repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_documentation_string
stringlengths 1
47.2k
| func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|
eandersson/amqpstorm | amqpstorm/basic.py | Basic.ack | def ack(self, delivery_tag=0, multiple=False):
"""Acknowledge Message.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool multiple: Acknowledge multiple messages
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(delivery_tag):
raise AMQPInvalidArgument('delivery_tag should be an integer')
elif not isinstance(multiple, bool):
raise AMQPInvalidArgument('multiple should be a boolean')
ack_frame = specification.Basic.Ack(delivery_tag=delivery_tag,
multiple=multiple)
self._channel.write_frame(ack_frame) | python | def ack(self, delivery_tag=0, multiple=False):
"""Acknowledge Message.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool multiple: Acknowledge multiple messages
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(delivery_tag):
raise AMQPInvalidArgument('delivery_tag should be an integer')
elif not isinstance(multiple, bool):
raise AMQPInvalidArgument('multiple should be a boolean')
ack_frame = specification.Basic.Ack(delivery_tag=delivery_tag,
multiple=multiple)
self._channel.write_frame(ack_frame) | Acknowledge Message.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool multiple: Acknowledge multiple messages
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L201-L220 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic.nack | def nack(self, delivery_tag=0, multiple=False, requeue=True):
"""Negative Acknowledgement.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool multiple: Negative acknowledge multiple messages
:param bool requeue: Re-queue the message
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(delivery_tag):
raise AMQPInvalidArgument('delivery_tag should be an integer')
elif not isinstance(multiple, bool):
raise AMQPInvalidArgument('multiple should be a boolean')
elif not isinstance(requeue, bool):
raise AMQPInvalidArgument('requeue should be a boolean')
nack_frame = specification.Basic.Nack(delivery_tag=delivery_tag,
multiple=multiple,
requeue=requeue)
self._channel.write_frame(nack_frame) | python | def nack(self, delivery_tag=0, multiple=False, requeue=True):
"""Negative Acknowledgement.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool multiple: Negative acknowledge multiple messages
:param bool requeue: Re-queue the message
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(delivery_tag):
raise AMQPInvalidArgument('delivery_tag should be an integer')
elif not isinstance(multiple, bool):
raise AMQPInvalidArgument('multiple should be a boolean')
elif not isinstance(requeue, bool):
raise AMQPInvalidArgument('requeue should be a boolean')
nack_frame = specification.Basic.Nack(delivery_tag=delivery_tag,
multiple=multiple,
requeue=requeue)
self._channel.write_frame(nack_frame) | Negative Acknowledgement.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool multiple: Negative acknowledge multiple messages
:param bool requeue: Re-queue the message
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L222-L245 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic.reject | def reject(self, delivery_tag=0, requeue=True):
"""Reject Message.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool requeue: Re-queue the message
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(delivery_tag):
raise AMQPInvalidArgument('delivery_tag should be an integer')
elif not isinstance(requeue, bool):
raise AMQPInvalidArgument('requeue should be a boolean')
reject_frame = specification.Basic.Reject(delivery_tag=delivery_tag,
requeue=requeue)
self._channel.write_frame(reject_frame) | python | def reject(self, delivery_tag=0, requeue=True):
"""Reject Message.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool requeue: Re-queue the message
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(delivery_tag):
raise AMQPInvalidArgument('delivery_tag should be an integer')
elif not isinstance(requeue, bool):
raise AMQPInvalidArgument('requeue should be a boolean')
reject_frame = specification.Basic.Reject(delivery_tag=delivery_tag,
requeue=requeue)
self._channel.write_frame(reject_frame) | Reject Message.
:param int/long delivery_tag: Server-assigned delivery tag
:param bool requeue: Re-queue the message
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L247-L266 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._consume_add_and_get_tag | def _consume_add_and_get_tag(self, consume_rpc_result):
"""Add the tag to the channel and return it.
:param dict consume_rpc_result:
:rtype: str
"""
consumer_tag = consume_rpc_result['consumer_tag']
self._channel.add_consumer_tag(consumer_tag)
return consumer_tag | python | def _consume_add_and_get_tag(self, consume_rpc_result):
"""Add the tag to the channel and return it.
:param dict consume_rpc_result:
:rtype: str
"""
consumer_tag = consume_rpc_result['consumer_tag']
self._channel.add_consumer_tag(consumer_tag)
return consumer_tag | Add the tag to the channel and return it.
:param dict consume_rpc_result:
:rtype: str | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L268-L277 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._consume_rpc_request | def _consume_rpc_request(self, arguments, consumer_tag, exclusive, no_ack,
no_local, queue):
"""Create a Consume Frame and execute a RPC request.
:param str queue: Queue name
:param str consumer_tag: Consumer tag
:param bool no_local: Do not deliver own messages
:param bool no_ack: No acknowledgement needed
:param bool exclusive: Request exclusive access
:param dict arguments: Consume key/value arguments
:rtype: dict
"""
consume_frame = specification.Basic.Consume(queue=queue,
consumer_tag=consumer_tag,
exclusive=exclusive,
no_local=no_local,
no_ack=no_ack,
arguments=arguments)
return self._channel.rpc_request(consume_frame) | python | def _consume_rpc_request(self, arguments, consumer_tag, exclusive, no_ack,
no_local, queue):
"""Create a Consume Frame and execute a RPC request.
:param str queue: Queue name
:param str consumer_tag: Consumer tag
:param bool no_local: Do not deliver own messages
:param bool no_ack: No acknowledgement needed
:param bool exclusive: Request exclusive access
:param dict arguments: Consume key/value arguments
:rtype: dict
"""
consume_frame = specification.Basic.Consume(queue=queue,
consumer_tag=consumer_tag,
exclusive=exclusive,
no_local=no_local,
no_ack=no_ack,
arguments=arguments)
return self._channel.rpc_request(consume_frame) | Create a Consume Frame and execute a RPC request.
:param str queue: Queue name
:param str consumer_tag: Consumer tag
:param bool no_local: Do not deliver own messages
:param bool no_ack: No acknowledgement needed
:param bool exclusive: Request exclusive access
:param dict arguments: Consume key/value arguments
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L279-L298 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._validate_publish_parameters | def _validate_publish_parameters(body, exchange, immediate, mandatory,
properties, routing_key):
"""Validate Publish Parameters.
:param bytes|str|unicode body: Message payload
:param str routing_key: Message routing key
:param str exchange: The exchange to publish the message to
:param dict properties: Message properties
:param bool mandatory: Requires the message is published
:param bool immediate: Request immediate delivery
:raises AMQPInvalidArgument: Invalid Parameters
:return:
"""
if not compatibility.is_string(body):
raise AMQPInvalidArgument('body should be a string')
elif not compatibility.is_string(routing_key):
raise AMQPInvalidArgument('routing_key should be a string')
elif not compatibility.is_string(exchange):
raise AMQPInvalidArgument('exchange should be a string')
elif properties is not None and not isinstance(properties, dict):
raise AMQPInvalidArgument('properties should be a dict or None')
elif not isinstance(mandatory, bool):
raise AMQPInvalidArgument('mandatory should be a boolean')
elif not isinstance(immediate, bool):
raise AMQPInvalidArgument('immediate should be a boolean') | python | def _validate_publish_parameters(body, exchange, immediate, mandatory,
properties, routing_key):
"""Validate Publish Parameters.
:param bytes|str|unicode body: Message payload
:param str routing_key: Message routing key
:param str exchange: The exchange to publish the message to
:param dict properties: Message properties
:param bool mandatory: Requires the message is published
:param bool immediate: Request immediate delivery
:raises AMQPInvalidArgument: Invalid Parameters
:return:
"""
if not compatibility.is_string(body):
raise AMQPInvalidArgument('body should be a string')
elif not compatibility.is_string(routing_key):
raise AMQPInvalidArgument('routing_key should be a string')
elif not compatibility.is_string(exchange):
raise AMQPInvalidArgument('exchange should be a string')
elif properties is not None and not isinstance(properties, dict):
raise AMQPInvalidArgument('properties should be a dict or None')
elif not isinstance(mandatory, bool):
raise AMQPInvalidArgument('mandatory should be a boolean')
elif not isinstance(immediate, bool):
raise AMQPInvalidArgument('immediate should be a boolean') | Validate Publish Parameters.
:param bytes|str|unicode body: Message payload
:param str routing_key: Message routing key
:param str exchange: The exchange to publish the message to
:param dict properties: Message properties
:param bool mandatory: Requires the message is published
:param bool immediate: Request immediate delivery
:raises AMQPInvalidArgument: Invalid Parameters
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L301-L327 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._handle_utf8_payload | def _handle_utf8_payload(body, properties):
"""Update the Body and Properties to the appropriate encoding.
:param bytes|str|unicode body: Message payload
:param dict properties: Message properties
:return:
"""
if 'content_encoding' not in properties:
properties['content_encoding'] = 'utf-8'
encoding = properties['content_encoding']
if compatibility.is_unicode(body):
body = body.encode(encoding)
elif compatibility.PYTHON3 and isinstance(body, str):
body = bytes(body, encoding=encoding)
return body | python | def _handle_utf8_payload(body, properties):
"""Update the Body and Properties to the appropriate encoding.
:param bytes|str|unicode body: Message payload
:param dict properties: Message properties
:return:
"""
if 'content_encoding' not in properties:
properties['content_encoding'] = 'utf-8'
encoding = properties['content_encoding']
if compatibility.is_unicode(body):
body = body.encode(encoding)
elif compatibility.PYTHON3 and isinstance(body, str):
body = bytes(body, encoding=encoding)
return body | Update the Body and Properties to the appropriate encoding.
:param bytes|str|unicode body: Message payload
:param dict properties: Message properties
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L330-L345 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._get_message | def _get_message(self, get_frame, auto_decode):
"""Get and return a message using a Basic.Get frame.
:param Basic.Get get_frame:
:param bool auto_decode: Auto-decode strings when possible.
:rtype: Message
"""
message_uuid = self._channel.rpc.register_request(
get_frame.valid_responses + ['ContentHeader', 'ContentBody']
)
try:
self._channel.write_frame(get_frame)
get_ok_frame = self._channel.rpc.get_request(message_uuid,
raw=True,
multiple=True)
if isinstance(get_ok_frame, specification.Basic.GetEmpty):
return None
content_header = self._channel.rpc.get_request(message_uuid,
raw=True,
multiple=True)
body = self._get_content_body(message_uuid,
content_header.body_size)
finally:
self._channel.rpc.remove(message_uuid)
return Message(channel=self._channel,
body=body,
method=dict(get_ok_frame),
properties=dict(content_header.properties),
auto_decode=auto_decode) | python | def _get_message(self, get_frame, auto_decode):
"""Get and return a message using a Basic.Get frame.
:param Basic.Get get_frame:
:param bool auto_decode: Auto-decode strings when possible.
:rtype: Message
"""
message_uuid = self._channel.rpc.register_request(
get_frame.valid_responses + ['ContentHeader', 'ContentBody']
)
try:
self._channel.write_frame(get_frame)
get_ok_frame = self._channel.rpc.get_request(message_uuid,
raw=True,
multiple=True)
if isinstance(get_ok_frame, specification.Basic.GetEmpty):
return None
content_header = self._channel.rpc.get_request(message_uuid,
raw=True,
multiple=True)
body = self._get_content_body(message_uuid,
content_header.body_size)
finally:
self._channel.rpc.remove(message_uuid)
return Message(channel=self._channel,
body=body,
method=dict(get_ok_frame),
properties=dict(content_header.properties),
auto_decode=auto_decode) | Get and return a message using a Basic.Get frame.
:param Basic.Get get_frame:
:param bool auto_decode: Auto-decode strings when possible.
:rtype: Message | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L347-L376 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._publish_confirm | def _publish_confirm(self, frames_out):
"""Confirm that message was published successfully.
:param list frames_out:
:rtype: bool
"""
confirm_uuid = self._channel.rpc.register_request(['Basic.Ack',
'Basic.Nack'])
self._channel.write_frames(frames_out)
result = self._channel.rpc.get_request(confirm_uuid, raw=True)
self._channel.check_for_errors()
if isinstance(result, specification.Basic.Ack):
return True
return False | python | def _publish_confirm(self, frames_out):
"""Confirm that message was published successfully.
:param list frames_out:
:rtype: bool
"""
confirm_uuid = self._channel.rpc.register_request(['Basic.Ack',
'Basic.Nack'])
self._channel.write_frames(frames_out)
result = self._channel.rpc.get_request(confirm_uuid, raw=True)
self._channel.check_for_errors()
if isinstance(result, specification.Basic.Ack):
return True
return False | Confirm that message was published successfully.
:param list frames_out:
:rtype: bool | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L378-L392 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._create_content_body | def _create_content_body(self, body):
"""Split body based on the maximum frame size.
This function is based on code from Rabbitpy.
https://github.com/gmr/rabbitpy
:param bytes|str|unicode body: Message payload
:rtype: collections.Iterable
"""
frames = int(math.ceil(len(body) / float(self._max_frame_size)))
for offset in compatibility.RANGE(0, frames):
start_frame = self._max_frame_size * offset
end_frame = start_frame + self._max_frame_size
body_len = len(body)
if end_frame > body_len:
end_frame = body_len
yield pamqp_body.ContentBody(body[start_frame:end_frame]) | python | def _create_content_body(self, body):
"""Split body based on the maximum frame size.
This function is based on code from Rabbitpy.
https://github.com/gmr/rabbitpy
:param bytes|str|unicode body: Message payload
:rtype: collections.Iterable
"""
frames = int(math.ceil(len(body) / float(self._max_frame_size)))
for offset in compatibility.RANGE(0, frames):
start_frame = self._max_frame_size * offset
end_frame = start_frame + self._max_frame_size
body_len = len(body)
if end_frame > body_len:
end_frame = body_len
yield pamqp_body.ContentBody(body[start_frame:end_frame]) | Split body based on the maximum frame size.
This function is based on code from Rabbitpy.
https://github.com/gmr/rabbitpy
:param bytes|str|unicode body: Message payload
:rtype: collections.Iterable | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L394-L411 |
eandersson/amqpstorm | amqpstorm/basic.py | Basic._get_content_body | def _get_content_body(self, message_uuid, body_size):
"""Get Content Body using RPC requests.
:param str uuid_body: Rpc Identifier.
:param int body_size: Content Size.
:rtype: str
"""
body = bytes()
while len(body) < body_size:
body_piece = self._channel.rpc.get_request(message_uuid, raw=True,
multiple=True)
if not body_piece.value:
break
body += body_piece.value
return body | python | def _get_content_body(self, message_uuid, body_size):
"""Get Content Body using RPC requests.
:param str uuid_body: Rpc Identifier.
:param int body_size: Content Size.
:rtype: str
"""
body = bytes()
while len(body) < body_size:
body_piece = self._channel.rpc.get_request(message_uuid, raw=True,
multiple=True)
if not body_piece.value:
break
body += body_piece.value
return body | Get Content Body using RPC requests.
:param str uuid_body: Rpc Identifier.
:param int body_size: Content Size.
:rtype: str | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/basic.py#L413-L428 |
eandersson/amqpstorm | amqpstorm/queue.py | Queue.declare | def declare(self, queue='', passive=False, durable=False,
exclusive=False, auto_delete=False, arguments=None):
"""Declare a Queue.
:param str queue: Queue name
:param bool passive: Do not create
:param bool durable: Durable queue
:param bool exclusive: Request exclusive access
:param bool auto_delete: Automatically delete when not in use
:param dict arguments: Queue key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not isinstance(passive, bool):
raise AMQPInvalidArgument('passive should be a boolean')
elif not isinstance(durable, bool):
raise AMQPInvalidArgument('durable should be a boolean')
elif not isinstance(exclusive, bool):
raise AMQPInvalidArgument('exclusive should be a boolean')
elif not isinstance(auto_delete, bool):
raise AMQPInvalidArgument('auto_delete should be a boolean')
elif arguments is not None and not isinstance(arguments, dict):
raise AMQPInvalidArgument('arguments should be a dict or None')
declare_frame = pamqp_queue.Declare(queue=queue,
passive=passive,
durable=durable,
exclusive=exclusive,
auto_delete=auto_delete,
arguments=arguments)
return self._channel.rpc_request(declare_frame) | python | def declare(self, queue='', passive=False, durable=False,
exclusive=False, auto_delete=False, arguments=None):
"""Declare a Queue.
:param str queue: Queue name
:param bool passive: Do not create
:param bool durable: Durable queue
:param bool exclusive: Request exclusive access
:param bool auto_delete: Automatically delete when not in use
:param dict arguments: Queue key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not isinstance(passive, bool):
raise AMQPInvalidArgument('passive should be a boolean')
elif not isinstance(durable, bool):
raise AMQPInvalidArgument('durable should be a boolean')
elif not isinstance(exclusive, bool):
raise AMQPInvalidArgument('exclusive should be a boolean')
elif not isinstance(auto_delete, bool):
raise AMQPInvalidArgument('auto_delete should be a boolean')
elif arguments is not None and not isinstance(arguments, dict):
raise AMQPInvalidArgument('arguments should be a dict or None')
declare_frame = pamqp_queue.Declare(queue=queue,
passive=passive,
durable=durable,
exclusive=exclusive,
auto_delete=auto_delete,
arguments=arguments)
return self._channel.rpc_request(declare_frame) | Declare a Queue.
:param str queue: Queue name
:param bool passive: Do not create
:param bool durable: Durable queue
:param bool exclusive: Request exclusive access
:param bool auto_delete: Automatically delete when not in use
:param dict arguments: Queue key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/queue.py#L18-L55 |
eandersson/amqpstorm | amqpstorm/queue.py | Queue.delete | def delete(self, queue='', if_unused=False, if_empty=False):
"""Delete a Queue.
:param str queue: Queue name
:param bool if_unused: Delete only if unused
:param bool if_empty: Delete only if empty
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not isinstance(if_unused, bool):
raise AMQPInvalidArgument('if_unused should be a boolean')
elif not isinstance(if_empty, bool):
raise AMQPInvalidArgument('if_empty should be a boolean')
delete_frame = pamqp_queue.Delete(queue=queue, if_unused=if_unused,
if_empty=if_empty)
return self._channel.rpc_request(delete_frame) | python | def delete(self, queue='', if_unused=False, if_empty=False):
"""Delete a Queue.
:param str queue: Queue name
:param bool if_unused: Delete only if unused
:param bool if_empty: Delete only if empty
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not isinstance(if_unused, bool):
raise AMQPInvalidArgument('if_unused should be a boolean')
elif not isinstance(if_empty, bool):
raise AMQPInvalidArgument('if_empty should be a boolean')
delete_frame = pamqp_queue.Delete(queue=queue, if_unused=if_unused,
if_empty=if_empty)
return self._channel.rpc_request(delete_frame) | Delete a Queue.
:param str queue: Queue name
:param bool if_unused: Delete only if unused
:param bool if_empty: Delete only if empty
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/queue.py#L57-L80 |
eandersson/amqpstorm | amqpstorm/queue.py | Queue.purge | def purge(self, queue):
"""Purge a Queue.
:param str queue: Queue name
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
purge_frame = pamqp_queue.Purge(queue=queue)
return self._channel.rpc_request(purge_frame) | python | def purge(self, queue):
"""Purge a Queue.
:param str queue: Queue name
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
purge_frame = pamqp_queue.Purge(queue=queue)
return self._channel.rpc_request(purge_frame) | Purge a Queue.
:param str queue: Queue name
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/queue.py#L82-L99 |
eandersson/amqpstorm | amqpstorm/queue.py | Queue.bind | def bind(self, queue='', exchange='', routing_key='', arguments=None):
"""Bind a Queue.
:param str queue: Queue name
:param str exchange: Exchange name
:param str routing_key: The routing key to use
:param dict arguments: Bind key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not compatibility.is_string(exchange):
raise AMQPInvalidArgument('exchange should be a string')
elif not compatibility.is_string(routing_key):
raise AMQPInvalidArgument('routing_key should be a string')
elif arguments is not None and not isinstance(arguments, dict):
raise AMQPInvalidArgument('arguments should be a dict or None')
bind_frame = pamqp_queue.Bind(queue=queue,
exchange=exchange,
routing_key=routing_key,
arguments=arguments)
return self._channel.rpc_request(bind_frame) | python | def bind(self, queue='', exchange='', routing_key='', arguments=None):
"""Bind a Queue.
:param str queue: Queue name
:param str exchange: Exchange name
:param str routing_key: The routing key to use
:param dict arguments: Bind key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not compatibility.is_string(exchange):
raise AMQPInvalidArgument('exchange should be a string')
elif not compatibility.is_string(routing_key):
raise AMQPInvalidArgument('routing_key should be a string')
elif arguments is not None and not isinstance(arguments, dict):
raise AMQPInvalidArgument('arguments should be a dict or None')
bind_frame = pamqp_queue.Bind(queue=queue,
exchange=exchange,
routing_key=routing_key,
arguments=arguments)
return self._channel.rpc_request(bind_frame) | Bind a Queue.
:param str queue: Queue name
:param str exchange: Exchange name
:param str routing_key: The routing key to use
:param dict arguments: Bind key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/queue.py#L101-L129 |
eandersson/amqpstorm | amqpstorm/queue.py | Queue.unbind | def unbind(self, queue='', exchange='', routing_key='', arguments=None):
"""Unbind a Queue.
