sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A385776
Primes having only {1, 2, 9} as digits.
[ "2", "11", "19", "29", "191", "199", "211", "229", "911", "919", "929", "991", "1129", "1229", "1291", "1999", "2111", "2129", "2221", "2999", "9199", "9221", "9929", "11119", "11299", "12119", "12211", "12911", "12919", "19121", "19211", "19219", "19919", "19991", "21121", "21191", "21211", "21221", "21911", "21929", "21991" ]
[ "nonn", "base", "easy", "new" ]
34
1
1
[ "A000040", "A020450", "A020457", "A020460", "A385776" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:23:16
oeisdata/seq/A385/A385776.seq
f21427c9fdad5a82e00d508280c76fb3
A385777
Primes having only {1,3,6} as digits.
[ "3", "11", "13", "31", "61", "113", "131", "163", "311", "313", "331", "613", "631", "661", "1163", "1361", "1613", "1663", "3163", "3313", "3331", "3361", "3613", "3631", "6113", "6131", "6133", "6163", "6311", "6361", "6661", "11113", "11131", "11161", "11311", "11633", "13163", "13313", "13331", "13613", "13633", "16111" ]
[ "nonn", "base", "easy", "new" ]
19
1
1
[ "A000040", "A020451", "A020454", "A385776", "A385777" ]
null
Jason Bard, Jul 09 2025
2025-07-12T21:21:19
oeisdata/seq/A385/A385777.seq
055300b8379ebad078c27999b549b867
A385778
Primes having only {1, 3, 8} as digits.
[ "3", "11", "13", "31", "83", "113", "131", "181", "311", "313", "331", "383", "811", "881", "883", "1181", "1381", "1811", "1831", "3181", "3313", "3331", "3833", "3881", "8111", "8311", "8831", "11113", "11131", "11311", "11383", "11813", "11831", "11833", "13183", "13313", "13331", "13381", "13831", "13883", "18131", "18133", "18181", "18311" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A020451", "A020456", "A020464", "A385776", "A385778" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:05:20
oeisdata/seq/A385/A385778.seq
c7930fa5bcad7f3bd3dd412d66cfb60d
A385779
Primes having only {1, 5, 6} as digits.
[ "5", "11", "61", "151", "661", "1151", "1511", "5651", "6151", "6551", "6661", "11161", "11551", "15161", "15511", "15551", "15661", "16111", "16561", "16651", "16661", "51151", "51511", "51551", "55511", "55661", "56611", "61151", "61511", "61561", "61651", "65111", "65551", "65651", "66161", "111611", "115151", "115561", "151561" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A020453", "A020454", "A385776", "A385779" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:05:09
oeisdata/seq/A385/A385779.seq
3c52d66710c6355d167ce1d51712f5a4
A385780
Primes having only {1, 5, 8} as digits.
[ "5", "11", "151", "181", "811", "881", "1151", "1181", "1511", "1811", "5581", "5851", "5881", "8111", "8581", "11551", "15511", "15551", "15581", "15881", "18181", "51151", "51511", "51551", "51581", "55511", "58111", "58151", "58511", "81181", "81551", "88811", "111581", "115151", "115811", "155581", "155851", "158551", "158581" ]
[ "nonn", "base", "easy", "new" ]
10
1
1
[ "A000040", "A020453", "A020456", "A385776", "A385780" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:05:06
oeisdata/seq/A385/A385780.seq
55b1b43712ab33baee3edefcd8f4ecc0
A385781
Primes having only {1, 5, 9} as digits.
[ "5", "11", "19", "59", "151", "191", "199", "599", "911", "919", "991", "1151", "1511", "1559", "1951", "1999", "5119", "5519", "5591", "9151", "9199", "9511", "9551", "11119", "11159", "11519", "11551", "11959", "15199", "15511", "15551", "15559", "15919", "15959", "15991", "19559", "19919", "19991", "51151", "51199", "51511", "51551" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A020453", "A020457", "A020468", "A385776", "A385781" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:04:59
oeisdata/seq/A385/A385781.seq
cade83d4eb2a98fc3f7d265fa685b6f8
A385782
Primes having only {1, 6, 8} as digits.
[ "11", "61", "181", "661", "811", "881", "1181", "1811", "1861", "6661", "8111", "8161", "8681", "8861", "11161", "11681", "16111", "16661", "16811", "18181", "18661", "61681", "61861", "66161", "68111", "68161", "68611", "68881", "81181", "81611", "86111", "86161", "86861", "88661", "88681", "88811", "88861", "111611", "116681", "116881" ]
[ "nonn", "base", "easy", "new" ]
9
1
1
[ "A000040", "A020454", "A020456", "A030430", "A385776", "A385782" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:05:03
oeisdata/seq/A385/A385782.seq
047ca2869e981deb8926ed612663acb4
A385783
Primes having only {1, 8, 9} as digits.
[ "11", "19", "89", "181", "191", "199", "811", "881", "911", "919", "991", "1181", "1811", "1889", "1999", "8111", "8191", "8819", "8999", "9181", "9199", "9811", "11119", "11981", "18119", "18181", "18191", "18199", "18899", "18911", "18919", "19181", "19819", "19889", "19891", "19919", "19991", "81119", "81181", "81199", "81899", "81919" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A020456", "A020457", "A020472", "A385776", "A385783" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:04:56
oeisdata/seq/A385/A385783.seq
01b288670d147b7a68e3c85aca06dc22
A385784
Primes having only {2, 4, 7} as digits.
[ "2", "7", "47", "227", "277", "727", "2447", "2477", "2777", "4447", "7247", "7477", "7727", "22247", "22277", "22447", "22727", "22777", "24247", "27277", "27427", "42227", "42727", "44777", "47777", "72227", "72277", "72727", "74747", "77447", "77477", "77747", "222247", "242227", "242447", "242747", "244247", "244747", "272227" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A020459", "A020465", "A030432", "A385776", "A385784" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:04:53
oeisdata/seq/A385/A385784.seq
aed5006c75aa7fa9a3e442685204f7b7
A385785
Primes having only {2, 4, 9} as digits.
[ "2", "29", "229", "449", "499", "929", "2999", "4229", "4999", "9929", "9949", "22229", "24229", "24499", "29429", "42299", "42499", "42929", "44249", "44449", "49429", "49499", "49999", "94229", "94949", "94999", "99929", "222499", "224299", "224429", "224449", "224929", "229249", "229499", "229949", "242449", "242999", "244429" ]
[ "nonn", "base", "easy", "new" ]
8
1
1
[ "A000040", "A020460", "A020466", "A030433", "A385776", "A385785" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:04:44
oeisdata/seq/A385/A385785.seq
3392e84eaf29f84f890e8160c31251f5
A385786
Primes having only {2, 5, 9} as digits.
[ "2", "5", "29", "59", "229", "599", "929", "2999", "9929", "22229", "22259", "25229", "25999", "29599", "29959", "52259", "52529", "52999", "55229", "55259", "55529", "59929", "59999", "92959", "95929", "95959", "99259", "99529", "99559", "99929", "225299", "225529", "229529", "252559", "255259", "259229", "295259", "522229", "522259" ]
[ "nonn", "base", "easy", "new" ]
9
1
1
[ "A000040", "A020460", "A020468", "A030433", "A385776", "A385786" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:04:48
oeisdata/seq/A385/A385786.seq
5745c52eb0d7b49b5efa2191df51b763
A385787
Primes having only {2, 6, 7} as digits.
[ "2", "7", "67", "227", "277", "677", "727", "2267", "2677", "2767", "2777", "6277", "7727", "22277", "22727", "22777", "26227", "26267", "26627", "26777", "27277", "27767", "62627", "67777", "72227", "72277", "72727", "72767", "76667", "76777", "77267", "226267", "226777", "227267", "227627", "262627", "266677", "266767", "267227" ]
[ "nonn", "base", "easy", "new" ]
7
1
1
[ "A000040", "A020459", "A020469", "A030432", "A385776", "A385787" ]
null
Jason Bard, Jul 13 2025
2025-07-13T11:04:40
oeisdata/seq/A385/A385787.seq
360cb48bcf95b07a4e351e042523152d
A385788
Primes having only {2, 6, 9} as digits.
