propose a very simple deep learning network for image classification which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet, namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition.
Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng and Yi Ma
10.1109/TIP.2015.2475625
1404.3606
null
null
Methods for Ordinal Peer Grading
cs.LG cs.IR
MOOCs have the potential to revolutionize higher education with their wide outreach and accessibility, but they require instructors to come up with scalable alternates to traditional student evaluation. Peer grading -- having students assess each other -- is a promising approach to tackling the problem of evaluation at scale, since the number of "graders" naturally scales with the number of students. However, students are not trained in grading, which means that one cannot expect the same level of grading skills as in traditional settings. Drawing on broad evidence that ordinal feedback is easier to provide and more reliable than cardinal feedback, it is therefore desirable to allow peer graders to make ordinal statements (e.g. "project X is better than project Y") and not require them to make cardinal statements (e.g. "project X is a B-"). Thus, in this paper we study the problem of automatically inferring student grades from ordinal peer feedback, as opposed to existing methods that require cardinal peer feedback. We formulate the ordinal peer grading problem as a type of rank aggregation problem, and explore several probabilistic models under which to estimate student grades and grader reliability. We study the applicability of these methods using peer grading data collected from a real class -- with instructor and TA grades as a baseline -- and demonstrate the efficacy of ordinal feedback techniques in comparison to existing cardinal peer grading methods. Finally, we compare these peer-grading techniques to traditional evaluation techniques.
Karthik Raman and Thorsten Joachims
null
1404.3656
null
null
Surpassing Human-Level Face Verification Performance on LFW with GaussianFace
cs.CV cs.LG stat.ML
Face verification remains a challenging problem in very complex conditions with large variations such as pose, illumination, expression, and occlusions. This problem is exacerbated when we rely unrealistically on a single training data source, which is often insufficient to cover the intrinsically complex face variations. This paper proposes a principled multi-task learning approach based on Discriminative Gaussian Process Latent Variable Model, named GaussianFace, to enrich the diversity of training data. In comparison to existing methods, our model exploits additional data from multiple source-domains to improve the generalization performance of face verification in an unknown target-domain. Importantly, our model can adapt automatically to complex data distributions, and therefore can well capture complex face variations inherent in multiple sources. Extensive experiments demonstrate the effectiveness of the proposed model in learning from diverse data sources and generalize to unseen domain. Specifically, the accuracy of our algorithm achieves an impressive accuracy rate of 98.52% on the well-known and challenging Labeled Faces in the Wild (LFW) benchmark. For the first time, the human-level performance in face verification (97.53%) on LFW is surpassed.
Chaochao Lu, Xiaoou Tang
null
1404.3840
null
null
Optimizing the CVaR via Sampling
stat.ML cs.AI cs.LG
Conditional Value at Risk (CVaR) is a prominent risk measure that is being used extensively in various domains. We develop a new formula for the gradient of the CVaR in the form of a conditional expectation. Based on this formula, we propose a novel sampling-based estimator for the CVaR gradient, in the spirit of the likelihood-ratio method. We analyze the bias of the estimator, and prove the convergence of a corresponding stochastic gradient descent algorithm to a local CVaR optimum. Our method allows to consider CVaR optimization in new domains. As an example, we consider a reinforcement learning application, and learn a risk-sensitive controller for the game of Tetris.
Aviv Tamar, Yonatan Glassner, Shie Mannor
null
1404.3862
null
null
Recovery of Coherent Data via Low-Rank Dictionary Pursuit
stat.ME cs.IT cs.LG math.IT math.ST stat.TH
The recently established RPCA method provides us a convenient way to restore low-rank matrices from grossly corrupted observations. While elegant in theory and powerful in reality, RPCA may be not an ultimate solution to the low-rank matrix recovery problem. Indeed, its performance may not be perfect even when data are strictly low-rank. This is because conventional RPCA ignores the clustering structures of the data which are ubiquitous in modern applications. As the number of cluster grows, the coherence of data keeps increasing, and accordingly, the recovery performance of RPCA degrades. We show that the challenges raised by coherent data (i.e., the data with high coherence) could be alleviated by Low-Rank Representation (LRR), provided that the dictionary in LRR is configured appropriately. More precisely, we mathematically prove that if the dictionary itself is low-rank then LRR is immune to the coherence parameter which increases with the underlying cluster number. This provides an elementary principle for dealing with coherent data. Subsequently, we devise a practical algorithm to obtain proper dictionaries in unsupervised environments. Our extensive experiments on randomly generated matrices verify our claims.
