File size: 10,836 Bytes
858c41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97008e
858c41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
import torch.nn as nn
import numpy as np
import os
import json
from tqdm import tqdm

class time_travel_saver:
    """可视化数据提取器
    
    用于保存模型训练过程中的各种数据,包括:
    1. 模型权重 (.pth)
    2. 高维特征 (representation/*.npy)
    3. 预测结果 (prediction/*.npy)
    4. 标签数据 (label/labels.npy)
    """
    
    def __init__(self, model, dataloader, device, save_dir, model_name, 
                auto_save_embedding=False, layer_name=None,show = False):
        """初始化
        
        Args:
            model: 要保存的模型实例
            dataloader: 数据加载器(必须是顺序加载的)
            device: 计算设备(cpu or gpu)
            save_dir: 保存根目录
            model_name: 模型名称
        """
        self.model = model
        self.dataloader = dataloader
        self.device = device
        self.save_dir = save_dir
        self.model_name = model_name
        self.auto_save = auto_save_embedding
        self.layer_name = layer_name

        if show and not layer_name:
            layer_dimensions = self.show_dimensions()
            # print(layer_dimensions)
        
    def show_dimensions(self):
        """显示模型中所有层的名称和对应的维度
        
        这个函数会输出模型中所有层的名称和它们的输出维度,
        帮助用户选择合适的层来提取特征。
        
        Returns:
            layer_dimensions: 包含层名称和维度的字典
        """
        activation = {}
        layer_dimensions = {}
        
        def get_activation(name):
            def hook(model, input, output):
                activation[name] = output.detach()
            return hook
        
        # 注册钩子到所有层
        handles = []
        for name, module in self.model.named_modules():
            if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
                handles.append(module.register_forward_hook(get_activation(name)))
        
        self.model.eval()
        with torch.no_grad():
            # 获取一个batch来分析每层的输出维度
            inputs, _ = next(iter(self.dataloader))
            inputs = inputs.to(self.device)
            _ = self.model(inputs)
            
            # 分析所有层的输出维度
            print("\n模型各层的名称和维度:")
            print("-" * 50)
            print(f"{'层名称':<40} {'特征维度':<15} {'输出形状'}")
            print("-" * 50)
            
            for name, feat in activation.items():
                if feat is None:
                    continue
                
                # 获取特征维度(展平后)
                feat_dim = feat.view(feat.size(0), -1).size(1)
                layer_dimensions[name] = feat_dim
                # 打印层信息
                shape_str = str(list(feat.shape))
                print(f"{name:<40} {feat_dim:<15} {shape_str}")
            
            print("-" * 50)
            print("注: 特征维度是将输出张量展平后的维度大小")
            print("你可以通过修改time_travel_saver的layer_name参数来选择不同的层")
            print("例如:layer_name='avg_pool'或layer_name='layer4'等")
        
        # 移除所有钩子
        for handle in handles:
            handle.remove()
        
        return layer_dimensions

    def _extract_features_and_predictions(self):
        """提取特征和预测结果
        
        Returns:
            features: 高维特征 [样本数, 特征维度]
            predictions: 预测结果 [样本数, 类别数]
        """
        features = []
        predictions = []
        indices = []
        activation = {}
        
        def get_activation(name):
            def hook(model, input, output):
                # 只在需要时保存激活值,避免内存浪费
                if name not in activation or activation[name] is None:
                    activation[name] = output.detach()
            return hook
        
        # 根据层的名称或维度来选择层

        # 注册钩子到所有层
        handles = []
        for name, module in self.model.named_modules():
            if isinstance(module, nn.Module) and not isinstance(module, nn.ModuleList) and not isinstance(module, nn.ModuleDict):
                handles.append(module.register_forward_hook(get_activation(name)))
        
        self.model.eval()
        with torch.no_grad():
            # 首先获取一个batch来分析每层的输出维度
            inputs, _ = next(iter(self.dataloader))
            inputs = inputs.to(self.device)
            _ = self.model(inputs)
            
            # 如果指定了层名,则直接使用该层
            if self.layer_name is not None:
                if self.layer_name not in activation:
                    raise ValueError(f"指定的层 {self.layer_name} 不存在于模型中")
                
                feat = activation[self.layer_name]
                if feat is None:
                    raise ValueError(f"指定的层 {self.layer_name} 没有输出特征")
                
                suitable_layer_name = self.layer_name
                suitable_dim = feat.view(feat.size(0), -1).size(1)
                print(f"使用指定的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
            else:
                # 找到维度在指定范围内的层
                target_dim_range = (256, 2048)
                suitable_layer_name = None
                suitable_dim = None
                