[ "2", "29", "229", "269", "929", "2269", "2699", "2969", "2999", "6229", "6269", "6299", "9629", "9929", "22229", "22669", "22699", "26669", "26699", "29269", "29629", "29669", "62299", "62929", "62969", "66629", "69929", "92269", "92669", "92699", "96269", "99929", "222269", "226669", "229699", "266269", "266999", "292969", "296269" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020460", "A030433", "A385776", "A385788" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:47
oeisdata/seq/A385/A385788.seq
85503f84f226b916856b8027d4fa6f93
A385789
Primes having only {2, 7, 8} as digits.
[ "2", "7", "227", "277", "727", "787", "827", "877", "887", "2287", "2777", "2887", "7727", "7877", "8287", "8887", "22277", "22727", "22777", "22787", "22877", "27277", "27827", "28277", "72227", "72277", "72287", "72727", "78277", "78787", "78877", "78887", "82727", "82787", "87277", "87877", "87887", "222787", "222877", "227827", "228887" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020459", "A020470", "A030432", "A385776", "A385789" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:41
oeisdata/seq/A385/A385789.seq
99a7eec590f933327a40b0e0fbb36394
A385790
Primes having only {2, 8, 9} as digits.
[ "2", "29", "89", "229", "829", "929", "2999", "8929", "8999", "9829", "9929", "22229", "28229", "28289", "29989", "82889", "88289", "89899", "89989", "92899", "98299", "98899", "98929", "98999", "99289", "99829", "99929", "99989", "222289", "228299", "228829", "228929", "228989", "282229", "282299", "282889", "288929", "288989", "289889" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020460", "A020472", "A030433", "A385776", "A385790" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:37
oeisdata/seq/A385/A385790.seq
9208bbf7fdeeea6b9f673fefee131a81
A385791
Primes having only {3, 6, 8} as digits.
[ "3", "83", "383", "683", "863", "883", "3833", "3863", "6833", "6863", "6883", "8363", "8663", "8863", "33863", "36383", "36683", "36833", "38333", "38833", "63863", "66383", "66683", "66863", "66883", "68633", "68683", "68863", "83383", "83663", "83833", "88663", "88883", "333383", "336683", "336863", "338383", "338683", "363683", "363833" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020464", "A030431", "A385776", "A385791" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:33
oeisdata/seq/A385/A385791.seq
9d77d1cf27a348698dd886d4cb70169c
A385792
Primes having only {3, 8, 9} as digits.
[ "3", "83", "89", "383", "389", "839", "883", "983", "3389", "3833", "3889", "3989", "8389", "8839", "8893", "8933", "8999", "9833", "9839", "9883", "33889", "33893", "38333", "38393", "38833", "38839", "38933", "38993", "39383", "39839", "39883", "39983", "39989", "83339", "83383", "83389", "83399", "83833", "83933", "83939", "83983", "88339" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020464", "A020472", "A385776", "A385792" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:29
oeisdata/seq/A385/A385792.seq
ccd6c95450eb100f7f1eeed1522e1d08
A385793
Primes having only {4, 5, 9} as digits.
[ "5", "59", "449", "499", "599", "4549", "4999", "5449", "9949", "44449", "44549", "44959", "45599", "45949", "45959", "49459", "49499", "49549", "49559", "49999", "54449", "54499", "54559", "54949", "54959", "55949", "59999", "94559", "94949", "94999", "95549", "95959", "99559", "444449", "445499", "449459", "449549", "449959", "455599" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020466", "A020468", "A030433", "A385776", "A385793" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:26
oeisdata/seq/A385/A385793.seq
d5955aa09ba2f82e464c7c7ca7443682
A385794
Primes having only {4, 6, 7} as digits.
[ "7", "47", "67", "467", "647", "677", "4447", "7477", "44647", "44777", "46447", "46477", "46747", "47777", "64667", "64747", "66467", "67447", "67477", "67777", "74747", "76667", "76777", "77447", "77477", "77647", "77747", "444677", "444767", "446447", "446477", "446647", "446767", "447467", "447677", "464447", "464467", "464647", "464747" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020465", "A020469", "A030432", "A385776", "A385794" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:21
oeisdata/seq/A385/A385794.seq
4be089d44ba1f3e847f9bc1f7f7dedab
A385795
Primes having only {4, 7, 8} as digits.
[ "7", "47", "487", "787", "877", "887", "4447", "4787", "4877", "7477", "7487", "7877", "8447", "8747", "8887", "44777", "44887", "47777", "48487", "48787", "48847", "74747", "74887", "77447", "77477", "77747", "78487", "78787", "78877", "78887", "84787", "87877", "87887", "88747", "444487", "444877", "444887", "447877", "474787", "474847" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020465", "A020470", "A030432", "A385776", "A385795" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:18
oeisdata/seq/A385/A385795.seq
edcfa68c77bc2aa3c9c136d0888eea02
A385796
Primes having only {4, 8, 9} as digits.
[ "89", "449", "499", "4889", "4999", "8849", "8999", "9949", "44449", "48449", "48889", "48989", "49499", "49999", "84449", "84499", "88499", "89449", "89849", "89899", "89989", "94849", "94889", "94949", "94999", "98849", "98899", "98999", "99989", "444449", "448999", "449989", "484489", "484999", "489449", "489989", "494849", "494899" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020466", "A020472", "A030433", "A385776", "A385796" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:14
oeisdata/seq/A385/A385796.seq
cb71ac0c558a641564ea35836441ce6e
A385797
Primes having only {5, 6, 9} as digits.
[ "5", "59", "569", "599", "659", "5569", "5659", "5669", "6569", "6599", "6659", "6959", "56569", "56599", "56659", "56999", "59659", "59669", "59699", "59999", "65599", "65699", "66569", "66959", "69959", "95569", "95959", "96959", "99559", "556559", "556999", "565559", "566659", "566999", "569599", "569659", "596569", "596599", "596669" ]
[ "nonn", "base", "easy", "new" ]
6
1
1
[ "A000040", "A020468", "A030433", "A385776", "A385797" ]
null
Jason Bard, Jul 13 2025
2025-07-14T00:26:11
oeisdata/seq/A385/A385797.seq
b9e672739693467ca8ef707483970c68
A385801
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3 - x^2*A(x)^2*A'(x)).
[ "1", "1", "5", "39", "385", "4438", "57375", "812720", "12428977", "203183595", "3525740946", "64607354042", "1245332551755", "25172891719156", "532300335665640", "11750901331656240", "270347716681495537", "6472208752084251545", "161016802667814325743", "4157582808082008519225" ]
[ "nonn", "new" ]
10
0
3
[ "A182304", "A385767", "A385801", "A385806" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-09T10:14:36
oeisdata/seq/A385/A385801.seq
d61ae90d5f10c2e43a51f7db25b25d9d
A385802
Decimal expansion of the volume of a parabiaugmented dodecahedron with unit edge.
[ "8", "2", "6", "6", "1", "2", "4", "6", "2", "5", "4", "1", "6", "2", "8", "1", "1", "1", "0", "0", "8", "3", "4", "8", "5", "0", "5", "9", "3", "4", "0", "6", "7", "3", "0", "9", "8", "3", "0", "7", "8", "0", "0", "3", "2", "5", "9", "5", "4", "4", "6", "3", "8", "2", "7", "8", "2", "9", "9", "7", "8", "2", "8", "3", "2", "5", "2", "6", "2", "1", "6", "9", "7", "0", "0", "2", "6", "4", "2", "3", "1", "5", "5", "9", "3", "0", "9", "3", "0", "8" ]
[ "nonn", "cons", "easy", "new" ]
8
1
1
[ "A002163", "A102769", "A179552", "A385695", "A385802", "A385803", "A385804" ]
null
Paolo Xausa, Jul 09 2025
2025-07-13T07:04:35
oeisdata/seq/A385/A385802.seq
49873433d4ee44f388121de7048b01f3
A385803
Decimal expansion of the surface area of a parabiaugmented dodecahedron with unit edge.
