sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A380705
Decimal expansion of the obtuse vertex angle, in radians, in a deltoidal icositetrahedron face.
[ "2", "0", "1", "1", "7", "2", "1", "8", "9", "8", "7", "8", "5", "4", "1", "1", "8", "2", "8", "5", "8", "8", "6", "1", "4", "6", "9", "6", "5", "5", "8", "2", "9", "1", "7", "1", "3", "7", "3", "6", "9", "4", "4", "8", "2", "7", "8", "6", "4", "9", "0", "7", "5", "6", "4", "8", "0", "6", "1", "3", "2", "3", "1", "5", "4", "3", "0", "5", "6", "3", "4", "0", "6", "6", "8", "3", "7", "6", "2", "1", "5", "9", "5", "1", "9", "0", "7", "0", "8", "4" ]
[ "nonn", "cons", "easy" ]
6
1
1
[ "A020789", "A378390", "A378391", "A378392", "A378393", "A378394", "A380704", "A380705" ]
null
Paolo Xausa, Jan 31 2025
2025-01-31T04:21:08
oeisdata/seq/A380/A380705.seq
ffe0fe219953f7eb85ee2ea461c7a425
A380706
n is the a(n)-th nonnegative integer having its set of decimal digits.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "1", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "1", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "1", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "1", "1", "1", "1" ]
[ "nonn", "look", "base" ]
11
0
12
[ "A326307", "A380706" ]
null
Alois P. Heinz, Jan 30 2025
2025-01-30T17:19:32
oeisdata/seq/A380/A380706.seq
c28139de25507af94c0c256ceebe4b83
A380708
G.f. A(x) satisfies A(x) = 1 + x*abs( 1/A(x) )^2.
[ "1", "1", "2", "3", "2", "7", "16", "32", "26", "119", "314", "687", "600", "2940", "8104", "18404", "16618", "84447", "238454", "553121", "509362", "2645367", "7582080", "17828384", "16631704", "87642628", "253770136", "602394756", "567132656", "3019835984", "8808836984", "21056808924", "19960043146", "107115901135", "314214037774", "755139832949", "719601214982" ]
[ "nonn" ]
9
0
3
[ "A003714", "A380708" ]
null
Paul D. Hanna, Feb 08 2025
2025-02-09T03:42:08
oeisdata/seq/A380/A380708.seq
617806e94f58ebfec9fa92ffbd1aedfb
A380709
G.f. A(x) satisfies A(x) = 1 + x*abs( 1/A(x) )^3.
[ "1", "1", "3", "9", "25", "60", "111", "356", "717", "1728", "3532", "7923", "13947", "43956", "135762", "455844", "1502005", "4377084", "9696816", "33777040", "76261380", "211981800", "491690441", "1156806114", "2388107247", "7425085120", "22208783472", "72885740508", "243066599038", "726160343256", "1695120635568", "5836780502656", "13416367141485" ]
[ "nonn" ]
7
0
3
[ "A263132", "A380708", "A380709" ]
null
Paul D. Hanna, Feb 09 2025
2025-02-10T04:39:25
oeisdata/seq/A380/A380709.seq
164244973e30e99d209d87f7ea0f2c2f
A380710
G.f. A(x) satisfies A(x) = 1 + x*A(x)*abs( 1/A(x)^2 ).
[ "1", "1", "3", "8", "19", "52", "130", "350", "887", "2386", "6178", "16318", "42618", "112632", "295072", "777628", "2039543", "5379446", "14139050", "37212510", "97869194", "257724328", "677880176", "1784741604", "4694887026", "12362045980", "32529481476", "85628088892", "225332403940", "593217232816", "1561270271280", "4109624293656", "10816272052191" ]
[ "nonn" ]
12
0
3
[ "A380708", "A380709", "A380710" ]
null
Paul D. Hanna, Feb 18 2025
2025-02-19T10:27:25
oeisdata/seq/A380/A380710.seq
0d9d386866d81f9a7080da5488689b7a
A380711
G.f. A(x) satisfies A(x) = 1 + x*A(x)*abs( 1/A(x)^3 ).
[ "1", "1", "4", "13", "32", "147", "460", "1436", "5662", "17287", "60644", "209377", "688370", "2391256", "8105590", "27102666", "92744010", "312994179", "1067043874", "3659563265", "12430287670", "42225015449", "143808001426", "487301478188", "1658050374982", "5637187122368", "19153301908756", "65251831433398", "222042679730222", "755372323224172" ]
[ "nonn" ]
7
0
3
[ "A380708", "A380709", "A380710", "A380711" ]
null
Paul D. Hanna, Feb 18 2025
2025-02-19T10:27:19
oeisdata/seq/A380/A380711.seq
1f928fceaa7471854318cca24799fe47
A380712
G.f. A(x) satisfies 1/2 = Sum_{n=-oo..+oo} (-1)^(n-1) * x^(2*n) * (A(x) + x^n)^(n-1).
[ "1", "8", "84", "1040", "14220", "207416", "3163352", "49838112", "804826128", "13251624272", "221630530572", "3754763811696", "64301286803888", "1111314020855608", "19358763742909840", "339542985410593024", "5991328544544083368", "106282296849129147080", "1894330721630908390908", "33907409814314990430864" ]
[ "nonn" ]
12
0
2
[ "A379763", "A380068", "A380712" ]
null
Paul D. Hanna, Feb 21 2025
2025-03-26T12:14:53
oeisdata/seq/A380/A380712.seq
0e06d8e9c9a8f684b381377e386554bc
A380713
Lesser of twin self primes, i.e., smaller member of the pair of self primes differing by 2.
[ "3", "5", "18521", "19421", "39827", "44621", "49121", "57221", "59627", "65927", "84221", "86627", "129221", "139121", "149627", "153521", "172421", "182927", "207521", "209927", "231821", "238727", "251621", "254927", "264827", "274121", "277427", "289127", "308927", "317321", "319727", "321821", "327827", "329627", "330821" ]
[ "nonn", "base" ]
15
1
1
[ "A001359", "A003052", "A374101", "A380713", "A380715" ]
null
Shyam Sunder Gupta, Mar 27 2025
2025-03-27T14:56:21
oeisdata/seq/A380/A380713.seq
f95dc3f2219c6608f03c820ea3d506b8
A380714
a(n) = n*(n-1) mod (10^m-1) where m is the number of decimal digits in n.
[ "0", "2", "6", "3", "2", "3", "6", "2", "0", "90", "11", "33", "57", "83", "12", "42", "74", "9", "45", "83", "24", "66", "11", "57", "6", "56", "9", "63", "20", "78", "39", "2", "66", "33", "2", "72", "45", "20", "96", "75", "56", "39", "24", "11", "0", "90", "83", "78", "75", "74", "75", "78", "83", "90", "0", "11", "24", "39", "56", "75", "96", "20", "45", "72", "2", "33", "66" ]
[ "nonn", "base", "look", "changed" ]
32
1
2
[ "A002283", "A002378", "A053816", "A055642", "A380714" ]
null
Giorgos Kalogeropoulos, Mar 27 2025
2025-04-15T15:04:19
oeisdata/seq/A380/A380714.seq
f019851bd81303396905938849fa7df3
A380715
Greater of twin self primes, i.e., larger member of the pair of self primes differing by 2.
[ "5", "7", "18523", "19423", "39829", "44623", "49123", "57223", "59629", "65929", "84223", "86629", "129223", "139123", "149629", "153523", "172423", "182929", "207523", "209929", "231823", "238729", "251623", "254929", "264829", "274123", "277429", "289129", "308929", "317323", "319729", "321823", "327829", "329629", "330823" ]
[ "nonn", "base" ]
13
1
1
[ "A003052", "A006512", "A380713", "A380715", "A382380" ]
null
Shyam Sunder Gupta, Mar 27 2025
2025-03-27T14:56:16
oeisdata/seq/A380/A380715.seq
2344e8552c0d57f57c7195f2c5ccd42f
A380716
Primitive solutions k to the Diophantine equation k^7 = Sum_{i=1..8} y_i^7 with y_i > 0.
[ "102", "377", "430", "454" ]
[ "nonn", "hard", "more", "changed" ]
13
1
1
[ "A380716", "A381026" ]
null
Jinyuan Wang, Jan 30 2025
2025-04-18T17:45:14
oeisdata/seq/A380/A380716.seq
1733f5a8360051d167acad97be43ebaf
A380717
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 * (1 - x*A(x))^2) / (1 - x*A(x)).
[ "1", "2", "13", "151", "2561", "57401", "1602985", "53659453", "2095244289", "93523526065", "4698386208521", "262397580544133", "16128832249562785", "1082120615743840297", "78695060375718726633", "6166431270471329586301", "517970728078392717716225", "46432097598077316120950369", "4424506354750061857673476873" ]
[ "nonn" ]
9
0
2
[ "A194471", "A380673", "A380717" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:49
oeisdata/seq/A380/A380717.seq
887c125676c08925e6f192bb3cf62cb3
A380718
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2) / (1 - x*A(x)).
[ "1", "2", "17", "277", "6809", "225381", "9408745", "474835159", "28128322801", "1913917635433", "147124118481641", "12610993501595523", "1192699876840875529", "123380247466574450509", "13858619936380747514953", "1679795510876270598645631", "218541202774350975212752865", "30376105717226232363041309265" ]
[ "nonn" ]
10
0
2
[ "A377831", "A380663", "A380718", "A380719" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:00
oeisdata/seq/A380/A380718.seq
e86ead959d39e4375546930485ec7334
A380719
E.g.f. A(x) satisfies A(x) = exp(x / (1 - x*A(x))^2) / (1 - x*A(x)).
