title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Dense Associative Memory for Pattern Recognition
cs.NE cond-mat.dis-nn cs.LG q-bio.NC stat.ML
A model of associative memory is studied, which stores and reliably retrieves many more patterns than the number of neurons in the network. We propose a simple duality between this dense associative memory and neural networks commonly used in deep learning. On the associative memory side of this duality, a family of models that smoothly interpolates between two limiting cases can be constructed. One limit is referred to as the feature-matching mode of pattern recognition, and the other one as the prototype regime. On the deep learning side of the duality, this family corresponds to feedforward neural networks with one hidden layer and various activation functions, which transmit the activities of the visible neurons to the hidden layer. This family of activation functions includes logistics, rectified linear units, and rectified polynomials of higher degrees. The proposed duality makes it possible to apply energy-based intuition from associative memory to analyze computational properties of neural networks with unusual activation functions - the higher rectified polynomials which until now have not been used in deep learning. The utility of the dense memories is illustrated for two test cases: the logical gate XOR and the recognition of handwritten digits from the MNIST data set.
Dmitry Krotov, John J Hopfield
null
1606.01164
null
null
Generalizing the Convolution Operator to extend CNNs to Irregular Domains
cs.LG cs.CV cs.NE
Convolutional Neural Networks (CNNs) have become the state-of-the-art in supervised learning vision tasks. Their convolutional filters are of paramount importance for they allow to learn patterns while disregarding their locations in input images. When facing highly irregular domains, generalized convolutional operators based on an underlying graph structure have been proposed. However, these operators do not exactly match standard ones on grid graphs, and introduce unwanted additional invariance (e.g. with regards to rotations). We propose a novel approach to generalize CNNs to irregular domains using weight sharing and graph-based operators. Using experiments, we show that these models resemble CNNs on regular domains and offer better performance than multilayer perceptrons on distorded ones.
Jean-Charles Vialatte, Vincent Gripon, Gr\'egoire Mercier
null
1606.01166
null
null
Infant directed speech is consistent with teaching
cs.LG
Infant-directed speech (IDS) has distinctive properties that differ from adult-directed speech (ADS). Why it has these properties -- and whether they are intended to facilitate language learning -- is matter of contention. We argue that much of this disagreement stems from lack of a formal, guiding theory of how phonetic categories should best be taught to infant-like learners. In the absence of such a theory, researchers have relied on intuitions about learning to guide the argument. We use a formal theory of teaching, validated through experiments in other domains, as the basis for a detailed analysis of whether IDS is well-designed for teaching phonetic categories. Using the theory, we generate ideal data for teaching phonetic categories in English. We qualitatively compare the simulated teaching data with human IDS, finding that the teaching data exhibit many features of IDS, including some that have been taken as evidence IDS is not for teaching. The simulated data reveal potential pitfalls for experimentalists exploring the role of IDS in language learning. Focusing on different formants and phoneme sets leads to different conclusions, and the benefit of the teaching data to learners is not apparent until a sufficient number of examples have been provided. Finally, we investigate transfer of IDS to learning ADS. The teaching data improves classification of ADS data, but only for the learner they were generated to teach; not universally across all classes of learner. This research offers a theoretically-grounded framework that empowers experimentalists to systematically evaluate whether IDS is for teaching.
Baxter S. Eaves Jr., Naomi H. Feldman, Thomas L. Griffiths, Patrick Shafto
null
1606.01175
null
null
Distributed stochastic optimization via matrix exponential learning
cs.IT cs.LG math.IT math.OC
In this paper, we investigate a distributed learning scheme for a broad class of stochastic optimization problems and games that arise in signal processing and wireless communications. The proposed algorithm relies on the method of matrix exponential learning (MXL) and only requires locally computable gradient observations that are possibly imperfect and/or obsolete. To analyze it, we introduce the notion of a stable Nash equilibrium and we show that the algorithm is globally convergent to such equilibria - or locally convergent when an equilibrium is only locally stable. We also derive an explicit linear bound for the algorithm's convergence speed, which remains valid under measurement errors and uncertainty of arbitrarily high variance. To validate our theoretical analysis, we test the algorithm in realistic multi-carrier/multiple-antenna wireless scenarios where several users seek to maximize their energy efficiency. Our results show that learning allows users to attain a net increase between 100% and 500% in energy efficiency, even under very high uncertainty.
Panayotis Mertikopoulos and E. Veronica Belmega and Romain Negrel and Luca Sanguinetti
10.1109/TSP.2017.2656847
1606.01190
null
null
Minimizing Regret on Reflexive Banach Spaces and Learning Nash Equilibria in Continuous Zero-Sum Games
cs.LG
We study a general version of the adversarial online learning problem. We are given a decision set $\mathcal{X}$ in a reflexive Banach space $X$ and a sequence of reward vectors in the dual space of $X$. At each iteration, we choose an action from $\mathcal{X}$, based on the observed sequence of previous rewards. Our goal is to minimize regret, defined as the gap between the realized reward and the reward of the best fixed action in hindsight. Using results from infinite dimensional convex analysis, we generalize the method of Dual Averaging (or Follow the Regularized Leader) to our setting and obtain general upper bounds on the worst-case regret that subsume a wide range of results from the literature. Under the assumption of uniformly continuous rewards, we obtain explicit anytime regret bounds in a setting where the decision set is the set of probability distributions on a compact metric space $S$ whose Radon-Nikodym derivatives are elements of $L^p(S)$ for some $p > 1$. Importantly, we make no convexity assumptions on either the set $S$ or the reward functions. We also prove a general lower bound on the worst-case regret for any online algorithm. We then apply these results to the problem of learning in repeated continuous two-player zero-sum games, in which players' strategy sets are compact metric spaces. In doing so, we first prove that if both players play a Hannan-consistent strategy, then with probability 1 the empirical distributions of play weakly converge to the set of Nash equilibria of the game. We then show that, under mild assumptions, Dual Averaging on the (infinite-dimensional) space of probability distributions indeed achieves Hannan-consistency. Finally, we illustrate our results through numerical examples.
Maximilian Balandat, Walid Krichene, Claire Tomlin and Alexandre Bayen
null
1606.01261
null
null
End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning
cs.CL cs.AI cs.LG
This paper presents a model for end-to-end learning of task-oriented dialog systems. The main component of the model is a recurrent neural network (an LSTM), which maps from raw dialog history directly to a distribution over system actions. The LSTM automatically infers a representation of dialog history, which relieves the system developer of much of the manual feature engineering of dialog state. In addition, the developer can provide software that expresses business rules and provides access to programmatic APIs, enabling the LSTM to take actions in the real world on behalf of the user. The LSTM can be optimized using supervised learning (SL), where a domain expert provides example dialogs which the LSTM should imitate; or using reinforcement learning (RL), where the system improves by interacting directly with end users. Experiments show that SL and RL are complementary: SL alone can derive a reasonable initial policy from a small number of training dialogs; and starting RL optimization with a policy trained with SL substantially accelerates the learning rate of RL.
Jason D. Williams and Geoffrey Zweig
null
1606.01269
null
null
Predicting with Distributions
cs.DS cs.LG
We consider a new learning model in which a joint distribution over vector pairs $(x,y)$ is determined by an unknown function $c(x)$ that maps input vectors $x$ not to individual outputs, but to entire {\em distributions\/} over output vectors $y$. Our main results take the form of rather general reductions from our model to algorithms for PAC learning the function class and the distribution class separately, and show that virtually every such combination yields an efficient algorithm in our model. Our methods include a randomized reduction to classification noise and an application of Le Cam's method to obtain robust learning algorithms.
Michael Kearns, Zhiwei Steven Wu
null
1606.01275
null
null
Dependency Parsing as Head Selection
cs.CL cs.LG
Conventional graph-based dependency parsers guarantee a tree structure both during training and inference. Instead, we formalize dependency parsing as the problem of independently selecting the head of each word in a sentence. Our model which we call \textsc{DeNSe} (as shorthand for {\bf De}pendency {\bf N}eural {\bf Se}lection) produces a distribution over possible heads for each word using features obtained from a bidirectional recurrent neural network. Without enforcing structural constraints during training, \textsc{DeNSe} generates (at inference time) trees for the overwhelming majority of sentences, while non-tree outputs can be adjusted with a maximum spanning tree algorithm. We evaluate \textsc{DeNSe} on four languages (English, Chinese, Czech, and German) with varying degrees of non-projectivity. Despite the simplicity of the approach, our parsers are on par with the state of the art.
Xingxing Zhang, Jianpeng Cheng and Mirella Lapata
null
1606.01280
null
null
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
cs.NE cs.CL cs.LG
We propose zoneout, a novel method for regularizing RNNs. At each timestep, zoneout stochastically forces some hidden units to maintain their previous values. Like dropout, zoneout uses random noise to train a pseudo-ensemble, improving generalization. But by preserving instead of dropping hidden units, gradient information and state information are more readily propagated through time, as in feedforward stochastic depth networks. We perform an empirical investigation of various RNN regularizers, and find that zoneout gives significant performance improvements across tasks. We achieve competitive results with relatively simple models in character- and word-level language modelling on the Penn Treebank and Text8 datasets, and combining with recurrent batch normalization yields state-of-the-art results on permuted sequential MNIST.
David Krueger, Tegan Maharaj, J\'anos Kram\'ar, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, Chris Pal
null
1606.01305
null
null
Distance Metric Ensemble Learning and the Andrews-Curtis Conjecture
cs.AI cs.DM cs.LG
Motivated by the search for a counterexample to the Poincar\'e conjecture in three and four dimensions, the Andrews-Curtis conjecture was proposed in 1965. It is now generally suspected that the Andrews-Curtis conjecture is false, but small potential counterexamples are not so numerous, and previous work has attempted to eliminate some via combinatorial search. Progress has however been limited, with the most successful approach (breadth-first-search using secondary storage) being neither scalable nor heuristically-informed. A previous empirical analysis of problem structure examined several heuristic measures of search progress and determined that none of them provided any useful guidance for search. In this article, we induce new quality measures directly from the problem structure and combine them to produce a more effective search driver via ensemble machine learning. By this means, we eliminate 19 potential counterexamples, the status of which had been unknown for some years.
Krzysztof Krawiec and Jerry Swan
null
1606.01412
null
null
Deep Q-Networks for Accelerating the Training of Deep Neural Networks
cs.LG cs.NE
In this paper, we propose a principled deep reinforcement learning (RL) approach that is able to accelerate the convergence rate of general deep neural networks (DNNs). With our approach, a deep RL agent (synonym for optimizer in this work) is used to automatically learn policies about how to schedule learning rates during the optimization of a DNN. The state features of the agent are learned from the weight statistics of the optimizee during training. The reward function of this agent is designed to learn policies that minimize the optimizee's training time given a certain performance goal. The actions of the agent correspond to changing the learning rate for the optimizee during training. As far as we know, this is the first attempt to use deep RL to learn how to optimize a large-sized DNN. We perform extensive experiments on a standard benchmark dataset and demonstrate the effectiveness of the policies learned by our approach.