[ "2", "1", "5", "3", "4", "9", "0", "1", "0", "2", "4", "8", "1", "1", "8", "6", "2", "4", "6", "1", "4", "0", "8", "7", "3", "5", "6", "2", "7", "6", "5", "0", "7", "7", "6", "9", "1", "1", "4", "3", "0", "7", "5", "4", "8", "3", "4", "6", "2", "7", "9", "3", "4", "8", "6", "2", "2", "1", "0", "4", "6", "4", "5", "1", "8", "8", "6", "8", "5", "2", "2", "4", "6", "4", "3", "6", "1", "6", "6", "2", "4", "0", "6", "0", "2", "7", "2", "7", "7", "8" ]
[ "nonn", "cons", "easy", "new" ]
9
2
1
[ "A002194", "A010476", "A385696", "A385802", "A385803", "A385805" ]
null
Paolo Xausa, Jul 09 2025
2025-07-13T07:06:08
oeisdata/seq/A385/A385803.seq
5a18ea09c9f4462edef99e53f391effd
A385804
Decimal expansion of the volume of a triaugmented dodecahedron with unit edge.
[ "8", "5", "6", "7", "6", "2", "7", "4", "5", "7", "8", "1", "2", "1", "0", "5", "6", "8", "0", "7", "6", "7", "2", "0", "0", "6", "2", "8", "8", "7", "1", "1", "4", "2", "9", "4", "1", "4", "5", "1", "1", "5", "9", "4", "2", "4", "2", "7", "1", "6", "1", "0", "7", "3", "3", "0", "0", "7", "9", "3", "2", "3", "3", "5", "1", "4", "4", "7", "2", "6", "7", "3", "5", "5", "7", "0", "8", "8", "4", "1", "8", "6", "4", "0", "2", "0", "2", "7", "0", "1" ]
[ "nonn", "cons", "easy", "new" ]
10
1
1
[ "A010499", "A102769", "A179552", "A377697", "A385695", "A385802", "A385804", "A385805" ]
null
Paolo Xausa, Jul 09 2025
2025-07-13T07:21:26
oeisdata/seq/A385/A385804.seq
e9328d46b5aa7279df674620e85e172c
A385805
Decimal expansion of the surface area of a triaugmented dodecahedron with unit edge.
[ "2", "1", "9", "7", "9", "4", "8", "7", "1", "3", "3", "6", "8", "3", "9", "9", "2", "1", "5", "5", "5", "5", "9", "0", "3", "1", "5", "7", "7", "1", "4", "4", "5", "0", "7", "7", "7", "0", "7", "0", "1", "8", "8", "7", "2", "3", "1", "8", "8", "0", "7", "1", "2", "3", "1", "8", "0", "7", "3", "1", "2", "8", "5", "3", "6", "1", "5", "9", "5", "6", "9", "7", "4", "3", "2", "8", "8", "6", "9", "6", "2", "2", "1", "0", "4", "6", "2", "6", "9", "3" ]
[ "nonn", "cons", "easy", "new" ]
8
2
1
[ "A002194", "A010476", "A385696", "A385803", "A385804", "A385805" ]
null
Paolo Xausa, Jul 09 2025
2025-07-13T07:13:32
oeisdata/seq/A385/A385805.seq
0d839aa5a5e9d726f00b12a2270fbdbd
A385806
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^4 - x^2*A(x)^3*A'(x)).
[ "1", "1", "6", "56", "656", "8901", "134452", "2210098", "38972064", "730162940", "14436966166", "299765678868", "6512235121216", "147598065921110", "3482200915723080", "85360331346689846", "2170845829694670304", "57202138454461379820", "1559974375525184897080", "43985410131699875744400" ]
[ "nonn", "new" ]
10
0
3
[ "A002294", "A182304", "A385801", "A385806" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-09T10:14:44
oeisdata/seq/A385/A385806.seq
aba304c18ca6c782b065cd5065a6dc3e
A385810
Integers x such that sigma(x)^2 - 3*x^2 is a square.
[ "4", "6", "28", "45", "48", "60", "156", "208", "360", "496", "1170", "2016", "2520", "2925", "5733", "7605", "8128", "166617", "167580", "380160", "659044", "964080", "1085760", "1539900", "1571328", "1693440", "1778400", "2069613", "2224800", "2306304", "2410200", "2502720", "2522880", "4242420", "4311216", "4840192", "4917744", "4961484", "5331744", "5761536" ]
[ "nonn", "new" ]
14
1
1
[ "A000203", "A000396", "A385531", "A385810" ]
null
Michel Marcus, Jul 09 2025
2025-07-13T23:57:41
oeisdata/seq/A385/A385810.seq
d0807bd18e6a01ac6577eaaf59a2ecc8
A385811
Numbers k such that there exists a partition of the sum of prime factors of k (cf. A001414) into bigomega(k) (cf. A001222) prime parts where the product of parts is more than k.
[ "20", "21", "28", "33", "39", "40", "42", "44", "51", "52", "56", "57", "60", "63", "65", "66", "68", "69", "76", "78", "80", "84", "85", "87", "88", "92", "93", "95", "99", "100", "102", "104", "105", "111", "112", "114", "115", "116", "117", "119", "120", "123", "124", "126", "129", "130", "132", "133", "136", "138", "140", "141", "145", "147", "148", "152", "153", "155" ]
[ "nonn", "new" ]
34
1
1
[ "A001222", "A001414", "A385755", "A385756", "A385811" ]
null
Gordon Hamilton, Jul 09 2025
2025-07-12T16:10:16
oeisdata/seq/A385/A385811.seq
6ad55ca75befa08138f97af238edb60a
A385814
Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).
[ "1", "0", "1", "0", "1", "1", "0", "1", "1", "1", "0", "2", "1", "1", "1", "0", "2", "2", "1", "1", "1", "0", "3", "2", "3", "1", "1", "1", "0", "3", "4", "2", "3", "1", "1", "1", "0", "4", "5", "4", "3", "3", "1", "1", "1", "0", "5", "5", "6", "5", "3", "3", "1", "1", "1", "0", "6", "8", "7", "6", "6", "3", "3", "1", "1", "1", "0", "7", "9", "10", "8", "7", "6", "3", "3", "1", "1", "1" ]
[ "nonn", "tabl", "new" ]
10
0
12
[ "A000009", "A000041", "A001227", "A001694", "A003114", "A007690", "A008284", "A034296", "A034839", "A047993", "A066311", "A073491", "A089259", "A098859", "A106529", "A116608", "A116674", "A116931", "A183558", "A239455", "A268193", "A319630", "A325325", "A325992", "A336866", "A356226", "A356228", "A384880", "A384881", "A384885", "A384887", "A384893", "A384905", "A384906", "A385814", "A385815" ]
null
Gus Wiseman, Jul 09 2025
2025-07-10T11:24:19
oeisdata/seq/A385/A385814.seq
61884b72ae14dd92a06a0cda6f045673
A385815
Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal runs of consecutive elements decreasing by 0 or 1.
