title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Cost-sensitive Learning for Utility Optimization in Online Advertising Auctions
cs.LG
One of the most challenging problems in computational advertising is the prediction of click-through and conversion rates for bidding in online advertising auctions. An unaddressed problem in previous approaches is the existence of highly non-uniform misprediction costs. While for model evaluation these costs have been taken into account through recently proposed business-aware offline metrics -- such as the Utility metric which measures the impact on advertiser profit -- this is not the case when training the models themselves. In this paper, to bridge the gap, we formally analyze the relationship between optimizing the Utility metric and the log loss, which is considered as one of the state-of-the-art approaches in conversion modeling. Our analysis motivates the idea of weighting the log loss with the business value of the predicted outcome. We present and analyze a new cost weighting scheme and show that significant gains in offline and online performance can be achieved.
Flavian Vasile, Damien Lefortier, Olivier Chapelle
null
1603.03713
null
null
Distribution Free Learning with Local Queries
cs.LG
The model of learning with \emph{local membership queries} interpolates between the PAC model and the membership queries model by allowing the learner to query the label of any example that is similar to an example in the training set. This model, recently proposed and studied by Awasthi, Feldman and Kanade, aims to facilitate practical use of membership queries. We continue this line of work, proving both positive and negative results in the {\em distribution free} setting. We restrict to the boolean cube $\{-1, 1\}^n$, and say that a query is $q$-local if it is of a hamming distance $\le q$ from some training example. On the positive side, we show that $1$-local queries already give an additional strength, and allow to learn a certain type of DNF formulas. On the negative side, we show that even $\left(n^{0.99}\right)$-local queries cannot help to learn various classes including Automata, DNFs and more. Likewise, $q$-local queries for any constant $q$ cannot help to learn Juntas, Decision Trees, Sparse Polynomials and more. Moreover, for these classes, an algorithm that uses $\left(\log^{0.99}(n)\right)$-local queries would lead to a breakthrough in the best known running times.
Galit Bary-Weisberg and Amit Daniely and Shai Shalev-Shwartz
null
1603.03714
null
null
Efficient Clustering of Correlated Variables and Variable Selection in High-Dimensional Linear Models
stat.ML cs.LG
In this paper, we introduce Adaptive Cluster Lasso(ACL) method for variable selection in high dimensional sparse regression models with strongly correlated variables. To handle correlated variables, the concept of clustering or grouping variables and then pursuing model fitting is widely accepted. When the dimension is very high, finding an appropriate group structure is as difficult as the original problem. The ACL is a three-stage procedure where, at the first stage, we use the Lasso(or its adaptive or thresholded version) to do initial selection, then we also include those variables which are not selected by the Lasso but are strongly correlated with the variables selected by the Lasso. At the second stage we cluster the variables based on the reduced set of predictors and in the third stage we perform sparse estimation such as Lasso on cluster representatives or the group Lasso based on the structures generated by clustering procedure. We show that our procedure is consistent and efficient in finding true underlying population group structure(under assumption of irrepresentable and beta-min conditions). We also study the group selection consistency of our method and we support the theory using simulated and pseudo-real dataset examples.
Niharika Gauraha, Swapan K. Parui
null
1603.03724
null
null
A Recursive Born Approach to Nonlinear Inverse Scattering
cs.LG physics.optics
The Iterative Born Approximation (IBA) is a well-known method for describing waves scattered by semi-transparent objects. In this paper, we present a novel nonlinear inverse scattering method that combines IBA with an edge-preserving total variation (TV) regularizer. The proposed method is obtained by relating iterations of IBA to layers of a feedforward neural network and developing a corresponding error backpropagation algorithm for efficiently estimating the permittivity of the object. Simulations illustrate that, by accounting for multiple scattering, the method successfully recovers the permittivity distribution where the traditional linear inverse scattering fails.
Ulugbek S. Kamilov, Dehong Liu, Hassan Mansour, and Petros T. Boufounos
10.1109/LSP.2016.2579647
1603.03768
null
null
A Primer on the Signature Method in Machine Learning
stat.ML cs.LG stat.ME
In these notes, we wish to provide an introduction to the signature method, focusing on its basic theoretical properties and recent numerical applications. The notes are split into two parts. The first part focuses on the definition and fundamental properties of the signature of a path, or the path signature. We have aimed for a minimalistic approach, assuming only familiarity with classical real analysis and integration theory, and supplementing theory with straightforward examples. We have chosen to focus in detail on the principle properties of the signature which we believe are fundamental to understanding its role in applications. We also present an informal discussion on some of its deeper properties and briefly mention the role of the signature in rough paths theory, which we hope could serve as a light introduction to rough paths for the interested reader. The second part of these notes discusses practical applications of the path signature to the area of machine learning. The signature approach represents a non-parametric way for extraction of characteristic features from data. The data are converted into a multi-dimensional path by means of various embedding algorithms and then processed for computation of individual terms of the signature which summarise certain information contained in the data. The signature thus transforms raw data into a set of features which are used in machine learning tasks. We will review current progress in applications of signatures to machine learning problems.
Ilya Chevyrev, Andrey Kormilitzin
null
1603.03788
null
null
Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks
cs.CL cs.AI cs.LG cs.NE stat.ML
Recent approaches based on artificial neural networks (ANNs) have shown promising results for short-text classification. However, many short texts occur in sequences (e.g., sentences in a document or utterances in a dialog), and most existing ANN-based systems do not leverage the preceding short texts when classifying a subsequent one. In this work, we present a model based on recurrent neural networks and convolutional neural networks that incorporates the preceding short texts. Our model achieves state-of-the-art results on three different datasets for dialog act prediction.
Ji Young Lee, Franck Dernoncourt
null
1603.03827
null
null
From virtual demonstration to real-world manipulation using LSTM and MDN
cs.RO cs.AI cs.LG
Robots assisting the disabled or elderly must perform complex manipulation tasks and must adapt to the home environment and preferences of their user. Learning from demonstration is a promising choice, that would allow the non-technical user to teach the robot different tasks. However, collecting demonstrations in the home environment of a disabled user is time consuming, disruptive to the comfort of the user, and presents safety challenges. It would be desirable to perform the demonstrations in a virtual environment. In this paper we describe a solution to the challenging problem of behavior transfer from virtual demonstration to a physical robot. The virtual demonstrations are used to train a deep neural network based controller, which is using a Long Short Term Memory (LSTM) recurrent neural network to generate trajectories. The training process uses a Mixture Density Network (MDN) to calculate an error signal suitable for the multimodal nature of demonstrations. The controller learned in the virtual environment is transferred to a physical robot (a Rethink Robotics Baxter). An off-the-shelf vision component is used to substitute for geometric knowledge available in the simulation and an inverse kinematics module is used to allow the Baxter to enact the trajectory. Our experimental studies validate the three contributions of the paper: (1) the controller learned from virtual demonstrations can be used to successfully perform the manipulation tasks on a physical robot, (2) the LSTM+MDN architectural choice outperforms other choices, such as the use of feedforward networks and mean-squared error based training signals and (3) allowing imperfect demonstrations in the training set also allows the controller to learn how to correct its manipulation mistakes.
Rouhollah Rahmatizadeh, Pooya Abolghasemi, Aman Behal, Ladislau B\"ol\"oni
null
1603.03833
null
null
Pufferfish Privacy Mechanisms for Correlated Data
cs.LG cs.CR stat.ML
Many modern databases include personal and sensitive correlated data, such as private information on users connected together in a social network, and measurements of physical activity of single subjects across time. However, differential privacy, the current gold standard in data privacy, does not adequately address privacy issues in this kind of data. This work looks at a recent generalization of differential privacy, called Pufferfish, that can be used to address privacy in correlated data. The main challenge in applying Pufferfish is a lack of suitable mechanisms. We provide the first mechanism -- the Wasserstein Mechanism -- which applies to any general Pufferfish framework. Since this mechanism may be computationally inefficient, we provide an additional mechanism that applies to some practical cases such as physical activity measurements across time, and is computationally efficient. Our experimental evaluations indicate that this mechanism provides privacy and utility for synthetic as well as real data in two separate domains.
Shuang Song, Yizhen Wang, Kamalika Chaudhuri
null
1603.03977
null
null
On Learning High Dimensional Structured Single Index Models
stat.ML cs.AI cs.LG
Single Index Models (SIMs) are simple yet flexible semi-parametric models for machine learning, where the response variable is modeled as a monotonic function of a linear combination of features. Estimation in this context requires learning both the feature weights and the nonlinear function that relates features to observations. While methods have been described to learn SIMs in the low dimensional regime, a method that can efficiently learn SIMs in high dimensions, and under general structural assumptions, has not been forthcoming. In this paper, we propose computationally efficient algorithms for SIM inference in high dimensions with structural constraints. Our general approach specializes to sparsity, group sparsity, and low-rank assumptions among others. Experiments show that the proposed method enjoys superior predictive performance when compared to generalized linear models, and achieves results comparable to or better than single layer feedforward neural networks with significantly less computational cost.
Nikhil Rao, Ravi Ganti, Laura Balzano, Rebecca Willett, Robert Nowak
null
1603.03980
null
null
Learning Typographic Style
cs.CV cs.LG cs.NE
Typography is a ubiquitous art form that affects our understanding, perception, and trust in what we read. Thousands of different font-faces have been created with enormous variations in the characters. In this paper, we learn the style of a font by analyzing a small subset of only four letters. From these four letters, we learn two tasks. The first is a discrimination task: given the four letters and a new candidate letter, does the new letter belong to the same font? Second, given the four basis letters, can we generate all of the other letters with the same characteristics as those in the basis set? We use deep neural networks to address both tasks, quantitatively and qualitatively measure the results in a variety of novel manners, and present a thorough investigation of the weaknesses and strengths of the approach.
Shumeet Baluja
null
1603.04000
null
null
Fast Learning from Distributed Datasets without Entity Matching
cs.LG cs.DC
Consider the following data fusion scenario: two datasets/peers contain the same real-world entities described using partially shared features, e.g. banking and insurance company records of the same customer base. Our goal is to learn a classifier in the cross product space of the two domains, in the hard case in which no shared ID is available -- e.g. due to anonymization. Traditionally, the problem is approached by first addressing entity matching and subsequently learning the classifier in a standard manner. We present an end-to-end solution which bypasses matching entities, based on the recently introduced concept of Rademacher observations (rados). Informally, we replace the minimisation of a loss over examples, which requires to solve entity resolution, by the equivalent minimisation of a (different) loss over rados. Among others, key properties we show are (i) a potentially huge subset of these rados does not require to perform entity matching, and (ii) the algorithm that provably minimizes the rado loss over these rados has time and space complexities smaller than the algorithm minimizing the equivalent example loss. Last, we relax a key assumption of the model, that the data is vertically partitioned among peers --- in this case, we would not even know the existence of a solution to entity resolution. In this more general setting, experiments validate the possibility of significantly beating even the optimal peer in hindsight.