Jie Fu
null
1606.01467
null
null
Bounds for Vector-Valued Function Estimation
stat.ML cs.LG
We present a framework to derive risk bounds for vector-valued learning with a broad class of feature maps and loss functions. Multi-task learning and one-vs-all multi-category learning are treated as examples. We discuss in detail vector-valued functions with one hidden layer, and demonstrate that the conditions under which shared representations are beneficial for multi- task learning are equally applicable to multi-category learning.
Andreas Maurer and Massimiliano Pontil
null
1606.01487
null
null
Adaptive Submodular Ranking and Routing
cs.DS cs.LG
We study a general stochastic ranking problem where an algorithm needs to adaptively select a sequence of elements so as to "cover" a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, where the scenario is said to be covered when its function value goes above a given threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best possible (unless P=NP). This problem unifies and generalizes many previously studied problems with applications in search ranking and active learning. The approximation ratio of our algorithm either matches or improves the best result known in each of these special cases. Furthermore, we extend our results to an adaptive vehicle routing problem, where costs are determined by an underlying metric. This routing problem is a significant generalization of the previously-studied adaptive traveling salesman and traveling repairman problems. Our approximation ratio nearly matches the best bound known for these special cases. Finally, we present experimental results for some applications of adaptive ranking.
Fatemeh Navidi, Prabhanjan Kambadur, Viswanath Nagarajan
null
1606.01530
null
null
OpenAI Gym
cs.LG cs.AI
OpenAI Gym is a toolkit for reinforcement learning research. It includes a growing collection of benchmark problems that expose a common interface, and a website where people can share their results and compare the performance of algorithms. This whitepaper discusses the components of OpenAI Gym and the design decisions that went into the software.
Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, Wojciech Zaremba
null
1606.01540
null
null
Gated-Attention Readers for Text Comprehension
cs.CL cs.LG
In this paper we study the problem of answering cloze-style questions over documents. Our model, the Gated-Attention (GA) Reader, integrates a multi-hop architecture with a novel attention mechanism, which is based on multiplicative interactions between the query embedding and the intermediate states of a recurrent neural network document reader. This enables the reader to build query-specific representations of tokens in the document for accurate answer selection. The GA Reader obtains state-of-the-art results on three benchmarks for this task--the CNN \& Daily Mail news stories and the Who Did What dataset. The effectiveness of multiplicative interaction is demonstrated by an ablation study, and by comparing to alternative compositional operators for implementing the gated-attention. The code is available at https://github.com/bdhingra/ga-reader.
Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov
null
1606.01549
null
null
Active Regression with Adaptive Huber Loss
cs.LG cs.CV
This paper addresses the scalar regression problem through a novel solution to exactly optimize the Huber loss in a general semi-supervised setting, which combines multi-view learning and manifold regularization. We propose a principled algorithm to 1) avoid computationally expensive iterative schemes while 2) adapting the Huber loss threshold in a data-driven fashion and 3) actively balancing the use of labelled data to remove noisy or inconsistent annotations at the training stage. In a wide experimental evaluation, dealing with diverse applications, we assess the superiority of our paradigm which is able to combine robustness towards noise with both strong performance and low computational cost.
Jacopo Cavazza and Vittorio Murino
null
1606.01568
null
null
Semi-Supervised Learning with Generative Adversarial Networks
stat.ML cs.LG
We extend Generative Adversarial Networks (GANs) to the semi-supervised context by forcing the discriminator network to output class labels. We train a generative model G and a discriminator D on a dataset with inputs belonging to one of N classes. At training time, D is made to predict which of N+1 classes the input belongs to, where an extra class is added to correspond to the outputs of G. We show that this method can be used to create a more data-efficient classifier and that it allows for generating higher quality samples than a regular GAN.
Augustus Odena
null
1606.01583
null
null
Curie: A method for protecting SVM Classifier from Poisoning Attack
cs.CR cs.LG
Machine learning is used in a number of security related applications such as biometric user authentication, speaker identification etc. A type of causative integrity attack against machine learning called Poisoning attack works by injecting specially crafted data points in the training data so as to increase the false positive rate of the classifier. In the context of the biometric authentication, this means that more intruders will be classified as valid user, and in case of speaker identification system, user A will be classified user B. In this paper, we examine poisoning attack against SVM and introduce - Curie - a method to protect the SVM classifier from the poisoning attack. The basic idea of our method is to identify the poisoned data points injected by the adversary and filter them out. Our method is light weight and can be easily integrated into existing systems. Experimental results show that it works very well in filtering out the poisoned data.
Ricky Laishram, Vir Virander Phoha
null
1606.01584
null
null
A Deep-Learning Approach for Operation of an Automated Realtime Flare Forecast
astro-ph.SR cs.LG
Automated forecasts serve important role in space weather science, by providing statistical insights to flare-trigger mechanisms, and by enabling tailor-made forecasts and high-frequency forecasts. Only by realtime forecast we can experimentally measure the performance of flare-forecasting methods while confidently avoiding overlearning. We have been operating unmanned flare forecast service since August, 2015 that provides 24-hour-ahead forecast of solar flares, every 12 minutes. We report the method and prediction results of the system.
Yuko Hada-Muranushi, Takayuki Muranushi, Ayumi Asai, Daisuke Okanohara, Rudy Raymond, Gentaro Watanabe, Shigeru Nemoto, Kazunari Shibata
null
1606.01587
null
null
Feedforward Initialization for Fast Inference of Deep Generative Networks is biologically plausible
cs.LG cs.NE q-bio.NC
We consider deep multi-layered generative models such as Boltzmann machines or Hopfield nets in which computation (which implements inference) is both recurrent and stochastic, but where the recurrence is not to model sequential structure, only to perform computation. We find conditions under which a simple feedforward computation is a very good initialization for inference, after the input units are clamped to observed values. It means that after the feedforward initialization, the recurrent network is very close to a fixed point of the network dynamics, where the energy gradient is 0. The main condition is that consecutive layers form a good auto-encoder, or more generally that different groups of inputs into the unit (in particular, bottom-up inputs on one hand, top-down inputs on the other hand) are consistent with each other, producing the same contribution into the total weighted sum of inputs. In biological terms, this would correspond to having each dendritic branch correctly predicting the aggregate input from all the dendritic branches, i.e., the soma potential. This is consistent with the prediction that the synaptic weights into dendritic branches such as those of the apical and basal dendrites of pyramidal cells are trained to minimize the prediction error made by the dendritic branch when the target is the somatic activity. Whereas previous work has shown how to achieve fast negative phase inference (when the model is unclamped) in a predictive recurrent model, this contribution helps to achieve fast positive phase inference (when the target output is clamped) in such recurrent neural models.
Yoshua Bengio, Benjamin Scellier, Olexa Bilaniuk, Joao Sacramento and Walter Senn
null
1606.01651
null
null
Integrated perception with recurrent multi-task neural networks
stat.ML cs.CV cs.LG
Modern discriminative predictors have been shown to match natural intelligences in specific perceptual tasks in image classification, object and part detection, boundary extraction, etc. However, a major advantage that natural intelligences still have is that they work well for "all" perceptual problems together, solving them efficiently and coherently in an "integrated manner". In order to capture some of these advantages in machine perception, we ask two questions: whether deep neural networks can learn universal image representations, useful not only for a single task but for all of them, and how the solutions to the different tasks can be integrated in this framework. We answer by proposing a new architecture, which we call "MultiNet", in which not only deep image features are shared between tasks, but where tasks can interact in a recurrent manner by encoding the results of their analysis in a common shared representation of the data. In this manner, we show that the performance of individual tasks in standard benchmarks can be improved first by sharing features between them and then, more significantly, by integrating their solutions in the common representation.
Hakan Bilen and Andrea Vedaldi
null
1606.01735
null
null
Very Deep Convolutional Networks for Text Classification
cs.CL cs.LG cs.NE
The dominant approach for many NLP tasks are recurrent neural networks, in particular LSTMs, and convolutional neural networks. However, these architectures are rather shallow in comparison to the deep convolutional networks which have pushed the state-of-the-art in computer vision. We present a new architecture (VDCNN) for text processing which operates directly at the character level and uses only small convolutions and pooling operations. We are able to show that the performance of this model increases with depth: using up to 29 convolutional layers, we report improvements over the state-of-the-art on several public text classification tasks. To the best of our knowledge, this is the first time that very deep convolutional nets have been applied to text processing.
Alexis Conneau, Holger Schwenk, Lo\"ic Barrault, Yann Lecun
null
1606.01781
null
null
Low-rank Optimization with Convex Constraints
math.OC cs.LG stat.ML
The problem of low-rank approximation with convex constraints, which appears in data analysis, system identification, model order reduction, low-order controller design and low-complexity modelling is considered. Given a matrix, the objective is to find a low-rank approximation that meets rank and convex constraints, while minimizing the distance to the matrix in the squared Frobenius norm. In many situations, this non-convex problem is convexified by nuclear norm regularization. However, we will see that the approximations obtained by this method may be far from optimal. In this paper, we propose an alternative convex relaxation that uses the convex envelope of the squared Frobenius norm and the rank constraint. With this approach, easily verifiable conditions are obtained under which the solutions to the convex relaxation and the original non-convex problem coincide. An SDP representation of the convex envelope is derived, which allows us to apply this approach to several known problems. Our example on optimal low-rank Hankel approximation/model reduction illustrates that the proposed convex relaxation performs consistently better than nuclear norm regularization and may outperform balanced truncation.
Christian Grussler, Anders Rantzer and Pontus Giselsson
10.1109/TAC.2018.2813009
1606.01793
null
null
Bayesian Poisson Tucker Decomposition for Learning the Structure of International Relations
stat.ML cs.AI cs.LG cs.SI stat.AP
We introduce Bayesian Poisson Tucker decomposition (BPTD) for modeling country--country interaction event data. These data consist of interaction events of the form "country $i$ took action $a$ toward country $j$ at time $t$." BPTD discovers overlapping country--community memberships, including the number of latent communities. In addition, it discovers directed community--community interaction networks that are specific to "topics" of action types and temporal "regimes." We show that BPTD yields an efficient MCMC inference algorithm and achieves better predictive performance than related models. We also demonstrate that it discovers interpretable latent structure that agrees with our knowledge of international relations.
Aaron Schein, Mingyuan Zhou, David M. Blei, Hanna Wallach
null
1606.01855
null
null
Recurrent Neural Networks for Multivariate Time Series with Missing Values
cs.LG cs.NE stat.ML
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provides useful insights for better understanding and utilization of missing values in time series analysis.
Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, Yan Liu
null
1606.01865
null
null
Unifying Count-Based Exploration and Intrinsic Motivation
cs.AI cs.LG stat.ML
We consider an agent's uncertainty about its environment and the problem of generalizing this uncertainty across observations. Specifically, we focus on the problem of exploration in non-tabular reinforcement learning. Drawing inspiration from the intrinsic motivation literature, we use density models to measure uncertainty, and propose a novel algorithm for deriving a pseudo-count from an arbitrary density model. This technique enables us to generalize count-based exploration algorithms to the non-tabular case. We apply our ideas to Atari 2600 games, providing sensible pseudo-counts from raw pixels. We transform these pseudo-counts into intrinsic rewards and obtain significantly improved exploration in a number of hard games, including the infamously difficult Montezuma's Revenge.
Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, Remi Munos
null
1606.01868
null
null
Learning to Optimize
cs.LG cs.AI math.OC stat.ML
Algorithm design is a laborious process and often requires many iterations of ideation and validation. In this paper, we explore automating algorithm design and present a method to learn an optimization algorithm, which we believe to be the first method that can automatically discover a better algorithm. We approach this problem from a reinforcement learning perspective and represent any particular optimization algorithm as a policy. We learn an optimization algorithm using guided policy search and demonstrate that the resulting algorithm outperforms existing hand-engineered algorithms in terms of convergence speed and/or the final objective value.
Ke Li and Jitendra Malik
null
1606.01885
null
null
Deep neural networks are robust to weight binarization and other non-linear distortions
cs.NE cs.CV cs.LG
Recent results show that deep neural networks achieve excellent performance even when, during training, weights are quantized and projected to a binary representation. Here, we show that this is just the tip of the iceberg: these same networks, during testing, also exhibit a remarkable robustness to distortions beyond quantization, including additive and multiplicative noise, and a class of non-linear projections where binarization is just a special case. To quantify this robustness, we show that one such network achieves 11% test error on CIFAR-10 even with 0.68 effective bits per weight. Furthermore, we find that a common training heuristic--namely, projecting quantized weights during backpropagation--can be altered (or even removed) and networks still achieve a base level of robustness during testing. Specifically, training with weight projections other than quantization also works, as does simply clipping the weights, both of which have never been reported before. We confirm our results for CIFAR-10 and ImageNet datasets. Finally, drawing from these ideas, we propose a stochastic projection rule that leads to a new state of the art network with 7.64% test error on CIFAR-10 using no data augmentation.
Paul Merolla, Rathinakumar Appuswamy, John Arthur, Steve K. Esser, Dharmendra Modha
null
1606.01981
null
null
Regret Bounds for Non-decomposable Metrics with Missing Labels
cs.LG stat.ML
We consider the problem of recommending relevant labels (items) for a given data point (user). In particular, we are interested in the practically important setting where the evaluation is with respect to non-decomposable (over labels) performance metrics like the $F_1$ measure, and the training data has missing labels. To this end, we propose a generic framework that given a performance metric $\Psi$, can devise a regularized objective function and a threshold such that all the values in the predicted score vector above and only above the threshold are selected to be positive. We show that the regret or generalization error in the given metric $\Psi$ is bounded ultimately by estimation error of certain underlying parameters. In particular, we derive regret bounds under three popular settings: a) collaborative filtering, b) multilabel classification, and c) PU (positive-unlabeled) learning. For each of the above problems, we can obtain precise non-asymptotic regret bound which is small even when a large fraction of labels is missing. Our empirical results on synthetic and benchmark datasets demonstrate that by explicitly modeling for missing labels and optimizing the desired performance metric, our algorithm indeed achieves significantly better performance (like $F_1$ score) when compared to methods that do not model missing label information carefully.
Prateek Jain and Nagarajan Natarajan
null
1606.02077
null
null
Efficient differentially private learning improves drug sensitivity prediction
stat.ML cs.CR cs.LG stat.ME
Users of a personalised recommendation system face a dilemma: recommendations can be improved by learning from data, but only if the other users are willing to share their private information. Good personalised predictions are vitally important in precision medicine, but genomic information on which the predictions are based is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual patients cannot be distinguished. However, differentially private learning with current methods does not improve predictions with feasible data sizes and dimensionalities. Here we show that useful predictors can be learned under powerful differential privacy guarantees, and even from moderately-sized data sets, by demonstrating significant improvements with a new robust private regression method in the accuracy of private drug sensitivity prediction. The method combines two key properties not present even in recent proposals, which can be generalised to other predictors: we prove it is asymptotically consistently and efficiently private, and demonstrate that it performs well on finite data. Good finite data performance is achieved by limiting the sharing of private information by decreasing the dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy. As already the simple-to-implement method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications in many fields, such as mobile sensing and social media, in addition to the badly needed precision medicine solutions.
Antti Honkela, Mrinal Das, Arttu Nieminen, Onur Dikmen and Samuel Kaski
10.1186/s13062-017-0203-4
1606.02109
null
null
Towards a Neural Statistician
stat.ML cs.LG
An efficient learner is one who reuses what they already know to tackle a new problem. For a machine learner, this means understanding the similarities amongst datasets. In order to do this, one must take seriously the idea of working with datasets, rather than datapoints, as the key objects to model. Towards this goal, we demonstrate an extension of a variational autoencoder that can learn a method for computing representations, or statistics, of datasets in an unsupervised fashion. The network is trained to produce statistics that encapsulate a generative model for each dataset. Hence the network enables efficient learning from new datasets for both unsupervised and supervised tasks. We show that we are able to learn statistics that can be used for: clustering datasets, transferring generative models to new datasets, selecting representative samples of datasets and classifying previously unseen classes. We refer to our model as a neural statistician, and by this we mean a neural network that can learn to compute summary statistics of datasets without supervision.
Harrison Edwards, Amos Storkey
null
1606.02185
null
null
Adapting Sampling Interval of Sensor Networks Using On-Line Reinforcement Learning
cs.NI cs.LG cs.SY
Monitoring Wireless Sensor Networks (WSNs) are composed of sensor nodes that report temperature, relative humidity, and other environmental parameters. The time between two successive measurements is a critical parameter to set during the WSN configuration because it can impact the WSN's lifetime, the wireless medium contention and the quality of the reported data. As trends in monitored parameters can significantly vary between scenarios and within time, identifying a sampling interval suitable for several cases is also challenging. In this work, we propose a dynamic sampling rate adaptation scheme based on reinforcement learning, able to tune sensors' sampling interval on-the-fly, according to environmental conditions and application requirements. The primary goal is to set the sampling interval to the best value possible so as to avoid oversampling and save energy, while not missing environmental changes that can be relevant for the application. In simulations, our mechanism could reduce up to 73% the total number of transmissions compared to a fixed strategy and, simultaneously, keep the average quality of information provided by the WSN. The inherent flexibility of the reinforcement learning algorithm facilitates its use in several scenarios, so as to exploit the broad scope of the Internet of Things.
Gabriel Martins Dias, Maddalena Nurchis and Boris Bellalta
null
1606.02193
null
null
A Minimax Approach to Supervised Learning
stat.ML cs.IT cs.LG math.IT
Given a task of predicting $Y$ from $X$, a loss function $L$, and a set of probability distributions $\Gamma$ on $(X,Y)$, what is the optimal decision rule minimizing the worst-case expected loss over $\Gamma$? In this paper, we address this question by introducing a generalization of the principle of maximum entropy. Applying this principle to sets of distributions with marginal on $X$ constrained to be the empirical marginal from the data, we develop a general minimax approach for supervised learning problems. While for some loss functions such as squared-error and log loss, the minimax approach rederives well-knwon regression models, for the 0-1 loss it results in a new linear classifier which we call the maximum entropy machine. The maximum entropy machine minimizes the worst-case 0-1 loss over the structured set of distribution, and by our numerical experiments can outperform other well-known linear classifiers such as SVM. We also prove a bound on the generalization worst-case error in the minimax approach.
Farzan Farnia, David Tse
null
1606.02206
null
null
Systematic evaluation of CNN advances on the ImageNet
cs.NE cs.CV cs.LG
The paper systematically studies the impact of a range of recent advances in CNN architectures and learning methods on the object categorization (ILSVRC) problem. The evalution tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatibility with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is bigger than the observed improvement when all modifications are introduced, but the "deficit" is small suggesting independence of their benefits. We show that the use of 128x128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.
Dmytro Mishkin and Nikolay Sergievskiy and Jiri Matas
10.1016/j.cviu.2017.05.007
1606.02228
null
null
Measuring the reliability of MCMC inference with bidirectional Monte Carlo
cs.LG stat.CO stat.ML
Markov chain Monte Carlo (MCMC) is one of the main workhorses of probabilistic inference, but it is notoriously hard to measure the quality of approximate posterior samples. This challenge is particularly salient in black box inference methods, which can hide details and obscure inference failures. In this work, we extend the recently introduced bidirectional Monte Carlo technique to evaluate MCMC-based posterior inference algorithms. By running annealed importance sampling (AIS) chains both from prior to posterior and vice versa on simulated data, we upper bound in expectation the symmetrized KL divergence between the true posterior distribution and the distribution of approximate samples. We present Bounding Divergences with REverse Annealing (BREAD), a protocol for validating the relevance of simulated data experiments to real datasets, and integrate it into two probabilistic programming languages: WebPPL and Stan. As an example of how BREAD can be used to guide the design of inference algorithms, we apply it to study the effectiveness of different model representations in both WebPPL and Stan.
Roger B. Grosse and Siddharth Ancha and Daniel M. Roy
null
1606.02275
null
null
Semi-supervised structured output prediction by local linear regression and sub-gradient descent
cs.LG
We propose a novel semi-supervised structured output prediction method based on local linear regression in this paper. The existing semi-supervise structured output prediction methods learn a global predictor for all the data points in a data set, which ignores the differences of local distributions of the data set, and the effects to the structured output prediction. To solve this problem, we propose to learn the missing structured outputs and local predictors for neighborhoods of different data points jointly. Using the local linear regression strategy, in the neighborhood of each data point, we propose to learn a local linear predictor by minimizing both the complexity of the predictor and the upper bound of the structured prediction loss. The minimization problem is solved by sub-gradient descent algorithms. We conduct experiments over two benchmark data sets, and the results show the advantages of the proposed method.
Ru-Ze Liang, Wei Xie, Weizhi Li, Xin Du, Jim Jing-Yan Wang, Jingbin Wang
null
1606.02279
null
null
How is a data-driven approach better than random choice in label space division for multi-label classification?
cs.LG cs.PF cs.SI stat.ML
We propose using five data-driven community detection approaches from social networks to partition the label space for the task of multi-label classification as an alternative to random partitioning into equal subsets as performed by RAkELd: modularity-maximizing fastgreedy and leading eigenvector, infomap, walktrap and label propagation algorithms. We construct a label co-occurence graph (both weighted an unweighted versions) based on training data and perform community detection to partition the label set. We include Binary Relevance and Label Powerset classification methods for comparison. We use gini-index based Decision Trees as the base classifier. We compare educated approaches to label space divisions against random baselines on 12 benchmark data sets over five evaluation measures. We show that in almost all cases seven educated guess approaches are more likely to outperform RAkELd than otherwise in all measures, but Hamming Loss. We show that fastgreedy and walktrap community detection methods on weighted label co-occurence graphs are 85-92% more likely to yield better F1 scores than random partitioning. Infomap on the unweighted label co-occurence graphs is on average 90% of the times better than random paritioning in terms of Subset Accuracy and 89% when it comes to Jaccard similarity. Weighted fastgreedy is better on average than RAkELd when it comes to Hamming Loss.