[ "1", "0", "1", "0", "2", "0", "0", "3", "0", "0", "0", "4", "1", "0", "0", "0", "5", "2", "0", "0", "0", "0", "7", "4", "0", "0", "0", "0", "0", "8", "7", "0", "0", "0", "0", "0", "0", "10", "12", "0", "0", "0", "0", "0", "0", "0", "13", "16", "1", "0", "0", "0", "0", "0", "0", "0", "15", "25", "2", "0", "0", "0", "0", "0", "0", "0", "0", "18", "34", "4", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "nonn", "tabl", "new" ]
13
0
5
[ "A000009", "A000041", "A001227", "A001694", "A007690", "A008284", "A034296", "A034839", "A047993", "A066311", "A073491", "A098859", "A106529", "A116608", "A116674", "A116931", "A183558", "A268193", "A287170", "A319630", "A325325", "A325992", "A336866", "A356226", "A384881", "A384884", "A384885", "A384887", "A384893", "A384905", "A385814", "A385815" ]
null
Gus Wiseman, Jul 09 2025
2025-07-10T12:53:34
oeisdata/seq/A385/A385815.seq
7e4cbb82b7f03086e9ae785f29540558
A385825
a(n) = Sum_{k=0..n} (binomial(n, k) mod 5).
[ "1", "2", "4", "8", "11", "2", "4", "8", "16", "22", "4", "8", "16", "22", "34", "8", "16", "22", "44", "48", "11", "22", "34", "48", "61", "2", "4", "8", "16", "22", "4", "8", "16", "32", "44", "8", "16", "32", "44", "68", "16", "32", "44", "88", "96", "22", "44", "68", "96", "122", "4", "8", "16", "22", "34", "8", "16", "32", "44", "68", "16", "32", "59", "68", "106", "22", "44", "68", "116", "142" ]
[ "nonn", "new" ]
31
0
2
[ "A001316", "A051638", "A384715", "A385285", "A385741", "A385825" ]
null
Chai Wah Wu, Jul 09 2025
2025-07-12T02:16:19
oeisdata/seq/A385/A385825.seq
05d3efc267e705f2f09deb623485873e
A385826
a(n) = Sum_{k=0..n} (binomial(n, k) mod 7).
[ "1", "2", "4", "8", "16", "18", "22", "2", "4", "8", "16", "32", "36", "44", "4", "8", "16", "32", "43", "58", "67", "8", "16", "32", "36", "72", "60", "92", "16", "32", "43", "72", "81", "120", "121", "18", "36", "58", "60", "120", "100", "144", "22", "44", "67", "92", "121", "144", "169", "2", "4", "8", "16", "32", "36", "44", "4", "8", "16", "32", "64", "72", "88", "8", "16", "32", "64", "86" ]
[ "nonn", "new" ]
18
0
2
[ "A001316", "A051638", "A384715", "A385285", "A385741", "A385825", "A385826" ]
null
Chai Wah Wu, Jul 09 2025
2025-07-11T15:36:38
oeisdata/seq/A385/A385826.seq
24cf7390bb68e7522e87d3cb846b5094
A385828
a(n) = Sum_{k=0..n} (binomial(n, k) mod 11).
[ "1", "2", "4", "8", "16", "32", "31", "40", "36", "50", "56", "2", "4", "8", "16", "32", "64", "62", "80", "72", "100", "112", "4", "8", "16", "32", "53", "106", "91", "116", "100", "156", "169", "8", "16", "32", "64", "62", "124", "116", "188", "134", "224", "228", "16", "32", "53", "62", "91", "182", "144", "222", "202", "272", "291", "32", "64", "106", "124", "182", "188", "244" ]
[ "nonn", "new" ]
19
0
2
[ "A001316", "A051638", "A384715", "A385285", "A385741", "A385825", "A385826", "A385828" ]
null
Chai Wah Wu, Jul 09 2025
2025-07-11T15:36:56
oeisdata/seq/A385/A385828.seq
1b25702ce0687564f833027b69c7aa5d
A385829
Numbers k that are the largest k such that k cannot be partitioned into parts that are a set of at least two consecutive primes.
[ "1", "4", "7", "9", "13", "16", "23", "27", "30", "31", "35", "41", "42", "49", "53", "54", "59", "63", "64", "65", "66", "67", "79", "80", "83", "85", "95", "101", "102", "105", "107", "110", "113", "114", "116", "117", "119", "121", "125", "131", "135", "136", "138", "143", "145", "150", "160", "162", "163", "169", "174", "175", "178", "187", "191", "194", "197", "199", "200", "203" ]
[ "nonn", "new" ]
27
1
2
[ "A037165", "A138989", "A138990", "A138991", "A138992", "A138993", "A138994", "A385829" ]
null
Gordon Hamilton, Jul 09 2025
2025-07-11T14:26:59
oeisdata/seq/A385/A385829.seq
c6a75855502785f819295f0ae04c3da7
A385830
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^2) * a(k) * a(n-1-k).
[ "1", "1", "3", "20", "241", "4623", "130300", "5100750", "265780029", "17827454651", "1498498011875", "154408489507578", "19151761451917580", "2815820822235814540", "484383420815495253624", "96401320782466194458886", "21981036279413999807199045", "5693391431445001330242504699", "1662538953499888924638316487305" ]
[ "nonn", "new" ]
14
0
3
[ "A088716", "A385762", "A385830", "A385831", "A385832", "A385833", "A385834", "A385835" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-12T21:33:39
oeisdata/seq/A385/A385830.seq
16dd1c55105d90180a8854192b60123b
A385831
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^3) * a(k) * a(n-1-k).
[ "1", "1", "3", "32", "961", "64467", "8255248", "1808137854", "625644428013", "322212826476551", "235861774406899499", "236570361788785389414", "315585587694401993913716", "546279374467805677562555764", "1201815582876341559500261276952", "3301389061225358326490572037897646" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A385763", "A385830", "A385831", "A385832", "A385833", "A385834" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:38
oeisdata/seq/A385/A385831.seq
34401fad407865dfc05bacaa0919624d
A385832
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^4) * a(k) * a(n-1-k).
[ "1", "1", "3", "56", "4705", "1218747", "765389596", "994245193386", "2390167881074445", "9797301213263859467", "64309492440202351088387", "643287882516349276270085850", "9420307945482704895570131173916", "195367768417628005309741727943311572", "5580484965405704420901774303244279908840" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A385764", "A385830", "A385831", "A385832", "A385833", "A385834" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:45
oeisdata/seq/A385/A385832.seq
faa86e7389579106713f14e9baacc877
A385833
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).
[ "1", "1", "3", "104", "25585", "26276091", "82191698776", "639369308538270", "10747798328839679301", "352216100969784522738455", "20799065226839989441184616755", "2079968920938449464603267217930862", "334987314655287149221766445992266495796", "83356568448492338030736248231384628286761124" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A385765", "A385830", "A385831", "A385832", "A385833", "A385834", "A385843" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:41
oeisdata/seq/A385/A385833.seq
cfe783caca1a2da31b517addbfda3af0
A385834
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).
[ "1", "1", "3", "200", "146401", "600098283", "9378336443140", "437583801957155730", "51482609496251191260549", "13496011632930307406903060651", "7172374406405634119759727327588155", "7172395923569361382696722735713532276498", "12706358411963754476880803069979932030145242780" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A385830", "A385831", "A385832", "A385833", "A385834" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:50
oeisdata/seq/A385/A385834.seq
c4d50e5ab6f8c1affd23651b51f274a1
A385835
a(n) = 1 + Sum_{k=0..n-1} (1 + k^2) * a(k) * a(n-1-k).
[ "1", "2", "7", "51", "660", "13350", "390886", "15728919", "836469748", "56989647229", "4849599126797", "504709937298467", "63117270187248665", "9344222191368190761", "1616899887657388367640", "323430766605746093449465", "74074314477265886578774322", "19261037812212680097678843345", "5643873902659784713257894768422" ]
[ "nonn", "new" ]
16
0
2
[ "A321087", "A385758", "A385835", "A385836", "A385837", "A385838", "A385839" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-12T21:33:35
oeisdata/seq/A385/A385835.seq
84d2c4077b0c5649672d6c046e61f0cb
A385836
a(n) = 1 + Sum_{k=0..n-1} (1 + k^3) * a(k) * a(n-1-k).