Giorgio Patrini, Richard Nock, Stephen Hardy, Tiberio Caetano
null
1603.04002
null
null
Active Algorithms For Preference Learning Problems with Multiple Populations
stat.ML cs.AI cs.LG
In this paper we model the problem of learning preferences of a population as an active learning problem. We propose an algorithm can adaptively choose pairs of items to show to users coming from a heterogeneous population, and use the obtained reward to decide which pair of items to show next. We provide computationally efficient algorithms with provable sample complexity guarantees for this problem in both the noiseless and noisy cases. In the process of establishing sample complexity guarantees for our algorithms, we establish new results using a Nystr{\"o}m-like method which can be of independent interest. We supplement our theoretical results with experimental comparisons.
Aniruddha Bhargava, Ravi Ganti, Robert Nowak
null
1603.04118
null
null
Exploratory Gradient Boosting for Reinforcement Learning in Complex Domains
cs.AI cs.LG stat.ML
High-dimensional observations and complex real-world dynamics present major challenges in reinforcement learning for both function approximation and exploration. We address both of these challenges with two complementary techniques: First, we develop a gradient-boosting style, non-parametric function approximator for learning on $Q$-function residuals. And second, we propose an exploration strategy inspired by the principles of state abstraction and information acquisition under uncertainty. We demonstrate the empirical effectiveness of these techniques, first, as a preliminary check, on two standard tasks (Blackjack and $n$-Chain), and then on two much larger and more realistic tasks with high-dimensional observation spaces. Specifically, we introduce two benchmarks built within the game Minecraft where the observations are pixel arrays of the agent's visual field. A combination of our two algorithmic techniques performs competitively on the standard reinforcement-learning tasks while consistently and substantially outperforming baselines on the two tasks with high-dimensional observation spaces. The new function approximator, exploration strategy, and evaluation benchmarks are each of independent interest in the pursuit of reinforcement-learning methods that scale to real-world domains.
David Abel, Alekh Agarwal, Fernando Diaz, Akshay Krishnamurthy, Robert E. Schapire
null
1603.04119
null
null
On the Influence of Momentum Acceleration on Online Learning
math.OC cs.LG stat.ML
The article examines in some detail the convergence rate and mean-square-error performance of momentum stochastic gradient methods in the constant step-size and slow adaptation regime. The results establish that momentum methods are equivalent to the standard stochastic gradient method with a re-scaled (larger) step-size value. The size of the re-scaling is determined by the value of the momentum parameter. The equivalence result is established for all time instants and not only in steady-state. The analysis is carried out for general strongly convex and smooth risk functions, and is not limited to quadratic risks. One notable conclusion is that the well-known bene ts of momentum constructions for deterministic optimization problems do not necessarily carry over to the adaptive online setting when small constant step-sizes are used to enable continuous adaptation and learn- ing in the presence of persistent gradient noise. From simulations, the equivalence between momentum and standard stochastic gradient methods is also observed for non-differentiable and non-convex problems.
Kun Yuan, Bicheng Ying, and Ali H. Sayed
null
1603.04136
null
null
Top-$K$ Ranking from Pairwise Comparisons: When Spectral Ranking is Optimal
cs.LG cs.IT cs.SI math.IT stat.ML
We explore the top-$K$ rank aggregation problem. Suppose a collection of items is compared in pairs repeatedly, and we aim to recover a consistent ordering that focuses on the top-$K$ ranked items based on partially revealed preference information. We investigate the Bradley-Terry-Luce model in which one ranks items according to their perceived utilities modeled as noisy observations of their underlying true utilities. Our main contributions are two-fold. First, in a general comparison model where item pairs to compare are given a priori, we attain an upper and lower bound on the sample size for reliable recovery of the top-$K$ ranked items. Second, more importantly, extending the result to a random comparison model where item pairs to compare are chosen independently with some probability, we show that in slightly restricted regimes, the gap between the derived bounds reduces to a constant factor, hence reveals that a spectral method can achieve the minimax optimality on the (order-wise) sample size required for top-$K$ ranking. That is to say, we demonstrate a spectral method alone to be sufficient to achieve the optimality and advantageous in terms of computational complexity, as it does not require an additional stage of maximum likelihood estimation that a state-of-the-art scheme employs to achieve the optimality. We corroborate our main results by numerical experiments.
Minje Jang, Sunghyun Kim, Changho Suh, Sewoong Oh
null
1603.04153
null
null
Visual Concept Recognition and Localization via Iterative Introspection
cs.CV cs.LG
Convolutional neural networks have been shown to develop internal representations, which correspond closely to semantically meaningful objects and parts, although trained solely on class labels. Class Activation Mapping (CAM) is a recent method that makes it possible to easily highlight the image regions contributing to a network's classification decision. We build upon these two developments to enable a network to re-examine informative image regions, which we term introspection. We propose a weakly-supervised iterative scheme, which shifts its center of attention to increasingly discriminative regions as it progresses, by alternating stages of classification and introspection. We evaluate our method and show its effectiveness over a range of several datasets, where we obtain competitive or state-of-the-art results: on Stanford-40 Actions, we set a new state-of the art of 81.74%. On FGVC-Aircraft and the Stanford Dogs dataset, we show consistent improvements over baselines, some of which include significantly more supervision.
Amir Rosenfeld, Shimon Ullman
null
1603.04186
null
null
Online Isotonic Regression
cs.LG stat.ML
We consider the online version of the isotonic regression problem. Given a set of linearly ordered points (e.g., on the real line), the learner must predict labels sequentially at adversarially chosen positions and is evaluated by her total squared loss compared against the best isotonic (non-decreasing) function in hindsight. We survey several standard online learning algorithms and show that none of them achieve the optimal regret exponent; in fact, most of them (including Online Gradient Descent, Follow the Leader and Exponential Weights) incur linear regret. We then prove that the Exponential Weights algorithm played over a covering net of isotonic functions has a regret bounded by $O\big(T^{1/3} \log^{2/3}(T)\big)$ and present a matching $\Omega(T^{1/3})$ lower bound on regret. We provide a computationally efficient version of this algorithm. We also analyze the noise-free case, in which the revealed labels are isotonic, and show that the bound can be improved to $O(\log T)$ or even to $O(1)$ (when the labels are revealed in isotonic order). Finally, we extend the analysis beyond squared loss and give bounds for entropic loss and absolute loss.
Wojciech Kot{\l}owski, Wouter M. Koolen, Alan Malek
null
1603.04190
null
null
A Variational Perspective on Accelerated Methods in Optimization
math.OC cs.LG stat.ML
Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. While many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the \emph{Bregman Lagrangian} which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods correspond to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.
Andre Wibisono, Ashia C. Wilson, Michael I. Jordan
10.1073/pnas.1614734113
1603.04245
null
null
Item2Vec: Neural Item Embedding for Collaborative Filtering
cs.LG cs.AI cs.IR
Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that item-based CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.
Oren Barkan and Noam Koenigstein
null
1603.04259
null
null
Universal probability-free prediction
cs.LG
We construct universal prediction systems in the spirit of Popper's falsifiability and Kolmogorov complexity and randomness. These prediction systems do not depend on any statistical assumptions (but under the IID assumption they dominate, to within the usual accuracy, conformal prediction). Our constructions give rise to a theory of algorithmic complexity and randomness of time containing analogues of several notions and results of the classical theory of Kolmogorov complexity and randomness.
Vladimir Vovk and Dusko Pavlovic
null
1603.04283
null
null
Learning Network of Multivariate Hawkes Processes: A Time Series Approach
cs.LG cs.AI stat.ML
Learning the influence structure of multiple time series data is of great interest to many disciplines. This paper studies the problem of recovering the causal structure in network of multivariate linear Hawkes processes. In such processes, the occurrence of an event in one process affects the probability of occurrence of new events in some other processes. Thus, a natural notion of causality exists between such processes captured by the support of the excitation matrix. We show that the resulting causal influence network is equivalent to the Directed Information graph (DIG) of the processes, which encodes the causal factorization of the joint distribution of the processes. Furthermore, we present an algorithm for learning the support of excitation matrix (or equivalently the DIG). The performance of the algorithm is evaluated on synthesized multivariate Hawkes networks as well as a stock market and MemeTracker real-world dataset.
Jalal Etesami, Negar Kiyavash, Kun Zhang, Kushagra Singhal
null
1603.04319
null
null
Criteria of efficiency for conformal prediction
cs.LG
We study optimal conformity measures for various criteria of efficiency of classification in an idealised setting. This leads to an important class of criteria of efficiency that we call probabilistic; it turns out that the most standard criteria of efficiency used in literature on conformal prediction are not probabilistic unless the problem of classification is binary. We consider both unconditional and label-conditional conformal prediction.
Vladimir Vovk, Ilia Nouretdinov, Valentina Fedorova, Ivan Petej, and Alex Gammerman
null
1603.04416
null
null
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
cs.DC cs.LG
TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algorithms, including training and inference algorithms for deep neural network models, and it has been used for conducting research and for deploying machine learning systems into production across more than a dozen areas of computer science and other fields, including speech recognition, computer vision, robotics, information retrieval, natural language processing, geographic information extraction, and computational drug discovery. This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google. The TensorFlow API and a reference implementation were released as an open-source package under the Apache 2.0 license in November, 2015 and are available at www.tensorflow.org.
Mart\'in Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
null
1603.04467
null
null
Conformal Predictors for Compound Activity Prediction
cs.LG
The paper presents an application of Conformal Predictors to a chemoinformatics problem of identifying activities of chemical compounds. The paper addresses some specific challenges of this domain: a large number of compounds (training examples), high-dimensionality of feature space, sparseness and a strong class imbalance. A variant of conformal predictors called Inductive Mondrian Conformal Predictor is applied to deal with these challenges. Results are presented for several non-conformity measures (NCM) extracted from underlying algorithms and different kernels. A number of performance measures are used in order to demonstrate the flexibility of Inductive Mondrian Conformal Predictors in dealing with such a complex set of data. Keywords: Conformal Prediction, Confidence Estimation, Chemoinformatics, Non-Conformity Measure.
Paolo Toccacheli, Ilia Nouretdinov and Alexander Gammerman
null
1603.04506
null
null
Object Contour Detection with a Fully Convolutional Encoder-Decoder Network
cs.CV cs.LG
We develop a deep learning algorithm for contour detection with a fully convolutional encoder-decoder network. Different from previous low-level edge detection, our algorithm focuses on detecting higher-level object contours. Our network is trained end-to-end on PASCAL VOC with refined ground truth from inaccurate polygon annotations, yielding much higher precision in object contour detection than previous methods. We find that the learned model generalizes well to unseen object classes from the same super-categories on MS COCO and can match state-of-the-art edge detection on BSDS500 with fine-tuning. By combining with the multiscale combinatorial grouping algorithm, our method can generate high-quality segmented object proposals, which significantly advance the state-of-the-art on PASCAL VOC (improving average recall from 0.62 to 0.67) with a relatively small amount of candidates ($\sim$1660 per image).
Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, Ming-Hsuan Yang
null
1603.04530
null
null
Learning Domain-Invariant Subspace using Domain Features and Independence Maximization
cs.CV cs.AI cs.LG
Domain adaptation algorithms are useful when the distributions of the training and the test data are different. In this paper, we focus on the problem of instrumental variation and time-varying drift in the field of sensors and measurement, which can be viewed as discrete and continuous distributional change in the feature space. We propose maximum independence domain adaptation (MIDA) and semi-supervised MIDA (SMIDA) to address this problem. Domain features are first defined to describe the background information of a sample, such as the device label and acquisition time. Then, MIDA learns a subspace which has maximum independence with the domain features, so as to reduce the inter-domain discrepancy in distributions. A feature augmentation strategy is also designed to project samples according to their backgrounds so as to improve the adaptation. The proposed algorithms are flexible and fast. Their effectiveness is verified by experiments on synthetic datasets and four real-world ones on sensors, measurement, and computer vision. They can greatly enhance the practicability of sensor systems, as well as extend the application scope of existing domain adaptation algorithms by uniformly handling different kinds of distributional change.
Ke Yan, Lu Kou, and David Zhang
10.1109/TCYB.2016.2633306
1603.04535
null
null
Matching while Learning
cs.LG cs.DS stat.ME stat.ML
We consider the problem faced by a service platform that needs to match limited supply with demand but also to learn the attributes of new users in order to match them better in the future. We introduce a benchmark model with heterogeneous "workers" (demand) and a limited supply of "jobs" that arrive over time. Job types are known to the platform, but worker types are unknown and must be learned by observing match outcomes. Workers depart after performing a certain number of jobs. The expected payoff from a match depends on the pair of types and the goal is to maximize the steady-state rate of accumulation of payoff. Though we use terminology inspired by labor markets, our framework applies more broadly to platforms where a limited supply of heterogeneous products is matched to users over time. Our main contribution is a complete characterization of the structure of the optimal policy in the limit that each worker performs many jobs. The platform faces a trade-off for each worker between myopically maximizing payoffs (exploitation) and learning the type of the worker (exploration). This creates a multitude of multi-armed bandit problems, one for each worker, coupled together by the constraint on availability of jobs of different types (capacity constraints). We find that the platform should estimate a shadow price for each job type, and use the payoffs adjusted by these prices, first, to determine its learning goals and then, for each worker, (i) to balance learning with payoffs during the "exploration phase," and (ii) to myopically match after it has achieved its learning goals during the "exploitation phase."
Ramesh Johari, Vijay Kamble and Yash Kanoria
null
1603.04549
null
null
Unsupervised Ranking Model for Entity Coreference Resolution
cs.CL cs.LG
Coreference resolution is one of the first stages in deep language understanding and its importance has been well recognized in the natural language processing community. In this paper, we propose a generative, unsupervised ranking model for entity coreference resolution by introducing resolution mode variables. Our unsupervised system achieves 58.44% F1 score of the CoNLL metric on the English data from the CoNLL-2012 shared task (Pradhan et al., 2012), outperforming the Stanford deterministic system (Lee et al., 2013) by 3.01%.
Xuezhe Ma and Zhengzhong Liu and Eduard Hovy
null
1603.04553
null
null
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
stat.ML cs.LG
We introduce a variational Bayesian neural network where the parameters are governed via a probability distribution on random matrices. Specifically, we employ a matrix variate Gaussian \cite{gupta1999matrix} parameter posterior distribution where we explicitly model the covariance among the input and output dimensions of each layer. Furthermore, with approximate covariance matrices we can achieve a more efficient way to represent those correlations that is also cheaper than fully factorized parameter posteriors. We further show that with the "local reprarametrization trick" \cite{kingma2015variational} on this posterior distribution we arrive at a Gaussian Process \cite{rasmussen2006gaussian} interpretation of the hidden units in each layer and we, similarly with \cite{gal2015dropout}, provide connections with deep Gaussian processes. We continue in taking advantage of this duality and incorporate "pseudo-data" \cite{snelson2005sparse} in our model, which in turn allows for more efficient sampling while maintaining the properties of the original model. The validity of the proposed approach is verified through extensive experiments.
Christos Louizos and Max Welling
null
1603.04733
null
null
Revisiting Batch Normalization For Practical Domain Adaptation
cs.CV cs.LG
Deep neural networks (DNN) have shown unprecedented success in various computer vision applications such as image classification and object detection. However, it is still a common annoyance during the training phase, that one has to prepare at least thousands of labeled images to fine-tune a network to a specific domain. Recent study (Tommasi et al. 2015) shows that a DNN has strong dependency towards the training dataset, and the learned features cannot be easily transferred to a different but relevant task without fine-tuning. In this paper, we propose a simple yet powerful remedy, called Adaptive Batch Normalization (AdaBN) to increase the generalization ability of a DNN. By modulating the statistics in all Batch Normalization layers across the network, our approach achieves deep adaptation effect for domain adaptation tasks. In contrary to other deep learning domain adaptation methods, our method does not require additional components, and is parameter-free. It archives state-of-the-art performance despite its surprising simplicity. Furthermore, we demonstrate that our method is complementary with other existing methods. Combining AdaBN with existing domain adaptation treatments may further improve model performance.
Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, Xiaodi Hou
null
1603.04779
null
null
Ensemble of Deep Convolutional Neural Networks for Learning to Detect Retinal Vessels in Fundus Images
cs.LG cs.CV stat.ML
Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and ensemble learning for reliable detection of blood vessels in fundus color images. An ensemble of deep convolutional neural networks is trained to segment vessel and non-vessel areas of a color fundus image. During inference, the responses of the individual ConvNets of the ensemble are averaged to form the final segmentation. In experimental evaluation with the DRIVE database, we achieve the objective of vessel detection with maximum average accuracy of 94.7\% and area under ROC curve of 0.9283.
Debapriya Maji, Anirban Santara, Pabitra Mitra and Debdoot Sheet
null
1603.04833
null
null
Bias Correction for Regularized Regression and its Application in Learning with Streaming Data
stat.ML cs.LG
We propose an approach to reduce the bias of ridge regression and regularization kernel network. When applied to a single data set the new algorithms have comparable learning performance with the original ones. When applied to incremental learning with block wise streaming data the new algorithms are more efficient due to bias reduction. Both theoretical characterizations and simulation studies are used to verify the effectiveness of these new algorithms.
Qiang Wu
null
1603.04882
null
null
Turing learning: a metric-free approach to inferring behavior and its application to swarms
stat.ML cs.LG cs.NE
We propose Turing Learning, a novel system identification method for inferring the behavior of natural or artificial systems. Turing Learning simultaneously optimizes two populations of computer programs, one representing models of the behavior of the system under investigation, and the other representing classifiers. By observing the behavior of the system as well as the behaviors produced by the models, two sets of data samples are obtained. The classifiers are rewarded for discriminating between these two sets, that is, for correctly categorizing data samples as either genuine or counterfeit. Conversely, the models are rewarded for 'tricking' the classifiers into categorizing their data samples as genuine. Unlike other methods for system identification, Turing Learning does not require predefined metrics to quantify the difference between the system and its models. We present two case studies with swarms of simulated robots and prove that the underlying behaviors cannot be inferred by a metric-based system identification method. By contrast, Turing Learning infers the behaviors with high accuracy. It also produces a useful by-product - the classifiers - that can be used to detect abnormal behavior in the swarm. Moreover, we show that Turing Learning also successfully infers the behavior of physical robot swarms. The results show that collective behaviors can be directly inferred from motion trajectories of individuals in the swarm, which may have significant implications for the study of animal collectives. Furthermore, Turing Learning could prove useful whenever a behavior is not easily characterizable using metrics, making it suitable for a wide range of applications.
Wei Li, Melvin Gauci and Roderich Gross
10.1007/s11721-016-0126-1
1603.04904
null
null
Data Clustering and Graph Partitioning via Simulated Mixing
cs.LG stat.ML
Spectral clustering approaches have led to well-accepted algorithms for finding accurate clusters in a given dataset. However, their application to large-scale datasets has been hindered by computational complexity of eigenvalue decompositions. Several algorithms have been proposed in the recent past to accelerate spectral clustering, however they compromise on the accuracy of the spectral clustering to achieve faster speed. In this paper, we propose a novel spectral clustering algorithm based on a mixing process on a graph. Unlike the existing spectral clustering algorithms, our algorithm does not require computing eigenvectors. Specifically, it finds the equivalent of a linear combination of eigenvectors of the normalized similarity matrix weighted with corresponding eigenvalues. This linear combination is then used to partition the dataset into meaningful clusters. Simulations on real datasets show that partitioning datasets based on such linear combinations of eigenvectors achieves better accuracy than standard spectral clustering methods as the number of clusters increase. Our algorithm can easily be implemented in a distributed setting.
Shahzad Bhatti, Carolyn Beck, Angelia Nedic
null
1603.04918
null
null
Deep Fully-Connected Networks for Video Compressive Sensing
cs.CV cs.LG cs.MM
In this work we present a deep learning framework for video compressive sensing. The proposed formulation enables recovery of video frames in a few seconds at significantly improved reconstruction quality compared to previous approaches. Our investigation starts by learning a linear mapping between video sequences and corresponding measured frames which turns out to provide promising results. We then extend the linear formulation to deep fully-connected networks and explore the performance gains using deeper architectures. Our analysis is always driven by the applicability of the proposed framework on existing compressive video architectures. Extensive simulations on several video sequences document the superiority of our approach both quantitatively and qualitatively. Finally, our analysis offers insights into understanding how dataset sizes and number of layers affect reconstruction performance while raising a few points for future investigation. Code is available at Github: https://github.com/miliadis/DeepVideoCS
Michael Iliadis, Leonidas Spinoulas, Aggelos K. Katsaggelos
null
1603.04930
null
null
On the Complexity of One-class SVM for Multiple Instance Learning
cs.LG
In traditional multiple instance learning (MIL), both positive and negative bags are required to learn a prediction function. However, a high human cost is needed to know the label of each bag---positive or negative. Only positive bags contain our focus (positive instances) while negative bags consist of noise or background (negative instances). So we do not expect to spend too much to label the negative bags. Contrary to our expectation, nearly all existing MIL methods require enough negative bags besides positive ones. In this paper we propose an algorithm called "Positive Multiple Instance" (PMI), which learns a classifier given only a set of positive bags. So the annotation of negative bags becomes unnecessary in our method. PMI is constructed based on the assumption that the unknown positive instances in positive bags be similar each other and constitute one compact cluster in feature space and the negative instances locate outside this cluster. The experimental results demonstrate that PMI achieves the performances close to or a little worse than those of the traditional MIL algorithms on benchmark and real data sets. However, the number of training bags in PMI is reduced significantly compared with traditional MIL algorithms.