Guangcan Liu and Ping Li
null
1404.4032
null
null
Discovering and Exploiting Entailment Relationships in Multi-Label Learning
cs.LG
This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailement: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented with a Bayesian network. Marginal probabilities are entered as soft evidence in the network and adjusted through probabilistic inference. Our approach offers robust improvements in mean average precision compared to the standard binary relavance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.
Christina Papagiannopoulou, Grigorios Tsoumakas, Ioannis Tsamardinos
null
1404.4038
null
null
Ensemble Classifiers and Their Applications: A Review
cs.LG
Ensemble classifier refers to a group of individual classifiers that are cooperatively trained on data set in a supervised classification problem. In this paper we present a review of commonly used ensemble classifiers in the literature. Some ensemble classifiers are also developed targeting specific applications. We also present some application driven ensemble classifiers in this paper.
Akhlaqur Rahman, Sumaira Tasnim
10.14445/22312803/IJCTT-V10P107
1404.4088
null
null
Multi-borders classification
stat.ML cs.LG
The number of possible methods of generalizing binary classification to multi-class classification increases exponentially with the number of class labels. Often, the best method of doing so will be highly problem dependent. Here we present classification software in which the partitioning of multi-class classification problems into binary classification problems is specified using a recursive control language.
Peter Mills
null
1404.4095
null
null
Sparse Bilinear Logistic Regression
math.OC cs.CV cs.LG
In this paper, we introduce the concept of sparse bilinear logistic regression for decision problems involving explanatory variables that are two-dimensional matrices. Such problems are common in computer vision, brain-computer interfaces, style/content factorization, and parallel factor analysis. The underlying optimization problem is bi-convex; we study its solution and develop an efficient algorithm based on block coordinate descent. We provide a theoretical guarantee for global convergence and estimate the asymptotical convergence rate using the Kurdyka-{\L}ojasiewicz inequality. A range of experiments with simulated and real data demonstrate that sparse bilinear logistic regression outperforms current techniques in several important applications.
Jianing V. Shi, Yangyang Xu, and Richard G. Baraniuk
null
1404.4104
null
null
Sparse Compositional Metric Learning
cs.LG cs.AI stat.ML
We propose a new approach for metric learning by framing it as learning a sparse combination of locally discriminative metrics that are inexpensive to generate from the training data. This flexible framework allows us to naturally derive formulations for global, multi-task and local metric learning. The resulting algorithms have several advantages over existing methods in the literature: a much smaller number of parameters to be estimated and a principled way to generalize learned metrics to new testing data points. To analyze the approach theoretically, we derive a generalization bound that justifies the sparse combination. Empirically, we evaluate our algorithms on several datasets against state-of-the-art metric learning methods. The results are consistent with our theoretical findings and demonstrate the superiority of our approach in terms of classification performance and scalability.
Yuan Shi and Aur\'elien Bellet and Fei Sha
null
1404.4105
null
null
Representation as a Service
cs.LG
Consider a Machine Learning Service Provider (MLSP) designed to rapidly create highly accurate learners for a never-ending stream of new tasks. The challenge is to produce task-specific learners that can be trained from few labeled samples, even if tasks are not uniquely identified, and the number of tasks and input dimensionality are large. In this paper, we argue that the MLSP should exploit knowledge from previous tasks to build a good representation of the environment it is in, and more precisely, that useful representations for such a service are ones that minimize generalization error for a new hypothesis trained on a new task. We formalize this intuition with a novel method that minimizes an empirical proxy of the intra-task small-sample generalization error. We present several empirical results showing state-of-the art performance on single-task transfer, multitask learning, and the full lifelong learning problem.