Piotr Szyma\'nski, Tomasz Kajdanowicz, Kristian Kersting
10.3390/e18080282
1606.02346
null
null
Active Long Term Memory Networks
cs.LG cs.AI stat.ML
Continual Learning in artificial neural networks suffers from interference and forgetting when different tasks are learned sequentially. This paper introduces the Active Long Term Memory Networks (A-LTM), a model of sequential multi-task deep learning that is able to maintain previously learned association between sensory input and behavioral output while acquiring knew knowledge. A-LTM exploits the non-convex nature of deep neural networks and actively maintains knowledge of previously learned, inactive tasks using a distillation loss. Distortions of the learned input-output map are penalized but hidden layers are free to transverse towards new local optima that are more favorable for the multi-task objective. We re-frame the McClelland's seminal Hippocampal theory with respect to Catastrophic Inference (CI) behavior exhibited by modern deep architectures trained with back-propagation and inhomogeneous sampling of latent factors across epochs. We present empirical results of non-trivial CI during continual learning in Deep Linear Networks trained on the same task, in Convolutional Neural Networks when the task shifts from predicting semantic to graphical factors and during domain adaptation from simple to complex environments. We present results of the A-LTM model's ability to maintain viewpoint recognition learned in the highly controlled iLab-20M dataset with 10 object categories and 88 camera viewpoints, while adapting to the unstructured domain of Imagenet with 1,000 object categories.
Tommaso Furlanello, Jiaping Zhao, Andrew M. Saxe, Laurent Itti, Bosco S. Tjan
null
1606.02355
null
null
SE3-Nets: Learning Rigid Body Motion using Deep Neural Networks
cs.LG cs.AI cs.CV cs.RO
We introduce SE3-Nets, which are deep neural networks designed to model and learn rigid body motion from raw point cloud data. Based only on sequences of depth images along with action vectors and point wise data associations, SE3-Nets learn to segment effected object parts and predict their motion resulting from the applied force. Rather than learning point wise flow vectors, SE3-Nets predict SE3 transformations for different parts of the scene. Using simulated depth data of a table top scene and a robot manipulator, we show that the structure underlying SE3-Nets enables them to generate a far more consistent prediction of object motion than traditional flow based networks. Additional experiments with a depth camera observing a Baxter robot pushing objects on a table show that SE3-Nets also work well on real data.
Arunkumar Byravan and Dieter Fox
null
1606.02378
null
null
Deep Successor Reinforcement Learning
stat.ML cs.AI cs.LG cs.NE
Learning robust value functions given raw observations and rewards is now possible with model-free and model-based deep reinforcement learning algorithms. There is a third alternative, called Successor Representations (SR), which decomposes the value function into two components -- a reward predictor and a successor map. The successor map represents the expected future state occupancy from any given state and the reward predictor maps states to scalar rewards. The value function of a state can be computed as the inner product between the successor map and the reward weights. In this paper, we present DSR, which generalizes SR within an end-to-end deep reinforcement learning framework. DSR has several appealing properties including: increased sensitivity to distal reward changes due to factorization of reward and world dynamics, and the ability to extract bottleneck states (subgoals) given successor maps trained under a random policy. We show the efficacy of our approach on two diverse environments given raw pixel observations -- simple grid-world domains (MazeBase) and the Doom game engine.
Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, Samuel J. Gershman
null
1606.02396
null
null
Clustering with Same-Cluster Queries
cs.LG stat.ML
We propose a framework for Semi-Supervised Active Clustering framework (SSAC), where the learner is allowed to interact with a domain expert, asking whether two given instances belong to the same cluster or not. We study the query and computational complexity of clustering in this framework. We consider a setting where the expert conforms to a center-based clustering with a notion of margin. We show that there is a trade off between computational complexity and query complexity; We prove that for the case of $k$-means clustering (i.e., when the expert conforms to a solution of $k$-means), having access to relatively few such queries allows efficient solutions to otherwise NP hard problems. In particular, we provide a probabilistic polynomial-time (BPP) algorithm for clustering in this setting that asks $O\big(k^2\log k + k\log n)$ same-cluster queries and runs with time complexity $O\big(kn\log n)$ (where $k$ is the number of clusters and $n$ is the number of instances). The algorithm succeeds with high probability for data satisfying margin conditions under which, without queries, we show that the problem is NP hard. We also prove a lower bound on the number of queries needed to have a computationally efficient clustering algorithm in this setting.
Hassan Ashtiani, Shrinu Kushagra and Shai Ben-David
null
1606.02404
null
null
Structured Convolution Matrices for Energy-efficient Deep learning
cs.NE cs.AI cs.CV cs.LG
We derive a relationship between network representation in energy-efficient neuromorphic architectures and block Toplitz convolutional matrices. Inspired by this connection, we develop deep convolutional networks using a family of structured convolutional matrices and achieve state-of-the-art trade-off between energy efficiency and classification accuracy for well-known image recognition tasks. We also put forward a novel method to train binary convolutional networks by utilising an existing connection between noisy-rectified linear units and binary activations.
Rathinakumar Appuswamy, Tapan Nayak, John Arthur, Steven Esser, Paul Merolla, Jeffrey Mckinstry, Timothy Melano, Myron Flickner, Dharmendra Modha
null
1606.02407
null
null
Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions
stat.ML cs.AI cs.DC cs.LG cs.SY
In decentralized networks (of sensors, connected objects, etc.), there is an important need for efficient algorithms to optimize a global cost function, for instance to learn a global model from the local data collected by each computing unit. In this paper, we address the problem of decentralized minimization of pairwise functions of the data points, where these points are distributed over the nodes of a graph defining the communication topology of the network. This general problem finds applications in ranking, distance metric learning and graph inference, among others. We propose new gossip algorithms based on dual averaging which aims at solving such problems both in synchronous and asynchronous settings. The proposed framework is flexible enough to deal with constrained and regularized variants of the optimization problem. Our theoretical analysis reveals that the proposed algorithms preserve the convergence rate of centralized dual averaging up to an additive bias term. We present numerical simulations on Area Under the ROC Curve (AUC) maximization and metric learning problems which illustrate the practical interest of our approach.
Igor Colin, Aur\'elien Bellet, Joseph Salmon, St\'ephan Cl\'emen\c{c}on
null
1606.02421
null
null
Multiple-Play Bandits in the Position-Based Model
cs.LG math.ST stat.TH
Sequentially learning to place items in multi-position displays or lists is a task that can be cast into the multiple-play semi-bandit setting. However, a major concern in this context is when the system cannot decide whether the user feedback for each item is actually exploitable. Indeed, much of the content may have been simply ignored by the user. The present work proposes to exploit available information regarding the display position bias under the so-called Position-based click model (PBM). We first discuss how this model differs from the Cascade model and its variants considered in several recent works on multiple-play bandits. We then provide a novel regret lower bound for this model as well as computationally efficient algorithms that display good empirical and theoretical performance.
Paul Lagr\'ee (UP11, LRI), Claire Vernade (LTCI), Olivier Capp\'e (LTCI)
null
1606.02448
null
null
Convolutional Neural Fabrics
cs.CV cs.LG cs.NE
Despite the success of CNNs, selecting the optimal architecture for a given task remains an open problem. Instead of aiming to select a single optimal architecture, we propose a "fabric" that embeds an exponentially large number of architectures. The fabric consists of a 3D trellis that connects response maps at different layers, scales, and channels with a sparse homogeneous local connectivity pattern. The only hyper-parameters of a fabric are the number of channels and layers. While individual architectures can be recovered as paths, the fabric can in addition ensemble all embedded architectures together, sharing their weights where their paths overlap. Parameters can be learned using standard methods based on back-propagation, at a cost that scales linearly in the fabric size. We present benchmark results competitive with the state of the art for image classification on MNIST and CIFAR10, and for semantic segmentation on the Part Labels dataset.
Shreyas Saxena and Jakob Verbeek
null
1606.02492
null
null
Improving Recurrent Neural Networks For Sequence Labelling
cs.CL cs.LG cs.NE
In this paper we study different types of Recurrent Neural Networks (RNN) for sequence labeling tasks. We propose two new variants of RNNs integrating improvements for sequence labeling, and we compare them to the more traditional Elman and Jordan RNNs. We compare all models, either traditional or new, on four distinct tasks of sequence labeling: two on Spoken Language Understanding (ATIS and MEDIA); and two of POS tagging for the French Treebank (FTB) and the Penn Treebank (PTB) corpora. The results show that our new variants of RNNs are always more effective than the others.
Marco Dinarelli and Isabelle Tellier
null
1606.02555
null
null
Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning
cs.AI cs.CL cs.LG
This paper presents an end-to-end framework for task-oriented dialog systems using a variant of Deep Recurrent Q-Networks (DRQN). The model is able to interface with a relational database and jointly learn policies for both language understanding and dialog strategy. Moreover, we propose a hybrid algorithm that combines the strength of reinforcement learning and supervised learning to achieve faster learning speed. We evaluated the proposed model on a 20 Question Game conversational game simulator. Results show that the proposed method outperforms the modular-based baseline and learns a distributed representation of the latent dialog state.
Tiancheng Zhao and Maxine Eskenazi
null
1606.02560
null
null
Convolution by Evolution: Differentiable Pattern Producing Networks
cs.NE cs.CV cs.LG
In this work we introduce a differentiable version of the Compositional Pattern Producing Network, called the DPPN. Unlike a standard CPPN, the topology of a DPPN is evolved but the weights are learned. A Lamarckian algorithm, that combines evolution and learning, produces DPPNs to reconstruct an image. Our main result is that DPPNs can be evolved/trained to compress the weights of a denoising autoencoder from 157684 to roughly 200 parameters, while achieving a reconstruction accuracy comparable to a fully connected network with more than two orders of magnitude more parameters. The regularization ability of the DPPN allows it to rediscover (approximate) convolutional network architectures embedded within a fully connected architecture. Such convolutional architectures are the current state of the art for many computer vision applications, so it is satisfying that DPPNs are capable of discovering this structure rather than having to build it in by design. DPPNs exhibit better generalization when tested on the Omniglot dataset after being trained on MNIST, than directly encoded fully connected autoencoders. DPPNs are therefore a new framework for integrating learning and evolution.
Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse, David Pfau, Max Jaderberg, Marc Lanctot, Daan Wierstra
null
1606.02580
null
null
Fast and Extensible Online Multivariate Kernel Density Estimation
cs.LG cs.CV
We present xokde++, a state-of-the-art online kernel density estimation approach that maintains Gaussian mixture models input data streams. The approach follows state-of-the-art work on online density estimation, but was redesigned with computational efficiency, numerical robustness, and extensibility in mind. Our approach produces comparable or better results than the current state-of-the-art, while achieving significant computational performance gains and improved numerical stability. The use of diagonal covariance Gaussian kernels, which further improve performance and stability, at a small loss of modelling quality, is also explored. Our approach is up to 40 times faster, while requiring 90\% less memory than the closest state-of-the-art counterpart.
Jaime Ferreira and David Martins de Matos and Ricardo Ribeiro
null
1606.02608
null
null
Specific Differential Entropy Rate Estimation for Continuous-Valued Time Series
cs.LG stat.ME
We introduce a method for quantifying the inherent unpredictability of a continuous-valued time series via an extension of the differential Shannon entropy rate. Our extension, the specific entropy rate, quantifies the amount of predictive uncertainty associated with a specific state, rather than averaged over all states. We relate the specific entropy rate to popular `complexity' measures such as Approximate and Sample Entropies. We provide a data-driven approach for estimating the specific entropy rate of an observed time series. Finally, we consider three case studies of estimating specific entropy rate from synthetic and physiological data relevant to the analysis of heart rate variability.