Zhen Hu, Zhuyin Xue
null
1603.04947
null
null
Online Optimization in Dynamic Environments: Improved Regret Rates for Strongly Convex Problems
cs.LG math.OC
In this paper, we address tracking of a time-varying parameter with unknown dynamics. We formalize the problem as an instance of online optimization in a dynamic setting. Using online gradient descent, we propose a method that sequentially predicts the value of the parameter and in turn suffers a loss. The objective is to minimize the accumulation of losses over the time horizon, a notion that is termed dynamic regret. While existing methods focus on convex loss functions, we consider strongly convex functions so as to provide better guarantees of performance. We derive a regret bound that captures the path-length of the time-varying parameter, defined in terms of the distance between its consecutive values. In other words, the bound represents the natural connection of tracking quality to the rate of change of the parameter. We provide numerical experiments to complement our theoretical findings.
Aryan Mokhtari and Shahin Shahrampour and Ali Jadbabaie and Alejandro Ribeiro
null
1603.04954
null
null
An Approximate Dynamic Programming Approach to Adversarial Online Learning
cs.GT cs.DS cs.LG stat.ML
We describe an approximate dynamic programming (ADP) approach to compute approximations of the optimal strategies and of the minimal losses that can be guaranteed in discounted repeated games with vector-valued losses. Such games prominently arise in the analysis of regret in repeated decision-making in adversarial environments, also known as adversarial online learning. At the core of our approach is a characterization of the lower Pareto frontier of the set of expected losses that a player can guarantee in these games as the unique fixed point of a set-valued dynamic programming operator. When applied to the problem of regret minimization with discounted losses, our approach yields algorithms that achieve markedly improved performance bounds compared to off-the-shelf online learning algorithms like Hedge. These results thus suggest the significant potential of ADP-based approaches in adversarial online learning.
Vijay Kamble, Patrick Loiseau, Jean Walrand
null
1603.04981
null
null
Scaled stochastic gradient descent for low-rank matrix completion
cs.LG math.OC
The paper looks at a scaled variant of the stochastic gradient descent algorithm for the matrix completion problem. Specifically, we propose a novel matrix-scaling of the partial derivatives that acts as an efficient preconditioning for the standard stochastic gradient descent algorithm. This proposed matrix-scaling provides a trade-off between local and global second order information. It also resolves the issue of scale invariance that exists in matrix factorization models. The overall computational complexity is linear with the number of known entries, thereby extending to a large-scale setup. Numerical comparisons show that the proposed algorithm competes favorably with state-of-the-art algorithms on various different benchmarks.
Bamdev Mishra and Rodolphe Sepulchre
null
1603.04989
null
null
Identity Mappings in Deep Residual Networks
cs.CV cs.LG
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which makes training easier and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62% error) and CIFAR-100, and a 200-layer ResNet on ImageNet. Code is available at: https://github.com/KaimingHe/resnet-1k-layers
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
null
1603.05027
null
null
One-Shot Generalization in Deep Generative Models
stat.ML cs.AI cs.LG
Humans have an impressive ability to reason about new concepts and experiences from just a single example. In particular, humans have an ability for one-shot generalization: an ability to encounter a new concept, understand its structure, and then be able to generate compelling alternative variations of the concept. We develop machine learning systems with this important capacity by developing new deep generative models, models that combine the representational power of deep learning with the inferential power of Bayesian reasoning. We develop a class of sequential generative models that are built on the principles of feedback and attention. These two characteristics lead to generative models that are among the state-of-the art in density estimation and image generation. We demonstrate the one-shot generalization ability of our models using three tasks: unconditional sampling, generating new exemplars of a given concept, and generating new exemplars of a family of concepts. In all cases our models are able to generate compelling and diverse samples---having seen new examples just once---providing an important class of general-purpose models for one-shot machine learning.
Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, Daan Wierstra
null
1603.05106
null
null
Suppressing the Unusual: towards Robust CNNs using Symmetric Activation Functions
cs.CV cs.AI cs.LG
Many deep Convolutional Neural Networks (CNN) make incorrect predictions on adversarial samples obtained by imperceptible perturbations of clean samples. We hypothesize that this is caused by a failure to suppress unusual signals within network layers. As remedy we propose the use of Symmetric Activation Functions (SAF) in non-linear signal transducer units. These units suppress signals of exceptional magnitude. We prove that SAF networks can perform classification tasks to arbitrary precision in a simplified situation. In practice, rather than use SAFs alone, we add them into CNNs to improve their robustness. The modified CNNs can be easily trained using popular strategies with the moderate training load. Our experiments on MNIST and CIFAR-10 show that the modified CNNs perform similarly to plain ones on clean samples, and are remarkably more robust against adversarial and nonsense samples.
Qiyang Zhao, Lewis D Griffin
null
1603.05145
null
null
Feature Selection as a Multiagent Coordination Problem
cs.LG stat.ML
Datasets with hundreds to tens of thousands features is the new norm. Feature selection constitutes a central problem in machine learning, where the aim is to derive a representative set of features from which to construct a classification (or prediction) model for a specific task. Our experimental study involves microarray gene expression datasets, these are high-dimensional and noisy datasets that contain genetic data typically used for distinguishing between benign or malicious tissues or classifying different types of cancer. In this paper, we formulate feature selection as a multiagent coordination problem and propose a novel feature selection method using multiagent reinforcement learning. The central idea of the proposed approach is to "assign" a reinforcement learning agent to each feature where each agent learns to control a single feature, we refer to this approach as MARL. Applying this to microarray datasets creates an enormous multiagent coordination problem between thousands of learning agents. To address the scalability challenge we apply a form of reward shaping called CLEAN rewards. We compare in total nine feature selection methods, including state-of-the-art methods, and show that the proposed method using CLEAN rewards can significantly scale-up, thus outperforming the rest of learning-based methods. We further show that a hybrid variant of MARL achieves the best overall performance.
Kleanthis Malialis and Jun Wang and Gary Brooks and George Frangou
null
1603.05152
null
null
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
cs.LG math.OC
In this paper we study inexact dumped Newton method implemented in a distributed environment. We start with an original DiSCO algorithm [Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss, Yuchen Zhang and Lin Xiao, 2015]. We will show that this algorithm may not scale well and propose an algorithmic modifications which will lead to less communications, better load-balancing and more efficient computation. We perform numerical experiments with an regularized empirical loss minimization instance described by a 273GB dataset.
Chenxin Ma and Martin Tak\'a\v{c}
null
1603.05191
null
null
Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units
cs.LG cs.CV
Recently, convolutional neural networks (CNNs) have been used as a powerful tool to solve many problems of machine learning and computer vision. In this paper, we aim to provide insight on the property of convolutional neural networks, as well as a generic method to improve the performance of many CNN architectures. Specifically, we first examine existing CNN models and observe an intriguing property that the filters in the lower layers form pairs (i.e., filters with opposite phase). Inspired by our observation, we propose a novel, simple yet effective activation scheme called concatenated ReLU (CRelu) and theoretically analyze its reconstruction property in CNNs. We integrate CRelu into several state-of-the-art CNN architectures and demonstrate improvement in their recognition performance on CIFAR-10/100 and ImageNet datasets with fewer trainable parameters. Our results suggest that better understanding of the properties of CNNs can lead to significant performance improvement with a simple modification.
Wenling Shang, Kihyuk Sohn, Diogo Almeida, Honglak Lee
null
1603.05201
null
null
Fast moment estimation for generalized latent Dirichlet models
math.ST cs.LG stat.AP stat.ME stat.TH
We develop a generalized method of moments (GMM) approach for fast parameter estimation in a new class of Dirichlet latent variable models with mixed data types. Parameter estimation via GMM has been demonstrated to have computational and statistical advantages over alternative methods, such as expectation maximization, variational inference, and Markov chain Monte Carlo. The key computational advan- tage of our method (MELD) is that parameter estimation does not require instantiation of the latent variables. Moreover, a representational advantage of the GMM approach is that the behavior of the model is agnostic to distributional assumptions of the observations. We derive population moment conditions after marginalizing out the sample-specific Dirichlet latent variables. The moment conditions only depend on component mean parameters. We illustrate the utility of our approach on simulated data, comparing results from MELD to alternative methods, and we show the promise of our approach through the application of MELD to several data sets.
Shiwen Zhao and Barbara E. Engelhardt and Sayan Mukherjee and David B. Dunson
null
1603.05324
null
null
Cascading Bandits for Large-Scale Recommendation Problems
cs.LG stat.ML
Most recommender systems recommend a list of items. The user examines the list, from the first item to the last, and often chooses the first attractive item and does not examine the rest. This type of user behavior can be modeled by the cascade model. In this work, we study cascading bandits, an online learning variant of the cascade model where the goal is to recommend $K$ most attractive items from a large set of $L$ candidate items. We propose two algorithms for solving this problem, which are based on the idea of linear generalization. The key idea in our solutions is that we learn a predictor of the attraction probabilities of items from their features, as opposing to learning the attraction probability of each item independently as in the existing work. This results in practical learning algorithms whose regret does not depend on the number of items $L$. We bound the regret of one algorithm and comprehensively evaluate the other on a range of recommendation problems. The algorithm performs well and outperforms all baselines.
Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton
null
1603.05359
null
null
Online semi-parametric learning for inverse dynamics modeling
math.OC cs.LG stat.ML
This paper presents a semi-parametric algorithm for online learning of a robot inverse dynamics model. It combines the strength of the parametric and non-parametric modeling. The former exploits the rigid body dynamics equa- tion, while the latter exploits a suitable kernel function. We provide an extensive comparison with other methods from the literature using real data from the iCub humanoid robot. In doing so we also compare two different techniques, namely cross validation and marginal likelihood optimization, for estimating the hyperparameters of the kernel function.