[ "1", "2", "13", "157", "2817", "67541", "2033293", "73793399", "3137724033", "153046171657", "8425546124661", "516854537135795", "34963627698674689", "2585888583437930525", "207593192181190597629", "17978635157682679541311", "1670861912137958623651329", "165868047783912942721097873", "17517226956387964424430057829" ]
[ "nonn" ]
9
0
2
[ "A380663", "A380718", "A380719" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:04
oeisdata/seq/A380/A380719.seq
bb92265bd34f4bc91df3da969d3b25f5
A380720
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 * (1 - x*A(x))^4) / (1 - x*A(x))^2.
[ "1", "3", "27", "427", "9829", "299421", "11399767", "522120299", "27993612745", "1721382881401", "119487832998811", "9244561661068647", "788985451618181869", "73644131873399817653", "7463589265871298367711", "816231439143125763495811", "95811879190166378655829393", "12015708296507465444922873585" ]
[ "nonn" ]
7
0
2
[ "A377742", "A380674", "A380720" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:07
oeisdata/seq/A380/A380720.seq
e56c0cbb76a912558b4e3c734565da47
A380721
E.g.f. A(x) satisfies A(x) = exp(x / (1 - x*A(x))^3) / (1 - x*A(x))^2.
[ "1", "3", "29", "511", "13313", "462401", "20140495", "1056765711", "64931273601", "4575023966017", "363744086548751", "32219262817769039", "3146690718151835233", "335963164545043929921", "38931639595489583488239", "4866587415704561667715471", "652773358729046023136421377", "93523037570967777721191018881" ]
[ "nonn" ]
9
0
2
[ "A380665", "A380721", "A380722" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:26
oeisdata/seq/A380/A380721.seq
c6ba36eb0f96a0c0278056ae1e180339
A380722
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 * (1 - x*A(x))) / (1 - x*A(x))^2.
[ "1", "3", "33", "679", "20905", "863601", "44912347", "2820755183", "207815625073", "17578781394913", "1679410405425571", "178871724214036767", "21017369600310686665", "2700840226820242034321", "376826763817725194699083", "56730569139675562422229711", "9166624006966363722766482913", "1582356756863532248954506939329" ]
[ "nonn" ]
9
0
2
[ "A380665", "A380721", "A380722" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:30
oeisdata/seq/A380/A380722.seq
6afcfae0ac38b23b127133be01ea2596
A380723
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2) / (1 - x*A(x)^2).
[ "1", "2", "21", "436", "13785", "589206", "31825381", "2080523880", "159761186577", "14097898530730", "1405926737063541", "156379679761925148", "19195200442017128425", "2577494115099820986174", "375845854490491567916805", "59145488004443221188738256", "9990898494797767848442559649", "1803160967691789114062089511250" ]
[ "nonn" ]
11
0
2
[ "A360601", "A371318", "A377831", "A377888", "A380718", "A380723", "A380724" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:34
oeisdata/seq/A380/A380723.seq
ed612e231978f9242d4703ed064afdea
A380724
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^3) / (1 - x*A(x)^3).
[ "1", "2", "29", "862", "39461", "2454296", "193406953", "18475039808", "2075062993865", "268013104242688", "39139481641977461", "6377306725457207552", "1147019426037344539501", "225728971809041691392000", "48248339461852786811399489", "11131014193619108036340637696", "2756799306857952163745291500433" ]
[ "nonn" ]
10
0
2
[ "A360609", "A373324", "A377831", "A377889", "A380723", "A380724" ]
null
Seiichi Manyama, Jan 30 2025
2025-01-31T09:25:38
oeisdata/seq/A380/A380724.seq
71001c563dfbcf680e7b12354d911e03
A380725
Positive integers k whose sum of digits equals the square of their number of digits.
[ "1", "13", "22", "31", "40", "108", "117", "126", "135", "144", "153", "162", "171", "180", "207", "216", "225", "234", "243", "252", "261", "270", "306", "315", "324", "333", "342", "351", "360", "405", "414", "423", "432", "441", "450", "504", "513", "522", "531", "540", "603", "612", "621", "630", "702", "711", "720", "801", "810", "900", "1069", "1078", "1087", "1096", "1159", "1168", "1177", "1186", "1195" ]
[ "nonn", "base", "fini", "full", "easy" ]
41
1
2
[ "A007953", "A061384", "A380725" ]
null
Anwar Hahj Jefferson-George, Jan 30 2025
2025-02-18T15:35:17
oeisdata/seq/A380/A380725.seq
4abe481dd9152ae0a7d0ac581014b7f7
A380726
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 / (1 - x*A(x)^2)) / (1 - x*A(x)^2).
[ "1", "2", "23", "526", "18345", "865426", "51606511", "3725086590", "315869177777", "30781410753250", "3390102419068071", "416446509483046318", "56455962861401232025", "8372599773137199223794", "1348414830158700569758655", "234364024637335981658563486", "43725325359127416298442233569" ]
[ "nonn" ]
9
0
2
[ "A380663", "A380723", "A380726", "A380727" ]
null
Seiichi Manyama, Jan 31 2025
2025-01-31T09:25:42
oeisdata/seq/A380/A380726.seq
13eb194e1d656fe8ef60e4daa98fb779
A380727
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^3 / (1 - x*A(x)^3)) / (1 - x*A(x)^3).
[ "1", "2", "31", "988", "48533", "3240016", "274099723", "28110919712", "3389978711785", "470124480093184", "73718009095023191", "12897488652935429632", "2490884805057416903869", "526368104133213244928000", "120811269372167469194820547", "29928528196949304888405323776", "7959458742917430589011715194833" ]
[ "nonn" ]
8
0
2
[ "A380663", "A380724", "A380726", "A380727" ]
null
Seiichi Manyama, Jan 31 2025
2025-01-31T09:25:45
oeisdata/seq/A380/A380727.seq
5519a7811b688542b24b5a20ef1b093b
A380728
For n a power of 2, a(n) = n. Otherwise a(n) is the smallest number not yet in the sequence which is coprime to n and has the same binary weight as n.
[ "1", "2", "5", "4", "3", "17", "11", "8", "10", "9", "7", "65", "14", "13", "23", "16", "6", "257", "21", "33", "19", "25", "15", "1025", "22", "35", "29", "37", "27", "43", "47", "32", "20", "129", "26", "4097", "28", "41", "46", "513", "38", "67", "30", "49", "53", "39", "31", "16385", "44", "69", "58", "73", "45", "71", "59", "81", "77", "51", "55", "83", "62", "61", "95", "64", "12" ]
[ "nonn", "base" ]
14
1
2
[ "A000051", "A005940", "A048578", "A085731", "A380728" ]
null
David James Sycamore, Jan 31 2025
2025-02-03T21:32:30
oeisdata/seq/A380/A380728.seq
13f7a574a0eb99c92ac9071e58e6e0b4
A380729
Smallest n-digit number e such that there exists a primitive Pythagorean n-digit quintuple (a,b,c,d,e) with 10^(n-1) <= a < b < c < d < e < 10^n.
[ "9", "27", "215", "2035", "20095", "200287", "2000851", "20002663", "200008317", "2000025997", "20000082213", "200000259021", "2000000817463", "20000002584459", "200000008167303", "2000000025828219", "20000000081661683", "200000000258208463", "2000000000816541333" ]
[ "nonn", "base", "more" ]
65
1
1
[ "A096910", "A379744", "A380729" ]
null
Jean-Marc Rebert, Jan 31 2025
2025-03-24T19:02:07
oeisdata/seq/A380/A380729.seq
65dc940304fc436490dbad0014008b19
A380730
Numbers k such that the greatest prime dividing k is smaller than the minimum exponent in the prime factorization of k.
[ "8", "16", "32", "64", "81", "128", "243", "256", "512", "729", "1024", "1296", "2048", "2187", "2592", "3888", "4096", "5184", "6561", "7776", "8192", "10368", "11664", "15552", "15625", "16384", "19683", "20736", "23328", "31104", "32768", "34992", "41472", "46656", "59049", "62208", "65536", "69984", "78125", "82944", "93312", "104976", "124416" ]
[ "nonn", "changed" ]
11
1
1
[ "A006530", "A036966", "A051904", "A380692", "A380730", "A380731", "A380732", "A380733" ]
null
Amiram Eldar, Jan 31 2025
2025-04-26T05:31:20
oeisdata/seq/A380/A380730.seq
abb0a2d0cfd87907b9d6ec6361ec0e00
A380731
Numbers k such that the largest prime dividing k is smaller than or equal to the minimum exponent in the prime factorization of k.
[ "4", "8", "16", "27", "32", "64", "81", "128", "216", "243", "256", "432", "512", "648", "729", "864", "1024", "1296", "1728", "1944", "2048", "2187", "2592", "3125", "3456", "3888", "4096", "5184", "5832", "6561", "6912", "7776", "8192", "10368", "11664", "13824", "15552", "15625", "16384", "17496", "19683", "20736", "23328", "27648", "31104", "32768" ]
[ "nonn" ]
9
1
1
[ "A001694", "A006530", "A051904", "A380693", "A380730", "A380731", "A380732", "A380733" ]
null
Amiram Eldar, Jan 31 2025
2025-01-31T13:39:25
oeisdata/seq/A380/A380731.seq
8780c6576ee54d03862ce917dee8d579
A380732
Numbers k such that the prime index of the largest prime dividing k is smaller than the minimum exponent in the prime factorization of k.
[ "4", "8", "16", "27", "32", "64", "81", "128", "216", "243", "256", "432", "512", "625", "648", "729", "864", "1024", "1296", "1728", "1944", "2048", "2187", "2592", "3125", "3456", "3888", "4096", "5184", "5832", "6561", "6912", "7776", "8192", "10000", "10368", "11664", "13824", "15552", "15625", "16384", "16807", "17496", "19683", "20000", "20736" ]
[ "nonn" ]
7
1
1
[ "A001694", "A006530", "A051904", "A061395", "A380694", "A380730", "A380731", "A380732", "A380733" ]
null
Amiram Eldar, Jan 31 2025
2025-01-31T13:39:32
oeisdata/seq/A380/A380732.seq
5314ce6256edebde8c99539aa6d99e81
A380733
Numbers k such that the prime index of the largest prime dividing k is smaller than or equal to the minimum exponent in the prime factorization of k; a(1) = 1 by convention.
