|
import torch |
|
import cv2 |
|
import time |
|
|
|
|
|
BASELINE = 0.191 |
|
HEIGHT_ORIGINAL = 1920 |
|
HEIGHT_DOWNSCALED = 960 |
|
|
|
|
|
def compute_depth_from_disparity(disparity_map: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert a disparity map to a depth map based on dataset-specific calibration. |
|
|
|
The depth is computed using trigonometric projection: |
|
|
|
depth = B * (sin(theta) / tan(disparity_rad) + cos(theta)) |
|
|
|
where: |
|
- B is the baseline. |
|
- theta is the vertical angle corresponding to each pixel in the y-grid. |
|
- disparity_rad is the disparity map scaled to radians. |
|
|
|
Parameters: |
|
disparity_map (torch.Tensor): Input tensor of shape (bs, 1, h, w) or (bs, h, w). |
|
|
|
Returns: |
|
torch.Tensor: Depth map of shape (bs, h, w). |
|
""" |
|
|
|
|
|
has_channel_dim = disparity_map.dim() == 4 and disparity_map.shape[1] == 1 |
|
if has_channel_dim: |
|
disparity_map = disparity_map.squeeze(1) |
|
|
|
bs, height, width = disparity_map.shape |
|
|
|
|
|
y_grid = ( |
|
torch.arange(512 + 2 * height - 1, 512, step=-2, device=disparity_map.device) |
|
.unsqueeze(0) |
|
.unsqueeze(-1) |
|
.expand(bs, -1, width) |
|
) |
|
|
|
|
|
theta_grid = y_grid * torch.pi / HEIGHT_ORIGINAL |
|
disparity_map_rad = (torch.pi / HEIGHT_DOWNSCALED) * disparity_map |
|
|
|
|
|
depth_map = torch.zeros_like(disparity_map, dtype=torch.float32) |
|
|
|
|
|
non_zero_disparity = disparity_map != 0 |
|
depth_map[non_zero_disparity] = ( |
|
(torch.sin(theta_grid[non_zero_disparity]) / torch.tan(disparity_map_rad[non_zero_disparity])) |
|
+ torch.cos(theta_grid[non_zero_disparity]) |
|
) * BASELINE |
|
|
|
|
|
if has_channel_dim: |
|
depth_map = depth_map.unsqueeze(1) |
|
|
|
return depth_map |
|
|
|
|
|
def compute_disparity_from_depth(depth_map: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert a depth map to a disparity map based on dataset-specific calibration. |
|
|
|
This function reverses the depth-to-disparity conversion, based on the relationship: |
|
|
|
tan(disparity_rad) = sin(theta) / (depth / B - cos(theta)) |
|
|
|
The final disparity in pixel units is then: |
|
|
|
disparity = (H / pi) * atan(tan(disparity_rad)) |
|
|
|
where: |
|
- B is the baseline. |
|
- theta is the vertical angle corresponding to each pixel in the y-grid. |
|
- disparity_rad is the angular disparity in radians. |
|
|
|
Parameters: |
|
depth_map (torch.Tensor): Input tensor of shape (bs, 1, h, w) or (bs, h, w). |
|
|
|
Returns: |
|
torch.Tensor: Disparity map of shape (bs, h, w). |
|
""" |
|
|
|
|
|
has_channel_dim: bool = depth_map.dim() == 4 and depth_map.shape[1] == 1 |
|
if has_channel_dim: |
|
depth_map = depth_map.squeeze(1) |
|
|
|
bs, height, width = depth_map.shape |
|
|
|
|
|
y_grid = ( |
|
torch.arange(512 + 2 * height - 1, 512, step=-2, device=depth_map.device) |
|
.unsqueeze(0) |
|
.unsqueeze(-1) |
|
.expand(bs, -1, width) |
|
) |
|
|
|
|
|
theta_grid = y_grid * torch.pi / HEIGHT_ORIGINAL |
|
|
|
|
|
disparity_map = torch.zeros_like(depth_map, dtype=torch.float32) |
|
|
|
|
|
non_zero_depth = depth_map != 0 |
|
tan_disparity_rad = torch.sin(theta_grid[non_zero_depth]) / ( |
|
(depth_map[non_zero_depth] / BASELINE) - torch.cos(theta_grid[non_zero_depth]) |
|
) |
|
disparity_map_rad = torch.atan(tan_disparity_rad) |
|
disparity_map[non_zero_depth] = (HEIGHT_DOWNSCALED / torch.pi) * disparity_map_rad |
|
|
|
|
|
if has_channel_dim: |
|
disparity_map = disparity_map.unsqueeze(1) |
|
|
|
return disparity_map |
|
|
|
|
|
def disp_deg_to_disp_pix(disp_deg: float) -> float: |
|
""" |
|
Convert a disparity value from degrees to pixels. |
|
|
|
The relationship is: |
|
|
|
disp_pix = (H / 180) * disp_deg |
|
|
|
where: |
|
- H is the image height specific to the dataset. |
|
- disp_deg is the disparity value in degrees. |
|
|
|
Parameters: |
|
disp_deg (float): Disparity in degrees. |
|
|
|
Returns: |
|
float: Disparity in pixels. |
|
""" |
|
H_down: int = 960 |
|
return (H_down / 180) * disp_deg |
|
|
|
|
|
|
|
def disp_pix_to_disp_deg(disp_pix: float) -> float: |
|
""" |
|
Convert a disparity value from pixels to degrees. |
|
|
|
The relationship is: |
|
|
|
disp_deg = (180 / H) * disp_pix |
|
|
|
where: |
|
- H is the dataset-specific image height. |
|
- disp_pix is the disparity value in pixels. |
|
|
|
Parameters: |
|
disp_pix (float): Disparity in pixels. |
|
|
|
Returns: |
|
float: Disparity in degrees. |
|
""" |
|
H_down: int = 960 |
|
return (180 / H_down) * disp_pix |
|
|
|
|
|
|
|
def readDepthHelvipad(filename: str) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Read a depth map from a Helvipad dataset file. |
|
|
|
The depth is stored in a 16-bit format and needs to be scaled by 1/256. |
|
|
|
Parameters: |
|
filename (str): Path to the depth file. |
|
|
|
Returns: |
|
tuple[torch.Tensor, torch.Tensor]: |
|
- Depth map tensor (H, W). |
|
- Validity mask tensor (H, W) indicating valid depth values. |
|
""" |
|
depth = load_depth_with_infinite_retry(filename) / 256.0 |
|
valid = depth > 0.0 |
|
return depth, valid |
|
|
|
|
|
def readDisparityHelvipad(filename: str) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Read a disparity map from a Helvipad dataset file. |
|
|
|
The disparity is stored in a 16-bit format and needs to be scaled by 1/2048. |
|
|
|
Parameters: |
|
filename (str): Path to the disparity file. |
|
|
|
Returns: |
|
tuple[torch.Tensor, torch.Tensor]: |
|
- Disparity map tensor (H, W). |
|
- Validity mask tensor (H, W) indicating valid disparity values. |
|
""" |
|
disp = load_depth_with_infinite_retry(filename) / 2048.0 |
|
valid = disp > 0.0 |
|
return disp, valid |
|
|
|
|