sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A381007 | Ordered hypothenuses of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1. | [
"25",
"337",
"5185",
"82177",
"1311745",
"20975617",
"335560705",
"5368774657",
"85899608065",
"1374390583297",
"21990236749825",
"351843737665537",
"5629499601321985",
"90071992815845377",
"1441151881832300545",
"23058430096431906817",
"368934881491370901505",
"5902958103655775993857"
] | [
"nonn",
"easy"
] | 30 | 1 | 1 | [
"A020882",
"A381005",
"A381006",
"A381007",
"A381008",
"A381009"
] | null | Robert C. Lyons, Feb 12 2025 | 2025-02-26T08:51:12 | oeisdata/seq/A381/A381007.seq | ab90656f5d77fb060185515cdf717367 |
A381008 | Ordered perimeters of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1. | [
"56",
"800",
"12416",
"197120",
"3147776",
"50339840",
"805339136",
"12885032960",
"206158954496",
"3298536980480",
"52776566521856",
"844424963686400",
"13510799016329216",
"216172782650654720",
"3458764515968024576",
"55340232229718589440",
"885443715572418215936",
"14167099448746374594560"
] | [
"nonn",
"easy"
] | 19 | 1 | 1 | [
"A024364",
"A381005",
"A381006",
"A381007",
"A381008",
"A381009"
] | null | Robert C. Lyons, Feb 12 2025 | 2025-02-26T08:51:19 | oeisdata/seq/A381/A381008.seq | 81fd5f380d8920c9b717e5ad9cbd4fa9 |
A381009 | Ordered areas of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1. | [
"84",
"25200",
"6350784",
"1614708480",
"412583721984",
"105570270965760",
"27022696873181184",
"6917599389942743040",
"1770891934572664848384",
"453347470584212823736320",
"116056897129722086198083584",
"29710562123440325102508441600",
"7605903676927233379495034486784",
"1947111326786263531071061496954880"
] | [
"nonn",
"easy"
] | 17 | 1 | 1 | [
"A024406",
"A381005",
"A381006",
"A381007",
"A381008",
"A381009"
] | null | Robert C. Lyons, Feb 12 2025 | 2025-02-26T08:51:26 | oeisdata/seq/A381/A381009.seq | 80acd3f77b3792505d01696909f44553 |
A381010 | Positive integers k such that 2^(k+2) - 1 is divisible by k. | [
"1",
"7",
"511",
"713",
"11023",
"15553",
"43873",
"81079",
"95263",
"323593",
"628153",
"2275183",
"6520633",
"6955513",
"7947583",
"10817233",
"12627943",
"14223823",
"15346303",
"19852423",
"27923663",
"28529473",
"29360527",
"31019623",
"39041863",
"41007823",
"79015273",
"134217727",
"143998193",
"213444943",
"227018383"
] | [
"nonn",
"new"
] | 29 | 1 | 2 | [
"A000225",
"A055685",
"A069927",
"A187787",
"A381010"
] | null | Oisín Flynn-Connolly, Apr 10 2025 | 2025-04-23T16:58:24 | oeisdata/seq/A381/A381010.seq | 527eaf095b50deab07631bbf613f924b |
A381011 | a(n) = [(x*y)^n] Product_{k>=1} (1 - x^k - y^k)^k. | [
"1",
"0",
"2",
"-6",
"-14",
"-10",
"32",
"76",
"-80",
"-340",
"-200",
"590",
"2302",
"1890",
"-3470",
"-11468",
"-16254",
"5244",
"57406",
"109340",
"81396",
"-158664",
"-550388",
"-829558",
"-359856",
"1509570",
"4333256",
"6198660",
"2628406",
"-10133230",
"-30439512",
"-46214582",
"-29696680",
"45589368"
] | [
"sign",
"new"
] | 10 | 0 | 3 | [
"A073592",
"A322213",
"A322214",
"A381011"
] | null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-15T17:23:18 | oeisdata/seq/A381/A381011.seq | 158cd62f7d89fe1e41ab232e2ab88f6f |
A381012 | a(n) = [(x*y)^n] Product_{k>=1} (1 - x^k - y^k)^n. | [
"1",
"0",
"-2",
"-6",
"-82",
"530",
"-2420",
"11718",
"-77458",
"492834",
"-1022532",
"3574714",
"-39670180",
"-172880396",
"3186538080",
"-18558899356",
"150869023214",
"-1286538054802",
"6854805868780",
"-29675795883872",
"168219184363308",
"-618102310289316",
"-1450440026397056",
"26462673455854066"
] | [
"sign",
"new"
] | 10 | 0 | 3 | [
"A008705",
"A322213",
"A322214",
"A381012"
] | null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-15T17:23:22 | oeisdata/seq/A381/A381012.seq | 7a16d11aaf86f51798481b505a0df26c |
A381013 | If n = Product (p_j^k_j) then a(n) = Product partition(p_j^k_j). | [
"1",
"2",
"3",
"5",
"7",
"6",
"15",
"22",
"30",
"14",
"56",
"15",
"101",
"30",
"21",
"231",
"297",
"60",
"490",
"35",
"45",
"112",
"1255",
"66",
"1958",
"202",
"3010",
"75",
"4565",
"42",
"6842",
"8349",
"168",
"594",
"105",
"150",
"21637",
"980",
"303",
"154",
"44583",
"90",
"63261",
"280",
"210",
"2510",
"124754",
"693",
"173525",
"3916",
"891",
"505",
"329931",
"6020",
"392",
"330",
"1470",
"9130",
"831820",
"105"
] | [
"nonn",
"mult",
"new"
] | 15 | 1 | 2 | [
"A000041",
"A000688",
"A381013"
] | null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-17T09:35:08 | oeisdata/seq/A381/A381013.seq | 1388f82672823027ff36da4f4cd6685c |
A381014 | If n = Product (p_j^k_j) then a(n) = Sum partition(p_j^k_j). | [
"0",
"2",
"3",
"5",
"7",
"5",
"15",
"22",
"30",
"9",
"56",
"8",
"101",
"17",
"10",
"231",
"297",
"32",
"490",
"12",
"18",
"58",
"1255",
"25",
"1958",
"103",
"3010",
"20",
"4565",
"12",
"6842",
"8349",
"59",
"299",
"22",
"35",
"21637",
"492",
"104",
"29",
"44583",
"20",
"63261",
"61",
"37",
"1257",
"124754",
"234",
"173525",
"1960",
"300",
"106",
"329931",
"3012",
"63",
"37",
"493",
"4567",
"831820",
"15"
] | [
"nonn",
"new"
] | 15 | 1 | 2 | [
"A000041",
"A008481",
"A381014"
] | null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-17T09:35:58 | oeisdata/seq/A381/A381014.seq | 30a990705b213c78e3cf57e1df71db32 |
A381015 | a(n) = n + (number of trailing 0's of n). | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"21",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"31",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"51",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"61",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"71",
"71",
"72",
"73",
"74",
"75",
"76",
"77"
] | [
"nonn",
"base",
"easy"
] | 21 | 1 | 2 | [
"A121520",
"A122840",
"A317905",
"A372490",
"A373387",
"A379243",
"A381015"
] | null | Marco Ripà, Feb 11 2025 | 2025-03-02T23:33:35 | oeisdata/seq/A381/A381015.seq | 7514c9c12ddaa95891002f11359db666 |
A381016 | Expansion of e.g.f. -log(1-x) * sin(x). | [
"0",
"0",
"2",
"3",
"4",
"20",
"110",
"651",
"4520",
"36000",
"322618",
"3213595",
"35226860",
"421419492",
"5463436134",
"76301056755",
"1142009233872",
"18236159031584",
"309463272791538",
"5561354285804115",
"105510576441518164",
"2107380222724155540",
"44200537412519181278",
"971311172969442165883"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A002104",
"A009410",
"A009416",
"A177699",
"A381016"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-12T11:55:44 | oeisdata/seq/A381/A381016.seq | f81ec04c68f4f0810b389e10d95c8069 |
A381017 | Prime terms of A000328. | [
"5",
"13",
"29",
"113",
"149",
"197",
"317",
"613",
"709",
"797",
"1009",
"1129",
"1373",
"3001",
"3209",
"3853",
"4513",
"5261",
"6361",
"7213",
"11681",
"12853",
"15373",
"16729",
"19577",
"20593",
"21101",
"22133",
"25997",
"30757",
"33317",
"38669",
"53077",
"56401",
"65101",
"68777",
"72533",
"73517",
"95093",
"100621",
"108637",
"114553",
"115781",
"118213"
] | [
"nonn"
] | 9 | 1 | 1 | [
"A000040",
"A000328",
"A381017",
"A381018"
] | null | Michel Marcus, Feb 12 2025 | 2025-02-12T09:27:31 | oeisdata/seq/A381/A381017.seq | 0c869a1f91e4fd9c98147e606aa012c5 |
A381018 | a(n) is the number of primes in A000328 for r <= n. | [
"1",
"2",
"3",
"3",
"3",
"4",
"5",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"9",
"10",
"10",
"11",
"12",
"12",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"13",
"14",
"15",
"15",
"15",
"16",
"16",
"16",
"17",
"17",
"17",
"18",
"18",
"18",
"18",
"19",
"19",
"19",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"20",
"21",
"21",
"21",
"22",
"22",
"22",
"22",
"22",
"22",
"23",
"23",
"23"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A000328",
"A000720",
"A381017",
"A381018",
"A381020"
] | null | Michel Marcus, Feb 12 2025 | 2025-02-13T12:16:19 | oeisdata/seq/A381/A381018.seq | 88d8dffc2dab47e67a72651e9a39d353 |
A381019 | a(n) is the smallest positive integer not yet in the sequence such that a(n) is relatively prime to a(n-i) for all 1 <= i <= min(a(n), n-1). | [
"1",
"2",
"3",
"5",
"7",
"11",
"4",
"13",
"17",
"19",
"23",
"29",
"9",
"31",
"37",
"8",
"41",
"43",
"47",
"53",
"59",
"61",
"6",
"67",
"71",
"73",
"79",
"83",
"89",
"25",
"97",
"101",
"103",
"107",
"109",
"12",
"113",
"127",
"131",
"137",
"139",
"149",
"151",
"157",
"163",
"167",
"10",
"173",
"179",
"181",
"191",
"193",
"197",
"199",
"49",
"211",
"223",
"227",
"229",
"233"
] | [
"nonn",
"look"
] | 85 | 1 | 2 | [
"A379810",
"A381019",
"A381115",
"A381120",
"A381167"
] | null | Ali Sada and Allan C. Wechsler, Feb 12 2025 | 2025-04-07T00:47:41 | oeisdata/seq/A381/A381019.seq | 8e51dd207f17fcce3fcdcc8114063694 |