[ "1", "2", "4", "8", "9", "16", "27", "32", "36", "64", "72", "81", "108", "125", "128", "144", "216", "243", "256", "288", "324", "432", "512", "576", "625", "648", "729", "864", "972", "1000", "1024", "1152", "1296", "1728", "1944", "2000", "2048", "2187", "2304", "2401", "2592", "2916", "3125", "3375", "3456", "3888", "4000", "4096", "4608", "5000", "5184", "5832" ]
[ "nonn" ]
9
1
2
[ "A001694", "A006530", "A051904", "A061395", "A380695", "A380730", "A380731", "A380732", "A380733" ]
null
Amiram Eldar, Jan 31 2025
2025-01-31T13:39:38
oeisdata/seq/A380/A380733.seq
83c82f619a7d2946983efe32b87eaefe
A380734
Decimal expansion of the medium/short edge length ratio of a disdyakis dodecahedron.
[ "1", "3", "3", "7", "7", "0", "8", "7", "1", "8", "6", "6", "8", "4", "1", "8", "2", "4", "5", "6", "5", "8", "2", "2", "8", "4", "6", "5", "5", "6", "3", "3", "7", "7", "3", "3", "6", "2", "2", "3", "3", "6", "0", "4", "9", "1", "3", "1", "3", "7", "5", "2", "3", "3", "2", "7", "5", "6", "4", "3", "6", "9", "7", "4", "4", "2", "2", "6", "1", "3", "7", "3", "6", "1", "5", "4", "2", "1", "1", "6", "6", "7", "8", "3", "2", "3", "9", "1", "9", "8" ]
[ "nonn", "cons", "easy" ]
12
1
2
[ "A010474", "A378393", "A378712", "A378713", "A378714", "A378715", "A380734", "A380735", "A380736", "A380737", "A380738" ]
null
Paolo Xausa, Jan 31 2025
2025-02-05T11:16:59
oeisdata/seq/A380/A380734.seq
b39e316053c2f1b5348d80200208d19c
A380735
Decimal expansion of the long/short edge length ratio of a disdyakis dodecahedron.
[ "1", "6", "3", "0", "6", "0", "1", "9", "3", "7", "4", "8", "1", "8", "7", "0", "7", "2", "1", "2", "5", "7", "3", "8", "4", "1", "0", "3", "4", "5", "8", "5", "2", "8", "2", "9", "6", "9", "3", "8", "5", "2", "4", "5", "5", "3", "6", "2", "5", "2", "7", "8", "2", "9", "6", "1", "6", "8", "0", "9", "7", "1", "0", "5", "4", "2", "7", "2", "4", "7", "4", "9", "6", "9", "2", "3", "1", "5", "8", "1", "4", "8", "4", "0", "7", "1", "9", "8", "2", "1" ]
[ "nonn", "cons", "easy" ]
12
1
2
[ "A002193", "A378393", "A378712", "A378713", "A378714", "A378715", "A380734", "A380735", "A380736", "A380737", "A380738" ]
null
Paolo Xausa, Jan 31 2025
2025-02-05T11:17:51
oeisdata/seq/A380/A380735.seq
2f15bc9dc1eb4efd998fdb4fa56035d4
A380736
Decimal expansion of the smallest vertex angle, in radians, in a disdyakis dodecahedron face.
[ "6", "5", "9", "2", "6", "9", "1", "5", "3", "9", "2", "6", "2", "1", "5", "8", "3", "9", "5", "6", "1", "7", "2", "6", "9", "5", "9", "0", "8", "1", "5", "4", "1", "6", "4", "5", "6", "1", "8", "7", "8", "0", "2", "5", "1", "0", "3", "9", "0", "0", "5", "6", "7", "1", "3", "9", "2", "0", "0", "3", "6", "6", "2", "6", "1", "3", "2", "9", "9", "7", "1", "6", "1", "5", "7", "2", "3", "8", "8", "7", "2", "8", "2", "7", "9", "0", "8", "1", "9", "4" ]
[ "nonn", "cons", "easy" ]
8
0
1
[ "A010503", "A378393", "A378712", "A378713", "A378714", "A378715", "A380734", "A380735", "A380736", "A380737", "A380738" ]
null
Paolo Xausa, Feb 01 2025
2025-02-02T04:24:46
oeisdata/seq/A380/A380736.seq
d53cfb22292be2b56c42e30077355c31
A380737
Decimal expansion of the medium vertex angle, in radians, in a disdyakis dodecahedron face.
[ "9", "6", "0", "3", "6", "2", "1", "1", "7", "7", "0", "7", "7", "9", "5", "7", "3", "5", "7", "4", "0", "1", "3", "9", "1", "5", "2", "3", "1", "4", "5", "7", "6", "8", "5", "6", "4", "7", "7", "7", "7", "0", "8", "1", "7", "7", "0", "8", "1", "3", "1", "0", "9", "9", "4", "3", "2", "2", "1", "9", "9", "7", "5", "5", "3", "8", "7", "1", "0", "3", "7", "5", "8", "0", "9", "8", "6", "0", "8", "1", "7", "6", "0", "2", "2", "4", "2", "3", "7", "6" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A020789", "A378393", "A378712", "A378713", "A378714", "A378715", "A380734", "A380735", "A380736", "A380737", "A380738" ]
null
Paolo Xausa, Feb 01 2025
2025-02-02T04:25:05
oeisdata/seq/A380/A380737.seq
29f5a1821adb4052eabde0f1d8d39c77
A380738
Decimal expansion of the largest vertex angle, in radians, in a disdyakis dodecahedron face.
[ "1", "5", "2", "1", "9", "6", "1", "3", "8", "1", "9", "5", "5", "7", "8", "1", "6", "6", "3", "1", "6", "0", "7", "7", "7", "2", "7", "1", "8", "8", "3", "3", "8", "4", "3", "8", "2", "1", "0", "0", "6", "1", "8", "3", "3", "0", "6", "2", "7", "9", "6", "9", "0", "5", "0", "1", "5", "0", "7", "2", "0", "9", "5", "4", "1", "5", "5", "8", "0", "6", "3", "1", "4", "3", "1", "9", "1", "0", "9", "3", "0", "8", "1", "9", "7", "8", "8", "4", "2", "5" ]
[ "nonn", "cons", "easy" ]
6
1
2
[ "A020829", "A378393", "A378712", "A378713", "A378714", "A378715", "A380734", "A380735", "A380736", "A380737", "A380738" ]
null
Paolo Xausa, Feb 01 2025
2025-02-02T04:18:46
oeisdata/seq/A380/A380738.seq
bc4e470b66d7cb07828185eafdc87c2b
A380739
For n = 2^k (k>=0), a(n) = n. Otherwise a(n) != n is the smallest number not yet in the sequence having the same binary weight as n and such that gcd(n,a(n)) > 1.
[ "1", "2", "6", "4", "10", "3", "14", "8", "12", "5", "22", "9", "26", "7", "27", "16", "34", "20", "38", "18", "28", "11", "46", "33", "35", "13", "15", "21", "58", "39", "62", "32", "24", "17", "25", "40", "74", "19", "30", "36", "82", "44", "86", "42", "51", "23", "94", "66", "56", "52", "45", "50", "106", "57", "110", "49", "54", "29", "118", "75", "122", "31", "111", "64", "80", "48", "134" ]
[ "nonn", "base" ]
9
1
2
[ "A000120", "A005940", "A380728", "A380739" ]
null
David James Sycamore, Jan 31 2025
2025-02-03T21:32:52
oeisdata/seq/A380/A380739.seq
6e58453af1f925f90e487e3e960dd4ab
A380740
Number of smallest fully n-forested graphs.
[ "1", "1", "1", "1", "2", "2", "7", "13", "25", "17" ]
[ "nonn", "hard", "more" ]
4
1
5
[ "A004401", "A380740" ]
null
Eric W. Weisstein, Jan 31 2025
2025-01-31T09:24:52
oeisdata/seq/A380/A380740.seq
564f2b1338783220ea86fa2f6cfee18f
A380741
Decimal expansion of Sum_{k>=1} prime(k)/2^(k!).
[ "1", "8", "2", "8", "1", "2", "5", "4", "1", "7", "2", "3", "2", "5", "1", "3", "4", "2", "7", "7", "3", "4", "3", "7", "5", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "8", "2", "7", "5", "4", "8", "0", "2", "2", "9", "7", "8", "8", "9", "0", "4", "0", "5", "6", "0", "9", "9", "9", "0", "5", "2", "2", "2", "0", "4", "4", "6", "0", "9", "5", "7", "1", "8", "4", "3", "4", "0", "5", "5", "1", "9", "6", "7", "5", "4", "9", "6", "1", "5", "1", "4", "2", "1", "6", "1", "2", "0", "1", "2", "2", "0", "0", "0", "5" ]
[ "nonn", "cons", "easy" ]
34
1
2
[ "A339764", "A380741" ]
null
Davide Rotondo, Jan 31 2025
2025-02-10T04:41:04
oeisdata/seq/A380/A380741.seq
5079add7f656f3cc19cbb10256974aa9
A380742
Even numbers m such that the sum of the squares of the odd divisors and the sum of the squares of even divisors of m are both squares.
[ "2", "574", "3346", "12474", "19598", "19710", "42770", "73062", "93310", "133630", "250510", "365330", "425898", "485758", "546530", "761022", "782690", "1254430", "1460290", "1628926", "2139790", "2174018", "2286954", "2332798", "2845154", "3185870", "3630146", "4562510", "5089394", "5444010", "5656770", "6265870", "6377618" ]
[ "nonn" ]
20
1
1
[ "A000203", "A000593", "A001157", "A050999", "A146076", "A380742" ]
null
Michel Lagneau, Jan 31 2025
2025-02-22T12:18:41
oeisdata/seq/A380/A380742.seq
eb634c9d4747191340ee6c9862fa06dd
A380743
Integers m such that A379816(m) != A379815(m) + m.
