a-number
stringlengths
7
7
sequence
sequencelengths
1
377
description
stringlengths
3
852
A000701
[ "0", "0", "1", "1", "2", "3", "5", "7", "10", "14", "20", "27", "37", "49", "66", "86", "113", "146", "190", "242", "310", "392", "497", "623", "782", "973", "1212", "1498", "1851", "2274", "2793", "3411", "4163", "5059", "6142", "7427", "8972", "10801", "12989", "15572", "18646", "22267", "26561", "31602", "37556", "44533", "52743", "62338", "73593" ]
One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.
A000702
[ "1", "1", "3", "4", "5", "7", "9", "14", "18", "24", "31", "43", "55", "72", "94", "123", "156", "200", "254", "324", "408", "513", "641", "804", "997", "1236", "1526", "1883", "2308", "2829", "3451", "4209", "5109", "6194", "7485", "9038", "10871", "13063", "15654", "18738", "22365", "26665", "31716", "37682", "44669", "52887", "62494", "73767" ]
a(n) is the number of conjugacy classes in the alternating group A_n.
A000703
[ "4", "6", "7", "7", "8", "9", "9", "10", "10", "10", "11", "11", "12", "12", "12", "13", "13", "13", "13", "14", "14", "14", "15", "15", "15", "15", "16", "16", "16", "16", "16", "17", "17", "17", "17", "18", "18", "18", "18", "18", "19", "19", "19", "19", "19", "19", "20", "20", "20", "20", "20", "21", "21", "21", "21", "21", "21", "22", "22", "22", "22", "22", "22", "22", "23", "23", "23", "23", "23", "23", "24", "24", "24", "24" ]
Chromatic number (or Heawood number) of nonorientable surface with n crosscaps.
A000704
[ "1", "1", "1", "1", "4", "16", "46", "106", "316", "1324", "5356", "18316", "63856", "272416", "1264264", "5409496", "22302736", "101343376", "507711376", "2495918224", "11798364736", "58074029056", "309240315616", "1670570920096", "8792390355904", "46886941456576", "264381946998976", "1533013006902976" ]
Number of degree-n even permutations of order dividing 2.
A000705
[ "2", "3", "2", "5", "2", "3", "7", "2", "11", "13", "2", "3", "5", "17", "19", "2", "23", "7", "29", "3", "31", "2", "37", "41", "43", "47", "5", "53", "59", "2", "11", "61", "3", "67", "71", "73", "79", "13", "83", "89", "2", "97", "101", "103", "107", "7", "109", "113", "17", "127", "131", "137", "139", "3", "5", "149", "151", "19", "2", "157", "163", "167", "173", "179", "181", "191", "193", "197", "199" ]
n-th superior highly composite number A002201(n) is product of first n terms of this sequence.
A000706
[ "1", "504", "270648", "144912096", "77599626552", "41553943041744", "22251789971649504", "11915647845248387520", "6380729991419236488504", "3416827666558895485479576", "1829682703808504464920468048", "979779820147442370107345764512" ]
Expansion of modular function 1/E_3 (cf. A013973).
A000707
[ "1", "1", "2", "6", "20", "71", "259", "961", "3606", "13640", "51909", "198497", "762007", "2934764", "11333950", "43874857", "170193528", "661386105", "2574320659", "10034398370", "39163212165", "153027659730", "598577118991", "2343628878849", "9184197395425", "36020235035016", "141376666307608" ]
Number of permutations of [1,2,...,n] with n-1 inversions.
A000708
[ "-1", "-1", "0", "1", "6", "29", "150", "841", "5166", "34649", "252750", "1995181", "16962726", "154624469", "1505035350", "15583997521", "171082318686", "1985148989489", "24279125761950", "312193418011861", "4210755676649046", "59445878286889709", "876726137720576550", "13483686390543382201" ]
a(n) = E(n+1) - 2*E(n), where E(i) is the Euler number A000111(i).
A000709
[ "1", "2", "4", "7", "12", "21", "38", "68", "124", "229", "428", "806", "1530", "2919", "5591", "10750", "20730", "40077", "77653", "150752", "293161", "570963", "1113524", "2174315", "4250367", "8317036", "16289636", "31931697", "62642861", "122980015", "241595101", "474910732", "934088141", "1838227618", "3619356631" ]
Related to population of numbers of form x^2 + y^2.
A000710
[ "1", "2", "5", "10", "20", "35", "62", "102", "167", "262", "407", "614", "919", "1345", "1952", "2788", "3950", "5524", "7671", "10540", "14388", "19470", "26190", "34968", "46439", "61275", "80455", "105047", "136541", "176593", "227460", "291673", "372605", "474085", "601105", "759380", "956249", "1200143", "1501749", "1873407" ]
Number of partitions of n, with two kinds of 1, 2, 3 and 4.
A000711
[ "1", "3", "9", "22", "51", "107", "217", "416", "775", "1393", "2446", "4185", "7028", "11569", "18749", "29908", "47083", "73157", "112396", "170783", "256972", "383003", "565961", "829410", "1206282", "1741592", "2497425", "3557957", "5037936", "7091711", "9927583", "13823626", "19151731", "26404879", "36236988", "49509149" ]
Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...