A381020 | a(n) = A381018(100*n). | [
"30",
"45",
"60",
"75",
"92",
"106",
"119",
"133",
"141",
"157",
"170",
"177",
"185",
"204",
"224",
"236",
"245",
"260",
"275",
"292",
"305",
"318",
"330",
"342",
"359",
"371",
"382",
"390",
"405",
"419",
"430",
"444",
"457",
"472",
"490",
"507",
"524",
"535",
"550",
"561",
"570",
"583",
"593",
"604",
"611",
"621",
"627",
"638",
"647",
"659",
"670",
"679",
"683",
"697"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A028505",
"A381018",
"A381020"
] | null | Michel Marcus, Feb 12 2025 | 2025-02-13T12:21:07 | oeisdata/seq/A381/A381020.seq | dc7f66d95f40ca522713d7755efc527f |
A381021 | Expansion of e.g.f. log(1-x)^2 * exp(x) / 2. | [
"0",
"0",
"1",
"6",
"29",
"145",
"814",
"5243",
"38618",
"321690",
"2995011",
"30840304",
"348114711",
"4274888891",
"56744495872",
"809667333733",
"12358833406580",
"200955441549140",
"3467781770502885",
"63298198354605210",
"1218507112218768721",
"24671782054230662277",
"524152965820457130290"
] | [
"nonn"
] | 11 | 0 | 4 | [
"A073596",
"A094816",
"A381021"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-12T16:54:03 | oeisdata/seq/A381/A381021.seq | 18f8b5a1f3f155f8cbad762e7f411483 |
A381022 | Expansion of e.g.f. -log(1-x)^3 * exp(x) / 6. | [
"0",
"0",
"0",
"1",
"10",
"75",
"545",
"4179",
"34860",
"318926",
"3197210",
"34975061",
"415371726",
"5328246417",
"73470506291",
"1084206640399",
"17054915985752",
"284945098917980",
"5040033650314996",
"94099409345964169",
"1849525745917903666",
"38176559589575462327",
"825716052360614856485",
"18675737859143938658251"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A094816",
"A381022",
"A381024"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-12T16:54:00 | oeisdata/seq/A381/A381022.seq | 660857a2ae5c08fa6e31d585855ddec2 |
A381023 | Expansion of e.g.f. log(1-x)^4 * exp(x) / 24. | [
"0",
"0",
"0",
"0",
"1",
"15",
"160",
"1575",
"15659",
"163191",
"1809905",
"21474255",
"272757166",
"3703523824",
"53631736795",
"826097224680",
"13497286183354",
"233291225507890",
"4254733292942982",
"81680724157089634",
"1646873959921840191",
"34800264421134754997",
"769198023696181428250",
"17751664780107823096301"
] | [
"nonn"
] | 13 | 0 | 6 | [
"A094816",
"A381023",
"A381025"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-12T16:46:07 | oeisdata/seq/A381/A381023.seq | 64cc8819a55f54cb59a29047942fb6dc |
A381024 | Expansion of e.g.f. log(1-x)^2 * exp(x) / (2 * (1-x)). | [
"0",
"0",
"1",
"9",
"65",
"470",
"3634",
"30681",
"284066",
"2878284",
"31777851",
"380396665",
"4912874691",
"68142259874",
"1010736134108",
"15970709345353",
"267890182932228",
"4755088551397016",
"89059375695649173",
"1755426336571939497",
"36327033843657558661",
"787539492771039394158",
"17850021806783323801766"
] | [
"nonn"
] | 13 | 0 | 4 | [
"A269951",
"A381022",
"A381024"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-12T16:47:20 | oeisdata/seq/A381/A381024.seq | bd205877b35ac1843838fcde4867d6fd |
A381025 | Expansion of e.g.f. -log(1-x)^3 * exp(x) / (6 * (1-x)). | [
"0",
"0",
"0",
"1",
"14",
"145",
"1415",
"14084",
"147532",
"1646714",
"19664350",
"251282911",
"3430766658",
"49928212971",
"772465487885",
"12671188958674",
"219793939324536",
"4021442067435092",
"77425990864146652",
"1565193235764750557",
"33153390461212914806",
"734397759275046673253",
"16982466756411641668051"
] | [
"nonn"
] | 13 | 0 | 5 | [
"A269951",
"A381023",
"A381025"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-12T16:46:27 | oeisdata/seq/A381/A381025.seq | 7874f5fca286ac0aee788f2d126c19ac |
A381026 | Primitive solutions k to the Diophantine equation k^7 = Sum_{i=1..7} y_i^7 with y_i > 0. | [
"568",
"626"
] | [
"nonn",
"bref",
"hard",
"more",
"changed"
] | 9 | 1 | 1 | [
"A380716",
"A381026"
] | null | Jinyuan Wang, Feb 12 2025 | 2025-04-18T17:45:18 | oeisdata/seq/A381/A381026.seq | 7538d7518594812efc4470f5f1f3edcf |
A381027 | Isolated primes in A381019. | [
"7643",
"26357",
"31643",
"73517",
"114073",
"240263",
"272347",
"635821",
"1719491",
"2981159",
"3610597",
"4783469",
"5294351",
"7140083",
"7170769",
"9813593",
"12521141",
"13172477",
"20443837",
"22499627",
"24098573",
"24147133",
"24891641",
"50832209",
"57741727",
"60328483",
"65714459",
"84701363",
"128297069"
] | [
"nonn"
] | 25 | 1 | 1 | [
"A381019",
"A381027",
"A381120"
] | null | Gonzalo Martínez, Mar 03 2025 | 2025-03-09T12:42:44 | oeisdata/seq/A381/A381027.seq | 6747beb453a06cac0a7a092303eba310 |
A381028 | Decimal expansion of Sum_{k>=1} zeta(2k)/((2k-1)*2^(2k)). | [
"4",
"3",
"7",
"6",
"5",
"8",
"2",
"4",
"2",
"3",
"1",
"1",
"2",
"6",
"1",
"0",
"9",
"3",
"3",
"1",
"5",
"9",
"2",
"0",
"9",
"2",
"6",
"4",
"3",
"8",
"0",
"5",
"1",
"4",
"0",
"1",
"6",
"4",
"8",
"4",
"3",
"5",
"6",
"4",
"5",
"3",
"5",
"2",
"3",
"0",
"6",
"9",
"6",
"8",
"3",
"0",
"2",
"7",
"1",
"5",
"6",
"1",
"3",
"1",
"5",
"1",
"3",
"3",
"2",
"3",
"4",
"3",
"5",
"7",
"1",
"5",
"8",
"9",
"4",
"1",
"7",
"2",
"4",
"1",
"6",
"0",
"1",
"6",
"8",
"3",
"9",
"4",
"9",
"8",
"3",
"0",
"9",
"8",
"5",
"4",
"2",
"3",
"9",
"3",
"1"
] | [
"nonn",
"cons"
] | 24 | 0 | 1 | [
"A256318",
"A355922",
"A381028"
] | null | R. J. Mathar, Feb 12 2025 | 2025-02-16T01:18:37 | oeisdata/seq/A381/A381028.seq | 0519d685123f1ccd560d9c473d48a197 |
A381029 | G.f. A(x) satisfies A(x) = 1/(1 - x * A(x*A(x)^2)^2). | [
"1",
"1",
"3",
"16",
"113",
"955",
"9178",
"97427",
"1121705",
"13836694",
"181295019",
"2507119320",
"36416096984",
"553461581406",
"8774534872463",
"144744539399484",
"2479088917439527",
"44004108702467428",
"808171916050540308",
"15335535608825061803",
"300272362335527090277",
"6059534345675248667550"
] | [
"nonn"
] | 19 | 0 | 3 | [
"A088714",
"A120971",
"A143508",
"A381029",
"A381572",
"A381600",
"A381615"
] | null | Seiichi Manyama, Mar 01 2025 | 2025-03-01T22:48:15 | oeisdata/seq/A381/A381029.seq | 477ec037f60a7f93c1d3f922916e1716 |
A381030 | Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes. | [
"1",
"2",
"2",
"2",
"4",
"5",
"3",
"11",
"20",
"12",
"3",
"17",
"60",
"68",
"35",
"4",
"32",
"151",
"302",
"289",
"108",
"4",
"45",
"322",
"955",
"1523",
"1151",
"369",
"5",
"71",
"633",
"2617",
"5942",
"7384",
"4792",
"1285",
"5",
"94",
"1132",
"6179",
"19061",
"33819",
"35188",
"19603",
"4655",
"6",
"134",
"1930",
"13374",
"52966",
"125940",
"184938",
"164036",
"80820",
"17073",
"6",
"170",
"3095",
"26567",
"131717",
"400119",
"778318",
"969972"
] | [
"nonn",
"tabl"
] | 21 | 2 | 2 | [
"A000105",
"A286194",
"A286344",
"A286345",
"A381030",
"A381057"
] | null | John Mason, Feb 12 2025 | 2025-02-16T10:26:35 | oeisdata/seq/A381/A381030.seq | 2f3ede81989530b1acd6b2ec7eeb4d87 |
A381031 | The second smallest prime not dividing n minus the smallest prime not dividing n. | [
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"5",
"2",
"1",
"2",
"1",
"4",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"6",
"1",
"2",
"5",
"2",
"1",
"2",
"1",
"4",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"8",
"1",
"2",
"1",
"2",
"5",
"2",
"1",
"2",
"1",
"4",
"3",
"2",
"1",
"6",
"1",
"2",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"9"
] | [
"nonn"
] | 13 | 1 | 2 | [
"A053669",
"A249270",
"A380539",
"A381031",
"A381113"
] | null | Antti Karttunen, Feb 12 2025 | 2025-02-15T14:29:13 | oeisdata/seq/A381/A381031.seq | 8c79ef5285ef61e3bc24a694e749ac69 |
A381032 | The radix prime of the least significant digit > 1 in the primorial base expansion of n, or 1 if there is no such digit. | [
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"7",
"7",
"7",
"7",
"3",
"3",
"7",
"7",
"7",
"7",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"7",
"7",
"7",
"7",
"3",
"3",
"7",
"7",
"7",
"7",
"3",
"3",
"5",
"5",
"5",
"5",
"3",
"3",
"5"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A008578",
"A020639",
"A053669",
"A088860",
"A249739",
"A276086",
"A276156",
"A327860",
"A328572",
"A328828",
"A351566",
"A381032",
"A381033",
"A381034"
] | null | Antti Karttunen, Feb 13 2025 | 2025-02-17T12:09:57 | oeisdata/seq/A381/A381032.seq | 7476f93f4b2eb4eb34be4dbccafd7ec2 |
A381033 | a(n) = 1 if there is a digit > 1 in the primorial base expansion of n, and the corresponding radix prime of the least significant such digit is not a prime factor of n, otherwise 0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 21 | 0 | null | [
"A049345",
"A381032",
"A381033",
"A381034",
"A381036"
] | null | Antti Karttunen, Feb 17 2025 | 2025-03-06T14:51:54 | oeisdata/seq/A381/A381033.seq | 13476da54a8186023b9ad3537671d90f |