Ouais Alsharif, Philip Bachman, Joelle Pineau
null
1404.4108
null
null
Structured Stochastic Variational Inference
cs.LG
Stochastic variational inference makes it possible to approximate posterior distributions induced by large datasets quickly using stochastic optimization. The algorithm relies on the use of fully factorized variational distributions. However, this "mean-field" independence approximation limits the fidelity of the posterior approximation, and introduces local optima. We show how to relax the mean-field approximation to allow arbitrary dependencies between global parameters and local hidden variables, producing better parameter estimates by reducing bias, sensitivity to local optima, and sensitivity to hyperparameters.
Matthew D. Hoffman and David M. Blei
null
1404.4114
null
null
Dropout Training for Support Vector Machines
cs.LG
Dropout and other feature noising schemes have shown promising results in controlling over-fitting by artificially corrupting the training data. Though extensive theoretical and empirical studies have been performed for generalized linear models, little work has been done for support vector machines (SVMs), one of the most successful approaches for supervised learning. This paper presents dropout training for linear SVMs. To deal with the intractable expectation of the non-smooth hinge loss under corrupting distributions, we develop an iteratively re-weighted least square (IRLS) algorithm by exploring data augmentation techniques. Our algorithm iteratively minimizes the expectation of a re-weighted least square problem, where the re-weights have closed-form solutions. The similar ideas are applied to develop a new IRLS algorithm for the expected logistic loss under corrupting distributions. Our algorithms offer insights on the connection and difference between the hinge loss and logistic loss in dropout training. Empirical results on several real datasets demonstrate the effectiveness of dropout training on significantly boosting the classification accuracy of linear SVMs.
Ning Chen, Jun Zhu, Jianfei Chen, Bo Zhang
null
1404.4171
null
null
MEG Decoding Across Subjects
stat.ML cs.LG q-bio.NC
Brain decoding is a data analysis paradigm for neuroimaging experiments that is based on predicting the stimulus presented to the subject from the concurrent brain activity. In order to make inference at the group level, a straightforward but sometimes unsuccessful approach is to train a classifier on the trials of a group of subjects and then to test it on unseen trials from new subjects. The extreme difficulty is related to the structural and functional variability across the subjects. We call this approach "decoding across subjects". In this work, we address the problem of decoding across subjects for magnetoencephalographic (MEG) experiments and we provide the following contributions: first, we formally describe the problem and show that it belongs to a machine learning sub-field called transductive transfer learning (TTL). Second, we propose to use a simple TTL technique that accounts for the differences between train data and test data. Third, we propose the use of ensemble learning, and specifically of stacked generalization, to address the variability across subjects within train data, with the aim of producing more stable classifiers. On a face vs. scramble task MEG dataset of 16 subjects, we compare the standard approach of not modelling the differences across subjects, to the proposed one of combining TTL and ensemble learning. We show that the proposed approach is consistently more accurate than the standard one.
Emanuele Olivetti, Seyed Mostafa Kia, Paolo Avesani
null
1404.4175
null
null
Open Question Answering with Weakly Supervised Embedding Models
cs.CL cs.LG
Building computers able to answer questions on any subject is a long standing goal of artificial intelligence. Promising progress has recently been achieved by methods that learn to map questions to logical forms or database queries. Such approaches can be effective but at the cost of either large amounts of human-labeled data or by defining lexicons and grammars tailored by practitioners. In this paper, we instead take the radical approach of learning to map questions to vectorial feature representations. By mapping answers into the same space one can query any knowledge base independent of its schema, without requiring any grammar or lexicon. Our method is trained with a new optimization procedure combining stochastic gradient descent followed by a fine-tuning step using the weak supervision provided by blending automatically and collaboratively generated resources. We empirically demonstrate that our model can capture meaningful signals from its noisy supervision leading to major improvements over paralex, the only existing method able to be trained on similar weakly labeled data.
