text
stringlengths
4
1.02M
meta
dict
from stomp_message_controller import StompMessageController from stomp_message import StompMessage class TomcatVirtualHostServiceController(StompMessageController): stomp_tasks = ["CreateTomcatVirtualHost", "RemoveTomcatVirtualHost", "EnableTomcatVirtualHost", "DisableTomcatVirtualHost"] def run(self): print("TomcatVirtualHostServiceController") def create_tomcat_virtual_host(self, stomp_message): print("CreateTomcatVirtualHost - tomcat_virtual_host_service_controller.create_tomcat_virtual_host()") stomp_message.print_message() successfulProvisioning = True acknowledgementMessageDict = stomp_message.parsed_body if successfulProvisioning: self.acknowledge_success(acknowledgementMessageDict) else: self.acknowledge_failure(acknowledgementMessageDict) def remove_tomcat_virtual_host(self, stomp_message): print("RemoveTomcatVirtualHost - tomcat_virtual_host_service_controller.remove_tomcat_virtual_host()") stomp_message.print_message() successfulProvisioning = True acknowledgementMessageDict = stomp_message.parsed_body if successfulProvisioning: self.acknowledge_success(acknowledgementMessageDict) else: self.acknowledge_failure(acknowledgementMessageDict) def enable_tomcat_virtual_host(self, stomp_message): print("EnableTomcatVirtualHost - tomcat_virtual_host_service_controller.enable_tomcat_virtual_host()") stomp_message.print_message() successfulProvisioning = True acknowledgementMessageDict = stomp_message.parsed_body if successfulProvisioning: self.acknowledge_success(acknowledgementMessageDict) else: self.acknowledge_failure(acknowledgementMessageDict) def disable_tomcat_virtual_host(self, stomp_message): print("DisableTomcatVirtualHost - tomcat_virtual_host_service_controller.disable_tomcat_virtual_host()") stomp_message.print_message() successfulProvisioning = True acknowledgementMessageDict = stomp_message.parsed_body if successfulProvisioning: self.acknowledge_success(acknowledgementMessageDict) else: self.acknowledge_failure(acknowledgementMessageDict) def acknowledge_success(self, acknowledgementMessageDict): print("== Acknowledge Message Success ==") acknowledgementQueue = acknowledgementMessageDict["service"] acknowledgementMessageDict["taskResult"] = "Success" self.send_message(acknowledgementQueue, acknowledgementMessageDict) def acknowledge_failure(self, acknowledgementMessageDict): print("== Acknowledge Message Failure ==") acknowledgementQueue = acknowledgementMessageDict["service"] acknowledgementMessageDict["taskResult"] = "Failure" self.send_message(acknowledgementQueue, acknowledgementMessageDict)
{ "content_hash": "a58f823c9f3f11e2486b872d6cee0492", "timestamp": "", "source": "github", "line_count": 73, "max_line_length": 124, "avg_line_length": 36.945205479452056, "alnum_prop": 0.8068223952539859, "repo_name": "MarkAufdencamp/stomp-client-daemon", "id": "77ce87a22d5befc2caeff1d0db4a7d429b422cdb", "size": "2697", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tomcat_management_processor/tomcat_virtual_host_service_controller.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "8872" }, { "name": "Python", "bytes": "67691" }, { "name": "Shell", "bytes": "10485" } ], "symlink_target": "" }
"""aide associée à ce module, exemple d'utiliation de pydoc""" import os.path import os def pydoc_present () : """teste la présence du fichier pydoc.py""" p = "c:\\python26\\lib\\pydoc.py""" return os.path.exists (p) def pydoc_generation (file) : """génère la documentation associée au fichier file""" if not pydoc_present () : raise Exception ("pydoc n'est pas installé") os.system ("c:\\python26\\python c:\\python26\\lib\\pydoc.py -w " + file) class ExempleClass (object) : """exemple de classe avec de la documentation la classe contient comme attribut : - li : liste quelconque """ def __init__ (self) : object.__init__ (self) self.li = ["un", "deux"] def __str__ (self) : """permet d'afficher la classe sous forme de chaînes de caractères""" return "li = " + str (self.li) if __name__ == "__main__" : e = ExempleClass () print e # affiche li = ['un', 'deux'] pydoc_generation ("exemple_pydoc")
{ "content_hash": "1334c1c4a043db1d741c6da8de6b61ab", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 77, "avg_line_length": 32.87096774193548, "alnum_prop": 0.5947006869479883, "repo_name": "sdpython/teachpyx", "id": "dafbbf235c30894739847ca5e0504c244dabf228", "size": "1037", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "_todo/programme/exemple_pydoc.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "382" }, { "name": "C++", "bytes": "1348" }, { "name": "CSS", "bytes": "1034" }, { "name": "HTML", "bytes": "225" }, { "name": "Inno Setup", "bytes": "7826" }, { "name": "Jupyter Notebook", "bytes": "329171" }, { "name": "Python", "bytes": "162686" }, { "name": "TeX", "bytes": "280776" } ], "symlink_target": "" }
import json from django import template from django.utils.safestring import mark_safe register = template.Library() @register.filter(is_safe=True) def jsonify(obj, indent=0): return mark_safe(json.dumps(obj, indent=indent))
{ "content_hash": "c1fe2687e06b2cc1dbe609cf99b20f8f", "timestamp": "", "source": "github", "line_count": 11, "max_line_length": 52, "avg_line_length": 21.09090909090909, "alnum_prop": 0.7672413793103449, "repo_name": "bulv1ne/django-utils", "id": "57a798db617631067d2ae447d71f07fff528086c", "size": "232", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "utils/templatetags/jsonify.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "94" }, { "name": "Python", "bytes": "35302" }, { "name": "Shell", "bytes": "237" } ], "symlink_target": "" }
import logging from neutronclient.neutron import v2_0 as neutronV20 def _format_provider(pool): return pool.get('provider') or 'N/A' class ListPool(neutronV20.ListCommand): """List pools that belong to a given tenant.""" resource = 'pool' log = logging.getLogger(__name__ + '.ListPool') list_columns = ['id', 'name', 'provider', 'lb_method', 'protocol', 'admin_state_up', 'status'] _formatters = {'provider': _format_provider} pagination_support = True sorting_support = True class ShowPool(neutronV20.ShowCommand): """Show information of a given pool.""" resource = 'pool' log = logging.getLogger(__name__ + '.ShowPool') class CreatePool(neutronV20.CreateCommand): """Create a pool.""" resource = 'pool' log = logging.getLogger(__name__ + '.CreatePool') def add_known_arguments(self, parser): parser.add_argument( '--admin-state-down', dest='admin_state', action='store_false', help='set admin state up to false') parser.add_argument( '--description', help='description of the pool') parser.add_argument( '--lb-method', required=True, choices=['ROUND_ROBIN', 'LEAST_CONNECTIONS', 'SOURCE_IP'], help='the algorithm used to distribute load between the members ' 'of the pool') parser.add_argument( '--name', required=True, help='the name of the pool') parser.add_argument( '--protocol', required=True, choices=['HTTP', 'HTTPS', 'TCP'], help='protocol for balancing') parser.add_argument( '--subnet-id', metavar='SUBNET', required=True, help='the subnet on which the members of the pool will be located') parser.add_argument( '--provider', help='provider name of loadbalancer service') def args2body(self, parsed_args): _subnet_id = neutronV20.find_resourceid_by_name_or_id( self.get_client(), 'subnet', parsed_args.subnet_id) body = { self.resource: { 'admin_state_up': parsed_args.admin_state, 'subnet_id': _subnet_id, }, } neutronV20.update_dict(parsed_args, body[self.resource], ['description', 'lb_method', 'name', 'protocol', 'tenant_id', 'provider']) return body class UpdatePool(neutronV20.UpdateCommand): """Update a given pool.""" resource = 'pool' log = logging.getLogger(__name__ + '.UpdatePool') class DeletePool(neutronV20.DeleteCommand): """Delete a given pool.""" resource = 'pool' log = logging.getLogger(__name__ + '.DeletePool') class RetrievePoolStats(neutronV20.ShowCommand): """Retrieve stats for a given pool.""" resource = 'pool' log = logging.getLogger(__name__ + '.RetrievePoolStats') def get_data(self, parsed_args): self.log.debug('run(%s)' % parsed_args) neutron_client = self.get_client() neutron_client.format = parsed_args.request_format pool_id = neutronV20.find_resourceid_by_name_or_id( self.get_client(), 'pool', parsed_args.id) params = {} if parsed_args.fields: params = {'fields': parsed_args.fields} data = neutron_client.retrieve_pool_stats(pool_id, **params) self.format_output_data(data) stats = data['stats'] if 'stats' in data: return zip(*sorted(stats.iteritems())) else: return None
{ "content_hash": "8c544c5bd63a7dd9ccd8fc3fdc4182f2", "timestamp": "", "source": "github", "line_count": 117, "max_line_length": 79, "avg_line_length": 31.700854700854702, "alnum_prop": 0.5710434079266649, "repo_name": "ntt-sic/python-neutronclient", "id": "1c62dcebf85a43f89974e666cf5ebbb819209053", "size": "4424", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "neutronclient/neutron/v2_0/lb/pool.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "619450" }, { "name": "Shell", "bytes": "5278" } ], "symlink_target": "" }
from __future__ import division, unicode_literals, print_function from django.core.management import BaseCommand from bs4 import BeautifulSoup from applications.dianping.models import Shop import requests import json base_url = "http://www.dianping.com/ajax/json/shop/wizard/BasicHideInfoAjaxFP?" headers = { "referer": "http://www.dianping.com/", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36", } class Command(BaseCommand): def handle(self, *args, **options): shops = Shop.objects.all() for shop in shops: try: self.parse_shop(shop) except Exception, err: print(err) continue def parse_shop(self, shop): if shop.info: return print("parse shop %s" % shop.name) url = "%sshopId=%s" % (base_url, shop.shop_id) content = requests.get(url).content json_data = json.loads(content) shop.phone = json_data['msg']['shopInfo']['phoneNo'] shop.phone2 = json_data['msg']['shopInfo']['phoneNo2'] shop.address = json_data['msg']['shopInfo']['address'] shop.info = content shop.save()
{ "content_hash": "16010634c5ca66891a240f72bf04bb0b", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 141, "avg_line_length": 32.41025641025641, "alnum_prop": 0.617879746835443, "repo_name": "chenchiyuan/gym", "id": "e98df3e25551c995e25781115feeb22508d28f37", "size": "1316", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "applications/dianping/management/commands/parse_dianping_detail.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "71247" }, { "name": "HTML", "bytes": "113377" }, { "name": "JavaScript", "bytes": "1358687" }, { "name": "Python", "bytes": "87609" }, { "name": "Shell", "bytes": "844" } ], "symlink_target": "" }
from msrest.serialization import Model from msrest.exceptions import HttpOperationError class APIError(Model): """Error information returned by the API. :param code: The error code. :type code: object :param message: A message explaining the error reported by the service. :type message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'object'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__(self, *, code=None, message: str=None, **kwargs) -> None: super(APIError, self).__init__(**kwargs) self.code = code self.message = message class APIErrorException(HttpOperationError): """Server responded with exception of type: 'APIError'. :param deserialize: A deserializer :param response: Server response to be deserialized. """ def __init__(self, deserialize, response, *args): super(APIErrorException, self).__init__(deserialize, response, 'APIError', *args) class ChangePointDetectRequest(Model): """ChangePointDetectRequest. All required parameters must be populated in order to send to Azure. :param series: Required. Time series data points. Points should be sorted by timestamp in ascending order to match the change point detection result. :type series: list[~azure.cognitiveservices.anomalydetector.models.Point] :param granularity: Required. Can only be one of yearly, monthly, weekly, daily, hourly, minutely or secondly. Granularity is used for verify whether input series is valid. Possible values include: 'yearly', 'monthly', 'weekly', 'daily', 'hourly', 'minutely', 'secondly' :type granularity: str or ~azure.cognitiveservices.anomalydetector.models.Granularity :param custom_interval: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. :type custom_interval: int :param period: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. :type period: int :param stable_trend_window: Optional argument, advanced model parameter, a default stableTrendWindow will be used in detection. :type stable_trend_window: int :param threshold: Optional argument, advanced model parameter, between 0.0-1.0, the lower the value is, the larger the trend error will be which means less change point will be accepted. :type threshold: float """ _validation = { 'series': {'required': True}, 'granularity': {'required': True}, } _attribute_map = { 'series': {'key': 'series', 'type': '[Point]'}, 'granularity': {'key': 'granularity', 'type': 'Granularity'}, 'custom_interval': {'key': 'customInterval', 'type': 'int'}, 'period': {'key': 'period', 'type': 'int'}, 'stable_trend_window': {'key': 'stableTrendWindow', 'type': 'int'}, 'threshold': {'key': 'threshold', 'type': 'float'}, } def __init__(self, *, series, granularity, custom_interval: int=None, period: int=None, stable_trend_window: int=None, threshold: float=None, **kwargs) -> None: super(ChangePointDetectRequest, self).__init__(**kwargs) self.series = series self.granularity = granularity self.custom_interval = custom_interval self.period = period self.stable_trend_window = stable_trend_window self.threshold = threshold class ChangePointDetectResponse(Model): """ChangePointDetectResponse. All required parameters must be populated in order to send to Azure. :param period: Required. Frequency extracted from the series, zero means no recurrent pattern has been found. :type period: int :param is_change_point: Required. isChangePoint contains change point properties for each input point. True means an anomaly either negative or positive has been detected. The index of the array is consistent with the input series. :type is_change_point: list[bool] :param confidence_scores: Required. the change point confidence of each point :type confidence_scores: list[float] """ _validation = { 'period': {'required': True}, 'is_change_point': {'required': True}, 'confidence_scores': {'required': True}, } _attribute_map = { 'period': {'key': 'period', 'type': 'int'}, 'is_change_point': {'key': 'isChangePoint', 'type': '[bool]'}, 'confidence_scores': {'key': 'confidenceScores', 'type': '[float]'}, } def __init__(self, *, period: int, is_change_point, confidence_scores, **kwargs) -> None: super(ChangePointDetectResponse, self).__init__(**kwargs) self.period = period self.is_change_point = is_change_point self.confidence_scores = confidence_scores class EntireDetectResponse(Model): """EntireDetectResponse. All required parameters must be populated in order to send to Azure. :param period: Required. Frequency extracted from the series, zero means no recurrent pattern has been found. :type period: int :param expected_values: Required. ExpectedValues contain expected value for each input point. The index of the array is consistent with the input series. :type expected_values: list[float] :param upper_margins: Required. UpperMargins contain upper margin of each input point. UpperMargin is used to calculate upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin. Anomalies in response can be filtered by upperBoundary and lowerBoundary. By adjusting marginScale value, less significant anomalies can be filtered in client side. The index of the array is consistent with the input series. :type upper_margins: list[float] :param lower_margins: Required. LowerMargins contain lower margin of each input point. LowerMargin is used to calculate lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin. Points between the boundary can be marked as normal ones in client side. The index of the array is consistent with the input series. :type lower_margins: list[float] :param is_anomaly: Required. IsAnomaly contains anomaly properties for each input point. True means an anomaly either negative or positive has been detected. The index of the array is consistent with the input series. :type is_anomaly: list[bool] :param is_negative_anomaly: Required. IsNegativeAnomaly contains anomaly status in negative direction for each input point. True means a negative anomaly has been detected. A negative anomaly means the point is detected as an anomaly and its real value is smaller than the expected one. The index of the array is consistent with the input series. :type is_negative_anomaly: list[bool] :param is_positive_anomaly: Required. IsPositiveAnomaly contain anomaly status in positive direction for each input point. True means a positive anomaly has been detected. A positive anomaly means the point is detected as an anomaly and its real value is larger than the expected one. The index of the array is consistent with the input series. :type is_positive_anomaly: list[bool] """ _validation = { 'period': {'required': True}, 'expected_values': {'required': True}, 'upper_margins': {'required': True}, 'lower_margins': {'required': True}, 'is_anomaly': {'required': True}, 'is_negative_anomaly': {'required': True}, 'is_positive_anomaly': {'required': True}, } _attribute_map = { 'period': {'key': 'period', 'type': 'int'}, 'expected_values': {'key': 'expectedValues', 'type': '[float]'}, 'upper_margins': {'key': 'upperMargins', 'type': '[float]'}, 'lower_margins': {'key': 'lowerMargins', 'type': '[float]'}, 'is_anomaly': {'key': 'isAnomaly', 'type': '[bool]'}, 'is_negative_anomaly': {'key': 'isNegativeAnomaly', 'type': '[bool]'}, 'is_positive_anomaly': {'key': 'isPositiveAnomaly', 'type': '[bool]'}, } def __init__(self, *, period: int, expected_values, upper_margins, lower_margins, is_anomaly, is_negative_anomaly, is_positive_anomaly, **kwargs) -> None: super(EntireDetectResponse, self).__init__(**kwargs) self.period = period self.expected_values = expected_values self.upper_margins = upper_margins self.lower_margins = lower_margins self.is_anomaly = is_anomaly self.is_negative_anomaly = is_negative_anomaly self.is_positive_anomaly = is_positive_anomaly class LastDetectResponse(Model): """LastDetectResponse. All required parameters must be populated in order to send to Azure. :param period: Required. Frequency extracted from the series, zero means no recurrent pattern has been found. :type period: int :param suggested_window: Required. Suggested input series points needed for detecting the latest point. :type suggested_window: int :param expected_value: Required. Expected value of the latest point. :type expected_value: float :param upper_margin: Required. Upper margin of the latest point. UpperMargin is used to calculate upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin. If the value of latest point is between upperBoundary and lowerBoundary, it should be treated as normal value. By adjusting marginScale value, anomaly status of latest point can be changed. :type upper_margin: float :param lower_margin: Required. Lower margin of the latest point. LowerMargin is used to calculate lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin. :type lower_margin: float :param is_anomaly: Required. Anomaly status of the latest point, true means the latest point is an anomaly either in negative direction or positive direction. :type is_anomaly: bool :param is_negative_anomaly: Required. Anomaly status in negative direction of the latest point. True means the latest point is an anomaly and its real value is smaller than the expected one. :type is_negative_anomaly: bool :param is_positive_anomaly: Required. Anomaly status in positive direction of the latest point. True means the latest point is an anomaly and its real value is larger than the expected one. :type is_positive_anomaly: bool """ _validation = { 'period': {'required': True}, 'suggested_window': {'required': True}, 'expected_value': {'required': True}, 'upper_margin': {'required': True}, 'lower_margin': {'required': True}, 'is_anomaly': {'required': True}, 'is_negative_anomaly': {'required': True}, 'is_positive_anomaly': {'required': True}, } _attribute_map = { 'period': {'key': 'period', 'type': 'int'}, 'suggested_window': {'key': 'suggestedWindow', 'type': 'int'}, 'expected_value': {'key': 'expectedValue', 'type': 'float'}, 'upper_margin': {'key': 'upperMargin', 'type': 'float'}, 'lower_margin': {'key': 'lowerMargin', 'type': 'float'}, 'is_anomaly': {'key': 'isAnomaly', 'type': 'bool'}, 'is_negative_anomaly': {'key': 'isNegativeAnomaly', 'type': 'bool'}, 'is_positive_anomaly': {'key': 'isPositiveAnomaly', 'type': 'bool'}, } def __init__(self, *, period: int, suggested_window: int, expected_value: float, upper_margin: float, lower_margin: float, is_anomaly: bool, is_negative_anomaly: bool, is_positive_anomaly: bool, **kwargs) -> None: super(LastDetectResponse, self).__init__(**kwargs) self.period = period self.suggested_window = suggested_window self.expected_value = expected_value self.upper_margin = upper_margin self.lower_margin = lower_margin self.is_anomaly = is_anomaly self.is_negative_anomaly = is_negative_anomaly self.is_positive_anomaly = is_positive_anomaly class Point(Model): """Point. All required parameters must be populated in order to send to Azure. :param timestamp: Required. Timestamp of a data point (ISO8601 format). :type timestamp: datetime :param value: Required. The measurement of that point, should be float. :type value: float """ _validation = { 'timestamp': {'required': True}, 'value': {'required': True}, } _attribute_map = { 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'}, 'value': {'key': 'value', 'type': 'float'}, } def __init__(self, *, timestamp, value: float, **kwargs) -> None: super(Point, self).__init__(**kwargs) self.timestamp = timestamp self.value = value class Request(Model): """Request. All required parameters must be populated in order to send to Azure. :param series: Required. Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. :type series: list[~azure.cognitiveservices.anomalydetector.models.Point] :param granularity: Required. Possible values include: 'yearly', 'monthly', 'weekly', 'daily', 'hourly', 'minutely', 'secondly' :type granularity: str or ~azure.cognitiveservices.anomalydetector.models.Granularity :param custom_interval: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. :type custom_interval: int :param period: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. :type period: int :param max_anomaly_ratio: Optional argument, advanced model parameter, max anomaly ratio in a time series. :type max_anomaly_ratio: float :param sensitivity: Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted. :type sensitivity: int """ _validation = { 'series': {'required': True}, 'granularity': {'required': True}, } _attribute_map = { 'series': {'key': 'series', 'type': '[Point]'}, 'granularity': {'key': 'granularity', 'type': 'Granularity'}, 'custom_interval': {'key': 'customInterval', 'type': 'int'}, 'period': {'key': 'period', 'type': 'int'}, 'max_anomaly_ratio': {'key': 'maxAnomalyRatio', 'type': 'float'}, 'sensitivity': {'key': 'sensitivity', 'type': 'int'}, } def __init__(self, *, series, granularity, custom_interval: int=None, period: int=None, max_anomaly_ratio: float=None, sensitivity: int=None, **kwargs) -> None: super(Request, self).__init__(**kwargs) self.series = series self.granularity = granularity self.custom_interval = custom_interval self.period = period self.max_anomaly_ratio = max_anomaly_ratio self.sensitivity = sensitivity
{ "content_hash": "52072aa7c0d13d9ddb055a15282af90b", "timestamp": "", "source": "github", "line_count": 355, "max_line_length": 217, "avg_line_length": 43.884507042253524, "alnum_prop": 0.6648051864689646, "repo_name": "Azure/azure-sdk-for-python", "id": "4d86c5b14eee26f41dedff5e9af29459cd02a50f", "size": "16053", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/cognitiveservices/azure-cognitiveservices-anomalydetector/azure/cognitiveservices/anomalydetector/models/_models_py3.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
"""Tests of grpc_status with gRPC AsyncIO stack.""" import logging import traceback import unittest import grpc from google.protobuf import any_pb2 from google.rpc import code_pb2, error_details_pb2, status_pb2 from grpc.experimental import aio from grpc_status import rpc_status from tests_aio.unit._test_base import AioTestBase _STATUS_OK = '/test/StatusOK' _STATUS_NOT_OK = '/test/StatusNotOk' _ERROR_DETAILS = '/test/ErrorDetails' _INCONSISTENT = '/test/Inconsistent' _INVALID_CODE = '/test/InvalidCode' _REQUEST = b'\x00\x00\x00' _RESPONSE = b'\x01\x01\x01' _GRPC_DETAILS_METADATA_KEY = 'grpc-status-details-bin' _STATUS_DETAILS = 'This is an error detail' _STATUS_DETAILS_ANOTHER = 'This is another error detail' async def _ok_unary_unary(request, servicer_context): return _RESPONSE async def _not_ok_unary_unary(request, servicer_context): await servicer_context.abort(grpc.StatusCode.INTERNAL, _STATUS_DETAILS) async def _error_details_unary_unary(request, servicer_context): details = any_pb2.Any() details.Pack( error_details_pb2.DebugInfo(stack_entries=traceback.format_stack(), detail='Intentionally invoked')) rich_status = status_pb2.Status( code=code_pb2.INTERNAL, message=_STATUS_DETAILS, details=[details], ) await servicer_context.abort_with_status(rpc_status.to_status(rich_status)) async def _inconsistent_unary_unary(request, servicer_context): rich_status = status_pb2.Status( code=code_pb2.INTERNAL, message=_STATUS_DETAILS, ) servicer_context.set_code(grpc.StatusCode.NOT_FOUND) servicer_context.set_details(_STATUS_DETAILS_ANOTHER) # User put inconsistent status information in trailing metadata servicer_context.set_trailing_metadata( ((_GRPC_DETAILS_METADATA_KEY, rich_status.SerializeToString()),)) async def _invalid_code_unary_unary(request, servicer_context): rich_status = status_pb2.Status( code=42, message='Invalid code', ) await servicer_context.abort_with_status(rpc_status.to_status(rich_status)) class _GenericHandler(grpc.GenericRpcHandler): def service(self, handler_call_details): if handler_call_details.method == _STATUS_OK: return grpc.unary_unary_rpc_method_handler(_ok_unary_unary) elif handler_call_details.method == _STATUS_NOT_OK: return grpc.unary_unary_rpc_method_handler(_not_ok_unary_unary) elif handler_call_details.method == _ERROR_DETAILS: return grpc.unary_unary_rpc_method_handler( _error_details_unary_unary) elif handler_call_details.method == _INCONSISTENT: return grpc.unary_unary_rpc_method_handler( _inconsistent_unary_unary) elif handler_call_details.method == _INVALID_CODE: return grpc.unary_unary_rpc_method_handler( _invalid_code_unary_unary) else: return None class StatusTest(AioTestBase): async def setUp(self): self._server = aio.server() self._server.add_generic_rpc_handlers((_GenericHandler(),)) port = self._server.add_insecure_port('[::]:0') await self._server.start() self._channel = aio.insecure_channel('localhost:%d' % port) async def tearDown(self): await self._server.stop(None) await self._channel.close() async def test_status_ok(self): call = self._channel.unary_unary(_STATUS_OK)(_REQUEST) # Succeed RPC doesn't have status status = await rpc_status.aio.from_call(call) self.assertIs(status, None) async def test_status_not_ok(self): call = self._channel.unary_unary(_STATUS_NOT_OK)(_REQUEST) with self.assertRaises(aio.AioRpcError) as exception_context: await call rpc_error = exception_context.exception self.assertEqual(rpc_error.code(), grpc.StatusCode.INTERNAL) # Failed RPC doesn't automatically generate status status = await rpc_status.aio.from_call(call) self.assertIs(status, None) async def test_error_details(self): call = self._channel.unary_unary(_ERROR_DETAILS)(_REQUEST) with self.assertRaises(aio.AioRpcError) as exception_context: await call rpc_error = exception_context.exception status = await rpc_status.aio.from_call(call) self.assertEqual(rpc_error.code(), grpc.StatusCode.INTERNAL) self.assertEqual(status.code, code_pb2.Code.Value('INTERNAL')) # Check if the underlying proto message is intact self.assertTrue(status.details[0].Is( error_details_pb2.DebugInfo.DESCRIPTOR)) info = error_details_pb2.DebugInfo() status.details[0].Unpack(info) self.assertIn('_error_details_unary_unary', info.stack_entries[-1]) async def test_code_message_validation(self): call = self._channel.unary_unary(_INCONSISTENT)(_REQUEST) with self.assertRaises(aio.AioRpcError) as exception_context: await call rpc_error = exception_context.exception self.assertEqual(rpc_error.code(), grpc.StatusCode.NOT_FOUND) # Code/Message validation failed with self.assertRaises(ValueError): await rpc_status.aio.from_call(call) async def test_invalid_code(self): with self.assertRaises(aio.AioRpcError) as exception_context: await self._channel.unary_unary(_INVALID_CODE)(_REQUEST) rpc_error = exception_context.exception self.assertEqual(rpc_error.code(), grpc.StatusCode.UNKNOWN) # Invalid status code exception raised during coversion self.assertIn('Invalid status code', rpc_error.details()) if __name__ == '__main__': logging.basicConfig() unittest.main(verbosity=2)
{ "content_hash": "b81c639ae7ace7ca48e4f38a1e00caa6", "timestamp": "", "source": "github", "line_count": 162, "max_line_length": 79, "avg_line_length": 36.19135802469136, "alnum_prop": 0.6735459662288931, "repo_name": "firebase/grpc", "id": "980cf5a67e7cf69a6ba8e826d929860c3fe86786", "size": "6443", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/python/grpcio_tests/tests_aio/status/grpc_status_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Awk", "bytes": "5444" }, { "name": "Batchfile", "bytes": "35774" }, { "name": "C", "bytes": "3708933" }, { "name": "C#", "bytes": "2162951" }, { "name": "C++", "bytes": "12275592" }, { "name": "CMake", "bytes": "495117" }, { "name": "CSS", "bytes": "1519" }, { "name": "DTrace", "bytes": "147" }, { "name": "Dockerfile", "bytes": "169468" }, { "name": "Go", "bytes": "34794" }, { "name": "HTML", "bytes": "14" }, { "name": "Java", "bytes": "6259" }, { "name": "JavaScript", "bytes": "84355" }, { "name": "M4", "bytes": "69163" }, { "name": "Makefile", "bytes": "1104867" }, { "name": "Mako", "bytes": "5629" }, { "name": "Objective-C", "bytes": "696194" }, { "name": "Objective-C++", "bytes": "77574" }, { "name": "PHP", "bytes": "392133" }, { "name": "PowerShell", "bytes": "3226" }, { "name": "Python", "bytes": "3401091" }, { "name": "Ruby", "bytes": "982979" }, { "name": "Shell", "bytes": "532295" }, { "name": "Starlark", "bytes": "554304" }, { "name": "Swift", "bytes": "3516" }, { "name": "TSQL", "bytes": "4901" }, { "name": "XSLT", "bytes": "9846" } ], "symlink_target": "" }
""" WSGI Application This application listens for a form. When a form is submitted, this application takes the information submitted, formats it into a python dictionary, then emails it to a specified email """ import os import smtplib import werkzeug import urllib import hashlib from urllib import urlencode from urllib2 import urlopen from werkzeug.wrappers import Request, Response from werkzeug.routing import Map, Rule from werkzeug.exceptions import HTTPException from werkzeug.wsgi import SharedDataMiddleware from jinja2 import Environment, FileSystemLoader from email.mime.text import MIMEText from validate_email import validate_email from datetime import datetime import logging import logging.handlers import conf import time import json class Forms(object): """ This class listens for a form submission, checks that the data is valid, and sends the form data in a formatted message to the email specified in conf.py """ def __init__(self, controller, logger): # Sets up the path to the template files template_path = os.path.join(os.path.dirname(__file__), 'templates') self.controller = controller self.error = None # Creates jinja template environment self.jinja_env = Environment(loader=FileSystemLoader(template_path), autoescape=True) # When the browser is pointed at the root of the website, call # on_form_page self.url_map = Map([ Rule('/', endpoint='form_page'), Rule('/server-status', endpoint='server_status'), ]) self.logger = logger def dispatch_request(self, request): """Evaluates request to decide what happens""" adapter = self.url_map.bind_to_environ(request.environ) try: endpoint, values = adapter.match() return getattr(self, 'on_' + endpoint)(request, **values) except HTTPException as error: self.logger.error('formsender: %s', error) return error def wsgi_app(self, environ, start_response): """ Starts wsgi_app by creating a Request and Response based on the Request """ request = Request(environ) response = self.dispatch_request(request) return response(environ, start_response) def __call__(self, environ, start_response): return self.wsgi_app(environ, start_response) def on_server_status(self, request): """ Returns an OK on a GET. This is to support health checks by any monitoring software on this application """ if request.method == 'GET': return Response('OK', status=200) # Do not process anything else return Response('', status=400) def on_form_page(self, request): """ Checks for valid form data, calls send_email, returns a redirect """ # Increment rate because we received a request self.controller.increment_rate() self.error = None error_number = self.are_fields_invalid(request) if request.method == 'POST' and error_number: # Error was found return self.handle_error(request, error_number) elif request.method == 'POST': # No errors return self.handle_no_error(request) else: # Renders error message locally if sent GET request self.logger.error('formsender: server received unhandled GET ' 'request, expected POST request') return self.error_redirect() def are_fields_invalid(self, request): """ If a field in the request is invalid, sets the error message and returns the error number, returns False if fields are valid """ # Sends request to each error function and returns first error it sees if not is_valid_email(request): self.error = 'Invalid Email' error_number = 1 invalid_option = 'email' elif not validate_name(request): self.error = 'Invalid Name' error_number = 2 invalid_option = 'name' elif (not (is_hidden_field_empty(request) and is_valid_token(request)) or not (is_valid_fields_to_join(request))): self.error = 'Improper Form Submission' error_number = 3 invalid_option = 'name' elif self.controller.is_rate_violation(): self.error = 'Too Many Requests' error_number = 4 invalid_option = 'name' elif self.controller.is_duplicate(create_msg(request)): self.error = 'Duplicate Request' error_number = 5 invalid_option = 'name' elif not is_valid_recaptcha(request): self.error = 'Invalid Recaptcha' error_number = 6 invalid_option = 'name' else: # If nothing above is true, there is no error return False # There is an error if it got this far self.logger.warn('formsender: received %s: %s from %s', self.error, request.form[invalid_option], request.form['email']) return error_number def handle_no_error(self, request): """ Creates a message and sends an email with no error, then redirects to provided redirect url """ message = create_msg(request) if message: self.logger.debug('formsender: name is: %s', message['name']) self.logger.debug('formsender: sending email from: %s', message['email']) # The following are optional fields, so first check that they exist # in the message if 'send_to' in message and message['send_to']: self.logger.debug('formsender: sending email to: %s', message['send_to']) if 'mail_from' in message and message['mail_from']: self.logger.debug('formsender: sending email from: %s', message['mail_from']) # Should log full request self.logger.debug('formsender message: %s', message) send_email(format_message(message), set_mail_subject(message), send_to_address(message), set_mail_from(message)) redirect_url = message['redirect'] return werkzeug.utils.redirect(redirect_url, code=302) else: return self.error_redirect() def handle_error(self, request, error_number): """Creates error url and redirects with error query""" error_url = create_error_url(error_number, self.error, request) return werkzeug.utils.redirect(error_url, code=302) def error_redirect(self): """Renders local error html file""" self.logger.error('formsender: POST request was empty') template = self.jinja_env.get_template('error.html') return Response(template.render(), mimetype='text/html', status=400) class Controller(object): """ Track number of form submissions per second __init__ set_time_diff increment_rate reset_rate is_rate_violation """ def __init__(self): # Rate variables self.rate = 0 self.time_diff = 0 self.start_time = datetime.now() # Duplicate-submission check variables self.time_diff_hash = 0 self.start_time_hash = datetime.now() self.hash_list = [] def set_time_diff(self, begin_time): """Returns time difference between begin_time and now in seconds""" time_d = datetime.now() - begin_time return time_d.seconds # Rate methods def increment_rate(self): """Increments self.rate by 1""" self.rate += 1 def reset_rate(self): """Reset rate to initial values""" self.rate = 0 self.start_time = datetime.now() self.time_diff = 0 def is_rate_violation(self): """ Returns False if rate doesn't violate CEILING in 1 second (no violation) and True otherwise (violation) """ self.time_diff = self.set_time_diff(self.start_time) if self.time_diff < 1 and self.rate > conf.CEILING: return True elif self.time_diff > 1: self.reset_rate() return False # Duplicate-submission check methods def is_duplicate(self, submission): """Calculates a hash from a submission and adds it to the hash list""" # Create a hexidecmal hash of the submission using sha512 init_hash = hashlib.sha512() init_hash.update(str(submission)) sub_hash = init_hash.hexdigest() # If the time difference is under the limit in settings, check for a # duplicate hash in hash_list if self.check_time_diff_hash(): return self.check_for_duplicate_hash(sub_hash) # If the time difference is greater than the limit in settings, there is # no duplicate since hash_list was reset in check_time_diff_hash return False def check_time_diff_hash(self): """ Checks time_diff_hash for a value greater than DUPL_CHECK_LIM from conf.py """ self.time_diff_hash = self.set_time_diff(self.start_time_hash) # If time difference is greater than DUPLICATE_CHECK_TIME, reset the # hash list and time variables if self.time_diff_hash > (conf.DUPLICATE_CHECK_TIME): # from conf.py self.reset_hash() return False return True def reset_hash(self): """Resets hash_list and hash_times""" self.hash_list = [] self.time_diff_hash = 0 self.start_time_hash = datetime.now() def check_for_duplicate_hash(self, sub_hash): """ Checks for a duplicate hash in hash_list Returns True if there is a duplicate and False otherwise """ if sub_hash in self.hash_list: return True # If there is no duplicate, add hash to the list and return False self.hash_list.append(sub_hash) return False # Standalone/helper functions def create_app(with_static=True): """ Initializes Controller (controller) and Forms (app) objects, pass controller to app to keep track of number of submissions per minute """ # Initiate a logger logger = logging.getLogger('formsender') handler = logging.handlers.SysLogHandler(address=conf.LOG_ADDR) formatter = logging.Formatter('%(levelname)s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Initiate rate/duplicate controller and application controller = Controller() app = Forms(controller, logger) if with_static: app.wsgi_app = SharedDataMiddleware(app.wsgi_app, { '/static': os.path.join(os.path.dirname(__file__), 'static') }) return app def create_msg(request): """Creates the message to be sent in the email""" message = dict() if request.method == 'POST': # Takes the information from the request and puts it into the message # dict. request.form cannot be returned directly because it is a # multidict. for key in request.form: safe_key = key.encode('utf-8') safe_value = request.form[key].encode('utf-8') message[safe_key] = safe_value # If there is a message, return it, otherwise return None if message: message['redirect'] = strip_query(message['redirect']) return message return None return None def is_valid_email(request): """ Check that email server exists at request.form['email'] return the email if it is valid, False if not """ valid_email = validate_email(request.form['email'], check_mx=False, # DNS resolution is not reliable verify=False) # disabling RCPT is occasionally used to fight spam if valid_email: return valid_email return False def is_valid_recaptcha(request): """ Check that recaptcha responce is valid by sending a POST request to google's servers """ recaptchaURL = 'https://www.google.com/recaptcha/api/siteverify' recaptcha_response = request.form['g-recaptcha-response'] secret_key = conf.RECAPTCHA_SECRET URLParams = urlencode({ 'secret': secret_key, 'response': recaptcha_response, 'remote_ip': request.remote_addr, }) google_response = urlopen(recaptchaURL, URLParams.encode('utf-8')).read() recaptcha_result = json.loads(google_response) recaptcha_success = recaptcha_result.get('success', None) return recaptcha_success def validate_name(request): """ Make sure request has a 'name' field with more than just spaces return stripped name if true, False if not """ name = request.form['name'] if name.strip(): return True return False def is_hidden_field_empty(request): """Make sure hidden 'last_name' field is empty, return True or False""" if request.form['last_name'] == "": return True return False def is_valid_token(request): """Make sure request's 'token' field matches TOKEN in conf.py""" if request.form['token'] == conf.TOKEN: return True return False def is_valid_fields_to_join(request): """ Make sure that if request has 'fields_to_join' field, that the specified fields to join exist """ if 'fields_to_join' in request.form: for field in request.form['fields_to_join'].split(','): if field not in request.form and field != 'date': return False return True def create_error_url(error_number, message, request): """Construct error message and append to redirect url""" values = [('error', str(error_number)), ('message', message)] query = urllib.urlencode(values) return request.form['redirect'] + '?' + query def strip_query(url): """Remove query string from a url""" return url.split('?', 1)[0] def format_message(msg): """Formats a dict (msg) into a nice-looking string""" # Ignore these fields when writing to formatted message hidden_fields = ['redirect', 'last_name', 'token', 'op', 'name', 'email', 'mail_subject', 'send_to', 'fields_to_join_name', 'support', 'ibm_power', 'mail_subject_prefix', 'mail_subject_key', 'g-recaptcha-response'] # Contact information goes at the top f_message = ("Contact:\n--------\n" "NAME: {0}\nEMAIL: {1}\n" "\nInformation:\n------------\n" .format(msg['name'], msg['email'])) # If fields_to_join_name specified, add the key, data to the dictionary # Otherwise, create fields_to_join key, data and add to dictionary if 'fields_to_join' in msg: # handle fields_to_join fields_to_join = msg['fields_to_join'].split(',') # list of fields joined_data = (':'.join(str(int(time.time())) if field == 'date' else msg[field] for field in fields_to_join)) # If the fields to join name is specified, and the name does not exist # as a key in current msg dictionary if 'fields_to_join_name' in msg and msg['fields_to_join_name'] not in msg: msg[str(msg['fields_to_join_name'])] = joined_data else: msg[str('Fields To Join')] = joined_data msg.pop('fields_to_join', None) # Create another dictionary that has lowercase title as key and original # title as value titles = {} for key in msg: titles[key.lower()] = key # Write each formatted key in title case and corresponding message to # f_message, each key and message is separated by two lines. for key in sorted(titles): if key not in hidden_fields: f_message += \ ('{0}:\n{1}\n\n'.format(convert_key_to_title(titles[key]), msg[titles[key]])) return f_message def convert_key_to_title(snake_case_key): """Replace underscores with spaces and convert to title case""" return snake_case_key.replace('_', ' ').title() def set_mail_subject(message): """ Returns a string to be used as a subject in an email, format: message['mail_subject_prefix']: message[message['mail_subject_key'] or message['mail_subject_prefix'] or message[message['mail_subject_key']] or the default 'Form Submission' """ mail_subject = '' # If mail_subject_prefix exists in the message dict and has content, add # it to the mail_subject string. Then check if mail_subject_key also exists # and points to valid data and append if necessary. if 'mail_subject_prefix' in message and message['mail_subject_prefix']: mail_subject += message['mail_subject_prefix'] if ('mail_subject_key' in message and message['mail_subject_key'] and message['mail_subject_key'] in message and message[message['mail_subject_key']]): mail_subject += ": {}".format(message[message['mail_subject_key']]) # If mail_subject_key is in the message and the field it points to exists, # add it to the mail_subject. It is ok if it is an empty string, because # it will just be ignored elif ('mail_subject_key' in message and message['mail_subject_key'] in message): mail_subject += message[message['mail_subject_key']] # Otherwise mail_subject if it has something or the default return mail_subject if mail_subject else 'Form Submission' def set_mail_from(message): """ Returns a string to be used to fill the 'from' field of and email If no from address is provided in the html form, return 'from_default' """ # If a from address is included in html form, return it if 'mail_from' in message and message['mail_from']: return message['mail_from'] # If there is no explicit mail_from, return the user's submitted email if 'email' in message and message['email']: return message['email'] # If neither mail_from nor email is available, return from_default return 'from_default' def send_to_address(message): """ Returns a string to be used as the address the email is being sent to Default is '[email protected]' """ # If a send to address is included in html form, return its assoc. string if 'send_to' in message and message['send_to']: return message['send_to'] # Otherwise, return default return 'default' def send_email(msg, subject, send_to_email='default', mail_from='from_default'): """Sets up and sends the email""" # Format the message and set the subject msg_send = MIMEText(str(msg)) msg_send['Subject'] = subject msg_send['To'] = conf.EMAIL[send_to_email] msg_send['Sender'] = conf.SENDER # print(msg_send) # Sets up a temporary mail server to send from smtp = smtplib.SMTP(conf.SMTP_HOST) # Attempts to send the mail to EMAIL, with the message formatted as a string try: if (mail_from != 'from_default'): smtp.sendmail(mail_from, conf.EMAIL[send_to_email], msg_send.as_string()) smtp.quit() else: smtp.sendmail(conf.FROM[mail_from], conf.EMAIL[send_to_email], msg_send.as_string()) smtp.quit() except RuntimeError: smtp.quit() # Start application if __name__ == '__main__': from werkzeug.serving import run_simple # Creates the app app = create_app() # Starts the listener run_simple(conf.HOST, conf.PORT, app, use_debugger=True, use_reloader=True)
{ "content_hash": "11509dd99c81088d88100813c9ec7960", "timestamp": "", "source": "github", "line_count": 554, "max_line_length": 118, "avg_line_length": 36.46750902527076, "alnum_prop": 0.6110973617779538, "repo_name": "osuosl/formsender", "id": "daf71217595f26a42af12403221b95a877ade281", "size": "20203", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "request_handler.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "1770" }, { "name": "Makefile", "bytes": "777" }, { "name": "Python", "bytes": "69091" } ], "symlink_target": "" }
import os import sys import re def read_config(hosts_file): host=[] host_file=open(hosts_file) # 判断第一行是否有主机组 for line in host_file: if re.search("^#",line) or re.search("^ *$",line): continue host_info=line.strip().split("===") if len(host_info) < 4: print "the config file is err" sys.exit() host.append((host_info[0],host_info[1],host_info[2],host_info[3])) return host if __name__ == "__main__": hosts_file="./switch" host_info = read_config(hosts_file) print host_info
{ "content_hash": "43b2156e05251427136ae78861dfe6ea", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 74, "avg_line_length": 27.333333333333332, "alnum_prop": 0.5627177700348432, "repo_name": "BillWang139967/zabbix_manager", "id": "b8b532e0171eef00c24b7e89caac14d7621e18c1", "size": "627", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ZabbixTool/lib_zabbix/config.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "GAP", "bytes": "11337" }, { "name": "Python", "bytes": "862323" }, { "name": "Roff", "bytes": "10917" }, { "name": "Shell", "bytes": "15269" } ], "symlink_target": "" }
""" sentry.web.frontend.projects.keys ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2012 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from django.contrib import messages from django.core.context_processors import csrf from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.views.decorators.csrf import csrf_protect from django.views.decorators.http import require_http_methods from django.utils.translation import ugettext_lazy as _ from sentry.constants import MEMBER_OWNER from sentry.models import ProjectKey from sentry.permissions import ( can_remove_project_key, can_add_project_key ) from sentry.plugins import plugins from sentry.web.decorators import has_access from sentry.web.helpers import render_to_response @has_access(MEMBER_OWNER) @csrf_protect def manage_project_keys(request, team, project): result = plugins.first('has_perm', request.user, 'edit_project', project) if result is False and not request.user.is_superuser: return HttpResponseRedirect(reverse('sentry')) key_list = list(ProjectKey.objects.filter( project=project, ).select_related('user', 'user_added').order_by('-id')) for key in key_list: key.project = project key.can_remove = can_remove_project_key(request.user, key), context = csrf(request) context.update({ 'team': team, 'page': 'keys', 'project': project, 'key_list': key_list, 'can_add_key': can_add_project_key(request.user, project), }) return render_to_response('sentry/projects/keys.html', context, request) @has_access(MEMBER_OWNER) @csrf_protect def new_project_key(request, team, project): if not can_add_project_key(request.user, project): return HttpResponseRedirect(reverse('sentry-manage-project-keys', args=[project.team.slug, project.slug])) ProjectKey.objects.create( project=project, user_added=request.user, ) return HttpResponseRedirect(reverse('sentry-manage-project-keys', args=[project.team.slug, project.slug])) @require_http_methods(['POST']) @has_access(MEMBER_OWNER) @csrf_protect def remove_project_key(request, team, project, key_id): try: key = ProjectKey.objects.get(id=key_id) except ProjectKey.DoesNotExist: return HttpResponseRedirect(reverse('sentry-manage-project-keys', args=[project.team.slug, project.slug])) if not can_remove_project_key(request.user, key): return HttpResponseRedirect(reverse('sentry-manage-project-keys', args=[project.team.slug, project.slug])) key.delete() messages.add_message( request, messages.SUCCESS, _('The API key (%s) was revoked.') % (key.public_key,)) return HttpResponseRedirect(reverse('sentry-manage-project-keys', args=[project.team.slug, project.slug]))
{ "content_hash": "ae4fa374ca26a45f3848ac1ca9d33c1e", "timestamp": "", "source": "github", "line_count": 84, "max_line_length": 114, "avg_line_length": 34.583333333333336, "alnum_prop": 0.7087779690189329, "repo_name": "rdio/sentry", "id": "cb4e9b83afd554f16866f00a6f419a47033b8163", "size": "2905", "binary": false, "copies": "1", "ref": "refs/heads/rdio_sentry_6.4.4", "path": "src/sentry/web/frontend/projects/keys.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "533425" }, { "name": "HTML", "bytes": "258193" }, { "name": "JavaScript", "bytes": "916843" }, { "name": "Makefile", "bytes": "2982" }, { "name": "Python", "bytes": "2881969" }, { "name": "Ruby", "bytes": "8042" } ], "symlink_target": "" }
from djangopress.menus.menu import register from django.template import Template, RequestContext from .models import GallerySection class GalleryRender(object): _menu = Template(""" <ul{% if menu.class_tag%} class="{{ menu.class_tag }}"{% endif %}{% if menu.name %} id="{{ menu.name }}"{% endif %}> {% for gallery in galleries %} <li><a href="{{ gallery.get_absolute_url }}">{{ gallery.title }}</a></li> {% endfor %} </ul>""") _item = Template(""" <li {% if item.id_tag %} id="{{ item.id_tag }}" {% endif %}{% if item.class_tag %} class="{{ item.class_tag }}"{% endif %}> <a href="{{ item.link }}">{{ item.label }}</a> <ul> {% if item and item.label %}<li><a href="{{ item.link }}">{{ item.label }}</a></li>{% endif %} {% for gallery in galleries %} <li><a href="{{ gallery.get_absolute_url }}">{{ gallery.title }}</a></li> {% endfor %} </ul> </li>""") def render_menu(self, context, tree, menu=None, renderer=None): galleries = GallerySection.objects.filter( listed=True).order_by("position") return self._menu.render(RequestContext(context.get("request"), {"tree": tree, "galleries": galleries})) def render_item(self, context, item, sub_menu): galleries = GallerySection.objects.filter( listed=True).order_by("position") return self._item.render(RequestContext(context.get("request"), {"item": item, "galleries": galleries})) register('gallery', GalleryRender())
{ "content_hash": "508d4b306cae3fb78b2977190d1b9063", "timestamp": "", "source": "github", "line_count": 38, "max_line_length": 135, "avg_line_length": 44.63157894736842, "alnum_prop": 0.5294811320754716, "repo_name": "codefisher/djangopress", "id": "2753d06bb3b1340358ab30c193d494ec94eaca00", "size": "1696", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "djangopress/gallery/menus.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "37234" }, { "name": "HTML", "bytes": "66474" }, { "name": "JavaScript", "bytes": "14582" }, { "name": "Python", "bytes": "345188" }, { "name": "Shell", "bytes": "813" } ], "symlink_target": "" }
"""Classes and functions used to construct graphs.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import linecache import re import sys import threading import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import function_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.core.framework import versions_pb2 from tensorflow.python import pywrap_tensorflow as c_api from tensorflow.python.eager import context from tensorflow.python.eager import core from tensorflow.python.eager import tape from tensorflow.python.framework import c_api_util from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import registry from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import versions from tensorflow.python.platform import app from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import decorator_utils from tensorflow.python.util import tf_contextlib # Temporary global switch determining if we should enable the work-in-progress # calls to the C API. Currently disabled by default but can be manually enabled # e.g. in tests. This will be removed once all functionality is supported and # there's no performance penalty with it enabled. # # TODO(skyewm) before we can remove this: # - functions # - import_graph_def() incrementally adds inputs to ops (i.e. creates an # Operation and then calls _add_input()). The current code requires that all # inputs be specified when creating the Operation (since we call # TF_FinishOperation()). # - ops_test.py (and others?) create unregistered op types # - while loop # - performance (e.g. delete/refactor redundant Python functionality, switch to # new session API) _USE_C_API = False def tensor_id(tensor): """Returns a unique identifier for this Tensor.""" return tensor._id # pylint: disable=protected-access class _NullContextmanager(object): def __enter__(self): pass def __exit__(self, type_arg, value_arg, traceback_arg): return False # False values do not suppress exceptions def _override_helper(clazz_object, operator, func): """Overrides (string) operator on Tensors to call func. Args: clazz_object: the class to override for; either Tensor or SparseTensor. operator: the string name of the operator to override. func: the function that replaces the overridden operator. Raises: ValueError: If operator has already been overwritten, or if operator is not allowed to be overwritten. """ existing = getattr(clazz_object, operator, None) if existing is not None: # Check to see if this is a default method-wrapper or slot wrapper which # will be true for the comparison operators. if not isinstance(existing, type(object.__lt__)): raise ValueError("operator %s cannot be overwritten again on class %s." % (operator, clazz_object)) if operator not in Tensor.OVERLOADABLE_OPERATORS: raise ValueError("Overriding %s is disallowed" % operator) setattr(clazz_object, operator, func) def _as_graph_element(obj): """Convert `obj` to a graph element if possible, otherwise return `None`. Args: obj: Object to convert. Returns: The result of `obj._as_graph_element()` if that method is available; otherwise `None`. """ conv_fn = getattr(obj, "_as_graph_element", None) if conv_fn and callable(conv_fn): return conv_fn() return None _TENSOR_LIKE_TYPES = tuple() def is_dense_tensor_like(t): """EXPERIMENTAL: Returns true if `t` implements the tensor interface. See `register_dense_tensor_like_type()` for the current definition of a "tensor-like type". Args: t: An object. Returns: True iff `t` is an instance of one of the registered "tensor-like" types. """ return isinstance(t, _TENSOR_LIKE_TYPES) def register_dense_tensor_like_type(tensor_type): """EXPERIMENTAL: Registers `tensor_type` as implementing the tensor interface. A "tensor-like type" can represent a single dense tensor, and implements the `name` and `dtype` properties. Args: tensor_type: A type implementing the tensor interface. Raises: TypeError: If `tensor_type` does not implement the tensor interface. """ try: if not isinstance(tensor_type.name, property): raise TypeError("Type %s does not define a `name` property" % tensor_type.__name__) except AttributeError: raise TypeError("Type %s does not define a `name` property" % tensor_type.__name__) try: if not isinstance(tensor_type.dtype, property): raise TypeError("Type %s does not define a `dtype` property" % tensor_type.__name__) except AttributeError: raise TypeError("Type %s does not define a `dtype` property" % tensor_type.__name__) # We expect this list to be small, so choose quadratic complexity # for registration, so that we have a tuple that can be used for # more efficient `isinstance` checks later. global _TENSOR_LIKE_TYPES _TENSOR_LIKE_TYPES = tuple(list(_TENSOR_LIKE_TYPES) + [tensor_type]) def uid(): """A unique (within this program execution) integer.""" return c_api.TFE_Py_UID() def numpy_text(tensor, is_repr=False): """Human readable representation of a tensor's numpy value.""" if tensor.dtype.is_numpy_compatible: text = repr(tensor.numpy()) if is_repr else str(tensor.numpy()) else: text = "<unprintable>" if "\n" in text: text = "\n" + text return text # NOTE(ebrevdo): Do not subclass this. If you do, I will break you on purpose. class _TensorLike(object): """Internal cls for grouping Tensor, SparseTensor, ..., for is_instance.""" pass class Tensor(_TensorLike): """Represents one of the outputs of an `Operation`. A `Tensor` is a symbolic handle to one of the outputs of an `Operation`. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow @{tf.Session}. This class has two primary purposes: 1. A `Tensor` can be passed as an input to another `Operation`. This builds a dataflow connection between operations, which enables TensorFlow to execute an entire `Graph` that represents a large, multi-step computation. 2. After the graph has been launched in a session, the value of the `Tensor` can be computed by passing it to @{tf.Session.run}. `t.eval()` is a shortcut for calling `tf.get_default_session().run(t)`. In the following example, `c`, `d`, and `e` are symbolic `Tensor` objects, whereas `result` is a numpy array that stores a concrete value: ```python # Build a dataflow graph. c = tf.constant([[1.0, 2.0], [3.0, 4.0]]) d = tf.constant([[1.0, 1.0], [0.0, 1.0]]) e = tf.matmul(c, d) # Construct a `Session` to execute the graph. sess = tf.Session() # Execute the graph and store the value that `e` represents in `result`. result = sess.run(e) ``` """ # List of Python operators that we allow to override. OVERLOADABLE_OPERATORS = { # Binary. "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__div__", "__rdiv__", "__truediv__", "__rtruediv__", "__floordiv__", "__rfloordiv__", "__mod__", "__rmod__", "__lt__", "__le__", "__gt__", "__ge__", "__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__", "__getitem__", "__pow__", "__rpow__", # Unary. "__invert__", "__neg__", "__abs__", "__matmul__", "__rmatmul__" } def __init__(self, op, value_index, dtype): """Creates a new `Tensor`. Args: op: An `Operation`. `Operation` that computes this tensor. value_index: An `int`. Index of the operation's endpoint that produces this tensor. dtype: A `DType`. Type of elements stored in this tensor. Raises: TypeError: If the op is not an `Operation`. """ if not isinstance(op, Operation): raise TypeError("op needs to be an Operation: %s" % op) self._op = op self._value_index = value_index self._dtype = dtypes.as_dtype(dtype) self._shape = tensor_shape.unknown_shape() # List of operations that use this Tensor as input. We maintain this list # to easily navigate a computation graph. self._consumers = [] # Attributes used for C++ shape inference. Not inspected, only forwarded. # If set, will be a HandleData object from cpp_shape_inference.proto. self._handle_data = None self._id = uid() @property def op(self): """The `Operation` that produces this tensor as an output.""" return self._op @property def dtype(self): """The `DType` of elements in this tensor.""" return self._dtype @property def graph(self): """The `Graph` that contains this tensor.""" return self._op.graph @property def name(self): """The string name of this tensor.""" if not self._op.name: raise ValueError("Operation was not named: %s" % self._op) return "%s:%d" % (self._op.name, self._value_index) @property def device(self): """The name of the device on which this tensor will be produced, or None.""" return self._op.device @property def shape(self): """Returns the `TensorShape` that represents the shape of this tensor. The shape is computed using shape inference functions that are registered in the Op for each `Operation`. See @{tf.TensorShape} for more details of what a shape represents. The inferred shape of a tensor is used to provide shape information without having to launch the graph in a session. This can be used for debugging, and providing early error messages. For example: ```python c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) print(c.shape) ==> TensorShape([Dimension(2), Dimension(3)]) d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]]) print(d.shape) ==> TensorShape([Dimension(4), Dimension(2)]) # Raises a ValueError, because `c` and `d` do not have compatible # inner dimensions. e = tf.matmul(c, d) f = tf.matmul(c, d, transpose_a=True, transpose_b=True) print(f.shape) ==> TensorShape([Dimension(3), Dimension(4)]) ``` In some cases, the inferred shape may have unknown dimensions. If the caller has additional information about the values of these dimensions, `Tensor.set_shape()` can be used to augment the inferred shape. Returns: A `TensorShape` representing the shape of this tensor. """ return self._shape def __iter__(self): if context.in_graph_mode(): raise TypeError( "`Tensor` objects are not iterable when eager execution is not " "enabled. To iterate over this tensor use `tf.map_fn`.") shape = self._shape_tuple() if shape is None: raise TypeError("Cannot iterate over a tensor with unknown shape.") if not shape: raise TypeError("Cannot iterate over a scalar tensor.") if shape[0] is None: raise TypeError( "Cannot iterate over a tensor with unknown first dimension.") for i in xrange(shape[0]): yield self[i] def _shape_as_list(self): if self._shape.ndims is not None: return [dim.value for dim in self._shape.dims] else: return None def _shape_tuple(self): shape = self._shape_as_list() if shape is None: return None return tuple(shape) def _rank(self): """Integer rank of this Tensor, if known, else None. Returns: Integer rank or None """ return self._shape.ndims def get_shape(self): """Alias of Tensor.shape.""" return self.shape def set_shape(self, shape): """Updates the shape of this tensor. This method can be called multiple times, and will merge the given `shape` with the current shape of this tensor. It can be used to provide additional information about the shape of this tensor that cannot be inferred from the graph alone. For example, this can be used to provide additional information about the shapes of images: ```python _, image_data = tf.TFRecordReader(...).read(...) image = tf.image.decode_png(image_data, channels=3) # The height and width dimensions of `image` are data dependent, and # cannot be computed without executing the op. print(image.shape) ==> TensorShape([Dimension(None), Dimension(None), Dimension(3)]) # We know that each image in this dataset is 28 x 28 pixels. image.set_shape([28, 28, 3]) print(image.shape) ==> TensorShape([Dimension(28), Dimension(28), Dimension(3)]) ``` Args: shape: A `TensorShape` representing the shape of this tensor. Raises: ValueError: If `shape` is not compatible with the current shape of this tensor. """ # TODO(skyewm): call C API self._shape = self._shape.merge_with(shape) @property def value_index(self): """The index of this tensor in the outputs of its `Operation`.""" return self._value_index def consumers(self): """Returns a list of `Operation`s that consume this tensor. Returns: A list of `Operation`s. """ return self._consumers def _add_consumer(self, consumer): """Add a consumer to this tensor. Args: consumer: an Operation. Raises: TypeError: if the consumer is not an Operation. """ if not isinstance(consumer, Operation): raise TypeError("Consumer must be an Operation: %s" % consumer) self._consumers.append(consumer) def _as_node_def_input(self): """Return a value to use for the NodeDef "input" attribute. The returned string can be used in a NodeDef "input" attribute to indicate that the NodeDef uses this Tensor as input. Raises: ValueError: if this Tensor's Operation does not have a name. Returns: a string. """ if not self._op.name: raise ValueError("Operation was not named: %s" % self._op) if self._value_index == 0: return self._op.name else: return "%s:%d" % (self._op.name, self._value_index) def _as_tf_output(self): # pylint: disable=protected-access assert self.op._c_op return c_api_util.tf_output(self.op._c_op, self.value_index) # pylint: enable=protected-access def __str__(self): return "Tensor(\"%s\"%s%s%s)" % ( self.name, (", shape=%s" % self.get_shape()) if self.get_shape().ndims is not None else "", (", dtype=%s" % self._dtype.name) if self._dtype else "", (", device=%s" % self.device) if self.device else "") def __repr__(self): return "<tf.Tensor '%s' shape=%s dtype=%s>" % (self.name, self.get_shape(), self._dtype.name) def __hash__(self): # Necessary to support Python's collection membership operators return id(self) def __eq__(self, other): # Necessary to support Python's collection membership operators return id(self) == id(other) # NOTE(mrry): This enables the Tensor's overloaded "right" binary # operators to run when the left operand is an ndarray, because it # accords the Tensor class higher priority than an ndarray, or a # numpy matrix. # TODO(mrry): Convert this to using numpy's __numpy_ufunc__ # mechanism, which allows more control over how Tensors interact # with ndarrays. __array_priority__ = 100 @staticmethod def _override_operator(operator, func): _override_helper(Tensor, operator, func) def __bool__(self): """Dummy method to prevent a tensor from being used as a Python `bool`. This overload raises a `TypeError` when the user inadvertently treats a `Tensor` as a boolean (e.g. in an `if` statement). For example: ```python if tf.constant(True): # Will raise. # ... if tf.constant(5) < tf.constant(7): # Will raise. # ... ``` This disallows ambiguities between testing the Python value vs testing the dynamic condition of the `Tensor`. Raises: `TypeError`. """ raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " "tensor is defined, and use TensorFlow ops such as " "tf.cond to execute subgraphs conditioned on the value of " "a tensor.") def __nonzero__(self): """Dummy method to prevent a tensor from being used as a Python `bool`. This is the Python 2.x counterpart to `__bool__()` above. Raises: `TypeError`. """ raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. " "Use `if t is not None:` instead of `if t:` to test if a " "tensor is defined, and use TensorFlow ops such as " "tf.cond to execute subgraphs conditioned on the value of " "a tensor.") def eval(self, feed_dict=None, session=None): """Evaluates this tensor in a `Session`. Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor. *N.B.* Before invoking `Tensor.eval()`, its graph must have been launched in a session, and either a default session must be available, or `session` must be specified explicitly. Args: feed_dict: A dictionary that maps `Tensor` objects to feed values. See @{tf.Session.run} for a description of the valid feed values. session: (Optional.) The `Session` to be used to evaluate this tensor. If none, the default session will be used. Returns: A numpy array corresponding to the value of this tensor. """ return _eval_using_default_session(self, feed_dict, self.graph, session) def _dup(self): ret = copy.copy(self) ret._id = uid() # pylint: disable=protected-access return ret # TODO(agarwal): consider getting rid of this. class _EagerTensorBase(Tensor): """Base class for EagerTensor.""" @property def dtype(self): # Note: using the intern table directly here as this is # performance-sensitive in some models. return dtypes._INTERN_TABLE[self._datatype_enum()] # pylint: disable=protected-access def numpy(self): """Returns a numpy array or a scalar with the same contents as the Tensor. TODO(ashankar,agarwal): Perhaps this should NOT reference the underlying buffer but instead always explicitly copy? Note that currently it may or may not copy based on whether the numpy data is properly aligned or not. Returns: A numpy array or a scalar. Numpy array may share memory with the Tensor object. Any changes to one may be reflected in the other. A scalar value is returned when self has rank 0. Raises: ValueError: if the type of this Tensor is not representable in numpy. """ if self.dtype == dtypes.resource: raise ValueError("Resource handles are not convertible to numpy.") return self.cpu()._numpy() # pylint: disable=protected-access # __int__ and __float__ may copy the tensor to CPU and # only work for scalars; values are cast as per numpy. def __int__(self): return int(self.numpy()) def __float__(self): return float(self.numpy()) def __array__(self): return np.array(self.numpy()) def __format__(self, format_spec): return self.numpy().__format__(format_spec) def _numpy(self): raise NotImplementedError() def __copy__(self): # Eager Tensors are immutable so it's safe to return themselves as a copy. return self def __deepcopy__(self, memo): # Eager Tensors are immutable so it's safe to return themselves as a copy. del memo return self def _datatype_enum(self): raise NotImplementedError() def _shape_tuple(self): """The shape of this Tensor, as a tuple. This is more performant than tuple(shape().as_list()) as it avoids two list and one object creation. Marked private for now as from an API perspective, it would be better to have a single performant way of getting a shape rather than exposing shape() and shape_tuple() (and heaven forbid, shape_list() etc. as well!). Punting on that for now, but ideally one would work things out and remove the need for this method. Returns: tuple with the shape. """ raise NotImplementedError() def _rank(self): """Integer rank of this Tensor. Unlike regular Tensors, the rank is always known for EagerTensors. This is more performant than len(self._shape_tuple()) Returns: Integer rank """ raise NotImplementedError() def _copy_to_device(self, context, device): # pylint: disable=redefined-outer-name raise NotImplementedError() def __str__(self): return "tf.Tensor(%s, shape=%s, dtype=%s)" % (numpy_text(self), self.shape, self.dtype.name) def __repr__(self): return "<tf.Tensor: id=%s, shape=%s, dtype=%s, numpy=%s>" % ( self._id, self.shape, self.dtype.name, numpy_text(self, is_repr=True)) @staticmethod def _override_operator(name, func): setattr(_EagerTensorBase, name, func) def _copy(self, ctx=None, device_name=None): """Copies tensor to dest device.""" # pylint: disable=protected-access # Creates a new tensor on the dest device. if ctx is None: ctx = context.context() if device_name is None: device_name = ctx.device_name # pylint: disable=protected-access try: new_tensor = self._copy_to_device(context=ctx._handle, device=device_name) except core._NotOkStatusException as e: six.raise_from(core._status_to_exception(e.code, e.message), None) # Record the copy on tape and define backprop copy as well. if not context.in_graph_mode(): self_device = self.device def grad_fun(dresult): return [dresult._copy(device_name=self_device)] tape.record_operation("_copy", [new_tensor], [self], grad_fun) return new_tensor # pylint: enable=protected-access def _dup(self): return self._copy(device_name=self.device) @property def shape(self): return tensor_shape.TensorShape(self._shape_tuple()) def get_shape(self): """Alias of Tensor.shape.""" return self.shape def _shape_as_list(self): """The shape of the tensor as a list.""" return list(self._shape_tuple()) def cpu(self): """A copy of this Tensor with contents backed by host memory.""" return self._copy(context.context(), "CPU:0") def gpu(self, gpu_index=0): """A copy of this Tensor with contents backed by memory on the GPU. Arguments: gpu_index: Identifies which GPU to place the contents on the returned Tensor in. Returns: A GPU-memory backed Tensor object initialized with the same contents as this Tensor. """ return self._copy(context.context(), "GPU:" + str(gpu_index)) def __bool__(self): if self._shape_tuple() != (): # pylint: disable=g-explicit-bool-comparison raise ValueError( "Non-scalar tensor %s cannot be converted to boolean." % repr(self)) if self.dtype != dtypes.bool: raise ValueError( "Non-boolean tensor %s cannot be converted to boolean." % repr(self)) return bool(self.cpu().numpy()) def __nonzero__(self): return self.__bool__() def set_shape(self, shape): if not self.shape.is_compatible_with(shape): raise ValueError( "EagerTensor's shape %s is not compatible with supplied shape %s" % (self.shape, shape)) # Methods not supported / implemented for Eager Tensors. @property def op(self): raise AttributeError("op not supported for Eager Tensors.") @property def graph(self): raise AttributeError("graph not supported for Eager Tensors.") @property def name(self): raise AttributeError("name not supported for Eager Tensors.") @property def value_index(self): raise AttributeError("value_index not supported for Eager Tensors.") def consumers(self): raise NotImplementedError("consumers not supported for Eager Tensors.") def _add_consumer(self, consumer): raise NotImplementedError("_add_consumer not supported for Eager Tensors.") def _as_node_def_input(self): raise NotImplementedError( "_as_node_def_input not supported for Eager Tensors.") def _as_tf_output(self): raise NotImplementedError("_as_tf_output not supported for Eager Tensors.") def eval(self, feed_dict=None, session=None): raise NotImplementedError("eval not supported for Eager Tensors.") # This call creates an EagerTensor class, as a subclass of _EagerTensorBase, and # registers it with the current module. EagerTensor = c_api.TFE_Py_InitEagerTensor(_EagerTensorBase) def _TensorTensorConversionFunction(t, dtype=None, name=None, as_ref=False): _ = name, as_ref if dtype and not dtype.is_compatible_with(t.dtype): raise ValueError( "Tensor conversion requested dtype %s for Tensor with dtype %s: %r" % (dtype.name, t.dtype.name, str(t))) return t _tensor_conversion_func_registry = { 0: [(Tensor, _TensorTensorConversionFunction)] } _tensor_conversion_func_cache = {} _tensor_conversion_func_lock = threading.Lock() register_dense_tensor_like_type(Tensor) def convert_to_tensor(value, dtype=None, name=None, preferred_dtype=None): """Converts the given `value` to a `Tensor`. This function converts Python objects of various types to `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: ```python import numpy as np def my_func(arg): arg = tf.convert_to_tensor(arg, dtype=tf.float32) return tf.matmul(arg, arg) + arg # The following calls are equivalent. value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]])) value_2 = my_func([[1.0, 2.0], [3.0, 4.0]]) value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)) ``` This function can be useful when composing a new operation in Python (such as `my_func` in the example above). All standard Python op constructors apply this function to each of their Tensor-valued inputs, which allows those ops to accept numpy arrays, Python lists, and scalars in addition to `Tensor` objects. Note: This function diverges from default Numpy behavior for `float` and `string` types when `None` is present in a Python list or scalar. Rather than silently converting `None` values, an error will be thrown. Args: value: An object whose type has a registered `Tensor` conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. name: Optional name to use if a new `Tensor` is created. preferred_dtype: Optional element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. Returns: An `Output` based on `value`. Raises: TypeError: If no conversion function is registered for `value`. RuntimeError: If a registered conversion function returns an invalid value. """ return internal_convert_to_tensor( value=value, dtype=dtype, name=name, preferred_dtype=preferred_dtype, as_ref=False) def _error_prefix(name): return "" if name is None else "%s: " % name def internal_convert_to_tensor(value, dtype=None, name=None, as_ref=False, preferred_dtype=None, ctx=None): """Converts the given `value` to an `Tensor`. This function converts Python objects of various types to `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: This function can be useful when composing a new operation in Python All standard Python op constructors apply this function to each of their Tensor-valued inputs, which allows those ops to accept numpy arrays, Python lists, and scalars in addition to `Tensor` objects. Args: value: An object whose type has a registered `Tensor` conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. name: Optional name to use if a new `Tensor` is created. as_ref: True if we want the mutable view of Variables, if applicable. preferred_dtype: Optional element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. ctx: Optional: The value of context.context(). Returns: A `Tensor` based on `value`. Raises: TypeError: If no conversion function is registered for `value`. RuntimeError: If a registered conversion function returns an invalid value. """ if ctx is None: ctx = context.context() if ctx.in_eager_mode(): # Fast path for EagerTensors that don't need any conversion. if isinstance(value, EagerTensor): # Note that we don't check that value's dtype matches the dtype # argument. We exepct that the C runtime will do that checking # when we execute the kernel. return value if dtype is not None: dtype = dtypes.as_dtype(dtype) unwrapped_type = type(value) conversion_func_list = _tensor_conversion_func_cache.get(unwrapped_type, None) if conversion_func_list is None: with _tensor_conversion_func_lock: conversion_func_list = [] for _, funcs_at_priority in sorted( _tensor_conversion_func_registry.items()): for base_type, conversion_func in funcs_at_priority: if isinstance(value, base_type): conversion_func_list.append((base_type, conversion_func)) _tensor_conversion_func_cache[unwrapped_type] = conversion_func_list for base_type, conversion_func in conversion_func_list: # If dtype is None but preferred_dtype is not None, we try to # cast to preferred_dtype first. ret = None if dtype is None and preferred_dtype is not None: try: ret = conversion_func( value, dtype=preferred_dtype, name=name, as_ref=as_ref) except (TypeError, ValueError, errors.UnimplementedError, errors.InvalidArgumentError): # Could not coerce the conversion to use the preferred dtype. ret = None if ret is not None and ret is not NotImplemented: if (ret.dtype.base_dtype != dtypes.as_dtype(preferred_dtype).base_dtype): raise TypeError("convert_to_tensor did not convert to " "the preferred dtype: %s vs %s " % (ret.dtype.base_dtype, dtypes.as_dtype(preferred_dtype).base_dtype)) if ret is None: ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) if ret is NotImplemented: continue if not isinstance(ret, Tensor): raise RuntimeError( "%sConversion function %r for type %s returned non-Tensor: %r" % (_error_prefix(name), conversion_func, base_type, ret)) if dtype and not dtype.is_compatible_with(ret.dtype): raise RuntimeError( "%sConversion function %r for type %s returned incompatible " "dtype: requested = %s, actual = %s" % (_error_prefix(name), conversion_func, base_type, dtype.name, ret.dtype.name)) return ret raise TypeError("%sCannot convert %r with type %s to Tensor: " "no conversion function registered." % (_error_prefix(name), value, unwrapped_type)) def internal_convert_n_to_tensor(values, dtype=None, name=None, as_ref=False, preferred_dtype=None, ctx=None): """Converts `values` to a list of `Tensor` objects. Args: values: A list of objects that can be consumed by `tf.convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` objects. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. as_ref: True if the caller wants the results as ref tensors. preferred_dtype: Optional element type for the returned tensors, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. ctx: The value of context.context(). Returns: A list of `Tensor` and/or `IndexedSlices` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ if not isinstance(values, collections.Sequence): raise TypeError("values must be a list.") ret = [] if ctx is None: ctx = context.context() for i, value in enumerate(values): n = None if name is None else "%s_%d" % (name, i) ret.append( internal_convert_to_tensor( value, dtype=dtype, name=n, as_ref=as_ref, preferred_dtype=preferred_dtype, ctx=ctx)) return ret def convert_n_to_tensor(values, dtype=None, name=None, preferred_dtype=None): """Converts `values` to a list of `Tensor` objects. Args: values: A list of objects that can be consumed by `tf.convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` objects. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. preferred_dtype: Optional element type for the returned tensors, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so preferred_dtype can be used as a soft preference. If the conversion to `preferred_dtype` is not possible, this argument has no effect. Returns: A list of `Tensor` and/or `IndexedSlices` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ return internal_convert_n_to_tensor( values=values, dtype=dtype, name=name, preferred_dtype=preferred_dtype, as_ref=False) def convert_to_tensor_or_indexed_slices(value, dtype=None, name=None): """Converts the given object to a `Tensor` or an `IndexedSlices`. If `value` is an `IndexedSlices` or `SparseTensor` it is returned unmodified. Otherwise, it is converted to a `Tensor` using `convert_to_tensor()`. Args: value: An `IndexedSlices`, `SparseTensor`, or an object that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` or `IndexedSlices`. name: (Optional.) A name to use if a new `Tensor` is created. Returns: An `Tensor`, `IndexedSlices`, or `SparseTensor` based on `value`. Raises: ValueError: If `dtype` does not match the element type of `value`. """ return internal_convert_to_tensor_or_indexed_slices( value=value, dtype=dtype, name=name, as_ref=False) def internal_convert_to_tensor_or_indexed_slices(value, dtype=None, name=None, as_ref=False): """Converts the given object to an `Tensor` or an `IndexedSlices`. If `value` is an `IndexedSlices` or `SparseTensor` it is returned unmodified. Otherwise, it is converted to a `Tensor` using `convert_to_tensor()`. Args: value: An `IndexedSlices`, `SparseTensor`, or an object that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` or `IndexedSlices`. name: (Optional.) A name to use if a new `Tensor` is created. as_ref: True if the caller wants the results as ref tensors. Returns: An `Tensor`, `IndexedSlices`, or `SparseTensor` based on `value`. Raises: ValueError: If `dtype` does not match the element type of `value`. """ if isinstance(value, _TensorLike): if dtype and not dtypes.as_dtype(dtype).is_compatible_with(value.dtype): raise ValueError( "Tensor conversion requested dtype %s for Tensor with dtype %s: %r" % (dtypes.as_dtype(dtype).name, value.dtype.name, str(value))) return value else: return internal_convert_to_tensor( value, dtype=dtype, name=name, as_ref=as_ref) def internal_convert_n_to_tensor_or_indexed_slices(values, dtype=None, name=None, as_ref=False): """Converts `values` to a list of `Tensor` or `IndexedSlices` objects. Any `IndexedSlices` or `SparseTensor` objects in `values` are returned unmodified. Args: values: A list of `None`, `IndexedSlices`, `SparseTensor`, or objects that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` `IndexedSlices`. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. as_ref: True if the caller wants the results as ref tensors. Returns: A list of `Tensor`, `IndexedSlices`, and/or `SparseTensor` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ if not isinstance(values, collections.Sequence): raise TypeError("values must be a list.") ret = [] for i, value in enumerate(values): if value is None: ret.append(value) else: n = None if name is None else "%s_%d" % (name, i) ret.append( internal_convert_to_tensor_or_indexed_slices( value, dtype=dtype, name=n, as_ref=as_ref)) return ret def convert_n_to_tensor_or_indexed_slices(values, dtype=None, name=None): """Converts `values` to a list of `Output` or `IndexedSlices` objects. Any `IndexedSlices` or `SparseTensor` objects in `values` are returned unmodified. Args: values: A list of `None`, `IndexedSlices`, `SparseTensor`, or objects that can be consumed by `convert_to_tensor()`. dtype: (Optional.) The required `DType` of the returned `Tensor` `IndexedSlices`. name: (Optional.) A name prefix to used when a new `Tensor` is created, in which case element `i` will be given the name `name + '_' + i`. Returns: A list of `Tensor`, `IndexedSlices`, and/or `SparseTensor` objects. Raises: TypeError: If no conversion function is registered for an element in `values`. RuntimeError: If a registered conversion function returns an invalid value. """ return internal_convert_n_to_tensor_or_indexed_slices( values=values, dtype=dtype, name=name, as_ref=False) # TODO(josh11b): Add ctx argument to conversion_func() signature. def register_tensor_conversion_function(base_type, conversion_func, priority=100): """Registers a function for converting objects of `base_type` to `Tensor`. The conversion function must have the following signature: ```python def conversion_func(value, dtype=None, name=None, as_ref=False): # ... ``` It must return a `Tensor` with the given `dtype` if specified. If the conversion function creates a new `Tensor`, it should use the given `name` if specified. All exceptions will be propagated to the caller. The conversion function may return `NotImplemented` for some inputs. In this case, the conversion process will continue to try subsequent conversion functions. If `as_ref` is true, the function must return a `Tensor` reference, such as a `Variable`. NOTE: The conversion functions will execute in order of priority, followed by order of registration. To ensure that a conversion function `F` runs before another conversion function `G`, ensure that `F` is registered with a smaller priority than `G`. Args: base_type: The base type or tuple of base types for all objects that `conversion_func` accepts. conversion_func: A function that converts instances of `base_type` to `Tensor`. priority: Optional integer that indicates the priority for applying this conversion function. Conversion functions with smaller priority values run earlier than conversion functions with larger priority values. Defaults to 100. Raises: TypeError: If the arguments do not have the appropriate type. """ global _tensor_conversion_func_cache with _tensor_conversion_func_lock: if not (isinstance(base_type, type) or (isinstance(base_type, tuple) and all(isinstance(x, type) for x in base_type))): raise TypeError("base_type must be a type or a tuple of types.") if not callable(conversion_func): raise TypeError("conversion_func must be callable.") try: funcs_at_priority = _tensor_conversion_func_registry[priority] except KeyError: funcs_at_priority = [] _tensor_conversion_func_registry[priority] = funcs_at_priority funcs_at_priority.append((base_type, conversion_func)) _tensor_conversion_func_cache = {} class IndexedSlices(_TensorLike): """A sparse representation of a set of tensor slices at given indices. This class is a simple wrapper for a pair of `Tensor` objects: * `values`: A `Tensor` of any dtype with shape `[D0, D1, ..., Dn]`. * `indices`: A 1-D integer `Tensor` with shape `[D0]`. An `IndexedSlices` is typically used to represent a subset of a larger tensor `dense` of shape `[LARGE0, D1, .. , DN]` where `LARGE0 >> D0`. The values in `indices` are the indices in the first dimension of the slices that have been extracted from the larger tensor. The dense tensor `dense` represented by an `IndexedSlices` `slices` has ```python dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...] ``` The `IndexedSlices` class is used principally in the definition of gradients for operations that have sparse gradients (e.g. @{tf.gather}). Contrast this representation with @{tf.SparseTensor}, which uses multi-dimensional indices and scalar values. """ def __init__(self, values, indices, dense_shape=None): """Creates an `IndexedSlices`.""" _get_graph_from_inputs([values, indices, dense_shape]) self._values = values self._indices = indices self._dense_shape = dense_shape @property def values(self): """A `Tensor` containing the values of the slices.""" return self._values @property def indices(self): """A 1-D `Tensor` containing the indices of the slices.""" return self._indices @property def dense_shape(self): """A 1-D `Tensor` containing the shape of the corresponding dense tensor.""" return self._dense_shape @property def name(self): """The name of this `IndexedSlices`.""" return self.values.name @property def device(self): """The name of the device on which `values` will be produced, or `None`.""" return self.values.device @property def op(self): """The `Operation` that produces `values` as an output.""" return self.values.op @property def dtype(self): """The `DType` of elements in this tensor.""" return self.values.dtype @property def graph(self): """The `Graph` that contains the values, indices, and shape tensors.""" return self._values.graph def __str__(self): return "IndexedSlices(indices=%s, values=%s%s)" % ( self._indices, self._values, (", dense_shape=%s" % self._dense_shape) if self._dense_shape is not None else "") def __neg__(self): return IndexedSlices(-self.values, self.indices, self.dense_shape) IndexedSlicesValue = collections.namedtuple( "IndexedSlicesValue", ["values", "indices", "dense_shape"]) def _device_string(dev_spec): if isinstance(dev_spec, pydev.DeviceSpec): return dev_spec.to_string() else: return dev_spec def _NodeDef(op_type, name, device=None, attrs=None): # pylint: disable=redefined-outer-name """Create a NodeDef proto. Args: op_type: Value for the "op" attribute of the NodeDef proto. name: Value for the "name" attribute of the NodeDef proto. device: string, device, or function from NodeDef to string. Value for the "device" attribute of the NodeDef proto. attrs: Optional dictionary where the key is the attribute name (a string) and the value is the respective "attr" attribute of the NodeDef proto (an AttrValue). Returns: A node_def_pb2.NodeDef protocol buffer. """ node_def = node_def_pb2.NodeDef() node_def.op = compat.as_bytes(op_type) node_def.name = compat.as_bytes(name) if attrs is not None: for k, v in six.iteritems(attrs): node_def.attr[k].CopyFrom(v) if device is not None: if callable(device): node_def.device = device(node_def) else: node_def.device = _device_string(device) return node_def # Copied from core/framework/node_def_util.cc # TODO(mrry,josh11b): Consolidate this validation in C++ code. _VALID_OP_NAME_REGEX = re.compile("^[A-Za-z0-9.][A-Za-z0-9_.\\-/]*$") _VALID_SCOPE_NAME_REGEX = re.compile("^[A-Za-z0-9_.