A000712
[ "1", "2", "5", "10", "20", "36", "65", "110", "185", "300", "481", "752", "1165", "1770", "2665", "3956", "5822", "8470", "12230", "17490", "24842", "35002", "49010", "68150", "94235", "129512", "177087", "240840", "326015", "439190", "589128", "786814", "1046705", "1386930", "1831065", "2408658", "3157789", "4126070", "5374390" ]
Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
A000713
[ "1", "3", "8", "18", "38", "74", "139", "249", "434", "734", "1215", "1967", "3132", "4902", "7567", "11523", "17345", "25815", "38045", "55535", "80377", "115379", "164389", "232539", "326774", "456286", "633373", "874213", "1200228", "1639418", "2228546", "3015360", "4062065", "5448995", "7280060", "9688718", "12846507", "16972577" ]
EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...
A000714
[ "1", "3", "9", "21", "47", "95", "186", "344", "620", "1078", "1835", "3045", "4967", "7947", "12534", "19470", "29879", "45285", "67924", "100820", "148301", "216199", "312690", "448738", "639464", "905024", "1272837", "1779237", "2473065", "3418655", "4701611", "6434015", "8763676" ]
Number of partitions of n, with three kinds of 1 and 2 and two kinds of 3,4,5,....
A000715
[ "1", "3", "9", "22", "50", "104", "208", "394", "724", "1286", "2229", "3769", "6253", "10176", "16303", "25723", "40055", "61588", "93647", "140875", "209889", "309846", "453565", "658627", "949310", "1358589", "1931464", "2728547", "3831654", "5350119", "7430158", "10265669", "14113795", "19313168", "26309405", "35685523" ]
Number of partitions of n, with three kinds of 1,2 and 3 and two kinds of 4,5,6,....
A000716
[ "1", "3", "9", "22", "51", "108", "221", "429", "810", "1479", "2640", "4599", "7868", "13209", "21843", "35581", "57222", "90882", "142769", "221910", "341649", "521196", "788460", "1183221", "1762462", "2606604", "3829437", "5590110", "8111346", "11701998", "16790136", "23964594", "34034391", "48104069", "67679109", "94800537", "132230021", "183686994", "254170332" ]
Number of partitions of n into parts of 3 kinds.
A000717
[ "1", "1", "1", "3", "6", "24", "148", "1646", "34040", "1358852", "106321628", "16006173014", "4525920859198", "2404130854745735", "2426376196165902704", "4648429222263945620900", "16788801124652327714275292", "114722035311851620271616102401" ]
Number of graphs with n nodes and floor(n(n-1)/4) edges.
A000718
[ "1", "2", "6", "20", "65", "226", "883", "3947", "20089", "115036", "732171", "5126901", "39165917", "324138010", "2888934623", "27587288507", "281001801969", "3041152133848", "34849036364659", "421526126267265", "5367037330561365", "71752003756908550" ]
Boustrophedon transform of triangular numbers 1,1,3,6,10,...
A000719
[ "0", "0", "1", "2", "5", "13", "44", "191", "1229", "13588", "288597", "12297299", "1031342116", "166123498733", "50668194387427", "29104827043066808", "31455591302381718651", "64032471448906164191208", "245999896712611657677614268", "1787823725136869060356731751124" ]
Number of disconnected graphs with n nodes.
A000720
[ "0", "1", "2", "2", "3", "3", "4", "4", "4", "4", "5", "5", "6", "6", "6", "6", "7", "7", "8", "8", "8", "8", "9", "9", "9", "9", "9", "9", "10", "10", "11", "11", "11", "11", "11", "11", "12", "12", "12", "12", "13", "13", "14", "14", "14", "14", "15", "15", "15", "15", "15", "15", "16", "16", "16", "16", "16", "16", "17", "17", "18", "18", "18", "18", "18", "18", "19", "19", "19", "19", "20", "20", "21", "21", "21", "21", "21", "21" ]
pi(n), the number of primes <= n. Sometimes called PrimePi(n) to distinguish it from the number 3.14159...
A000721
[ "1", "2", "6", "74", "169112", "39785643746726", "37126652766640082937217814348006", "558874591495497577231218517843968898077072559983411918227348931497772" ]
Number of balanced Boolean functions of n variables.
A000722
[ "1", "2", "24", "40320", "20922789888000", "263130836933693530167218012160000000", "126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000" ]
Number of invertible Boolean functions of n variables: a(n) = (2^n)!.
A000723
[ "1", "3", "840", "54486432000", "68523655451482690147713024000000", "2753622660283944533494648206058191857701074569760095316814277221684346880000000000000" ]
Invertible Boolean functions of n variables.
A000724
[ "1", "3", "196", "3406687200", "2141364232858913975435172249600", "43025354066936633335853878219659247776604712057098163541301459387254457761792000000" ]
Invertible Boolean functions of n variables.
A000725
[ "1", "2", "154", "2270394624", "571030462095782973206774552784", "3824475917061034074298122508414160251634847335755905881951011420229530501911521280" ]
Invertible Boolean functions of n variables.