[ "1", "2", "4", "8", "9", "12", "16", "18", "20", "25", "32", "36", "48", "50", "63", "64", "72", "80", "81", "84", "90", "98", "100", "108", "117", "128", "144", "150", "162", "180", "192", "198", "200", "225", "242", "252", "256", "272", "275", "288", "300", "306", "320", "324", "336", "338", "350", "360", "363", "392", "400", "432", "441", "450", "468", "500", "507", "512", "525", "528", "539" ]
[ "nonn" ]
29
1
2
[ "A378501", "A379815", "A379816", "A380743" ]
null
Michel Marcus, Feb 11 2025
2025-02-12T01:49:57
oeisdata/seq/A380/A380743.seq
77306f67b49bc61c95defff7ea1f5436
A380744
Number of integers strictly between n^2 and (n+1)^2 with at most four prime factors (counting multiplicity).
[ "2", "4", "6", "8", "9", "11", "14", "14", "17", "17", "21", "21", "23", "24", "27", "27", "30", "33", "33", "34", "36", "37", "41", "40", "43", "43", "46", "49", "51", "50", "52", "53", "54", "58", "60", "61", "61", "61", "66", "66", "65", "73", "72", "75", "74", "75", "79", "79", "79", "80", "83", "88", "87", "90", "90", "92", "93", "93", "98", "97", "98", "99", "104", "105", "102" ]
[ "nonn" ]
16
1
1
[ "A001222", "A014085", "A380744" ]
null
Charles R Greathouse IV, Jan 31 2025
2025-03-28T18:26:04
oeisdata/seq/A380/A380744.seq
8fc0c87af0c9571f08e251e5256bd0b3
A380745
a(0) = 0; a(n) = the number of times a(n-1) has the same digits in common with a previous term, in any permutation.
[ "0", "0", "1", "0", "2", "0", "3", "0", "4", "0", "5", "0", "6", "0", "7", "0", "8", "0", "9", "0", "10", "0", "11", "0", "12", "0", "13", "0", "14", "0", "15", "0", "16", "0", "17", "0", "18", "0", "19", "0", "20", "0", "21", "1", "1", "2", "1", "3", "1", "4", "1", "5", "1", "6", "1", "7", "1", "8", "1", "9", "1", "10", "1", "11", "1", "12", "2", "2", "3", "2", "4", "2", "5", "2", "6", "2", "7", "2", "8", "2", "9", "2" ]
[ "nonn", "base" ]
24
0
5
[ "A309261", "A326834", "A364788", "A380690", "A380745" ]
null
Sergio Pimentel, Jan 31 2025
2025-03-27T13:27:13
oeisdata/seq/A380/A380745.seq
5ddc6c6fefb7776b48803e33c4f687c9
A380746
Number of n-dimensional indecomposable unimodular lattices (or quadratic forms).
[ "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "1", "2", "1", "4", "3", "11", "12", "27", "48", "176", "367", "1896", "14489", "356988" ]
[ "nonn", "hard", "more" ]
13
1
16
[ "A005134", "A054907", "A054909", "A054911", "A380746" ]
null
Robin Visser, Jan 31 2025
2025-02-10T02:07:32
oeisdata/seq/A380/A380746.seq
93f4472fa1a01dd07f69a841936d5f28
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
[ "1", "-1", "1", "0", "1", "1", "0", "1", "3", "1", "0", "1", "8", "5", "1", "0", "1", "20", "21", "7", "1", "0", "1", "48", "81", "40", "9", "1", "0", "1", "112", "297", "208", "65", "11", "1", "0", "1", "256", "1053", "1024", "425", "96", "13", "1", "0", "1", "576", "3645", "4864", "2625", "756", "133", "15", "1", "0", "1", "1280", "12393", "22528", "15625", "5616", "1225", "176", "17", "1" ]
[ "sign", "easy", "tabl" ]
8
0
9
[ "A000012", "A000567", "A001792", "A007778", "A060747", "A081038", "A081039", "A081040", "A081041", "A081042", "A081043", "A081044", "A081045", "A103532", "A154955", "A380747", "A380748" ]
null
Stefano Spezia, Jan 31 2025
2025-02-03T21:25:07
oeisdata/seq/A380/A380747.seq
cc0ca3741ae8349c1f3b6f6a6d9272c1
A380748
Antidiagonal sums of A380747.
[ "1", "0", "2", "5", "15", "50", "180", "695", "2869", "12616", "58862", "290305", "1508483", "8233942", "47086560", "281420499", "1753994617", "11377449948", "76667702218", "535802458029", "3877528409495", "29016786672794", "224243915547756", "1787491551588239", "14680196745177309", "124088256248966864", "1078492866534953734" ]
[ "nonn" ]
4
0
3
[ "A380747", "A380748" ]
null
Stefano Spezia, Jan 31 2025
2025-02-03T21:26:20
oeisdata/seq/A380/A380748.seq
b3ef39c92b27c38eca23a1553284316a
A380749
a(n) is the number of positive integer solutions of n*x*y*z*w = (x + n) * (y + n) * (z + n) * (w + n), x <= y <= z <= w.
[ "0", "374", "450", "375", "301", "478", "228", "359", "238", "515", "206", "879", "259", "506", "780", "349", "284", "762", "135", "916", "905", "493", "99", "1189", "423", "306", "318", "869", "70", "1879", "97", "311", "714", "250", "778", "1300", "109", "258", "483", "1334", "71", "1987", "93", "545", "1451", "303", "64", "1156", "202", "504", "481", "822", "71" ]
[ "nonn" ]
24
1
2
[ "A374059", "A375787", "A380749", "A380750" ]
null
Zhining Yang, Jan 31 2025
2025-03-02T23:40:36
oeisdata/seq/A380/A380749.seq
154a5b3bda609dfe0caacb70dc786da8
A380750
a(n) is the smallest integer k such that k*x*y*z*w = (x + k) * (y + k) * (z + k) * (w + k), 0 < x <= y <= z <= w has exactly n integer solutions.
[ "1019", "1559", "1637", "1103", "743", "419", "1039", "359", "311", "479", "653", "509", "389", "251", "593", "521", "263", "197", "1061", "131", "353", "269", "239", "167", "89", "179", "337", "113", "139", "83", "181", "229", "934", "898", "277", "151", "103", "554", "1042", "281", "109", "107", "566", "283", "1299", "79", "386", "157", "1959", "173", "241" ]
[ "nonn" ]
18
1
1
[ "A374059", "A375787", "A380749", "A380750" ]
null
Zhining Yang, Jan 31 2025
2025-03-09T14:37:16
oeisdata/seq/A380/A380750.seq
a0de9a078d1a9714c5f6f7ab65a504fc
A380751
Lexicographically earliest sequence of positive integers such that for any value k, no two sets of one or more indices at which k occurs have the same sum.
[ "1", "1", "2", "1", "2", "2", "2", "1", "3", "3", "3", "4", "3", "4", "4", "1", "2", "3", "4", "5", "5", "5", "4", "5", "6", "6", "5", "6", "7", "6", "7", "1", "5", "2", "6", "3", "7", "7", "8", "8", "6", "7", "8", "9", "8", "9", "4", "9", "9", "8", "10", "7", "10", "9", "10", "10", "8", "11", "10", "9", "11", "11", "11", "1", "10", "12", "12", "2", "11", "12", "13", "3", "12", "9", "12", "11", "10", "13", "13", "12" ]
[ "nonn" ]
13
1
3
[ "A380751", "A380783" ]
null
Neal Gersh Tolunsky, Jan 31 2025
2025-02-07T05:37:47
oeisdata/seq/A380/A380751.seq
642e5d628812b788a2aba1fb27897ad3
A380752
E.g.f. A(x) satisfies A(x) = exp(x * A(x)) / (1 - x * A(x)^2)^2.
[ "1", "3", "41", "1114", "46217", "2595186", "184264033", "15839938318", "1599772132337", "185698542344050", "24362771800087241", "3565209717372983142", "575786158331135496313", "101729690893078619387914", "19518889966696995273600209", "4041785999884112498658681406", "898403694387449768732923267937" ]
[ "nonn" ]
8
0
2
[ "A377745", "A380752", "A380753" ]
null
Seiichi Manyama, Feb 01 2025
2025-02-01T08:42:23
oeisdata/seq/A380/A380752.seq
ec7eb02ba2aa79cba8e764c3a0d0abb6
A380753
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2) / (1 - x * A(x)^2)^2.
[ "1", "3", "47", "1453", "68349", "4344751", "348936139", "33912469305", "3871084443641", "507765120717691", "75265926888996711", "12443096536067016997", "2270083842550815380725", "453042725968243823206887", "98183026886745981671902979", "22962952582930039784948279281", "5764815614414943166224203759601" ]
[ "nonn" ]
9
0
2
[ "A377745", "A380723", "A380752", "A380753" ]
null
Seiichi Manyama, Feb 01 2025
2025-02-01T08:42:11
oeisdata/seq/A380/A380753.seq
e5b30ddfd40eb0d796d055d4eb3e6028
A380754
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 / (1 - x * A(x)^2)) / (1 - x * A(x)^2)^2.
[ "1", "3", "49", "1585", "78093", "5201771", "437861149", "44607800385", "5338028587705", "734060947570867", "114078994869344841", "19773620424489710417", "3782330144139700656325", "791450463143064447635355", "179843077195936890250320373", "44102411207136266014669068961", "11609166496582801689148704120561" ]
[ "nonn" ]
7
0
2
[ "A380726", "A380754" ]
null
Seiichi Manyama, Feb 01 2025
2025-02-01T08:42:16
oeisdata/seq/A380/A380754.seq
c6ea6416f98bac024744215501133a9c
A380755
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 / (1 - x * A(x)^2)^2) / (1 - x * A(x)^2).