\\-/]*$") def _create_c_op(graph, node_def, inputs, control_inputs): """Creates a TF_Operation. Args: graph: a `Graph`. node_def: `node_def_pb2.NodeDef` for the operation to create. inputs: A list of `Tensor`s (corresponding to scalar inputs) and lists of `Tensor`s (corresponding to sequence inputs, e.g. "int64 * N", "list(int64)"). The length of the list should be equal to the number of inputs specified by this operation's op def. control_inputs: A list of `Operation`s to set as control dependencies. Returns: A wrapped TF_Operation*. """ # pylint: disable=protected-access op_desc = c_api.TF_NewOperation(graph._c_graph, compat.as_str(node_def.op), compat.as_str(node_def.name)) # Add inputs for op_input in inputs: if isinstance(op_input, (list, tuple)): c_api.TF_AddInputList(op_desc, [t._as_tf_output() for t in op_input]) else: c_api.TF_AddInput(op_desc, op_input._as_tf_output()) # Add control inputs for control_input in control_inputs: c_api.TF_AddControlInput(op_desc, control_input._c_op) # pylint: enable=protected-access # Add attrs for name, attr_value in node_def.attr.items(): serialized = attr_value.SerializeToString() # TODO(skyewm): this creates and deletes a new TF_Status for every attr. # It might be worth creating a convenient way to re-use the same status. with errors.raise_exception_on_not_ok_status() as status: c_api.TF_SetAttrValueProto(op_desc, compat.as_str(name), serialized, status) with errors.raise_exception_on_not_ok_status() as status: c_op = c_api.TF_FinishOperation(op_desc, status) return c_op class Operation(object): """Represents a graph node that performs computation on tensors. An `Operation` is a node in a TensorFlow `Graph` that takes zero or more `Tensor` objects as input, and produces zero or more `Tensor` objects as output. Objects of type `Operation` are created by calling a Python op constructor (such as @{tf.matmul}) or @{tf.Graph.create_op}. For example `c = tf.matmul(a, b)` creates an `Operation` of type "MatMul" that takes tensors `a` and `b` as input, and produces `c` as output. After the graph has been launched in a session, an `Operation` can be executed by passing it to @{tf.Session.run}. `op.run()` is a shortcut for calling `tf.get_default_session().run(op)`. """ def __init__(self, node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None): r"""Creates an `Operation`. NOTE: This constructor validates the name of the `Operation` (passed as `node_def.name`). Valid `Operation` names match the following regular expression: [A-Za-z0-9.][A-Za-z0-9_.\\-/]* Args: node_def: `node_def_pb2.NodeDef`. `NodeDef` for the `Operation`. Used for attributes of `node_def_pb2.NodeDef`, typically `name`, `op`, and `device`. The `input` attribute is irrelevant here as it will be computed when generating the model. g: `Graph`. The parent graph. inputs: list of `Tensor` objects. The inputs to this `Operation`. output_types: list of `DType` objects. List of the types of the `Tensors` computed by this operation. The length of this list indicates the number of output endpoints of the `Operation`. control_inputs: list of operations or tensors from which to have a control dependency. input_types: List of `DType` objects representing the types of the tensors accepted by the `Operation`. By default uses `[x.dtype.base_dtype for x in inputs]`. Operations that expect reference-typed inputs must specify these explicitly. original_op: Optional. Used to associate the new `Operation` with an existing `Operation` (for example, a replica with the op that was replicated). op_def: Optional. The `op_def_pb2.OpDef` proto that describes the op type that this `Operation` represents. Raises: TypeError: if control inputs are not Operations or Tensors, or if `node_def` is not a `NodeDef`, or if `g` is not a `Graph`, or if `inputs` are not tensors, or if `inputs` and `input_types` are incompatible. ValueError: if the `node_def` name is not valid. """ # For internal use only: `node_def` can be set to a TF_Operation to create # an Operation for that op. This is useful for creating Operations for ops # indirectly created by C API methods, e.g. the ops created by # TF_ImportGraphDef. When `node_def` is a TF_Operation, all optional fields # except `control_inputs` should be None. if isinstance(node_def, node_def_pb2.NodeDef): if node_def.ByteSize() >= (1 << 31) or node_def.ByteSize() < 0: raise ValueError( "Cannot create a tensor proto whose content is larger than 2GB.") if not _VALID_OP_NAME_REGEX.match(node_def.name): raise ValueError("'%s' is not a valid node name" % node_def.name) self._node_def = copy.deepcopy(node_def) c_op = None elif type(node_def).__name__ == "SwigPyObject": assert inputs is None assert output_types is None assert input_types is None assert original_op is None assert op_def is None self._node_def = None c_op = node_def else: raise TypeError("node_def needs to be a NodeDef: %s" % node_def) if not isinstance(g, Graph): raise TypeError("g needs to be a Graph: %s" % g) self._graph = g if inputs is None: inputs = [] elif not isinstance(inputs, list): raise TypeError("inputs needs to be a list of Tensors: %s" % inputs) self._inputs = list(inputs) # Defensive copy. for a in self._inputs: if not isinstance(a, Tensor): raise TypeError("input needs to be a Tensor: %s" % a) if input_types is None: input_types = [i.dtype.base_dtype for i in self._inputs] else: if not all( x.is_compatible_with(i.dtype) for i, x in zip(self._inputs, input_types)): raise TypeError("In op '%s', input types (%s) are not compatible " "with expected types (%s)" % (self.node_def.name, [i.dtype for i in self._inputs], input_types)) self._input_types_val = input_types # Build the list of control inputs. self._control_inputs = [] if control_inputs: for c in control_inputs: control_op = None if isinstance(c, Operation): control_op = c elif isinstance(c, (Tensor, IndexedSlices)): control_op = c.op else: raise TypeError("Control input must be an Operation, " "a Tensor, or IndexedSlices: %s" % c) self._control_inputs.append(control_op) self._original_op = original_op self._op_def = op_def self._traceback = self._graph._extract_stack() # pylint: disable=protected-access # Initialize self._c_op. if c_op: # TODO(skyewm): remove this assert when we remove USE_C_API assert self._graph._c_graph # pylint: disable=protected-access self._c_op = c_op self._add_control_inputs(self._control_inputs) elif self._graph._c_graph: # pylint: disable=protected-access if self._op_def: # TODO(skyewm): op_def_library.apply_op() flattens the incoming # inputs. Refactor so we don't have to do this here. grouped_inputs = self._reconstruct_sequence_inputs( self._op_def, self._inputs, self._node_def.attr) else: # If no OpDef is specified, assume all inputs are scalar. grouped_inputs = self._inputs self._c_op = _create_c_op(self._graph, self._node_def, grouped_inputs, self._control_inputs) else: self._c_op = None # Mark that we consume the inputs. for input_tensor in self.inputs: input_tensor._add_consumer(self) # pylint: disable=protected-access # Initialize self._outputs. if self._c_op: num_outputs = c_api.TF_OperationNumOutputs(self._c_op) output_types = [ c_api.TF_OperationOutputType(c_api_util.tf_output(self._c_op, i)) for i in range(num_outputs)] assert output_types is not None elif output_types is None: output_types = [] self._output_types_val = output_types self._outputs = [ Tensor(self, i, output_type) for i, output_type in enumerate(output_types) ] # Add this op to the current control flow context. self._control_flow_context = g._get_control_flow_context() # pylint: disable=protected-access if self._control_flow_context is not None: self._control_flow_context.AddOp(self) # NOTE(keveman): Control flow context's AddOp could be creating new ops and # setting op.inputs[index] = new_op. Thus the new ops' id could be larger # than this op's id even though this op depend on them. Therefore, delaying # assigning id to this op until all ops this could be dependent on are # created. self._id_value = self._graph._next_id() # pylint: disable=protected-access self._recompute_node_def() self._graph._add_op(self) # pylint: disable=protected-access def _reconstruct_sequence_inputs(self, op_def, inputs, attrs): """Regroups a flat list of input tensors into scalar and sequence inputs. Args: op_def: The `op_def_pb2.OpDef` (for knowing the input types) inputs: a list of input `Tensor`s to the op. attrs: mapping from attr name to `attr_value_pb2.AttrValue` (these define how long each sequence is) Returns: A list of `Tensor`s (corresponding to scalar inputs) and lists of `Tensor`s (corresponding to sequence inputs). """ grouped_inputs = [] i = 0 for input_arg in op_def.input_arg: if input_arg.number_attr: input_len = attrs[input_arg.number_attr].i is_sequence = True elif input_arg.type_list_attr: input_len = len(attrs[input_arg.type_list_attr].list.type) is_sequence = True else: input_len = 1 is_sequence = False if is_sequence: grouped_inputs.append(inputs[i:i + input_len]) else: grouped_inputs.append(inputs[i]) i += input_len assert i == len(inputs) return grouped_inputs def colocation_groups(self): """Returns the list of colocation groups of the op.""" default_colocation_group = [ compat.as_bytes("loc:@%s" % self.name) ] try: class_attr = self.get_attr("_class") except ValueError: # This op has no explicit colocation group, so it is itself its # own root of a colocation group. return default_colocation_group attr_groups = [ class_name for class_name in class_attr if class_name.startswith(b"loc:@") ] # If there are no colocation groups in the explicit _class field, # return the default colocation group. return attr_groups if attr_groups else default_colocation_group def values(self): """DEPRECATED: Use outputs.""" return tuple(self.outputs) def _get_control_flow_context(self): """Returns the control flow context of this op. Returns: A context object. """ return self._control_flow_context def _set_control_flow_context(self, ctx): """Sets the current control flow context of this op. Args: ctx: a context object. """ self._control_flow_context = ctx @property def name(self): """The full name of this operation.""" if self._c_op: return c_api.TF_OperationName(self._c_op) else: return self._node_def.name @property def _id(self): """The unique integer id of this operation.""" return self._id_value @property def device(self): """The name of the device to which this op has been assigned, if any. Returns: The string name of the device to which this op has been assigned, or an empty string if it has not been assigned to a device. """ if self._c_op: return c_api.TF_OperationDevice(self._c_op) else: return self._node_def.device @property def _output_types(self): """List this operation's output types. Returns: List of the types of the Tensors computed by this operation. Each element in the list is an integer whose value is one of the TF_DataType enums defined in c_api.h The length of this list indicates the number of output endpoints of the operation. """ if self._c_op: num_outputs = c_api.TF_OperationNumOutputs(self._c_op) output_types = [ c_api.TF_OperationOutputType(self._tf_output(i)) for i in xrange(num_outputs) ] # TODO(iga): Remove this assert after converting to C API by default. # Just being a bit paranoid here. assert self._output_types_val == output_types # In all the tests we have output_types that are passed into # Operation.__init__ are a list of ints (which is illegal according # to the docstring), but input_types are instances of DType. # This extra assert is to catch if we ever use DType for output_types. if output_types: assert isinstance(output_types[0], int) return output_types else: return self._output_types_val def _tf_output(self, output_idx): """Create and return a new TF_Output for output_idx'th output of this op.""" assert self._c_op tf_output = c_api.TF_Output() tf_output.oper = self._c_op tf_output.index = output_idx return tf_output def _tf_input(self, input_idx): """Create and return a new TF_Input for input_idx'th input of this op.""" assert self._c_op tf_input = c_api.TF_Input() tf_input.oper = self._c_op tf_input.index = input_idx return tf_input def _set_device(self, device): # pylint: disable=redefined-outer-name """Set the device of this operation. Args: device: string or device.. The device to set. """ if self._c_op: c_api.SetRequestedDevice( self._graph._c_graph, # pylint: disable=protected-access self._c_op, # pylint: disable=protected-access _device_string(device)) else: self._node_def.device = _device_string(device) def _add_input(self, tensor, dtype=None): """Add a new input to this operation. Args: tensor: the Tensor to add as an input. dtype: tf.DType: type of the input; defaults to the tensor's dtype. Raises: TypeError: if tensor is not a Tensor, or if input tensor type is not convertible to dtype. ValueError: if the Tensor is from a different graph. """ assert not self._c_op, ( "Operation._add_input doesn't work with C API") if not isinstance(tensor, Tensor): raise TypeError("tensor must be a Tensor: %s" % tensor) _assert_same_graph(self, tensor) if dtype is None: dtype = tensor.dtype else: dtype = dtypes.as_dtype(dtype) if not dtype.is_compatible_with(tensor.dtype): raise TypeError( "Cannot convert a tensor of type %s to an input of type %s" % (tensor.dtype.name, dtype.name)) self._inputs.append(tensor) self._input_types_val.append(dtype) tensor._add_consumer(self) # pylint: disable=protected-access self._recompute_node_def() def _update_input(self, index, tensor): """Update the input to this operation at the given index. NOTE: This is for TF internal use only. Please don't use it. Args: index: the index of the input to update. tensor: the Tensor to be used as the input at the given index. Raises: TypeError: if tensor is not a Tensor, or if input tensor type is not convertible to dtype. ValueError: if the Tensor is from a different graph. """ if not isinstance(tensor, Tensor): raise TypeError("tensor must be a Tensor: %s" % tensor) _assert_same_graph(self, tensor) if self._c_op: with errors.raise_exception_on_not_ok_status() as status: c_api.UpdateEdge( self._graph._c_graph, # pylint: disable=protected-access tensor._as_tf_output(), # pylint: disable=protected-access self._tf_input(index), status) else: self._inputs[index].consumers().remove(self) self._inputs[index] = tensor self._input_types_val[index] = tensor.dtype tensor._add_consumer(self) # pylint: disable=protected-access self._recompute_node_def() def _add_control_inputs(self, ops): """Add a list of new control inputs to this operation. Args: ops: the list of Operations to add as control input. Raises: TypeError: if ops is not a list of Operations. ValueError: if any op in ops is from a different graph. """ if self._c_op: for op in ops: if not isinstance(op, Operation): raise TypeError("op must be an Operation: %s" % op) c_api.AddControlInput(self._graph._c_graph, self._c_op, op._c_op) # pylint: disable=protected-access else: if ops: for op in ops: if not isinstance(op, Operation): raise TypeError("op must be an Operation: %s" % op) _assert_same_graph(self, op) self._control_inputs.append(op) self._recompute_node_def() def _add_control_input(self, op): """Add a new control input to this operation. Args: op: the Operation to add as control input. Raises: TypeError: if op is not an Operation. ValueError: if op is from a different graph. """ if self._c_op: if not isinstance(op, Operation): raise TypeError("op must be an Operation: %s" % op) c_api.AddControlInput(self._graph._c_graph, self._c_op, op._c_op) # pylint: disable=protected-access else: self._add_control_inputs([op]) # Methods below are used when building the NodeDef and Graph proto. def _recompute_node_def(self): # TODO(skyewm): remove this function when we switch to C API if self._c_op: return del self._node_def.input[:] # pylint: disable=protected-access self._node_def.input.extend([t._as_node_def_input() for t in self._inputs]) # pylint: enable=protected-access if self._control_inputs: self._node_def.input.extend( ["^%s" % op.name for op in self._control_inputs]) def __str__(self): return str(self.node_def) def __repr__(self): return "<tf.Operation '%s' type=%s>" % (self.name, self.type) @property def outputs(self): """The list of `Tensor` objects representing the outputs of this op.""" return self._outputs # pylint: disable=protected-access class _InputList(object): """Immutable input list wrapper.""" def __init__(self, op): self._op = op def __iter__(self): return iter(self._op._inputs) def __len__(self): return len(self._op._inputs) def __bool__(self): return bool(self._op._inputs) # Python 3 wants __bool__, Python 2.7 wants __nonzero__ __nonzero__ = __bool__ def __getitem__(self, i): return self._op._inputs[i] # pylint: enable=protected-access @property def inputs(self): """The list of `Tensor` objects representing the data inputs of this op.""" if self._c_op: tf_outputs = c_api.GetOperationInputs(self._c_op) # TODO(skyewm): return Operation._InputList # pylint: disable=protected-access return [self.graph._get_tensor_by_tf_output(tf_output) for tf_output in tf_outputs] # pylint: enable=protected-access else: return Operation._InputList(self) @property def _input_dtypes(self): return self._input_types @property def _input_types(self): if self._c_op: num_inputs = c_api.TF_OperationNumInputs(self._c_op) input_types = [ dtypes.as_dtype(c_api.TF_OperationInputType(self._tf_input(i))) for i in xrange(num_inputs) ] return input_types else: return self._input_types_val @property def control_inputs(self): """The `Operation` objects on which this op has a control dependency. Before this op is executed, TensorFlow will ensure that the operations in `self.control_inputs` have finished executing. This mechanism can be used to run ops sequentially for performance reasons, or to ensure that the side effects of an op are observed in the correct order. Returns: A list of `Operation` objects. """ if self._c_op: control_c_ops = c_api.TF_OperationGetControlInputs_wrapper(self._c_op) # pylint: disable=protected-access return [ self.graph._get_operation_by_name_unsafe( c_api.TF_OperationName(c_op)) for c_op in control_c_ops ] # pylint: enable=protected-access else: return self._control_inputs @property def type(self): """The type of the op (e.g. `"MatMul"`).""" if self._c_op: op_type = c_api.TF_OperationOpType(self._c_op) return op_type else: return self._node_def.op @property def graph(self): """The `Graph` that contains this operation.""" return self._graph @property def node_def(self): # pylint: disable=line-too-long """Returns the `NodeDef` representation of this operation. Returns: A [`NodeDef`](https://www.tensorflow.org/code/tensorflow/core/framework/node_def.proto) protocol buffer. """ # pylint: enable=line-too-long if self._c_op: with c_api_util.tf_buffer() as buf: with errors.raise_exception_on_not_ok_status() as status: c_api.TF_OperationToNodeDef(self._c_op, buf, status) data = c_api.TF_GetBuffer(buf) node_def = node_def_pb2.NodeDef() node_def.ParseFromString(compat.as_bytes(data)) return node_def else: return self._node_def @property def op_def(self): # pylint: disable=line-too-long """Returns the `OpDef` proto that represents the type of this op. Returns: An [`OpDef`](https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto) protocol buffer. """ # pylint: enable=line-too-long if self._c_op: with c_api_util.tf_buffer() as buf: with errors.raise_exception_on_not_ok_status() as status: # pylint: disable=protected-access c_api.TF_GraphGetOpDef(self._graph._c_graph, compat.as_bytes(self.type), buf, status) # pylint: enable=protected-access data = c_api.TF_GetBuffer(buf) op_def = op_def_pb2.OpDef() op_def.ParseFromString(compat.as_bytes(data)) return op_def else: return self._op_def @property def traceback(self): """Returns the call stack from when this operation was constructed.""" return self._graph._convert_stack(self._traceback) # pylint: disable=protected-access @property def traceback_with_start_lines(self): """Same as traceback but includes start line of function definition. Returns: A list of 5-tuples (filename, lineno, name, code, func_start_lineno). """ return self._graph._convert_stack( # pylint: disable=protected-access self._traceback, include_func_start_lineno=True) def _set_attr(self, attr_name, attr_value): """Private method used to set an attribute in the node_def.""" if _USE_C_API: buf = c_api.TF_NewBufferFromString( compat.as_bytes(attr_value.SerializeToString())) try: with errors.raise_exception_on_not_ok_status() as status: # pylint: disable=protected-access c_api.SetAttr(self._graph._c_graph, self._c_op, attr_name, buf, status) # pylint: enable=protected-access finally: c_api.TF_DeleteBuffer(buf) else: self._node_def.attr[attr_name].CopyFrom(attr_value) def get_attr(self, name): """Returns the value of the attr of this op with the given `name`. Args: name: The name of the attr to fetch. Returns: The value of the attr, as a Python object. Raises: ValueError: If this op does not have an attr with the given `name`. """ fields = ["s", "i", "f", "b", "type", "shape", "tensor", "func"] if self._c_op: try: with c_api_util.tf_buffer() as buf: with errors.raise_exception_on_not_ok_status() as status: c_api.TF_OperationGetAttrValueProto(self._c_op, name, buf, status) data = c_api.TF_GetBuffer(buf) except errors.InvalidArgumentError as e: # Convert to ValueError for backwards compatibility. raise ValueError(str(e)) x = attr_value_pb2.AttrValue() x.ParseFromString(data) else: if name not in self._node_def.attr: raise ValueError( "No attr named '" + name + "' in " + str(self._node_def)) x = self._node_def.attr[name] # Treat an empty oneof value as an empty list. if not x.WhichOneof("value"): return [] if x.HasField("list"): for f in fields: if getattr(x.list, f): if f == "type": return [dtypes.as_dtype(x) for x in list(getattr(x.list, f))] else: return list(getattr(x.list, f)) return [] else: for f in fields: if x.HasField(f): if f == "type": return dtypes.as_dtype(getattr(x, f)) else: return getattr(x, f) assert False, "Unsupported field type in " + str(x) def run(self, feed_dict=None, session=None): """Runs this operation in a `Session`. Calling this method will execute all preceding operations that produce the inputs needed for this operation. *N.B.* Before invoking `Operation.run()`, its graph must have been launched in a session, and either a default session must be available, or `session` must be specified explicitly. Args: feed_dict: A dictionary that maps `Tensor` objects to feed values. See @{tf.Session.run} for a description of the valid feed values. session: (Optional.) The `Session` to be used to run to this operation. If none, the default session will be used. """ _run_using_default_session(self, feed_dict, self.graph, session) _gradient_registry = registry.Registry("gradient") class RegisterGradient(object): """A decorator for registering the gradient function for an op type. This decorator is only used when defining a new op type. For an op with `m` inputs and `n` outputs, the gradient function is a function that takes the original `Operation` and `n` `Tensor` objects (representing the gradients with respect to each output of the op), and returns `m` `Tensor` objects (representing the partial gradients with respect to each input of the op). For example, assuming that operations of type `"Sub"` take two inputs `x` and `y`, and return a single output `x - y`, the following gradient function would be registered: ```python @tf.RegisterGradient("Sub") def _sub_grad(unused_op, grad): return grad, tf.negative(grad) ``` The decorator argument `op_type` is the string type of an operation. This corresponds to the `OpDef.name` field for the proto that defines the operation. """ def __init__(self, op_type): """Creates a new decorator with `op_type` as the Operation type. Args: op_type: The string type of an operation. This corresponds to the `OpDef.name` field for the proto that defines the operation. """ if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string") self._op_type = op_type def __call__(self, f): """Registers the function `f` as gradient function for `op_type`.""" _gradient_registry.register(f, self._op_type) return f def NotDifferentiable(op_type): """Specifies that ops of type `op_type` is not differentiable. This function should *not* be used for operations that have a well-defined gradient that is not yet implemented. This function is only used when defining a new op type. It may be used for ops such as `tf.size()` that are not differentiable. For example: ```python tf.NotDifferentiable("Size") ``` The gradient computed for 'op_type' will then propagate zeros. For ops that have a well-defined gradient but are not yet implemented, no declaration should be made, and an error *must* be thrown if an attempt to request its gradient is made. Args: op_type: The string type of an operation. This corresponds to the `OpDef.name` field for the proto that defines the operation. Raises: TypeError: If `op_type` is not a string. """ if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string") _gradient_registry.register(None, op_type) # Alias for the old name, will be eventually removed. NoGradient = NotDifferentiable def get_gradient_function(op): """Returns the function that computes gradients for "op".""" if not op.inputs: return None try: op_type = op.get_attr("_gradient_op_type") except ValueError: op_type = op.type return _gradient_registry.lookup(op_type) _shape_registry = registry.Registry("shape functions") _default_shape_function_registry = registry.Registry("default shape functions") # These are set to common_shapes.call_cpp_shape_fn by op generated code # (generated by python_op_gen.cc). # It is set outside ops.py to avoid a circular dependency. _call_cpp_shape_fn = None _call_cpp_shape_fn_and_require_op = None def _set_call_cpp_shape_fn(call_cpp_shape_fn): """Sets default shape fns from passed common_shapes.call_cpp_shape_fn.""" global _call_cpp_shape_fn, _call_cpp_shape_fn_and_require_op if _call_cpp_shape_fn: return # already registered def call_without_requiring(op): return call_cpp_shape_fn(op, require_shape_fn=False) _call_cpp_shape_fn = call_without_requiring def call_with_requiring(op): return call_cpp_shape_fn(op, require_shape_fn=True) _call_cpp_shape_fn_and_require_op = call_with_requiring class RegisterShape(object): """No longer used. Was: A decorator for registering a shape function. Shape functions must now be registered via the SetShapeFn on the original Op specification in C++. """ def __init__(self, op_type): """Saves the `op_type` as the `Operation` type.""" if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string") self._op_type = op_type def __call__(self, f): """Registers "f" as the shape function for "op_type".""" if f is None: assert _call_cpp_shape_fn # None is a special "weak" value that provides a default shape function, # and can be overridden by a non-None registration. try: _default_shape_function_registry.register(_call_cpp_shape_fn, self._op_type) except KeyError: # Ignore duplicate registrations of the weak value. This can # occur if the op library input to wrapper generation # inadvertently links in one or more of the standard op # libraries. pass else: _shape_registry.register(f, self._op_type) return f def set_shapes_for_outputs(op): """Uses the registered shape functions to set the shapes for op's outputs.""" try: shape_func = _shape_registry.lookup(op.type) except LookupError: try: shape_func = _default_shape_function_registry.lookup(op.type) except LookupError: shape_func = _call_cpp_shape_fn_and_require_op shapes = shape_func(op) if shapes is None: raise RuntimeError( "Shape function for op %s did not return any shapes" % op) elif isinstance(shapes, dict): # Returned by call_cpp_shape_fn shapes_dict = shapes shapes = shapes_dict["shapes"] handle_datas = shapes_dict["handle_data"] for output, handle_data in zip(op.outputs, handle_datas): # pylint: disable=protected-access output._handle_data = handle_data # pylint: enable=protected-access if len(op.outputs) != len(shapes): raise RuntimeError( "Shape function for op %s returned %d shapes but expected %d %s %s" % (op, len(shapes), len(op.outputs), shape_func.__name__, str(shapes))) for output, s in zip(op.outputs, shapes): output.set_shape(s) class OpStats(object): """A holder for statistics about an operator. This class holds information about the resource requirements for an op, including the size of its weight parameters on-disk and how many FLOPS it requires to execute forward inference. If you define a new operation, you can create a function that will return a set of information about its usage of the CPU and disk space when serialized. The function itself takes a Graph object that's been set up so you can call methods like get_tensor_by_name to help calculate the results, and a NodeDef argument. """ def __init__(self, statistic_type, value=None): """Sets up the initial placeholders for the statistics.""" self.statistic_type = statistic_type self.value = value @property def statistic_type(self): return self._statistic_type @statistic_type.setter def statistic_type(self, statistic_type): self._statistic_type = statistic_type @property def value(self): return self._value @value.setter def value(self, value): self._value = value def __iadd__(self, other): if other.statistic_type != self.statistic_type: raise ValueError("Can't add an OpStat of type %s to one of %s." % (self.statistic_type, other.statistic_type)) if self.value is None: self.value = other.value elif other.value is not None: self._value += other.value return self _stats_registry = registry.Registry("statistical functions") class RegisterStatistics(object): """A decorator for registering the statistics function for an op type. This decorator can be defined for an op type so that it gives a report on the resources used by an instance of an operator, in the form of an OpStats object. Well-known types of statistics include these so far: - flops: When running a graph, the bulk of the computation happens doing numerical calculations like matrix multiplications. This type allows a node to return how many floating-point operations it takes to complete. The total number of FLOPs for a graph is a good guide to its expected latency. You can add your own statistics just by picking a new type string, registering functions for the ops you care about, and then calling get_stats_for_node_def. If a statistic for an op is registered multiple times, a KeyError will be raised. Since the statistics is counted on a per-op basis. It is not suitable for model parameters (capacity), which is expected to be counted only once, even if it is shared by multiple ops. (e.g. RNN) For example, you can define a new metric called doohickey for a Foo operation by placing this in your code: ```python @ops.RegisterStatistics("Foo", "doohickey") def _calc_foo_bojangles(unused_graph, unused_node_def): return ops.OpStats("doohickey", 20) ``` Then in client code you can retrieve the value by making this call: ```python doohickey = ops.get_stats_for_node_def(graph, node_def, "doohickey") ``` If the NodeDef is for an op with a registered doohickey function, you'll get back the calculated amount in doohickey.value, or None if it's not defined. """ def __init__(self, op_type, statistic_type): """Saves the `op_type` as the `Operation` type.""" if not isinstance(op_type, six.string_types): raise TypeError("op_type must be a string.") if "," in op_type: raise TypeError("op_type must not contain a comma.") self._op_type = op_type if not isinstance(statistic_type, six.string_types): raise TypeError("statistic_type must be a string.") if "," in statistic_type: raise TypeError("statistic_type must not contain a comma.") self._statistic_type = statistic_type def __call__(self, f): """Registers "f" as the statistics function for "op_type".""" _stats_registry.register(f, self._op_type + "," + self._statistic_type) return f def get_stats_for_node_def(graph, node, statistic_type): """Looks up the node's statistics function in the registry and calls it. This function takes a Graph object and a NodeDef from a GraphDef, and if there's an associated statistics method, calls it and returns a result. If no function has been registered for the particular node type, it returns an empty statistics object. Args: graph: A Graph object that's been set up with the node's graph. node: A NodeDef describing the operator. statistic_type: A string identifying the statistic we're interested in. Returns: An OpStats object containing information about resource usage. """ try: stats_func = _stats_registry.lookup(node.op + "," + statistic_type) result = stats_func(graph, node) except LookupError: result = OpStats(statistic_type) return result def _name_from_scope_name(name): """Returns the name of an op given the name of its scope. Args: name: the name of the scope. Returns: the name of the op (equal to scope name minus any trailing slash). """ return name[:-1] if (name and name[-1] == "/") else name class Graph(object): """A TensorFlow computation, represented as a dataflow graph. A `Graph` contains a set of @{tf.Operation} objects, which represent units of computation; and @{tf.Tensor} objects, which represent the units of data that flow between operations. A default `Graph` is always registered, and accessible by calling @{tf.get_default_graph}. To add an operation to the default graph, simply call one of the functions that defines a new `Operation`: ```python c = tf.constant(4.0) assert c.graph is tf.get_default_graph() ``` Another typical usage involves the @{tf.Graph.as_default} context manager, which overrides the current default graph for the lifetime of the context: ```python g = tf.Graph() with g.as_default(): # Define operations and tensors in `g`. c = tf.constant(30.0) assert c.graph is g ``` Important note: This class *is not* thread-safe for graph construction. All operations should be created from a single thread, or external synchronization must be provided. Unless otherwise specified, all methods are not thread-safe. A `Graph` instance supports an arbitrary number of "collections" that are identified by name. For convenience when building a large graph, collections can store groups of related objects: for example, the `tf.Variable` uses a collection (named @{tf.GraphKeys.GLOBAL_VARIABLES}) for all variables that are created during the construction of a graph. The caller may define additional collections by specifying a new name. """ def __init__(self): """Creates a new, empty Graph.""" # Protects the core state that may be accessed by multiple readers. # Only state that can be returned via public accessors (`as_graph_def()`, # `get_operations()`, `as_graph_element()`, `get_collection()`, and # `get_collection_ref()`) is by the lock. Thread-safety is provided on a # best-effort basis to support buggy programs, and is not guaranteed by the # public `tf.Graph` API. # NOTE(mrry): This does not protect the various stacks. A warning will # be reported if these are used from multiple threads self._lock = threading.Lock() self._nodes_by_id = dict() # GUARDED_BY(self._lock) self._next_id_counter = 0 # GUARDED_BY(self._lock) self._nodes_by_name = dict() # GUARDED_BY(self._lock) self._version = 0 # GUARDED_BY(self._lock) # Current name stack: uniquified names self._name_stack = "" # Maps a name used in the graph to the next id to use for that name. self._names_in_use = {} # Functions that will be applied to choose a device if none is specified. self._device_function_stack = [] # Default original_op applied to new ops. self._default_original_op = None # Current control flow context. It could be either CondContext or # WhileContext defined in ops/control_flow_ops.py self._control_flow_context = None # A new node will depend of the union of all of the nodes in the stack. self._control_dependencies_stack = [] # Arbitrary collections of objects. self._collections = {} # The graph-level random seed self._seed = None # A dictionary of attributes that should be applied to all ops. self._attr_scope_map = {} # A map from op type to the kernel label that should be used. self._op_to_kernel_label_map = {} # A map from op type to an alternative op type that should be used when # computing gradients. self._gradient_override_map = {} # True if the graph is considered "finalized". In that case no # new operations can be added. self._finalized = False # Functions defined in the graph self._functions = collections.OrderedDict() # Default GraphDef versions self._graph_def_versions = versions_pb2.VersionDef( producer=versions.GRAPH_DEF_VERSION, min_consumer=versions.GRAPH_DEF_VERSION_MIN_CONSUMER) self._building_function = False # Stack of colocate_with ops self._colocation_stack = [] # Set of tensors that are dangerous to feed! self._unfeedable_tensors = set() # Set of operations that are dangerous to fetch! self._unfetchable_ops = set() # A map of tensor handle placeholder to tensor dtype. self._handle_feeders = {} # A map from tensor handle to its read op. self._handle_readers = {} # A map from tensor handle to its move op. self._handle_movers = {} # A map from tensor handle to its delete op. self._handle_deleters = {} # Resource container. if context.in_graph_mode(): self._container_prefix = "" else: # In Eager mode, isolate resources (particularly ResourceVariables) in # Graphs by default. This prevents unintended variable sharing. Graph mode # gets this kind of isolation from Sessions. self._container_prefix = "eager-execution-%d/" % (uid(),) self._container = self._container_prefix self._registered_ops = op_def_registry.get_registered_ops() # TODO(skyewm): fold as much of the above as possible into the C # implementation if _USE_C_API: self._scoped_c_graph = c_api_util.ScopedTFGraph() else: self._scoped_c_graph = None def _convert_stack(self, stack, include_func_start_lineno=False): """Converts a stack extracted using _extract_stack() to a traceback stack. Args: stack: A list of n 5-tuples, (filename, lineno, name, frame_globals, func_start_lineno). include_func_start_lineno: True if function start line number should be included as the 5th entry in return tuples. Returns: A list of n 4-tuples or 5-tuples (filename, lineno, name, code, [optional: func_start_lineno]), where the code tuple element is calculated from the corresponding elements of the input tuple. """ ret = [] for (filename, lineno, name, frame_globals, func_start_lineno, unused_frame_info) in stack: linecache.checkcache(filename) line = linecache.getline(filename, lineno, frame_globals) if line: line = line.strip() else: line = None if include_func_start_lineno: ret.append((filename, lineno, name, line, func_start_lineno)) else: ret.append((filename, lineno, name, line)) return ret def _extract_stack(self): """A lightweight, extensible re-implementation of traceback.extract_stack. NOTE(mrry): traceback.extract_stack eagerly retrieves the line of code for each stack frame using linecache, which results in an abundance of stat() calls. This implementation does not retrieve the code, and any consumer should apply _convert_stack to the result to obtain a traceback that can be formatted etc. using traceback methods. Derived classes can implement _extract_frame_info() to add extra information to the traceback. Returns: A list of 6-tuples (filename, lineno, name, frame_globals, func_start_lineno, custom_info) corresponding to the call stack of the current thread. """ try: raise ZeroDivisionError except ZeroDivisionError: f = sys.exc_info()[2].tb_frame.f_back ret = [] while f is not None: lineno = f.f_lineno co = f.f_code filename = co.co_filename name = co.co_name frame_globals = f.f_globals func_start_lineno = co.co_firstlineno frame_info = self._extract_frame_info(f) ret.append((filename, lineno, name, frame_globals, func_start_lineno, frame_info)) f = f.f_back ret.reverse() return ret def _extract_frame_info(self, frame): # pylint: disable=unused-argument """Extracts custom information from a frame in an op traceback.""" return None def _check_not_finalized(self): """Check if the graph is finalized. Raises: RuntimeError: If the graph finalized. """ if self._finalized: raise RuntimeError("Graph is finalized and cannot be modified.") def _add_op(self, op): """Adds 'op' to the graph. Args: op: the Operator or Tensor to add. Raises: TypeError: if op is not an Operation or Tensor. ValueError: if the op.name or op._id are already used. """ self._check_not_finalized() if not isinstance(op, (Tensor, Operation)): raise TypeError("op must be a Tensor or Operation: %s" % op) with self._lock: # pylint: disable=protected-access if op._id in self._nodes_by_id: raise ValueError("cannot add an op with id %d as it already " "exists in the graph" % op._id) if op.name in self._nodes_by_name: raise ValueError("cannot add op with name %s as that name " "is already used" % op.name) self._nodes_by_id[op._id] = op self._nodes_by_name[op.name] = op self._version = max(self._version, op._id) # pylint: enable=protected-access @property def _c_graph(self): if self._scoped_c_graph: return self._scoped_c_graph.graph return None @property def version(self): """Returns a version number that increases as ops are added to the graph. Note that this is unrelated to the @{tf.Graph.graph_def_versions}. Returns: An integer version that increases as ops are added to the graph. """ if self._finalized: return self._version with self._lock: return self._version @property def graph_def_versions(self): # pylint: disable=line-too-long """The GraphDef version information of this graph. For details on the meaning of each version, see [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto). Returns: A `VersionDef`. """ # pylint: enable=line-too-long if self._c_graph: with c_api_util.tf_buffer() as buf: with errors.raise_exception_on_not_ok_status() as status: c_api.TF_GraphVersions(self._c_graph, buf, status) data = c_api.TF_GetBuffer(buf) version_def = versions_pb2.VersionDef() version_def.ParseFromString(compat.as_bytes(data)) return version_def else: return self._graph_def_versions @property def seed(self): """The graph-level random seed of this graph.""" return self._seed @seed.setter def seed(self, seed): self._seed = seed @property def finalized(self): """True if this graph has been finalized.""" return self._finalized def finalize(self): """Finalizes this graph, making it read-only. After calling `g.finalize()`, no new operations can be added to `g`. This method is used to ensure that no operations are added to a graph when it is shared between multiple threads, for example when using a @{tf.train.QueueRunner}. """ self._finalized = True def _unsafe_unfinalize(self): """Opposite of `finalize`. Internal interface. NOTE: Unfinalizing a graph could have negative impact on performance, especially in a multi-threaded environment. Unfinalizing a graph when it is in use by a Session may lead to undefined behavior. Ensure that all sessions using a graph are closed before calling this method. """ self._finalized = False def _get_control_flow_context(self): """Returns the current control flow context. Returns: A context object. """ return self._control_flow_context def _set_control_flow_context(self, ctx): """Sets the current control flow context. Args: ctx: a context object. """ self._control_flow_context = ctx def _as_graph_def(self, from_version=None, add_shapes=False): # pylint: disable=line-too-long """Returns a serialized `GraphDef` representation of this graph. The serialized `GraphDef` can be imported into another `Graph` (using @{tf.import_graph_def}) or used with the [C++ Session API](../../../../api_docs/cc/index.md). This method is thread-safe. Args: from_version: Optional. If this is set, returns a `GraphDef` containing only the nodes that were added to this graph since its `version` property had the given value. add_shapes: If true, adds an "_output_shapes" list attr to each node with the inferred shapes of each of its outputs. Returns: A tuple containing a [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) protocol buffer, and the version of the graph to which that `GraphDef` corresponds. Raises: ValueError: If the `graph_def` would be too large. """ # pylint: enable=line-too-long with self._lock: graph = graph_pb2.GraphDef() graph.versions.CopyFrom(self._graph_def_versions) bytesize = 0 for op_id in sorted(self._nodes_by_id): op = self._nodes_by_id[op_id] if from_version is None or op_id > from_version: graph.node.extend([op.node_def]) if op.outputs and add_shapes: assert "_output_shapes" not in graph.node[-1].attr graph.node[-1].attr["_output_shapes"].list.shape.extend( [output.get_shape().as_proto() for output in op.outputs]) bytesize += op.node_def.ByteSize() if bytesize >= (1 << 31) or bytesize < 0: raise ValueError("GraphDef cannot be larger than 2GB.") if self._functions: for f in self._functions.values(): bytesize += f.definition.ByteSize() if bytesize >= (1 << 31) or bytesize < 0: raise ValueError("GraphDef cannot be larger than 2GB.") graph.library.function.extend([f.definition]) if f.grad_func_name: grad_def = function_pb2.GradientDef() grad_def.function_name = f.name grad_def.gradient_func = f.grad_func_name graph.library.gradient.extend([grad_def]) return graph, self._version def as_graph_def(self, from_version=None, add_shapes=False): # pylint: disable=line-too-long """Returns a serialized `GraphDef` representation of this graph. The serialized `GraphDef` can be imported into another `Graph` (using @{tf.import_graph_def}) or used with the [C++ Session API](../../api_docs/cc/index.md). This method is thread-safe. Args: from_version: Optional. If this is set, returns a `GraphDef` containing only the nodes that were added to this graph since its `version` property had the given value. add_shapes: If true, adds an "_output_shapes" list attr to each node with the inferred shapes of each of its outputs. Returns: A [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) protocol buffer. Raises: ValueError: If the `graph_def` would be too large. """ # pylint: enable=line-too-long result, _ = self._as_graph_def(from_version, add_shapes) return result def _is_function(self, name): """Tests whether 'name' is registered in this graph's function library. Args: name: string op name. Returns: bool indicating whether or not 'name' is registered in function library. """ return name in self._functions def _get_function(self, name): """Returns the function definition for 'name'. Args: name: string function name. Returns: The function def proto. """ return self._functions.get(name, None) def _add_function(self, function): """Adds a function to the graph. After the function has been added, you can call to the function by passing the function name in place of an op name to `Graph.create_op()`. Args: function: A `_DefinedFunction` object. Raises: ValueError: if another function is defined with the same name. """ name = function.name # Sanity checks on gradient definition. if (function.grad_func_name is not None) and (function.python_grad_func is not None): raise ValueError("Gradient defined twice for function %s" % name) # Add function to graph # pylint: disable=protected-access if self._c_graph: assert function._c_func, ( "Cannot add function created without C API support to graph " "created with C API support") with errors.raise_exception_on_not_ok_status() as status: gradient = function._grad_func._c_func if function._grad_func else None c_api.TF_GraphCopyFunction(self._c_graph, function._c_func, gradient, status) else: # If there is already a function with the same name, raise an error # if bodies are different. Else, do nothing. The C API version above # has the same behavior. previous = self._functions.get(name, None) if previous: # This check is not ideal as we can have a hash collision with only # 32 bits in the hash, but the non C API mode is being deprecated. # Don't bother changing it now. if previous._hash_str == function._hash_str: return else: raise ValueError("Cannot add function (%s, hash %s) to graph (%s). " "Another function (%s, hash %s) is already defined " "with that name (%s)" % ( function, function._hash_str, self, previous, previous._hash_str, name)) # pylint: enable=protected-access self._functions[name] = function # Need a new-enough consumer to support the functions we add to the graph. if self._graph_def_versions.min_consumer < 12: self._graph_def_versions.min_consumer = 12 @property def building_function(self): """Returns True iff this graph represents a function.""" return self._building_function # Helper functions to create operations. def create_op( self, op_type, inputs, dtypes, # pylint: disable=redefined-outer-name input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True, compute_device=True): """Creates an `Operation` in this graph. This is a low-level interface for creating an `Operation`. Most programs will not call this method directly, and instead use the Python op constructors, such as `tf.constant()`, which add ops to the default graph. Args: op_type: The `Operation` type to create. This corresponds to the `OpDef.name` field for the proto that defines the operation. inputs: A list of `Tensor` objects that will be inputs to the `Operation`. dtypes: A list of `DType` objects that will be the types of the tensors that the operation produces. input_types: (Optional.) A list of `DType`s that will be the types of the tensors that the operation consumes. By default, uses the base `DType` of each input in `inputs`. Operations that expect reference-typed inputs must specify `input_types` explicitly. name: (Optional.) A string name for the operation. If not specified, a name is generated based on `op_type`. attrs: (Optional.) A dictionary where the key is the attribute name (a string) and the value is the respective `attr` attribute of the `NodeDef` proto that will represent the operation (an `AttrValue` proto). op_def: (Optional.) The `OpDef` proto that describes the `op_type` that the operation will have. compute_shapes: (Optional.) If True, shape inference will be performed to compute the shapes of the outputs. compute_device: (Optional.) If True, device functions will be executed to compute the device property of the Operation. Raises: TypeError: if any of the inputs is not a `Tensor`. ValueError: if colocation conflicts with existing device assignment. Returns: An `Operation` object. """ self._check_not_finalized() for idx, a in enumerate(inputs): if not isinstance(a, Tensor): raise TypeError("Input #%d is not a tensor: %s" % (idx, a)) if name is None: name = op_type # If a names ends with a '/' it is a "name scope" and we use it as-is, # after removing the trailing '/'. if name and name[-1] == "/": name = _name_from_scope_name(name) else: name = self.unique_name(name) node_def = _NodeDef(op_type, name, device=None, attrs=attrs) input_ops = set([t.op for t in inputs]) control_inputs = self._control_dependencies_for_inputs(input_ops) ret = Operation( node_def, self, inputs=inputs, output_types=dtypes, control_inputs=control_inputs, input_types=input_types, original_op=self._default_original_op, op_def=op_def) if compute_shapes: set_shapes_for_outputs(ret) self._create_op_helper(ret, compute_device=compute_device) return ret def _create_op_from_tf_operation(self, c_op): """Creates an `Operation` in this graph from the supplied TF_Operation. This method is like create_op() except the new Operation is constructed using `c_op`. The returned Operation will have `c_op` as its _c_op field. This is used to create Operation objects around TF_Operations created indirectly by the C API (e.g. by TF_ImportGraphDef, TF_FinishWhile). Args: c_op: a wrapped TF_Operation Returns: An `Operation` object. """ self._check_not_finalized() tf_outputs = c_api.GetOperationInputs(c_op) input_ops = set(self._get_operation_by_tf_operation(output.oper) for output in tf_outputs) control_inputs = self._control_dependencies_for_inputs(input_ops) ret = Operation(c_op, self, control_inputs=control_inputs) self._create_op_helper(ret) return ret def _create_op_helper(self, op, compute_device=True): """Common logic for creating an op in this graph.""" # Apply any additional attributes requested. Do not overwrite any existing # attributes. for key, value in self._attr_scope_map.items(): try: op.get_attr(key) except ValueError: if callable(value): value = value(op.node_def) if not isinstance(value, (type(None), attr_value_pb2.AttrValue)): raise TypeError( "Callable for scope map key '%s' must return either None or " "an AttrValue protocol buffer; but it returned: %s" % (key, value)) if value: op._set_attr(key, value) # pylint: disable=protected-access # Apply a kernel label if one has been specified for this op type. try: kernel_label = self._op_to_kernel_label_map[op.type] op._set_attr("_kernel", # pylint: disable=protected-access attr_value_pb2.AttrValue(s=compat.as_bytes(kernel_label))) except KeyError: pass # Apply the overriding op type for gradients if one has been specified for # this op type. try: mapped_op_type = self._gradient_override_map[op.type] op._set_attr("_gradient_op_type", # pylint: disable=protected-access attr_value_pb2.AttrValue(s=compat.as_bytes(mapped_op_type))) except KeyError: pass self._record_op_seen_by_control_dependencies(op) if compute_device: self._apply_device_functions(op) if self._colocation_stack: all_colocation_groups = [] for colocation_op in self._colocation_stack: all_colocation_groups.extend(colocation_op.colocation_groups()) if colocation_op.device: # Make this device match the device of the colocated op, to provide # consistency between the device and the colocation property. if (op.device and pydev.canonical_name(op.device) != pydev.canonical_name(colocation_op.device)): logging.warning("Tried to colocate %s with an op %s that had " "a different device: %s vs %s. " "Ignoring colocation property.", op.name, colocation_op.name, op.device, colocation_op.device) else: op._set_device(colocation_op.device) # pylint: disable=protected-access all_colocation_groups = sorted(set(all_colocation_groups)) # pylint: disable=protected-access op._set_attr("_class", attr_value_pb2.AttrValue( list=attr_value_pb2.AttrValue.ListValue(s=all_colocation_groups))) # pylint: enable=protected-access # Sets "container" attribute if # (1) self._container is not None # (2) "is_stateful" is set in OpDef # (3) "container" attribute is in OpDef # (4) "container" attribute is None if (self._container and op.type in self._registered_ops and self._registered_ops[op.type].is_stateful): try: container_attr = op.get_attr("container") except ValueError: # "container" attribute is not in OpDef pass else: if not container_attr: op._set_attr("container", attr_value_pb2.AttrValue( # pylint: disable=protected-access s=compat.as_bytes(self._container))) def as_graph_element(self, obj, allow_tensor=True, allow_operation=True): """Returns the object referred to by `obj`, as an `Operation` or `Tensor`. This function validates that `obj` represents an element of this graph, and gives an informative error message if it is not. This function is the canonical way to get/validate an object of one of the allowed types from an external argument reference in the Session API. This method may be called concurrently from multiple threads. Args: obj: A `Tensor`, an `Operation`, or the name of a tensor or operation. Can also be any object with an `_as_graph_element()` method that returns a value of one of these types. allow_tensor: If true, `obj` may refer to a `Tensor`. allow_operation: If true, `obj` may refer to an `Operation`. Returns: The `Tensor` or `Operation` in the Graph corresponding to `obj`. Raises: TypeError: If `obj` is not a type we support attempting to convert to types. ValueError: If `obj` is of an appropriate type but invalid. For example, an invalid string. KeyError: If `obj` is not an object in the graph. """ if self._finalized: return self._as_graph_element_locked(obj, allow_tensor, allow_operation) with self._lock: return self._as_graph_element_locked(obj, allow_tensor, allow_operation) def _as_graph_element_locked(self, obj, allow_tensor, allow_operation): """See `Graph.as_graph_element()` for details.""" # The vast majority of this function is figuring # out what an API user might be doing wrong, so # that we can give helpful error messages. # # Ideally, it would be nice to split it up, but we # need context to generate nice error messages. if allow_tensor and allow_operation: types_str = "Tensor or Operation" elif allow_tensor: types_str = "Tensor" elif allow_operation: types_str = "Operation" else: raise ValueError("allow_tensor and allow_operation can't both be False.") temp_obj = _as_graph_element(obj) if temp_obj is not None: obj = temp_obj # If obj appears to be a name... if isinstance(obj, compat.bytes_or_text_types): name = compat.as_str(obj) if ":" in name and allow_tensor: # Looks like a Tensor name and can be a Tensor. try: op_name, out_n = name.split(":") out_n = int(out_n) except: raise ValueError("The name %s looks a like a Tensor name, but is " "not a valid one. Tensor names must be of the " "form \"<op_name>:<output_index>\"." % repr(name)) if op_name in self._nodes_by_name: op = self._nodes_by_name[op_name] else: raise KeyError("The name %s refers to a Tensor which does not " "exist. The operation, %s, does not exist in the " "graph." % (repr(name), repr(op_name))) try: return op.outputs[out_n] except: raise KeyError("The name %s refers to a Tensor which does not " "exist. The operation, %s, exists but only has " "%s outputs." % (repr(name), repr(op_name), len(op.outputs))) elif ":" in name and not allow_tensor: # Looks like a Tensor name but can't be a Tensor. raise ValueError("Name %s appears to refer to a Tensor, not a %s." % (repr(name), types_str)) elif ":" not in name and allow_operation: # Looks like an Operation name and can be an Operation. if name not in self._nodes_by_name: raise KeyError("The name %s refers to an Operation not in the " "graph." % repr(name)) return self._nodes_by_name[name] elif ":" not in name and not allow_operation: # Looks like an Operation name but can't be an Operation. if name in self._nodes_by_name: # Yep, it's an Operation name err_msg = ("The name %s refers to an Operation, not a %s." % (repr(name), types_str)) else: err_msg = ("The name %s looks like an (invalid) Operation name, " "not a %s." % (repr(name), types_str)) err_msg += (" Tensor names must be of the form " "\"<op_name>:<output_index>\".") raise ValueError(err_msg) elif isinstance(obj, Tensor) and allow_tensor: # Actually obj is just the object it's referring to. if obj.graph is not self: raise ValueError("Tensor %s is not an element of this graph." % obj) return obj elif isinstance(obj, Operation) and allow_operation: # Actually obj is just the object it's referring to. if obj.graph is not self: raise ValueError("Operation %s is not an element of this graph." % obj) return obj else: # We give up! raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__, types_str)) def get_operations(self): """Return the list of operations in the graph. You can modify the operations in place, but modifications to the list such as inserts/delete have no effect on the list of operations known to the graph. This method may be called concurrently from multiple threads. Returns: A list of Operations. """ if self._finalized: return list(self._nodes_by_id.values()) with self._lock: return list(self._nodes_by_id.values()) def get_operation_by_name(self, name): """Returns the `Operation` with the given `name`. This method may be called concurrently from multiple threads. Args: name: The name of the `Operation` to return. Returns: The `Operation` with the given `name`. Raises: TypeError: If `name` is not a string. KeyError: If `name` does not correspond to an operation in this graph. """ if not isinstance(name, six.string_types): raise TypeError("Operation names are strings (or similar), not %s." % type(name).__name__) return self.as_graph_element(name, allow_tensor=False, allow_operation=True) def _get_operation_by_name_unsafe(self, name): """Returns the `Operation` with the given `name`. This is a internal unsafe version of get_operation_by_name. It skips many checks and does not have user friedly error messages but runs considerably faster. This method may be called concurrently from multiple threads. Args: name: The name of the `Operation` to return. Returns: The `Operation` with the given `name`. Raises: KeyError: If `name` does not correspond to an operation in this graph. """ if self._finalized: return self._nodes_by_name[name] with self._lock: return self._nodes_by_name[name] def _get_operation_by_tf_operation(self, tf_oper): op_name = c_api.TF_OperationName(tf_oper) return self._get_operation_by_name_unsafe(op_name) def get_tensor_by_name(self, name): """Returns the `Tensor` with the given `name`. This method may be called concurrently from multiple threads. Args: name: The name of the `Tensor` to return. Returns: The `Tensor` with the given `name`. Raises: TypeError: If `name` is not a string. KeyError: If `name` does not correspond to a tensor in this graph. """ # Names should be strings. if not isinstance(name, six.string_types): raise TypeError("Tensor names are strings (or similar), not %s." % type(name).__name__) return self.as_graph_element(name, allow_tensor=True, allow_operation=False) def _get_tensor_by_tf_output(self, tf_output): """Returns the `Tensor` representing `tf_output`. Note that there is only one such `Tensor`, i.e. multiple calls to this function with the same TF_Output value will always return the same `Tensor` object. Args: tf_output: A wrapped `TF_Output` (the C API equivalent of `Tensor`). Returns: The `Tensor` that represents `tf_output`. """ op = self._get_operation_by_tf_operation(tf_output.oper) return op.outputs[tf_output.index] def _next_id(self): """Id for next Operation instance. Also increments the internal id.""" self._check_not_finalized() with self._lock: self._next_id_counter += 1 return self._next_id_counter @property def _last_id(self): return self._next_id_counter def as_default(self): """Returns a context manager that makes this `Graph` the default graph. This method should be used if you want to create multiple graphs in the same process. For convenience, a global default graph is provided, and all ops will be added to this graph if you do not create a new graph explicitly. Use this method with the `with` keyword to specify that ops created within the scope of a block should be added to this graph. The default graph is a property of the current thread. If you create a new thread, and wish to use the default graph in that thread, you must explicitly add a `with g.as_default():` in that thread's function. The following code examples are equivalent: ```python # 1. Using Graph.as_default(): g = tf.Graph() with g.as_default(): c = tf.constant(5.0) assert c.graph is g # 2. Constructing and making default: with tf.Graph().as_default() as g: c = tf.constant(5.0) assert c.graph is g ``` Returns: A context manager for using this graph as the default graph. """ return _default_graph_stack.get_controller(self) @property def collections(self): """Returns the names of the collections known to this graph.""" return list(self._collections) def add_to_collection(self, name, value): """Stores `value` in the collection with the given `name`. Note that collections are not sets, so it is possible to add a value to a collection several times. Args: name: The key for the collection. The `GraphKeys` class contains many standard names for collections. value: The value to add to the collection. """ # pylint: disable=g-doc-exception _assert_collection_is_ok(name) self._check_not_finalized() with self._lock: if name not in self._collections: self._collections[name] = [value] else: self._collections[name].append(value) def add_to_collections(self, names, value): """Stores `value` in the collections given by `names`. Note that collections are not sets, so it is possible to add a value to a collection several times. This function makes sure that duplicates in `names` are ignored, but it will not check for pre-existing membership of `value` in any of the collections in `names`. `names` can be any iterable, but if `names` is a string, it is treated as a single collection name. Args: names: The keys for the collections to add to. The `GraphKeys` class contains many standard names for collections. value: The value to add to the collections. """ # Make sure names are unique, but treat strings as a single collection name names = (names,) if isinstance(names, six.string_types) else set(names) for name in names: self.add_to_collection(name, value) def get_collection_ref(self, name): """Returns a list of values in the collection with the given `name`. If the collection exists, this returns the list itself, which can be modified in place to change the collection. If the collection does not exist, it is created as an empty list and the list is returned. This is different from `get_collection()` which always returns a copy of the collection list if it exists and never creates an empty collection. Args: name: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. """ # pylint: disable=g-doc-exception _assert_collection_is_ok(name) with self._lock: coll_list = self._collections.get(name, None) if coll_list is None: coll_list = [] self._collections[name] = coll_list return coll_list def get_collection(self, name, scope=None): """Returns a list of values in the collection with the given `name`. This is different from `get_collection_ref()` which always returns the actual collection list if it exists in that it returns a new list each time it is called. Args: name: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. scope: (Optional.) A string. If supplied, the resulting list is filtered to include only items whose `name` attribute matches `scope` using `re.match`. Items without a `name` attribute are never returned if a scope is supplied. The choice of `re.match` means that a `scope` without special tokens filters by prefix. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. The list contains the values in the order under which they were collected. """ # pylint: disable=g-doc-exception _assert_collection_is_ok(name) with self._lock: collection = self._collections.get(name, None) if collection is None: return [] if scope is None: return list(collection) else: c = [] regex = re.compile(scope) for item in collection: if hasattr(item, "name") and regex.match(item.name): c.append(item) return c def get_all_collection_keys(self): """Returns a list of collections used in this graph.""" with self._lock: return [x for x in self._collections if isinstance(x, six.string_types)] def clear_collection(self, name): """Clears all values in a collection. Args: name: The key for the collection. The `GraphKeys` class contains many standard names for collections. """ self._check_not_finalized() with self._lock: if name in self._collections: del self._collections[name] @tf_contextlib.contextmanager def _original_op(self, op): """Python 'with' handler to help annotate ops with their originator. An op may have an 'original_op' property that indicates the op on which it was based. For example a replica op is based on the op that was replicated and a gradient op is based on the op that was differentiated. All ops created in the scope of this 'with' handler will have the given 'op' as their original op. Args: op: The Operation that all ops created in this scope will have as their original op. Yields: Nothing. """ old_original_op = self._default_original_op try: self._default_original_op = op yield finally: self._default_original_op = old_original_op # pylint: disable=g-doc-return-or-yield,line-too-long @tf_contextlib.contextmanager def name_scope(self, name): r"""Returns a context manager that creates hierarchical names for operations. A graph maintains a stack of name scopes. A `with name_scope(...):` statement pushes a new name onto the stack for the lifetime of the context. The `name` argument will be interpreted as follows: * A string (not ending with '/') will create a new name scope, in which `name` is appended to the prefix of all operations created in the context. If `name` has been used before, it will be made unique by calling `self.unique_name(name)`. * A scope previously captured from a `with g.name_scope(...) as scope:` statement will be treated as an "absolute" name scope, which makes it possible to re-enter existing scopes. * A value of `None` or the empty string will reset the current name scope to the top-level (empty) name scope. For example: ```python with tf.Graph().as_default() as g: c = tf.constant(5.0, name="c") assert c.op.name == "c" c_1 = tf.constant(6.0, name="c") assert c_1.op.name == "c_1" # Creates a scope called "nested" with g.name_scope("nested") as scope: nested_c = tf.constant(10.0, name="c") assert nested_c.op.name == "nested/c" # Creates a nested scope called "inner". with g.name_scope("inner"): nested_inner_c = tf.constant(20.0, name="c") assert nested_inner_c.op.name == "nested/inner/c" # Create a nested scope called "inner_1". with g.name_scope("inner"): nested_inner_1_c = tf.constant(30.0, name="c") assert nested_inner_1_c.op.name == "nested/inner_1/c" # Treats `scope` as an absolute name scope, and # switches to the "nested/" scope. with g.name_scope(scope): nested_d = tf.constant(40.0, name="d") assert nested_d.op.name == "nested/d" with g.name_scope(""): e = tf.constant(50.0, name="e") assert e.op.name == "e" ``` The name of the scope itself can be captured by `with g.name_scope(...) as scope:`, which stores the name of the scope in the variable `scope`. This value can be used to name an operation that represents the overall result of executing the ops in a scope. For example: ```python inputs = tf.constant(...) with g.name_scope('my_layer') as scope: weights = tf.Variable(..., name="weights") biases = tf.Variable(..., name="biases") affine = tf.matmul(inputs, weights) + biases output = tf.nn.relu(affine, name=scope) ``` NOTE: This constructor validates the given `name`. Valid scope names match one of the following regular expressions: [A-Za-z0-9.][A-Za-z0-9_.\\-/]* (for scopes at the root) [A-Za-z0-9_.\\-/]* (for other scopes) Args: name: A name for the scope. Returns: A context manager that installs `name` as a new name scope. Raises: ValueError: If `name` is not a valid scope name, according to the rules above. """ if name: if self._name_stack: # Scopes created in a nested scope may have initial characters # that are illegal as the initial character of an op name # (viz. '-', '\', '/', and '_'). if not _VALID_SCOPE_NAME_REGEX.match(name): raise ValueError("'%s' is not a valid scope name" % name) else: # Scopes created in the root must match the more restrictive # op name regex, which constrains the initial character. if not _VALID_OP_NAME_REGEX.match(name): raise ValueError("'%s' is not a valid scope name" % name) try: old_stack = self._name_stack if not name: # Both for name=None and name="" we re-set to empty scope. new_stack = None elif name[-1] == "/": new_stack = _name_from_scope_name(name) else: new_stack = self.unique_name(name) self._name_stack = new_stack yield "" if new_stack is None else new_stack + "/" finally: self._name_stack = old_stack # pylint: enable=g-doc-return-or-yield,line-too-long def unique_name(self, name, mark_as_used=True): """Return a unique operation name for `name`. Note: You rarely need to call `unique_name()` directly. Most of the time you just need to create `with g.name_scope()` blocks to generate structured names. `unique_name` is used to generate structured names, separated by `"/"`, to help identify operations when debugging a graph. Operation names are displayed in error messages reported by the TensorFlow runtime, and in various visualization tools such as TensorBoard. If `mark_as_used` is set to `True`, which is the default, a new unique name is created and marked as in use. If it's set to `False`, the unique name is returned without actually being marked as used. This is useful when the caller simply wants to know what the name to be created will be. Args: name: The name for an operation. mark_as_used: Whether to mark this name as being used. Returns: A string to be passed to `create_op()` that will be used to name the operation being created. """ if self._name_stack: name = self._name_stack + "/" + name i = self._names_in_use.get(name, 0) # Increment the number for "name". if mark_as_used: self._names_in_use[name] = i + 1 if i > 0: base_name = name # Make sure the composed name is not already used. while name in self._names_in_use: name = "%s_%d" % (base_name, i) i += 1 # Mark the composed name as used in case someone wants # to call unique_name("name_1"). if mark_as_used: self._names_in_use[name] = 1 return name def get_name_scope(self): """Returns the current name scope. For example: ```python with tf.name_scope('scope1'): with tf.name_scope('scope2'): print(tf.get_default_graph().get_name_scope()) ``` would print the string `scope1/scope2`. Returns: A string representing the current name scope. """ return self._name_stack @tf_contextlib.contextmanager def colocate_with(self, op, ignore_existing=False): """Returns a context manager that specifies an op to colocate with. Note: this function is not for public use, only for internal libraries. For example: ```python a = tf.Variable([1.0]) with g.colocate_with(a): b = tf.constant(1.0) c = tf.add(a, b) ``` `b` and `c` will always be colocated with `a`, no matter where `a` is eventually placed. **NOTE** Using a colocation scope resets any existing device constraints. If `op` is `None` then `ignore_existing` must be `True` and the new scope resets all colocation and device constraints. Args: op: The op to colocate all created ops with, or `None`. ignore_existing: If true, only applies colocation of this op within the context, rather than applying all colocation properties on the stack. If `op` is `None`, this value must be `True`. Raises: ValueError: if op is None but ignore_existing is False. Yields: A context manager that specifies the op with which to colocate newly created ops. """ if op is None and not ignore_existing: raise ValueError("Trying to reset colocation (op is None) but " "ignore_existing is not True") if op is not None and not isinstance(op, Operation): # We always want to colocate with the reference op. op = internal_convert_to_tensor_or_indexed_slices(op, as_ref=True).op # By default, colocate_with resets the device function stack, # since colocate_with is typically used in specific internal # library functions where colocation is intended to be "stronger" # than device functions. # # In the future, a caller may specify that device_functions win # over colocation, in which case we can add support. device_fn_tmp = self._device_function_stack self._device_function_stack = [] if ignore_existing: current_stack = self._colocation_stack self._colocation_stack = [] if op is not None: self._colocation_stack.append(op) try: yield finally: # Restore device function stack self._device_function_stack = device_fn_tmp if op is not None: self._colocation_stack.pop() # Reset the colocation stack if requested. if ignore_existing: self._colocation_stack = current_stack @tf_contextlib.contextmanager def device(self, device_name_or_function): # pylint: disable=line-too-long """Returns a context manager that specifies the default device to use. The `device_name_or_function` argument may either be a device name string, a device function, or None: * If it is a device name string, all operations constructed in this context will be assigned to the device with that name, unless overridden by a nested `device()` context. * If it is a function, it will be treated as a function from Operation objects to device name strings, and invoked each time a new Operation is created. The Operation will be assigned to the device with the returned name. * If it is None, all `device()` invocations from the enclosing context will be ignored. For information about the valid syntax of device name strings, see the documentation in [`DeviceNameUtils`](https://www.tensorflow.org/code/tensorflow/core/util/device_name_utils.h). For example: ```python with g.device('/device:GPU:0'): # All operations constructed in this context will be placed # on GPU 0. with g.device(None): # All operations constructed in this context will have no # assigned device. # Defines a function from `Operation` to device string. def matmul_on_gpu(n): if n.type == "MatMul": return "/device:GPU:0" else: return "/cpu:0" with g.device(matmul_on_gpu): # All operations of type "MatMul" constructed in this context # will be placed on GPU 0; all other operations will be placed # on CPU 0. ``` **N.B.** The device scope may be overridden by op wrappers or other library code. For example, a variable assignment op `v.assign()` must be colocated with the `tf.Variable` `v`, and incompatible device scopes will be ignored. Args: device_name_or_function: The device name or function to use in the context. Yields: A context manager that specifies the default device to use for newly created ops. """ # pylint: enable=line-too-long if (device_name_or_function is not None and not callable(device_name_or_function)): device_function = pydev.merge_device(device_name_or_function) else: device_function = device_name_or_function try: self._device_function_stack.append(device_function) yield finally: self._device_function_stack.pop() def _apply_device_functions(self, op): """Applies the current device function stack to the given operation.""" # Apply any device functions in reverse order, so that the most recently # pushed function has the first chance to apply a device to the op. # We apply here because the result can depend on the Operation's # signature, which is computed in the Operation constructor. for device_function in reversed(self._device_function_stack): if device_function is None: break op._set_device(device_function(op)) # pylint: disable=protected-access # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def container(self, container_name): """Returns a context manager that specifies the resource container to use. Stateful operations, such as variables and queues, can maintain their states on devices so that they can be shared by multiple processes. A resource container is a string name under which these stateful operations are tracked. These resources can be released or cleared with `tf.Session.reset()`. For example: ```python with g.container('experiment0'): # All stateful Operations constructed in this context will be placed # in resource container "experiment0". v1 = tf.Variable([1.0]) v2 = tf.Variable([2.0]) with g.container("experiment1"): # All stateful Operations constructed in this context will be # placed in resource container "experiment1". v3 = tf.Variable([3.0]) q1 = tf.FIFOQueue(10, tf.float32) # All stateful Operations constructed in this context will be # be created in the "experiment0". v4 = tf.Variable([4.0]) q1 = tf.FIFOQueue(20, tf.float32) with g.container(""): # All stateful Operations constructed in this context will be # be placed in the default resource container. v5 = tf.Variable([5.0]) q3 = tf.FIFOQueue(30, tf.float32) # Resets container "experiment0", after which the state of v1, v2, v4, q1 # will become undefined (such as uninitialized). tf.Session.reset(target, ["experiment0"]) ``` Args: container_name: container name string. Returns: A context manager for defining resource containers for stateful ops, yields the container name. """ original_container = self._container try: self._container = self._container_prefix + container_name yield self._container finally: self._container = original_container # pylint: enable=g-doc-return-or-yield class _ControlDependenciesController(object): """Context manager for `control_dependencies()`.""" def __init__(self, graph, control_inputs): """Create a new `_ControlDependenciesController`. A `_ControlDependenciesController` is the context manager for `with tf.control_dependencies()` blocks. These normally nest, as described in the documentation for `control_dependencies()`. The `control_inputs` argument list control dependencies that must be added to the current set of control dependencies. Because of uniquification the set can be empty even if the caller passed a list of ops. The special value `None` indicates that we want to start a new empty set of control dependencies instead of extending the current set. In that case we also clear the current control flow context, which is an additional mechanism to add control dependencies. Args: graph: The graph that this controller is managing. control_inputs: List of ops to use as control inputs in addition to the current control dependencies. None to indicate that the dependencies should be cleared. """ self._graph = graph if control_inputs is None: self._control_inputs = [] self._new_stack = True else: self._control_inputs = control_inputs self._new_stack = False self._seen_nodes = set() self._old_stack = None self._old_control_flow_context = None # pylint: disable=protected-access def __enter__(self): if self._new_stack: # Clear the control_dependencies graph. self._old_stack = self._graph._control_dependencies_stack self._graph._control_dependencies_stack = [] # Clear the control_flow_context too. self._old_control_flow_context = self._graph._get_control_flow_context() self._graph._set_control_flow_context(None) self._graph._push_control_dependencies_controller(self) def __exit__(self, unused_type, unused_value, unused_traceback): self._graph._pop_control_dependencies_controller(self) if self._new_stack: self._graph._control_dependencies_stack = self._old_stack self._graph._set_control_flow_context(self._old_control_flow_context) # pylint: enable=protected-access @property def control_inputs(self): return self._control_inputs def add_op(self, op): self._seen_nodes.add(op) def op_in_group(self, op): return op in self._seen_nodes def _push_control_dependencies_controller(self, controller): self._control_dependencies_stack.append(controller) def _pop_control_dependencies_controller(self, controller): assert self._control_dependencies_stack[-1] is controller self._control_dependencies_stack.pop() def _current_control_dependencies(self): ret = set() for controller in self._control_dependencies_stack: for op in controller.control_inputs: ret.add(op) return ret def _control_dependencies_for_inputs(self, input_ops): """For an op that takes `input_ops` as inputs, compute control inputs. The returned control dependencies should yield an execution that is equivalent to adding all control inputs in self._control_dependencies_stack to a newly created op. However, this function attempts to prune the returned control dependencies by observing that nodes created within the same `with control_dependencies(...):` block may have data dependencies that make the explicit approach redundant. Args: input_ops: The data input ops for an op to be created. Returns: A list of control inputs for the op to be created. """ ret = [] for controller in self._control_dependencies_stack: # If any of the input_ops already depends on the inputs from controller, # we say that the new op is dominated (by that input), and we therefore # do not need to add control dependencies for this controller's inputs. dominated = False for op in input_ops: if controller.op_in_group(op): dominated = True break if not dominated: # Don't add a control input if we already have a data dependency on i. # NOTE(mrry): We do not currently track transitive data dependencies, # so we may add redundant control inputs. ret.extend([c for c in controller.control_inputs if c not in input_ops]) return ret def _record_op_seen_by_control_dependencies(self, op): """Record that the given op depends on all registered control dependencies. Args: op: An Operation. """ for controller in self._control_dependencies_stack: controller.add_op(op) def control_dependencies(self, control_inputs): """Returns a context manager that specifies control dependencies. Use with the `with` keyword to specify that all operations constructed within the context should have control dependencies on `control_inputs`. For example: ```python with g.control_dependencies([a, b, c]): # `d` and `e` will only run after `a`, `b`, and `c` have executed. d = ... e = ... ``` Multiple calls to `control_dependencies()` can be nested, and in that case a new `Operation` will have control dependencies on the union of `control_inputs` from all active contexts. ```python with g.control_dependencies([a, b]): # Ops constructed here run after `a` and `b`. with g.control_dependencies([c, d]): # Ops constructed here run after `a`, `b`, `c`, and `d`. ``` You can pass None to clear the control dependencies: ```python with g.control_dependencies([a, b]): # Ops constructed here run after `a` and `b`. with g.control_dependencies(None): # Ops constructed here run normally, not waiting for either `a` or `b`. with g.control_dependencies([c, d]): # Ops constructed here run after `c` and `d`, also not waiting # for either `a` or `b`. ``` *N.B.* The control dependencies context applies *only* to ops that are constructed within the context. Merely using an op or tensor in the context does not add a control dependency. The following example illustrates this point: ```python # WRONG def my_func(pred, tensor): t = tf.matmul(tensor, tensor) with tf.control_dependencies([pred]): # The matmul op is created outside the context, so no control # dependency will be added. return t # RIGHT def my_func(pred, tensor): with tf.control_dependencies([pred]): # The matmul op is created in the context, so a control dependency # will be added. return tf.matmul(tensor, tensor) ``` Args: control_inputs: A list of `Operation` or `Tensor` objects which must be executed or computed before running the operations defined in the context. Can also be `None` to clear the control dependencies. Returns: A context manager that specifies control dependencies for all operations constructed within the context. Raises: TypeError: If `control_inputs` is not a list of `Operation` or `Tensor` objects. """ if control_inputs is None: return self._ControlDependenciesController(self, None) # First convert the inputs to ops, and deduplicate them. # NOTE(mrry): Other than deduplication, we do not currently track direct # or indirect dependencies between control_inputs, which may result in # redundant control inputs. control_ops = [] current = self._current_control_dependencies() for c in control_inputs: if isinstance(c, IndexedSlices): c = c.op c = self.as_graph_element(c) if isinstance(c, Tensor): c = c.op elif not isinstance(c, Operation): raise TypeError("Control input must be Operation or Tensor: %s" % c) if c not in current: control_ops.append(c) current.add(c) return self._ControlDependenciesController(self, control_ops) # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _attr_scope(self, attr_map): """EXPERIMENTAL: A context manager for setting attributes on operators. This context manager can be used to add additional attributes to operators within the scope of the context. For example: with ops.Graph().as_default() as g: f_1 = Foo() # No extra attributes with g._attr_scope({"_a": tf.attr_value_pb2.AttrValue(b=False)}): f_2 = Foo() # Additional attribute _a=False with g._attr_scope({"_a": tf.attr_value_pb2.AttrValue(b=True)}): f_3 = Foo() # Additional attribute _a=False with g._attr_scope({"_a": None}): f_4 = Foo() # No additional attributes. Args: attr_map: A dictionary mapping attr name strings to AttrValue protocol buffers or None. Returns: A context manager that sets the kernel label to be used for one or more ops created in that context. Raises: TypeError: If attr_map is not a dictionary mapping strings to AttrValue protobufs. """ if not isinstance(attr_map, dict): raise TypeError("attr_map must be a dictionary mapping " "strings to AttrValue protocol buffers") # The saved_attrs dictionary stores any currently-set labels that # will be overridden by this context manager. saved_attrs = {} # Install the given attribute for name, attr in attr_map.items(): if not (isinstance(name, six.string_types) and (isinstance(attr, (type(None), attr_value_pb2.AttrValue)) or callable(attr))): raise TypeError("attr_map must be a dictionary mapping " "strings to AttrValue protocol buffers or " "callables that emit AttrValue protocol buffers") try: saved_attrs[name] = self._attr_scope_map[name] except KeyError: pass if attr is None: del self._attr_scope_map[name] else: self._attr_scope_map[name] = attr try: yield # The code within the context runs here. finally: # Remove the attributes set for this context, and restore any saved # attributes. for name, attr in attr_map.items(): try: self._attr_scope_map[name] = saved_attrs[name] except KeyError: del self._attr_scope_map[name] # pylint: enable=g-doc-return-or-yield # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _kernel_label_map(self, op_to_kernel_label_map): """EXPERIMENTAL: A context manager for setting kernel labels. This context manager can be used to select particular implementations of kernels within the scope of the context. For example: with ops.Graph().as_default() as g: f_1 = Foo() # Uses the default registered kernel for the Foo op. with g.kernel_label_map({"Foo": "v_2"}): f_2 = Foo() # Uses the registered kernel with label "v_2" # for the Foo op. with g.kernel_label_map({"Foo": "v_3"}): f_3 = Foo() # Uses the registered kernel with label "v_3" # for the Foo op. with g.kernel_label_map({"Foo": ""}): f_4 = Foo() # Uses the default registered kernel # for the Foo op. Args: op_to_kernel_label_map: A dictionary mapping op type strings to kernel label strings. Returns: A context manager that sets the kernel label to be used for one or more ops created in that context. Raises: TypeError: If op_to_kernel_label_map is not a dictionary mapping strings to strings. """ if not isinstance(op_to_kernel_label_map, dict): raise TypeError("op_to_kernel_label_map must be a dictionary mapping " "strings to strings") # The saved_labels dictionary stores any currently-set labels that # will be overridden by this context manager. saved_labels = {} # Install the given label for op_type, label in op_to_kernel_label_map.items(): if not (isinstance(op_type, six.string_types) and isinstance(label, six.string_types)): raise TypeError("op_to_kernel_label_map must be a dictionary mapping " "strings to strings") try: saved_labels[op_type] = self._op_to_kernel_label_map[op_type] except KeyError: pass self._op_to_kernel_label_map[op_type] = label try: yield # The code within the context runs here. finally: # Remove the labels set for this context, and restore any saved labels. for op_type, label in op_to_kernel_label_map.items(): try: self._op_to_kernel_label_map[op_type] = saved_labels[op_type] except KeyError: del self._op_to_kernel_label_map[op_type] # pylint: enable=g-doc-return-or-yield # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def gradient_override_map(self, op_type_map): """EXPERIMENTAL: A context manager for overriding gradient functions. This context manager can be used to override the gradient function that will be used for ops within the scope of the context. For example: ```python @tf.RegisterGradient("CustomSquare") def _custom_square_grad(op, grad): # ... with tf.Graph().as_default() as g: c = tf.constant(5.0) s_1 = tf.square(c) # Uses the default gradient for tf.square. with g.gradient_override_map({"Square": "CustomSquare"}): s_2 = tf.square(s_2) # Uses _custom_square_grad to compute the # gradient of s_2. ``` Args: op_type_map: A dictionary mapping op type strings to alternative op type strings. Returns: A context manager that sets the alternative op type to be used for one or more ops created in that context. Raises: TypeError: If `op_type_map` is not a dictionary mapping strings to strings. """ if not isinstance(op_type_map, dict): raise TypeError("op_type_map must be a dictionary mapping " "strings to strings") # The saved_mappings dictionary stores any currently-set mappings that # will be overridden by this context manager. saved_mappings = {} # Install the given label for op_type, mapped_op_type in op_type_map.items(): if not (isinstance(op_type, six.string_types) and isinstance(mapped_op_type, six.string_types)): raise TypeError("op_type_map must be a dictionary mapping " "strings to strings") try: saved_mappings[op_type] = self._gradient_override_map[op_type] except KeyError: pass self._gradient_override_map[op_type] = mapped_op_type try: yield # The code within the context runs here. finally: # Remove the labels set for this context, and restore any saved labels. for op_type, mapped_op_type in op_type_map.items(): try: self._gradient_override_map[op_type] = saved_mappings[op_type] except KeyError: del self._gradient_override_map[op_type] # pylint: enable=g-doc-return-or-yield def prevent_feeding(self, tensor): """Marks the given `tensor` as unfeedable in this graph.""" self._unfeedable_tensors.add(tensor) def is_feedable(self, tensor): """Returns `True` if and only if `tensor` is feedable.""" return tensor not in self._unfeedable_tensors def prevent_fetching(self, op): """Marks the given `op` as unfetchable in this graph.""" self._unfetchable_ops.add(op) def is_fetchable(self, tensor_or_op): """Returns `True` if and only if `tensor_or_op` is fetchable.""" if isinstance(tensor_or_op, Tensor): return tensor_or_op.op not in self._unfetchable_ops else: return tensor_or_op not in self._unfetchable_ops # TODO(agarwal): currently device directives in an outer eager scope will not # apply to inner graph mode code. Fix that. def device(device_name_or_function): """Wrapper for `Graph.device()` using the default graph. See @{tf.Graph.device} for more details. Args: device_name_or_function: The device name or function to use in the context. Returns: A context manager that specifies the default device to use for newly created ops. Raises: RuntimeError: If eager execution is enabled and a function is passed in. """ if context.in_graph_mode(): return get_default_graph().device(device_name_or_function) else: # TODO(agarwal): support device functions in EAGER mode. if callable(device_name_or_function): raise RuntimeError( "tf.device does not support functions when eager execution " "is enabled.") return context.device(device_name_or_function) def container(container_name): """Wrapper for `Graph.container()` using the default graph. Args: container_name: The container string to use in the context. Returns: A context manager that specifies the default container to use for newly created stateful ops. """ return get_default_graph().container(container_name) def colocate_with(op, ignore_existing=False): if context.in_graph_mode(): return get_default_graph().colocate_with(op, ignore_existing) else: if op is not None: return device(op.device) else: return _NullContextmanager() def control_dependencies(control_inputs): """Wrapper for `Graph.control_dependencies()` using the default graph. See @{tf.Graph.control_dependencies} for more details. Args: control_inputs: A list of `Operation` or `Tensor` objects which must be executed or computed before running the operations defined in the context. Can also be `None` to clear the control dependencies. Returns: A context manager that specifies control dependencies for all operations constructed within the context. """ if context.in_graph_mode(): return get_default_graph().control_dependencies(control_inputs) else: return _NullContextmanager() class _DefaultStack(threading.local): """A thread-local stack of objects for providing implicit defaults.""" def __init__(self): super(_DefaultStack, self).