A000726
[ "1", "1", "2", "2", "4", "5", "7", "9", "13", "16", "22", "27", "36", "44", "57", "70", "89", "108", "135", "163", "202", "243", "297", "355", "431", "513", "617", "731", "874", "1031", "1225", "1439", "1701", "1991", "2341", "2731", "3197", "3717", "4333", "5022", "5834", "6741", "7803", "8991", "10375", "11923", "13716", "15723", "18038", "20628", "23603" ]
Number of partitions of n in which no parts are multiples of 3.
A000727
[ "1", "-4", "2", "8", "-5", "-4", "-10", "8", "9", "0", "14", "-16", "-10", "-4", "0", "-8", "14", "20", "2", "0", "-11", "20", "-32", "-16", "0", "-4", "14", "8", "-9", "20", "26", "0", "2", "-28", "0", "-16", "16", "-28", "-22", "0", "14", "16", "0", "40", "0", "-28", "26", "32", "-17", "0", "-32", "-16", "-22", "0", "-10", "32", "-34", "-8", "14", "0", "45", "-4", "38", "8", "0", "0", "-34", "-8", "38", "0", "-22", "-56", "2", "-28", "0", "0", "-10", "20", "64", "-40", "-20", "44" ]
Expansion of Product_{k >= 1} (1 - x^k)^4.
A000728
[ "1", "-5", "5", "10", "-15", "-6", "-5", "25", "15", "-20", "9", "-45", "-5", "25", "20", "10", "15", "20", "-50", "-35", "-30", "55", "-50", "15", "80", "1", "50", "-35", "-45", "-15", "5", "-50", "-25", "-55", "85", "51", "50", "10", "-40", "65", "10", "-10", "-115", "50", "-115", "-100", "85", "80", "-30", "5", "20", "45", "70", "65", "45", "-55", "-100" ]
Expansion of Product_{n>=1} (1-x^n)^5.
A000729
[ "1", "-6", "9", "10", "-30", "0", "11", "42", "0", "-70", "18", "-54", "49", "90", "0", "-22", "-60", "0", "-110", "0", "81", "180", "-78", "0", "130", "-198", "0", "-182", "-30", "90", "121", "84", "0", "0", "210", "0", "-252", "-102", "-270", "170", "0", "0", "-69", "330", "0", "-38", "420", "0", "-190", "-390", "0", "-108", "0", "0", "0", "-300", "99", "442", "210", "0", "418", "-294", "0", "0", "-510", "378", "-540", "138", "0" ]
Expansion of Product_{k >= 1} (1 - x^k)^6.
A000730
[ "1", "-7", "14", "7", "-49", "21", "35", "41", "-49", "-133", "98", "-21", "126", "112", "-176", "-105", "-126", "140", "-35", "147", "259", "98", "-420", "-224", "238", "-455", "273", "-14", "322", "406", "-35", "-7", "-637", "-196", "245", "-181", "-574", "462", "147", "924", "217", "-329", "-140", "-7", "-371", "-777" ]
Expansion of Product_{n>=1} (1 - x^n)^7.
A000731
[ "1", "-8", "20", "0", "-70", "64", "56", "0", "-125", "-160", "308", "0", "110", "0", "-520", "0", "57", "560", "0", "0", "182", "-512", "-880", "0", "1190", "-448", "884", "0", "0", "0", "-1400", "0", "-1330", "1000", "1820", "0", "-646", "1280", "0", "0", "-1331", "-2464", "380", "0", "1120", "0", "2576", "0", "0", "-880", "1748", "0", "-3850", "0", "-3400", "0", "2703", "4160", "-2500", "0", "3458" ]
Expansion of Product (1 - x^k)^8 in powers of x.
A000732
[ "1", "3", "8", "22", "66", "222", "862", "3838", "19542", "111894", "712282", "4987672", "38102844", "315339898", "2810523166", "26838510154", "273374835624", "2958608945772", "33903161435148", "410085034127000", "5221364826476796", "69804505809732988" ]
Boustrophedon transform of 1 & primes: 1,2,3,5,7,...
A000733
[ "1", "2", "4", "10", "30", "101", "394", "1760", "8970", "51368", "326991", "2289669", "17491625", "144760655", "1290204758", "12320541392", "125496010615", "1358185050788", "15563654383395", "188254471337718", "2396930376564860", "32044598671291610" ]
Boustrophedon transform of partition numbers 1, 1, 1, 2, 3, 5, 7, ...
A000734
[ "1", "2", "5", "15", "49", "177", "715", "3255", "16689", "95777", "609875", "4270695", "32624329", "269995377", "2406363835", "22979029335", "234062319969", "2533147494977", "29027730898595", "351112918079175", "4470508510495609", "59766296291090577" ]
Boustrophedon transform of 1,1,2,4,8,16,32,...
A000735
[ "1", "-12", "54", "-88", "-99", "540", "-418", "-648", "594", "836", "1056", "-4104", "-209", "4104", "-594", "4256", "-6480", "-4752", "-298", "5016", "17226", "-12100", "-5346", "-1296", "-9063", "-7128", "19494", "29160", "-10032", "-7668", "-34738", "8712", "-22572", "21812", "49248", "-46872", "67562", "2508", "-47520", "-76912", "-25191", "67716" ]
Expansion of Product_{k>=1} (1 - x^k)^12.