David Darmon
null
1606.02615
null
null
Efficient Estimation of k for the Nearest Neighbors Class of Methods
cs.LG
The k Nearest Neighbors (kNN) method has received much attention in the past decades, where some theoretical bounds on its performance were identified and where practical optimizations were proposed for making it work fairly well in high dimensional spaces and on large datasets. From countless experiments of the past it became widely accepted that the value of k has a significant impact on the performance of this method. However, the efficient optimization of this parameter has not received so much attention in literature. Today, the most common approach is to cross-validate or bootstrap this value for all values in question. This approach forces distances to be recomputed many times, even if efficient methods are used. Hence, estimating the optimal k can become expensive even on modern systems. Frequently, this circumstance leads to a sparse manual search of k. In this paper we want to point out that a systematic and thorough estimation of the parameter k can be performed efficiently. The discussed approach relies on large matrices, but we want to argue, that in practice a higher space complexity is often much less of a problem than repetitive distance computations.
Aleksander Lodwich, Faisal Shafait and Thomas Breuel
10.13140/RG.2.1.5045.4649
1606.02617
null
null
Safe and Efficient Off-Policy Reinforcement Learning
cs.LG cs.AI stat.ML
In this work, we take a fresh look at some old and new algorithms for off-policy, return-based reinforcement learning. Expressing these in a common form, we derive a novel algorithm, Retrace($\lambda$), with three desired properties: (1) it has low variance; (2) it safely uses samples collected from any behaviour policy, whatever its degree of "off-policyness"; and (3) it is efficient as it makes the best use of samples collected from near on-policy behaviour policies. We analyze the contractive nature of the related operator under both off-policy policy evaluation and control settings and derive online sample-based algorithms. We believe this is the first return-based off-policy control algorithm converging a.s. to $Q^*$ without the GLIE assumption (Greedy in the Limit with Infinite Exploration). As a corollary, we prove the convergence of Watkins' Q($\lambda$), which was an open problem since 1989. We illustrate the benefits of Retrace($\lambda$) on a standard suite of Atari 2600 games.
R\'emi Munos, Tom Stepleton, Anna Harutyunyan, Marc G. Bellemare
null
1606.02647
null
null
Learning Power Spectrum Maps from Quantized Power Measurements
cs.IT cs.LG math.FA math.IT stat.ML
Power spectral density (PSD) maps providing the distribution of RF power across space and frequency are constructed using power measurements collected by a network of low-cost sensors. By introducing linear compression and quantization to a small number of bits, sensor measurements can be communicated to the fusion center with minimal bandwidth requirements. Strengths of data- and model-driven approaches are combined to develop estimators capable of incorporating multiple forms of spectral and propagation prior information while fitting the rapid variations of shadow fading across space. To this end, novel nonparametric and semiparametric formulations are investigated. It is shown that PSD maps can be obtained using support vector machine-type solvers. In addition to batch approaches, an online algorithm attuned to real-time operation is developed. Numerical tests assess the performance of the novel algorithms.
Daniel Romero, Seung-Jun Kim, Georgios B. Giannakis, Roberto Lopez-Valcarce
10.1109/TSP.2017.2666775
1606.02679
null
null
Continuously Learning Neural Dialogue Management
cs.CL cs.LG
We describe a two-step approach for dialogue management in task-oriented spoken dialogue systems. A unified neural network framework is proposed to enable the system to first learn by supervision from a set of dialogue data and then continuously improve its behaviour via reinforcement learning, all using gradient-based algorithms on one single model. The experiments demonstrate the supervised model's effectiveness in the corpus-based evaluation, with user simulation, and with paid human subjects. The use of reinforcement learning further improves the model's performance in both interactive settings, especially under higher-noise conditions.
Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-Barahona, Stefan Ultes, David Vandyke, Tsung-Hsien Wen, Steve Young
null
1606.02689
null
null
Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression
stat.ML cs.LG math.OC
In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider $\ell_1$ penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter as well as over the noise level. This has been considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant Lasso estimation for instance, and could be of interest for confidence sets or uncertainty quantification. In this work, after illustrating numerical difficulties for the Smoothed Concomitant Lasso formulation, we propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability. We propose an efficient and accurate solver leading to a computational cost no more expansive than the one for the Lasso. We leverage on standard ingredients behind the success of fast Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve speed efficiency, by eliminating early irrelevant features.
Eugene Ndiaye and Olivier Fercoq and Alexandre Gramfort and Vincent Lecl\`ere and Joseph Salmon
10.1088/1742-6596/904/1/012006
1606.02702
null
null
Learning Thermodynamics with Boltzmann Machines
cond-mat.stat-mech cond-mat.dis-nn cs.LG
A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modelling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance-sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.
Giacomo Torlai and Roger G. Melko
10.1103/PhysRevB.94.165134
1606.02718
null
null
Variational Information Maximization for Feature Selection
stat.ML cs.LG
Feature selection is one of the most fundamental problems in machine learning. An extensive body of work on information-theoretic feature selection exists which is based on maximizing mutual information between subsets of features and class labels. Practical methods are forced to rely on approximations due to the difficulty of estimating mutual information. We demonstrate that approximations made by existing methods are based on unrealistic assumptions. We formulate a more flexible and general class of assumptions based on variational distributions and use them to tractably generate lower bounds for mutual information. These bounds define a novel information-theoretic framework for feature selection, which we prove to be optimal under tree graphical models with proper choice of variational distributions. Our experiments demonstrate that the proposed method strongly outperforms existing information-theoretic feature selection approaches.
Shuyang Gao, Greg Ver Steeg, Aram Galstyan
null
1606.02827
null
null
Sketching for Large-Scale Learning of Mixture Models
cs.LG stat.ML
Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing.
Nicolas Keriven (UR1, PANAMA), Anthony Bourrier (GIPSA-lab), R\'emi Gribonval (PANAMA), Patrick P\'erez
null
1606.02838
null
null
e-Commerce product classification: our participation at cDiscount 2015 challenge
cs.LG cs.AI
This report describes our participation in the cDiscount 2015 challenge where the goal was to classify product items in a predefined taxonomy of products. Our best submission yielded an accuracy score of 64.20\% in the private part of the leaderboard and we were ranked 10th out of 175 participating teams. We followed a text classification approach employing mainly linear models. The final solution was a weighted voting system which combined a variety of trained models.
Ioannis Partalas, Georgios Balikas
null
1606.02854
null
null
Sequence-to-Sequence Learning as Beam-Search Optimization
cs.CL cs.LG cs.NE stat.ML
Sequence-to-Sequence (seq2seq) modeling has rapidly become an important general-purpose NLP tool that has proven effective for many text-generation and sequence-labeling tasks. Seq2seq builds on deep neural language modeling and inherits its remarkable accuracy in estimating local, next-word distributions. In this work, we introduce a model and beam-search training scheme, based on the work of Daume III and Marcu (2005), that extends seq2seq to learn global sequence scores. This structured approach avoids classical biases associated with local training and unifies the training loss with the test-time usage, while preserving the proven model architecture of seq2seq and its efficient training approach. We show that our system outperforms a highly-optimized attention-based seq2seq system and other baselines on three different sequence to sequence tasks: word ordering, parsing, and machine translation.
Sam Wiseman and Alexander M. Rush
null
1606.02960
null
null
Generative Topic Embedding: a Continuous Representation of Documents (Extended Version with Proofs)
cs.CL cs.AI cs.IR cs.LG stat.ML
Word embedding maps words into a low-dimensional continuous embedding space by exploiting the local word collocation patterns in a small context window. On the other hand, topic modeling maps documents onto a low-dimensional topic space, by utilizing the global word collocation patterns in the same document. These two types of patterns are complementary. In this paper, we propose a generative topic embedding model to combine the two types of patterns. In our model, topics are represented by embedding vectors, and are shared across documents. The probability of each word is influenced by both its local context and its topic. A variational inference method yields the topic embeddings as well as the topic mixing proportions for each document. Jointly they represent the document in a low-dimensional continuous space. In two document classification tasks, our method performs better than eight existing methods, with fewer features. In addition, we illustrate with an example that our method can generate coherent topics even based on only one document.
Shaohua Li, Tat-Seng Chua, Jun Zhu, Chunyan Miao
null
1606.02979
null
null
On Projected Stochastic Gradient Descent Algorithm with Weighted Averaging for Least Squares Regression
cs.IT cs.LG math.IT
The problem of least squares regression of a $d$-dimensional unknown parameter is considered. A stochastic gradient descent based algorithm with weighted iterate-averaging that uses a single pass over the data is studied and its convergence rate is analyzed. We first consider a bounded constraint set of the unknown parameter. Under some standard regularity assumptions, we provide an explicit $O(1/k)$ upper bound on the convergence rate, depending on the variance (due to the additive noise in the measurements) and the size of the constraint set. We show that the variance term dominates the error and decreases with rate $1/k$, while the term which is related to the size of the constraint set decreases with rate $\log k/k^2$. We then compare the asymptotic ratio $\rho$ between the convergence rate of the proposed scheme and the empirical risk minimizer (ERM) as the number of iterations approaches infinity. We show that $\rho\leq 4$ under some mild conditions for all $d\geq 1$. We further improve the upper bound by showing that $\rho\leq 4/3$ for the case of $d=1$ and unbounded parameter set. Simulation results demonstrate strong performance of the algorithm as compared to existing methods, and coincide with $\rho\leq 4/3$ even for large $d$ in practice.
Kobi Cohen and Angelia Nedic and R. Srikant
null
1606.03000
null
null
Efficient Robust Proper Learning of Log-concave Distributions
cs.DS cs.LG math.ST stat.TH
We study the {\em robust proper learning} of univariate log-concave distributions (over continuous and discrete domains). Given a set of samples drawn from an unknown target distribution, we want to compute a log-concave hypothesis distribution that is as close as possible to the target, in total variation distance. In this work, we give the first computationally efficient algorithm for this learning problem. Our algorithm achieves the information-theoretically optimal sample size (up to a constant factor), runs in polynomial time, and is robust to model misspecification with nearly-optimal error guarantees. Specifically, we give an algorithm that, on input $n=O(1/\eps^{5/2})$ samples from an unknown distribution $f$, runs in time $\widetilde{O}(n^{8/5})$, and outputs a log-concave hypothesis $h$ that (with high probability) satisfies $\dtv(h, f) = O(\opt)+\eps$, where $\opt$ is the minimum total variation distance between $f$ and the class of log-concave distributions. Our approach to the robust proper learning problem is quite flexible and may be applicable to many other univariate distribution families.
Ilias Diakonikolas and Daniel M. Kane and Alistair Stewart
null
1606.03077
null
null
Mutual Exclusivity Loss for Semi-Supervised Deep Learning
cs.CV cs.LG stat.ML
In this paper we consider the problem of semi-supervised learning with deep Convolutional Neural Networks (ConvNets). Semi-supervised learning is motivated on the observation that unlabeled data is cheap and can be used to improve the accuracy of classifiers. In this paper we propose an unsupervised regularization term that explicitly forces the classifier's prediction for multiple classes to be mutually-exclusive and effectively guides the decision boundary to lie on the low density space between the manifolds corresponding to different classes of data. Our proposed approach is general and can be used with any backpropagation-based learning method. We show through different experiments that our method can improve the object recognition performance of ConvNets using unlabeled data.