A381034 | Numbers that have a digit > 1 in their primorial base expansion, and that are multiples of the corresponding radix prime of the least significant such digit. | [
"15",
"20",
"25",
"45",
"50",
"55",
"63",
"75",
"80",
"85",
"91",
"98",
"105",
"110",
"115",
"126",
"135",
"140",
"145",
"165",
"170",
"175",
"182",
"189",
"195",
"200",
"205",
"225",
"230",
"235",
"255",
"260",
"265",
"273",
"285",
"290",
"295",
"301",
"308",
"315",
"320",
"325",
"336",
"345",
"350",
"355",
"375",
"380",
"385",
"392",
"399",
"405",
"410",
"415",
"429",
"435",
"440",
"445",
"451",
"465",
"470",
"475",
"483",
"495",
"500",
"505"
] | [
"nonn"
] | 15 | 1 | 1 | [
"A049345",
"A177711",
"A381032",
"A381033",
"A381034",
"A381035",
"A381037"
] | null | Antti Karttunen, Feb 17 2025 | 2025-02-17T12:00:36 | oeisdata/seq/A381/A381034.seq | 5fef5c3544adcb40ee47b13b680ae271 |
A381035 | Numbers such that the least significant nonzero digit in their primorial base representation (A049345) is 1. | [
"1",
"2",
"3",
"5",
"6",
"7",
"8",
"9",
"11",
"13",
"14",
"15",
"17",
"19",
"20",
"21",
"23",
"25",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"35",
"36",
"37",
"38",
"39",
"41",
"43",
"44",
"45",
"47",
"49",
"50",
"51",
"53",
"55",
"56",
"57",
"59",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"71",
"73",
"74",
"75",
"77",
"79",
"80",
"81",
"83",
"85",
"86",
"87",
"89",
"91",
"92",
"93",
"95",
"96",
"97",
"98",
"99",
"101",
"103",
"104",
"105",
"107",
"109",
"110",
"111"
] | [
"nonn",
"base",
"easy"
] | 12 | 1 | 2 | [
"A049345",
"A064648",
"A276088",
"A276156",
"A290249",
"A380534",
"A380535",
"A381034",
"A381035"
] | null | Antti Karttunen, Feb 17 2025 | 2025-02-18T19:02:07 | oeisdata/seq/A381/A381035.seq | 7cb0696af33325eda6d6c509a8265fef |
A381036 | a(n) = 1 if there is a digit > 1 in the primorial base expansion of n, and the corresponding radix primes of all such digits are also prime factors of n, otherwise 0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 11 | 0 | null | [
"A049345",
"A381033",
"A381036",
"A381037"
] | null | Antti Karttunen, Feb 17 2025 | 2025-03-06T14:52:05 | oeisdata/seq/A381/A381036.seq | 55282d45b78b5400ca2521d31c37391a |
A381037 | Numbers with a digit > 1 in their primorial base expansion that are multiples of the corresponding radix primes of all such digits. | [
"15",
"20",
"25",
"45",
"50",
"55",
"63",
"91",
"98",
"105",
"126",
"140",
"175",
"182",
"189",
"225",
"230",
"235",
"255",
"260",
"265",
"273",
"301",
"308",
"315",
"336",
"350",
"385",
"392",
"399",
"429",
"440",
"451",
"638",
"660",
"693",
"770",
"847",
"1056",
"1089",
"1100",
"1155",
"1232",
"1298",
"1386",
"1485",
"1507",
"1683",
"1705",
"1716",
"1771",
"1892",
"2079",
"2101",
"2145",
"2325",
"2330",
"2335",
"2355",
"2360",
"2365"
] | [
"nonn"
] | 14 | 1 | 1 | [
"A003557",
"A007947",
"A049345",
"A177711",
"A276086",
"A328572",
"A380527",
"A381034",
"A381035",
"A381036",
"A381037"
] | null | Antti Karttunen, Feb 17 2025 | 2025-02-17T14:28:15 | oeisdata/seq/A381/A381037.seq | 30d954af3564508a7d28d5d68f488dce |
A381038 | Coefficients of the first Mock Eisenstein series associated to partition ranks. | [
"0",
"1",
"3",
"5",
"7",
"9",
"10",
"13",
"12",
"17",
"14",
"21",
"16",
"25",
"19",
"29",
"20",
"36",
"22",
"37",
"29",
"41",
"26",
"52",
"28",
"48",
"39",
"53",
"32",
"65",
"34",
"61",
"49",
"60",
"38",
"84",
"40",
"66",
"59",
"78",
"44",
"91",
"46",
"85",
"72",
"78",
"50",
"116",
"52",
"89",
"79",
"101",
"56",
"117",
"65",
"109",
"88",
"96",
"62",
"157",
"64",
"102",
"96",
"125",
"79",
"143",
"70",
"133",
"104",
"127",
"74",
"180",
"76",
"120",
"127"
] | [
"nonn",
"new"
] | 24 | 1 | 3 | null | null | Jan-Willem M. van Ittersum, Apr 14 2025 | 2025-04-20T10:59:56 | oeisdata/seq/A381/A381038.seq | 951bba6a29da9261cceb09142dd98b0c |
A381039 | Smallest palindromic prime with 2n+1 digits and middle digit 0. | [
"101",
"16061",
"1120211",
"100404001",
"10013031001",
"1000030300001",
"100001303100001",
"10000003030000001",
"1000000160610000001",
"100000000303000000001",
"10000000016061000000001",
"1000000000030300000000001",
"100000000004909400000000001",
"10000000000013031000000000001",
"1000000000000250520000000000001"
] | [
"nonn",
"base",
"new"
] | 20 | 1 | 1 | [
"A002385",
"A381039"
] | null | Jean-Marc Rebert, Apr 14 2025 | 2025-04-22T07:46:40 | oeisdata/seq/A381/A381039.seq | b0641a2cb7167983daa99f1b350e9833 |
A381040 | Numbers k such that the concatenation of 1, k! and 1 is prime. | [
"7",
"9",
"10",
"15",
"21225"
] | [
"nonn",
"base",
"new"
] | 16 | 1 | 1 | [
"A000142",
"A034886",
"A262195",
"A381040"
] | null | Michael S. Branicky, Apr 14 2025 | 2025-04-25T04:31:16 | oeisdata/seq/A381/A381040.seq | 1180a38b707edb10f516fb6186f0917a |
A381042 | Alternating sum of floor(n^(1/k)), with k >= 2. | [
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"3",
"3",
"3",
"3",
"3",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"7",
"7",
"7",
"7",
"7"
] | [
"nonn",
"new"
] | 13 | 0 | 17 | [
"A000196",
"A048766",
"A089361",
"A178487",
"A178489",
"A255270",
"A381042",
"A382691",
"A382692"
] | null | Friedjof Tellkamp, Apr 14 2025 | 2025-04-22T07:49:47 | oeisdata/seq/A381/A381042.seq | e32e9a148226f925dcd2eef747610e44 |
A381043 | Centered pentagonal numbers which are squarefree semiprimes. | [
"6",
"51",
"106",
"141",
"226",
"391",
"526",
"681",
"766",
"951",
"1501",
"1891",
"2031",
"2326",
"2481",
"2641",
"3151",
"3901",
"4101",
"4306",
"6631",
"6891",
"7981",
"8266",
"8851",
"10081",
"10401",
"11391",
"13141",
"14631",
"15406",
"16201",
"20931",
"23281",
"24751",
"27301",
"27826",
"28891",
"29431",
"30526",
"32206",
"33351",
"35701",
"36301",
"38131",
"38751",
"41926"
] | [
"nonn",
"new"
] | 13 | 1 | 1 | [
"A005891",
"A006881",
"A145838",
"A364610",
"A381043",
"A382132"
] | null | Massimo Kofler, Apr 14 2025 | 2025-04-18T21:20:02 | oeisdata/seq/A381/A381043.seq | d2945e2c9d048ecc1cfebc711551a7c6 |
A381045 | Happy cubes: cubes whose trajectory under iteration of sum of squares of digits map includes 1. | [
"1",
"1000",
"4096",
"12167",
"13824",
"15625",
"74088",
"226981",
"250047",
"300763",
"531441",
"704969",
"778688",
"1000000",
"1092727",
"1481544",
"2460375",
"2803221",
"3176523",
"3652264",
"4096000",
"4251528",
"5000211",
"6644672",
"7645373",
"8365427",
"8489664",
"8869743",
"8998912",
"11852352",
"12167000"
] | [
"nonn",
"base",
"new"
] | 12 | 1 | 2 | [
"A000578",
"A007770",
"A381045"
] | null | Shyam Sunder Gupta, Apr 14 2025 | 2025-04-22T00:42:15 | oeisdata/seq/A381/A381045.seq | ed675fea68740fd970c8f828f47008e9 |
A381046 | Happy repdigit numbers. | [
"1",
"7",
"44",
"888",
"5555",
"88888",
"1111111",
"2222222",
"22222222",
"77777777",
"1111111111",
"7777777777",
"22222222222",
"44444444444",
"444444444444",
"1111111111111",
"4444444444444",
"7777777777777",
"999999999999999",
"7777777777777777",
"22222222222222222",
"77777777777777777"
] | [
"nonn",
"base",
"new"
] | 19 | 1 | 2 | [
"A007770",
"A010785",
"A381046"
] | null | Shyam Sunder Gupta, Apr 14 2025 | 2025-04-22T18:45:47 | oeisdata/seq/A381/A381046.seq | 2a2be6bf07f240c5a809eac8f6a5b5fa |
A381047 | Numbers k such that Fibonacci(k) is a happy number. | [
"1",
"2",
"7",
"18",
"19",
"25",
"32",
"33",
"45",
"50",
"83",
"84",
"87",
"93",
"106",
"109",
"115",
"117",
"122",
"126",
"130",
"132",
"133",
"134",
"143",
"145",
"155",
"160",
"162",
"166",
"172",
"177",
"187",
"190",
"193",
"200",
"224",
"232",
"235",
"238",
"246",
"247",
"250",
"251",
"254",
"270",
"279",
"280",
"281",
"288",
"291",
"295",
"306",
"309",
"333"
] | [
"nonn",
"base",
"new"
] | 18 | 1 | 2 | [
"A000045",
"A007770",
"A381047"
] | null | Shyam Sunder Gupta, Apr 14 2025 | 2025-04-22T05:40:46 | oeisdata/seq/A381/A381047.seq | 98610e530cd5a7e3056a4ca9a127a5a3 |
A381052 | Expansion of e.g.f. log(1 - x)^2 * exp(3*x) / 2. | [
"0",
"0",
"1",
"12",
"101",
"755",
"5494",
"40971",
"323658",
"2764926",
"25811091",
"263989242",
"2951126991",
"35886116097",
"472073225688",
"6682068553689",
"101277082202580",
"1636520039991324",
"28084499373387141",
"510104266923895272",
"9776178108160101369",
"197153249728184351919",
"4173367143545298444186"
] | [
"nonn",
"new"
] | 27 | 0 | 4 | [
"A327997",
"A381021",
"A381052"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T11:06:33 | oeisdata/seq/A381/A381052.seq | 2c6201042c71c77169b8b9ba3793e069 |
A381054 | a(n) is the least k such that floor(sqrt(n*k/d(n*k))) - floor(sqrt(d(n*k))) = 1, where d(k) is the largest divisor of k which is <= sqrt(k). | [
"5",
"4",
"4",
"2",
"1",
"2",
"1",
"1",
"2",
"1",
"4",
"1",
"4",
"1",
"1",
"5",
"9",
"1",
"9",
"3",