:param str queue: Queue name
:param str exchange: Exchange name
:param str routing_key: The routing key used
:param dict arguments: Unbind key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not compatibility.is_string(exchange):
raise AMQPInvalidArgument('exchange should be a string')
elif not compatibility.is_string(routing_key):
raise AMQPInvalidArgument('routing_key should be a string')
elif arguments is not None and not isinstance(arguments, dict):
raise AMQPInvalidArgument('arguments should be a dict or None')
unbind_frame = pamqp_queue.Unbind(queue=queue,
exchange=exchange,
routing_key=routing_key,
arguments=arguments)
return self._channel.rpc_request(unbind_frame) | python | def unbind(self, queue='', exchange='', routing_key='', arguments=None):
"""Unbind a Queue.
:param str queue: Queue name
:param str exchange: Exchange name
:param str routing_key: The routing key used
:param dict arguments: Unbind key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict
"""
if not compatibility.is_string(queue):
raise AMQPInvalidArgument('queue should be a string')
elif not compatibility.is_string(exchange):
raise AMQPInvalidArgument('exchange should be a string')
elif not compatibility.is_string(routing_key):
raise AMQPInvalidArgument('routing_key should be a string')
elif arguments is not None and not isinstance(arguments, dict):
raise AMQPInvalidArgument('arguments should be a dict or None')
unbind_frame = pamqp_queue.Unbind(queue=queue,
exchange=exchange,
routing_key=routing_key,
arguments=arguments)
return self._channel.rpc_request(unbind_frame) | Unbind a Queue.
:param str queue: Queue name
:param str exchange: Exchange name
:param str routing_key: The routing key used
:param dict arguments: Unbind key/value arguments
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/queue.py#L131-L159 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0.on_frame | def on_frame(self, frame_in):
"""Handle frames sent to Channel0.
:param frame_in: Amqp frame.
:return:
"""
LOGGER.debug('Frame Received: %s', frame_in.name)
if frame_in.name == 'Heartbeat':
return
elif frame_in.name == 'Connection.Close':
self._close_connection(frame_in)
elif frame_in.name == 'Connection.CloseOk':
self._close_connection_ok()
elif frame_in.name == 'Connection.Blocked':
self._blocked_connection(frame_in)
elif frame_in.name == 'Connection.Unblocked':
self._unblocked_connection()
elif frame_in.name == 'Connection.OpenOk':
self._set_connection_state(Stateful.OPEN)
elif frame_in.name == 'Connection.Start':
self.server_properties = frame_in.server_properties
self._send_start_ok(frame_in)
elif frame_in.name == 'Connection.Tune':
self._send_tune_ok(frame_in)
self._send_open_connection()
else:
LOGGER.error('[Channel0] Unhandled Frame: %s', frame_in.name) | python | def on_frame(self, frame_in):
"""Handle frames sent to Channel0.
:param frame_in: Amqp frame.
:return:
"""
LOGGER.debug('Frame Received: %s', frame_in.name)
if frame_in.name == 'Heartbeat':
return
elif frame_in.name == 'Connection.Close':
self._close_connection(frame_in)
elif frame_in.name == 'Connection.CloseOk':
self._close_connection_ok()
elif frame_in.name == 'Connection.Blocked':
self._blocked_connection(frame_in)
elif frame_in.name == 'Connection.Unblocked':
self._unblocked_connection()
elif frame_in.name == 'Connection.OpenOk':
self._set_connection_state(Stateful.OPEN)
elif frame_in.name == 'Connection.Start':
self.server_properties = frame_in.server_properties
self._send_start_ok(frame_in)
elif frame_in.name == 'Connection.Tune':
self._send_tune_ok(frame_in)
self._send_open_connection()
else:
LOGGER.error('[Channel0] Unhandled Frame: %s', frame_in.name) | Handle frames sent to Channel0.
:param frame_in: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L33-L59 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._close_connection | def _close_connection(self, frame_in):
"""Connection Close.
:param specification.Connection.Close frame_in: Amqp frame.
:return:
"""
self._set_connection_state(Stateful.CLOSED)
if frame_in.reply_code != 200:
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
'Connection was closed by remote server: %s' % reply_text
)
exception = AMQPConnectionError(message,
reply_code=frame_in.reply_code)
self._connection.exceptions.append(exception) | python | def _close_connection(self, frame_in):
"""Connection Close.
:param specification.Connection.Close frame_in: Amqp frame.
:return:
"""
self._set_connection_state(Stateful.CLOSED)
if frame_in.reply_code != 200:
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
'Connection was closed by remote server: %s' % reply_text
)
exception = AMQPConnectionError(message,
reply_code=frame_in.reply_code)
self._connection.exceptions.append(exception) | Connection Close.
:param specification.Connection.Close frame_in: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L77-L91 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._blocked_connection | def _blocked_connection(self, frame_in):
"""Connection is Blocked.
:param frame_in:
:return:
"""
self.is_blocked = True
LOGGER.warning(
'Connection is blocked by remote server: %s',
try_utf8_decode(frame_in.reason)
) | python | def _blocked_connection(self, frame_in):
"""Connection is Blocked.
:param frame_in:
:return:
"""
self.is_blocked = True
LOGGER.warning(
'Connection is blocked by remote server: %s',
try_utf8_decode(frame_in.reason)
) | Connection is Blocked.
:param frame_in:
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L100-L110 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._send_start_ok | def _send_start_ok(self, frame_in):
"""Send Start OK frame.
:param specification.Connection.Start frame_in: Amqp frame.
:return:
"""
mechanisms = try_utf8_decode(frame_in.mechanisms)
if 'EXTERNAL' in mechanisms:
mechanism = 'EXTERNAL'
credentials = '\0\0'
elif 'PLAIN' in mechanisms:
mechanism = 'PLAIN'
credentials = self._plain_credentials()
else:
exception = AMQPConnectionError(
'Unsupported Security Mechanism(s): %s' %
frame_in.mechanisms
)
self._connection.exceptions.append(exception)
return
start_ok_frame = specification.Connection.StartOk(
mechanism=mechanism,
client_properties=self._client_properties(),
response=credentials,
locale=LOCALE
)
self._write_frame(start_ok_frame) | python | def _send_start_ok(self, frame_in):
"""Send Start OK frame.
:param specification.Connection.Start frame_in: Amqp frame.
:return:
"""
mechanisms = try_utf8_decode(frame_in.mechanisms)
if 'EXTERNAL' in mechanisms:
mechanism = 'EXTERNAL'
credentials = '\0\0'
elif 'PLAIN' in mechanisms:
mechanism = 'PLAIN'
credentials = self._plain_credentials()
else:
exception = AMQPConnectionError(
'Unsupported Security Mechanism(s): %s' %
frame_in.mechanisms
)
self._connection.exceptions.append(exception)
return
start_ok_frame = specification.Connection.StartOk(
mechanism=mechanism,
client_properties=self._client_properties(),
response=credentials,
locale=LOCALE
)
self._write_frame(start_ok_frame) | Send Start OK frame.
:param specification.Connection.Start frame_in: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L140-L166 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._send_tune_ok | def _send_tune_ok(self, frame_in):
"""Send Tune OK frame.
:param specification.Connection.Tune frame_in: Tune frame.
:return:
"""
self.max_allowed_channels = self._negotiate(frame_in.channel_max,
MAX_CHANNELS)
self.max_frame_size = self._negotiate(frame_in.frame_max,
MAX_FRAME_SIZE)
LOGGER.debug(
'Negotiated max frame size %d, max channels %d',
self.max_frame_size, self.max_allowed_channels
)
tune_ok_frame = specification.Connection.TuneOk(
channel_max=self.max_allowed_channels,
frame_max=self.max_frame_size,
heartbeat=self._heartbeat)
self._write_frame(tune_ok_frame) | python | def _send_tune_ok(self, frame_in):
"""Send Tune OK frame.
:param specification.Connection.Tune frame_in: Tune frame.
:return:
"""
self.max_allowed_channels = self._negotiate(frame_in.channel_max,
MAX_CHANNELS)
self.max_frame_size = self._negotiate(frame_in.frame_max,
MAX_FRAME_SIZE)
LOGGER.debug(
'Negotiated max frame size %d, max channels %d',
self.max_frame_size, self.max_allowed_channels
)
tune_ok_frame = specification.Connection.TuneOk(
channel_max=self.max_allowed_channels,
frame_max=self.max_frame_size,
heartbeat=self._heartbeat)
self._write_frame(tune_ok_frame) | Send Tune OK frame.
:param specification.Connection.Tune frame_in: Tune frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L168-L188 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._send_open_connection | def _send_open_connection(self):
"""Send Open Connection frame.
:return:
"""
open_frame = specification.Connection.Open(
virtual_host=self._parameters['virtual_host']
)
self._write_frame(open_frame) | python | def _send_open_connection(self):
"""Send Open Connection frame.
:return:
"""
open_frame = specification.Connection.Open(
virtual_host=self._parameters['virtual_host']
)
self._write_frame(open_frame) | Send Open Connection frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L190-L198 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._write_frame | def _write_frame(self, frame_out):
"""Write a pamqp frame from Channel0.
:param frame_out: Amqp frame.
:return:
"""
self._connection.write_frame(0, frame_out)
LOGGER.debug('Frame Sent: %s', frame_out.name) | python | def _write_frame(self, frame_out):
"""Write a pamqp frame from Channel0.
:param frame_out: Amqp frame.
:return:
"""
self._connection.write_frame(0, frame_out)
LOGGER.debug('Frame Sent: %s', frame_out.name) | Write a pamqp frame from Channel0.
:param frame_out: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L208-L215 |
eandersson/amqpstorm | amqpstorm/channel0.py | Channel0._client_properties | def _client_properties():
"""AMQPStorm Client Properties.
:rtype: dict
"""
return {
'product': 'AMQPStorm',
'platform': 'Python %s (%s)' % (platform.python_version(),
platform.python_implementation()),
'capabilities': {
'basic.nack': True,
'connection.blocked': True,
'publisher_confirms': True,
'consumer_cancel_notify': True,
'authentication_failure_close': True,
},
'information': 'See https://github.com/eandersson/amqpstorm',
'version': __version__
} | python | def _client_properties():
"""AMQPStorm Client Properties.
:rtype: dict
"""
return {
'product': 'AMQPStorm',
'platform': 'Python %s (%s)' % (platform.python_version(),
platform.python_implementation()),
'capabilities': {
'basic.nack': True,
'connection.blocked': True,
'publisher_confirms': True,
'consumer_cancel_notify': True,
'authentication_failure_close': True,
},
'information': 'See https://github.com/eandersson/amqpstorm',
'version': __version__
} | AMQPStorm Client Properties.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel0.py#L218-L236 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.build_inbound_messages | def build_inbound_messages(self, break_on_empty=False, to_tuple=False,
auto_decode=True):
"""Build messages in the inbound queue.
:param bool break_on_empty: Should we break the loop when there are
no more messages in our inbound queue.
This does not guarantee that the upstream
queue is empty, as it's possible that if
messages are consumed faster than
delivered, the inbound queue will then be
emptied and the consumption will be broken.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: :py:class:`generator`
"""
self.check_for_errors()
while not self.is_closed:
message = self._build_message(auto_decode=auto_decode)
if not message:
self.check_for_errors()
sleep(IDLE_WAIT)
if break_on_empty and not self._inbound:
break
continue
if to_tuple:
yield message.to_tuple()
continue
yield message | python | def build_inbound_messages(self, break_on_empty=False, to_tuple=False,
auto_decode=True):
"""Build messages in the inbound queue.
:param bool break_on_empty: Should we break the loop when there are
no more messages in our inbound queue.
This does not guarantee that the upstream
queue is empty, as it's possible that if
messages are consumed faster than
delivered, the inbound queue will then be
emptied and the consumption will be broken.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: :py:class:`generator`
"""
self.check_for_errors()
while not self.is_closed:
message = self._build_message(auto_decode=auto_decode)
if not message:
self.check_for_errors()
sleep(IDLE_WAIT)
if break_on_empty and not self._inbound:
break
continue
if to_tuple:
yield message.to_tuple()
continue
yield message | Build messages in the inbound queue.
:param bool break_on_empty: Should we break the loop when there are
no more messages in our inbound queue.
This does not guarantee that the upstream
queue is empty, as it's possible that if
messages are consumed faster than
delivered, the inbound queue will then be
emptied and the consumption will be broken.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:rtype: :py:class:`generator` | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L97-L131 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.close | def close(self, reply_code=200, reply_text=''):
"""Close Channel.
:param int reply_code: Close reply code (e.g. 200)
:param str reply_text: Close reply text
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(reply_code):
raise AMQPInvalidArgument('reply_code should be an integer')
elif not compatibility.is_string(reply_text):
raise AMQPInvalidArgument('reply_text should be a string')
try:
if self._connection.is_closed or self.is_closed:
self.stop_consuming()
LOGGER.debug('Channel #%d forcefully Closed', self.channel_id)
return
self.set_state(self.CLOSING)
LOGGER.debug('Channel #%d Closing', self.channel_id)
try:
self.stop_consuming()
except AMQPChannelError:
self.remove_consumer_tag()
self.rpc_request(specification.Channel.Close(
reply_code=reply_code,
reply_text=reply_text),
connection_adapter=self._connection
)
finally:
if self._inbound:
del self._inbound[:]
self.set_state(self.CLOSED)
if self._on_close_impl:
self._on_close_impl(self.channel_id)
LOGGER.debug('Channel #%d Closed', self.channel_id) | python | def close(self, reply_code=200, reply_text=''):
"""Close Channel.
:param int reply_code: Close reply code (e.g. 200)
:param str reply_text: Close reply text
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not compatibility.is_integer(reply_code):
raise AMQPInvalidArgument('reply_code should be an integer')
elif not compatibility.is_string(reply_text):
raise AMQPInvalidArgument('reply_text should be a string')
try:
if self._connection.is_closed or self.is_closed:
self.stop_consuming()
LOGGER.debug('Channel #%d forcefully Closed', self.channel_id)
return
self.set_state(self.CLOSING)
LOGGER.debug('Channel #%d Closing', self.channel_id)
try:
self.stop_consuming()
except AMQPChannelError:
self.remove_consumer_tag()
self.rpc_request(specification.Channel.Close(
reply_code=reply_code,
reply_text=reply_text),
connection_adapter=self._connection
)
finally:
if self._inbound:
del self._inbound[:]
self.set_state(self.CLOSED)
if self._on_close_impl:
self._on_close_impl(self.channel_id)
LOGGER.debug('Channel #%d Closed', self.channel_id) | Close Channel.
:param int reply_code: Close reply code (e.g. 200)
:param str reply_text: Close reply text
:raises AMQPInvalidArgument: Invalid Parameters
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L133-L172 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.check_for_errors | def check_for_errors(self):
"""Check connection and channel for errors.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
try:
self._connection.check_for_errors()
except AMQPConnectionError:
self.set_state(self.CLOSED)
raise
if self.exceptions:
exception = self.exceptions[0]
if self.is_open:
self.exceptions.pop(0)
raise exception
if self.is_closed:
raise AMQPChannelError('channel was closed') | python | def check_for_errors(self):
"""Check connection and channel for errors.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
try:
self._connection.check_for_errors()
except AMQPConnectionError:
self.set_state(self.CLOSED)
raise
if self.exceptions:
exception = self.exceptions[0]
if self.is_open:
self.exceptions.pop(0)
raise exception
if self.is_closed:
raise AMQPChannelError('channel was closed') | Check connection and channel for errors.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L174-L195 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.confirm_deliveries | def confirm_deliveries(self):
"""Set the channel to confirm that each message has been
successfully delivered.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
self._confirming_deliveries = True
confirm_frame = specification.Confirm.Select()
return self.rpc_request(confirm_frame) | python | def confirm_deliveries(self):
"""Set the channel to confirm that each message has been
successfully delivered.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
self._confirming_deliveries = True
confirm_frame = specification.Confirm.Select()
return self.rpc_request(confirm_frame) | Set the channel to confirm that each message has been
successfully delivered.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L197-L209 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.on_frame | def on_frame(self, frame_in):
"""Handle frame sent to this specific channel.
:param pamqp.Frame frame_in: Amqp frame.
:return:
"""
if self.rpc.on_frame(frame_in):
return
if frame_in.name in CONTENT_FRAME:
self._inbound.append(frame_in)
elif frame_in.name == 'Basic.Cancel':
self._basic_cancel(frame_in)
elif frame_in.name == 'Basic.CancelOk':
self.remove_consumer_tag(frame_in.consumer_tag)
elif frame_in.name == 'Basic.ConsumeOk':
self.add_consumer_tag(frame_in['consumer_tag'])
elif frame_in.name == 'Basic.Return':
self._basic_return(frame_in)
elif frame_in.name == 'Channel.Close':
self._close_channel(frame_in)
elif frame_in.name == 'Channel.Flow':
self.write_frame(specification.Channel.FlowOk(frame_in.active))
else:
LOGGER.error(
'[Channel%d] Unhandled Frame: %s -- %s',
self.channel_id, frame_in.name, dict(frame_in)
) | python | def on_frame(self, frame_in):
"""Handle frame sent to this specific channel.
:param pamqp.Frame frame_in: Amqp frame.
:return:
"""
if self.rpc.on_frame(frame_in):
return
if frame_in.name in CONTENT_FRAME:
self._inbound.append(frame_in)
elif frame_in.name == 'Basic.Cancel':
self._basic_cancel(frame_in)
elif frame_in.name == 'Basic.CancelOk':
self.remove_consumer_tag(frame_in.consumer_tag)
elif frame_in.name == 'Basic.ConsumeOk':
self.add_consumer_tag(frame_in['consumer_tag'])
elif frame_in.name == 'Basic.Return':
self._basic_return(frame_in)
elif frame_in.name == 'Channel.Close':
self._close_channel(frame_in)
elif frame_in.name == 'Channel.Flow':
self.write_frame(specification.Channel.FlowOk(frame_in.active))
else:
LOGGER.error(
'[Channel%d] Unhandled Frame: %s -- %s',
self.channel_id, frame_in.name, dict(frame_in)
) | Handle frame sent to this specific channel.
:param pamqp.Frame frame_in: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L219-L246 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.open | def open(self):
"""Open Channel.
:return:
"""
self._inbound = []
self._exceptions = []
self.set_state(self.OPENING)
self.rpc_request(specification.Channel.Open())
self.set_state(self.OPEN) | python | def open(self):
"""Open Channel.
:return:
"""
self._inbound = []
self._exceptions = []
self.set_state(self.OPENING)
self.rpc_request(specification.Channel.Open())
self.set_state(self.OPEN) | Open Channel.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L248-L257 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.process_data_events | def process_data_events(self, to_tuple=False, auto_decode=True):
"""Consume inbound messages.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not self._consumer_callbacks:
raise AMQPChannelError('no consumer callback defined')
for message in self.build_inbound_messages(break_on_empty=True,
auto_decode=auto_decode):
consumer_tag = message._method.get('consumer_tag')
if to_tuple:
# noinspection PyCallingNonCallable
self._consumer_callbacks[consumer_tag](*message.to_tuple())
continue
# noinspection PyCallingNonCallable
self._consumer_callbacks[consumer_tag](message) | python | def process_data_events(self, to_tuple=False, auto_decode=True):
"""Consume inbound messages.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not self._consumer_callbacks:
raise AMQPChannelError('no consumer callback defined')
for message in self.build_inbound_messages(break_on_empty=True,
auto_decode=auto_decode):
consumer_tag = message._method.get('consumer_tag')
if to_tuple:
# noinspection PyCallingNonCallable
self._consumer_callbacks[consumer_tag](*message.to_tuple())
continue
# noinspection PyCallingNonCallable
self._consumer_callbacks[consumer_tag](message) | Consume inbound messages.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L259-L282 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.rpc_request | def rpc_request(self, frame_out, connection_adapter=None):
"""Perform a RPC Request.
:param specification.Frame frame_out: Amqp frame.
:rtype: dict
"""
with self.rpc.lock:
uuid = self.rpc.register_request(frame_out.valid_responses)
self._connection.write_frame(self.channel_id, frame_out)
return self.rpc.get_request(
uuid, connection_adapter=connection_adapter
) | python | def rpc_request(self, frame_out, connection_adapter=None):
"""Perform a RPC Request.
:param specification.Frame frame_out: Amqp frame.
:rtype: dict
"""
with self.rpc.lock:
uuid = self.rpc.register_request(frame_out.valid_responses)
self._connection.write_frame(self.channel_id, frame_out)
return self.rpc.get_request(
uuid, connection_adapter=connection_adapter
) | Perform a RPC Request.
:param specification.Frame frame_out: Amqp frame.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L284-L295 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.start_consuming | def start_consuming(self, to_tuple=False, auto_decode=True):
"""Start consuming messages.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
while not self.is_closed:
self.process_data_events(
to_tuple=to_tuple,
auto_decode=auto_decode
)
if self.consumer_tags:
sleep(IDLE_WAIT)
continue
break | python | def start_consuming(self, to_tuple=False, auto_decode=True):
"""Start consuming messages.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
while not self.is_closed:
self.process_data_events(
to_tuple=to_tuple,
auto_decode=auto_decode
)
if self.consumer_tags:
sleep(IDLE_WAIT)
continue
break | Start consuming messages.