Diego Romeres and Mattia Zorzi and Raffaello Camoriano and Alessandro Chiuso
null
1603.05412
null
null
Accelerating Deep Neural Network Training with Inconsistent Stochastic Gradient Descent
cs.LG cs.DC
SGD is the widely adopted method to train CNN. Conceptually it approximates the population with a randomly sampled batch; then it evenly trains batches by conducting a gradient update on every batch in an epoch. In this paper, we demonstrate Sampling Bias, Intrinsic Image Difference and Fixed Cycle Pseudo Random Sampling differentiate batches in training, which then affect learning speeds on them. Because of this, the unbiased treatment of batches involved in SGD creates improper load balancing. To address this issue, we present Inconsistent Stochastic Gradient Descent (ISGD) to dynamically vary training effort according to learning statuses on batches. Specifically ISGD leverages techniques in Statistical Process Control to identify a undertrained batch. Once a batch is undertrained, ISGD solves a new subproblem, a chasing logic plus a conservative constraint, to accelerate the training on the batch while avoid drastic parameter changes. Extensive experiments on a variety of datasets demonstrate ISGD converges faster than SGD. In training AlexNet, ISGD is 21.05\% faster than SGD to reach 56\% top1 accuracy under the exactly same experiment setup. We also extend ISGD to work on multiGPU or heterogeneous distributed system based on data parallelism, enabling the batch size to be the key to scalability. Then we present the study of ISGD batch size to the learning rate, parallelism, synchronization cost, system saturation and scalability. We conclude the optimal ISGD batch size is machine dependent. Various experiments on a multiGPU system validate our claim. In particular, ISGD trains AlexNet to 56.3% top1 and 80.1% top5 accuracy in 11.5 hours with 4 NVIDIA TITAN X at the batch size of 1536.
Linnan Wang, Yi Yang, Martin Renqiang Min, Srimat Chakradhar
null
1603.05544
null
null
Reliable Prediction Intervals for Local Linear Regression
stat.ME cs.LG
This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD). The experimental results compare BOPI to other methods using coverage probability, Mean Interval Size and the introduced EGSD measure. The results were generally in favor of the BOPI on considered benchmark regression datasets. It also, reports simulation studies validating the BOPI method's reliability.
Mohammad Ghasemi Hamed and Masoud Ebadi Kivaj
null
1603.05587
null
null
Streaming Algorithms for News and Scientific Literature Recommendation: Submodular Maximization with a d-Knapsack Constraint
cs.LG cs.DS
Submodular maximization problems belong to the family of combinatorial optimization problems and enjoy wide applications. In this paper, we focus on the problem of maximizing a monotone submodular function subject to a $d$-knapsack constraint, for which we propose a streaming algorithm that achieves a $\left(\frac{1}{1+2d}-\epsilon\right)$-approximation of the optimal value, while it only needs one single pass through the dataset without storing all the data in the memory. In our experiments, we extensively evaluate the effectiveness of our proposed algorithm via two applications: news recommendation and scientific literature recommendation. It is observed that the proposed streaming algorithm achieves both execution speedup and memory saving by several orders of magnitude, compared with existing approaches.
Qilian Yu, Easton Li Xu, Shuguang Cui
null
1603.05614
null
null
Discriminative Embeddings of Latent Variable Models for Structured Data
cs.LG
Kernel classifiers and regressors designed for structured data, such as sequences, trees and graphs, have significantly advanced a number of interdisciplinary areas such as computational biology and drug design. Typically, kernels are designed beforehand for a data type which either exploit statistics of the structures or make use of probabilistic generative models, and then a discriminative classifier is learned based on the kernels via convex optimization. However, such an elegant two-stage approach also limited kernel methods from scaling up to millions of data points, and exploiting discriminative information to learn feature representations. We propose, structure2vec, an effective and scalable approach for structured data representation based on the idea of embedding latent variable models into feature spaces, and learning such feature spaces using discriminative information. Interestingly, structure2vec extracts features by performing a sequence of function mappings in a way similar to graphical model inference procedures, such as mean field and belief propagation. In applications involving millions of data points, we showed that structure2vec runs 2 times faster, produces models which are $10,000$ times smaller, while at the same time achieving the state-of-the-art predictive performance.
Hanjun Dai, Bo Dai, Le Song
null
1603.05629
null
null
Optimal Black-Box Reductions Between Optimization Objectives
math.OC cs.DS cs.LG stat.ML
The diverse world of machine learning applications has given rise to a plethora of algorithms and optimization methods, finely tuned to the specific regression or classification task at hand. We reduce the complexity of algorithm design for machine learning by reductions: we develop reductions that take a method developed for one setting and apply it to the entire spectrum of smoothness and strong-convexity in applications. Furthermore, unlike existing results, our new reductions are OPTIMAL and more PRACTICAL. We show how these new reductions give rise to new and faster running times on training linear classifiers for various families of loss functions, and conclude with experiments showing their successes also in practice.
Zeyuan Allen-Zhu, Elad Hazan
null
1603.05642
null
null
Variance Reduction for Faster Non-Convex Optimization
math.OC cs.DS cs.LG cs.NE stat.ML
We consider the fundamental problem in non-convex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order non-convex optimization remain to be full gradient descent that converges in $O(1/\varepsilon)$ iterations for smooth objectives, and stochastic gradient descent that converges in $O(1/\varepsilon^2)$ iterations for objectives that are sum of smooth functions. We provide the first improvement in this line of research. Our result is based on the variance reduction trick recently introduced to convex optimization, as well as a brand new analysis of variance reduction that is suitable for non-convex optimization. For objectives that are sum of smooth functions, our first-order minibatch stochastic method converges with an $O(1/\varepsilon)$ rate, and is faster than full gradient descent by $\Omega(n^{1/3})$. We demonstrate the effectiveness of our methods on empirical risk minimizations with non-convex loss functions and training neural nets.
Zeyuan Allen-Zhu, Elad Hazan
null
1603.05643
null
null
Predicting health inspection results from online restaurant reviews
cs.CL cs.LG
Informatics around public health are increasingly shifting from the professional to the public spheres. In this work, we apply linguistic analytics to restaurant reviews, from Yelp, in order to automatically predict official health inspection reports. We consider two types of feature sets, i.e., keyword detection and topic model features, and use these in several classification methods. Our empirical analysis shows that these extracted features can predict public health inspection reports with over 90% accuracy using simple support vector machines.
Samantha Wong and Hamidreza Chinaei and Frank Rudzicz
null
1603.05673
null
null
Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
stat.ML cs.LG
Yes, they do. This paper provides the first empirical demonstration that deep convolutional models really need to be both deep and convolutional, even when trained with methods such as distillation that allow small or shallow models of high accuracy to be trained. Although previous research showed that shallow feed-forward nets sometimes can learn the complex functions previously learned by deep nets while using the same number of parameters as the deep models they mimic, in this paper we demonstrate that the same methods cannot be used to train accurate models on CIFAR-10 unless the student models contain multiple layers of convolution. Although the student models do not have to be as deep as the teacher model they mimic, the students need multiple convolutional layers to learn functions of comparable accuracy as the deep convolutional teacher.
Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose and Matt Richardson
null
1603.05691
null
null
A Comparison between Deep Neural Nets and Kernel Acoustic Models for Speech Recognition
cs.LG stat.ML
We study large-scale kernel methods for acoustic modeling and compare to DNNs on performance metrics related to both acoustic modeling and recognition. Measuring perplexity and frame-level classification accuracy, kernel-based acoustic models are as effective as their DNN counterparts. However, on token-error-rates DNN models can be significantly better. We have discovered that this might be attributed to DNN's unique strength in reducing both the perplexity and the entropy of the predicted posterior probabilities. Motivated by our findings, we propose a new technique, entropy regularized perplexity, for model selection. This technique can noticeably improve the recognition performance of both types of models, and reduces the gap between them. While effective on Broadcast News, this technique could be also applicable to other tasks.
Zhiyun Lu, Dong Guo, Alireza Bagheri Garakani, Kuan Liu, Avner May, Aurelien Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, Fei Sha
null
1603.05800
null
null
Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning
cs.NE cs.LG cs.SD
Recognizing acoustic events is an intricate problem for a machine and an emerging field of research. Deep neural networks achieve convincing results and are currently the state-of-the-art approach for many tasks. One advantage is their implicit feature learning, opposite to an explicit feature extraction of the input signal. In this work, we analyzed whether more discriminative features can be learned from either the time-domain or the frequency-domain representation of the audio signal. For this purpose, we trained multiple deep networks with different architectures on the Freiburg-106 and ESC-10 datasets. Our results show that feature learning from the frequency domain is superior to the time domain. Moreover, additionally using convolution and pooling layers, to explore local structures of the audio signal, significantly improves the recognition performance and achieves state-of-the-art results.
Lars Hertel, Huy Phan, Alfred Mertins
null
1603.05824
null
null
N-ary Error Correcting Coding Scheme
cs.LG
The coding matrix design plays a fundamental role in the prediction performance of the error correcting output codes (ECOC)-based multi-class task. {In many-class classification problems, e.g., fine-grained categorization, it is difficult to distinguish subtle between-class differences under existing coding schemes due to a limited choices of coding values.} In this paper, we investigate whether one can relax existing binary and ternary code design to $N$-ary code design to achieve better classification performance. {In particular, we present a novel $N$-ary coding scheme that decomposes the original multi-class problem into simpler multi-class subproblems, which is similar to applying a divide-and-conquer method.} The two main advantages of such a coding scheme are as follows: (i) the ability to construct more discriminative codes and (ii) the flexibility for the user to select the best $N$ for ECOC-based classification. We show empirically that the optimal $N$ (based on classification performance) lies in $[3, 10]$ with some trade-off in computational cost. Moreover, we provide theoretical insights on the dependency of the generalization error bound of an $N$-ary ECOC on the average base classifier generalization error and the minimum distance between any two codes constructed. Extensive experimental results on benchmark multi-class datasets show that the proposed coding scheme achieves superior prediction performance over the state-of-the-art coding methods.
Joey Tianyi Zhou, Ivor W. Tsang, Shen-Shyang Ho and Klaus-Robert Muller
null
1603.05850
null
null
Distributed Iterative Learning Control for a Team of Quadrotors
cs.RO cs.LG cs.MA
The goal of this work is to enable a team of quadrotors to learn how to accurately track a desired trajectory while holding a given formation. We solve this problem in a distributed manner, where each vehicle has only access to the information of its neighbors. The desired trajectory is only available to one (or few) vehicles. We present a distributed iterative learning control (ILC) approach where each vehicle learns from the experience of its own and its neighbors' previous task repetitions, and adapts its feedforward input to improve performance. Existing algorithms are extended in theory to make them more applicable to real-world experiments. In particular, we prove stability for any causal learning function with gains chosen according to a simple scalar condition. Previous proofs were restricted to a specific learning function that only depends on the tracking error derivative (D-type ILC). Our extension provides more degrees of freedom in the ILC design and, as a result, better performance can be achieved. We also show that stability is not affected by a linear dynamic coupling between neighbors. This allows us to use an additional consensus feedback controller to compensate for non-repetitive disturbances. Experiments with two quadrotors attest the effectiveness of the proposed distributed multi-agent ILC approach. This is the first work to show distributed ILC in experiment.
