title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Variability of Behaviour in Electricity Load Profile Clustering; Who Does Things at the Same Time Each Day?
cs.LG cs.CE
UK electricity market changes provide opportunities to alter households' electricity usage patterns for the benefit of the overall electricity network. Work on clustering similar households has concentrated on daily load profiles and the variability in regular household behaviours has not been considered. Those households with most variability in regular activities may be the most receptive to incentives to change timing. Whether using the variability of regular behaviour allows the creation of more consistent groupings of households is investigated and compared with daily load profile clustering. 204 UK households are analysed to find repeating patterns (motifs). Variability in the time of the motif is used as the basis for clustering households. Different clustering algorithms are assessed by the consistency of the results. Findings show that variability of behaviour, using motifs, provides more consistent groupings of households across different clustering algorithms and allows for more efficient targeting of behaviour change interventions.
Ian Dent, Tony Craig, Uwe Aickelin and Tom Rodden
null
1409.1043
null
null
Tuning a Multiple Classifier System for Side Effect Discovery using Genetic Algorithms
cs.LG cs.CE
In previous work, a novel supervised framework implementing a binary classifier was presented that obtained excellent results for side effect discovery. Interestingly, unique side effects were identified when different binary classifiers were used within the framework, prompting the investigation of applying a multiple classifier system. In this paper we investigate tuning a side effect multiple classifying system using genetic algorithms. The results of this research show that the novel framework implementing a multiple classifying system trained using genetic algorithms can obtain a higher partial area under the receiver operating characteristic curve than implementing a single classifier. Furthermore, the framework is able to detect side effects efficiently and obtains a low false positive rate.
Jenna M. Reps, Uwe Aickelin and Jonathan M. Garibaldi
null
1409.1053
null
null
Augmented Neural Networks for Modelling Consumer Indebtness
cs.CE cs.LG cs.NE
Consumer Debt has risen to be an important problem of modern societies, generating a lot of research in order to understand the nature of consumer indebtness, which so far its modelling has been carried out by statistical models. In this work we show that Computational Intelligence can offer a more holistic approach that is more suitable for the complex relationships an indebtness dataset has and Linear Regression cannot uncover. In particular, as our results show, Neural Networks achieve the best performance in modelling consumer indebtness, especially when they manage to incorporate the significant and experimentally verified results of the Data Mining process in the model, exploiting the flexibility Neural Networks offer in designing their topology. This novel method forms an elaborate framework to model Consumer indebtness that can be extended to any other real world application.
Alexandros Ladas, Jonathan M. Garibaldi, Rodrigo Scarpel and Uwe Aickelin
null
1409.1057
null
null
Domain Transfer Structured Output Learning
cs.LG
In this paper, we propose the problem of domain transfer structured output learn- ing and the first solution to solve it. The problem is defined on two different data domains sharing the same input and output spaces, named as source domain and target domain. The outputs are structured, and for the data samples of the source domain, the corresponding outputs are available, while for most data samples of the target domain, the corresponding outputs are missing. The input distributions of the two domains are significantly different. The problem is to learn a predictor for the target domain to predict the structured outputs from the input. Due to the limited number of outputs available for the samples form the target domain, it is difficult to directly learn the predictor from the target domain, thus it is necessary to use the output information available in source domain. We propose to learn the target domain predictor by adapting a auxiliary predictor trained by using source domain data to the target domain. The adaptation is implemented by adding a delta function on the basis of the auxiliary predictor. An algorithm is developed to learn the parameter of the delta function to minimize loss functions associat- ed with the predicted outputs against the true outputs of the data samples with available outputs of the target domain.
Jim Jing-Yan Wang
null
1409.1200
null
null
Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation
cs.CL cs.LG cs.NE stat.ML
The authors of (Cho et al., 2014a) have shown that the recently introduced neural network translation systems suffer from a significant drop in translation quality when translating long sentences, unlike existing phrase-based translation systems. In this paper, we propose a way to address this issue by automatically segmenting an input sentence into phrases that can be easily translated by the neural network translation model. Once each segment has been independently translated by the neural machine translation model, the translated clauses are concatenated to form a final translation. Empirical results show a significant improvement in translation quality for long sentences.
Jean Pouget-Abadie and Dzmitry Bahdanau and Bart van Merrienboer and Kyunghyun Cho and Yoshua Bengio
null
1409.1257
null
null
Marginal Structured SVM with Hidden Variables
stat.ML cs.LG
In this work, we propose the marginal structured SVM (MSSVM) for structured prediction with hidden variables. MSSVM properly accounts for the uncertainty of hidden variables, and can significantly outperform the previously proposed latent structured SVM (LSSVM; Yu & Joachims (2009)) and other state-of-art methods, especially when that uncertainty is large. Our method also results in a smoother objective function, making gradient-based optimization of MSSVMs converge significantly faster than for LSSVMs. We also show that our method consistently outperforms hidden conditional random fields (HCRFs; Quattoni et al. (2007)) on both simulated and real-world datasets. Furthermore, we propose a unified framework that includes both our and several other existing methods as special cases, and provides insights into the comparison of different models in practice.
Wei Ping, Qiang Liu, Alexander Ihler
null
1409.1320
null
null
Communication-Efficient Distributed Dual Coordinate Ascent
cs.LG math.OC stat.ML
Communication remains the most significant bottleneck in the performance of distributed optimization algorithms for large-scale machine learning. In this paper, we propose a communication-efficient framework, CoCoA, that uses local computation in a primal-dual setting to dramatically reduce the amount of necessary communication. We provide a strong convergence rate analysis for this class of algorithms, as well as experiments on real-world distributed datasets with implementations in Spark. In our experiments, we find that as compared to state-of-the-art mini-batch versions of SGD and SDCA algorithms, CoCoA converges to the same .001-accurate solution quality on average 25x as quickly.
Martin Jaggi, Virginia Smith, Martin Tak\'a\v{c}, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan
null
1409.1458
null
null
Machine Learning Etudes in Astrophysics: Selection Functions for Mock Cluster Catalogs
astro-ph.CO astro-ph.IM cs.LG stat.ML
Making mock simulated catalogs is an important component of astrophysical data analysis. Selection criteria for observed astronomical objects are often too complicated to be derived from first principles. However the existence of an observed group of objects is a well-suited problem for machine learning classification. In this paper we use one-class classifiers to learn the properties of an observed catalog of clusters of galaxies from ROSAT and to pick clusters from mock simulations that resemble the observed ROSAT catalog. We show how this method can be used to study the cross-correlations of thermal Sunya'ev-Zeldovich signals with number density maps of X-ray selected cluster catalogs. The method reduces the bias due to hand-tuning the selection function and is readily scalable to large catalogs with a high-dimensional space of astrophysical features.
Amir Hajian, Marcelo Alvarez, J. Richard Bond
10.1088/1475-7516/2015/01/038
1409.1576
null
null
Novel Methods for Activity Classification and Occupany Prediction Enabling Fine-grained HVAC Control
cs.LG
Much of the energy consumption in buildings is due to HVAC systems, which has motivated several recent studies on making these systems more energy- efficient. Occupancy and activity are two important aspects, which need to be correctly estimated for optimal HVAC control. However, state-of-the-art methods to estimate occupancy and classify activity require infrastructure and/or wearable sensors which suffers from lower acceptability due to higher cost. Encouragingly, with the advancement of the smartphones, these are becoming more achievable. Most of the existing occupancy estimation tech- niques have the underlying assumption that the phone is always carried by its user. However, phones are often left at desk while attending meeting or other events, which generates estimation error for the existing phone based occupancy algorithms. Similarly, in the recent days the emerging theory of Sparse Random Classifier (SRC) has been applied for activity classification on smartphone, however, there are rooms to improve the on-phone process- ing. We propose a novel sensor fusion method which offers almost 100% accuracy for occupancy estimation. We also propose an activity classifica- tion algorithm, which offers similar accuracy as of the state-of-the-art SRC algorithms while offering 50% reduction in processing.
Rajib Rana, Brano Kusy, Josh Wall, Wen Hu
null
1409.1917
null
null
A Reduction of the Elastic Net to Support Vector Machines with an Application to GPU Computing
stat.ML cs.LG
The past years have witnessed many dedicated open-source projects that built and maintain implementations of Support Vector Machines (SVM), parallelized for GPU, multi-core CPUs and distributed systems. Up to this point, no comparable effort has been made to parallelize the Elastic Net, despite its popularity in many high impact applications, including genetics, neuroscience and systems biology. The first contribution in this paper is of theoretical nature. We establish a tight link between two seemingly different algorithms and prove that Elastic Net regression can be reduced to SVM with squared hinge loss classification. Our second contribution is to derive a practical algorithm based on this reduction. The reduction enables us to utilize prior efforts in speeding up and parallelizing SVMs to obtain a highly optimized and parallel solver for the Elastic Net and Lasso. With a simple wrapper, consisting of only 11 lines of MATLAB code, we obtain an Elastic Net implementation that naturally utilizes GPU and multi-core CPUs. We demonstrate on twelve real world data sets, that our algorithm yields identical results as the popular (and highly optimized) glmnet implementation but is one or several orders of magnitude faster.
Quan Zhou, Wenlin Chen, Shiji Song, Jacob R. Gardner, Kilian Q. Weinberger, Yixin Chen
null
1409.1976
null
null
Global Convergence of Online Limited Memory BFGS
math.OC cs.LG stat.ML
Global convergence of an online (stochastic) limited memory version of the Broyden-Fletcher- Goldfarb-Shanno (BFGS) quasi-Newton method for solving optimization problems with stochastic objectives that arise in large scale machine learning is established. Lower and upper bounds on the Hessian eigenvalues of the sample functions are shown to suffice to guarantee that the curvature approximation matrices have bounded determinants and traces, which, in turn, permits establishing convergence to optimal arguments with probability 1. Numerical experiments on support vector machines with synthetic data showcase reductions in convergence time relative to stochastic gradient descent algorithms as well as reductions in storage and computation relative to other online quasi-Newton methods. Experimental evaluation on a search engine advertising problem corroborates that these advantages also manifest in practical applications.
Aryan Mokhtari and Alejandro Ribeiro
null
1409.2045
null
null
The Large Margin Mechanism for Differentially Private Maximization
cs.LG cs.DS cs.IT math.IT math.ST stat.TH
A basic problem in the design of privacy-preserving algorithms is the private maximization problem: the goal is to pick an item from a universe that (approximately) maximizes a data-dependent function, all under the constraint of differential privacy. This problem has been used as a sub-routine in many privacy-preserving algorithms for statistics and machine-learning. Previous algorithms for this problem are either range-dependent---i.e., their utility diminishes with the size of the universe---or only apply to very restricted function classes. This work provides the first general-purpose, range-independent algorithm for private maximization that guarantees approximate differential privacy. Its applicability is demonstrated on two fundamental tasks in data mining and machine learning.
Kamalika Chaudhuri and Daniel Hsu and Shuang Song
null
1409.2177
null
null
When coding meets ranking: A joint framework based on local learning
cs.CV cs.LG stat.ML
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.