A000736
[ "1", "2", "4", "10", "32", "120", "513", "2455", "13040", "76440", "492231", "3465163", "26530503", "219754535", "1959181266", "18710532565", "190588702776", "2062664376064", "23636408157551", "285900639990875", "3640199365715769", "48665876423760247" ]
Boustrophedon transform of Catalan numbers 1, 1, 1, 2, 5, 14, ...
A000737
[ "1", "3", "8", "21", "60", "197", "756", "3367", "17136", "98153", "624804", "4375283", "33424512", "276622829", "2465449252", "23543304919", "239810132288", "2595353815825", "29740563986500", "359735190398875", "4580290700420064", "61233976084442741" ]
Boustrophedon transform of natural numbers, cf. A000027.
A000738
[ "0", "1", "3", "8", "25", "85", "334", "1497", "7635", "43738", "278415", "1949531", "14893000", "123254221", "1098523231", "10490117340", "106851450165", "1156403632189", "13251409502982", "160286076269309", "2040825708462175", "27283829950774822", "382127363497453243", "5595206208670390323" ]
Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,...
A000739
[ "1", "-16", "104", "-320", "260", "1248", "-3712", "1664", "6890", "-7280", "-5568", "-4160", "33176", "4640", "-74240", "29824", "14035", "54288", "27040", "-142720", "1508", "-110240", "289536", "222720", "-380770", "-83200", "-123904", "142912", "7640", "408000", "386048" ]
Expansion of Product_{k>=1} (1 - x^k)^16.
A000740
[ "1", "1", "3", "6", "15", "27", "63", "120", "252", "495", "1023", "2010", "4095", "8127", "16365", "32640", "65535", "130788", "262143", "523770", "1048509", "2096127", "4194303", "8386440", "16777200", "33550335", "67108608", "134209530", "268435455", "536854005", "1073741823", "2147450880" ]
Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.
A000741
[ "0", "0", "1", "3", "6", "9", "15", "18", "27", "30", "45", "42", "66", "63", "84", "84", "120", "99", "153", "132", "174", "165", "231", "180", "270", "234", "297", "270", "378", "276", "435", "360", "450", "408", "540", "414", "630", "513", "636", "552", "780", "558", "861", "690", "828", "759", "1035", "744", "1113", "870", "1104", "972", "1326", "945", "1380", "1116", "1386", "1218" ]
Number of compositions of n into 3 ordered relatively prime parts.
A000742
[ "1", "4", "10", "20", "34", "56", "80", "120", "154", "220", "266", "360", "420", "560", "614", "816", "884", "1120", "1210", "1540", "1572", "2020", "2080", "2544", "2638", "3276", "3200", "4060", "4040", "4840", "4896", "5960", "5710", "7140", "6954", "8216", "8136", "9880", "9244", "11480", "11010", "12824", "12650", "15180", "14024", "17276" ]
Number of compositions of n into 4 ordered relatively prime parts.
A000743
[ "1", "5", "15", "35", "70", "125", "210", "325", "495", "700", "1000", "1330", "1820", "2305", "3060", "3750", "4830", "5775", "7315", "8490", "10625", "12155", "14880", "16835", "20475", "22620", "27405", "30100", "35750", "39100", "46360", "49655", "58905", "62985", "73320", "78340", "91390", "95720", "111930", "117425" ]
Number of compositions of n into 5 ordered relatively prime parts.
A000744
[ "1", "2", "5", "14", "42", "144", "563", "2526", "12877", "73778", "469616", "3288428", "25121097", "207902202", "1852961189", "17694468210", "180234349762", "1950592724756", "22352145975707", "270366543452702", "3442413745494957", "46021681757269830" ]
Boustrophedon transform (second version) of Fibonacci numbers 1,1,2,3,...
A000745
[ "1", "5", "18", "57", "180", "617", "2400", "10717", "54544", "312353", "1988104", "13921501", "106350816", "880162337", "7844596536", "74910367309", "763030711936", "8257927397569", "94628877364936", "1144609672707741", "14573622985067744", "194834987492011649", "2728787718495477144", "39955604972310966797" ]
Boustrophedon transform of squares.
A000746
[ "1", "4", "13", "39", "120", "407", "1578", "7042", "35840", "205253", "1306454", "9148392", "69887664", "578392583", "5155022894", "49226836114", "501420422112", "5426640606697", "62184720675718", "752172431553308", "9576956842743904", "128034481788227195" ]
Boustrophedon transform of triangular numbers.
A000747
[ "2", "5", "13", "35", "103", "345", "1325", "5911", "30067", "172237", "1096319", "7677155", "58648421", "485377457", "4326008691", "41310343279", "420783672791", "4553946567241", "52184383350787", "631210595896453", "8036822912123765", "107444407853010597" ]
Boustrophedon transform of primes.