Andreas Hock, Angela P. Schoellig
null
1603.05933
null
null
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
math.OC cs.DS cs.LG stat.ML
Nesterov's momentum trick is famously known for accelerating gradient descent, and has been proven useful in building fast iterative algorithms. However, in the stochastic setting, counterexamples exist and prevent Nesterov's momentum from providing similar acceleration, even if the underlying problem is convex and finite-sum. We introduce $\mathtt{Katyusha}$, a direct, primal-only stochastic gradient method to fix this issue. In convex finite-sum stochastic optimization, $\mathtt{Katyusha}$ has an optimal accelerated convergence rate, and enjoys an optimal parallel linear speedup in the mini-batch setting. The main ingredient is $\textit{Katyusha momentum}$, a novel "negative momentum" on top of Nesterov's momentum. It can be incorporated into a variance-reduction based algorithm and speed it up, both in terms of $\textit{sequential and parallel}$ performance. Since variance reduction has been successfully applied to a growing list of practical problems, our paper suggests that in each of such cases, one could potentially try to give Katyusha a hug.
Zeyuan Allen-Zhu
null
1603.05953
null
null
Document Neural Autoregressive Distribution Estimation
cs.LG cs.CL
We present an approach based on feed-forward neural networks for learning the distribution of textual documents. This approach is inspired by the Neural Autoregressive Distribution Estimator(NADE) model, which has been shown to be a good estimator of the distribution of discrete-valued igh-dimensional vectors. In this paper, we present how NADE can successfully be adapted to the case of textual data, retaining from NADE the property that sampling or computing the probability of observations can be done exactly and efficiently. The approach can also be used to learn deep representations of documents that are competitive to those learned by the alternative topic modeling approaches. Finally, we describe how the approach can be combined with a regular neural network N-gram model and substantially improve its performance, by making its learned representation sensitive to the larger, document-specific context.
Stanislas Lauly, Yin Zheng, Alexandre Allauzen, Hugo Larochelle
null
1603.05962
null
null
L0-norm Sparse Graph-regularized SVD for Biclustering
cs.LG stat.ML
Learning the "blocking" structure is a central challenge for high dimensional data (e.g., gene expression data). Recently, a sparse singular value decomposition (SVD) has been used as a biclustering tool to achieve this goal. However, this model ignores the structural information between variables (e.g., gene interaction graph). Although typical graph-regularized norm can incorporate such prior graph information to get accurate discovery and better interpretability, it fails to consider the opposite effect of variables with different signs. Motivated by the development of sparse coding and graph-regularized norm, we propose a novel sparse graph-regularized SVD as a powerful biclustering tool for analyzing high-dimensional data. The key of this method is to impose two penalties including a novel graph-regularized norm ($|\pmb{u}|\pmb{L}|\pmb{u}|$) and $L_0$-norm ($\|\pmb{u}\|_0$) on singular vectors to induce structural sparsity and enhance interpretability. We design an efficient Alternating Iterative Sparse Projection (AISP) algorithm to solve it. Finally, we apply our method and related ones to simulated and real data to show its efficiency in capturing natural blocking structures.
Wenwen Min, Juan Liu, Shihua Zhang
null
1603.06035
null
null
Tensor Methods and Recommender Systems
cs.LG cs.IR stat.ML
A substantial progress in development of new and efficient tensor factorization techniques has led to an extensive research of their applicability in recommender systems field. Tensor-based recommender models push the boundaries of traditional collaborative filtering techniques by taking into account a multifaceted nature of real environments, which allows to produce more accurate, situational (e.g. context-aware, criteria-driven) recommendations. Despite the promising results, tensor-based methods are poorly covered in existing recommender systems surveys. This survey aims to complement previous works and provide a comprehensive overview on the subject. To the best of our knowledge, this is the first attempt to consolidate studies from various application domains in an easily readable, digestible format, which helps to get a notion of the current state of the field. We also provide a high level discussion of the future perspectives and directions for further improvement of tensor-based recommendation systems.
Evgeny Frolov and Ivan Oseledets
null
1603.06038
null
null
Globally Normalized Transition-Based Neural Networks
cs.CL cs.LG cs.NE
We introduce a globally normalized transition-based neural network model that achieves state-of-the-art part-of-speech tagging, dependency parsing and sentence compression results. Our model is a simple feed-forward neural network that operates on a task-specific transition system, yet achieves comparable or better accuracies than recurrent models. We discuss the importance of global as opposed to local normalization: a key insight is that the label bias problem implies that globally normalized models can be strictly more expressive than locally normalized models.
Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov and Michael Collins
null
1603.06042
null
null
Fast DPP Sampling for Nystr\"om with Application to Kernel Methods
cs.LG
The Nystr\"om method has long been popular for scaling up kernel methods. Its theoretical guarantees and empirical performance rely critically on the quality of the landmarks selected. We study landmark selection for Nystr\"om using Determinantal Point Processes (DPPs), discrete probability models that allow tractable generation of diverse samples. We prove that landmarks selected via DPPs guarantee bounds on approximation errors; subsequently, we analyze implications for kernel ridge regression. Contrary to prior reservations due to cubic complexity of DPPsampling, we show that (under certain conditions) Markov chain DPP sampling requires only linear time in the size of the data. We present several empirical results that support our theoretical analysis, and demonstrate the superior performance of DPP-based landmark selection compared with existing approaches.
Chengtao Li, Stefanie Jegelka and Suvrit Sra
null
1603.06052
null
null
DASA: Domain Adaptation in Stacked Autoencoders using Systematic Dropout
cs.CV cs.LG
Domain adaptation deals with adapting behaviour of machine learning based systems trained using samples in source domain to their deployment in target domain where the statistics of samples in both domains are dissimilar. The task of directly training or adapting a learner in the target domain is challenged by lack of abundant labeled samples. In this paper we propose a technique for domain adaptation in stacked autoencoder (SAE) based deep neural networks (DNN) performed in two stages: (i) unsupervised weight adaptation using systematic dropouts in mini-batch training, (ii) supervised fine-tuning with limited number of labeled samples in target domain. We experimentally evaluate performance in the problem of retinal vessel segmentation where the SAE-DNN is trained using large number of labeled samples in the source domain (DRIVE dataset) and adapted using less number of labeled samples in target domain (STARE dataset). The performance of SAE-DNN measured using $logloss$ in source domain is $0.19$, without and with adaptation are $0.40$ and $0.18$, and $0.39$ when trained exclusively with limited samples in target domain. The area under ROC curve is observed respectively as $0.90$, $0.86$, $0.92$ and $0.87$. The high efficiency of vessel segmentation with DASA strongly substantiates our claim.
Abhijit Guha Roy and Debdoot Sheet
null
1603.06060
null
null
Deep Shading: Convolutional Neural Networks for Screen-Space Shading
cs.GR cs.LG
In computer vision, convolutional neural networks (CNNs) have recently achieved new levels of performance for several inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen-space shading has recently increased the visual quality in interactive image synthesis, where per-pixel attributes such as positions, normals or reflectance of a virtual 3D scene are converted into RGB pixel appearance, enabling effects like ambient occlusion, indirect light, scattering, depth-of-field, motion blur, or anti-aliasing. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading simulates various screen-space effects at competitive quality and speed while not being programmed by human experts but learned from example images.
Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, Tobias Ritschel
10.1111/cgf.13225
1603.06078
null
null
How Transferable are Neural Networks in NLP Applications?
cs.CL cs.LG cs.NE
Transfer learning is aimed to make use of valuable knowledge in a source domain to help model performance in a target domain. It is particularly important to neural networks, which are very likely to be overfitting. In some fields like image processing, many studies have shown the effectiveness of neural network-based transfer learning. For neural NLP, however, existing studies have only casually applied transfer learning, and conclusions are inconsistent. In this paper, we conduct systematic case studies and provide an illuminating picture on the transferability of neural networks in NLP.
Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, Zhi Jin
null
1603.06111
null
null
Sentence Pair Scoring: Towards Unified Framework for Text Comprehension
cs.CL cs.AI cs.LG cs.NE
We review the task of Sentence Pair Scoring, popular in the literature in various forms - viewed as Answer Sentence Selection, Semantic Text Scoring, Next Utterance Ranking, Recognizing Textual Entailment, Paraphrasing or e.g. a component of Memory Networks. We argue that all such tasks are similar from the model perspective and propose new baselines by comparing the performance of common IR metrics and popular convolutional, recurrent and attention-based neural models across many Sentence Pair Scoring tasks and datasets. We discuss the problem of evaluating randomized models, propose a statistically grounded methodology, and attempt to improve comparisons by releasing new datasets that are much harder than some of the currently used well explored benchmarks. We introduce a unified open source software framework with easily pluggable models and tasks, which enables us to experiment with multi-task reusability of trained sentence model. We set a new state-of-art in performance on the Ubuntu Dialogue dataset.
Petr Baudi\v{s}, Jan Pichl, Tom\'a\v{s} Vysko\v{c}il, Jan \v{S}ediv\'y
null
1603.06127
null
null
Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks
cs.PL cs.AI cs.LG cs.SE
We present a method for automatically generating repair feedback for syntax errors for introductory programming problems. Syntax errors constitute one of the largest classes of errors (34%) in our dataset of student submissions obtained from a MOOC course on edX. The previous techniques for generating automated feed- back on programming assignments have focused on functional correctness and style considerations of student programs. These techniques analyze the program AST of the program and then perform some dynamic and symbolic analyses to compute repair feedback. Unfortunately, it is not possible to generate ASTs for student pro- grams with syntax errors and therefore the previous feedback techniques are not applicable in repairing syntax errors. We present a technique for providing feedback on syntax errors that uses Recurrent neural networks (RNNs) to model syntactically valid token sequences. Our approach is inspired from the recent work on learning language models from Big Code (large code corpus). For a given programming assignment, we first learn an RNN to model all valid token sequences using the set of syntactically correct student submissions. Then, for a student submission with syntax errors, we query the learnt RNN model with the prefix to- ken sequence to predict token sequences that can fix the error by either replacing or inserting the predicted token sequence at the error location. We evaluate our technique on over 14, 000 student submissions with syntax errors. Our technique can completely re- pair 31.69% (4501/14203) of submissions with syntax errors and in addition partially correct 6.39% (908/14203) of the submissions.
Sahil Bhatia and Rishabh Singh
null
1603.06129
null
null
A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation
cs.CL cs.LG
The existing machine translation systems, whether phrase-based or neural, have relied almost exclusively on word-level modelling with explicit segmentation. In this paper, we ask a fundamental question: can neural machine translation generate a character sequence without any explicit segmentation? To answer this question, we evaluate an attention-based encoder-decoder with a subword-level encoder and a character-level decoder on four language pairs--En-Cs, En-De, En-Ru and En-Fi-- using the parallel corpora from WMT'15. Our experiments show that the models with a character-level decoder outperform the ones with a subword-level decoder on all of the four language pairs. Furthermore, the ensembles of neural models with a character-level decoder outperform the state-of-the-art non-neural machine translation systems on En-Cs, En-De and En-Fi and perform comparably on En-Ru.