Jim Jing-Yan Wang, Xuefeng Cui, Ge Yu, Lili Guo, Xin Gao
null
1409.2232
null
null
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
stat.ML cs.AI cs.CV cs.LG
The Gaussian process latent variable model (GP-LVM) provides a flexible approach for non-linear dimensionality reduction that has been widely applied. However, the current approach for training GP-LVMs is based on maximum likelihood, where the latent projection variables are maximized over rather than integrated out. In this paper we present a Bayesian method for training GP-LVMs by introducing a non-standard variational inference framework that allows to approximately integrate out the latent variables and subsequently train a GP-LVM by maximizing an analytic lower bound on the exact marginal likelihood. We apply this method for learning a GP-LVM from iid observations and for learning non-linear dynamical systems where the observations are temporally correlated. We show that a benefit of the variational Bayesian procedure is its robustness to overfitting and its ability to automatically select the dimensionality of the nonlinear latent space. The resulting framework is generic, flexible and easy to extend for other purposes, such as Gaussian process regression with uncertain inputs and semi-supervised Gaussian processes. We demonstrate our method on synthetic data and standard machine learning benchmarks, as well as challenging real world datasets, including high resolution video data.
Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence
null
1409.2287
null
null
Sparse Additive Model using Symmetric Nonnegative Definite Smoothers
stat.ML cs.LG
We introduce a new algorithm, called adaptive sparse backfitting algorithm, for solving high dimensional Sparse Additive Model (SpAM) utilizing symmetric, non-negative definite smoothers. Unlike the previous sparse backfitting algorithm, our method is essentially a block coordinate descent algorithm that guarantees to converge to the optimal solution. It bridges the gap between the population backfitting algorithm and that of the data version. We also prove variable selection consistency under suitable conditions. Numerical studies on both synthesis and real data are conducted to show that adaptive sparse backfitting algorithm outperforms previous sparse backfitting algorithm in fitting and predicting high dimensional nonparametric models.
Yan Li
null
1409.2552
null
null
Deep Unfolding: Model-Based Inspiration of Novel Deep Architectures
cs.LG cs.NE stat.ML
Model-based methods and deep neural networks have both been tremendously successful paradigms in machine learning. In model-based methods, problem domain knowledge can be built into the constraints of the model, typically at the expense of difficulties during inference. In contrast, deterministic deep neural networks are constructed in such a way that inference is straightforward, but their architectures are generic and it is unclear how to incorporate knowledge. This work aims to obtain the advantages of both approaches. To do so, we start with a model-based approach and an associated inference algorithm, and \emph{unfold} the inference iterations as layers in a deep network. Rather than optimizing the original model, we \emph{untie} the model parameters across layers, in order to create a more powerful network. The resulting architecture can be trained discriminatively to perform accurate inference within a fixed network size. We show how this framework allows us to interpret conventional networks as mean-field inference in Markov random fields, and to obtain new architectures by instead using belief propagation as the inference algorithm. We then show its application to a non-negative matrix factorization model that incorporates the problem-domain knowledge that sound sources are additive. Deep unfolding of this model yields a new kind of non-negative deep neural network, that can be trained using a multiplicative backpropagation-style update algorithm. We present speech enhancement experiments showing that our approach is competitive with conventional neural networks despite using far fewer parameters.
John R. Hershey, Jonathan Le Roux, Felix Weninger
null
1409.2574
null
null
A theoretical contribution to the fast implementation of null linear discriminant analysis method using random matrix multiplication with scatter matrices
cs.NA cs.CV cs.LG
The null linear discriminant analysis method is a competitive approach for dimensionality reduction. The implementation of this method, however, is computationally expensive. Recently, a fast implementation of null linear discriminant analysis method using random matrix multiplication with scatter matrices was proposed. However, if the random matrix is chosen arbitrarily, the orientation matrix may be rank deficient, and some useful discriminant information will be lost. In this paper, we investigate how to choose the random matrix properly, such that the two criteria of the null LDA method are satisfied theoretically. We give a necessary and sufficient condition to guarantee full column rank of the orientation matrix. Moreover, the geometric characterization of the condition is also described.
Ting-ting Feng, Gang Wu
null
1409.2579
null
null
Learning Machines Implemented on Non-Deterministic Hardware
cs.LG stat.ML
This paper highlights new opportunities for designing large-scale machine learning systems as a consequence of blurring traditional boundaries that have allowed algorithm designers and application-level practitioners to stay -- for the most part -- oblivious to the details of the underlying hardware-level implementations. The hardware/software co-design methodology advocated here hinges on the deployment of compute-intensive machine learning kernels onto compute platforms that trade-off determinism in the computation for improvement in speed and/or energy efficiency. To achieve this, we revisit digital stochastic circuits for approximating matrix computations that are ubiquitous in machine learning algorithms. Theoretical and empirical evaluation is undertaken to assess the impact of the hardware-induced computational noise on algorithm performance. As a proof-of-concept, a stochastic hardware simulator is employed for training deep neural networks for image recognition problems.
Suyog Gupta, Vikas Sindhwani, Kailash Gopalakrishnan
null
1409.2620
null
null
Weighted Classification Cascades for Optimizing Discovery Significance in the HiggsML Challenge
stat.ML cs.LG
We introduce a minorization-maximization approach to optimizing common measures of discovery significance in high energy physics. The approach alternates between solving a weighted binary classification problem and updating class weights in a simple, closed-form manner. Moreover, an argument based on convex duality shows that an improvement in weighted classification error on any round yields a commensurate improvement in discovery significance. We complement our derivation with experimental results from the 2014 Higgs boson machine learning challenge.
Lester Mackey and Jordan Bryan and Man Yue Mo
null
1409.2655
null
null
Winner-Take-All Autoencoders
cs.LG cs.NE
In this paper, we propose a winner-take-all method for learning hierarchical sparse representations in an unsupervised fashion. We first introduce fully-connected winner-take-all autoencoders which use mini-batch statistics to directly enforce a lifetime sparsity in the activations of the hidden units. We then propose the convolutional winner-take-all autoencoder which combines the benefits of convolutional architectures and autoencoders for learning shift-invariant sparse representations. We describe a way to train convolutional autoencoders layer by layer, where in addition to lifetime sparsity, a spatial sparsity within each feature map is achieved using winner-take-all activation functions. We will show that winner-take-all autoencoders can be used to to learn deep sparse representations from the MNIST, CIFAR-10, ImageNet, Street View House Numbers and Toronto Face datasets, and achieve competitive classification performance.
Alireza Makhzani, Brendan Frey
null
1409.2752
null
null
Far-Field Compression for Fast Kernel Summation Methods in High Dimensions
cs.LG stat.ML
We consider fast kernel summations in high dimensions: given a large set of points in $d$ dimensions (with $d \gg 3$) and a pair-potential function (the {\em kernel} function), we compute a weighted sum of all pairwise kernel interactions for each point in the set. Direct summation is equivalent to a (dense) matrix-vector multiplication and scales quadratically with the number of points. Fast kernel summation algorithms reduce this cost to log-linear or linear complexity. Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by constructing approximate representations of interactions of points that are far from each other. In algebraic terms, these representations correspond to low-rank approximations of blocks of the overall interaction matrix. Existing approaches require an excessive number of kernel evaluations with increasing $d$ and number of points in the dataset. To address this issue, we use a randomized algebraic approach in which we first sample the rows of a block and then construct its approximate, low-rank interpolative decomposition. We examine the feasibility of this approach theoretically and experimentally. We provide a new theoretical result showing a tighter bound on the reconstruction error from uniformly sampling rows than the existing state-of-the-art. We demonstrate that our sampling approach is competitive with existing (but prohibitively expensive) methods from the literature. We also construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels -- all commonly used in physics and data analysis. We explore the numerical properties of blocks of these matrices, and show that they are amenable to our approach. Depending on the data set, our randomized algorithm can successfully compute low rank approximations in high dimensions. We report results for data sets with ambient dimensions from four to 1,000.
William B. March and George Biros
null
1409.2802
null
null
A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate
cs.LG cs.NA math.OC stat.ML
We describe and analyze a simple algorithm for principal component analysis and singular value decomposition, VR-PCA, which uses computationally cheap stochastic iterations, yet converges exponentially fast to the optimal solution. In contrast, existing algorithms suffer either from slow convergence, or computationally intensive iterations whose runtime scales with the data size. The algorithm builds on a recent variance-reduced stochastic gradient technique, which was previously analyzed for strongly convex optimization, whereas here we apply it to an inherently non-convex problem, using a very different analysis.
Ohad Shamir
null
1409.2848
null
null
Non-Convex Boosting Overcomes Random Label Noise
cs.LG
The sensitivity of Adaboost to random label noise is a well-studied problem. LogitBoost, BrownBoost and RobustBoost are boosting algorithms claimed to be less sensitive to noise than AdaBoost. We present the results of experiments evaluating these algorithms on both synthetic and real datasets. We compare the performance on each of datasets when the labels are corrupted by different levels of independent label noise. In presence of random label noise, we found that BrownBoost and RobustBoost perform significantly better than AdaBoost and LogitBoost, while the difference between each pair of algorithms is insignificant. We provide an explanation for the difference based on the margin distributions of the algorithms.
Sunsern Cheamanunkul, Evan Ettinger and Yoav Freund
null
1409.2905
null
null
Collaborative Deep Learning for Recommender Systems
cs.LG cs.CL cs.IR cs.NE stat.ML
Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art.
Hao Wang and Naiyan Wang and Dit-Yan Yeung
null
1409.2944
null
null
"Look Ma, No Hands!" A Parameter-Free Topic Model
cs.LG cs.CL cs.IR
It has always been a burden to the users of statistical topic models to predetermine the right number of topics, which is a key parameter of most topic models. Conventionally, automatic selection of this parameter is done through either statistical model selection (e.g., cross-validation, AIC, or BIC) or Bayesian nonparametric models (e.g., hierarchical Dirichlet process). These methods either rely on repeated runs of the inference algorithm to search through a large range of parameter values which does not suit the mining of big data, or replace this parameter with alternative parameters that are less intuitive and still hard to be determined. In this paper, we explore to "eliminate" this parameter from a new perspective. We first present a nonparametric treatment of the PLSA model named nonparametric probabilistic latent semantic analysis (nPLSA). The inference procedure of nPLSA allows for the exploration and comparison of different numbers of topics within a single execution, yet remains as simple as that of PLSA. This is achieved by substituting the parameter of the number of topics with an alternative parameter that is the minimal goodness of fit of a document. We show that the new parameter can be further eliminated by two parameter-free treatments: either by monitoring the diversity among the discovered topics or by a weak supervision from users in the form of an exemplar topic. The parameter-free topic model finds the appropriate number of topics when the diversity among the discovered topics is maximized, or when the granularity of the discovered topics matches the exemplar topic. Experiments on both synthetic and real data prove that the parameter-free topic model extracts topics with a comparable quality comparing to classical topic models with "manual transmission". The quality of the topics outperforms those extracted through classical Bayesian nonparametric models.