Antoine Bordes, Jason Weston and Nicolas Usunier
null
1404.4326
null
null
Stable Graphical Models
cs.LG stat.ML
Stable random variables are motivated by the central limit theorem for densities with (potentially) unbounded variance and can be thought of as natural generalizations of the Gaussian distribution to skewed and heavy-tailed phenomenon. In this paper, we introduce stable graphical (SG) models, a class of multivariate stable densities that can also be represented as Bayesian networks whose edges encode linear dependencies between random variables. One major hurdle to the extensive use of stable distributions is the lack of a closed-form analytical expression for their densities. This makes penalized maximum-likelihood based learning computationally demanding. We establish theoretically that the Bayesian information criterion (BIC) can asymptotically be reduced to the computationally more tractable minimum dispersion criterion (MDC) and develop StabLe, a structure learning algorithm based on MDC. We use simulated datasets for five benchmark network topologies to empirically demonstrate how StabLe improves upon ordinary least squares (OLS) regression. We also apply StabLe to microarray gene expression data for lymphoblastoid cells from 727 individuals belonging to eight global population groups. We establish that StabLe improves test set performance relative to OLS via ten-fold cross-validation. Finally, we develop SGEX, a method for quantifying differential expression of genes between different population groups.
Navodit Misra and Ercan E. Kuruoglu
null
1404.4351
null
null
Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness
cs.LG cs.CV stat.ML
Nonnegative Tucker decomposition (NTD) is a powerful tool for the extraction of nonnegative parts-based and physically meaningful latent components from high-dimensional tensor data while preserving the natural multilinear structure of data. However, as the data tensor often has multiple modes and is large-scale, existing NTD algorithms suffer from a very high computational complexity in terms of both storage and computation time, which has been one major obstacle for practical applications of NTD. To overcome these disadvantages, we show how low (multilinear) rank approximation (LRA) of tensors is able to significantly simplify the computation of the gradients of the cost function, upon which a family of efficient first-order NTD algorithms are developed. Besides dramatically reducing the storage complexity and running time, the new algorithms are quite flexible and robust to noise because any well-established LRA approaches can be applied. We also show how nonnegativity incorporating sparsity substantially improves the uniqueness property and partially alleviates the curse of dimensionality of the Tucker decompositions. Simulation results on synthetic and real-world data justify the validity and high efficiency of the proposed NTD algorithms.
Guoxu Zhou and Andrzej Cichocki and Qibin Zhao and Shengli Xie
10.1109/TIP.2015.2478396
1404.4412
null
null
How Many Topics? Stability Analysis for Topic Models
cs.LG cs.CL cs.IR
Topic modeling refers to the task of discovering the underlying thematic structure in a text corpus, where the output is commonly presented as a report of the top terms appearing in each topic. Despite the diversity of topic modeling algorithms that have been proposed, a common challenge in successfully applying these techniques is the selection of an appropriate number of topics for a given corpus. Choosing too few topics will produce results that are overly broad, while choosing too many will result in the "over-clustering" of a corpus into many small, highly-similar topics. In this paper, we propose a term-centric stability analysis strategy to address this issue, the idea being that a model with an appropriate number of topics will be more robust to perturbations in the data. Using a topic modeling approach based on matrix factorization, evaluations performed on a range of corpora show that this strategy can successfully guide the model selection process.
Derek Greene, Derek O'Callaghan, P\'adraig Cunningham
null
1404.4606
null
null
A New Space for Comparing Graphs
stat.ME cs.IR cs.LG stat.ML
Finding a new mathematical representations for graph, which allows direct comparison between different graph structures, is an open-ended research direction. Having such a representation is the first prerequisite for a variety of machine learning algorithms like classification, clustering, etc., over graph datasets. In this paper, we propose a symmetric positive semidefinite matrix with the $(i,j)$-{th} entry equal to the covariance between normalized vectors $A^ie$ and $A^je$ ($e$ being vector of all ones) as a representation for graph with adjacency matrix $A$. We show that the proposed matrix representation encodes the spectrum of the underlying adjacency matrix and it also contains information about the counts of small sub-structures present in the graph such as triangles and small paths. In addition, we show that this matrix is a \emph{"graph invariant"}. All these properties make the proposed matrix a suitable object for representing graphs. The representation, being a covariance matrix in a fixed dimensional metric space, gives a mathematical embedding for graphs. This naturally leads to a measure of similarity on graph objects. We define similarity between two given graphs as a Bhattacharya similarity measure between their corresponding covariance matrix representations. As shown in our experimental study on the task of social network classification, such a similarity measure outperforms other widely used state-of-the-art methodologies. Our proposed method is also computationally efficient. The computation of both the matrix representation and the similarity value can be performed in operations linear in the number of edges. This makes our method scalable in practice. We believe our theoretical and empirical results provide evidence for studying truncated power iterations, of the adjacency matrix, to characterize social networks.