A000748
[ "1", "-3", "6", "-9", "9", "0", "-27", "81", "-162", "243", "-243", "0", "729", "-2187", "4374", "-6561", "6561", "0", "-19683", "59049", "-118098", "177147", "-177147", "0", "531441", "-1594323", "3188646", "-4782969", "4782969", "0", "-14348907", "43046721", "-86093442", "129140163", "-129140163", "0", "387420489", "-1162261467" ]
Expansion of bracket function.
A000749
[ "0", "0", "0", "1", "4", "10", "20", "36", "64", "120", "240", "496", "1024", "2080", "4160", "8256", "16384", "32640", "65280", "130816", "262144", "524800", "1049600", "2098176", "4194304", "8386560", "16773120", "33550336", "67108864", "134225920", "268451840", "536887296", "1073741824", "2147450880" ]
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.
A000750
[ "1", "-5", "15", "-35", "70", "-125", "200", "-275", "275", "0", "-1000", "3625", "-9500", "21250", "-42500", "76875", "-124375", "171875", "-171875", "0", "621875", "-2250000", "5890625", "-13171875", "26343750", "-47656250", "77109375", "-106562500", "106562500", "0" ]
Expansion of bracket function.
A000751
[ "1", "2", "5", "14", "42", "143", "555", "2485", "12649", "72463", "461207", "3229622", "24671899", "204185616", "1819837153", "17378165240", "177012514388", "1915724368181", "21952583954117", "265533531724484", "3380877926676504", "45199008472762756" ]
Boustrophedon transform of partition numbers.
A000752
[ "1", "3", "9", "28", "93", "338", "1369", "6238", "31993", "183618", "1169229", "8187598", "62545893", "517622498", "4613366689", "44054301358", "448733127793", "4856429646978", "55650582121749", "673136951045518", "8570645832753693", "114581094529057058", "1604780986816602409", "23497612049668468078" ]
Boustrophedon transform of powers of 2.
A000753
[ "1", "2", "5", "16", "59", "243", "1101", "5461", "29619", "175641", "1137741", "8031838", "61569345", "510230087", "4549650423", "43452408496", "442620720531", "4790322653809", "54893121512453", "663974736739232", "8453986695437957", "113021461431438475" ]
Boustrophedon transform of Catalan numbers.
A000754
[ "1", "4", "12", "33", "96", "317", "1218", "5425", "27608", "158129", "1006574", "7048657", "53847420", "445643681", "3971876930", "37928628529", "386337833232", "4181155148673", "47912508680086", "579538956964241", "7378919177090244", "98648882783190305" ]
Boustrophedon transform of odd numbers.
A000755
[ "0", "1", "2", "11", "32", "50", "132", "380", "368", "1135", "1120", "4348", "3622", "10568", "30634", "46304", "55576", "152210" ]
No-3-in-line problem on n X n grid: total number of ways of placing 2n points on n X n grid so no 3 are in a line. No symmetries are taken into account.
A000756
[ "1", "2", "3", "5", "13", "41", "157", "699", "3561", "20401", "129881", "909523", "6948269", "57504201", "512516565", "4894172027", "49851629137", "539521049441", "6182455849009", "74781598946211", "952148890494165", "12729293006112121", "178281831561868013" ]
Boustrophedon transform of sequence 1,1,0,0,0,0,...
A000757
[ "1", "0", "0", "1", "1", "8", "36", "229", "1625", "13208", "120288", "1214673", "13469897", "162744944", "2128047988", "29943053061", "451123462673", "7245940789072", "123604151490592", "2231697509543361", "42519034050101745", "852495597142800376" ]
Number of cyclic permutations of [n] with no i->i+1 (mod n)
A000758
[ "0", "1", "5", "20", "76", "285", "1066", "3991", "14976", "56353" ]
Related to cumulative height of rooted plane trees.
A000759
[ "1", "4", "12", "44", "172", "772", "3308", "14924", "64956", "294252", "1301044", "5930588", "26506948", "121290940", "546050988", "2505533940", "11340303508", "52147596788", "236995050900", "1091701675948", "4977541017540", "22961416861940", "104965762062612" ]
Number of n-step self-avoiding walks on cubic lattice ending at point with x=0.
A000760
[ "1", "8", "40", "176", "748", "3248", "14280", "63768", "285296", "1285688", "5794436", "26261224", "119028156", "541876608", "2466620624", "11267536496", "51458718144", "235690960392", "1079212461992", "4953659984000", "22730713367468", "104520944666808" ]
Number of n-step self-avoiding walks on cubic lattice ending at point with x=1.
A000761
[ "1", "12", "84", "468", "2332", "11068", "51472", "237832", "1095384", "5040568", "23168528", "106496816", "489379904", "2250000884", "10345888480", "47604198576", "219096141188", "1009071461380", "4648802248764", "21431064157200", "98828123716260" ]
Number of n-step self-avoiding walks on cubic lattice ending at point with x=2.
A000762
[ "1", "16", "144", "984", "5756", "30760", "155912", "766424", "3698848", "17648312", "83558828", "393534176", "1846227984", "8637479208", "40325165648", "187980582568", "875268197452", "4072021100336", "18931821861960", "87979249474568" ]
Number of n-step self-avoiding walks on cubic lattice ending at point with x=3.