Jian Tang, Ming Zhang, Qiaozhu Mei
null
1409.2993
null
null
Towards Optimal Algorithms for Prediction with Expert Advice
cs.LG cs.GT math.PR
We study the classical problem of prediction with expert advice in the adversarial setting with a geometric stopping time. In 1965, Cover gave the optimal algorithm for the case of 2 experts. In this paper, we design the optimal algorithm, adversary and regret for the case of 3 experts. Further, we show that the optimal algorithm for $2$ and $3$ experts is a probability matching algorithm (analogous to Thompson sampling) against a particular randomized adversary. Remarkably, our proof shows that the probability matching algorithm is not only optimal against this particular randomized adversary, but also minimax optimal. Our analysis develops upper and lower bounds simultaneously, analogous to the primal-dual method. Our analysis of the optimal adversary goes through delicate asymptotics of the random walk of a particle between multiple walls. We use the connection we develop to random walks to derive an improved algorithm and regret bound for the case of $4$ experts, and, provide a general framework for designing the optimal algorithm and adversary for an arbitrary number of experts.
Nick Gravin, Yuval Peres and Balasubramanian Sivan
null
1409.3040
null
null
Metric Learning for Temporal Sequence Alignment
cs.LG
In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio to audio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better performance for the alignment.
Damien Garreau (INRIA Paris - Rocquencourt, DI-ENS), R\'emi Lajugie (INRIA Paris - Rocquencourt, DI-ENS), Sylvain Arlot (INRIA Paris - Rocquencourt, DI-ENS), Francis Bach (INRIA Paris - Rocquencourt, DI-ENS)
null
1409.3136
null
null
Sequence to Sequence Learning with Neural Networks
cs.CL cs.LG
Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Ilya Sutskever and Oriol Vinyals and Quoc V. Le
null
1409.3215
null
null
Building Program Vector Representations for Deep Learning
cs.SE cs.LG cs.NE
Deep learning has made significant breakthroughs in various fields of artificial intelligence. Advantages of deep learning include the ability to capture highly complicated features, weak involvement of human engineering, etc. However, it is still virtually impossible to use deep learning to analyze programs since deep architectures cannot be trained effectively with pure back propagation. In this pioneering paper, we propose the "coding criterion" to build program vector representations, which are the premise of deep learning for program analysis. Our representation learning approach directly makes deep learning a reality in this new field. We evaluate the learned vector representations both qualitatively and quantitatively. We conclude, based on the experiments, the coding criterion is successful in building program representations. To evaluate whether deep learning is beneficial for program analysis, we feed the representations to deep neural networks, and achieve higher accuracy in the program classification task than "shallow" methods, such as logistic regression and the support vector machine. This result confirms the feasibility of deep learning to analyze programs. It also gives primary evidence of its success in this new field. We believe deep learning will become an outstanding technique for program analysis in the near future.
Lili Mou, Ge Li, Yuxuan Liu, Hao Peng, Zhi Jin, Yan Xu, Lu Zhang
null
1409.3358
null
null
Consensus-Based Modelling using Distributed Feature Construction
cs.LG
A particularly successful role for Inductive Logic Programming (ILP) is as a tool for discovering useful relational features for subsequent use in a predictive model. Conceptually, the case for using ILP to construct relational features rests on treating these features as functions, the automated discovery of which necessarily requires some form of first-order learning. Practically, there are now several reports in the literature that suggest that augmenting any existing features with ILP-discovered relational features can substantially improve the predictive power of a model. While the approach is straightforward enough, much still needs to be done to scale it up to explore more fully the space of possible features that can be constructed by an ILP system. This is in principle, infinite and in practice, extremely large. Applications have been confined to heuristic or random selections from this space. In this paper, we address this computational difficulty by allowing features to be constructed in a distributed manner. That is, there is a network of computational units, each of which employs an ILP engine to construct some small number of features and then builds a (local) model. We then employ a consensus-based algorithm, in which neighboring nodes share information to update local models. For a category of models (those with convex loss functions), it can be shown that the algorithm will result in all nodes converging to a consensus model. In practice, it may be slow to achieve this convergence. Nevertheless, our results on synthetic and real datasets that suggests that in relatively short time the "best" node in the network reaches a model whose predictive accuracy is comparable to that obtained using more computational effort in a non-distributed setting (the best node is identified as the one whose weights converge first).
Haimonti Dutta and Ashwin Srinivasan
null
1409.3446
null
null
Topic Modeling of Hierarchical Corpora
stat.ML cs.IR cs.LG
We study the problem of topic modeling in corpora whose documents are organized in a multi-level hierarchy. We explore a parametric approach to this problem, assuming that the number of topics is known or can be estimated by cross-validation. The models we consider can be viewed as special (finite-dimensional) instances of hierarchical Dirichlet processes (HDPs). For these models we show that there exists a simple variational approximation for probabilistic inference. The approximation relies on a previously unexploited inequality that handles the conditional dependence between Dirichlet latent variables in adjacent levels of the model's hierarchy. We compare our approach to existing implementations of nonparametric HDPs. On several benchmarks we find that our approach is faster than Gibbs sampling and able to learn more predictive models than existing variational methods. Finally, we demonstrate the large-scale viability of our approach on two newly available corpora from researchers in computer security---one with 350,000 documents and over 6,000 internal subcategories, the other with a five-level deep hierarchy.
Do-kyum Kim, Geoffrey M. Voelker, Lawrence K. Saul
null
1409.3518
null
null
10,000+ Times Accelerated Robust Subset Selection (ARSS)
cs.LG cs.CV stat.ML
Subset selection from massive data with noised information is increasingly popular for various applications. This problem is still highly challenging as current methods are generally slow in speed and sensitive to outliers. To address the above two issues, we propose an accelerated robust subset selection (ARSS) method. Specifically in the subset selection area, this is the first attempt to employ the $\ell_{p}(0<p\leq1)$-norm based measure for the representation loss, preventing large errors from dominating our objective. As a result, the robustness against outlier elements is greatly enhanced. Actually, data size is generally much larger than feature length, i.e. $N\gg L$. Based on this observation, we propose a speedup solver (via ALM and equivalent derivations) to highly reduce the computational cost, theoretically from $O(N^{4})$ to $O(N{}^{2}L)$. Extensive experiments on ten benchmark datasets verify that our method not only outperforms state of the art methods, but also runs 10,000+ times faster than the most related method.
Feiyun Zhu, Bin Fan, Xinliang Zhu, Ying Wang, Shiming Xiang and Chunhong Pan
null
1409.3660
null
null
Optimization Methods for Sparse Pseudo-Likelihood Graphical Model Selection
stat.CO cs.LG stat.ML
Sparse high dimensional graphical model selection is a popular topic in contemporary machine learning. To this end, various useful approaches have been proposed in the context of $\ell_1$-penalized estimation in the Gaussian framework. Though many of these inverse covariance estimation approaches are demonstrably scalable and have leveraged recent advances in convex optimization, they still depend on the Gaussian functional form. To address this gap, a convex pseudo-likelihood based partial correlation graph estimation method (CONCORD) has been recently proposed. This method uses coordinate-wise minimization of a regression based pseudo-likelihood, and has been shown to have robust model selection properties in comparison with the Gaussian approach. In direct contrast to the parallel work in the Gaussian setting however, this new convex pseudo-likelihood framework has not leveraged the extensive array of methods that have been proposed in the machine learning literature for convex optimization. In this paper, we address this crucial gap by proposing two proximal gradient methods (CONCORD-ISTA and CONCORD-FISTA) for performing $\ell_1$-regularized inverse covariance matrix estimation in the pseudo-likelihood framework. We present timing comparisons with coordinate-wise minimization and demonstrate that our approach yields tremendous payoffs for $\ell_1$-penalized partial correlation graph estimation outside the Gaussian setting, thus yielding the fastest and most scalable approach for such problems. We undertake a theoretical analysis of our approach and rigorously demonstrate convergence, and also derive rates thereof.
Sang-Yun Oh, Onkar Dalal, Kshitij Khare, Bala Rajaratnam
null
1409.3768
null
null
Computational Implications of Reducing Data to Sufficient Statistics
stat.CO cs.IT cs.LG math.IT
Given a large dataset and an estimation task, it is common to pre-process the data by reducing them to a set of sufficient statistics. This step is often regarded as straightforward and advantageous (in that it simplifies statistical analysis). I show that -on the contrary- reducing data to sufficient statistics can change a computationally tractable estimation problem into an intractable one. I discuss connections with recent work in theoretical computer science, and implications for some techniques to estimate graphical models.
Andrea Montanari
null
1409.3821
null
null
Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm
cs.LG cs.CV
Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.
M. Emre Celebi and Hassan A. Kingravi
null
1409.3854
null
null
Unsupervised learning of clutter-resistant visual representations from natural videos
cs.CV cs.LG
Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning rules are not known, recent results [4, 5, 6] suggest the operation of an unsupervised temporal-association-based method e.g., Foldiak's trace rule [7]. Such methods exploit the temporal continuity of the visual world by assuming that visual experience over short timescales will tend to have invariant identity content. Thus, by associating representations of frames from nearby times, a representation that tolerates whatever transformations occurred in the video may be achieved. Many previous studies verified that such rules can work in simple situations without background clutter, but the presence of visual clutter has remained problematic for this approach. Here we show that temporal association based on large class-specific filters (templates) avoids the problem of clutter. Our system learns in an unsupervised way from natural videos gathered from the internet, and is able to perform a difficult unconstrained face recognition task on natural images: Labeled Faces in the Wild [8].
Qianli Liao, Joel Z. Leibo, Tomaso Poggio
null
1409.3879
null
null
An Approach to Reducing Annotation Costs for BioNLP
cs.CL cs.LG stat.ML
There is a broad range of BioNLP tasks for which active learning (AL) can significantly reduce annotation costs and a specific AL algorithm we have developed is particularly effective in reducing annotation costs for these tasks. We have previously developed an AL algorithm called ClosestInitPA that works best with tasks that have the following characteristics: redundancy in training material, burdensome annotation costs, Support Vector Machines (SVMs) work well for the task, and imbalanced datasets (i.e. when set up as a binary classification problem, one class is substantially rarer than the other). Many BioNLP tasks have these characteristics and thus our AL algorithm is a natural approach to apply to BioNLP tasks.
Michael Bloodgood and K. Vijay-Shanker
null
1409.3881
null
null
Parallel Distributed Block Coordinate Descent Methods based on Pairwise Comparison Oracle
stat.ML cs.LG
This paper provides a block coordinate descent algorithm to solve unconstrained optimization problems. In our algorithm, computation of function values or gradients is not required. Instead, pairwise comparison of function values is used. Our algorithm consists of two steps; one is the direction estimate step and the other is the search step. Both steps require only pairwise comparison of function values, which tells us only the order of function values over two points. In the direction estimate step, a Newton type search direction is estimated. A computation method like block coordinate descent methods is used with the pairwise comparison. In the search step, a numerical solution is updated along the estimated direction. The computation in the direction estimate step can be easily parallelized, and thus, the algorithm works efficiently to find the minimizer of the objective function. Also, we show an upper bound of the convergence rate. In numerical experiments, we show that our method efficiently finds the optimal solution compared to some existing methods based on the pairwise comparison.