[ "1", "2", "7", "79", "2446", "166618", "21508712", "4732995201", "1642479584974", "847546182102241", "621260202463120771", "623749689526374747439", "832709044623310548285995", "1442255257225526024262579955", "3174408056872712362090099214740", "8723280646832436679639469748539639" ]
[ "nonn", "new" ]
10
0
2
[ "A321087", "A385759", "A385835", "A385836", "A385837", "A385838", "A385839" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:27
oeisdata/seq/A385/A385836.seq
2d1fbf86e861380655b5908eac3186ce
A385837
a(n) = 1 + Sum_{k=0..n-1} (1 + k^4) * a(k) * a(n-1-k).
[ "1", "2", "7", "135", "11472", "2983290", "1876558882", "2439543938823", "5867113337771476", "24055177364999767957", "157922269330003687462469", "1579854504025376907525660119", "23136970006572094830720177877037", "479860765871358769352536441406761329", "13707222893156109310485886790873337444816" ]
[ "nonn", "new" ]
10
0
2
[ "A321087", "A385760", "A385835", "A385836", "A385837", "A385838", "A385839" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:19
oeisdata/seq/A385/A385837.seq
78124865390228f3060ce245c952460e
A385838
a(n) = 1 + Sum_{k=0..n-1} (1 + k^5) * a(k) * a(n-1-k).
[ "1", "2", "7", "247", "61006", "62715298", "196236522104", "1526720482525833", "25665699044532909262", "841116296816234980686001", "49670440804927429155777517363", "4967242766473223753247263215133503", "799999284003076533259467892632499306811", "199068621859048073152067295737349123675521467" ]
[ "nonn", "new" ]
12
0
2
[ "A321087", "A385761", "A385835", "A385836", "A385837", "A385838", "A385839", "A385843" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:23
oeisdata/seq/A385/A385838.seq
f57cd992c1af32a2a1942797ebdc7cb7
A385839
a(n) = 1 + Sum_{k=0..n-1} (1 + k^6) * a(k) * a(n-1-k).
[ "1", "2", "7", "471", "345240", "1415486250", "22122636527386", "1032242227753172079", "121446394933841583123508", "31836929544298684420302348229", "16919577022277987344334514604394117", "16919644700745370569015746375165719379327", "29974250364360598877961318618919670090162246645" ]
[ "nonn", "new" ]
11
0
2
[ "A321087", "A385834", "A385835", "A385836", "A385837", "A385838", "A385839" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:15
oeisdata/seq/A385/A385839.seq
f4441f159b5919c6f98d4a154b6c6ec1
A385840
a(n) = 1 + Sum_{k=0..n-1} k^2 * a(k) * a(n-1-k).
[ "1", "1", "2", "10", "101", "1733", "45303", "1680907", "84166419", "5475072843", "449157456364", "45377436182152", "5537042709272831", "802969519178558759", "136516626968319610486", "26895468447194766859402", "6078661245454015521843883", "1562271796018872884111521763", "453071380100390505646644605866" ]
[ "nonn", "new" ]
16
0
3
[ "A143917", "A385830", "A385835", "A385840", "A385841", "A385842", "A385843", "A385874" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-12T21:33:31
oeisdata/seq/A385/A385840.seq
4c69d8f072ad6f068258a88d7a240574
A385841
a(n) = 1 + Sum_{k=0..n-1} k^3 * a(k) * a(n-1-k).
[ "1", "1", "2", "18", "505", "32857", "4141211", "898723027", "309170208201", "158606268801081", "115783226426053396", "115899337245305115516", "154378153899481307826141", "266920063540268509322880013", "586690612016923635703423527652", "1610466268575965949949881680290412" ]
[ "nonn", "new" ]
9
0
3
[ "A143917", "A385840", "A385841", "A385842", "A385843" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:07
oeisdata/seq/A385/A385841.seq
ae17777b9613ec354f7954bd5910b570
A385842
a(n) = 1 + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).
[ "1", "1", "2", "34", "2789", "716837", "448746495", "582025808335", "1398026940957747", "5727717572863611987", "37585285548218779674700", "375890452313654055440508988", "5503788078310849677217561978523", "114132054134076966886682122559148347", "3259839741208602005078393364829175139526" ]
[ "nonn", "new" ]
9
0
3
[ "A143917", "A385840", "A385841", "A385842", "A385843" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T11:00:03
oeisdata/seq/A385/A385842.seq
2c0429f155a7593607a4a55b29175f80
A385843
a(n) = 1 + Sum_{k=0..n-1} k^5 * a(k) * a(n-1-k).
[ "1", "1", "2", "66", "16105", "16507753", "51603272051", "401318681776723", "6745364508844808841", "221038850400001766938953", "13052344129663319516736911260", "1305247465753403752473945799113276", "210212714880649951675343095297590137757", "52307860484508916277278208388919504757392477" ]
[ "nonn", "new" ]
9
0
3
[ "A143917", "A385833", "A385838", "A385840", "A385841", "A385842", "A385843" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T10:59:59
oeisdata/seq/A385/A385843.seq
5397e935006eaad0e5d8409823dd399b
A385844
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x^3*A''(x))).
[ "1", "1", "1", "3", "21", "273", "5737", "177919", "7651849", "436186313", "31842549569", "2897710853939", "321648004495773", "42779331295225353", "6716367934603667145", "1229096733282700520799", "259339594018913458094865", "62500870590534491566841265", "17062742827503910747790541249", "5238263128497776755775631825219" ]
[ "nonn", "new" ]
12
0
4
[ "A143917", "A385758", "A385762", "A385844", "A385845", "A385846" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T10:58:39
oeisdata/seq/A385/A385844.seq
aaded23f8d239933117ec93d00973a26
A385845
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x^4*A'''(x))).
[ "1", "1", "1", "1", "7", "175", "10675", "1291675", "272543461", "91847148373", "46382810082589", "33442006088446669", "33141028037446336195", "43779298038683546954491", "75169054733013247990186039", "164244384592052866115015051119", "448551414321306169623754824645385" ]
[ "nonn", "new" ]
10
0
5
[ "A143917", "A385759", "A385844", "A385845", "A385846" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T10:58:42
oeisdata/seq/A385/A385845.seq
3c677b570bf0db8a08402a903fdc91c5
A385846
G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x^5*A''''(x))).
[ "1", "1", "1", "1", "1", "25", "3025", "1092025", "918393025", "1543818675025", "4670051491951201", "23541729570926148241", "186474039931306081488961", "2215498068423847604734793641", "38020162352221648825602734209201", "913434400512125113270449340963296649", "29925024395177730837015182640209851847809" ]
[ "nonn", "new" ]
10
0
6
[ "A143917", "A385760", "A385844", "A385845", "A385846" ]
null
Seiichi Manyama, Jul 09 2025
2025-07-10T10:58:46
oeisdata/seq/A385/A385846.seq
dfffaaa3d3550c37fa3fd5ad7af8e2d3
A385853
Decimal expansion of log_10(1 + 1/4).
[ "9", "6", "9", "1", "0", "0", "1", "3", "0", "0", "8", "0", "5", "6", "4", "1", "4", "3", "5", "8", "7", "8", "3", "3", "1", "5", "8", "2", "6", "5", "2", "0", "9", "1", "9", "6", "9", "5", "4", "3", "0", "3", "5", "5", "6", "1", "3", "6", "7", "4", "3", "7", "6", "0", "6", "8", "7", "1", "7", "6", "1", "6", "6", "1", "8", "6", "7", "5", "4", "3", "2", "1", "7", "6", "7", "2", "6", "4", "7", "1", "5", "3", "9", "2", "1", "8", "2" ]
[ "nonn", "cons", "easy", "new" ]
17
-1
1
[ "A007524", "A104140", "A154203", "A154580", "A385659", "A385853", "A385854", "A385855" ]
null
Marco Ripà, Jul 10 2025
2025-07-12T16:07:19
oeisdata/seq/A385/A385853.seq
1f3131bfa815640c136484f82178159d
A385854
Decimal expansion of log_10(1 + 1/6).