A000763
[ "1", "3", "19", "195", "2831", "53703", "1264467", "35661979", "1173865927", "44218244943", "1877050837355", "88693432799667", "4618194424504623", "262771389992099719", "16223185411792992403", "1080238361814167993739", "77171781603974127429527" ]
Number of interval orders constructed from n intervals of generic lengths.
A000764
[ "1", "2", "5", "16", "60", "258", "1247", "6686", "39371", "252688", "1756920", "13168178", "105949517", "911834394", "8367625793", "81642384468", "844718036940", "9245285569526", "106790005796627", "1298920385093126", "16602066548692623" ]
Boustrophedon transform of Bell numbers.
A000765
[ "1", "4", "36", "308", "2764", "25404", "237164", "2237948", "21286548", "203701772", "1958748676", "18908954324", "183135542956", "1778581016076", "17314029758828", "168891863875652" ]
Number of n-step self-avoiding walks on f.c.c. lattice ending at point with x = 0.
A000766
[ "4", "32", "292", "2672", "24780", "232512", "2201948", "20997008", "201314448", "1938659936", "18737136032", "181646110192", "1765522809468", "17198432462368", "167859941774728" ]
Number of n-step self-avoiding walks on f.c.c. lattice ending at point with x = 1.
A000767
[ "16", "192", "2016", "20160", "197940", "1930944", "18805488", "183156320", "1785303660", "17421627280", "170214459928", "1665089608504", "16307758577692", "159896665015064" ]
Number of n-step self-avoiding walks on f.c.c. lattice ending at point with x = 2.
A000768
[ "64", "1024", "12480", "137472", "1443616", "14786176", "149371964", "1496777088", "14924375156", "148353336272", "1471838989872", "14584911842000", "144423054478680" ]
Number of n-step self-avoiding walks on f.c.c. lattice ending at point with x = 3.
A000769
[ "0", "1", "1", "4", "5", "11", "22", "57", "51", "156", "158", "566", "499", "1366", "3978", "5900", "7094", "19204" ]
No-3-in-line problem: number of inequivalent ways of placing 2n points on an n X n grid so that no 3 are in a line.
A000770
[ "1", "21", "266", "2646", "22827", "179487", "1323652", "9321312", "63436373", "420693273", "2734926558", "17505749898", "110687251039", "693081601779", "4306078895384", "26585679462804", "163305339345225", "998969857983405", "6090236036084530", "37026417000002430", "224595186974125331" ]
Stirling numbers of the second kind, S(n,6).
A000771
[ "1", "28", "462", "5880", "63987", "627396", "5715424", "49329280", "408741333", "3281882604", "25708104786", "197462483400", "1492924634839", "11143554045652", "82310957214948", "602762379967440", "4382641999117305", "31677463851804540", "227832482998716310", "1631853797991016600" ]
Stirling numbers of second kind, S(n,7).
A000772
[ "1", "1", "2", "6", "23", "107", "583", "3633", "25444", "197620", "1684295", "15618141", "156453857", "1683050189", "19344093070", "236497985706", "3063827565763", "41916787157011", "603799270943519", "9132945141812301", "144708157060239704", "2396568154933265024", "41403636316192616995" ]
E.g.f. exp(tan(x) + sec(x) - 1).
A000773
[ "0", "0", "0", "1", "1", "6", "8", "29", "45", "130", "220", "561", "1001", "2366", "4368", "9829", "18565", "40410", "77540", "164921", "320001", "669526", "1309528", "2707629", "5326685", "10919090", "21572460", "43942081", "87087001", "176565486", "350739488", "708653429", "1410132405", "2841788170", "5662052980" ]
Number of numbers == 0 (mod 3) in range 2^n to 2^(n+1) with odd number of 1's in binary expansion.
A000774
[ "1", "2", "5", "17", "74", "394", "2484", "18108", "149904", "1389456", "14257440", "160460640", "1965444480", "26029779840", "370643938560", "5646837369600", "91657072281600", "1579093018675200", "28779361764249600", "553210247226470400", "11185850044938240000", "237335752951879680000" ]
a(n) = n!*(1 + Sum_{i=1..n} 1/i).
A000775
[ "1", "4", "12", "46", "220", "1268", "8568", "66456", "582048", "5681952", "61174080", "720089280", "9199906560", "126783809280", "1874605662720", "29601115891200", "497155992883200", "8849184886886400", "166399076525875200", "3296032301811916800", "68596838245232640000", "1496490349337948160000" ]
a(n) = n! * (n + 1 + 2*Sum_{k=1...n} 1/k).
A000776
[ "1", "3", "8", "28", "124", "668", "4248", "31176", "259488", "2416032", "24886080", "281004480", "3451887360", "45832538880", "654109585920", "9986000371200", "162391354675200", "2802498609254400", "51156349822771200", "984775394044108800", "19938798081699840000", "423580563732049920000" ]
a(n) = n! * (1 + 2*Sum_{k=1..n} 1/k).