__init__() self._enforce_nesting = True self.stack = [] def get_default(self): return self.stack[-1] if len(self.stack) >= 1 else None def reset(self): self.stack = [] def is_cleared(self): return not self.stack @property def enforce_nesting(self): return self._enforce_nesting @enforce_nesting.setter def enforce_nesting(self, value): self._enforce_nesting = value @tf_contextlib.contextmanager def get_controller(self, default): """A context manager for manipulating a default stack.""" try: self.stack.append(default) yield default finally: # stack may be empty if reset() was called if self.stack: if self._enforce_nesting: if self.stack[-1] is not default: raise AssertionError( "Nesting violated for default stack of %s objects" % type(default)) self.stack.pop() else: self.stack.remove(default) _default_session_stack = _DefaultStack() # pylint: disable=protected-access def default_session(session): """Python "with" handler for defining a default session. This function provides a means of registering a session for handling Tensor.eval() and Operation.run() calls. It is primarily intended for use by session.Session, but can be used with any object that implements the Session.run() interface. Use with the "with" keyword to specify that Tensor.eval() and Operation.run() invocations within the scope of a block should be executed by a particular session. The default session applies to the current thread only, so it is always possible to inspect the call stack and determine the scope of a default session. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a "with ops.default_session(sess):" block in that thread's function. Example: The following code examples are equivalent: # 1. Using the Session object directly: sess = ... c = tf.constant(5.0) sess.run(c) # 2. Using default_session(): sess = ... with ops.default_session(sess): c = tf.constant(5.0) result = c.eval() # 3. Overriding default_session(): sess = ... with ops.default_session(sess): c = tf.constant(5.0) with ops.default_session(...): c.eval(session=sess) Args: session: The session to be installed as the default session. Returns: A context manager for the default session. """ return _default_session_stack.get_controller(session) def get_default_session(): """Returns the default session for the current thread. The returned `Session` will be the innermost session on which a `Session` or `Session.as_default()` context has been entered. NOTE: The default session is a property of the current thread. If you create a new thread, and wish to use the default session in that thread, you must explicitly add a `with sess.as_default():` in that thread's function. Returns: The default `Session` being used in the current thread. """ return _default_session_stack.get_default() def _eval_using_default_session(tensors, feed_dict, graph, session=None): """Uses the default session to evaluate one or more tensors. Args: tensors: A single Tensor, or a list of Tensor objects. feed_dict: A dictionary that maps Tensor objects (or tensor names) to lists, numpy ndarrays, TensorProtos, or strings. graph: The graph in which the tensors are defined. session: (Optional) A different session to use to evaluate "tensors". Returns: Either a single numpy ndarray if "tensors" is a single tensor; or a list of numpy ndarrays that each correspond to the respective element in "tensors". Raises: ValueError: If no default session is available; the default session does not have "graph" as its graph; or if "session" is specified, and it does not have "graph" as its graph. """ if session is None: session = get_default_session() if session is None: raise ValueError("Cannot evaluate tensor using `eval()`: No default " "session is registered. Use `with " "sess.as_default()` or pass an explicit session to " "`eval(session=sess)`") if session.graph is not graph: raise ValueError("Cannot use the default session to evaluate tensor: " "the tensor's graph is different from the session's " "graph. Pass an explicit session to " "`eval(session=sess)`.") else: if session.graph is not graph: raise ValueError("Cannot use the given session to evaluate tensor: " "the tensor's graph is different from the session's " "graph.") return session.run(tensors, feed_dict) def _run_using_default_session(operation, feed_dict, graph, session=None): """Uses the default session to run "operation". Args: operation: The Operation to be run. feed_dict: A dictionary that maps Tensor objects (or tensor names) to lists, numpy ndarrays, TensorProtos, or strings. graph: The graph in which "operation" is defined. session: (Optional) A different session to use to run "operation". Raises: ValueError: If no default session is available; the default session does not have "graph" as its graph; or if "session" is specified, and it does not have "graph" as its graph. """ if session is None: session = get_default_session() if session is None: raise ValueError("Cannot execute operation using `run()`: No default " "session is registered. Use `with " "sess.as_default():` or pass an explicit session to " "`run(session=sess)`") if session.graph is not graph: raise ValueError("Cannot use the default session to execute operation: " "the operation's graph is different from the " "session's graph. Pass an explicit session to " "run(session=sess).") else: if session.graph is not graph: raise ValueError("Cannot use the given session to execute operation: " "the operation's graph is different from the session's " "graph.") session.run(operation, feed_dict) class _DefaultGraphStack(_DefaultStack): # pylint: disable=protected-access """A thread-local stack of objects for providing an implicit default graph.""" def __init__(self): super(_DefaultGraphStack, self).__init__() self._global_default_graph = None def get_default(self): """Override that returns a global default if the stack is empty.""" ret = super(_DefaultGraphStack, self).get_default() if ret is None: ret = self._GetGlobalDefaultGraph() return ret def _GetGlobalDefaultGraph(self): if self._global_default_graph is None: # TODO(mrry): Perhaps log that the default graph is being used, or set # provide some other feedback to prevent confusion when a mixture of # the global default graph and an explicit graph are combined in the # same process. self._global_default_graph = Graph() return self._global_default_graph def reset(self): super(_DefaultGraphStack, self).reset() self._global_default_graph = None _default_graph_stack = _DefaultGraphStack() def enable_eager_execution(config=None, device_policy=None): """Enables, for the rest of the lifetime of this program, eager execution. If not called immediately on startup risks creating breakage and bugs. Example: ```python tfe.enable_eager_execution() # After eager execution is enabled, operations are executed as they are # defined and `Tensor`s hold concrete values, which can be accessed as # `numpy.ndarray`s through the `numpy()` method. assert tf.multiply(6, 7).numpy() == 42 ``` Args: config: (Optional.) A `ConfigProto` protocol buffer with configuration options for the Context. Note that a lot of these options may be currently unimplemented or irrelevant when eager execution is enabled. device_policy: (Optional.) What policy to use when trying to run an operation on a device with inputs which are not on that device. Valid values: tfe.DEVICE_PLACEMENT_EXPLICIT: raises an error if the placement is not correct. tfe.DEVICE_PLACEMENT_WARN: copies the tensors which are not on the right device but raises a warning. tfe.DEVICE_PLACEMENT_SILENT: silently copies the tensors. This might hide performance problems. Raises: ValueError: If trying to create a context after using graph operations or if trying to create a context with nontrivial options which differ from those of the existing context. """ # pylint: disable=protected-access if context._default_mode == context.GRAPH_MODE: graph_mode_has_been_used = ( _default_session_stack.stack or _default_graph_stack._global_default_graph is not None) if graph_mode_has_been_used: raise ValueError( "tfe.enable_eager_execution has to be called at program startup.") context._default_mode = context.EAGER_MODE if context._context is None: context._context = context.Context(config=config, device_policy=device_policy) elif ((config is not None and config is not context._context._config) or (device_policy is not None and device_policy is not context._context._device_policy)): raise ValueError("Trying to change the options of an active eager" " execution. Context config: %s, specified config:" " %s. Context device policy: %s; specified device" " policy: %s." % (config, context._context._config, device_policy, context._context._device_policy)) else: raise ValueError( "tfe.enable_eager_execution has to be called at program startup.") def eager_run(main=None, argv=None): """Runs the program with an optional main function and argv list. The program will run with eager execution enabled. Example: ```python import tensorflow as tf # Import subject to future changes: from tensorflow.contrib.eager.python import tfe def main(_): u = tf.constant(6.0) v = tf.constant(7.0) print(u * v) if __name__ == "__main__": tfe.run() ``` Args: main: the main function to run. argv: the arguments to pass to it. """ enable_eager_execution() app.run(main, argv) def reset_default_graph(): """Clears the default graph stack and resets the global default graph. NOTE: The default graph is a property of the current thread. This function applies only to the current thread. Calling this function while a `tf.Session` or `tf.InteractiveSession` is active will result in undefined behavior. Using any previously created `tf.Operation` or `tf.Tensor` objects after calling this function will result in undefined behavior. Raises: AssertionError: If this function is called within a nested graph. """ if not _default_graph_stack.is_cleared(): raise AssertionError("Do not use tf.reset_default_graph() to clear " "nested graphs. If you need a cleared graph, " "exit the nesting and create a new graph.") _default_graph_stack.reset() def get_default_graph(): """Returns the default graph for the current thread. The returned graph will be the innermost graph on which a `Graph.as_default()` context has been entered, or a global default graph if none has been explicitly created. NOTE: The default graph is a property of the current thread. If you create a new thread, and wish to use the default graph in that thread, you must explicitly add a `with g.as_default():` in that thread's function. Returns: The default `Graph` being used in the current thread. """ return _default_graph_stack.get_default() def get_name_scope(): """Returns the current name scope in the default_graph. For example: ```python with tf.name_scope('scope1'): with tf.name_scope('scope2'): print(tf.get_name_scope()) ``` would print the string `scope1/scope2`. Returns: A string representing the current name scope. """ return get_default_graph().get_name_scope() def _assert_same_graph(original_item, item): """Fail if the 2 items are from different graphs. Args: original_item: Original item to check against. item: Item to check. Raises: ValueError: if graphs do not match. """ if original_item.graph is not item.graph: raise ValueError("%s must be from the same graph as %s." % (item, original_item)) def _get_graph_from_inputs(op_input_list, graph=None): """Returns the appropriate graph to use for the given inputs. This library method provides a consistent algorithm for choosing the graph in which an Operation should be constructed: 1. If the default graph is being used to construct a function, we use the default graph. 2. If the "graph" is specified explicitly, we validate that all of the inputs in "op_input_list" are compatible with that graph. 3. Otherwise, we attempt to select a graph from the first Operation- or Tensor-valued input in "op_input_list", and validate that all other such inputs are in the same graph. 4. If the graph was not specified and it could not be inferred from "op_input_list", we attempt to use the default graph. Args: op_input_list: A list of inputs to an operation, which may include `Tensor`, `Operation`, and other objects that may be converted to a graph element. graph: (Optional) The explicit graph to use. Raises: TypeError: If op_input_list is not a list or tuple, or if graph is not a Graph. ValueError: If a graph is explicitly passed and not all inputs are from it, or if the inputs are from multiple graphs, or we could not find a graph and there was no default graph. Returns: The appropriate graph to use for the given inputs. """ if get_default_graph().building_function: return get_default_graph() op_input_list = tuple(op_input_list) # Handle generators correctly if graph and not isinstance(graph, Graph): raise TypeError("Input graph needs to be a Graph: %s" % graph) # 1. We validate that all of the inputs are from the same graph. This is # either the supplied graph parameter, or the first one selected from one # the graph-element-valued inputs. In the latter case, we hold onto # that input in original_graph_element so we can provide a more # informative error if a mismatch is found. original_graph_element = None for op_input in op_input_list: # Determine if this is a valid graph_element. # TODO(josh11b): Note that we exclude subclasses of Tensor. Need to clean this # up. graph_element = None if (isinstance(op_input, (Operation, _TensorLike)) and ((not isinstance(op_input, Tensor)) or type(op_input) == Tensor)): # pylint: disable=unidiomatic-typecheck graph_element = op_input else: graph_element = _as_graph_element(op_input) if graph_element is not None: if not graph: original_graph_element = graph_element graph = graph_element.graph elif original_graph_element is not None: _assert_same_graph(original_graph_element, graph_element) elif graph_element.graph is not graph: raise ValueError("%s is not from the passed-in graph." % graph_element) # 2. If all else fails, we use the default graph, which is always there. return graph or get_default_graph() class GraphKeys(object): """Standard names to use for graph collections. The standard library uses various well-known names to collect and retrieve values associated with a graph. For example, the `tf.Optimizer` subclasses default to optimizing the variables collected under `tf.GraphKeys.TRAINABLE_VARIABLES` if none is specified, but it is also possible to pass an explicit list of variables. The following standard keys are defined: * `GLOBAL_VARIABLES`: the default collection of `Variable` objects, shared across distributed environment (model variables are subset of these). See @{tf.global_variables} for more details. Commonly, all `TRAINABLE_VARIABLES` variables will be in `MODEL_VARIABLES`, and all `MODEL_VARIABLES` variables will be in `GLOBAL_VARIABLES`. * `LOCAL_VARIABLES`: the subset of `Variable` objects that are local to each machine. Usually used for temporarily variables, like counters. Note: use `tf.contrib.framework.local_variable` to add to this collection. * `MODEL_VARIABLES`: the subset of `Variable` objects that are used in the model for inference (feed forward). Note: use `tf.contrib.framework.model_variable` to add to this collection. * `TRAINABLE_VARIABLES`: the subset of `Variable` objects that will be trained by an optimizer. See @{tf.trainable_variables} for more details. * `SUMMARIES`: the summary `Tensor` objects that have been created in the graph. See @{tf.summary.merge_all} for more details. * `QUEUE_RUNNERS`: the `QueueRunner` objects that are used to produce input for a computation. See @{tf.train.start_queue_runners} for more details. * `MOVING_AVERAGE_VARIABLES`: the subset of `Variable` objects that will also keep moving averages. See @{tf.moving_average_variables} for more details. * `REGULARIZATION_LOSSES`: regularization losses collected during graph construction. The following standard keys are _defined_, but their collections are **not** automatically populated as many of the others are: * `WEIGHTS` * `BIASES` * `ACTIVATIONS` """ # Key to collect Variable objects that are global (shared across machines). # Default collection for all variables, except local ones. GLOBAL_VARIABLES = "variables" # Key to collect local variables that are local to the machine and are not # saved/restored. LOCAL_VARIABLES = "local_variables" # Key to collect local variables which are used to accumulate interal state # to be used in tf.metrics.*. METRIC_VARIABLES = "metric_variables" # Key to collect model variables defined by layers. MODEL_VARIABLES = "model_variables" # Key to collect Variable objects that will be trained by the # optimizers. TRAINABLE_VARIABLES = "trainable_variables" # Key to collect summaries. SUMMARIES = "summaries" # Key to collect QueueRunners. QUEUE_RUNNERS = "queue_runners" # Key to collect table initializers. TABLE_INITIALIZERS = "table_initializer" # Key to collect asset filepaths. An asset represents an external resource # like a vocabulary file. ASSET_FILEPATHS = "asset_filepaths" # Key to collect Variable objects that keep moving averages. MOVING_AVERAGE_VARIABLES = "moving_average_variables" # Key to collect regularization losses at graph construction. REGULARIZATION_LOSSES = "regularization_losses" # Key to collect concatenated sharded variables. CONCATENATED_VARIABLES = "concatenated_variables" # Key to collect savers. SAVERS = "savers" # Key to collect weights WEIGHTS = "weights" # Key to collect biases BIASES = "biases" # Key to collect activations ACTIVATIONS = "activations" # Key to collect update_ops UPDATE_OPS = "update_ops" # Key to collect losses LOSSES = "losses" # Key to collect BaseSaverBuilder.SaveableObject instances for checkpointing. SAVEABLE_OBJECTS = "saveable_objects" # Key to collect all shared resources used by the graph which need to be # initialized once per cluster. RESOURCES = "resources" # Key to collect all shared resources used in this graph which need to be # initialized once per session. LOCAL_RESOURCES = "local_resources" # Trainable resource-style variables. TRAINABLE_RESOURCE_VARIABLES = "trainable_resource_variables" # Key to indicate various ops. INIT_OP = "init_op" LOCAL_INIT_OP = "local_init_op" READY_OP = "ready_op" READY_FOR_LOCAL_INIT_OP = "ready_for_local_init_op" SUMMARY_OP = "summary_op" GLOBAL_STEP = "global_step" # Used to count the number of evaluations performed during a single evaluation # run. EVAL_STEP = "eval_step" TRAIN_OP = "train_op" # Key for control flow context. COND_CONTEXT = "cond_context" WHILE_CONTEXT = "while_context" # Used to store v2 summary names. _SUMMARY_COLLECTION = "_SUMMARY_V2" # List of all collections that keep track of variables. _VARIABLE_COLLECTIONS = [ GLOBAL_VARIABLES, LOCAL_VARIABLES, METRIC_VARIABLES, MODEL_VARIABLES, TRAINABLE_VARIABLES, MOVING_AVERAGE_VARIABLES, CONCATENATED_VARIABLES, TRAINABLE_RESOURCE_VARIABLES, ] # Key for streaming model ports. # NOTE(yuanbyu): internal and experimental. _STREAMING_MODEL_PORTS = "streaming_model_ports" @decorator_utils.classproperty def VARIABLES(cls): # pylint: disable=no-self-argument logging.log_first_n(logging.WARN, "VARIABLES collection name is deprecated, please use " "GLOBAL_VARIABLES instead; VARIABLES will be removed " "after 2017-03-02.", 1) return cls.GLOBAL_VARIABLES def add_to_collection(name, value): """Wrapper for `Graph.add_to_collection()` using the default graph. See @{tf.Graph.add_to_collection} for more details. Args: name: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. value: The value to add to the collection. @compatibility(eager) Collections are not supported when eager execution is enabled. @end_compatibility """ get_default_graph().add_to_collection(name, value) def add_to_collections(names, value): """Wrapper for `Graph.add_to_collections()` using the default graph. See @{tf.Graph.add_to_collections} for more details. Args: names: The key for the collections. The `GraphKeys` class contains many standard names for collections. value: The value to add to the collections. @compatibility(eager) Collections are not supported when eager execution is enabled. @end_compatibility """ get_default_graph().add_to_collections(names, value) def get_collection_ref(key): """Wrapper for `Graph.get_collection_ref()` using the default graph. See @{tf.Graph.get_collection_ref} for more details. Args: key: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. Note that this returns the collection list itself, which can be modified in place to change the collection. @compatibility(eager) Collections are not supported when eager execution is enabled. @end_compatibility """ return get_default_graph().get_collection_ref(key) def get_collection(key, scope=None): """Wrapper for `Graph.get_collection()` using the default graph. See @{tf.Graph.get_collection} for more details. Args: key: The key for the collection. For example, the `GraphKeys` class contains many standard names for collections. scope: (Optional.) If supplied, the resulting list is filtered to include only items whose `name` attribute matches using `re.match`. Items without a `name` attribute are never returned if a scope is supplied and the choice or `re.match` means that a `scope` without special tokens filters by prefix. Returns: The list of values in the collection with the given `name`, or an empty list if no value has been added to that collection. The list contains the values in the order under which they were collected. @compatibility(eager) Collections are not supported when eager execution is enabled. @end_compatibility """ return get_default_graph().get_collection(key, scope) def get_all_collection_keys(): """Returns a list of collections used in the default graph.""" return get_default_graph().get_all_collection_keys() # Named like a function for backwards compatibility with the # @tf_contextlib.contextmanager version, which was switched to a class to avoid # some object creation overhead. class name_scope(object): # pylint: disable=invalid-name """A context manager for use when defining a Python op. This context manager validates that the given `values` are from the same graph, makes that graph the default graph, and pushes a name scope in that graph (see @{tf.Graph.name_scope} for more details on that). For example, to define a new Python op called `my_op`: ```python def my_op(a, b, c, name=None): with tf.name_scope(name, "MyOp", [a, b, c]) as scope: a = tf.convert_to_tensor(a, name="a") b = tf.convert_to_tensor(b, name="b") c = tf.convert_to_tensor(c, name="c") # Define some computation that uses `a`, `b`, and `c`. return foo_op(..., name=scope) ``` """ @property def name(self): return self._name def __init__(self, name, default_name=None, values=None): """Initialize the context manager. Args: name: The name argument that is passed to the op function. default_name: The default name to use if the `name` argument is `None`. values: The list of `Tensor` arguments that are passed to the op function. """ self._name = default_name if name is None else name self._default_name = default_name self._values = values self._ctx = context.context() self._in_eager_mode = self._ctx.in_eager_mode() def __enter__(self): """Start the scope block. Returns: The scope name. Raises: ValueError: if neither `name` nor `default_name` is provided but `values` are. """ if self._in_eager_mode: self._old_name = self._ctx.scope_name if self._name: scope_name = (self._old_name + self._name + "/" if self._old_name else self._name + "/") else: scope_name = "" self._ctx.scope_name = scope_name return scope_name else: if self._name is None and self._values is not None: # We only raise an error if values is not None (provided) because # currently tf.name_scope(None) (values=None then) is sometimes used as # an idiom to reset to top scope. raise ValueError( "At least one of name (%s) and default_name (%s) must be provided." % (self._name, self._default_name)) if self._values is None: self._values = [] g = _get_graph_from_inputs(self._values) self._g_manager = g.as_default() self._g_manager.__enter__() self._name_scope = g.name_scope(self._name) return self._name_scope.__enter__() def __exit__(self, type_arg, value_arg, traceback_arg): if self._in_eager_mode: self._ctx.scope_name = self._old_name else: self._name_scope.__exit__(type_arg, value_arg, traceback_arg) self._g_manager.__exit__(type_arg, value_arg, traceback_arg) return False # False values do not suppress exceptions def strip_name_scope(name, export_scope): """Removes name scope from a name. Args: name: A `string` name. export_scope: Optional `string`. Name scope to remove. Returns: Name with name scope removed, or the original name if export_scope is None. """ if export_scope: try: # Strips export_scope/, export_scope///, # ^export_scope/, loc:@export_scope/. str_to_replace = r"([\^]|loc:@|^)" + export_scope + r"[\/]+(.*)" return re.sub(str_to_replace, r"\1\2", compat.as_str(name), count=1) except TypeError as e: # If the name is not of a type we can process, simply return it. logging.warning(e) return name else: return name def prepend_name_scope(name, import_scope): """Prepends name scope to a name. Args: name: A `string` name. import_scope: Optional `string`. Name scope to add. Returns: Name with name scope added, or the original name if import_scope is None. """ if import_scope: try: str_to_replace = r"([\^]|loc:@|^)(.*)" return re.sub(str_to_replace, r"\1" + import_scope + r"/\2", compat.as_str(name)) except TypeError as e: # If the name is not of a type we can process, simply return it. logging.warning(e) return name else: return name # pylint: disable=g-doc-return-or-yield # pylint: disable=not-context-manager @tf_contextlib.contextmanager def op_scope(values, name, default_name=None): """DEPRECATED. Same as name_scope above, just different argument order.""" logging.warn("tf.op_scope(values, name, default_name) is deprecated," " use tf.name_scope(name, default_name, values)") with name_scope(name, default_name=default_name, values=values) as scope: yield scope _proto_function_registry = registry.Registry("proto functions") def register_proto_function(collection_name, proto_type=None, to_proto=None, from_proto=None): """Registers `to_proto` and `from_proto` functions for collection_name. `to_proto` function converts a Python object to the corresponding protocol buffer, and returns the protocol buffer. `from_proto` function converts protocol buffer into a Python object, and returns the object.. Args: collection_name: Name of the collection. proto_type: Protobuf type, such as `saver_pb2.SaverDef`, `variable_pb2.VariableDef`, `queue_runner_pb2.QueueRunnerDef`.. to_proto: Function that implements Python object to protobuf conversion. from_proto: Function that implements protobuf to Python object conversion. """ if to_proto and not callable(to_proto): raise TypeError("to_proto must be callable.") if from_proto and not callable(from_proto): raise TypeError("from_proto must be callable.") _proto_function_registry.register((proto_type, to_proto, from_proto), collection_name) def get_collection_proto_type(collection_name): """Returns the proto_type for collection_name.""" try: return _proto_function_registry.lookup(collection_name)[0] except LookupError: return None def get_to_proto_function(collection_name): """Returns the to_proto function for collection_name.""" try: return _proto_function_registry.lookup(collection_name)[1] except LookupError: return None def get_from_proto_function(collection_name): """Returns the from_proto function for collection_name.""" try: return _proto_function_registry.lookup(collection_name)[2] except LookupError: return None def _assert_collection_is_ok(collection_name): if context.in_eager_mode(): if collection_name in GraphKeys._VARIABLE_COLLECTIONS: # pylint: disable=protected-access raise ValueError("When Eager Execution is enabled, variable " "collections are not supported.") def _operation_conversion_error(op, dtype=None, name=None, as_ref=False): """Produce a nice error if someone converts an Operation to a Tensor.""" raise TypeError(("Can't convert Operation '%s' to Tensor " "(target dtype=%r, name=%r, as_ref=%r)") % (op.name, dtype, name, as_ref)) register_tensor_conversion_function(Operation, _operation_conversion_error)
{ "content_hash": "472154c86ea29794553ad2e3ace6ccee", "timestamp": "", "source": "github", "line_count": 5380, "max_line_length": 115, "avg_line_length": 35.48048327137546, "alnum_prop": 0.655824187337926, "repo_name": "guschmue/tensorflow", "id": "dc4ffb174782d6148594e4ca8f1078640ef7905e", "size": "191574", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tensorflow/python/framework/ops.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "8535" }, { "name": "C", "bytes": "314452" }, { "name": "C++", "bytes": "34310628" }, { "name": "CMake", "bytes": "211937" }, { "name": "Go", "bytes": "1012495" }, { "name": "Java", "bytes": "533607" }, { "name": "Jupyter Notebook", "bytes": "1940884" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "44807" }, { "name": "Objective-C", "bytes": "12460" }, { "name": "Objective-C++", "bytes": "94483" }, { "name": "PHP", "bytes": "1429" }, { "name": "Perl", "bytes": "6186" }, { "name": "Perl 6", "bytes": "1360" }, { "name": "PureBasic", "bytes": "24932" }, { "name": "Python", "bytes": "30064150" }, { "name": "Ruby", "bytes": "547" }, { "name": "Shell", "bytes": "402121" } ], "symlink_target": "" }
from pyarrow.compat import unittest import pyarrow as arrow A = arrow class TestTypes(unittest.TestCase): def test_integers(self): dtypes = ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'] for name in dtypes: factory = getattr(arrow, name) t = factory() assert str(t) == name def test_list(self): value_type = arrow.int32() list_type = arrow.list_(value_type) assert str(list_type) == 'list<item: int32>' def test_string(self): t = arrow.string() assert str(t) == 'string' def test_field(self): t = arrow.string() f = arrow.field('foo', t) assert f.name == 'foo' assert f.nullable assert f.type is t assert repr(f) == "Field('foo', type=string)" f = arrow.field('foo', t, False) assert not f.nullable def test_schema(self): fields = [ A.field('foo', A.int32()), A.field('bar', A.string()), A.field('baz', A.list_(A.int8())) ] sch = A.schema(fields) assert len(sch) == 3 assert sch[0].name == 'foo' assert sch[0].type == fields[0].type assert repr(sch) == """\ foo: int32 bar: string baz: list<item: int8>""" def test_schema_equals(self): fields = [ A.field('foo', A.int32()), A.field('bar', A.string()), A.field('baz', A.list_(A.int8())) ] sch1 = A.schema(fields) print(dir(sch1)) sch2 = A.schema(fields) assert sch1.equals(sch2) del fields[-1] sch3 = A.schema(fields) assert not sch1.equals(sch3)
{ "content_hash": "a94a51069dfb1618b43293006f25c1e2", "timestamp": "", "source": "github", "line_count": 70, "max_line_length": 56, "avg_line_length": 24.82857142857143, "alnum_prop": 0.5097813578826237, "repo_name": "TheNeuralBit/arrow", "id": "507ebb878d87b866dbfda66e8e6c9d79b3824116", "size": "2524", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/pyarrow/tests/test_schema.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "11203" }, { "name": "C++", "bytes": "779145" }, { "name": "CMake", "bytes": "130695" }, { "name": "FreeMarker", "bytes": "2404" }, { "name": "Java", "bytes": "906110" }, { "name": "Makefile", "bytes": "8192" }, { "name": "Perl", "bytes": "3799" }, { "name": "Python", "bytes": "316662" }, { "name": "Shell", "bytes": "27802" } ], "symlink_target": "" }
""" This example demonstrates the use of pyqtgraph's parametertree system. This provides a simple way to generate user interfaces that control sets of parameters. The example demonstrates a variety of different parameter types (int, float, list, etc.) as well as some customized parameter types """ import initExample ## Add path to library (just for examples; you do not need this) import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui app = QtGui.QApplication([]) import pyqtgraph.parametertree.parameterTypes as pTypes from pyqtgraph.parametertree import Parameter, ParameterTree, ParameterItem, registerParameterType ## test subclassing parameters ## This parameter automatically generates two child parameters which are always reciprocals of each other class ComplexParameter(pTypes.GroupParameter): def __init__(self, **opts): opts['type'] = 'bool' opts['value'] = True pTypes.GroupParameter.__init__(self, **opts) self.addChild({'name': 'A = 1/B', 'type': 'float', 'value': 7, 'suffix': 'Hz', 'siPrefix': True}) self.addChild({'name': 'B = 1/A', 'type': 'float', 'value': 1/7., 'suffix': 's', 'siPrefix': True}) self.a = self.param('A = 1/B') self.b = self.param('B = 1/A') self.a.sigValueChanged.connect(self.aChanged) self.b.sigValueChanged.connect(self.bChanged) def aChanged(self): self.b.setValue(1.0 / self.a.value(), blockSignal=self.bChanged) def bChanged(self): self.a.setValue(1.0 / self.b.value(), blockSignal=self.aChanged) ## test add/remove ## this group includes a menu allowing the user to add new parameters into its child list class ScalableGroup(pTypes.GroupParameter): def __init__(self, **opts): opts['type'] = 'group' opts['addText'] = "Add" opts['addList'] = ['str', 'float', 'int'] pTypes.GroupParameter.__init__(self, **opts) def addNew(self, typ): val = { 'str': '', 'float': 0.0, 'int': 0 }[typ] self.addChild(dict(name="ScalableParam %d" % (len(self.childs)+1), type=typ, value=val, removable=True, renamable=True)) params = [ {'name': 'Basic parameter data types', 'type': 'group', 'children': [ {'name': 'Integer', 'type': 'int', 'value': 10}, {'name': 'Float', 'type': 'float', 'value': 10.5, 'step': 0.1}, {'name': 'String', 'type': 'str', 'value': "hi"}, {'name': 'List', 'type': 'list', 'values': [1,2,3], 'value': 2}, {'name': 'Named List', 'type': 'list', 'values': {"one": 1, "two": "twosies", "three": [3,3,3]}, 'value': 2}, {'name': 'Boolean', 'type': 'bool', 'value': True, 'tip': "This is a checkbox"}, {'name': 'Color', 'type': 'color', 'value': "FF0", 'tip': "This is a color button"}, {'name': 'Gradient', 'type': 'colormap'}, {'name': 'Subgroup', 'type': 'group', 'children': [ {'name': 'Sub-param 1', 'type': 'int', 'value': 10}, {'name': 'Sub-param 2', 'type': 'float', 'value': 1.2e6}, ]}, {'name': 'Text Parameter', 'type': 'text', 'value': 'Some text...'}, {'name': 'Action Parameter', 'type': 'action'}, ]}, {'name': 'Numerical Parameter Options', 'type': 'group', 'children': [ {'name': 'Units + SI prefix', 'type': 'float', 'value': 1.2e-6, 'step': 1e-6, 'siPrefix': True, 'suffix': 'V'}, {'name': 'Limits (min=7;max=15)', 'type': 'int', 'value': 11, 'limits': (7, 15), 'default': -6}, {'name': 'DEC stepping', 'type': 'float', 'value': 1.2e6, 'dec': True, 'step': 1, 'siPrefix': True, 'suffix': 'Hz'}, ]}, {'name': 'Save/Restore functionality', 'type': 'group', 'children': [ {'name': 'Save State', 'type': 'action'}, {'name': 'Restore State', 'type': 'action', 'children': [ {'name': 'Add missing items', 'type': 'bool', 'value': True}, {'name': 'Remove extra items', 'type': 'bool', 'value': True}, ]}, ]}, {'name': 'Extra Parameter Options', 'type': 'group', 'children': [ {'name': 'Read-only', 'type': 'float', 'value': 1.2e6, 'siPrefix': True, 'suffix': 'Hz', 'readonly': True}, {'name': 'Renamable', 'type': 'float', 'value': 1.2e6, 'siPrefix': True, 'suffix': 'Hz', 'renamable': True}, {'name': 'Removable', 'type': 'float', 'value': 1.2e6, 'siPrefix': True, 'suffix': 'Hz', 'removable': True}, ]}, ComplexParameter(name='Custom parameter group (reciprocal values)'), ScalableGroup(name="Expandable Parameter Group", children=[ {'name': 'ScalableParam 1', 'type': 'str', 'value': "default param 1"}, {'name': 'ScalableParam 2', 'type': 'str', 'value': "default param 2"}, ]), ] ## Create tree of Parameter objects p = Parameter.create(name='params', type='group', children=params) ## If anything changes in the tree, print a message def change(param, changes): print("tree changes:") for param, change, data in changes: path = p.childPath(param) if path is not None: childName = '.'.join(path) else: childName = param.name() print(' parameter: %s'% childName) print(' change: %s'% change) print(' data: %s'% str(data)) print(' ----------') p.sigTreeStateChanged.connect(change) def valueChanging(param, value): print("Value changing (not finalized):", param, value) # Too lazy for recursion: for child in p.children(): child.sigValueChanging.connect(valueChanging) for ch2 in child.children(): ch2.sigValueChanging.connect(valueChanging) def save(): global state state = p.saveState() def restore(): global state add = p['Save/Restore functionality', 'Restore State', 'Add missing items'] rem = p['Save/Restore functionality', 'Restore State', 'Remove extra items'] p.restoreState(state, addChildren=add, removeChildren=rem) p.param('Save/Restore functionality', 'Save State').sigActivated.connect(save) p.param('Save/Restore functionality', 'Restore State').sigActivated.connect(restore) ## Create two ParameterTree widgets, both accessing the same data t = ParameterTree() t.setParameters(p, showTop=False) t.setWindowTitle('pyqtgraph example: Parameter Tree') t2 = ParameterTree() t2.setParameters(p, showTop=False) win = QtGui.QWidget() layout = QtGui.QGridLayout() win.setLayout(layout) layout.addWidget(QtGui.QLabel("These are two views of the same data. They should always display the same values."), 0, 0, 1, 2) layout.addWidget(t, 1, 0, 1, 1) layout.addWidget(t2, 1, 1, 1, 1) win.show() win.resize(800,800) ## test save/restore s = p.saveState() p.restoreState(s) ## Start Qt event loop unless running in interactive mode or using pyside. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
{ "content_hash": "bb4e4a7f960d4551e964c618858458e9", "timestamp": "", "source": "github", "line_count": 174, "max_line_length": 128, "avg_line_length": 40.18390804597701, "alnum_prop": 0.6045480549199085, "repo_name": "vallsv/pyqtgraph", "id": "6e8e0dbdd8b846eded9a650916f27db61ec90a6a", "size": "7016", "binary": false, "copies": "4", "ref": "refs/heads/develop", "path": "examples/parametertree.py", "mode": "33188", "license": "mit", "language": [ { "name": "Groff", "bytes": "135399" }, { "name": "Matlab", "bytes": "1752" }, { "name": "Python", "bytes": "2095110" } ], "symlink_target": "" }
import os import re import random import hashlib # import binascii import datetime import uuid from rdoclient import RandomOrgClient import config # get time in format I like def get_timestamp(): """ Function to generate timestamp for use in application :return timestamp: """ dt = datetime.datetime.now() return dt.strftime("%Y-%m-%d %X") def gen_uid(length=10): """ Function to generate random uuid of varying length for application :param length: length of uid :return uid: formatted string """ # TODO - find one that works in both v2.x/3.x... # python 3.x version uid = uuid.uuid4() tmp_uid = re.sub('-', '', str(uid)) return ''.join(random.sample(list(tmp_uid), length)) def hash_password(password, salt_length=16, iterations=1000000, encoding='utf-8'): """ Function to securely hash password with variable salt and iterations :param password: input secret :param salt_length: length of salt :param iterations: number of times to cycle this algorithm :param encoding: character encoding :return: hashed password """ salt = os.urandom(salt_length) hashed_password = hashlib.pbkdf2_hmac( hash_name='sha256', password=bytes(password, encoding), salt=salt, iterations=iterations, ) # Non-bytes version # return binascii.hexlify(hashed_password) # Bytes version return hashed_password def get_roc(api_key=config.API_KEY): """ Get instance of RandomOrgClient for testing. :param api_key: API key to fetch API client :return: instance of ROC """ try: roc = RandomOrgClient(api_key) return roc except (ValueError, AttributeError) as e: print(e)
{ "content_hash": "72928fee86fcc8bca24b94b4bc782df0", "timestamp": "", "source": "github", "line_count": 82, "max_line_length": 82, "avg_line_length": 21.621951219512194, "alnum_prop": 0.6576424139875916, "repo_name": "nicorellius/password-generator", "id": "d9daf586c6304400696ddae638a54dc3cca1ab8b", "size": "1773", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "35675" } ], "symlink_target": "" }
from django.contrib.postgres.fields import JSONField from django.utils.translation import ugettext as _ from wagtail.core.models import Page from wagtail.core.fields import RichTextField from wagtail.admin.edit_handlers import FieldPanel class BaseModel(Page): # core fields section_title = RichTextField(blank=True) section_subtitle = RichTextField(blank=True) # seo field linked_data = JSONField(null=True, blank=True, help_text=_("Linked Data in JSON")) content_panels = Page.content_panels + [ FieldPanel("section_title"), FieldPanel("section_subtitle"), ] promote_panels = Page.promote_panels + [FieldPanel("linked_data")] class Meta: abstract = True
{ "content_hash": "4d343c4668c8f8f3e8aa22bbd491a6e1", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 86, "avg_line_length": 28.92, "alnum_prop": 0.7164591977869986, "repo_name": "evonove/evonove.it", "id": "9387591ab2f22b15455a7544317b38124fb7b379", "size": "723", "binary": false, "copies": "1", "ref": "refs/heads/devel", "path": "django-website/core/models.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Dockerfile", "bytes": "1655" }, { "name": "HTML", "bytes": "49434" }, { "name": "JavaScript", "bytes": "43596" }, { "name": "Makefile", "bytes": "1243" }, { "name": "Python", "bytes": "92905" }, { "name": "SCSS", "bytes": "48162" }, { "name": "Shell", "bytes": "191" } ], "symlink_target": "" }
from __future__ import annotations import os import typing as T import xml.etree.ElementTree as ET from .vs2010backend import Vs2010Backend from ..mesonlib import MesonException if T.TYPE_CHECKING: from ..build import Build from ..interpreter import Interpreter class Vs2017Backend(Vs2010Backend): def __init__(self, build: T.Optional[Build], interpreter: T.Optional[Interpreter]): super().__init__(build, interpreter) self.name = 'vs2017' self.vs_version = '2017' self.sln_file_version = '12.00' self.sln_version_comment = '15' # We assume that host == build if self.environment is not None: comps = self.environment.coredata.compilers.host if comps: if comps and all(c.id == 'clang-cl' for c in comps.values()): self.platform_toolset = 'llvm' elif comps and all(c.id == 'intel-cl' for c in comps.values()): c = list(comps.values())[0] if c.version.startswith('19'): self.platform_toolset = 'Intel C++ Compiler 19.0' else: # We don't have support for versions older than 2019 right now. raise MesonException('There is currently no support for ICL before 19, patches welcome.') if self.platform_toolset is None: self.platform_toolset = 'v141' # WindowsSDKVersion should be set by command prompt. sdk_version = os.environ.get('WindowsSDKVersion', None) if sdk_version: self.windows_target_platform_version = sdk_version.rstrip('\\') def generate_debug_information(self, link): # valid values for vs2017 is 'false', 'true', 'DebugFastLink', 'DebugFull' ET.SubElement(link, 'GenerateDebugInformation').text = 'DebugFull' def generate_lang_standard_info(self, file_args, clconf): if 'cpp' in file_args: optargs = [x for x in file_args['cpp'] if x.startswith('/std:c++')] if optargs: ET.SubElement(clconf, 'LanguageStandard').text = optargs[0].replace("/std:c++", "stdcpp") if 'c' in file_args: optargs = [x for x in file_args['c'] if x.startswith('/std:c')] if optargs: ET.SubElement(clconf, 'LanguageStandard_C').text = optargs[0].replace("/std:c", "stdc")
{ "content_hash": "4cf8fe93479276f701113a933823704c", "timestamp": "", "source": "github", "line_count": 54, "max_line_length": 113, "avg_line_length": 44.68518518518518, "alnum_prop": 0.597596353087443, "repo_name": "pexip/meson", "id": "4ed5e483c4b82b26572d9a7e21179fc2e6fcfd38", "size": "3005", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "mesonbuild/backend/vs2017backend.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "4913" }, { "name": "Batchfile", "bytes": "1499" }, { "name": "C", "bytes": "203464" }, { "name": "C#", "bytes": "1130" }, { "name": "C++", "bytes": "59032" }, { "name": "CMake", "bytes": "38429" }, { "name": "Cuda", "bytes": "10592" }, { "name": "Cython", "bytes": "1921" }, { "name": "D", "bytes": "7840" }, { "name": "Fortran", "bytes": "12248" }, { "name": "Genie", "bytes": "476" }, { "name": "HTML", "bytes": "897" }, { "name": "Inno Setup", "bytes": "354" }, { "name": "Java", "bytes": "3768" }, { "name": "JavaScript", "bytes": "150" }, { "name": "LLVM", "bytes": "75" }, { "name": "Lex", "bytes": "219" }, { "name": "Limbo", "bytes": "28" }, { "name": "Meson", "bytes": "595904" }, { "name": "Objective-C", "bytes": "686" }, { "name": "Objective-C++", "bytes": "378" }, { "name": "PowerShell", "bytes": "4748" }, { "name": "Python", "bytes": "4096804" }, { "name": "Roff", "bytes": "625" }, { "name": "Rust", "bytes": "4039" }, { "name": "Shell", "bytes": "12539" }, { "name": "Swift", "bytes": "1152" }, { "name": "Vala", "bytes": "10033" }, { "name": "Verilog", "bytes": "696" }, { "name": "Vim Script", "bytes": "10684" }, { "name": "Yacc", "bytes": "103" } ], "symlink_target": "" }
import os from common import BASE_DIR TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.request' ], }, }, ]
{ "content_hash": "8c14a4e328d9031c830fd0551128eee7", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 70, "avg_line_length": 29.045454545454547, "alnum_prop": 0.543035993740219, "repo_name": "pomahtuk/py-cooking", "id": "2a817af3c871ad6ad4cc29bea705d445bea9e179", "size": "639", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pycooking/proj_settings/templates.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "203" }, { "name": "Python", "bytes": "6676" } ], "symlink_target": "" }
"""Analytic approximation for European option prices using SABR model.""" import enum import tensorflow.compat.v2 as tf @enum.unique class SabrApproximationType(enum.Enum): """Approximation to the SABR model. * `HAGAN`: Using the Hagan approximation [1]. #### References [1] Hagan et al, Managing Smile Risk, Wilmott (2002), 1:84-108 """ HAGAN = 1 @enum.unique class SabrImpliedVolatilityType(enum.Enum): """The implied volality arising from the SABR approximate solution. * `NORMAL`: The volatility for the normal model, i.e. the `sigma_n` for a stochastic model of the underlying `F` behaving like: ``` dF = sigma_n dW ``` * `LOGNORMAL`: The volatility for the lognomal (aka Black) model, i.e. the `sigma_B` for a stochastic model of the underlying `F` behaving like: ``` dF = sigma_b F dW ``` """ NORMAL = 1 LOGNORMAL = 2 def implied_volatility(*, strikes, expiries, forwards, alpha, beta, volvol, rho, shift=0.0, volatility_type=SabrImpliedVolatilityType.LOGNORMAL, approximation_type=SabrApproximationType.HAGAN, dtype=None, name=None): """Computes the implied volatility under the SABR model. The SABR model specifies the risk neutral dynamics of the underlying as the following set of stochastic differential equations: ``` dF = sigma F^beta dW_1 dsigma = volvol sigma dW_2 dW1 dW2 = rho dt F(0) = f sigma(0) = alpha ``` where F(t) represents the value of the forward price as a function of time, and sigma(t) is the volatility. Here, we implement an approximate solution as proposed by Hagan [1], and back out the equivalent implied volatility that would've been obtained under either the normal model or the Black model. #### Example ```python import tf_quant_finance as tff import tensorflow.compat.v2 as tf equiv_vol = tff.models.sabr.approximations.implied_volatility( strikes=np.array([106.0, 11.0]), expiries=np.array([17.0 / 365.0, 400.0 / 365.0]), forwards=np.array([120.0, 20.0]), alpha=1.63, beta=0.6, rho=0.00002, volvol=3.3, dtype=tf.float64) # Expected: [0.33284656705268817, 1.9828728139982792] # Running this inside a unit test passes: # equiv_vol = self.evaluate(equiv_vol) # self.assertAllClose(equiv_vol, 0.33284656705268817) ``` #### References [1] Hagan et al, Managing Smile Risk, Wilmott (2002), 1:84-108 Args: strikes: Real `Tensor` of arbitrary shape, specifying the strike prices. Values must be strictly positive. expiries: Real `Tensor` of shape compatible with that of `strikes`, specifying the corresponding time-to-expiries of the options. Values must be strictly positive. forwards: Real `Tensor` of shape compatible with that of `strikes`, specifying the observed forward prices of the underlying. Values must be strictly positive. alpha: Real `Tensor` of shape compatible with that of `strikes`, specifying the initial values of the stochastic volatility. Values must be strictly positive. beta: Real `Tensor` of shape compatible with that of `strikes`, specifying the model exponent `beta`. Values must satisfy 0 <= `beta` <= 1. volvol: Real `Tensor` of shape compatible with that of `strikes`, specifying the model vol-vol multipliers. Values of `volvol` must be non-negative. rho: Real `Tensor` of shape compatible with that of `strikes`, specifying the correlation factors between the Wiener processes modeling the forward and the volatility. Values must satisfy -1 < `rho` < 1. shift: Optional `Tensor` of shape compatible with that of `strkies`, specifying the shift parameter(s). In the shifted model, the process modeling the forward is modified as: dF = sigma * (F + shift) ^ beta * dW. With this modification, negative forward rates are valid as long as F > -shift. Default value: 0.0 volatility_type: Either SabrImpliedVolatility.NORMAL or LOGNORMAL. Default value: `LOGNORMAL`. approximation_type: Instance of `SabrApproxmationScheme`. Default value: `HAGAN`. dtype: Optional: `tf.DType`. If supplied, the dtype to be used for converting values to `Tensor`s. Default value: `None`, which means that the default dtypes inferred from `strikes` is used. name: str. The name for the ops created by this function. Default value: 'sabr_approx_implied_volatility'. Returns: A real `Tensor` of the same shape as `strikes`, containing the corresponding equivalent implied volatilities. """ name = name or 'sabr_approx_implied_volatility' del approximation_type # Currently, only HAGAN approximation is supported. with tf.name_scope(name): strikes = tf.convert_to_tensor(strikes, dtype=dtype, name='strikes') dtype = dtype or strikes.dtype expiries = tf.convert_to_tensor(expiries, dtype=dtype, name='expiries') forwards = tf.convert_to_tensor(forwards, dtype=dtype, name='forwards') alpha = tf.convert_to_tensor(alpha, dtype=dtype, name='alpha') beta = tf.convert_to_tensor(beta, dtype=dtype, name='beta') rho = tf.convert_to_tensor(rho, dtype=dtype, name='rho') volvol = tf.convert_to_tensor(volvol, dtype=dtype, name='volvol') # Apply the shift. strikes += shift forwards += shift moneyness = forwards / strikes log_moneyness = tf.math.log(moneyness) adj_moneyness = tf.math.pow(moneyness, 1.0 - beta) sqrt_adj_moneyness = tf.math.sqrt(adj_moneyness) # adjusted alpha = alpha * K^(beta - 1) adj_alpha = alpha * tf.math.pow(strikes, beta - 1.0) # Zeta, as defined in (eq. A.69b in [1]) zeta = (volvol / adj_alpha) * sqrt_adj_moneyness * log_moneyness # Zeta / xhat(zeta), as defined in (eq. A.69b in [1]) zeta_by_xhat = _zeta_by_xhat(zeta, rho, dtype) # This is the denominator term occurring in the ((1 + ...) / (1 + ...)) of # (eq. A.69a) in [1]. denom = _denom(beta, log_moneyness) # The correction terms occurring in (1 + {...}) of (eq. A.69a) of [1], where # we have multiplied in the "t_ex" to make the quantities dimensionless. correction_2 = ((rho * beta / 4.0) * (1.0 / sqrt_adj_moneyness) * (adj_alpha * volvol * expiries)) correction_3 = ((2.0 - 3.0 * rho * rho) / 24.0 * (volvol * volvol * expiries)) if volatility_type == SabrImpliedVolatilityType.NORMAL: correction_1 = ((-beta * (2.0 - beta) / 24.0) * (1.0 / adj_moneyness) * (adj_alpha * adj_alpha * expiries)) # This is the denominator term occurring in the ((1 + ...) / (1 + ...)) of # (eq. A.69a) in [1], and is effectively the same as setting beta = 0.0 number = _denom(0.0, log_moneyness) return (adj_alpha * strikes * tf.math.pow(moneyness, beta / 2.0) * (number / denom) * zeta_by_xhat * (1 + correction_1 + correction_2 + correction_3)) elif volatility_type == SabrImpliedVolatilityType.LOGNORMAL: correction_1 = (((1.0 - beta) * (1.0 - beta) / 24.0) * (1.0 / adj_moneyness) * (adj_alpha * adj_alpha * expiries)) return (adj_alpha * (1.0 / sqrt_adj_moneyness) * (1.0 / denom) * zeta_by_xhat * (1.0 + correction_1 + correction_2 + correction_3)) else: raise ValueError('Invalid value of `volatility_type`') def _epsilon(dtype): dtype = tf.as_dtype(dtype).as_numpy_dtype eps = 1e-6 if dtype == tf.float32.as_numpy_dtype else 1e-10 return eps def _zeta_by_xhat(zeta, rho, dtype): zbxh = tf.math.divide_no_nan( zeta, tf.math.log( (tf.math.sqrt(1 - 2 * rho * zeta + zeta * zeta) - rho + zeta) / (1.0 - rho))) eps = _epsilon(dtype) # When zeta -> 0, the limit of zeta / x_hat(zeta) reduces to 1.0 return tf.where(tf.abs(zeta) > eps, zbxh, 1.0) def _denom(beta, log_f_by_k): s = (1.0 - beta) * log_f_by_k s_squared = s * s return 1.0 + s_squared / 24.0 + (s_squared * s_squared) / 1920.0
{ "content_hash": "5e2a83dfb0a08e4cef0e547ae4e26f5c", "timestamp": "", "source": "github", "line_count": 227, "max_line_length": 80, "avg_line_length": 36.87665198237885, "alnum_prop": 0.6312268546171306, "repo_name": "google/tf-quant-finance", "id": "d7eeca917d49fed322d4126c6945c522e5d1f6da", "size": "8946", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tf_quant_finance/models/sabr/approximations/implied_volatility.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "5759" }, { "name": "Jupyter Notebook", "bytes": "1634001" }, { "name": "Python", "bytes": "3661863" }, { "name": "Shell", "bytes": "2338" }, { "name": "Starlark", "bytes": "109192" } ], "symlink_target": "" }
from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from builtins import range, object import json import logging import os import subprocess import sys import time import uuid import proxy.conf import tempfile from configobj import ConfigObj from django.db.models import query, CharField, SmallIntegerField from django.core.management import call_command from django.core.paginator import Paginator from django.db import connection from django.urls import reverse from django.test.client import Client from django.views.static import serve from django.http import HttpResponse from nose.plugins.attrib import attr from nose.plugins.skip import SkipTest from nose.tools import assert_true, assert_false, assert_equal, assert_not_equal, assert_raises, nottest, raises from dashboard.conf import HAS_SQL_ENABLED from desktop.settings import DATABASES from useradmin.models import GroupPermission, User import desktop import desktop.conf import desktop.urls import desktop.redaction as redaction import desktop.views as views from desktop.auth.backend import rewrite_user from desktop.appmanager import DESKTOP_APPS from desktop.lib.django_test_util import make_logged_in_client from desktop.lib.conf import validate_path from desktop.lib.django_util import TruncatingModel from desktop.lib.exceptions_renderable import PopupException from desktop.lib.conf import _configs_from_dir from desktop.lib.paths import get_desktop_root from desktop.lib.python_util import force_dict_to_strings from desktop.lib.test_utils import grant_access from desktop.middleware import DJANGO_VIEW_AUTH_WHITELIST from desktop.models import Directory, Document, Document2, get_data_link, _version_from_properties, ClusterConfig, HUE_VERSION from desktop.redaction import logfilter from desktop.redaction.engine import RedactionPolicy, RedactionRule from desktop.views import check_config, home, generate_configspec, load_confs, collect_validation_messages, _get_config_errors if sys.version_info[0] > 2: from io import StringIO as string_io from unittest.mock import patch, Mock from django.urls import re_path else: from cStringIO import StringIO as string_io from mock import patch, Mock from django.conf.urls import url as re_path LOG = logging.getLogger(__name__) def test_home(): c = make_logged_in_client(username="test_home", groupname="test_home", recreate=True, is_superuser=False) user = User.objects.get(username="test_home") response = c.get(reverse(home)) assert_equal(sorted(["notmine", "trash", "mine", "history"]), sorted(list(json.loads(response.context[0]['json_tags']).keys()))) assert_equal(200, response.status_code) from pig.models import PigScript script, created = PigScript.objects.get_or_create(owner=user) doc = Document.objects.link(script, owner=script.owner, name='test_home') response = c.get(reverse(home)) assert_true(str(doc.id) in json.loads(response.context[0]['json_documents'])) response = c.get(reverse(home)) tags = json.loads(response.context[0]['json_tags']) assert_equal([doc.id], tags['mine'][0]['docs'], tags) assert_equal([], tags['trash']['docs'], tags) assert_equal([], tags['history']['docs'], tags) doc.send_to_trash() response = c.get(reverse(home)) tags = json.loads(response.context[0]['json_tags']) assert_equal([], tags['mine'][0]['docs'], tags) assert_equal([doc.id], tags['trash']['docs'], tags) assert_equal([], tags['history']['docs'], tags) doc.restore_from_trash() response = c.get(reverse(home)) tags = json.loads(response.context[0]['json_tags']) assert_equal([doc.id], tags['mine'][0]['docs'], tags) assert_equal([], tags['trash']['docs'], tags) assert_equal([], tags['history']['docs'], tags) doc.add_to_history() response = c.get(reverse(home)) tags = json.loads(response.context[0]['json_tags']) assert_equal([], tags['mine'][0]['docs'], tags) assert_equal([], tags['trash']['docs'], tags) assert_equal([], tags['history']['docs'], tags) # We currently don't fetch [doc.id] def test_skip_wizard(): c = make_logged_in_client() # is_superuser response = c.get('/', follow=True) assert_true( ['admin_wizard.mako' in _template.filename for _template in response.templates], [_template.filename for _template in response.templates] ) c.cookies['hueLandingPage'] = 'home' response = c.get('/', follow=True) assert_true( ['home.mako' in _template.filename for _template in response.templates], [_template.filename for _template in response.templates] ) c.cookies['hueLandingPage'] = '' response = c.get('/', follow=True) assert_true( ['admin_wizard.mako' in _template.filename for _template in response.templates], [_template.filename for _template in response.templates] ) c = make_logged_in_client(username="test_skip_wizard", password="test_skip_wizard", is_superuser=False) response = c.get('/', follow=True) assert_true( ['home.mako' in _template.filename for _template in response.templates], [_template.filename for _template in response.templates] ) c.cookies['hueLandingPage'] = 'home' response = c.get('/', follow=True) assert_true( ['home.mako' in _template.filename for _template in response.templates], [_template.filename for _template in response.templates] ) c.cookies['hueLandingPage'] = '' response = c.get('/', follow=True) assert_true( ['home.mako' in _template.filename for _template in response.templates], [_template.filename for _template in response.templates] ) def test_public_views(): c = Client() for view in DJANGO_VIEW_AUTH_WHITELIST: if view is serve: url = reverse(view, kwargs={'path': 'desktop/art/favicon.ico'}) else: url = reverse(view) response = c.get(url) assert_equal(200, response.status_code) def test_prometheus_view(): if not desktop.conf.ENABLE_PROMETHEUS.get(): raise SkipTest ALL_PROMETHEUS_METRICS = [ 'django_http_requests_before_middlewares_total', 'django_http_responses_before_middlewares_total', 'django_http_requests_latency_including_middlewares_seconds', 'django_http_requests_unknown_latency_including_middlewares_total', 'django_http_requests_latency_seconds_by_view_method', 'django_http_requests_unknown_latency_total', 'django_http_ajax_requests_total', 'django_http_requests_total_by_method', 'django_http_requests_total_by_transport', 'django_http_requests_total_by_view_transport_method', 'django_http_requests_body_total_bytes', 'django_http_responses_total_by_templatename', 'django_http_responses_total_by_status', 'django_http_responses_body_total_bytes', 'django_http_responses_total_by_charset', 'django_http_responses_streaming_total', 'django_http_exceptions_total_by_type', 'django_http_exceptions_total_by_view', ] c = Client() response = c.get('/metrics') for metric in ALL_PROMETHEUS_METRICS: metric = metric if isinstance(metric, bytes) else metric.encode('utf-8') if metric not in desktop.metrics.ALLOWED_DJANGO_PROMETHEUS_METRICS: assert_false(metric in response.content, 'metric: %s \n %s' % (metric, response.content)) else: assert_true(metric in response.content, 'metric: %s \n %s' % (metric, response.content)) def test_log_view(): c = make_logged_in_client() URL = reverse(views.log_view) LOG = logging.getLogger(__name__) LOG.warning('une voix m’a réveillé') # UnicodeDecodeError: 'ascii' codec can't decode byte... should not happen response = c.get(URL) assert_equal(200, response.status_code) c = make_logged_in_client() URL = reverse(views.log_view) LOG = logging.getLogger(__name__) LOG.warning('Got response: PK\x03\x04\n\x00\x00\x08\x00\x00\xad\x0cN?\x00\x00\x00\x00') # DjangoUnicodeDecodeError: 'utf8' codec can't decode byte 0xad in position 75: invalid start byte... should not happen response = c.get(URL) assert_equal(200, response.status_code) def test_download_log_view(): c = make_logged_in_client() URL = reverse(views.download_log_view) LOG = logging.getLogger(__name__) LOG.warning(u'une voix m’a réveillé') # UnicodeDecodeError: 'ascii' codec can't decode byte... should not happen response = c.get(URL) assert_equal("application/zip", response.get('Content-Type', '')) def hue_version(): global HUE_VERSION HUE_VERSION_BAK = HUE_VERSION try: assert_equal('cdh6.x-SNAPSHOT', _version_from_properties(string_io( """# Autogenerated build properties version=3.9.0-cdh5.9.0-SNAPSHOT git.hash=f5fbe90b6a1d0c186b0ddc6e65ce5fc8d24725c8 cloudera.cdh.release=cdh6.x-SNAPSHOT cloudera.hash=f5fbe90b6a1d0c186b0ddc6e65ce5fc8d24725c8aaaaa""")) ) assert_false(_version_from_properties(string_io( """# Autogenerated build properties version=3.9.0-cdh5.9.0-SNAPSHOT git.hash=f5fbe90b6a1d0c186b0ddc6e65ce5fc8d24725c8 cloudera.hash=f5fbe90b6a1d0c186b0ddc6e65ce5fc8d24725c8aaaaa""")) ) assert_false(_version_from_properties(string_io(''))) finally: HUE_VERSION = HUE_VERSION_BAK def test_prefs(): c = make_logged_in_client() # Get everything response = c.get('/desktop/api2/user_preferences/') assert_equal({}, json.loads(response.content)['data']) # Set and get response = c.post('/desktop/api2/user_preferences/foo', {'set': 'bar'}) assert_equal('bar', json.loads(response.content)['data']['foo']) response = c.get('/desktop/api2/user_preferences/') assert_equal('bar', json.loads(response.content)['data']['foo']) # Reset (use post this time) c.post('/desktop/api2/user_preferences/foo', {'set': 'baz'}) response = c.get('/desktop/api2/user_preferences/foo') assert_equal('baz', json.loads(response.content)['data']['foo']) # Check multiple values c.post('/desktop/api2/user_preferences/elephant', {'set': 'room'}) response = c.get('/desktop/api2/user_preferences/') assert_true("baz" in list(json.loads(response.content)['data'].values()), response.content) assert_true("room" in list(json.loads(response.content)['data'].values()), response.content) # Delete everything c.post('/desktop/api2/user_preferences/elephant', {'delete': ''}) c.post('/desktop/api2/user_preferences/foo', {'delete': ''}) response = c.get('/desktop/api2/user_preferences/') assert_equal({}, json.loads(response.content)['data']) # Check non-existent value response = c.get('/desktop/api2/user_preferences/doesNotExist') assert_equal(None, json.loads(response.content)['data']) def test_status_bar(): """ Subs out the status_bar_views registry with temporary examples. Tests handling of errors on view functions. """ backup = views._status_bar_views views._status_bar_views = [] c = make_logged_in_client() views.register_status_bar_view(lambda _: HttpResponse("foo", status=200)) views.register_status_bar_view(lambda _: HttpResponse("bar")) views.register_status_bar_view(lambda _: None) def f(r): raise Exception() views.register_status_bar_view(f) response = c.get("/desktop/status_bar") assert_equal(b"foobar", response.content) views._status_bar_views = backup def test_paginator(): """ Test that the paginator works with partial list. """ def assert_page(page, data, start, end): assert_equal(page.object_list, data) assert_equal(page.start_index(), start) assert_equal(page.end_index(), end) # First page 1-20 obj = list(range(20)) pgn = Paginator(obj, per_page=20) assert_page(pgn.page(1), obj, 1, 20) # Handle extra data on first page (22 items on a 20-page) obj = list(range(22)) pgn = Paginator(obj, per_page=20) assert_page(pgn.page(1), list(range(20)), 1, 20) # Handle total < len(obj). Only works for QuerySet. obj = query.QuerySet() obj._result_cache = list(range(10)) pgn = Paginator(obj, per_page=10) assert_page(pgn.page(1), list(range(10)), 1, 10) # Still works with a normal complete list obj = list(range(25)) pgn = Paginator(obj, per_page=20) assert_page(pgn.page(1), list(range(20)), 1, 20) assert_page(pgn.page(2), list(range(20, 25)), 21, 25) def test_thread_dump(): c = make_logged_in_client() response = c.get("/desktop/debug/threads", HTTP_X_REQUESTED_WITH='XMLHttpRequest') assert_true(b"test_thread_dump" in response.content) def test_truncating_model(): class TinyModel(TruncatingModel): short_field = CharField(max_length=10) non_string_field = SmallIntegerField() a = TinyModel() a.short_field = 'a' * 9 # One less than it's max length assert_true(a.short_field == 'a' * 9, 'Short-enough field does not get truncated') a.short_field = 'a' * 11 # One more than it's max_length assert_true(a.short_field == 'a' * 10, 'Too-long field gets truncated') a.non_string_field = 10**10 assert_true(a.non_string_field == 10**10, 'non-string fields are not truncated') def test_error_handling(): raise SkipTest restore_django_debug = desktop.conf.DJANGO_DEBUG_MODE.set_for_testing(False) restore_500_debug = desktop.conf.HTTP_500_DEBUG_MODE.set_for_testing(False) exc_msg = "error_raising_view: Test earráid handling" def error_raising_view(request, *args, **kwargs): raise Exception(exc_msg) def popup_exception_view(request, *args, **kwargs): raise PopupException(exc_msg, title="earráid", detail=exc_msg) # Add an error view error_url_pat = [ re_path('^500_internal_error$', error_raising_view), re_path('^popup_exception$', popup_exception_view) ] desktop.urls.urlpatterns.extend(error_url_pat) try: def store_exc_info(*args, **kwargs): pass # Disable the test client's exception forwarding c = make_logged_in_client() c.store_exc_info = store_exc_info response = c.get('/500_internal_error') assert_true(any(["500.mako" in _template.filename for _template in response.templates])) assert_true('Thank you for your patience' in response.content) assert_true(exc_msg not in response.content) # Now test the 500 handler with backtrace desktop.conf.HTTP_500_DEBUG_MODE.set_for_testing(True) response = c.get('/500_internal_error') assert_equal(response.template.name, 'Technical 500 template') assert_true(exc_msg in response.content) # PopupException response = c.get('/popup_exception') assert_true(any(["popup_error.mako" in _template.filename for _template in response.templates])) assert_true(exc_msg in response.content) finally: # Restore the world for i in error_url_pat: desktop.urls.urlpatterns.remove(i) restore_django_debug() restore_500_debug() def test_desktop_permissions(): USERNAME = 'test_core_permissions' GROUPNAME = 'default' desktop.conf.REDIRECT_WHITELIST.set_for_testing('^\/.*$,^http:\/\/testserver\/.*$') c = make_logged_in_client(USERNAME, groupname=GROUPNAME, recreate=True, is_superuser=False) # Access to the basic works assert_equal(200, c.get('/hue/accounts/login/', follow=True).status_code) assert_equal(200, c.get('/accounts/logout', follow=True).status_code) assert_equal(200, c.get('/home', follow=True).status_code) def test_app_permissions(): USERNAME = 'test_app_permissions' GROUPNAME = 'impala_only' resets = [ desktop.conf.REDIRECT_WHITELIST.set_for_testing('^\/.*$,^http:\/\/testserver\/.*$'), HAS_SQL_ENABLED.set_for_testing(False) ] try: c = make_logged_in_client(USERNAME, groupname=GROUPNAME, recreate=True, is_superuser=False) user = rewrite_user(User.objects.get(username=USERNAME)) # Reset all perms GroupPermission.objects.filter(group__name=GROUPNAME).delete() def check_app(status_code, app_name): if app_name in DESKTOP_APPS: assert_equal( status_code, c.get('/' + app_name, follow=True).status_code, 'status_code=%s app_name=%s' % (status_code, app_name)) # Access to nothing check_app(401, 'beeswax') check_app(401, 'hive') check_app(401, 'impala') check_app(401, 'hbase') check_app(401, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(401, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_false('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('browser' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('dashboard' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('sdkapps' in apps, apps) # Should always be enabled as it is a lib grant_access(USERNAME, GROUPNAME, "beeswax") # Add access to hive grant_access(USERNAME, GROUPNAME, "hive") check_app(200, 'beeswax') check_app(200, 'hive') check_app(401, 'impala') check_app(401, 'hbase') check_app(401, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(401, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_true('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('browser' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('dashboard' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('sdkapps' in apps, apps) # Add access to hbase grant_access(USERNAME, GROUPNAME, "hbase") check_app(200, 'beeswax') check_app(200, 'hive') check_app(401, 'impala') check_app(200, 'hbase') check_app(401, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(401, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_true('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) if 'hbase' not in desktop.conf.APP_BLACKLIST.get(): assert_true('browser' in apps, apps) assert_true('hbase' in apps['browser']['interpreter_names'], apps['browser']) assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('scheduler' in apps, apps) assert_false('dashboard' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('sdkapps' in apps, apps) # Reset all perms GroupPermission.objects.filter(group__name=GROUPNAME).delete() check_app(401, 'beeswax') check_app(401, 'impala') check_app(401, 'hbase') check_app(401, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(401, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_false('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('browser' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('dashboard' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('sdkapps' in apps, apps) # Test only impala perm grant_access(USERNAME, GROUPNAME, "impala") check_app(401, 'beeswax') check_app(200, 'impala') check_app(401, 'hbase') check_app(401, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(401, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_false('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('browser' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('dashboard' in apps, apps) assert_false('scheduler' in apps, apps) assert_false('sdkapps' in apps, apps) # Oozie Editor and Browser grant_access(USERNAME, GROUPNAME, "oozie") check_app(401, 'hive') check_app(200, 'impala') check_app(401, 'hbase') check_app(401, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(200, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_true('scheduler' in apps, apps) assert_false('browser' in apps, apps) # Actually should be true, but logic not implemented assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) grant_access(USERNAME, GROUPNAME, "pig") check_app(401, 'hive') check_app(200, 'impala') check_app(401, 'hbase') check_app(200, 'pig') check_app(401, 'search') check_app(401, 'spark') check_app(200, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_false('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) if 'search' not in desktop.conf.APP_BLACKLIST.get(): grant_access(USERNAME, GROUPNAME, "search") check_app(401, 'hive') check_app(200, 'impala') check_app(401, 'hbase') check_app(200, 'pig') check_app(200, 'search') check_app(401, 'spark') check_app(200, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_false('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_false('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) if 'spark' not in desktop.conf.APP_BLACKLIST.get(): grant_access(USERNAME, GROUPNAME, "spark") check_app(401, 'hive') check_app(200, 'impala') check_app(401, 'hbase') check_app(200, 'pig') check_app(200, 'search') check_app(200, 'spark') check_app(200, 'oozie') apps = ClusterConfig(user=user).get_apps() assert_false('hive' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('impala' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('pig' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('solr' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('spark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('pyspark' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('r' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('jar' in apps.get('editor', {}).get('interpreter_names', []), apps) assert_true('py' in apps.get('editor', {}).get('interpreter_names', []), apps) finally: for f in resets: f() def test_error_handling_failure(): # Change rewrite_user to call has_hue_permission # Try to get filebrowser page # test for default 500 page # Restore rewrite_user import desktop.auth.backend c = make_logged_in_client() restore_django_debug = desktop.conf.DJANGO_DEBUG_MODE.set_for_testing(False) restore_500_debug = desktop.conf.HTTP_500_DEBUG_MODE.set_for_testing(False) original_rewrite_user = desktop.auth.backend.rewrite_user def rewrite_user(user): user = original_rewrite_user(user) delattr(user, 'has_hue_permission') return user original_rewrite_user = desktop.auth.backend.rewrite_user desktop.auth.backend.rewrite_user = rewrite_user try: # Make sure we are showing default 500.html page. # See django.test.client#L246 assert_raises(AttributeError, c.get, reverse('desktop.views.threads')) finally: # Restore the world restore_django_debug() restore_500_debug() desktop.auth.backend.rewrite_user = original_rewrite_user def test_404_handling(): view_name = '/the-view-that-is-not-there' c = make_logged_in_client() response = c.get(view_name) assert_true(any(['404.mako' in _template.filename for _template in response.templates]), response.templates) assert_true(b'not found' in response.content) if not isinstance(view_name, bytes): view_name = view_name.encode('utf-8') assert_true(view_name in response.content) class RecordingHandler(logging.Handler): def __init__(self, *args, **kwargs): logging.Handler.__init__(self, *args, **kwargs) self.records = [] def emit(self, r): self.records.append(r) def test_log_event(): c = make_logged_in_client() root = logging.getLogger("desktop.views.log_frontend_event") handler = RecordingHandler() root.addHandler(handler) c.get("/desktop/log_frontend_event?level=info&message=foo") assert_equal("INFO", handler.records[-1].levelname) assert_equal("Untrusted log event from user test: foo", handler.records[-1].message) assert_equal("desktop.views.log_frontend_event", handler.records[-1].name) c.get("/desktop/log_frontend_event?level=error&message=foo2") assert_equal("ERROR", handler.records[-1].levelname) assert_equal("Untrusted log event from user test: foo2", handler.records[-1].message) c.get("/desktop/log_frontend_event?message=foo3") assert_equal("INFO", handler.records[-1].levelname) assert_equal("Untrusted log event from user test: foo3", handler.records[-1].message) c.post("/desktop/log_frontend_event", { "message": "01234567" * 1024}) assert_equal("INFO", handler.records[-1].levelname) assert_equal("Untrusted log event from user test: ", handler.records[-1].message) root.removeHandler(handler) def test_validate_path(): with tempfile.NamedTemporaryFile() as local_file: reset = desktop.conf.SSL_PRIVATE_KEY.set_for_testing(local_file.name) assert_equal([], validate_path(desktop.conf.SSL_PRIVATE_KEY, is_dir=False)) reset() try: reset = desktop.conf.SSL_PRIVATE_KEY.set_for_testing('/tmm/does_not_exist') assert_not_equal([], validate_path(desktop.conf.SSL_PRIVATE_KEY, is_dir=True)) assert_true(False) except Exception as ex: assert_true('does not exist' in str(ex), ex) finally: reset() @attr('integration') @attr('requires_hadoop') def test_config_check(): with tempfile.NamedTemporaryFile() as cert_file: with tempfile.NamedTemporaryFile() as key_file: reset = ( desktop.conf.SECRET_KEY.set_for_testing(''), desktop.conf.SECRET_KEY_SCRIPT.set_for_testing(present=False), desktop.conf.SSL_CERTIFICATE.set_for_testing(cert_file.name), desktop.conf.SSL_PRIVATE_KEY.set_for_testing(key_file.name), desktop.conf.DEFAULT_SITE_ENCODING.set_for_testing('klingon') ) cli = make_logged_in_client() try: resp = cli.get('/desktop/debug/check_config') assert_true('Secret key should be configured' in resp.content, resp) assert_true('klingon' in resp.content, resp) assert_true('Encoding not supported' in resp.content, resp) finally: for old_conf in reset: old_conf() prev_env_conf = os.environ.get("HUE_CONF_DIR") try: # Set HUE_CONF_DIR and make sure check_config returns appropriate conf os.environ["HUE_CONF_DIR"] = "/tmp/test_hue_conf_dir" def validate_by_spec(error_list): pass # Monkey patch as this will fail as the conf dir doesn't exist if not hasattr(desktop.views, 'real_validate_by_spec'): desktop.views.real_validate_by_spec = desktop.views.validate_by_spec desktop.views.validate_by_spec = validate_by_spec resp = cli.get('/desktop/debug/check_config') assert_true('/tmp/test_hue_conf_dir' in resp.content, resp) finally: if prev_env_conf is None: os.environ.pop("HUE_CONF_DIR", None) else: os.environ["HUE_CONF_DIR"] = prev_env_conf desktop.views.validate_by_spec = desktop.views.real_validate_by_spec def test_last_access_time(): raise SkipTest c = make_logged_in_client(username="access_test") c.post('/hue/accounts/login/') login = desktop.auth.views.get_current_users() before_access_time = time.time() response = c.get('/home') after_access_time = time.time() access = desktop.auth.views.get_current_users() user = response.context[0]['user'] login_time = login[user]['time'] access_time = access[user]['time'] # Check that 'last_access_time' is later than login time assert_true(login_time < access_time) # Check that 'last_access_time' is in between the timestamps before and after the last access path assert_true(before_access_time < access_time) assert_true(access_time < after_access_time) def test_ui_customizations(): if desktop.conf.is_lb_enabled(): # Assumed that live cluster connects to direct Hue custom_message = 'You are accessing a non-optimized Hue, please switch to one of the available addresses' else: custom_message = 'test ui customization' reset = ( desktop.conf.CUSTOM.BANNER_TOP_HTML.set_for_testing(custom_message), desktop.conf.CUSTOM.LOGIN_SPLASH_HTML.set_for_testing(custom_message), ) try: c = make_logged_in_client() c.logout() if not isinstance(custom_message, bytes): custom_message = custom_message.encode('utf-8') resp = c.get('/hue/accounts/login/', follow=False) assert_true(custom_message in resp.content, resp) resp = c.get('/hue/about', follow=True) assert_true(custom_message in resp.content, resp) finally: for old_conf in reset: old_conf() @attr('integration') @attr('requires_hadoop') def test_check_config_ajax(): c = make_logged_in_client() response = c.get(reverse(check_config)) assert_true("misconfiguration" in response.content, response.content) def test_cx_Oracle(): """ Tests that cx_Oracle (external dependency) is built correctly. """ if 'ORACLE_HOME' not in os.environ and 'ORACLE_INSTANTCLIENT_HOME' not in os.environ: raise SkipTest try: import cx_Oracle return except ImportError as ex: if "No module named" in ex.message: assert_true(False, "cx_Oracle skipped its build. This happens if " "env var ORACLE_HOME or ORACLE_INSTANTCLIENT_HOME is not defined. " "So ignore this test failure if your build does not need to work " "with an oracle backend.") class TestStrictRedirection(object): def setUp(self): self.finish = desktop.conf.AUTH.BACKEND.set_for_testing(['desktop.auth.backend.AllowFirstUserDjangoBackend']) self.client = make_logged_in_client() self.user = dict(username="test", password="test") desktop.conf.REDIRECT_WHITELIST.set_for_testing('^\/.*$,^http:\/\/example.com\/.*$') def tearDown(self): self.finish() def test_redirection_blocked(self): # Redirection with code 301 should be handled properly # Redirection with Status code 301 example reference: http://www.somacon.com/p145.php self._test_redirection(redirection_url='http://www.somacon.com/color/html_css_table_border_styles.php', expected_status_code=403) # Redirection with code 302 should be handled properly self._test_redirection(redirection_url='http://www.google.com', expected_status_code=403) def test_redirection_allowed(self): # Redirection to the host where Hue is running should be OK. self._test_redirection(redirection_url='/', expected_status_code=302) self._test_redirection(redirection_url='/pig', expected_status_code=302) self._test_redirection(redirection_url='http://testserver/', expected_status_code=302) self._test_redirection(redirection_url='https://testserver/', expected_status_code=302, **{ 'SERVER_PORT': '443', 'wsgi.url_scheme': 'https', }) self._test_redirection(redirection_url='http://example.com/', expected_status_code=302) def _test_redirection(self, redirection_url, expected_status_code, **kwargs): data = self.user.copy() data['next'] = redirection_url response = self.client.post('/hue/accounts/login/', data, **kwargs) assert_equal(expected_status_code, response.status_code) if expected_status_code == 403: error_msg = 'Redirect to ' + redirection_url + ' is not allowed.' if not isinstance(error_msg, bytes): error_msg = error_msg.encode('utf-8') assert_true(error_msg in response.content, response.content) class BaseTestPasswordConfig(object): SCRIPT = '%s -c "print(\'\\n password from script \\n\')"' % sys.executable def get_config_password(self): raise NotImplementedError def get_config_password_script(self): raise NotImplementedError def get_password(self): raise NotImplementedError def test_read_password_from_script(self): self._run_test_read_password_from_script_with(present=False) self._run_test_read_password_from_script_with(data=None) self._run_test_read_password_from_script_with(data='') def _run_test_read_password_from_script_with(self, **kwargs): resets = [ self.get_config_password().set_for_testing(**kwargs), self.get_config_password_script().set_for_testing(self.SCRIPT), ] try: assert_equal(self.get_password(), ' password from script ', 'pwd: %s, kwargs: %s' % (self.get_password(), kwargs)) finally: for reset in resets: reset() def test_config_password_overrides_script_password(self): resets = [ self.get_config_password().set_for_testing(' password from config '), self.get_config_password_script().set_for_testing(self.SCRIPT), ] try: assert_equal(self.get_password(), ' password from config ') finally: for reset in resets: reset() def test_password_script_raises_exception(self): resets = [ self.get_config_password().set_for_testing(present=False), self.get_config_password_script().set_for_testing( '%s -c "import sys; sys.exit(1)"' % sys.executable ), ] try: assert_raises(subprocess.CalledProcessError, self.get_password) finally: for reset in resets: reset() resets = [ self.get_config_password().set_for_testing(present=False), self.get_config_password_script().set_for_testing('/does-not-exist'), ] try: assert_raises(subprocess.CalledProcessError, self.get_password) finally: for reset in resets: reset() class TestSecretKeyConfig(BaseTestPasswordConfig): def get_config_password(self): return desktop.conf.SECRET_KEY def get_config_password_script(self): return desktop.conf.SECRET_KEY_SCRIPT def get_password(self): return desktop.conf.get_secret_key() class TestDatabasePasswordConfig(BaseTestPasswordConfig): def get_config_password(self): return desktop.conf.DATABASE.PASSWORD def get_config_password_script(self): return desktop.conf.DATABASE.PASSWORD_SCRIPT def get_password(self): return desktop.conf.get_database_password() class TestLDAPPasswordConfig(BaseTestPasswordConfig): def get_config_password(self): return desktop.conf.AUTH_PASSWORD def get_config_password_script(self): return desktop.conf.AUTH_PASSWORD_SCRIPT def get_password(self): # We are using dynamic_default now, so we need to cheat for the tests as only using set_for_testing(present=False) will trigger it. if desktop.conf.AUTH_PASSWORD.get(): return desktop.conf.AUTH_PASSWORD.get() else: return self.get_config_password_script().get() class TestLDAPBindPasswordConfig(BaseTestPasswordConfig): def setup(self): self.finish = desktop.conf.LDAP.LDAP_SERVERS.set_for_testing({'test': {}}) def teardown(self): self.finish() def get_config_password(self): return desktop.conf.LDAP.LDAP_SERVERS['test'].BIND_PASSWORD def get_config_password_script(self): return desktop.conf.LDAP.LDAP_SERVERS['test'].BIND_PASSWORD_SCRIPT def get_password(self): return desktop.conf.get_ldap_bind_password(desktop.conf.LDAP.LDAP_SERVERS['test']) class TestSMTPPasswordConfig(BaseTestPasswordConfig): def get_config_password(self): return desktop.conf.SMTP.PASSWORD def get_config_password_script(self): return desktop.conf.SMTP.PASSWORD_SCRIPT def get_password(self): return desktop.conf.get_smtp_password() class TestDocument(object): def setUp(self): make_logged_in_client(username="original_owner", groupname="test_doc", recreate=True, is_superuser=False) self.user = User.objects.get(username="original_owner") make_logged_in_client(username="copy_owner", groupname="test_doc", recreate=True, is_superuser=False) self.copy_user = User.objects.get(username="copy_owner") self.document2 = Document2.objects.create( name='Test Document2', type='search-dashboard', owner=self.user, description='Test Document2' ) self.document = Document.objects.link( content_object=self.document2, owner=self.user, name='Test Document', description='Test Document', extra='test' ) self.document.save() self.document2.doc.add(self.document) def tearDown(self): # Get any Doc2 objects that were created and delete them, Doc1 child objects will be deleted in turn test_docs = Document2.objects.filter(name__contains='Test Document2') test_docs.delete() def test_document_create(self): assert_true(Document2.objects.filter(name='Test Document2').exists()) assert_true(Document.objects.filter(name='Test Document').exists()) assert_equal(Document2.objects.get(name='Test Document2').id, self.document2.id) assert_equal(Document.objects.get(name='Test Document').id, self.document.id) def test_document_trashed_and_restore(self): home_dir = Directory.objects.get_home_directory(self.user) test_dir, created = Directory.objects.get_or_create( parent_directory=home_dir, owner=self.user, name='test_dir' ) test_doc = Document2.objects.create( name='Test Document2', type='search-dashboard', owner=self.user, description='Test Document2', parent_directory=test_dir ) child_dir, created = Directory.objects.get_or_create( parent_directory=test_dir, owner=self.user, name='child_dir' ) test_doc1 = Document2.objects.create( name='Test Document2', type='search-dashboard', owner=self.user, description='Test Document2', parent_directory=child_dir ) assert_false(test_dir.is_trashed) assert_false(test_doc.is_trashed) assert_false(child_dir.is_trashed) assert_false(test_doc1.is_trashed) try: test_dir.trash() test_dir = Document2.objects.get(id=test_dir.id) test_doc = Document2.objects.get(id=test_doc.id) child_dir = Document2.objects.get(id=child_dir.id) test_doc1 = Document2.objects.get(id=test_doc1.id) assert_true(test_doc.is_trashed) assert_true(test_dir.is_trashed) assert_true(child_dir.is_trashed) assert_true(test_doc1.is_trashed) # Test restore test_dir.restore() test_dir = Document2.objects.get(id=test_dir.id) test_doc = Document2.objects.get(id=test_doc.id) child_dir = Document2.objects.get(id=child_dir.id) test_doc1 = Document2.objects.get(id=test_doc1.id) assert_false(test_doc.is_trashed) assert_false(test_dir.is_trashed) assert_false(child_dir.is_trashed) assert_false(test_doc1.is_trashed) finally: test_doc.delete() test_dir.delete() test_doc1.delete() child_dir.delete() def test_multiple_home_directories(self): home_dir = Directory.objects.get_home_directory(self.user) test_doc1 = Document2.objects.create( name='test-doc1', type='query-hive', owner=self.user, description='', parent_directory=home_dir ) assert_equal(home_dir.children.exclude(name__in=['.Trash', 'Gist']).count(), 2) # Cannot create second home directory directly as it will fail in Document2.validate() second_home_dir = Document2.objects.create(owner=self.user, parent_directory=None, name='second_home_dir', type='directory') Document2.objects.filter(name='second_home_dir').update(name=Document2.HOME_DIR, parent_directory=None) assert_equal(Document2.objects.filter(owner=self.user, name=Document2.HOME_DIR).count(), 2) test_doc2 = Document2.objects.create( name='test-doc2', type='query-hive', owner=self.user, description='', parent_directory=second_home_dir ) assert_equal(second_home_dir.children.count(), 1) merged_home_dir = Directory.objects.get_home_directory(self.user) children = merged_home_dir.children.all() assert_equal(children.exclude(name__in=['.Trash', 'Gist']).count(), 3) children_names = [child.name for child in children] assert_true(test_doc2.name in children_names) assert_true(test_doc1.name in children_names) def test_multiple_trash_directories(self): home_dir = Directory.objects.get_home_directory(self.user) test_doc1 = Document2.objects.create( name='test-doc1', type='query-hive', owner=self.user, description='', parent_directory=home_dir ) assert_equal(home_dir.children.count(), 3) # Cannot create second trash directory directly as it will fail in Document2.validate() Document2.objects.create(owner=self.user, parent_directory=home_dir, name='second_trash_dir', type='directory') Document2.objects.filter(name='second_trash_dir').update(name=Document2.TRASH_DIR) assert_equal(Directory.objects.filter(owner=self.user, name=Document2.TRASH_DIR).count(), 2) test_doc2 = Document2.objects.create( name='test-doc2', type='query-hive', owner=self.user, description='', parent_directory=home_dir ) assert_equal(home_dir.children.count(), 5) # Including the second trash assert_raises(Document2.MultipleObjectsReturned, Directory.objects.get, name=Document2.TRASH_DIR) test_doc1.trash() assert_equal(home_dir.children.count(), 3) # As trash documents are merged count is back to 3 merged_trash_dir = Directory.objects.get(name=Document2.TRASH_DIR, owner=self.user) test_doc2.trash() children = merged_trash_dir.children.all() assert_equal(children.count(), 2) children_names = [child.name for child in children] assert_true(test_doc2.name in children_names) assert_true(test_doc1.name in children_names) def test_document_copy(self): raise SkipTest name = 'Test Document2 Copy' self.doc2_count = Document2.objects.count() self.doc1_count = Document.objects.count() doc2 = self.document2.copy(name=name, owner=self.copy_user, description=self.document2.description) doc = self.document.copy(doc2, name=name, owner=self.copy_user, description=self.document2.description) # Test that copying creates another object assert_equal(Document2.objects.count(), self.doc2_count + 1) assert_equal(Document.objects.count(), self.doc1_count) # Test that the content object is not pointing to the same object assert_not_equal(self.document2.doc, doc2.doc) # Test that the owner is attributed to the new user assert_equal(doc2.owner, self.copy_user) # Test that copying enables attribute overrides assert_equal(Document2.objects.filter(name=name).count(), 1) assert_equal(doc2.description, self.document2.description) # Test that the content object is not pointing to the same object assert_not_equal(self.document.content_object, doc.content_object) # Test that the owner is attributed to the new user assert_equal(doc.owner, self.copy_user) # Test that copying enables attribute overrides assert_equal(Document.objects.filter(name=name).count(), 1) assert_equal(doc.description, self.document.description) def test_redact_statements(self): old_policies = redaction.global_redaction_engine.policies redaction.global_redaction_engine.policies = [ RedactionPolicy([ RedactionRule('', 'ssn=\d{3}-\d{2}-\d{4}', 'ssn=XXX-XX-XXXX'), ]) ] logfilter.add_log_redaction_filter_to_logger(redaction.global_redaction_engine, logging.root) sensitive_query = 'SELECT "ssn=123-45-6789"' redacted_query = 'SELECT "ssn=XXX-XX-XXXX"' nonsensitive_query = 'SELECT "hello"' snippets = [ { 'status': 'ready', 'viewSettings': { 'sqlDialect': True, 'snippetImage': '/static/beeswax/art/icon_beeswax_48.png', 'placeHolder': 'Example: SELECT * FROM tablename, or press CTRL + space', 'aceMode': 'ace/mode/hive' }, 'id': '10a29cda-063f-1439-4836-d0c460154075', 'statement_raw': sensitive_query, 'statement': sensitive_query, 'type': 'hive' }, { 'status': 'ready', 'viewSettings': { 'sqlDialect': True, 'snippetImage': '/static/impala/art/icon_impala_48.png', 'placeHolder': 'Example: SELECT * FROM tablename, or press CTRL + space', 'aceMode': 'ace/mode/impala' }, 'id': 'e17d195a-beb5-76bf-7489-a9896eeda67a', 'statement_raw': sensitive_query, 'statement': sensitive_query, 'type': 'impala' }, { 'status': 'ready', 'viewSettings': { 'sqlDialect': True, 'snippetImage': '/static/beeswax/art/icon_beeswax_48.png', 'placeHolder': 'Example: SELECT * FROM tablename, or press CTRL + space', 'aceMode': 'ace/mode/hive' }, 'id': '10a29cda-063f-1439-4836-d0c460154075', 'statement_raw': nonsensitive_query, 'statement': nonsensitive_query, 'type': 'hive' }, ] try: self.document2.type = 'notebook' self.document2.update_data({'snippets': snippets}) self.document2.search = sensitive_query self.document2.save() saved_snippets = self.document2.data_dict['snippets'] # Make sure redacted queries are redacted. assert_equal(redacted_query, saved_snippets[0]['statement']) assert_equal(redacted_query, saved_snippets[0]['statement_raw']) assert_equal(True, saved_snippets[0]['is_redacted']) assert_equal(redacted_query, saved_snippets[1]['statement']) assert_equal(redacted_query, saved_snippets[1]['statement_raw']) assert_equal(True, saved_snippets[1]['is_redacted']) document = Document2.objects.get(pk=self.document2.pk) assert_equal(redacted_query, document.search) # Make sure unredacted queries are not redacted. assert_equal(nonsensitive_query, saved_snippets[2]['statement']) assert_equal(nonsensitive_query, saved_snippets[2]['statement_raw']) assert_false('is_redacted' in saved_snippets[2]) finally: redaction.global_redaction_engine.policies = old_policies def test_get_document(self): c1 = make_logged_in_client(username='test_get_user', groupname='test_get_group', recreate=True, is_superuser=False) r1 = c1.get('/desktop/api/doc/get?id=1') assert_true(-1, json.loads(r1.content)['status']) def test_session_secure_cookie(): with tempfile.NamedTemporaryFile() as cert_file: with tempfile.NamedTemporaryFile() as key_file: resets = [ desktop.conf.SSL_CERTIFICATE.set_for_testing(cert_file.name), desktop.conf.SSL_PRIVATE_KEY.set_for_testing(key_file.name), desktop.conf.SESSION.SECURE.set_for_testing(False), ] try: assert_true(desktop.conf.is_https_enabled()) assert_false(desktop.conf.SESSION.SECURE.get()) finally: for reset in resets: reset() resets = [ desktop.conf.SSL_CERTIFICATE.set_for_testing(cert_file.name), desktop.conf.SSL_PRIVATE_KEY.set_for_testing(key_file.name), desktop.conf.SESSION.SECURE.set_for_testing(True), ] try: assert_true(desktop.conf.is_https_enabled()) assert_true(desktop.conf.SESSION.SECURE.get()) finally: for reset in resets: reset() resets = [ desktop.conf.SSL_CERTIFICATE.set_for_testing(cert_file.name), desktop.conf.SSL_PRIVATE_KEY.set_for_testing(key_file.name), desktop.conf.SESSION.SECURE.set_for_testing(present=False), ] try: assert_true(desktop.conf.is_https_enabled()) assert_true(desktop.conf.SESSION.SECURE.get()) finally: for reset in resets: reset() resets = [ desktop.conf.SSL_CERTIFICATE.set_for_testing(present=None), desktop.conf.SSL_PRIVATE_KEY.set_for_testing(present=None), desktop.conf.SESSION.SECURE.set_for_testing(present=False), ] try: assert_false(desktop.conf.is_https_enabled()) assert_false(desktop.conf.SESSION.SECURE.get()) finally: for reset in resets: reset() def test_get_data_link(): assert_equal(None, get_data_link({})) assert_equal('gethue.com', get_data_link({'type': 'link', 'link': 'gethue.com'})) assert_equal( '/hbase/#Cluster/document_demo/query/20150527', get_data_link({'type': 'hbase', 'table': 'document_demo', 'row_key': '20150527'}) ) assert_equal( '/hbase/#Cluster/document_demo/query/20150527[f1]', get_data_link({'type': 'hbase', 'table': 'document_demo', 'row_key': '20150527', 'fam': 'f1'}) ) assert_equal( '/hbase/#Cluster/document_demo/query/20150527[f1:c1]', get_data_link({'type': 'hbase', 'table': 'document_demo', 'row_key': '20150527', 'fam': 'f1', 'col': 'c1'}) ) assert_equal('/filebrowser/view=/data/hue/1', get_data_link({'type': 'hdfs', 'path': '/data/hue/1'})) assert_equal('/metastore/table/default/sample_07', get_data_link({'type': 'hive', 'database': 'default', 'table': 'sample_07'})) def test_get_dn(): assert_equal(['*'], desktop.conf.get_dn('')) assert_equal(['*'], desktop.conf.get_dn('localhost')) assert_equal(['*'], desktop.conf.get_dn('localhost.localdomain')) assert_equal(['*'], desktop.conf.get_dn('hue')) assert_equal(['*'], desktop.conf.get_dn('hue.com')) assert_equal(['.hue.com'], desktop.conf.get_dn('sql.hue.com')) assert_equal(['.hue.com'], desktop.conf.get_dn('finance.sql.hue.com')) assert_equal(['.hue.com'], desktop.conf.get_dn('bank.finance.sql.hue.com')) def test_collect_validation_messages_default(): try: # Generate the spec file configspec = generate_configspec() # Load the .ini files config_dir = os.getenv("HUE_CONF_DIR", get_desktop_root("conf")) conf = load_confs(configspec.name, _configs_from_dir(config_dir)) # This is for the hue.ini file only error_list = [] collect_validation_messages(conf, error_list) assert_equal(len(error_list), 0, error_list) finally: os.remove(configspec.name) def test_collect_validation_messages_extras(): try: # Generate the spec file configspec = generate_configspec() # Load the .ini files config_dir = os.getenv("HUE_CONF_DIR", get_desktop_root("conf")) conf = load_confs(configspec.name, _configs_from_dir(config_dir)) test_conf = ConfigObj() test_conf['extrasection'] = { 'key1': 'value1', 'key2': 'value1' } extrasubsection = { 'key1': 'value1', 'key2': 'value1' } # Test with extrasections as well as existing subsection, keyvalues in existing section [desktop] test_conf['desktop'] = { 'extrasubsection': extrasubsection, 'extrakey': 'value1', 'auth': { 'ignore_username_case': 'true', 'extrasubsubsection': { 'extrakey': 'value1' } } } conf.merge(test_conf) error_list = [] collect_validation_messages(conf, error_list) finally: os.remove(configspec.name) assert_equal(len(error_list), 1) assert_equal(u'Extra section, extrasection in the section: top level, Extra keyvalue, extrakey in the section: [desktop] , ' 'Extra section, extrasubsection in the section: [desktop] , Extra section, extrasubsubsection in the section: [desktop] [[auth]] ', error_list[0]['message'] ) # Test db migration from 5.7,...,5.15 to latest def test_db_migrations_sqlite(): versions = ['5.' + str(i) for i in range(7, 16)] for version in versions: name = 'hue_' + version + '_' + uuid.uuid4().hex file_name = 'hue_' + version + '.db' path = get_desktop_root('./core/src/desktop/test_data/' + file_name) DATABASES[name] = { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': path, 'USER': '', 'SCHEMA': 'public', 'PASSWORD': '', 'HOST': '', 'PORT': '', 'OPTIONS': {} if sys.version_info[0] > 2 else '', 'ATOMIC_REQUESTS': True, 'CONN_MAX_AGE': 0, } try: call_command('migrate', '--fake-initial', '--database=' + name) finally: del DATABASES[name] def test_db_migrations_mysql(): if desktop.conf.DATABASE.ENGINE.get().find('mysql') < 0: raise SkipTest versions = ['5_' + str(i) for i in range(7, 16)] os.putenv('PATH', '$PATH:/usr/local/bin') try: subprocess.check_output('type mysql', shell=True) except subprocess.CalledProcessError as e: LOG.warning('mysql not found') raise SkipTest for version in versions: file_name = 'hue_' + version + '_mysql.sql' name = 'hue_' + version + '_' + uuid.uuid4().hex path = get_desktop_root('./core/src/desktop/test_data/' + file_name) DATABASES[name] = { 'ENGINE': desktop.conf.DATABASE.ENGINE.get(), 'NAME': name, 'USER': desktop.conf.DATABASE.USER.get(), 'SCHEMA': name, 'PASSWORD': desktop.conf.get_database_password(), 'HOST': desktop.conf.DATABASE.HOST.get(), 'PORT': str(desktop.conf.DATABASE.PORT.get()), 'OPTIONS': force_dict_to_strings(desktop.conf.DATABASE.OPTIONS.get()), 'ATOMIC_REQUESTS': True, 'PATH': path, 'CONN_MAX_AGE': desktop.conf.DATABASE.CONN_MAX_AGE.get(), } try: subprocess.check_output( 'mysql -u%(USER)s -p%(PASSWORD)s -e "CREATE DATABASE %(SCHEMA)s"' % DATABASES[name], stderr=subprocess.STDOUT, shell=True ) # No way to run this command with django subprocess.check_output( 'mysql -u%(USER)s -p%(PASSWORD)s %(SCHEMA)s < %(PATH)s' % DATABASES[name], stderr=subprocess.STDOUT, shell=True ) call_command('migrate', '--fake-initial', '--database=%(SCHEMA)s' % DATABASES[name]) except subprocess.CalledProcessError as e: LOG.warning('stderr: {}'.format(e.output)) raise e finally: del DATABASES[name] @raises(ImportError) def test_forbidden_libs(): if sys.version_info[0] > 2: raise SkipTest import chardet # chardet license (LGPL) is not compatible and should not be bundled class TestGetConfigErrors(): def setUp(self): self.client = make_logged_in_client(username="test", groupname="empty", recreate=True, is_superuser=False) self.user = User.objects.get(username="test") def test_get_config_errors_unicode(self): """ Avoid a Python 2 issue: AttributeError: 'unicode' object has no attribute 'get_fully_qualifying_key' """ request = Mock(user=self.user) with patch('desktop.views.appmanager') as appmanager: appmanager.DESKTOP_MODULES = [ Mock( conf=Mock( config_validator=lambda user: [(u'Connector 1', 'errored because of ...')] ) ) ] assert_equal( [{'name': 'Connector 1', 'message': 'errored because of ...'}], _get_config_errors(request, cache=False) )