Kota Matsui, Wataru Kumagai, Takafumi Kanamori
null
1409.3912
null
null
A study on effectiveness of extreme learning machine
cs.NE cs.LG
Extreme learning machine (ELM), proposed by Huang et al., has been shown a promising learning algorithm for single-hidden layer feedforward neural networks (SLFNs). Nevertheless, because of the random choice of input weights and biases, the ELM algorithm sometimes makes the hidden layer output matrix H of SLFN not full column rank, which lowers the effectiveness of ELM. This paper discusses the effectiveness of ELM and proposes an improved algorithm called EELM that makes a proper selection of the input weights and bias before calculating the output weights, which ensures the full column rank of H in theory. This improves to some extend the learning rate (testing accuracy, prediction accuracy, learning time) and the robustness property of the networks. The experimental results based on both the benchmark function approximation and real-world problems including classification and regression applications show the good performances of EELM.
Yuguang Wang and Feilong Cao and Yubo Yuan
10.1016/j.neucom.2010.11.030
1409.3924
null
null
A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data
cs.CV cs.IR cs.LG cs.NE
Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling. In this work, we show how to successfully apply and extend this model to multimodal data, such as simultaneous image classification and annotation. First, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the learned hidden topic features and show how to employ it to learn a joint representation from image visual words, annotation words and class label information. We test our model on the LabelMe and UIUC-Sports data sets and show that it compares favorably to other topic models. Second, we propose a deep extension of our model and provide an efficient way of training the deep model. Experimental results show that our deep model outperforms its shallow version and reaches state-of-the-art performance on the Multimedia Information Retrieval (MIR) Flickr data set.
Yin Zheng, Yu-Jin Zhang, Hugo Larochelle
10.1109/TPAMI.2015.2476802
1409.3970
null
null
EquiNMF: Graph Regularized Multiview Nonnegative Matrix Factorization
cs.LG cs.NA
Nonnegative matrix factorization (NMF) methods have proved to be powerful across a wide range of real-world clustering applications. Integrating multiple types of measurements for the same objects/subjects allows us to gain a deeper understanding of the data and refine the clustering. We have developed a novel Graph-reguarized multiview NMF-based method for data integration called EquiNMF. The parameters for our method are set in a completely automated data-specific unsupervised fashion, a highly desirable property in real-world applications. We performed extensive and comprehensive experiments on multiview imaging data. We show that EquiNMF consistently outperforms other single-view NMF methods used on concatenated data and multi-view NMF methods with different types of regularizations.
Daniel Hidru and Anna Goldenberg
null
1409.4018
null
null
A new approach in machine learning
stat.ML cs.LG
In this technical report we presented a novel approach to machine learning. Once the new framework is presented, we will provide a simple and yet very powerful learning algorithm which will be benchmark on various dataset. The framework we proposed is based on booleen circuits; more specifically the classifier produced by our algorithm have that form. Using bits and boolean gates instead of real numbers and multiplication enable the the learning algorithm and classifier to use very efficient boolean vector operations. This enable both the learning algorithm and classifier to be extremely efficient. The accuracy of the classifier we obtain with our framework compares very favorably those produced by conventional techniques, both in terms of efficiency and accuracy.
Alain Tapp
null
1409.4044
null
null
Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network
cs.CV cs.LG
Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data set suffer from significant overfitting and have poor recognition rate on the test set. The same lack-of-training-sample problem limits the usage of deep models on a wide range of computer vision problems where obtaining training data are difficult. To overcome the problem, we perform transfer learning from images to videos to utilize the knowledge in the weakly labeled image corpus for video recognition. The image corpus help to learn important visual patterns for natural images, while these patterns are ignored by models trained only on the video corpus. Therefore, the resultant networks have better generalizability and better recognition rate. We show that by means of transfer learning from image to video, we can learn a frame-based recognizer with only 4k videos. Because the image corpus is weakly labeled, the entire learning process requires only 4k annotated instances, which is far less than the million scale image data sets required by previous works. The same approach may be applied to other visual recognition tasks where only scarce training data is available, and it improves the applicability of DCNs in various computer vision problems. Our experiments also reveal the correlation between meta-parameters and the performance of DCNs, given the properties of the target problem and data. These results lead to a heuristic for meta-parameter selection for future researches, which does not rely on the time consuming meta-parameter search.
Yu-Chuan Su, Tzu-Hsuan Chiu, Chun-Yen Yeh, Hsin-Fu Huang, Winston H. Hsu
null
1409.4127
null
null
Active Metric Learning from Relative Comparisons
cs.LG
This work focuses on active learning of distance metrics from relative comparison information. A relative comparison specifies, for a data point triplet $(x_i,x_j,x_k)$, that instance $x_i$ is more similar to $x_j$ than to $x_k$. Such constraints, when available, have been shown to be useful toward defining appropriate distance metrics. In real-world applications, acquiring constraints often require considerable human effort. This motivates us to study how to select and query the most useful relative comparisons to achieve effective metric learning with minimum user effort. Given an underlying class concept that is employed by the user to provide such constraints, we present an information-theoretic criterion that selects the triplet whose answer leads to the highest expected gain in information about the classes of a set of examples. Directly applying the proposed criterion requires examining $O(n^3)$ triplets with $n$ instances, which is prohibitive even for datasets of moderate size. We show that a randomized selection strategy can be used to reduce the selection pool from $O(n^3)$ to $O(n)$, allowing us to scale up to larger-size problems. Experiments show that the proposed method consistently outperforms two baseline policies.
Sicheng Xiong, R\'omer Rosales, Yuanli Pei, Xiaoli Z. Fern
null
1409.4155
null
null
Machine learning for ultrafast X-ray diffraction patterns on large-scale GPU clusters
q-bio.BM cs.DC cs.LG physics.bio-ph q-bio.QM
The classical method of determining the atomic structure of complex molecules by analyzing diffraction patterns is currently undergoing drastic developments. Modern techniques for producing extremely bright and coherent X-ray lasers allow a beam of streaming particles to be intercepted and hit by an ultrashort high energy X-ray beam. Through machine learning methods the data thus collected can be transformed into a three-dimensional volumetric intensity map of the particle itself. The computational complexity associated with this problem is very high such that clusters of data parallel accelerators are required. We have implemented a distributed and highly efficient algorithm for inversion of large collections of diffraction patterns targeting clusters of hundreds of GPUs. With the expected enormous amount of diffraction data to be produced in the foreseeable future, this is the required scale to approach real time processing of data at the beam site. Using both real and synthetic data we look at the scaling properties of the application and discuss the overall computational viability of this exciting and novel imaging technique.
Tomas Ekeberg, Stefan Engblom, and Jing Liu
10.1177/1094342015572030
1409.4256
null
null
The Ordered Weighted $\ell_1$ Norm: Atomic Formulation, Projections, and Algorithms
cs.DS cs.CV cs.IT cs.LG math.IT
The ordered weighted $\ell_1$ norm (OWL) was recently proposed, with two different motivations: its good statistical properties as a sparsity promoting regularizer; the fact that it generalizes the so-called {\it octagonal shrinkage and clustering algorithm for regression} (OSCAR), which has the ability to cluster/group regression variables that are highly correlated. This paper contains several contributions to the study and application of OWL regularization: the derivation of the atomic formulation of the OWL norm; the derivation of the dual of the OWL norm, based on its atomic formulation; a new and simpler derivation of the proximity operator of the OWL norm; an efficient scheme to compute the Euclidean projection onto an OWL ball; the instantiation of the conditional gradient (CG, also known as Frank-Wolfe) algorithm for linear regression problems under OWL regularization; the instantiation of accelerated projected gradient algorithms for the same class of problems. Finally, a set of experiments give evidence that accelerated projected gradient algorithms are considerably faster than CG, for the class of problems considered.
Xiangrong Zeng, and M\'ario A. T. Figueiredo
null
1409.4271
null
null
A Fast Quartet Tree Heuristic for Hierarchical Clustering
cs.LG cs.CE cs.DS
The Minimum Quartet Tree Cost problem is to construct an optimal weight tree from the $3{n \choose 4}$ weighted quartet topologies on $n$ objects, where optimality means that the summed weight of the embedded quartet topologies is optimal (so it can be the case that the optimal tree embeds all quartets as nonoptimal topologies). We present a Monte Carlo heuristic, based on randomized hill climbing, for approximating the optimal weight tree, given the quartet topology weights. The method repeatedly transforms a dendrogram, with all objects involved as leaves, achieving a monotonic approximation to the exact single globally optimal tree. The problem and the solution heuristic has been extensively used for general hierarchical clustering of nontree-like (non-phylogeny) data in various domains and across domains with heterogeneous data. We also present a greatly improved heuristic, reducing the running time by a factor of order a thousand to ten thousand. All this is implemented and available, as part of the CompLearn package. We compare performance and running time of the original and improved versions with those of UPGMA, BioNJ, and NJ, as implemented in the SplitsTree package on genomic data for which the latter are optimized. Keywords: Data and knowledge visualization, Pattern matching--Clustering--Algorithms/Similarity measures, Hierarchical clustering, Global optimization, Quartet tree, Randomized hill-climbing,
Rudi L. Cilibrasi (CWI, Amsterdam) and Paul M.B. Vitanyi (CWI and University of Amsterdam)
null
1409.4276
null
null
Computing the Stereo Matching Cost with a Convolutional Neural Network
cs.CV cs.LG cs.NE
We present a method for extracting depth information from a rectified image pair. We train a convolutional neural network to predict how well two image patches match and use it to compute the stereo matching cost. The cost is refined by cross-based cost aggregation and semiglobal matching, followed by a left-right consistency check to eliminate errors in the occluded regions. Our stereo method achieves an error rate of 2.61 % on the KITTI stereo dataset and is currently (August 2014) the top performing method on this dataset.
Jure \v{Z}bontar and Yann LeCun
10.1109/CVPR.2015.7298767
1409.4326
null
null
Multivariate Comparison of Classification Algorithms
stat.ML cs.LG
Statistical tests that compare classification algorithms are univariate and use a single performance measure, e.g., misclassification error, $F$ measure, AUC, and so on. In multivariate tests, comparison is done using multiple measures simultaneously. For example, error is the sum of false positives and false negatives and a univariate test on error cannot make a distinction between these two sources, but a 2-variate test can. Similarly, instead of combining precision and recall in $F$ measure, we can have a 2-variate test on (precision, recall). We use Hotelling's multivariate $T^2$ test for comparing two algorithms, and when we have three or more algorithms we use the multivariate analysis of variance (MANOVA) followed by pairwise post hoc tests. In our experiments, we see that multivariate tests have higher power than univariate tests, that is, they can detect differences that univariate tests cannot. We also discuss how multivariate analysis allows us to automatically extract performance measures that best distinguish the behavior of multiple algorithms.
Olcay Taner Yildiz, Ethem Alpaydin
null
1409.4566
null
null
Compute Less to Get More: Using ORC to Improve Sparse Filtering
cs.CV cs.LG
Sparse Filtering is a popular feature learning algorithm for image classification pipelines. In this paper, we connect the performance of Sparse Filtering with spectral properties of the corresponding feature matrices. This connection provides new insights into Sparse Filtering; in particular, it suggests early stopping of Sparse Filtering. We therefore introduce the Optimal Roundness Criterion (ORC), a novel stopping criterion for Sparse Filtering. We show that this stopping criterion is related with pre-processing procedures such as Statistical Whitening and demonstrate that it can make image classification with Sparse Filtering considerably faster and more accurate.