                # 分析所有层的输出维度
                for name, feat in activation.items():
                    if feat is None:
                        continue
                    feat_dim = feat.view(feat.size(0), -1).size(1)
                    if target_dim_range[0] <= feat_dim <= target_dim_range[1]:
                        suitable_layer_name = name
                        suitable_dim = feat_dim
                        break
                
                if suitable_layer_name is None:
                    raise ValueError("没有找到合适维度的特征层")
                    
                print(f"自动选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
            
            # 保存层信息
            layer_info = {
                'layer_id': suitable_layer_name,
                'dim': suitable_dim
            }
            layer_info_path = os.path.join(os.path.dirname(self.save_dir), 'layer_info.json')
            with open(layer_info_path, 'w') as f:
                json.dump(layer_info, f)
            
            # 清除第一次运行的激活值
            activation.clear()
            
            # 现在处理所有数据
            for batch_idx, (inputs, _) in enumerate(tqdm(self.dataloader, desc="提取特征和预测结果")):
                inputs = inputs.to(self.device)
                outputs = self.model(inputs)  # 获取预测结果
                
                # 获取并处理特征
                feat = activation[suitable_layer_name]
                flat_features = torch.flatten(feat, start_dim=1)
                features.append(flat_features.cpu().numpy())
                predictions.append(outputs.cpu().numpy())
                
                # 清除本次的激活值
                activation.clear()
        
        # 移除所有钩子
        for handle in handles:
            handle.remove()
        
        if len(features) > 0:
            features = np.vstack(features)
            predictions = np.vstack(predictions)
            return features, predictions
        else:
            return np.array([]), np.array([])
    
    def save_lables_index(self, path):
        """保存标签数据和索引信息
        
        Args:
            path: 保存路径
        """
        os.makedirs(path, exist_ok=True)
        labels_path = os.path.join(path, 'labels.npy')
        index_path = os.path.join(path, 'index.json')
        
        # 尝试从不同的属性获取标签
        try:
            if hasattr(self.dataloader.dataset, 'targets'):
                # CIFAR10/CIFAR100使用targets属性
                labels = np.array(self.dataloader.dataset.targets)
            elif hasattr(self.dataloader.dataset, 'labels'):
                # 某些数据集使用labels属性
                labels = np.array(self.dataloader.dataset.labels)
            else:
                # 如果上面的方法都不起作用,则从数据加载器中收集标签
                labels = []
                for _, batch_labels in self.dataloader:
                    labels.append(batch_labels.numpy())
                labels = np.concatenate(labels)
            
            # 保存标签数据
            np.save(labels_path, labels)
            print(f"标签数据已保存到 {labels_path}")
            
            # 创建数据集索引
            num_samples = len(labels)
            indices = list(range(num_samples))
            
            # 创建索引字典
            index_dict = {
                "train": indices,  # 所有数据默认为训练集
                "test": [],        # 初始为空
                "validation": []   # 初始为空
            }
            
            # 保存索引到JSON文件
            with open(index_path, 'w') as f:
                json.dump(index_dict, f, indent=4)
            
            print(f"数据集索引已保存到 {index_path}")
            
        except Exception as e:
            print(f"保存标签和索引时出错: {e}")

    def save_checkpoint_embeddings_predictions(self, model = None):
        """保存所有数据"""
        if model is not None:
            self.model = model
        # 保存模型权重
        os.makedirs(self.save_dir, exist_ok=True)
        model_path = os.path.join(self.save_dir,'model.pth')
        torch.save(self.model.state_dict(), model_path)
        
        if self.auto_save:
            # 提取并保存特征和预测结果
            features, predictions = self._extract_features_and_predictions()
            
            # 保存特征 
            np.save(os.path.join(self.save_dir, 'embeddings.npy'), features)
            # 保存预测结果
            np.save(os.path.join(self.save_dir, 'predictions.npy'), predictions)
            print("\n保存了以下数据:")
            print(f"- 模型权重: {model_path}")
            print(f"- 特征向量: [样本数: {features.shape[0]}, 特征维度: {features.shape[1]}]")
            print(f"- 预测结果: [样本数: {predictions.shape[0]}, 类别数: {predictions.shape[1]}]")