{ "content_hash": "200ffb24ceacb19ecff3c689c9cbcdb0", "timestamp": "", "source": "github", "line_count": 1569, "max_line_length": 137, "avg_line_length": 36.55066921606119, "alnum_prop": 0.6699100230173677, "repo_name": "kawamon/hue", "id": "4ff80a2050f910db3b8b058693d14c0590eed468", "size": "58174", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "desktop/core/src/desktop/tests.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ABAP", "bytes": "962" }, { "name": "ActionScript", "bytes": "1133" }, { "name": "Ada", "bytes": "99" }, { "name": "Assembly", "bytes": "5786" }, { "name": "AutoHotkey", "bytes": "720" }, { "name": "Batchfile", "bytes": "118907" }, { "name": "C", "bytes": "3196521" }, { "name": "C#", "bytes": "83" }, { "name": "C++", "bytes": "308860" }, { "name": "COBOL", "bytes": "4" }, { "name": "CSS", "bytes": "1050129" }, { "name": "Cirru", "bytes": "520" }, { "name": "Clojure", "bytes": "794" }, { "name": "CoffeeScript", "bytes": "403" }, { "name": "ColdFusion", "bytes": "86" }, { "name": "Common Lisp", "bytes": "632" }, { "name": "D", "bytes": "324" }, { "name": "Dart", "bytes": "489" }, { "name": "Dockerfile", "bytes": "10981" }, { "name": "Eiffel", "bytes": "375" }, { "name": "Elixir", "bytes": "692" }, { "name": "Elm", "bytes": "487" }, { "name": "Emacs Lisp", "bytes": "411907" }, { "name": "Erlang", "bytes": "487" }, { "name": "Forth", "bytes": "979" }, { "name": "FreeMarker", "bytes": "1017" }, { "name": "G-code", "bytes": "521" }, { "name": "GLSL", "bytes": "512" }, { "name": "Genshi", "bytes": "946" }, { "name": "Gherkin", "bytes": "699" }, { "name": "Go", "bytes": "7312" }, { "name": "Groovy", "bytes": "1080" }, { "name": "HTML", "bytes": "24999718" }, { "name": "Haskell", "bytes": "512" }, { "name": "Haxe", "bytes": "447" }, { "name": "HiveQL", "bytes": "43" }, { "name": "Io", "bytes": "140" }, { "name": "JSONiq", "bytes": "4" }, { "name": "Java", "bytes": "471854" }, { "name": "JavaScript", "bytes": "28075556" }, { "name": "Julia", "bytes": "210" }, { "name": "Jupyter Notebook", "bytes": "73168" }, { "name": "LSL", "bytes": "2080" }, { "name": "Lean", "bytes": "213" }, { "name": "Lex", "bytes": "264449" }, { "name": "Liquid", "bytes": "1883" }, { "name": "LiveScript", "bytes": "5747" }, { "name": "Lua", "bytes": "78382" }, { "name": "M4", "bytes": "1377" }, { "name": "MATLAB", "bytes": "203" }, { "name": "Makefile", "bytes": "269655" }, { "name": "Mako", "bytes": "3614942" }, { "name": "Mask", "bytes": "597" }, { "name": "Myghty", "bytes": "936" }, { "name": "Nix", "bytes": "2212" }, { "name": "OCaml", "bytes": "539" }, { "name": "Objective-C", "bytes": "2672" }, { "name": "OpenSCAD", "bytes": "333" }, { "name": "PHP", "bytes": "662" }, { "name": "PLSQL", "bytes": "31565" }, { "name": "PLpgSQL", "bytes": "6006" }, { "name": "Pascal", "bytes": "1412" }, { "name": "Perl", "bytes": "4327" }, { "name": "PigLatin", "bytes": "371" }, { "name": "PowerShell", "bytes": "3204" }, { "name": "Python", "bytes": "76440000" }, { "name": "R", "bytes": "2445" }, { "name": "Roff", "bytes": "95764" }, { "name": "Ruby", "bytes": "1098" }, { "name": "Rust", "bytes": "495" }, { "name": "Scala", "bytes": "1541" }, { "name": "Scheme", "bytes": "559" }, { "name": "Shell", "bytes": "190718" }, { "name": "Smarty", "bytes": "130" }, { "name": "TSQL", "bytes": "10013" }, { "name": "Tcl", "bytes": "899" }, { "name": "TeX", "bytes": "165743" }, { "name": "Thrift", "bytes": "317058" }, { "name": "TypeScript", "bytes": "1607" }, { "name": "VBA", "bytes": "2884" }, { "name": "VBScript", "bytes": "938" }, { "name": "VHDL", "bytes": "830" }, { "name": "Vala", "bytes": "485" }, { "name": "Verilog", "bytes": "274" }, { "name": "Vim Snippet", "bytes": "226931" }, { "name": "XQuery", "bytes": "114" }, { "name": "XSLT", "bytes": "521413" }, { "name": "Yacc", "bytes": "2133855" } ], "symlink_target": "" }
import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'camera.py' copyright = u'2014, Matej Smid' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'camerapydoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'camerapy.tex', u'camera.py Documentation', u'Matej Smid', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'camerapy', u'camera.py Documentation', [u'Matej Smid'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'camerapy', u'camera.py Documentation', u'Matej Smid', 'camerapy', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
{ "content_hash": "4d611b0672aefb49e0540766ea343056", "timestamp": "", "source": "github", "line_count": 229, "max_line_length": 80, "avg_line_length": 32.10480349344978, "alnum_prop": 0.7007616974972797, "repo_name": "smidm/camera.py", "id": "34874b05303800935daa32708e9f9528119161c2", "size": "7772", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "docs/conf.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "23839" }, { "name": "Shell", "bytes": "22" } ], "symlink_target": "" }
import copy import os import sys import time import unittest rootDirectory = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) if rootDirectory not in sys.path: sys.path.insert(0, rootDirectory) from oxford.vision import Vision class TestFace(unittest.TestCase): '''Tests the Project Oxford Vision API''' @classmethod def setUpClass(cls): # set up self.client for tests cls.client = Vision(os.environ['OXFORD_VISION_API_KEY']) cls.localFilePrefix = os.path.join(rootDirectory, 'tests', 'images') cls.analyzeOptions = { 'ImageType': True, 'Color': True, 'Faces': True, 'Adult': True, 'Categories': True, 'Tags': True, 'Description': True, 'Celebrities': True, } cls.thumbnailOptions = { 'width': 100, 'height': 100, 'smartCropping': True } cls.ocrOptions = { 'language': 'en', 'detectOrientation': True } # # test the analyze API # def _verify_analyze_result(self, result): self.assertIsNotNone(result['imageType']) self.assertIsNotNone(result['color']) self.assertIsNotNone(result['faces']) self.assertIsNotNone(result['adult']) self.assertIsNotNone(result['categories']) def test_vision_analyze_file(self): options = copy.copy(self.analyzeOptions) options['path'] = os.path.join(self.localFilePrefix, 'vision.jpg') result = self.client.analyze(options) self._verify_analyze_result(result) def test_vision_analyze_url(self): options = copy.copy(self.analyzeOptions) options['url'] = 'https://upload.wikimedia.org/wikipedia/commons/1/19/Bill_Gates_June_2015.jpg' result = self.client.analyze(options) self._verify_analyze_result(result) def test_vision_analyze_stream(self): options = copy.copy(self.analyzeOptions) with open(os.path.join(self.localFilePrefix, 'face1.jpg'), 'rb') as file: options['stream'] = file.read() result = self.client.analyze(options) self._verify_analyze_result(result) # # test the thumbnail API # def _verify_thumbnail_result(self, result, fileName): outputPath = os.path.join(self.localFilePrefix, fileName) with open(outputPath, 'wb+') as file: file.write(result) self.assertTrue(True, 'file write succeeded for: {0}'.format(fileName)) def test_vision_thumbnail_file(self): options = copy.copy(self.thumbnailOptions) options['path'] = os.path.join(self.localFilePrefix, 'vision.jpg') result = self.client.thumbnail(options) self._verify_thumbnail_result(result, 'thumbnail_from_file.jpg') def test_vision_thumbnail_url(self): options = copy.copy(self.thumbnailOptions) options['url'] = 'https://upload.wikimedia.org/wikipedia/commons/1/19/Bill_Gates_June_2015.jpg' result = self.client.thumbnail(options) self._verify_thumbnail_result(result, 'thumbnail_from_url.jpg') def test_vision_thumbnail_stream(self): options = copy.copy(self.thumbnailOptions) with open(os.path.join(self.localFilePrefix, 'face1.jpg'), 'rb') as file: options['stream'] = file.read() result = self.client.thumbnail(options) self._verify_thumbnail_result(result, 'thumbnail_from_stream.jpg') # # test the OCR API # def _verify_ocr_result(self, result): self.assertIsNotNone(result['language']) self.assertIsNotNone(result['orientation']) def test_vision_ocr_file(self): options = copy.copy(self.ocrOptions) options['path'] = os.path.join(self.localFilePrefix, 'vision.jpg') result = self.client.ocr(options) self._verify_ocr_result(result) def test_vision_ocr_url(self): options = copy.copy(self.ocrOptions) options['url'] = 'https://upload.wikimedia.org/wikipedia/commons/1/19/Bill_Gates_June_2015.jpg' result = self.client.ocr(options) self._verify_ocr_result(result) def test_vision_ocr_stream(self): options = copy.copy(self.ocrOptions) with open(os.path.join(self.localFilePrefix, 'face1.jpg'), 'rb') as file: options['stream'] = file.read() result = self.client.ocr(options) self._verify_ocr_result(result) @classmethod def TearDownUpClass(cls): time.sleep(0.5) # sleep time in seconds
{ "content_hash": "dc5f0fd3e81a3b359c2b75c2c73ae8ac", "timestamp": "", "source": "github", "line_count": 129, "max_line_length": 103, "avg_line_length": 35.68217054263566, "alnum_prop": 0.6269824027807951, "repo_name": "chidochipotle/oxford", "id": "ae57d96cbeb818dbb55697d793d94cfcd01cb783", "size": "4603", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "tests/test_vision.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "94101" } ], "symlink_target": "" }
from __future__ import absolute_import from django.conf import settings from zerver.models import get_client, UserProfile from zerver.lib.response import json_success from zerver.lib.validator import check_dict from zerver.decorator import authenticated_api_view, REQ, has_request_variables, to_non_negative_int, flexible_boolean from zerver.views.messages import send_message_backend from zerver.lib.webhooks.git import get_push_commits_event_message,\ SUBJECT_WITH_BRANCH_TEMPLATE, get_force_push_commits_event_message, \ get_remove_branch_event_message, get_pull_request_event_message,\ get_issue_event_message, SUBJECT_WITH_PR_OR_ISSUE_INFO_TEMPLATE,\ get_commits_comment_action_message import logging import re import ujson from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Text from zerver.lib.str_utils import force_str from django.http import HttpRequest, HttpResponse ZULIP_TEST_REPO_NAME = 'zulip-test' ZULIP_TEST_REPO_ID = 6893087 def is_test_repository(repository): # type: (Mapping[Text, Any]) -> bool return repository['name'] == ZULIP_TEST_REPO_NAME and repository['id'] == ZULIP_TEST_REPO_ID class UnknownEventType(Exception): pass def github_pull_request_content(payload): # type: (Mapping[Text, Any]) -> Text pull_request = payload['pull_request'] action = get_pull_request_or_issue_action(payload) if action in ('opened', 'edited'): return get_pull_request_event_message( payload['sender']['login'], action, pull_request['html_url'], pull_request['number'], pull_request['head']['ref'], pull_request['base']['ref'], pull_request['body'], get_pull_request_or_issue_assignee(pull_request) ) return get_pull_request_event_message( payload['sender']['login'], action, pull_request['html_url'], pull_request['number'] ) def github_issues_content(payload): # type: (Mapping[Text, Any]) -> Text issue = payload['issue'] action = get_pull_request_or_issue_action(payload) if action in ('opened', 'edited'): return get_issue_event_message( payload['sender']['login'], action, issue['html_url'], issue['number'], issue['body'], get_pull_request_or_issue_assignee(issue) ) return get_issue_event_message( payload['sender']['login'], action, issue['html_url'], issue['number'], ) def github_object_commented_content(payload, type): # type: (Mapping[Text, Any], Text) -> Text comment = payload['comment'] issue = payload['issue'] action = u'[commented]({}) on'.format(comment['html_url']) return get_pull_request_event_message( comment['user']['login'], action, issue['html_url'], issue['number'], message=comment['body'], type=type ) def get_pull_request_or_issue_action(payload): # type: (Mapping[Text, Any]) -> Text return 'synchronized' if payload['action'] == 'synchronize' else payload['action'] def get_pull_request_or_issue_assignee(object_payload): # type: (Mapping[Text, Any]) -> Optional[Text] assignee_dict = object_payload.get('assignee') if assignee_dict: return assignee_dict.get('login') return None def get_pull_request_or_issue_subject(repository, payload_object, type): # type: (Mapping[Text, Any], Mapping[Text, Any], Text) -> Text return SUBJECT_WITH_PR_OR_ISSUE_INFO_TEMPLATE.format( repo=repository['name'], type=type, id=payload_object['number'], title=payload_object['title'] ) def github_generic_subject(noun, topic_focus, blob): # type: (Text, Text, Mapping[Text, Any]) -> Text # issue and pull_request objects have the same fields we're interested in return u'%s: %s %d: %s' % (topic_focus, noun, blob['number'], blob['title']) def api_github_v1(user_profile, event, payload, branches, stream, **kwargs): # type: (UserProfile, Text, Mapping[Text, Any], Text, Text, **Any) -> Tuple[Text, Text, Text] """ processes github payload with version 1 field specification `payload` comes in unmodified from github `stream` is set to 'commits' if otherwise unset """ commit_stream = stream issue_stream = 'issues' return api_github_v2(user_profile, event, payload, branches, stream, commit_stream, issue_stream, **kwargs) def api_github_v2(user_profile, event, payload, branches, default_stream, commit_stream, issue_stream, topic_focus = None): # type: (UserProfile, Text, Mapping[Text, Any], Text, Text, Text, Text, Optional[Text]) -> Tuple[Text, Text, Text] """ processes github payload with version 2 field specification `payload` comes in unmodified from github `default_stream` is set to what `stream` is in v1 above `commit_stream` and `issue_stream` fall back to `default_stream` if they are empty This and allowing alternative endpoints is what distinguishes v1 from v2 of the github configuration """ target_stream = commit_stream if commit_stream else default_stream issue_stream = issue_stream if issue_stream else default_stream repository = payload['repository'] updated_topic_focus = topic_focus if topic_focus else repository['name'] # Event Handlers if event == 'pull_request': subject = get_pull_request_or_issue_subject(repository, payload['pull_request'], 'PR') content = github_pull_request_content(payload) elif event == 'issues': # in v1, we assume that this stream exists since it is # deprecated and the few realms that use it already have the # stream target_stream = issue_stream subject = get_pull_request_or_issue_subject(repository, payload['issue'], 'Issue') content = github_issues_content(payload) elif event == 'issue_comment': # Comments on both issues and pull requests come in as issue_comment events issue = payload['issue'] if 'pull_request' not in issue or issue['pull_request']['diff_url'] is None: # It's an issues comment target_stream = issue_stream type = 'Issue' subject = get_pull_request_or_issue_subject(repository, payload['issue'], type) else: # It's a pull request comment type = 'PR' subject = get_pull_request_or_issue_subject(repository, payload['issue'], type) content = github_object_commented_content(payload, type) elif event == 'push': subject, content = build_message_from_gitlog(user_profile, updated_topic_focus, payload['ref'], payload['commits'], payload['before'], payload['after'], payload['compare'], payload['pusher']['name'], forced=payload['forced'], created=payload['created'], deleted=payload['deleted']) elif event == 'commit_comment': subject = updated_topic_focus comment = payload['comment'] action = u'[commented]({})'.format(comment['html_url']) content = get_commits_comment_action_message( comment['user']['login'], action, comment['html_url'].split('#', 1)[0], comment['commit_id'], comment['body'], ) else: raise UnknownEventType(force_str(u'Event %s is unknown and cannot be handled' % (event,))) return target_stream, subject, content @authenticated_api_view(is_webhook=True) @has_request_variables def api_github_landing(request, user_profile, event=REQ(), payload=REQ(validator=check_dict([])), branches=REQ(default=''), stream=REQ(default=''), version=REQ(converter=to_non_negative_int, default=1), commit_stream=REQ(default=''), issue_stream=REQ(default=''), exclude_pull_requests=REQ(converter=flexible_boolean, default=False), exclude_issues=REQ(converter=flexible_boolean, default=False), exclude_commits=REQ(converter=flexible_boolean, default=False), emphasize_branch_in_topic=REQ(converter=flexible_boolean, default=False), ): # type: (HttpRequest, UserProfile, Text, Mapping[Text, Any], Text, Text, int, Text, Text, bool, bool, bool, bool) -> HttpResponse repository = payload['repository'] # Special hook for capturing event data. If we see our special test repo, log the payload from github. try: if is_test_repository(repository) and settings.PRODUCTION: with open('/var/log/zulip/github-payloads', 'a') as f: f.write(ujson.dumps({'event': event, 'payload': payload, 'branches': branches, 'stream': stream, 'version': version, 'commit_stream': commit_stream, 'issue_stream': issue_stream, 'exclude_pull_requests': exclude_pull_requests, 'exclude_issues': exclude_issues, 'exclude_commits': exclude_commits, 'emphasize_branch_in_topic': emphasize_branch_in_topic, })) f.write('\n') except Exception: logging.exception('Error while capturing Github event') if not stream: stream = 'commits' short_ref = re.sub(r'^refs/heads/', '', payload.get('ref', '')) kwargs = dict() if emphasize_branch_in_topic and short_ref: kwargs['topic_focus'] = short_ref allowed_events = set() if not exclude_pull_requests: allowed_events.add('pull_request') if not exclude_issues: allowed_events.add('issues') allowed_events.add('issue_comment') if not exclude_commits: allowed_events.add('push') allowed_events.add('commit_comment') if event not in allowed_events: return json_success() # We filter issue_comment events for issue creation events if event == 'issue_comment' and payload['action'] != 'created': return json_success() if event == 'push': # If we are given a whitelist of branches, then we silently ignore # any push notification on a branch that is not in our whitelist. if branches and short_ref not in re.split('[\s,;|]+', branches): return json_success() # Map payload to the handler with the right version if version == 2: target_stream, subject, content = api_github_v2(user_profile, event, payload, branches, stream, commit_stream, issue_stream, **kwargs) else: target_stream, subject, content = api_github_v1(user_profile, event, payload, branches, stream, **kwargs) request.client = get_client('ZulipGitHubWebhook') return send_message_backend(request, user_profile, message_type_name='stream', message_to=[target_stream], forged=False, subject_name=subject, message_content=content) def build_message_from_gitlog(user_profile, name, ref, commits, before, after, url, pusher, forced=None, created=None, deleted=False): # type: (UserProfile, Text, Text, List[Dict[str, str]], Text, Text, Text, Text, Optional[Text], Optional[Text], Optional[bool]) -> Tuple[Text, Text] short_ref = re.sub(r'^refs/heads/', '', ref) subject = SUBJECT_WITH_BRANCH_TEMPLATE.format(repo=name, branch=short_ref) if re.match(r'^0+$', after): content = get_remove_branch_event_message(pusher, short_ref) # 'created' and 'forced' are github flags; the second check is for beanstalk elif (forced and not created) or (forced is None and len(commits) == 0): content = get_force_push_commits_event_message(pusher, url, short_ref, after[:7]) else: commits = _transform_commits_list_to_common_format(commits) content = get_push_commits_event_message(pusher, url, short_ref, commits, deleted=deleted) return subject, content def _transform_commits_list_to_common_format(commits): # type: (List[Dict[str, Any]]) -> List[Dict[str, str]] new_commits_list = [] for commit in commits: new_commits_list.append({ 'name': commit['author'].get('username'), 'sha': commit.get('id'), 'url': commit.get('url'), 'message': commit.get('message'), }) return new_commits_list
{ "content_hash": "170efb52dc729f5787c0be447986dd96", "timestamp": "", "source": "github", "line_count": 309, "max_line_length": 152, "avg_line_length": 43.34304207119741, "alnum_prop": 0.5922496826700515, "repo_name": "vaidap/zulip", "id": "c8323a25cb2fbb5d4c7ac37b91b6310e4e22c57e", "size": "13393", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "zerver/webhooks/github/view.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "416449" }, { "name": "Emacs Lisp", "bytes": "158" }, { "name": "HTML", "bytes": "472724" }, { "name": "JavaScript", "bytes": "2123247" }, { "name": "Nginx", "bytes": "1280" }, { "name": "Pascal", "bytes": "1113" }, { "name": "Perl", "bytes": "401825" }, { "name": "Puppet", "bytes": "84574" }, { "name": "Python", "bytes": "3669105" }, { "name": "Ruby", "bytes": "249744" }, { "name": "Shell", "bytes": "44486" } ], "symlink_target": "" }
from distutils.core import setup import googstyle setup( name='googstyle', version=googstyle.__version__, description="CSS and images extracted from Closure Library", url="https://github.com/ludios/Googstyle", author="Ivan Kozik", author_email="[email protected]", classifiers=[ 'Development Status :: 4 - Beta', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'Topic :: Internet :: WWW/HTTP', 'License :: OSI Approved :: Apache Software License', ], packages=['googstyle'], package_data={'googstyle': ['goog-images/*']}, )
{ "content_hash": "ee86b934ca48f67867c13fe7dfd2268f", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 61, "avg_line_length": 27.095238095238095, "alnum_prop": 0.6994727592267135, "repo_name": "ludios/Googstyle", "id": "d4f2932177ca08758b5c76ad12da64e78233f64e", "size": "592", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "616" } ], "symlink_target": "" }
import constants from euctwfreq import EUCTWCharToFreqOrder, EUCTW_TABLE_SIZE, EUCTW_TYPICAL_DISTRIBUTION_RATIO from euckrfreq import EUCKRCharToFreqOrder, EUCKR_TABLE_SIZE, EUCKR_TYPICAL_DISTRIBUTION_RATIO from gb2312freq import GB2312CharToFreqOrder, GB2312_TABLE_SIZE, GB2312_TYPICAL_DISTRIBUTION_RATIO from big5freq import Big5CharToFreqOrder, BIG5_TABLE_SIZE, BIG5_TYPICAL_DISTRIBUTION_RATIO from jisfreq import JISCharToFreqOrder, JIS_TABLE_SIZE, JIS_TYPICAL_DISTRIBUTION_RATIO ENOUGH_DATA_THRESHOLD = 1024 SURE_YES = 0.99 SURE_NO = 0.01 class CharDistributionAnalysis: def __init__(self): self._mCharToFreqOrder = None # Mapping table to get frequency order from char order (get from GetOrder()) self._mTableSize = None # Size of above table self._mTypicalDistributionRatio = None # This is a constant value which varies from language to language, used in calculating confidence. See http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html for further detail. self.reset() def reset(self): """reset analyser, clear any state""" self._mDone = constants.False # If this flag is set to constants.True, detection is done and conclusion has been made self._mTotalChars = 0 # Total characters encountered self._mFreqChars = 0 # The number of characters whose frequency order is less than 512 def feed(self, aStr, aCharLen): """feed a character with known length""" if aCharLen == 2: # we only care about 2-bytes character in our distribution analysis order = self.get_order(aStr) else: order = -1 if order >= 0: self._mTotalChars += 1 # order is valid if order < self._mTableSize: if 512 > self._mCharToFreqOrder[order]: self._mFreqChars += 1 def get_confidence(self): """return confidence based on existing data""" # if we didn't receive any character in our consideration range, return negative answer if self._mTotalChars <= 0: return SURE_NO if self._mTotalChars != self._mFreqChars: r = self._mFreqChars / ((self._mTotalChars - self._mFreqChars) * self._mTypicalDistributionRatio) if r < SURE_YES: return r # normalize confidence (we don't want to be 100% sure) return SURE_YES def got_enough_data(self): # It is not necessary to receive all data to draw conclusion. For charset detection, # certain amount of data is enough return self._mTotalChars > ENOUGH_DATA_THRESHOLD def get_order(self, aStr): # We do not handle characters based on the original encoding string, but # convert this encoding string to a number, here called order. # This allows multiple encodings of a language to share one frequency table. return -1 class EUCTWDistributionAnalysis(CharDistributionAnalysis): def __init__(self): CharDistributionAnalysis.__init__(self) self._mCharToFreqOrder = EUCTWCharToFreqOrder self._mTableSize = EUCTW_TABLE_SIZE self._mTypicalDistributionRatio = EUCTW_TYPICAL_DISTRIBUTION_RATIO def get_order(self, aStr): # for euc-TW encoding, we are interested # first byte range: 0xc4 -- 0xfe # second byte range: 0xa1 -- 0xfe # no validation needed here. State machine has done that if aStr[0] >= '\xC4': return 94 * (ord(aStr[0]) - 0xC4) + ord(aStr[1]) - 0xA1 else: return -1 class EUCKRDistributionAnalysis(CharDistributionAnalysis): def __init__(self): CharDistributionAnalysis.__init__(self) self._mCharToFreqOrder = EUCKRCharToFreqOrder self._mTableSize = EUCKR_TABLE_SIZE self._mTypicalDistributionRatio = EUCKR_TYPICAL_DISTRIBUTION_RATIO def get_order(self, aStr): # for euc-KR encoding, we are interested # first byte range: 0xb0 -- 0xfe # second byte range: 0xa1 -- 0xfe # no validation needed here. State machine has done that if aStr[0] >= '\xB0': return 94 * (ord(aStr[0]) - 0xB0) + ord(aStr[1]) - 0xA1 else: return -1; class GB2312DistributionAnalysis(CharDistributionAnalysis): def __init__(self): CharDistributionAnalysis.__init__(self) self._mCharToFreqOrder = GB2312CharToFreqOrder self._mTableSize = GB2312_TABLE_SIZE self._mTypicalDistributionRatio = GB2312_TYPICAL_DISTRIBUTION_RATIO def get_order(self, aStr): # for GB2312 encoding, we are interested # first byte range: 0xb0 -- 0xfe # second byte range: 0xa1 -- 0xfe # no validation needed here. State machine has done that if (aStr[0] >= '\xB0') and (aStr[1] >= '\xA1'): return 94 * (ord(aStr[0]) - 0xB0) + ord(aStr[1]) - 0xA1 else: return -1; class Big5DistributionAnalysis(CharDistributionAnalysis): def __init__(self): CharDistributionAnalysis.__init__(self) self._mCharToFreqOrder = Big5CharToFreqOrder self._mTableSize = BIG5_TABLE_SIZE self._mTypicalDistributionRatio = BIG5_TYPICAL_DISTRIBUTION_RATIO def get_order(self, aStr): # for big5 encoding, we are interested # first byte range: 0xa4 -- 0xfe # second byte range: 0x40 -- 0x7e , 0xa1 -- 0xfe # no validation needed here. State machine has done that if aStr[0] >= '\xA4': if aStr[1] >= '\xA1': return 157 * (ord(aStr[0]) - 0xA4) + ord(aStr[1]) - 0xA1 + 63 else: return 157 * (ord(aStr[0]) - 0xA4) + ord(aStr[1]) - 0x40 else: return -1 class SJISDistributionAnalysis(CharDistributionAnalysis): def __init__(self): CharDistributionAnalysis.__init__(self) self._mCharToFreqOrder = JISCharToFreqOrder self._mTableSize = JIS_TABLE_SIZE self._mTypicalDistributionRatio = JIS_TYPICAL_DISTRIBUTION_RATIO def get_order(self, aStr): # for sjis encoding, we are interested # first byte range: 0x81 -- 0x9f , 0xe0 -- 0xfe # second byte range: 0x40 -- 0x7e, 0x81 -- oxfe # no validation needed here. State machine has done that if (aStr[0] >= '\x81') and (aStr[0] <= '\x9F'): order = 188 * (ord(aStr[0]) - 0x81) elif (aStr[0] >= '\xE0') and (aStr[0] <= '\xEF'): order = 188 * (ord(aStr[0]) - 0xE0 + 31) else: return -1; order = order + ord(aStr[1]) - 0x40 if aStr[1] > '\x7F': order =- 1 return order class EUCJPDistributionAnalysis(CharDistributionAnalysis): def __init__(self): CharDistributionAnalysis.__init__(self) self._mCharToFreqOrder = JISCharToFreqOrder self._mTableSize = JIS_TABLE_SIZE self._mTypicalDistributionRatio = JIS_TYPICAL_DISTRIBUTION_RATIO def get_order(self, aStr): # for euc-JP encoding, we are interested # first byte range: 0xa0 -- 0xfe # second byte range: 0xa1 -- 0xfe # no validation needed here. State machine has done that if aStr[0] >= '\xA0': return 94 * (ord(aStr[0]) - 0xA1) + ord(aStr[1]) - 0xa1 else: return -1
{ "content_hash": "8f7fafffba622b8503d880c79b72226b", "timestamp": "", "source": "github", "line_count": 173, "max_line_length": 238, "avg_line_length": 42.80346820809248, "alnum_prop": 0.6272788656313302, "repo_name": "JeyZeta/Dangerous", "id": "1f95fc84828eceb0f38fb1464f359922781f0e28", "size": "8590", "binary": false, "copies": "20", "ref": "refs/heads/master", "path": "Dangerous/Golismero/tools/sqlmap/thirdparty/chardet/chardistribution.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "13260" }, { "name": "C", "bytes": "12851" }, { "name": "C++", "bytes": "3174" }, { "name": "CSS", "bytes": "267451" }, { "name": "HTML", "bytes": "2686153" }, { "name": "JavaScript", "bytes": "1356956" }, { "name": "Lua", "bytes": "14436" }, { "name": "Makefile", "bytes": "11190" }, { "name": "Objective-C", "bytes": "998" }, { "name": "PHP", "bytes": "619" }, { "name": "PLpgSQL", "bytes": "536" }, { "name": "Perl", "bytes": "263365" }, { "name": "Python", "bytes": "16669102" }, { "name": "Roff", "bytes": "9828" }, { "name": "Ruby", "bytes": "503" }, { "name": "Shell", "bytes": "6691" } ], "symlink_target": "" }
""" Creating correlation """ from world import world, setup_module, teardown_module import create_source_steps as source_create import create_dataset_steps as dataset_create import create_correlation_steps as correlation_create class TestCorrelation(object): def setup(self): """ Debug information """ print "\n-------------------\nTests in: %s\n" % __name__ def teardown(self): """ Debug information """ print "\nEnd of tests in: %s\n-------------------\n" % __name__ def test_scenario1(self): """ Scenario: Successfully creating a correlation from a dataset: Given I create a data source uploading a "<data>" file And I wait until the source is ready less than <time_1> secs And I create a dataset And I wait until the dataset is ready less than <time_2> secs And I create a correlation from a dataset And I wait until the correlation is ready less than <time_3> secs And I update the correlation name to "<correlation_name>" When I wait until the correlation is ready less than <time_4> secs Then the correlation name is "<correlation_name>" Examples: | data | time_1 | time_2 | time_3 | time_4 | correlation_name | | ../data/iris.csv | 10 | 10 | 10 | 10 | my new correlation name | """ print self.test_scenario1.__doc__ examples = [ ['data/iris.csv', '10', '10', '10', '10', 'my new correlation name']] for example in examples: print "\nTesting with:\n", example source_create.i_upload_a_file(self, example[0]) source_create.the_source_is_finished(self, example[1]) dataset_create.i_create_a_dataset(self) dataset_create.the_dataset_is_finished_in_less_than(self, example[2]) correlation_create.i_create_a_correlation_from_dataset(self) correlation_create.the_correlation_is_finished_in_less_than(self, example[3]) correlation_create.i_update_correlation_name(self, example[5]) correlation_create.the_correlation_is_finished_in_less_than(self, example[4]) correlation_create.i_check_correlation_name(self, example[5])
{ "content_hash": "74e5ceaf9c381fc9855083f2b3881d29", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 95, "avg_line_length": 45.60377358490566, "alnum_prop": 0.5829540752999586, "repo_name": "xaowoodenfish/python-1", "id": "886b0d61db78db7ce34d784f55dab970e36bd75a", "size": "3036", "binary": false, "copies": "1", "ref": "refs/heads/next", "path": "bigml/tests/test_25_correlation.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "691861" } ], "symlink_target": "" }
"""OpenTherm Gateway config flow.""" import asyncio import pyotgw from pyotgw import vars as gw_vars from serial import SerialException import voluptuous as vol from homeassistant import config_entries from homeassistant.const import ( CONF_DEVICE, CONF_ID, CONF_NAME, PRECISION_HALVES, PRECISION_TENTHS, PRECISION_WHOLE, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from . import DOMAIN from .const import ( CONF_FLOOR_TEMP, CONF_READ_PRECISION, CONF_SET_PRECISION, CONF_TEMPORARY_OVRD_MODE, ) class OpenThermGwConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """OpenTherm Gateway Config Flow.""" VERSION = 1 @staticmethod @callback def async_get_options_flow(config_entry): """Get the options flow for this handler.""" return OpenThermGwOptionsFlow(config_entry) async def async_step_init(self, info=None): """Handle config flow initiation.""" if info: name = info[CONF_NAME] device = info[CONF_DEVICE] gw_id = cv.slugify(info.get(CONF_ID, name)) entries = [e.data for e in self._async_current_entries()] if gw_id in [e[CONF_ID] for e in entries]: return self._show_form({"base": "id_exists"}) if device in [e[CONF_DEVICE] for e in entries]: return self._show_form({"base": "already_configured"}) async def test_connection(): """Try to connect to the OpenTherm Gateway.""" otgw = pyotgw.pyotgw() status = await otgw.connect(self.hass.loop, device) await otgw.disconnect() return status[gw_vars.OTGW].get(gw_vars.OTGW_ABOUT) try: res = await asyncio.wait_for(test_connection(), timeout=10) except (asyncio.TimeoutError, SerialException): return self._show_form({"base": "cannot_connect"}) if res: return self._create_entry(gw_id, name, device) return self._show_form() async def async_step_user(self, user_input=None): """Handle manual initiation of the config flow.""" return await self.async_step_init(user_input) async def async_step_import(self, import_config): """ Import an OpenTherm Gateway device as a config entry. This flow is triggered by `async_setup` for configured devices. """ formatted_config = { CONF_NAME: import_config.get(CONF_NAME, import_config[CONF_ID]), CONF_DEVICE: import_config[CONF_DEVICE], CONF_ID: import_config[CONF_ID], } return await self.async_step_init(info=formatted_config) def _show_form(self, errors=None): """Show the config flow form with possible errors.""" return self.async_show_form( step_id="init", data_schema=vol.Schema( { vol.Required(CONF_NAME): str, vol.Required(CONF_DEVICE): str, vol.Optional(CONF_ID): str, } ), errors=errors or {}, ) def _create_entry(self, gw_id, name, device): """Create entry for the OpenTherm Gateway device.""" return self.async_create_entry( title=name, data={CONF_ID: gw_id, CONF_DEVICE: device, CONF_NAME: name} ) class OpenThermGwOptionsFlow(config_entries.OptionsFlow): """Handle opentherm_gw options.""" def __init__(self, config_entry): """Initialize the options flow.""" self.config_entry = config_entry async def async_step_init(self, user_input=None): """Manage the opentherm_gw options.""" if user_input is not None: return self.async_create_entry(title="", data=user_input) return self.async_show_form( step_id="init", data_schema=vol.Schema( { vol.Optional( CONF_READ_PRECISION, default=self.config_entry.options.get(CONF_READ_PRECISION, 0), ): vol.All( vol.Coerce(float), vol.In( [0, PRECISION_TENTHS, PRECISION_HALVES, PRECISION_WHOLE] ), ), vol.Optional( CONF_SET_PRECISION, default=self.config_entry.options.get(CONF_SET_PRECISION, 0), ): vol.All( vol.Coerce(float), vol.In( [0, PRECISION_TENTHS, PRECISION_HALVES, PRECISION_WHOLE] ), ), vol.Optional( CONF_TEMPORARY_OVRD_MODE, default=self.config_entry.options.get( CONF_TEMPORARY_OVRD_MODE, True ), ): bool, vol.Optional( CONF_FLOOR_TEMP, default=self.config_entry.options.get(CONF_FLOOR_TEMP, False), ): bool, } ), )
{ "content_hash": "9b97af572fe1a3e1db0b8009fc4ff7f9", "timestamp": "", "source": "github", "line_count": 157, "max_line_length": 86, "avg_line_length": 33.99363057324841, "alnum_prop": 0.5366310661420274, "repo_name": "lukas-hetzenecker/home-assistant", "id": "7c3bc8f8f6b538b33b6e4e2d1dafcad35d7a9d30", "size": "5337", "binary": false, "copies": "11", "ref": "refs/heads/dev", "path": "homeassistant/components/opentherm_gw/config_flow.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2443" }, { "name": "Python", "bytes": "38023745" }, { "name": "Shell", "bytes": "4910" } ], "symlink_target": "" }
""" Tests for the utils module """ from __future__ import unicode_literals from soco.utils import deprecated # Deprecation decorator def test_deprecation(recwarn): @deprecated('0.7') def dummy(args): """My docs""" pass @deprecated('0.8', 'better_function', '0.12') def dummy2(args): """My docs""" pass assert dummy.__doc__ == "My docs\n\n .. deprecated:: 0.7\n" assert dummy2.__doc__ == "My docs\n\n .. deprecated:: 0.8\n\n"\ " Will be removed in version 0.12.\n" \ " Use better_function instead." dummy(3) w = recwarn.pop() assert str(w.message) == 'Call to deprecated function dummy.' dummy2(4) w = recwarn.pop() assert str(w.message) == "Call to deprecated function dummy2. Will be " \ "removed in version 0.12. Use " \ "better_function instead." assert w.filename assert w.lineno
{ "content_hash": "ffef88cecb712ee8224b4d7e0e175d3a", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 77, "avg_line_length": 27.243243243243242, "alnum_prop": 0.5357142857142857, "repo_name": "intfrr/SoCo", "id": "51e7eb5d97a190ecfe59bb857aadb362c57ffbc2", "size": "1032", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "tests/test_utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "168" }, { "name": "Makefile", "bytes": "66" }, { "name": "Python", "bytes": "462657" }, { "name": "Shell", "bytes": "342" } ], "symlink_target": "" }
"""Meta-estimators for building composite models with transformers In addition to its current contents, this module will eventually be home to refurbished versions of Pipeline and FeatureUnion. """ from ._column_transformer import ColumnTransformer, make_column_transformer from ._target import TransformedTargetRegressor __all__ = [ 'ColumnTransformer', 'make_column_transformer', 'TransformedTargetRegressor', ]
{ "content_hash": "b545cb44b3eaf8d7a485e1d5bfe3529d", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 75, "avg_line_length": 26.9375, "alnum_prop": 0.7795823665893271, "repo_name": "chrsrds/scikit-learn", "id": "1cfd53c50d6829c0e7cb6aa993f71d4b9f124895", "size": "431", "binary": false, "copies": "19", "ref": "refs/heads/master", "path": "sklearn/compose/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "1786" }, { "name": "C", "bytes": "385829" }, { "name": "C++", "bytes": "139482" }, { "name": "Makefile", "bytes": "1388" }, { "name": "PowerShell", "bytes": "13427" }, { "name": "Python", "bytes": "5255814" }, { "name": "Shell", "bytes": "4031" } ], "symlink_target": "" }
class Function(object): def sample(self, n): raise NotImplementedError def __call__(self, S): raise NotImplementedError @property def parameters(self): raise NotImplementedError def gradient(self, S): """Gradients of the log-likelihood wrt the parameters.""" raise NotImplementedError def project_parameters(self): raise NotImplementedError
{ "content_hash": "993895ffe1dc1e1d0624f5ee6b26f69d", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 65, "avg_line_length": 23.22222222222222, "alnum_prop": 0.65311004784689, "repo_name": "net-titech/VidSum", "id": "a901fb23888819084a2ac51ee8130e6cbff44b0d", "size": "418", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/packages/aistats-flid/code/functions/function.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "371" }, { "name": "C++", "bytes": "8002" }, { "name": "Python", "bytes": "51560" }, { "name": "TeX", "bytes": "309506" } ], "symlink_target": "" }
import string import glob import time import xml.etree.ElementTree as ET from itertools import chain # Import reader import xlrd import csv import requests # Import data handlers import collections # Import Network Analysis Tools import networkx as nx import igraph as ig # Import language processing tools from gensim import corpora, models from nltk.corpus import stopwords from nltk.stem.snowball import EnglishStemmer as ES def main(): """ Runs a standard analysis. Put pdf files in an 'files' subfolder in the working directory, and run the script. """ depth = "paragraph" convert_pdfs() xmls = get_filelist("files", "xml") docs = [] for xml in xmls: try: docs.append(ET.ElementTree(file=xml)) except Exception, e: print e, xml continue print "%s documents are in the corpus." %str(len(docs)) #docs = [ET.ElementTree(file=xml) for xml in xmls] texts = [[p.text for p in doc.getroot().findall(".//*[@class='DoCO:TextChunk']") if p.text != None] for doc in docs] perform_analysis("isis", content = texts, model="lsa", depth=depth, num_topics=110, show_topics = 20, num_words=20, threshold=0) perform_analysis("isis", content = texts, model="lda", depth=depth, num_topics = 20, show_topics = 20, num_words=10) def convert_pdfs(): """ Converts pdfs to xml via https://gist.github.com/yoavram/4351598 and http://pdfx.cs.man.ac.uk It looks for unconverted pdfs. """ pdfs = get_filelist("files", "pdf") pdfs = set([f.rstrip(".pdf").replace(" ", "") for f in pdfs]) xmls = get_filelist("files", "xml") xmls = set([f.rstrip(".xml") for f in xmls]) filelist = pdfs - xmls for pdf in filelist: pypdfx(pdf) def perform_analysis(keyword, content=None, testdata = None, model="lsa", depth="document", num_topics = 20, show_topics = 20, num_words = 20, threshold=0): """ Workflow for topic analysis. Looks for earlier dicionary and corpus, if not creates them from provided documents. Creates either LSA or LDA model and evaluates it. Output: nodes and edges csv for gephi, a topic csv and a network visualization. """ try: dictionary, corpus = load_dictionary(keyword, depth) except Exception, e: dictionary, corpus = preprocess_content(content, keyword, depth) print "\nBeginning with analysis at %s." % time.ctime() if model is "lsa": _model = create_lsi_model(dictionary, corpus, num_topics) if model is "lda": _model = create_lda_model(dictionary, corpus, num_topics) testdata = load_reference_texts(model) evaluate_model(keyword, testdata, model, _model, num_words, threshold, depth) #test_for_topic_convergence(keyword, testdata, model, _model, num_topics, threshold, depth) export_matrix(keyword, dictionary, model, _model, show_topics, num_words, depth) export_topic_list(keyword, dictionary, model, _model, show_topics, num_words, depth) export_word_graph(keyword, dictionary, model, _model, show_topics, num_words, threshold, depth) def get_filelist(path, extension): """ Creates a list of files in a folder with a given extension. Navigate to this folder first. """ return [f for f in glob.glob("{0}/*.{1}".format(path, extension))] def preprocess_content(content, keyword, depth="document"): """ Takes a list of documents, removes non-alphabetical characters, removes a list of stopwords, performs stemming and creates a dictionary and a corpus for this set of documents for re-use. """ print "\nBeginning with preprocessing at %s." % time.ctime() if depth is "document": if type(content[0]) is list: documents = [" ".join(text) for text in content] else: documents = content if depth is "paragraph": documents = list(chain.from_iterable(content)) if depth is "sentence": documents = list(chain.from_iterable(["".join(text).split(". ") for text in content])) #filter out digits and special characters delete_table = string.maketrans(string.ascii_lowercase, ' ' * len(string.ascii_lowercase)) # remove common words and tokenize stope = stopwords.words("english") #stoplist can be extended like this: # stope.extend(["worda","wordb",...]) with open("stopwords.csv") as stopcsv: reader = csv.reader(stopcsv) for row in reader: stope.extend(row) print "\nThis is a raw input document:" print documents[0] #texts are cleaned (characters only), filtered (stopwords removed) and stemmed (reduced to word stem) texts = [[ES().stem(str(word.encode("utf8")).translate(None, delete_table)) for word in document.lower().split() if str(word.encode("utf8")).translate(None, delete_table) not in stope] for document in documents] # remove words that appear only once all_tokens = sum(texts, []) tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1) texts = [[word for word in text if word not in tokens_once and len(word) > 1] for text in texts] print "\nThis is the raw document after cleaning, filtering, stemming and removal of unique words." print texts[0] #create dictionary and save for later use dictionary = corpora.Dictionary(texts) dictionary.save('{0}_{1}.dict'.format(keyword, depth)) #create corpus and save for later use corpus = [dictionary.doc2bow(text) for text in texts] corpora.MmCorpus.serialize('{0}_{1}_corpus.mm'.format(keyword, depth), corpus) return dictionary, corpus def preprocess_query(query): """ Performs preprocessing steps for a query string. Removing stopword, filtering for alphabet character only, and stemming. """ try: if type(query[0]) is list: query = [" ".join(text) for text in query] except Exception, e: pass if type(query) is list: query = " ".join(query) #filter out digits and special characters delete_table = string.maketrans(string.ascii_lowercase, ' ' * len(string.ascii_lowercase)) # remove common words and tokenize stope = stopwords.words("english") #stoplist can be extended like this: with open("stopwords.csv") as stopcsv: reader = csv.reader(stopcsv) for row in reader: stope.extend(row) query = [ES().stem(str(word.encode("utf8")).translate(None, delete_table)) for word in query.lower().split() if str(word.encode("utf8")).translate(None, delete_table) not in stope] return query def load_dictionary(keyword, depth): """ Load dictionary and corpus from disk. """ dictionary = corpora.Dictionary.load('{0}_{1}.dict'.format(keyword, depth)) corpus = corpora.MmCorpus('{0}_{1}_corpus.mm'.format(keyword, depth)) return dictionary, corpus def create_lsi_model(dictionary, corpus, num_topics): """ Perform an analysis with an LSI-Model. """ tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] return models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=num_topics) def create_lda_model(dictionary, corpus, num_topics): """ Perform an analysis with an LDA-Model. """ return models.LdaModel(corpus, id2word=dictionary, num_topics=num_topics) def load_reference_texts(model): """ Loads reference texts from disk. Reference texts should be placed in a folder in the scripts directory and have to be direct output from MaxQDA. """ with open("testdata/{0}_codes.csv".format(model)) as codes: reader = csv.reader(codes) translation = {row[0]:int(row[1]) for row in reader} xls = xlrd.open_workbook("testdata/testdata.xls") codings = xls.sheet_by_name("Codings") topics = [row.value for row in codings.col(2)][1:] # get topic column; skip column names topics = [topic for topic in topics] topics = [translation[topic] for topic in topics] # recode from name to number texts = [row.value for row in codings.col(6)][1:] # get text column; skip column names testdata = zip(topics, texts) return testdata def evaluate_model(keyword, testdata, modelname, model, num_words, threshold, depth): """ Testdata has to be a list of tuples with form [(topicnr, 'reference text')] """ dictionary, corpus = load_dictionary(keyword, depth) export_evaluation_header(keyword, depth) evaluations = [] for ref, text in testdata: query = preprocess_query(text) query_bow = dictionary.doc2bow(query) query_model = model[query_bow] results = sorted(query_model, key=lambda item: -item[1]) if modelname is "lsa": evaluation = (ref, results[1][0]+1) if modelname is "lda": evaluation = (ref, results[0][0]+1) evaluations.append(evaluation) # evaluation = (referencetopic, lsa-result) for ref in set(d[0] for d in testdata): true_positives, true_negatives = 0, 0 false_positives, false_negatives = 0, 0 for evaluation in evaluations: # # # apply test magic here # # # if evaluation[0] == ref: if evaluation[1] == ref: true_positives += 1 if evaluation[0] == ref: if evaluation[1] != ref: false_negatives += 1 if evaluation[0] != ref: if evaluation[1] == ref: false_positives += 1 if evaluation[0] != ref: if evaluation[1] == ref: true_negatives += 1 # # # # # # # # # # # # # # # # # test_pos = true_positives + false_positives test_neg = false_negatives + true_negatives cond_pos = true_positives + false_negatives cond_neg = false_positives + true_negatives total = len(evaluations) if cond_pos != 0: recall = float(true_positives) / float(cond_pos) if cond_neg != 0: specificity = float(true_negatives) / float(cond_neg) else: specificity = 0 if test_pos != 0: precision = float(true_positives) / float(test_pos) else: precision = 0 if test_neg != 0: neg_pred_value = float(true_negatives) / float(test_neg) accuracy = float(true_positives + true_negatives) / float(total) print "\nThe %s confusion table for %s on %s level and topic nr. %s is:" %(modelname, keyword, depth, str(ref)) print "TP: {0} FN: {1} \nFP: {2} TN: {3}".format(true_positives, false_negatives, false_positives, true_negatives) print "Recall: %.4f" % recall print "Specificity: %.4f" % specificity print "Precision: %.4f" % precision print "Neg. Predict. Value: %.4f" % neg_pred_value print "Accuracy: %.4f \n" % accuracy export_evaluation_results(keyword, depth, model, [str(ref), str(total), str(cond_pos), str(true_positives), str(false_negatives), str(false_positives), str(true_negatives), str(recall), str(specificity), str(precision), str(neg_pred_value), str(accuracy) ]) def test_for_topic_convergence(keyword, testdata, modelname, model, show_topics, threshold, depth): """ This is experimental and not used in the analysis. Especially for LDA it shows a visualization of topic-mapping. """ import matplotlib.pyplot as plt import numpy as np max_id = max(td[0] for td in testdata) dictionary, corpus = load_dictionary(keyword, depth) runs = 10 if modelname is "lsa": convergence = np.zeros((max_id*runs+runs, model.projection.k+1)) if modelname is "lda": convergence = np.zeros((max_id*runs+runs, show_topics+1)) i = 0 while i < runs: evaluations = [] if modelname is "lda": model = create_lda_model(dictionary, corpus, show_topics) for ref, text in testdata: query = preprocess_query(text) query_bow = dictionary.doc2bow(query) query_model = model[query_bow] results = sorted(query_model, key=lambda item: -item[1]) if modelname is "lsa": evaluation = (ref, results[1][0]+1) if modelname is "lda": evaluation = (ref, results[0][0]+1) evaluations.append(evaluation) # evaluation = (referencetopic, lsa-result) conv = sorted(collections.Counter(evaluations).most_common(), key=lambda item: -item[0][0]) for con in conv: if con[0][0] == ref: convergence[(con[0][0]*runs)+i, con[0][1]] += con[1] i += 1 row_max = np.amax(convergence+1, 1) convergence = convergence / row_max[:,None] plt.pcolor(np.log10((convergence+1)*10)) plt.show() def export_evaluation_header(keyword, depth): """ auxiliary function """ with open("{0}_{1}_evaluation.csv".format(keyword, depth), "w") as evaluation: evaluation.write("topicId,testdataSize,sampleSize,TP,FN,FP,TN,recall,Specificity,Precision,NegPredValue,Accuracy\n") def export_evaluation_results(keyword, depth, model, *results): """ auxiliary function """ with open("{0}_{1}_evaluation.csv".format(keyword, depth), "a") as evaluation: evaluation.write(",".join(*results)+"\n") def export_word_graph(keyword, dictionary, modelname, model, num_topics, num_words, threshold, depth): """ Constructs a network of relations between words and topics. This can be seen as a bipartite network, which is then transformed into a unipartite network of word-word relations. Of this network the giant component is taken and visualized. """ H = nx.Graph() for word in dictionary.token2id.items(): H.add_node(word[1], text=word[0], partition=1) n=0 for topic in model.show_topics(num_topics, num_words, formatted=False): H.add_node(len(dictionary)+n+1, partition=0) for word in range(num_words): if topic[word][0] > threshold: #only positive weights H.add_edge(len(dictionary)+n+1, dictionary.token2id[topic[word][1]]) n += 1 # construct bipartite graph with topics as 0 and words as 1 word_nodes, topic_nodes = nx.algorithms.bipartite.sets(H) # create unipartite projection for words W = nx.algorithms.bipartite.weighted_projected_graph(H, word_nodes) # write to disk as GML nx.write_gml(W, "{0}_{1}_{2}x{3}.gml".format(keyword+modelname, depth, num_topics, num_words)) # read from disk as GML and create as igraph.Graph G = ig.read("{0}_{1}_{2}x{3}.gml".format(keyword+modelname, depth, num_topics, num_words), "gml") # filter to giant component gc = ig.VertexClustering(G).giant() visual_style = {} visual_style["layout"] = G.layout_fruchterman_reingold() visual_style["vertex_size"] = 8 visual_style["vertex_label"] = G.vs["text"] visual_style["edge_width"] = 0.5 visual_style["bbox"] = (1200, 1200) visual_style["margin"] = 50 ig.plot(gc, "{0}_{1}_{2}x{3}_FR.svg".format(keyword+modelname, depth, num_topics, num_words), **visual_style) def export_topic_list(keyword, dictionary, modelname, model, num_topics, num_words, depth): with open("{0}_{1}_{2}x{3}_topics.csv".format(keyword+modelname, depth, num_topics, num_words), "w") as topics: topics.write("Words,Weight\n") with open("{0}_{1}_{2}x{3}_topics.csv".format(keyword+modelname, depth, num_topics, num_words), "a") as topics: n = 1 for t in model.show_topics(num_topics, num_words, formatted=False): # item[0] are the correlations of the words in a topic t = sorted(t, key=lambda item: -item[0]) topics.write("topic nr {0}, title\n".format(str(n))) for word in range(num_words): if t[word][0] > 0: # word, weight topics.write(str(t[word][1]) +"," + str(t[word][0]) + "\n") n += 1 topics.write("\n") def export_matrix(keyword, dictionary, modelname, model, show_topics, num_words, depth): """ Exports the results of the LSA into gephi-usable format. The exported network is a bipartite one and needs to be transformed first, before you can start with other graph algorithms. Output: nodes.csv, edges.csv """ # write headers with open("{0}_{1}_{2}x{3}_nodes.csv".format(keyword+modelname, depth, show_topics, num_words), "w") as nodes: nodes.write("Id,Label,Partition\n") with open("{0}_{1}_{2}x{3}_edges.csv".format(keyword+modelname, depth, show_topics, num_words), "w") as edges: edges.write("Source,Target,Label,Weight\n") with open("{0}_{1}_{2}x{3}_nodes.csv".format(keyword+modelname, depth, show_topics, num_words), "a") as nodes: for item in dictionary.token2id.items(): nodes.write(str(item[1]) + "," + str(item[0]) + "," + "Word" + "\n") for i in range(show_topics): nodes.write("{0},Topicnr {1},Topic\n".format( str(len(dictionary) + i + 1), str(i))) with open("{0}_{1}_{2}x{3}_edges.csv".format(keyword+modelname, depth, show_topics, num_words), "w") as edges: n = 0 for t in model.show_topics(show_topics, num_words, formatted=False): for word in range(num_words): # topicnr, wordid, word, weight edges.write(str(len(dictionary) + n + 1) +"," + str(dictionary.token2id[t[word][1]]) + "," + str(t[word][1]) +"," + str(t[word][0]) + "\n") n += 1 def pypdfx(filename): """ Filename is a name of a pdf file WITHOUT the extension The function will print messages, including the status code, and will write the XML file to <filename>.xml source: https://gist.github.com/yoavram/4351598 """ url = "http://pdfx.cs.man.ac.uk" fin = open(filename + '.pdf', 'rb') files = {'file': fin} try: print 'Sending', filename, 'to', url r = requests.post(url, files=files, headers={'Content-Type':'application/pdf'}) print 'Got status code', r.status_code finally: fin.close() fout = open(filename.replace(" ","") + '.xml', 'w') fout.write(r.content) fout.close() print 'Written to', filename.replace(" ","") + '.xml' if __name__ == "__main__": main()
{ "content_hash": "55f2c56cafa2a2de837907ae30c9a4d7", "timestamp": "", "source": "github", "line_count": 539, "max_line_length": 126, "avg_line_length": 37.53061224489796, "alnum_prop": 0.573533046616244, "repo_name": "chreman/isis-praktikum", "id": "404ae076e3689f94424fe3f491b66a2183f50fe6", "size": "20232", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sustainabilitylsa.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "20232" } ], "symlink_target": "" }
""" Title: Image classification via fine-tuning with EfficientNet Author: [Yixing Fu](https://github.com/yixingfu) Date created: 2020/06/30 Last modified: 2020/07/16 Description: Use EfficientNet with weights pre-trained on imagenet for Stanford Dogs classification. """ """ ## Introduction: what is EfficientNet EfficientNet, first introduced in [Tan and Le, 2019](https://arxiv.org/abs/1905.11946) is among the most efficient models (i.e. requiring least FLOPS for inference) that reaches State-of-the-Art accuracy on both imagenet and common image classification transfer learning tasks. The smallest base model is similar to [MnasNet](https://arxiv.org/abs/1807.11626), which reached near-SOTA with a significantly smaller model. By introducing a heuristic way to scale the model, EfficientNet provides a family of models (B0 to B7) that represents a good combination of efficiency and accuracy on a variety of scales. Such a scaling heuristics (compound-scaling, details see [Tan and Le, 2019](https://arxiv.org/abs/1905.11946)) allows the efficiency-oriented base model (B0) to surpass models at every scale, while avoiding extensive grid-search of hyperparameters. A summary of the latest updates on the model is available at [here](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet), where various augmentation schemes and semi-supervised learning approaches are applied to further improve the imagenet performance of the models. These extensions of the model can be used by updating weights without changing model architecture. ## B0 to B7 variants of EfficientNet *(This section provides some details on "compound scaling", and can be skipped if you're only interested in using the models)* Based on the [original paper](https://arxiv.org/abs/1905.11946) people may have the impression that EfficientNet is a continuous family of models created by arbitrarily choosing scaling factor in as Eq.(3) of the paper. However, choice of resolution, depth and width are also restricted by many factors: - Resolution: Resolutions not divisible by 8, 16, etc. cause zero-padding near boundaries of some layers which wastes computational resources. This especially applies to smaller variants of the model, hence the input resolution for B0 and B1 are chosen as 224 and 240. - Depth and width: The building blocks of EfficientNet demands channel size to be multiples of 8. - Resource limit: Memory limitation may bottleneck resolution when depth and width can still increase. In such a situation, increasing depth and/or width but keep resolution can still improve performance. As a result, the depth, width and resolution of each variant of the EfficientNet models are hand-picked and proven to produce good results, though they may be significantly off from the compound scaling formula. Therefore, the keras implementation (detailed below) only provide these 8 models, B0 to B7, instead of allowing arbitray choice of width / depth / resolution parameters. ## Keras implementation of EfficientNet An implementation of EfficientNet B0 to B7 has been shipped with tf.keras since TF2.3. To use EfficientNetB0 for classifying 1000 classes of images from imagenet, run: ```python from tensorflow.keras.applications import EfficientNetB0 model = EfficientNetB0(weights='imagenet') ``` This model takes input images of shape (224, 224, 3), and the input data should range [0, 255]. Normalization is included as part of the model. Because training EfficientNet on ImageNet takes a tremendous amount of resources and several techniques that are not a part of the model architecture itself. Hence the Keras implementation by default loads pre-trained weights obtained via training with [AutoAugment](https://arxiv.org/abs/1805.09501). For B0 to B7 base models, the input shapes are different. Here is a list of input shape expected for each model: | Base model | resolution| |----------------|-----| | EfficientNetB0 | 224 | | EfficientNetB1 | 240 | | EfficientNetB2 | 260 | | EfficientNetB3 | 300 | | EfficientNetB4 | 380 | | EfficientNetB5 | 456 | | EfficientNetB6 | 528 | | EfficientNetB7 | 600 | When the model is intended for transfer learning, the Keras implementation provides a option to remove the top layers: ``` model = EfficientNetB0(include_top=False, weights='imagenet') ``` This option excludes the final `Dense` layer that turns 1280 features on the penultimate layer into prediction of the 1000 ImageNet classes. Replacing the top layer with custom layers allows using EfficientNet as a feature extractor in a transfer learning workflow. Another argument in the model constructor worth noticing is `drop_connect_rate` which controls the dropout rate responsible for [stochastic depth](https://arxiv.org/abs/1603.09382). This parameter serves as a toggle for extra regularization in finetuning, but does not affect loaded weights. For example, when stronger regularization is desired, try: ```python model = EfficientNetB0(weights='imagenet', drop_connect_rate=0.4) ``` The default value is 0.2. ## Example: EfficientNetB0 for Stanford Dogs. EfficientNet is capable of a wide range of image classification tasks. This makes it a good model for transfer learning. As an end-to-end example, we will show using pre-trained EfficientNetB0 on [Stanford Dogs](http://vision.stanford.edu/aditya86/ImageNetDogs/main.html) dataset. """ # IMG_SIZE is determined by EfficientNet model choice IMG_SIZE = 224 """ ## Setup and data loading This example requires TensorFlow 2.3 or above. To use TPU, the TPU runtime must match current running TensorFlow version. If there is a mismatch, try: ```python from cloud_tpu_client import Client c = Client() c.configure_tpu_version(tf.__version__, restart_type="always") ``` """ import tensorflow as tf try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() print("Device:", tpu.master()) strategy = tf.distribute.TPUStrategy(tpu) except ValueError: print("Not connected to a TPU runtime. Using CPU/GPU strategy") strategy = tf.distribute.MirroredStrategy() """ ### Loading data Here we load data from [tensorflow_datasets](https://www.tensorflow.org/datasets) (hereafter TFDS). Stanford Dogs dataset is provided in TFDS as [stanford_dogs](https://www.tensorflow.org/datasets/catalog/stanford_dogs). It features 20,580 images that belong to 120 classes of dog breeds (12,000 for training and 8,580 for testing). By simply changing `dataset_name` below, you may also try this notebook for other datasets in TFDS such as [cifar10](https://www.tensorflow.org/datasets/catalog/cifar10), [cifar100](https://www.tensorflow.org/datasets/catalog/cifar100), [food101](https://www.tensorflow.org/datasets/catalog/food101), etc. When the images are much smaller than the size of EfficientNet input, we can simply upsample the input images. It has been shown in [Tan and Le, 2019](https://arxiv.org/abs/1905.11946) that transfer learning result is better for increased resolution even if input images remain small. For TPU: if using TFDS datasets, a [GCS bucket](https://cloud.google.com/storage/docs/key-terms#buckets) location is required to save the datasets. For example: ```python tfds.load(dataset_name, data_dir="gs://example-bucket/datapath") ``` Also, both the current environment and the TPU service account have proper [access](https://cloud.google.com/tpu/docs/storage-buckets#authorize_the_service_account) to the bucket. Alternatively, for small datasets you may try loading data into the memory and use `tf.data.Dataset.from_tensor_slices()`. """ import tensorflow_datasets as tfds batch_size = 64 dataset_name = "stanford_dogs" (ds_train, ds_test), ds_info = tfds.load( dataset_name, split=["train", "test"], with_info=True, as_supervised=True ) NUM_CLASSES = ds_info.features["label"].num_classes """ When the dataset include images with various size, we need to resize them into a shared size. The Stanford Dogs dataset includes only images at least 200x200 pixels in size. Here we resize the images to the input size needed for EfficientNet. """ size = (IMG_SIZE, IMG_SIZE) ds_train = ds_train.map(lambda image, label: (tf.image.resize(image, size), label)) ds_test = ds_test.map(lambda image, label: (tf.image.resize(image, size), label)) """ ### Visualizing the data The following code shows the first 9 images with their labels. """ import matplotlib.pyplot as plt def format_label(label): string_label = label_info.int2str(label) return string_label.split("-")[1] label_info = ds_info.features["label"] for i, (image, label) in enumerate(ds_train.take(9)): ax = plt.subplot(3, 3, i + 1) plt.imshow(image.numpy().astype("uint8")) plt.title("{}".format(format_label(label))) plt.axis("off") """ ### Data augmentation We can use the preprocessing layers APIs for image augmentation. """ from tensorflow.keras.models import Sequential from tensorflow.keras import layers img_augmentation = Sequential( [ layers.RandomRotation(factor=0.15), layers.RandomTranslation(height_factor=0.1, width_factor=0.1), layers.RandomFlip(), layers.RandomContrast(factor=0.1), ], name="img_augmentation", ) """ This `Sequential` model object can be used both as a part of the model we later build, and as a function to preprocess data before feeding into the model. Using them as function makes it easy to visualize the augmented images. Here we plot 9 examples of augmentation result of a given figure. """ for image, label in ds_train.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) aug_img = img_augmentation(tf.expand_dims(image, axis=0)) plt.imshow(aug_img[0].numpy().astype("uint8")) plt.title("{}".format(format_label(label))) plt.axis("off") """ ### Prepare inputs Once we verify the input data and augmentation are working correctly, we prepare dataset for training. The input data are resized to uniform `IMG_SIZE`. The labels are put into one-hot (a.k.a. categorical) encoding. The dataset is batched. Note: `prefetch` and `AUTOTUNE` may in some situation improve performance, but depends on environment and the specific dataset used. See this [guide](https://www.tensorflow.org/guide/data_performance) for more information on data pipeline performance. """ # One-hot / categorical encoding def input_preprocess(image, label): label = tf.one_hot(label, NUM_CLASSES) return image, label ds_train = ds_train.map(input_preprocess, num_parallel_calls=tf.data.AUTOTUNE) ds_train = ds_train.batch(batch_size=batch_size, drop_remainder=True) ds_train = ds_train.prefetch(tf.data.AUTOTUNE) ds_test = ds_test.map(input_preprocess) ds_test = ds_test.batch(batch_size=batch_size, drop_remainder=True) """ ## Training a model from scratch We build an EfficientNetB0 with 120 output classes, that is initialized from scratch: Note: the accuracy will increase very slowly and may overfit. """ from tensorflow.keras.applications import EfficientNetB0 with strategy.scope(): inputs = layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3)) x = img_augmentation(inputs) outputs = EfficientNetB0(include_top=True, weights=None, classes=NUM_CLASSES)(x) model = tf.keras.Model(inputs, outputs) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] ) model.summary() epochs = 40 # @param {type: "slider", min:10, max:100} hist = model.fit(ds_train, epochs=epochs, validation_data=ds_test, verbose=2) """ Training the model is relatively fast (takes only 20 seconds per epoch on TPUv2 that is available on Colab). This might make it sounds easy to simply train EfficientNet on any dataset wanted from scratch. However, training EfficientNet on smaller datasets, especially those with lower resolution like CIFAR-100, faces the significant challenge of overfitting. Hence training from scratch requires very careful choice of hyperparameters and is difficult to find suitable regularization. It would also be much more demanding in resources. Plotting the training and validation accuracy makes it clear that validation accuracy stagnates at a low value. """ import matplotlib.pyplot as plt def plot_hist(hist): plt.plot(hist.history["accuracy"]) plt.plot(hist.history["val_accuracy"]) plt.title("model accuracy") plt.ylabel("accuracy") plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left") plt.show() plot_hist(hist) """ ## Transfer learning from pre-trained weights Here we initialize the model with pre-trained ImageNet weights, and we fine-tune it on our own dataset. """ def build_model(num_classes): inputs = layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3)) x = img_augmentation(inputs) model = EfficientNetB0(include_top=False, input_tensor=x, weights="imagenet") # Freeze the pretrained weights model.trainable = False # Rebuild top x = layers.GlobalAveragePooling2D(name="avg_pool")(model.output) x = layers.BatchNormalization()(x) top_dropout_rate = 0.2 x = layers.Dropout(top_dropout_rate, name="top_dropout")(x) outputs = layers.Dense(NUM_CLASSES, activation="softmax", name="pred")(x) # Compile model = tf.keras.Model(inputs, outputs, name="EfficientNet") optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2) model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) return model """ The first step to transfer learning is to freeze all layers and train only the top layers. For this step, a relatively large learning rate (1e-2) can be used. Note that validation accuracy and loss will usually be better than training accuracy and loss. This is because the regularization is strong, which only suppresses training-time metrics. Note that the convergence may take up to 50 epochs depending on choice of learning rate. If image augmentation layers were not applied, the validation accuracy may only reach ~60%. """ with strategy.scope(): model = build_model(num_classes=NUM_CLASSES) epochs = 25 # @param {type: "slider", min:8, max:80} hist = model.fit(ds_train, epochs=epochs, validation_data=ds_test, verbose=2) plot_hist(hist) """ The second step is to unfreeze a number of layers and fit the model using smaller learning rate. In this example we show unfreezing all layers, but depending on specific dataset it may be desireble to only unfreeze a fraction of all layers. When the feature extraction with pretrained model works good enough, this step would give a very limited gain on validation accuracy. In our case we only see a small improvement, as ImageNet pretraining already exposed the model to a good amount of dogs. On the other hand, when we use pretrained weights on a dataset that is more different from ImageNet, this fine-tuning step can be crucial as the feature extractor also needs to be adjusted by a considerable amount. Such a situation can be demonstrated if choosing CIFAR-100 dataset instead, where fine-tuning boosts validation accuracy by about 10% to pass 80% on `EfficientNetB0`. In such a case the convergence may take more than 50 epochs. A side note on freezing/unfreezing models: setting `trainable` of a `Model` will simultaneously set all layers belonging to the `Model` to the same `trainable` attribute. Each layer is trainable only if both the layer itself and the model containing it are trainable. Hence when we need to partially freeze/unfreeze a model, we need to make sure the `trainable` attribute of the model is set to `True`. """ def unfreeze_model(model): # We unfreeze the top 20 layers while leaving BatchNorm layers frozen for layer in model.layers[-20:]: if not isinstance(layer, layers.BatchNormalization): layer.trainable = True optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4) model.compile( optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"] ) unfreeze_model(model) epochs = 10 # @param {type: "slider", min:8, max:50} hist = model.fit(ds_train, epochs=epochs, validation_data=ds_test, verbose=2) plot_hist(hist) """ ### Tips for fine tuning EfficientNet On unfreezing layers: - The `BatchNormalization` layers need to be kept frozen ([more details](https://keras.io/guides/transfer_learning/)). If they are also turned to trainable, the first epoch after unfreezing will significantly reduce accuracy. - In some cases it may be beneficial to open up only a portion of layers instead of unfreezing all. This will make fine tuning much faster when going to larger models like B7. - Each block needs to be all turned on or off. This is because the architecture includes a shortcut from the first layer to the last layer for each block. Not respecting blocks also significantly harms the final performance. Some other tips for utilizing EfficientNet: - Larger variants of EfficientNet do not guarantee improved performance, especially for tasks with less data or fewer classes. In such a case, the larger variant of EfficientNet chosen, the harder it is to tune hyperparameters. - EMA (Exponential Moving Average) is very helpful in training EfficientNet from scratch, but not so much for transfer learning. - Do not use the RMSprop setup as in the original paper for transfer learning. The momentum and learning rate are too high for transfer learning. It will easily corrupt the pretrained weight and blow up the loss. A quick check is to see if loss (as categorical cross entropy) is getting significantly larger than log(NUM_CLASSES) after the same epoch. If so, the initial learning rate/momentum is too high. - Smaller batch size benefit validation accuracy, possibly due to effectively providing regularization. ## Using the latest EfficientNet weights Since the initial paper, the EfficientNet has been improved by various methods for data preprocessing and for using unlabelled data to enhance learning results. These improvements are relatively hard and computationally costly to reproduce, and require extra code; but the weights are readily available in the form of TF checkpoint files. The model architecture has not changed, so loading the improved checkpoints is possible. To use a checkpoint provided at [the official model repository](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet), first download the checkpoint. As example, here we download noisy-student version of B1: ``` !wget https://storage.googleapis.com/cloud-tpu-checkpoints/efficientnet\ /noisystudent/noisy_student_efficientnet-b1.tar.gz !tar -xf noisy_student_efficientnet-b1.tar.gz ``` Then use the script [efficientnet_weight_update_util.py](https://github.com/keras-team/keras/blob/master/keras/applications/efficientnet_weight_update_util.py) to convert ckpt file to h5 file. ``` !python efficientnet_weight_update_util.py --model b1 --notop --ckpt \ efficientnet-b1/model.ckpt --o efficientnetb1_notop.h5 ``` When creating model, use the following to load new weight: ```python model = EfficientNetB1(weights="efficientnetb1_notop.h5", include_top=False) ``` """
{ "content_hash": "f39bc282532323810cdf182427d1b528", "timestamp": "", "source": "github", "line_count": 499, "max_line_length": 192, "avg_line_length": 38.44288577154309, "alnum_prop": 0.7620288797372674, "repo_name": "keras-team/keras-io", "id": "4da25d54bd0a2321bb1935a1ebd535577afe1d39", "size": "19183", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/vision/image_classification_efficientnet_fine_tuning.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "15929" }, { "name": "Dockerfile", "bytes": "188" }, { "name": "HTML", "bytes": "21968" }, { "name": "Jupyter Notebook", "bytes": "718942" }, { "name": "Makefile", "bytes": "193" }, { "name": "Python", "bytes": "680865" } ], "symlink_target": "" }
import os MONGODB_SETTINGS = { 'db': 'tushedb', # Name of the database, other available settings refer to Mongoengine documentation } APP_NAME = 'light-cms' # English Only SECRET_KEY = 'secret' # Change this in production SITE_NAME = '图社' ADMIN_URL = '/admin/' # I forgot where I used it BASE_DIR = os.path.dirname(os.path.realpath(__file__)) UPLOAD_FOLDER = os.path.join(BASE_DIR, 'static/uploads') UPLOAD_URL = '/static/uploads/' # Wechat related wc_appid = 'appid' wc_secret = 'secret' wc_id = 'wc_id' # Wechat public account id (the one you set, NOT the original id) wc_token = 'wc_token' # Wechat public # Duoshuo duoshuo_short_name = 'xxxxx'
{ "content_hash": "3f5409138b28f7581da35bff65981dab", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 105, "avg_line_length": 26.6, "alnum_prop": 0.6902255639097744, "repo_name": "nsdown/tushe", "id": "73f3718b5dc1c38bddcbedc591d44abbff53d38e", "size": "693", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "settings.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "5414" }, { "name": "HTML", "bytes": "17186" }, { "name": "JavaScript", "bytes": "1297" }, { "name": "Python", "bytes": "17989" } ], "symlink_target": "" }
import wx import wx.html from ..utils.generic_class import GenericClass from ..utils.constants import control, dtype from ..utils.validator import CharValidator import os import pkg_resources as p class AnatomicalPreprocessing(wx.html.HtmlWindow): def __init__(self, parent, counter = 0): from urllib2 import urlopen wx.html.HtmlWindow.__init__(self, parent, style= wx.html.HW_SCROLLBAR_AUTO) self.SetStandardFonts() self.counter = counter self.LoadPage(p.resource_filename('CPAC', 'GUI/resources/html/anat.html')) # try: # code = urlopen("http://fcp-indi.github.io/docs/user/anat.html").code # if (code / 100 < 4): # self.LoadPage('http://fcp-indi.github.io/docs/user/anat.html') # else: # self.LoadFile('html/anat.html') # except: # self.LoadFile('html/anat.html') def get_counter(self): return self.counter class Segmentation(wx.ScrolledWindow): def __init__(self, parent, counter =0): wx.ScrolledWindow.__init__(self, parent) import os self.counter = counter fsl = os.environ.get('FSLDIR') if not fsl: fsl = "$FSLDIR" self.page = GenericClass(self, "Automatic Tissue Segmentation ") self.page.add(label="Run Tissue Segmentation ", control=control.CHOICE_BOX, name='runSegmentationPreprocessing', type=dtype.LSTR, comment="Automatically segment anatomical images into white matter, gray matter, and CSF based on prior probability maps.", values=["On","Off","On/Off"], wkf_switch = True) self.page.add(label= "White Matter Probability Threshold ", control=control.TEXT_BOX, name='whiteMatterThreshold', type=dtype.LNUM, values= "0.96", validator = CharValidator("no-alpha"), comment="Only voxels with a White Matter probability greater than this value will be classified as White Matter.\n\nCan be a single value or a list of values separated by commas.") self.page.add(label = "Gray Matter Probability Threshold ", control =control.TEXT_BOX, name = 'grayMatterThreshold', type =dtype.LNUM, values= "0.7", validator = CharValidator("no-alpha"), comment= "Only voxels with a Gray Matter probability greater than this value will be classified as Gray Matter.\n\nCan be a single value or a list of values separated by commas.") self.page.add(label= "CSF Probability Threshold ", control=control.TEXT_BOX, name='cerebralSpinalFluidThreshold', type=dtype.LNUM, values = "0.96", validator = CharValidator("no-alpha"), comment="Only voxels with a CSF probability greater than this value will be classified as CSF.\n\nCan be a single value or a list of values separated by commas.") self.page.add(label= "Priors Directory ", control=control.DIR_COMBO_BOX, name='prior_path', type=dtype.STR, values= os.path.join(fsl, 'data/standard/tissuepriors/$standardResolution'), comment="Full path to a directory containing binarized prior probability maps.\n\nThese maps are included as part of the 'Image Resource Files' package available on the Install page of the User Guide.\n\nIt is not necessary to change this path unless you intend to use non-standard priors.") self.page.add(label= "White Matter Prior Probability Map ", control=control.COMBO_BOX, name='PRIOR_WHITE', type=dtype.STR, values = '$prior_path/avg152T1_white_bin.nii.gz', comment="Full path to a binarized White Matter prior probability map.\n\nIt is not necessary to change this path unless you intend to use non-standard priors.") self.page.add(label= "Gray Matter Prior Probability Map ", control=control.COMBO_BOX, name='PRIOR_GRAY', type=dtype.STR, values = '$prior_path/avg152T1_gray_bin.nii.gz', comment="Full path to a binarized Gray Matter prior probability map.\n\nIt is not necessary to change this path unless you intend to use non-standard priors.") self.page.add(label= "CSF Prior Probability Map ", control=control.COMBO_BOX, name='PRIOR_CSF', type=dtype.STR, values = '$prior_path/avg152T1_csf_bin.nii.gz', comment="Full path to a binarized CSF prior probability map.\n\nIt is not necessary to change this path unless you intend to use non-standard priors.") self.page.set_sizer() parent.get_page_list().append(self) def get_counter(self): return self.counter class Registration(wx.ScrolledWindow): def __init__(self, parent, counter = 0): wx.ScrolledWindow.__init__(self, parent) self.counter = counter self.page = GenericClass(self, "Anatomical Registration") fsl = os.environ.get('FSLDIR') if not fsl: fsl = "$FSLDIR" self.page.add(label="Run Anatomical Registration ", control=control.CHOICE_BOX, name='runRegistrationPreprocessing', type=dtype.LSTR, comment="Register anatomical images to a template.", values=["On","Off","On/Off"], wkf_switch = True) self.page.add(label="Anatomical Template Resolution ", control=control.CHOICE_BOX, name='standardResolutionAnat', type=dtype.STR, values = ["1mm", "2mm", "3mm"], comment="The resolution to which anatomical images should be transformed during registration.\n\nThis is the resolution at which processed anatomical files will be output.") self.page.add(label="Anatomical Template (Brain Only) ", control=control.COMBO_BOX, name='standardResolutionBrainAnat', type=dtype.STR, values = str(os.path.join(fsl, "data/standard/MNI152_T1_${standardResolutionAnat}_brain.nii.gz")), comment="Template to be used during registration.\n\nIt is not necessary to change this path unless you intend to use a non-standard template.") self.page.add(label="Anatomical Template (With Skull) ", control=control.COMBO_BOX, name='standardAnat', type=dtype.STR, values = str(os.path.join(fsl, "data/standard/MNI152_T1_${standardResolutionAnat}.nii.gz")), comment="Template to be used during registration.\n\nIt is not necessary to change this path unless you intend to use a non-standard template.") self.page.add(label="Anatomical to Template Registration Method ", control=control.CHOICE_BOX, name='regOption', type=dtype.LSTR, comment="Use either ANTS or FSL (FLIRT and FNIRT) as your anatomical registration method.", values=["ANTS","FSL","ANTS & FSL"], wkf_switch = True) self.page.add(label="FSL FNIRT Configuration File (FSL only) ", control=control.COMBO_BOX, name='fnirtConfig', type=dtype.STR, values = str(os.path.join("T1_2_MNI152_2mm")), comment="Configuration file to be used by FSL to set FNIRT parameters.\n\nIt is not necessary to change this path unless you intend to use custom FNIRT parameters or a non-standard template.") self.page.set_sizer() parent.get_page_list().append(self) def get_counter(self): return self.counter
{ "content_hash": "30c57b12f71f5c09ed2406e040bbeaaf", "timestamp": "", "source": "github", "line_count": 174, "max_line_length": 308, "avg_line_length": 49.03448275862069, "alnum_prop": 0.569971870604782, "repo_name": "sgiavasis/C-PAC", "id": "cf850c588066eff34884be94b3daca0a002f5249", "size": "8532", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "CPAC/GUI/interface/pages/anatomical.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "16855" }, { "name": "JavaScript", "bytes": "52711" }, { "name": "Perl", "bytes": "480" }, { "name": "Python", "bytes": "5521856" }, { "name": "Shell", "bytes": "4507" } ], "symlink_target": "" }
from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import glob import os from pants_test.pants_run_integration_test import PantsRunIntegrationTest class TestIndexJavaIntegration(PantsRunIntegrationTest): def test_index_simple_java_code(self): # Very simple test that we can run the extractor and indexer on some # fairly trivial code without crashing, and that we produce something. args = ['kythe', 'examples/src/java/org/pantsbuild/example/hello::'] with self.temporary_workdir() as workdir: pants_run = self.run_pants_with_workdir(args, workdir) self.assert_success(pants_run) for tgt in ['examples.src.java.org.pantsbuild.example.hello.greet.greet', 'examples.src.java.org.pantsbuild.example.hello.main.main-bin', 'examples.src.java.org.pantsbuild.example.hello.simple.simple']: kindex_glob = os.path.join(workdir, 'kythe/extract/current/{}/current/*.kindex'.format(tgt)) kindex_files = glob.glob(kindex_glob) self.assertEquals(1, len(kindex_files)) kindex_file = kindex_files[0] self.assertTrue(os.path.isfile(kindex_file)) self.assertGreater(os.path.getsize(kindex_file), 200) # Make sure it's not trivial. entries_path = os.path.join(workdir, 'kythe/index/current/{}/current/index.entries'.format(tgt)) self.assertTrue(os.path.isfile(entries_path)) self.assertGreater(os.path.getsize(entries_path), 1000) # Make sure it's not trivial.