Johannes Lederer and Sergio Guadarrama
null
1409.4689
null
null
A Mixtures-of-Experts Framework for Multi-Label Classification
cs.LG
We develop a novel probabilistic approach for multi-label classification that is based on the mixtures-of-experts architecture combined with recently introduced conditional tree-structured Bayesian networks. Our approach captures different input-output relations from multi-label data using the efficient tree-structured classifiers, while the mixtures-of-experts architecture aims to compensate for the tree-structured restrictions and build a more accurate model. We develop and present algorithms for learning the model from data and for performing multi-label predictions on future data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods.
Charmgil Hong, Iyad Batal, Milos Hauskrecht
null
1409.4698
null
null
Anomaly Detection Based on Indicators Aggregation
stat.ML cs.LG
Automatic anomaly detection is a major issue in various areas. Beyond mere detection, the identification of the source of the problem that produced the anomaly is also essential. This is particularly the case in aircraft engine health monitoring where detecting early signs of failure (anomalies) and helping the engine owner to implement efficiently the adapted maintenance operations (fixing the source of the anomaly) are of crucial importance to reduce the costs attached to unscheduled maintenance. This paper introduces a general methodology that aims at classifying monitoring signals into normal ones and several classes of abnormal ones. The main idea is to leverage expert knowledge by generating a very large number of binary indicators. Each indicator corresponds to a fully parametrized anomaly detector built from parametric anomaly scores designed by experts. A feature selection method is used to keep only the most discriminant indicators which are used at inputs of a Naive Bayes classifier. This give an interpretable classifier based on interpretable anomaly detectors whose parameters have been optimized indirectly by the selection process. The proposed methodology is evaluated on simulated data designed to reproduce some of the anomaly types observed in real world engines.
Tsirizo Rabenoro (SAMM), J\'er\^ome Lacaille, Marie Cottrell (SAMM), Fabrice Rossi (SAMM)
10.1109/IJCNN.2014.6889841
1409.4747
null
null
Collapsed Variational Bayes Inference of Infinite Relational Model
cs.LG stat.ML
The Infinite Relational Model (IRM) is a probabilistic model for relational data clustering that partitions objects into clusters based on observed relationships. This paper presents Averaged CVB (ACVB) solutions for IRM, convergence-guaranteed and practically useful fast Collapsed Variational Bayes (CVB) inferences. We first derive ordinary CVB and CVB0 for IRM based on the lower bound maximization. CVB solutions yield deterministic iterative procedures for inferring IRM given the truncated number of clusters. Our proposal includes CVB0 updates of hyperparameters including the concentration parameter of the Dirichlet Process, which has not been studied in the literature. To make the CVB more practically useful, we further study the CVB inference in two aspects. First, we study the convergence issues and develop a convergence-guaranteed algorithm for any CVB-based inferences called ACVB, which enables automatic convergence detection and frees non-expert practitioners from difficult and costly manual monitoring of inference processes. Second, we present a few techniques for speeding up IRM inferences. In particular, we describe the linear time inference of CVB0, allowing the IRM for larger relational data uses. The ACVB solutions of IRM showed comparable or better performance compared to existing inference methods in experiments, and provide deterministic, faster, and easier convergence detection.
Katsuhiko Ishiguro, Issei Sato, Naonori Ueda
null
1409.4757
null
null
Taking into Account the Differences between Actively and Passively Acquired Data: The Case of Active Learning with Support Vector Machines for Imbalanced Datasets
cs.LG cs.CL stat.ML
Actively sampled data can have very different characteristics than passively sampled data. Therefore, it's promising to investigate using different inference procedures during AL than are used during passive learning (PL). This general idea is explored in detail for the focused case of AL with cost-weighted SVMs for imbalanced data, a situation that arises for many HLT tasks. The key idea behind the proposed InitPA method for addressing imbalance is to base cost models during AL on an estimate of overall corpus imbalance computed via a small unbiased sample rather than the imbalance in the labeled training data, which is the leading method used during PL.
Michael Bloodgood and K. Vijay-Shanker
null
1409.4835
null
null
Statistical inference with probabilistic graphical models
cs.LG stat.ML
These are notes from the lecture of Devavrat Shah given at the autumn school "Statistical Physics, Optimization, Inference, and Message-Passing Algorithms", that took place in Les Houches, France from Monday September 30th, 2013, till Friday October 11th, 2013. The school was organized by Florent Krzakala from UPMC & ENS Paris, Federico Ricci-Tersenghi from La Sapienza Roma, Lenka Zdeborova from CEA Saclay & CNRS, and Riccardo Zecchina from Politecnico Torino. This lecture of Devavrat Shah (MIT) covers the basics of inference and learning. It explains how inference problems are represented within structures known as graphical models. The theoretical basis of the belief propagation algorithm is then explained and derived. This lecture sets the stage for generalizations and applications of message passing algorithms.
Ang\'elique Dr\'emeau, Christophe Sch\"ulke, Yingying Xu, Devavrat Shah
null
1409.4928
null
null
Ensembles of Random Sphere Cover Classifiers
cs.LG cs.AI stat.ML
We propose and evaluate alternative ensemble schemes for a new instance based learning classifier, the Randomised Sphere Cover (RSC) classifier. RSC fuses instances into spheres, then bases classification on distance to spheres rather than distance to instances. The randomised nature of RSC makes it ideal for use in ensembles. We propose two ensemble methods tailored to the RSC classifier; $\alpha \beta$RSE, an ensemble based on instance resampling and $\alpha$RSSE, a subspace ensemble. We compare $\alpha \beta$RSE and $\alpha$RSSE to tree based ensembles on a set of UCI datasets and demonstrates that RSC ensembles perform significantly better than some of these ensembles, and not significantly worse than the others. We demonstrate via a case study on six gene expression data sets that $\alpha$RSSE can outperform other subspace ensemble methods on high dimensional data when used in conjunction with an attribute filter. Finally, we perform a set of Bias/Variance decomposition experiments to analyse the source of improvement in comparison to a base classifier.
Anthony Bagnall and Reda Younsi
null
1409.4936
null
null
An Agent-Based Algorithm exploiting Multiple Local Dissimilarities for Clusters Mining and Knowledge Discovery
cs.LG cs.DC cs.MA
We propose a multi-agent algorithm able to automatically discover relevant regularities in a given dataset, determining at the same time the set of configurations of the adopted parametric dissimilarity measure yielding compact and separated clusters. Each agent operates independently by performing a Markovian random walk on a suitable weighted graph representation of the input dataset. Such a weighted graph representation is induced by the specific parameter configuration of the dissimilarity measure adopted by the agent, which searches and takes decisions autonomously for one cluster at a time. Results show that the algorithm is able to discover parameter configurations that yield a consistent and interpretable collection of clusters. Moreover, we demonstrate that our algorithm shows comparable performances with other similar state-of-the-art algorithms when facing specific clustering problems.
Filippo Maria Bianchi, Enrico Maiorino, Lorenzo Livi, Antonello Rizzi and Alireza Sadeghian
10.1007/s00500-015-1876-1
1409.4988
null
null
Predictive Capacity of Meteorological Data - Will it rain tomorrow
cs.LG
With the availability of high precision digital sensors and cheap storage medium, it is not uncommon to find large amounts of data collected on almost all measurable attributes, both in nature and man-made habitats. Weather in particular has been an area of keen interest for researchers to develop more accurate and reliable prediction models. This paper presents a set of experiments which involve the use of prevalent machine learning techniques to build models to predict the day of the week given the weather data for that particular day i.e. temperature, wind, rain etc., and test their reliability across four cities in Australia {Brisbane, Adelaide, Perth, Hobart}. The results provide a comparison of accuracy of these machine learning techniques and their reliability to predict the day of the week by analysing the weather data. We then apply the models to predict weather conditions based on the available data.
Bilal Ahmed
null
1409.5079
null
null
A Method for Stopping Active Learning Based on Stabilizing Predictions and the Need for User-Adjustable Stopping
cs.LG cs.CL stat.ML
A survey of existing methods for stopping active learning (AL) reveals the needs for methods that are: more widely applicable; more aggressive in saving annotations; and more stable across changing datasets. A new method for stopping AL based on stabilizing predictions is presented that addresses these needs. Furthermore, stopping methods are required to handle a broad range of different annotation/performance tradeoff valuations. Despite this, the existing body of work is dominated by conservative methods with little (if any) attention paid to providing users with control over the behavior of stopping methods. The proposed method is shown to fill a gap in the level of aggressiveness available for stopping AL and supports providing users with control over stopping behavior.
Michael Bloodgood and K. Vijay-Shanker
null
1409.5165
null
null
Deeply-Supervised Nets
stat.ML cs.CV cs.LG cs.NE
Our proposed deeply-supervised nets (DSN) method simultaneously minimizes classification error while making the learning process of hidden layers direct and transparent. We make an attempt to boost the classification performance by studying a new formulation in deep networks. Three aspects in convolutional neural networks (CNN) style architectures are being looked at: (1) transparency of the intermediate layers to the overall classification; (2) discriminativeness and robustness of learned features, especially in the early layers; (3) effectiveness in training due to the presence of the exploding and vanishing gradients. We introduce "companion objective" to the individual hidden layers, in addition to the overall objective at the output layer (a different strategy to layer-wise pre-training). We extend techniques from stochastic gradient methods to analyze our algorithm. The advantage of our method is evident and our experimental result on benchmark datasets shows significant performance gain over existing methods (e.g. all state-of-the-art results on MNIST, CIFAR-10, CIFAR-100, and SVHN).
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
null
1409.5185
null
null
Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning
cs.CV cs.LG
Many typical applications of object detection operate within a prescribed false-positive range. In this situation the performance of a detector should be assessed on the basis of the area under the ROC curve over that range, rather than over the full curve, as the performance outside the range is irrelevant. This measure is labelled as the partial area under the ROC curve (pAUC). We propose a novel ensemble learning method which achieves a maximal detection rate at a user-defined range of false positive rates by directly optimizing the partial AUC using structured learning. In order to achieve a high object detection performance, we propose a new approach to extract low-level visual features based on spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of our approach, and we show that it is possible to train state-of-the-art pedestrian detectors using the proposed structured ensemble learning method with spatially pooled features. The result is the current best reported performance on the Caltech-USA pedestrian detection dataset.
Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel
null
1409.5209
null
null
Learning and approximation capability of orthogonal super greedy algorithm
cs.LG
We consider the approximation capability of orthogonal super greedy algorithms (OSGA) and its applications in supervised learning. OSGA is concerned with selecting more than one atoms in each iteration step, which, of course, greatly reduces the computational burden when compared with the conventional orthogonal greedy algorithm (OGA). We prove that even for function classes that are not the convex hull of the dictionary, OSGA does not degrade the approximation capability of OGA provided the dictionary is incoherent. Based on this, we deduce a tight generalization error bound for OSGA learning. Our results show that in the realm of supervised learning, OSGA provides a possibility to further reduce the computational burden of OGA in the premise of maintaining its prominent generalization capability.