[ "1", "2", "25", "622", "23601", "1211306", "78585241", "6171434550", "569338685089", "60362321078674", "7232765564919321", "966640735654507838", "142570635491126076625", "23003561321179411452858", "4030628821337323603113241", "762175215630679850520288646", "154707566043362563540600474689" ]
[ "nonn" ]
7
0
2
[ "A380723", "A380726", "A380755" ]
null
Seiichi Manyama, Feb 01 2025
2025-02-01T08:42:20
oeisdata/seq/A380/A380755.seq
6da867ff107576fcf4d812076c68ba31
A380756
a(n) is the smallest number not yet in the sequence which is coprime to n and has the same number of 0's in its binary expansion as n.
[ "1", "5", "7", "9", "2", "11", "3", "17", "4", "19", "6", "25", "14", "13", "31", "33", "8", "35", "10", "37", "22", "21", "27", "41", "12", "43", "23", "39", "30", "29", "15", "65", "16", "67", "18", "73", "20", "49", "28", "69", "24", "71", "26", "75", "46", "45", "55", "97", "38", "77", "53", "83", "51", "79", "47", "85", "58", "57", "61", "91", "59", "95", "127", "129", "32", "131", "34", "133" ]
[ "nonn" ]
24
1
2
[ "A000120", "A023416", "A380756" ]
null
David James Sycamore, Feb 01 2025
2025-04-01T03:28:39
oeisdata/seq/A380/A380756.seq
ea6c54708e09d811147a340ade393261
A380757
Powers of primes that have a primitive root.
[ "1", "2", "3", "4", "5", "7", "9", "11", "13", "17", "19", "23", "25", "27", "29", "31", "37", "41", "43", "47", "49", "53", "59", "61", "67", "71", "73", "79", "81", "83", "89", "97", "101", "103", "107", "109", "113", "121", "125", "127", "131", "137", "139", "149", "151", "157", "163", "167", "169", "173", "179", "181", "191", "193", "197", "199", "211", "223", "227", "229" ]
[ "nonn", "easy" ]
21
1
2
[ "A000079", "A000961", "A033948", "A046022", "A061345", "A278568", "A380757" ]
null
Michael De Vlieger, Feb 01 2025
2025-04-01T03:28:30
oeisdata/seq/A380/A380757.seq
0c9bea1354ac9b365e6f153a0214f4e0
A380758
Numbers which are not prime powers and their prime factors share a last digit in base 10.
[ "39", "69", "117", "119", "129", "159", "207", "219", "249", "259", "299", "309", "329", "339", "341", "351", "387", "451", "469", "477", "489", "507", "519", "551", "559", "579", "621", "629", "657", "669", "671", "679", "689", "699", "747", "749", "781", "789", "799", "833", "849", "879", "889", "897", "927", "939", "949", "959", "989", "1017", "1053", "1059" ]
[ "nonn", "base" ]
22
1
1
[ "A004615", "A380758" ]
null
Yaroslav Deryavko, Feb 01 2025
2025-03-04T16:19:31
oeisdata/seq/A380/A380758.seq
dc9acca0a5b45fdfb55ca7a4efc95c5a
A380759
Number of coincident digits occurring in expression of integers in both base 2 and base 10.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "3" ]
[ "nonn", "easy", "base" ]
21
1
10
[ "A000027", "A007088", "A380759" ]
null
Paul Duckett, Feb 01 2025
2025-02-28T15:14:42
oeisdata/seq/A380/A380759.seq
19c647b42d22069f44ba53ca48be33d7
A380760
Integers k with at least one proper factorization for which the sum of the same fixed integer power >= 2 of the factors equals k.
[ "16", "27", "48", "54", "256", "270", "528", "1134", "1755", "2916", "3125", "7216", "7830", "11520", "11934", "15360", "19683", "22464", "30000", "31752", "40095", "40960", "46656", "65536", "69168", "81702", "86436", "93555", "100368", "146880", "200000", "212400", "264654", "273600", "291060", "303030", "317520", "340470", "362880" ]
[ "nonn" ]
35
1
1
[ "A162247", "A372053", "A380760", "A380902", "A381538" ]
null
Charles L. Hohn, Feb 02 2025
2025-03-25T19:49:17
oeisdata/seq/A380/A380760.seq
9453cb4486fd79fb6c359fffdee5c12f
A380761
Number of rooted ordered trees with n internal nodes where each node has out-degree 0, 2, or 6.
[ "1", "2", "16", "192", "2720", "42224", "694848", "11907648", "210240256", "3797869056", "69859601920", "1304037291008", "24639504760832", "470342682171392", "9057003542405120", "175721074857734144", "3431733070223491072", "67407828276358119424", "1330851767254309142528", "26395675263287212834816" ]
[ "nonn", "easy" ]
60
0
2
[ "A001764", "A380761" ]
null
Ahmat Mahamat, Feb 02 2025
2025-03-12T17:26:48
oeisdata/seq/A380/A380761.seq
0d55a7b67d2e5a309c6fd4bb94a5a9b0
A380762
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)^2) / (1 + x) ).
[ "1", "2", "15", "208", "4249", "115656", "3946879", "162225680", "7807264497", "430828353280", "26825288214031", "1860715287986688", "142304071119852745", "11897080341213068288", "1079508321205459768575", "105660694801273960216576", "11097101798773200862180321", "1244852059489783737208012800" ]
[ "nonn" ]
27
0
2
[ "A000129", "A088690", "A365031", "A380664", "A380762", "A380781" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:08:03
oeisdata/seq/A380/A380762.seq
274395463cae1329a2c512bbd68150b8
A380763
List triangular numbers up to increasingly large values and back down to 0.
[ "0", "1", "0", "1", "3", "1", "0", "1", "3", "6", "3", "1", "0", "1", "3", "6", "10", "6", "3", "1", "0", "1", "3", "6", "10", "15", "10", "6", "3", "1", "0", "1", "3", "6", "10", "15", "21", "15", "10", "6", "3", "1", "0", "1", "3", "6", "10", "15", "21", "28", "21", "15", "10", "6", "3", "1", "0", "1", "3", "6", "10", "15", "21", "28", "36", "28", "21", "15", "10", "6", "3", "1", "0", "1", "3", "6", "10", "15", "21", "28", "36", "45", "36", "28", "21", "15", "10", "6", "3", "1", "0", "1", "3", "6", "10", "15", "21", "28", "36", "45" ]
[ "nonn" ]
8
0
5
[ "A000217", "A000290", "A053615", "A380763" ]
null
M. F. Hasler, Feb 01 2025
2025-02-01T23:15:50
oeisdata/seq/A380/A380763.seq
8542d3d262710f1a0a8da69a41698e38
A380764
E.g.f. A(x) satisfies A(x) = exp(x * (1 - x*A(x))) / (1 - x*A(x))^2.
[ "1", "3", "21", "283", "5825", "161281", "5616415", "235957275", "11619036385", "656499970657", "41874164431631", "2976512157543739", "233338979438666161", "20000563338051696609", "1860931002481238778511", "186799953169800497128891", "20122315691834196706830017", "2315417027513322899728489537" ]
[ "nonn" ]
13
0
2
[ "A377742", "A380764", "A380765" ]
null
Seiichi Manyama, Feb 01 2025
2025-02-03T11:07:48
oeisdata/seq/A380/A380764.seq
bf0176e7ec463511c4ae71bf207b16bd
A380765
E.g.f. A(x) satisfies A(x) = exp(x * (1 - x*A(x))^2) / (1 - x*A(x))^2.
[ "1", "3", "19", "241", "4853", "131601", "4466875", "182546421", "8739580841", "480023587297", "29759608788551", "2055884656223949", "156623317577663293", "13045653418406432721", "1179479817324874518419", "115042876530398843323621", "12041278143223263581774417", "1346252625757920938545507521" ]
[ "nonn" ]
12
0
2
[ "A377742", "A380764", "A380765" ]
null
Seiichi Manyama, Feb 01 2025
2025-02-03T11:07:51
oeisdata/seq/A380/A380765.seq
8188bc933dffa91bf6afef99b0bcf542
A380766
Triangle read by rows: T(n,k) is the number of coalescent histories for an n-leaf caterpillar species tree and an identically labeled k-pseudocaterpillar gene tree, 3 <= k <= n.
[ "1", "3", "3", "9", "11", "9", "28", "37", "37", "28", "90", "124", "134", "124", "90", "297", "420", "473", "473", "420", "297", "1001", "1441", "1665", "1735", "1665", "1441", "1001", "3432", "5005", "5885", "6291", "6291", "5885", "5005", "3432", "11934", "17576", "20930", "22766", "23354", "22766", "20930", "17576", "11934", "41990", "62322", "74932", "82537", "86149", "86149", "82537", "74932", "62322", "41990" ]
[ "nonn", "tabl" ]
15
3
2
[ "A000245", "A306423", "A380766" ]
null
Noah A Rosenberg, Feb 01 2025
2025-02-09T22:58:21
oeisdata/seq/A380/A380766.seq
e5b7c00c518b5b3ddae9322eb63cd1de
A380767
Number of sequences in which the games of a single-elimination tournament with n teams can be played if arbitrarily many arenas are available and the tournament bracket is chosen to be the bracket with the largest such number of sequences.
[ "1", "1", "3", "5", "19", "63", "365", "1199", "7177", "36209", "295355", "1652085", "15193115", "114570449", "1323338487", "8732267521", "93577466255", "822198823101", "10952623368043" ]
[ "nonn", "more" ]
12
2
3
[ "A001190", "A379758", "A380166", "A380767" ]
null
Noah A Rosenberg, Feb 02 2025
2025-02-23T21:50:21
oeisdata/seq/A380/A380767.seq
3314637e34e568ca53efee94f2d6e2bb
A380768
E.g.f. A(x) satisfies A(x) = exp(x * A(x) / (1 - x*A(x)^2)) / (1 - x*A(x)^2).