A000777
[ "1", "2", "7", "24", "83", "293", "1055", "3860", "14299", "53481", "201551", "764217", "2912167", "11143499", "42791039", "164812364", "636438059", "2463251009", "9552773999", "37112526989", "144410649239", "562724141459", "2195581527359", "8576490341249", "33537507830423", "131272552839203", "514285886020255" ]
a(n) = (n+2)*Catalan(n) - 1.
A000778
[ "1", "2", "6", "18", "55", "173", "560", "1858", "6291", "21657", "75581", "266797", "950911", "3417339", "12369284", "45052514", "165002459", "607283489", "2244901889", "8331383609", "31030387439", "115948830659", "434542177289", "1632963760973", "6151850548775", "23229299473603", "87900903988155" ]
a(n) = Catalan(n) + Catalan(n+1) - 1.
A000779
[ "1", "4", "22", "162", "1506", "16950", "224190", "3408930", "58596930", "1123663590", "23782729950", "550718680050", "13849716607650", "375904338960150", "10952237584237950", "340947694234397250", "11294123783425733250", "396665528378000631750" ]
a(n) = 2*(2n-1)!!-(n-1)!*2^(n-1), where (2n-1)!! is A001147(n).
A000780
[ "1", "4", "16", "78", "456", "3120", "24480", "216720", "2136960", "23224320", "275788800", "3552595200", "49337164800", "734788454400", "11681891020800", "197458829568000", "3535951491072000", "66869236482048000", "1331693730791424000", "27856727993622528000", "610658404052336640000" ]
a(n) = (n+1)!/2 + (n-1)(n-1)!.
A000781
[ "1", "4", "12", "36", "111", "353", "1154", "3860", "13155", "45525", "159561", "565249", "2020687", "7280419", "26410094", "96378164", "353576699", "1303271309", "4824150869", "17925098069", "66834680639", "249981423899", "937696277309", "3526652828321", "13295935057031", "50240112815003" ]
a(n) = 3*Catalan(n) - Catalan(n-1) - 1.
A000782
[ "1", "3", "8", "23", "70", "222", "726", "2431", "8294", "28730", "100776", "357238", "1277788", "4605980", "16715250", "61020495", "223931910", "825632610", "3056887680", "11360977650", "42368413620", "158498860260", "594636663660", "2236748680998", "8433988655580", "31872759742852", "120699748759856" ]
a(n) = 2*Catalan(n) - Catalan(n-1).
A000783
[ "4", "341", "91", "15", "124", "35", "25", "9", "28", "33", "15", "65", "21", "15", "341", "51", "45", "25", "45", "21", "55", "69", "33", "25", "28", "27", "65", "87", "35", "49", "49", "33", "85", "35", "51", "91", "45", "39", "95", "91", "105", "205", "77", "45", "76", "133", "65", "49", "66", "51", "65", "85", "65" ]
Erroneous version of A007535.
A000784
[ "0", "1", "2", "2", "4", "6", "6", "11", "16", "20", "28", "41", "51", "70", "93", "122", "158", "211", "266", "350", "450", "577", "730", "948", "1186", "1510", "1901", "2408", "2999", "3790", "4703", "5898", "7310", "9111", "11231", "13979", "17168", "21229", "26036", "32095", "39188", "48155", "58657", "71798", "87262", "106472", "129014" ]
Number of symmetrical planar partitions of n (planar partitions (A000219) that when regarded as 3-D objects have just one symmetry plane).
A000785
[ "0", "0", "0", "1", "2", "5", "11", "21", "39", "73", "129", "226", "388", "659", "1100", "1821", "2976", "4828", "7754", "12370", "19574", "30789", "48097", "74725", "115410", "177366", "271159", "412665", "625098", "942932", "1416362", "2119282", "3158840", "4691431", "6942882", "10240503", "15054705" ]
Number of asymmetrical planar partitions of n: planar partitions (A000219) that when regarded as 3-D objects have no symmetry.
A000786
[ "1", "1", "1", "2", "4", "6", "11", "19", "33", "55", "95", "158", "267", "442", "731", "1193", "1947", "3137", "5039", "8026", "12726", "20024", "31373", "48835", "75673", "116606", "178889", "273061", "415086", "628115", "946723", "1421082", "2125207", "3166152", "4700564", "6954151", "10254486", "15071903" ]
Number of inequivalent planar partitions of n, when considering them as 3D objects.
A000787
[ "0", "1", "8", "11", "69", "88", "96", "101", "111", "181", "609", "619", "689", "808", "818", "888", "906", "916", "986", "1001", "1111", "1691", "1881", "1961", "6009", "6119", "6699", "6889", "6969", "8008", "8118", "8698", "8888", "8968", "9006", "9116", "9696", "9886", "9966", "10001", "10101", "10801", "11011", "11111", "11811", "16091", "16191" ]
Strobogrammatic numbers: the same upside down.
A000788
[ "0", "1", "2", "4", "5", "7", "9", "12", "13", "15", "17", "20", "22", "25", "28", "32", "33", "35", "37", "40", "42", "45", "48", "52", "54", "57", "60", "64", "67", "71", "75", "80", "81", "83", "85", "88", "90", "93", "96", "100", "102", "105", "108", "112", "115", "119", "123", "128", "130", "133", "136", "140", "143", "147", "151", "156", "159", "163", "167", "172", "176", "181", "186" ]
Total number of 1's in binary expansions of 0, ..., n.