:param bool to_tuple: Should incoming messages be converted to a
tuple before delivery.
:param bool auto_decode: Auto-decode strings when possible.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L297-L318 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.stop_consuming | def stop_consuming(self):
"""Stop consuming messages.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not self.consumer_tags:
return
if not self.is_closed:
for tag in self.consumer_tags:
self.basic.cancel(tag)
self.remove_consumer_tag() | python | def stop_consuming(self):
"""Stop consuming messages.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return:
"""
if not self.consumer_tags:
return
if not self.is_closed:
for tag in self.consumer_tags:
self.basic.cancel(tag)
self.remove_consumer_tag() | Stop consuming messages.
:raises AMQPChannelError: Raises if the channel encountered an error.
:raises AMQPConnectionError: Raises if the connection
encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L320-L334 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.write_frame | def write_frame(self, frame_out):
"""Write a pamqp frame from the current channel.
:param specification.Frame frame_out: A single pamqp frame.
:return:
"""
self.check_for_errors()
self._connection.write_frame(self.channel_id, frame_out) | python | def write_frame(self, frame_out):
"""Write a pamqp frame from the current channel.
:param specification.Frame frame_out: A single pamqp frame.
:return:
"""
self.check_for_errors()
self._connection.write_frame(self.channel_id, frame_out) | Write a pamqp frame from the current channel.
:param specification.Frame frame_out: A single pamqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L336-L344 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel.write_frames | def write_frames(self, frames_out):
"""Write multiple pamqp frames from the current channel.
:param list frames_out: A list of pamqp frames.
:return:
"""
self.check_for_errors()
self._connection.write_frames(self.channel_id, frames_out) | python | def write_frames(self, frames_out):
"""Write multiple pamqp frames from the current channel.
:param list frames_out: A list of pamqp frames.
:return:
"""
self.check_for_errors()
self._connection.write_frames(self.channel_id, frames_out) | Write multiple pamqp frames from the current channel.
:param list frames_out: A list of pamqp frames.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L346-L354 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel._basic_cancel | def _basic_cancel(self, frame_in):
"""Handle a Basic Cancel frame.
:param specification.Basic.Cancel frame_in: Amqp frame.
:return:
"""
LOGGER.warning(
'Received Basic.Cancel on consumer_tag: %s',
try_utf8_decode(frame_in.consumer_tag)
)
self.remove_consumer_tag(frame_in.consumer_tag) | python | def _basic_cancel(self, frame_in):
"""Handle a Basic Cancel frame.
:param specification.Basic.Cancel frame_in: Amqp frame.
:return:
"""
LOGGER.warning(
'Received Basic.Cancel on consumer_tag: %s',
try_utf8_decode(frame_in.consumer_tag)
)
self.remove_consumer_tag(frame_in.consumer_tag) | Handle a Basic Cancel frame.
:param specification.Basic.Cancel frame_in: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L356-L367 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel._basic_return | def _basic_return(self, frame_in):
"""Handle a Basic Return Frame and treat it as an error.
:param specification.Basic.Return frame_in: Amqp frame.
:return:
"""
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
"Message not delivered: %s (%s) to queue '%s' from exchange '%s'" %
(
reply_text,
frame_in.reply_code,
frame_in.routing_key,
frame_in.exchange
)
)
exception = AMQPMessageError(message,
reply_code=frame_in.reply_code)
self.exceptions.append(exception) | python | def _basic_return(self, frame_in):
"""Handle a Basic Return Frame and treat it as an error.
:param specification.Basic.Return frame_in: Amqp frame.
:return:
"""
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
"Message not delivered: %s (%s) to queue '%s' from exchange '%s'" %
(
reply_text,
frame_in.reply_code,
frame_in.routing_key,
frame_in.exchange
)
)
exception = AMQPMessageError(message,
reply_code=frame_in.reply_code)
self.exceptions.append(exception) | Handle a Basic Return Frame and treat it as an error.
:param specification.Basic.Return frame_in: Amqp frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L369-L388 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel._build_message | def _build_message(self, auto_decode):
"""Fetch and build a complete Message from the inbound queue.
:param bool auto_decode: Auto-decode strings when possible.
:rtype: Message
"""
with self.lock:
if len(self._inbound) < 2:
return None
headers = self._build_message_headers()
if not headers:
return None
basic_deliver, content_header = headers
body = self._build_message_body(content_header.body_size)
message = Message(channel=self,
body=body,
method=dict(basic_deliver),
properties=dict(content_header.properties),
auto_decode=auto_decode)
return message | python | def _build_message(self, auto_decode):
"""Fetch and build a complete Message from the inbound queue.
:param bool auto_decode: Auto-decode strings when possible.
:rtype: Message
"""
with self.lock:
if len(self._inbound) < 2:
return None
headers = self._build_message_headers()
if not headers:
return None
basic_deliver, content_header = headers
body = self._build_message_body(content_header.body_size)
message = Message(channel=self,
body=body,
method=dict(basic_deliver),
properties=dict(content_header.properties),
auto_decode=auto_decode)
return message | Fetch and build a complete Message from the inbound queue.
:param bool auto_decode: Auto-decode strings when possible.
:rtype: Message | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L390-L411 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel._build_message_headers | def _build_message_headers(self):
"""Fetch Message Headers (Deliver & Header Frames).
:rtype: tuple|None
"""
basic_deliver = self._inbound.pop(0)
if not isinstance(basic_deliver, specification.Basic.Deliver):
LOGGER.warning(
'Received an out-of-order frame: %s was '
'expecting a Basic.Deliver frame',
type(basic_deliver)
)
return None
content_header = self._inbound.pop(0)
if not isinstance(content_header, ContentHeader):
LOGGER.warning(
'Received an out-of-order frame: %s was '
'expecting a ContentHeader frame',
type(content_header)
)
return None
return basic_deliver, content_header | python | def _build_message_headers(self):
"""Fetch Message Headers (Deliver & Header Frames).
:rtype: tuple|None
"""
basic_deliver = self._inbound.pop(0)
if not isinstance(basic_deliver, specification.Basic.Deliver):
LOGGER.warning(
'Received an out-of-order frame: %s was '
'expecting a Basic.Deliver frame',
type(basic_deliver)
)
return None
content_header = self._inbound.pop(0)
if not isinstance(content_header, ContentHeader):
LOGGER.warning(
'Received an out-of-order frame: %s was '
'expecting a ContentHeader frame',
type(content_header)
)
return None
return basic_deliver, content_header | Fetch Message Headers (Deliver & Header Frames).
:rtype: tuple|None | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L413-L435 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel._build_message_body | def _build_message_body(self, body_size):
"""Build the Message body from the inbound queue.
:rtype: str
"""
body = bytes()
while len(body) < body_size:
if not self._inbound:
self.check_for_errors()
sleep(IDLE_WAIT)
continue
body_piece = self._inbound.pop(0)
if not body_piece.value:
break
body += body_piece.value
return body | python | def _build_message_body(self, body_size):
"""Build the Message body from the inbound queue.
:rtype: str
"""
body = bytes()
while len(body) < body_size:
if not self._inbound:
self.check_for_errors()
sleep(IDLE_WAIT)
continue
body_piece = self._inbound.pop(0)
if not body_piece.value:
break
body += body_piece.value
return body | Build the Message body from the inbound queue.
:rtype: str | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L437-L452 |
eandersson/amqpstorm | amqpstorm/channel.py | Channel._close_channel | def _close_channel(self, frame_in):
"""Close Channel.
:param specification.Channel.Close frame_in: Channel Close frame.
:return:
"""
if frame_in.reply_code != 200:
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
'Channel %d was closed by remote server: %s' %
(
self._channel_id,
reply_text
)
)
exception = AMQPChannelError(message,
reply_code=frame_in.reply_code)
self.exceptions.append(exception)
self.set_state(self.CLOSED)
if self._connection.is_open:
try:
self._connection.write_frame(
self.channel_id, specification.Channel.CloseOk()
)
except AMQPConnectionError:
pass
self.close() | python | def _close_channel(self, frame_in):
"""Close Channel.
:param specification.Channel.Close frame_in: Channel Close frame.
:return:
"""
if frame_in.reply_code != 200:
reply_text = try_utf8_decode(frame_in.reply_text)
message = (
'Channel %d was closed by remote server: %s' %
(
self._channel_id,
reply_text
)
)
exception = AMQPChannelError(message,
reply_code=frame_in.reply_code)
self.exceptions.append(exception)
self.set_state(self.CLOSED)
if self._connection.is_open:
try:
self._connection.write_frame(
self.channel_id, specification.Channel.CloseOk()
)
except AMQPConnectionError:
pass
self.close() | Close Channel.
:param specification.Channel.Close frame_in: Channel Close frame.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/channel.py#L454-L481 |
eandersson/amqpstorm | amqpstorm/management/user.py | User.create | def create(self, username, password, tags=''):
"""Create User.
:param str username: Username
:param str password: Password
:param str tags: Comma-separate list of tags (e.g. monitoring)
:rtype: None
"""
user_payload = json.dumps({
'password': password,
'tags': tags
})
return self.http_client.put(API_USER % username,
payload=user_payload) | python | def create(self, username, password, tags=''):
"""Create User.
:param str username: Username
:param str password: Password
:param str tags: Comma-separate list of tags (e.g. monitoring)
:rtype: None
"""
user_payload = json.dumps({
'password': password,
'tags': tags
})
return self.http_client.put(API_USER % username,
payload=user_payload) | Create User.
:param str username: Username
:param str password: Password
:param str tags: Comma-separate list of tags (e.g. monitoring)
:rtype: None | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/user.py#L28-L42 |
eandersson/amqpstorm | amqpstorm/management/user.py | User.get_permission | def get_permission(self, username, virtual_host):
"""Get User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
virtual_host = quote(virtual_host, '')
return self.http_client.get(API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
)) | python | def get_permission(self, username, virtual_host):
"""Get User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
virtual_host = quote(virtual_host, '')
return self.http_client.get(API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
)) | Get User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/user.py#L53-L69 |
eandersson/amqpstorm | amqpstorm/management/user.py | User.set_permission | def set_permission(self, username, virtual_host, configure_regex='.*',
write_regex='.*', read_regex='.*'):
"""Set User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:param str configure_regex: Permission pattern for configuration
operations for this user.
:param str write_regex: Permission pattern for write operations
for this user.
:param str read_regex: Permission pattern for read operations
for this user.
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
virtual_host = quote(virtual_host, '')
permission_payload = json.dumps({
"configure": configure_regex,
"read": read_regex,
"write": write_regex
})
return self.http_client.put(API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
),
payload=permission_payload) | python | def set_permission(self, username, virtual_host, configure_regex='.*',
write_regex='.*', read_regex='.*'):
"""Set User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:param str configure_regex: Permission pattern for configuration
operations for this user.
:param str write_regex: Permission pattern for write operations
for this user.
:param str read_regex: Permission pattern for read operations
for this user.
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
virtual_host = quote(virtual_host, '')
permission_payload = json.dumps({
"configure": configure_regex,
"read": read_regex,
"write": write_regex
})
return self.http_client.put(API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
),
payload=permission_payload) | Set User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:param str configure_regex: Permission pattern for configuration
operations for this user.
:param str write_regex: Permission pattern for write operations
for this user.
:param str read_regex: Permission pattern for read operations
for this user.
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/user.py#L86-L115 |
eandersson/amqpstorm | amqpstorm/management/user.py | User.delete_permission | def delete_permission(self, username, virtual_host):
"""Delete User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
virtual_host = quote(virtual_host, '')
return self.http_client.delete(
API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
)) | python | def delete_permission(self, username, virtual_host):
"""Delete User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
virtual_host = quote(virtual_host, '')
return self.http_client.delete(
API_USER_VIRTUAL_HOST_PERMISSIONS %
(
virtual_host,
username
)) | Delete User permissions for the configured virtual host.
:param str username: Username
:param str virtual_host: Virtual host name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/user.py#L117-L134 |
eandersson/amqpstorm | examples/scalable_rpc_server.py | ScalableRpcServer.start_server | def start_server(self):
"""Start the RPC Server.
:return:
"""
self._stopped.clear()
if not self._connection or self._connection.is_closed:
self._create_connection()
while not self._stopped.is_set():
try:
# Check our connection for errors.
self._connection.check_for_errors()
self._update_consumers()
except amqpstorm.AMQPError as why:
# If an error occurs, re-connect and let update_consumers
# re-open the channels.
LOGGER.warning(why)
self._stop_consumers()
self._create_connection()
time.sleep(1) | python | def start_server(self):
"""Start the RPC Server.
:return:
"""
self._stopped.clear()
if not self._connection or self._connection.is_closed:
self._create_connection()
while not self._stopped.is_set():
try:
# Check our connection for errors.
self._connection.check_for_errors()
self._update_consumers()
except amqpstorm.AMQPError as why:
# If an error occurs, re-connect and let update_consumers
# re-open the channels.
LOGGER.warning(why)
self._stop_consumers()
self._create_connection()
time.sleep(1) | Start the RPC Server.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/examples/scalable_rpc_server.py#L41-L60 |
eandersson/amqpstorm | examples/scalable_rpc_server.py | ScalableRpcServer._update_consumers | def _update_consumers(self):
"""Update Consumers.
- Add more if requested.
- Make sure the consumers are healthy.
- Remove excess consumers.
:return:
"""
# Do we need to start more consumers.
consumer_to_start = \
min(max(self.number_of_consumers - len(self._consumers), 0), 2)
for _ in range(consumer_to_start):
consumer = Consumer(self.rpc_queue)
self._start_consumer(consumer)
self._consumers.append(consumer)
# Check that all our consumers are active.
for consumer in self._consumers:
if consumer.active:
continue
self._start_consumer(consumer)
break
# Do we have any overflow of consumers.
self._stop_consumers(self.number_of_consumers) | python | def _update_consumers(self):
"""Update Consumers.
- Add more if requested.
- Make sure the consumers are healthy.
- Remove excess consumers.
:return:
"""
# Do we need to start more consumers.
consumer_to_start = \
min(max(self.number_of_consumers - len(self._consumers), 0), 2)
for _ in range(consumer_to_start):
consumer = Consumer(self.rpc_queue)
self._start_consumer(consumer)
self._consumers.append(consumer)
# Check that all our consumers are active.
for consumer in self._consumers:
if consumer.active:
continue
self._start_consumer(consumer)
break
# Do we have any overflow of consumers.
self._stop_consumers(self.number_of_consumers) | Update Consumers.
- Add more if requested.
- Make sure the consumers are healthy.
- Remove excess consumers.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/examples/scalable_rpc_server.py#L112-L137 |
eandersson/amqpstorm | amqpstorm/management/http_client.py | HTTPClient.get | def get(self, path, payload=None, headers=None):
"""HTTP GET operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('get', path, payload, headers) | python | def get(self, path, payload=None, headers=None):
"""HTTP GET operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('get', path, payload, headers) | HTTP GET operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/http_client.py#L17-L29 |
eandersson/amqpstorm | amqpstorm/management/http_client.py | HTTPClient.post | def post(self, path, payload=None, headers=None):
"""HTTP POST operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('post', path, payload, headers) | python | def post(self, path, payload=None, headers=None):
"""HTTP POST operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('post', path, payload, headers) | HTTP POST operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/http_client.py#L31-L43 |
eandersson/amqpstorm | amqpstorm/management/http_client.py | HTTPClient.delete | def delete(self, path, payload=None, headers=None):
"""HTTP DELETE operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('delete', path, payload, headers) | python | def delete(self, path, payload=None, headers=None):
"""HTTP DELETE operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('delete', path, payload, headers) | HTTP DELETE operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/http_client.py#L45-L57 |
eandersson/amqpstorm | amqpstorm/management/http_client.py | HTTPClient.put | def put(self, path, payload=None, headers=None):
"""HTTP PUT operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('put', path, payload, headers) | python | def put(self, path, payload=None, headers=None):
"""HTTP PUT operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
return self._request('put', path, payload, headers) | HTTP PUT operation.
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/http_client.py#L59-L71 |
eandersson/amqpstorm | amqpstorm/management/http_client.py | HTTPClient._request | def _request(self, method, path, payload=None, headers=None):
"""HTTP operation.
:param method: Operation type (e.g. post)
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
url = urlparse.urljoin(self._base_url, 'api/%s' % path)
headers = headers or {}
headers['content-type'] = 'application/json'
try:
response = requests.request(
method, url,
auth=self._auth,
data=payload,
headers=headers,
cert=self._cert,
verify=self._verify,
timeout=self._timeout
)
except requests.RequestException as why:
raise ApiConnectionError(str(why))
json_response = self._get_json_output(response)
self._check_for_errors(response, json_response)
return json_response | python | def _request(self, method, path, payload=None, headers=None):
"""HTTP operation.
:param method: Operation type (e.g. post)
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response
"""
url = urlparse.urljoin(self._base_url, 'api/%s' % path)
headers = headers or {}
headers['content-type'] = 'application/json'
try:
response = requests.request(
method, url,
auth=self._auth,
data=payload,
headers=headers,
cert=self._cert,
verify=self._verify,
timeout=self._timeout
)
except requests.RequestException as why:
raise ApiConnectionError(str(why))
json_response = self._get_json_output(response)
self._check_for_errors(response, json_response)
return json_response | HTTP operation.
:param method: Operation type (e.g. post)
:param path: URI Path
:param payload: HTTP Body
:param headers: HTTP Headers
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:return: Response | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/http_client.py#L73-L104 |
eandersson/amqpstorm | amqpstorm/management/http_client.py | HTTPClient._check_for_errors | def _check_for_errors(response, json_response):
"""Check payload for errors.
:param response: HTTP response
:param json_response: Json response
:raises ApiError: Raises if the remote server encountered an error.
:return:
"""
status_code = response.status_code
try:
response.raise_for_status()
except requests.HTTPError as why:
raise ApiError(str(why), reply_code=status_code)
if isinstance(json_response, dict) and 'error' in json_response:
raise ApiError(json_response['error'], reply_code=status_code) | python | def _check_for_errors(response, json_response):
"""Check payload for errors.
:param response: HTTP response
:param json_response: Json response
:raises ApiError: Raises if the remote server encountered an error.
:return:
"""
status_code = response.status_code
try:
response.raise_for_status()
except requests.HTTPError as why:
raise ApiError(str(why), reply_code=status_code)
if isinstance(json_response, dict) and 'error' in json_response:
raise ApiError(json_response['error'], reply_code=status_code) | Check payload for errors.
:param response: HTTP response
:param json_response: Json response
:raises ApiError: Raises if the remote server encountered an error.
:return: | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/http_client.py#L121-L137 |
eandersson/amqpstorm | amqpstorm/management/healthchecks.py | HealthChecks.get | def get(self, node=None):
"""Run basic healthchecks against the current node, or against a given
node.
Example response:
> {"status":"ok"}
> {"status":"failed","reason":"string"}
:param node: Node name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
if not node:
return self.http_client.get(HEALTHCHECKS)
return self.http_client.get(HEALTHCHECKS_NODE % node) | python | def get(self, node=None):
"""Run basic healthchecks against the current node, or against a given
node.
Example response:
> {"status":"ok"}
> {"status":"failed","reason":"string"}
:param node: Node name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict
"""
if not node:
return self.http_client.get(HEALTHCHECKS)
return self.http_client.get(HEALTHCHECKS_NODE % node) | Run basic healthchecks against the current node, or against a given
node.
Example response:
> {"status":"ok"}
> {"status":"failed","reason":"string"}
:param node: Node name
:raises ApiError: Raises if the remote server encountered an error.
:raises ApiConnectionError: Raises if there was a connectivity issue.
