# Amazon Product Vector Database | |
This dataset contains vector embeddings for Amazon products, including both text and image embeddings. | |
## Contents | |
- `embeddings.parquet`: Contains text embeddings, image embeddings, and metadata for all products | |
## Usage | |
```python | |
import pandas as pd | |
from datasets import load_dataset | |
# Load the dataset | |
dataset = load_dataset("chen196473/amazon_vector_database") | |
# Read the data | |
df = pd.read_parquet("embeddings.parquet") | |
# Extract embeddings | |
text_embeddings = df[[col for col in df.columns if col.startswith('text_embedding_')]].values | |
image_embeddings = df[[col for col in df.columns if col.startswith('image_embedding_')]].values | |
``` | |