"1",
"2",
"9",
"3",
"2",
"2",
"2",
"3",
"16",
"2",
"16",
"3",
"2",
"5",
"2",
"2",
"25",
"5",
"2",
"2",
"25",
"2",
"25",
"1",
"1",
"5",
"25",
"2",
"2",
"1",
"3",
"1",
"36",
"1",
"1",
"2",
"3",
"8",
"36",
"1",
"36",
"8",
"1",
"3",
"1",
"1",
"49",
"3",
"3",
"1",
"49",
"1",
"49",
"13",
"1",
"3",
"1",
"1",
"49",
"1"
] | [
"nonn",
"new"
] | 32 | 1 | 1 | [
"A000196",
"A033676",
"A033677",
"A048760",
"A381054",
"A382286",
"A383115"
] | null | Hassan Baloui, Apr 14 2025 | 2025-04-25T03:08:00 | oeisdata/seq/A381/A381054.seq | 79ab4daa5334696a8f41fcf8cea04418 |
A381055 | a(n) = -n/2 if n is even, 3n + 1 if n is odd. | [
"0",
"4",
"-1",
"10",
"-2",
"16",
"-3",
"22",
"-4",
"28",
"-5",
"34",
"-6",
"40",
"-7",
"46",
"-8",
"52",
"-9",
"58",
"-10",
"64",
"-11",
"70",
"-12",
"76",
"-13",
"82",
"-14",
"88",
"-15",
"94",
"-16",
"100",
"-17",
"106",
"-18",
"112",
"-19",
"118",
"-20",
"124",
"-21",
"130",
"-22",
"136",
"-23",
"142",
"-24",
"148",
"-25",
"154",
"-26",
"160",
"-27",
"166",
"-28",
"172"
] | [
"sign",
"new"
] | 11 | 0 | 2 | [
"A006370",
"A381055",
"A383131"
] | null | Ya-Ping Lu, Apr 14 2025 | 2025-04-18T21:30:46 | oeisdata/seq/A381/A381055.seq | fabf57028e12d268dce8c6397b01e1c2 |
A381056 | Product of row n of A329708. | [
"1",
"16",
"4320",
"7680000",
"56672000000",
"1315328716800000",
"79725223359774720000",
"11041460968683995136000000",
"3159164253667495772160000000000",
"1725992749819407775039488000000000000",
"1690274868390850110509130354524160000000000",
"2816890048270042497343000411961733572198400000000"
] | [
"nonn"
] | 80 | 0 | 2 | [
"A000290",
"A000292",
"A000537",
"A005408",
"A007531",
"A087047",
"A329708",
"A381056"
] | null | Darío Clavijo, Feb 12 2025 | 2025-04-01T03:28:14 | oeisdata/seq/A381/A381056.seq | 209e90355e88f569ba8cea14f30d1107 |
A381057 | Array read by diagonals downwards: A(n,k) for n>=2 and k>=0 is the number of (n,k)-polyominoes counting as distinct different formations of transparent squares. | [
"1",
"2",
"2",
"3",
"5",
"5",
"6",
"17",
"24",
"12",
"10",
"41",
"101",
"89",
"35",
"20",
"106",
"353",
"535",
"382",
"108",
"36",
"243",
"1091",
"2355",
"2769",
"1566",
"369",
"72",
"567",
"3095",
"8937",
"14841",
"13739",
"6569",
"1285",
"136",
"1259",
"8209",
"29744",
"65651",
"86322",
"66499",
"27205",
"4655",
"272",
"2806",
"20804",
"90914",
"252277",
"439879",
"479343",
"314445",
"112886",
"17073",
"528",
"6113",
"50801",
"259078",
"872526"
] | [
"nonn",
"tabl"
] | 18 | 2 | 2 | [
"A000105",
"A005418",
"A381030",
"A381057"
] | null | John Mason, Feb 12 2025 | 2025-02-16T10:26:25 | oeisdata/seq/A381/A381057.seq | e471ab5b6a7ae9ed3c8d04c12cafc9ce |
A381058 | Irregular triangular array read by rows. Let S_n be the set of labeled graphs G on [n] with 2-colored nodes where black nodes are only connected to white nodes and vice versa. Orient the edges in each such graph G from black to white. T(n,k) is the number of graphs in S_n containing exactly k descents, n>=0, 0<=k<=A002620(n). | [
"1",
"2",
"5",
"1",
"16",
"8",
"2",
"67",
"56",
"30",
"8",
"1",
"374",
"436",
"358",
"188",
"68",
"16",
"2",
"2825",
"4143",
"4508",
"3460",
"2032",
"924",
"320",
"80",
"13",
"1",
"29212",
"50460",
"66976",
"66092",
"52412",
"34280",
"18630",
"8376",
"3072",
"892",
"194",
"28",
"2",
"417199",
"811790",
"1246486",
"1471358",
"1436404",
"1195166",
"859650",
"537750",
"292880",
"138280",
"56048",
"19168",
"5382",
"1188",
"192",
"20",
"1"
] | [
"nonn",
"tabf"
] | 21 | 0 | 2 | [
"A006116",
"A047863",
"A111636",
"A228890",
"A381058",
"A381102",
"A381192"
] | null | Geoffrey Critzer, Feb 12 2025 | 2025-02-17T03:22:46 | oeisdata/seq/A381/A381058.seq | a5146eb637a724917049886684e0c1f5 |
A381059 | Array read by ascending antidiagonals: A(n,k) = numerator(binomial(n-1/2,k)) with k >=0. | [
"1",
"1",
"-1",
"1",
"1",
"3",
"1",
"3",
"-1",
"-5",
"1",
"5",
"3",
"1",
"35",
"1",
"7",
"15",
"-1",
"-5",
"-63",
"1",
"9",
"35",
"5",
"3",
"7",
"231",
"1",
"11",
"63",
"35",
"-5",
"-3",
"-21",
"-429",
"1",
"13",
"99",
"105",
"35",
"3",
"7",
"33",
"6435",
"1",
"15",
"143",
"231",
"315",
"-7",
"-5",
"-9",
"-429",
"-12155",
"1",
"17",
"195",
"429",
"1155",
"63",
"7",
"5",
"99",
"715",
"46189"
] | [
"sign",
"frac",
"look",
"tabl"
] | 14 | 0 | 6 | [
"A000012",
"A000466",
"A001790",
"A002596",
"A060747",
"A161200",
"A161202",
"A162540",
"A173755",
"A381059"
] | null | Stefano Spezia, Feb 12 2025 | 2025-02-17T03:20:47 | oeisdata/seq/A381/A381059.seq | 416d1d90c087bc0a3c69cd00fd0d54ba |
A381060 | Numbers t which are the sum of some subset of the values of k satisfying the equation (t - floor((t - k)/k)) mod k = 0 (t > 1, 1 <= k < t). | [
"23",
"29",
"39",
"41",
"53",
"59",
"65",
"71",
"77",
"79",
"83",
"89",
"99",
"101",
"107",
"111",
"113",
"119",
"125",
"137",
"143",
"149",
"155",
"161",
"167",
"173",
"179",
"185",
"191",
"197",
"199",
"209",
"221",
"227",
"233",
"239",
"245",
"251",
"257",
"263",
"269",
"279",
"281",
"287",
"293",
"299",
"305",
"311",
"317",
"323",
"329",
"335",
"339",
"341",
"349",
"353",
"359",
"365",
"371"
] | [
"nonn"
] | 6 | 1 | 1 | [
"A005835",
"A048158",
"A375595",
"A380153",
"A380305",
"A381060"
] | null | Lechoslaw Ratajczak, Feb 12 2025 | 2025-03-10T18:12:43 | oeisdata/seq/A381/A381060.seq | aac8851014afd7ed67d0dbdffd3d7e4f |
A381061 | First of six consecutive primes such that sum of any five terms is prime. | [
"9733",
"970217",
"3218471",
"5241937",
"5691893",
"8445251",
"8788079",
"11268497",
"11881901",
"16697419",
"19604623",
"22057961",
"22926473",
"26027723",
"26939197",
"38187463",
"38938153",
"39901963",
"45190247",
"52489691",
"54887597",
"58296113",
"61909753",
"62686369",
"68142289",
"69567359",
"69799033",
"72085687",
"72973723",
"79517741",
"82464511"
] | [
"nonn"
] | 18 | 1 | 1 | [
"A298763",
"A381061",
"A381062"
] | null | Zak Seidov and Robert Israel, Feb 12 2025 | 2025-02-15T09:47:03 | oeisdata/seq/A381/A381061.seq | 35fac9e2dbd24dce704e6290313074cc |
A381062 | a(n) is the first prime p such that the sum of any 2*n-1 of the 2*n consecutive primes starting with p is prime. | [
"2",
"19",
"9733",
"69398759"
] | [
"nonn",
"more"
] | 5 | 1 | 1 | [
"A298763",
"A381061",
"A381062"
] | null | Robert Israel, Feb 12 2025 | 2025-02-13T10:00:46 | oeisdata/seq/A381/A381062.seq | c6d1ddbcdce4e32cfbb3ee7b84d62e98 |
A381063 | Lexicographically earliest sequence of positive integers such that each nonempty subset has a distinct geometric mean. | [
"1",
"2",
"3",
"5",
"7",
"8",
"11",
"13",
"17",
"18",
"19",
"23",
"29",
"31",
"37",
"41",
"43",
"47",
"50",
"53",
"59",
"61",
"67",
"71",
"73",
"79",
"83",
"89",
"97",
"98",
"101",
"103",
"107",
"109",
"113",
"127",
"131",
"137",
"139",
"149",
"151",
"157",
"163",
"167",
"173",
"176",
"179",
"181",
"191",
"193",
"197",
"199",
"211",
"223",
"227",
"229",
"233",
"239",
"241",
"251"
] | [
"nonn"
] | 9 | 1 | 2 | [
"A066720",
"A260873",
"A381063"
] | null | Neal Gersh Tolunsky, Feb 12 2025 | 2025-02-22T21:30:28 | oeisdata/seq/A381/A381063.seq | a3478156a9139670c1ae07eafd9cb2af |
A381064 | Expansion of e.g.f. log(1-x)^2 * exp(-x) / 2. | [
"0",
"0",
"1",
"0",
"5",
"15",
"94",
"595",
"4458",
"37590",
"354051",
"3682646",
"41935695",
"518954293",
"6935360496",
"99553094537",
"1527716784020",
"24959724735564",
"432572721886437",
"7926615468800172",
"153129657663788761",
"3110514839038091643",
"66278515188844197218",
"1478222957082474301887"
] | [
"nonn"
] | 8 | 0 | 5 | [
"A269953",
"A300490",
"A381021",
"A381064"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-13T02:23:48 | oeisdata/seq/A381/A381064.seq | 38ddb7828a89602fb96c1e07ccff4311 |
A381065 | Expansion of e.g.f. -log(1-x)^3 * exp(-x) / 6. | [
"0",
"0",
"0",
"1",
"2",
"15",
"85",
"609",
"4844",
"43238",
"427090",
"4630241",
"54683046",
"699012093",
"9617979007",
"141755256889",
"2228396376088",
"37221746535564",
"658390407698084",
"12295201090394017",
"241749652842156074",
"4992277083472634507",
"108032799218176059337",
"2444797394606939402449"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A269953",
"A381022",
"A381065",
"A381067"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-13T02:24:44 | oeisdata/seq/A381/A381065.seq | ee20a9c73504ec6780569c004d47e61c |
A381066 | Expansion of e.g.f. log(1-x)^4 * exp(-x) / 24. | [
"0",
"0",
"0",
"0",
"1",
"5",
"40",
"315",
"2779",
"26817",
"282785",
"3240325",
"40144126",
"535152332",
"7642713715",
"116465389950",
"1886911421914",
"32395513943998",
"587627463812070",
"11231176543495238",
"225621300685737631",
"4753177896741075823",
"104793882332694641218",
"2413274241933067193021"
] | [
"nonn"