[ "6", "6", "9", "4", "6", "7", "8", "9", "6", "3", "0", "6", "1", "3", "1", "9", "8", "2", "0", "3", "4", "4", "9", "4", "6", "0", "6", "1", "3", "0", "2", "7", "8", "5", "7", "5", "1", "5", "2", "5", "3", "6", "5", "0", "6", "7", "1", "1", "6", "1", "0", "0", "0", "3", "6", "3", "3", "4", "1", "8", "5", "2", "2", "8", "5", "9", "1", "6", "0", "9", "7", "8", "4", "3", "9", "9", "3", "5", "3", "3", "5", "3", "6", "2", "1", "5", "9" ]
[ "nonn", "cons", "easy", "new" ]
18
-1
1
[ "A007524", "A104140", "A154203", "A154580", "A385659", "A385853", "A385854", "A385855" ]
null
Marco Ripà, Jul 10 2025
2025-07-12T16:07:11
oeisdata/seq/A385/A385854.seq
f49fa463de53720869776a2ec8ecb66b
A385855
Decimal expansion of log_10(1 + 1/7).
[ "5", "7", "9", "9", "1", "9", "4", "6", "9", "7", "7", "6", "8", "6", "7", "5", "4", "9", "2", "9", "0", "0", "0", "4", "2", "5", "5", "8", "0", "8", "4", "2", "8", "8", "6", "8", "2", "0", "9", "9", "7", "2", "4", "8", "0", "6", "2", "3", "6", "0", "2", "1", "7", "4", "2", "7", "6", "4", "7", "4", "2", "9", "6", "6", "3", "0", "7", "1", "1", "2", "7", "9", "2", "1", "1", "9", "4", "3", "6", "2", "3", "9", "4", "6", "7", "0", "2" ]
[ "nonn", "cons", "easy", "new" ]
16
-1
1
[ "A007524", "A104140", "A154203", "A154580", "A385659", "A385853", "A385854", "A385855" ]
null
Marco Ripà, Jul 10 2025
2025-07-12T16:07:04
oeisdata/seq/A385/A385855.seq
056c4f3b81cbef2595ad40512a09f682
A385874
a(n) = 1 + Sum_{k=0..n-1} binomial(k+1,2) * a(k) * a(n-1-k).
[ "1", "1", "2", "8", "57", "639", "10357", "229588", "6686619", "248013315", "11425386222", "640413284553", "42933889931191", "3393203732253145", "312268381507616935", "33107736233111305459", "4006699123399932333697", "548987463226205098599755", "84552444466155546810368421", "14544161652321384236939516147" ]
[ "nonn", "new" ]
15
0
3
[ "A143917", "A385830", "A385835", "A385840", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-12T21:33:28
oeisdata/seq/A385/A385874.seq
892754544df3af55eb52cba18d05c4a2
A385875
a(n) = 1 + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).
[ "1", "1", "2", "10", "111", "2347", "84757", "4837213", "411373408", "49787445476", "8265626303452", "1826809978098228", "524311794034090050", "191377585766768936606", "87269255118865044728501", "48958442598180565027265909", "33340876732769115354996751746", "27239595466972699678481509900786" ]
[ "nonn", "new" ]
8
0
3
[ "A143917", "A385841", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-11T08:49:26
oeisdata/seq/A385/A385875.seq
625cd9ceac3b82a000cb6d2425aa3d58
A385876
a(n) = 1 + Sum_{k=0..n-1} binomial(k+3,4) * a(k) * a(n-1-k).
[ "1", "1", "2", "12", "193", "6968", "495189", "62906143", "13274340034", "4393943557987", "2179423896462618", "1560476564415661780", "1563601961040080858376", "2135883440687340361131857", "3889446901597262416621276499", "9260777373178278371280728311304", "28347247357191779349093896687278933" ]
[ "nonn", "new" ]
8
0
3
[ "A143917", "A385842", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-11T08:49:21
oeisdata/seq/A385/A385876.seq
b5696676943775ae434cf906d78df3bc
A385877
a(n) = 1 + Sum_{k=0..n-1} binomial(k+4,5) * a(k) * a(n-1-k).
[ "1", "1", "2", "14", "309", "17637", "2240632", "566921596", "262489646519", "208155482551991", "268104800528280951", "537014337938584568385", "1613191612128443060280697", "7048035233444754041436840277", "43620293298146615746333469478901", "373782307403691698916363133787269075" ]
[ "nonn", "new" ]
7
0
3
[ "A143917", "A385843", "A385874", "A385875", "A385876", "A385877" ]
null
Seiichi Manyama, Jul 11 2025
2025-07-11T08:49:17
oeisdata/seq/A385/A385877.seq
b90bc5fc3babfc648a702dfaba5ce05c
A385894
a(n) = n^5/5 + n^3/3 + 7*n/15.
[ "0", "1", "10", "59", "228", "669", "1630", "3479", "6728", "12057", "20338", "32659", "50348", "74997", "108486", "153007", "211088", "285617", "379866", "497515", "642676", "819917", "1034286", "1291335", "1597144", "1958345", "2382146", "2876355", "3449404", "4110373", "4869014", "5735775", "6721824", "7839073", "9100202", "10518683" ]
[ "nonn", "easy", "new" ]
4
0
3
[ "A058031", "A385894" ]
null
Stefano Spezia, Jul 12 2025
2025-07-12T18:39:21
oeisdata/seq/A385/A385894.seq
f04c192e8f1f1148d7fa40f9e1f12709
A385918
Decimal expansion of log_10(1 + 1/8).
[ "5", "1", "1", "5", "2", "5", "2", "2", "4", "4", "7", "3", "8", "1", "2", "8", "8", "9", "4", "8", "8", "3", "9", "1", "2", "2", "3", "3", "6", "7", "5", "1", "5", "3", "8", "0", "9", "5", "6", "8", "8", "0", "8", "3", "9", "9", "5", "0", "6", "6", "1", "0", "5", "7", "2", "8", "4", "4", "8", "8", "9", "7", "2", "2", "9", "1", "3", "3", "7", "3", "7", "7", "4", "4", "0", "4", "8", "7", "1", "7", "6", "2", "5", "1", "5", "4", "9" ]
[ "nonn", "cons", "easy", "new" ]
9
-1
1
[ "A007524", "A104140", "A154203", "A154580", "A385659", "A385853", "A385854", "A385855", "A385918" ]
null
Marco Ripà, Jul 12 2025
2025-07-12T21:08:04
oeisdata/seq/A385/A385918.seq
4dea6afbd07424948f47f80b0d6c5942
A385920
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^3*A''(x)).
[ "1", "1", "3", "34", "1085", "76176", "10075567", "2259237184", "795650626521", "415436957516800", "307467426910853051", "311183690415601457664", "418253671031607891057877", "728624453608629352377831424", "1611758187912750506708147828775", "4448533739124778044473142239512576" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385762", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:10:37
oeisdata/seq/A385/A385920.seq
c87ebaf69f6df5d5012012f5bf3fe796
A385921
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^4*A'''(x)).
[ "1", "1", "3", "16", "509", "66216", "24639367", "21043463344", "35690424280569", "108571039785256960", "549371080081204026731", "4363111116508031602712064", "51938511093491129409954627637", "892615592639462586040781503568896", "21469194967164193484102627607895188975", "703974996795045871424921458192403079479296" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385763", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:10:53
oeisdata/seq/A385/A385921.seq
eaeebb960cb3f4ff34009e769257e0f8
A385922
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^5*A''''(x)).
[ "1", "1", "3", "16", "125", "16296", "11929927", "30230776864", "203634850471929", "3082625458810336000", "93280255561776693446891", "5173509703646410927969711104", "491814532626655136406839912703157", "75968624000349445912469318939348786176", "18252829396078618393615717880609268502659375" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156326", "A385764", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:11:14
oeisdata/seq/A385/A385922.seq
007267384cc347a1abf1892e9a7d923c
A385923
E.g.f. A(x) satisfies A(x) = exp(x*A(x) + x^6*A'''''(x)).