[ "1", "2", "19", "361", "10481", "411961", "20477185", "1232420449", "87148819441", "7083132622561", "650681345267801", "66674532650884753", "7540078499903430937", "932840158873518067537", "125332464410926005144241", "18173310946391976757487041", "2828702590649296770695135585", "470432341506749952275419504321" ]
[ "nonn" ]
14
0
2
[ "A377888", "A380726", "A380768", "A380769", "A380771" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:07:44
oeisdata/seq/A380/A380768.seq
f6ca28dfd89464a17a0610a77904610d
A380769
E.g.f. A(x) satisfies A(x) = exp(x / (1 - x*A(x)^2)) / (1 - x*A(x)^2).
[ "1", "2", "15", "244", "6097", "206806", "8882599", "462280960", "28279981825", "1989026203114", "158149907916031", "14028441592927180", "1373477000345414353", "147124479131269256254", "17115976784139798114775", "2149092237059821309705816", "289673905062350873773963393", "41719133895880374350508378322" ]
[ "nonn" ]
13
0
2
[ "A371318", "A380726", "A380768", "A380769", "A380772" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:07:40
oeisdata/seq/A380/A380769.seq
16d2ce7df95e91cc5dc3f136ff9cbf2c
A380770
Number of letters in the Slovene name of n (feminine, nominative), excluding spaces.
[ "3", "3", "3", "3", "5", "3", "4", "5", "4", "5", "5", "6", "8", "8", "10", "8", "9", "10", "9", "10", "7", "12", "12", "12", "14", "12", "13", "14", "13", "14", "8", "13", "13", "13", "15", "13", "14", "15", "14", "15", "10", "15", "15", "15", "17", "15", "16", "17", "16", "17", "8", "13", "13", "13", "15", "13", "14", "15", "14", "15", "9", "14", "14", "14", "16", "14", "15", "16", "15", "16", "10", "15", "15", "15", "17", "15", "16", "17", "16", "17", "9", "14", "14", "14", "16", "14", "15", "16", "15" ]
[ "nonn", "word" ]
17
0
1
[ "A005589", "A380770" ]
null
Andrej Jakobcic, Feb 02 2025
2025-03-06T14:41:15
oeisdata/seq/A380/A380770.seq
03604f177ac76e10a83a1fc78ffa28d4
A380771
E.g.f. A(x) satisfies A(x) = exp(x * A(x) * (1 + x*A(x)^2)) * (1 + x*A(x)^2).
[ "1", "2", "17", "277", "6797", "224301", "9327235", "468615379", "27624235385", "1869871826521", "142960839681311", "12185757382882623", "1145898471300898837", "117849030630765668677", "13159165724143312996907", "1585485015346749680509051", "205026978076680944633853425", "28324382622872897021731667121" ]
[ "nonn" ]
10
0
2
[ "A380768", "A380771" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:07:36
oeisdata/seq/A380/A380771.seq
88f00bbf74fd2c1f49ca6a8edb90ba83
A380772
E.g.f. A(x) satisfies A(x) = exp(x * (1 + x*A(x)^2)) * (1 + x*A(x)^2).
[ "1", "2", "13", "166", "3157", "80466", "2578969", "99734230", "4521335081", "235215564706", "13815024321061", "904313739020550", "65287579679979133", "5153929267246018546", "441668985219603417137", "40834603462763102240566", "4051601326622081640558673", "429423186979619018132841282" ]
[ "nonn" ]
10
0
2
[ "A380769", "A380772" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:07:32
oeisdata/seq/A380/A380772.seq
85a87dadbdcc21440d254ad4d3d17573
A380773
E.g.f. A(x) satisfies A(x) = exp(x / (1 + x*A(x))) * (1 + x*A(x))^2.
[ "1", "3", "17", "157", "2081", "36301", "787435", "20454393", "619606321", "21459697561", "836857705931", "36298027042069", "1733720198941945", "90434688020581893", "5115766921884661099", "311966602078171218481", "20402441541405767271137", "1424538121070974347467569", "105769440064498860592940683" ]
[ "nonn" ]
9
0
2
[ "A380764", "A380773" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:07:29
oeisdata/seq/A380/A380773.seq
f66b1caef5020b46633a99fb16244a41
A380774
E.g.f. A(x) satisfies A(x) = exp(x / (1 + x*A(x))^2) * (1 + x*A(x))^2.
[ "1", "3", "15", "121", "1493", "25041", "519175", "12764109", "365437385", "11989334305", "443413796291", "18237280179669", "825743182996957", "40830652259369649", "2189754246873652607", "126605689000719768541", "7850410500340268709137", "519697910250629229492033", "36585510030973732956134779" ]
[ "nonn" ]
9
0
2
[ "A380765", "A380774" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:07:24
oeisdata/seq/A380/A380774.seq
31ccb0c3f025fcf87b1425ef2a360422
A380775
Decimal expansion of the long/short edge length ratio of a pentagonal icositetrahedron.
[ "1", "4", "1", "9", "6", "4", "3", "3", "7", "7", "6", "0", "7", "0", "8", "0", "5", "6", "6", "2", "7", "5", "9", "2", "6", "2", "8", "2", "3", "2", "6", "6", "4", "3", "3", "0", "0", "2", "1", "2", "0", "8", "9", "3", "7", "3", "0", "4", "8", "7", "9", "6", "1", "2", "3", "3", "8", "9", "3", "7", "9", "3", "1", "9", "7", "0", "2", "1", "0", "1", "6", "1", "1", "0", "4", "0", "9", "8", "3", "2", "1", "2", "8", "6", "9", "2", "1", "7", "7", "0" ]
[ "nonn", "cons", "easy" ]
7
1
2
[ "A058265", "A378823", "A378824", "A378825", "A378826", "A378827", "A380775", "A380776", "A380777" ]
null
Paolo Xausa, Feb 02 2025
2025-02-03T14:12:07
oeisdata/seq/A380/A380775.seq
2243e015f86057d0972ef7fb974ba7c8
A380776
Decimal expansion of the acute vertex angle, in radians, in a pentagonal icositetrahedron face.
[ "1", "4", "0", "9", "3", "8", "3", "0", "7", "8", "0", "3", "2", "0", "2", "8", "9", "9", "2", "6", "9", "5", "1", "5", "6", "0", "5", "6", "9", "4", "0", "5", "3", "0", "5", "1", "4", "1", "4", "2", "0", "4", "7", "7", "6", "2", "0", "2", "3", "1", "9", "5", "2", "6", "7", "0", "8", "5", "7", "8", "5", "5", "1", "4", "6", "3", "6", "5", "7", "6", "9", "8", "3", "1", "0", "2", "8", "7", "9", "7", "1", "3", "3", "2", "4", "0", "9", "6", "3", "9" ]
[ "nonn", "cons", "easy" ]
6
1
2
[ "A058265", "A378823", "A378824", "A378825", "A378826", "A378827", "A380775", "A380776", "A380777" ]
null
Paolo Xausa, Feb 03 2025
2025-02-03T14:12:23
oeisdata/seq/A380/A380776.seq
b816c516ea26feb798eaabe34a64515c
A380777
Decimal expansion of the obtuse vertex angles, in radians, in a pentagonal icositetrahedron face.
[ "2", "0", "0", "3", "8", "4", "8", "7", "2", "0", "6", "8", "4", "3", "3", "7", "6", "8", "0", "6", "7", "3", "1", "9", "3", "5", "2", "3", "2", "2", "4", "4", "9", "4", "5", "3", "4", "6", "1", "2", "3", "6", "5", "1", "0", "9", "0", "2", "5", "5", "3", "0", "5", "4", "8", "9", "5", "9", "7", "6", "2", "0", "6", "5", "5", "7", "1", "7", "1", "8", "0", "5", "8", "9", "3", "8", "9", "3", "6", "8", "2", "0", "6", "4", "0", "0", "0", "2", "0", "2" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A058265", "A378823", "A378824", "A378825", "A378826", "A378827", "A380775", "A380776", "A380777" ]
null
Paolo Xausa, Feb 03 2025
2025-02-03T14:12:31
oeisdata/seq/A380/A380777.seq
0f802831f19a3eaa0c62f1f0f0c7a906
A380778
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x / (1 + x)^2) / (1 + x)^2 ).
[ "1", "3", "21", "238", "3777", "77616", "1966381", "59379888", "2085295617", "83580555520", "3767468068581", "188731359078912", "10405256927541889", "626236791181897728", "40860738460515664125", "2873352871221375440896", "216652727562188159522049", "17437704874236857627246592", "1492289181734461545084103477" ]
[ "nonn" ]
16
0
2
[ "A377829", "A380674", "A380778", "A380779", "A380780", "A380781" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:09:05
oeisdata/seq/A380/A380778.seq
5b9edcb586b6a1257ea232e0525efdb1
A380779
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x / (1 + x)) / (1 + x)^2 ).
[ "1", "3", "23", "298", "5529", "134496", "4062631", "146903184", "6193969137", "298577002240", "16204658051031", "978156957629952", "65017249611283657", "4719532271850590208", "371519503997940966375", "31526820740816885549056", "2869134152226896957509089", "278763390556764407051452416" ]
[ "nonn" ]
13
0
2
[ "A377829", "A380675", "A380778", "A380779", "A380780", "A380781" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:09:01
oeisdata/seq/A380/A380779.seq
7cd7a894d80f0e3d4d3621bda661dbb8
A380780
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)) / (1 + x)^2 ).
[ "1", "3", "27", "436", "10353", "326856", "12920731", "614694816", "34223383809", "2184028353280", "157223422977531", "12606338448248832", "1114292924502666673", "107657947282494206976", "11287975339133863810875", "1276603658863119005618176", "154909721707963344338403969", "20076669149268201122957819904" ]
[ "nonn" ]
15
0
2
[ "A377829", "A380665", "A380778", "A380779", "A380780", "A380781" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:08:56
oeisdata/seq/A380/A380780.seq
906ee5cadf55ca5ef4afdd6ec6d52f63
A380781
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * (1 + x)^2) / (1 + x)^2 ).