] | 10 | 0 | 6 | [
"A269953",
"A381023",
"A381066",
"A381068"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-13T02:25:52 | oeisdata/seq/A381/A381066.seq | 74e075a4fb17dd41c28db6f4ed3c7e2f |
A381067 | Expansion of e.g.f. log(1-x)^2 * exp(-x) / (2 * (1-x)). | [
"0",
"0",
"1",
"3",
"17",
"100",
"694",
"5453",
"48082",
"470328",
"5057331",
"59313287",
"753695139",
"10316991100",
"151373235896",
"2370151632977",
"39450142911652",
"695612154233648",
"12953591498092101",
"254044853932550091",
"5234026736314790581",
"113025076301648693844",
"2552830193825115461786"
] | [
"nonn"
] | 9 | 0 | 4 | [
"A016269",
"A269954",
"A381024",
"A381065",
"A381067"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-13T02:26:47 | oeisdata/seq/A381/A381067.seq | 326d58cdc0995f95677605bd6a9facaa |
A381068 | Expansion of e.g.f. -log(1-x)^3 * exp(-x) / (6 * (1-x)). | [
"0",
"0",
"0",
"1",
"6",
"45",
"355",
"3094",
"29596",
"309602",
"3523110",
"43384451",
"575296458",
"8177866047",
"124108103665",
"2003376811864",
"34282425365912",
"620022977756068",
"11818804007307308",
"236852477229232869",
"4978799197426813454",
"109547060229435717041",
"2518068124265761834239"
] | [
"nonn"
] | 9 | 0 | 5 | [
"A269954",
"A381025",
"A381066",
"A381068"
] | null | Seiichi Manyama, Feb 12 2025 | 2025-02-13T02:27:49 | oeisdata/seq/A381/A381068.seq | 48db2fd10faee5640c1bc1f300731eec |
A381069 | Numbers k that have a record number of divisors that have the same binary weight as k. | [
"1",
"2",
"4",
"8",
"16",
"32",
"64",
"72",
"144",
"288",
"576",
"1080",
"2160",
"4320",
"8640",
"17280",
"34560",
"69120",
"99360",
"136080",
"198720",
"272160",
"397440",
"529200",
"544320",
"1058400",
"2116800",
"3160080",
"4233600",
"6320160",
"8467200",
"12640320",
"16934400",
"25280640",
"50561280",
"76744800",
"101122560",
"102816000"
] | [
"nonn",
"base"
] | 8 | 1 | 2 | [
"A000005",
"A002182",
"A380844",
"A381069",
"A381070"
] | null | Amiram Eldar, Feb 12 2025 | 2025-02-17T03:28:41 | oeisdata/seq/A381/A381069.seq | 3bad0d46b784eeb88aa226eaec3b4a6c |
A381070 | Numbers k such that A380845(k)/k > A380845(m)/m for all m < k. | [
"1",
"2",
"4",
"8",
"16",
"18",
"36",
"72",
"144",
"288",
"540",
"1080",
"2160",
"4320",
"8640",
"17280",
"34560",
"45360",
"68040",
"90720",
"106680",
"136080",
"213360",
"272160",
"320040",
"640080",
"1280160",
"2560320",
"2577960",
"5155920",
"10311840",
"15467760",
"30935520",
"61871040",
"123742080",
"247484160",
"494968320",
"681080400"
] | [
"nonn",
"base"
] | 7 | 1 | 2 | [
"A000203",
"A004394",
"A380845",
"A380846",
"A380929",
"A380930",
"A380931",
"A381069",
"A381070"
] | null | Amiram Eldar, Feb 13 2025 | 2025-02-17T03:28:49 | oeisdata/seq/A381/A381070.seq | 6c64e75c9aeca2118d06c14f629416d0 |
A381071 | Numbers k such that the sum of the proper divisors of k that have the same binary weight as k is larger than k, and no subset of these divisors sums to k. | [
"1050",
"3150",
"4284",
"4410",
"5148",
"6292",
"6790",
"7176",
"8890",
"10764",
"17850",
"18648",
"19000",
"19530",
"32886",
"33072",
"33150",
"35088",
"35530",
"35720",
"35770",
"38850",
"41360",
"43164",
"45084",
"49368",
"49764",
"50456",
"50730",
"52884",
"54280",
"54340",
"58410",
"58696",
"59010",
"59408",
"63492",
"66010",
"68376"
] | [
"nonn",
"base"
] | 7 | 1 | 1 | [
"A000396",
"A006037",
"A064114",
"A292986",
"A306984",
"A321146",
"A327948",
"A339939",
"A348525",
"A348631",
"A349285",
"A364862",
"A380845",
"A380846",
"A380929",
"A381071",
"A381072"
] | null | Amiram Eldar, Feb 13 2025 | 2025-02-17T03:28:55 | oeisdata/seq/A381/A381071.seq | 2d1a94ae9e167298535d36f157c980ed |
A381072 | Odd terms in A381071. | [
"322245",
"590205",
"874665",
"3378375",
"4729725",
"6081075",
"6818175",
"8783775",
"8906625",
"9889425",
"10135125",
"13378365",
"15049125",
"15909075",
"16253055",
"18922365",
"32684085",
"34754265",
"36916425",
"38144925",
"38439765",
"39471705",
"44778825",
"46990125",
"57506085",
"75200265",
"84047355",
"88852995"
] | [
"nonn",
"base"
] | 8 | 1 | 1 | [
"A005408",
"A380929",
"A380932",
"A381071",
"A381072"
] | null | Amiram Eldar, Feb 13 2025 | 2025-02-17T04:55:47 | oeisdata/seq/A381/A381072.seq | 0689ebde9fb961c921a5310cd15a4de0 |
A381073 | Numbers k such that k and k+2 are both terms in A380846. | [
"8596",
"9772",
"10444",
"17836",
"19626",
"21196",
"23716",
"27186",
"35754",
"36484",
"38164",
"42700",
"45892",
"54796",
"56586",
"85708",
"91252",
"98586",
"100770",
"104970",
"112698",
"132412",
"136612",
"139074",
"140980",
"141652",
"144676",
"149716",
"152850",
"165172",
"166122",
"171724",
"182032",
"182644",
"184770",
"190482"
] | [
"nonn",
"base"
] | 6 | 1 | 1 | [
"A380845",
"A380846",
"A381073",
"A381074"
] | null | Amiram Eldar, Feb 13 2025 | 2025-02-17T03:29:09 | oeisdata/seq/A381/A381073.seq | d6811e9fdb5637a45ebaf39f9ff90cd4 |
A381074 | Numbers k such that k, k+2 and k+4 are all terms in A380846. | [
"10820236",
"24069388",
"27802288",
"39297580",
"50717488",
"56362960",
"73070224",
"97339504",
"103605964",
"112209580",
"112526032",
"140053564",
"145315600",
"155790124",
"156415084",
"158877232",
"184667248",
"185979664",
"188913004",
"189225484",
"189541936",
"224435536",
"281740396",
"292406380",
"314388112"
] | [
"nonn",
"base"
] | 6 | 1 | 1 | [
"A380845",
"A380846",
"A381073",
"A381074"
] | null | Amiram Eldar, Feb 13 2025 | 2025-02-17T03:29:18 | oeisdata/seq/A381/A381074.seq | edba58a7f7778d0bd0b1f47bea7989d8 |
A381075 | Sorted positions of first appearances in A280292 (sum of prime factors minus sum of distinct prime factors). | [
"1",
"4",
"8",
"9",
"16",
"25",
"32",
"49",
"64",
"81",
"121",
"128",
"169",
"256",
"289",
"361",
"512",
"529",
"625",
"841",
"961",
"1024",
"1331",
"1369",
"1444",
"1681",
"1849",
"2048",
"2116",
"2197",
"2209",
"2809",
"3481",
"3721",
"3844",
"4232",
"4489",
"4913",
"5041",
"5324",
"5329",
"5476",
"6241",
"6859",
"6889",
"7396",
"7569",
"7688",
"7921"
] | [
"nonn",
"changed"
] | 11 | 1 | 2 | [
"A000040",
"A000720",
"A001222",
"A001223",
"A001414",
"A005117",
"A008472",
"A013929",
"A046660",
"A055396",
"A056239",
"A061395",
"A066503",
"A071625",
"A075255",
"A112798",
"A116861",
"A136565",
"A151821",
"A156061",
"A175508",
"A178503",
"A280286",
"A280292",
"A290106",
"A364916",
"A366528",
"A380955",
"A380956",
"A380957",
"A380958",
"A380987",
"A380988",
"A380989",
"A381075",
"A381076"
] | null | Gus Wiseman, Feb 18 2025 | 2025-04-15T08:25:33 | oeisdata/seq/A381/A381075.seq | 070294910ead64301d7d5b72e221cabe |
A381076 | Sorted positions of first appearances in A066503 (n minus squarefree kernel of n). | [
"1",
"4",
"8",
"16",
"18",
"20",
"24",
"25",
"27",
"32",
"44",
"48",
"50",
"52",
"54",
"64",
"68",
"72",
"75",
"76",
"80",
"81",
"92",
"96",
"98",
"108",
"112",
"116",
"121",
"125",
"128",
"144",
"148",
"152",
"160",
"162",
"164",
"172",
"175",
"176",
"188",
"189",
"192",
"196",
"198",
"200",
"212",
"216",
"232",
"236",
"242",
"243",
"244",
"256",
"260",
"264",
"268",
"272"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A000040",
"A001221",
"A001222",
"A001223",
"A001414",
"A001694",
"A003557",
"A003963",
"A005117",
"A006530",
"A007947",
"A013929",
"A020639",
"A027746",
"A038838",
"A046660",
"A055396",
"A056239",
"A061395",
"A066503",
"A075255",
"A081770",
"A112798",
"A116861",
"A136565",
"A156061",
"A175508",
"A178503",
"A280286",
"A280292",
"A290106",
"A304038",
"A380955",
"A380956",
"A380957",
"A380986",
"A380987",
"A380988",
"A380989",
"A381075",
"A381076",
"A381077"
] | null | Gus Wiseman, Feb 18 2025 | 2025-02-19T22:12:01 | oeisdata/seq/A381/A381076.seq | 35d9c22d0cb00ff40b5d263826100c4d |
A381077 | Sorted positions of first appearances in A380986 (product of prime indices minus product of distinct prime indices). | [
"1",
"9",
"25",
"49",
"63",
"81",
"99",
"121",
"125",
"135",
"169",
"171",
"245",
"279",
"289",
"343",
"361",
"363",
"369",
"375",
"387",
"477",
"529",
"531",
"575",
"603",
"625",
"675",
"711",
"729",
"747",
"833",
"841",
"847",
"873",
"875",
"891",
"909",
"961",
"981",
"1029",
"1083",
"1125",
"1127",
"1179",
"1225",
"1251",
"1377",
"1413",
"1445",
"1467"
] | [
"nonn"
] | 5 | 1 | 2 | [
"A000040",
"A000079",
"A000720",
"A001221",
"A001222",
"A001223",
"A001694",
"A003557",
"A003963",
"A005117",
"A007947",
"A013929",
"A038838",
"A046660",
"A055396",
"A056239",
"A061395",
"A064549",
"A066328",
"A066503",
"A075255",
"A081770",
"A112798",
"A116861",
"A151821",
"A156061",
"A178503",
"A280286",
"A280292",
"A290106",
"A304038",
"A374248",
"A379681",
"A380955",
"A380956",
"A380957",
"A380958",
"A380986",
"A380987",