:rtype: dict | https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/management/healthchecks.py#L8-L25 |
cggh/scikit-allel | allel/stats/diversity.py | mean_pairwise_difference | def mean_pairwise_difference(ac, an=None, fill=np.nan):
"""Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from within a single population.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
an : array_like, int, shape (n_variants,), optional
Allele numbers. If not provided, will be calculated from `ac`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide diversity, a.k.a. *pi*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac = h.count_alleles()
>>> allel.mean_pairwise_difference(ac)
array([0. , 0.5 , 0.66666667, 0.5 , 0. ,
0.83333333, 0.83333333, 1. ])
See Also
--------
sequence_diversity, windowed_diversity
"""
# This function calculates the mean number of pairwise differences
# between haplotypes within a single population, generalising to any number
# of alleles.
# check inputs
ac = asarray_ndim(ac, 2)
# total number of haplotypes
if an is None:
an = np.sum(ac, axis=1)
else:
an = asarray_ndim(an, 1)
check_dim0_aligned(ac, an)
# total number of pairwise comparisons for each variant:
# (an choose 2)
n_pairs = an * (an - 1) / 2
# number of pairwise comparisons where there is no difference:
# sum of (ac choose 2) for each allele (i.e., number of ways to
# choose the same allele twice)
n_same = np.sum(ac * (ac - 1) / 2, axis=1)
# number of pairwise differences
n_diff = n_pairs - n_same
# mean number of pairwise differences, accounting for cases where
# there are no pairs
with ignore_invalid():
mpd = np.where(n_pairs > 0, n_diff / n_pairs, fill)
return mpd | python | def mean_pairwise_difference(ac, an=None, fill=np.nan):
"""Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from within a single population.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
an : array_like, int, shape (n_variants,), optional
Allele numbers. If not provided, will be calculated from `ac`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide diversity, a.k.a. *pi*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac = h.count_alleles()
>>> allel.mean_pairwise_difference(ac)
array([0. , 0.5 , 0.66666667, 0.5 , 0. ,
0.83333333, 0.83333333, 1. ])
See Also
--------
sequence_diversity, windowed_diversity
"""
# This function calculates the mean number of pairwise differences
# between haplotypes within a single population, generalising to any number
# of alleles.
# check inputs
ac = asarray_ndim(ac, 2)
# total number of haplotypes
if an is None:
an = np.sum(ac, axis=1)
else:
an = asarray_ndim(an, 1)
check_dim0_aligned(ac, an)
# total number of pairwise comparisons for each variant:
# (an choose 2)
n_pairs = an * (an - 1) / 2
# number of pairwise comparisons where there is no difference:
# sum of (ac choose 2) for each allele (i.e., number of ways to
# choose the same allele twice)
n_same = np.sum(ac * (ac - 1) / 2, axis=1)
# number of pairwise differences
n_diff = n_pairs - n_same
# mean number of pairwise differences, accounting for cases where
# there are no pairs
with ignore_invalid():
mpd = np.where(n_pairs > 0, n_diff / n_pairs, fill)
return mpd | Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from within a single population.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
an : array_like, int, shape (n_variants,), optional
Allele numbers. If not provided, will be calculated from `ac`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide diversity, a.k.a. *pi*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac = h.count_alleles()
>>> allel.mean_pairwise_difference(ac)
array([0. , 0.5 , 0.66666667, 0.5 , 0. ,
0.83333333, 0.83333333, 1. ])
See Also
--------
sequence_diversity, windowed_diversity | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L22-L104 |
cggh/scikit-allel | allel/stats/diversity.py | mean_pairwise_difference_between | def mean_pairwise_difference_between(ac1, ac2, an1=None, an2=None,
fill=np.nan):
"""Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from two different populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide divergence between two populations, a.k.a. *Dxy*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> allel.mean_pairwise_difference_between(ac1, ac2)
array([0. , 0.5 , 1. , 0.5 , 0. , 1. , 0.75, nan])
See Also
--------
sequence_divergence, windowed_divergence
"""
# This function calculates the mean number of pairwise differences
# between haplotypes from two different populations, generalising to any
# number of alleles.
# check inputs
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
check_dim0_aligned(ac1, ac2)
ac1, ac2 = ensure_dim1_aligned(ac1, ac2)
# total number of haplotypes sampled from each population
if an1 is None:
an1 = np.sum(ac1, axis=1)
else:
an1 = asarray_ndim(an1, 1)
check_dim0_aligned(ac1, an1)
if an2 is None:
an2 = np.sum(ac2, axis=1)
else:
an2 = asarray_ndim(an2, 1)
check_dim0_aligned(ac2, an2)
# total number of pairwise comparisons for each variant
n_pairs = an1 * an2
# number of pairwise comparisons where there is no difference:
# sum of (ac1 * ac2) for each allele (i.e., number of ways to
# choose the same allele twice)
n_same = np.sum(ac1 * ac2, axis=1)
# number of pairwise differences
n_diff = n_pairs - n_same
# mean number of pairwise differences, accounting for cases where
# there are no pairs
with ignore_invalid():
mpd = np.where(n_pairs > 0, n_diff / n_pairs, fill)
return mpd | python | def mean_pairwise_difference_between(ac1, ac2, an1=None, an2=None,
fill=np.nan):
"""Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from two different populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide divergence between two populations, a.k.a. *Dxy*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> allel.mean_pairwise_difference_between(ac1, ac2)
array([0. , 0.5 , 1. , 0.5 , 0. , 1. , 0.75, nan])
See Also
--------
sequence_divergence, windowed_divergence
"""
# This function calculates the mean number of pairwise differences
# between haplotypes from two different populations, generalising to any
# number of alleles.
# check inputs
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
check_dim0_aligned(ac1, ac2)
ac1, ac2 = ensure_dim1_aligned(ac1, ac2)
# total number of haplotypes sampled from each population
if an1 is None:
an1 = np.sum(ac1, axis=1)
else:
an1 = asarray_ndim(an1, 1)
check_dim0_aligned(ac1, an1)
if an2 is None:
an2 = np.sum(ac2, axis=1)
else:
an2 = asarray_ndim(an2, 1)
check_dim0_aligned(ac2, an2)
# total number of pairwise comparisons for each variant
n_pairs = an1 * an2
# number of pairwise comparisons where there is no difference:
# sum of (ac1 * ac2) for each allele (i.e., number of ways to
# choose the same allele twice)
n_same = np.sum(ac1 * ac2, axis=1)
# number of pairwise differences
n_diff = n_pairs - n_same
# mean number of pairwise differences, accounting for cases where
# there are no pairs
with ignore_invalid():
mpd = np.where(n_pairs > 0, n_diff / n_pairs, fill)
return mpd | Calculate for each variant the mean number of pairwise differences
between chromosomes sampled from two different populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array from the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
fill : float
Use this value where there are no pairs to compare (e.g.,
all allele calls are missing).
Returns
-------
mpd : ndarray, float, shape (n_variants,)
Notes
-----
The values returned by this function can be summed over a genome
region and divided by the number of accessible bases to estimate
nucleotide divergence between two populations, a.k.a. *Dxy*.
Examples
--------
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> allel.mean_pairwise_difference_between(ac1, ac2)
array([0. , 0.5 , 1. , 0.5 , 0. , 1. , 0.75, nan])
See Also
--------
sequence_divergence, windowed_divergence | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L107-L203 |
cggh/scikit-allel | allel/stats/diversity.py | sequence_diversity | def sequence_diversity(pos, ac, start=None, stop=None,
is_accessible=None):
"""Estimate nucleotide diversity within a given region, which is the
average proportion of sites (including monomorphic sites not present in the
data) that differ between randomly chosen pairs of chromosomes.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity.
Notes
-----
If start and/or stop are not provided, uses the difference between the last
and the first position as a proxy for the total number of sites, which can
overestimate the sequence diversity.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi = allel.sequence_diversity(pos, ac, start=1, stop=31)
>>> pi
0.13978494623655915
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
ac = asarray_ndim(ac, 2)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# deal with subregion
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac = ac[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# sum differences over variants
mpd_sum = np.sum(mpd)
# calculate value per base
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
pi = mpd_sum / n_bases
return pi | python | def sequence_diversity(pos, ac, start=None, stop=None,
is_accessible=None):
"""Estimate nucleotide diversity within a given region, which is the
average proportion of sites (including monomorphic sites not present in the
data) that differ between randomly chosen pairs of chromosomes.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity.
Notes
-----
If start and/or stop are not provided, uses the difference between the last
and the first position as a proxy for the total number of sites, which can
overestimate the sequence diversity.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi = allel.sequence_diversity(pos, ac, start=1, stop=31)
>>> pi
0.13978494623655915
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
ac = asarray_ndim(ac, 2)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# deal with subregion
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac = ac[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# sum differences over variants
mpd_sum = np.sum(mpd)
# calculate value per base
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
pi = mpd_sum / n_bases
return pi | Estimate nucleotide diversity within a given region, which is the
average proportion of sites (including monomorphic sites not present in the
data) that differ between randomly chosen pairs of chromosomes.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity.
Notes
-----
If start and/or stop are not provided, uses the difference between the last
and the first position as a proxy for the total number of sites, which can
overestimate the sequence diversity.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi = allel.sequence_diversity(pos, ac, start=1, stop=31)
>>> pi
0.13978494623655915 | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L206-L290 |
cggh/scikit-allel | allel/stats/diversity.py | sequence_divergence | def sequence_divergence(pos, ac1, ac2, an1=None, an2=None, start=None,
stop=None, is_accessible=None):
"""Estimate nucleotide divergence between two populations within a
given region, which is the average proportion of sites (including
monomorphic sites not present in the data) that differ between randomly
chosen pairs of chromosomes, one from each population.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
Dxy : ndarray, float, shape (n_windows,)
Nucleotide divergence.
Examples
--------
Simplest case, two haplotypes in each population::
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1],
... [-1, -1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> dxy = sequence_divergence(pos, ac1, ac2, start=1, stop=31)
>>> dxy
0.12096774193548387
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
if an1 is not None:
an1 = asarray_ndim(an1, 1)
if an2 is not None:
an2 = asarray_ndim(an2, 1)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# handle start/stop
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac1 = ac1[loc]
ac2 = ac2[loc]
if an1 is not None:
an1 = an1[loc]
if an2 is not None:
an2 = an2[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# calculate mean pairwise difference between the two populations
mpd = mean_pairwise_difference_between(ac1, ac2, an1=an1, an2=an2, fill=0)
# sum differences over variants
mpd_sum = np.sum(mpd)
# calculate value per base, N.B., expect pos is 1-based
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
dxy = mpd_sum / n_bases
return dxy | python | def sequence_divergence(pos, ac1, ac2, an1=None, an2=None, start=None,
stop=None, is_accessible=None):
"""Estimate nucleotide divergence between two populations within a
given region, which is the average proportion of sites (including
monomorphic sites not present in the data) that differ between randomly
chosen pairs of chromosomes, one from each population.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
Dxy : ndarray, float, shape (n_windows,)
Nucleotide divergence.
Examples
--------
Simplest case, two haplotypes in each population::
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1],
... [-1, -1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> dxy = sequence_divergence(pos, ac1, ac2, start=1, stop=31)
>>> dxy
0.12096774193548387
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
ac1 = asarray_ndim(ac1, 2)
ac2 = asarray_ndim(ac2, 2)
if an1 is not None:
an1 = asarray_ndim(an1, 1)
if an2 is not None:
an2 = asarray_ndim(an2, 1)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# handle start/stop
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac1 = ac1[loc]
ac2 = ac2[loc]
if an1 is not None:
an1 = an1[loc]
if an2 is not None:
an2 = an2[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# calculate mean pairwise difference between the two populations
mpd = mean_pairwise_difference_between(ac1, ac2, an1=an1, an2=an2, fill=0)
# sum differences over variants
mpd_sum = np.sum(mpd)
# calculate value per base, N.B., expect pos is 1-based
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
dxy = mpd_sum / n_bases
return dxy | Estimate nucleotide divergence between two populations within a
given region, which is the average proportion of sites (including
monomorphic sites not present in the data) that differ between randomly
chosen pairs of chromosomes, one from each population.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
an1 : array_like, int, shape (n_variants,), optional
Allele numbers for the first population. If not provided, will be
calculated from `ac1`.
an2 : array_like, int, shape (n_variants,), optional
Allele numbers for the second population. If not provided, will be
calculated from `ac2`.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
Dxy : ndarray, float, shape (n_windows,)
Nucleotide divergence.
Examples
--------
Simplest case, two haplotypes in each population::
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1],
... [-1, -1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> dxy = sequence_divergence(pos, ac1, ac2, start=1, stop=31)
>>> dxy
0.12096774193548387 | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L293-L393 |
cggh/scikit-allel | allel/stats/diversity.py | windowed_diversity | def windowed_diversity(pos, ac, size=None, start=None, stop=None, step=None,
windows=None, is_accessible=None, fill=np.nan):
"""Estimate nucleotide diversity in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi, windows, n_bases, counts = allel.windowed_diversity(
... pos, ac, size=10, start=1, stop=31
... )
>>> pi
array([0.11666667, 0.21666667, 0.09090909])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2])
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# sum differences in windows
mpd_sum, windows, counts = windowed_statistic(
pos, values=mpd, statistic=np.sum, size=size, start=start, stop=stop,
step=step, windows=windows, fill=0
)
# calculate value per base
pi, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible,
fill=fill)
return pi, windows, n_bases, counts | python | def windowed_diversity(pos, ac, size=None, start=None, stop=None, step=None,
windows=None, is_accessible=None, fill=np.nan):
"""Estimate nucleotide diversity in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi, windows, n_bases, counts = allel.windowed_diversity(
... pos, ac, size=10, start=1, stop=31
... )
>>> pi
array([0.11666667, 0.21666667, 0.09090909])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2])
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# sum differences in windows
mpd_sum, windows, counts = windowed_statistic(
pos, values=mpd, statistic=np.sum, size=size, start=start, stop=stop,
step=step, windows=windows, fill=0
)
# calculate value per base
pi, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible,
fill=fill)
return pi, windows, n_bases, counts | Estimate nucleotide diversity in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
pi : ndarray, float, shape (n_windows,)
Nucleotide diversity in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> pi, windows, n_bases, counts = allel.windowed_diversity(
... pos, ac, size=10, start=1, stop=31
... )
>>> pi
array([0.11666667, 0.21666667, 0.09090909])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2]) | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L396-L489 |
cggh/scikit-allel | allel/stats/diversity.py | windowed_divergence | def windowed_divergence(pos, ac1, ac2, size=None, start=None, stop=None,
step=None, windows=None, is_accessible=None,
fill=np.nan):
"""Estimate nucleotide divergence between two populations in windows
over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
Dxy : ndarray, float, shape (n_windows,)
Nucleotide divergence in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
Simplest case, two haplotypes in each population::
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1],
... [-1, -1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> dxy, windows, n_bases, counts = windowed_divergence(
... pos, ac1, ac2, size=10, start=1, stop=31
... )
>>> dxy
array([0.15 , 0.225, 0. ])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2])
"""
# check inputs
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# calculate mean pairwise divergence
mpd = mean_pairwise_difference_between(ac1, ac2, fill=0)
# sum in windows
mpd_sum, windows, counts = windowed_statistic(
pos, values=mpd, statistic=np.sum, size=size, start=start,
stop=stop, step=step, windows=windows, fill=0
)
# calculate value per base
dxy, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible,
fill=fill)
return dxy, windows, n_bases, counts | python | def windowed_divergence(pos, ac1, ac2, size=None, start=None, stop=None,
step=None, windows=None, is_accessible=None,
fill=np.nan):
"""Estimate nucleotide divergence between two populations in windows
over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
Dxy : ndarray, float, shape (n_windows,)
Nucleotide divergence in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
Simplest case, two haplotypes in each population::
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1],
... [-1, -1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> dxy, windows, n_bases, counts = windowed_divergence(
... pos, ac1, ac2, size=10, start=1, stop=31
... )
>>> dxy
array([0.15 , 0.225, 0. ])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2])
"""
# check inputs
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# calculate mean pairwise divergence
mpd = mean_pairwise_difference_between(ac1, ac2, fill=0)
# sum in windows
mpd_sum, windows, counts = windowed_statistic(
pos, values=mpd, statistic=np.sum, size=size, start=start,
stop=stop, step=step, windows=windows, fill=0
)
# calculate value per base
dxy, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible,
fill=fill)
return dxy, windows, n_bases, counts | Estimate nucleotide divergence between two populations in windows
over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
Dxy : ndarray, float, shape (n_windows,)
Nucleotide divergence in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
Simplest case, two haplotypes in each population::
>>> import allel
>>> h = allel.HaplotypeArray([[0, 0, 0, 0],
... [0, 0, 0, 1],
... [0, 0, 1, 1],
... [0, 1, 1, 1],
... [1, 1, 1, 1],
... [0, 0, 1, 2],
... [0, 1, 1, 2],
... [0, 1, -1, -1],
... [-1, -1, -1, -1]])
>>> ac1 = h.count_alleles(subpop=[0, 1])
>>> ac2 = h.count_alleles(subpop=[2, 3])
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> dxy, windows, n_bases, counts = windowed_divergence(
... pos, ac1, ac2, size=10, start=1, stop=31
... )
>>> dxy
array([0.15 , 0.225, 0. ])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2]) | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L492-L590 |
cggh/scikit-allel | allel/stats/diversity.py | windowed_df | def windowed_df(pos, ac1, ac2, size=None, start=None, stop=None, step=None,
windows=None, is_accessible=None, fill=np.nan):
"""Calculate the density of fixed differences between two populations in
windows over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
df : ndarray, float, shape (n_windows,)
Per-base density of fixed differences in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
See Also
--------
allel.model.locate_fixed_differences
"""
# check inputs
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# locate fixed differences
loc_df = locate_fixed_differences(ac1, ac2)
# count number of fixed differences in windows
n_df, windows, counts = windowed_statistic(
pos, values=loc_df, statistic=np.count_nonzero, size=size, start=start,
stop=stop, step=step, windows=windows, fill=0
)
# calculate value per base
df, n_bases = per_base(n_df, windows, is_accessible=is_accessible,
fill=fill)
return df, windows, n_bases, counts | python | def windowed_df(pos, ac1, ac2, size=None, start=None, stop=None, step=None,
windows=None, is_accessible=None, fill=np.nan):
"""Calculate the density of fixed differences between two populations in
windows over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
df : ndarray, float, shape (n_windows,)
Per-base density of fixed differences in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
See Also
--------
allel.model.locate_fixed_differences
"""
# check inputs
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
# locate fixed differences
loc_df = locate_fixed_differences(ac1, ac2)
# count number of fixed differences in windows
n_df, windows, counts = windowed_statistic(
pos, values=loc_df, statistic=np.count_nonzero, size=size, start=start,
stop=stop, step=step, windows=windows, fill=0
)
# calculate value per base
df, n_bases = per_base(n_df, windows, is_accessible=is_accessible,
fill=fill)
return df, windows, n_bases, counts | Calculate the density of fixed differences between two populations in
windows over a single chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac1 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the first population.
ac2 : array_like, int, shape (n_variants, n_alleles)
Allele counts array for the second population.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
df : ndarray, float, shape (n_windows,)
Per-base density of fixed differences in each window.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
See Also
--------
allel.model.locate_fixed_differences | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L593-L663 |
cggh/scikit-allel | allel/stats/diversity.py | watterson_theta | def watterson_theta(pos, ac, start=None, stop=None,
is_accessible=None):
"""Calculate the value of Watterson's estimator over a given region.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
theta_hat_w : float
Watterson's estimator (theta hat per base).
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w = allel.watterson_theta(pos, ac, start=1, stop=31)
>>> theta_hat_w
0.10557184750733138
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# deal with subregion
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac = ac[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# count segregating variants
S = ac.count_segregating()
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# calculate absolute value
theta_hat_w_abs = S / a1
# calculate value per base
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
theta_hat_w = theta_hat_w_abs / n_bases
return theta_hat_w | python | def watterson_theta(pos, ac, start=None, stop=None,
is_accessible=None):
"""Calculate the value of Watterson's estimator over a given region.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
theta_hat_w : float
Watterson's estimator (theta hat per base).
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w = allel.watterson_theta(pos, ac, start=1, stop=31)
>>> theta_hat_w
0.10557184750733138
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# deal with subregion
if start is not None or stop is not None:
loc = pos.locate_range(start, stop)
pos = pos[loc]
ac = ac[loc]
if start is None:
start = pos[0]
if stop is None:
stop = pos[-1]
# count segregating variants
S = ac.count_segregating()
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# calculate absolute value
theta_hat_w_abs = S / a1
# calculate value per base
if is_accessible is None:
n_bases = stop - start + 1
else:
n_bases = np.count_nonzero(is_accessible[start-1:stop])
theta_hat_w = theta_hat_w_abs / n_bases
return theta_hat_w | Calculate the value of Watterson's estimator over a given region.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
Returns
-------
theta_hat_w : float
Watterson's estimator (theta hat per base).
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w = allel.watterson_theta(pos, ac, start=1, stop=31)
>>> theta_hat_w
0.10557184750733138 | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L667-L749 |
cggh/scikit-allel | allel/stats/diversity.py | windowed_watterson_theta | def windowed_watterson_theta(pos, ac, size=None, start=None, stop=None,
step=None, windows=None, is_accessible=None,
fill=np.nan):
"""Calculate the value of Watterson's estimator in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
theta_hat_w : ndarray, float, shape (n_windows,)
Watterson's estimator (theta hat per base).
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w, windows, n_bases, counts = allel.windowed_watterson_theta(
... pos, ac, size=10, start=1, stop=31
... )
>>> theta_hat_w
array([0.10909091, 0.16363636, 0.04958678])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2])
""" # flake8: noqa
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# locate segregating variants
is_seg = ac.is_segregating()
# count segregating variants in windows
S, windows, counts = windowed_statistic(pos, is_seg,
statistic=np.count_nonzero,
size=size, start=start,
stop=stop, step=step,
windows=windows, fill=0)
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# absolute value of Watterson's theta
theta_hat_w_abs = S / a1
# theta per base
theta_hat_w, n_bases = per_base(theta_hat_w_abs, windows=windows,
is_accessible=is_accessible, fill=fill)
return theta_hat_w, windows, n_bases, counts | python | def windowed_watterson_theta(pos, ac, size=None, start=None, stop=None,
step=None, windows=None, is_accessible=None,
fill=np.nan):
"""Calculate the value of Watterson's estimator in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
theta_hat_w : ndarray, float, shape (n_windows,)
Watterson's estimator (theta hat per base).