Mehdi Sajjadi, Mehran Javanmardi, Tolga Tasdizen
null
1606.03141
null
null
Sentence Similarity Measures for Fine-Grained Estimation of Topical Relevance in Learner Essays
cs.CL cs.LG cs.NE
We investigate the task of assessing sentence-level prompt relevance in learner essays. Various systems using word overlap, neural embeddings and neural compositional models are evaluated on two datasets of learner writing. We propose a new method for sentence-level similarity calculation, which learns to adjust the weights of pre-trained word embeddings for a specific task, achieving substantially higher accuracy compared to other relevant baselines.
Marek Rei and Ronan Cummins
10.18653/v1/W16-0533
1606.03144
null
null
Unsupervised Learning of Word-Sequence Representations from Scratch via Convolutional Tensor Decomposition
cs.CL cs.LG
Unsupervised text embeddings extraction is crucial for text understanding in machine learning. Word2Vec and its variants have received substantial success in mapping words with similar syntactic or semantic meaning to vectors close to each other. However, extracting context-aware word-sequence embedding remains a challenging task. Training over large corpus is difficult as labels are difficult to get. More importantly, it is challenging for pre-trained models to obtain word-sequence embeddings that are universally good for all downstream tasks or for any new datasets. We propose a two-phased ConvDic+DeconvDec framework to solve the problem by combining a word-sequence dictionary learning model with a word-sequence embedding decode model. We propose a convolutional tensor decomposition mechanism to learn good word-sequence phrase dictionary in the learning phase. It is proved to be more accurate and much more efficient than the popular alternating minimization method. In the decode phase, we introduce a deconvolution framework that is immune to the problem of varying sentence lengths. The word-sequence embeddings we extracted using ConvDic+DeconvDec are universally good for a few downstream tasks we test on. The framework requires neither pre-training nor prior/outside information.
Furong Huang, Animashree Anandkumar
null
1606.03153
null
null
Finding Low-Rank Solutions via Non-Convex Matrix Factorization, Efficiently and Provably
math.OC cs.DS cs.IT cs.LG cs.NA math.IT
A rank-$r$ matrix $X \in \mathbb{R}^{m \times n}$ can be written as a product $U V^\top$, where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$. One could exploit this observation in optimization: e.g., consider the minimization of a convex function $f(X)$ over rank-$r$ matrices, where the set of rank-$r$ matrices is modeled via the factorization $UV^\top$. Though such parameterization reduces the number of variables, and is more computationally efficient (of particular interest is the case $r \ll \min\{m, n\}$), it comes at a cost: $f(UV^\top)$ becomes a non-convex function w.r.t. $U$ and $V$. We study such parameterization for optimization of generic convex objectives $f$, and focus on first-order, gradient descent algorithmic solutions. We propose the Bi-Factored Gradient Descent (BFGD) algorithm, an efficient first-order method that operates on the $U, V$ factors. We show that when $f$ is (restricted) smooth, BFGD has local sublinear convergence, and linear convergence when $f$ is both (restricted) smooth and (restricted) strongly convex. For several key applications, we provide simple and efficient initialization schemes that provide approximate solutions good enough for the above convergence results to hold.
Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, Sujay Sanghavi
null
1606.03168
null
null
Phase Retrieval via Incremental Truncated Wirtinger Flow
cs.IT cs.LG math.IT
In the phase retrieval problem, an unknown vector is to be recovered given quadratic measurements. This problem has received considerable attention in recent times. In this paper, we present an algorithm to solve a nonconvex formulation of the phase retrieval problem, that we call $\textit{Incremental Truncated Wirtinger Flow}$. Given random Gaussian sensing vectors, we prove that it converges linearly to the solution, with an optimal sample complexity. We also provide stability guarantees of the algorithm under noisy measurements. Performance and comparisons with existing algorithms are illustrated via numerical experiments on simulated and real data, with both random and structured sensing vectors.
Ritesh Kolte and Ayfer \"Ozg\"ur
null
1606.03196
null
null
Causal Bandits: Learning Good Interventions via Causal Inference
stat.ML cs.LG
We study the problem of using causal models to improve the rate at which good interventions can be learned online in a stochastic environment. Our formalism combines multi-arm bandits and causal inference to model a novel type of bandit feedback that is not exploited by existing approaches. We propose a new algorithm that exploits the causal feedback and prove a bound on its simple regret that is strictly better (in all quantities) than algorithms that do not use the additional causal information.
Finnian Lattimore and Tor Lattimore and Mark D. Reid
null
1606.03203
null
null
Deep CNNs along the Time Axis with Intermap Pooling for Robustness to Spectral Variations
cs.CL cs.LG cs.NE
Convolutional neural networks (CNNs) with convolutional and pooling operations along the frequency axis have been proposed to attain invariance to frequency shifts of features. However, this is inappropriate with regard to the fact that acoustic features vary in frequency. In this paper, we contend that convolution along the time axis is more effective. We also propose the addition of an intermap pooling (IMP) layer to deep CNNs. In this layer, filters in each group extract common but spectrally variant features, then the layer pools the feature maps of each group. As a result, the proposed IMP CNN can achieve insensitivity to spectral variations characteristic of different speakers and utterances. The effectiveness of the IMP CNN architecture is demonstrated on several LVCSR tasks. Even without speaker adaptation techniques, the architecture achieved a WER of 12.7% on the SWB part of the Hub5'2000 evaluation test set, which is competitive with other state-of-the-art methods.
Hwaran Lee, Geonmin Kim, Ho-Gyeong Kim, Sang-Hoon Oh, and Soo-Young Lee
10.1109/LSP.2016.2589962
1606.03207
null
null
Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
cs.LG
Unsupervised learning aims at the discovery of hidden structure that drives the observations in the real world. It is essential for success in modern machine learning. Latent variable models are versatile in unsupervised learning and have applications in almost every domain. Training latent variable models is challenging due to the non-convexity of the likelihood objective. An alternative method is based on the spectral decomposition of low order moment tensors. This versatile framework is guaranteed to estimate the correct model consistently. My thesis spans both theoretical analysis of tensor decomposition framework and practical implementation of various applications. This thesis presents theoretical results on convergence to globally optimal solution of tensor decomposition using the stochastic gradient descent, despite non-convexity of the objective. This is the first work that gives global convergence guarantees for the stochastic gradient descent on non-convex functions with exponentially many local minima and saddle points. This thesis also presents large-scale deployment of spectral methods carried out on various platforms. Dimensionality reduction techniques such as random projection are incorporated for a highly parallel and scalable tensor decomposition algorithm. We obtain a gain in both accuracies and in running times by several orders of magnitude compared to the state-of-art variational methods. To solve real world problems, more advanced models and learning algorithms are proposed. This thesis discusses generalization of LDA model to mixed membership stochastic block model for learning user communities in social network, convolutional dictionary model for learning word-sequence embeddings, hierarchical tensor decomposition and latent tree structure model for learning disease hierarchy, and spatial point process mixture model for detecting cell types in neuroscience.
Furong Huang
null
1606.03212
null
null
IDNet: Smartphone-based Gait Recognition with Convolutional Neural Networks
cs.CV cs.LG
Here, we present IDNet, a user authentication framework from smartphone-acquired motion signals. Its goal is to recognize a target user from their way of walking, using the accelerometer and gyroscope (inertial) signals provided by a commercial smartphone worn in the front pocket of the user's trousers. IDNet features several innovations including: i) a robust and smartphone-orientation-independent walking cycle extraction block, ii) a novel feature extractor based on convolutional neural networks, iii) a one-class support vector machine to classify walking cycles, and the coherent integration of these into iv) a multi-stage authentication technique. IDNet is the first system that exploits a deep learning approach as universal feature extractors for gait recognition, and that combines classification results from subsequent walking cycles into a multi-stage decision making framework. Experimental results show the superiority of our approach against state-of-the-art techniques, leading to misclassification rates (either false negatives or positives) smaller than 0.15% with fewer than five walking cycles. Design choices are discussed and motivated throughout, assessing their impact on the user authentication performance.
Matteo Gadaleta and Michele Rossi
10.1016/j.patcog.2017.09.005
1606.03238
null
null
An Application of Network Lasso Optimization For Ride Sharing Prediction
cs.CY cs.LG stat.ML
Ride sharing has important implications in terms of environmental, social and individual goals by reducing carbon footprints, fostering social interactions and economizing commuter costs. The ride sharing systems that are commonly available lack adaptive and scalable techniques that can simultaneously learn from the large scale data and predict in real-time dynamic fashion. In this paper, we study such a problem towards a smart city initiative, where a generic ride sharing system is conceived capable of making predictions about ride share opportunities based on the historically recorded data while satisfying real-time ride requests. Underpinning the system is an application of a powerful machine learning convex optimization framework called Network Lasso that uses the Alternate Direction Method of Multipliers (ADMM) optimization for learning and dynamic prediction. We propose an application of a robust and scalable unified optimization framework within the ride sharing case-study. The application of Network Lasso framework is capable of jointly optimizing and clustering different rides based on their spatial and model similarity. The prediction from the framework clusters new ride requests, making accurate price prediction based on the clusters, detecting hidden correlations in the data and allowing fast convergence due to the network topology. We provide an empirical evaluation of the application of ADMM network Lasso on real trip record and simulated data, proving their effectiveness since the mean squared error of the algorithm's prediction is minimized on the test rides.
Shaona Ghosh, Kevin Page and David De Roure
null
1606.03276
null
null
Memory-Efficient Backpropagation Through Time
cs.NE cs.LG
We propose a novel approach to reduce memory consumption of the backpropagation through time (BPTT) algorithm when training recurrent neural networks (RNNs). Our approach uses dynamic programming to balance a trade-off between caching of intermediate results and recomputation. The algorithm is capable of tightly fitting within almost any user-set memory budget while finding an optimal execution policy minimizing the computational cost. Computational devices have limited memory capacity and maximizing a computational performance given a fixed memory budget is a practical use-case. We provide asymptotic computational upper bounds for various regimes. The algorithm is particularly effective for long sequences. For sequences of length 1000, our algorithm saves 95\% of memory usage while using only one third more time per iteration than the standard BPTT.
Audr\=unas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, Alex Graves
null
1606.03401
null
null
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
cs.LG cs.AI stat.ML
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
Bryan He, Christopher De Sa, Ioannis Mitliagkas, Christopher R\'e
null
1606.03432
null
null
Deep Directed Generative Models with Energy-Based Probability Estimation
cs.LG stat.ML
Training energy-based probabilistic models is confronted with apparently intractable sums, whose Monte Carlo estimation requires sampling from the estimated probability distribution in the inner loop of training. This can be approximately achieved by Markov chain Monte Carlo methods, but may still face a formidable obstacle that is the difficulty of mixing between modes with sharp concentrations of probability. Whereas an MCMC process is usually derived from a given energy function based on mathematical considerations and requires an arbitrarily long time to obtain good and varied samples, we propose to train a deep directed generative model (not a Markov chain) so that its sampling distribution approximately matches the energy function that is being trained. Inspired by generative adversarial networks, the proposed framework involves training of two models that represent dual views of the estimated probability distribution: the energy function (mapping an input configuration to a scalar energy value) and the generator (mapping a noise vector to a generated configuration), both represented by deep neural networks.