[ "1", "1", "3", "16", "125", "1296", "949927", "4800957904", "96864153387129", "5860087724767012480", "886162470100464297115691", "294792579950929452096468136704", "196126682670165049397384798842463797", "242323538289386581241948100813652397771776", "523949046624700150687300336366625589891821933775" ]
[ "nonn", "new" ]
9
0
3
[ "A000272", "A156326", "A385765", "A385920", "A385921", "A385922", "A385923" ]
null
Seiichi Manyama, Jul 12 2025
2025-07-12T16:11:28
oeisdata/seq/A385/A385923.seq
193fbb35d321e53c40929926887a3c45
A385939
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^2) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "88", "3893", "352536", "57322537", "15277686880", "6239711818377", "3708478187297920", "3079046917046731661", "3455392385954013825024", "5100835934217411940938685", "9682263835381845999967986688", "23180826149963609282826172967025", "68850271609123855250628849758027776" ]
[ "nonn", "new" ]
9
0
3
[ "A156326", "A385830", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:25
oeisdata/seq/A385/A385939.seq
5dc76ce16498a87d301974eaec3660f4
A385940
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^3) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "148", "17189", "5676336", "4326290857", "6602349049360", "18222895109730537", "84299882148193513600", "616234715187848381357261", "6792153358905298302629935104", "108647409624774384033524243233165", "2443481854821246436998727854436139008", "75225062360951292682727255438183855480625" ]
[ "nonn", "new" ]
7
0
3
[ "A156326", "A385831", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:28
oeisdata/seq/A385/A385940.seq
1497c53dda777c4757e45f5f0c8f1538
A385941
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^4) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "268", "88997", "114813696", "431933720137", "3924557764490560", "75445736579647162857", "2782590090487142758353280", "182621397948270167786531824781", "20092371907364577184989521575079424", "3530551258386563793887714321816262653965", "951815440668013126114976449397609983348430848" ]
[ "nonn", "new" ]
8
0
3
[ "A156326", "A385832", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:32
oeisdata/seq/A385/A385941.seq
196c050ea87d229df879da9a69f3d657
A385942
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^5) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "508", "497861", "2554041696", "47918955042217", "2608995595530944320", "350836859825187730934697", "103472315352121087796983183360", "61101436986101317921145771113951181", "67212924933426575369862458525709786073344", "129898118403746997254471428114728554653243564525" ]
[ "nonn", "new" ]
8
0
3
[ "A156326", "A385833", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:36
oeisdata/seq/A385/A385942.seq
a65492d66c2bc32c3e3058bbe3e09fe5
A385943
a(0) = 1; a(n) = Sum_{k=0..n-1} (1 + k) * (1 + k^6) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "988", "2888933", "59194266336", "5550172939486537", "1812719786900514856960", "1706146365658760367161728617", "4025335006744077207541517795929600", "21392361120121469487882204135345762936461", "235316442953945260569915546964215106936729204224" ]
[ "nonn", "new" ]
7
0
3
[ "A156326", "A385834", "A385939", "A385940", "A385941", "A385942", "A385943" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:05:41
oeisdata/seq/A385/A385943.seq
b64c3581d044e42c8e4c92b02ce557af
A385945
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "5", "63", "1533", "62736", "3969387", "366744330", "47441881377", "8313978813120", "1921417594566561", "572533956456137424", "215766174031503450885", "101144655173329674617088", "58127411808811103704523775", "40435528907318329027426583376", "33666103690446265067517343384833" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385952" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:18
oeisdata/seq/A385/A385945.seq
9003cc319f492878555edb1f32b8541f
A385946
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+4,4) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "6", "106", "4176", "316696", "42104392", "9172761368", "3106804304704", "1567537597699840", "1137145604406018176", "1151190083860345401984", "1585522852991230263395584", "2906652632758146061798315776", "6959140466024956612239458880000", "21400639132670591710876896798678016" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385953" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:14
oeisdata/seq/A385/A385946.seq
2221099ac93b1b4a439023fa33faab8a
A385947
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "7", "166", "10029", "1321025", "341733205", "160453080950", "128422430092385", "166469443066352440", "334968718604910165425", "1009644894131844004090200", "4422360688027934597152329025", "27423466157672001507611296316100", "235350249980804930971638499216115775" ]
[ "nonn", "new" ]
12
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385954" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:10
oeisdata/seq/A385/A385947.seq
aef43b4180416a2229d307e7d99622e1
A385948
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * binomial(n-1,k) * a(k) * a(n-1-k).
[ "1", "1", "8", "246", "21750", "4689546", "2197062708", "2046202234224", "3528088593902364", "10627093734265740672", "53295889303479275834616", "427383379745842299684115608", "5294446934064450139154214169992", "98355143996083993836475641916586304", "2669951662594756888115675117287929721248" ]
[ "nonn", "new" ]
8
0
3
[ "A000272", "A156325", "A385945", "A385946", "A385947", "A385948", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:05
oeisdata/seq/A385/A385948.seq
d87bb7392cd162bdc10a54d5a25d38e8
A385952
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+3,3) * a(k) * a(n-1-k).
[ "1", "1", "5", "59", "1309", "48790", "2840931", "244770680", "29887602613", "4993307581843", "1108754325139526", "319359741512132370", "116893982001130825135", "53422902443413341967604", "30024521959524315980717288", "20477109546794819263709728560", "16750490995674468051531269811269" ]
[ "nonn", "new" ]
10
0
3
[ "A088716", "A351798", "A385945", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:21
oeisdata/seq/A385/A385952.seq
eed7195d5f908bcaedd32375f893ae9e
A385953
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+4,4) * a(k) * a(n-1-k).
[ "1", "1", "6", "101", "3756", "271256", "34761512", "7372486163", "2448035959989", "1216747945481685", "872431867857009866", "875060598719254613963", "1196215918953589596769516", "2179513438308809548333358500", "5191611931593198935913809439220", "15896735560092998091331427433546666" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A351798", "A385946", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:25
oeisdata/seq/A385/A385953.seq
257bccc23157e07ba35034568042cad1
A385954
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+5,5) * a(k) * a(n-1-k).
[ "1", "1", "7", "160", "9309", "1193192", "303192604", "140697031749", "111717191583621", "144005113804578040", "288587523313304535136", "867207126292422956078756", "3789698359352103250842742098", "23458242467926487526255374709015", "201037179886862036121457727887328687" ]
[ "nonn", "new" ]
8
0
3
[ "A088716", "A351798", "A385947", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:37
oeisdata/seq/A385/A385954.seq
373f69cfcce0666668f0cadeb11b3a24
A385955
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(k+6,6) * a(k) * a(n-1-k).
[ "1", "1", "8", "239", "20595", "4369086", "2027570077", "1877595433603", "3225737601183428", "9693366952072675847", "48534731177400280613882", "388763324236561973987746008", "4812113062706722698140922709260", "89341696197620005494613697916344217", "2424197647354438894347947373843634554628" ]
[ "nonn", "new" ]
10
0
3
[ "A088716", "A351798", "A385948", "A385952", "A385953", "A385954", "A385955" ]
null
Seiichi Manyama, Jul 13 2025
2025-07-13T11:01:43
oeisdata/seq/A385/A385955.seq
3d6634035167c60d24558b57f98f0464
A385957
Prime(n) is the a(n)-th prime having its distinct digits.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "3", "1", "4", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "2", "2", "3", "1", "2", "1", "2", "3", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "5", "6", "3", "7", "3", "1", "1", "2", "1", "1", "4", "1", "2", "1", "2", "1", "1", "2", "2", "1", "2", "2", "3", "1", "1" ]
[ "nonn", "easy", "base", "look", "new" ]
20
1
11
[ "A086066", "A254524", "A385776", "A385957" ]
null
David A. Corneth, Jul 13 2025
2025-07-13T11:36:07
oeisdata/seq/A385/A385957.seq
85f39b53870839020a3776f89dabac17
A385960
Decimal expansion of the absolute value of the coefficient [x^2] Gamma(x).