{ "content_hash": "fe907926b8e8fdba090e5114641f3501", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 95, "avg_line_length": 52.03125, "alnum_prop": 0.6684684684684684, "repo_name": "pombredanne/pants", "id": "695888163897c0f595aa96043ddcdf2b39b23a9e", "size": "1812", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "contrib/kythe/tests/python/pants_test/contrib/kythe/tasks/test_index_java_integration.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "781" }, { "name": "CSS", "bytes": "9444" }, { "name": "Cucumber", "bytes": "919" }, { "name": "GAP", "bytes": "2459" }, { "name": "Go", "bytes": "1746" }, { "name": "HTML", "bytes": "79866" }, { "name": "Java", "bytes": "446241" }, { "name": "JavaScript", "bytes": "29992" }, { "name": "Protocol Buffer", "bytes": "3783" }, { "name": "Python", "bytes": "5091198" }, { "name": "Scala", "bytes": "84585" }, { "name": "Shell", "bytes": "58748" }, { "name": "Thrift", "bytes": "1966" } ], "symlink_target": "" }
""" ====================================================================== Time-frequency on simulated data (Multitaper vs. Morlet vs. Stockwell) ====================================================================== This example demonstrates the different time-frequency estimation methods on simulated data. It shows the time-frequency resolution trade-off and the problem of estimation variance. In addition it highlights alternative functions for generating TFRs without averaging across trials, or by operating on numpy arrays. """ # Authors: Hari Bharadwaj <[email protected]> # Denis Engemann <[email protected]> # Chris Holdgraf <[email protected]> # # License: BSD (3-clause) import numpy as np from matplotlib import pyplot as plt from mne import create_info, EpochsArray from mne.baseline import rescale from mne.time_frequency import (tfr_multitaper, tfr_stockwell, tfr_morlet, tfr_array_morlet) print(__doc__) ############################################################################### # Simulate data # ------------- # # We'll simulate data with a known spectro-temporal structure. sfreq = 1000.0 ch_names = ['SIM0001', 'SIM0002'] ch_types = ['grad', 'grad'] info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) n_times = 1024 # Just over 1 second epochs n_epochs = 40 seed = 42 rng = np.random.RandomState(seed) noise = rng.randn(n_epochs, len(ch_names), n_times) # Add a 50 Hz sinusoidal burst to the noise and ramp it. t = np.arange(n_times, dtype=np.float) / sfreq signal = np.sin(np.pi * 2. * 50. * t) # 50 Hz sinusoid signal signal[np.logical_or(t < 0.45, t > 0.55)] = 0. # Hard windowing on_time = np.logical_and(t >= 0.45, t <= 0.55) signal[on_time] *= np.hanning(on_time.sum()) # Ramping data = noise + signal reject = dict(grad=4000) events = np.empty((n_epochs, 3), dtype=int) first_event_sample = 100 event_id = dict(sin50hz=1) for k in range(n_epochs): events[k, :] = first_event_sample + k * n_times, 0, event_id['sin50hz'] epochs = EpochsArray(data=data, info=info, events=events, event_id=event_id, reject=reject) epochs.average().plot() ############################################################################### # Calculate a time-frequency representation (TFR) # ----------------------------------------------- # # Below we'll demonstrate the output of several TFR functions in MNE: # # * :func:`mne.time_frequency.tfr_multitaper` # * :func:`mne.time_frequency.tfr_stockwell` # * :func:`mne.time_frequency.tfr_morlet` # # Multitaper transform # ==================== # First we'll use the multitaper method for calculating the TFR. # This creates several orthogonal tapering windows in the TFR estimation, # which reduces variance. We'll also show some of the parameters that can be # tweaked (e.g., ``time_bandwidth``) that will result in different multitaper # properties, and thus a different TFR. You can trade time resolution or # frequency resolution or both in order to get a reduction in variance. freqs = np.arange(5., 100., 3.) vmin, vmax = -3., 3. # Define our color limits. ############################################################################### # **(1) Least smoothing (most variance/background fluctuations).** n_cycles = freqs / 2. time_bandwidth = 2.0 # Least possible frequency-smoothing (1 taper) power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Least smoothing, most variance') ############################################################################### # **(2) Less frequency smoothing, more time smoothing.** n_cycles = freqs # Increase time-window length to 1 second. time_bandwidth = 4.0 # Same frequency-smoothing as (1) 3 tapers. power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Less frequency smoothing, more time smoothing') ############################################################################### # **(3) Less time smoothing, more frequency smoothing.** n_cycles = freqs / 2. time_bandwidth = 8.0 # Same time-smoothing as (1), 7 tapers. power = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, return_itc=False) # Plot results. Baseline correct based on first 100 ms. power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Sim: Less time smoothing, more frequency smoothing') ############################################################################## # Stockwell (S) transform # ======================= # # Stockwell uses a Gaussian window to balance temporal and spectral resolution. # Importantly, frequency bands are phase-normalized, hence strictly comparable # with regard to timing, and, the input signal can be recoverd from the # transform in a lossless way if we disregard numerical errors. In this case, # we control the spectral / temporal resolution by specifying different widths # of the gaussian window using the ``width`` parameter. fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharey=True) fmin, fmax = freqs[[0, -1]] for width, ax in zip((0.2, .7, 3.0), axs): power = tfr_stockwell(epochs, fmin=fmin, fmax=fmax, width=width) power.plot([0], baseline=(0., 0.1), mode='mean', axes=ax, show=False, colorbar=False) ax.set_title('Sim: Using S transform, width = {:0.1f}'.format(width)) plt.tight_layout() ############################################################################### # Morlet Wavelets # =============== # # Finally, show the TFR using morlet wavelets, which are a sinusoidal wave # with a gaussian envelope. We can control the balance between spectral and # temporal resolution with the ``n_cycles`` parameter, which defines the # number of cycles to include in the window. fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharey=True) all_n_cycles = [1, 3, freqs / 2.] for n_cycles, ax in zip(all_n_cycles, axs): power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False) power.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, axes=ax, show=False, colorbar=False) n_cycles = 'scaled by freqs' if not isinstance(n_cycles, int) else n_cycles ax.set_title('Sim: Using Morlet wavelet, n_cycles = %s' % n_cycles) plt.tight_layout() ############################################################################### # Calculating a TFR without averaging over epochs # ----------------------------------------------- # # It is also possible to calculate a TFR without averaging across trials. # We can do this by using ``average=False``. In this case, an instance of # :class:`mne.time_frequency.EpochsTFR` is returned. n_cycles = freqs / 2. power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False, average=False) print(type(power)) avgpower = power.average() avgpower.plot([0], baseline=(0., 0.1), mode='mean', vmin=vmin, vmax=vmax, title='Using Morlet wavelets and EpochsTFR', show=False) ############################################################################### # Operating on arrays # ------------------- # # MNE also has versions of the functions above which operate on numpy arrays # instead of MNE objects. They expect inputs of the shape # ``(n_epochs, n_channels, n_times)``. They will also return a numpy array # of shape ``(n_epochs, n_channels, n_freqs, n_times)``. power = tfr_array_morlet(epochs.get_data(), sfreq=epochs.info['sfreq'], freqs=freqs, n_cycles=n_cycles, output='avg_power') # Baseline the output rescale(power, epochs.times, (0., 0.1), mode='mean', copy=False) fig, ax = plt.subplots() mesh = ax.pcolormesh(epochs.times * 1000, freqs, power[0], cmap='RdBu_r', vmin=vmin, vmax=vmax) ax.set_title('TFR calculated on a numpy array') ax.set(ylim=freqs[[0, -1]], xlabel='Time (ms)') fig.colorbar(mesh) plt.tight_layout() plt.show()
{ "content_hash": "2d2f217f978f2a68a555f11ad116ab1d", "timestamp": "", "source": "github", "line_count": 198, "max_line_length": 79, "avg_line_length": 42.56060606060606, "alnum_prop": 0.6035362525216565, "repo_name": "mne-tools/mne-tools.github.io", "id": "da22307274e2da9e1123689fd867a4efa07f001f", "size": "8427", "binary": false, "copies": "6", "ref": "refs/heads/main", "path": "0.17/_downloads/7919fb36eddf047b9e007999813d42f4/plot_time_frequency_simulated.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "708696" }, { "name": "Dockerfile", "bytes": "1820" }, { "name": "HTML", "bytes": "1526247783" }, { "name": "JavaScript", "bytes": "1323087" }, { "name": "Jupyter Notebook", "bytes": "24820047" }, { "name": "Python", "bytes": "18575494" } ], "symlink_target": "" }
import pytest import responses from flask import Flask from urlobject import URLObject from flask_dance.consumer import OAuth2ConsumerBlueprint from flask_dance.consumer.storage import MemoryStorage from flask_dance.contrib.meetup import make_meetup_blueprint, meetup @pytest.fixture def make_app(): "A callable to create a Flask app with the Meetup provider" def _make_app(*args, **kwargs): app = Flask(__name__) app.secret_key = "whatever" blueprint = make_meetup_blueprint(*args, **kwargs) app.register_blueprint(blueprint) return app return _make_app def test_blueprint_factory(): meetup_bp = make_meetup_blueprint(key="foo", secret="bar") assert isinstance(meetup_bp, OAuth2ConsumerBlueprint) assert meetup_bp.session.scope == ["basic"] assert meetup_bp.session.base_url == "https://api.meetup.com/2/" assert meetup_bp.session.client_id == "foo" assert meetup_bp.client_secret == "bar" assert meetup_bp.authorization_url == "https://secure.meetup.com/oauth2/authorize" assert meetup_bp.token_url == "https://secure.meetup.com/oauth2/access" assert meetup_bp.token_url_params == {"include_client_id": True} def test_load_from_config(make_app): app = make_app() app.config["MEETUP_OAUTH_CLIENT_ID"] = "foo" app.config["MEETUP_OAUTH_CLIENT_SECRET"] = "bar" resp = app.test_client().get("/meetup") url = resp.headers["Location"] client_id = URLObject(url).query.dict.get("client_id") assert client_id == "foo" def test_blueprint_factory_scope(): meetup_bp = make_meetup_blueprint(key="foo", secret="bar", scope="customscope") assert meetup_bp.session.scope == "customscope" @responses.activate def test_context_local(make_app): responses.add(responses.GET, "https://meetup.com") # set up two apps with two different set of auth tokens app1 = make_app( "foo1", "bar1", redirect_to="url1", storage=MemoryStorage({"access_token": "app1"}), ) app2 = make_app( "foo2", "bar2", redirect_to="url2", storage=MemoryStorage({"access_token": "app2"}), ) # outside of a request context, referencing functions on the `meetup` object # will raise an exception with pytest.raises(RuntimeError): meetup.get("https://meetup.com") # inside of a request context, `meetup` should be a proxy to the correct # blueprint session with app1.test_request_context("/"): app1.preprocess_request() meetup.get("https://meetup.com") request = responses.calls[0].request assert request.headers["Authorization"] == "Bearer app1" with app2.test_request_context("/"): app2.preprocess_request() meetup.get("https://meetup.com") request = responses.calls[1].request assert request.headers["Authorization"] == "Bearer app2"
{ "content_hash": "1a9514af56f68a61b3221ff2248ea6e0", "timestamp": "", "source": "github", "line_count": 88, "max_line_length": 86, "avg_line_length": 33.14772727272727, "alnum_prop": 0.6643812135755913, "repo_name": "singingwolfboy/flask-dance", "id": "6412a598299c94728d34925579e07dc7610639fb", "size": "2917", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "tests/contrib/test_meetup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "329946" } ], "symlink_target": "" }
"""Tests for the Whois config flow.""" from unittest.mock import AsyncMock, MagicMock import pytest from whois.exceptions import ( FailedParsingWhoisOutput, UnknownDateFormat, UnknownTld, WhoisCommandFailed, ) from homeassistant.components.whois.const import DOMAIN from homeassistant.config_entries import SOURCE_USER from homeassistant.const import CONF_DOMAIN from homeassistant.core import HomeAssistant from homeassistant.data_entry_flow import FlowResultType from tests.common import MockConfigEntry async def test_full_user_flow( hass: HomeAssistant, mock_setup_entry: AsyncMock, mock_whois_config_flow: MagicMock, ) -> None: """Test the full user configuration flow.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result.get("type") == FlowResultType.FORM assert result.get("step_id") == SOURCE_USER assert "flow_id" in result result2 = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_DOMAIN: "Example.com"}, ) assert result2.get("type") == FlowResultType.CREATE_ENTRY assert result2.get("title") == "Example.com" assert result2.get("data") == {CONF_DOMAIN: "example.com"} assert len(mock_setup_entry.mock_calls) == 1 @pytest.mark.parametrize( "throw,reason", [ (UnknownTld, "unknown_tld"), (FailedParsingWhoisOutput, "unexpected_response"), (UnknownDateFormat, "unknown_date_format"), (WhoisCommandFailed, "whois_command_failed"), ], ) async def test_full_flow_with_error( hass: HomeAssistant, mock_setup_entry: AsyncMock, mock_whois_config_flow: MagicMock, throw: Exception, reason: str, ) -> None: """Test the full user configuration flow with an error. This tests tests a full config flow, with an error happening; allowing the user to fix the error and try again. """ result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result.get("type") == FlowResultType.FORM assert result.get("step_id") == SOURCE_USER assert "flow_id" in result mock_whois_config_flow.side_effect = throw result2 = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_DOMAIN: "Example.com"}, ) assert result2.get("type") == FlowResultType.FORM assert result2.get("step_id") == SOURCE_USER assert result2.get("errors") == {"base": reason} assert "flow_id" in result2 assert len(mock_setup_entry.mock_calls) == 0 assert len(mock_whois_config_flow.mock_calls) == 1 mock_whois_config_flow.side_effect = None result3 = await hass.config_entries.flow.async_configure( result2["flow_id"], user_input={CONF_DOMAIN: "Example.com"}, ) assert result3.get("type") == FlowResultType.CREATE_ENTRY assert result3.get("title") == "Example.com" assert result3.get("data") == {CONF_DOMAIN: "example.com"} assert len(mock_setup_entry.mock_calls) == 1 assert len(mock_whois_config_flow.mock_calls) == 2 async def test_already_configured( hass: HomeAssistant, mock_setup_entry: AsyncMock, mock_config_entry: MockConfigEntry, mock_whois_config_flow: MagicMock, ) -> None: """Test we abort if already configured.""" mock_config_entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_DOMAIN: "HOME-Assistant.io"}, ) assert result.get("type") == FlowResultType.ABORT assert result.get("reason") == "already_configured" assert len(mock_setup_entry.mock_calls) == 0
{ "content_hash": "0788a09a1e4310c8489ffe8ce11344a4", "timestamp": "", "source": "github", "line_count": 122, "max_line_length": 74, "avg_line_length": 30.89344262295082, "alnum_prop": 0.677368002122579, "repo_name": "mezz64/home-assistant", "id": "7250a9d15672f0b4a69664c39dd0623e6faae092", "size": "3769", "binary": false, "copies": "3", "ref": "refs/heads/dev", "path": "tests/components/whois/test_config_flow.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2963" }, { "name": "PLSQL", "bytes": "840" }, { "name": "Python", "bytes": "52481895" }, { "name": "Shell", "bytes": "6252" } ], "symlink_target": "" }
from django.core import urlresolvers from django.conf.urls import include, url from django.utils.translation import ugettext_lazy as _ from wagtail.wagtailcore import hooks from wagtail.wagtailsearch.urls import admin as admin_urls from wagtail.wagtailadmin.menu import MenuItem @hooks.register('register_admin_urls') def register_admin_urls(): return [ url(r'^search/', include(admin_urls)), ] @hooks.register('construct_main_menu') def construct_main_menu(request, menu_items): # TEMPORARY: Only show if the user is a superuser if request.user.is_superuser: menu_items.append( MenuItem(_('Editors picks'), urlresolvers.reverse('wagtailsearch_editorspicks_index'), classnames='icon icon-pick', order=900) )
{ "content_hash": "72247cea92dfcf3c0f7d1fbc07ad5661", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 138, "avg_line_length": 31.916666666666668, "alnum_prop": 0.7310704960835509, "repo_name": "100Shapes/wagtail", "id": "d3d533036160a50d186b3e1c595c6af85f57c0b1", "size": "766", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "wagtail/wagtailsearch/wagtail_hooks.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "134161" }, { "name": "D", "bytes": "2012" }, { "name": "JavaScript", "bytes": "50022" }, { "name": "Python", "bytes": "907538" }, { "name": "Shell", "bytes": "8459" } ], "symlink_target": "" }
"""This module contains the clparserutil's unit tests.""" import logging import optparse import unittest from .. import clparserutil class TestCase(unittest.TestCase): def test_check_logginglevel(self): option = clparserutil.Option( "--create", action="store", dest="logging_level", default=logging.FATAL, type="logginglevel", help="whatever") values = [ ["debug", logging.DEBUG], ["info", logging.INFO], ["INFO", logging.INFO], ["warning", logging.WARNING], ["eRRor", logging.ERROR], ["CRITICAL", logging.CRITICAL], ["FATAL", logging.FATAL], ["dave", None], ["None", None], ["", None], ] type_checker = clparserutil.Option.TYPE_CHECKER["logginglevel"] self.assertIsNotNone(type_checker) opt_string = option.get_opt_string(), for value in values: if value[1] is not None: msg = "Failed to parse '%s' correctly." % value[0] result = type_checker(option, opt_string, value[0]) self.assertEqual(result, value[1], msg) else: with self.assertRaises(optparse.OptionValueError): type_checker(option, opt_string, value[0]) def test_check_user_colon_password(self): option = clparserutil.Option( "--create", action="store", dest="server", default="", type="usercolonpassword", help="whatever") values = [ ["dave:simons", ("dave", "simons")], ["dave", None], ["dave:", None], [":simons", None], [":", None], ["", None], ] type_checker = clparserutil.Option.TYPE_CHECKER["usercolonpassword"] self.assertIsNotNone(type_checker) opt_string = option.get_opt_string(), for value in values: if value[1] is not None: msg = "Failed to parse '%s' correctly." % value[0] result = type_checker(option, opt_string, value[0]) self.assertEqual(result, value[1], msg) else: with self.assertRaises(optparse.OptionValueError): type_checker(option, opt_string, value[0]) def test_check_scheme_host_port(self): option = clparserutil.Option( "--create", action="store", dest="server", default="bindle:8909", type="schemehostport", help="whatever") values = [ ["http://bindle:8909", "http://bindle:8909"], ["https://bindle:8909", "https://bindle:8909"], ["http://bindle", "http://bindle"], ["https://bindle", "https://bindle"], ["dave", None], ["http://bindle:", None], ["https://bindle:", None], ] type_checker = clparserutil.Option.TYPE_CHECKER["schemehostport"] self.assertIsNotNone(type_checker) opt_string = option.get_opt_string(), for value in values: if value[1] is not None: msg = "Failed to parse '%s' correctly." % value[0] result = type_checker(option, opt_string, value[0]) self.assertEqual(result, value[1], msg) else: with self.assertRaises(optparse.OptionValueError): type_checker(option, opt_string, value[0]) def test_check_boolean(self): option = clparserutil.Option( "--create", action="store", dest="create", default=True, type="boolean", help="create key store - default = True") values = [ ["true", True], ["True", True], ["trUe", True], ["t", True], ["T", True], ["1", True], ["y", True], ["yes", True], ["y", True], ["false", False], ["False", False], ["FaLse", False], ["f", False], ["F", False], ["0", False], ["f", False], ["no", False], ["n", False], ["dave", None], ["None", None], ["", None], ] type_checker = clparserutil.Option.TYPE_CHECKER["boolean"] opt_string = option.get_opt_string(), for value in values: if value[1] is not None: msg = "Failed to parse '%s' correctly." % value[0] result = type_checker(option, opt_string, value[0]) self.assertEqual(result, value[1], msg) else: with self.assertRaises(optparse.OptionValueError): type_checker(option, opt_string, value[0])
{ "content_hash": "6f6f3d57137b106e752b7a57ad71023c", "timestamp": "", "source": "github", "line_count": 146, "max_line_length": 76, "avg_line_length": 34.06849315068493, "alnum_prop": 0.48391636509851227, "repo_name": "simonsdave/tor-async-couchdb", "id": "85e9ea308074564930af6fce437a223cbd7b0ca0", "size": "4974", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tor_async_couchdb/tests/clparserutil_unit_tests.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "138307" }, { "name": "Shell", "bytes": "2032" } ], "symlink_target": "" }
from sympy import Rational as frac from ..helpers import article, expand_symmetries from ._helpers import CnScheme _source = article( authors=["G.M. Ewing"], title="On Approximate Cubature", journal="The American Mathematical Monthly", volume="48", number="2", month="feb", year="1941", pages="134-136", url="https://doi.org/10.2307/2303604", ) def ewing(n): d = {"0": [[frac(2, 3)]], "a": [[frac(1, 3 * 2 ** n)], [1]]} points, weights = expand_symmetries(d, n) return CnScheme("Ewing", n, weights, points, 3, _source)
{ "content_hash": "49ff5f90c69646edc956a5d9e073cbac", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 64, "avg_line_length": 25.954545454545453, "alnum_prop": 0.6147110332749562, "repo_name": "nschloe/quadpy", "id": "d5e107b09c9c45ebd25b6d27196c08fbe2fb64b1", "size": "571", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "src/quadpy/cn/_ewing.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "992" }, { "name": "Python", "bytes": "897850" } ], "symlink_target": "" }
from toolset.test_types.verifications import basic_body_verification, verify_headers from toolset.test_types.abstract_test_type import AbstractTestType class TestType(AbstractTestType): def __init__(self, config): self.plaintext_url = "" kwargs = { 'name': 'plaintext', 'requires_db': False, 'accept_header': self.accept('plaintext'), 'args': ['plaintext_url'] } AbstractTestType.__init__(self, config, **kwargs) def verify(self, base_url): url = base_url + self.plaintext_url headers, body = self.request_headers_and_body(url) _, problems = basic_body_verification(body, url, is_json_check=False) # plaintext_url should be at least "/plaintext" if len(self.plaintext_url) < 10: problems.append( ("fail", "Route for plaintext must be at least 10 characters, found '{}' instead".format(self.plaintext_url), url)) if len(problems) > 0: return problems # Case insensitive body = body.lower() expected = "hello, world!" extra_bytes = len(body) - len(expected) if expected not in body: return [('fail', "Could not find 'Hello, World!' in response.", url)] if extra_bytes > 0: problems.append( ('warn', ("Server is returning %s more bytes than are required. " "This may negatively affect benchmark performance." % extra_bytes), url)) problems += verify_headers(self.request_headers_and_body, headers, url, should_be='plaintext') if len(problems) == 0: return [('pass', '', url)] else: return problems def get_url(self): return self.plaintext_url def get_script_name(self): return 'pipeline.sh' def get_script_variables(self, name, url): return { 'max_concurrency': max(self.config.concurrency_levels), 'name': name, 'duration': self.config.duration, 'levels': " ".join("{}".format(item) for item in self.config.pipeline_concurrency_levels), 'server_host': self.config.server_host, 'url': url, 'pipeline': 16, 'accept': "text/plain,text/html;q=0.9,application/xhtml+xml;q=0.9,application/xml;q=0.8,*/*;q=0.7" }
{ "content_hash": "6dbde592bc0eecd0698f7d4c54fb2dcc", "timestamp": "", "source": "github", "line_count": 80, "max_line_length": 117, "avg_line_length": 32.8875, "alnum_prop": 0.5248954770049411, "repo_name": "greenlaw110/FrameworkBenchmarks", "id": "1ca4bee1236c5fcb1c83bf165ece2174b9cf3958", "size": "2631", "binary": false, "copies": "15", "ref": "refs/heads/master", "path": "toolset/test_types/plaintext/plaintext.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "ASP", "bytes": "104" }, { "name": "Batchfile", "bytes": "1125" }, { "name": "C", "bytes": "176072" }, { "name": "C#", "bytes": "453771" }, { "name": "C++", "bytes": "170038" }, { "name": "CMake", "bytes": "6315" }, { "name": "CSS", "bytes": "2035" }, { "name": "Clojure", "bytes": "80807" }, { "name": "Common Lisp", "bytes": "22084" }, { "name": "Crystal", "bytes": "27193" }, { "name": "D", "bytes": "203825" }, { "name": "Dart", "bytes": "52130" }, { "name": "Dockerfile", "bytes": "327921" }, { "name": "Dylan", "bytes": "868" }, { "name": "Elixir", "bytes": "14368" }, { "name": "Erlang", "bytes": "41222" }, { "name": "F#", "bytes": "89739" }, { "name": "Go", "bytes": "163503" }, { "name": "Groovy", "bytes": "21834" }, { "name": "HTML", "bytes": "141462" }, { "name": "Hack", "bytes": "2261" }, { "name": "Haskell", "bytes": "70225" }, { "name": "Java", "bytes": "679190" }, { "name": "JavaScript", "bytes": "174521" }, { "name": "Kotlin", "bytes": "57654" }, { "name": "Lua", "bytes": "14508" }, { "name": "Makefile", "bytes": "4321" }, { "name": "Meson", "bytes": "846" }, { "name": "MoonScript", "bytes": "2396" }, { "name": "Nim", "bytes": "1288" }, { "name": "PHP", "bytes": "504030" }, { "name": "PLpgSQL", "bytes": "3446" }, { "name": "Perl", "bytes": "15376" }, { "name": "Python", "bytes": "332042" }, { "name": "QMake", "bytes": "2301" }, { "name": "Racket", "bytes": "5069" }, { "name": "Ruby", "bytes": "88707" }, { "name": "Rust", "bytes": "81497" }, { "name": "Scala", "bytes": "101711" }, { "name": "Shell", "bytes": "96313" }, { "name": "Smarty", "bytes": "436" }, { "name": "Swift", "bytes": "101361" }, { "name": "TypeScript", "bytes": "14303" }, { "name": "UrWeb", "bytes": "4453" }, { "name": "Vala", "bytes": "1579" }, { "name": "Visual Basic", "bytes": "27087" }, { "name": "Volt", "bytes": "511" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/loot/loot_schematic/shared_utensils_schematic.iff" result.attribute_template_id = -1 result.stfName("craft_item_ingredients_n","utensils") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "a06c4974f0509d709a42064cd1eb803e", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 86, "avg_line_length": 25.384615384615383, "alnum_prop": 0.7121212121212122, "repo_name": "anhstudios/swganh", "id": "a5340af8dd42a65f660ee88de24452a062abb145", "size": "475", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "data/scripts/templates/object/tangible/loot/loot_schematic/shared_utensils_schematic.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11887" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2357839" }, { "name": "CMake", "bytes": "41264" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7503510" }, { "name": "SQLPL", "bytes": "42770" } ], "symlink_target": "" }
import numpy as np from collections import Counter from MachineLearning.Distances import DistancesMatrix class NearestNeighbor: def __init__(self,k): self.k=k def train(self,X,y): #X is matrix NlearnXp y is 1d-vector of length Nlearn self.X=X self.y=y self.Nl=X.shape[0] def query(self,Xt,typeD='Euc'): Ntest=Xt.shape[0] ypred = np.zeros(Ntest) tD=typeD Dist=DistancesMatrix(self.X,Xt,self.Nl,Ntest,typeD=tD,T=False) if self.k != 1: ind=np.argsort(Dist,axis=1) ypred = [Counter(self.y[ind[rt,0:self.k]]).most_common()[0][0] for rt in range(Ntest)] #for rt in range(Ntest): # ypred[rt]=Counter(self.y[ind[rt,0:self.k]]).most_common()[0][0] else: ind=np.argmin(Dist,axis=1) ypred=self.y[ind] return ypred
{ "content_hash": "c5d778c3eb0f1e1e92e31b8c248285ec", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 89, "avg_line_length": 23.625, "alnum_prop": 0.6785714285714286, "repo_name": "L-F-A/Machine-Learning", "id": "8ba4610c1a2a08685e148f1db05d85892965f264", "size": "756", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "NNeighbor/NN.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "134484" } ], "symlink_target": "" }
""" Reactor that uses IO completion ports """ from twisted.internet import base, interfaces, main, error from twisted.python import log, failure from twisted.internet._dumbwin32proc import Process from zope.interface import implements import socket, sys from twisted.internet.iocpreactor import iocpsupport as _iocp from twisted.internet.iocpreactor.const import WAIT_TIMEOUT from twisted.internet.iocpreactor import tcp, udp from twisted.python.compat import set MAX_TIMEOUT = 2000 # 2 seconds, see doIteration for explanation EVENTS_PER_LOOP = 1000 # XXX: what's a good value here? # keys to associate with normal and waker events KEY_NORMAL, KEY_WAKEUP = range(2) _NO_GETHANDLE = error.ConnectionFdescWentAway( 'Handler has no getFileHandle method') _NO_FILEDESC = error.ConnectionFdescWentAway('Filedescriptor went away') class IOCPReactor(base._SignalReactorMixin, base.ReactorBase): implements(interfaces.IReactorTCP, interfaces.IReactorUDP, interfaces.IReactorMulticast, interfaces.IReactorProcess) port = None def __init__(self): base.ReactorBase.__init__(self) self.port = _iocp.CompletionPort() self.handles = set() def addActiveHandle(self, handle): self.handles.add(handle) def removeActiveHandle(self, handle): self.handles.discard(handle) def doIteration(self, timeout): # This function sits and waits for an IO completion event. # # There are two requirements: process IO events as soon as they arrive # and process ctrl-break from the user in a reasonable amount of time. # # There are three kinds of waiting. # 1) GetQueuedCompletionStatus (self.port.getEvent) to wait for IO # events only. # 2) Msg* family of wait functions that can stop waiting when # ctrl-break is detected (then, I think, Python converts it into a # KeyboardInterrupt) # 3) *Ex family of wait functions that put the thread into an # "alertable" wait state which is supposedly triggered by IO completion # # 2) and 3) can be combined. Trouble is, my IO completion is not # causing 3) to trigger, possibly because I do not use an IO completion # callback. Windows is weird. # There are two ways to handle this. I could use MsgWaitForSingleObject # here and GetQueuedCompletionStatus in a thread. Or I could poll with # a reasonable interval. Guess what! Threads are hard. processed_events = 0 if timeout is None: timeout = MAX_TIMEOUT else: timeout = min(MAX_TIMEOUT, int(1000*timeout)) rc, bytes, key, evt = self.port.getEvent(timeout) while processed_events < EVENTS_PER_LOOP: if rc == WAIT_TIMEOUT: break if key != KEY_WAKEUP: assert key == KEY_NORMAL if not evt.ignore: log.callWithLogger(evt.owner, self._callEventCallback, rc, bytes, evt) processed_events += 1 rc, bytes, key, evt = self.port.getEvent(0) def _callEventCallback(self, rc, bytes, evt): owner = evt.owner why = None try: evt.callback(rc, bytes, evt) handfn = getattr(owner, 'getFileHandle', None) if not handfn: why = _NO_GETHANDLE elif handfn() == -1: why = _NO_FILEDESC if why: return # ignore handles that were closed except: why = sys.exc_info()[1] log.err() if why: owner.loseConnection(failure.Failure(why)) def installWaker(self): pass def wakeUp(self): self.port.postEvent(0, KEY_WAKEUP, None) def registerHandle(self, handle): self.port.addHandle(handle, KEY_NORMAL) def createSocket(self, af, stype): skt = socket.socket(af, stype) self.registerHandle(skt.fileno()) return skt def listenTCP(self, port, factory, backlog=50, interface=''): """ @see: twisted.internet.interfaces.IReactorTCP.listenTCP """ p = tcp.Port(port, factory, backlog, interface, self) p.startListening() return p def connectTCP(self, host, port, factory, timeout=30, bindAddress=None): """ @see: twisted.internet.interfaces.IReactorTCP.connectTCP """ c = tcp.Connector(host, port, factory, timeout, bindAddress, self) c.connect() return c def listenUDP(self, port, protocol, interface='', maxPacketSize=8192): """ Connects a given L{DatagramProtocol} to the given numeric UDP port. @returns: object conforming to L{IListeningPort}. """ p = udp.Port(port, protocol, interface, maxPacketSize, self) p.startListening() return p def listenMulticast(self, port, protocol, interface='', maxPacketSize=8192, listenMultiple=False): """ Connects a given DatagramProtocol to the given numeric UDP port. EXPERIMENTAL. @returns: object conforming to IListeningPort. """ p = udp.MulticastPort(port, protocol, interface, maxPacketSize, self, listenMultiple) p.startListening() return p def spawnProcess(self, processProtocol, executable, args=(), env={}, path=None, uid=None, gid=None, usePTY=0, childFDs=None): """ Spawn a process. """ if uid is not None: raise ValueError("Setting UID is unsupported on this platform.") if gid is not None: raise ValueError("Setting GID is unsupported on this platform.") if usePTY: raise ValueError("PTYs are unsupported on this platform.") if childFDs is not None: raise ValueError( "Custom child file descriptor mappings are unsupported on " "this platform.") args, env = self._checkProcessArgs(args, env) return Process(self, processProtocol, executable, args, env, path) def removeAll(self): res = list(self.handles) self.handles.clear() return res def install(): r = IOCPReactor() main.installReactor(r) __all__ = ['IOCPReactor', 'install']
{ "content_hash": "5976f8fe4be976dbdbfc3a42ca330c90", "timestamp": "", "source": "github", "line_count": 205, "max_line_length": 79, "avg_line_length": 31.68780487804878, "alnum_prop": 0.6142241379310345, "repo_name": "hortonworks/hortonworks-sandbox", "id": "08c4a36b3d2da24e6d5c9b74fba7f48402d0f4d4", "size": "6634", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "desktop/core/ext-py/Twisted/twisted/internet/iocpreactor/reactor.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "ActionScript", "bytes": "27264" }, { "name": "Assembly", "bytes": "207947" }, { "name": "C", "bytes": "10279874" }, { "name": "C++", "bytes": "208068" }, { "name": "CSS", "bytes": "356769" }, { "name": "Emacs Lisp", "bytes": "3171" }, { "name": "Java", "bytes": "3064179" }, { "name": "JavaScript", "bytes": "1532806" }, { "name": "PHP", "bytes": "4160" }, { "name": "Perl", "bytes": "139518" }, { "name": "Python", "bytes": "27735073" }, { "name": "R", "bytes": "12290" }, { "name": "Ruby", "bytes": "5050" }, { "name": "Shell", "bytes": "42062" }, { "name": "XSLT", "bytes": "585" } ], "symlink_target": "" }
"""Implementation of magic functions for matplotlib/pylab support. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 The IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Our own packages from traitlets.config.application import Application from IPython.core import magic_arguments from IPython.core.magic import Magics, magics_class, line_magic from IPython.testing.skipdoctest import skip_doctest from warnings import warn from IPython.core.pylabtools import backends #----------------------------------------------------------------------------- # Magic implementation classes #----------------------------------------------------------------------------- magic_gui_arg = magic_arguments.argument( 'gui', nargs='?', help="""Name of the matplotlib backend to use %s. If given, the corresponding matplotlib backend is used, otherwise it will be matplotlib's default (which you can set in your matplotlib config file). """ % str(tuple(sorted(backends.keys()))) ) @magics_class class PylabMagics(Magics): """Magics related to matplotlib's pylab support""" @skip_doctest @line_magic @magic_arguments.magic_arguments() @magic_arguments.argument('-l', '--list', action='store_true', help='Show available matplotlib backends') @magic_gui_arg def matplotlib(self, line=''): """Set up matplotlib to work interactively. This function lets you activate matplotlib interactive support at any point during an IPython session. It does not import anything into the interactive namespace. If you are using the inline matplotlib backend in the IPython Notebook you can set which figure formats are enabled using the following:: In [1]: from IPython.display import set_matplotlib_formats In [2]: set_matplotlib_formats('pdf', 'svg') The default for inline figures sets `bbox_inches` to 'tight'. This can cause discrepancies between the displayed image and the identical image created using `savefig`. This behavior can be disabled using the `%config` magic:: In [3]: %config InlineBackend.print_figure_kwargs = {'bbox_inches':None} In addition, see the docstring of `IPython.display.set_matplotlib_formats` and `IPython.display.set_matplotlib_close` for more information on changing additional behaviors of the inline backend. Examples -------- To enable the inline backend for usage with the IPython Notebook:: In [1]: %matplotlib inline In this case, where the matplotlib default is TkAgg:: In [2]: %matplotlib Using matplotlib backend: TkAgg But you can explicitly request a different GUI backend:: In [3]: %matplotlib qt You can list the available backends using the -l/--list option:: In [4]: %matplotlib --list Available matplotlib backends: ['osx', 'qt4', 'qt5', 'gtk3', 'notebook', 'wx', 'qt', 'nbagg', 'gtk', 'tk', 'inline'] """ args = magic_arguments.parse_argstring(self.matplotlib, line) if args.list: backends_list = list(backends.keys()) print("Available matplotlib backends: %s" % backends_list) else: gui, backend = self.shell.enable_matplotlib(args.gui) self._show_matplotlib_backend(args.gui, backend) @skip_doctest @line_magic @magic_arguments.magic_arguments() @magic_arguments.argument( '--no-import-all', action='store_true', default=None, help="""Prevent IPython from performing ``import *`` into the interactive namespace. You can govern the default behavior of this flag with the InteractiveShellApp.pylab_import_all configurable. """ ) @magic_gui_arg def pylab(self, line=''): """Load numpy and matplotlib to work interactively. This function lets you activate pylab (matplotlib, numpy and interactive support) at any point during an IPython session. %pylab makes the following imports:: import numpy import matplotlib from matplotlib import pylab, mlab, pyplot np = numpy plt = pyplot from IPython.display import display from IPython.core.pylabtools import figsize, getfigs from pylab import * from numpy import * If you pass `--no-import-all`, the last two `*` imports will be excluded. See the %matplotlib magic for more details about activating matplotlib without affecting the interactive namespace. """ args = magic_arguments.parse_argstring(self.pylab, line) if args.no_import_all is None: # get default from Application if Application.initialized(): app = Application.instance() try: import_all = app.pylab_import_all except AttributeError: import_all = True else: # nothing specified, no app - default True import_all = True else: # invert no-import flag import_all = not args.no_import_all gui, backend, clobbered = self.shell.enable_pylab(args.gui, import_all=import_all) self._show_matplotlib_backend(args.gui, backend) print ("Populating the interactive namespace from numpy and matplotlib") if clobbered: warn("pylab import has clobbered these variables: %s" % clobbered + "\n`%matplotlib` prevents importing * from pylab and numpy" ) def _show_matplotlib_backend(self, gui, backend): """show matplotlib message backend message""" if not gui or gui == 'auto': print("Using matplotlib backend: %s" % backend)
{ "content_hash": "5df1a05545169f9736a31ef65e2fb0d3", "timestamp": "", "source": "github", "line_count": 166, "max_line_length": 104, "avg_line_length": 39.25903614457831, "alnum_prop": 0.5771060303820776, "repo_name": "unnikrishnankgs/va", "id": "f3c70a34072e1eeea34deb88697de8d9f683cfe8", "size": "6517", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "venv/lib/python3.5/site-packages/IPython/core/magics/pylab.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "1836035" }, { "name": "C++", "bytes": "12002305" }, { "name": "CMake", "bytes": "128" }, { "name": "CSS", "bytes": "64776" }, { "name": "Cuda", "bytes": "78890" }, { "name": "Fortran", "bytes": "8281" }, { "name": "GLSL", "bytes": "976" }, { "name": "HTML", "bytes": "297329" }, { "name": "JavaScript", "bytes": "4313047" }, { "name": "Jupyter Notebook", "bytes": "603900" }, { "name": "Makefile", "bytes": "7573" }, { "name": "Nginx", "bytes": "544" }, { "name": "Objective-C", "bytes": "567" }, { "name": "Protocol Buffer", "bytes": "72897" }, { "name": "PureBasic", "bytes": "134" }, { "name": "Python", "bytes": "51104955" }, { "name": "Shell", "bytes": "71646" }, { "name": "Smarty", "bytes": "28890" }, { "name": "XSLT", "bytes": "152770" } ], "symlink_target": "" }
from __future__ import division, print_function import autograd.numpy as np import autograd.numpy.random as npr from autograd.scipy.special import gammaln from autograd import grad import scipy.optimize # The code in this example implements a method for finding a stationary point of # the negative binomial likelihood via Newton's method, described here: # https://en.wikipedia.org/wiki/Negative_binomial_distribution#Maximum_likelihood_estimation def newton(f, x0): # wrap scipy.optimize.newton with our automatic derivatives return scipy.optimize.newton(f, x0, fprime=grad(f), fprime2=grad(grad(f))) def negbin_loglike(r, p, x): # the negative binomial log likelihood we want to maximize return gammaln(r+x) - gammaln(r) - gammaln(x+1) + x*np.log(p) + r*np.log(1-p) def negbin_sample(r, p, size): # a negative binomial is a gamma-compound-Poisson return npr.poisson(npr.gamma(r, p/(1-p), size=size)) def fit_maxlike(x, r_guess): # follows Wikipedia's section on negative binomial max likelihood assert np.var(x) > np.mean(x), "Likelihood-maximizing parameters don't exist!" loglike = lambda r, p: np.sum(negbin_loglike(r, p, x)) p = lambda r: np.sum(x) / np.sum(r+x) rprime = lambda r: grad(loglike)(r, p(r)) r = newton(rprime, r_guess) return r, p(r) if __name__ == "__main__": # generate data npr.seed(0) data = negbin_sample(r=5, p=0.5, size=1000) # fit likelihood-extremizing parameters r, p = fit_maxlike(data, r_guess=1) # report fit print('Fit parameters:') print('r={r}, p={p}'.format(r=r, p=p)) print('Check that we are at a local stationary point:') loglike = lambda r, p: np.sum(negbin_loglike(r, p, data)) grad_both = grad(loglike, argnum=(0, 1)) print(grad_both(r, p)) import matplotlib.pyplot as plt xm = data.max() plt.figure() plt.hist(data, bins=np.arange(xm+1)-0.5, normed=True, label='normed data counts') plt.xlim(0,xm) plt.plot(np.arange(xm), np.exp(negbin_loglike(r, p, np.arange(xm))), label='maxlike fit') plt.xlabel('k') plt.ylabel('p(k)') plt.legend(loc='best') plt.show()
{ "content_hash": "26fb13583e0243a9d10db321db7db9cb", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 93, "avg_line_length": 32.71212121212121, "alnum_prop": 0.6702176933765632, "repo_name": "HIPS/autograd", "id": "47beaa5f7c861f9f535a0a96572798cb4694902f", "size": "2159", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "examples/negative_binomial_maxlike.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "275938" }, { "name": "Shell", "bytes": "950" } ], "symlink_target": "" }
''' Created on 2013-5-8 @author: lan (www.9miao.com) ''' from DBUtils.PooledDB import PooledDB import MySQLdb DBCS = {'mysql':MySQLdb,} class DBPool(object): ''' ''' def initPool(self,**kw): ''' ''' self.config = kw creator = DBCS.get(kw.get('engine','mysql'),MySQLdb) self.pool = PooledDB(creator,5,**kw) def connection(self): return self.pool.connection() dbpool = DBPool()
{ "content_hash": "e6fd83c98e5d2a4abaa441f655c58140", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 60, "avg_line_length": 18.16, "alnum_prop": 0.5704845814977973, "repo_name": "fuhongxue/Firefly", "id": "97307d3dbba94e91f3dfbc998842fc3afe262b17", "size": "467", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "firefly/dbentrust/dbpool.py", "mode": "33188", "license": "mit", "language": [], "symlink_target": "" }
import os import sys from django.db.backends import BaseDatabaseClient class DatabaseClient(BaseDatabaseClient): executable_name = 'mysql' def runshell(self): settings_dict = self.connection.settings_dict args = [self.executable_name] db = settings_dict['OPTIONS'].get('db', settings_dict['NAME']) user = settings_dict['OPTIONS'].get('user', settings_dict['USER']) passwd = settings_dict['OPTIONS'].get('passwd', settings_dict['PASSWORD']) host = settings_dict['OPTIONS'].get('host', settings_dict['HOST']) port = settings_dict['OPTIONS'].get('port', settings_dict['PORT']) defaults_file = settings_dict['OPTIONS'].get('read_default_file') # Seems to be no good way to set sql_mode with CLI. if defaults_file: args += ["--defaults-file=%s" % defaults_file] if user: args += ["--user=%s" % user] if passwd: args += ["--password=%s" % passwd] if host: if '/' in host: args += ["--socket=%s" % host] else: args += ["--host=%s" % host] if port: args += ["--port=%s" % port] if db: args += [db] if os.name == 'nt': sys.exit(os.system(" ".join(args))) else: os.execvp(self.executable_name, args)
{ "content_hash": "480d3f74593c2551f2743937dd3c03c8", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 82, "avg_line_length": 35.45, "alnum_prop": 0.5239774330042313, "repo_name": "scottferg/web-console", "id": "cb4d1814653c3831c3a486ba76dc8a496957af5c", "size": "1418", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "django/db/backends/mysql/client.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "107585" }, { "name": "Python", "bytes": "4062006" } ], "symlink_target": "" }
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g., a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g., you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g., a large set of solid line segemnts) """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip import warnings import numpy as np import numpy.ma as ma import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as mcolors import matplotlib.cm as cm from matplotlib import docstring import matplotlib.transforms as transforms import matplotlib.artist as artist from matplotlib.artist import allow_rasterization import matplotlib.backend_bases as backend_bases import matplotlib.path as mpath from matplotlib import _path import matplotlib.mlab as mlab CIRCLE_AREA_FACTOR = 1.0 / np.sqrt(np.pi) class Collection(artist.Artist, cm.ScalarMappable): """ Base class for Collections. Must be subclassed to be usable. All properties in a collection must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith element of the collection is:: prop[i % len(props)] Keyword arguments and default values: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *offset_position*: 'screen' (default) or 'data' * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *hatch*: None * *zorder*: 1 *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets). If offset_position is 'screen' (default) the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (i.e., a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ _offsets = np.array([], np.float_) # _offsets must be a Nx2 array! _offsets.shape = (0, 2) _transOffset = transforms.IdentityTransform() _transforms = [] def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', antialiaseds=None, offsets=None, transOffset=None, norm=None, # optional for ScalarMappable cmap=None, # ditto pickradius=5.0, hatch=None, urls=None, offset_position='screen', zorder=1, **kwargs ): """ Create a Collection %(Collection)s """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.set_edgecolor(edgecolors) self.set_facecolor(facecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_pickradius(pickradius) self.set_urls(urls) self.set_hatch(hatch) self.set_offset_position(offset_position) self.set_zorder(zorder) self._uniform_offsets = None self._offsets = np.array([[0, 0]], np.float_) if offsets is not None: offsets = np.asanyarray(offsets) offsets.shape = (-1, 2) # Make it Nx2 if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._path_effects = None self.update(kwargs) self._paths = None @staticmethod def _get_value(val): try: return (float(val), ) except TypeError: if cbook.iterable(val) and len(val): try: float(val[0]) except (TypeError, ValueError): pass # raise below else: return val raise TypeError('val must be a float or nonzero sequence of floats') @staticmethod def _get_bool(val): if not cbook.iterable(val): val = (val,) try: bool(val[0]) except (TypeError, IndexError): raise TypeError('val must be a bool or nonzero sequence of them') return val def get_paths(self): return self._paths def set_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_offset_transform(self): t = self._transOffset if (not isinstance(t, transforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) return t def get_datalim(self, transData): transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() offsets = np.asanyarray(offsets, np.float_) if np.ma.isMaskedArray(offsets): offsets = offsets.filled(np.nan) # get_path_collection_extents handles nan but not masked arrays offsets.shape = (-1, 2) # Make it Nx2 if len(paths) and len(offsets): result = mpath.get_path_collection_extents( transform.frozen(), paths, self.get_transforms(), offsets, transOffset.frozen()) result = result.inverse_transformed(transData) else: result = transforms.Bbox.null() return result def get_window_extent(self, renderer): # TODO:check to ensure that this does not fail for # cases other than scatter plot legend return self.get_datalim(transforms.IdentityTransform()) def _prepare_points(self): """Point prep for drawing and hit testing""" transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(list(zip(xs, ys)), path.codes)) if offsets.size > 0: xs = self.convert_xunits(offsets[:, 0]) ys = self.convert_yunits(offsets[:, 1]) offsets = list(zip(xs, ys)) offsets = np.asanyarray(offsets, np.float_) offsets.shape = (-1, 2) # Make it Nx2 if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) # This might have changed an ndarray into a masked array. transOffset = transOffset.get_affine() if np.ma.isMaskedArray(offsets): offsets = offsets.filled(np.nan) # Changing from a masked array to nan-filled ndarray # is probably most efficient at this point. return transform, transOffset, offsets, paths @allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, self.get_gid()) self.update_scalarmappable() transform, transOffset, offsets, paths = self._prepare_points() gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_snap(self.get_snap()) if self._hatch: gc.set_hatch(self._hatch) if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) # If the collection is made up of a single shape/color/stroke, # it can be rendered once and blitted multiple times, using # `draw_markers` rather than `draw_path_collection`. This is # *much* faster for Agg, and results in smaller file sizes in # PDF/SVG/PS. trans = self.get_transforms() facecolors = self.get_facecolor() edgecolors = self.get_edgecolor() do_single_path_optimization = False if (len(paths) == 1 and len(trans) <= 1 and len(facecolors) == 1 and len(edgecolors) == 1 and len(self._linewidths) == 1 and self._linestyles == [(None, None)] and len(self._antialiaseds) == 1 and len(self._urls) == 1 and self.get_hatch() is None): if len(trans): combined_transform = (transforms.Affine2D(trans[0]) + transform) else: combined_transform = transform extents = paths[0].get_extents(combined_transform) width, height = renderer.get_canvas_width_height() if (extents.width < width and extents.height < height): do_single_path_optimization = True if do_single_path_optimization: gc.set_foreground(tuple(edgecolors[0])) gc.set_linewidth(self._linewidths[0]) gc.set_linestyle(self._linestyles[0]) gc.set_antialiased(self._antialiaseds[0]) gc.set_url(self._urls[0]) renderer.draw_markers( gc, paths[0], combined_transform.frozen(), mpath.Path(offsets), transOffset, tuple(facecolors[0])) else: renderer.draw_path_collection( gc, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls, self._offset_position) gc.restore() renderer.close_group(self.__class__.__name__) def set_pickradius(self, pr): self._pickradius = pr def get_pickradius(self): return self._pickradius def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns True | False, ``dict(ind=itemlist)``, where every item in itemlist contains the event. """ if six.callable(self._contains): return self._contains(self, mouseevent) if not self.get_visible(): return False, {} if self._picker is True: # the Boolean constant, not just nonzero or 1 pickradius = self._pickradius else: try: pickradius = float(self._picker) except TypeError: # This should not happen if "contains" is called via # pick, the normal route; the check is here in case # it is called through some unanticipated route. warnings.warn( "Collection picker %s could not be converted to float" % self._picker) pickradius = self._pickradius transform, transOffset, offsets, paths = self._prepare_points() ind = _path.point_in_path_collection( mouseevent.x, mouseevent.y, pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, pickradius <= 0, self.get_offset_position()) return len(ind) > 0, dict(ind=ind) def set_urls(self, urls): if urls is None: self._urls = [None, ] else: self._urls = urls def get_urls(self): return self._urls def set_hatch(self, hatch): """ Set the hatching pattern *hatch* can be one of:: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed x - crossed diagonal o - small circle O - large circle . - dots * - stars Letters can be combined, in which case all the specified hatchings are done. If same letter repeats, it increases the density of hatching of that pattern. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Unlike other properties such as linewidth and colors, hatching can only be specified for the collection as a whole, not separately for each member. ACCEPTS: [ '/' | '\\\\' | '|' | '-' | '+' | 'x' | 'o' | 'O' | '.' | '*' ] """ self._hatch = hatch def get_hatch(self): 'Return the current hatching pattern' return self._hatch def set_offsets(self, offsets): """ Set the offsets for the collection. *offsets* can be a scalar or a sequence. ACCEPTS: float or sequence of floats """ offsets = np.asanyarray(offsets, np.float_) offsets.shape = (-1, 2) # Make it Nx2 #This decision is based on how they are initialized above if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets def get_offsets(self): """ Return the offsets for the collection. """ #This decision is based on how they are initialized above in __init__() if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets def set_offset_position(self, offset_position): """ Set how offsets are applied. If *offset_position* is 'screen' (default) the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. """ if offset_position not in ('screen', 'data'): raise ValueError("offset_position must be 'screen' or 'data'") self._offset_position = offset_position def get_offset_position(self): """ Returns how offsets are applied for the collection. If *offset_position* is 'screen', the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. """ return self._offset_position def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence ACCEPTS: float or sequence of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] self._linewidths = self._get_value(lw) def set_linewidths(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_lw(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ] """ try: dashd = backend_bases.GraphicsContextBase.dashd if cbook.is_string_like(ls): if ls in dashd: dashes = [dashd[ls]] elif ls in cbook.ls_mapper: dashes = [dashd[cbook.ls_mapper[ls]]] else: raise ValueError() elif cbook.iterable(ls): try: dashes = [] for x in ls: if cbook.is_string_like(x): if x in dashd: dashes.append(dashd[x]) elif x in cbook.ls_mapper: dashes.append(dashd[cbook.ls_mapper[x]]) else: raise ValueError() elif cbook.iterable(x) and len(x) == 2: dashes.append(x) else: raise ValueError() except ValueError: if len(ls) == 2: dashes = ls else: raise ValueError() else: raise ValueError() except ValueError: raise ValueError('Do not know how to convert %s to dashes' % ls) self._linestyles = dashes def set_linestyles(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_dashes(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_antialiased(self, aa): """ Set the antialiasing state for rendering. ACCEPTS: Boolean or sequence of booleans """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = self._get_bool(aa) def set_antialiaseds(self, aa): """alias for set_antialiased""" return self.set_antialiased(aa) def set_color(self, c): """ Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` For setting the edge or face color individually. """ self.set_facecolor(c) self.set_edgecolor(c) def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is 'none', the patch will not be filled. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self._is_filled = True try: if c.lower() == 'none': self._is_filled = False except AttributeError: pass if c is None: c = mpl.rcParams['patch.facecolor'] self._facecolors_original = c self._facecolors = mcolors.colorConverter.to_rgba_array(c, self._alpha) def set_facecolors(self, c): """alias for set_facecolor""" return self.set_facecolor(c) def get_facecolor(self): return self._facecolors get_facecolors = get_facecolor def get_edgecolor(self): if self._edgecolors == str('face'): return self.get_facecolors() else: return self._edgecolors get_edgecolors = get_edgecolor def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence of rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is 'face', the edge color will always be the same as the face color. If it is 'none', the patch boundary will not be drawn. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self._is_stroked = True try: if c.lower() == 'none': self._is_stroked = False except AttributeError: pass try: if c.lower() == 'face': self._edgecolors = 'face' self._edgecolors_original = 'face' return except AttributeError: pass if c is None: c = mpl.rcParams['patch.edgecolor'] self._edgecolors_original = c self._edgecolors = mcolors.colorConverter.to_rgba_array(c, self._alpha) def set_edgecolors(self, c): """alias for set_edgecolor""" return self.set_edgecolor(c) def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float or *None*. ACCEPTS: float or None """ if alpha is not None: try: float(alpha) except TypeError: raise TypeError('alpha must be a float or None') artist.Artist.set_alpha(self, alpha) try: self._facecolors = mcolors.colorConverter.to_rgba_array( self._facecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass try: if self._edgecolors_original != str('face'): self._edgecolors = mcolors.colorConverter.to_rgba_array( self._edgecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass def get_linewidths(self): return self._linewidths get_linewidth = get_linewidths def get_linestyles(self): return self._linestyles get_dashes = get_linestyle = get_linestyles def update_scalarmappable(self): """ If the scalar mappable array is not none, update colors from scalar data """ if self._A is None: return if self._A.ndim > 1: raise ValueError('Collections can only map rank 1 arrays') if not self.check_update("array"): return if self._is_filled: self._facecolors = self.to_rgba(self._A, self._alpha) elif self._is_stroked: self._edgecolors = self.to_rgba(self._A, self._alpha) def update_from(self, other): 'copy properties from other to self' artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._edgecolors_original = other._edgecolors_original self._edgecolors = other._edgecolors self._facecolors_original = other._facecolors_original self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._pickradius = other._pickradius self._hatch = other._hatch # update_from for scalarmappable self._A = other._A self.norm = other.norm self.cmap = other.cmap # self.update_dict = other.update_dict # do we need to copy this? -JJL # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object defn docstring.interpd.update(Collection="""\ Valid Collection keyword arguments: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets) If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. """) class _CollectionWithSizes(Collection): """ Base class for collections that have an array of sizes. """ _factor = 1.0 def get_sizes(self): """ Returns the sizes of the elements in the collection. The value represents the 'area' of the element. Returns ------- sizes : array The 'area' of each element. """ return self._sizes def set_sizes(self, sizes, dpi=72.0): """ Set the sizes of each member of the collection. Parameters ---------- sizes : ndarray or None The size to set for each element of the collection. The value is the 'area' of the element. dpi : float The dpi of the canvas. Defaults to 72.0. """ if sizes is None: self._sizes = np.array([]) self._transforms = np.empty((0, 3, 3)) else: self._sizes = np.asarray(sizes) self._transforms = np.zeros((len(self._sizes), 3, 3)) scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor self._transforms[:, 0, 0] = scale self._transforms[:, 1, 1] = scale self._transforms[:, 2, 2] = 1.0 @allow_rasterization def draw(self, renderer): self.set_sizes(self._sizes, self.figure.dpi) Collection.draw(self, renderer) class PathCollection(_CollectionWithSizes): """ This is the most basic :class:`Collection` subclass. """ @docstring.dedent_interpd def __init__(self, paths, sizes=None, **kwargs): """ *paths* is a sequence of :class:`matplotlib.path.Path` instances. %(Collection)s """ Collection.__init__(self, **kwargs) self.set_paths(paths) self.set_sizes(sizes) def set_paths(self, paths): self._paths = paths def get_paths(self): return self._paths class PolyCollection(_CollectionWithSizes): @docstring.dedent_interpd def __init__(self, verts, sizes=None, closed=True, **kwargs): """ *verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self.set_verts(verts, closed) def set_verts(self, verts, closed=True): '''This allows one to delay initialization of the vertices.''' if np.ma.isMaskedArray(verts): verts = verts.astype(np.float_).filled(np.nan) # This is much faster than having Path do it one at a time. if closed: self._paths = [] for xy in verts: if len(xy): if np.ma.isMaskedArray(xy): xy = np.ma.concatenate([xy, xy[0:1]]) else: xy = np.asarray(xy) xy = np.concatenate([xy, xy[0:1]]) codes = np.empty(xy.shape[0], dtype=mpath.Path.code_type) codes[:] = mpath.Path.LINETO codes[0] = mpath.Path.MOVETO codes[-1] = mpath.Path.CLOSEPOLY self._paths.append(mpath.Path(xy, codes)) else: self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts] set_paths = set_verts class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ @docstring.dedent_interpd def __init__(self, xranges, yrange, **kwargs): """ *xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [[(xmin, ymin), (xmin, ymax), (xmin + xwidth, ymax), (xmin + xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) @staticmethod def span_where(x, ymin, ymax, where, **kwargs): """ Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection. """ xranges = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1] - xslice[0])) collection = BrokenBarHCollection( xranges, [ymin, ymax - ymin], **kwargs) return collection class RegularPolyCollection(_CollectionWithSizes): """Draw a collection of regular polygons with *numsides*.""" _path_generator = mpath.Path.unit_regular_polygon _factor = CIRCLE_AREA_FACTOR @docstring.dedent_interpd def __init__(self, numsides, rotation=0, sizes=(1,), **kwargs): """ *numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :file:`examples/dynamic_collection.py` for complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = (black,), linewidths = (1,), offsets = offsets, transOffset = ax.transData, ) """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation @allow_rasterization def draw(self, renderer): self.set_sizes(self._sizes, self.figure.dpi) self._transforms = [ transforms.Affine2D(x).rotate(-self._rotation).get_matrix() for x in self._transforms ] Collection.draw(self, renderer) class StarPolygonCollection(RegularPolyCollection): """ Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """ Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): """ All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith line segment is:: prop[i % len(props)] i.e., the properties cycle if the ``len`` of props is less than the number of segments. """ def __init__(self, segments, # Can be None. linewidths=None, colors=None, antialiaseds=None, linestyles='solid', offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5, zorder=2, **kwargs ): """ *segments* a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. *colors* must be a sequence of RGBA tuples (e.g., arbitrary color strings, etc, not allowed). *antialiaseds* must be a sequence of ones or zeros *linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] a string or dash tuple. The dash tuple is:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. *zorder* The zorder of the LineCollection. Default is 2 The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` array :attr:`~matplotlib.cm.ScalarMappable._A` is not None (i.e., a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) self.set_linestyles(linestyles) colors = mcolors.colorConverter.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, facecolors='none', linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, zorder=zorder, **kwargs) self.set_segments(segments) def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not np.ma.isMaskedArray(seg): seg = np.asarray(seg, np.float_) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(seg) for seg in _segments] set_verts = set_segments # for compatibility with PolyCollection set_paths = set_segments def get_segments(self): segments = [] for path in self._paths: vertices = [vertex for vertex, _ in path.iter_segments()] vertices = np.asarray(vertices) segments.append(vertices) return segments def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i % Noffs segs[i] = segs[i] + offsets[io:io + 1] return segs def set_color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self.set_edgecolor(c) def color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ warnings.warn('LineCollection.color deprecated; use set_color instead') return self.set_color(c) def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class EventCollection(LineCollection): ''' A collection of discrete events. An event is a 1-dimensional value, usually the position of something along an axis, such as time or length. Events do not have an amplitude. They are displayed as v ''' def __init__(self, positions, # Can be None. orientation=None, lineoffset=0, linelength=1, linewidth=None, color=None, linestyle='solid', antialiased=None, **kwargs ): """ *positions* a sequence of numerical values or a 1D numpy array. Can be None *orientation* [ 'horizontal' | 'vertical' | None ] defaults to 'horizontal' if not specified or None *lineoffset* a single numerical value, corresponding to the offset of the center of the markers from the origin *linelength* a single numerical value, corresponding to the total height of the marker (i.e. the marker stretches from lineoffset+linelength/2 to lineoffset-linelength/2). Defaults to 1 *linewidth* a single numerical value *color* must be a sequence of RGBA tuples (e.g., arbitrary color strings, etc, not allowed). *linestyle* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] *antialiased* 1 or 2 If *linewidth*, *color*, or *antialiased* is None, they default to their rcParams setting, in sequence form. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` array :attr:`~matplotlib.cm.ScalarMappable._A` is not None (i.e., a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. **Example:** .. plot:: mpl_examples/pylab_examples/eventcollection_demo.py """ segment = (lineoffset + linelength / 2., lineoffset - linelength / 2.) if len(positions) == 0: segments = [] elif hasattr(positions, 'ndim') and positions.ndim > 1: raise ValueError('if positions is an ndarry it cannot have ' 'dimensionality great than 1 ') elif (orientation is None or orientation.lower() == 'none' or orientation.lower() == 'horizontal'): positions.sort() segments = [[(coord1, coord2) for coord2 in segment] for coord1 in positions] self._is_horizontal = True elif orientation.lower() == 'vertical': positions.sort() segments = [[(coord2, coord1) for coord2 in segment] for coord1 in positions] self._is_horizontal = False else: raise ValueError("orientation must be 'horizontal' or 'vertical'") LineCollection.__init__(self, segments, linewidths=linewidth, colors=color, antialiaseds=antialiased, linestyles=linestyle, **kwargs) self._linelength = linelength self._lineoffset = lineoffset def get_positions(self): ''' return an array containing the floating-point values of the positions ''' segments = self.get_segments() pos = 0 if self.is_horizontal() else 1 positions = [] for segment in segments: positions.append(segment[0, pos]) return positions def set_positions(self, positions): ''' set the positions of the events to the specified value ''' if positions is None or (hasattr(positions, 'len') and len(positions) == 0): self.set_segments([]) return lineoffset = self.get_lineoffset() linelength = self.get_linelength() segment = (lineoffset + linelength / 2., lineoffset - linelength / 2.) positions = np.asanyarray(positions) positions.sort() if self.is_horizontal(): segments = [[(coord1, coord2) for coord2 in segment] for coord1 in positions] else: segments = [[(coord2, coord1) for coord2 in segment] for coord1 in positions] self.set_segments(segments) def add_positions(self, position): ''' add one or more events at the specified positions ''' if position is None or (hasattr(position, 'len') and len(position) == 0): return positions = self.get_positions() positions = np.hstack([positions, np.asanyarray(position)]) self.set_positions(positions) extend_positions = append_positions = add_positions def is_horizontal(self): ''' True if the eventcollection is horizontal, False if vertical ''' return self._is_horizontal def get_orientation(self): ''' get the orientation of the event line, may be: [ 'horizontal' | 'vertical' ] ''' return 'horizontal' if self.is_horizontal() else 'vertical' def switch_orientation(self): ''' switch the orientation of the event line, either from vertical to horizontal or vice versus ''' segments = self.get_segments() for i, segment in enumerate(segments): segments[i] = np.fliplr(segment) self.set_segments(segments) self._is_horizontal = not self.is_horizontal() def set_orientation(self, orientation=None): ''' set the orientation of the event line [ 'horizontal' | 'vertical' | None ] defaults to 'horizontal' if not specified or None ''' if (orientation is None or orientation.lower() == 'none' or orientation.lower() == 'horizontal'): is_horizontal = True elif orientation.lower() == 'vertical': is_horizontal = False else: raise ValueError("orientation must be 'horizontal' or 'vertical'") if is_horizontal == self.is_horizontal(): return self.switch_orientation() def get_linelength(self): ''' get the length of the lines used to mark each event ''' return self._linelength def set_linelength(self, linelength): ''' set the length of the lines used to mark each event ''' if linelength == self.get_linelength(): return lineoffset = self.get_lineoffset() segments = self.get_segments() pos = 1 if self.is_horizontal() else 0 for segment in segments: segment[0, pos] = lineoffset + linelength / 2. segment[1, pos] = lineoffset - linelength / 2. self.set_segments(segments) self._linelength = linelength def get_lineoffset(self): ''' get the offset of the lines used to mark each event ''' return self._lineoffset def set_lineoffset(self, lineoffset): ''' set the offset of the lines used to mark each event ''' if lineoffset == self.get_lineoffset(): return linelength = self.get_linelength() segments = self.get_segments() pos = 1 if self.is_horizontal() else 0 for segment in segments: segment[0, pos] = lineoffset + linelength / 2. segment[1, pos] = lineoffset - linelength / 2. self.set_segments(segments) self._lineoffset = lineoffset def get_linewidth(self): ''' get the width of the lines used to mark each event ''' return self.get_linewidths()[0] def get_linestyle(self): ''' get the style of the lines used to mark each event [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] ''' return self.get_linestyles() def get_color(self): ''' get the color of the lines used to mark each event ''' return self.get_colors()[0] class CircleCollection(_CollectionWithSizes): """ A collection of circles, drawn using splines. """ _factor = CIRCLE_AREA_FACTOR @docstring.dedent_interpd def __init__(self, sizes, **kwargs): """ *sizes* Gives the area of the circle in points^2 %(Collection)s """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] class EllipseCollection(Collection): """ A collection of ellipses, drawn using splines. """ @docstring.dedent_interpd def __init__(self, widths, heights, angles, units='points', **kwargs): """ *widths*: sequence lengths of first axes (e.g., major axis lengths) *heights*: sequence lengths of second axes *angles*: sequence angles of first axes, degrees CCW from the X-axis *units*: ['points' | 'inches' | 'dots' | 'width' | 'height' | 'x' | 'y' | 'xy'] units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. 'xy' differs from all others in that the angle as plotted varies with the aspect ratio, and equals the specified angle only when the aspect ratio is unity. Hence it behaves the same as the :class:`~matplotlib.patches.Ellipse` with axes.transData as its transform. Additional kwargs inherited from the base :class:`Collection`: %(Collection)s """ Collection.__init__(self, **kwargs) self._widths = 0.5 * np.asarray(widths).ravel() self._heights = 0.5 * np.asarray(heights).ravel() self._angles = np.asarray(angles).ravel() * (np.pi / 180.0) self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = [] self._paths = [mpath.Path.unit_circle()] def _set_transforms(self): """ Calculate transforms immediately before drawing. """ ax = self.axes fig = self.figure if self._units == 'xy': sc = 1 elif self._units == 'x': sc = ax.bbox.width / ax.viewLim.width elif self._units == 'y': sc = ax.bbox.height / ax.viewLim.height elif self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) self._transforms = np.zeros((len(self._widths), 3, 3)) widths = self._widths * sc heights = self._heights * sc sin_angle = np.sin(self._angles) cos_angle = np.cos(self._angles) self._transforms[:, 0, 0] = widths * cos_angle self._transforms[:, 0, 1] = heights * -sin_angle self._transforms[:, 1, 0] = widths * sin_angle self._transforms[:, 1, 1] = heights * cos_angle self._transforms[:, 2, 2] = 1.0 _affine = transforms.Affine2D if self._units == 'xy': m = ax.transData.get_affine().get_matrix().copy() m[:2, 2:] = 0 self.set_transform(_affine(m)) @allow_rasterization def draw(self, renderer): self._set_transforms() Collection.draw(self, renderer) class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (i.e., a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.get_fill(): return patch.get_facecolor() return [0, 0, 0, 0] facecolors = [determine_facecolor(p) for p in patches] edgecolors = [p.get_edgecolor() for p in patches] linewidths = [p.get_linewidth() for p in patches] linestyles = [p.get_linestyle() for p in patches] antialiaseds = [p.get_antialiased() for p in patches] Collection.__init__( self, edgecolors=edgecolors, facecolors=facecolors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds) else: Collection.__init__(self, **kwargs) self.set_paths(patches) def set_paths(self, patches): paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths class TriMesh(Collection): """ Class for the efficient drawing of a triangular mesh using Gouraud shading. A triangular mesh is a :class:`~matplotlib.tri.Triangulation` object. """ def __init__(self, triangulation, **kwargs): Collection.__init__(self, **kwargs) self._triangulation = triangulation self._shading = 'gouraud' self._is_filled = True self._bbox = transforms.Bbox.unit() # Unfortunately this requires a copy, unless Triangulation # was rewritten. xy = np.hstack((triangulation.x.reshape(-1, 1), triangulation.y.reshape(-1, 1))) self._bbox.update_from_data_xy(xy) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths(self._triangulation) @staticmethod def convert_mesh_to_paths(tri): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support meshes. This function is primarily of use to backend implementers. """ Path = mpath.Path triangles = tri.get_masked_triangles() verts = np.concatenate((tri.x[triangles][..., np.newaxis], tri.y[triangles][..., np.newaxis]), axis=2) return [Path(x) for x in verts] @allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() # Get a list of triangles and the color at each vertex. tri = self._triangulation triangles = tri.get_masked_triangles() verts = np.concatenate((tri.x[triangles][..., np.newaxis], tri.y[triangles][..., np.newaxis]), axis=2) self.update_scalarmappable() colors = self._facecolors[triangles] gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen()) gc.restore() renderer.close_group(self.__class__.__name__) class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. *shading* may be 'flat', or 'gouraud' """ def __init__(self, meshWidth, meshHeight, coordinates, antialiased=True, shading='flat', **kwargs): Collection.__init__(self, **kwargs) self._meshWidth = meshWidth self._meshHeight = meshHeight self._coordinates = coordinates self._antialiased = antialiased self._shading = shading self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) # By converting to floats now, we can avoid that on every draw. self._coordinates = self._coordinates.reshape( (meshHeight + 1, meshWidth + 1, 2)) self._coordinates = np.array(self._coordinates, np.float_) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) def get_datalim(self, transData): return (self.get_transform() - transData).transform_bbox(self._bbox) @staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support quadmeshes. This function is primarily of use to backend implementers. """ Path = mpath.Path if ma.isMaskedArray(coordinates): c = coordinates.data else: c = coordinates points = np.concatenate(( c[0:-1, 0:-1], c[0:-1, 1:], c[1:, 1:], c[1:, 0:-1], c[0:-1, 0:-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [Path(x) for x in points] def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of triangles, each point with its own color. This is useful for experiments using `draw_qouraud_triangle`. """ if ma.isMaskedArray(coordinates): p = coordinates.data else: p = coordinates p_a = p[:-1, :-1] p_b = p[:-1, 1:] p_c = p[1:, 1:] p_d = p[1:, :-1] p_center = (p_a + p_b + p_c + p_d) / 4.0 triangles = np.concatenate(( p_a, p_b, p_center, p_b, p_c, p_center, p_c, p_d, p_center, p_d, p_a, p_center, ), axis=2) triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2)) c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4)) c_a = c[:-1, :-1] c_b = c[:-1, 1:] c_c = c[1:, 1:] c_d = c[1:, :-1] c_center = (c_a + c_b + c_c + c_d) / 4.0 colors = np.concatenate(( c_a, c_b, c_center, c_b, c_c, c_center, c_c, c_d, c_center, c_d, c_a, c_center, ), axis=2) colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4)) return triangles, colors @allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, self.get_gid()) transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:, 0]) ys = self.convert_yunits(self._offsets[:, 1]) offsets = list(zip(xs, ys)) offsets = np.asarray(offsets, np.float_) offsets.shape = (-1, 2) # Make it Nx2 self.update_scalarmappable() if not transform.is_affine: coordinates = self._coordinates.reshape( (self._coordinates.shape[0] * self._coordinates.shape[1], 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) if self._shading == 'gouraud': triangles, colors = self.convert_mesh_to_triangles( self._meshWidth, self._meshHeight, coordinates) renderer.draw_gouraud_triangles( gc, triangles, colors, transform.frozen()) else: renderer.draw_quad_mesh( gc, transform.frozen(), self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, self.get_facecolor(), self._antialiased, self.get_edgecolors()) gc.restore() renderer.close_group(self.__class__.__name__) patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'PathCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection', 'Collection',): docstring.interpd.update({k: patchstr}) docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))
{ "content_hash": "c5dcbf23255eb5f705f7a0e06bb8883d", "timestamp": "", "source": "github", "line_count": 1838, "max_line_length": 81, "avg_line_length": 34.33188248095756, "alnum_prop": 0.5653703527621945, "repo_name": "miloharper/neural-network-animation", "id": "e84bd3e578d3fbc58d40e79de6bbb225870e6051", "size": "63102", "binary": false, "copies": "10", "ref": "refs/heads/master", "path": "matplotlib/collections.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "5382" }, { "name": "HTML", "bytes": "4000" }, { "name": "JavaScript", "bytes": "24260" }, { "name": "Python", "bytes": "4443606" } ], "symlink_target": "" }
"""curses The main package for curses support for Python. Normally used by importing the package, and perhaps a particular module inside it. import curses from curses import textpad curses.initwin() ... """ __revision__ = "$Id: __init__.py,v 1.4 2001/04/05 16:08:41 akuchling Exp $" from _curses import * from curses.wrapper import wrapper # Some constants, most notably the ACS_* ones, are only added to the C # _curses module's dictionary after initscr() is called. (Some # versions of SGI's curses don't define values for those constants # until initscr() has been called.) This wrapper function calls the # underlying C initscr(), and then copies the constants from the # _curses module to the curses package's dictionary. Don't do 'from # curses import *' if you'll be needing the ACS_* constants. def initscr(): import _curses, curses stdscr = _curses.initscr() for key, value in _curses.__dict__.items(): if key[0:4] == 'ACS_' or key in ('LINES', 'COLS'): setattr(curses, key, value) return stdscr # This is a similar wrapper for start_color(), which adds the COLORS and # COLOR_PAIRS variables which are only available after start_color() is # called. def start_color(): import _curses, curses retval = _curses.start_color() if hasattr(_curses, 'COLORS'): curses.COLORS = _curses.COLORS if hasattr(_curses, 'COLOR_PAIRS'): curses.COLOR_PAIRS = _curses.COLOR_PAIRS return retval # Import Python has_key() implementation if _curses doesn't contain has_key() try: has_key except NameError: from has_key import has_key
{ "content_hash": "a34a290a1f31f612a5c08e22f96f492d", "timestamp": "", "source": "github", "line_count": 54, "max_line_length": 77, "avg_line_length": 30.38888888888889, "alnum_prop": 0.6849482023156612, "repo_name": "MalloyPower/parsing-python", "id": "9691e1dae06075d1341152087ffe32bbda293525", "size": "1641", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "front-end/testsuite-python-lib/Python-2.2/Lib/curses/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "1963" }, { "name": "Lex", "bytes": "238458" }, { "name": "Makefile", "bytes": "4513" }, { "name": "OCaml", "bytes": "412695" }, { "name": "Python", "bytes": "17319" }, { "name": "Rascal", "bytes": "523063" }, { "name": "Yacc", "bytes": "429659" } ], "symlink_target": "" }
from swgpy.object import * def create(kernel): result = Ship() result.template = "object/ship/shared_blacksun_medium_s03_tier4.iff" result.attribute_template_id = -1 result.stfName("","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
{ "content_hash": "73cff0c2e6b4573229c47a0910cee194", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 69, "avg_line_length": 21.307692307692307, "alnum_prop": 0.6714801444043321, "repo_name": "obi-two/Rebelion", "id": "4266010a6da5ce6e884de5a414d4d31243128f81", "size": "422", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "data/scripts/templates/object/ship/shared_blacksun_medium_s03_tier4.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "11818" }, { "name": "C", "bytes": "7699" }, { "name": "C++", "bytes": "2293610" }, { "name": "CMake", "bytes": "39727" }, { "name": "PLSQL", "bytes": "42065" }, { "name": "Python", "bytes": "7499185" }, { "name": "SQLPL", "bytes": "41864" } ], "symlink_target": "" }
from __future__ import unicode_literals import swapper from accelerator_abstract.models.base_program_cycle import BaseProgramCycle class ProgramCycle(BaseProgramCycle): class Meta(BaseProgramCycle.Meta): swappable = swapper.swappable_setting(BaseProgramCycle.Meta.app_label, "ProgramCycle")
{ "content_hash": "22a1c797f3fe60cebda7d02ae3ed7799", "timestamp": "", "source": "github", "line_count": 11, "max_line_length": 78, "avg_line_length": 32.09090909090909, "alnum_prop": 0.6940509915014165, "repo_name": "masschallenge/django-accelerator", "id": "f431ca01e4129eb038152b9d5ce53c676f8fe8db", "size": "353", "binary": false, "copies": "1", "ref": "refs/heads/development", "path": "accelerator/models/program_cycle.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "1848" }, { "name": "Makefile", "bytes": "6817" }, { "name": "Python", "bytes": "996767" }, { "name": "Shell", "bytes": "2453" } ], "symlink_target": "" }