"A380988",
"A381075",
"A381076",
"A381077"
] | null | Gus Wiseman, Feb 20 2025 | 2025-02-22T09:56:39 | oeisdata/seq/A381/A381077.seq | f2559256f7401c89636073c4114dd72e |
A381078 | Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums. | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"5",
"1",
"1",
"2",
"2",
"2",
"3",
"1",
"2",
"2",
"2",
"1",
"5",
"1",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"6",
"1",
"2",
"2",
"1",
"2",
"5",
"1",
"2",
"2",
"5",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"5",
"1",
"2",
"1",
"2",
"1",
"6",
"2",
"2",
"2"
] | [
"nonn"
] | 13 | 1 | 6 | [
"A000009",
"A000040",
"A000041",
"A000688",
"A000720",
"A001055",
"A001222",
"A002846",
"A003963",
"A005117",
"A025487",
"A045778",
"A050320",
"A050326",
"A050361",
"A055396",
"A056239",
"A061395",
"A066328",
"A089259",
"A112798",
"A116540",
"A122111",
"A213242",
"A213385",
"A213427",
"A265947",
"A270995",
"A293243",
"A296119",
"A299201",
"A299202",
"A300383",
"A300385",
"A317141",
"A318360",
"A321469",
"A381078",
"A381441",
"A381452",
"A381453",
"A381454",
"A381455",
"A381633",
"A381634",
"A381635",
"A381636",
"A381637",
"A381716",
"A381717"
] | null | Gus Wiseman, Mar 05 2025 | 2025-04-01T12:16:12 | oeisdata/seq/A381/A381078.seq | b25ad133e6ffb4aaa1b6e73fa0886b70 |
A381079 | Number of integer partitions of n whose greatest multiplicity is equal to their sum of distinct parts. | [
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"3",
"1",
"3",
"1",
"2",
"0",
"7",
"2",
"6",
"7",
"11",
"3",
"19",
"8",
"22",
"16",
"32",
"17",
"48",
"21",
"50",
"39",
"71",
"35",
"101",
"58",
"120",
"89",
"156",
"97",
"228",
"133",
"267",
"203",
"352",
"228",
"483",
"322",
"571",
"444",
"734",
"524",
"989",
"683",
"1160",
"942",
"1490",
"1103",
"1919",
"1438",
"2302",
"1890",
"2881",
"2243",
"3683",
"2842",
"4384",
"3703",
"5461"
] | [
"nonn"
] | 7 | 0 | 8 | [
"A000005",
"A000009",
"A000041",
"A008284",
"A008289",
"A027193",
"A047966",
"A047993",
"A048767",
"A051903",
"A051904",
"A066328",
"A091602",
"A091605",
"A106529",
"A116861",
"A212166",
"A237984",
"A239455",
"A240312",
"A241131",
"A246655",
"A362608",
"A363724",
"A381079",
"A381542",
"A381632"
] | null | Gus Wiseman, Mar 03 2025 | 2025-03-06T22:13:37 | oeisdata/seq/A381/A381079.seq | 6328bfeafb573be6c63c27b649aa83c7 |
A381080 | a(n) is the number of transitive finite pure sets of depth at most n. | [
"1",
"2",
"3",
"6",
"4131"
] | [
"nonn",
"nice"
] | 81 | 0 | 2 | null | null | Michel Bauer, Feb 13 2025 | 2025-04-12T12:28:10 | oeisdata/seq/A381/A381080.seq | 96701294c30cbe92a609ed83e791520b |
A381081 | Lexicographically earliest sequence of distinct positive integers such that the string value of a(n) begins with a divisor of a(n-1). | [
"1",
"10",
"2",
"11",
"12",
"3",
"13",
"14",
"7",
"15",
"5",
"16",
"4",
"17",
"18",
"6",
"19",
"100",
"20",
"21",
"30",
"22",
"23",
"101",
"102",
"24",
"8",
"25",
"50",
"26",
"27",
"9",
"31",
"103",
"104",
"28",
"29",
"105",
"32",
"40",
"41",
"106",
"53",
"107",
"108",
"33",
"34",
"109",
"110",
"51",
"35",
"52",
"42",
"36",
"37",
"111",
"38",
"112",
"43",
"113",
"114",
"39",
"115",
"54",
"60",
"44",
"45",
"55",
"56",
"46",
"116",
"47",
"117",
"90",
"57",
"118",
"59",
"119",
"70",
"58",
"120",
"48",
"49",
"71",
"121",
"122"
] | [
"nonn",
"base",
"look"
] | 8 | 1 | 2 | [
"A000030",
"A027750",
"A248024",
"A381081"
] | null | Scott R. Shannon, Feb 13 2025 | 2025-02-13T08:27:00 | oeisdata/seq/A381/A381081.seq | f145fe01f941f22efccfe6b866134b66 |
A381082 | Triangle T(n,k) read by rows, where the columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=2. | [
"1",
"-2",
"1",
"4",
"-3",
"1",
"-8",
"8",
"-3",
"1",
"16",
"-18",
"11",
"-2",
"1",
"-32",
"44",
"-20",
"15",
"0",
"1",
"64",
"-80",
"94",
"5",
"25",
"3",
"1",
"-128",
"272",
"56",
"294",
"105",
"49",
"7",
"1",
"256",
"112",
"1868",
"1596",
"1169",
"392",
"98",
"12",
"1",
"-512",
"5280",
"12216",
"16148",
"10290",
"4305",
"1092",
"186",
"18",
"1"
] | [
"sign",
"tabl"
] | 17 | 0 | 2 | [
"A000023",
"A094816",
"A122803",
"A132393",
"A137346",
"A269953",
"A327997",
"A346397",
"A381082"
] | null | Igor Victorovich Statsenko, Feb 13 2025 | 2025-02-26T19:22:44 | oeisdata/seq/A381/A381082.seq | c4a35cc9ff2e78fd68364100204f1b2c |
A381083 | Brent's irregular triangle T[r,k] related to Hardy-Littlewood constants of prime gaps 2r. | [
"1",
"1",
"2",
"2",
"3",
"4",
"1",
"4",
"6",
"2",
"30",
"56",
"30",
"4",
"18",
"40",
"28",
"6",
"15",
"40",
"36",
"12",
"1",
"30",
"92",
"100",
"44",
"6",
"180",
"624",
"812",
"480",
"120",
"8",
"150",
"504",
"632",
"350",
"72",
"2970",
"10880",
"15642",
"11008",
"3780",
"504",
"1620",
"6688",
"11090",
"9378",
"4224",
"952",
"84",
"1782",
"7400",
"12312",
"10400",
"4634",
"1008",
"80",
"3960",
"19312",
"38958",
"41768",
"25376",
"8570",
"1446",
"90",
"22275",
"113792",
"244829",
"287904",
"200805",
"84280",
"20583",
"2656",
"140",
"23760",
"122400",
"265734",
"315120",
"220944",
"92466",
"22120",
"2700",
"128"
] | [
"nonn",
"tabf"
] | 8 | 1 | 3 | [
"A381083",
"A381084",
"A381085",
"A381086"
] | null | R. J. Mathar, Feb 13 2025 | 2025-02-13T08:33:32 | oeisdata/seq/A381/A381083.seq | 8f8d3a738ae9008f8bc7752941984d95 |
A381084 | Column k=1 of Brent's table A381083 related to prime gaps 2n. | [
"1",
"1",
"2",
"3",
"4",
"30",
"18",
"15",
"30",
"180",
"150",
"2970",
"1620",
"1782",
"3960",
"22275",
"23760",
"757350",
"400950",
"504900",
"908820",
"8835750",
"8330850",
"15904350",
"10602900",
"8675100",
"15904350",
"257650470",
"222660900",
"16604141400",
"6441261750",
"6226553025",
"13836784500",
"6641656560",
"9962484840",
"435858711750",
"224155908900",
"230748729750",
"475482231000",
"11332326505500",
"8717174235000"
] | [
"nonn"
] | 9 | 1 | 3 | [
"A381083",
"A381084",
"A381085",
"A381086"
] | null | R. J. Mathar, Feb 13 2025 | 2025-02-13T06:46:11 | oeisdata/seq/A381/A381084.seq | c9d638e6f37394145cc248a935668ecc |
A381085 | Column k=2 of Brent's table A381083 related to prime gaps 2n. | [
"0",
"0",
"2",
"4",
"6",
"56",
"40",
"40",
"92",
"624",
"504",
"10880",
"6688",
"7400",
"19312",
"113792",
"122400",
"3979008",
"2239104",
"2915840",
"5777920",
"56689920",
"55372800",
"110218240",
"78453760",
"65815552",
"125480960",
"2057036800",
"1776107520",
"137449159680",
"56911196160",
"54069370880",
"127085826560",
"63757824000",
"96876953600",
"4341200912384",
"2258481971200",
"2411472967680",
"5056905641984",
"122267833425920"
] | [
"nonn"
] | 8 | 1 | 3 | [
"A381083",
"A381084",
"A381085",
"A381086"
] | null | R. J. Mathar, Feb 13 2025 | 2025-02-13T08:47:24 | oeisdata/seq/A381/A381085.seq | 4ea13e2aec0df0f045414845e260a436 |
A381086 | Column k=3 of Brent's table A381083 related to prime gaps 2n. | [
"0",
"0",
"0",
"1",
"2",
"30",
"28",
"36",
"100",
"812",
"632",
"15642",
"11090",
"12312",
"38958",
"244829",
"265734",
"8883060",
"5333232",
"7236810",
"16006998",
"159615504",
"161805900",
"337714368",
"259208326",
"222480280",
"445109722",
"7401008550",
"6375729282",
"514590231096",
"228830896980",
"213249174660",
"532897145178",
"280475561070",
"432135635850",
"19890493216704",
"10485155702790",
"11646227156256",
"24879391641270"
] | [
"nonn"
] | 6 | 1 | 5 | [
"A381083",
"A381084",
"A381085",
"A381086"
] | null | R. J. Mathar, Feb 13 2025 | 2025-02-13T07:19:38 | oeisdata/seq/A381/A381086.seq | caac6ff3fc550a6dfed94f706dab5eec |
A381087 | The smallest positive integer that produces a product that contains the digit 2 when multiplied by 2 a total of n times. | [
"2",
"1",
"6",
"31",
"64",
"64",
"331",
"331",
"814",
"1607",
"4107",
"5129",
"5129",
"5129",
"10283",
"12819",
"16163",
"16163",
"16163",
"40108",
"40108",
"40108",
"40108",
"40108",
"40108",
"80313",
"80313",
"80313",
"80313",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153",
"100153"
] | [
"nonn",
"base"
] | 10 | 0 | 1 | [
"A011532",
"A378138",
"A381087",
"A381183"
] | null | Scott R. Shannon, Feb 13 2025 | 2025-02-20T08:40:50 | oeisdata/seq/A381/A381087.seq | b16e8fbf4dec5d94f548bbabe2e33871 |
A381088 | Decimal expansion of the smallest number greater than 1 whose decimal and ternary expansions have the same succession of digits. | [
"1",
"0",
"1",
"0",
"0",
"2",
"2",
"0",
"1",
"0",
"0",
"1",
"1",
"2",
"2",
"0",
"0",
"1",
"2",
"2",
"0",
"0",
"1",
"2",
"0",
"1",
"2",
"2",
"0",
"2",
"2",
"0",
"1",
"2",
"2",
"1",
"1",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"2",
"2",
"2",
"0",
"0",
"1",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"2",
"2",
"1",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"2",
"1",
"0",
"1",