[ "9", "0", "7", "4", "7", "9", "0", "7", "6", "0", "8", "0", "8", "8", "6", "2", "8", "9", "0", "1", "6", "5", "6", "0", "1", "6", "7", "3", "5", "6", "2", "7", "5", "1", "1", "4", "9", "2", "8", "6", "1", "1", "4", "4", "9", "0", "7", "2", "5", "6", "3", "7", "6", "0", "9", "4", "1", "3", "3", "1", "1", "5", "4", "0", "5", "0", "4", "6", "5", "1", "8", "2", "3", "7", "2", "2", "3", "0", "6", "9", "3", "9", "8", "3", "8", "7", "5", "2", "7", "4", "1", "1", "3", "6", "2", "9", "7", "7", "2", "1", "6", "8", "2", "1" ]
[ "nonn", "cons", "new" ]
10
0
1
[ "A090998", "A385960", "A385961", "A385962" ]
null
R. J. Mathar, Jul 13 2025
2025-07-13T14:08:16
oeisdata/seq/A385/A385960.seq
24a876e1d134d53fd2dc660fac040698
A385961
Decimal expansion of the value of the coefficient [x^3] Gamma(x).
[ "9", "8", "1", "7", "2", "8", "0", "8", "6", "8", "3", "4", "4", "0", "0", "1", "8", "7", "3", "3", "6", "3", "8", "0", "2", "9", "4", "0", "2", "1", "8", "5", "0", "8", "5", "0", "3", "6", "0", "5", "7", "3", "6", "7", "9", "7", "2", "3", "4", "6", "5", "4", "1", "5", "4", "0", "4", "9", "5", "7", "4", "5", "5", "5", "9", "3", "8", "5", "6", "8", "3", "9", "2", "4", "8", "6", "9", "3", "4", "5", "0", "9", "4", "1", "0", "5", "9", "7", "7", "0", "5", "1", "8", "7", "5", "7", "0", "6", "5", "9", "5", "5", "8", "8", "5", "0", "6", "7", "0", "4", "3", "6", "8", "2" ]
[ "nonn", "cons", "new" ]
7
0
1
[ "A090998", "A385960", "A385961", "A385962" ]
null
R. J. Mathar, Jul 13 2025
2025-07-13T14:10:49
oeisdata/seq/A385/A385961.seq
d204c317b9f6bf6cf214f293ec01e7e3
A385962
Decimal expansion of the absolute value of the coefficient [x^4] Gamma(x).
[ "9", "8", "1", "9", "9", "5", "0", "6", "8", "9", "0", "3", "1", "4", "5", "2", "0", "2", "1", "0", "4", "7", "0", "1", "4", "1", "3", "7", "9", "1", "3", "7", "4", "6", "7", "5", "5", "1", "7", "4", "2", "6", "5", "0", "7", "1", "4", "7", "1", "9", "8", "9", "3", "0", "4", "9", "9", "9", "6", "7", "1", "9", "0", "4", "8", "8", "0", "0", "6", "3", "6", "4", "9", "6", "4", "0", "5", "0", "0", "4", "4", "6", "9", "5", "9", "4", "0", "5", "1", "0", "2", "3", "4", "7", "4", "6", "8", "2", "0", "6", "6", "3", "2", "3", "3", "2", "1", "2", "5", "9", "4", "6" ]
[ "nonn", "cons", "new" ]
8
0
1
[ "A090998", "A385960", "A385961", "A385962" ]
null
R. J. Mathar, Jul 13 2025
2025-07-13T14:11:53
oeisdata/seq/A385/A385962.seq
3bf2aa7b101e9257a6b07ad9a99775a7
A385965
Decimal expansion of the absolute value of the coefficient [x^4] 1/Gamma(x).
[ "0", "4", "2", "0", "0", "2", "6", "3", "5", "0", "3", "4", "0", "9", "5", "2", "3", "5", "5", "2", "9", "0", "0", "3", "9", "3", "4", "8", "7", "5", "4", "2", "9", "8", "1", "8", "7", "1", "1", "3", "9", "4", "5", "0", "0", "4", "0", "1", "1", "0", "6", "0", "9", "3", "5", "2", "2", "0", "6", "5", "8", "1", "2", "9", "7", "6", "1", "8", "0", "0", "9", "6", "8", "7", "5", "9", "7", "5", "9", "8", "8", "5", "4", "7", "1", "0", "7", "7", "0", "1", "2", "9", "4", "7", "8", "7", "7", "1", "3", "2", "3", "3", "5", "3", "2", "0", "0", "0", "2", "2", "2", "0", "0", "0", "0", "1", "8" ]
[ "nonn", "cons", "new" ]
8
0
2
[ "A001620", "A070860", "A385965", "A385966" ]
null
R. J. Mathar, Jul 13 2025
2025-07-13T14:12:58
oeisdata/seq/A385/A385965.seq
02a778fb991143b4588e56e1b9e99d7e
A385966
Decimal expansion of the value of the coefficient [x^5] 1/Gamma(x).
[ "1", "6", "6", "5", "3", "8", "6", "1", "1", "3", "8", "2", "2", "9", "1", "4", "8", "9", "5", "0", "1", "7", "0", "0", "7", "9", "5", "1", "0", "2", "1", "0", "5", "2", "3", "5", "7", "1", "7", "7", "8", "1", "5", "0", "2", "2", "4", "7", "1", "7", "4", "3", "4", "0", "5", "7", "0", "4", "6", "8", "9", "0", "3", "1", "7", "8", "9", "9", "3", "8", "6", "6", "0", "5", "6", "4", "7", "4", "2", "4", "8", "3", "1", "9", "4", "7", "1", "9", "1", "4", "6", "5", "8", "0", "4", "1", "6", "2", "6", "6", "2", "3", "9", "5", "5", "9", "3", "4", "0", "5", "1", "2", "8" ]
[ "nonn", "cons", "new" ]
10
0
2
[ "A001620", "A070860", "A385965", "A385966" ]
null
R. J. Mathar, Jul 13 2025
2025-07-13T14:14:11
oeisdata/seq/A385/A385966.seq
2b8a35a5e1fbc68462ee81a78793b566
A385972
The long legs of the triangles defined in A365577.
[ "4", "24", "480", "130560", "8589803520", "36893488138829168640", "680564733841876926889855726716117319680", "231584178474632390847141970017375815705859404597439251151988418800962722856960" ]
[ "nonn", "easy", "new" ]
4
1
1
[ "A365577", "A385972", "A385973" ]
null
Miguel-Ángel Pérez García-Ortega, Jul 13 2025
2025-07-13T18:02:33
oeisdata/seq/A385/A385972.seq
0a2f73d50588b769ef21bc608fa17e08
A385973
The hypotenuses of the triangles defined in A365577/
[ "5", "25", "481", "130561", "8589803521", "36893488138829168641", "680564733841876926889855726716117319681", "231584178474632390847141970017375815705859404597439251151988418800962722856961" ]
[ "nonn", "easy", "new" ]
4
1
1
[ "A365577", "A385972", "A385973" ]
null
Miguel-Ángel Pérez García-Ortega, Jul 13 2025
2025-07-13T18:02:38
oeisdata/seq/A385/A385973.seq
d27e9822087d322c2929990da1203619
A385977
Length of the long leg of the triangles defined in A377725.
[ "4", "112", "3444", "114720", "3883684", "131852560", "4478648724", "152139554112", "5168250745924", "175568295786160", "5964153281301684", "202605640210401120", "6882627596048598244", "233806732521557580112", "7942546277531426709204", "269812766700017940393600", "9165691521502509968254084" ]
[ "nonn", "easy", "new" ]
3
1
1
[ "A002315", "A377725", "A385977" ]
null
Sean A. Irvine, Jul 13 2025
2025-07-13T21:53:04
oeisdata/seq/A385/A385977.seq
2392e449d85d9ce266372fd0e07630fb