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest from mock import ANY from ansible.module_utils.network.fortios.fortios import FortiOSHandler try: from ansible.modules.network.fortios import fortios_waf_signature except ImportError: pytest.skip("Could not load required modules for testing", allow_module_level=True) @pytest.fixture(autouse=True) def connection_mock(mocker): connection_class_mock = mocker.patch('ansible.modules.network.fortios.fortios_waf_signature.Connection') return connection_class_mock fos_instance = FortiOSHandler(connection_mock) def test_waf_signature_creation(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'success', 'http_method': 'POST', 'http_status': 200} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'waf_signature': { 'desc': 'test_value_3', 'id': '4' }, 'vdom': 'root'} is_error, changed, response = fortios_waf_signature.fortios_waf(input_data, fos_instance) expected_data = { 'desc': 'test_value_3', 'id': '4' } set_method_mock.assert_called_with('waf', 'signature', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert changed assert response['status'] == 'success' assert response['http_status'] == 200 def test_waf_signature_creation_fails(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'error', 'http_method': 'POST', 'http_status': 500} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'waf_signature': { 'desc': 'test_value_3', 'id': '4' }, 'vdom': 'root'} is_error, changed, response = fortios_waf_signature.fortios_waf(input_data, fos_instance) expected_data = { 'desc': 'test_value_3', 'id': '4' } set_method_mock.assert_called_with('waf', 'signature', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert is_error assert not changed assert response['status'] == 'error' assert response['http_status'] == 500 def test_waf_signature_removal(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') delete_method_result = {'status': 'success', 'http_method': 'POST', 'http_status': 200} delete_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.delete', return_value=delete_method_result) input_data = { 'username': 'admin', 'state': 'absent', 'waf_signature': { 'desc': 'test_value_3', 'id': '4' }, 'vdom': 'root'} is_error, changed, response = fortios_waf_signature.fortios_waf(input_data, fos_instance) delete_method_mock.assert_called_with('waf', 'signature', mkey=ANY, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert changed assert response['status'] == 'success' assert response['http_status'] == 200 def test_waf_signature_deletion_fails(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') delete_method_result = {'status': 'error', 'http_method': 'POST', 'http_status': 500} delete_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.delete', return_value=delete_method_result) input_data = { 'username': 'admin', 'state': 'absent', 'waf_signature': { 'desc': 'test_value_3', 'id': '4' }, 'vdom': 'root'} is_error, changed, response = fortios_waf_signature.fortios_waf(input_data, fos_instance) delete_method_mock.assert_called_with('waf', 'signature', mkey=ANY, vdom='root') schema_method_mock.assert_not_called() assert is_error assert not changed assert response['status'] == 'error' assert response['http_status'] == 500 def test_waf_signature_idempotent(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'error', 'http_method': 'DELETE', 'http_status': 404} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'waf_signature': { 'desc': 'test_value_3', 'id': '4' }, 'vdom': 'root'} is_error, changed, response = fortios_waf_signature.fortios_waf(input_data, fos_instance) expected_data = { 'desc': 'test_value_3', 'id': '4' } set_method_mock.assert_called_with('waf', 'signature', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert not changed assert response['status'] == 'error' assert response['http_status'] == 404 def test_waf_signature_filter_foreign_attributes(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'success', 'http_method': 'POST', 'http_status': 200} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'waf_signature': { 'random_attribute_not_valid': 'tag', 'desc': 'test_value_3', 'id': '4' }, 'vdom': 'root'} is_error, changed, response = fortios_waf_signature.fortios_waf(input_data, fos_instance) expected_data = { 'desc': 'test_value_3', 'id': '4' } set_method_mock.assert_called_with('waf', 'signature', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert changed assert response['status'] == 'success' assert response['http_status'] == 200
{ "content_hash": "f9c24d92f12826faefce939fefbdc508", "timestamp": "", "source": "github", "line_count": 193, "max_line_length": 142, "avg_line_length": 34.55440414507772, "alnum_prop": 0.6437246963562753, "repo_name": "thaim/ansible", "id": "2dfefd26262a39e43a7ff60638d5cbb86d8bc3f0", "size": "7365", "binary": false, "copies": "20", "ref": "refs/heads/fix-broken-link", "path": "test/units/modules/network/fortios/test_fortios_waf_signature.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "7" }, { "name": "Shell", "bytes": "246" } ], "symlink_target": "" }
"""Împăratul a primit serie de mesaje importante pe care este important să le descifreze cât mai repede. Din păcate mesagerul nu a apucat să îi spună împăratul care au fost cheile alese pentru fiecare mesaj și tu ai fost ales să descifrezi misterul. Informații: În criptografie, cifrul lui Caesar este o metodă simplă de a cripta un mesaj prin înlocuirea fiecărei litere cu litera de pe poziția aflată la un n pași de ea în alfabet (unde este n este un număr întreg cunoscut """ # existau 2 variante de a rezolva problema cu parantezele la print # am preferat sa o folosesc pe asta pentru a evita si eventualele probleme # cu care ziceai tu ca o sa ne stresezi ;) from __future__ import print_function LETTERS = "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz" # tot timpul se va gasi litera in string-ul "LETTERS" # deci circularitatea e suficient # reprezentata prin a-z de doua ori def shift_letter(let, number): """Shifts a letter by number places in LETTERS""" if let.isalpha(): # procesam doar literele return LETTERS[ord(let) - 97 + number] # returnam litera de peste n locuri in LETTERS else: return let # daca nu e litera, returnam caracterul original def decripteaza(mesaj, number): """Decrypts every line in <mesaj>""" new_msg = "" for char in mesaj: new_msg += shift_letter(char, number) if "ave" in new_msg: print(new_msg) def main(): """Have a main docstring, pylint""" try: fisier = open("mesaje.secret", "r") mesaje = fisier.read() fisier.close() except IOError: print("Nu am putut obține mesajele.") return for mesaj in mesaje.splitlines(): for i in range(26): decripteaza(mesaj, i) if __name__ == "__main__": main()
{ "content_hash": "f26d11dc4381e5c29bb61c116ec2b2b2", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 74, "avg_line_length": 30.333333333333332, "alnum_prop": 0.6796703296703297, "repo_name": "alexandrucoman/labs", "id": "ae68fba7105cb935cc993e9c8b8340444eb66a26", "size": "1892", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "python/solutii/alex_mitan/caesar.py", "mode": "33188", "license": "mit", "language": [ { "name": "PHP", "bytes": "3108" }, { "name": "Python", "bytes": "272805" }, { "name": "Shell", "bytes": "10114" } ], "symlink_target": "" }
import tensorflow as tf from ._common import layer_register __all__ = ['SoftMax'] @layer_register() def SoftMax(x, use_temperature=False, temperature_init=1.0): """ A SoftMax layer (no linear projection) with optional temperature :param x: a 2D tensor """ if use_temperature: t = tf.get_variable('invtemp', [], initializer=tf.constant_initializer(1.0 / float(temperature_init))) x = x * t return tf.nn.softmax(x, name='output')
{ "content_hash": "33770e1142f8bf72d1b20bd707e1b14d", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 83, "avg_line_length": 30.375, "alnum_prop": 0.6378600823045267, "repo_name": "yinglanma/AI-project", "id": "a5ebd049a2d301635497174aeb1e7113a3a9acad", "size": "593", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tensorpack/models/softmax.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "319384" } ], "symlink_target": "" }
import unittest from nymms.schemas import Result, StateRecord, types from nymms.reactor import filters class TestFilters(unittest.TestCase): def setUp(self): self.result = Result({'id': 'test:filter', 'state': types.STATE_OK, 'state_type': types.STATE_TYPE_HARD}) self.result.validate() self.record = StateRecord({ 'id': 'test:filter', 'state': types.STATE_OK, 'state_type': types.STATE_TYPE_HARD}) self.record.validate() def test_hard_state(self): self.assertTrue(filters.hard_state(self.result, self.record)) self.result.state_type = types.STATE_TYPE_SOFT self.result.validate() self.assertFalse(filters.hard_state(self.result, self.record)) def test_ok_state(self): self.assertTrue(filters.ok_state(self.result, self.record)) self.result.state = types.STATE_WARNING self.result.validate() self.assertFalse(filters.ok_state(self.result, self.record)) def test_not_ok_state(self): self.assertFalse(filters.not_ok_state(self.result, self.record)) self.result.state = types.STATE_WARNING self.result.validate() self.assertTrue(filters.not_ok_state(self.result, self.record)) def test_warning_state(self): self.assertFalse(filters.warning_state(self.result, self.record)) self.result.state = types.STATE_WARNING self.result.validate() self.assertTrue(filters.warning_state(self.result, self.record)) def test_critical_state(self): self.assertFalse(filters.critical_state(self.result, self.record)) self.result.state = types.STATE_CRITICAL self.result.validate() self.assertTrue(filters.critical_state(self.result, self.record)) def test_unknown_state(self): self.assertFalse(filters.unknown_state(self.result, self.record)) self.result.state = types.STATE_UNKNOWN self.result.validate() self.assertTrue(filters.unknown_state(self.result, self.record)) def test_changed_state(self): f = filters.changed_state self.assertFalse(f(self.result, self.record)) self.assertTrue(f(self.result, None)) self.result.state = types.STATE_CRITICAL self.result.validate() self.assertTrue(f(self.result, self.record)) self.result.state = types.STATE_OK self.result.state_type = types.STATE_TYPE_SOFT self.result.validate() self.assertTrue(f(self.result, self.record))
{ "content_hash": "237eea373dfe3af9be088e0fbd8339dc", "timestamp": "", "source": "github", "line_count": 74, "max_line_length": 74, "avg_line_length": 35.13513513513514, "alnum_prop": 0.6484615384615384, "repo_name": "cloudtools/nymms", "id": "499e4b300a741b75a6f0d46d08524dc115a37eaa", "size": "2600", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "nymms/reactor/filters/tests/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "139423" } ], "symlink_target": "" }
from __future__ import unicode_literals from core.models import BaseManager, Subcategory, Detail from . import DETAIL_TYPE class FormsTypeManager(BaseManager): def get_queryset(self): q = super(FormsTypeManager, self).get_queryset() return q.filter(type=DETAIL_TYPE) class FormSubcategory(Subcategory): objects = FormsTypeManager() class Meta: proxy = True verbose_name = 'Form subcategory' verbose_name_plural = 'Form subcategories' def save(self, *args, **kwargs): self.type = DETAIL_TYPE super(FormSubcategory, self).save(*args, **kwargs) class FormDetail(Detail): objects = FormsTypeManager() class Meta: proxy = True verbose_name = 'Form detail' verbose_name_plural = 'Form details' def save(self, *args, **kwargs): self.type = DETAIL_TYPE super(FormDetail, self).save(*args, **kwargs)
{ "content_hash": "2be0a32e237e50bfa6a6492e6c2f7aa0", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 58, "avg_line_length": 23.794871794871796, "alnum_prop": 0.6519396551724138, "repo_name": "michaupl/materialsapp", "id": "fbe8ac5e3375d6bd1ad1d297d19b1019f19f6bd0", "size": "944", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "forms/models.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "6799" }, { "name": "JavaScript", "bytes": "9273" }, { "name": "Python", "bytes": "213454" } ], "symlink_target": "" }
""" Humans.txt generator, based on work done on Kuma. https://github.com/mozilla/kuma/blob/master/apps/humans/models.py More info about humans.txt here http://humanstxt.org/""" from django.apps import AppConfig default_app_config = 'mozillians.humans.HumansConfig' class HumansConfig(AppConfig): name = 'mozillians.humans'
{ "content_hash": "ef1053bde793dea88cdcb136a7fb0af1", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 65, "avg_line_length": 22.333333333333332, "alnum_prop": 0.755223880597015, "repo_name": "chirilo/mozillians", "id": "023ceac427503eb522a545c1f3624c6a7e605c55", "size": "335", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "mozillians/humans/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "ApacheConf", "bytes": "1986" }, { "name": "CSS", "bytes": "206029" }, { "name": "HTML", "bytes": "160644" }, { "name": "JavaScript", "bytes": "90367" }, { "name": "Makefile", "bytes": "478" }, { "name": "Python", "bytes": "9149147" }, { "name": "Shell", "bytes": "7758" } ], "symlink_target": "" }
"""A utility tool to run pnacl-translate for all archtectures. Example usage: The following command generates stripped nexefile_arm.nexe and nexefile_x86_32.nexe and nexefile_x86_64.nexe. python pnacl_translate.py --command=/path/to/toolchain/linux_pnacl \ --input=/path/to/pexefile --output_base=/path/to/nexefile \ --configuration=Release """ import optparse import os import shutil import subprocess import sys import tempfile def Translate(toolchain_root, input_file, output_base): """Translates the input file for three architectures.""" targets = (('arm', 'arm'), ('x86-32', 'x86_32'), ('x86-64', 'x86_64')) translate_command = os.path.join(toolchain_root, 'bin/pnacl-translate') for target in targets: cmd = (translate_command, '--allow-llvm-bitcode-input', '-arch', target[0], input_file, '-o', '%s_%s.nexe' % (output_base, target[1])) print 'Running: ' + ' '.join(cmd) if subprocess.Popen(cmd).wait() != 0: print >> sys.stderr, 'ERROR: ' + ' '.join(cmd) raise RuntimeError('Translate Error') print 'Done: ' + ' '.join(cmd) def StripAndTranslate(toolchain_root, input_file, output_base): """Strips and translates the input file for three architectures.""" strip_command = os.path.join(toolchain_root, 'bin/pnacl-strip') try: temp_dir = tempfile.mkdtemp() temp_file_base = os.path.join(temp_dir, 'stripped') cmd = (strip_command, input_file, '-o', temp_file_base) print 'Running: ' + ' '.join(cmd) if subprocess.Popen(cmd).wait() != 0: print >> sys.stderr, 'ERROR: ' + ' '.join(cmd) raise RuntimeError('Strip Error') print 'Done: ' + ' '.join(cmd) Translate(toolchain_root, temp_file_base, temp_file_base) targets = ('arm', 'x86_32', 'x86_64') for target in targets: cmd = (strip_command, '%s_%s.nexe' % (temp_file_base, target), '-o', '%s_%s.nexe' % (output_base, target)) print 'Running: ' + ' '.join(cmd) if subprocess.Popen(cmd).wait() != 0: print >> sys.stderr, 'ERROR: ' + ' '.join(cmd) raise RuntimeError('Strip Error') print 'Done: ' + ' '.join(cmd) finally: shutil.rmtree(temp_dir) def main(): """Translate pexe file to x86-32 and x86-64 and arm nexe files.""" parser = optparse.OptionParser(usage='Usage: %prog') parser.add_option('--toolchain_root', dest='toolchain_root', help='pnacl toolchain root path') parser.add_option('--input', dest='input', help='input pexe file') parser.add_option('--output_base', dest='output_base', help='output base path') parser.add_option('--configuration', dest='configuration', help='build configuration') (options, _) = parser.parse_args() if not options.toolchain_root: print >> sys.stderr, 'Error: toolchain_root is not set.' sys.exit(1) if not options.input: print >> sys.stderr, 'Error: input is not set.' sys.exit(1) if not options.output_base: print >> sys.stderr, 'Error: output_base is not set.' sys.exit(1) if options.configuration == 'Release': return StripAndTranslate(options.toolchain_root, options.input, options.output_base) else: return Translate(options.toolchain_root, options.input, options.output_base) if __name__ == '__main__': main()
{ "content_hash": "9018526e48627d9b55970c69c1da504e", "timestamp": "", "source": "github", "line_count": 96, "max_line_length": 79, "avg_line_length": 35.8125, "alnum_prop": 0.6175101803374055, "repo_name": "takahashikenichi/mozc", "id": "e4008d197f0f14c0f0d7f3a3ea47960d46d67c56", "size": "4996", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/chrome/nacl/pnacl_translate.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "200335" }, { "name": "C++", "bytes": "10808666" }, { "name": "CSS", "bytes": "26088" }, { "name": "Emacs Lisp", "bytes": "80074" }, { "name": "HTML", "bytes": "266980" }, { "name": "Java", "bytes": "2751856" }, { "name": "JavaScript", "bytes": "919906" }, { "name": "Makefile", "bytes": "3754" }, { "name": "Objective-C", "bytes": "34833" }, { "name": "Objective-C++", "bytes": "227200" }, { "name": "Protocol Buffer", "bytes": "112300" }, { "name": "Python", "bytes": "1056960" }, { "name": "QMake", "bytes": "861" }, { "name": "Shell", "bytes": "9928" }, { "name": "Yacc", "bytes": "2104" } ], "symlink_target": "" }
import sys import re import optparse from ctypes import * """ This script will use the prototypes from "checkdocs.py -s" to concoct a 1:1 Python wrapper for Allegro. """ class _AL_UTF8String: pass class Allegro: def __init__(self): self.types = {} self.functions = {} self.constants = {} def add_struct(self, name): x = type(name, (Structure, ), {}) self.types[name] = x def add_union(self, name): x = type(name, (Union, ), {}) self.types[name] = x def get_type(self, ptype): conversion = { "bool": c_bool, "_Bool": c_bool, "char": c_byte, "unsignedchar": c_ubyte, "int": c_int, "unsigned": c_uint, "unsignedint": c_uint, "int16_t": c_int16, "uint16_t": c_uint16, "int32_t": c_int32, "uint32_t": c_uint32, "int64_t": c_int64, "uint64_t": c_uint64, "uintptr_t": c_void_p, "intptr_t": c_void_p, "GLuint": c_uint, "unsignedlong": c_ulong, "long": c_long, "size_t": c_size_t, "off_t": c_int64, "time_t": c_int64, "va_list": c_void_p, "float": c_float, "double": c_double, "al_fixed": c_int, "HWND": c_void_p, "char*": _AL_UTF8String, # hack: this probably shouldn't be in the public docs "postprocess_callback_t": c_void_p, } ptype = re.sub(r"\bstruct|union\b", "", ptype) ptype = re.sub(r"\bconst\b", "", ptype) ptype = re.sub(r"\extern\b", "", ptype) ptype = re.sub(r"\__inline__\b", "", ptype) ptype = re.sub(r"\s+", "", ptype) if ptype.endswith("*"): if ptype in conversion: return conversion[ptype] t = ptype[:-1] if t in self.types: return POINTER(self.types[t]) return c_void_p elif ptype in self.types: return self.types[ptype] else: try: return conversion[ptype] except KeyError: print("Type Error:" + str(ptype)) return None def parse_funcs(self, funcs): """ Go through all documented functions and add their prototypes as Python functions. The file should have been generated by Allegro's documentation generation scripts. """ for func in funcs: name, proto = func.split(":", 1) if not name.startswith("al_"): continue proto = proto.strip() name = name[:-2] if proto.startswith("enum"): continue if proto.startswith("typedef"): continue if "=" in proto: continue if proto.startswith("#"): continue funcstart = proto.find(name) funcend = funcstart + len(name) ret = proto[:funcstart].rstrip() params = proto[funcend:].strip(" ;") if params[0] != "(" or params[-1] != ")": print("Error:") print(params) continue params2 = params[1:-1] # remove callback argument lists balance = 0 params = "" for c in params2: if c == ")": balance -= 1 if balance == 0: params += c if c == "(": balance += 1 params = params.split(",") plist = [] for param in params: param = re.sub(r"\bconst\b", "", param) param = param.strip() if param == "void": continue if param == "": continue if param == "...": continue # treat arrays as a void pointer, for now if param.endswith("]") or param.endswith("*"): plist.append(c_void_p) continue # treat callbacks as a void pointer, for now if param.endswith(")"): plist.append(c_void_p) continue mob = re.match("^.*?(\w+)$", param) if mob: pnamepos = mob.start(1) if pnamepos == 0: # Seems the parameter is not named pnamepos = len(param) else: print(params) print(proto) print("") continue ptype = param[:pnamepos] ptype = self.get_type(ptype) plist.append(ptype) f = type("", (object, ), {"restype": c_int}) if not ret.endswith("void"): f.restype = self.get_type(ret) try: f.argtypes = plist except TypeError, e: print(e) print(name) print(plist) self.functions[name] = f def parse_protos(self, filename): protos = [] unions = [] funcs = [] # first pass: create all structs, but without fields for line in open(filename): name, proto = line.split(":", 1) proto = proto.lstrip() if name.endswith("()"): funcs.append(line) continue # anonymous structs have no name at all if name and not name.startswith("ALLEGRO_"): continue if name == "ALLEGRO_OGL_EXT_API": continue if proto.startswith("union") or\ proto.startswith("typedef union"): self.add_union(name) unions.append((name, proto)) elif proto.startswith("struct") or\ proto.startswith("typedef struct"): self.add_struct(name) protos.append((name, proto)) elif proto.startswith("enum") or\ proto.startswith("typedef enum"): if name: self.types[name] = c_int protos.append(("", proto)) elif proto.startswith("#define"): if not name.startswith("_") and not name.startswith("GL_"): i = eval(proto.split(None, 2)[2]) self.constants[name] = i else: # actual typedef mob = re.match("typedef (.*) " + name, proto) if mob: t = mob.group(1) self.types[name] = self.get_type(t.strip()) else: # Probably a function pointer self.types[name] = c_void_p protos += unions # second pass: fill in fields for name, proto in protos: bo = proto.find("{") if bo == -1: continue bc = proto.rfind("}") braces = proto[bo + 1:bc] if proto.startswith("enum") or \ proto.startswith("typedef enum"): fields = braces.split(",") i = 0 for field in fields: if "=" in field: fname, val = field.split("=", 1) fname = fname.strip() try: i = int(eval(val, globals(), self.constants)) except NameError: i = val else: fname = field.strip() if not fname: continue self.constants[fname] = i try: i += 1 except TypeError: pass continue balance = 0 fields = [""] for c in braces: if c == "{": balance += 1 if c == "}": balance -= 1 if c == ";" and balance == 0: fields.append("") else: fields[-1] += c flist = [] for field in fields: if not field: continue # add function pointer as void pointer mob = re.match(".*?\(\*(\w+)\)", field) if mob: flist.append((mob.group(1), "c_void_p")) continue # add any pointer as void pointer mob = re.match(".*?\*(\w+)$", field) if mob: flist.append((mob.group(1), "c_void_p")) continue # add an array mob = re.match("(.*)( \w+)\[(.*?)\]$", field) if mob: # this is all a hack n = 0 ftype = mob.group(1) if ftype.startswith("struct"): if ftype == "struct {float axis[3];}": t = "c_float * 3" else: print("Error: Can't parse " + ftype + " yet.") t = None else: n = mob.group(3) # something in A5 uses a 2d array if "][" in n: n = n.replace("][", " * ") # something uses a division expression if "/" in n: n = "(" + n.replace("/", "//") + ")" t = self.get_type(ftype).__name__ + " * " + n fname = mob.group(2) flist.append((fname, t)) continue vars = field.split(",") mob = re.match("\s*(.*?)\s+(\w+)\s*$", vars[0]) t = self.get_type(mob.group(1)) vname = mob.group(2) if t is not None and vname is not None: flist.append((vname, t.__name__)) for v in vars[1:]: flist.append((v.strip(), t.__name__)) else: print("Error: " + str(vars)) try: self.types[name].my_fields = flist except AttributeError: print(name, flist) self.parse_funcs(funcs) def main(): p = optparse.OptionParser() p.add_option("-o", "--output", help="location of generated file") p.add_option("-p", "--protos", help="A file with all " + "prototypes to generate Python wrappers for, one per line. " "Generate it with docs/scripts/checkdocs.py -p") p.add_option("-t", "--type", help="the library type to " + "use, e.g. debug") p.add_option("-v", "--version", help="the library version to " + "use, e.g. 5.1") options, args = p.parse_args() if not options.protos: p.print_help() return al = Allegro() al.parse_protos(options.protos) f = open(options.output, "w") if options.output else sys.stdout release = options.type version = options.version f.write(r"""# Generated by generate_python_ctypes.py. import os, platform, sys from ctypes import * from ctypes.util import * # You must adjust this function to point ctypes to the A5 DLLs you are # distributing. _dlls = [] def _add_dll(name): release = "%(release)s" if os.name == "nt": release = "%(release)s-%(version)s" # Under Windows, DLLs are found in the current directory, so this # would be an easy way to keep all your DLLs in a sub-folder. # os.chdir("dlls") path = find_library(name + release) if not path: if os.name == "mac": path = name + release + ".dylib" elif os.name == "nt": path = name + release + ".dll" elif os.name == "posix": if platform.mac_ver()[0]: path = name + release + ".dylib" else: path = "lib" + name + release + ".so" else: sys.stderr.write("Cannot find library " + name + "\n") # In most cases, you actually don't want the above and instead # use the exact filename within your game distribution, possibly # even within a .zip file. # if not os.path.exists(path): # path = "dlls/" + path try: # RTLD_GLOBAL is required under OSX for some reason (?) _dlls.append(CDLL(path, RTLD_GLOBAL)) except OSError: # No need to fail here, might just be one of the addons. pass # os.chdir("..") _add_dll("allegro") _add_dll("allegro_acodec") _add_dll("allegro_audio") _add_dll("allegro_primitives") _add_dll("allegro_color") _add_dll("allegro_font") _add_dll("allegro_ttf") _add_dll("allegro_image") _add_dll("allegro_dialog") _add_dll("allegro_memfile") _add_dll("allegro_physfs") _add_dll("allegro_shader") _add_dll("allegro_main") _add_dll("allegro_monolith") # We don't have information ready which A5 function is in which DLL, # so we just try them all. def _dll(func, ret, params): for dll in _dlls: try: f = dll[func] f.restype = ret f.argtypes = params return f except AttributeError: pass sys.stderr.write("Cannot find function " + func + "\n") return lambda *args: None # In Python3, all Python strings are unicode so we have to convert to # UTF8 byte strings before passing to Allegro. if sys.version_info[0] > 2: class _AL_UTF8String: def from_param(x): return x.encode("utf8") else: _AL_UTF8String = c_char_p """ % locals()) postpone = [] for name, val in sorted(al.constants.items()): try: if isinstance(val, str): val = int(eval(val, globals(), al.constants)) f.write(name + " = " + str(val) + "\n") except: postpone.append((name, val)) for name, val in postpone: f.write(name + " = " + val + "\n") structs = set() # output everything except structs and unions for name, x in sorted(al.types.items()): if not name: continue base = x.__bases__[0] if base != Structure and base != Union: f.write(name + " = " + x.__name__ + "\n") else: structs.add(name) # order structs and unions by their dependencies structs_list = [] remaining = set(structs) while remaining: for name in sorted(remaining): ok = True x = al.types[name] if hasattr(x, "my_fields"): for fname, ftype in x.my_fields: if " " in ftype: ftype = ftype.split()[0] if ftype in structs and ftype in remaining: ok = False break if ok: structs_list.append(name) remaining.remove(name) for name in structs_list: x = al.types[name] base = x.__bases__[0] f.write("class " + name + "(" + base.__name__ + "):\n") if hasattr(x, "my_fields"): f.write(" _fields_ = [\n") for fname, ftype in x.my_fields: f.write(" (\"" + fname + "\", " + ftype + "),\n") f.write(" ]\n") else: f.write(" pass\n") pt = POINTER(x) f.write("%s = POINTER(%s)\n" % (pt.__name__, name)) for name, x in sorted(al.functions.items()): try: line = name + " = _dll(\"" + name + "\", " line += x.restype.__name__ + ", " line += "[" + (", ".join([a.__name__ for a in x.argtypes])) +\ "])\n" f.write(line) except AttributeError as e: print("Ignoring " + name + " because of errors (" + str(e) + ").") # some stuff the automated parser doesn't pick up f.write(r""" ALLEGRO_VERSION_INT = \ ((ALLEGRO_VERSION << 24) | (ALLEGRO_SUB_VERSION << 16) | \ (ALLEGRO_WIP_VERSION << 8) | ALLEGRO_RELEASE_NUMBER) """) f.write(r""" # work around bug http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36834 if os.name == "nt": def al_map_rgba_f(r, g, b, a): return ALLEGRO_COLOR(r, g, b, a) def al_map_rgb_f(r, g, b): return ALLEGRO_COLOR(r, g, b, 1) def al_map_rgba(r, g, b, a): return ALLEGRO_COLOR(r / 255.0, g / 255.0, b / 255.0, a / 255.0) def al_map_rgb(r, g, b): return ALLEGRO_COLOR(r / 255.0, g / 255.0, b / 255.0, 1) """) f.write(""" def al_main(real_main, *args): def python_callback(argc, argv): real_main(*args) return 0 cb = CFUNCTYPE(c_int, c_int, c_void_p)(python_callback) al_run_main(0, 0, cb); """) f.close() main()
{ "content_hash": "abcc385439b743439080faa603beabef", "timestamp": "", "source": "github", "line_count": 538, "max_line_length": 78, "avg_line_length": 32.113382899628256, "alnum_prop": 0.44897841060369276, "repo_name": "tsteinholz/SR-Gaming", "id": "96ad28c2dd9ae6ef03f679cdacad71d486f77efe", "size": "17299", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "Libraries/allegro5-5.1/python/generate_python_ctypes.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1656" }, { "name": "C", "bytes": "12915196" }, { "name": "C++", "bytes": "2140602" }, { "name": "CMake", "bytes": "176968" }, { "name": "CSS", "bytes": "4020" }, { "name": "GLSL", "bytes": "3622" }, { "name": "HLSL", "bytes": "6981" }, { "name": "HTML", "bytes": "125" }, { "name": "Java", "bytes": "84112" }, { "name": "JavaScript", "bytes": "35631" }, { "name": "Makefile", "bytes": "1563" }, { "name": "Mathematica", "bytes": "16978" }, { "name": "Objective-C", "bytes": "539745" }, { "name": "Perl", "bytes": "1824" }, { "name": "Prolog", "bytes": "102" }, { "name": "Python", "bytes": "118643" }, { "name": "Shell", "bytes": "39437" }, { "name": "TeX", "bytes": "5585" } ], "symlink_target": "" }
from __future__ import unicode_literals from decimal import Decimal from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('indicators', '0020_auto_20190128_1307'), ] operations = [ migrations.AlterField( model_name='collecteddata', name='achieved', field=models.DecimalField(decimal_places=4, default=Decimal('0.00'), help_text=b'Actual or total for this record', max_digits=20, verbose_name=b'Achieved'), ), migrations.AlterField( model_name='historicalcollecteddata', name='achieved', field=models.DecimalField(decimal_places=4, default=Decimal('0.00'), help_text=b'Actual or total for this record', max_digits=20, verbose_name=b'Achieved'), ), migrations.AlterField( model_name='historicalindicator', name='actuals', field=models.DecimalField(blank=True, decimal_places=4, help_text=b'Sum of collected datas achieved', max_digits=20, null=True), ), migrations.AlterField( model_name='historicalindicator', name='lop_target', field=models.DecimalField(blank=True, decimal_places=4, default=Decimal('0.00'), help_text=b'Life of Program or Project goal for actual', max_digits=20, verbose_name=b'LOP Target'), ), migrations.AlterField( model_name='indicator', name='actuals', field=models.DecimalField(blank=True, decimal_places=4, help_text=b'Sum of collected datas achieved', max_digits=20, null=True), ), migrations.AlterField( model_name='indicator', name='lop_target', field=models.DecimalField(blank=True, decimal_places=4, default=Decimal('0.00'), help_text=b'Life of Program or Project goal for actual', max_digits=20, verbose_name=b'LOP Target'), ), migrations.AlterField( model_name='periodictarget', name='target', field=models.DecimalField(decimal_places=4, default=Decimal('0.00'), max_digits=20), ), ]
{ "content_hash": "70c4ea20b2741e814ca0cffd22ebf226", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 193, "avg_line_length": 43.93877551020408, "alnum_prop": 0.6270320483046912, "repo_name": "toladata/TolaActivity", "id": "b4bf32ad12321890846cf879dbb2f4fcb962e4f2", "size": "2227", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "indicators/migrations/0021_auto_20190220_0254.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "497127" }, { "name": "JavaScript", "bytes": "114367" }, { "name": "Python", "bytes": "786590" }, { "name": "Shell", "bytes": "889" } ], "symlink_target": "" }
from openvino.inference_engine import IENetwork, IEPlugin import argparse import numpy as np from urllib.parse import urlparse from google.cloud import storage from google.auth import exceptions import classes import datetime from shutil import copy import os import json def get_local_file(source_path): parsed_path = urlparse(source_path) if parsed_path.scheme == "gs": bucket_name = parsed_path.netloc file_path = parsed_path.path[1:] file_name = os.path.split(parsed_path.path)[1] try: gs_client = storage.Client() bucket = gs_client.get_bucket(bucket_name) except exceptions.DefaultCredentialsError: # if credentials fails, try to connect as anonymous user gs_client = storage.Client.create_anonymous_client() bucket = gs_client.bucket(bucket_name, user_project=None) blob = bucket.blob(file_path) blob.download_to_filename(file_name) elif parsed_path.scheme == "": # in case of local path just pass the input argument if os.path.isfile(source_path): file_name = source_path else: print("file " + source_path + "is not accessible") file_name = "" return file_name def upload_file(source_file, target_folder): parsed_path = urlparse(target_folder) if parsed_path.scheme == "gs": bucket_name = parsed_path.netloc folder_path = parsed_path.path[1:] try: gs_client = storage.Client() bucket = gs_client.get_bucket(bucket_name) blob = bucket.blob(folder_path + "/" + source_file) blob.upload_from_filename(source_file) except Exception as er: print(er) return False elif parsed_path.scheme == "": if target_folder != ".": copy(source_file, target_folder) return True def main(): parser = argparse.ArgumentParser( description='Component executing inference operation') parser.add_argument('--model_bin', type=str, required=True, help='GCS or local path to model weights file (.bin)') parser.add_argument('--model_xml', type=str, required=True, help='GCS or local path to model graph (.xml)') parser.add_argument('--input_numpy_file', type=str, required=True, help='GCS or local path to input dataset numpy file') parser.add_argument('--label_numpy_file', type=str, required=True, help='GCS or local path to numpy file with labels') parser.add_argument('--output_folder', type=str, required=True, help='GCS or local path to results upload folder') parser.add_argument('--batch_size', type=int, default=1, help='batch size to be used for inference') parser.add_argument('--scale_div', type=float, default=1, help='scale the np input by division of by the value') parser.add_argument('--scale_sub', type=float, default=128, help='scale the np input by substraction of the value') args = parser.parse_args() print(args) device = "CPU" plugin_dir = None model_xml = get_local_file(args.model_xml) print("model xml", model_xml) if model_xml == "": exit(1) model_bin = get_local_file(args.model_bin) print("model bin", model_bin) if model_bin == "": exit(1) input_numpy_file = get_local_file(args.input_numpy_file) print("input_numpy_file", input_numpy_file) if input_numpy_file == "": exit(1) label_numpy_file = get_local_file(args.label_numpy_file) print("label_numpy_file", label_numpy_file) if label_numpy_file == "": exit(1) cpu_extension = "/usr/local/lib/libcpu_extension.so" plugin = IEPlugin(device=device, plugin_dirs=plugin_dir) if cpu_extension and 'CPU' in device: plugin.add_cpu_extension(cpu_extension) print("inference engine:", model_xml, model_bin, device) # Read IR print("Reading IR...") net = IENetwork(model=model_xml, weights=model_bin) batch_size = args.batch_size net.batch_size = batch_size print("Model loaded. Batch size", batch_size) input_blob = next(iter(net.inputs)) output_blob = next(iter(net.outputs)) print(output_blob) print("Loading IR to the plugin...") exec_net = plugin.load(network=net, num_requests=1) print("Loading input numpy") imgs = np.load(input_numpy_file, mmap_mode='r', allow_pickle=False) imgs = (imgs / args.scale_div) - args.scale_div lbs = np.load(label_numpy_file, mmap_mode='r', allow_pickle=False) print("Loaded input data", imgs.shape, imgs.dtype, "Min value:", np.min(imgs), "Max value", np.max(imgs)) combined_results = {} # dictionary storing results for all model outputs processing_times = np.zeros((0),int) matched_count = 0 total_executed = 0 for x in range(0, imgs.shape[0] - batch_size + 1, batch_size): img = imgs[x:(x + batch_size)] lb = lbs[x:(x + batch_size)] start_time = datetime.datetime.now() results = exec_net.infer(inputs={input_blob: img}) end_time = datetime.datetime.now() duration = (end_time - start_time).total_seconds() * 1000 print("Inference duration:", duration, "ms") processing_times = np.append(processing_times,np.array([int(duration)])) output = list(results.keys())[0] # check only one output nu = results[output] for i in range(nu.shape[0]): single_result = nu[[i],...] ma = np.argmax(single_result) total_executed += 1 if ma == lb[i]: matched_count += 1 mark_message = "; Correct match." else: mark_message = "; Incorrect match. Should be {} {}".format(lb[i], classes.imagenet_classes[lb[i]] ) print("\t",i, classes.imagenet_classes[ma],ma, mark_message) if output in combined_results: combined_results[output] = np.append(combined_results[output], results[output], 0) else: combined_results[output] = results[output] filename = output.replace("/", "_") + ".npy" np.save(filename, combined_results[output]) upload_file(filename, args.output_folder) print("Inference results uploaded to", filename) print('Classification accuracy: {:.2f}'.format(100*matched_count/total_executed)) print('Average time: {:.2f} ms; average speed: {:.2f} fps'.format(round(np.average(processing_times), 2),round(1000 * batch_size / np.average(processing_times), 2))) accuracy = matched_count/total_executed latency = np.average(processing_times) metrics = {'metrics': [{'name': 'accuracy-score','numberValue': accuracy,'format': "PERCENTAGE"}, {'name': 'latency','numberValue': latency,'format': "RAW"}]} with open('/mlpipeline-metrics.json', 'w') as f: json.dump(metrics, f) if __name__ == "__main__": main()
{ "content_hash": "9945868ff695e547bf9dcb7cf3337f00", "timestamp": "", "source": "github", "line_count": 177, "max_line_length": 169, "avg_line_length": 40.40677966101695, "alnum_prop": 0.610738255033557, "repo_name": "kubeflow/pipelines", "id": "1ea24c2d391fd227ee63e8b10c71b2e740105e6c", "size": "7152", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "contrib/components/openvino/predict/containers/predict.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "799" }, { "name": "CSS", "bytes": "2171" }, { "name": "Dockerfile", "bytes": "49331" }, { "name": "Go", "bytes": "1903937" }, { "name": "HTML", "bytes": "3656" }, { "name": "JavaScript", "bytes": "544297" }, { "name": "Jinja", "bytes": "938" }, { "name": "Jupyter Notebook", "bytes": "359548" }, { "name": "Makefile", "bytes": "22164" }, { "name": "Mustache", "bytes": "23652" }, { "name": "PowerShell", "bytes": "3194" }, { "name": "Python", "bytes": "5684887" }, { "name": "Shell", "bytes": "264595" }, { "name": "Smarty", "bytes": "8295" }, { "name": "Starlark", "bytes": "553" }, { "name": "TypeScript", "bytes": "4294958" } ], "symlink_target": "" }
import copy from nova.api.validation import parameter_types snapshots_create = { 'type': 'object', 'properties': { 'snapshot': { 'type': 'object', 'properties': { 'volume_id': { 'type': 'string', 'minLength': 1, }, 'create_info': { 'type': 'object', 'properties': { 'snapshot_id': { 'type': 'string', 'minLength': 1, }, 'type': { 'type': 'string', 'enum': ['qcow2'], }, 'new_file': { 'type': 'string', 'minLength': 1, }, 'id': { 'type': 'string', 'minLength': 1, }, }, 'required': ['snapshot_id', 'type', 'new_file'], 'additionalProperties': False, }, }, 'required': ['volume_id', 'create_info'], 'additionalProperties': False, } }, 'required': ['snapshot'], 'additionalProperties': False, } delete_query = { 'type': 'object', 'properties': { 'delete_info': parameter_types.multi_params({'type': 'string'}) }, # NOTE(gmann): This is kept True to keep backward compatibility. # As of now Schema validation stripped out the additional parameters and # does not raise 400. In microversion 2.75, we have blocked the additional # parameters. 'additionalProperties': True } delete_query_275 = copy.deepcopy(delete_query) delete_query_275['additionalProperties'] = False
{ "content_hash": "f0bdc4a38c9a80241d239cec440794d8", "timestamp": "", "source": "github", "line_count": 55, "max_line_length": 78, "avg_line_length": 32.6, "alnum_prop": 0.4316787506971556, "repo_name": "openstack/nova", "id": "0a13c50b11414877d468c1bd7ec878fe536ae06a", "size": "2424", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "nova/api/openstack/compute/schemas/assisted_volume_snapshots.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "3545" }, { "name": "Mako", "bytes": "1952" }, { "name": "Python", "bytes": "23261880" }, { "name": "Shell", "bytes": "28113" }, { "name": "Smarty", "bytes": "507244" } ], "symlink_target": "" }
import os from golem.report import report from golem.core.project import Project class TestGetLastExecutionTimestamps: def test_get_last_execution_timestamps(self, project_function, test_utils): _, project = project_function.activate() # suite does not exist last_exec = report.get_last_execution_timestamps([project], 'suite_does_not_exist') assert last_exec[project] == {} # suite with no executions suite_name = 'suite1' test_utils.create_test(project, name='test1') test_utils.create_suite(project, name=suite_name, tests=['test1']) assert last_exec[project] == {} # suite with one execution timestamp = test_utils.run_suite(project, suite_name) last_exec = report.get_last_execution_timestamps([project], suite_name) assert last_exec[project] == {suite_name: [timestamp]} # multiple executions timestamp_first = test_utils.run_suite(project, suite_name) timestamp_second = test_utils.run_suite(project, suite_name) last_exec = report.get_last_execution_timestamps([project], suite_name, limit=2) assert len(last_exec[project][suite_name]) == 2 assert last_exec[project][suite_name][0] == timestamp_second assert last_exec[project][suite_name][1] == timestamp_first class TestDeleteExecution: def test_delete_execution(self, project_class, test_utils): _, project = project_class.activate() execution = test_utils.execute_random_suite(project) execpath = os.path.join(Project(project).report_directory_path, execution['suite_name']) assert os.path.isdir(execpath) assert os.path.isdir(execution['exec_dir']) errors = report.delete_execution(project, execution['suite_name']) assert errors == [] assert not os.path.isdir(execpath) class TestDeleteExecutionTimestamp: def test_delete_execution_timestamp(self, project_class, test_utils): _, project = project_class.activate() execution = test_utils.execute_random_suite(project) execpath = os.path.join(Project(project).report_directory_path, execution['suite_name']) assert os.path.isdir(execution['exec_dir']) errors = report.delete_execution_timestamp(project, execution['suite_name'], execution['timestamp']) assert errors == [] assert not os.path.isdir(execution['exec_dir']) assert os.path.isdir(execpath) # folder for execution name still exists def test_delete_execution_timestamp_does_not_exist(self, project_class, test_utils): _, project = project_class.activate() execution = test_utils.random_string() timestamp = test_utils.random_string() errors = report.delete_execution_timestamp(project, execution, timestamp) assert errors == [f'Execution for {project} {execution} {timestamp} does not exist']
{ "content_hash": "71c699e9ad3f96b7d90ae602a3a5b1d2", "timestamp": "", "source": "github", "line_count": 71, "max_line_length": 108, "avg_line_length": 41.267605633802816, "alnum_prop": 0.6757679180887372, "repo_name": "lucianopuccio/golem", "id": "4756e0f31270be98d35e69470908702375972fa5", "size": "2930", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/report/report_test.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "19253" }, { "name": "HTML", "bytes": "72727" }, { "name": "JavaScript", "bytes": "119483" }, { "name": "Python", "bytes": "520538" } ], "symlink_target": "" }
from ginga import trcalc from ginga.util import wcs from ginga.util.six.moves import map class CanvasMapper(object): """A coordinate mapper that maps to the viewer's canvas in canvas coordinates. """ def __init__(self, viewer): # record the viewer just in case self.viewer = viewer def to_canvas(self, canvas_x, canvas_y): return (canvas_x, canvas_y) def to_data(self, canvas_x, canvas_y): return self.viewer.get_data_xy(canvas_x, canvas_y) def offset_pt(self, pt, xoff, yoff): x, y = pt return x + xoff, y + yoff def rotate_pt(self, x, y, theta, xoff=0, yoff=0): # TODO? Not sure if it is needed with this mapper type return x, y class DataMapper(object): """A coordinate mapper that maps to the viewer's canvas in data coordinates. """ def __init__(self, viewer): self.viewer = viewer def to_canvas(self, data_x, data_y): return self.viewer.canvascoords(data_x, data_y) def to_data(self, data_x, data_y): return data_x, data_y def data_to(self, data_x, data_y): return data_x, data_y def offset_pt(self, pt, xoff, yoff): x, y = pt return x + xoff, y + yoff def rotate_pt(self, x, y, theta, xoff=0, yoff=0): return trcalc.rotate_pt(x, y, theta, xoff=xoff, yoff=yoff) class OffsetMapper(object): """A coordinate mapper that maps to the viewer's canvas in data coordinates that are offsets relative to some other reference object. """ def __init__(self, viewer, refobj): # TODO: provide a keyword arg to specify which point in the obj self.viewer = viewer self.refobj = refobj def calc_offsets(self, points): ref_x, ref_y = self.refobj.get_reference_pt() #return map(lambda x, y: x - ref_x, y - ref_y, points) def _cvt(pt): x, y = pt return x - ref_x, y - ref_y return map(_cvt, points) def to_canvas(self, delta_x, delta_y): data_x, data_y = self.to_data(delta_x, delta_y) return self.viewer.canvascoords(data_x, data_y) def to_data(self, delta_x, delta_y): ref_x, ref_y = self.refobj.get_reference_pt() data_x, data_y = self.refobj.crdmap.to_data(ref_x, ref_y) return data_x + delta_x, data_y + delta_y ## def data_to(self, data_x, data_y): ## ref_x, ref_y = self.refobj.get_reference_pt() ## return data_x - ref_data_x, data_y - ref_data_y def offset_pt(self, pt, xoff, yoff): # A no-op because this object's points are always considered # relative to the reference object return pt def rotate_pt(self, x, y, theta, xoff=0, yoff=0): # TODO? Not sure if it is needed with this mapper type return x, y class WCSMapper(DataMapper): """A coordinate mapper that maps to the viewer's canvas in WCS coordinates. """ def to_canvas(self, lon, lat): data_x, data_y = self.to_data(lon, lat) return super(WCSMapper, self).to_canvas(data_x, data_y) def to_data(self, lon, lat): image = self.viewer.get_image() data_x, data_y = image.radectopix(lon, lat) return data_x, data_y def data_to(self, data_x, data_y): image = self.viewer.get_image() lon, lat = image.pixtoradec(data_x, data_y) return lon, lat def offset_pt(self, pt, xoff, yoff): x, y = pt return wcs.add_offset_radec(x, y, xoff, yoff) def rotate_pt(self, x, y, theta, xoff=0, yoff=0): # TODO: optomize by rotating in WCS space x, y = self.to_data(x, y) xoff, yoff = self.to_data(xoff, yoff) x, y = super(WCSMapper, self).rotate_pt(x, y, theta, xoff=xoff, yoff=yoff) x, y = self.data_to(x, y) return x, y #END
{ "content_hash": "9dbf027110c3fed2b348a0f0e93f8a0c", "timestamp": "", "source": "github", "line_count": 125, "max_line_length": 71, "avg_line_length": 31.24, "alnum_prop": 0.5871959026888605, "repo_name": "rajul/ginga", "id": "56cbfa41504c336a0ce9a6d60530d0a73a88a4fd", "size": "4144", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "ginga/canvas/coordmap.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "2151" }, { "name": "JavaScript", "bytes": "85309" }, { "name": "Jupyter Notebook", "bytes": "1589549" }, { "name": "Makefile", "bytes": "85" }, { "name": "Python", "bytes": "2795955" } ], "symlink_target": "" }
from __future__ import unicode_literals, division, absolute_import import datetime import logging import re from requests.exceptions import TooManyRedirects from sqlalchemy import Column, Unicode, DateTime from flexget import plugin, db_schema from flexget.config_schema import one_or_more from flexget.entry import Entry from flexget.event import event from flexget.manager import Session from flexget.utils.database import json_synonym from flexget.utils.requests import Session as RequestSession, TimedLimiter, RequestException from flexget.utils.soup import get_soup from flexget.utils.tools import parse_filesize log = logging.getLogger('alpharatio') Base = db_schema.versioned_base('alpharatio', 0) requests = RequestSession() requests.add_domain_limiter(TimedLimiter('alpharatio.cc', '5 seconds')) # ElementZero confirmed with AlphaRato sysop 'jasonmaster' that they do want a 5 second limiter CATEGORIES = { 'tvsd': 'filter_cat[1]', 'tvhd': 'filter_cat[2]', 'tvdvdrip': 'filter_cat[3]', 'tvpacksd': 'filter_cat[4]', 'tvpackhd': 'filter_cat[5]', 'moviesd': 'filter_cat[6]', 'moviehd': 'filter_cat[7]', 'moviepacksd': 'filter_cat[8]', 'moviepackhd': 'filter_cat[9]', 'moviexxx': 'filter_cat[10]', 'mvid': 'filter_cat[11]', 'gamespc': 'filter_cat[12]', 'gamesxbox': 'filter_cat[13]', 'gamesps3': 'filter_cat[14]', 'gameswii': 'filter_cat[15]', 'appspc': 'filter_cat[16]', 'appsmac': 'filter_cat[17]', 'appslinux': 'filter_cat[18]', 'appsmobile': 'filter_cat[19]', '0dayXXX': 'filter_cat[20]', 'ebook': 'filter_cat[21]', 'audiobook': 'filter_cat[22]', 'music': 'filter_cat[23]', 'misc': 'filter_cat[24]' } LEECHSTATUS = { 'normal': 0, 'freeleech': 1, 'neutral leech': 2, 'either': 3 } class AlphaRatioCookie(Base): __tablename__ = 'alpharatio_cookie' username = Column(Unicode, primary_key=True) _cookie = Column('cookie', Unicode) cookie = json_synonym('_cookie') expires = Column(DateTime) class SearchAlphaRatio(object): """ AlphaRatio search plugin. """ schema = { 'type': 'object', 'properties': { 'username': {'type': 'string'}, 'password': {'type': 'string'}, 'category': one_or_more({'type': 'string', 'enum': list(CATEGORIES.keys())}, unique_items=True), 'order_by': {'type': 'string', 'enum': ['seeders', 'leechers', 'time', 'size', 'year', 'snatched'], 'default': 'time'}, 'order_desc': {'type': 'boolean', 'default': True}, 'scene': {'type': 'boolean'}, 'leechstatus': {'type': 'string', 'enum': list(LEECHSTATUS.keys()), 'default': 'normal'}, }, 'required': ['username', 'password'], 'additionalProperties': False } base_url = 'https://alpharatio.cc/' errors = False def get(self, url, params, username, password, force=False): """ Wrapper to allow refreshing the cookie if it is invalid for some reason :param unicode url: :param dict params: :param str username: :param str password: :param bool force: flag used to refresh the cookie forcefully ie. forgo DB lookup :return: """ cookies = self.get_login_cookie(username, password, force=force) invalid_cookie = False try: response = requests.get(url, params=params, cookies=cookies) if self.base_url + 'login.php' in response.url: invalid_cookie = True except TooManyRedirects: # Apparently it endlessly redirects if the cookie is invalid? log.debug('MoreThanTV request failed: Too many redirects. Invalid cookie?') invalid_cookie = True if invalid_cookie: if self.errors: raise plugin.PluginError('AlphaRatio login cookie is invalid. Login page received?') self.errors = True # try again response = self.get(url, params, username, password, force=True) else: self.errors = False return response def get_login_cookie(self, username, password, force=False): """ Retrieves login cookie :param str username: :param str password: :param bool force: if True, then retrieve a fresh cookie instead of looking in the DB :return: """ if not force: with Session() as session: saved_cookie = session.query(AlphaRatioCookie).filter(AlphaRatioCookie.username == username).first() if saved_cookie and saved_cookie.expires and saved_cookie.expires >= datetime.datetime.now(): log.debug('Found valid login cookie') return saved_cookie.cookie url = self.base_url + 'login.php' try: log.debug('Attempting to retrieve AlphaRatio cookie') response = requests.post(url, data={'username': username, 'password': password, 'login': 'Log in', 'keeplogged': '1'}, timeout=30) except RequestException as e: raise plugin.PluginError('AlphaRatio login failed: %s' % e) if 'Your username or password was incorrect.' in response.text: raise plugin.PluginError('AlphaRatio login failed: Your username or password was incorrect.') with Session() as session: expires = None for c in requests.cookies: if c.name == 'session': expires = c.expires if expires: expires = datetime.datetime.fromtimestamp(expires) log.debug('Saving or updating AlphaRatio cookie in db') cookie = AlphaRatioCookie(username=username, cookie=dict(requests.cookies), expires=expires) session.merge(cookie) return cookie.cookie def find_index(self, soup, text): """Finds the index of the tag containing the text""" for i in range(0, len(soup)): img = soup[i].find('img') if soup[i].text.strip() == '' and img and text.lower() in img.get('title').lower(): return i elif text.lower() in soup[i].text.lower(): return i raise plugin.PluginError('AlphaRatio layout has changed, unable to parse correctly. Please open a Github issue') @plugin.internet(log) def search(self, task, entry, config): """ Search for entries on AlphaRatio """ params = {} if 'category' in config: categories = config['category'] if isinstance(config['category'], list) else [config['category']] for category in categories: params[CATEGORIES[category]] = 1 if 'scene' in config: params['scene'] = int(config['scene']) ordering = 'desc' if config['order_desc'] else 'asc' entries = set() params.update({'order_by': config['order_by'], 'search_submit': 1, 'action': 'basic', 'order_way': ordering, 'freeleech': LEECHSTATUS[config['leechstatus']]}) for search_string in entry.get('search_strings', [entry['title']]): params['searchstr'] = search_string log.debug('Using search params: %s', params) try: page = self.get(self.base_url + 'torrents.php', params, config['username'], config['password']) log.debug('requesting: %s', page.url) except RequestException as e: log.error('AlphaRatio request failed: %s', e) continue soup = get_soup(page.content) # extract the column indices header_soup = soup.find('tr', attrs={'class': 'colhead'}) if not header_soup: log.debug('no search results found for \'%s\'', search_string) continue header_soup = header_soup.findAll('td') size_idx = self.find_index(header_soup, 'size') snatches_idx = self.find_index(header_soup, 'snatches') seeds_idx = self.find_index(header_soup, 'seeders') leeches_idx = self.find_index(header_soup, 'leechers') for result in soup.findAll('tr', attrs={'class': 'torrent'}): group_info = result.find('td', attrs={'class': 'big_info'}).find('div', attrs={'class': 'group_info'}) title = group_info.find('a', href=re.compile('torrents.php\?id=\d+')).text url = self.base_url + \ group_info.find('a', href=re.compile('torrents.php\?action=download(?!usetoken)'))['href'] torrent_info = result.findAll('td') size_col = torrent_info[size_idx].text log.debug('AlphaRatio size: %s', size_col) size = re.search('(\d+(?:[.,]\d+)*)\s?([KMGTP]B)', size_col) torrent_tags = ', '.join([tag.text for tag in group_info.findAll('div', attrs={'class': 'tags'})]) e = Entry() e['title'] = title e['url'] = url e['torrent_tags'] = torrent_tags if not size: log.error('No size found! Please create a Github issue. Size received: %s', size_col) else: e['content_size'] = parse_filesize(size.group(0)) e['torrent_snatches'] = int(torrent_info[snatches_idx].text) e['torrent_seeds'] = int(torrent_info[seeds_idx].text) e['torrent_leeches'] = int(torrent_info[leeches_idx].text) entries.add(e) return entries @event('plugin.register') def register_plugin(): plugin.register(SearchAlphaRatio, 'alpharatio', interfaces=['search'], api_ver=2)
{ "content_hash": "d40c2816745db4b5d6b19762c82c7de9", "timestamp": "", "source": "github", "line_count": 257, "max_line_length": 120, "avg_line_length": 38.57198443579767, "alnum_prop": 0.5790376273580147, "repo_name": "OmgOhnoes/Flexget", "id": "984decc0b6c346bfd54a383c21228d2521f59ced", "size": "9913", "binary": false, "copies": "5", "ref": "refs/heads/develop", "path": "flexget/plugins/sites/alpharatio.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "11875" }, { "name": "HTML", "bytes": "79376" }, { "name": "JavaScript", "bytes": "263723" }, { "name": "Python", "bytes": "3324701" }, { "name": "SRecode Template", "bytes": "3" } ], "symlink_target": "" }
import os from .. import bot from .. import db from .test_bot import EXAMPLE_TWEET TESTDB = 'test_goldstar.db' class TestDB(): def setup(self): os.remove(TESTDB) self.db = db.GoldStarDB(TESTDB) def teardown(self): os.remove(TESTDB) def test_db_save(self): # Save a tweet to the test db and check if it got inserted handler = bot.TweetHandler(EXAMPLE_TWEET, dbfile=TESTDB, dry_run=True) handler.handle() for recipient in handler.get_recipients(): assert self.db.count_stars(recipient['id']) == 1 assert self.db.count_stars(123) == 0 # Random user_id def test_db_save(self): # Save a tweet to the test db and check if it got inserted handler = bot.TweetHandler(EXAMPLE_TWEET, dbfile=TESTDB, dry_run=True) handler.handle() # Have stars been added? for recipient in handler.get_recipients(): assert self.db.count_stars(recipient['id']) == 1 # Does a random user_id have any stars? assert self.db.count_stars(123) == 0 # Can we successfully delete a star? for recipient in handler.get_recipients(): self.db.delete_star(status_id=EXAMPLE_TWEET['id'], recipient_id=recipient['id']) assert self.db.count_stars(recipient['id']) == 0
{ "content_hash": "8b2edd9f3971a300060598bc0e630533", "timestamp": "", "source": "github", "line_count": 41, "max_line_length": 78, "avg_line_length": 33.31707317073171, "alnum_prop": 0.6112737920937042, "repo_name": "barentsen/AstroGoldStars", "id": "985a4bd665aac429039a8184a7285986057b38c2", "size": "1366", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bot/tests/test_db.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "3897" }, { "name": "HTML", "bytes": "5278" }, { "name": "Python", "bytes": "12426" } ], "symlink_target": "" }
import logging import numpy as np from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.models.torch.misc import SlimFC, AppendBiasLayer, \ normc_initializer from ray.rllib.utils.annotations import override from ray.rllib.utils.framework import try_import_torch torch, nn = try_import_torch() logger = logging.getLogger(__name__) class FullyConnectedNetwork(TorchModelV2, nn.Module): """Generic fully connected network.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): TorchModelV2.__init__(self, obs_space, action_space, num_outputs, model_config, name) nn.Module.__init__(self) activation = model_config.get("fcnet_activation") hiddens = model_config.get("fcnet_hiddens") no_final_linear = model_config.get("no_final_linear") self.vf_share_layers = model_config.get("vf_share_layers") self.free_log_std = model_config.get("free_log_std") # Generate free-floating bias variables for the second half of # the outputs. if self.free_log_std: assert num_outputs % 2 == 0, ( "num_outputs must be divisible by two", num_outputs) num_outputs = num_outputs // 2 layers = [] prev_layer_size = int(np.product(obs_space.shape)) self._logits = None # Create layers 0 to second-last. for size in hiddens[:-1]: layers.append( SlimFC( in_size=prev_layer_size, out_size=size, initializer=normc_initializer(1.0), activation_fn=activation)) prev_layer_size = size # The last layer is adjusted to be of size num_outputs, but it's a # layer with activation. if no_final_linear and num_outputs: layers.append( SlimFC( in_size=prev_layer_size, out_size=num_outputs, initializer=normc_initializer(1.0), activation_fn=activation)) prev_layer_size = num_outputs # Finish the layers with the provided sizes (`hiddens`), plus - # iff num_outputs > 0 - a last linear layer of size num_outputs. else: if len(hiddens) > 0: layers.append( SlimFC( in_size=prev_layer_size, out_size=hiddens[-1], initializer=normc_initializer(1.0), activation_fn=activation)) prev_layer_size = hiddens[-1] if num_outputs: self._logits = SlimFC( in_size=prev_layer_size, out_size=num_outputs, initializer=normc_initializer(0.01), activation_fn=None) else: self.num_outputs = ( [int(np.product(obs_space.shape))] + hiddens[-1:])[-1] # Layer to add the log std vars to the state-dependent means. if self.free_log_std and self._logits: self._append_free_log_std = AppendBiasLayer(num_outputs) self._hidden_layers = nn.Sequential(*layers) self._value_branch_separate = None if not self.vf_share_layers: # Build a parallel set of hidden layers for the value net. prev_vf_layer_size = int(np.product(obs_space.shape)) vf_layers = [] for size in hiddens: vf_layers.append( SlimFC( in_size=prev_vf_layer_size, out_size=size, activation_fn=activation, initializer=normc_initializer(1.0))) prev_vf_layer_size = size self._value_branch_separate = nn.Sequential(*vf_layers) self._value_branch = SlimFC( in_size=prev_layer_size, out_size=1, initializer=normc_initializer(1.0), activation_fn=None) # Holds the current "base" output (before logits layer). self._features = None # Holds the last input, in case value branch is separate. self._last_flat_in = None @override(TorchModelV2) def forward(self, input_dict, state, seq_lens): obs = input_dict["obs_flat"].float() self._last_flat_in = obs.reshape(obs.shape[0], -1) self._features = self._hidden_layers(self._last_flat_in) logits = self._logits(self._features) if self._logits else \ self._features if self.free_log_std: logits = self._append_free_log_std(logits) return logits, state @override(TorchModelV2) def value_function(self): assert self._features is not None, "must call forward() first" if self._value_branch_separate: return self._value_branch( self._value_branch_separate(self._last_flat_in)).squeeze(1) else: return self._value_branch(self._features).squeeze(1)
{ "content_hash": "2fbaad9db35daa3bdcd0f2c85ebe3be2", "timestamp": "", "source": "github", "line_count": 131, "max_line_length": 75, "avg_line_length": 39.404580152671755, "alnum_prop": 0.5559860519178613, "repo_name": "robertnishihara/ray", "id": "4080c93185a2161183b84fda41dfde5d723d1f1c", "size": "5162", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rllib/models/torch/fcnet.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "82909" }, { "name": "C++", "bytes": "3971373" }, { "name": "CSS", "bytes": "8025" }, { "name": "Cython", "bytes": "179979" }, { "name": "Dockerfile", "bytes": "6468" }, { "name": "Go", "bytes": "23139" }, { "name": "HTML", "bytes": "30414" }, { "name": "Java", "bytes": "1248954" }, { "name": "JavaScript", "bytes": "444" }, { "name": "Jupyter Notebook", "bytes": "1615" }, { "name": "Makefile", "bytes": "2205" }, { "name": "Python", "bytes": "6567694" }, { "name": "Shell", "bytes": "102477" }, { "name": "Starlark", "bytes": "231513" }, { "name": "TypeScript", "bytes": "147793" } ], "symlink_target": "" }
"""Support for SimpliSafe alarm systems.""" from __future__ import annotations import asyncio from collections.abc import Callable, Iterable from datetime import timedelta from typing import Any, cast from simplipy import API from simplipy.device import Device, DeviceTypes from simplipy.errors import ( EndpointUnavailableError, InvalidCredentialsError, SimplipyError, WebsocketError, ) from simplipy.system import SystemNotification from simplipy.system.v3 import ( MAX_ALARM_DURATION, MAX_ENTRY_DELAY_AWAY, MAX_ENTRY_DELAY_HOME, MAX_EXIT_DELAY_AWAY, MAX_EXIT_DELAY_HOME, MIN_ALARM_DURATION, MIN_ENTRY_DELAY_AWAY, MIN_EXIT_DELAY_AWAY, SystemV3, Volume, ) from simplipy.websocket import ( EVENT_AUTOMATIC_TEST, EVENT_CAMERA_MOTION_DETECTED, EVENT_CONNECTION_LOST, EVENT_CONNECTION_RESTORED, EVENT_DEVICE_TEST, EVENT_DOORBELL_DETECTED, EVENT_LOCK_LOCKED, EVENT_LOCK_UNLOCKED, EVENT_POWER_OUTAGE, EVENT_POWER_RESTORED, EVENT_SECRET_ALERT_TRIGGERED, EVENT_SENSOR_PAIRED_AND_NAMED, EVENT_USER_INITIATED_TEST, WebsocketEvent, ) import voluptuous as vol from homeassistant.config_entries import ConfigEntry, ConfigEntryState from homeassistant.const import ( ATTR_CODE, ATTR_DEVICE_ID, CONF_CODE, CONF_TOKEN, CONF_USERNAME, EVENT_HOMEASSISTANT_STOP, Platform, ) from homeassistant.core import CoreState, Event, HomeAssistant, ServiceCall, callback from homeassistant.exceptions import ( ConfigEntryAuthFailed, ConfigEntryNotReady, HomeAssistantError, ) from homeassistant.helpers import ( aiohttp_client, config_validation as cv, device_registry as dr, ) from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.issue_registry import IssueSeverity, async_create_issue from homeassistant.helpers.service import ( async_register_admin_service, verify_domain_control, ) from homeassistant.helpers.update_coordinator import ( CoordinatorEntity, DataUpdateCoordinator, UpdateFailed, ) from .const import ( ATTR_ALARM_DURATION, ATTR_ALARM_VOLUME, ATTR_CHIME_VOLUME, ATTR_ENTRY_DELAY_AWAY, ATTR_ENTRY_DELAY_HOME, ATTR_EXIT_DELAY_AWAY, ATTR_EXIT_DELAY_HOME, ATTR_LIGHT, ATTR_VOICE_PROMPT_VOLUME, DOMAIN, LOGGER, ) from .typing import SystemType ATTR_CATEGORY = "category" ATTR_LAST_EVENT_CHANGED_BY = "last_event_changed_by" ATTR_LAST_EVENT_INFO = "last_event_info" ATTR_LAST_EVENT_SENSOR_NAME = "last_event_sensor_name" ATTR_LAST_EVENT_SENSOR_SERIAL = "last_event_sensor_serial" ATTR_LAST_EVENT_SENSOR_TYPE = "last_event_sensor_type" ATTR_LAST_EVENT_TIMESTAMP = "last_event_timestamp" ATTR_LAST_EVENT_TYPE = "last_event_type" ATTR_LAST_EVENT_TYPE = "last_event_type" ATTR_MESSAGE = "message" ATTR_PIN_LABEL = "label" ATTR_PIN_LABEL_OR_VALUE = "label_or_pin" ATTR_PIN_VALUE = "pin" ATTR_SYSTEM_ID = "system_id" ATTR_TIMESTAMP = "timestamp" DEFAULT_CONFIG_URL = "https://webapp.simplisafe.com/new/#/dashboard" DEFAULT_ENTITY_MODEL = "Alarm control panel" DEFAULT_ERROR_THRESHOLD = 2 DEFAULT_SCAN_INTERVAL = timedelta(seconds=30) DEFAULT_SOCKET_MIN_RETRY = 15 DISPATCHER_TOPIC_WEBSOCKET_EVENT = "simplisafe_websocket_event_{0}" EVENT_SIMPLISAFE_EVENT = "SIMPLISAFE_EVENT" EVENT_SIMPLISAFE_NOTIFICATION = "SIMPLISAFE_NOTIFICATION" PLATFORMS = [ Platform.ALARM_CONTROL_PANEL, Platform.BINARY_SENSOR, Platform.BUTTON, Platform.LOCK, Platform.SENSOR, ] VOLUME_MAP = { "high": Volume.HIGH, "low": Volume.LOW, "medium": Volume.MEDIUM, "off": Volume.OFF, } SERVICE_NAME_CLEAR_NOTIFICATIONS = "clear_notifications" SERVICE_NAME_REMOVE_PIN = "remove_pin" SERVICE_NAME_SET_PIN = "set_pin" SERVICE_NAME_SET_SYSTEM_PROPERTIES = "set_system_properties" SERVICES = ( SERVICE_NAME_CLEAR_NOTIFICATIONS, SERVICE_NAME_REMOVE_PIN, SERVICE_NAME_SET_PIN, SERVICE_NAME_SET_SYSTEM_PROPERTIES, ) SERVICE_CLEAR_NOTIFICATIONS_SCHEMA = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, }, ) SERVICE_REMOVE_PIN_SCHEMA = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, vol.Required(ATTR_PIN_LABEL_OR_VALUE): cv.string, } ) SERVICE_SET_PIN_SCHEMA = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, vol.Required(ATTR_PIN_LABEL): cv.string, vol.Required(ATTR_PIN_VALUE): cv.string, }, ) SERVICE_SET_SYSTEM_PROPERTIES_SCHEMA = vol.Schema( { vol.Required(ATTR_DEVICE_ID): cv.string, vol.Optional(ATTR_ALARM_DURATION): vol.All( cv.time_period, lambda value: value.total_seconds(), vol.Range(min=MIN_ALARM_DURATION, max=MAX_ALARM_DURATION), ), vol.Optional(ATTR_ALARM_VOLUME): vol.All(vol.In(VOLUME_MAP), VOLUME_MAP.get), vol.Optional(ATTR_CHIME_VOLUME): vol.All(vol.In(VOLUME_MAP), VOLUME_MAP.get), vol.Optional(ATTR_ENTRY_DELAY_AWAY): vol.All( cv.time_period, lambda value: value.total_seconds(), vol.Range(min=MIN_ENTRY_DELAY_AWAY, max=MAX_ENTRY_DELAY_AWAY), ), vol.Optional(ATTR_ENTRY_DELAY_HOME): vol.All( cv.time_period, lambda value: value.total_seconds(), vol.Range(max=MAX_ENTRY_DELAY_HOME), ), vol.Optional(ATTR_EXIT_DELAY_AWAY): vol.All( cv.time_period, lambda value: value.total_seconds(), vol.Range(min=MIN_EXIT_DELAY_AWAY, max=MAX_EXIT_DELAY_AWAY), ), vol.Optional(ATTR_EXIT_DELAY_HOME): vol.All( cv.time_period, lambda value: value.total_seconds(), vol.Range(max=MAX_EXIT_DELAY_HOME), ), vol.Optional(ATTR_LIGHT): cv.boolean, vol.Optional(ATTR_VOICE_PROMPT_VOLUME): vol.All( vol.In(VOLUME_MAP), VOLUME_MAP.get ), } ) WEBSOCKET_EVENTS_REQUIRING_SERIAL = [EVENT_LOCK_LOCKED, EVENT_LOCK_UNLOCKED] WEBSOCKET_EVENTS_TO_FIRE_HASS_EVENT = [ EVENT_AUTOMATIC_TEST, EVENT_CAMERA_MOTION_DETECTED, EVENT_DOORBELL_DETECTED, EVENT_DEVICE_TEST, EVENT_SECRET_ALERT_TRIGGERED, EVENT_SENSOR_PAIRED_AND_NAMED, EVENT_USER_INITIATED_TEST, ] CONFIG_SCHEMA = cv.removed(DOMAIN, raise_if_present=False) @callback def _async_get_system_for_service_call( hass: HomeAssistant, call: ServiceCall ) -> SystemType: """Get the SimpliSafe system related to a service call (by device ID).""" device_id = call.data[ATTR_DEVICE_ID] device_registry = dr.async_get(hass) if ( alarm_control_panel_device_entry := device_registry.async_get(device_id) ) is None: raise vol.Invalid("Invalid device ID specified") assert alarm_control_panel_device_entry.via_device_id if ( base_station_device_entry := device_registry.async_get( alarm_control_panel_device_entry.via_device_id ) ) is None: raise ValueError("No base station registered for alarm control panel") [system_id] = [ identity[1] for identity in base_station_device_entry.identifiers if identity[0] == DOMAIN ] for entry_id in base_station_device_entry.config_entries: if (simplisafe := hass.data[DOMAIN].get(entry_id)) is None: continue return cast(SystemType, simplisafe.systems[system_id]) raise ValueError(f"No system for device ID: {device_id}") @callback def _async_log_deprecated_service_call( hass: HomeAssistant, call: ServiceCall, alternate_service: str, alternate_target: str, breaks_in_ha_version: str, ) -> None: """Log a warning about a deprecated service call.""" deprecated_service = f"{call.domain}.{call.service}" async_create_issue( hass, DOMAIN, f"deprecated_service_{deprecated_service}", breaks_in_ha_version=breaks_in_ha_version, is_fixable=True, is_persistent=True, severity=IssueSeverity.WARNING, translation_key="deprecated_service", translation_placeholders={ "alternate_service": alternate_service, "alternate_target": alternate_target, "deprecated_service": deprecated_service, }, ) LOGGER.warning( ( 'The "%s" service is deprecated and will be removed in %s; use the "%s" ' 'service and pass it a target entity ID of "%s"' ), deprecated_service, breaks_in_ha_version, alternate_service, alternate_target, ) @callback def _async_register_base_station( hass: HomeAssistant, entry: ConfigEntry, system: SystemType ) -> None: """Register a new bridge.""" device_registry = dr.async_get(hass) device_registry.async_get_or_create( config_entry_id=entry.entry_id, identifiers={(DOMAIN, system.system_id)}, manufacturer="SimpliSafe", model=system.version, name=system.address, ) @callback def _async_standardize_config_entry(hass: HomeAssistant, entry: ConfigEntry) -> None: """Bring a config entry up to current standards.""" if CONF_TOKEN not in entry.data: raise ConfigEntryAuthFailed( "SimpliSafe OAuth standard requires re-authentication" ) entry_updates = {} if not entry.unique_id: # If the config entry doesn't already have a unique ID, set one: entry_updates["unique_id"] = entry.data[CONF_USERNAME] if CONF_CODE in entry.data: # If an alarm code was provided as part of configuration.yaml, pop it out of # the config entry's data and move it to options: data = {**entry.data} entry_updates["data"] = data entry_updates["options"] = { **entry.options, CONF_CODE: data.pop(CONF_CODE), } if entry_updates: hass.config_entries.async_update_entry(entry, **entry_updates) async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up SimpliSafe as config entry.""" _async_standardize_config_entry(hass, entry) _verify_domain_control = verify_domain_control(hass, DOMAIN) websession = aiohttp_client.async_get_clientsession(hass) try: api = await API.async_from_refresh_token( entry.data[CONF_TOKEN], session=websession ) except InvalidCredentialsError as err: raise ConfigEntryAuthFailed from err except SimplipyError as err: LOGGER.error("Config entry failed: %s", err) raise ConfigEntryNotReady from err simplisafe = SimpliSafe(hass, entry, api) try: await simplisafe.async_init() except SimplipyError as err: raise ConfigEntryNotReady from err hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = simplisafe await hass.config_entries.async_forward_entry_setups(entry, PLATFORMS) @callback def extract_system(func: Callable) -> Callable: """Define a decorator to get the correct system for a service call.""" async def wrapper(call: ServiceCall) -> None: """Wrap the service function.""" system = _async_get_system_for_service_call(hass, call) try: await func(call, system) except SimplipyError as err: raise HomeAssistantError( f'Error while executing "{call.service}": {err}' ) from err return wrapper @_verify_domain_control @extract_system async def async_clear_notifications(call: ServiceCall, system: SystemType) -> None: """Clear all active notifications.""" _async_log_deprecated_service_call( hass, call, "button.press", "button.alarm_control_panel_clear_notifications", "2022.12.0", ) await system.async_clear_notifications() @_verify_domain_control @extract_system async def async_remove_pin(call: ServiceCall, system: SystemType) -> None: """Remove a PIN.""" await system.async_remove_pin(call.data[ATTR_PIN_LABEL_OR_VALUE]) @_verify_domain_control @extract_system async def async_set_pin(call: ServiceCall, system: SystemType) -> None: """Set a PIN.""" await system.async_set_pin(call.data[ATTR_PIN_LABEL], call.data[ATTR_PIN_VALUE]) @_verify_domain_control @extract_system async def async_set_system_properties( call: ServiceCall, system: SystemType ) -> None: """Set one or more system parameters.""" if not isinstance(system, SystemV3): raise HomeAssistantError("Can only set system properties on V3 systems") await system.async_set_properties( {prop: value for prop, value in call.data.items() if prop != ATTR_DEVICE_ID} ) for service, method, schema in ( ( SERVICE_NAME_CLEAR_NOTIFICATIONS, async_clear_notifications, SERVICE_CLEAR_NOTIFICATIONS_SCHEMA, ), (SERVICE_NAME_REMOVE_PIN, async_remove_pin, SERVICE_REMOVE_PIN_SCHEMA), (SERVICE_NAME_SET_PIN, async_set_pin, SERVICE_SET_PIN_SCHEMA), ( SERVICE_NAME_SET_SYSTEM_PROPERTIES, async_set_system_properties, SERVICE_SET_SYSTEM_PROPERTIES_SCHEMA, ), ): if hass.services.has_service(DOMAIN, service): continue async_register_admin_service(hass, DOMAIN, service, method, schema=schema) current_options = {**entry.options} async def async_reload_entry(_: HomeAssistant, updated_entry: ConfigEntry) -> None: """Handle an options update. This method will get called in two scenarios: 1. When SimpliSafeOptionsFlowHandler is initiated 2. When a new refresh token is saved to the config entry data We only want #1 to trigger an actual reload. """ nonlocal current_options updated_options = {**updated_entry.options} if updated_options == current_options: return await hass.config_entries.async_reload(entry.entry_id) entry.async_on_unload(entry.add_update_listener(async_reload_entry)) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a SimpliSafe config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) loaded_entries = [ entry for entry in hass.config_entries.async_entries(DOMAIN) if entry.state == ConfigEntryState.LOADED ] if len(loaded_entries) == 1: # If this is the last loaded instance of SimpliSafe, deregister any services # defined during integration setup: for service_name in SERVICES: hass.services.async_remove(DOMAIN, service_name) return unload_ok class SimpliSafe: """Define a SimpliSafe data object.""" def __init__(self, hass: HomeAssistant, entry: ConfigEntry, api: API) -> None: """Initialize.""" self._api = api self._hass = hass self._system_notifications: dict[int, set[SystemNotification]] = {} self._websocket_reconnect_task: asyncio.Task | None = None self.entry = entry self.initial_event_to_use: dict[int, dict[str, Any]] = {} self.subscription_data: dict[int, Any] = api.subscription_data self.systems: dict[int, SystemType] = {} # This will get filled in by async_init: self.coordinator: DataUpdateCoordinator | None = None @callback def _async_process_new_notifications(self, system: SystemType) -> None: """Act on any new system notifications.""" if self._hass.state != CoreState.running: # If HASS isn't fully running yet, it may cause the SIMPLISAFE_NOTIFICATION # event to fire before dependent components (like automation) are fully # ready. If that's the case, skip: return latest_notifications = set(system.notifications) to_add = latest_notifications.difference( self._system_notifications[system.system_id] ) if not to_add: return LOGGER.debug("New system notifications: %s", to_add) for notification in to_add: text = notification.text if notification.link: text = f"{text} For more information: {notification.link}" self._hass.bus.async_fire( EVENT_SIMPLISAFE_NOTIFICATION, event_data={ ATTR_CATEGORY: notification.category, ATTR_CODE: notification.code, ATTR_MESSAGE: text, ATTR_TIMESTAMP: notification.timestamp, }, ) self._system_notifications[system.system_id] = latest_notifications async def _async_start_websocket_loop(self) -> None: """Start a websocket reconnection loop.""" assert self._api.websocket try: await self._api.websocket.async_connect() await self._api.websocket.async_listen() except asyncio.CancelledError: LOGGER.debug("Request to cancel websocket loop received") raise except WebsocketError as err: LOGGER.error("Failed to connect to websocket: %s", err) except Exception as err: # pylint: disable=broad-except LOGGER.error("Unknown exception while connecting to websocket: %s", err) LOGGER.info("Reconnecting to websocket") await self._async_cancel_websocket_loop() self._websocket_reconnect_task = self._hass.async_create_task( self._async_start_websocket_loop() ) async def _async_cancel_websocket_loop(self) -> None: """Stop any existing websocket reconnection loop.""" if self._websocket_reconnect_task: self._websocket_reconnect_task.cancel() try: await self._websocket_reconnect_task except asyncio.CancelledError: LOGGER.debug("Websocket reconnection task successfully canceled") self._websocket_reconnect_task = None assert self._api.websocket await self._api.websocket.async_disconnect() @callback def _async_websocket_on_event(self, event: WebsocketEvent) -> None: """Define a callback for receiving a websocket event.""" LOGGER.debug("New websocket event: %s", event) async_dispatcher_send( self._hass, DISPATCHER_TOPIC_WEBSOCKET_EVENT.format(event.system_id), event ) if event.event_type not in WEBSOCKET_EVENTS_TO_FIRE_HASS_EVENT: return sensor_type: str | None if event.sensor_type: sensor_type = event.sensor_type.name else: sensor_type = None self._hass.bus.async_fire( EVENT_SIMPLISAFE_EVENT, event_data={ ATTR_LAST_EVENT_CHANGED_BY: event.changed_by, ATTR_LAST_EVENT_TYPE: event.event_type, ATTR_LAST_EVENT_INFO: event.info, ATTR_LAST_EVENT_SENSOR_NAME: event.sensor_name, ATTR_LAST_EVENT_SENSOR_SERIAL: event.sensor_serial, ATTR_LAST_EVENT_SENSOR_TYPE: sensor_type, ATTR_SYSTEM_ID: event.system_id, ATTR_LAST_EVENT_TIMESTAMP: event.timestamp, }, ) async def async_init(self) -> None: """Initialize the SimpliSafe "manager" class.""" assert self._api.refresh_token assert self._api.websocket self._api.websocket.add_event_callback(self._async_websocket_on_event) self._websocket_reconnect_task = asyncio.create_task( self._async_start_websocket_loop() ) async def async_websocket_disconnect_listener(_: Event) -> None: """Define an event handler to disconnect from the websocket.""" assert self._api.websocket await self._async_cancel_websocket_loop() self.entry.async_on_unload( self._hass.bus.async_listen_once( EVENT_HOMEASSISTANT_STOP, async_websocket_disconnect_listener ) ) self.systems = await self._api.async_get_systems() for system in self.systems.values(): self._system_notifications[system.system_id] = set() _async_register_base_station(self._hass, self.entry, system) # Future events will come from the websocket, but since subscription to the # websocket doesn't provide the most recent event, we grab it from the REST # API to ensure event-related attributes aren't empty on startup: try: self.initial_event_to_use[ system.system_id ] = await system.async_get_latest_event() except SimplipyError as err: LOGGER.error("Error while fetching initial event: %s", err) self.initial_event_to_use[system.system_id] = {} self.coordinator = DataUpdateCoordinator( self._hass, LOGGER, name=self.entry.title, update_interval=DEFAULT_SCAN_INTERVAL, update_method=self.async_update, ) @callback def async_save_refresh_token(token: str) -> None: """Save a refresh token to the config entry.""" LOGGER.info("Saving new refresh token to HASS storage") self._hass.config_entries.async_update_entry( self.entry, data={**self.entry.data, CONF_TOKEN: token}, ) async def async_handle_refresh_token(token: str) -> None: """Handle a new refresh token.""" async_save_refresh_token(token) # Open a new websocket connection with the fresh token: assert self._api.websocket await self._async_cancel_websocket_loop() self._websocket_reconnect_task = self._hass.async_create_task( self._async_start_websocket_loop() ) self.entry.async_on_unload( self._api.add_refresh_token_callback(async_handle_refresh_token) ) # Save the refresh token we got on entry setup: async_save_refresh_token(self._api.refresh_token) async def async_update(self) -> None: """Get updated data from SimpliSafe.""" async def async_update_system(system: SystemType) -> None: """Update a system.""" await system.async_update(cached=system.version != 3) self._async_process_new_notifications(system) tasks = [async_update_system(system) for system in self.systems.values()] results = await asyncio.gather(*tasks, return_exceptions=True) for result in results: if isinstance(result, InvalidCredentialsError): raise ConfigEntryAuthFailed("Invalid credentials") from result if isinstance(result, EndpointUnavailableError): # In case the user attempts an action not allowed in their current plan, # we merely log that message at INFO level (so the user is aware, # but not spammed with ERROR messages that they cannot change): LOGGER.info(result) if isinstance(result, SimplipyError): raise UpdateFailed(f"SimpliSafe error while updating: {result}") class SimpliSafeEntity(CoordinatorEntity): """Define a base SimpliSafe entity.""" _attr_has_entity_name = True def __init__( self, simplisafe: SimpliSafe, system: SystemType, *, device: Device | None = None, additional_websocket_events: Iterable[str] | None = None, ) -> None: """Initialize.""" assert simplisafe.coordinator super().__init__(simplisafe.coordinator) # SimpliSafe can incorrectly return an error state when there isn't any # error. This can lead to entities having an unknown state frequently. # To protect against that, we measure an error count for each entity and only # mark the state as unavailable if we detect a few in a row: self._error_count = 0 if device: model = device.type.name.capitalize().replace("_", " ") device_name = f"{device.name.capitalize()} {model}" serial = device.serial else: model = device_name = DEFAULT_ENTITY_MODEL serial = system.serial event = simplisafe.initial_event_to_use[system.system_id] if raw_type := event.get("sensorType"): try: device_type = DeviceTypes(raw_type) except ValueError: device_type = DeviceTypes.UNKNOWN else: device_type = DeviceTypes.UNKNOWN self._attr_extra_state_attributes = { ATTR_LAST_EVENT_INFO: event.get("info"), ATTR_LAST_EVENT_SENSOR_NAME: event.get("sensorName"), ATTR_LAST_EVENT_SENSOR_TYPE: device_type.name.lower(), ATTR_LAST_EVENT_TIMESTAMP: event.get("eventTimestamp"), ATTR_SYSTEM_ID: system.system_id, } self._attr_device_info = DeviceInfo( configuration_url=DEFAULT_CONFIG_URL, identifiers={(DOMAIN, serial)}, manufacturer="SimpliSafe", model=model, name=device_name, via_device=(DOMAIN, system.system_id), ) self._attr_unique_id = serial self._device = device self._online = True self._simplisafe = simplisafe self._system = system self._websocket_events_to_listen_for = [ EVENT_CONNECTION_LOST, EVENT_CONNECTION_RESTORED, EVENT_POWER_OUTAGE, EVENT_POWER_RESTORED, ] if additional_websocket_events: self._websocket_events_to_listen_for += additional_websocket_events @property def available(self) -> bool: """Return whether the entity is available.""" # We can easily detect if the V3 system is offline, but no simple check exists # for the V2 system. Therefore, assuming the coordinator hasn't failed, we mark # the entity as available if: # 1. We can verify that the system is online (assuming True if we can't) # 2. We can verify that the entity is online if isinstance(self._system, SystemV3): system_offline = self._system.offline else: system_offline = False return ( self._error_count < DEFAULT_ERROR_THRESHOLD and self._online and not system_offline ) @callback def _handle_coordinator_update(self) -> None: """Update the entity with new REST API data.""" if self.coordinator.last_update_success: self.async_reset_error_count() else: self.async_increment_error_count() self.async_update_from_rest_api() self.async_write_ha_state() @callback def _handle_websocket_update(self, event: WebsocketEvent) -> None: """Update the entity with new websocket data.""" # Ignore this event if it belongs to a system other than this one: if event.system_id != self._system.system_id: return # Ignore this event if this entity hasn't expressed interest in its type: if event.event_type not in self._websocket_events_to_listen_for: return # Ignore this event if it belongs to a entity with a different serial # number from this one's: if ( self._device and event.event_type in WEBSOCKET_EVENTS_REQUIRING_SERIAL and event.sensor_serial != self._device.serial ): return sensor_type: str | None if event.sensor_type: sensor_type = event.sensor_type.name else: sensor_type = None self._attr_extra_state_attributes.update( { ATTR_LAST_EVENT_INFO: event.info, ATTR_LAST_EVENT_SENSOR_NAME: event.sensor_name, ATTR_LAST_EVENT_SENSOR_TYPE: sensor_type, ATTR_LAST_EVENT_TIMESTAMP: event.timestamp, } ) # It's unknown whether these events reach the base station (since the connection # is lost); we include this for completeness and coverage: if event.event_type in (EVENT_CONNECTION_LOST, EVENT_POWER_OUTAGE): self._online = False return # If the base station comes back online, set entities to available, but don't # instruct the entities to update their state (since there won't be anything new # until the next websocket event or REST API update: if event.event_type in (EVENT_CONNECTION_RESTORED, EVENT_POWER_RESTORED): self._online = True return self.async_update_from_websocket_event(event) self.async_write_ha_state() async def async_added_to_hass(self) -> None: """Register callbacks.""" await super().async_added_to_hass() self.async_on_remove( async_dispatcher_connect( self.hass, DISPATCHER_TOPIC_WEBSOCKET_EVENT.format(self._system.system_id), self._handle_websocket_update, ) ) self.async_update_from_rest_api() @callback def async_increment_error_count(self) -> None: """Increment this entity's error count.""" LOGGER.debug('Error for entity "%s" (total: %s)', self.name, self._error_count) self._error_count += 1 @callback def async_reset_error_count(self) -> None: """Reset this entity's error count.""" if self._error_count == 0: return LOGGER.debug('Resetting error count for "%s"', self.name) self._error_count = 0 @callback def async_update_from_rest_api(self) -> None: """Update the entity when new data comes from the REST API.""" @callback def async_update_from_websocket_event(self, event: WebsocketEvent) -> None: """Update the entity when new data comes from the websocket."""