Taesup Kim, Yoshua Bengio
null
1606.03439
null
null
Learning overcomplete, low coherence dictionaries with linear inference
cs.LG
Finding overcomplete latent representations of data has applications in data analysis, signal processing, machine learning, theoretical neuroscience and many other fields. In an overcomplete representation, the number of latent features exceeds the data dimensionality, which is useful when the data is undersampled by the measurements (compressed sensing, information bottlenecks in neural systems) or composed from multiple complete sets of linear features, each spanning the data space. Independent Components Analysis (ICA) is a linear technique for learning sparse latent representations, which typically has a lower computational cost than sparse coding, its nonlinear, recurrent counterpart. While well suited for finding complete representations, we show that overcompleteness poses a challenge to existing ICA algorithms. Specifically, the coherence control in existing ICA algorithms, necessary to prevent the formation of duplicate dictionary features, is ill-suited in the overcomplete case. We show that in this case several existing ICA algorithms have undesirable global minima that maximize coherence. Further, by comparing ICA algorithms on synthetic data and natural images to the computationally more expensive sparse coding solution, we show that the coherence control biases the exploration of the data manifold, sometimes yielding suboptimal solutions. We provide a theoretical explanation of these failures and, based on the theory, propose improved overcomplete ICA algorithms. All told, this study contributes new insights into and methods for coherence control for linear ICA, some of which are applicable to many other, potentially nonlinear, unsupervised learning methods.
Jesse A. Livezey and Alejandro F. Bujan and Friedrich T. Sommer
null
1606.03474
null
null
Generative Adversarial Imitation Learning
cs.LG cs.AI
Consider learning a policy from example expert behavior, without interaction with the expert or access to reinforcement signal. One approach is to recover the expert's cost function with inverse reinforcement learning, then extract a policy from that cost function with reinforcement learning. This approach is indirect and can be slow. We propose a new general framework for directly extracting a policy from data, as if it were obtained by reinforcement learning following inverse reinforcement learning. We show that a certain instantiation of our framework draws an analogy between imitation learning and generative adversarial networks, from which we derive a model-free imitation learning algorithm that obtains significant performance gains over existing model-free methods in imitating complex behaviors in large, high-dimensional environments.
Jonathan Ho, Stefano Ermon
null
1606.03476
null
null
The Mythos of Model Interpretability
cs.LG cs.AI cs.CV cs.NE stat.ML
Supervised machine learning models boast remarkable predictive capabilities. But can you trust your model? Will it work in deployment? What else can it tell you about the world? We want models to be not only good, but interpretable. And yet the task of interpretation appears underspecified. Papers provide diverse and sometimes non-overlapping motivations for interpretability, and offer myriad notions of what attributes render models interpretable. Despite this ambiguity, many papers proclaim interpretability axiomatically, absent further explanation. In this paper, we seek to refine the discourse on interpretability. First, we examine the motivations underlying interest in interpretability, finding them to be diverse and occasionally discordant. Then, we address model properties and techniques thought to confer interpretability, identifying transparency to humans and post-hoc explanations as competing notions. Throughout, we discuss the feasibility and desirability of different notions, and question the oft-made assertions that linear models are interpretable and that deep neural networks are not.
Zachary C. Lipton
null
1606.03490
null
null
Improved Techniques for Training GANs
cs.LG cs.CV cs.NE
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. We focus on two applications of GANs: semi-supervised learning, and the generation of images that humans find visually realistic. Unlike most work on generative models, our primary goal is not to train a model that assigns high likelihood to test data, nor do we require the model to be able to learn well without using any labels. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.
Tim Salimans and Ian Goodfellow and Wojciech Zaremba and Vicki Cheung and Alec Radford and Xi Chen
null
1606.03498
null
null
Distributed Machine Learning in Materials that Couple Sensing, Actuation, Computation and Communication
cs.LG cs.RO
This paper reviews machine learning applications and approaches to detection, classification and control of intelligent materials and structures with embedded distributed computation elements. The purpose of this survey is to identify desired tasks to be performed in each type of material or structure (e.g., damage detection in composites), identify and compare common approaches to learning such tasks, and investigate models and training paradigms used. Machine learning approaches and common temporal features used in the domains of structural health monitoring, morphable aircraft, wearable computing and robotic skins are explored. As the ultimate goal of this research is to incorporate the approaches described in this survey into a robotic material paradigm, the potential for adapting the computational models used in these applications, and corresponding training algorithms, to an amorphous network of computing nodes is considered. Distributed versions of support vector machines, graphical models and mixture models developed in the field of wireless sensor networks are reviewed. Potential areas of investigation, including possible architectures for incorporating machine learning into robotic nodes, training approaches, and the possibility of using deep learning approaches for automatic feature extraction, are discussed.
Dana Hughes and Nikolaus Correll
null
1606.03508
null
null
TRex: A Tomography Reconstruction Proximal Framework for Robust Sparse View X-Ray Applications
math.OC cs.CV cs.LG stat.ML
We present TRex, a flexible and robust Tomographic Reconstruction framework using proximal algorithms. We provide an overview and perform an experimental comparison between the famous iterative reconstruction methods in terms of reconstruction quality in sparse view situations. We then derive the proximal operators for the four best methods. We show the flexibility of our framework by deriving solvers for two noise models: Gaussian and Poisson; and by plugging in three powerful regularizers. We compare our framework to state of the art methods, and show superior quality on both synthetic and real datasets.
Mohamed Aly, Guangming Zang, Wolfgang Heidrich, Peter Wonka
null
1606.03601
null
null
Drug response prediction by inferring pathway-response associations with Kernelized Bayesian Matrix Factorization
stat.ML cs.LG q-bio.QM
A key goal of computational personalized medicine is to systematically utilize genomic and other molecular features of samples to predict drug responses for a previously unseen sample. Such predictions are valuable for developing hypotheses for selecting therapies tailored for individual patients. This is especially valuable in oncology, where molecular and genetic heterogeneity of the cells has a major impact on the response. However, the prediction task is extremely challenging, raising the need for methods that can effectively model and predict drug responses. In this study, we propose a novel formulation of multi-task matrix factorization that allows selective data integration for predicting drug responses. To solve the modeling task, we extend the state-of-the-art kernelized Bayesian matrix factorization (KBMF) method with component-wise multiple kernel learning. In addition, our approach exploits the known pathway information in a novel and biologically meaningful fashion to learn the drug response associations. Our method quantitatively outperforms the state of the art on predicting drug responses in two publicly available cancer data sets as well as on a synthetic data set. In addition, we validated our model predictions with lab experiments using an in-house cancer cell line panel. We finally show the practical applicability of the proposed method by utilizing prior knowledge to infer pathway-drug response associations, opening up the opportunity for elucidating drug action mechanisms. We demonstrate that pathway-response associations can be learned by the proposed model for the well known EGFR and MEK inhibitors.
Muhammad Ammad-ud-din, Suleiman A.Khan, Disha Malani, Astrid Murum\"agi, Olli Kallioniemi, Tero Aittokallio and Samuel Kaski
10.1093/bioinformatics/btw433.
1606.03623
null
null
metricDTW: local distance metric learning in Dynamic Time Warping
cs.LG
We propose to learn multiple local Mahalanobis distance metrics to perform k-nearest neighbor (kNN) classification of temporal sequences. Temporal sequences are first aligned by dynamic time warping (DTW); given the alignment path, similarity between two sequences is measured by the DTW distance, which is computed as the accumulated distance between matched temporal point pairs along the alignment path. Traditionally, Euclidean metric is used for distance computation between matched pairs, which ignores the data regularities and might not be optimal for applications at hand. Here we propose to learn multiple Mahalanobis metrics, such that DTW distance becomes the sum of Mahalanobis distances. We adapt the large margin nearest neighbor (LMNN) framework to our case, and formulate multiple metric learning as a linear programming problem. Extensive sequence classification results show that our proposed multiple metrics learning approach is effective, insensitive to the preceding alignment qualities, and reaches the state-of-the-art performances on UCR time series datasets.
Jiaping Zhao, Zerong Xi and Laurent Itti
null
1606.03628
null
null
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
cs.LG stat.ML
This paper describes InfoGAN, an information-theoretic extension to the Generative Adversarial Network that is able to learn disentangled representations in a completely unsupervised manner. InfoGAN is a generative adversarial network that also maximizes the mutual information between a small subset of the latent variables and the observation. We derive a lower bound to the mutual information objective that can be optimized efficiently, and show that our training procedure can be interpreted as a variation of the Wake-Sleep algorithm. Specifically, InfoGAN successfully disentangles writing styles from digit shapes on the MNIST dataset, pose from lighting of 3D rendered images, and background digits from the central digit on the SVHN dataset. It also discovers visual concepts that include hair styles, presence/absence of eyeglasses, and emotions on the CelebA face dataset. Experiments show that InfoGAN learns interpretable representations that are competitive with representations learned by existing fully supervised methods.
Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel
null
1606.03657
null
null
Weakly Supervised Scalable Audio Content Analysis
cs.SD cs.LG cs.MM
Audio Event Detection is an important task for content analysis of multimedia data. Most of the current works on detection of audio events is driven through supervised learning approaches. We propose a weakly supervised learning framework which can make use of the tremendous amount of web multimedia data with significantly reduced annotation effort and expense. Specifically, we use several multiple instance learning algorithms to show that audio event detection through weak labels is feasible. We also propose a novel scalable multiple instance learning algorithm and show that its competitive with other multiple instance learning algorithms for audio event detection tasks.
Anurag Kumar, Bhiksha Raj
null
1606.03664
null
null
Deep Reinforcement Learning with a Combinatorial Action Space for Predicting Popular Reddit Threads
cs.CL cs.AI cs.LG
We introduce an online popularity prediction and tracking task as a benchmark task for reinforcement learning with a combinatorial, natural language action space. A specified number of discussion threads predicted to be popular are recommended, chosen from a fixed window of recent comments to track. Novel deep reinforcement learning architectures are studied for effective modeling of the value function associated with actions comprised of interdependent sub-actions. The proposed model, which represents dependence between sub-actions through a bi-directional LSTM, gives the best performance across different experimental configurations and domains, and it also generalizes well with varying numbers of recommendation requests.
Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, Li Deng
null
1606.03667
null
null
Comparison of Several Sparse Recovery Methods for Low Rank Matrices with Random Samples
cs.LG stat.ML
In this paper, we will investigate the efficacy of IMAT (Iterative Method of Adaptive Thresholding) in recovering the sparse signal (parameters) for linear models with missing data. Sparse recovery rises in compressed sensing and machine learning problems and has various applications necessitating viable reconstruction methods specifically when we work with big data. This paper will focus on comparing the power of IMAT in reconstruction of the desired sparse signal with LASSO. Additionally, we will assume the model has random missing information. Missing data has been recently of interest in big data and machine learning problems since they appear in many cases including but not limited to medical imaging datasets, hospital datasets, and massive MIMO. The dominance of IMAT over the well-known LASSO will be taken into account in different scenarios. Simulations and numerical results are also provided to verify the arguments.