Anshumali Shrivastava and Ping Li
null
1404.4644
null
null
Advancing Matrix Completion by Modeling Extra Structures beyond Low-Rankness
stat.ME cs.IT cs.LG math.IT math.ST stat.TH
A well-known method for completing low-rank matrices based on convex optimization has been established by Cand{\`e}s and Recht. Although theoretically complete, the method may not entirely solve the low-rank matrix completion problem. This is because the method captures only the low-rankness property which gives merely a rough constraint that the data points locate on some low-dimensional subspace, but generally ignores the extra structures which specify in more detail how the data points locate on the subspace. Whenever the geometric distribution of the data points is not uniform, the coherence parameters of data might be large and, accordingly, the method might fail even if the latent matrix we want to recover is fairly low-rank. To better handle non-uniform data, in this paper we propose a method termed Low-Rank Factor Decomposition (LRFD), which imposes an additional restriction that the data points must be represented as linear combinations of the bases in a dictionary constructed or learnt in advance. We show that LRFD can well handle non-uniform data, provided that the dictionary is configured properly: We mathematically prove that if the dictionary itself is low-rank then LRFD is immune to the coherence parameters which might be large on non-uniform data. This provides an elementary principle for learning the dictionary in LRFD and, naturally, leads to a practical algorithm for advancing matrix completion. Extensive experiments on randomly generated matrices and motion datasets show encouraging results.
Guangcan Liu and Ping Li
null
1404.4646
null
null
Hierarchical Quasi-Clustering Methods for Asymmetric Networks
cs.LG stat.ML
This paper introduces hierarchical quasi-clustering methods, a generalization of hierarchical clustering for asymmetric networks where the output structure preserves the asymmetry of the input data. We show that this output structure is equivalent to a finite quasi-ultrametric space and study admissibility with respect to two desirable properties. We prove that a modified version of single linkage is the only admissible quasi-clustering method. Moreover, we show stability of the proposed method and we establish invariance properties fulfilled by it. Algorithms are further developed and the value of quasi-clustering analysis is illustrated with a study of internal migration within United States.
Gunnar Carlsson, Facundo M\'emoli, Alejandro Ribeiro, Santiago Segarra
null
1404.4655
null
null
Subspace Learning and Imputation for Streaming Big Data Matrices and Tensors
stat.ML cs.IT cs.LG math.IT
Extracting latent low-dimensional structure from high-dimensional data is of paramount importance in timely inference tasks encountered with `Big Data' analytics. However, increasingly noisy, heterogeneous, and incomplete datasets as well as the need for {\em real-time} processing of streaming data pose major challenges to this end. In this context, the present paper permeates benefits from rank minimization to scalable imputation of missing data, via tracking low-dimensional subspaces and unraveling latent (possibly multi-way) structure from \emph{incomplete streaming} data. For low-rank matrix data, a subspace estimator is proposed based on an exponentially-weighted least-squares criterion regularized with the nuclear norm. After recasting the non-separable nuclear norm into a form amenable to online optimization, real-time algorithms with complementary strengths are developed and their convergence is established under simplifying technical assumptions. In a stationary setting, the asymptotic estimates obtained offer the well-documented performance guarantees of the {\em batch} nuclear-norm regularized estimator. Under the same unifying framework, a novel online (adaptive) algorithm is developed to obtain multi-way decompositions of \emph{low-rank tensors} with missing entries, and perform imputation as a byproduct. Simulated tests with both synthetic as well as real Internet and cardiac magnetic resonance imagery (MRI) data confirm the efficacy of the proposed algorithms, and their superior performance relative to state-of-the-art alternatives.
Morteza Mardani, Gonzalo Mateos, and Georgios B. Giannakis
10.1109/TSP.2015.2417491
1404.4667
null
null