Junyoung Chung, Kyunghyun Cho and Yoshua Bengio
null
1603.06147
null
null
Fast Incremental Method for Nonconvex Optimization
math.OC cs.LG stat.ML
We analyze a fast incremental aggregated gradient method for optimizing nonconvex problems of the form $\min_x \sum_i f_i(x)$. Specifically, we analyze the SAGA algorithm within an Incremental First-order Oracle framework, and show that it converges to a stationary point provably faster than both gradient descent and stochastic gradient descent. We also discuss a Polyak's special class of nonconvex problems for which SAGA converges at a linear rate to the global optimum. Finally, we analyze the practically valuable regularized and minibatch variants of SAGA. To our knowledge, this paper presents the first analysis of fast convergence for an incremental aggregated gradient method for nonconvex problems.
Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, Alex Smola
null
1603.06159
null
null
Stochastic Variance Reduction for Nonconvex Optimization
math.OC cs.LG cs.NE stat.ML
We study nonconvex finite-sum problems and analyze stochastic variance reduced gradient (SVRG) methods for them. SVRG and related methods have recently surged into prominence for convex optimization given their edge over stochastic gradient descent (SGD); but their theoretical analysis almost exclusively assumes convexity. In contrast, we prove non-asymptotic rates of convergence (to stationary points) of SVRG for nonconvex optimization, and show that it is provably faster than SGD and gradient descent. We also analyze a subclass of nonconvex problems on which SVRG attains linear convergence to the global optimum. We extend our analysis to mini-batch variants of SVRG, showing (theoretical) linear speedup due to mini-batching in parallel settings.
Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, Alex Smola
null
1603.06160
null
null
Joint Stochastic Approximation learning of Helmholtz Machines
cs.LG stat.ML
Though with progress, model learning and performing posterior inference still remains a common challenge for using deep generative models, especially for handling discrete hidden variables. This paper is mainly concerned with algorithms for learning Helmholz machines, which is characterized by pairing the generative model with an auxiliary inference model. A common drawback of previous learning algorithms is that they indirectly optimize some bounds of the targeted marginal log-likelihood. In contrast, we successfully develop a new class of algorithms, based on stochastic approximation (SA) theory of the Robbins-Monro type, to directly optimize the marginal log-likelihood and simultaneously minimize the inclusive KL-divergence. The resulting learning algorithm is thus called joint SA (JSA). Moreover, we construct an effective MCMC operator for JSA. Our results on the MNIST datasets demonstrate that the JSA's performance is consistently superior to that of competing algorithms like RWS, for learning a range of difficult models.
Haotian Xu, Zhijian Ou
null
1603.06170
null
null
Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science
cs.NE cs.AI cs.LG
As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement an open source Tree-based Pipeline Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a series of simulated and real-world benchmark data sets. In particular, we show that TPOT can design machine learning pipelines that provide a significant improvement over a basic machine learning analysis while requiring little to no input nor prior knowledge from the user. We also address the tendency for TPOT to design overly complex pipelines by integrating Pareto optimization, which produces compact pipelines without sacrificing classification accuracy. As such, this work represents an important step toward fully automating machine learning pipeline design.
Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, Jason H. Moore
null
1603.06212
null
null
Flow of Information in Feed-Forward Deep Neural Networks
cs.IT cs.LG math.IT
Feed-forward deep neural networks have been used extensively in various machine learning applications. Developing a precise understanding of the underling behavior of neural networks is crucial for their efficient deployment. In this paper, we use an information theoretic approach to study the flow of information in a neural network and to determine how entropy of information changes between consecutive layers. Moreover, using the Information Bottleneck principle, we develop a constrained optimization problem that can be used in the training process of a deep neural network. Furthermore, we determine a lower bound for the level of data representation that can be achieved in a deep neural network with an acceptable level of distortion.
Pejman Khadivi, Ravi Tandon, Naren Ramakrishnan
null
1603.06220
null
null
Collaborative prediction with expert advice
cs.LG
Many practical learning systems aggregate data across many users, while learning theory traditionally considers a single learner who trusts all of their observations. A case in point is the foundational learning problem of prediction with expert advice. To date, there has been no theoretical study of the general collaborative version of prediction with expert advice, in which many users face a similar problem and would like to share their experiences in order to learn faster. A key issue in this collaborative framework is robustness: generally algorithms that aggregate data are vulnerable to manipulation by even a small number of dishonest users. We exhibit the first robust collaborative algorithm for prediction with expert advice. When all users are honest and have similar tastes our algorithm matches the performance of pooling data and using a traditional algorithm. But our algorithm also guarantees that adding users never significantly degrades performance, even if the additional users behave adversarially. We achieve strong guarantees even when the overwhelming majority of users behave adversarially. As a special case, our algorithm is extremely robust to variation amongst the users.
Paul Christiano
null
1603.06265
null
null
Multi-Task Cross-Lingual Sequence Tagging from Scratch
cs.CL cs.LG
We present a deep hierarchical recurrent neural network for sequence tagging. Given a sequence of words, our model employs deep gated recurrent units on both character and word levels to encode morphology and context information, and applies a conditional random field layer to predict the tags. Our model is task independent, language independent, and feature engineering free. We further extend our model to multi-task and cross-lingual joint training by sharing the architecture and parameters. Our model achieves state-of-the-art results in multiple languages on several benchmark tasks including POS tagging, chunking, and NER. We also demonstrate that multi-task and cross-lingual joint training can improve the performance in various cases.
Zhilin Yang and Ruslan Salakhutdinov and William Cohen
null
1603.06270
null
null
Multi-fidelity Gaussian Process Bandit Optimisation
stat.ML cs.AI cs.LG
In many scientific and engineering applications, we are tasked with the maximisation of an expensive to evaluate black box function $f$. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to $f$ may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of $f$ in a small but promising region and speedily identify the optimum. We formalise this task as a \emph{multi-fidelity} bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour, and achieves better regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.
Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff Schneider, Barnabas Poczos
null
1603.06288
null
null
Harnessing Deep Neural Networks with Logic Rules
cs.LG cs.AI cs.CL stat.ML
Combining deep neural networks with structured logic rules is desirable to harness flexibility and reduce uninterpretability of the neural models. We propose a general framework capable of enhancing various types of neural networks (e.g., CNNs and RNNs) with declarative first-order logic rules. Specifically, we develop an iterative distillation method that transfers the structured information of logic rules into the weights of neural networks. We deploy the framework on a CNN for sentiment analysis, and an RNN for named entity recognition. With a few highly intuitive rules, we obtain substantial improvements and achieve state-of-the-art or comparable results to previous best-performing systems.
Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, Eric Xing
null
1603.06318
null
null
Learning Dexterous Manipulation for a Soft Robotic Hand from Human Demonstration
cs.LG cs.RO
Dexterous multi-fingered hands can accomplish fine manipulation behaviors that are infeasible with simple robotic grippers. However, sophisticated multi-fingered hands are often expensive and fragile. Low-cost soft hands offer an appealing alternative to more conventional devices, but present considerable challenges in sensing and actuation, making them difficult to apply to more complex manipulation tasks. In this paper, we describe an approach to learning from demonstration that can be used to train soft robotic hands to perform dexterous manipulation tasks. Our method uses object-centric demonstrations, where a human demonstrates the desired motion of manipulated objects with their own hands, and the robot autonomously learns to imitate these demonstrations using reinforcement learning. We propose a novel algorithm that allows us to blend and select a subset of the most feasible demonstrations to learn to imitate on the hardware, which we use with an extension of the guided policy search framework to use multiple demonstrations to learn generalizable neural network policies. We demonstrate our approach on the RBO Hand 2, with learned motor skills for turning a valve, manipulating an abacus, and grasping.
Abhishek Gupta, Clemens Eppner, Sergey Levine, Pieter Abbeel
null
1603.06348
null
null
Online Learning with Low Rank Experts
cs.LG
We consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown $d$-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank $d$. For the stochastic model we show a tight bound of $\Theta(\sqrt{dT})$, and extend it to a setting of an approximate $d$ subspace. For the adversarial model we show an upper bound of $O(d\sqrt{T})$ and a lower bound of $\Omega(\sqrt{dT})$.
Elad Hazan, Tomer Koren, Roi Livni, Yishay Mansour
null
1603.06352
null
null
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
cs.CL cs.AI cs.LG cs.NE
We address an important problem in sequence-to-sequence (Seq2Seq) learning referred to as copying, in which certain segments in the input sequence are selectively replicated in the output sequence. A similar phenomenon is observable in human language communication. For example, humans tend to repeat entity names or even long phrases in conversation. The challenge with regard to copying in Seq2Seq is that new machinery is needed to decide when to perform the operation. In this paper, we incorporate copying into neural network-based Seq2Seq learning and propose a new model called CopyNet with encoder-decoder structure. CopyNet can nicely integrate the regular way of word generation in the decoder with the new copying mechanism which can choose sub-sequences in the input sequence and put them at proper places in the output sequence. Our empirical study on both synthetic data sets and real world data sets demonstrates the efficacy of CopyNet. For example, CopyNet can outperform regular RNN-based model with remarkable margins on text summarization tasks.
Jiatao Gu, Zhengdong Lu, Hang Li and Victor O.K. Li
null
1603.06393
null
null
Deep Learning in Bioinformatics
cs.LG q-bio.GN
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e., omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e., deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.
Seonwoo Min, Byunghan Lee, Sungroh Yoon
null
1603.06430
null
null
Hard-Clustering with Gaussian Mixture Models
cs.LG cs.DS
Training the parameters of statistical models to describe a given data set is a central task in the field of data mining and machine learning. A very popular and powerful way of parameter estimation is the method of maximum likelihood estimation (MLE). Among the most widely used families of statistical models are mixture models, especially, mixtures of Gaussian distributions. A popular hard-clustering variant of the MLE problem is the so-called complete-data maximum likelihood estimation (CMLE) method. The standard approach to solve the CMLE problem is the Classification-Expectation-Maximization (CEM) algorithm. Unfortunately, it is only guaranteed that the algorithm converges to some (possibly arbitrarily poor) stationary point of the objective function. In this paper, we present two algorithms for a restricted version of the CMLE problem. That is, our algorithms approximate reasonable solutions to the CMLE problem which satisfy certain natural properties. Moreover, they compute solutions whose cost (i.e. complete-data log-likelihood values) are at most a factor $(1+\epsilon)$ worse than the cost of the solutions that we search for. Note the CMLE problem in its most general, i.e. unrestricted, form is not well defined and allows for trivial optimal solutions that can be thought of as degenerated solutions.