Ashkan Esmaeili and Farokh Marvasti
null
1606.03672
null
null
Efficient KLMS and KRLS Algorithms: A Random Fourier Feature Perspective
cs.LG stat.ML
We present a new framework for online Least Squares algorithms for nonlinear modeling in RKH spaces (RKHS). Instead of implicitly mapping the data to a RKHS (e.g., kernel trick), we map the data to a finite dimensional Euclidean space, using random features of the kernel's Fourier transform. The advantage is that, the inner product of the mapped data approximates the kernel function. The resulting "linear" algorithm does not require any form of sparsification, since, in contrast to all existing algorithms, the solution's size remains fixed and does not increase with the iteration steps. As a result, the obtained algorithms are computationally significantly more efficient compared to previously derived variants, while, at the same time, they converge at similar speeds and to similar error floors.
Pantelis Bouboulis and Spyridon Pougkakiotis, Sergios Theodoridis
null
1606.03685
null
null
Neural Belief Tracker: Data-Driven Dialogue State Tracking
cs.CL cs.AI cs.LG
One of the core components of modern spoken dialogue systems is the belief tracker, which estimates the user's goal at every step of the dialogue. However, most current approaches have difficulty scaling to larger, more complex dialogue domains. This is due to their dependency on either: a) Spoken Language Understanding models that require large amounts of annotated training data; or b) hand-crafted lexicons for capturing some of the linguistic variation in users' language. We propose a novel Neural Belief Tracking (NBT) framework which overcomes these problems by building on recent advances in representation learning. NBT models reason over pre-trained word vectors, learning to compose them into distributed representations of user utterances and dialogue context. Our evaluation on two datasets shows that this approach surpasses past limitations, matching the performance of state-of-the-art models which rely on hand-crafted semantic lexicons and outperforming them when such lexicons are not provided.
Nikola Mrk\v{s}i\'c and Diarmuid \'O S\'eaghdha and Tsung-Hsien Wen and Blaise Thomson and Steve Young
null
1606.03777
null
null
Retrieving and Ranking Similar Questions from Question-Answer Archives Using Topic Modelling and Topic Distribution Regression
cs.IR cs.CL cs.LG
Presented herein is a novel model for similar question ranking within collaborative question answer platforms. The presented approach integrates a regression stage to relate topics derived from questions to those derived from question-answer pairs. This helps to avoid problems caused by the differences in vocabulary used within questions and answers, and the tendency for questions to be shorter than answers. The performance of the model is shown to outperform translation methods and topic modelling (without regression) on several real-world datasets.
Pedro Chahuara, Thomas Lampert, Pierre Gancarski
10.1007/978-3-319-43997-6_4
1606.03783
null
null
Open-Set Support Vector Machines
cs.LG stat.ML
Often, when dealing with real-world recognition problems, we do not need, and often cannot have, knowledge of the entire set of possible classes that might appear during operational testing. In such cases, we need to think of robust classification methods able to deal with the "unknown" and properly reject samples belonging to classes never seen during training. Notwithstanding, existing classifiers to date were mostly developed for the closed-set scenario, i.e., the classification setup in which it is assumed that all test samples belong to one of the classes with which the classifier was trained. In the open-set scenario, however, a test sample can belong to none of the known classes and the classifier must properly reject it by classifying it as unknown. In this work, we extend upon the well-known Support Vector Machines (SVM) classifier and introduce the Open-Set Support Vector Machines (OSSVM), which is suitable for recognition in open-set setups. OSSVM balances the empirical risk and the risk of the unknown and ensures that the region of the feature space in which a test sample would be classified as known (one of the known classes) is always bounded, ensuring a finite risk of the unknown. In this work, we also highlight the properties of the SVM classifier related to the open-set scenario, and provide necessary and sufficient conditions for an RBF SVM to have bounded open-space risk.
Pedro Ribeiro Mendes J\'unior, Terrance E. Boult, Jacques Wainer, and Anderson Rocha
10.1109/TSMC.2021.3074496
1606.03802
null
null
Efficient Learning with a Family of Nonconvex Regularizers by Redistributing Nonconvexity
math.OC cs.LG stat.ML
The use of convex regularizers allows for easy optimization, though they often produce biased estimation and inferior prediction performance. Recently, nonconvex regularizers have attracted a lot of attention and outperformed convex ones. However, the resultant optimization problem is much harder. In this paper, for a large class of nonconvex regularizers, we propose to move the nonconvexity from the regularizer to the loss. The nonconvex regularizer is then transformed to a familiar convex regularizer, while the resultant loss function can still be guaranteed to be smooth. Learning with the convexified regularizer can be performed by existing efficient algorithms originally designed for convex regularizers (such as the proximal algorithm, Frank-Wolfe algorithm, alternating direction method of multipliers and stochastic gradient descent). Extensions are made when the convexified regularizer does not have closed-form proximal step, and when the loss function is nonconvex, nonsmooth. Extensive experiments on a variety of machine learning application scenarios show that optimizing the transformed problem is much faster than running the state-of-the-art on the original problem.
Quanming Yao and James.T Kwok
null
1606.03841
null
null
Sorting out typicality with the inverse moment matrix SOS polynomial
cs.LG
We study a surprising phenomenon related to the representation of a cloud of data points using polynomials. We start with the previously unnoticed empirical observation that, given a collection (a cloud) of data points, the sublevel sets of a certain distinguished polynomial capture the shape of the cloud very accurately. This distinguished polynomial is a sum-of-squares (SOS) derived in a simple manner from the inverse of the empirical moment matrix. In fact, this SOS polynomial is directly related to orthogonal polynomials and the Christoffel function. This allows to generalize and interpret extremality properties of orthogonal polynomials and to provide a mathematical rationale for the observed phenomenon. Among diverse potential applications, we illustrate the relevance of our results on a network intrusion detection task for which we obtain performances similar to existing dedicated methods reported in the literature.
Jean-Bernard Lasserre, Edouard Pauwels
null
1606.03858
null
null
Robust Probabilistic Modeling with Bayesian Data Reweighting
stat.ML cs.AI cs.LG
Probabilistic models analyze data by relying on a set of assumptions. Data that exhibit deviations from these assumptions can undermine inference and prediction quality. Robust models offer protection against mismatch between a model's assumptions and reality. We propose a way to systematically detect and mitigate mismatch of a large class of probabilistic models. The idea is to raise the likelihood of each observation to a weight and then to infer both the latent variables and the weights from data. Inferring the weights allows a model to identify observations that match its assumptions and down-weight others. This enables robust inference and improves predictive accuracy. We study four different forms of mismatch with reality, ranging from missing latent groups to structure misspecification. A Poisson factorization analysis of the Movielens 1M dataset shows the benefits of this approach in a practical scenario.
Yixin Wang, Alp Kucukelbir, David M. Blei
null
1606.03860
null
null
Neural Associative Memory for Dual-Sequence Modeling
cs.NE cs.AI cs.CL cs.LG
Many important NLP problems can be posed as dual-sequence or sequence-to-sequence modeling tasks. Recent advances in building end-to-end neural architectures have been highly successful in solving such tasks. In this work we propose a new architecture for dual-sequence modeling that is based on associative memory. We derive AM-RNNs, a recurrent associative memory (AM) which augments generic recurrent neural networks (RNN). This architecture is extended to the Dual AM-RNN which operates on two AMs at once. Our models achieve very competitive results on textual entailment. A qualitative analysis demonstrates that long range dependencies between source and target-sequence can be bridged effectively using Dual AM-RNNs. However, an initial experiment on auto-encoding reveals that these benefits are not exploited by the system when learning to solve sequence-to-sequence tasks which indicates that additional supervision or regularization is needed.
Dirk Weissenborn
null
1606.03864
null
null
Inferring Sparsity: Compressed Sensing using Generalized Restricted Boltzmann Machines
cs.IT cond-mat.dis-nn cs.LG math.IT stat.ML
In this work, we consider compressed sensing reconstruction from $M$ measurements of $K$-sparse structured signals which do not possess a writable correlation model. Assuming that a generative statistical model, such as a Boltzmann machine, can be trained in an unsupervised manner on example signals, we demonstrate how this signal model can be used within a Bayesian framework of signal reconstruction. By deriving a message-passing inference for general distribution restricted Boltzmann machines, we are able to integrate these inferred signal models into approximate message passing for compressed sensing reconstruction. Finally, we show for the MNIST dataset that this approach can be very effective, even for $M < K$.
Eric W. Tramel and Andre Manoel and Francesco Caltagirone and Marylou Gabri\'e and Florent Krzakala
10.1109/ITW.2016.7606837
1606.03956
null
null
Making Contextual Decisions with Low Technical Debt
cs.LG cs.DC
Applications and systems are constantly faced with decisions that require picking from a set of actions based on contextual information. Reinforcement-based learning algorithms such as contextual bandits can be very effective in these settings, but applying them in practice is fraught with technical debt, and no general system exists that supports them completely. We address this and create the first general system for contextual learning, called the Decision Service. Existing systems often suffer from technical debt that arises from issues like incorrect data collection and weak debuggability, issues we systematically address through our ML methodology and system abstractions. The Decision Service enables all aspects of contextual bandit learning using four system abstractions which connect together in a loop: explore (the decision space), log, learn, and deploy. Notably, our new explore and log abstractions ensure the system produces correct, unbiased data, which our learner uses for online learning and to enable real-time safeguards, all in a fully reproducible manner. The Decision Service has a simple user interface and works with a variety of applications: we present two live production deployments for content recommendation that achieved click-through improvements of 25-30%, another with 18% revenue lift in the landing page, and ongoing applications in tech support and machine failure handling. The service makes real-time decisions and learns continuously and scalably, while significantly lowering technical debt.
Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford, Stephen Lee, Jiaji Li, Dan Melamed, Gal Oshri, Oswaldo Ribas, Siddhartha Sen, Alex Slivkins
null
1606.03966
null
null
Estimating individual treatment effect: generalization bounds and algorithms
stat.ML cs.AI cs.LG
There is intense interest in applying machine learning to problems of causal inference in fields such as healthcare, economics and education. In particular, individual-level causal inference has important applications such as precision medicine. We give a new theoretical analysis and family of algorithms for predicting individual treatment effect (ITE) from observational data, under the assumption known as strong ignorability. The algorithms learn a "balanced" representation such that the induced treated and control distributions look similar. We give a novel, simple and intuitive generalization-error bound showing that the expected ITE estimation error of a representation is bounded by a sum of the standard generalization-error of that representation and the distance between the treated and control distributions induced by the representation. We use Integral Probability Metrics to measure distances between distributions, deriving explicit bounds for the Wasserstein and Maximum Mean Discrepancy (MMD) distances. Experiments on real and simulated data show the new algorithms match or outperform the state-of-the-art.
Uri Shalit, Fredrik D. Johansson, David Sontag
null
1606.03976
null
null
Trace Norm Regularised Deep Multi-Task Learning
cs.LG
We propose a framework for training multiple neural networks simultaneously. The parameters from all models are regularised by the tensor trace norm, so that each neural network is encouraged to reuse others' parameters if possible -- this is the main motivation behind multi-task learning. In contrast to many deep multi-task learning models, we do not predefine a parameter sharing strategy by specifying which layers have tied parameters. Instead, our framework considers sharing for all shareable layers, and the sharing strategy is learned in a data-driven way.
Yongxin Yang, Timothy M. Hospedales
null
1606.04038
null
null