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w, windows, n_bases, counts = allel.windowed_watterson_theta(
... pos, ac, size=10, start=1, stop=31
... )
>>> theta_hat_w
array([0.10909091, 0.16363636, 0.04958678])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2])
""" # flake8: noqa
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# locate segregating variants
is_seg = ac.is_segregating()
# count segregating variants in windows
S, windows, counts = windowed_statistic(pos, is_seg,
statistic=np.count_nonzero,
size=size, start=start,
stop=stop, step=step,
windows=windows, fill=0)
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# absolute value of Watterson's theta
theta_hat_w_abs = S / a1
# theta per base
theta_hat_w, n_bases = per_base(theta_hat_w_abs, windows=windows,
is_accessible=is_accessible, fill=fill)
return theta_hat_w, windows, n_bases, counts | Calculate the value of Watterson's estimator in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
is_accessible : array_like, bool, shape (len(contig),), optional
Boolean array indicating accessibility status for all positions in the
chromosome/contig.
fill : object, optional
The value to use where a window is completely inaccessible.
Returns
-------
theta_hat_w : ndarray, float, shape (n_windows,)
Watterson's estimator (theta hat per base).
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
n_bases : ndarray, int, shape (n_windows,)
Number of (accessible) bases in each window.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> theta_hat_w, windows, n_bases, counts = allel.windowed_watterson_theta(
... pos, ac, size=10, start=1, stop=31
... )
>>> theta_hat_w
array([0.10909091, 0.16363636, 0.04958678])
>>> windows
array([[ 1, 10],
[11, 20],
[21, 31]])
>>> n_bases
array([10, 10, 11])
>>> counts
array([3, 4, 2]) | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L753-L859 |
cggh/scikit-allel | allel/stats/diversity.py | tajima_d | def tajima_d(ac, pos=None, start=None, stop=None, min_sites=3):
"""Calculate the value of Tajima's D over a given region.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
pos : array_like, int, shape (n_items,), optional
Variant positions, using 1-based coordinates, in ascending order.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : float
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> allel.tajima_d(ac)
3.1445848780213814
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> allel.tajima_d(ac, pos=pos, start=7, stop=25)
3.8779735196179366
"""
# check inputs
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# deal with subregion
if pos is not None and (start is not None or stop is not None):
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
loc = pos.locate_range(start, stop)
ac = ac[loc]
# count segregating variants
S = ac.count_segregating()
if S < min_sites:
return np.nan
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# calculate Watterson's theta (absolute value)
theta_hat_w_abs = S / a1
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# calculate theta_hat pi (sum differences over variants)
theta_hat_pi_abs = np.sum(mpd)
# N.B., both theta estimates are usually divided by the number of
# (accessible) bases but here we want the absolute difference
d = theta_hat_pi_abs - theta_hat_w_abs
# calculate the denominator (standard deviation)
a2 = np.sum(1 / (np.arange(1, n)**2))
b1 = (n + 1) / (3 * (n - 1))
b2 = 2 * (n**2 + n + 3) / (9 * n * (n - 1))
c1 = b1 - (1 / a1)
c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1**2))
e1 = c1 / a1
e2 = c2 / (a1**2 + a2)
d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))
# finally calculate Tajima's D
D = d / d_stdev
return D | python | def tajima_d(ac, pos=None, start=None, stop=None, min_sites=3):
"""Calculate the value of Tajima's D over a given region.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
pos : array_like, int, shape (n_items,), optional
Variant positions, using 1-based coordinates, in ascending order.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : float
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> allel.tajima_d(ac)
3.1445848780213814
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> allel.tajima_d(ac, pos=pos, start=7, stop=25)
3.8779735196179366
"""
# check inputs
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# deal with subregion
if pos is not None and (start is not None or stop is not None):
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
loc = pos.locate_range(start, stop)
ac = ac[loc]
# count segregating variants
S = ac.count_segregating()
if S < min_sites:
return np.nan
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# (n-1)th harmonic number
a1 = np.sum(1 / np.arange(1, n))
# calculate Watterson's theta (absolute value)
theta_hat_w_abs = S / a1
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# calculate theta_hat pi (sum differences over variants)
theta_hat_pi_abs = np.sum(mpd)
# N.B., both theta estimates are usually divided by the number of
# (accessible) bases but here we want the absolute difference
d = theta_hat_pi_abs - theta_hat_w_abs
# calculate the denominator (standard deviation)
a2 = np.sum(1 / (np.arange(1, n)**2))
b1 = (n + 1) / (3 * (n - 1))
b2 = 2 * (n**2 + n + 3) / (9 * n * (n - 1))
c1 = b1 - (1 / a1)
c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1**2))
e1 = c1 / a1
e2 = c2 / (a1**2 + a2)
d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))
# finally calculate Tajima's D
D = d / d_stdev
return D | Calculate the value of Tajima's D over a given region.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
pos : array_like, int, shape (n_items,), optional
Variant positions, using 1-based coordinates, in ascending order.
start : int, optional
The position at which to start (1-based). Defaults to the first position.
stop : int, optional
The position at which to stop (1-based). Defaults to the last position.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : float
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> allel.tajima_d(ac)
3.1445848780213814
>>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
>>> allel.tajima_d(ac, pos=pos, start=7, stop=25)
3.8779735196179366 | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L863-L954 |
cggh/scikit-allel | allel/stats/diversity.py | windowed_tajima_d | def windowed_tajima_d(pos, ac, size=None, start=None, stop=None,
step=None, windows=None, min_sites=3):
"""Calculate the value of Tajima's D in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : ndarray, float, shape (n_windows,)
Tajima's D.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 20, 22, 25, 27]
>>> D, windows, counts = allel.windowed_tajima_d(pos, ac, size=20, step=10, start=1, stop=31)
>>> D
array([1.36521524, 4.22566622])
>>> windows
array([[ 1, 20],
[11, 31]])
>>> counts
array([6, 6])
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# calculate constants
a1 = np.sum(1 / np.arange(1, n))
a2 = np.sum(1 / (np.arange(1, n)**2))
b1 = (n + 1) / (3 * (n - 1))
b2 = 2 * (n**2 + n + 3) / (9 * n * (n - 1))
c1 = b1 - (1 / a1)
c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1**2))
e1 = c1 / a1
e2 = c2 / (a1**2 + a2)
# locate segregating variants
is_seg = ac.is_segregating()
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# define statistic to compute for each window
# noinspection PyPep8Naming
def statistic(w_is_seg, w_mpd):
S = np.count_nonzero(w_is_seg)
if S < min_sites:
return np.nan
pi = np.sum(w_mpd)
d = pi - (S / a1)
d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))
wD = d / d_stdev
return wD
D, windows, counts = windowed_statistic(pos, values=(is_seg, mpd),
statistic=statistic, size=size,
start=start, stop=stop, step=step,
windows=windows, fill=np.nan)
return D, windows, counts | python | def windowed_tajima_d(pos, ac, size=None, start=None, stop=None,
step=None, windows=None, min_sites=3):
"""Calculate the value of Tajima's D in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : ndarray, float, shape (n_windows,)
Tajima's D.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 20, 22, 25, 27]
>>> D, windows, counts = allel.windowed_tajima_d(pos, ac, size=20, step=10, start=1, stop=31)
>>> D
array([1.36521524, 4.22566622])
>>> windows
array([[ 1, 20],
[11, 31]])
>>> counts
array([6, 6])
"""
# check inputs
if not isinstance(pos, SortedIndex):
pos = SortedIndex(pos, copy=False)
if not hasattr(ac, 'count_segregating'):
ac = AlleleCountsArray(ac, copy=False)
# assume number of chromosomes sampled is constant for all variants
n = ac.sum(axis=1).max()
# calculate constants
a1 = np.sum(1 / np.arange(1, n))
a2 = np.sum(1 / (np.arange(1, n)**2))
b1 = (n + 1) / (3 * (n - 1))
b2 = 2 * (n**2 + n + 3) / (9 * n * (n - 1))
c1 = b1 - (1 / a1)
c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1**2))
e1 = c1 / a1
e2 = c2 / (a1**2 + a2)
# locate segregating variants
is_seg = ac.is_segregating()
# calculate mean pairwise difference
mpd = mean_pairwise_difference(ac, fill=0)
# define statistic to compute for each window
# noinspection PyPep8Naming
def statistic(w_is_seg, w_mpd):
S = np.count_nonzero(w_is_seg)
if S < min_sites:
return np.nan
pi = np.sum(w_mpd)
d = pi - (S / a1)
d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))
wD = d / d_stdev
return wD
D, windows, counts = windowed_statistic(pos, values=(is_seg, mpd),
statistic=statistic, size=size,
start=start, stop=stop, step=step,
windows=windows, fill=np.nan)
return D, windows, counts | Calculate the value of Tajima's D in windows over a single
chromosome/contig.
Parameters
----------
pos : array_like, int, shape (n_items,)
Variant positions, using 1-based coordinates, in ascending order.
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int, optional
The window size (number of bases).
start : int, optional
The position at which to start (1-based).
stop : int, optional
The position at which to stop (1-based).
step : int, optional
The distance between start positions of windows. If not given,
defaults to the window size, i.e., non-overlapping windows.
windows : array_like, int, shape (n_windows, 2), optional
Manually specify the windows to use as a sequence of (window_start,
window_stop) positions, using 1-based coordinates. Overrides the
size/start/stop/step parameters.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
D : ndarray, float, shape (n_windows,)
Tajima's D.
windows : ndarray, int, shape (n_windows, 2)
The windows used, as an array of (window_start, window_stop) positions,
using 1-based coordinates.
counts : ndarray, int, shape (n_windows,)
Number of variants in each window.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> pos = [2, 4, 7, 14, 15, 20, 22, 25, 27]
>>> D, windows, counts = allel.windowed_tajima_d(pos, ac, size=20, step=10, start=1, stop=31)
>>> D
array([1.36521524, 4.22566622])
>>> windows
array([[ 1, 20],
[11, 31]])
>>> counts
array([6, 6]) | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L958-L1064 |
cggh/scikit-allel | allel/stats/diversity.py | moving_tajima_d | def moving_tajima_d(ac, size, start=0, stop=None, step=None, min_sites=3):
"""Calculate the value of Tajima's D in moving windows of `size` variants.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
d : ndarray, float, shape (n_windows,)
Tajima's D.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> D = allel.moving_tajima_d(ac, size=4, step=2)
>>> D
array([0.1676558 , 2.01186954, 5.70029703])
"""
d = moving_statistic(values=ac, statistic=tajima_d, size=size, start=start, stop=stop,
step=step, min_sites=min_sites)
return d | python | def moving_tajima_d(ac, size, start=0, stop=None, step=None, min_sites=3):
"""Calculate the value of Tajima's D in moving windows of `size` variants.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
d : ndarray, float, shape (n_windows,)
Tajima's D.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> D = allel.moving_tajima_d(ac, size=4, step=2)
>>> D
array([0.1676558 , 2.01186954, 5.70029703])
"""
d = moving_statistic(values=ac, statistic=tajima_d, size=size, start=start, stop=stop,
step=step, min_sites=min_sites)
return d | Calculate the value of Tajima's D in moving windows of `size` variants.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
d : ndarray, float, shape (n_windows,)
Tajima's D.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> D = allel.moving_tajima_d(ac, size=4, step=2)
>>> D
array([0.1676558 , 2.01186954, 5.70029703]) | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/diversity.py#L1067-L1115 |
cggh/scikit-allel | allel/stats/roh.py | roh_mhmm | def roh_mhmm(gv, pos, phet_roh=0.001, phet_nonroh=(0.0025, 0.01), transition=1e-6,
min_roh=0, is_accessible=None, contig_size=None):
"""Call ROH (runs of homozygosity) in a single individual given a genotype vector.
This function computes the likely ROH using a Multinomial HMM model. There are 3
observable states at each position in a chromosome/contig: 0 = Hom, 1 = Het,
2 = inaccessible (i.e., unobserved).
The model is provided with a probability of observing a het in a ROH (`phet_roh`) and one
or more probabilities of observing a het in a non-ROH, as this probability may not be
constant across the genome (`phet_nonroh`).
Parameters
----------
gv : array_like, int, shape (n_variants, ploidy)
Genotype vector.
pos: array_like, int, shape (n_variants,)
Positions of variants, same 0th dimension as `gv`.
phet_roh: float, optional
Probability of observing a heterozygote in a ROH. Appropriate values
will depend on de novo mutation rate and genotype error rate.
phet_nonroh: tuple of floats, optional
One or more probabilites of observing a heterozygote outside of ROH.
Appropriate values will depend primarily on nucleotide diversity within
the population, but also on mutation rate and genotype error rate.
transition: float, optional
Probability of moving between states.
min_roh: integer, optional
Minimum size (bp) to condsider as a ROH. Will depend on contig size
and recombination rate.
is_accessible: array_like, bool, shape (`contig_size`,), optional
Boolean array for each position in contig describing whether accessible
or not.
contig_size: int, optional
If is_accessible not known/not provided, allows specification of
total length of contig.
Returns
-------
df_roh: DataFrame
Data frame where each row describes a run of homozygosity. Columns are 'start',
'stop', 'length' and 'is_marginal'. Start and stop are 1-based, stop-inclusive.
froh: float
Proportion of genome in a ROH.
Notes
-----
This function requires `hmmlearn <http://hmmlearn.readthedocs.io/en/latest/>`_ to be
installed.
This function currently requires around 4GB memory for a contig size of ~50Mbp.
"""
from hmmlearn import hmm
# setup inputs
if isinstance(phet_nonroh, float):
phet_nonroh = phet_nonroh,
gv = GenotypeVector(gv)
pos = asarray_ndim(pos, 1)
check_dim0_aligned(gv, pos)
is_accessible = asarray_ndim(is_accessible, 1, dtype=bool)
# heterozygote probabilities
het_px = np.concatenate([(phet_roh,), phet_nonroh])
# start probabilities (all equal)
start_prob = np.repeat(1/het_px.size, het_px.size)
# transition between underlying states
transition_mx = _hmm_derive_transition_matrix(transition, het_px.size)
# probability of inaccessible
if is_accessible is None:
if contig_size is None:
raise ValueError(
"If is_accessibile argument is not provided, you must provide contig_size")
p_accessible = 1.0
else:
p_accessible = is_accessible.mean()
contig_size = is_accessible.size
emission_mx = _mhmm_derive_emission_matrix(het_px, p_accessible)
# initialize HMM
roh_hmm = hmm.MultinomialHMM(n_components=het_px.size)
roh_hmm.n_symbols_ = 3
roh_hmm.startprob_ = start_prob
roh_hmm.transmat_ = transition_mx
roh_hmm.emissionprob_ = emission_mx
# locate heterozygous calls
is_het = gv.is_het()
# predict ROH state
pred, obs = _mhmm_predict_roh_state(roh_hmm, is_het, pos, is_accessible, contig_size)
# find ROH windows
df_blocks = tabulate_state_blocks(pred, states=list(range(len(het_px))))
df_roh = df_blocks[(df_blocks.state == 0)].reset_index(drop=True)
# adapt the dataframe for ROH
for col in 'state', 'support', 'start_lidx', 'stop_ridx', 'size_max':
del df_roh[col]
df_roh.rename(columns={'start_ridx': 'start',
'stop_lidx': 'stop',
'size_min': 'length'},
inplace=True)
# make coordinates 1-based
df_roh['start'] = df_roh['start'] + 1
df_roh['stop'] = df_roh['stop'] + 1
# filter by ROH size
if min_roh > 0:
df_roh = df_roh[df_roh.length >= min_roh]
# compute FROH
froh = df_roh.length.sum() / contig_size
return df_roh, froh | python | def roh_mhmm(gv, pos, phet_roh=0.001, phet_nonroh=(0.0025, 0.01), transition=1e-6,
min_roh=0, is_accessible=None, contig_size=None):
"""Call ROH (runs of homozygosity) in a single individual given a genotype vector.
This function computes the likely ROH using a Multinomial HMM model. There are 3
observable states at each position in a chromosome/contig: 0 = Hom, 1 = Het,
2 = inaccessible (i.e., unobserved).
The model is provided with a probability of observing a het in a ROH (`phet_roh`) and one
or more probabilities of observing a het in a non-ROH, as this probability may not be
constant across the genome (`phet_nonroh`).
Parameters
----------
gv : array_like, int, shape (n_variants, ploidy)
Genotype vector.
pos: array_like, int, shape (n_variants,)
Positions of variants, same 0th dimension as `gv`.
phet_roh: float, optional
Probability of observing a heterozygote in a ROH. Appropriate values
will depend on de novo mutation rate and genotype error rate.
phet_nonroh: tuple of floats, optional
One or more probabilites of observing a heterozygote outside of ROH.
Appropriate values will depend primarily on nucleotide diversity within
the population, but also on mutation rate and genotype error rate.
transition: float, optional
Probability of moving between states.
min_roh: integer, optional
Minimum size (bp) to condsider as a ROH. Will depend on contig size
and recombination rate.
is_accessible: array_like, bool, shape (`contig_size`,), optional
Boolean array for each position in contig describing whether accessible
or not.
contig_size: int, optional
If is_accessible not known/not provided, allows specification of
total length of contig.
Returns
-------
df_roh: DataFrame
Data frame where each row describes a run of homozygosity. Columns are 'start',
'stop', 'length' and 'is_marginal'. Start and stop are 1-based, stop-inclusive.
froh: float
Proportion of genome in a ROH.
Notes
-----
This function requires `hmmlearn <http://hmmlearn.readthedocs.io/en/latest/>`_ to be
installed.
This function currently requires around 4GB memory for a contig size of ~50Mbp.
"""
from hmmlearn import hmm
# setup inputs
if isinstance(phet_nonroh, float):
phet_nonroh = phet_nonroh,
gv = GenotypeVector(gv)
pos = asarray_ndim(pos, 1)
check_dim0_aligned(gv, pos)
is_accessible = asarray_ndim(is_accessible, 1, dtype=bool)
# heterozygote probabilities
het_px = np.concatenate([(phet_roh,), phet_nonroh])
# start probabilities (all equal)
start_prob = np.repeat(1/het_px.size, het_px.size)
# transition between underlying states
transition_mx = _hmm_derive_transition_matrix(transition, het_px.size)
# probability of inaccessible
if is_accessible is None:
if contig_size is None:
raise ValueError(
"If is_accessibile argument is not provided, you must provide contig_size")
p_accessible = 1.0
else:
p_accessible = is_accessible.mean()
contig_size = is_accessible.size
emission_mx = _mhmm_derive_emission_matrix(het_px, p_accessible)
# initialize HMM
roh_hmm = hmm.MultinomialHMM(n_components=het_px.size)
roh_hmm.n_symbols_ = 3
roh_hmm.startprob_ = start_prob
roh_hmm.transmat_ = transition_mx
roh_hmm.emissionprob_ = emission_mx
# locate heterozygous calls
is_het = gv.is_het()
# predict ROH state
pred, obs = _mhmm_predict_roh_state(roh_hmm, is_het, pos, is_accessible, contig_size)
# find ROH windows
df_blocks = tabulate_state_blocks(pred, states=list(range(len(het_px))))
df_roh = df_blocks[(df_blocks.state == 0)].reset_index(drop=True)
# adapt the dataframe for ROH
for col in 'state', 'support', 'start_lidx', 'stop_ridx', 'size_max':
del df_roh[col]
df_roh.rename(columns={'start_ridx': 'start',
'stop_lidx': 'stop',
'size_min': 'length'},
inplace=True)
# make coordinates 1-based
df_roh['start'] = df_roh['start'] + 1
df_roh['stop'] = df_roh['stop'] + 1
# filter by ROH size
if min_roh > 0:
df_roh = df_roh[df_roh.length >= min_roh]
# compute FROH
froh = df_roh.length.sum() / contig_size
return df_roh, froh | Call ROH (runs of homozygosity) in a single individual given a genotype vector.
This function computes the likely ROH using a Multinomial HMM model. There are 3
observable states at each position in a chromosome/contig: 0 = Hom, 1 = Het,
2 = inaccessible (i.e., unobserved).
The model is provided with a probability of observing a het in a ROH (`phet_roh`) and one
or more probabilities of observing a het in a non-ROH, as this probability may not be
constant across the genome (`phet_nonroh`).
Parameters
----------
gv : array_like, int, shape (n_variants, ploidy)
Genotype vector.
pos: array_like, int, shape (n_variants,)
Positions of variants, same 0th dimension as `gv`.
phet_roh: float, optional
Probability of observing a heterozygote in a ROH. Appropriate values
will depend on de novo mutation rate and genotype error rate.
phet_nonroh: tuple of floats, optional
One or more probabilites of observing a heterozygote outside of ROH.
Appropriate values will depend primarily on nucleotide diversity within
the population, but also on mutation rate and genotype error rate.
transition: float, optional
Probability of moving between states.
min_roh: integer, optional
Minimum size (bp) to condsider as a ROH. Will depend on contig size
and recombination rate.
is_accessible: array_like, bool, shape (`contig_size`,), optional
Boolean array for each position in contig describing whether accessible
or not.
contig_size: int, optional
If is_accessible not known/not provided, allows specification of
total length of contig.
Returns
-------
df_roh: DataFrame
Data frame where each row describes a run of homozygosity. Columns are 'start',
'stop', 'length' and 'is_marginal'. Start and stop are 1-based, stop-inclusive.
froh: float
Proportion of genome in a ROH.
Notes
-----
This function requires `hmmlearn <http://hmmlearn.readthedocs.io/en/latest/>`_ to be
installed.