{ "content_hash": "a22c171ec1c9626e767f13f019021afb", "timestamp": "", "source": "github", "line_count": 893, "max_line_length": 88, "avg_line_length": 34.347144456886895, "alnum_prop": 0.6258150756390193, "repo_name": "nkgilley/home-assistant", "id": "53aa9e84054214b6ec483f0dda33187a7fbdb343", "size": "30672", "binary": false, "copies": "1", "ref": "refs/heads/dev", "path": "homeassistant/components/simplisafe/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2963" }, { "name": "PLSQL", "bytes": "840" }, { "name": "Python", "bytes": "51597279" }, { "name": "Shell", "bytes": "6252" } ], "symlink_target": "" }
import sys from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_enable_monitoring_request( resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) def build_get_monitoring_status_request( resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_disable_monitoring_request( resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) def build_enable_azure_monitor_request( resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) def build_get_azure_monitor_status_request( resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_disable_azure_monitor_request( resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) def build_create_request( resource_group_name: str, cluster_name: str, extension_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), "extensionName": _SERIALIZER.url("extension_name", extension_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) def build_get_request( resource_group_name: str, cluster_name: str, extension_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), "extensionName": _SERIALIZER.url("extension_name", extension_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_delete_request( resource_group_name: str, cluster_name: str, extension_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), "extensionName": _SERIALIZER.url("extension_name", extension_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) def build_get_azure_async_operation_status_request( resource_group_name: str, cluster_name: str, extension_name: str, operation_id: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-06-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}/azureAsyncOperations/{operationId}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, "str"), "clusterName": _SERIALIZER.url("cluster_name", cluster_name, "str"), "extensionName": _SERIALIZER.url("extension_name", extension_name, "str"), "operationId": _SERIALIZER.url("operation_id", operation_id, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class ExtensionsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.hdinsight.HDInsightManagementClient`'s :attr:`extensions` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") def _enable_monitoring_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, parameters: Union[_models.ClusterMonitoringRequest, IO], **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "ClusterMonitoringRequest") request = build_enable_monitoring_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._enable_monitoring_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _enable_monitoring_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring" } @overload def begin_enable_monitoring( self, resource_group_name: str, cluster_name: str, parameters: _models.ClusterMonitoringRequest, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[None]: """Enables the Operations Management Suite (OMS) on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param parameters: The Operations Management Suite (OMS) workspace parameters. Required. :type parameters: ~azure.mgmt.hdinsight.models.ClusterMonitoringRequest :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_enable_monitoring( self, resource_group_name: str, cluster_name: str, parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[None]: """Enables the Operations Management Suite (OMS) on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param parameters: The Operations Management Suite (OMS) workspace parameters. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_enable_monitoring( self, resource_group_name: str, cluster_name: str, parameters: Union[_models.ClusterMonitoringRequest, IO], **kwargs: Any ) -> LROPoller[None]: """Enables the Operations Management Suite (OMS) on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param parameters: The Operations Management Suite (OMS) workspace parameters. Is either a model type or a IO type. Required. :type parameters: ~azure.mgmt.hdinsight.models.ClusterMonitoringRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._enable_monitoring_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast( PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_enable_monitoring.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring" } @distributed_trace def get_monitoring_status( self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> _models.ClusterMonitoringResponse: """Gets the status of Operations Management Suite (OMS) on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ClusterMonitoringResponse or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.ClusterMonitoringResponse :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ClusterMonitoringResponse] = kwargs.pop("cls", None) request = build_get_monitoring_status_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_monitoring_status.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ClusterMonitoringResponse", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_monitoring_status.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring" } def _disable_monitoring_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) request = build_disable_monitoring_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._disable_monitoring_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _disable_monitoring_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring" } @distributed_trace def begin_disable_monitoring(self, resource_group_name: str, cluster_name: str, **kwargs: Any) -> LROPoller[None]: """Disables the Operations Management Suite (OMS) on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._disable_monitoring_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast( PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_disable_monitoring.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/clustermonitoring" } def _enable_azure_monitor_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, parameters: Union[_models.AzureMonitorRequest, IO], **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "AzureMonitorRequest") request = build_enable_azure_monitor_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._enable_azure_monitor_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _enable_azure_monitor_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor" } @overload def begin_enable_azure_monitor( self, resource_group_name: str, cluster_name: str, parameters: _models.AzureMonitorRequest, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[None]: """Enables the Azure Monitor on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param parameters: The Log Analytics workspace parameters. Required. :type parameters: ~azure.mgmt.hdinsight.models.AzureMonitorRequest :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_enable_azure_monitor( self, resource_group_name: str, cluster_name: str, parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[None]: """Enables the Azure Monitor on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param parameters: The Log Analytics workspace parameters. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_enable_azure_monitor( self, resource_group_name: str, cluster_name: str, parameters: Union[_models.AzureMonitorRequest, IO], **kwargs: Any ) -> LROPoller[None]: """Enables the Azure Monitor on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param parameters: The Log Analytics workspace parameters. Is either a model type or a IO type. Required. :type parameters: ~azure.mgmt.hdinsight.models.AzureMonitorRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._enable_azure_monitor_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast( PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_enable_azure_monitor.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor" } @distributed_trace def get_azure_monitor_status( self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> _models.AzureMonitorResponse: """Gets the status of Azure Monitor on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AzureMonitorResponse or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.AzureMonitorResponse :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.AzureMonitorResponse] = kwargs.pop("cls", None) request = build_get_azure_monitor_status_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_azure_monitor_status.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("AzureMonitorResponse", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_azure_monitor_status.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor" } def _disable_azure_monitor_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) request = build_disable_azure_monitor_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._disable_azure_monitor_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _disable_azure_monitor_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor" } @distributed_trace def begin_disable_azure_monitor( self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> LROPoller[None]: """Disables the Azure Monitor on the HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._disable_azure_monitor_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast( PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_disable_azure_monitor.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/azureMonitor" } def _create_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, extension_name: str, parameters: Union[_models.Extension, IO], **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "Extension") request = build_create_request( resource_group_name=resource_group_name, cluster_name=cluster_name, extension_name=extension_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._create_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _create_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}" } @overload def begin_create( self, resource_group_name: str, cluster_name: str, extension_name: str, parameters: _models.Extension, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[None]: """Creates an HDInsight cluster extension. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param extension_name: The name of the cluster extension. Required. :type extension_name: str :param parameters: The cluster extensions create request. Required. :type parameters: ~azure.mgmt.hdinsight.models.Extension :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_create( self, resource_group_name: str, cluster_name: str, extension_name: str, parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[None]: """Creates an HDInsight cluster extension. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param extension_name: The name of the cluster extension. Required. :type extension_name: str :param parameters: The cluster extensions create request. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_create( self, resource_group_name: str, cluster_name: str, extension_name: str, parameters: Union[_models.Extension, IO], **kwargs: Any ) -> LROPoller[None]: """Creates an HDInsight cluster extension. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param extension_name: The name of the cluster extension. Required. :type extension_name: str :param parameters: The cluster extensions create request. Is either a model type or a IO type. Required. :type parameters: ~azure.mgmt.hdinsight.models.Extension or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._create_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, extension_name=extension_name, parameters=parameters, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast( PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_create.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}" } @distributed_trace def get( self, resource_group_name: str, cluster_name: str, extension_name: str, **kwargs: Any ) -> _models.ClusterMonitoringResponse: """Gets the extension properties for the specified HDInsight cluster extension. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param extension_name: The name of the cluster extension. Required. :type extension_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ClusterMonitoringResponse or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.ClusterMonitoringResponse :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ClusterMonitoringResponse] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, cluster_name=cluster_name, extension_name=extension_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ClusterMonitoringResponse", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}" } def _delete_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, extension_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, cluster_name=cluster_name, extension_name=extension_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}" } @distributed_trace def begin_delete( self, resource_group_name: str, cluster_name: str, extension_name: str, **kwargs: Any ) -> LROPoller[None]: """Deletes the specified extension for HDInsight cluster. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param extension_name: The name of the cluster extension. Required. :type extension_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._delete_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, extension_name=extension_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast( PollingMethod, ARMPolling(lro_delay, lro_options={"final-state-via": "location"}, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}" } @distributed_trace def get_azure_async_operation_status( self, resource_group_name: str, cluster_name: str, extension_name: str, operation_id: str, **kwargs: Any ) -> _models.AsyncOperationResult: """Gets the async operation status. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param cluster_name: The name of the cluster. Required. :type cluster_name: str :param extension_name: The name of the cluster extension. Required. :type extension_name: str :param operation_id: The long running operation id. Required. :type operation_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AsyncOperationResult or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.AsyncOperationResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.AsyncOperationResult] = kwargs.pop("cls", None) request = build_get_azure_async_operation_status_request( resource_group_name=resource_group_name, cluster_name=cluster_name, extension_name=extension_name, operation_id=operation_id, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_azure_async_operation_status.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("AsyncOperationResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_azure_async_operation_status.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/extensions/{extensionName}/azureAsyncOperations/{operationId}" }
{ "content_hash": "3508dd69a00920fd1be3e4fce4dd680c", "timestamp": "", "source": "github", "line_count": 1664, "max_line_length": 198, "avg_line_length": 46.00420673076923, "alnum_prop": 0.6472808977021854, "repo_name": "Azure/azure-sdk-for-python", "id": "a7d2ada008297290be94288cf5bc0a65e6935d34", "size": "77051", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/hdinsight/azure-mgmt-hdinsight/azure/mgmt/hdinsight/operations/_extensions_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
import unittest from django.core.exceptions import ImproperlyConfigured from django.db import ProgrammingError try: from django.contrib.gis.db.backends.postgis.operations import PostGISOperations HAS_POSTGRES = True except ImportError: HAS_POSTGRES = False except ImproperlyConfigured as e: # If psycopg is installed but not geos, the import path hits # django.contrib.gis.geometry.backend which will "helpfully" convert # an ImportError into an ImproperlyConfigured. # Here, we make sure we're only catching this specific case and not another # ImproperlyConfigured one. if e.args and e.args[0].startswith('Could not import user-defined GEOMETRY_BACKEND'): HAS_POSTGRES = False else: raise if HAS_POSTGRES: class FakeConnection: def __init__(self): self.settings_dict = { 'NAME': 'test', } class FakePostGISOperations(PostGISOperations): def __init__(self, version=None): self.version = version self.connection = FakeConnection() def _get_postgis_func(self, func): if func == 'postgis_lib_version': if self.version is None: raise ProgrammingError else: return self.version elif func == 'version': pass else: raise NotImplementedError('This function was not expected to be called') @unittest.skipUnless(HAS_POSTGRES, "The psycopg2 driver is needed for these tests") class TestPostGISVersionCheck(unittest.TestCase): """ The PostGIS version check parses correctly the version numbers """ def test_get_version(self): expect = '1.0.0' ops = FakePostGISOperations(expect) actual = ops.postgis_lib_version() self.assertEqual(expect, actual) def test_version_classic_tuple(self): expect = ('1.2.3', 1, 2, 3) ops = FakePostGISOperations(expect[0]) actual = ops.postgis_version_tuple() self.assertEqual(expect, actual) def test_version_dev_tuple(self): expect = ('1.2.3dev', 1, 2, 3) ops = FakePostGISOperations(expect[0]) actual = ops.postgis_version_tuple() self.assertEqual(expect, actual) def test_version_loose_tuple(self): expect = ('1.2.3b1.dev0', 1, 2, 3) ops = FakePostGISOperations(expect[0]) actual = ops.postgis_version_tuple() self.assertEqual(expect, actual) def test_valid_version_numbers(self): versions = [ ('1.3.0', 1, 3, 0), ('2.1.1', 2, 1, 1), ('2.2.0dev', 2, 2, 0), ] for version in versions: with self.subTest(version=version): ops = FakePostGISOperations(version[0]) actual = ops.spatial_version self.assertEqual(version[1:], actual) def test_no_version_number(self): ops = FakePostGISOperations() with self.assertRaises(ImproperlyConfigured): ops.spatial_version def test_version_dependent_funcs(self): """ Resolve names of functions renamed and deprecated in PostGIS 2.2.0 depending on PostGIS version. Remove when dropping support for PostGIS 2.1. """ ops = FakePostGISOperations('2.2.0') self.assertEqual(ops.spatial_function_name('DistanceSphere'), 'ST_DistanceSphere') self.assertEqual(ops.spatial_function_name('DistanceSpheroid'), 'ST_DistanceSpheroid') self.assertEqual(ops.spatial_function_name('LengthSpheroid'), 'ST_LengthSpheroid') self.assertEqual(ops.spatial_function_name('MemSize'), 'ST_MemSize') ops = FakePostGISOperations('2.1.0') self.assertEqual(ops.spatial_function_name('DistanceSphere'), 'ST_distance_sphere') self.assertEqual(ops.spatial_function_name('DistanceSpheroid'), 'ST_distance_spheroid') self.assertEqual(ops.spatial_function_name('LengthSpheroid'), 'ST_length_spheroid') self.assertEqual(ops.spatial_function_name('MemSize'), 'ST_mem_size')
{ "content_hash": "75716c39fcc355e27a6f79223bbd5a59", "timestamp": "", "source": "github", "line_count": 111, "max_line_length": 95, "avg_line_length": 37.270270270270274, "alnum_prop": 0.6323422770123278, "repo_name": "tysonclugg/django", "id": "2f55406f56ae65fea9f0edead8f06b0e1875342d", "size": "4137", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "tests/gis_tests/tests.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "52492" }, { "name": "HTML", "bytes": "173554" }, { "name": "JavaScript", "bytes": "451010" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "11934829" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "130" } ], "symlink_target": "" }
from __future__ import unicode_literals from __future__ import print_function import sys, codecs sys.stdout = codecs.getwriter("utf-8")(sys.stdout) import site site.addsitedir("..\Lib") from ChineseUtilities import ChineseDB, SortStringDB import datafiles, os # --------------------------------------------------------------- # --------------------------------------------------------------- # Checking for Sort File covering all of XD dictionary OldSortDB = SortStringDB(os.path.join(datafiles.datapath, r"Archive\ch2sort_2004(utf8).txt")) SortDB = SortStringDB() print("Checking %s against sort file %s" % (OldSortDB.FileName, SortDB.FileName)) notOk = missingComposed = 0 for e in sorted(OldSortDB.items()): ## print(e) try: sort = SortDB[e[0]] except KeyError: print("Not in latest DB:", repr(e[0])) continue if sort != e[1]: if len(sort) < len(e[1]): notOk += 1 print(e[0], list(sort.keys()), "!=", list(e[1].keys())) for i in ['\u602b', '\u602b\u7136']: print(i) ##print("Dictionary entries =", len(HZdict)) ##print("Sort key entries =", len(SortDB)) ##print("\tMissing composed characters (ignored) =", missingComposed) ##print("\tKnown length mismatches (ignored) =", len(IgnoreErrors)) ##print() print("\tUnknown errors =", notOk) ## ##
{ "content_hash": "f59c9d5d318e37191c38bf04e7f7df0f", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 93, "avg_line_length": 27.875, "alnum_prop": 0.5889387144992526, "repo_name": "rmlockwood/FLExTrans", "id": "23f290ed0224f41f132aee67b329cd5921b0710e", "size": "1559", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "FlexTools2.1/FlexTools/Modules/Chinese/Utilities/check_oldsort_vs_pkl sort.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "12781" }, { "name": "CSS", "bytes": "45823" }, { "name": "HTML", "bytes": "827329" }, { "name": "Makefile", "bytes": "7353" }, { "name": "NSIS", "bytes": "12387" }, { "name": "Python", "bytes": "4442196" }, { "name": "VBScript", "bytes": "2068" } ], "symlink_target": "" }
""" Plugin responsible for post-installation configuration """ from packstack.installer import utils from packstack.installer import basedefs # ------------- Postscript Packstack Plugin Initialization -------------- PLUGIN_NAME = "Postscript" PLUGIN_NAME_COLORED = utils.color_text(PLUGIN_NAME, 'blue') def initConfig(controller): group = {"GROUP_NAME": "POSTSCRIPT", "DESCRIPTION": "POSTSCRIPT Config parameters", "PRE_CONDITION": lambda x: 'yes', "PRE_CONDITION_MATCH": "yes", "POST_CONDITION": False, "POST_CONDITION_MATCH": True} controller.addGroup(group, []) def initSequences(controller): config = controller.CONF postscript_steps = [] if (config['CONFIG_PROVISION_TEMPEST'] == "y" and config['CONFIG_RUN_TEMPEST'] == "y"): postscript_steps.append( {'title': 'Running Tempest', 'functions': [run_tempest]} ) controller.addSequence("Running post install scripts", [], [], postscript_steps) # -------------------------- step functions -------------------------- def run_tempest(config, messages): logfile = basedefs.DIR_LOG + "/tempest.log" print("Running Tempest on %s" % config['CONFIG_TEMPEST_HOST']) server = utils.ScriptRunner(config['CONFIG_TEMPEST_HOST']) server.append('pushd /var/lib/tempest') server.append('tempest run --regex \'(%s)\' --black-regex \'%s\' --concurrency 2 > %s' % (config['CONFIG_RUN_TEMPEST_TESTS'].replace(' ', '|'), config['CONFIG_SKIP_TEMPEST_TESTS'].replace(' ', '|'), logfile)) server.append('popd') server.execute()
{ "content_hash": "196c1f57012c2f63926c8e5fd1dab228", "timestamp": "", "source": "github", "line_count": 50, "max_line_length": 91, "avg_line_length": 34.5, "alnum_prop": 0.5785507246376812, "repo_name": "mahak/packstack", "id": "a6e02f21ee7329d6598d8efd2f9d4091bcc45b74", "size": "2295", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "packstack/plugins/postscript_951.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Puppet", "bytes": "170058" }, { "name": "Python", "bytes": "511156" }, { "name": "Ruby", "bytes": "11197" }, { "name": "Shell", "bytes": "27842" } ], "symlink_target": "" }
from django import forms from django.utils.translation import ugettext_lazy as _ from django.contrib.contenttypes.models import ContentType from django.contrib.auth.models import Group from django.utils.safestring import mark_safe from authority import permissions, get_choices_for from authority.models import Permission from authority.compat import get_user_model User = get_user_model() class BasePermissionForm(forms.ModelForm): codename = forms.CharField(label=_('Permission')) class Meta: model = Permission exclude = [] def __init__(self, perm=None, obj=None, approved=False, *args, **kwargs): self.perm = perm self.obj = obj self.approved = approved if obj and perm: self.base_fields['codename'].widget = forms.HiddenInput() elif obj and (not perm or not approved): perms = get_choices_for(self.obj) self.base_fields['codename'].widget = forms.Select(choices=perms) super(BasePermissionForm, self).__init__(*args, **kwargs) def save(self, request, commit=True, *args, **kwargs): self.instance.creator = request.user self.instance.content_type = ContentType.objects.get_for_model(self.obj) self.instance.object_id = self.obj.id self.instance.codename = self.perm self.instance.approved = self.approved return super(BasePermissionForm, self).save(commit) class UserPermissionForm(BasePermissionForm): user = forms.CharField(label=_('User')) class Meta(BasePermissionForm.Meta): fields = ('user',) def __init__(self, *args, **kwargs): if not kwargs.get('approved', False): self.base_fields['user'].widget = forms.HiddenInput() super(UserPermissionForm, self).__init__(*args, **kwargs) def clean_user(self): username = self.cleaned_data["user"] try: user = User.objects.get(username__iexact=username) except User.DoesNotExist: raise forms.ValidationError( mark_safe(_("A user with that username does not exist."))) check = permissions.BasePermission(user=user) error_msg = None if user.is_superuser: error_msg = _("The user %(user)s do not need to request " "access to any permission as it is a super user.") elif check.has_perm(self.perm, self.obj): error_msg = _("The user %(user)s already has the permission " "'%(perm)s' for %(object_name)s '%(obj)s'") elif check.requested_perm(self.perm, self.obj): error_msg = _("The user %(user)s already requested the permission" " '%(perm)s' for %(object_name)s '%(obj)s'") if error_msg: error_msg = error_msg % { 'object_name': self.obj._meta.object_name.lower(), 'perm': self.perm, 'obj': self.obj, 'user': user, } raise forms.ValidationError(mark_safe(error_msg)) return user class GroupPermissionForm(BasePermissionForm): group = forms.CharField(label=_('Group')) class Meta(BasePermissionForm.Meta): fields = ('group',) def clean_group(self): groupname = self.cleaned_data["group"] try: group = Group.objects.get(name__iexact=groupname) except Group.DoesNotExist: raise forms.ValidationError( mark_safe(_("A group with that name does not exist."))) check = permissions.BasePermission(group=group) if check.has_perm(self.perm, self.obj): raise forms.ValidationError(mark_safe( _("This group already has the permission '%(perm)s' " "for %(object_name)s '%(obj)s'") % { 'perm': self.perm, 'object_name': self.obj._meta.object_name.lower(), 'obj': self.obj, })) return group
{ "content_hash": "24c20923e9fbd6481b49a58a3a3b5f9e", "timestamp": "", "source": "github", "line_count": 104, "max_line_length": 80, "avg_line_length": 38.65384615384615, "alnum_prop": 0.5972636815920398, "repo_name": "mythmon/kitsune", "id": "03a93dd19e1ba04c93eaf06c605302439d20edd9", "size": "4020", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "authority/forms.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "ApacheConf", "bytes": "2694" }, { "name": "CSS", "bytes": "281386" }, { "name": "HTML", "bytes": "624493" }, { "name": "JavaScript", "bytes": "750034" }, { "name": "Python", "bytes": "2721930" }, { "name": "Shell", "bytes": "10281" }, { "name": "Smarty", "bytes": "2062" } ], "symlink_target": "" }
"""Browser steps for Gherkin""" import os from contextlib import contextmanager from aloe import around, world from selenium import webdriver from xvfbwrapper import Xvfb @around.all @contextmanager def with_browser(): """Start a browser for the tests.""" if 'XVFB' in os.environ: world.vdisplay = Xvfb(width=1200, height=800) world.vdisplay.start() world.browser = create_browser() yield world.browser.quit() delattr(world, 'browser') if hasattr(world, 'vdisplay'): world.vdisplay.stop() def browser_type(): """Browser type selected for the tests.""" return os.environ.get('BROWSER_TYPE', 'firefox') def custom_chrome(): """Start Chrome with custom options.""" options = webdriver.ChromeOptions() options.add_experimental_option('prefs', { 'credentials_enable_service': False, 'profile': { 'password_manager_enabled': False, }, }) return webdriver.Chrome(chrome_options=options) def create_browser(): """Create a Selenium browser for tests.""" if 'SELENIUM_ADDRESS' in os.environ: address = 'http://{}/wd/hub'.format(os.environ['SELENIUM_ADDRESS']) capabilities = { 'chrome': webdriver.DesiredCapabilities.CHROME, 'firefox': webdriver.DesiredCapabilities.FIREFOX, 'edge': webdriver.DesiredCapabilities.EDGE, 'ie': webdriver.DesiredCapabilities.INTERNETEXPLORER, 'phantomjs': webdriver.DesiredCapabilities.PHANTOMJS, } try: browser = capabilities[browser_type()] except KeyError: raise ValueError("Invalid BROWSER_TYPE.") return webdriver.Remote( address, desired_capabilities=browser, ) else: browsers = { 'chrome': custom_chrome, 'firefox': webdriver.Firefox, 'phantomjs': webdriver.PhantomJS, } driver = browsers[browser_type()] # Explicitly specify the browser locale for the date input tests to work # regardless of the user's settings. old_lc_all = os.environ.get('LC_ALL', '') try: os.environ['LC_ALL'] = 'en_US' return driver() finally: os.environ['LC_ALL'] = old_lc_all
{ "content_hash": "ec27d174a9fa86c528c76cafa1f1d263", "timestamp": "", "source": "github", "line_count": 89, "max_line_length": 80, "avg_line_length": 26.179775280898877, "alnum_prop": 0.6094420600858369, "repo_name": "jricardo27/holiday_planner", "id": "8562f22ff084b9515ff6114fec6255f105df9da5", "size": "2330", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "holiday_planner/features/steps/browser.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "1518" }, { "name": "Gherkin", "bytes": "839" }, { "name": "HTML", "bytes": "36302" }, { "name": "JavaScript", "bytes": "19616" }, { "name": "Python", "bytes": "98712" }, { "name": "Shell", "bytes": "4362" } ], "symlink_target": "" }
"Python and Django compatibility functions." from __future__ import unicode_literals from django.conf import settings AUTH_USER_MODEL = getattr(settings, 'AUTH_USER_MODEL', 'auth.User') try: from django.contrib.auth import get_user_model except ImportError: # pragma: no cover # Django < 1.5 from django.contrib.auth.models import User User.USERNAME_FIELD = 'username' get_user_model = lambda: User # urllib try: from urllib.parse import urlencode, parse_qs, urlparse except ImportError: # pragma: no cover # Python 2.X from urllib import urlencode from urlparse import parse_qs, urlparse try: from django.utils.encoding import force_text, smart_bytes, force_bytes except ImportError: # pragma: no cover from django.utils.encoding import force_unicode as force_text from django.utils.encoding import smart_str as smart_bytes try: from django.utils.encoding import force_str as force_bytes except ImportError: # This didn't get back-ported to 1.4.X force_bytes = smart_bytes try: # pragma: no cover from google.appengine.ext import db APPENGINE = True except ImportError: APPENGINE = False
{ "content_hash": "cb19a8055bf292d23a080fcf78c8efa7", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 74, "avg_line_length": 27.09090909090909, "alnum_prop": 0.7189597315436241, "repo_name": "vyscond/django-all-access", "id": "615f5eb31d6da58f9e320e41843af1036bb589ad", "size": "1192", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "allaccess/compat.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "HTML", "bytes": "1898" }, { "name": "Python", "bytes": "121919" } ], "symlink_target": "" }
import abc import collections import collections.abc import functools import operator import sys import types as _types import typing __all__ = [ # Super-special typing primitives. 'Any', 'ClassVar', 'Concatenate', 'Final', 'LiteralString', 'ParamSpec', 'ParamSpecArgs', 'ParamSpecKwargs', 'Self', 'Type', 'TypeVar', 'TypeVarTuple', 'Unpack', # ABCs (from collections.abc). 'Awaitable', 'AsyncIterator', 'AsyncIterable', 'Coroutine', 'AsyncGenerator', 'AsyncContextManager', 'ChainMap', # Concrete collection types. 'ContextManager', 'Counter', 'Deque', 'DefaultDict', 'NamedTuple', 'OrderedDict', 'TypedDict', # Structural checks, a.k.a. protocols. 'SupportsIndex', # One-off things. 'Annotated', 'assert_never', 'assert_type', 'clear_overloads', 'dataclass_transform', 'get_overloads', 'final', 'get_args', 'get_origin', 'get_type_hints', 'IntVar', 'is_typeddict', 'Literal', 'NewType', 'overload', 'override', 'Protocol', 'reveal_type', 'runtime', 'runtime_checkable', 'Text', 'TypeAlias', 'TypeGuard', 'TYPE_CHECKING', 'Never', 'NoReturn', 'Required', 'NotRequired', ] # for backward compatibility PEP_560 = True GenericMeta = type # The functions below are modified copies of typing internal helpers. # They are needed by _ProtocolMeta and they provide support for PEP 646. _marker = object() def _check_generic(cls, parameters, elen=_marker): """Check correct count for parameters of a generic cls (internal helper). This gives a nice error message in case of count mismatch. """ if not elen: raise TypeError(f"{cls} is not a generic class") if elen is _marker: if not hasattr(cls, "__parameters__") or not cls.__parameters__: raise TypeError(f"{cls} is not a generic class") elen = len(cls.__parameters__) alen = len(parameters) if alen != elen: if hasattr(cls, "__parameters__"): parameters = [p for p in cls.__parameters__ if not _is_unpack(p)] num_tv_tuples = sum(isinstance(p, TypeVarTuple) for p in parameters) if (num_tv_tuples > 0) and (alen >= elen - num_tv_tuples): return raise TypeError(f"Too {'many' if alen > elen else 'few'} parameters for {cls};" f" actual {alen}, expected {elen}") if sys.version_info >= (3, 10): def _should_collect_from_parameters(t): return isinstance( t, (typing._GenericAlias, _types.GenericAlias, _types.UnionType) ) elif sys.version_info >= (3, 9): def _should_collect_from_parameters(t): return isinstance(t, (typing._GenericAlias, _types.GenericAlias)) else: def _should_collect_from_parameters(t): return isinstance(t, typing._GenericAlias) and not t._special def _collect_type_vars(types, typevar_types=None): """Collect all type variable contained in types in order of first appearance (lexicographic order). For example:: _collect_type_vars((T, List[S, T])) == (T, S) """ if typevar_types is None: typevar_types = typing.TypeVar tvars = [] for t in types: if ( isinstance(t, typevar_types) and t not in tvars and not _is_unpack(t) ): tvars.append(t) if _should_collect_from_parameters(t): tvars.extend([t for t in t.__parameters__ if t not in tvars]) return tuple(tvars) NoReturn = typing.NoReturn # Some unconstrained type variables. These are used by the container types. # (These are not for export.) T = typing.TypeVar('T') # Any type. KT = typing.TypeVar('KT') # Key type. VT = typing.TypeVar('VT') # Value type. T_co = typing.TypeVar('T_co', covariant=True) # Any type covariant containers. T_contra = typing.TypeVar('T_contra', contravariant=True) # Ditto contravariant. if sys.version_info >= (3, 11): from typing import Any else: class _AnyMeta(type): def __instancecheck__(self, obj): if self is Any: raise TypeError("typing_extensions.Any cannot be used with isinstance()") return super().__instancecheck__(obj) def __repr__(self): if self is Any: return "typing_extensions.Any" return super().__repr__() class Any(metaclass=_AnyMeta): """Special type indicating an unconstrained type. - Any is compatible with every type. - Any assumed to have all methods. - All values assumed to be instances of Any. Note that all the above statements are true from the point of view of static type checkers. At runtime, Any should not be used with instance checks. """ def __new__(cls, *args, **kwargs): if cls is Any: raise TypeError("Any cannot be instantiated") return super().__new__(cls, *args, **kwargs) ClassVar = typing.ClassVar # On older versions of typing there is an internal class named "Final". # 3.8+ if hasattr(typing, 'Final') and sys.version_info[:2] >= (3, 7): Final = typing.Final # 3.7 else: class _FinalForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name def __getitem__(self, parameters): item = typing._type_check(parameters, f'{self._name} accepts only a single type.') return typing._GenericAlias(self, (item,)) Final = _FinalForm('Final', doc="""A special typing construct to indicate that a name cannot be re-assigned or overridden in a subclass. For example: MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker There is no runtime checking of these properties.""") if sys.version_info >= (3, 11): final = typing.final else: # @final exists in 3.8+, but we backport it for all versions # before 3.11 to keep support for the __final__ attribute. # See https://bugs.python.org/issue46342 def final(f): """This decorator can be used to indicate to type checkers that the decorated method cannot be overridden, and decorated class cannot be subclassed. For example: class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ... There is no runtime checking of these properties. The decorator sets the ``__final__`` attribute to ``True`` on the decorated object to allow runtime introspection. """ try: f.__final__ = True except (AttributeError, TypeError): # Skip the attribute silently if it is not writable. # AttributeError happens if the object has __slots__ or a # read-only property, TypeError if it's a builtin class. pass return f def IntVar(name): return typing.TypeVar(name) # 3.8+: if hasattr(typing, 'Literal'): Literal = typing.Literal # 3.7: else: class _LiteralForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name def __getitem__(self, parameters): return typing._GenericAlias(self, parameters) Literal = _LiteralForm('Literal', doc="""A type that can be used to indicate to type checkers that the corresponding value has a value literally equivalent to the provided parameter. For example: var: Literal[4] = 4 The type checker understands that 'var' is literally equal to the value 4 and no other value. Literal[...] cannot be subclassed. There is no runtime checking verifying that the parameter is actually a value instead of a type.""") _overload_dummy = typing._overload_dummy # noqa if hasattr(typing, "get_overloads"): # 3.11+ overload = typing.overload get_overloads = typing.get_overloads clear_overloads = typing.clear_overloads else: # {module: {qualname: {firstlineno: func}}} _overload_registry = collections.defaultdict( functools.partial(collections.defaultdict, dict) ) def overload(func): """Decorator for overloaded functions/methods. In a stub file, place two or more stub definitions for the same function in a row, each decorated with @overload. For example: @overload def utf8(value: None) -> None: ... @overload def utf8(value: bytes) -> bytes: ... @overload def utf8(value: str) -> bytes: ... In a non-stub file (i.e. a regular .py file), do the same but follow it with an implementation. The implementation should *not* be decorated with @overload. For example: @overload def utf8(value: None) -> None: ... @overload def utf8(value: bytes) -> bytes: ... @overload def utf8(value: str) -> bytes: ... def utf8(value): # implementation goes here The overloads for a function can be retrieved at runtime using the get_overloads() function. """ # classmethod and staticmethod f = getattr(func, "__func__", func) try: _overload_registry[f.__module__][f.__qualname__][ f.__code__.co_firstlineno ] = func except AttributeError: # Not a normal function; ignore. pass return _overload_dummy def get_overloads(func): """Return all defined overloads for *func* as a sequence.""" # classmethod and staticmethod f = getattr(func, "__func__", func) if f.__module__ not in _overload_registry: return [] mod_dict = _overload_registry[f.__module__] if f.__qualname__ not in mod_dict: return [] return list(mod_dict[f.__qualname__].values()) def clear_overloads(): """Clear all overloads in the registry.""" _overload_registry.clear() # This is not a real generic class. Don't use outside annotations. Type = typing.Type # Various ABCs mimicking those in collections.abc. # A few are simply re-exported for completeness. Awaitable = typing.Awaitable Coroutine = typing.Coroutine AsyncIterable = typing.AsyncIterable AsyncIterator = typing.AsyncIterator Deque = typing.Deque ContextManager = typing.ContextManager AsyncContextManager = typing.AsyncContextManager DefaultDict = typing.DefaultDict # 3.7.2+ if hasattr(typing, 'OrderedDict'): OrderedDict = typing.OrderedDict # 3.7.0-3.7.2 else: OrderedDict = typing._alias(collections.OrderedDict, (KT, VT)) Counter = typing.Counter ChainMap = typing.ChainMap AsyncGenerator = typing.AsyncGenerator NewType = typing.NewType Text = typing.Text TYPE_CHECKING = typing.TYPE_CHECKING _PROTO_WHITELIST = ['Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable', 'AsyncIterator', 'Hashable', 'Sized', 'Container', 'Collection', 'Reversible', 'ContextManager', 'AsyncContextManager'] def _get_protocol_attrs(cls): attrs = set() for base in cls.__mro__[:-1]: # without object if base.__name__ in ('Protocol', 'Generic'): continue annotations = getattr(base, '__annotations__', {}) for attr in list(base.__dict__.keys()) + list(annotations.keys()): if (not attr.startswith('_abc_') and attr not in ( '__abstractmethods__', '__annotations__', '__weakref__', '_is_protocol', '_is_runtime_protocol', '__dict__', '__args__', '__slots__', '__next_in_mro__', '__parameters__', '__origin__', '__orig_bases__', '__extra__', '__tree_hash__', '__doc__', '__subclasshook__', '__init__', '__new__', '__module__', '_MutableMapping__marker', '_gorg')): attrs.add(attr) return attrs def _is_callable_members_only(cls): return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls)) def _maybe_adjust_parameters(cls): """Helper function used in Protocol.__init_subclass__ and _TypedDictMeta.__new__. The contents of this function are very similar to logic found in typing.Generic.__init_subclass__ on the CPython main branch. """ tvars = [] if '__orig_bases__' in cls.__dict__: tvars = typing._collect_type_vars(cls.__orig_bases__) # Look for Generic[T1, ..., Tn] or Protocol[T1, ..., Tn]. # If found, tvars must be a subset of it. # If not found, tvars is it. # Also check for and reject plain Generic, # and reject multiple Generic[...] and/or Protocol[...]. gvars = None for base in cls.__orig_bases__: if (isinstance(base, typing._GenericAlias) and base.__origin__ in (typing.Generic, Protocol)): # for error messages the_base = base.__origin__.__name__ if gvars is not None: raise TypeError( "Cannot inherit from Generic[...]" " and/or Protocol[...] multiple types.") gvars = base.__parameters__ if gvars is None: gvars = tvars else: tvarset = set(tvars) gvarset = set(gvars) if not tvarset <= gvarset: s_vars = ', '.join(str(t) for t in tvars if t not in gvarset) s_args = ', '.join(str(g) for g in gvars) raise TypeError(f"Some type variables ({s_vars}) are" f" not listed in {the_base}[{s_args}]") tvars = gvars cls.__parameters__ = tuple(tvars) # 3.8+ if hasattr(typing, 'Protocol'): Protocol = typing.Protocol # 3.7 else: def _no_init(self, *args, **kwargs): if type(self)._is_protocol: raise TypeError('Protocols cannot be instantiated') class _ProtocolMeta(abc.ABCMeta): # noqa: B024 # This metaclass is a bit unfortunate and exists only because of the lack # of __instancehook__. def __instancecheck__(cls, instance): # We need this method for situations where attributes are # assigned in __init__. if ((not getattr(cls, '_is_protocol', False) or _is_callable_members_only(cls)) and issubclass(instance.__class__, cls)): return True if cls._is_protocol: if all(hasattr(instance, attr) and (not callable(getattr(cls, attr, None)) or getattr(instance, attr) is not None) for attr in _get_protocol_attrs(cls)): return True return super().__instancecheck__(instance) class Protocol(metaclass=_ProtocolMeta): # There is quite a lot of overlapping code with typing.Generic. # Unfortunately it is hard to avoid this while these live in two different # modules. The duplicated code will be removed when Protocol is moved to typing. """Base class for protocol classes. Protocol classes are defined as:: class Proto(Protocol): def meth(self) -> int: ... Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing), for example:: class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check See PEP 544 for details. Protocol classes decorated with @typing_extensions.runtime act as simple-minded runtime protocol that checks only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as:: class GenProto(Protocol[T]): def meth(self) -> T: ... """ __slots__ = () _is_protocol = True def __new__(cls, *args, **kwds): if cls is Protocol: raise TypeError("Type Protocol cannot be instantiated; " "it can only be used as a base class") return super().__new__(cls) @typing._tp_cache def __class_getitem__(cls, params): if not isinstance(params, tuple): params = (params,) if not params and cls is not typing.Tuple: raise TypeError( f"Parameter list to {cls.__qualname__}[...] cannot be empty") msg = "Parameters to generic types must be types." params = tuple(typing._type_check(p, msg) for p in params) # noqa if cls is Protocol: # Generic can only be subscripted with unique type variables. if not all(isinstance(p, typing.TypeVar) for p in params): i = 0 while isinstance(params[i], typing.TypeVar): i += 1 raise TypeError( "Parameters to Protocol[...] must all be type variables." f" Parameter {i + 1} is {params[i]}") if len(set(params)) != len(params): raise TypeError( "Parameters to Protocol[...] must all be unique") else: # Subscripting a regular Generic subclass. _check_generic(cls, params, len(cls.__parameters__)) return typing._GenericAlias(cls, params) def __init_subclass__(cls, *args, **kwargs): if '__orig_bases__' in cls.__dict__: error = typing.Generic in cls.__orig_bases__ else: error = typing.Generic in cls.__bases__ if error: raise TypeError("Cannot inherit from plain Generic") _maybe_adjust_parameters(cls) # Determine if this is a protocol or a concrete subclass. if not cls.__dict__.get('_is_protocol', None): cls._is_protocol = any(b is Protocol for b in cls.__bases__) # Set (or override) the protocol subclass hook. def _proto_hook(other): if not cls.__dict__.get('_is_protocol', None): return NotImplemented if not getattr(cls, '_is_runtime_protocol', False): if sys._getframe(2).f_globals['__name__'] in ['abc', 'functools']: return NotImplemented raise TypeError("Instance and class checks can only be used with" " @runtime protocols") if not _is_callable_members_only(cls): if sys._getframe(2).f_globals['__name__'] in ['abc', 'functools']: return NotImplemented raise TypeError("Protocols with non-method members" " don't support issubclass()") if not isinstance(other, type): # Same error as for issubclass(1, int) raise TypeError('issubclass() arg 1 must be a class') for attr in _get_protocol_attrs(cls): for base in other.__mro__: if attr in base.__dict__: if base.__dict__[attr] is None: return NotImplemented break annotations = getattr(base, '__annotations__', {}) if (isinstance(annotations, typing.Mapping) and attr in annotations and isinstance(other, _ProtocolMeta) and other._is_protocol): break else: return NotImplemented return True if '__subclasshook__' not in cls.__dict__: cls.__subclasshook__ = _proto_hook # We have nothing more to do for non-protocols. if not cls._is_protocol: return # Check consistency of bases. for base in cls.__bases__: if not (base in (object, typing.Generic) or base.__module__ == 'collections.abc' and base.__name__ in _PROTO_WHITELIST or isinstance(base, _ProtocolMeta) and base._is_protocol): raise TypeError('Protocols can only inherit from other' f' protocols, got {repr(base)}') cls.__init__ = _no_init # 3.8+ if hasattr(typing, 'runtime_checkable'): runtime_checkable = typing.runtime_checkable # 3.7 else: def runtime_checkable(cls): """Mark a protocol class as a runtime protocol, so that it can be used with isinstance() and issubclass(). Raise TypeError if applied to a non-protocol class. This allows a simple-minded structural check very similar to the one-offs in collections.abc such as Hashable. """ if not isinstance(cls, _ProtocolMeta) or not cls._is_protocol: raise TypeError('@runtime_checkable can be only applied to protocol classes,' f' got {cls!r}') cls._is_runtime_protocol = True return cls # Exists for backwards compatibility. runtime = runtime_checkable # 3.8+ if hasattr(typing, 'SupportsIndex'): SupportsIndex = typing.SupportsIndex # 3.7 else: @runtime_checkable class SupportsIndex(Protocol): __slots__ = () @abc.abstractmethod def __index__(self) -> int: pass if hasattr(typing, "Required"): # The standard library TypedDict in Python 3.8 does not store runtime information # about which (if any) keys are optional. See https://bugs.python.org/issue38834 # The standard library TypedDict in Python 3.9.0/1 does not honour the "total" # keyword with old-style TypedDict(). See https://bugs.python.org/issue42059 # The standard library TypedDict below Python 3.11 does not store runtime # information about optional and required keys when using Required or NotRequired. # Generic TypedDicts are also impossible using typing.TypedDict on Python <3.11. TypedDict = typing.TypedDict _TypedDictMeta = typing._TypedDictMeta is_typeddict = typing.is_typeddict else: def _check_fails(cls, other): try: if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools', 'typing']: # Typed dicts are only for static structural subtyping. raise TypeError('TypedDict does not support instance and class checks') except (AttributeError, ValueError): pass return False def _dict_new(*args, **kwargs): if not args: raise TypeError('TypedDict.__new__(): not enough arguments') _, args = args[0], args[1:] # allow the "cls" keyword be passed return dict(*args, **kwargs) _dict_new.__text_signature__ = '($cls, _typename, _fields=None, /, **kwargs)' def _typeddict_new(*args, total=True, **kwargs): if not args: raise TypeError('TypedDict.__new__(): not enough arguments') _, args = args[0], args[1:] # allow the "cls" keyword be passed if args: typename, args = args[0], args[1:] # allow the "_typename" keyword be passed elif '_typename' in kwargs: typename = kwargs.pop('_typename') import warnings warnings.warn("Passing '_typename' as keyword argument is deprecated", DeprecationWarning, stacklevel=2) else: raise TypeError("TypedDict.__new__() missing 1 required positional " "argument: '_typename'") if args: try: fields, = args # allow the "_fields" keyword be passed except ValueError: raise TypeError('TypedDict.__new__() takes from 2 to 3 ' f'positional arguments but {len(args) + 2} ' 'were given') elif '_fields' in kwargs and len(kwargs) == 1: fields = kwargs.pop('_fields') import warnings warnings.warn("Passing '_fields' as keyword argument is deprecated", DeprecationWarning, stacklevel=2) else: fields = None if fields is None: fields = kwargs elif kwargs: raise TypeError("TypedDict takes either a dict or keyword arguments," " but not both") ns = {'__annotations__': dict(fields)} try: # Setting correct module is necessary to make typed dict classes pickleable. ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass return _TypedDictMeta(typename, (), ns, total=total) _typeddict_new.__text_signature__ = ('($cls, _typename, _fields=None,' ' /, *, total=True, **kwargs)') class _TypedDictMeta(type): def __init__(cls, name, bases, ns, total=True): super().__init__(name, bases, ns) def __new__(cls, name, bases, ns, total=True): # Create new typed dict class object. # This method is called directly when TypedDict is subclassed, # or via _typeddict_new when TypedDict is instantiated. This way # TypedDict supports all three syntaxes described in its docstring. # Subclasses and instances of TypedDict return actual dictionaries # via _dict_new. ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new # Don't insert typing.Generic into __bases__ here, # or Generic.__init_subclass__ will raise TypeError # in the super().__new__() call. # Instead, monkey-patch __bases__ onto the class after it's been created. tp_dict = super().__new__(cls, name, (dict,), ns) if any(issubclass(base, typing.Generic) for base in bases): tp_dict.__bases__ = (typing.Generic, dict) _maybe_adjust_parameters(tp_dict) annotations = {} own_annotations = ns.get('__annotations__', {}) msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type" own_annotations = { n: typing._type_check(tp, msg) for n, tp in own_annotations.items() } required_keys = set() optional_keys = set() for base in bases: annotations.update(base.__dict__.get('__annotations__', {})) required_keys.update(base.__dict__.get('__required_keys__', ())) optional_keys.update(base.__dict__.get('__optional_keys__', ())) annotations.update(own_annotations) for annotation_key, annotation_type in own_annotations.items(): annotation_origin = get_origin(annotation_type) if annotation_origin is Annotated: annotation_args = get_args(annotation_type) if annotation_args: annotation_type = annotation_args[0] annotation_origin = get_origin(annotation_type) if annotation_origin is Required: required_keys.add(annotation_key) elif annotation_origin is NotRequired: optional_keys.add(annotation_key) elif total: required_keys.add(annotation_key) else: optional_keys.add(annotation_key) tp_dict.__annotations__ = annotations tp_dict.__required_keys__ = frozenset(required_keys) tp_dict.__optional_keys__ = frozenset(optional_keys) if not hasattr(tp_dict, '__total__'): tp_dict.__total__ = total return tp_dict __instancecheck__ = __subclasscheck__ = _check_fails TypedDict = _TypedDictMeta('TypedDict', (dict,), {}) TypedDict.__module__ = __name__ TypedDict.__doc__ = \ """A simple typed name space. At runtime it is equivalent to a plain dict. TypedDict creates a dictionary type that expects all of its instances to have a certain set of keys, with each key associated with a value of a consistent type. This expectation is not checked at runtime but is only enforced by type checkers. Usage:: class Point2D(TypedDict): x: int y: int label: str a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first') The type info can be accessed via the Point2D.__annotations__ dict, and the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets. TypedDict supports two additional equivalent forms:: Point2D = TypedDict('Point2D', x=int, y=int, label=str) Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str}) The class syntax is only supported in Python 3.6+, while two other syntax forms work for Python 2.7 and 3.2+ """ if hasattr(typing, "_TypedDictMeta"): _TYPEDDICT_TYPES = (typing._TypedDictMeta, _TypedDictMeta) else: _TYPEDDICT_TYPES = (_TypedDictMeta,) def is_typeddict(tp): """Check if an annotation is a TypedDict class For example:: class Film(TypedDict): title: str year: int is_typeddict(Film) # => True is_typeddict(Union[list, str]) # => False """ return isinstance(tp, tuple(_TYPEDDICT_TYPES)) if hasattr(typing, "assert_type"): assert_type = typing.assert_type else: def assert_type(__val, __typ): """Assert (to the type checker) that the value is of the given type. When the type checker encounters a call to assert_type(), it emits an error if the value is not of the specified type:: def greet(name: str) -> None: assert_type(name, str) # ok assert_type(name, int) # type checker error At runtime this returns the first argument unchanged and otherwise does nothing. """ return __val if hasattr(typing, "Required"): get_type_hints = typing.get_type_hints else: import functools import types # replaces _strip_annotations() def _strip_extras(t): """Strips Annotated, Required and NotRequired from a given type.""" if isinstance(t, _AnnotatedAlias): return _strip_extras(t.__origin__) if hasattr(t, "__origin__") and t.__origin__ in (Required, NotRequired): return _strip_extras(t.__args__[0]) if isinstance(t, typing._GenericAlias): stripped_args = tuple(_strip_extras(a) for a in t.__args__) if stripped_args == t.__args__: return t return t.copy_with(stripped_args) if hasattr(types, "GenericAlias") and isinstance(t, types.GenericAlias): stripped_args = tuple(_strip_extras(a) for a in t.__args__) if stripped_args == t.__args__: return t return types.GenericAlias(t.__origin__, stripped_args) if hasattr(types, "UnionType") and isinstance(t, types.UnionType): stripped_args = tuple(_strip_extras(a) for a in t.__args__) if stripped_args == t.__args__: return t return functools.reduce(operator.or_, stripped_args) return t def get_type_hints(obj, globalns=None, localns=None, include_extras=False): """Return type hints for an object. This is often the same as obj.__annotations__, but it handles forward references encoded as string literals, adds Optional[t] if a default value equal to None is set and recursively replaces all 'Annotated[T, ...]', 'Required[T]' or 'NotRequired[T]' with 'T' (unless 'include_extras=True'). The argument may be a module, class, method, or function. The annotations are returned as a dictionary. For classes, annotations include also inherited members. TypeError is raised if the argument is not of a type that can contain annotations, and an empty dictionary is returned if no annotations are present. BEWARE -- the behavior of globalns and localns is counterintuitive (unless you are familiar with how eval() and exec() work). The search order is locals first, then globals. - If no dict arguments are passed, an attempt is made to use the globals from obj (or the respective module's globals for classes), and these are also used as the locals. If the object does not appear to have globals, an empty dictionary is used. - If one dict argument is passed, it is used for both globals and locals. - If two dict arguments are passed, they specify globals and locals, respectively. """ if hasattr(typing, "Annotated"): hint = typing.get_type_hints( obj, globalns=globalns, localns=localns, include_extras=True ) else: hint = typing.get_type_hints(obj, globalns=globalns, localns=localns) if include_extras: return hint return {k: _strip_extras(t) for k, t in hint.items()} # Python 3.9+ has PEP 593 (Annotated) if hasattr(typing, 'Annotated'): Annotated = typing.Annotated # Not exported and not a public API, but needed for get_origin() and get_args() # to work. _AnnotatedAlias = typing._AnnotatedAlias # 3.7-3.8 else: class _AnnotatedAlias(typing._GenericAlias, _root=True): """Runtime representation of an annotated type. At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't' with extra annotations. The alias behaves like a normal typing alias, instantiating is the same as instantiating the underlying type, binding it to types is also the same. """ def __init__(self, origin, metadata): if isinstance(origin, _AnnotatedAlias): metadata = origin.__metadata__ + metadata origin = origin.__origin__ super().__init__(origin, origin) self.__metadata__ = metadata def copy_with(self, params): assert len(params) == 1 new_type = params[0] return _AnnotatedAlias(new_type, self.__metadata__) def __repr__(self): return (f"typing_extensions.Annotated[{typing._type_repr(self.__origin__)}, " f"{', '.join(repr(a) for a in self.__metadata__)}]") def __reduce__(self): return operator.getitem, ( Annotated, (self.__origin__,) + self.__metadata__ ) def __eq__(self, other): if not isinstance(other, _AnnotatedAlias): return NotImplemented if self.__origin__ != other.__origin__: return False return self.__metadata__ == other.__metadata__ def __hash__(self): return hash((self.__origin__, self.__metadata__)) class Annotated: """Add context specific metadata to a type. Example: Annotated[int, runtime_check.Unsigned] indicates to the hypothetical runtime_check module that this type is an unsigned int. Every other consumer of this type can ignore this metadata and treat this type as int. The first argument to Annotated must be a valid type (and will be in the __origin__ field), the remaining arguments are kept as a tuple in the __extra__ field. Details: - It's an error to call `Annotated` with less than two arguments. - Nested Annotated are flattened:: Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3] - Instantiating an annotated type is equivalent to instantiating the underlying type:: Annotated[C, Ann1](5) == C(5) - Annotated can be used as a generic type alias:: Optimized = Annotated[T, runtime.Optimize()] Optimized[int] == Annotated[int, runtime.Optimize()] OptimizedList = Annotated[List[T], runtime.Optimize()] OptimizedList[int] == Annotated[List[int], runtime.Optimize()] """ __slots__ = () def __new__(cls, *args, **kwargs): raise TypeError("Type Annotated cannot be instantiated.") @typing._tp_cache def __class_getitem__(cls, params): if not isinstance(params, tuple) or len(params) < 2: raise TypeError("Annotated[...] should be used " "with at least two arguments (a type and an " "annotation).") allowed_special_forms = (ClassVar, Final) if get_origin(params[0]) in allowed_special_forms: origin = params[0] else: msg = "Annotated[t, ...]: t must be a type." origin = typing._type_check(params[0], msg) metadata = tuple(params[1:]) return _AnnotatedAlias(origin, metadata) def __init_subclass__(cls, *args, **kwargs): raise TypeError( f"Cannot subclass {cls.__module__}.Annotated" ) # Python 3.8 has get_origin() and get_args() but those implementations aren't # Annotated-aware, so we can't use those. Python 3.9's versions don't support # ParamSpecArgs and ParamSpecKwargs, so only Python 3.10's versions will do. if sys.version_info[:2] >= (3, 10): get_origin = typing.get_origin get_args = typing.get_args # 3.7-3.9 else: try: # 3.9+ from typing import _BaseGenericAlias except ImportError: _BaseGenericAlias = typing._GenericAlias try: # 3.9+ from typing import GenericAlias as _typing_GenericAlias except ImportError: _typing_GenericAlias = typing._GenericAlias def get_origin(tp): """Get the unsubscripted version of a type. This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar and Annotated. Return None for unsupported types. Examples:: get_origin(Literal[42]) is Literal get_origin(int) is None get_origin(ClassVar[int]) is ClassVar get_origin(Generic) is Generic get_origin(Generic[T]) is Generic get_origin(Union[T, int]) is Union get_origin(List[Tuple[T, T]][int]) == list get_origin(P.args) is P """ if isinstance(tp, _AnnotatedAlias): return Annotated if isinstance(tp, (typing._GenericAlias, _typing_GenericAlias, _BaseGenericAlias, ParamSpecArgs, ParamSpecKwargs)): return tp.__origin__ if tp is typing.Generic: return typing.Generic return None def get_args(tp): """Get type arguments with all substitutions performed. For unions, basic simplifications used by Union constructor are performed. Examples:: get_args(Dict[str, int]) == (str, int) get_args(int) == () get_args(Union[int, Union[T, int], str][int]) == (int, str) get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int]) get_args(Callable[[], T][int]) == ([], int) """ if isinstance(tp, _AnnotatedAlias): return (tp.__origin__,) + tp.__metadata__ if isinstance(tp, (typing._GenericAlias, _typing_GenericAlias)): if getattr(tp, "_special", False): return () res = tp.__args__ if get_origin(tp) is collections.abc.Callable and res[0] is not Ellipsis: res = (list(res[:-1]), res[-1]) return res return () # 3.10+ if hasattr(typing, 'TypeAlias'): TypeAlias = typing.TypeAlias # 3.9 elif sys.version_info[:2] >= (3, 9): class _TypeAliasForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name @_TypeAliasForm def TypeAlias(self, parameters): """Special marker indicating that an assignment should be recognized as a proper type alias definition by type checkers. For example:: Predicate: TypeAlias = Callable[..., bool] It's invalid when used anywhere except as in the example above. """ raise TypeError(f"{self} is not subscriptable") # 3.7-3.8 else: class _TypeAliasForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name TypeAlias = _TypeAliasForm('TypeAlias', doc="""Special marker indicating that an assignment should be recognized as a proper type alias definition by type checkers. For example:: Predicate: TypeAlias = Callable[..., bool] It's invalid when used anywhere except as in the example above.""") class _DefaultMixin: """Mixin for TypeVarLike defaults.""" __slots__ = () def __init__(self, default): if isinstance(default, (tuple, list)): self.__default__ = tuple((typing._type_check(d, "Default must be a type") for d in default)) elif default: self.__default__ = typing._type_check(default, "Default must be a type") else: self.__default__ = None # Add default and infer_variance parameters from PEP 696 and 695 class TypeVar(typing.TypeVar, _DefaultMixin, _root=True): """Type variable.""" __module__ = 'typing' def __init__(self, name, *constraints, bound=None, covariant=False, contravariant=False, default=None, infer_variance=False): super().__init__(name, *constraints, bound=bound, covariant=covariant, contravariant=contravariant) _DefaultMixin.__init__(self, default) self.__infer_variance__ = infer_variance # for pickling: try: def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): def_mod = None if def_mod != 'typing_extensions': self.__module__ = def_mod # Python 3.10+ has PEP 612 if hasattr(typing, 'ParamSpecArgs'): ParamSpecArgs = typing.ParamSpecArgs ParamSpecKwargs = typing.ParamSpecKwargs # 3.7-3.9 else: class _Immutable: """Mixin to indicate that object should not be copied.""" __slots__ = () def __copy__(self): return self def __deepcopy__(self, memo): return self class ParamSpecArgs(_Immutable): """The args for a ParamSpec object. Given a ParamSpec object P, P.args is an instance of ParamSpecArgs. ParamSpecArgs objects have a reference back to their ParamSpec: P.args.__origin__ is P This type is meant for runtime introspection and has no special meaning to static type checkers. """ def __init__(self, origin): self.__origin__ = origin def __repr__(self): return f"{self.__origin__.__name__}.args" def __eq__(self, other): if not isinstance(other, ParamSpecArgs): return NotImplemented return self.__origin__ == other.__origin__ class ParamSpecKwargs(_Immutable): """The kwargs for a ParamSpec object. Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs. ParamSpecKwargs objects have a reference back to their ParamSpec: P.kwargs.__origin__ is P This type is meant for runtime introspection and has no special meaning to static type checkers. """ def __init__(self, origin): self.__origin__ = origin def __repr__(self): return f"{self.__origin__.__name__}.kwargs" def __eq__(self, other): if not isinstance(other, ParamSpecKwargs): return NotImplemented return self.__origin__ == other.__origin__ # 3.10+ if hasattr(typing, 'ParamSpec'): # Add default Parameter - PEP 696 class ParamSpec(typing.ParamSpec, _DefaultMixin, _root=True): """Parameter specification variable.""" __module__ = 'typing' def __init__(self, name, *, bound=None, covariant=False, contravariant=False, default=None): super().__init__(name, bound=bound, covariant=covariant, contravariant=contravariant) _DefaultMixin.__init__(self, default) # for pickling: try: def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): def_mod = None if def_mod != 'typing_extensions': self.__module__ = def_mod # 3.7-3.9 else: # Inherits from list as a workaround for Callable checks in Python < 3.9.2. class ParamSpec(list, _DefaultMixin): """Parameter specification variable. Usage:: P = ParamSpec('P') Parameter specification variables exist primarily for the benefit of static type checkers. They are used to forward the parameter types of one callable to another callable, a pattern commonly found in higher order functions and decorators. They are only valid when used in ``Concatenate``, or s the first argument to ``Callable``. In Python 3.10 and higher, they are also supported in user-defined Generics at runtime. See class Generic for more information on generic types. An example for annotating a decorator:: T = TypeVar('T') P = ParamSpec('P') def add_logging(f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y Parameter specification variables defined with covariant=True or contravariant=True can be used to declare covariant or contravariant generic types. These keyword arguments are valid, but their actual semantics are yet to be decided. See PEP 612 for details. Parameter specification variables can be introspected. e.g.: P.__name__ == 'T' P.__bound__ == None P.__covariant__ == False P.__contravariant__ == False Note that only parameter specification variables defined in global scope can be pickled. """ # Trick Generic __parameters__. __class__ = typing.TypeVar @property def args(self): return ParamSpecArgs(self) @property def kwargs(self): return ParamSpecKwargs(self) def __init__(self, name, *, bound=None, covariant=False, contravariant=False, default=None): super().__init__([self]) self.__name__ = name self.__covariant__ = bool(covariant) self.__contravariant__ = bool(contravariant) if bound: self.__bound__ = typing._type_check(bound, 'Bound must be a type.') else: self.__bound__ = None _DefaultMixin.__init__(self, default) # for pickling: try: def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): def_mod = None if def_mod != 'typing_extensions': self.__module__ = def_mod def __repr__(self): if self.__covariant__: prefix = '+' elif self.__contravariant__: prefix = '-' else: prefix = '~' return prefix + self.__name__ def __hash__(self): return object.__hash__(self) def __eq__(self, other): return self is other def __reduce__(self): return self.__name__ # Hack to get typing._type_check to pass. def __call__(self, *args, **kwargs): pass # 3.7-3.9 if not hasattr(typing, 'Concatenate'): # Inherits from list as a workaround for Callable checks in Python < 3.9.2. class _ConcatenateGenericAlias(list): # Trick Generic into looking into this for __parameters__. __class__ = typing._GenericAlias # Flag in 3.8. _special = False def __init__(self, origin, args): super().__init__(args) self.__origin__ = origin self.__args__ = args def __repr__(self): _type_repr = typing._type_repr return (f'{_type_repr(self.__origin__)}' f'[{", ".join(_type_repr(arg) for arg in self.__args__)}]') def __hash__(self): return hash((self.__origin__, self.__args__)) # Hack to get typing._type_check to pass in Generic. def __call__(self, *args, **kwargs): pass @property def __parameters__(self): return tuple( tp for tp in self.__args__ if isinstance(tp, (typing.TypeVar, ParamSpec)) ) # 3.7-3.9 @typing._tp_cache def _concatenate_getitem(self, parameters): if parameters == (): raise TypeError("Cannot take a Concatenate of no types.") if not isinstance(parameters, tuple): parameters = (parameters,) if not isinstance(parameters[-1], ParamSpec): raise TypeError("The last parameter to Concatenate should be a " "ParamSpec variable.") msg = "Concatenate[arg, ...]: each arg must be a type." parameters = tuple(typing._type_check(p, msg) for p in parameters) return _ConcatenateGenericAlias(self, parameters) # 3.10+ if hasattr(typing, 'Concatenate'): Concatenate = typing.Concatenate _ConcatenateGenericAlias = typing._ConcatenateGenericAlias # noqa # 3.9 elif sys.version_info[:2] >= (3, 9): @_TypeAliasForm def Concatenate(self, parameters): """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a higher order function which adds, removes or transforms parameters of a callable. For example:: Callable[Concatenate[int, P], int] See PEP 612 for detailed information. """ return _concatenate_getitem(self, parameters) # 3.7-8 else: class _ConcatenateForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name def __getitem__(self, parameters): return _concatenate_getitem(self, parameters) Concatenate = _ConcatenateForm( 'Concatenate', doc="""Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a higher order function which adds, removes or transforms parameters of a callable. For example:: Callable[Concatenate[int, P], int] See PEP 612 for detailed information. """) # 3.10+ if hasattr(typing, 'TypeGuard'): TypeGuard = typing.TypeGuard # 3.9 elif sys.version_info[:2] >= (3, 9): class _TypeGuardForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name @_TypeGuardForm def TypeGuard(self, parameters): """Special typing form used to annotate the return type of a user-defined type guard function. ``TypeGuard`` only accepts a single type argument. At runtime, functions marked this way should return a boolean. ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static type checkers to determine a more precise type of an expression within a program's code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a "type guard". Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use ``TypeGuard[...]`` as its return type to alert static type checkers to this intention. Using ``-> TypeGuard`` tells the static type checker that for a given function: 1. The return value is a boolean. 2. If the return value is ``True``, the type of its argument is the type inside ``TypeGuard``. For example:: def is_str(val: Union[str, float]): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ... Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower form of ``TypeA`` (it can even be a wider form) and this may lead to type-unsafe results. The main reason is to allow for things like narrowing ``List[object]`` to ``List[str]`` even though the latter is not a subtype of the former, since ``List`` is invariant. The responsibility of writing type-safe type guards is left to the user. ``TypeGuard`` also works with type variables. For more information, see PEP 647 (User-Defined Type Guards). """ item = typing._type_check(parameters, f'{self} accepts only a single type.') return typing._GenericAlias(self, (item,)) # 3.7-3.8 else: class _TypeGuardForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name def __getitem__(self, parameters): item = typing._type_check(parameters, f'{self._name} accepts only a single type') return typing._GenericAlias(self, (item,)) TypeGuard = _TypeGuardForm( 'TypeGuard', doc="""Special typing form used to annotate the return type of a user-defined type guard function. ``TypeGuard`` only accepts a single type argument. At runtime, functions marked this way should return a boolean. ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static type checkers to determine a more precise type of an expression within a program's code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a "type guard". Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use ``TypeGuard[...]`` as its return type to alert static type checkers to this intention. Using ``-> TypeGuard`` tells the static type checker that for a given function: 1. The return value is a boolean. 2. If the return value is ``True``, the type of its argument is the type inside ``TypeGuard``. For example:: def is_str(val: Union[str, float]): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ... Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower form of ``TypeA`` (it can even be a wider form) and this may lead to type-unsafe results. The main reason is to allow for things like narrowing ``List[object]`` to ``List[str]`` even though the latter is not a subtype of the former, since ``List`` is invariant. The responsibility of writing type-safe type guards is left to the user. ``TypeGuard`` also works with type variables. For more information, see PEP 647 (User-Defined Type Guards). """) # Vendored from cpython typing._SpecialFrom class _SpecialForm(typing._Final, _root=True): __slots__ = ('_name', '__doc__', '_getitem') def __init__(self, getitem): self._getitem = getitem self._name = getitem.__name__ self.__doc__ = getitem.__doc__ def __getattr__(self, item): if item in {'__name__', '__qualname__'}: return self._name raise AttributeError(item) def __mro_entries__(self, bases): raise TypeError(f"Cannot subclass {self!r}") def __repr__(self): return f'typing_extensions.{self._name}' def __reduce__(self): return self._name def __call__(self, *args, **kwds): raise TypeError(f"Cannot instantiate {self!r}") def __or__(self, other): return typing.Union[self, other] def __ror__(self, other): return typing.Union[other, self] def __instancecheck__(self, obj): raise TypeError(f"{self} cannot be used with isinstance()") def __subclasscheck__(self, cls): raise TypeError(f"{self} cannot be used with issubclass()") @typing._tp_cache def __getitem__(self, parameters): return self._getitem(self, parameters) if hasattr(typing, "LiteralString"): LiteralString = typing.LiteralString else: @_SpecialForm def LiteralString(self, params): """Represents an arbitrary literal string. Example:: from typing_extensions import LiteralString def query(sql: LiteralString) -> ...: ... query("SELECT * FROM table") # ok query(f"SELECT * FROM {input()}") # not ok See PEP 675 for details. """ raise TypeError(f"{self} is not subscriptable") if hasattr(typing, "Self"): Self = typing.Self else: @_SpecialForm def Self(self, params): """Used to spell the type of "self" in classes. Example:: from typing import Self class ReturnsSelf: def parse(self, data: bytes) -> Self: ... return self """ raise TypeError(f"{self} is not subscriptable") if hasattr(typing, "Never"): Never = typing.Never else: @_SpecialForm def Never(self, params): """The bottom type, a type that has no members. This can be used to define a function that should never be called, or a function that never returns:: from typing_extensions import Never def never_call_me(arg: Never) -> None: pass def int_or_str(arg: int | str) -> None: never_call_me(arg) # type checker error match arg: case int(): print("It's an int") case str(): print("It's a str") case _: never_call_me(arg) # ok, arg is of type Never """ raise TypeError(f"{self} is not subscriptable") if hasattr(typing, 'Required'): Required = typing.Required NotRequired = typing.NotRequired elif sys.version_info[:2] >= (3, 9): class _ExtensionsSpecialForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name @_ExtensionsSpecialForm def Required(self, parameters): """A special typing construct to mark a key of a total=False TypedDict as required. For example: class Movie(TypedDict, total=False): title: Required[str] year: int m = Movie( title='The Matrix', # typechecker error if key is omitted year=1999, ) There is no runtime checking that a required key is actually provided when instantiating a related TypedDict. """ item = typing._type_check(parameters, f'{self._name} accepts only a single type.') return typing._GenericAlias(self, (item,)) @_ExtensionsSpecialForm def NotRequired(self, parameters): """A special typing construct to mark a key of a TypedDict as potentially missing. For example: class Movie(TypedDict): title: str year: NotRequired[int] m = Movie( title='The Matrix', # typechecker error if key is omitted year=1999, ) """ item = typing._type_check(parameters, f'{self._name} accepts only a single type.') return typing._GenericAlias(self, (item,)) else: class _RequiredForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name def __getitem__(self, parameters): item = typing._type_check(parameters, f'{self._name} accepts only a single type.') return typing._GenericAlias(self, (item,)) Required = _RequiredForm( 'Required', doc="""A special typing construct to mark a key of a total=False TypedDict as required. For example: class Movie(TypedDict, total=False): title: Required[str] year: int m = Movie( title='The Matrix', # typechecker error if key is omitted year=1999, ) There is no runtime checking that a required key is actually provided when instantiating a related TypedDict. """) NotRequired = _RequiredForm( 'NotRequired', doc="""A special typing construct to mark a key of a TypedDict as potentially missing. For example: class Movie(TypedDict): title: str year: NotRequired[int] m = Movie( title='The Matrix', # typechecker error if key is omitted year=1999, ) """) if hasattr(typing, "Unpack"): # 3.11+ Unpack = typing.Unpack elif sys.version_info[:2] >= (3, 9): class _UnpackSpecialForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name class _UnpackAlias(typing._GenericAlias, _root=True): __class__ = typing.TypeVar @_UnpackSpecialForm def Unpack(self, parameters): """A special typing construct to unpack a variadic type. For example: Shape = TypeVarTuple('Shape') Batch = NewType('Batch', int) def add_batch_axis( x: Array[Unpack[Shape]] ) -> Array[Batch, Unpack[Shape]]: ... """ item = typing._type_check(parameters, f'{self._name} accepts only a single type.') return _UnpackAlias(self, (item,)) def _is_unpack(obj): return isinstance(obj, _UnpackAlias) else: class _UnpackAlias(typing._GenericAlias, _root=True): __class__ = typing.TypeVar class _UnpackForm(typing._SpecialForm, _root=True): def __repr__(self): return 'typing_extensions.' + self._name def __getitem__(self, parameters): item = typing._type_check(parameters, f'{self._name} accepts only a single type.') return _UnpackAlias(self, (item,)) Unpack = _UnpackForm( 'Unpack', doc="""A special typing construct to unpack a variadic type. For example: Shape = TypeVarTuple('Shape') Batch = NewType('Batch', int) def add_batch_axis( x: Array[Unpack[Shape]] ) -> Array[Batch, Unpack[Shape]]: ... """) def _is_unpack(obj): return isinstance(obj, _UnpackAlias) if hasattr(typing, "TypeVarTuple"): # 3.11+ # Add default Parameter - PEP 696 class TypeVarTuple(typing.TypeVarTuple, _DefaultMixin, _root=True): """Type variable tuple.""" def __init__(self, name, *, default=None): super().__init__(name) _DefaultMixin.__init__(self, default) # for pickling: try: def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): def_mod = None if def_mod != 'typing_extensions': self.__module__ = def_mod else: class TypeVarTuple(_DefaultMixin): """Type variable tuple. Usage:: Ts = TypeVarTuple('Ts') In the same way that a normal type variable is a stand-in for a single type such as ``int``, a type variable *tuple* is a stand-in for a *tuple* type such as ``Tuple[int, str]``. Type variable tuples can be used in ``Generic`` declarations. Consider the following example:: class Array(Generic[*Ts]): ... The ``Ts`` type variable tuple here behaves like ``tuple[T1, T2]``, where ``T1`` and ``T2`` are type variables. To use these type variables as type parameters of ``Array``, we must *unpack* the type variable tuple using the star operator: ``*Ts``. The signature of ``Array`` then behaves as if we had simply written ``class Array(Generic[T1, T2]): ...``. In contrast to ``Generic[T1, T2]``, however, ``Generic[*Shape]`` allows us to parameterise the class with an *arbitrary* number of type parameters. Type variable tuples can be used anywhere a normal ``TypeVar`` can. This includes class definitions, as shown above, as well as function signatures and variable annotations:: class Array(Generic[*Ts]): def __init__(self, shape: Tuple[*Ts]): self._shape: Tuple[*Ts] = shape def get_shape(self) -> Tuple[*Ts]: return self._shape shape = (Height(480), Width(640)) x: Array[Height, Width] = Array(shape) y = abs(x) # Inferred type is Array[Height, Width] z = x + x # ... is Array[Height, Width] x.get_shape() # ... is tuple[Height, Width] """ # Trick Generic __parameters__. __class__ = typing.TypeVar def __iter__(self): yield self.__unpacked__ def __init__(self, name, *, default=None): self.__name__ = name _DefaultMixin.__init__(self, default) # for pickling: try: def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): def_mod = None if def_mod != 'typing_extensions': self.__module__ = def_mod self.__unpacked__ = Unpack[self] def __repr__(self): return self.__name__ def __hash__(self): return object.__hash__(self) def __eq__(self, other): return self is other def __reduce__(self): return self.__name__ def __init_subclass__(self, *args, **kwds): if '_root' not in kwds: raise TypeError("Cannot subclass special typing classes") if hasattr(typing, "reveal_type"): reveal_type = typing.reveal_type else: def reveal_type(__obj: T) -> T: """Reveal the inferred type of a variable. When a static type checker encounters a call to ``reveal_type()``, it will emit the inferred type of the argument:: x: int = 1 reveal_type(x) Running a static type checker (e.g., ``mypy``) on this example will produce output similar to 'Revealed type is "builtins.int"'. At runtime, the function prints the runtime type of the argument and returns it unchanged. """ print(f"Runtime type is {type(__obj).__name__!r}", file=sys.stderr) return __obj if hasattr(typing, "assert_never"): assert_never = typing.assert_never else: def assert_never(__arg: Never) -> Never: """Assert to the type checker that a line of code is unreachable. Example:: def int_or_str(arg: int | str) -> None: match arg: case int(): print("It's an int") case str(): print("It's a str") case _: assert_never(arg) If a type checker finds that a call to assert_never() is reachable, it will emit an error. At runtime, this throws an exception when called. """ raise AssertionError("Expected code to be unreachable") if hasattr(typing, 'dataclass_transform'): dataclass_transform = typing.dataclass_transform else: def dataclass_transform( *, eq_default: bool = True, order_default: bool = False, kw_only_default: bool = False, field_specifiers: typing.Tuple[ typing.Union[typing.Type[typing.Any], typing.Callable[..., typing.Any]], ... ] = (), **kwargs: typing.Any, ) -> typing.Callable[[T], T]: """Decorator that marks a function, class, or metaclass as providing dataclass-like behavior. Example: from typing_extensions import dataclass_transform _T = TypeVar("_T") # Used on a decorator function @dataclass_transform() def create_model(cls: type[_T]) -> type[_T]: ... return cls @create_model class CustomerModel: id: int name: str # Used on a base class @dataclass_transform() class ModelBase: ... class CustomerModel(ModelBase): id: int name: str # Used on a metaclass @dataclass_transform() class ModelMeta(type): ... class ModelBase(metaclass=ModelMeta): ... class CustomerModel(ModelBase): id: int name: str Each of the ``CustomerModel`` classes defined in this example will now behave similarly to a dataclass created with the ``@dataclasses.dataclass`` decorator. For example, the type checker will synthesize an ``__init__`` method. The arguments to this decorator can be used to customize this behavior: - ``eq_default`` indicates whether the ``eq`` parameter is assumed to be True or False if it is omitted by the caller. - ``order_default`` indicates whether the ``order`` parameter is assumed to be True or False if it is omitted by the caller. - ``kw_only_default`` indicates whether the ``kw_only`` parameter is assumed to be True or False if it is omitted by the caller. - ``field_specifiers`` specifies a static list of supported classes or functions that describe fields, similar to ``dataclasses.field()``. At runtime, this decorator records its arguments in the ``__dataclass_transform__`` attribute on the decorated object. See PEP 681 for details. """ def decorator(cls_or_fn): cls_or_fn.__dataclass_transform__ = { "eq_default": eq_default, "order_default": order_default, "kw_only_default": kw_only_default, "field_specifiers": field_specifiers, "kwargs": kwargs, } return cls_or_fn return decorator if hasattr(typing, "override"): override = typing.override else: _F = typing.TypeVar("_F", bound=typing.Callable[..., typing.Any]) def override(__arg: _F) -> _F: """Indicate that a method is intended to override a method in a base class. Usage: class Base: def method(self) -> None: ... pass class Child(Base): @override def method(self) -> None: super().method() When this decorator is applied to a method, the type checker will validate that it overrides a method with the same name on a base class. This helps prevent bugs that may occur when a base class is changed without an equivalent change to a child class. See PEP 698 for details. """ return __arg # We have to do some monkey patching to deal with the dual nature of # Unpack/TypeVarTuple: # - We want Unpack to be a kind of TypeVar so it gets accepted in # Generic[Unpack[Ts]] # - We want it to *not* be treated as a TypeVar for the purposes of # counting generic parameters, so that when we subscript a generic, # the runtime doesn't try to substitute the Unpack with the subscripted type. if not hasattr(typing, "TypeVarTuple"): typing._collect_type_vars = _collect_type_vars typing._check_generic = _check_generic # Backport typing.NamedTuple as it exists in Python 3.11. # In 3.11, the ability to define generic `NamedTuple`s was supported. # This was explicitly disallowed in 3.9-3.10, and only half-worked in <=3.8. if sys.version_info >= (3, 11): NamedTuple = typing.NamedTuple else: def _caller(): try: return sys._getframe(2).f_globals.get('__name__', '__main__') except (AttributeError, ValueError): # For platforms without _getframe() return None def _make_nmtuple(name, types, module, defaults=()): fields = [n for n, t in types] annotations = {n: typing._type_check(t, f"field {n} annotation must be a type") for n, t in types} nm_tpl = collections.namedtuple(name, fields, defaults=defaults, module=module) nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = annotations # The `_field_types` attribute was removed in 3.9; # in earlier versions, it is the same as the `__annotations__` attribute if sys.version_info < (3, 9): nm_tpl._field_types = annotations return nm_tpl _prohibited_namedtuple_fields = typing._prohibited _special_namedtuple_fields = frozenset({'__module__', '__name__', '__annotations__'}) class _NamedTupleMeta(type): def __new__(cls, typename, bases, ns): assert _NamedTuple in bases for base in bases: if base is not _NamedTuple and base is not typing.Generic: raise TypeError( 'can only inherit from a NamedTuple type and Generic') bases = tuple(tuple if base is _NamedTuple else base for base in bases) types = ns.get('__annotations__', {}) default_names = [] for field_name in types: if field_name in ns: default_names.append(field_name) elif default_names: raise TypeError(f"Non-default namedtuple field {field_name} " f"cannot follow default field" f"{'s' if len(default_names) > 1 else ''} " f"{', '.join(default_names)}") nm_tpl = _make_nmtuple( typename, types.items(), defaults=[ns[n] for n in default_names], module=ns['__module__'] ) nm_tpl.__bases__ = bases if typing.Generic in bases: class_getitem = typing.Generic.__class_getitem__.__func__ nm_tpl.__class_getitem__ = classmethod(class_getitem) # update from user namespace without overriding special namedtuple attributes for key in ns: if key in _prohibited_namedtuple_fields: raise AttributeError("Cannot overwrite NamedTuple attribute " + key) elif key not in _special_namedtuple_fields and key not in nm_tpl._fields: setattr(nm_tpl, key, ns[key]) if typing.Generic in bases: nm_tpl.__init_subclass__() return nm_tpl def NamedTuple(__typename, __fields=None, **kwargs): if __fields is None: __fields = kwargs.items() elif kwargs: raise TypeError("Either list of fields or keywords" " can be provided to NamedTuple, not both") return _make_nmtuple(__typename, __fields, module=_caller()) NamedTuple.__doc__ = typing.NamedTuple.__doc__ _NamedTuple = type.__new__(_NamedTupleMeta, 'NamedTuple', (), {}) # On 3.8+, alter the signature so that it matches typing.NamedTuple. # The signature of typing.NamedTuple on >=3.8 is invalid syntax in Python 3.7, # so just leave the signature as it is on 3.7. if sys.version_info >= (3, 8): NamedTuple.__text_signature__ = '(typename, fields=None, /, **kwargs)' def _namedtuple_mro_entries(bases): assert NamedTuple in bases return (_NamedTuple,) NamedTuple.__mro_entries__ = _namedtuple_mro_entries