Johannes Bl\"omer, Sascha Brauer, Kathrin Bujna
null
1603.06478
null
null
Deep video gesture recognition using illumination invariants
cs.CV cs.LG
In this paper we present architectures based on deep neural nets for gesture recognition in videos, which are invariant to local scaling. We amalgamate autoencoder and predictor architectures using an adaptive weighting scheme coping with a reduced size labeled dataset, while enriching our models from enormous unlabeled sets. We further improve robustness to lighting conditions by introducing a new adaptive filer based on temporal local scale normalization. We provide superior results over known methods, including recent reported approaches based on neural nets.
Otkrist Gupta, Dan Raviv, Ramesh Raskar
null
1603.06531
null
null
A Comparison Study of Nonlinear Kernels
stat.ML cs.LG
In this paper, we compare 5 different nonlinear kernels: min-max, RBF, fRBF (folded RBF), acos, and acos-$\chi^2$, on a wide range of publicly available datasets. The proposed fRBF kernel performs very similarly to the RBF kernel. Both RBF and fRBF kernels require an important tuning parameter ($\gamma$). Interestingly, for a significant portion of the datasets, the min-max kernel outperforms the best-tuned RBF/fRBF kernels. The acos kernel and acos-$\chi^2$ kernel also perform well in general and in some datasets achieve the best accuracies. One crucial issue with the use of nonlinear kernels is the excessive computational and memory cost. These days, one increasingly popular strategy is to linearize the kernels through various randomization algorithms. In our study, the randomization method for the min-max kernel demonstrates excellent performance compared to the randomization methods for other types of nonlinear kernels, measured in terms of the number of nonzero terms in the transformed dataset. Our study provides evidence for supporting the use of the min-max kernel and the corresponding randomized linearization method (i.e., the so-called "0-bit CWS"). Furthermore, the results motivate at least two directions for future research: (i) To develop new (and linearizable) nonlinear kernels for better accuracies; and (ii) To develop better linearization algorithms for improving the current linearization methods for the RBF kernel, the acos kernel, and the acos-$\chi^2$ kernel. One attempt is to combine the min-max kernel with the acos kernel or the acos-$\chi^2$ kernel. The advantages of these two new and tuning-free nonlinear kernels are demonstrated vias our extensive experiments.
Ping Li
null
1603.06541
null
null
Action-Affect Classification and Morphing using Multi-Task Representation Learning
cs.CV cs.AI cs.HC cs.LG
Most recent work focused on affect from facial expressions, and not as much on body. This work focuses on body affect analysis. Affect does not occur in isolation. Humans usually couple affect with an action in natural interactions; for example, a person could be talking and smiling. Recognizing body affect in sequences requires efficient algorithms to capture both the micro movements that differentiate between happy and sad and the macro variations between different actions. We depart from traditional approaches for time-series data analytics by proposing a multi-task learning model that learns a shared representation that is well-suited for action-affect classification as well as generation. For this paper we choose Conditional Restricted Boltzmann Machines to be our building block. We propose a new model that enhances the CRBM model with a factored multi-task component to become Multi-Task Conditional Restricted Boltzmann Machines (MTCRBMs). We evaluate our approach on two publicly available datasets, the Body Affect dataset and the Tower Game dataset, and show superior classification performance improvement over the state-of-the-art, as well as the generative abilities of our model.
Timothy J. Shields, Mohamed R. Amer, Max Ehrlich, Amir Tamrakar
null
1603.06554
null
null
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
cs.LG stat.ML
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar
null
1603.06560
null
null
Bayesian Neural Word Embedding
cs.CL cs.LG
Recently, several works in the domain of natural language processing presented successful methods for word embedding. Among them, the Skip-Gram with negative sampling, known also as word2vec, advanced the state-of-the-art of various linguistics tasks. In this paper, we propose a scalable Bayesian neural word embedding algorithm. The algorithm relies on a Variational Bayes solution for the Skip-Gram objective and a detailed step by step description is provided. We present experimental results that demonstrate the performance of the proposed algorithm for word analogy and similarity tasks on six different datasets and show it is competitive with the original Skip-Gram method.
Oren Barkan
null
1603.06571
null
null
Variational Autoencoders for Feature Detection of Magnetic Resonance Imaging Data
cs.LG cs.NE stat.ML
Independent component analysis (ICA), as an approach to the blind source-separation (BSS) problem, has become the de-facto standard in many medical imaging settings. Despite successes and a large ongoing research effort, the limitation of ICA to square linear transformations have not been overcome, so that general INFOMAX is still far from being realized. As an alternative, we present feature analysis in medical imaging as a problem solved by Helmholtz machines, which include dimensionality reduction and reconstruction of the raw data under the same objective, and which recently have overcome major difficulties in inference and learning with deep and nonlinear configurations. We demonstrate one approach to training Helmholtz machines, variational auto-encoders (VAE), as a viable approach toward feature extraction with magnetic resonance imaging (MRI) data.
R. Devon Hjelm and Sergey M. Plis and Vince C. Calhoun
null
1603.06624
null
null
Information Theoretic-Learning Auto-Encoder
cs.LG
We propose Information Theoretic-Learning (ITL) divergence measures for variational regularization of neural networks. We also explore ITL-regularized autoencoders as an alternative to variational autoencoding bayes, adversarial autoencoders and generative adversarial networks for randomly generating sample data without explicitly defining a partition function. This paper also formalizes, generative moment matching networks under the ITL framework.
Eder Santana, Matthew Emigh and Jose C Principe
null
1603.06653
null
null
Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis
cs.CL cs.IR cs.LG
In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge.
Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier and Xiaokui Xiao
null
1603.06679
null
null
A Self-Paced Regularization Framework for Multi-Label Learning
cs.LG
In this paper, we propose a novel multi-label learning framework, called Multi-Label Self-Paced Learning (MLSPL), in an attempt to incorporate the self-paced learning strategy into multi-label learning regime. In light of the benefits of adopting the easy-to-hard strategy proposed by self-paced learning, the devised MLSPL aims to learn multiple labels jointly by gradually including label learning tasks and instances into model training from the easy to the hard. We first introduce a self-paced function as a regularizer in the multi-label learning formulation, so as to simultaneously rank priorities of the label learning tasks and the instances in each learning iteration. Considering that different multi-label learning scenarios often need different self-paced schemes during optimization, we thus propose a general way to find the desired self-paced functions. Experimental results on three benchmark datasets suggest the state-of-the-art performance of our approach.
Changsheng Li and Fan Wei and Junchi Yan and Weishan Dong and Qingshan Liu and Xiaoyu Zhang and Hongyuan Zha
null
1603.06708
null
null
Localized Lasso for High-Dimensional Regression
stat.ML cs.LG stat.ME
We introduce the localized Lasso, which is suited for learning models that are both interpretable and have a high predictive power in problems with high dimensionality $d$ and small sample size $n$. More specifically, we consider a function defined by local sparse models, one at each data point. We introduce sample-wise network regularization to borrow strength across the models, and sample-wise exclusive group sparsity (a.k.a., $\ell_{1,2}$ norm) to introduce diversity into the choice of feature sets in the local models. The local models are interpretable in terms of similarity of their sparsity patterns. The cost function is convex, and thus has a globally optimal solution. Moreover, we propose a simple yet efficient iterative least-squares based optimization procedure for the localized Lasso, which does not need a tuning parameter, and is guaranteed to converge to a globally optimal solution. The solution is empirically shown to outperform alternatives for both simulated and genomic personalized medicine data.
Makoto Yamada, Koh Takeuchi, Tomoharu Iwata, John Shawe-Taylor, Samuel Kaski
null
1603.06743
null
null
Doubly Random Parallel Stochastic Methods for Large Scale Learning
cs.LG math.OC
We consider learning problems over training sets in which both, the number of training examples and the dimension of the feature vectors, are large. To solve these problems we propose the random parallel stochastic algorithm (RAPSA). We call the algorithm random parallel because it utilizes multiple processors to operate in a randomly chosen subset of blocks of the feature vector. We call the algorithm parallel stochastic because processors choose elements of the training set randomly and independently. Algorithms that are parallel in either of these dimensions exist, but RAPSA is the first attempt at a methodology that is parallel in both, the selection of blocks and the selection of elements of the training set. In RAPSA, processors utilize the randomly chosen functions to compute the stochastic gradient component associated with a randomly chosen block. The technical contribution of this paper is to show that this minimally coordinated algorithm converges to the optimal classifier when the training objective is convex. In particular, we show that: (i) When using decreasing stepsizes, RAPSA converges almost surely over the random choice of blocks and functions. (ii) When using constant stepsizes, convergence is to a neighborhood of optimality with a rate that is linear in expectation. RAPSA is numerically evaluated on the MNIST digit recognition problem.
Aryan Mokhtari and Alec Koppel and Alejandro Ribeiro
null
1603.06782
null
null
Using real-time cluster configurations of streaming asynchronous features as online state descriptors in financial markets
q-fin.TR cs.LG q-fin.CP
We present a scheme for online, unsupervised state discovery and detection from streaming, multi-featured, asynchronous data in high-frequency financial markets. Online feature correlations are computed using an unbiased, lossless Fourier estimator. A high-speed maximum likelihood clustering algorithm is then used to find the feature cluster configuration which best explains the structure in the correlation matrix. We conjecture that this feature configuration is a candidate descriptor for the temporal state of the system. Using a simple cluster configuration similarity metric, we are able to enumerate the state space based on prevailing feature configurations. The proposed state representation removes the need for human-driven data pre-processing for state attribute specification, allowing a learning agent to find structure in streaming data, discern changes in the system, enumerate its perceived state space and learn suitable action-selection policies.
Dieter Hendricks
null
1603.06805
null
null
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
cs.CL cs.AI cs.LG cs.NE
Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. However, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.
Iulian Vlad Serban, Alberto Garc\'ia-Dur\'an, Caglar Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron Courville, Yoshua Bengio
null
1603.06807
null
null
Multi-velocity neural networks for gesture recognition in videos
cs.CV cs.LG
We present a new action recognition deep neural network which adaptively learns the best action velocities in addition to the classification. While deep neural networks have reached maturity for image understanding tasks, we are still exploring network topologies and features to handle the richer environment of video clips. Here, we tackle the problem of multiple velocities in action recognition, and provide state-of-the-art results for gesture recognition, on known and new collected datasets. We further provide the training steps for our semi-supervised network, suited to learn from huge unlabeled datasets with only a fraction of labeled examples.
Otkrist Gupta, Dan Raviv and Ramesh Raskar
null
1603.06829
null
null