This function currently requires around 4GB memory for a contig size of ~50Mbp. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/roh.py#L12-L132 |
cggh/scikit-allel | allel/stats/roh.py | roh_poissonhmm | def roh_poissonhmm(gv, pos, phet_roh=0.001, phet_nonroh=(0.0025, 0.01), transition=1e-3,
window_size=1000, min_roh=0, is_accessible=None, contig_size=None):
"""Call ROH (runs of homozygosity) in a single individual given a genotype vector.
This function computes the likely ROH using a Poisson HMM model. The chromosome is divided into
equally accessible windows of specified size, then the number of hets observed in each is used
to fit a Poisson HMM. Note this is much faster than `roh_mhmm`, but at the cost of some
resolution.
The model is provided with a probability of observing a het in a ROH (`phet_roh`) and one
or more probabilities of observing a het in a non-ROH, as this probability may not be
constant across the genome (`phet_nonroh`).
Parameters
----------
gv : array_like, int, shape (n_variants, ploidy)
Genotype vector.
pos: array_like, int, shape (n_variants,)
Positions of variants, same 0th dimension as `gv`.
phet_roh: float, optional
Probability of observing a heterozygote in a ROH. Appropriate values
will depend on de novo mutation rate and genotype error rate.
phet_nonroh: tuple of floats, optional
One or more probabilites of observing a heterozygote outside of ROH.
Appropriate values will depend primarily on nucleotide diversity within
the population, but also on mutation rate and genotype error rate.
transition: float, optional
Probability of moving between states. This is based on windows, so a larger window size may
call for a larger transitional probability
window_size: integer, optional
Window size (equally accessible bases) to consider as a potential ROH. Setting this window
too small may result in spurious ROH calls, while too large will result in a lack of
resolution.
min_roh: integer, optional
Minimum size (bp) to condsider as a ROH. Will depend on contig size and recombination rate.
is_accessible: array_like, bool, shape (`contig_size`,), optional
Boolean array for each position in contig describing whether accessible
or not. Although optional, highly recommended so invariant sites are distinguishable from
sites where variation is inaccessible
contig_size: integer, optional
If is_accessible is not available, use this to specify the size of the contig, and assume
all sites are accessible.
Returns
-------
df_roh: DataFrame
Data frame where each row describes a run of homozygosity. Columns are 'start',
'stop', 'length' and 'is_marginal'. Start and stop are 1-based, stop-inclusive.
froh: float
Proportion of genome in a ROH.
Notes
-----
This function requires `pomegranate` (>= 0.9.0) to be installed.
"""
from pomegranate import HiddenMarkovModel, PoissonDistribution
# equally accessbile windows
if is_accessible is None:
if contig_size is None:
raise ValueError(
"If is_accessibile argument is not provided, you must provide contig_size")
is_accessible = np.ones((contig_size,), dtype="bool")
else:
contig_size = is_accessible.size
eqw = equally_accessible_windows(is_accessible, window_size)
ishet = GenotypeVector(gv).is_het()
counts, wins, records = windowed_statistic(pos, ishet, np.sum, windows=eqw)
# heterozygote probabilities
het_px = np.concatenate([(phet_roh,), phet_nonroh])
# start probabilities (all equal)
start_prob = np.repeat(1/het_px.size, het_px.size)
# transition between underlying states
transition_mx = _hmm_derive_transition_matrix(transition, het_px.size)
dists = [PoissonDistribution(x * window_size) for x in het_px]
model = HiddenMarkovModel.from_matrix(transition_probabilities=transition_mx,
distributions=dists,
starts=start_prob)
prediction = np.array(model.predict(counts[:, None]))
df_blocks = tabulate_state_blocks(prediction, states=list(range(len(het_px))))
df_roh = df_blocks[(df_blocks.state == 0)].reset_index(drop=True)
# adapt the dataframe for ROH
df_roh["start"] = df_roh.start_ridx.apply(lambda y: eqw[y, 0])
df_roh["stop"] = df_roh.stop_lidx.apply(lambda y: eqw[y, 1])
df_roh["length"] = df_roh.stop - df_roh.start
# filter by ROH size
if min_roh > 0:
df_roh = df_roh[df_roh.length >= min_roh]
# compute FROH
froh = df_roh.length.sum() / contig_size
return df_roh[["start", "stop", "length", "is_marginal"]], froh | python | def roh_poissonhmm(gv, pos, phet_roh=0.001, phet_nonroh=(0.0025, 0.01), transition=1e-3,
window_size=1000, min_roh=0, is_accessible=None, contig_size=None):
"""Call ROH (runs of homozygosity) in a single individual given a genotype vector.
This function computes the likely ROH using a Poisson HMM model. The chromosome is divided into
equally accessible windows of specified size, then the number of hets observed in each is used
to fit a Poisson HMM. Note this is much faster than `roh_mhmm`, but at the cost of some
resolution.
The model is provided with a probability of observing a het in a ROH (`phet_roh`) and one
or more probabilities of observing a het in a non-ROH, as this probability may not be
constant across the genome (`phet_nonroh`).
Parameters
----------
gv : array_like, int, shape (n_variants, ploidy)
Genotype vector.
pos: array_like, int, shape (n_variants,)
Positions of variants, same 0th dimension as `gv`.
phet_roh: float, optional
Probability of observing a heterozygote in a ROH. Appropriate values
will depend on de novo mutation rate and genotype error rate.
phet_nonroh: tuple of floats, optional
One or more probabilites of observing a heterozygote outside of ROH.
Appropriate values will depend primarily on nucleotide diversity within
the population, but also on mutation rate and genotype error rate.
transition: float, optional
Probability of moving between states. This is based on windows, so a larger window size may
call for a larger transitional probability
window_size: integer, optional
Window size (equally accessible bases) to consider as a potential ROH. Setting this window
too small may result in spurious ROH calls, while too large will result in a lack of
resolution.
min_roh: integer, optional
Minimum size (bp) to condsider as a ROH. Will depend on contig size and recombination rate.
is_accessible: array_like, bool, shape (`contig_size`,), optional
Boolean array for each position in contig describing whether accessible
or not. Although optional, highly recommended so invariant sites are distinguishable from
sites where variation is inaccessible
contig_size: integer, optional
If is_accessible is not available, use this to specify the size of the contig, and assume
all sites are accessible.
Returns
-------
df_roh: DataFrame
Data frame where each row describes a run of homozygosity. Columns are 'start',
'stop', 'length' and 'is_marginal'. Start and stop are 1-based, stop-inclusive.
froh: float
Proportion of genome in a ROH.
Notes
-----
This function requires `pomegranate` (>= 0.9.0) to be installed.
"""
from pomegranate import HiddenMarkovModel, PoissonDistribution
# equally accessbile windows
if is_accessible is None:
if contig_size is None:
raise ValueError(
"If is_accessibile argument is not provided, you must provide contig_size")
is_accessible = np.ones((contig_size,), dtype="bool")
else:
contig_size = is_accessible.size
eqw = equally_accessible_windows(is_accessible, window_size)
ishet = GenotypeVector(gv).is_het()
counts, wins, records = windowed_statistic(pos, ishet, np.sum, windows=eqw)
# heterozygote probabilities
het_px = np.concatenate([(phet_roh,), phet_nonroh])
# start probabilities (all equal)
start_prob = np.repeat(1/het_px.size, het_px.size)
# transition between underlying states
transition_mx = _hmm_derive_transition_matrix(transition, het_px.size)
dists = [PoissonDistribution(x * window_size) for x in het_px]
model = HiddenMarkovModel.from_matrix(transition_probabilities=transition_mx,
distributions=dists,
starts=start_prob)
prediction = np.array(model.predict(counts[:, None]))
df_blocks = tabulate_state_blocks(prediction, states=list(range(len(het_px))))
df_roh = df_blocks[(df_blocks.state == 0)].reset_index(drop=True)
# adapt the dataframe for ROH
df_roh["start"] = df_roh.start_ridx.apply(lambda y: eqw[y, 0])
df_roh["stop"] = df_roh.stop_lidx.apply(lambda y: eqw[y, 1])
df_roh["length"] = df_roh.stop - df_roh.start
# filter by ROH size
if min_roh > 0:
df_roh = df_roh[df_roh.length >= min_roh]
# compute FROH
froh = df_roh.length.sum() / contig_size
return df_roh[["start", "stop", "length", "is_marginal"]], froh | Call ROH (runs of homozygosity) in a single individual given a genotype vector.
This function computes the likely ROH using a Poisson HMM model. The chromosome is divided into
equally accessible windows of specified size, then the number of hets observed in each is used
to fit a Poisson HMM. Note this is much faster than `roh_mhmm`, but at the cost of some
resolution.
The model is provided with a probability of observing a het in a ROH (`phet_roh`) and one
or more probabilities of observing a het in a non-ROH, as this probability may not be
constant across the genome (`phet_nonroh`).
Parameters
----------
gv : array_like, int, shape (n_variants, ploidy)
Genotype vector.
pos: array_like, int, shape (n_variants,)
Positions of variants, same 0th dimension as `gv`.
phet_roh: float, optional
Probability of observing a heterozygote in a ROH. Appropriate values
will depend on de novo mutation rate and genotype error rate.
phet_nonroh: tuple of floats, optional
One or more probabilites of observing a heterozygote outside of ROH.
Appropriate values will depend primarily on nucleotide diversity within
the population, but also on mutation rate and genotype error rate.
transition: float, optional
Probability of moving between states. This is based on windows, so a larger window size may
call for a larger transitional probability
window_size: integer, optional
Window size (equally accessible bases) to consider as a potential ROH. Setting this window
too small may result in spurious ROH calls, while too large will result in a lack of
resolution.
min_roh: integer, optional
Minimum size (bp) to condsider as a ROH. Will depend on contig size and recombination rate.
is_accessible: array_like, bool, shape (`contig_size`,), optional
Boolean array for each position in contig describing whether accessible
or not. Although optional, highly recommended so invariant sites are distinguishable from
sites where variation is inaccessible
contig_size: integer, optional
If is_accessible is not available, use this to specify the size of the contig, and assume
all sites are accessible.
Returns
-------
df_roh: DataFrame
Data frame where each row describes a run of homozygosity. Columns are 'start',
'stop', 'length' and 'is_marginal'. Start and stop are 1-based, stop-inclusive.
froh: float
Proportion of genome in a ROH.
Notes
-----
This function requires `pomegranate` (>= 0.9.0) to be installed. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/roh.py#L151-L258 |
cggh/scikit-allel | allel/stats/sf.py | sfs | def sfs(dac, n=None):
"""Compute the site frequency spectrum given derived allele counts at
a set of biallelic variants.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs : ndarray, int, shape (n_chromosomes,)
Array where the kth element is the number of variant sites with k
derived alleles.
"""
# check input
dac, n = _check_dac_n(dac, n)
# need platform integer for bincount
dac = dac.astype(int, copy=False)
# compute site frequency spectrum
x = n + 1
s = np.bincount(dac, minlength=x)
return s | python | def sfs(dac, n=None):
"""Compute the site frequency spectrum given derived allele counts at
a set of biallelic variants.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs : ndarray, int, shape (n_chromosomes,)
Array where the kth element is the number of variant sites with k
derived alleles.
"""
# check input
dac, n = _check_dac_n(dac, n)
# need platform integer for bincount
dac = dac.astype(int, copy=False)
# compute site frequency spectrum
x = n + 1
s = np.bincount(dac, minlength=x)
return s | Compute the site frequency spectrum given derived allele counts at
a set of biallelic variants.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs : ndarray, int, shape (n_chromosomes,)
Array where the kth element is the number of variant sites with k
derived alleles. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L37-L66 |
cggh/scikit-allel | allel/stats/sf.py | sfs_folded | def sfs_folded(ac, n=None):
"""Compute the folded site frequency spectrum given reference and
alternate allele counts at a set of biallelic variants.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int, shape (n_chromosomes//2,)
Array where the kth element is the number of variant sites with a
minor allele count of k.
"""
# check input
ac, n = _check_ac_n(ac, n)
# compute minor allele counts
mac = np.amin(ac, axis=1)
# need platform integer for bincount
mac = mac.astype(int, copy=False)
# compute folded site frequency spectrum
x = n//2 + 1
s = np.bincount(mac, minlength=x)
return s | python | def sfs_folded(ac, n=None):
"""Compute the folded site frequency spectrum given reference and
alternate allele counts at a set of biallelic variants.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int, shape (n_chromosomes//2,)
Array where the kth element is the number of variant sites with a
minor allele count of k.
"""
# check input
ac, n = _check_ac_n(ac, n)
# compute minor allele counts
mac = np.amin(ac, axis=1)
# need platform integer for bincount
mac = mac.astype(int, copy=False)
# compute folded site frequency spectrum
x = n//2 + 1
s = np.bincount(mac, minlength=x)
return s | Compute the folded site frequency spectrum given reference and
alternate allele counts at a set of biallelic variants.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int, shape (n_chromosomes//2,)
Array where the kth element is the number of variant sites with a
minor allele count of k. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L69-L101 |
cggh/scikit-allel | allel/stats/sf.py | sfs_scaled | def sfs_scaled(dac, n=None):
"""Compute the site frequency spectrum scaled such that a constant value is
expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
An array where the value of the kth element is the number of variants
with k derived alleles, multiplied by k.
"""
# compute site frequency spectrum
s = sfs(dac, n=n)
# apply scaling
s = scale_sfs(s)
return s | python | def sfs_scaled(dac, n=None):
"""Compute the site frequency spectrum scaled such that a constant value is
expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
An array where the value of the kth element is the number of variants
with k derived alleles, multiplied by k.
"""
# compute site frequency spectrum
s = sfs(dac, n=n)
# apply scaling
s = scale_sfs(s)
return s | Compute the site frequency spectrum scaled such that a constant value is
expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
dac : array_like, int, shape (n_variants,)
Array of derived allele counts.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
An array where the value of the kth element is the number of variants
with k derived alleles, multiplied by k. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L104-L130 |
cggh/scikit-allel | allel/stats/sf.py | scale_sfs | def scale_sfs(s):
"""Scale a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
Scaled site frequency spectrum.
"""
k = np.arange(s.size)
out = s * k
return out | python | def scale_sfs(s):
"""Scale a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
Scaled site frequency spectrum.
"""
k = np.arange(s.size)
out = s * k
return out | Scale a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
Returns
-------
sfs_scaled : ndarray, int, shape (n_chromosomes,)
Scaled site frequency spectrum. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L133-L149 |
cggh/scikit-allel | allel/stats/sf.py | sfs_folded_scaled | def sfs_folded_scaled(ac, n=None):
"""Compute the folded site frequency spectrum scaled such that a constant
value is expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
An array where the value of the kth element is the number of variants
with minor allele count k, multiplied by the scaling factor
(k * (n - k) / n).
"""
# check input
ac, n = _check_ac_n(ac, n)
# compute the site frequency spectrum
s = sfs_folded(ac, n=n)
# apply scaling
s = scale_sfs_folded(s, n)
return s | python | def sfs_folded_scaled(ac, n=None):
"""Compute the folded site frequency spectrum scaled such that a constant
value is expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
An array where the value of the kth element is the number of variants
with minor allele count k, multiplied by the scaling factor
(k * (n - k) / n).
"""
# check input
ac, n = _check_ac_n(ac, n)
# compute the site frequency spectrum
s = sfs_folded(ac, n=n)
# apply scaling
s = scale_sfs_folded(s, n)
return s | Compute the folded site frequency spectrum scaled such that a constant
value is expected across the spectrum for neutral variation and constant
population size.
Parameters
----------
ac : array_like, int, shape (n_variants, 2)
Allele counts array.
n : int, optional
The total number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
An array where the value of the kth element is the number of variants
with minor allele count k, multiplied by the scaling factor
(k * (n - k) / n). | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L152-L182 |
cggh/scikit-allel | allel/stats/sf.py | scale_sfs_folded | def scale_sfs_folded(s, n):
"""Scale a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes//2,)
Folded site frequency spectrum.
n : int
Number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
Scaled folded site frequency spectrum.
"""
k = np.arange(s.shape[0])
out = s * k * (n - k) / n
return out | python | def scale_sfs_folded(s, n):
"""Scale a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes//2,)
Folded site frequency spectrum.
n : int
Number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
Scaled folded site frequency spectrum.
"""
k = np.arange(s.shape[0])
out = s * k * (n - k) / n
return out | Scale a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes//2,)
Folded site frequency spectrum.
n : int
Number of chromosomes called.
Returns
-------
sfs_folded_scaled : ndarray, int, shape (n_chromosomes//2,)
Scaled folded site frequency spectrum. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L185-L203 |
cggh/scikit-allel | allel/stats/sf.py | joint_sfs | def joint_sfs(dac1, dac2, n1=None, n2=None):
"""Compute the joint site frequency spectrum between two populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs : ndarray, int, shape (m_chromosomes, n_chromosomes)
Array where the (i, j)th element is the number of variant sites with i
derived alleles in the first population and j derived alleles in the
second population.
"""
# check inputs
dac1, n1 = _check_dac_n(dac1, n1)
dac2, n2 = _check_dac_n(dac2, n2)
# compute site frequency spectrum
x = n1 + 1
y = n2 + 1
# need platform integer for bincount
tmp = (dac1 * y + dac2).astype(int, copy=False)
s = np.bincount(tmp)
s.resize(x, y)
return s | python | def joint_sfs(dac1, dac2, n1=None, n2=None):
"""Compute the joint site frequency spectrum between two populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs : ndarray, int, shape (m_chromosomes, n_chromosomes)
Array where the (i, j)th element is the number of variant sites with i
derived alleles in the first population and j derived alleles in the
second population.
"""
# check inputs
dac1, n1 = _check_dac_n(dac1, n1)
dac2, n2 = _check_dac_n(dac2, n2)
# compute site frequency spectrum
x = n1 + 1
y = n2 + 1
# need platform integer for bincount
tmp = (dac1 * y + dac2).astype(int, copy=False)
s = np.bincount(tmp)
s.resize(x, y)
return s | Compute the joint site frequency spectrum between two populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs : ndarray, int, shape (m_chromosomes, n_chromosomes)
Array where the (i, j)th element is the number of variant sites with i
derived alleles in the first population and j derived alleles in the
second population. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L206-L238 |
cggh/scikit-allel | allel/stats/sf.py | joint_sfs_folded | def joint_sfs_folded(ac1, ac2, n1=None, n2=None):
"""Compute the joint folded site frequency spectrum between two
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the number of variant sites with a
minor allele count of i in the first population and j in the second
population.
"""
# check inputs
ac1, n1 = _check_ac_n(ac1, n1)
ac2, n2 = _check_ac_n(ac2, n2)
# compute minor allele counts
mac1 = np.amin(ac1, axis=1)
mac2 = np.amin(ac2, axis=1)
# compute site frequency spectrum
x = n1//2 + 1
y = n2//2 + 1
tmp = (mac1 * y + mac2).astype(int, copy=False)
s = np.bincount(tmp)
s.resize(x, y)
return s | python | def joint_sfs_folded(ac1, ac2, n1=None, n2=None):
"""Compute the joint folded site frequency spectrum between two
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the number of variant sites with a
minor allele count of i in the first population and j in the second
population.
"""
# check inputs
ac1, n1 = _check_ac_n(ac1, n1)
ac2, n2 = _check_ac_n(ac2, n2)
# compute minor allele counts
mac1 = np.amin(ac1, axis=1)
mac2 = np.amin(ac2, axis=1)
# compute site frequency spectrum
x = n1//2 + 1
y = n2//2 + 1
tmp = (mac1 * y + mac2).astype(int, copy=False)
s = np.bincount(tmp)
s.resize(x, y)
return s | Compute the joint folded site frequency spectrum between two
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the number of variant sites with a
minor allele count of i in the first population and j in the second
population. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L241-L277 |
cggh/scikit-allel | allel/stats/sf.py | joint_sfs_scaled | def joint_sfs_scaled(dac1, dac2, n1=None, n2=None):
"""Compute the joint site frequency spectrum between two populations,
scaled such that a constant value is expected across the spectrum for
neutral variation, constant population size and unrelated populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1 + 1, n2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with i derived alleles in the first population and j derived
alleles in the second population.
"""
# compute site frequency spectrum
s = joint_sfs(dac1, dac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs(s)
return s | python | def joint_sfs_scaled(dac1, dac2, n1=None, n2=None):
"""Compute the joint site frequency spectrum between two populations,
scaled such that a constant value is expected across the spectrum for
neutral variation, constant population size and unrelated populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1 + 1, n2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with i derived alleles in the first population and j derived
alleles in the second population.
"""
# compute site frequency spectrum
s = joint_sfs(dac1, dac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs(s)
return s | Compute the joint site frequency spectrum between two populations,
scaled such that a constant value is expected across the spectrum for
neutral variation, constant population size and unrelated populations.
Parameters
----------
dac1 : array_like, int, shape (n_variants,)
Derived allele counts for the first population.
dac2 : array_like, int, shape (n_variants,)
Derived allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1 + 1, n2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with i derived alleles in the first population and j derived
alleles in the second population. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L280-L309 |
cggh/scikit-allel | allel/stats/sf.py | scale_joint_sfs | def scale_joint_sfs(s):
"""Scale a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n1, n2)
Joint site frequency spectrum.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1, n2)
Scaled joint site frequency spectrum.