Jian Fang, Shaobo Lin, Zongben Xu
null
1409.5330
null
null
SAME but Different: Fast and High-Quality Gibbs Parameter Estimation
cs.LG stat.ML
Gibbs sampling is a workhorse for Bayesian inference but has several limitations when used for parameter estimation, and is often much slower than non-sampling inference methods. SAME (State Augmentation for Marginal Estimation) \cite{Doucet99,Doucet02} is an approach to MAP parameter estimation which gives improved parameter estimates over direct Gibbs sampling. SAME can be viewed as cooling the posterior parameter distribution and allows annealed search for the MAP parameters, often yielding very high quality (lower loss) estimates. But it does so at the expense of additional samples per iteration and generally slower performance. On the other hand, SAME dramatically increases the parallelism in the sampling schedule, and is an excellent match for modern (SIMD) hardware. In this paper we explore the application of SAME to graphical model inference on modern hardware. We show that combining SAME with factored sample representation (or approximation) gives throughput competitive with the fastest symbolic methods, but with potentially better quality. We describe experiments on Latent Dirichlet Allocation, achieving speeds similar to the fastest reported methods (online Variational Bayes) and lower cross-validated loss than other LDA implementations. The method is simple to implement and should be applicable to many other models.
Huasha Zhao and Biye Jiang and John Canny
null
1409.5402
null
null
Efficient Feature Group Sequencing for Anytime Linear Prediction
cs.LG
We consider \textit{anytime} linear prediction in the common machine learning setting, where features are in groups that have costs. We achieve anytime (or interruptible) predictions by sequencing the computation of feature groups and reporting results using the computed features at interruption. We extend Orthogonal Matching Pursuit (OMP) and Forward Regression (FR) to learn the sequencing greedily under this group setting with costs. We theoretically guarantee that our algorithms achieve near-optimal linear predictions at each budget when a feature group is chosen. With a novel analysis of OMP, we improve its theoretical bound to the same strength as that of FR. In addition, we develop a novel algorithm that consumes cost $4B$ to approximate the optimal performance of \textit{any} cost $B$, and prove that with cost less than $4B$, such an approximation is impossible. To our knowledge, these are the first anytime bounds at \textit{all} budgets. We test our algorithms on two real-world data-sets and evaluate them in terms of anytime linear prediction performance against cost-weighted Group Lasso and alternative greedy algorithms.
Hanzhang Hu, Alexander Grubb, J. Andrew Bagnell, Martial Hebert
null
1409.5495
null
null
A Survey on Soft Subspace Clustering
cs.LG
Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.
Zhaohong Deng, Kup-Sze Choi, Yizhang Jiang, Jun Wang, Shitong Wang
10.1016/j.ins.2016.01.101
1409.5616
null
null
A Formal Methods Approach to Pattern Synthesis in Reaction Diffusion Systems
cs.AI cs.CE cs.LG cs.LO cs.SY
We propose a technique to detect and generate patterns in a network of locally interacting dynamical systems. Central to our approach is a novel spatial superposition logic, whose semantics is defined over the quad-tree of a partitioned image. We show that formulas in this logic can be efficiently learned from positive and negative examples of several types of patterns. We also demonstrate that pattern detection, which is implemented as a model checking algorithm, performs very well for test data sets different from the learning sets. We define a quantitative semantics for the logic and integrate the model checking algorithm with particle swarm optimization in a computational framework for synthesis of parameters leading to desired patterns in reaction-diffusion systems.
Ebru Aydin Gol and Ezio Bartocci and Calin Belta
null
1409.5671
null
null
Transfer Prototype-based Fuzzy Clustering
cs.LG
The traditional prototype based clustering methods, such as the well-known fuzzy c-mean (FCM) algorithm, usually need sufficient data to find a good clustering partition. If the available data is limited or scarce, most of the existing prototype based clustering algorithms will no longer be effective. While the data for the current clustering task may be scarce, there is usually some useful knowledge available in the related scenes/domains. In this study, the concept of transfer learning is applied to prototype based fuzzy clustering (PFC). Specifically, the idea of leveraging knowledge from the source domain is exploited to develop a set of transfer prototype based fuzzy clustering (TPFC) algorithms. Three prototype based fuzzy clustering algorithms, namely, FCM, fuzzy k-plane clustering (FKPC) and fuzzy subspace clustering (FSC), have been chosen to incorporate with knowledge leveraging mechanism to develop the corresponding transfer clustering algorithms. Novel objective functions are proposed to integrate the knowledge of source domain with the data of target domain for clustering in the target domain. The proposed algorithms have been validated on different synthetic and real-world datasets and the results demonstrate their effectiveness when compared with both the original prototype based fuzzy clustering algorithms and the related clustering algorithms like multi-task clustering and co-clustering.
Zhaohong Deng, Yizhang Jiang, Fu-Lai Chung, Hisao Ishibuchi, Kup-Sze Choi, Shitong Wang
10.1109/TFUZZ.2015.2505330
1409.5686
null
null
Distributed Machine Learning via Sufficient Factor Broadcasting
cs.LG cs.DC
Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems starting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter synchronization costs that greatly slow down distributed learning. To address this issue, we propose a Sufficient Factor Broadcasting (SFB) computation model for efficient distributed learning of a large family of matrix-parameterized models, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e., the outer product of two "sufficient factors" (SFs). By broadcasting the SFs among worker machines and reconstructing the update matrices locally at each worker, SFB improves communication efficiency --- communication costs are linear in the parameter matrix's dimensions, rather than quadratic --- without affecting computational correctness. We present a theoretical convergence analysis of SFB, and empirically corroborate its efficiency on four different matrix-parametrized ML models.
Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang Yu, Eric Xing
null
1409.5705
null
null
Convolutional Neural Networks over Tree Structures for Programming Language Processing
cs.LG cs.NE cs.SE
Programming language processing (similar to natural language processing) is a hot research topic in the field of software engineering; it has also aroused growing interest in the artificial intelligence community. However, different from a natural language sentence, a program contains rich, explicit, and complicated structural information. Hence, traditional NLP models may be inappropriate for programs. In this paper, we propose a novel tree-based convolutional neural network (TBCNN) for programming language processing, in which a convolution kernel is designed over programs' abstract syntax trees to capture structural information. TBCNN is a generic architecture for programming language processing; our experiments show its effectiveness in two different program analysis tasks: classifying programs according to functionality, and detecting code snippets of certain patterns. TBCNN outperforms baseline methods, including several neural models for NLP.
Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin
null
1409.5718
null
null
Neural Hypernetwork Approach for Pulmonary Embolism diagnosis
physics.med-ph cs.LG physics.data-an q-bio.QM stat.ML
This work introduces an integrative approach based on Q-analysis with machine learning. The new approach, called Neural Hypernetwork, has been applied to a case study of pulmonary embolism diagnosis. The objective of the application of neural hyper-network to pulmonary embolism (PE) is to improve diagnose for reducing the number of CT-angiography needed. Hypernetworks, based on topological simplicial complex, generalize the concept of two-relation to many-body relation. Furthermore, Hypernetworks provide a significant generalization of network theory, enabling the integration of relational structure, logic and analytic dynamics. Another important results is that Q-analysis stays close to the data, while other approaches manipulate data, projecting them into metric spaces or applying some filtering functions to highlight the intrinsic relations. A pulmonary embolism (PE) is a blockage of the main artery of the lung or one of its branches, frequently fatal. Our study uses data on 28 diagnostic features of 1,427 people considered to be at risk of PE. The resulting neural hypernetwork correctly recognized 94% of those developing a PE. This is better than previous results that have been obtained with other methods (statistical selection of features, partial least squares regression, topological data analysis in a metric space).
Matteo Rucco, David M. S. Rodrigues, Emanuela Merelli, Jeffrey H. Johnson, Lorenzo Falsetti, Cinzia Nitti and Aldo Salvi
null
1409.5743
null
null
Attributes for Causal Inference in Longitudinal Observational Databases
cs.CE cs.LG
The pharmaceutical industry is plagued by the problem of side effects that can occur anytime a prescribed medication is ingested. There has been a recent interest in using the vast quantities of medical data available in longitudinal observational databases to identify causal relationships between drugs and medical events. Unfortunately the majority of existing post marketing surveillance algorithms measure how dependant or associated an event is on the presence of a drug rather than measuring causality. In this paper we investigate potential attributes that can be used in causal inference to identify side effects based on the Bradford-Hill causality criteria. Potential attributes are developed by considering five of the causality criteria and feature selection is applied to identify the most suitable of these attributes for detecting side effects. We found that attributes based on the specificity criterion may improve side effect signalling algorithms but the experiment and dosage criteria attributes investigated in this paper did not offer sufficient additional information.
Jenna Reps, Jonathan M. Garibaldi, Uwe Aickelin and Daniele Soria, Jack E. Gibson and Richard B. Hubbard
null
1409.5774
null
null
Tight Error Bounds for Structured Prediction
cs.LG cs.DS stat.ML
Structured prediction tasks in machine learning involve the simultaneous prediction of multiple labels. This is typically done by maximizing a score function on the space of labels, which decomposes as a sum of pairwise elements, each depending on two specific labels. Intuitively, the more pairwise terms are used, the better the expected accuracy. However, there is currently no theoretical account of this intuition. This paper takes a significant step in this direction. We formulate the problem as classifying the vertices of a known graph $G=(V,E)$, where the vertices and edges of the graph are labelled and correlate semi-randomly with the ground truth. We show that the prospects for achieving low expected Hamming error depend on the structure of the graph $G$ in interesting ways. For example, if $G$ is a very poor expander, like a path, then large expected Hamming error is inevitable. Our main positive result shows that, for a wide class of graphs including 2D grid graphs common in machine vision applications, there is a polynomial-time algorithm with small and information-theoretically near-optimal expected error. Our results provide a first step toward a theoretical justification for the empirical success of the efficient approximate inference algorithms that are used for structured prediction in models where exact inference is intractable.
Amir Globerson and Tim Roughgarden and David Sontag and Cafer Yildirim
null
1409.5834
null
null
Capturing "attrition intensifying" structural traits from didactic interaction sequences of MOOC learners
cs.CY cs.LG cs.SI
This work is an attempt to discover hidden structural configurations in learning activity sequences of students in Massive Open Online Courses (MOOCs). Leveraging combined representations of video clickstream interactions and forum activities, we seek to fundamentally understand traits that are predictive of decreasing engagement over time. Grounded in the interdisciplinary field of network science, we follow a graph based approach to successfully extract indicators of active and passive MOOC participation that reflect persistence and regularity in the overall interaction footprint. Using these rich educational semantics, we focus on the problem of predicting student attrition, one of the major highlights of MOOC literature in the recent years. Our results indicate an improvement over a baseline ngram based approach in capturing "attrition intensifying" features from the learning activities that MOOC learners engage in. Implications for some compelling future research are discussed.
Tanmay Sinha, Nan Li, Patrick Jermann, Pierre Dillenbourg
null
1409.5887
null
null
Distributed Robust Learning
stat.ML cs.LG
We propose a framework for distributed robust statistical learning on {\em big contaminated data}. The Distributed Robust Learning (DRL) framework can reduce the computational time of traditional robust learning methods by several orders of magnitude. We analyze the robustness property of DRL, showing that DRL not only preserves the robustness of the base robust learning method, but also tolerates contaminations on a constant fraction of results from computing nodes (node failures). More precisely, even in presence of the most adversarial outlier distribution over computing nodes, DRL still achieves a breakdown point of at least $ \lambda^*/2 $, where $ \lambda^* $ is the break down point of corresponding centralized algorithm. This is in stark contrast with naive division-and-averaging implementation, which may reduce the breakdown point by a factor of $ k $ when $ k $ computing nodes are used. We then specialize the DRL framework for two concrete cases: distributed robust principal component analysis and distributed robust regression. We demonstrate the efficiency and the robustness advantages of DRL through comprehensive simulations and predicting image tags on a large-scale image set.