[ "1", "3", "29", "514", "13473", "470616", "20607781", "1086800352", "67105960641", "4750972007680", "379512594172941", "33771911612182272", "3313441417839023521", "355371388642280715264", "41365962922892138767125", "5193995331631149377867776", "699785874809076112607739009", "100701968551637581411176480768" ]
[ "nonn" ]
16
0
2
[ "A365031", "A377829", "A380666", "A380762", "A380778", "A380779", "A380780", "A380781" ]
null
Seiichi Manyama, Feb 02 2025
2025-02-03T11:08:33
oeisdata/seq/A380/A380781.seq
a9bca2acc6a49099bb6307d9815e727f
A380782
Class number of real quadratic field Q(sqrt(prime(n))).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "3", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "5", "3", "1" ]
[ "nonn" ]
10
1
22
[ "A003172", "A076498", "A278837", "A380782" ]
null
Steven Lu, Feb 02 2025
2025-02-11T14:33:28
oeisdata/seq/A380/A380782.seq
e0eea97ae1385ea742ef5eee1d851708
A380783
Lexicographically earliest sequence of positive integers such that for any value k, no two sets of one or more indices at which k occurs have the same product.
[ "1", "2", "2", "2", "2", "3", "2", "3", "2", "3", "2", "3", "2", "3", "4", "2", "2", "3", "2", "4", "4", "3", "2", "4", "2", "3", "4", "5", "2", "4", "2", "5", "4", "3", "5", "5", "2", "3", "4", "6", "2", "5", "2", "5", "6", "3", "2", "6", "2", "3", "4", "5", "2", "3", "6", "4", "4", "3", "2", "5", "2", "3", "6", "3", "6", "7", "2", "5", "4", "6", "2", "6", "2", "3", "4", "5", "7", "7", "2", "7", "2", "3", "2", "5", "6", "3", "4" ]
[ "nonn" ]
19
1
2
[ "A050376", "A380751", "A380783", "A380921" ]
null
Neal Gersh Tolunsky, Feb 02 2025
2025-03-07T11:06:42
oeisdata/seq/A380/A380783.seq
6736bd3776ed8280c453af2d551fcc25
A380784
Prime numbers p where the cyclotomic field Q(zeta_(p-1)) has class number one.
[ "2", "3", "5", "7", "11", "13", "17", "19", "23", "29", "31", "37", "41", "43", "61", "67", "71" ]
[ "nonn", "fini", "full" ]
14
1
1
[ "A005848", "A380784" ]
null
Steven Lu, Feb 02 2025
2025-02-17T03:34:50
oeisdata/seq/A380/A380784.seq
72fd73827aa7324fa2f3f7f8b7b01a9c
A380785
Smallest of two consecutive primes p and q, both ending with 1, such that q - p = 10n, or -1 if no such primes exist.
[ "181", "13421", "4831", "25261", "95651", "43331", "175141", "1060781", "404851", "1648081", "2597981", "6085441", "22151281", "10270451", "25180321", "79817581", "84549821", "135045091", "306099181", "529811591", "164710681", "707429491", "965524181", "391995431", "428045491", "1516828721", "4272226951", "2337682591" ]
[ "nonn", "base" ]
33
1
1
[ "A054681", "A140791", "A380785" ]
null
Jean-Marc Rebert, Feb 03 2025
2025-03-08T17:31:23
oeisdata/seq/A380/A380785.seq
4b3207ef8248498c1fc03c7ef0e88f36
A380786
Numbers with a prime number of bits, prime number of ones, and prime number of zeros in their binary representation.
[ "17", "18", "19", "20", "21", "22", "24", "25", "26", "28", "65", "66", "68", "72", "79", "80", "87", "91", "93", "94", "96", "103", "107", "109", "110", "115", "117", "118", "121", "122", "124", "4097", "4098", "4100", "4104", "4112", "4128", "4160", "4224", "4352", "4608", "5119", "5120", "5631", "5887", "6015", "6079", "6111", "6127", "6135", "6139", "6141", "6142", "6144", "6655", "6911" ]
[ "nonn", "base" ]
51
1
1
[ "A006512", "A052294", "A144754", "A272478", "A343258", "A380786", "A380788" ]
null
Marc Morgenegg, Feb 03 2025
2025-02-27T15:08:48
oeisdata/seq/A380/A380786.seq
b407b44cd6def62a60f2d32603069720
A380787
Odd positive integers k whose continued fraction for sqrt(k) has a central term equal to either floor(sqrt(k)) or floor(sqrt(k)) - 1.
[ "3", "7", "11", "19", "23", "27", "31", "43", "47", "51", "59", "67", "71", "79", "83", "103", "107", "119", "123", "127", "131", "139", "151", "163", "167", "171", "179", "187", "191", "199", "211", "223", "227", "239", "243", "251", "263", "267", "271", "283", "287", "291", "307", "311", "331", "339", "343", "347", "359", "363", "367", "379", "383", "387", "391" ]
[ "nonn" ]
12
1
1
[ "A002145", "A010335", "A308778", "A380787" ]
null
Giorgos Kalogeropoulos, Feb 03 2025
2025-03-04T07:35:12
oeisdata/seq/A380/A380787.seq
9741b8a1e6b3ccf5405d07ff037a0a73
A380788
Numbers with a prime number of binary digits.
[ "2", "3", "4", "5", "6", "7", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106" ]
[ "nonn", "base", "easy" ]
21
1
1
[ "A053738", "A272441", "A380788" ]
null
Michael S. Branicky, Feb 03 2025
2025-02-07T05:23:51
oeisdata/seq/A380/A380788.seq
25b575418c9efd8bb1604abeb9ac2579
A380789
a(n) is the smallest deficient number that is the product of n distinct primes and is sandwiched between a prime and a semiprime.
[ "3", "10", "110", "3458", "145418", "3874442", "338151658", "23309106062", "1835045001302", "126782465890502" ]
[ "nonn", "more" ]
10
1
1
[ "A000203", "A005100", "A380789" ]
null
Robert Israel, Feb 03 2025
2025-02-04T09:00:07
oeisdata/seq/A380/A380789.seq
32a0e9093d8727f6b45c1b9591a56618
A380790
Length of the n-th Golomb ruler constructed by the Paul Erdős and Pál Turán formula.
[ "20", "110", "308", "1254", "2106", "4760", "6650", "11822", "23954", "29202", "49950", "68060", "78518", "102460", "147446", "203432", "225090", "298418", "354858", "386316", "489484", "568052", "700964", "907920", "1025150", "1086856", "1218944", "1289034", "1436456", "2039620", "2238790", "2561900", "2675472", "3296774", "3430418" ]
[ "nonn" ]
55
2
1
[ "A000010", "A000040", "A000330", "A048153", "A076409", "A100104", "A127921", "A135177", "A160378", "A217793", "A380790" ]
null
Darío Clavijo, Feb 03 2025
2025-04-01T03:28:09
oeisdata/seq/A380/A380790.seq
24e69ec5eed3ff42beabaafae7b9b195
A380791
For a positive rational x, let k(x) be the smallest positive integer such that all k >= k(x) have a partition into distinct parts with reciprocal sum equal to x. The n-th term in this sequence is equal to the number of x with k(x) equal to n.
[ "2", "2", "2", "1", "2", "4", "5", "5", "7", "7", "5", "12", "18", "22", "32", "38", "41", "48", "57", "76", "82", "74", "97", "117", "155", "170", "194", "228", "277", "306", "332", "430", "473", "483", "510" ]
[ "nonn", "more" ]
28
66
1
[ "A051882", "A380791" ]
null
Wouter van Doorn, Feb 05 2025
2025-03-03T12:46:50
oeisdata/seq/A380/A380791.seq
857ac50d7f9c9e463433a86c365a2cc3
A380792
a(n) is the largest triangular number that is the concatenation of two n-digit numbers 2*x and x.
[ "21", "9045", "890445", "88904445", "8889044445", "888890444445", "88888904444445", "8888889044444445", "888888890444444445", "88888888904444444445", "8888888889044444444445", "973609801090486804900545", "88888888888904444444444445", "8888888888889044444444444445", "931379640537060465689820268530" ]
[ "nonn", "base" ]
19
1
1
[ "A000217", "A226742", "A380792" ]
null
Robert Israel, Feb 04 2025
2025-02-05T22:12:15
oeisdata/seq/A380/A380792.seq
2d344ab78d9795cb0a4986673a571070
A380793
Decimal expansion of the acute vertex angles, in radians, in a triakis icosahedron face.
[ "5", "3", "1", "9", "8", "2", "0", "2", "0", "7", "4", "1", "9", "6", "6", "0", "9", "5", "6", "3", "9", "2", "0", "8", "5", "6", "1", "2", "9", "2", "3", "2", "4", "9", "3", "8", "2", "6", "4", "1", "9", "1", "3", "7", "9", "1", "3", "9", "2", "0", "7", "1", "2", "0", "4", "8", "5", "5", "8", "8", "6", "7", "3", "8", "5", "1", "7", "2", "7", "3", "0", "5", "8", "9", "5", "8", "5", "4", "0", "0", "4", "1", "9", "5", "0", "5", "5", "4", "2", "4" ]
[ "nonn", "cons", "easy" ]
8
0
1
[ "A001622", "A378973", "A378974", "A378976", "A378977", "A380793", "A380794" ]
null
Paolo Xausa, Feb 04 2025
2025-02-05T09:23:27
oeisdata/seq/A380/A380793.seq
5fa886c1a5f5b9736d77301d0d3ca32f
A380794
Decimal expansion of the obtuse vertex angle, in radians, in a triakis icosahedron face.