"0",
"1",
"2",
"1"
] | [
"nonn",
"cons"
] | 7 | 2 | 6 | [
"A379651",
"A381088"
] | null | Paolo Xausa, Feb 13 2025 | 2025-02-13T09:28:39 | oeisdata/seq/A381/A381088.seq | 0206374bfcb4f55c6c758773cd79cd35 |
A381089 | Number of binary relations on n unlabeled points without isolated points. | [
"1",
"0",
"7",
"86",
"2846",
"285984",
"96348100",
"112089342912",
"458072631172864",
"6665705090236713408",
"349377212708652631367712",
"66602723210653815331014240512",
"46557323276092409455163109412993536",
"120168498152266645852126063743794842575872"
] | [
"nonn"
] | 16 | 0 | 3 | [
"A000595",
"A381089"
] | null | Peter Dolland, Feb 13 2025 | 2025-02-21T12:29:49 | oeisdata/seq/A381/A381089.seq | 8ae2c3c3f15f89d82a300576d06dc2ef |
A381090 | Number of minimal dominating sets in the n X n X n grid graph. | [
"1",
"12",
"12039",
"7406930236"
] | [
"nonn",
"more"
] | 8 | 1 | 2 | null | null | Eric W. Weisstein, Feb 13 2025 | 2025-02-15T13:35:07 | oeisdata/seq/A381/A381090.seq | 6a630234c8628e5fab60c2f9b546b625 |
A381091 | Connected domination number of the n X n queen graph. | [
"1",
"1",
"1",
"2",
"3",
"4",
"4",
"5",
"5",
"6",
"7",
"7",
"8"
] | [
"nonn",
"more"
] | 27 | 1 | 4 | [
"A358062",
"A381091"
] | null | Eric W. Weisstein, Mar 27 2025 | 2025-03-29T07:49:58 | oeisdata/seq/A381/A381091.seq | c0e9592d6a62022400d8d3339721a6dd |
A381092 | Numbers k such that (43^k + 2^k)/45 is prime. | [
"31",
"41",
"61",
"599",
"1231",
"1249",
"35671"
] | [
"nonn",
"hard",
"more"
] | 5 | 1 | 1 | [
"A057187",
"A057188",
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A228922",
"A229542",
"A375161",
"A375236",
"A377031",
"A377856",
"A381092"
] | null | Robert Price, Feb 13 2025 | 2025-02-16T08:34:07 | oeisdata/seq/A381/A381092.seq | 800f400d9ccbaaae53ed3495e1787337 |
A381093 | Numbers k such that (26^k - 3^k)/23 is prime. | [
"2",
"31",
"263",
"743",
"1439",
"6661",
"78593"
] | [
"nonn",
"hard",
"more"
] | 4 | 1 | 1 | [
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A229542",
"A375161",
"A375236",
"A377031",
"A381093"
] | null | Robert Price, Feb 13 2025 | 2025-02-16T22:38:17 | oeisdata/seq/A381/A381093.seq | 9e4ef1877f9b8ffc31ef865798709d1d |
A381094 | Triangle read by rows where row n contains k < n that are neither coprime to n nor have the same squarefree kernel as n, or 0 if there are no such k. | [
"0",
"0",
"0",
"0",
"0",
"2",
"3",
"4",
"0",
"6",
"6",
"2",
"4",
"5",
"6",
"8",
"0",
"2",
"3",
"4",
"8",
"9",
"10",
"0",
"2",
"4",
"6",
"7",
"8",
"10",
"12",
"3",
"5",
"6",
"9",
"10",
"12",
"6",
"10",
"12",
"14",
"0",
"2",
"3",
"4",
"8",
"9",
"10",
"14",
"15",
"16",
"0",
"2",
"4",
"5",
"6",
"8",
"12",
"14",
"15",
"16",
"18",
"3",
"6",
"7",
"9",
"12",
"14",
"15",
"18",
"2",
"4",
"6",
"8",
"10",
"11",
"12",
"14",
"16",
"18",
"20"
] | [
"nonn",
"tabf",
"easy"
] | 12 | 1 | 6 | [
"A007947",
"A121998",
"A133995",
"A369609",
"A381094",
"A381096"
] | null | Michael De Vlieger, Feb 14 2025 | 2025-03-03T13:22:27 | oeisdata/seq/A381/A381094.seq | dd5a710dee650eec1ebd2b61d70d466a |
A381095 | Indices of prime squares in A381019. | [
"7",
"13",
"30",
"55",
"178",
"468",
"541",
"854",
"1454",
"2099",
"3744",
"7330",
"9091",
"10138",
"11917",
"14154",
"14350",
"19363",
"21555",
"23553",
"26615",
"36109",
"36533",
"37302",
"51588",
"52576",
"57183",
"58064",
"58144",
"63067",
"69927",
"70135",
"80174",
"81920",
"85923",
"89936",
"93749",
"99240",
"121884",
"124693",
"151411"
] | [
"nonn"
] | 15 | 1 | 1 | [
"A001248",
"A381019",
"A381095",
"A381116",
"A381119"
] | null | Michael De Vlieger, Feb 16 2025 | 2025-04-01T03:28:20 | oeisdata/seq/A381/A381095.seq | 152bbef517f8153cbf9c238971d5ed11 |
A381096 | Number of k <= n such that k is neither coprime to n and rad(k) != rad(n), where rad = A007947. | [
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"1",
"1",
"5",
"0",
"6",
"0",
"7",
"6",
"4",
"0",
"10",
"0",
"10",
"8",
"11",
"0",
"13",
"3",
"13",
"6",
"14",
"0",
"21",
"0",
"11",
"12",
"17",
"10",
"20",
"0",
"19",
"14",
"21",
"0",
"29",
"0",
"22",
"19",
"23",
"0",
"28",
"5",
"28",
"18",
"26",
"0",
"33",
"14",
"29",
"20",
"29",
"0",
"42",
"0",
"31",
"25",
"26",
"16",
"45",
"0",
"34",
"24",
"45",
"0",
"42",
"0",
"37"
] | [
"nonn",
"easy"
] | 4 | 1 | 6 | [
"A000010",
"A005361",
"A008479",
"A355432",
"A359929",
"A381094",
"A381096"
] | null | Michael De Vlieger, Feb 14 2025 | 2025-02-16T23:02:47 | oeisdata/seq/A381/A381096.seq | 6bba1e50a8014375a56bd65fdd313ddc |
A381097 | Consider the polynomial P(m,z) = Sum_{i=1..k} d(i)*z^(i-1) where d(1), d(2), ..., d(k) are the k divisors of m. The sequence lists the numbers m such that P(m,z) is irreducible. | [
"2",
"3",
"4",
"5",
"7",
"9",
"11",
"12",
"13",
"16",
"17",
"19",
"23",
"24",
"25",
"29",
"30",
"31",
"36",
"37",
"40",
"41",
"43",
"45",
"47",
"48",
"49",
"53",
"56",
"59",
"60",
"61",
"63",
"64",
"67",
"70",
"71",
"72",
"73",
"79",
"80",
"81",
"83",
"84",
"89",
"90",
"96",
"97",
"101",
"103",
"105",
"107",
"108",
"109",
"112",
"113",
"120",
"121",
"126",
"127",
"131",
"132",
"135"
] | [
"nonn"
] | 19 | 1 | 1 | [
"A291127",
"A381097"
] | null | Michel Lagneau, Feb 14 2025 | 2025-02-26T09:04:18 | oeisdata/seq/A381/A381097.seq | 6176895fb9badf302d51fdf6946b6bb3 |
A381098 | Irregular triangle read by rows: row 1 = (1, 2); row n+1 has length L = last element of row n, and consists of the L smallest positive integers not occurring earlier that share a factor with L. | [
"1",
"2",
"4",
"6",
"3",
"8",
"9",
"10",
"12",
"14",
"7",
"16",
"18",
"20",
"21",
"22",
"24",
"26",
"28",
"30",
"32",
"34",
"35",
"36",
"15",
"27",
"33",
"38",
"39",
"40",
"42",
"44",
"45",
"46",
"48",
"50",
"51",
"52",
"54",
"56",
"57",
"58",
"60",
"62",
"63",
"64",
"66",
"68",
"69",
"70",
"72",
"74",
"75",
"76",
"78",
"80",
"81",
"82",
"84",
"86",
"43",
"88",
"90"
] | [
"nonn",
"tabf",
"changed"
] | 28 | 1 | 2 | null | null | Ali Sada and M. F. Hasler, Feb 13 2025 | 2025-04-14T05:31:27 | oeisdata/seq/A381/A381098.seq | ca32fde1a45a9fdcc3e178b5d78a0f54 |
A381099 | a(n) is the smallest prime number that contains Fibonacci(n) as a substring. | [
"101",
"11",
"11",
"2",
"3",
"5",
"83",
"13",
"211",
"347",
"557",
"89",
"1447",
"233",
"2377",
"6101",
"1987",
"1597",
"25841",
"24181",
"67651",
"109469",
"177113",
"28657",
"2463683",
"1750253",
"1213931",
"1964189",
"2317811",
"514229",
"8320409",
"13462693",
"22178309",
"35245781",
"135702887",
"192274651",
"149303521"
] | [
"nonn",
"base"
] | 10 | 0 | 1 | [
"A000040",
"A000045",
"A001605",
"A062584",
"A381099"
] | null | Gonzalo Martínez, Feb 13 2025 | 2025-03-02T23:47:31 | oeisdata/seq/A381/A381099.seq | 9f6b65faf164fbb8862973248d50c591 |
A381100 | Number of integer triples i <= j <= k such that a non-degenerate triangle with sides (i, j, k) fits inside an equilateral triangle with sides (n, n, n), possibly touching its boundary from inside. | [
"1",
"2",
"5",
"10",
"18",
"29",
"44",
"62",
"82",
"109",
"141",
"180",
"226",
"279",
"339",
"403",
"475",
"557",
"651",
"755",
"870",
"993",
"1125",
"1269",
"1425",
"1595",
"1780",
"1976",
"2188",
"2417",
"2652",
"2905",
"3173",
"3461",
"3769",
"4090",
"4436",
"4788",
"5161",
"5558",
"5968",
"6405",
"6857",
"7340",
"7840",
"8355",
"8893",
"9463",
"10048"
] | [
"easy",
"nonn"
] | 9 | 1 | 2 | [
"A331250",
"A381100"
] | null | Vladimir Reshetnikov, Feb 13 2025 | 2025-02-14T18:59:13 | oeisdata/seq/A381/A381100.seq | af24164a3c153e6214bf579743b2762d |
A381101 | Allouche-Johnson binary sequence based on the Narayana's cows sequence A000930. | [
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1"
] | [
"nonn"
] | 23 | 0 | null | [
"A000930",
"A381101"
] | null | Jeffrey Shallit, Feb 16 2025 | 2025-02-19T11:47:41 | oeisdata/seq/A381/A381101.seq | bf003a34f67871605cb8ae0246ee8d65 |
A381102 | Irregular triangle read by rows. For each j, 1<=j<=n properly color the vertices of a labeled graph on [n] using each of the first j colors in the color set {c1<c2<...<cn}. Orient the edges according to the strict order on the colors. T(n,k) is the number of such directed graphs containing k descents, n>=0, 0<=k<=binomial(n,2). | [
"1",
"1",
"4",
"1",
"36",
"27",
"9",
"1",
"696",
"983",
"731",
"330",
"93",
"15",
"1",
"27808",
"60615",
"72662",
"59113",
"35197",
"15731",
"5269",
"1287",
"216",
"22",
"1",
"2257888",
"6803655",
"11412586",
"13504721",
"12316799",
"9026017",
"5427090",
"2700863",
"1112555",
"376459",
"103002",
"22203",
"3619",
"417",
"30",
"1"
] | [
"nonn",
"tabf"
] | 12 | 0 | 3 | [
"A289545",
"A334282",
"A381058",
"A381102",
"A381192"