A000789
[ "2", "5", "8", "13", "16", "21", "26", "35", "38", "45", "48" ]
Maximal order of a triangle-free cyclic graph with no independent set of size n.
A000790
[ "4", "4", "341", "6", "4", "4", "6", "6", "4", "4", "6", "10", "4", "4", "14", "6", "4", "4", "6", "6", "4", "4", "6", "22", "4", "4", "9", "6", "4", "4", "6", "6", "4", "4", "6", "9", "4", "4", "38", "6", "4", "4", "6", "6", "4", "4", "6", "46", "4", "4", "10", "6", "4", "4", "6", "6", "4", "4", "6", "15", "4", "4", "9", "6", "4", "4", "6", "6", "4", "4", "6", "9", "4", "4", "15", "6", "4", "4", "6", "6", "4", "4", "6", "21", "4", "4", "10", "6", "4" ]
Primary pretenders: least composite c such that n^c == n (mod c).
A000791
[ "3", "6", "9", "14", "18", "23", "28", "36" ]
Ramsey numbers R(3,n).
A000792
[ "1", "1", "2", "3", "4", "6", "9", "12", "18", "27", "36", "54", "81", "108", "162", "243", "324", "486", "729", "972", "1458", "2187", "2916", "4374", "6561", "8748", "13122", "19683", "26244", "39366", "59049", "78732", "118098", "177147", "236196", "354294", "531441", "708588", "1062882", "1594323", "2125764", "3188646", "4782969", "6377292" ]
a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.
A000793
[ "1", "1", "2", "3", "4", "6", "6", "12", "15", "20", "30", "30", "60", "60", "84", "105", "140", "210", "210", "420", "420", "420", "420", "840", "840", "1260", "1260", "1540", "2310", "2520", "4620", "4620", "5460", "5460", "9240", "9240", "13860", "13860", "16380", "16380", "27720", "30030", "32760", "60060", "60060", "60060", "60060", "120120" ]
Landau's function g(n): largest order of permutation of n elements. Equivalently, largest LCM of partitions of n.
A000794
[ "1", "2", "24", "3852", "18534400", "4598378639550" ]
Permanent of projective plane of order n.
A000795
[ "1", "2", "12", "152", "3472", "126752", "6781632", "500231552", "48656756992", "6034272215552", "929327412759552", "174008703107274752", "38928735228629389312", "10255194381004799025152", "3142142941901073853366272", "1107912434323301224813002752", "445427836895850552387642130432" ]
Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.
A000796
[ "3", "1", "4", "1", "5", "9", "2", "6", "5", "3", "5", "8", "9", "7", "9", "3", "2", "3", "8", "4", "6", "2", "6", "4", "3", "3", "8", "3", "2", "7", "9", "5", "0", "2", "8", "8", "4", "1", "9", "7", "1", "6", "9", "3", "9", "9", "3", "7", "5", "1", "0", "5", "8", "2", "0", "9", "7", "4", "9", "4", "4", "5", "9", "2", "3", "0", "7", "8", "1", "6", "4", "0", "6", "2", "8", "6", "2", "0", "8", "9", "9", "8", "6", "2", "8", "0", "3", "4", "8", "2", "5", "3", "4", "2", "1", "1", "7", "0", "6", "7", "9", "8", "2", "1", "4" ]
Decimal expansion of Pi (or digits of Pi).
A000797
[ "17", "27", "33", "52", "73", "82", "83", "103", "107", "137", "153", "162", "217", "219", "227", "237", "247", "258", "268", "271", "282", "283", "302", "303", "313", "358", "383", "432", "437", "443", "447", "502", "548", "557", "558", "647", "662", "667", "709", "713", "718", "722", "842", "863", "898", "953", "1007", "1117", "1118" ]
Numbers that are not the sum of 4 tetrahedral numbers.
A000798
[ "1", "1", "4", "29", "355", "6942", "209527", "9535241", "642779354", "63260289423", "8977053873043", "1816846038736192", "519355571065774021", "207881393656668953041", "115617051977054267807460", "88736269118586244492485121", "93411113411710039565210494095", "134137950093337880672321868725846", "261492535743634374805066126901117203" ]
Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.
A000799
[ "2", "2", "2", "4", "6", "10", "18", "32", "56", "102", "186", "341", "630", "1170", "2184", "4096", "7710", "14563", "27594", "52428", "99864", "190650", "364722", "699050", "1342177", "2581110", "4971026", "9586980", "18512790", "35791394", "69273666", "134217728", "260301048", "505290270", "981706810", "1908874353" ]
a(n) = floor(2^n / n).
A000800
[ "1", "1", "1", "2", "5", "13", "38", "125", "449", "1742", "7269", "32433", "153850", "772397", "4088773", "22746858", "132601933", "807880821", "5132235182", "33925263901", "232905588441", "1657807491222", "12215424018837", "93042845392105", "731622663432978", "5931915237693517", "49535826242154973" ]
Sum of upward diagonals of Eulerian triangle.