[ "2", "0", "7", "7", "6", "2", "8", "6", "1", "2", "1", "0", "5", "8", "6", "1", "0", "4", "7", "1", "8", "4", "2", "2", "6", "2", "6", "0", "6", "9", "4", "8", "5", "3", "0", "0", "7", "6", "6", "8", "7", "8", "6", "6", "4", "1", "0", "9", "6", "6", "9", "1", "5", "8", "0", "0", "0", "3", "7", "6", "7", "2", "4", "4", "6", "0", "4", "3", "6", "1", "7", "9", "4", "4", "9", "4", "5", "0", "0", "9", "9", "0", "2", "3", "7", "9", "2", "3", "9", "7" ]
[ "nonn", "cons", "easy" ]
6
1
1
[ "A001622", "A378973", "A378974", "A378976", "A378977", "A380793", "A380794" ]
null
Paolo Xausa, Feb 04 2025
2025-02-05T09:23:22
oeisdata/seq/A380/A380794.seq
dcef9332825ba5a4bd73a6a9a37084e2
A380795
Decimal expansion of the smallest acute vertex angles, in radians, in a pentakis dodecahedron face.
[ "9", "7", "1", "9", "8", "5", "0", "2", "2", "4", "1", "6", "7", "0", "6", "7", "2", "4", "6", "9", "0", "6", "5", "7", "4", "7", "6", "7", "1", "8", "6", "9", "9", "4", "4", "9", "1", "8", "7", "6", "3", "7", "9", "0", "4", "1", "7", "5", "2", "7", "2", "2", "6", "9", "4", "7", "8", "4", "5", "7", "8", "5", "6", "9", "7", "2", "4", "6", "5", "8", "9", "8", "6", "6", "9", "7", "4", "2", "7", "0", "4", "6", "7", "7", "0", "1", "5", "0", "3", "0" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A001622", "A379132", "A379133", "A379135", "A379136", "A380795", "A380796" ]
null
Paolo Xausa, Feb 04 2025
2025-02-05T09:23:19
oeisdata/seq/A380/A380795.seq
ab2fe09f45478c367ffe484c42c4cf82
A380796
Decimal expansion of the largest acute vertex angle, in radians, in a pentakis dodecahedron face.
[ "1", "1", "9", "7", "6", "2", "2", "6", "0", "8", "7", "5", "6", "3", "7", "9", "7", "8", "9", "0", "8", "1", "3", "2", "8", "4", "2", "9", "8", "4", "2", "1", "0", "3", "9", "8", "5", "8", "2", "1", "8", "9", "3", "5", "9", "1", "0", "2", "4", "5", "6", "1", "2", "8", "2", "0", "1", "8", "0", "2", "8", "8", "7", "8", "3", "6", "2", "8", "8", "4", "6", "0", "8", "9", "4", "6", "7", "2", "3", "5", "8", "9", "2", "7", "4", "0", "0", "4", "7", "6" ]
[ "nonn", "cons", "easy" ]
7
1
3
[ "A001622", "A379132", "A379133", "A379135", "A379136", "A380795", "A380796" ]
null
Paolo Xausa, Feb 04 2025
2025-02-05T09:23:15
oeisdata/seq/A380/A380796.seq
e4d4c7e079575717f277c9f93a42bda1
A380797
a(n) is the largest number whose fourth power is an n-digit which has the maximum sum of digits (A373914(n)).
[ "1", "3", "5", "8", "16", "26", "56", "88", "118", "308", "518", "974", "1768", "2868", "5396", "8979", "17306", "28871", "55368", "97063", "167622", "289146", "562341", "835718", "1727156", "3154276", "5623116", "9397404", "17728256", "27831542", "53129506", "98665756", "166025442", "315265896", "510466356", "904245732", "1188893858", "2298249374", "5315776056" ]
[ "nonn", "base" ]
15
1
2
[ "A373914", "A379298", "A380052", "A380111", "A380193", "A380566", "A380797" ]
null
Zhining Yang, Feb 03 2025
2025-03-29T02:28:37
oeisdata/seq/A380/A380797.seq
e23d9d8cf8357acc63b000b646c835f4
A380798
a(n) is the smallest prime p such that tau(p^2 - 1) is equal to 2^n, where tau = A000005.
[ "2", "3", "5", "11", "29", "109", "379", "1429", "4159", "23869", "188189", "2147419", "13470731", "71469971", "573015871", "4272944831", "23731864001" ]
[ "nonn", "more" ]
22
1
1
[ "A000005", "A350780", "A358881", "A380798" ]
null
Juri-Stepan Gerasimov, Feb 03 2025
2025-02-09T18:10:28
oeisdata/seq/A380/A380798.seq
1d3e3ef5f33bc77e711b81ce0d58bb5a
A380799
Expansion of e.g.f. ( (1/x) * Series_Reversion( x * exp(-x * (1 + x)^2) / (1 + x)^3 ) )^2.
[ "1", "8", "130", "3344", "119808", "5547112", "316221904", "21462652080", "1692342355840", "152162079949448", "15373938883590144", "1725108070356807952", "212915967853642332160", "28672289555680558679400", "4184239024352928346482688", "657856889310116430352244528", "110868321594997440513876197376" ]
[ "nonn" ]
7
0
2
[ "A380799", "A380800" ]
null
Seiichi Manyama, Feb 04 2025
2025-02-04T08:59:53
oeisdata/seq/A380/A380799.seq
7bfdad3e79d0eeddd3d4a6bd46308e3f
A380800
Expansion of e.g.f. ( (1/x) * Series_Reversion( x * exp(-x / (1 - x)^2) * (1 - x)^3 ) )^2.
[ "1", "8", "142", "4088", "165576", "8711752", "566093104", "43882188408", "3957135262720", "407285038758536", "47138933615042304", "6062383519783848952", "857919091977394542592", "132511278843714141837000", "22185703881021997753194496", "4002648943012304165391154808", "774212130931445685605345918976" ]
[ "nonn" ]
12
0
2
[ "A380799", "A380800", "A380801" ]
null
Seiichi Manyama, Feb 04 2025
2025-02-04T08:59:42
oeisdata/seq/A380/A380800.seq
1e932279c95d7116b7565074fb2e3455
A380801
Expansion of e.g.f. ( (1/x) * Series_Reversion( x * exp(-x / (1 - x)^2) ) )^2.
[ "1", "2", "16", "206", "3792", "91402", "2733376", "97793334", "4078001920", "194355934802", "10426538225664", "621994665546718", "40852668904155136", "2929900797265945050", "227853412116442243072", "19100256246157081925318", "1716982264495843606462464", "164771462679434867316243874" ]
[ "nonn" ]
8
0
2
[ "A364939", "A380801" ]
null
Seiichi Manyama, Feb 04 2025
2025-02-04T08:59:47
oeisdata/seq/A380/A380801.seq
93b011c6a5645bbb0f709428fd550b73
A380802
a(n) = log_2(A053026(n)).
[ "0", "1", "2", "3", "4", "3", "2", "2", "2", "4", "3", "3", "3", "3", "3", "1", "3", "2", "3", "2", "2", "2", "2", "2", "2", "2", "4", "4", "2", "4", "3", "4", "2", "2", "4", "2", "2", "1", "2", "4", "3", "4", "4", "2", "3", "3", "2", "3", "3", "4", "3", "3", "5", "5", "2", "5", "2", "2", "3", "2", "1", "5", "1", "3", "2", "3", "2", "3", "3", "3", "3", "1", "3", "3", "3", "5", "5", "3", "2", "3", "3", "2", "3", "3", "3", "3", "3", "5", "3", "3", "1", "2", "1", "2", "3", "2", "2", "3", "3", "1", "3", "5", "2", "3", "2" ]
[ "nonn" ]
8
1
3
[ "A053026", "A380802", "A380803" ]
null
Amiram Eldar, Feb 04 2025
2025-02-04T07:14:25
oeisdata/seq/A380/A380802.seq
ead21953ae21e69ea7b1a93bfcca9e4c
A380803
a(n) is the least number k such that A380802(k) = n, or -1 if no such number exists.
[ "1", "2", "3", "4", "5", "53", "130", "212", "286", "563", "1215", "1279", "2835", "2434", "3930", "5011", "7031", "18217", "18692", "24218", "35317", "30986" ]
[ "nonn", "more" ]
6
0
2
[ "A053026", "A380802", "A380803" ]
null
Amiram Eldar, Feb 04 2025
2025-02-04T07:17:26
oeisdata/seq/A380/A380803.seq
0dbb2bfa4c6202cda34d2b70d0c7a1b3
A380804
a(n) = floor(A001622*A007064(n)).
[ "1", "6", "11", "14", "19", "22", "27", "32", "35", "40", "43", "48", "53", "56", "61", "66", "69", "74", "77", "82", "87", "90", "95", "100", "103", "108", "111", "116", "121", "124", "129", "132", "137", "142", "145", "150", "155", "158", "163", "166", "171", "176", "179", "184", "189", "192", "197", "200", "205", "210", "213", "218", "221", "226", "231", "234", "239", "244", "247", "252" ]
[ "nonn", "easy" ]
7
1
2
[ "A001622", "A007064", "A380151", "A380804" ]
null
Paolo Xausa, Feb 04 2025
2025-02-05T09:23:11
oeisdata/seq/A380/A380804.seq
7746fe2b353df1f5dddf1245c1d5a7c1
A380805
Number of unlabeled simple connected graphs with n nodes of degree at most 3 and each node a member of exactly one cycle.
[ "1", "0", "0", "1", "1", "1", "2", "2", "3", "4", "7", "10", "18", "27", "49", "81", "147", "256", "476", "858", "1612", "2991", "5676", "10729", "20575", "39423", "76232", "147602", "287518", "561195", "1100190", "2161552", "4261059", "8418035", "16675006", "33098322", "65844566", "131233923", "262066375", "524224509", "1050414569" ]
[ "nonn" ]
38
0
7
[ "A000083", "A001349", "A317722", "A380632", "A380633", "A380805" ]
null
Gordon Hamilton, Feb 23 2025
2025-02-25T05:13:37
oeisdata/seq/A380/A380805.seq
4509adcc303b3ae40b945a933ed99689