] | null | Geoffrey Critzer, Feb 16 2025 | 2025-02-17T03:25:17 | oeisdata/seq/A381/A381102.seq | ae7865e3d5d4f1b5fe6e4ed0d9cfc727 |
A381104 | a(n) is the number of prime factors with exponent 1 in the prime factorization of the n-th superabundant number. | [
"0",
"1",
"0",
"2",
"1",
"1",
"0",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"3",
"2",
"3",
"2",
"2",
"2",
"2",
"1",
"3",
"3",
"3",
"3",
"2",
"3",
"2",
"3",
"4",
"4",
"4",
"3",
"4",
"3",
"4",
"3",
"3",
"5",
"4",
"5",
"4",
"5",
"4",
"4",
"6",
"4",
"4",
"5",
"6",
"5",
"6",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"6",
"6",
"6",
"6",
"6",
"6",
"5",
"6",
"5",
"5",
"5",
"7",
"5",
"7",
"7",
"7",
"7",
"6",
"7",
"6",
"6",
"6",
"8",
"6",
"8",
"8",
"8",
"8",
"7",
"8",
"7",
"7",
"7",
"7",
"9",
"7",
"9",
"7",
"7",
"9",
"8",
"9",
"8",
"8",
"8"
] | [
"nonn"
] | 27 | 1 | 4 | [
"A004394",
"A056169",
"A381104"
] | null | Agustin T. Besteiro, Feb 14 2025 | 2025-02-14T16:11:52 | oeisdata/seq/A381/A381104.seq | c53eb9e4ab02b6601c6873acbfd45ffe |
A381105 | Expansion of e.g.f. log(1-x)^2 * (exp(x) - 1) / 2. | [
"0",
"0",
"0",
"3",
"18",
"95",
"540",
"3479",
"25550",
"212106",
"1968435",
"20211664",
"227570871",
"2788446011",
"36941736832",
"526201686373",
"8019670404980",
"130221159155540",
"2244376179923685",
"40921210296083610",
"786941965401130321",
"15918834017469062277",
"337908155040286890290",
"7510104219030171089935"
] | [
"nonn"
] | 11 | 0 | 4 | [
"A000254",
"A052863",
"A381021",
"A381105",
"A381106"
] | null | Seiichi Manyama, Feb 14 2025 | 2025-02-14T06:56:43 | oeisdata/seq/A381/A381105.seq | 79e72f4a3088eb8625e4d310889b2184 |
A381106 | Expansion of e.g.f. -log(1-x)^3 * (exp(x) - 1) / 6. | [
"0",
"0",
"0",
"0",
"4",
"40",
"320",
"2555",
"21728",
"200802",
"2024510",
"22221485",
"264453750",
"3396686865",
"46873789235",
"692049842575",
"10889098371032",
"181952854080860",
"3218431205690356",
"60087159752141449",
"1180916015576750386",
"24372799835934758327",
"527084149497398472485",
"11919591185373007970251"
] | [
"nonn"
] | 11 | 0 | 5 | [
"A000399",
"A052863",
"A381022",
"A381105",
"A381106"
] | null | Seiichi Manyama, Feb 14 2025 | 2025-02-14T05:22:26 | oeisdata/seq/A381/A381106.seq | 349cfd1a5876d43a8cf7b9342a7096f1 |
A381107 | Expansion of e.g.f. -log(1-x) * (exp(x) - 1) / (1-x). | [
"0",
"0",
"2",
"12",
"66",
"395",
"2665",
"20307",
"173488",
"1646745",
"17216653",
"196730567",
"2440331300",
"32666847941",
"469457190501",
"7210003071247",
"117862325748960",
"2043420738374545",
"37453428525580725",
"723643767046525111",
"14700326905250293556",
"313236372986056228013",
"6985951253209713959645"
] | [
"nonn"
] | 10 | 0 | 3 | [
"A000254",
"A002627",
"A073596",
"A381107",
"A381108"
] | null | Seiichi Manyama, Feb 14 2025 | 2025-02-14T04:03:05 | oeisdata/seq/A381/A381107.seq | dc850cbdfc39dc13bba429fec12a9acc |
A381108 | Expansion of e.g.f. log(1-x)^2 * (exp(x) - 1) / (2 * (1-x)). | [
"0",
"0",
"0",
"3",
"30",
"245",
"2010",
"17549",
"165942",
"1705584",
"19024275",
"229478689",
"2981315139",
"41545542818",
"618579336284",
"9804891730633",
"164897938095108",
"2933486106772376",
"55047126101826453",
"1086816606230786217",
"22523274090016854661",
"488907589907823010158",
"11093875133012393113766"
] | [
"nonn"
] | 11 | 0 | 4 | [
"A000399",
"A002627",
"A381024",
"A381107",
"A381108"
] | null | Seiichi Manyama, Feb 14 2025 | 2025-02-14T04:00:18 | oeisdata/seq/A381/A381108.seq | 3a9ae3025ae38d75cceacff8ddc8703d |
A381109 | a(n) = (21*n^2 + 9*n + 2)/2. | [
"1",
"16",
"52",
"109",
"187",
"286",
"406",
"547",
"709",
"892",
"1096",
"1321",
"1567",
"1834",
"2122",
"2431",
"2761",
"3112",
"3484",
"3877",
"4291",
"4726",
"5182",
"5659",
"6157",
"6676",
"7216",
"7777",
"8359",
"8962",
"9586",
"10231",
"10897",
"11584",
"12292",
"13021",
"13771",
"14542",
"15334",
"16147",
"16981",
"17836",
"18712"
] | [
"nonn",
"easy"
] | 44 | 0 | 2 | [
"A003215",
"A005892",
"A381109",
"A381424"
] | null | Aaron David Fairbanks, Mar 06 2025 | 2025-03-07T21:30:08 | oeisdata/seq/A381/A381109.seq | 0da004f5cfbfc66d3414208d5b45c55f |
A381110 | a(n) is the maximum number of points from the set {(k, f(k)); k = 0..n} belonging to a straight line passing through the point (n, f(n)), where f(n) = A060143(n) = floor(n/phi) and phi is the golden ratio (sqrt(5)+1)/2. | [
"1",
"2",
"2",
"2",
"3",
"3",
"4",
"3",
"5",
"3",
"4",
"4",
"4",
"5",
"3",
"5",
"4",
"4",
"6",
"4",
"5",
"5",
"5",
"6",
"5",
"6",
"7",
"6",
"5",
"6",
"7",
"6",
"7",
"5",
"7",
"8",
"6",
"8",
"6",
"7",
"9",
"6",
"9",
"7",
"6",
"10",
"6",
"7",
"8",
"7",
"11",
"7",
"7",
"9",
"7",
"12",
"7",
"8",
"10",
"8",
"8",
"8",
"8",
"11",
"8",
"9",
"9",
"9",
"9",
"8",
"9",
"10",
"9",
"10",
"9",
"10",
"11",
"8",
"10",
"10",
"10",
"11",
"8"
] | [
"nonn",
"look"
] | 9 | 0 | 2 | [
"A060143",
"A066096",
"A375422",
"A381110",
"A381111"
] | null | Pontus von Brömssen, Feb 14 2025 | 2025-02-16T22:58:19 | oeisdata/seq/A381/A381110.seq | 23695f4ce19798d5df7cf0d88751d194 |
A381111 | Least k such that A381110(k) = n. | [
"0",
"1",
"4",
"6",
"8",
"18",
"26",
"35",
"40",
"45",
"50",
"55",
"99",
"107",
"115",
"123",
"136",
"157",
"234",
"247",
"260",
"273",
"286",
"299",
"312",
"325",
"338",
"351",
"364",
"377",
"633",
"654",
"675",
"696",
"717",
"738",
"759",
"780",
"801",
"822",
"843",
"869",
"890",
"911",
"932",
"966",
"1021",
"1598",
"1632",
"1666",
"1700",
"1734",
"1768",
"1802"
] | [
"nonn"
] | 8 | 1 | 3 | [
"A376488",
"A381110",
"A381111"
] | null | Pontus von Brömssen, Feb 14 2025 | 2025-02-17T01:59:33 | oeisdata/seq/A381/A381111.seq | 87087c459898571b9e58f76a6fc36cdb |
A381112 | a(1) = 1, let q = greatest prime in S(n) = {p; p = A053669(a(i)); 1 <= i <= n-1}. Then for n > 1, a(n) is the smallest number not yet in the sequence such that: (i) q|a(n), and (ii) p a prime and p^k|a(n) implies p in S(n) and k <= cardinality of p in S(n). | [
"1",
"2",
"3",
"6",
"5",
"10",
"15",
"20",
"30",
"7",
"14",
"21",
"28",
"35",
"42",
"56",
"63",
"70",
"84",
"105",
"112",
"126",
"140",
"168",
"175",
"189",
"210",
"11",
"22",
"33",
"44",
"55",
"66",
"77",
"88",
"99",
"110",
"132",
"154",
"165",
"176",
"198",
"220",
"231",
"264",
"275",
"297",
"308",
"330",
"352",
"385",
"396",
"440",
"462",
"495",
"528",
"539",
"550",
"594"
] | [
"nonn"
] | 20 | 1 | 2 | [
"A000040",
"A002110",
"A006530",
"A053669",
"A381112"
] | null | David James Sycamore, Feb 14 2025 | 2025-03-07T09:21:57 | oeisdata/seq/A381/A381112.seq | cead0cc20ed6e8e30b329910d867e939 |
A381113 | Decimal expansion of the asymptotic mean of the second smallest prime not dividing k, where k runs over the positive integers (A380539). | [
"5",
"1",
"5",
"9",
"1",
"4",
"2",
"8",
"5",
"9",
"6",
"5",
"1",
"6",
"4",
"2",
"0",
"3",
"0",
"1",
"3",
"6",
"5",
"8",
"0",
"9",
"7",
"4",
"5",
"0",
"1",
"2",
"5",
"8",
"1",
"7",
"2",
"0",
"0",
"0",
"7",
"3",
"0",
"7",
"2",
"1",
"4",
"1",
"9",
"1",
"6",
"7",
"9",
"9",
"3",
"5",
"0",
"0",
"6",
"6",
"3",
"8",
"8",
"6",
"6",
"2",
"4",
"5",
"4",
"2",
"4",
"3",
"7",
"8",
"8",
"1",
"0",
"7",
"1",
"2",
"1",
"2",
"1",
"9",
"9",
"5",
"3",
"5",
"3",
"3",
"9",
"3",
"6",
"1",
"5",
"1",
"0",
"5",
"0",
"0",
"1",
"1",
"9",
"4",
"9"
] | [
"nonn",
"cons"
] | 4 | 1 | 1 | [
"A002110",
"A007504",
"A249270",
"A380539",
"A381113"
] | null | Amiram Eldar, Feb 14 2025 | 2025-02-17T03:29:52 | oeisdata/seq/A381/A381113.seq | fa3149d9040b062e06d2b9ff41c8cb19 |
A381114 | Triangle read by rows: T(n,k) is the number of the k-th eliminated person in a variation of the Josephus elimination process for n people, where the number of people skipped is equal to the number of letters in the previous number's English name. | [
"1",
"1",
"2",
"1",
"3",
"2",
"1",
"2",
"4",
"3",
"1",
"5",
"2",
"4",
"3",
"1",
"5",
"4",
"3",
"6",
"2",
"1",
"5",
"3",
"6",
"2",
"4",
"7",
"1",
"5",
"2",
"3",
"4",
"7",
"6",
"8",
"1",
"5",
"9",
"8",
"7",
"2",
"3",
"6",
"4",
"1",
"5",
"9",
"7",
"4",
"3",
"2",
"10",
"8",
"6",
"1",
"5",
"9",
"6",
"2",
"10",
"7",
"11",
"8",
"3",
"4",
"1",
"5",
"9",
"4",
"11",
"7",
"2",
"3",
"8",
"12",
"10",
"6",
"1",
"5",
"9",
"3",
"10",
"4",
"11",
"8",
"12",
"13",
"2",
"6",
"7",
"1",
"5",
"9",
"2",
"8",
"14",
"7",
"4",
"3",
"13",
"12"
] | [
"nonn",
"tabl",
"word"
] | 27 | 1 | 3 | [
"A005589",
"A006257",
"A225381",
"A321298",
"A378635",
"A380201",
"A380202",
"A380204",
"A380246",
"A380247",
"A380248",
"A381114",
"A381127",
"A381128",
"A381129"
] | null | Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Feb 14 2025 | 2025-03-02T22:54:52 | oeisdata/seq/A381/A381114.seq | 11b96f3d403857e0ee4d53d0ced950fb |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.