Jiashi Feng, Huan Xu, Shie Mannor
null
1409.5937
null
null
Domain Adaptive Neural Networks for Object Recognition
cs.CV cs.AI cs.LG cs.NE stat.ML
We propose a simple neural network model to deal with the domain adaptation problem in object recognition. Our model incorporates the Maximum Mean Discrepancy (MMD) measure as a regularization in the supervised learning to reduce the distribution mismatch between the source and target domains in the latent space. From experiments, we demonstrate that the MMD regularization is an effective tool to provide good domain adaptation models on both SURF features and raw image pixels of a particular image data set. We also show that our proposed model, preceded by the denoising auto-encoder pretraining, achieves better performance than recent benchmark models on the same data sets. This work represents the first study of MMD measure in the context of neural networks.
Muhammad Ghifary and W. Bastiaan Kleijn and Mengjie Zhang
null
1409.6041
null
null
Analyzing sparse dictionaries for online learning with kernels
stat.ML cs.CV cs.IT cs.LG math.IT
Many signal processing and machine learning methods share essentially the same linear-in-the-parameter model, with as many parameters as available samples as in kernel-based machines. Sparse approximation is essential in many disciplines, with new challenges emerging in online learning with kernels. To this end, several sparsity measures have been proposed in the literature to quantify sparse dictionaries and constructing relevant ones, the most prolific ones being the distance, the approximation, the coherence and the Babel measures. In this paper, we analyze sparse dictionaries based on these measures. By conducting an eigenvalue analysis, we show that these sparsity measures share many properties, including the linear independence condition and inducing a well-posed optimization problem. Furthermore, we prove that there exists a quasi-isometry between the parameter (i.e., dual) space and the dictionary's induced feature space.
Paul Honeine
10.1109/TSP.2015.2457396
1409.6045
null
null
Approximation errors of online sparsification criteria
stat.ML cs.CV cs.IT cs.LG cs.NE math.IT
Many machine learning frameworks, such as resource-allocating networks, kernel-based methods, Gaussian processes, and radial-basis-function networks, require a sparsification scheme in order to address the online learning paradigm. For this purpose, several online sparsification criteria have been proposed to restrict the model definition on a subset of samples. The most known criterion is the (linear) approximation criterion, which discards any sample that can be well represented by the already contributing samples, an operation with excessive computational complexity. Several computationally efficient sparsification criteria have been introduced in the literature, such as the distance, the coherence and the Babel criteria. In this paper, we provide a framework that connects these sparsification criteria to the issue of approximating samples, by deriving theoretical bounds on the approximation errors. Moreover, we investigate the error of approximating any feature, by proposing upper-bounds on the approximation error for each of the aforementioned sparsification criteria. Two classes of features are described in detail, the empirical mean and the principal axes in the kernel principal component analysis.
Paul Honeine
10.1109/TSP.2015.2442960
1409.6046
null
null
The Information Theoretically Efficient Model (ITEM): A model for computerized analysis of large datasets
cs.LG
This document discusses the Information Theoretically Efficient Model (ITEM), a computerized system to generate an information theoretically efficient multinomial logistic regression from a general dataset. More specifically, this model is designed to succeed even where the logit transform of the dependent variable is not necessarily linear in the independent variables. This research shows that for large datasets, the resulting models can be produced on modern computers in a tractable amount of time. These models are also resistant to overfitting, and as such they tend to produce interpretable models with only a limited number of features, all of which are designed to be well behaved.
Tyler Ward
null
1409.6075
null
null
Best-Arm Identification in Linear Bandits
cs.LG
We study the best-arm identification problem in linear bandit, where the rewards of the arms depend linearly on an unknown parameter $\theta^*$ and the objective is to return the arm with the largest reward. We characterize the complexity of the problem and introduce sample allocation strategies that pull arms to identify the best arm with a fixed confidence, while minimizing the sample budget. In particular, we show the importance of exploiting the global linear structure to improve the estimate of the reward of near-optimal arms. We analyze the proposed strategies and compare their empirical performance. Finally, as a by-product of our analysis, we point out the connection to the $G$-optimality criterion used in optimal experimental design.
Marta Soare, Alessandro Lazaric, R\'emi Munos
null
1409.6110
null
null
Distributed Clustering and Learning Over Networks
math.OC cs.LG cs.MA cs.SY stat.ML
Distributed processing over networks relies on in-network processing and cooperation among neighboring agents. Cooperation is beneficial when agents share a common objective. However, in many applications agents may belong to different clusters that pursue different objectives. Then, indiscriminate cooperation will lead to undesired results. In this work, we propose an adaptive clustering and learning scheme that allows agents to learn which neighbors they should cooperate with and which other neighbors they should ignore. In doing so, the resulting algorithm enables the agents to identify their clusters and to attain improved learning and estimation accuracy over networks. We carry out a detailed mean-square analysis and assess the error probabilities of Types I and II, i.e., false alarm and mis-detection, for the clustering mechanism. Among other results, we establish that these probabilities decay exponentially with the step-sizes so that the probability of correct clustering can be made arbitrarily close to one.
Xiaochuan Zhao and Ali H. Sayed
10.1109/TSP.2015.2415755
1409.6111
null
null
A non-linear learning & classification algorithm that achieves full training accuracy with stellar classification accuracy
cs.CV cs.LG
A fast Non-linear and non-iterative learning and classification algorithm is synthesized and validated. This algorithm named the "Reverse Ripple Effect(R.R.E)", achieves 100% learning accuracy but is computationally expensive upon classification. The R.R.E is a (deterministic) algorithm that super imposes Gaussian weighted functions on training points. In this work, the R.R.E algorithm is compared against known learning and classification techniques/algorithms such as: the Perceptron Criterion algorithm, Linear Support Vector machines, the Linear Fisher Discriminant and a simple Neural Network. The classification accuracy of the R.R.E algorithm is evaluated using simulations conducted in MATLAB. The R.R.E algorithm's behaviour is analyzed under linearly and non-linearly separable data sets. For the comparison with the Neural Network, the classical XOR problem is considered.
Rashid Khogali
null
1409.6440
null
null
HSR: L1/2 Regularized Sparse Representation for Fast Face Recognition using Hierarchical Feature Selection
cs.CV cs.LG
In this paper, we propose a novel method for fast face recognition called L1/2 Regularized Sparse Representation using Hierarchical Feature Selection (HSR). By employing hierarchical feature selection, we can compress the scale and dimension of global dictionary, which directly contributes to the decrease of computational cost in sparse representation that our approach is strongly rooted in. It consists of Gabor wavelets and Extreme Learning Machine Auto-Encoder (ELM-AE) hierarchically. For Gabor wavelets part, local features can be extracted at multiple scales and orientations to form Gabor-feature based image, which in turn improves the recognition rate. Besides, in the presence of occluded face image, the scale of Gabor-feature based global dictionary can be compressed accordingly because redundancies exist in Gabor-feature based occlusion dictionary. For ELM-AE part, the dimension of Gabor-feature based global dictionary can be compressed because high-dimensional face images can be rapidly represented by low-dimensional feature. By introducing L1/2 regularization, our approach can produce sparser and more robust representation compared to regularized Sparse Representation based Classification (SRC), which also contributes to the decrease of the computational cost in sparse representation. In comparison with related work such as SRC and Gabor-feature based SRC (GSRC), experimental results on a variety of face databases demonstrate the great advantage of our method for computational cost. Moreover, we also achieve approximate or even better recognition rate.
Bo Han, Bo He, Tingting Sun, Mengmeng Ma, Amaury Lendasse
10.1007/s00521-015-1907-y
1409.6448
null
null
Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version
cs.IR cs.LG stat.ML
Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.
Siting Ren, Sheng Gao
null
1409.6805
null
null
Unsupervised learning of regression mixture models with unknown number of components
stat.ME cs.LG stat.ML
Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the initialization is crucial for EM. If the initialization is inappropriately performed, the EM algorithm may lead to unsatisfactory results. The EM algorithm also requires the number of clusters to be given a priori; the problem of selecting the number of mixture components requires using model selection criteria to choose one from a set of pre-estimated candidate models. We propose a new fully unsupervised algorithm to learn regression mixture models with unknown number of components. The developed unsupervised learning approach consists in a penalized maximum likelihood estimation carried out by a robust expectation-maximization (EM) algorithm for fitting polynomial, spline and B-spline regressions mixtures. The proposed learning approach is fully unsupervised: 1) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and 2) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated data show that the proposed robust EM algorithm performs well and provides accurate results in terms of robustness with regard initialization and retrieving the optimal partition with the actual number of clusters. An application to real data in the framework of functional data clustering, confirms the benefit of the proposed approach for practical applications.
Faicel Chamroukhi
null
1409.6981
null
null
Variational Pseudolikelihood for Regularized Ising Inference
cond-mat.stat-mech cs.LG stat.ML
I propose a variational approach to maximum pseudolikelihood inference of the Ising model. The variational algorithm is more computationally efficient, and does a better job predicting out-of-sample correlations than $L_2$ regularized maximum pseudolikelihood inference as well as mean field and isolated spin pair approximations with pseudocount regularization. The key to the approach is a variational energy that regularizes the inference problem by shrinking the couplings towards zero, while still allowing some large couplings to explain strong correlations. The utility of the variational pseudolikelihood approach is illustrated by training an Ising model to represent the letters A-J using samples of letters from different computer fonts.
Charles K. Fisher
null
1409.7074
null
null
Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach
cs.CL cs.LG stat.ML
We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality---and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.
Kathryn Baker, Michael Bloodgood, Chris Callison-Burch, Bonnie J. Dorr, Nathaniel W. Filardo, Lori Levin, Scott Miller and Christine Piatko
null
1409.7085
null
null
Heterogeneous Metric Learning with Content-based Regularization for Software Artifact Retrieval
cs.LG cs.IR cs.SE
The problem of software artifact retrieval has the goal to effectively locate software artifacts, such as a piece of source code, in a large code repository. This problem has been traditionally addressed through the textual query. In other words, information retrieval techniques will be exploited based on the textual similarity between queries and textual representation of software artifacts, which is generated by collecting words from comments, identifiers, and descriptions of programs. However, in addition to these semantic information, there are rich information embedded in source codes themselves. These source codes, if analyzed properly, can be a rich source for enhancing the efforts of software artifact retrieval. To this end, in this paper, we develop a feature extraction method on source codes. Specifically, this method can capture both the inherent information in the source codes and the semantic information hidden in the comments, descriptions, and identifiers of the source codes. Moreover, we design a heterogeneous metric learning approach, which allows to integrate code features and text features into the same latent semantic space. This, in turn, can help to measure the artifact similarity by exploiting the joint power of both code and text features. Finally, extensive experiments on real-world data show that the proposed method can help to improve the performances of software artifact retrieval with a significant margin.