"""
i = np.arange(s.shape[0])[:, None]
j = np.arange(s.shape[1])[None, :]
out = (s * i) * j
return out | python | def scale_joint_sfs(s):
"""Scale a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n1, n2)
Joint site frequency spectrum.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1, n2)
Scaled joint site frequency spectrum.
"""
i = np.arange(s.shape[0])[:, None]
j = np.arange(s.shape[1])[None, :]
out = (s * i) * j
return out | Scale a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n1, n2)
Joint site frequency spectrum.
Returns
-------
joint_sfs_scaled : ndarray, int, shape (n1, n2)
Scaled joint site frequency spectrum. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L312-L330 |
cggh/scikit-allel | allel/stats/sf.py | joint_sfs_folded_scaled | def joint_sfs_folded_scaled(ac1, ac2, n1=None, n2=None):
"""Compute the joint folded site frequency spectrum between two
populations, scaled such that a constant value is expected across the
spectrum for neutral variation, constant population size and unrelated
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with a minor allele count of i in the first population and j
in the second population.
""" # noqa
# check inputs
ac1, n1 = _check_ac_n(ac1, n1)
ac2, n2 = _check_ac_n(ac2, n2)
# compute site frequency spectrum
s = joint_sfs_folded(ac1, ac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs_folded(s, n1, n2)
return s | python | def joint_sfs_folded_scaled(ac1, ac2, n1=None, n2=None):
"""Compute the joint folded site frequency spectrum between two
populations, scaled such that a constant value is expected across the
spectrum for neutral variation, constant population size and unrelated
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with a minor allele count of i in the first population and j
in the second population.
""" # noqa
# check inputs
ac1, n1 = _check_ac_n(ac1, n1)
ac2, n2 = _check_ac_n(ac2, n2)
# compute site frequency spectrum
s = joint_sfs_folded(ac1, ac2, n1=n1, n2=n2)
# apply scaling
s = scale_joint_sfs_folded(s, n1, n2)
return s | Compute the joint folded site frequency spectrum between two
populations, scaled such that a constant value is expected across the
spectrum for neutral variation, constant population size and unrelated
populations.
Parameters
----------
ac1 : array_like, int, shape (n_variants, 2)
Allele counts for the first population.
ac2 : array_like, int, shape (n_variants, 2)
Allele counts for the second population.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (n1//2 + 1, n2//2 + 1)
Array where the (i, j)th element is the scaled frequency of variant
sites with a minor allele count of i in the first population and j
in the second population. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L333-L367 |
cggh/scikit-allel | allel/stats/sf.py | scale_joint_sfs_folded | def scale_joint_sfs_folded(s, n1, n2):
"""Scale a folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes//2, n_chromosomes//2)
Folded joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (m_chromosomes//2, n_chromosomes//2)
Scaled folded joint site frequency spectrum.
""" # noqa
out = np.empty_like(s)
for i in range(s.shape[0]):
for j in range(s.shape[1]):
out[i, j] = s[i, j] * i * j * (n1 - i) * (n2 - j)
return out | python | def scale_joint_sfs_folded(s, n1, n2):
"""Scale a folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes//2, n_chromosomes//2)
Folded joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (m_chromosomes//2, n_chromosomes//2)
Scaled folded joint site frequency spectrum.
""" # noqa
out = np.empty_like(s)
for i in range(s.shape[0]):
for j in range(s.shape[1]):
out[i, j] = s[i, j] * i * j * (n1 - i) * (n2 - j)
return out | Scale a folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes//2, n_chromosomes//2)
Folded joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded_scaled : ndarray, int, shape (m_chromosomes//2, n_chromosomes//2)
Scaled folded joint site frequency spectrum. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L370-L390 |
cggh/scikit-allel | allel/stats/sf.py | fold_sfs | def fold_sfs(s, n):
"""Fold a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum
n : int
Total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int
Folded site frequency spectrum
"""
# check inputs
s = asarray_ndim(s, 1)
assert s.shape[0] <= n + 1, 'invalid number of chromosomes'
# need to check s has all entries up to n
if s.shape[0] < n + 1:
sn = np.zeros(n + 1, dtype=s.dtype)
sn[:s.shape[0]] = s
s = sn
# fold
nf = (n + 1) // 2
n = nf * 2
o = s[:nf] + s[nf:n][::-1]
return o | python | def fold_sfs(s, n):
"""Fold a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum
n : int
Total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int
Folded site frequency spectrum
"""
# check inputs
s = asarray_ndim(s, 1)
assert s.shape[0] <= n + 1, 'invalid number of chromosomes'
# need to check s has all entries up to n
if s.shape[0] < n + 1:
sn = np.zeros(n + 1, dtype=s.dtype)
sn[:s.shape[0]] = s
s = sn
# fold
nf = (n + 1) // 2
n = nf * 2
o = s[:nf] + s[nf:n][::-1]
return o | Fold a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum
n : int
Total number of chromosomes called.
Returns
-------
sfs_folded : ndarray, int
Folded site frequency spectrum | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L393-L425 |
cggh/scikit-allel | allel/stats/sf.py | fold_joint_sfs | def fold_joint_sfs(s, n1, n2):
"""Fold a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes, n_chromosomes)
Joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int
Folded joint site frequency spectrum.
"""
# check inputs
s = asarray_ndim(s, 2)
assert s.shape[0] <= n1 + 1, 'invalid number of chromosomes'
assert s.shape[1] <= n2 + 1, 'invalid number of chromosomes'
# need to check s has all entries up to m
if s.shape[0] < n1 + 1:
sm = np.zeros((n1 + 1, s.shape[1]), dtype=s.dtype)
sm[:s.shape[0]] = s
s = sm
# need to check s has all entries up to n
if s.shape[1] < n2 + 1:
sn = np.zeros((s.shape[0], n2 + 1), dtype=s.dtype)
sn[:, :s.shape[1]] = s
s = sn
# fold
mf = (n1 + 1) // 2
nf = (n2 + 1) // 2
n1 = mf * 2
n2 = nf * 2
o = (s[:mf, :nf] + # top left
s[mf:n1, :nf][::-1] + # top right
s[:mf, nf:n2][:, ::-1] + # bottom left
s[mf:n1, nf:n2][::-1, ::-1]) # bottom right
return o | python | def fold_joint_sfs(s, n1, n2):
"""Fold a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes, n_chromosomes)
Joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int
Folded joint site frequency spectrum.
"""
# check inputs
s = asarray_ndim(s, 2)
assert s.shape[0] <= n1 + 1, 'invalid number of chromosomes'
assert s.shape[1] <= n2 + 1, 'invalid number of chromosomes'
# need to check s has all entries up to m
if s.shape[0] < n1 + 1:
sm = np.zeros((n1 + 1, s.shape[1]), dtype=s.dtype)
sm[:s.shape[0]] = s
s = sm
# need to check s has all entries up to n
if s.shape[1] < n2 + 1:
sn = np.zeros((s.shape[0], n2 + 1), dtype=s.dtype)
sn[:, :s.shape[1]] = s
s = sn
# fold
mf = (n1 + 1) // 2
nf = (n2 + 1) // 2
n1 = mf * 2
n2 = nf * 2
o = (s[:mf, :nf] + # top left
s[mf:n1, :nf][::-1] + # top right
s[:mf, nf:n2][:, ::-1] + # bottom left
s[mf:n1, nf:n2][::-1, ::-1]) # bottom right
return o | Fold a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (m_chromosomes, n_chromosomes)
Joint site frequency spectrum.
n1, n2 : int, optional
The total number of chromosomes called in each population.
Returns
-------
joint_sfs_folded : ndarray, int
Folded joint site frequency spectrum. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L428-L472 |
cggh/scikit-allel | allel/stats/sf.py | plot_sfs | def plot_sfs(s, yscale='log', bins=None, n=None,
clip_endpoints=True, label=None, plot_kwargs=None,
ax=None):
"""Plot a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
import matplotlib.pyplot as plt
import scipy
# check inputs
s = asarray_ndim(s, 1)
# setup axes
if ax is None:
fig, ax = plt.subplots()
# setup data
if bins is None:
if clip_endpoints:
x = np.arange(1, s.shape[0]-1)
y = s[1:-1]
else:
x = np.arange(s.shape[0])
y = s
else:
if clip_endpoints:
y, b, _ = scipy.stats.binned_statistic(
np.arange(1, s.shape[0]-1),
values=s[1:-1],
bins=bins,
statistic='sum')
else:
y, b, _ = scipy.stats.binned_statistic(
np.arange(s.shape[0]),
values=s,
bins=bins,
statistic='sum')
# use bin midpoints for plotting
x = (b[:-1] + b[1:]) / 2
if n:
# convert allele counts to allele frequencies
x = x / n
ax.set_xlabel('derived allele frequency')
else:
ax.set_xlabel('derived allele count')
# do plotting
if plot_kwargs is None:
plot_kwargs = dict()
ax.plot(x, y, label=label, **plot_kwargs)
# tidy
ax.set_yscale(yscale)
ax.set_ylabel('site frequency')
ax.autoscale(axis='x', tight=True)
return ax | python | def plot_sfs(s, yscale='log', bins=None, n=None,
clip_endpoints=True, label=None, plot_kwargs=None,
ax=None):
"""Plot a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
import matplotlib.pyplot as plt
import scipy
# check inputs
s = asarray_ndim(s, 1)
# setup axes
if ax is None:
fig, ax = plt.subplots()
# setup data
if bins is None:
if clip_endpoints:
x = np.arange(1, s.shape[0]-1)
y = s[1:-1]
else:
x = np.arange(s.shape[0])
y = s
else:
if clip_endpoints:
y, b, _ = scipy.stats.binned_statistic(
np.arange(1, s.shape[0]-1),
values=s[1:-1],
bins=bins,
statistic='sum')
else:
y, b, _ = scipy.stats.binned_statistic(
np.arange(s.shape[0]),
values=s,
bins=bins,
statistic='sum')
# use bin midpoints for plotting
x = (b[:-1] + b[1:]) / 2
if n:
# convert allele counts to allele frequencies
x = x / n
ax.set_xlabel('derived allele frequency')
else:
ax.set_xlabel('derived allele count')
# do plotting
if plot_kwargs is None:
plot_kwargs = dict()
ax.plot(x, y, label=label, **plot_kwargs)
# tidy
ax.set_yscale(yscale)
ax.set_ylabel('site frequency')
ax.autoscale(axis='x', tight=True)
return ax | Plot a site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L475-L558 |
cggh/scikit-allel | allel/stats/sf.py | plot_sfs_folded | def plot_sfs_folded(*args, **kwargs):
"""Plot a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
ax = plot_sfs(*args, **kwargs)
n = kwargs.get('n', None)
if n:
ax.set_xlabel('minor allele frequency')
else:
ax.set_xlabel('minor allele count')
return ax | python | def plot_sfs_folded(*args, **kwargs):
"""Plot a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
ax = plot_sfs(*args, **kwargs)
n = kwargs.get('n', None)
if n:
ax.set_xlabel('minor allele frequency')
else:
ax.set_xlabel('minor allele count')
return ax | Plot a folded site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L562-L598 |
cggh/scikit-allel | allel/stats/sf.py | plot_sfs_scaled | def plot_sfs_scaled(*args, **kwargs):
"""Plot a scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
kwargs.setdefault('yscale', 'linear')
ax = plot_sfs(*args, **kwargs)
ax.set_ylabel('scaled site frequency')
return ax | python | def plot_sfs_scaled(*args, **kwargs):
"""Plot a scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
kwargs.setdefault('yscale', 'linear')
ax = plot_sfs(*args, **kwargs)
ax.set_ylabel('scaled site frequency')
return ax | Plot a scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L602-L634 |
cggh/scikit-allel | allel/stats/sf.py | plot_sfs_folded_scaled | def plot_sfs_folded_scaled(*args, **kwargs):
"""Plot a folded scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
kwargs.setdefault('yscale', 'linear')
ax = plot_sfs_folded(*args, **kwargs)
ax.set_ylabel('scaled site frequency')
n = kwargs.get('n', None)
if n:
ax.set_xlabel('minor allele frequency')
else:
ax.set_xlabel('minor allele count')
return ax | python | def plot_sfs_folded_scaled(*args, **kwargs):
"""Plot a folded scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
kwargs.setdefault('yscale', 'linear')
ax = plot_sfs_folded(*args, **kwargs)
ax.set_ylabel('scaled site frequency')
n = kwargs.get('n', None)
if n:
ax.set_xlabel('minor allele frequency')
else:
ax.set_xlabel('minor allele count')
return ax | Plot a folded scaled site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes/2,)
Site frequency spectrum.
yscale : string, optional
Y axis scale.
bins : int or array_like, int, optional
Allele count bins.
n : int, optional
Number of chromosomes sampled. If provided, X axis will be plotted
as allele frequency, otherwise as allele count.
clip_endpoints : bool, optional
If True, do not plot first and last values from frequency spectrum.
label : string, optional
Label for data series in plot.
plot_kwargs : dict-like
Additional keyword arguments, passed through to ax.plot().
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L638-L675 |
cggh/scikit-allel | allel/stats/sf.py | plot_joint_sfs | def plot_joint_sfs(s, ax=None, imshow_kwargs=None):
"""Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
# check inputs
s = asarray_ndim(s, 2)
# setup axes
if ax is None:
w = plt.rcParams['figure.figsize'][0]
fig, ax = plt.subplots(figsize=(w, w))
# set plotting defaults
if imshow_kwargs is None:
imshow_kwargs = dict()
imshow_kwargs.setdefault('cmap', 'jet')
imshow_kwargs.setdefault('interpolation', 'none')
imshow_kwargs.setdefault('aspect', 'auto')
imshow_kwargs.setdefault('norm', LogNorm())
# plot data
ax.imshow(s.T, **imshow_kwargs)
# tidy
ax.invert_yaxis()
ax.set_xlabel('derived allele count (population 1)')
ax.set_ylabel('derived allele count (population 2)')
return ax | python | def plot_joint_sfs(s, ax=None, imshow_kwargs=None):
"""Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
# check inputs
s = asarray_ndim(s, 2)
# setup axes
if ax is None:
w = plt.rcParams['figure.figsize'][0]
fig, ax = plt.subplots(figsize=(w, w))
# set plotting defaults
if imshow_kwargs is None:
imshow_kwargs = dict()
imshow_kwargs.setdefault('cmap', 'jet')
imshow_kwargs.setdefault('interpolation', 'none')
imshow_kwargs.setdefault('aspect', 'auto')
imshow_kwargs.setdefault('norm', LogNorm())
# plot data
ax.imshow(s.T, **imshow_kwargs)
# tidy
ax.invert_yaxis()
ax.set_xlabel('derived allele count (population 1)')
ax.set_ylabel('derived allele count (population 2)')
return ax | Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L678-L724 |
cggh/scikit-allel | allel/stats/sf.py | plot_joint_sfs_folded | def plot_joint_sfs_folded(*args, **kwargs):
"""Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
ax = plot_joint_sfs(*args, **kwargs)
ax.set_xlabel('minor allele count (population 1)')
ax.set_ylabel('minor allele count (population 2)')
return ax | python | def plot_joint_sfs_folded(*args, **kwargs):
"""Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
ax = plot_joint_sfs(*args, **kwargs)
ax.set_xlabel('minor allele count (population 1)')
ax.set_ylabel('minor allele count (population 2)')
return ax | Plot a joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L728-L749 |
cggh/scikit-allel | allel/stats/sf.py | plot_joint_sfs_scaled | def plot_joint_sfs_scaled(*args, **kwargs):
"""Plot a scaled joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
imshow_kwargs = kwargs.get('imshow_kwargs', dict())
imshow_kwargs.setdefault('norm', None)
kwargs['imshow_kwargs'] = imshow_kwargs
ax = plot_joint_sfs(*args, **kwargs)
return ax | python | def plot_joint_sfs_scaled(*args, **kwargs):
"""Plot a scaled joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
imshow_kwargs = kwargs.get('imshow_kwargs', dict())
imshow_kwargs.setdefault('norm', None)
kwargs['imshow_kwargs'] = imshow_kwargs
ax = plot_joint_sfs(*args, **kwargs)
return ax | Plot a scaled joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1, n_chromosomes_pop2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L753-L775 |
cggh/scikit-allel | allel/stats/sf.py | plot_joint_sfs_folded_scaled | def plot_joint_sfs_folded_scaled(*args, **kwargs):
"""Plot a scaled folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
imshow_kwargs = kwargs.get('imshow_kwargs', dict())
imshow_kwargs.setdefault('norm', None)
kwargs['imshow_kwargs'] = imshow_kwargs
ax = plot_joint_sfs_folded(*args, **kwargs)
ax.set_xlabel('minor allele count (population 1)')
ax.set_ylabel('minor allele count (population 2)')
return ax | python | def plot_joint_sfs_folded_scaled(*args, **kwargs):
"""Plot a scaled folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn.
"""
imshow_kwargs = kwargs.get('imshow_kwargs', dict())
imshow_kwargs.setdefault('norm', None)
kwargs['imshow_kwargs'] = imshow_kwargs
ax = plot_joint_sfs_folded(*args, **kwargs)
ax.set_xlabel('minor allele count (population 1)')
ax.set_ylabel('minor allele count (population 2)')
return ax | Plot a scaled folded joint site frequency spectrum.
Parameters
----------
s : array_like, int, shape (n_chromosomes_pop1/2, n_chromosomes_pop2/2)
Joint site frequency spectrum.
ax : axes, optional
Axes on which to draw. If not provided, a new figure will be created.
imshow_kwargs : dict-like
Additional keyword arguments, passed through to ax.imshow().
Returns
-------
ax : axes
The axes on which the plot was drawn. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/sf.py#L779-L803 |
cggh/scikit-allel | allel/compat.py | memoryview_safe | def memoryview_safe(x):
"""Make array safe to run in a Cython memoryview-based kernel. These
kernels typically break down with the error ``ValueError: buffer source
array is read-only`` when running in dask distributed.
See Also
--------
https://github.com/dask/distributed/issues/1978
https://github.com/cggh/scikit-allel/issues/206
"""
if not x.flags.writeable:
if not x.flags.owndata:
x = x.copy(order='A')
x.setflags(write=True)
return x | python | def memoryview_safe(x):
"""Make array safe to run in a Cython memoryview-based kernel. These
kernels typically break down with the error ``ValueError: buffer source
array is read-only`` when running in dask distributed.
See Also
--------
https://github.com/dask/distributed/issues/1978
https://github.com/cggh/scikit-allel/issues/206
"""
if not x.flags.writeable:
if not x.flags.owndata:
x = x.copy(order='A')
x.setflags(write=True)
return x | Make array safe to run in a Cython memoryview-based kernel. These
kernels typically break down with the error ``ValueError: buffer source
array is read-only`` when running in dask distributed.
See Also
--------
https://github.com/dask/distributed/issues/1978
https://github.com/cggh/scikit-allel/issues/206 | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/compat.py#L51-L66 |
cggh/scikit-allel | allel/io/vcf_read.py | _prep_fields_param | def _prep_fields_param(fields):
"""Prepare the `fields` parameter, and determine whether or not to store samples."""
store_samples = False
if fields is None:
# add samples by default
return True, None
if isinstance(fields, str):
fields = [fields]
else:
fields = list(fields)
if 'samples' in fields:
fields.remove('samples')
store_samples = True
elif '*' in fields:
store_samples = True
return store_samples, fields | python | def _prep_fields_param(fields):
"""Prepare the `fields` parameter, and determine whether or not to store samples."""
store_samples = False
if fields is None:
# add samples by default
return True, None
if isinstance(fields, str):
fields = [fields]
else:
fields = list(fields)
if 'samples' in fields:
fields.remove('samples')
store_samples = True
elif '*' in fields:
store_samples = True
return store_samples, fields | Prepare the `fields` parameter, and determine whether or not to store samples. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L51-L71 |
cggh/scikit-allel | allel/io/vcf_read.py | _chunk_iter_progress | def _chunk_iter_progress(it, log, prefix):
"""Wrap a chunk iterator for progress logging."""
n_variants = 0
before_all = time.time()
before_chunk = before_all
for chunk, chunk_length, chrom, pos in it:
after_chunk = time.time()
elapsed_chunk = after_chunk - before_chunk
elapsed = after_chunk - before_all
n_variants += chunk_length
chrom = text_type(chrom, 'utf8')
message = (
'%s %s rows in %.2fs; chunk in %.2fs (%s rows/s)' %
(prefix, n_variants, elapsed, elapsed_chunk,
int(chunk_length // elapsed_chunk))
)
if chrom:
message += '; %s:%s' % (chrom, pos)
print(message, file=log)
log.flush()
yield chunk, chunk_length, chrom, pos
before_chunk = after_chunk
after_all = time.time()
elapsed = after_all - before_all
print('%s all done (%s rows/s)' %
(prefix, int(n_variants // elapsed)), file=log)
log.flush() | python | def _chunk_iter_progress(it, log, prefix):
"""Wrap a chunk iterator for progress logging."""
n_variants = 0
before_all = time.time()
before_chunk = before_all
for chunk, chunk_length, chrom, pos in it:
after_chunk = time.time()
elapsed_chunk = after_chunk - before_chunk
elapsed = after_chunk - before_all
n_variants += chunk_length
chrom = text_type(chrom, 'utf8')
message = (
'%s %s rows in %.2fs; chunk in %.2fs (%s rows/s)' %
(prefix, n_variants, elapsed, elapsed_chunk,
int(chunk_length // elapsed_chunk))
)
if chrom:
message += '; %s:%s' % (chrom, pos)
print(message, file=log)
log.flush()
yield chunk, chunk_length, chrom, pos
before_chunk = after_chunk
after_all = time.time()
elapsed = after_all - before_all
print('%s all done (%s rows/s)' %
(prefix, int(n_variants // elapsed)), file=log)
log.flush() | Wrap a chunk iterator for progress logging. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L74-L100 |
cggh/scikit-allel | allel/io/vcf_read.py | read_vcf | def read_vcf(input,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None):
"""Read data from a VCF file into NumPy arrays.