Liang Wu, Hui Xiong, Liang Du, Bo Liu, Guandong Xu, Yong Ge, Yanjie Fu, Yuanchun Zhou, Jianhui Li
10.1109/ICDM.2014.147
1409.7165
null
null
A Boosting Framework on Grounds of Online Learning
cs.LG
By exploiting the duality between boosting and online learning, we present a boosting framework which proves to be extremely powerful thanks to employing the vast knowledge available in the online learning area. Using this framework, we develop various algorithms to address multiple practically and theoretically interesting questions including sparse boosting, smooth-distribution boosting, agnostic learning and some generalization to double-projection online learning algorithms, as a by-product.
Tofigh Naghibi, Beat Pfister
null
1409.7202
null
null
A Semidefinite Programming Based Search Strategy for Feature Selection with Mutual Information Measure
cs.LG
Feature subset selection, as a special case of the general subset selection problem, has been the topic of a considerable number of studies due to the growing importance of data-mining applications. In the feature subset selection problem there are two main issues that need to be addressed: (i) Finding an appropriate measure function than can be fairly fast and robustly computed for high-dimensional data. (ii) A search strategy to optimize the measure over the subset space in a reasonable amount of time. In this article mutual information between features and class labels is considered to be the measure function. Two series expansions for mutual information are proposed, and it is shown that most heuristic criteria suggested in the literature are truncated approximations of these expansions. It is well-known that searching the whole subset space is an NP-hard problem. Here, instead of the conventional sequential search algorithms, we suggest a parallel search strategy based on semidefinite programming (SDP) that can search through the subset space in polynomial time. By exploiting the similarities between the proposed algorithm and an instance of the maximum-cut problem in graph theory, the approximation ratio of this algorithm is derived and is compared with the approximation ratio of the backward elimination method. The experiments show that it can be misleading to judge the quality of a measure solely based on the classification accuracy, without taking the effect of the non-optimum search strategy into account.
Tofigh Naghibi, Sarah Hoffmann and Beat Pfister
null
1409.7384
null
null
Autoencoder Trees
cs.LG stat.ML
We discuss an autoencoder model in which the encoding and decoding functions are implemented by decision trees. We use the soft decision tree where internal nodes realize soft multivariate splits given by a gating function and the overall output is the average of all leaves weighted by the gating values on their path. The encoder tree takes the input and generates a lower dimensional representation in the leaves and the decoder tree takes this and reconstructs the original input. Exploiting the continuity of the trees, autoencoder trees are trained with stochastic gradient descent. On handwritten digit and news data, we see that the autoencoder trees yield good reconstruction error compared to traditional autoencoder perceptrons. We also see that the autoencoder tree captures hierarchical representations at different granularities of the data on its different levels and the leaves capture the localities in the input space.
Ozan \.Irsoy, Ethem Alpayd{\i}n
null
1409.7461
null
null
Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study
cs.LG physics.ao-ph
This communication is devoted to solar irradiance and irradiation short-term forecasts, which are useful for electricity production. Several different time series approaches are employed. Our results and the corresponding numerical simulations show that techniques which do not need a large amount of historical data behave better than those which need them, especially when those data are quite noisy.
C\'edric Join (INRIA Lille - Nord Europe, CRAN, AL.I.E.N.), Cyril Voyant (SPE), Michel Fliess (AL.I.E.N., LIX), Marc Muselli (SPE), Marie Laure Nivet (SPE), Christophe Paoli, Fr\'ed\'eric Chaxel (CRAN)
null
1409.7476
null
null
Generalized Twin Gaussian Processes using Sharma-Mittal Divergence
cs.LG cs.CV stat.ML
There has been a growing interest in mutual information measures due to their wide range of applications in Machine Learning and Computer Vision. In this paper, we present a generalized structured regression framework based on Shama-Mittal divergence, a relative entropy measure, which is introduced to the Machine Learning community in this work. Sharma-Mittal (SM) divergence is a generalized mutual information measure for the widely used R\'enyi, Tsallis, Bhattacharyya, and Kullback-Leibler (KL) relative entropies. Specifically, we study Sharma-Mittal divergence as a cost function in the context of the Twin Gaussian Processes (TGP)~\citep{Bo:2010}, which generalizes over the KL-divergence without computational penalty. We show interesting properties of Sharma-Mittal TGP (SMTGP) through a theoretical analysis, which covers missing insights in the traditional TGP formulation. However, we generalize this theory based on SM-divergence instead of KL-divergence which is a special case. Experimentally, we evaluated the proposed SMTGP framework on several datasets. The results show that SMTGP reaches better predictions than KL-based TGP, since it offers a bigger class of models through its parameters that we learn from the data.
Mohamed Elhoseiny, Ahmed Elgammal
null
1409.7480
null
null
Unsupervised Domain Adaptation by Backpropagation
stat.ML cs.LG cs.NE
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation. Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-of-the-art on Office datasets.
Yaroslav Ganin, Victor Lempitsky
null
1409.7495
null
null
The Advantage of Cross Entropy over Entropy in Iterative Information Gathering
stat.ML cs.LG
Gathering the most information by picking the least amount of data is a common task in experimental design or when exploring an unknown environment in reinforcement learning and robotics. A widely used measure for quantifying the information contained in some distribution of interest is its entropy. Greedily minimizing the expected entropy is therefore a standard method for choosing samples in order to gain strong beliefs about the underlying random variables. We show that this approach is prone to temporally getting stuck in local optima corresponding to wrongly biased beliefs. We suggest instead maximizing the expected cross entropy between old and new belief, which aims at challenging refutable beliefs and thereby avoids these local optima. We show that both criteria are closely related and that their difference can be traced back to the asymmetry of the Kullback-Leibler divergence. In illustrative examples as well as simulated and real-world experiments we demonstrate the advantage of cross entropy over simple entropy for practical applications.
Johannes Kulick, Robert Lieck and Marc Toussaint
null
1409.7552
null
null
Semi-supervised Classification for Natural Language Processing
cs.CL cs.LG
Semi-supervised classification is an interesting idea where classification models are learned from both labeled and unlabeled data. It has several advantages over supervised classification in natural language processing domain. For instance, supervised classification exploits only labeled data that are expensive, often difficult to get, inadequate in quantity, and require human experts for annotation. On the other hand, unlabeled data are inexpensive and abundant. Despite the fact that many factors limit the wide-spread use of semi-supervised classification, it has become popular since its level of performance is empirically as good as supervised classification. This study explores the possibilities and achievements as well as complexity and limitations of semi-supervised classification for several natural langue processing tasks like parsing, biomedical information processing, text classification, and summarization.
Rushdi Shams
null
1409.7612
null
null
Maximum mutual information regularized classification
cs.LG
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reduc- ing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradi- ent descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Jim Jing-Yan Wang, Yi Wang, Shiguang Zhao, Xin Gao
null
1409.7780
null
null
Large-scale Online Feature Selection for Ultra-high Dimensional Sparse Data
cs.LG cs.CV
Feature selection with large-scale high-dimensional data is important yet very challenging in machine learning and data mining. Online feature selection is a promising new paradigm that is more efficient and scalable than batch feature section methods, but the existing online approaches usually fall short in their inferior efficacy as compared with batch approaches. In this paper, we present a novel second-order online feature selection scheme that is simple yet effective, very fast and extremely scalable to deal with large-scale ultra-high dimensional sparse data streams. The basic idea is to improve the existing first-order online feature selection methods by exploiting second-order information for choosing the subset of important features with high confidence weights. However, unlike many second-order learning methods that often suffer from extra high computational cost, we devise a novel smart algorithm for second-order online feature selection using a MaxHeap-based approach, which is not only more effective than the existing first-order approaches, but also significantly more efficient and scalable for large-scale feature selection with ultra-high dimensional sparse data, as validated from our extensive experiments. Impressively, on a billion-scale synthetic dataset (1-billion dimensions, 1-billion nonzero features, and 1-million samples), our new algorithm took only 8 minutes on a single PC, which is orders of magnitudes faster than traditional batch approaches. \url{http://arxiv.org/abs/1409.7794}
Yue Wu, Steven C. H. Hoi, Tao Mei, Nenghai Yu
null
1409.7794
null
null
Cognitive Learning of Statistical Primary Patterns via Bayesian Network
cs.LG
In cognitive radio (CR) technology, the trend of sensing is no longer to only detect the presence of active primary users. A large number of applications demand for more comprehensive knowledge on primary user behaviors in spatial, temporal, and frequency domains. To satisfy such requirements, we study the statistical relationship among primary users by introducing a Bayesian network (BN) based framework. How to learn such a BN structure is a long standing issue, not fully understood even in the statistical learning community. Besides, another key problem in this learning scenario is that the CR has to identify how many variables are in the BN, which is usually considered as prior knowledge in statistical learning applications. To solve such two issues simultaneously, this paper proposes a BN structure learning scheme consisting of an efficient structure learning algorithm and a blind variable identification scheme. The proposed approach incurs significantly lower computational complexity compared with previous ones, and is capable of determining the structure without assuming much prior knowledge about variables. With this result, cognitive users could efficiently understand the statistical pattern of primary networks, such that more efficient cognitive protocols could be designed across different network layers.
Weijia Han, Huiyan Sang, Min Sheng, Jiandong Li, and Shuguang Cui
null
1409.7930
null
null
Combining human and machine learning for morphological analysis of galaxy images
astro-ph.IM astro-ph.GA cs.CV cs.LG
The increasing importance of digital sky surveys collecting many millions of galaxy images has reinforced the need for robust methods that can perform morphological analysis of large galaxy image databases. Citizen science initiatives such as Galaxy Zoo showed that large datasets of galaxy images can be analyzed effectively by non-scientist volunteers, but since databases generated by robotic telescopes grow much faster than the processing power of any group of citizen scientists, it is clear that computer analysis is required. Here we propose to use citizen science data for training machine learning systems, and show experimental results demonstrating that machine learning systems can be trained with citizen science data. Our findings show that the performance of machine learning depends on the quality of the data, which can be improved by using samples that have a high degree of agreement between the citizen scientists. The source code of the method is publicly available.
Evan Kuminski, Joe George, John Wallin, Lior Shamir
10.1086/678977
1409.7935
null
null
Lazier Than Lazy Greedy
cs.LG cs.DS cs.IR
Is it possible to maximize a monotone submodular function faster than the widely used lazy greedy algorithm (also known as accelerated greedy), both in theory and practice? In this paper, we develop the first linear-time algorithm for maximizing a general monotone submodular function subject to a cardinality constraint. We show that our randomized algorithm, STOCHASTIC-GREEDY, can achieve a $(1-1/e-\varepsilon)$ approximation guarantee, in expectation, to the optimum solution in time linear in the size of the data and independent of the cardinality constraint. We empirically demonstrate the effectiveness of our algorithm on submodular functions arising in data summarization, including training large-scale kernel methods, exemplar-based clustering, and sensor placement. We observe that STOCHASTIC-GREEDY practically achieves the same utility value as lazy greedy but runs much faster. More surprisingly, we observe that in many practical scenarios STOCHASTIC-GREEDY does not evaluate the whole fraction of data points even once and still achieves indistinguishable results compared to lazy greedy.
Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrak, and Andreas Krause
null
1409.7938
null
null