.. versionchanged:: 1.12.0
Now returns None if no variants are found in the VCF file or matching the
requested region.
Parameters
----------
input : string or file-like
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
data : dict[str, ndarray]
A dictionary holding arrays, or None if no variants were found.
"""
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup
fields, samples, headers, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[read_vcf]')
# read all chunks into a list
chunks = [d[0] for d in it]
if chunks:
# setup output
output = dict()
if len(samples) > 0 and store_samples:
output['samples'] = samples
# find array keys
keys = sorted(chunks[0].keys())
# concatenate chunks
for k in keys:
output[k] = np.concatenate([chunk[k] for chunk in chunks], axis=0)
else:
output = None
return output | python | def read_vcf(input,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None):
"""Read data from a VCF file into NumPy arrays.
.. versionchanged:: 1.12.0
Now returns None if no variants are found in the VCF file or matching the
requested region.
Parameters
----------
input : string or file-like
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
data : dict[str, ndarray]
A dictionary holding arrays, or None if no variants were found.
"""
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup
fields, samples, headers, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[read_vcf]')
# read all chunks into a list
chunks = [d[0] for d in it]
if chunks:
# setup output
output = dict()
if len(samples) > 0 and store_samples:
output['samples'] = samples
# find array keys
keys = sorted(chunks[0].keys())
# concatenate chunks
for k in keys:
output[k] = np.concatenate([chunk[k] for chunk in chunks], axis=0)
else:
output = None
return output | Read data from a VCF file into NumPy arrays.
.. versionchanged:: 1.12.0
Now returns None if no variants are found in the VCF file or matching the
requested region.
Parameters
----------
input : string or file-like
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
data : dict[str, ndarray]
A dictionary holding arrays, or None if no variants were found. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L240-L345 |
cggh/scikit-allel | allel/io/vcf_read.py | vcf_to_npz | def vcf_to_npz(input, output,
compressed=True,
overwrite=False,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix=True,
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None):
"""Read data from a VCF file into NumPy arrays and save as a .npz file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
compressed : bool, optional
If True (default), save with compression.
overwrite : bool, optional
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
"""
# guard condition
if not overwrite and os.path.exists(output):
raise ValueError('file exists at path %r; use overwrite=True to replace' % output)
# read all data into memory
data = read_vcf(
input=input, fields=fields, exclude_fields=exclude_fields,
rename_fields=rename_fields, types=types, numbers=numbers,
alt_number=alt_number, buffer_size=buffer_size, chunk_length=chunk_length,
log=log, fills=fills, region=region, tabix=tabix, samples=samples,
transformers=transformers
)
if data is None:
# no data, bail out
return
# setup save function
if compressed:
savez = np.savez_compressed
else:
savez = np.savez
# save as npz
savez(output, **data) | python | def vcf_to_npz(input, output,
compressed=True,
overwrite=False,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix=True,
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None):
"""Read data from a VCF file into NumPy arrays and save as a .npz file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
compressed : bool, optional
If True (default), save with compression.
overwrite : bool, optional
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
"""
# guard condition
if not overwrite and os.path.exists(output):
raise ValueError('file exists at path %r; use overwrite=True to replace' % output)
# read all data into memory
data = read_vcf(
input=input, fields=fields, exclude_fields=exclude_fields,
rename_fields=rename_fields, types=types, numbers=numbers,
alt_number=alt_number, buffer_size=buffer_size, chunk_length=chunk_length,
log=log, fills=fills, region=region, tabix=tabix, samples=samples,
transformers=transformers
)
if data is None:
# no data, bail out
return
# setup save function
if compressed:
savez = np.savez_compressed
else:
savez = np.savez
# save as npz
savez(output, **data) | Read data from a VCF file into NumPy arrays and save as a .npz file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
compressed : bool, optional
If True (default), save with compression.
overwrite : bool, optional
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log} | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L375-L463 |
cggh/scikit-allel | allel/io/vcf_read.py | vcf_to_hdf5 | def vcf_to_hdf5(input, output,
group='/',
compression='gzip',
compression_opts=1,
shuffle=False,
overwrite=False,
vlen=True,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
chunk_width=DEFAULT_CHUNK_WIDTH,
log=None):
"""Read data from a VCF file and load into an HDF5 file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
group : string
Group within destination HDF5 file to store data in.
compression : string
Compression algorithm, e.g., 'gzip' (default).
compression_opts : int
Compression level, e.g., 1 (default).
shuffle : bool
Use byte shuffling, which may improve compression (default is False).
overwrite : bool
{overwrite}
vlen : bool
If True, store variable length strings. Note that there is considerable storage
overhead for variable length strings in HDF5, and leaving this option as True (
default) may lead to large file sizes. If False, all strings will be stored in
the HDF5 file as fixed length strings, even if they are specified as 'object'
type. In this case, the string length for any field with 'object' type will be
determined based on the maximum length of strings found in the first chunk,
and this may cause values to be truncated if longer values are found in later
chunks. To avoid truncation and large file sizes, manually set the type for all
string fields to an explicit fixed length string type, e.g., 'S10' for a field
where you know at most 10 characters are required.
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
chunk_width : int, optional
{chunk_width}
log : file-like, optional
{log}
"""
import h5py
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup chunk iterator
fields, samples, headers, it = iter_vcf_chunks(
input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_hdf5]')
# read first chunk
try:
chunk, _, _, _ = next(it)
except StopIteration:
# no data, bail out
return
with h5py.File(output, mode='a') as h5f:
# obtain root group that data will be stored into
root = h5f.require_group(group)
if len(samples) > 0 and store_samples:
# store samples
name = 'samples'
if name in root:
if overwrite:
del root[name]
else:
raise ValueError(
'dataset exists at path %r; use overwrite=True to replace' % name)
if samples.dtype.kind == 'O':
if vlen:
t = h5py.special_dtype(vlen=str)
else:
samples = samples.astype('S')
t = samples.dtype
else:
t = samples.dtype
root.create_dataset(name, data=samples, chunks=None, dtype=t)
# setup datasets
# noinspection PyTypeChecker
keys = _hdf5_setup_datasets(
chunk=chunk, root=root, chunk_length=chunk_length, chunk_width=chunk_width,
compression=compression, compression_opts=compression_opts, shuffle=shuffle,
overwrite=overwrite, headers=headers, vlen=vlen
)
# store first chunk
_hdf5_store_chunk(root, keys, chunk, vlen)
# store remaining chunks
for chunk, _, _, _ in it:
_hdf5_store_chunk(root, keys, chunk, vlen) | python | def vcf_to_hdf5(input, output,
group='/',
compression='gzip',
compression_opts=1,
shuffle=False,
overwrite=False,
vlen=True,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
chunk_width=DEFAULT_CHUNK_WIDTH,
log=None):
"""Read data from a VCF file and load into an HDF5 file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
group : string
Group within destination HDF5 file to store data in.
compression : string
Compression algorithm, e.g., 'gzip' (default).
compression_opts : int
Compression level, e.g., 1 (default).
shuffle : bool
Use byte shuffling, which may improve compression (default is False).
overwrite : bool
{overwrite}
vlen : bool
If True, store variable length strings. Note that there is considerable storage
overhead for variable length strings in HDF5, and leaving this option as True (
default) may lead to large file sizes. If False, all strings will be stored in
the HDF5 file as fixed length strings, even if they are specified as 'object'
type. In this case, the string length for any field with 'object' type will be
determined based on the maximum length of strings found in the first chunk,
and this may cause values to be truncated if longer values are found in later
chunks. To avoid truncation and large file sizes, manually set the type for all
string fields to an explicit fixed length string type, e.g., 'S10' for a field
where you know at most 10 characters are required.
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
chunk_width : int, optional
{chunk_width}
log : file-like, optional
{log}
"""
import h5py
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup chunk iterator
fields, samples, headers, it = iter_vcf_chunks(
input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_hdf5]')
# read first chunk
try:
chunk, _, _, _ = next(it)
except StopIteration:
# no data, bail out
return
with h5py.File(output, mode='a') as h5f:
# obtain root group that data will be stored into
root = h5f.require_group(group)
if len(samples) > 0 and store_samples:
# store samples
name = 'samples'
if name in root:
if overwrite:
del root[name]
else:
raise ValueError(
'dataset exists at path %r; use overwrite=True to replace' % name)
if samples.dtype.kind == 'O':
if vlen:
t = h5py.special_dtype(vlen=str)
else:
samples = samples.astype('S')
t = samples.dtype
else:
t = samples.dtype
root.create_dataset(name, data=samples, chunks=None, dtype=t)
# setup datasets
# noinspection PyTypeChecker
keys = _hdf5_setup_datasets(
chunk=chunk, root=root, chunk_length=chunk_length, chunk_width=chunk_width,
compression=compression, compression_opts=compression_opts, shuffle=shuffle,
overwrite=overwrite, headers=headers, vlen=vlen
)
# store first chunk
_hdf5_store_chunk(root, keys, chunk, vlen)
# store remaining chunks
for chunk, _, _, _ in it:
_hdf5_store_chunk(root, keys, chunk, vlen) | Read data from a VCF file and load into an HDF5 file.
.. versionchanged:: 1.12.0
Now will not create any output file if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
group : string
Group within destination HDF5 file to store data in.
compression : string
Compression algorithm, e.g., 'gzip' (default).
compression_opts : int
Compression level, e.g., 1 (default).
shuffle : bool
Use byte shuffling, which may improve compression (default is False).
overwrite : bool
{overwrite}
vlen : bool
If True, store variable length strings. Note that there is considerable storage
overhead for variable length strings in HDF5, and leaving this option as True (
default) may lead to large file sizes. If False, all strings will be stored in
the HDF5 file as fixed length strings, even if they are specified as 'object'
type. In this case, the string length for any field with 'object' type will be
determined based on the maximum length of strings found in the first chunk,
and this may cause values to be truncated if longer values are found in later
chunks. To avoid truncation and large file sizes, manually set the type for all
string fields to an explicit fixed length string type, e.g., 'S10' for a field
where you know at most 10 characters are required.
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
chunk_width : int, optional
{chunk_width}
log : file-like, optional
{log} | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L600-L757 |
cggh/scikit-allel | allel/io/vcf_read.py | vcf_to_zarr | def vcf_to_zarr(input, output,
group='/',
compressor='default',
overwrite=False,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
chunk_width=DEFAULT_CHUNK_WIDTH,
log=None):
"""Read data from a VCF file and load into a Zarr on-disk store.
.. versionchanged:: 1.12.0
Now will not create any output files if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
group : string
Group within destination Zarr hierarchy to store data in.
compressor : compressor
Compression algorithm, e.g., zarr.Blosc(cname='zstd', clevel=1, shuffle=1).
overwrite : bool
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
chunk_width : int, optional
{chunk_width}
log : file-like, optional
{log}
"""
import zarr
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup chunk iterator
fields, samples, headers, it = iter_vcf_chunks(
input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# check for any case-insensitive duplicate fields
# https://github.com/cggh/scikit-allel/issues/215
ci_field_index = defaultdict(list)
for f in fields:
if rename_fields:
f = rename_fields.get(f, f)
ci_field_index[f.lower()].append(f)
for k, v in ci_field_index.items():
if len(v) > 1:
msg = textwrap.fill(
'Found two or more fields with the same name when compared '
'case-insensitive: {!r}; this is not supported because it causes '
'problems on platforms with a case-insensitive file system, which is '
'usually the default on Windows and Mac OS. Please rename fields so they '
'are distinct under a case-insensitive comparison via the '
'rename_fields argument.'.format(v), width=80)
raise ValueError(msg)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_zarr]')
# read first chunk
try:
chunk, _, _, _ = next(it)
except StopIteration:
# no data, bail out
return
# open root group
root = zarr.open_group(output, mode='a', path=group)
if len(samples) > 0 and store_samples:
# store samples
if samples.dtype.kind == 'O':
if PY2:
dtype = 'unicode'
else:
dtype = 'str'
else:
dtype = samples.dtype
root.create_dataset('samples', data=samples, compressor=None, overwrite=overwrite,
dtype=dtype)
# setup datasets
# noinspection PyTypeChecker
keys = _zarr_setup_datasets(
chunk, root=root, chunk_length=chunk_length, chunk_width=chunk_width,
compressor=compressor, overwrite=overwrite, headers=headers
)
# store first chunk
_zarr_store_chunk(root, keys, chunk)
# store remaining chunks
for chunk, _, _, _ in it:
_zarr_store_chunk(root, keys, chunk) | python | def vcf_to_zarr(input, output,
group='/',
compressor='default',
overwrite=False,
fields=None,
exclude_fields=None,
rename_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
chunk_width=DEFAULT_CHUNK_WIDTH,
log=None):
"""Read data from a VCF file and load into a Zarr on-disk store.
.. versionchanged:: 1.12.0
Now will not create any output files if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
group : string
Group within destination Zarr hierarchy to store data in.
compressor : compressor
Compression algorithm, e.g., zarr.Blosc(cname='zstd', clevel=1, shuffle=1).
overwrite : bool
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
chunk_width : int, optional
{chunk_width}
log : file-like, optional
{log}
"""
import zarr
# samples requested?
# noinspection PyTypeChecker
store_samples, fields = _prep_fields_param(fields)
# setup chunk iterator
fields, samples, headers, it = iter_vcf_chunks(
input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix,
samples=samples, transformers=transformers
)
# handle field renaming
if rename_fields:
rename_fields, it = _do_rename(it, fields=fields,
rename_fields=rename_fields,
headers=headers)
# check for any case-insensitive duplicate fields
# https://github.com/cggh/scikit-allel/issues/215
ci_field_index = defaultdict(list)
for f in fields:
if rename_fields:
f = rename_fields.get(f, f)
ci_field_index[f.lower()].append(f)
for k, v in ci_field_index.items():
if len(v) > 1:
msg = textwrap.fill(
'Found two or more fields with the same name when compared '
'case-insensitive: {!r}; this is not supported because it causes '
'problems on platforms with a case-insensitive file system, which is '
'usually the default on Windows and Mac OS. Please rename fields so they '
'are distinct under a case-insensitive comparison via the '
'rename_fields argument.'.format(v), width=80)
raise ValueError(msg)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_zarr]')
# read first chunk
try:
chunk, _, _, _ = next(it)
except StopIteration:
# no data, bail out
return
# open root group
root = zarr.open_group(output, mode='a', path=group)
if len(samples) > 0 and store_samples:
# store samples
if samples.dtype.kind == 'O':
if PY2:
dtype = 'unicode'
else:
dtype = 'str'
else:
dtype = samples.dtype
root.create_dataset('samples', data=samples, compressor=None, overwrite=overwrite,
dtype=dtype)
# setup datasets
# noinspection PyTypeChecker
keys = _zarr_setup_datasets(
chunk, root=root, chunk_length=chunk_length, chunk_width=chunk_width,
compressor=compressor, overwrite=overwrite, headers=headers
)
# store first chunk
_zarr_store_chunk(root, keys, chunk)
# store remaining chunks
for chunk, _, _, _ in it:
_zarr_store_chunk(root, keys, chunk) | Read data from a VCF file and load into a Zarr on-disk store.
.. versionchanged:: 1.12.0
Now will not create any output files if no variants are found in the VCF file or
matching the requested region.
Parameters
----------
input : string
{input}
output : string
{output}
group : string
Group within destination Zarr hierarchy to store data in.
compressor : compressor
Compression algorithm, e.g., zarr.Blosc(cname='zstd', clevel=1, shuffle=1).
overwrite : bool
{overwrite}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
rename_fields : dict[str -> str], optional
{rename_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
chunk_width : int, optional
{chunk_width}
log : file-like, optional
{log} | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L846-L993 |
cggh/scikit-allel | allel/io/vcf_read.py | iter_vcf_chunks | def iter_vcf_chunks(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH):
"""Iterate over chunks of data from a VCF file as NumPy arrays.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
Returns
-------
fields : list of strings
Normalised names of fields that will be extracted.
samples : ndarray
Samples for which data will be extracted.
headers : VCFHeaders
Tuple of metadata extracted from VCF headers.
it : iterator
Chunk iterator.
"""
# setup commmon keyword args
kwds = dict(fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, chunk_length=chunk_length,
fills=fills, samples=samples, region=region)
# setup input stream
stream = _setup_input_stream(input=input, region=region, tabix=tabix,
buffer_size=buffer_size)
# setup iterator
fields, samples, headers, it = _iter_vcf_stream(stream, **kwds)
# setup transformers
if transformers is not None:
# API flexibility
if not isinstance(transformers, (list, tuple)):
transformers = [transformers]
for trans in transformers:
fields = trans.transform_fields(fields)
it = _chunk_iter_transform(it, transformers)
return fields, samples, headers, it | python | def iter_vcf_chunks(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
samples=None,
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH):
"""Iterate over chunks of data from a VCF file as NumPy arrays.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
Returns
-------
fields : list of strings
Normalised names of fields that will be extracted.
samples : ndarray
Samples for which data will be extracted.
headers : VCFHeaders
Tuple of metadata extracted from VCF headers.
it : iterator
Chunk iterator.
"""
# setup commmon keyword args
kwds = dict(fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, chunk_length=chunk_length,
fills=fills, samples=samples, region=region)
# setup input stream
stream = _setup_input_stream(input=input, region=region, tabix=tabix,
buffer_size=buffer_size)
# setup iterator
fields, samples, headers, it = _iter_vcf_stream(stream, **kwds)
# setup transformers
if transformers is not None:
# API flexibility
if not isinstance(transformers, (list, tuple)):
transformers = [transformers]
for trans in transformers:
fields = trans.transform_fields(fields)
it = _chunk_iter_transform(it, transformers)
return fields, samples, headers, it | Iterate over chunks of data from a VCF file as NumPy arrays.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
samples : list of strings
{samples}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
Returns
-------
fields : list of strings
Normalised names of fields that will be extracted.
samples : ndarray
Samples for which data will be extracted.
headers : VCFHeaders
Tuple of metadata extracted from VCF headers.
it : iterator
Chunk iterator. | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L1080-L1158 |
cggh/scikit-allel | allel/io/vcf_read.py | vcf_to_dataframe | def vcf_to_dataframe(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None):
"""Read data from a VCF file into a pandas DataFrame.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
df : pandas.DataFrame
"""
import pandas
# samples requested?
# noinspection PyTypeChecker
_, fields = _prep_fields_param(fields)
# setup
fields, _, _, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix, samples=[],
transformers=transformers
)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_dataframe]')
# read all chunks into a list
chunks = [d[0] for d in it]
# setup output
output = None
if chunks:
# concatenate chunks
output = pandas.concat([_chunk_to_dataframe(fields, chunk)
for chunk in chunks])
return output | python | def vcf_to_dataframe(input,
fields=None,
exclude_fields=None,
types=None,
numbers=None,
alt_number=DEFAULT_ALT_NUMBER,
fills=None,
region=None,
tabix='tabix',
transformers=None,
buffer_size=DEFAULT_BUFFER_SIZE,
chunk_length=DEFAULT_CHUNK_LENGTH,
log=None):
"""Read data from a VCF file into a pandas DataFrame.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
df : pandas.DataFrame
"""
import pandas
# samples requested?
# noinspection PyTypeChecker
_, fields = _prep_fields_param(fields)
# setup
fields, _, _, it = iter_vcf_chunks(
input=input, fields=fields, exclude_fields=exclude_fields, types=types,
numbers=numbers, alt_number=alt_number, buffer_size=buffer_size,
chunk_length=chunk_length, fills=fills, region=region, tabix=tabix, samples=[],
transformers=transformers
)
# setup progress logging
if log is not None:
it = _chunk_iter_progress(it, log, prefix='[vcf_to_dataframe]')
# read all chunks into a list
chunks = [d[0] for d in it]
# setup output
output = None
if chunks:
# concatenate chunks
output = pandas.concat([_chunk_to_dataframe(fields, chunk)
for chunk in chunks])
return output | Read data from a VCF file into a pandas DataFrame.
Parameters
----------
input : string
{input}
fields : list of strings, optional
{fields}
exclude_fields : list of strings, optional
{exclude_fields}
types : dict, optional
{types}
numbers : dict, optional
{numbers}
alt_number : int, optional
{alt_number}
fills : dict, optional
{fills}
region : string, optional
{region}
tabix : string, optional
{tabix}
transformers : list of transformer objects, optional
{transformers}
buffer_size : int, optional
{buffer_size}
chunk_length : int, optional
{chunk_length}
log : file-like, optional
{log}
Returns
-------
df : pandas.DataFrame | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/io/vcf_read.py#L1801-L1881 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.