{ "content_hash": "1cafc3c9e0f2a1aefa053401f4e29749", "timestamp": "", "source": "github", "line_count": 2209, "max_line_length": 90, "avg_line_length": 36.250792213671346, "alnum_prop": 0.5626139513973876, "repo_name": "paolodedios/pybuilder", "id": "ef42417c208e93c55d704728d3e88dfe46250d92", "size": "80078", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "src/main/python/pybuilder/_vendor/typing_extensions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "1567" }, { "name": "Nu", "bytes": "3265" }, { "name": "Perl", "bytes": "4025" }, { "name": "PowerShell", "bytes": "1810" }, { "name": "Python", "bytes": "2699121" }, { "name": "Shell", "bytes": "6706" } ], "symlink_target": "" }
""" Django settings for santicms project. Generated by 'django-admin startproject' using Django 1.9.6. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '0d&)bq@n98=*k^438m6ifkam9o#8s+-cmvk!a6*lku76w)#c#+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'mycms.apps.MycmsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'santicms.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'santicms.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'zh-Hans' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/'
{ "content_hash": "9a8e4d9bf28915a6e78799edde56091c", "timestamp": "", "source": "github", "line_count": 116, "max_line_length": 91, "avg_line_length": 27.879310344827587, "alnum_prop": 0.6914038342609771, "repo_name": "daimon99/santicms", "id": "cdaabda4c863f7f3cbbc68b90633caaa2e11af16", "size": "3234", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/santicms/settings.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "287" }, { "name": "CSS", "bytes": "239" }, { "name": "HTML", "bytes": "5191" }, { "name": "Python", "bytes": "24220" } ], "symlink_target": "" }
""" auto rule template ~~~~ :author: LoRexxar <[email protected]> :homepage: https://github.com/LoRexxar/Kunlun-M :license: MIT, see LICENSE for more details. :copyright: Copyright (c) 2017 LoRexxar. All rights reserved """ from utils.api import * class CVI_1001(): """ rule class """ def __init__(self): self.svid = 1001 self.language = "php" self.author = "LoRexxar/wufeifei" self.vulnerability = "SSRF" self.description = "cURL的函数相应函数可控,可能会造成SSRF漏洞。" self.level = 7 # status self.status = True # 部分配置 self.match_mode = "vustomize-match" self.match = r"curl_setopt\s*\(.*,\s*CURLOPT_URL\s*,(.*)\)" # for solidity self.match_name = None self.black_list = None # for chrome ext self.keyword = None # for regex self.unmatch = None self.vul_function = "curl_setopt" def main(self, regex_string): """ regex string input just for curl :return: """ sql_sen = regex_string[0] reg = "\$[\w+\->]*" if re.search(reg, sql_sen, re.I): p = re.compile(reg) match = p.findall(sql_sen) return match return None
{ "content_hash": "31ec76d85c7398d58108aa16785afef0", "timestamp": "", "source": "github", "line_count": 59, "max_line_length": 67, "avg_line_length": 22.389830508474578, "alnum_prop": 0.5253595760787282, "repo_name": "LoRexxar/Cobra-W", "id": "a5a09dc92af8d2bb4f8d6c2cdf0092b08bb6aed1", "size": "1390", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rules/php/CVI_1001.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "204" }, { "name": "Hack", "bytes": "82" }, { "name": "Java", "bytes": "45" }, { "name": "PHP", "bytes": "6172" }, { "name": "Python", "bytes": "441482" } ], "symlink_target": "" }
'''------------------------------------------------------------------------- Copyright IBM Corp. 2015, 2015 All Rights Reserved Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and Limitations under the License. -------------------------------------------------------------------------''' from dragon.engine.clients import Clients from dragon.openstack.common import log as logging from dragon.workload_policy.actions import action from dragon.workload_policy.actions import action_execution as ae from oslo.config import cfg from eventlet import greenthread from dragon.template.heat_template import HeatVolumeResource LOG = logging.getLogger(__name__) CONF = cfg.CONF class VolumeSnapshotAction(action.Action): is_global = False def __init__(self, context): self.clients = Clients(context) self._name = None self._id = None self._backup_id = None self._resource_id = None # super(action.Action, self).__init__(workload_action_excution_id) def protect(self, cntx, workload_action_excution_id, resource_id, container_name): volume = self.clients.cinder().volumes.get(resource_id) self._name = volume.name self._id = volume.id self._resource_id = resource_id volume_snapshot_exection =\ ae.ActionExecution(workload_action_excution_id, resource_id, self.id) result = self._replicate_volume_to_DR(cntx, volume, container_name, volume_snapshot_exection) return result def generate_template(self, context, template_gen): resource = HeatVolumeResource(self._name, self._id, self._backup_id) template_gen.add_volume(resource) def failover(self, context, resource_id, resource_data, container_name): return self._restore_volumes_from_swift(context, resource_id, resource_data, container_name) def _restore_volumes_from_swift(self, context, resource_id, resource_data, container_name): success = False cinder_client = self.clients.cinder() dr_backup = cinder_client.backups.import_record( resource_data['backup_service'], resource_data['backup_url']) dr_backup_id = dr_backup['id'] temp_dr_backup = cinder_client.backups.get(dr_backup_id) LOG.debug("cinder backup status %s" % temp_dr_backup.status) while temp_dr_backup.status == "creating": greenthread.sleep(1) temp_dr_backup = cinder_client.backups.get(dr_backup_id) if temp_dr_backup.status == "available": # volume_snapshot_exection.set_status(context, 'ready') success = True LOG.debug("cinder backup status %s" % temp_dr_backup) self._name = temp_dr_backup.name self._id = temp_dr_backup.volume_id # Remove this field! self._backup_id = dr_backup_id return success def _replicate_volume_to_DR(self, context, volume, container_name, action_excution): metadata = volume.metadata c_client = self.clients.cinder() LOG.debug("cloning volume %s" % (volume.id)) clone_volume = c_client.volumes.create(volume.size, source_volid=volume.id) clone_metadata = clone_volume.metadata action_excution.set_status(context, 'cloning') LOG.debug("clone_volume.id %s" % (clone_volume.id)) temp_vol = c_client.volumes.get(clone_volume.id) #LOG.debug("temp_vol.status %s" % (temp_vol.status)) backup_rec = None while (temp_vol.status == "creating"): greenthread.sleep(1) temp_vol = c_client.volumes.get(clone_volume.id) #LOG.debug("temp_vol.status %s" % (temp_vol.status)) if temp_vol.status == "available": LOG.debug("creating backup %s" % (clone_volume.id)) backup_store = c_client.backups.create(clone_volume.id, container=container_name, name=volume.name) action_excution.set_status(context, 'backup') temp_back = c_client.backups.get(backup_store.id) self._backup_id = backup_store.id #LOG.debug("temp_back.status %s" % (temp_back.status)) while temp_back.status == "creating": greenthread.sleep(1) temp_back = c_client.backups.get(backup_store.id) #LOG.debug("temp_back.status %s" % (temp_back.status)) if temp_back.status == "available": metadata['clone_backup_id'] = backup_store.id LOG.debug("exporting backup %s" % (backup_store.id)) backup_rec = c_client.backups.export_record(backup_store.id) dr_state = "Protected" # TODO(Oshrit): Cleanup after exported to Swift # cleanup of bakcup record after export finished self._cleanup(context, c_client, clone_volume.id, backup_store.id) else: dr_state = 'DR clone backup failed' else: dr_state = 'DR clone failed' action_excution.set_status(context, dr_state) LOG.debug("dr_state %s" % (dr_state)) return dr_state, backup_rec def _cleanup(self, context, client, snapshot_id, backup_id): client.volumes.delete(snapshot_id) # client.backups.delete(backup_id)
{ "content_hash": "75271a80e60d675839eaf9de1ccf98c5", "timestamp": "", "source": "github", "line_count": 142, "max_line_length": 76, "avg_line_length": 44.471830985915496, "alnum_prop": 0.5703879651623119, "repo_name": "os-cloud-storage/openstack-workload-disaster-recovery", "id": "2d586cd4c74c119ee527ab5bb6be38f8d2e247ae", "size": "6360", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "dragon/workload_policy/actions/plugins/volume_snapshot_action.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "4930" }, { "name": "Python", "bytes": "758400" }, { "name": "Shell", "bytes": "24692" } ], "symlink_target": "" }
""" Tests for pika.connection.Connection """ # Suppress pylint warnings concerning access to protected member # pylint: disable=W0212 # Suppress pylint messages concerning missing docstrings # pylint: disable=C0111 # Suppress pylint messages concerning invalid method name # pylint: disable=C0103 try: import mock except ImportError: from unittest import mock # pylint: disable=E0611 import random import platform try: import unittest2 as unittest except ImportError: import unittest import pika from pika import connection from pika import channel from pika import credentials from pika import exceptions from pika import frame from pika import spec from pika.compat import xrange def callback_method(): """Callback method to use in tests""" pass class ConnectionTests(unittest.TestCase): # pylint: disable=R0904 def setUp(self): class ChannelTemplate(channel.Channel): channel_number = None with mock.patch('pika.connection.Connection.connect'): self.connection = connection.Connection() self.connection._set_connection_state( connection.Connection.CONNECTION_OPEN) self.channel = mock.Mock(spec=ChannelTemplate) self.channel.channel_number = 1 self.channel.is_open = True self.channel.is_closing = False self.channel.is_closed = False self.connection._channels[self.channel.channel_number] = self.channel def tearDown(self): del self.connection del self.channel @mock.patch('pika.connection.Connection._on_close_ready') def test_close_calls_on_close_ready_when_no_channels( self, on_close_ready_mock): self.connection._channels = dict() self.connection.close() self.assertTrue(on_close_ready_mock.called, 'on_close_ready_mock should have been called') @mock.patch('pika.connection.Connection._on_close_ready') def test_close_closes_open_channels(self, on_close_ready): self.connection.close() self.channel.close.assert_called_once_with(200, 'Normal shutdown') self.assertFalse(on_close_ready.called) @mock.patch('pika.connection.Connection._on_close_ready') def test_close_closes_opening_channels(self, on_close_ready): self.channel.is_open = False self.channel.is_closing = False self.channel.is_closed = False self.connection.close() self.channel.close.assert_called_once_with(200, 'Normal shutdown') self.assertFalse(on_close_ready.called) @mock.patch('pika.connection.Connection._on_close_ready') def test_close_does_not_close_closing_channels(self, on_close_ready): self.channel.is_open = False self.channel.is_closing = True self.channel.is_closed = False self.connection.close() self.assertFalse(self.channel.close.called) self.assertFalse(on_close_ready.called) @mock.patch('pika.connection.Connection._close_channels') def test_close_bails_out_if_already_closed_or_closing( self, close_channels): for closed_state in (self.connection.CONNECTION_CLOSED, self.connection.CONNECTION_CLOSING): self.connection.connection_state = closed_state self.connection.close() self.assertFalse(self.channel.close.called) self.assertEqual(self.connection.connection_state, closed_state) @mock.patch('logging.Logger.critical') def test_deliver_frame_to_channel_with_frame_for_unknown_channel( self, critical_mock): unknown_channel_num = 99 self.assertNotIn(unknown_channel_num, self.connection._channels) unexpected_frame = frame.Method(unknown_channel_num, mock.Mock()) self.connection._deliver_frame_to_channel(unexpected_frame) critical_mock.assert_called_once_with( 'Received %s frame for unregistered channel %i on %s', unexpected_frame.NAME, unknown_channel_num, self.connection) @mock.patch('pika.connection.Connection._on_close_ready') def test_on_channel_cleanup_with_closing_channels(self, on_close_ready): """if connection is closing but closing channels remain, do not call \ _on_close_ready """ self.channel.is_open = False self.channel.is_closing = True self.channel.is_closed = False self.connection.close() self.assertFalse(on_close_ready.called, '_on_close_ready should not have been called') @mock.patch('pika.connection.Connection._on_close_ready') def test_on_channel_cleanup_closing_state_last_channel_calls_on_close_ready( self, on_close_ready_mock): self.connection.connection_state = self.connection.CONNECTION_CLOSING self.connection._on_channel_cleanup(self.channel) self.assertTrue(on_close_ready_mock.called, '_on_close_ready should have been called') @mock.patch('pika.connection.Connection._on_close_ready') def test_on_channel_cleanup_closing_state_more_channels_no_on_close_ready( self, on_close_ready_mock): self.connection.connection_state = self.connection.CONNECTION_CLOSING channel_mock = mock.Mock(channel_number=99, is_closing=True) self.connection._channels[99] = channel_mock self.connection._on_channel_cleanup(self.channel) self.assertFalse(on_close_ready_mock.called, '_on_close_ready should not have been called') @mock.patch('pika.connection.Connection._on_close_ready') def test_on_channel_cleanup_non_closing_state(self, on_close_ready): """if connection isn't closing _on_close_ready should not be called""" self.connection._on_channel_cleanup(mock.Mock()) self.assertFalse(on_close_ready.called, '_on_close_ready should not have been called') def test_on_terminate_cleans_up(self): """_on_terminate cleans up heartbeat, adapter, and channels""" heartbeat = mock.Mock() self.connection.heartbeat = heartbeat self.connection._adapter_disconnect = mock.Mock() self.connection._on_terminate(-1, 'Undefined') heartbeat.stop.assert_called_once_with() self.connection._adapter_disconnect.assert_called_once_with() self.channel._on_close_meta.assert_called_once_with(-1, 'Undefined') self.assertTrue(self.connection.is_closed) def test_on_terminate_invokes_connection_closed_callback(self): """_on_terminate invokes `Connection.ON_CONNECTION_CLOSED` callbacks""" self.connection.callbacks.process = mock.Mock( wraps=self.connection.callbacks.process) self.connection._adapter_disconnect = mock.Mock() self.connection._on_terminate(1, 'error text') self.connection.callbacks.process.assert_called_once_with( 0, self.connection.ON_CONNECTION_CLOSED, self.connection, self.connection, 1, 'error text') with self.assertRaises(AssertionError): self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_ERROR, self.connection, self.connection, mock.ANY) def test_on_terminate_invokes_protocol_on_connection_error_and_closed(self): """_on_terminate invokes `ON_CONNECTION_ERROR` with \ `IncompatibleProtocolError` and `ON_CONNECTION_CLOSED` callbacks""" with mock.patch.object(self.connection.callbacks, 'process'): self.connection._adapter_disconnect = mock.Mock() self.connection._set_connection_state( self.connection.CONNECTION_PROTOCOL) self.connection._on_terminate(1, 'error text') self.assertEqual(self.connection.callbacks.process.call_count, 2) self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_ERROR, self.connection, self.connection, mock.ANY) conn_exc = self.connection.callbacks.process.call_args_list[0][0][4] self.assertIs(type(conn_exc), exceptions.IncompatibleProtocolError) self.assertSequenceEqual(conn_exc.args, [1, 'error text']) self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_CLOSED, self.connection, self.connection, 1, 'error text') def test_on_terminate_invokes_auth_on_connection_error_and_closed(self): """_on_terminate invokes `ON_CONNECTION_ERROR` with \ `ProbableAuthenticationError` and `ON_CONNECTION_CLOSED` callbacks""" with mock.patch.object(self.connection.callbacks, 'process'): self.connection._adapter_disconnect = mock.Mock() self.connection._set_connection_state( self.connection.CONNECTION_START) self.connection._on_terminate(1, 'error text') self.assertEqual(self.connection.callbacks.process.call_count, 2) self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_ERROR, self.connection, self.connection, mock.ANY) conn_exc = self.connection.callbacks.process.call_args_list[0][0][4] self.assertIs(type(conn_exc), exceptions.ProbableAuthenticationError) self.assertSequenceEqual(conn_exc.args, [1, 'error text']) self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_CLOSED, self.connection, self.connection, 1, 'error text') def test_on_terminate_invokes_access_denied_on_connection_error_and_closed( self): """_on_terminate invokes `ON_CONNECTION_ERROR` with \ `ProbableAccessDeniedError` and `ON_CONNECTION_CLOSED` callbacks""" with mock.patch.object(self.connection.callbacks, 'process'): self.connection._adapter_disconnect = mock.Mock() self.connection._set_connection_state( self.connection.CONNECTION_TUNE) self.connection._on_terminate(1, 'error text') self.assertEqual(self.connection.callbacks.process.call_count, 2) self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_ERROR, self.connection, self.connection, mock.ANY) conn_exc = self.connection.callbacks.process.call_args_list[0][0][4] self.assertIs(type(conn_exc), exceptions.ProbableAccessDeniedError) self.assertSequenceEqual(conn_exc.args, [1, 'error text']) self.connection.callbacks.process.assert_any_call( 0, self.connection.ON_CONNECTION_CLOSED, self.connection, self.connection, 1, 'error text') @mock.patch('pika.connection.Connection.connect') def test_new_conn_should_use_first_channel(self, connect): """_next_channel_number in new conn should always be 1""" conn = connection.Connection() self.assertEqual(1, conn._next_channel_number()) def test_next_channel_number_returns_lowest_unused(self): """_next_channel_number must return lowest available channel number""" for channel_num in xrange(1, 50): self.connection._channels[channel_num] = True expectation = random.randint(5, 49) del self.connection._channels[expectation] self.assertEqual(self.connection._next_channel_number(), expectation) def test_add_callbacks(self): """make sure the callback adding works""" self.connection.callbacks = mock.Mock(spec=self.connection.callbacks) for test_method, expected_key in ( (self.connection.add_backpressure_callback, self.connection.ON_CONNECTION_BACKPRESSURE), (self.connection.add_on_open_callback, self.connection.ON_CONNECTION_OPEN), (self.connection.add_on_close_callback, self.connection.ON_CONNECTION_CLOSED)): self.connection.callbacks.reset_mock() test_method(callback_method) self.connection.callbacks.add.assert_called_once_with( 0, expected_key, callback_method, False) def test_add_on_close_callback(self): """make sure the add on close callback is added""" self.connection.callbacks = mock.Mock(spec=self.connection.callbacks) self.connection.add_on_open_callback(callback_method) self.connection.callbacks.add.assert_called_once_with( 0, self.connection.ON_CONNECTION_OPEN, callback_method, False) def test_add_on_open_error_callback(self): """make sure the add on open error callback is added""" self.connection.callbacks = mock.Mock(spec=self.connection.callbacks) #Test with remove default first (also checks default is True) self.connection.add_on_open_error_callback(callback_method) self.connection.callbacks.remove.assert_called_once_with( 0, self.connection.ON_CONNECTION_ERROR, self.connection._on_connection_error) self.connection.callbacks.add.assert_called_once_with( 0, self.connection.ON_CONNECTION_ERROR, callback_method, False) def test_channel(self): """test the channel method""" self.connection._next_channel_number = mock.Mock(return_value=42) test_channel = mock.Mock(spec=channel.Channel) self.connection._create_channel = mock.Mock(return_value=test_channel) self.connection._add_channel_callbacks = mock.Mock() ret_channel = self.connection.channel(callback_method) self.assertEqual(test_channel, ret_channel) self.connection._create_channel.assert_called_once_with(42, callback_method) self.connection._add_channel_callbacks.assert_called_once_with(42) test_channel.open.assert_called_once_with() def test_channel_on_closed_connection_raises_connection_closed(self): self.connection.connection_state = self.connection.CONNECTION_CLOSED with self.assertRaises(exceptions.ConnectionClosed): self.connection.channel(lambda *args: None) def test_channel_on_closing_connection_raises_connection_closed(self): self.connection.connection_state = self.connection.CONNECTION_CLOSING with self.assertRaises(exceptions.ConnectionClosed): self.connection.channel(lambda *args: None) def test_channel_on_init_connection_raises_connection_closed(self): self.connection.connection_state = self.connection.CONNECTION_INIT with self.assertRaises(exceptions.ConnectionClosed): self.connection.channel(lambda *args: None) def test_channel_on_start_connection_raises_connection_closed(self): self.connection.connection_state = self.connection.CONNECTION_START with self.assertRaises(exceptions.ConnectionClosed): self.connection.channel(lambda *args: None) def test_channel_on_protocol_connection_raises_connection_closed(self): self.connection.connection_state = self.connection.CONNECTION_PROTOCOL with self.assertRaises(exceptions.ConnectionClosed): self.connection.channel(lambda *args: None) def test_channel_on_tune_connection_raises_connection_closed(self): self.connection.connection_state = self.connection.CONNECTION_TUNE with self.assertRaises(exceptions.ConnectionClosed): self.connection.channel(lambda *args: None) @mock.patch('pika.frame.ProtocolHeader') def test_connect(self, frame_protocol_header): """make sure the connect method sets the state and sends a frame""" self.connection._adapter_connect = mock.Mock(return_value=None) self.connection._send_frame = mock.Mock() frame_protocol_header.spec = frame.ProtocolHeader frame_protocol_header.return_value = 'frame object' self.connection.connect() self.assertEqual(self.connection.CONNECTION_PROTOCOL, self.connection.connection_state) self.connection._send_frame.assert_called_once_with('frame object') def test_connect_reconnect(self): """try the different reconnect logic, check state & other class vars""" self.connection._adapter_connect = mock.Mock(return_value='error') self.connection.callbacks = mock.Mock(spec=self.connection.callbacks) self.connection.remaining_connection_attempts = 2 self.connection.params.retry_delay = 555 self.connection.params.connection_attempts = 99 self.connection.add_timeout = mock.Mock() #first failure self.connection.connect() self.connection.add_timeout.assert_called_once_with( 555, self.connection.connect) self.assertEqual(1, self.connection.remaining_connection_attempts) self.assertFalse(self.connection.callbacks.process.called) self.assertEqual(self.connection.CONNECTION_INIT, self.connection.connection_state) #fail with no attempts remaining self.connection.add_timeout.reset_mock() self.connection.connect() self.assertFalse(self.connection.add_timeout.called) self.assertEqual(99, self.connection.remaining_connection_attempts) self.connection.callbacks.process.assert_called_once_with( 0, self.connection.ON_CONNECTION_ERROR, self.connection, self.connection, 'error') self.assertEqual(self.connection.CONNECTION_CLOSED, self.connection.connection_state) def test_client_properties(self): """make sure client properties has some important keys""" client_props = self.connection._client_properties self.assertTrue(isinstance(client_props, dict)) for required_key in ('product', 'platform', 'capabilities', 'information', 'version'): self.assertTrue(required_key in client_props, '%s missing' % required_key) def test_client_properties_default(self): expectation = { 'product': connection.PRODUCT, 'platform': 'Python %s' % platform.python_version(), 'capabilities': { 'authentication_failure_close': True, 'basic.nack': True, 'connection.blocked': True, 'consumer_cancel_notify': True, 'publisher_confirms': True }, 'information': 'See http://pika.rtfd.org', 'version': pika.__version__ } self.assertDictEqual(self.connection._client_properties, expectation) def test_client_properties_override(self): expectation = { 'capabilities': { 'authentication_failure_close': True, 'basic.nack': True, 'connection.blocked': True, 'consumer_cancel_notify': True, 'publisher_confirms': True } } override = {'product': 'My Product', 'platform': 'Your platform', 'version': '0.1', 'information': 'this is my app'} expectation.update(override) params = connection.ConnectionParameters(client_properties=override) with mock.patch('pika.connection.Connection.connect'): conn = connection.Connection(params) self.assertDictEqual(conn._client_properties, expectation) def test_set_backpressure_multiplier(self): """test setting the backpressure multiplier""" self.connection._backpressure_multiplier = None self.connection.set_backpressure_multiplier(value=5) self.assertEqual(5, self.connection._backpressure_multiplier) def test_close_channels(self): """test closing all channels""" self.connection.connection_state = self.connection.CONNECTION_OPEN self.connection.callbacks = mock.Mock(spec=self.connection.callbacks) opening_channel = mock.Mock(is_open=False, is_closed=False, is_closing=False) open_channel = mock.Mock(is_open=True, is_closed=False, is_closing=False) closing_channel = mock.Mock(is_open=False, is_closed=False, is_closing=True) self.connection._channels = { 'openingc': opening_channel, 'openc': open_channel, 'closingc': closing_channel} self.connection._close_channels(400, 'reply text') opening_channel.close.assert_called_once_with(400, 'reply text') open_channel.close.assert_called_once_with(400, 'reply text') self.assertFalse(closing_channel.close.called) self.assertTrue('openingc' in self.connection._channels) self.assertTrue('openc' in self.connection._channels) self.assertTrue('closingc' in self.connection._channels) self.assertFalse(self.connection.callbacks.cleanup.called) # Test on closed connection self.connection.connection_state = self.connection.CONNECTION_CLOSED with self.assertRaises(AssertionError): self.connection._close_channels(200, 'reply text') def test_on_connection_start(self): """make sure starting a connection sets the correct class vars""" method_frame = mock.Mock() method_frame.method = mock.Mock() method_frame.method.mechanisms = str(credentials.PlainCredentials.TYPE) method_frame.method.version_major = 0 method_frame.method.version_minor = 9 #This may be incorrectly mocked, or the code is wrong #TODO: Code does hasattr check, should this be a has_key/in check? method_frame.method.server_properties = { 'capabilities': { 'basic.nack': True, 'consumer_cancel_notify': False, 'exchange_exchange_bindings': False } } #This will be called, but shoudl not be implmented here, just mock it self.connection._flush_outbound = mock.Mock() self.connection._on_connection_start(method_frame) self.assertEqual(True, self.connection.basic_nack) self.assertEqual(False, self.connection.consumer_cancel_notify) self.assertEqual(False, self.connection.exchange_exchange_bindings) self.assertEqual(False, self.connection.publisher_confirms) @mock.patch('pika.heartbeat.HeartbeatChecker') @mock.patch('pika.frame.Method') def test_on_connection_tune(self, method, heartbeat_checker): """make sure on connection tune turns the connection params""" heartbeat_checker.return_value = 'hearbeat obj' self.connection._flush_outbound = mock.Mock() marshal = mock.Mock(return_value='ab') method.return_value = mock.Mock(marshal=marshal) #may be good to test this here, but i don't want to test too much self.connection._rpc = mock.Mock() method_frame = mock.Mock() method_frame.method = mock.Mock() method_frame.method.channel_max = 40 method_frame.method.frame_max = 10000 method_frame.method.heartbeat = 10 self.connection.params.channel_max = 20 self.connection.params.frame_max = 20000 self.connection.params.heartbeat = 20 #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(self.connection.CONNECTION_TUNE, self.connection.connection_state) self.assertEqual(20, self.connection.params.channel_max) self.assertEqual(10000, self.connection.params.frame_max) self.assertEqual(20, self.connection.params.heartbeat) self.assertEqual(9992, self.connection._body_max_length) heartbeat_checker.assert_called_once_with(self.connection, 20) self.assertEqual(['ab'], list(self.connection.outbound_buffer)) self.assertEqual('hearbeat obj', self.connection.heartbeat) # Repeat with smaller user heartbeat than broker method_frame.method.heartbeat = 60 self.connection.params.heartbeat = 20 #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(60, self.connection.params.heartbeat) # Repeat with user deferring to server's heartbeat timeout method_frame.method.heartbeat = 500 self.connection.params.heartbeat = None #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(500, self.connection.params.heartbeat) # Repeat with user deferring to server's disabled heartbeat value method_frame.method.heartbeat = 0 self.connection.params.heartbeat = None #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(0, self.connection.params.heartbeat) # Repeat with user-disabled heartbeat method_frame.method.heartbeat = 60 self.connection.params.heartbeat = 0 #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(0, self.connection.params.heartbeat) # Repeat with server-disabled heartbeat method_frame.method.heartbeat = 0 self.connection.params.heartbeat = 60 #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(0, self.connection.params.heartbeat) # Repeat with both user/server disabled heartbeats method_frame.method.heartbeat = 0 self.connection.params.heartbeat = 0 #Test self.connection._on_connection_tune(method_frame) #verfy self.assertEqual(0, self.connection.params.heartbeat) def test_on_connection_closed(self): """make sure connection close sends correct frames""" method_frame = mock.Mock() method_frame.method = mock.Mock(spec=spec.Connection.Close) method_frame.method.reply_code = 1 method_frame.method.reply_text = 'hello' self.connection._on_terminate = mock.Mock() self.connection._on_connection_close(method_frame) #Check self.connection._on_terminate.assert_called_once_with(1, 'hello') def test_on_connection_close_ok(self): """make sure _on_connection_close_ok terminates connection""" method_frame = mock.Mock() method_frame.method = mock.Mock(spec=spec.Connection.CloseOk) self.connection.closing = (1, 'bye') self.connection._on_terminate = mock.Mock() self.connection._on_connection_close_ok(method_frame) #Check self.connection._on_terminate.assert_called_once_with(1, 'bye') @mock.patch('pika.frame.decode_frame') def test_on_data_available(self, decode_frame): """test on data available and process frame""" data_in = ['data'] self.connection._frame_buffer = ['old_data'] for frame_type in (frame.Method, spec.Basic.Deliver, frame.Heartbeat): frame_value = mock.Mock(spec=frame_type) frame_value.frame_type = 2 frame_value.method = 2 frame_value.channel_number = 1 self.connection.bytes_received = 0 self.connection.heartbeat = mock.Mock() self.connection.frames_received = 0 decode_frame.return_value = (2, frame_value) self.connection._on_data_available(data_in) #test value self.assertListEqual([], self.connection._frame_buffer) self.assertEqual(2, self.connection.bytes_received) self.assertEqual(1, self.connection.frames_received) if frame_type == frame.Heartbeat: self.assertTrue(self.connection.heartbeat.received.called) @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) @mock.patch.object(connection.Connection, 'add_on_connection_blocked_callback') @mock.patch.object(connection.Connection, 'add_on_connection_unblocked_callback') def test_create_with_blocked_connection_timeout_config( self, add_on_unblocked_callback_mock, add_on_blocked_callback_mock, connect_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) # Check conn.add_on_connection_blocked_callback.assert_called_once_with( conn._on_connection_blocked) conn.add_on_connection_unblocked_callback.assert_called_once_with( conn._on_connection_unblocked) @mock.patch.object(connection.Connection, 'add_timeout') @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) def test_connection_blocked_sets_timer( self, connect_mock, add_timeout_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) # Check conn.add_timeout.assert_called_once_with( 60, conn._on_blocked_connection_timeout) self.assertIsNotNone(conn._blocked_conn_timer) @mock.patch.object(connection.Connection, 'add_timeout') @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) def test_multi_connection_blocked_in_a_row_sets_timer_once( self, connect_mock, add_timeout_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) # Simulate Connection.Blocked trigger conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) # Check conn.add_timeout.assert_called_once_with( 60, conn._on_blocked_connection_timeout) self.assertIsNotNone(conn._blocked_conn_timer) timer = conn._blocked_conn_timer # Simulate Connection.Blocked trigger again conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) self.assertEqual(conn.add_timeout.call_count, 1) self.assertIs(conn._blocked_conn_timer, timer) @mock.patch.object(connection.Connection, '_on_terminate') @mock.patch.object(connection.Connection, 'add_timeout', spec_set=connection.Connection.add_timeout) @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) def test_blocked_connection_timeout_teminates_connection( self, connect_mock, add_timeout_mock, on_terminate_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) conn._on_blocked_connection_timeout() # Check conn._on_terminate.assert_called_once_with( connection.InternalCloseReasons.BLOCKED_CONNECTION_TIMEOUT, 'Blocked connection timeout expired') self.assertIsNone(conn._blocked_conn_timer) @mock.patch.object(connection.Connection, 'remove_timeout') @mock.patch.object(connection.Connection, 'add_timeout', spec_set=connection.Connection.add_timeout) @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) def test_connection_unblocked_removes_timer( self, connect_mock, add_timeout_mock, remove_timeout_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) self.assertIsNotNone(conn._blocked_conn_timer) timer = conn._blocked_conn_timer conn._on_connection_unblocked( mock.Mock(name='frame.Method(Connection.Unblocked)')) # Check conn.remove_timeout.assert_called_once_with(timer) self.assertIsNone(conn._blocked_conn_timer) @mock.patch.object(connection.Connection, 'remove_timeout') @mock.patch.object(connection.Connection, 'add_timeout', spec_set=connection.Connection.add_timeout) @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) def test_multi_connection_unblocked_in_a_row_removes_timer_once( self, connect_mock, add_timeout_mock, remove_timeout_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) # Simulate Connection.Blocked conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) self.assertIsNotNone(conn._blocked_conn_timer) timer = conn._blocked_conn_timer # Simulate Connection.Unblocked conn._on_connection_unblocked( mock.Mock(name='frame.Method(Connection.Unblocked)')) # Check conn.remove_timeout.assert_called_once_with(timer) self.assertIsNone(conn._blocked_conn_timer) # Simulate Connection.Unblocked again conn._on_connection_unblocked( mock.Mock(name='frame.Method(Connection.Unblocked)')) self.assertEqual(conn.remove_timeout.call_count, 1) self.assertIsNone(conn._blocked_conn_timer) @mock.patch.object(connection.Connection, 'remove_timeout') @mock.patch.object(connection.Connection, 'add_timeout', spec_set=connection.Connection.add_timeout) @mock.patch.object(connection.Connection, 'connect', spec_set=connection.Connection.connect) @mock.patch.object(connection.Connection, '_adapter_disconnect', spec_set=connection.Connection._adapter_disconnect) def test_on_terminate_removes_timer( self, adapter_disconnect_mock, connect_mock, add_timeout_mock, remove_timeout_mock): conn = connection.Connection( parameters=connection.ConnectionParameters( blocked_connection_timeout=60)) conn._on_connection_blocked( mock.Mock(name='frame.Method(Connection.Blocked)')) self.assertIsNotNone(conn._blocked_conn_timer) timer = conn._blocked_conn_timer conn._on_terminate(0, 'test_on_terminate_removes_timer') # Check conn.remove_timeout.assert_called_once_with(timer) self.assertIsNone(conn._blocked_conn_timer)
{ "content_hash": "5938bb725f3acbceec24a8c700577199", "timestamp": "", "source": "github", "line_count": 859, "max_line_length": 80, "avg_line_length": 41.80209545983702, "alnum_prop": 0.6443132449593405, "repo_name": "Zephor5/pika", "id": "0ffe78e667ce077c04a44d1de8f0d169cec71070", "size": "35908", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/unit/connection_tests.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "842521" } ], "symlink_target": "" }
from django.db import models # If ticket #1578 ever slips back in, these models will not be able to be # created (the field names being lower-cased versions of their opposite # classes is important here). class First(models.Model): second = models.IntegerField() class Second(models.Model): first = models.ForeignKey(First, related_name = 'the_first') # Protect against repetition of #1839, #2415 and #2536. class Third(models.Model): name = models.CharField(maxlength=20) third = models.ForeignKey('self', null=True, related_name='child_set') class Parent(models.Model): name = models.CharField(maxlength=20) bestchild = models.ForeignKey('Child', null=True, related_name='favored_by') class Child(models.Model): name = models.CharField(maxlength=20) parent = models.ForeignKey(Parent) __test__ = {'API_TESTS':""" >>> Third.AddManipulator().save(dict(id='3', name='An example', another=None)) <Third: Third object> >>> parent = Parent(name = 'fred') >>> parent.save() >>> Child.AddManipulator().save(dict(name='bam-bam', parent=parent.id)) <Child: Child object> """}
{ "content_hash": "c15ca447b3db5c2c831ff80365ac01af", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 80, "avg_line_length": 32.61764705882353, "alnum_prop": 0.7060414788097386, "repo_name": "gabelula/b-counted", "id": "8ddec98da44b04b95f2874c43357e54a3c9f79c3", "size": "1109", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": ".google_appengine/lib/django/tests/regressiontests/many_to_one_regress/models.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "400492" }, { "name": "JavaScript", "bytes": "166344" }, { "name": "Python", "bytes": "7138909" }, { "name": "Shell", "bytes": "594" } ], "symlink_target": "" }
from __future__ import unicode_literals from rest_framework import permissions as drf_permissions from api.base.utils import get_user_auth from osf.models.action import ReviewAction from osf.models.mixins import ReviewableMixin, ReviewProviderMixin from osf.utils.workflows import DefaultTriggers from osf.utils import permissions as osf_permissions # Required permission to perform each action. `None` means no permissions required. TRIGGER_PERMISSIONS = { DefaultTriggers.SUBMIT.value: None, DefaultTriggers.ACCEPT.value: 'accept_submissions', DefaultTriggers.REJECT.value: 'reject_submissions', DefaultTriggers.EDIT_COMMENT.value: 'edit_review_comments', } class ReviewActionPermission(drf_permissions.BasePermission): def has_object_permission(self, request, view, obj): auth = get_user_auth(request) if auth.user is None: return False target = None provider = None if isinstance(obj, ReviewAction): target = obj.target provider = target.provider elif isinstance(obj, ReviewableMixin): target = obj provider = target.provider elif isinstance(obj, ReviewProviderMixin): provider = obj else: raise ValueError('Not a reviews-related model: {}'.format(obj)) serializer = view.get_serializer() if request.method in drf_permissions.SAFE_METHODS: # Moderators and node contributors can view actions is_node_contributor = target is not None and target.node.has_permission(auth.user, osf_permissions.READ) return is_node_contributor or auth.user.has_perm('view_actions', provider) else: # Moderators and node admins can trigger state changes. is_node_admin = target is not None and target.node.has_permission(auth.user, osf_permissions.ADMIN) if not (is_node_admin or auth.user.has_perm('view_submissions', provider)): return False # User can trigger state changes on this reviewable, but can they use this trigger in particular? serializer = view.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) trigger = serializer.validated_data.get('trigger') permission = TRIGGER_PERMISSIONS[trigger] return permission is None or request.user.has_perm(permission, target.provider)
{ "content_hash": "7cafa46c7df0b65907c38963a24a7ab1", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 116, "avg_line_length": 43.80357142857143, "alnum_prop": 0.6865063187933144, "repo_name": "chennan47/osf.io", "id": "0986b25f122d3a76f2d85fe6ad4c9d080423d2d5", "size": "2477", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "api/actions/permissions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "110839" }, { "name": "HTML", "bytes": "236223" }, { "name": "JavaScript", "bytes": "1830647" }, { "name": "Mako", "bytes": "665098" }, { "name": "Python", "bytes": "7650137" }, { "name": "VCL", "bytes": "13885" } ], "symlink_target": "" }
from setuptools import find_packages, setup version = '0.2.1' setup( name='streamcat', packages=find_packages(exclude=('tests', 'docs')), version=version, description='Encode and decode concatenated objects as streams', long_description=open('README.rst', 'r').read(), author='Bertrand Bonnefoy-Claudet', author_email='[email protected]', url='https://github.com/cryptosense/streamcat', download_url='https://github.com/cryptosense/streamcat/tarball/v{}'.format(version), keywords=['stream', 'file', 'json'], license='BSD', classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], install_requires=[], )
{ "content_hash": "ea8569d34777a4220934c5482b207332", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 88, "avg_line_length": 38.36666666666667, "alnum_prop": 0.63249348392702, "repo_name": "cryptosense/streamcat", "id": "021664b3652836fb6f66b93dac9de811a8db1818", "size": "1151", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "5815" } ], "symlink_target": "" }
""" Implementation of insertion sort """ from random import randint def insert(arr, pos, value): """ inserts the value at its place in the subarray arr[0:pos-1] """ idx = pos - 1 while(idx >= 0 and arr[idx] > value): arr[idx+1] = arr[idx] idx -= 1 arr[idx + 1] = value def insertionSort(arr, left, right): """ sorts the sub-array arr[left:right] using insertion sort in ascending order """ for idx in range(left+1, right+1): insert(arr, idx, arr[idx]) def testInsertionSort(): for testCount in range(20): length = randint(0, 25) arr = [randint(-100, 100) for e in range(length)] print "Array before sorting:", arr insertionSort(arr, 0, length-1) print "Array after sorting:", arr print "-------------------------------------------------------" testInsertionSort()
{ "content_hash": "736af1d20fa1aed09c4b3988b99edaf3", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 79, "avg_line_length": 26.818181818181817, "alnum_prop": 0.56045197740113, "repo_name": "apurushottam/Algorithms", "id": "17b07a190f1e1c5ebb7c8d03412662e80cfc8c7d", "size": "885", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "2-Sorting/insertionSort.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "8399" } ], "symlink_target": "" }
""" The MIT License (MIT) Copyright (c) 2015-2019 Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import re import inspect import discord from .errors import BadArgument, NoPrivateMessage __all__ = ( 'Converter', 'MemberConverter', 'UserConverter', 'MessageConverter', 'TextChannelConverter', 'InviteConverter', 'RoleConverter', 'GameConverter', 'ColourConverter', 'VoiceChannelConverter', 'EmojiConverter', 'PartialEmojiConverter', 'CategoryChannelConverter', 'IDConverter', 'clean_content', 'Greedy', ) def _get_from_guilds(bot, getter, argument): result = None for guild in bot.guilds: result = getattr(guild, getter)(argument) if result: return result return result _utils_get = discord.utils.get class Converter: """The base class of custom converters that require the :class:`.Context` to be passed to be useful. This allows you to implement converters that function similar to the special cased ``discord`` classes. Classes that derive from this should override the :meth:`~.Converter.convert` method to do its conversion logic. This method must be a :ref:`coroutine <coroutine>`. """ async def convert(self, ctx, argument): """|coro| The method to override to do conversion logic. If an error is found while converting, it is recommended to raise a :exc:`.CommandError` derived exception as it will properly propagate to the error handlers. Parameters ----------- ctx: :class:`.Context` The invocation context that the argument is being used in. argument: :class:`str` The argument that is being converted. """ raise NotImplementedError('Derived classes need to implement this.') class IDConverter(Converter): def __init__(self): self._id_regex = re.compile(r'([0-9]{15,21})$') super().__init__() def _get_id_match(self, argument): return self._id_regex.match(argument) class MemberConverter(IDConverter): """Converts to a :class:`~discord.Member`. All lookups are via the local guild. If in a DM context, then the lookup is done by the global cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by mention. 3. Lookup by name#discrim 4. Lookup by name 5. Lookup by nickname """ async def convert(self, ctx, argument): bot = ctx.bot match = self._get_id_match(argument) or re.match(r'<@!?([0-9]+)>$', argument) guild = ctx.guild result = None if match is None: # not a mention... if guild: result = guild.get_member_named(argument) else: result = _get_from_guilds(bot, 'get_member_named', argument) else: user_id = int(match.group(1)) if guild: result = guild.get_member(user_id) or _utils_get(ctx.message.mentions, id=user_id) else: result = _get_from_guilds(bot, 'get_member', user_id) if result is None: raise BadArgument('Member "{}" not found'.format(argument)) return result class UserConverter(IDConverter): """Converts to a :class:`~discord.User`. All lookups are via the global user cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by mention. 3. Lookup by name#discrim 4. Lookup by name """ async def convert(self, ctx, argument): match = self._get_id_match(argument) or re.match(r'<@!?([0-9]+)>$', argument) result = None state = ctx._state if match is not None: user_id = int(match.group(1)) result = ctx.bot.get_user(user_id) or _utils_get(ctx.message.mentions, id=user_id) else: arg = argument # check for discriminator if it exists if len(arg) > 5 and arg[-5] == '#': discrim = arg[-4:] name = arg[:-5] predicate = lambda u: u.name == name and u.discriminator == discrim result = discord.utils.find(predicate, state._users.values()) if result is not None: return result predicate = lambda u: u.name == arg result = discord.utils.find(predicate, state._users.values()) if result is None: raise BadArgument('User "{}" not found'.format(argument)) return result class MessageConverter(Converter): """Converts to a :class:`discord.Message`. .. versionadded:: 1.1.0 The lookup strategy is as follows (in order): 1. Lookup by "{channel ID}-{message ID}" (retrieved by shift-clicking on "Copy ID") 2. Lookup by message ID (the message **must** be in the context channel) 3. Lookup by message URL """ async def convert(self, ctx, argument): id_regex = re.compile(r'^(?:(?P<channel_id>[0-9]{15,21})-)?(?P<message_id>[0-9]{15,21})$') link_regex = re.compile( r'^https?://(?:(ptb|canary)\.)?discordapp\.com/channels/' r'(?:([0-9]{15,21})|(@me))' r'/(?P<channel_id>[0-9]{15,21})/(?P<message_id>[0-9]{15,21})/?$' ) match = id_regex.match(argument) or link_regex.match(argument) if not match: raise BadArgument('Message "{msg}" not found.'.format(msg=argument)) message_id = int(match.group("message_id")) channel_id = match.group("channel_id") message = ctx.bot._connection._get_message(message_id) if message: return message channel = ctx.bot.get_channel(int(channel_id)) if channel_id else ctx.channel if not channel: raise BadArgument('Channel "{channel}" not found.'.format(channel=channel_id)) try: return await channel.fetch_message(message_id) except discord.NotFound: raise BadArgument('Message "{msg}" not found.'.format(msg=argument)) except discord.Forbidden: raise BadArgument("Can't read messages in {channel}".format(channel=channel.mention)) class TextChannelConverter(IDConverter): """Converts to a :class:`~discord.TextChannel`. All lookups are via the local guild. If in a DM context, then the lookup is done by the global cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by mention. 3. Lookup by name """ async def convert(self, ctx, argument): bot = ctx.bot match = self._get_id_match(argument) or re.match(r'<#([0-9]+)>$', argument) result = None guild = ctx.guild if match is None: # not a mention if guild: result = discord.utils.get(guild.text_channels, name=argument) else: def check(c): return isinstance(c, discord.TextChannel) and c.name == argument result = discord.utils.find(check, bot.get_all_channels()) else: channel_id = int(match.group(1)) if guild: result = guild.get_channel(channel_id) else: result = _get_from_guilds(bot, 'get_channel', channel_id) if not isinstance(result, discord.TextChannel): raise BadArgument('Channel "{}" not found.'.format(argument)) return result class VoiceChannelConverter(IDConverter): """Converts to a :class:`~discord.VoiceChannel`. All lookups are via the local guild. If in a DM context, then the lookup is done by the global cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by mention. 3. Lookup by name """ async def convert(self, ctx, argument): bot = ctx.bot match = self._get_id_match(argument) or re.match(r'<#([0-9]+)>$', argument) result = None guild = ctx.guild if match is None: # not a mention if guild: result = discord.utils.get(guild.voice_channels, name=argument) else: def check(c): return isinstance(c, discord.VoiceChannel) and c.name == argument result = discord.utils.find(check, bot.get_all_channels()) else: channel_id = int(match.group(1)) if guild: result = guild.get_channel(channel_id) else: result = _get_from_guilds(bot, 'get_channel', channel_id) if not isinstance(result, discord.VoiceChannel): raise BadArgument('Channel "{}" not found.'.format(argument)) return result class CategoryChannelConverter(IDConverter): """Converts to a :class:`~discord.CategoryChannel`. All lookups are via the local guild. If in a DM context, then the lookup is done by the global cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by mention. 3. Lookup by name """ async def convert(self, ctx, argument): bot = ctx.bot match = self._get_id_match(argument) or re.match(r'<#([0-9]+)>$', argument) result = None guild = ctx.guild if match is None: # not a mention if guild: result = discord.utils.get(guild.categories, name=argument) else: def check(c): return isinstance(c, discord.CategoryChannel) and c.name == argument result = discord.utils.find(check, bot.get_all_channels()) else: channel_id = int(match.group(1)) if guild: result = guild.get_channel(channel_id) else: result = _get_from_guilds(bot, 'get_channel', channel_id) if not isinstance(result, discord.CategoryChannel): raise BadArgument('Channel "{}" not found.'.format(argument)) return result class ColourConverter(Converter): """Converts to a :class:`~discord.Colour`. The following formats are accepted: - ``0x<hex>`` - ``#<hex>`` - ``0x#<hex>`` - Any of the ``classmethod`` in :class:`Colour` - The ``_`` in the name can be optionally replaced with spaces. """ async def convert(self, ctx, argument): arg = argument.replace('0x', '').lower() if arg[0] == '#': arg = arg[1:] try: value = int(arg, base=16) if not (0 <= value <= 0xFFFFFF): raise BadArgument('Colour "{}" is invalid.'.format(arg)) return discord.Colour(value=value) except ValueError: arg = arg.replace(' ', '_') method = getattr(discord.Colour, arg, None) if arg.startswith('from_') or method is None or not inspect.ismethod(method): raise BadArgument('Colour "{}" is invalid.'.format(arg)) return method() class RoleConverter(IDConverter): """Converts to a :class:`~discord.Role`. All lookups are via the local guild. If in a DM context, then the lookup is done by the global cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by mention. 3. Lookup by name """ async def convert(self, ctx, argument): guild = ctx.guild if not guild: raise NoPrivateMessage() match = self._get_id_match(argument) or re.match(r'<@&([0-9]+)>$', argument) if match: result = guild.get_role(int(match.group(1))) else: result = discord.utils.get(guild._roles.values(), name=argument) if result is None: raise BadArgument('Role "{}" not found.'.format(argument)) return result class GameConverter(Converter): """Converts to :class:`~discord.Game`.""" async def convert(self, ctx, argument): return discord.Game(name=argument) class InviteConverter(Converter): """Converts to a :class:`~discord.Invite`. This is done via an HTTP request using :meth:`.Bot.fetch_invite`. """ async def convert(self, ctx, argument): try: invite = await ctx.bot.fetch_invite(argument) return invite except Exception as exc: raise BadArgument('Invite is invalid or expired') from exc class EmojiConverter(IDConverter): """Converts to a :class:`~discord.Emoji`. All lookups are done for the local guild first, if available. If that lookup fails, then it checks the client's global cache. The lookup strategy is as follows (in order): 1. Lookup by ID. 2. Lookup by extracting ID from the emoji. 3. Lookup by name """ async def convert(self, ctx, argument): match = self._get_id_match(argument) or re.match(r'<a?:[a-zA-Z0-9\_]+:([0-9]+)>$', argument) result = None bot = ctx.bot guild = ctx.guild if match is None: # Try to get the emoji by name. Try local guild first. if guild: result = discord.utils.get(guild.emojis, name=argument) if result is None: result = discord.utils.get(bot.emojis, name=argument) else: emoji_id = int(match.group(1)) # Try to look up emoji by id. if guild: result = discord.utils.get(guild.emojis, id=emoji_id) if result is None: result = discord.utils.get(bot.emojis, id=emoji_id) if result is None: raise BadArgument('Emoji "{}" not found.'.format(argument)) return result class PartialEmojiConverter(Converter): """Converts to a :class:`~discord.PartialEmoji`. This is done by extracting the animated flag, name and ID from the emoji. """ async def convert(self, ctx, argument): match = re.match(r'<(a?):([a-zA-Z0-9\_]+):([0-9]+)>$', argument) if match: emoji_animated = bool(match.group(1)) emoji_name = match.group(2) emoji_id = int(match.group(3)) return discord.PartialEmoji.with_state(ctx.bot._connection, animated=emoji_animated, name=emoji_name, id=emoji_id) raise BadArgument('Couldn\'t convert "{}" to PartialEmoji.'.format(argument)) class clean_content(Converter): """Converts the argument to mention scrubbed version of said content. This behaves similarly to :attr:`~discord.Message.clean_content`. Attributes ------------ fix_channel_mentions: :class:`bool` Whether to clean channel mentions. use_nicknames: :class:`bool` Whether to use nicknames when transforming mentions. escape_markdown: :class:`bool` Whether to also escape special markdown characters. """ def __init__(self, *, fix_channel_mentions=False, use_nicknames=True, escape_markdown=False): self.fix_channel_mentions = fix_channel_mentions self.use_nicknames = use_nicknames self.escape_markdown = escape_markdown async def convert(self, ctx, argument): message = ctx.message transformations = {} if self.fix_channel_mentions and ctx.guild: def resolve_channel(id, *, _get=ctx.guild.get_channel): ch = _get(id) return ('<#%s>' % id), ('#' + ch.name if ch else '#deleted-channel') transformations.update(resolve_channel(channel) for channel in message.raw_channel_mentions) if self.use_nicknames and ctx.guild: def resolve_member(id, *, _get=ctx.guild.get_member): m = _get(id) return '@' + m.display_name if m else '@deleted-user' else: def resolve_member(id, *, _get=ctx.bot.get_user): m = _get(id) return '@' + m.name if m else '@deleted-user' transformations.update( ('<@%s>' % member_id, resolve_member(member_id)) for member_id in message.raw_mentions ) transformations.update( ('<@!%s>' % member_id, resolve_member(member_id)) for member_id in message.raw_mentions ) if ctx.guild: def resolve_role(_id, *, _find=ctx.guild.get_role): r = _find(_id) return '@' + r.name if r else '@deleted-role' transformations.update( ('<@&%s>' % role_id, resolve_role(role_id)) for role_id in message.raw_role_mentions ) def repl(obj): return transformations.get(obj.group(0), '') pattern = re.compile('|'.join(transformations.keys())) result = pattern.sub(repl, argument) if self.escape_markdown: result = discord.utils.escape_markdown(result) # Completely ensure no mentions escape: return discord.utils.escape_mentions(result) class _Greedy: __slots__ = ('converter',) def __init__(self, *, converter=None): self.converter = converter def __getitem__(self, params): if not isinstance(params, tuple): params = (params,) if len(params) != 1: raise TypeError('Greedy[...] only takes a single argument') converter = params[0] if not (callable(converter) or isinstance(converter, Converter) or hasattr(converter, '__origin__')): raise TypeError('Greedy[...] expects a type or a Converter instance.') if converter is str or converter is type(None) or converter is _Greedy: raise TypeError('Greedy[%s] is invalid.' % converter.__name__) return self.__class__(converter=converter) Greedy = _Greedy()
{ "content_hash": "751f8bf64b3a6c019b3a67992d8d7943", "timestamp": "", "source": "github", "line_count": 553, "max_line_length": 113, "avg_line_length": 34.09945750452079, "alnum_prop": 0.5960651217054674, "repo_name": "imayhaveborkedit/discord.py", "id": "ea202b656b548f841d4dd07676a3bd7c63d9e526", "size": "18882", "binary": false, "copies": "1", "ref": "refs/heads/voice-recv-mk2", "path": "discord/ext/commands/converter.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "995828" } ], "symlink_target": "" }
""" Quickly load ROOT symbols without triggering PyROOT's finalSetup(). The main principle is that appropriate dictionaries first need to be loaded. """ from __future__ import absolute_import import ROOT from .. import log; log = log[__name__] from .module_facade import Facade __all__ = [] root_module = ROOT.module._root if hasattr(root_module, 'LookupCppEntity'): # pragma: no cover lookup_func = 'LookupCppEntity' else: # pragma: no cover lookup_func = 'LookupRootEntity' # Quick's __name__ needs to be the ROOT module for this to be transparent. # The below is one way of obtaining such a function # First determine the ROOT version without triggering PyROOT's finalSetup() Quick = eval('lambda symbol: module._root.{0}(symbol)'.format(lookup_func), ROOT.__dict__) _gSystem = Quick("gSystem") Load = _gSystem.Load # It is not vital to list _all_ symbols in here, just enough that a library # will be loaded by the time it is needed. SYMBOLS = dict( Hist='TH1 TGraph TGraphAsymmErrors', Tree='TCut TTree', Gui='TPad TCanvas', Graf='TLegend TLine TEllipse', Physics='TVector2 TVector3 TLorentzVector TRotation TLorentzRotation', Matrix='TMatrixT', RooStats='RooStats RooMsgService', RooFit='RooFit RooWorkspace', ) # Mapping of symbols to libraries which need to be loaded SYMBOLS_TO_LIB = dict( (sym, lib) for lib, syms in SYMBOLS.items() for sym in syms.split()) # If you encounter problems with particular symbols, add them to this set. SLOW = set("".split()) @Facade(__name__, expose_internal=False) class QuickROOT(object): def __getattr__(self, symbol): if symbol in SLOW: # pragma: no cover log.warning( "Tried to quickly load {0} which is always slow".format(symbol)) lib = SYMBOLS_TO_LIB.get(symbol, None) if lib: # Load() doesn't cost anything if the library is already loaded libname = "lib{0}".format(lib) if libname not in _gSystem.GetLibraries(): regex = "^duplicate entry .* for level 0; ignored$" with log["/ROOT.TEnvRec.ChangeValue"].ignore(regex): if Load(libname) == 0: log.debug("Loaded {0} (required by {1})".format( libname, symbol)) elif lib == 'Gui': # Possibly no X11 forwarding log.debug("Unable to load {0} (required by {1}). " "Putting ROOT in batch mode.".format( libname, symbol)) ROOT.gROOT.SetBatch(True) else: # pragma: no cover raise RuntimeError( "Unable to load {0} (required by {1})".format( libname, symbol)) try: thing = Quick(symbol) except NameError: # pragma: no cover # NameError: global name 'module' is not defined # Python must be exiting... return None if isinstance(thing, root_module.PropertyProxy): # descriptor setattr(self.__class__, symbol, thing) return getattr(self, symbol) # normal member return thing
{ "content_hash": "f1aa4703c0ccfb363d9bc2aad633032c", "timestamp": "", "source": "github", "line_count": 89, "max_line_length": 80, "avg_line_length": 37.12359550561798, "alnum_prop": 0.5920096852300242, "repo_name": "ndawe/rootpy", "id": "5b210137a0d390f377fbbc2d135f86544ad6b5ce", "size": "3304", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "rootpy/utils/quickroot.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C++", "bytes": "109" }, { "name": "Makefile", "bytes": "2778" }, { "name": "Python", "bytes": "861240" }, { "name": "Shell", "bytes": "3089" } ], "symlink_target": "" }
import struct import logging from zorro.di import di, has_dependencies, dependency from .keyregistry import KeyRegistry from .mouseregistry import MouseRegistry from .window import Window from .xcb import Core, Rectangle, XError from .groups import GroupManager from .commands import CommandDispatcher from .classify import Classifier from .screen import ScreenManager from .event import Event from .config import Config from . import randr log = logging.getLogger(__name__) @has_dependencies class EventDispatcher(object): keys = dependency(KeyRegistry, 'key-registry') mouse = dependency(MouseRegistry, 'mouse-registry') xcore = dependency(Core, 'xcore') groupman = dependency(GroupManager, 'group-manager') screenman = dependency(ScreenManager, 'screen-manager') classifier = dependency(Classifier, 'classifier') config = dependency(Config, 'config') def __init__(self): self.windows = {} self.frames = {} self.all_windows = {} self.active_field = None self.mapping_notify = Event('mapping_notify') self.mapping_notify.listen(self._mapping_notify_delayed) def dispatch(self, ev): meth = getattr(self, 'handle_'+ev.__class__.__name__, None) if meth: meth(ev) else: log.warning("Unknown event ``%r''", ev) def register_window(self, win): self.all_windows[win.wid] = win def handle_KeyPressEvent(self, ev): if not self.keys.dispatch_event(ev): if self.active_field: self.active_field.handle_keypress(ev) def handle_KeyReleaseEvent(self, ev): pass # nothing to do at the moment def handle_ButtonPressEvent(self, ev): self.mouse.dispatch_button_press(ev) def handle_ButtonReleaseEvent(self, ev): self.mouse.dispatch_button_release(ev) def handle_MotionNotifyEvent(self, ev): self.mouse.dispatch_motion(ev) def handle_MapRequestEvent(self, ev): try: win = self.windows[ev.window] except KeyError: log.warning("Configure request for non-existent window %r", ev.window) else: win.want.visible = True if win.frame is None: frm = win.create_frame() self.frames[frm.wid] = frm self.all_windows[frm.wid] = frm win.reparent_frame() if not hasattr(win, 'group'): self.classifier.apply(win) self.groupman.add_window(win) elif win.group.visible: win.show() def handle_EnterNotifyEvent(self, ev): if self.mouse.drag: return try: win = self.frames[ev.event] except KeyError: log.warning("Enter notify for non-existent window %r", ev.event) else: if ev.mode != self.xcore.NotifyMode.Grab: if hasattr(win, 'pointer_enter'): win.pointer_enter() if self.active_field: return if(win.props.get("WM_HINTS") is None or win.props.get('WM_HINTS')[0] & 1): win.focus() def handle_LeaveNotifyEvent(self, ev): if self.mouse.drag: return try: win = self.frames[ev.event] except KeyError: log.warning("Leave notify for non-existent window %r", ev.event) else: if ev.mode != self.xcore.NotifyMode.Grab: if hasattr(win, 'pointer_leave'): win.pointer_leave() def handle_MapNotifyEvent(self, ev): try: win = self.all_windows[ev.window] except KeyError: log.warning("Map notify for non-existent window %r", ev.window) else: if hasattr(win, 'group') and win.group.visible: win.real.visible = True if win.frame: win.frame.show() def handle_UnmapNotifyEvent(self, ev): if ev.event not in self.frames: return # do not need to track unmapping of unmanaged windows try: win = self.windows[ev.window] except KeyError: log.warning("Unmap notify for non-existent window %r", ev.window) else: win.real.visible = False win.done.visible = False if win.frame: win.ewmh.hiding_window(win) win.frame.hide() # According to the docs here should be reparenting of windows # to the root window, but that doesn't work well if hasattr(win, 'group'): win.group.remove_window(win) def handle_FocusInEvent(self, ev): if(ev.event == self.xcore.root_window and ev.mode not in (self.xcore.NotifyMode.Grab, self.xcore.NotifyMode.Ungrab) and ev.detail == getattr(self.xcore.NotifyDetail, 'None')): self.xcore.raw.SetInputFocus( focus=self.xcore.root_window, revert_to=self.xcore.InputFocus.PointerRoot, time=self.xcore.last_time, ) return try: win = self.all_windows[ev.event] except KeyError: log.warning("Focus request for non-existent window %r", ev.event) else: if(ev.mode not in (self.xcore.NotifyMode.Grab, self.xcore.NotifyMode.Ungrab) and ev.detail != self.xcore.NotifyDetail.Pointer): win.focus_in() def handle_FocusOutEvent(self, ev): try: win = self.all_windows[ev.event] except KeyError: log.warning("Focus request for non-existent window %r", ev.event) else: if(ev.mode not in (self.xcore.NotifyMode.Grab, self.xcore.NotifyMode.Ungrab) and ev.detail != self.xcore.NotifyDetail.Pointer): win.focus_out() def handle_CreateNotifyEvent(self, ev): win = di(self).inject(Window.from_notify(ev)) if win.wid in self.windows: log.warning("Create notify for already existent window %r", win.wid) # TODO(tailhook) clean up old window if win.wid in self.all_windows: return win.done.size = win.want.size self.xcore.raw.ChangeWindowAttributes(window=win, params={ self.xcore.CW.EventMask: self.xcore.EventMask.PropertyChange }) self.windows[win.wid] = win self.all_windows[win.wid] = win try: for name in self.xcore.raw.ListProperties(window=win)['atoms']: win.update_property(name) except XError: log.warning("Window destroyed immediately %d", win.wid) def handle_ConfigureNotifyEvent(self, ev): pass def handle_ReparentNotifyEvent(self, ev): pass def handle_DestroyNotifyEvent(self, ev): try: win = self.all_windows.pop(ev.window) except KeyError: log.warning("Destroy notify for non-existent window %r", ev.window) else: self.windows.pop(win.wid, None) self.frames.pop(win.wid, None) if hasattr(win, 'group'): win.group.remove_window(win) win.destroyed() def handle_ConfigureRequestEvent(self, ev): try: win = self.windows[ev.window] except KeyError: log.warning("Configure request for non-existent window %r", ev.window) else: win.update_size_request(ev) def handle_PropertyNotifyEvent(self, ev): try: win = self.windows[ev.window] except KeyError: log.warning("Property notify event for non-existent window %r", ev.window) else: win.update_property(ev.atom) def handle_ExposeEvent(self, ev): try: win = self.all_windows[ev.window] except KeyError: log.warning("Expose event for non-existent window %r", ev.window) else: win.expose(Rectangle(ev.x, ev.y, ev.width, ev.height)) def handle_ClientMessageEvent(self, ev): type = self.xcore.atom[ev.type] # import struct # print("ClientMessage", ev, repr(type), struct.unpack('<5L', ev.data)) win = self.all_windows[ev.window] if hasattr(win, 'client_message'): win.client_message(ev) else: log.warning("Unhandled client message %r %r %r", ev, type, struct.unpack('<5L', ev.data)) def handle_ScreenChangeNotifyEvent(self, ev): # We only poll for events and use Xinerama for screen querying # because some drivers (nvidia) doesn't provide xrandr data # correctly if self.config['auto-screen-configuration']: if randr.check_screens(self.xcore): randr.configure_outputs(self.xcore, self.config['screen-dpi']/25.4) info = self.xcore.xinerama.QueryScreens()['screen_info'] self.screenman.update(list( Rectangle(scr['x_org'], scr['y_org'], scr['width'], scr['height']) for scr in info)) self.groupman.check_screens() def handle_NotifyEvent(self, ev): # Xrandr events are reported here log.warning("Notify event %r", ev) def handle_MappingNotifyEvent(self, ev): self.mapping_notify.emit() def _mapping_notify_delayed(self): self.keys.reconfigure_keys()
{ "content_hash": "fc7e46c65297eca1e19990456ec40a1f", "timestamp": "", "source": "github", "line_count": 280, "max_line_length": 79, "avg_line_length": 35.025, "alnum_prop": 0.5683695319669624, "repo_name": "tailhook/tilenol", "id": "745e5015909aed2aad2f34dec4b98553b5346775", "size": "9807", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tilenol/events.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "228140" }, { "name": "Shell", "bytes": "285" } ], "symlink_target": "" }
"""VCD Variable.""" from hdltools.vcd import VCDObject, VCDScope class VCDVariable(VCDObject): """Variable declaration.""" def __init__( self, *identifiers, var_type="wire", size=1, name=None, scope=None ): """Initialize.""" super().__init__() self._vartype = var_type self._size = size self._identifiers = identifiers self._name = name self._scope = scope self._aliases = [] self._value = None self._last_changed = 0 @property def var_type(self): """Get variable type.""" return self._vartype @property def size(self): """Get variable size.""" return self._size def __len__(self): """Get variable size.""" return self.size @property def varid(self): """Get variable identifier.""" return self._identifiers @property def name(self): """Get variable name.""" return self._name @property def aliases(self): """Get aliases.""" return self._aliases @property def scope(self): """Get scope.""" return self._scope # FIXME: "identifiers" does not make sense, why would it be a list? @property def identifiers(self): """Get identifiers.""" return self._identifiers @property def value(self): """Get last known value.""" return self._value @value.setter def value(self, value): """Set value.""" self._value = value @property def last_changed(self): """Get cycle when last changed.""" return self._last_changed @last_changed.setter def last_changed(self, time): """Record change.""" self._last_changed = time def add_alias(self, scope, name): """Add an alias.""" self._aliases.append((scope, name)) def get_first_identifier(self): """Get identifier.""" if isinstance(self._identifiers, (tuple, list)): return self._identifiers[0] else: return self._identifiers @staticmethod def from_tokens(vtype, width, id, name, **kwargs): """Build from parser tokens.""" scope = kwargs.get("scope", None) return VCDVariable( id, var_type=vtype, size=width, name=name, scope=scope ) def __repr__(self): """Get representation.""" scope_str = str(self._scope) + "::" if self._scope else "" return "{}{} ({})".format(scope_str, self._name, self._identifiers[0]) def dump_aliases(self): """Get representation for aliases.""" ret = [] for scope, name in self._aliases: scope_str = str(scope) + "::" if scope else "" ret.append( "{}{} ({})".format(scope_str, name, self._identifiers[0]) ) return "\n".join(ret) def pack(self): """Pack into binary representation.""" dump = { "vartype": self._vartype, "size": self._size, "identifiers": self._identifiers, "name": self._name, "scope": self._scope.pack(), "aliases": self._aliases, } return dump @staticmethod def unpack(src): """Unpack.""" identifiers = src["identifiers"] scope, _ = VCDScope.from_str(src["scope"]) var = VCDVariable( *identifiers, var_type=src["vartype"], size=src["size"], name=src["name"], scope=scope ) for alias in src["aliases"]: var.add_alias(*alias) return var
{ "content_hash": "5b87111627400c6164280f11855dfe41", "timestamp": "", "source": "github", "line_count": 145, "max_line_length": 78, "avg_line_length": 25.53103448275862, "alnum_prop": 0.5232306861156132, "repo_name": "brunosmmm/hdltools", "id": "3ff296aab446af726cac3f16d6cb1df95a1222fb", "size": "3702", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "hdltools/vcd/variable.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "470883" }, { "name": "Shell", "bytes": "1354" }, { "name": "Verilog", "bytes": "19781" } ], "symlink_target": "" }
from flask import Flask, request from flask_sqlalchemy import SQLAlchemy from flask_webtest import get_scopefunc def make_db(app): session_options = {} if app.testing: session_options['scopefunc'] = get_scopefunc() return SQLAlchemy(app, session_options=session_options) app = Flask(__name__) app.testing = True db = make_db(app) class User(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80)) greeting = db.Column(db.String(80), default=u'Hello, %s!') def greet(self): return self.greeting % self.name @app.route('/user/<int:id>/') def user(id): return User.query.get_or_404(id).greet() @app.route('/user/<int:id>/preview/', methods=['POST']) def preview(id): user = User.query.get_or_404(id) user.greeting = request.form['greeting'] db.session.expunge(user) return user.greet()
{ "content_hash": "f91e0c4358d71ee92b012496baca1a96", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 62, "avg_line_length": 24.054054054054053, "alnum_prop": 0.6674157303370787, "repo_name": "aromanovich/flask-webtest", "id": "72f85e99ba84cb2de111d35bb48878618dc8fe7f", "size": "890", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/core_sqlalchemy.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "186" }, { "name": "Python", "bytes": "16603" }, { "name": "Shell", "bytes": "40" } ], "symlink_target": "" }
from django.views import generic from . import forms from django.shortcuts import redirect from django.core.urlresolvers import reverse_lazy from django.contrib.auth import authenticate from django.contrib.auth import login from django.contrib.auth import logout from django.contrib import messages class SignInAndSignUp(generic.edit.FormMixin, generic.TemplateView): signin_form_class = forms.LoginForm signup_form_class = forms.SignupForm def get(self, request, *args, **kwargs): if "signin_form" not in kwargs: kwargs["signin_form"] = self.signin_form_class() if "signup_form" not in kwargs: kwargs["signup_form"] = self.signup_form_class() return super(SignInAndSignUp, self).get(request, *args, **kwargs) def post(self, request, *args, **kwargs): if 'sign_in' in request.POST: form = self.signin_form_class(**self.get_form_kwargs()) if not form.is_valid(): messages.add_message(request, messages.ERROR, "Unable login! " "Check username/password") return super(SignInAndSignUp, self).get(request, signup_form=self.signup_form_class(), signin_form=form) username = form.cleaned_data["username"] password = form.cleaned_data["password"] user = authenticate(username=username, password=password) if user is not None and user.is_active: login(self.request, user) else: messages.add_message(request, messages.ERROR, "Unable to find given username!") if 'sign_up' in request.POST: form = self.signup_form_class(**self.get_form_kwargs()) if not form.is_valid(): messages.add_message(request, messages.ERROR, "Unable to register! " "Please retype the details") return super(SignInAndSignUp, self).get(request, signin_form=self.signin_form_class(), signup_form=form) form.save() username = form.cleaned_data["username"] password = form.cleaned_data["password1"] messages.add_message(request, messages.INFO, "{0} added sucessfully".format( username)) # Login automatically user = authenticate(username=username, password=password) login(self.request, user) return redirect("home") class LogoutView(generic.RedirectView): url = reverse_lazy("home") def get(self, request, *args, **kwargs): logout(request) messages.add_message(request, messages.INFO, "Logout successful!") return super(LogoutView, self).get(request, *args, **kwargs) class ProductView(generic.TemplateView): template_name = "product.html" class ServiceView(generic.TemplateView): template_name = "service.html" class ContactView(generic.TemplateView): template_name = "contact.html" class AboutView(generic.TemplateView): template_name = "about.html"
{ "content_hash": "bf228e1f4aaa360a44e8a53120124958", "timestamp": "", "source": "github", "line_count": 85, "max_line_length": 73, "avg_line_length": 40.92941176470588, "alnum_prop": 0.5596435757401552, "repo_name": "aarticianpc/marine-florits", "id": "be5ab7de63d9b375ea034750b624efcf02cbbfbb", "size": "3517", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/accounts/views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "16967" }, { "name": "CoffeeScript", "bytes": "19515" }, { "name": "HTML", "bytes": "47444" }, { "name": "JavaScript", "bytes": "138458" }, { "name": "Python", "bytes": "56604" } ], "symlink_target": "" }
import cgi from paste.urlparser import PkgResourcesParser from pylons.middleware import error_document_template from webhelpers.html.builder import literal from abraxas.lib.base import BaseController class ErrorController(BaseController): """Generates error documents as and when they are required. The ErrorDocuments middleware forwards to ErrorController when error related status codes are returned from the application. This behaviour can be altered by changing the parameters to the ErrorDocuments middleware in your config/middleware.py file. """ def document(self): """Render the error document""" request = self._py_object.request resp = request.environ.get('pylons.original_response') content = literal(resp.body) or cgi.escape(request.GET.get('message', '')) page = error_document_template % \ dict(prefix=request.environ.get('SCRIPT_NAME', ''), code=cgi.escape(request.GET.get('code', str(resp.status_int))), message=content) return page def img(self, id): """Serve Pylons' stock images""" return self._serve_file('/'.join(['media/img', id])) def style(self, id): """Serve Pylons' stock stylesheets""" return self._serve_file('/'.join(['media/style', id])) def _serve_file(self, path): """Call Paste's FileApp (a WSGI application) to serve the file at the specified path """ request = self._py_object.request request.environ['PATH_INFO'] = '/%s' % path return PkgResourcesParser('pylons', 'pylons')(request.environ, self.start_response)
{ "content_hash": "d742f0b8f185cd0ffb409eb3be465827", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 91, "avg_line_length": 37.97727272727273, "alnum_prop": 0.6624775583482945, "repo_name": "thakadu/Abraxas", "id": "31d31c30c202677169cdd1fd5b1945e944e4bb2b", "size": "1671", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "abraxas/controllers/error.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "41287" } ], "symlink_target": "" }
"""Tests for tensorflow.ops.test_util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import tensorflow.python.platform import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.framework import types from tensorflow.python.platform import googletest from tensorflow.python.ops import logging_ops class TestUtilTest(test_util.TensorFlowTestCase): def testIsGoogleCudaEnabled(self): # The test doesn't assert anything. It ensures the py wrapper # function is generated correctly. if test_util.IsGoogleCudaEnabled(): print("GoogleCuda is enabled") else: print("GoogleCuda is disabled") def testAssertProtoEqualsStr(self): graph_str = "node { name: 'w1' op: 'params' }" graph_def = graph_pb2.GraphDef() text_format.Merge(graph_str, graph_def) # test string based comparison self.assertProtoEquals(graph_str, graph_def) # test original comparison self.assertProtoEquals(graph_def, graph_def) def testNDArrayNear(self): a1 = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) a2 = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) a3 = np.array([[10.0, 20.0, 30.0], [40.0, 50.0, 60.0]]) self.assertTrue(self._NDArrayNear(a1, a2, 1e-5)) self.assertFalse(self._NDArrayNear(a1, a3, 1e-5)) def testCheckedThreadSucceeds(self): def noop(ev): ev.set() event_arg = threading.Event() self.assertFalse(event_arg.is_set()) t = self.checkedThread(target=noop, args=(event_arg,)) t.start() t.join() self.assertTrue(event_arg.is_set()) def testCheckedThreadFails(self): def err_func(): return 1 // 0 t = self.checkedThread(target=err_func) t.start() with self.assertRaises(self.failureException) as fe: t.join() self.assertTrue("integer division or modulo by zero" in fe.exception.message) def testCheckedThreadWithWrongAssertionFails(self): x = 37 def err_func(): self.assertTrue(x < 10) t = self.checkedThread(target=err_func) t.start() with self.assertRaises(self.failureException) as fe: t.join() self.assertTrue("False is not true" in fe.exception.message) def testMultipleThreadsWithOneFailure(self): def err_func(i): self.assertTrue(i != 7) threads = [self.checkedThread(target=err_func, args=(i,)) for i in range(10)] for t in threads: t.start() for i, t in enumerate(threads): if i == 7: with self.assertRaises(self.failureException): t.join() else: t.join() def _WeMustGoDeeper(self, msg): with self.assertRaisesOpError(msg): node_def = ops._NodeDef("op_type", "name") node_def_orig = ops._NodeDef("op_type_orig", "orig") op_orig = ops.Operation(node_def_orig, ops.get_default_graph()) op = ops.Operation(node_def, ops.get_default_graph(), original_op=op_orig) raise errors.UnauthenticatedError(node_def, op, "true_err") def testAssertRaisesOpErrorDoesNotPassMessageDueToLeakedStack(self): with self.assertRaises(AssertionError): self._WeMustGoDeeper("this_is_not_the_error_you_are_looking_for") self._WeMustGoDeeper("true_err") self._WeMustGoDeeper("name") self._WeMustGoDeeper("orig") def testAllCloseScalars(self): self.assertAllClose(7, 7 + 1e-8) with self.assertRaisesRegexp(AssertionError, r"Not equal to tolerance"): self.assertAllClose(7, 8) def testForceGPU(self): with self.assertRaisesRegexp(errors.InvalidArgumentError, "Cannot assign a device to node"): with self.test_session(force_gpu=True): # this relies on us not having a GPU implementation for assert, which # seems sensible x = [True] y = [15] logging_ops.Assert(x, y).run() if __name__ == "__main__": googletest.main()
{ "content_hash": "a1ad535aa2b6bd8ecf385d0dd72708e3", "timestamp": "", "source": "github", "line_count": 133, "max_line_length": 80, "avg_line_length": 31.69172932330827, "alnum_prop": 0.672835112692764, "repo_name": "MemeticParadigm/TensorFlow", "id": "fc847975017d329d6a437c23b9790ff68670ddb1", "size": "4215", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "tensorflow/python/framework/test_util_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "127104" }, { "name": "C++", "bytes": "4901913" }, { "name": "CSS", "bytes": "107" }, { "name": "HTML", "bytes": "637241" }, { "name": "Java", "bytes": "44388" }, { "name": "JavaScript", "bytes": "5067" }, { "name": "Objective-C", "bytes": "630" }, { "name": "Protocol Buffer", "bytes": "45213" }, { "name": "Python", "bytes": "2473570" }, { "name": "Shell", "bytes": "1714" }, { "name": "TypeScript", "bytes": "237446" } ], "symlink_target": "" }
from azure_common import BaseTest, arm_template from c7n.utils import local_session from c7n_azure.query import ChildTypeInfo from c7n_azure.session import Session from c7n_azure.utils import ResourceIdParser class RecordSetTest(BaseTest): def test_record_set_schema_validate(self): with self.sign_out_patch(): p = self.load_policy({ 'name': 'record-set-policy', 'resource': 'azure.recordset' }, validate=True) self.assertTrue(p) @arm_template('dns.json') def test_find_by_name(self): p = self.load_policy({ 'name': 'test-find-by-name', 'resource': 'azure.recordset', 'filters': [ { 'type': 'value', 'key': 'name', 'op': 'eq', 'value': 'www' } ] }) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]['name'], 'www') class DeleteRecordSetTest(BaseTest): @classmethod def setUpClass(cls, *args, **kwargs): super(DeleteRecordSetTest, cls).setUpClass(*args, **kwargs) cls.client = local_session(Session).client('azure.mgmt.dns.DnsManagementClient').record_sets def tearDown(self, *args, **kwargs): super(DeleteRecordSetTest, self).tearDown(*args, **kwargs) rs = self.deleted_recordset rs_id = rs['id'] rs_parent_id = rs[ChildTypeInfo.parent_key] zone_name = ResourceIdParser.get_resource_name(rs_parent_id) rs_name = ResourceIdParser.get_resource_name(rs_id) rs_type = rs['type'].split('/')[-1] rs_ttl = rs['properties']['TTL'] rs_arecord_ipaddr = rs['properties']['ARecords'][0]['ipv4Address'] DeleteRecordSetTest.client.create_or_update( resource_group_name=rs['resourceGroup'], zone_name=zone_name, relative_record_set_name=rs_name, record_type=rs_type, parameters={ 'ttl': rs_ttl, 'arecords': [ { 'ipv4_address': rs_arecord_ipaddr } ] }, ) @arm_template('dns.json') def test_delete_a_record_set(self): record_set_name = 'deleteme' p = self.load_policy({ 'name': 'test-delete-a-record-set', 'resource': 'azure.recordset', 'filters': [ { 'type': 'value', 'key': 'name', 'op': 'eq', 'value': record_set_name } ], 'actions': [ { 'type': 'delete' } ] }) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]['name'], record_set_name) rs = resources[0] self.deleted_recordset = rs rg = rs['resourceGroup'] zone = ResourceIdParser.get_resource_name(rs[ChildTypeInfo.parent_key]) self._assert_record_set_not_present(record_set_name, rg, zone) def _assert_record_set_not_present(self, name, resource_group, dns_zone): record_sets = DeleteRecordSetTest.client.list_by_dns_zone(resource_group, dns_zone) record_set = next((rs for rs in record_sets if rs.name == name), None) self.assertIsNone(record_set)
{ "content_hash": "9f10088429d3830d0040dbd4ae155b24", "timestamp": "", "source": "github", "line_count": 109, "max_line_length": 100, "avg_line_length": 32.357798165137616, "alnum_prop": 0.5250921462999717, "repo_name": "FireballDWF/cloud-custodian", "id": "a26785aeefbe5189a14210f7f17a9bda5c7426b9", "size": "4099", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tools/c7n_azure/tests/test_record_set.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "7986" }, { "name": "Go", "bytes": "142024" }, { "name": "HTML", "bytes": "31" }, { "name": "Makefile", "bytes": "9857" }, { "name": "PowerShell", "bytes": "1440" }, { "name": "Python", "bytes": "4893319" }, { "name": "Shell", "bytes": "7227" } ], "symlink_target": "" }
from piped_statsd import version from piped_statsd.reporter import MetricsReporter
{ "content_hash": "39bb98cb438fb4bf23fe6d1633f07532", "timestamp": "", "source": "github", "line_count": 2, "max_line_length": 49, "avg_line_length": 41.5, "alnum_prop": 0.8674698795180723, "repo_name": "alexbrasetvik/Piped", "id": "47bf0affc6db0479e310ae2f295a3f66acf023db", "size": "83", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "contrib/statsd/piped/plugins/statsd_plugin.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1144292" }, { "name": "Shell", "bytes": "4509" } ], "symlink_target": "" }
import feedparser import entry import logging logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) def compile_feeds(rsslist): return reduce(lambda i, j: i + j, map(lambda k: feedparser.parse(k)['entries'], rsslist), []) def load_feed(rsslist): for i in compile_feeds(rsslist): if not entry.exists(i): log.info("Created entry: " + str(i)) entry.create_entry(i)
{ "content_hash": "c1e54f5ec69a0f3733ceb1f44b156c23", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 77, "avg_line_length": 24.72222222222222, "alnum_prop": 0.6314606741573033, "repo_name": "ChattanoogaPublicLibrary/booksforcha", "id": "06cbe92c915cd89d7ef7b50ed962bb4c2556eb30", "size": "470", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "booksforcha/feed.py", "mode": "33261", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2517" }, { "name": "Python", "bytes": "14880" } ], "symlink_target": "" }
import time import subprocess import libqtile import libqtile.layout import libqtile.bar import libqtile.command import libqtile.widget import libqtile.manager import libqtile.config import libqtile.hook import libqtile.confreader from nose.tools import assert_raises from nose.plugins.attrib import attr from . import utils from .utils import Xephyr class TestConfig: auto_fullscreen = True groups = [ libqtile.config.Group("a"), libqtile.config.Group("b"), libqtile.config.Group("c"), libqtile.config.Group("d") ] layouts = [ libqtile.layout.stack.Stack(num_stacks=1), libqtile.layout.stack.Stack(num_stacks=2), libqtile.layout.max.Max() ] floating_layout = libqtile.layout.floating.Floating( float_rules=[dict(wmclass="xclock")]) keys = [ libqtile.config.Key( ["control"], "k", libqtile.command._Call([("layout", None)], "up") ), libqtile.config.Key( ["control"], "j", libqtile.command._Call([("layout", None)], "down") ), ] mouse = [] screens = [libqtile.config.Screen( bottom=libqtile.bar.Bar( [ libqtile.widget.GroupBox(), ], 20 ), )] main = None follow_mouse_focus = True class BareConfig: auto_fullscreen = True groups = [ libqtile.config.Group("a"), libqtile.config.Group("b"), libqtile.config.Group("c"), libqtile.config.Group("d") ] layouts = [ libqtile.layout.stack.Stack(num_stacks=1), libqtile.layout.stack.Stack(num_stacks=2) ] floating_layout = libqtile.layout.floating.Floating() keys = [ libqtile.config.Key( ["control"], "k", libqtile.command._Call([("layout", None)], "up") ), libqtile.config.Key( ["control"], "j", libqtile.command._Call([("layout", None)], "down") ), ] mouse = [] screens = [libqtile.config.Screen()] main = None follow_mouse_focus = False @Xephyr(True, TestConfig()) def test_screen_dim(self): #self.c.restart() self.testXclock() assert self.c.screen.info()["index"] == 0 assert self.c.screen.info()["x"] == 0 assert self.c.screen.info()["width"] == 800 assert self.c.group.info()["name"] == 'a' assert self.c.group.info()["focus"] == 'xclock' self.c.to_screen(1) self.testXeyes() assert self.c.screen.info()["index"] == 1 assert self.c.screen.info()["x"] == 800 assert self.c.screen.info()["width"] == 640 assert self.c.group.info()["name"] == 'b' assert self.c.group.info()["focus"] == 'xeyes' self.c.to_screen(0) assert self.c.screen.info()["index"] == 0 assert self.c.screen.info()["x"] == 0 assert self.c.screen.info()["width"] == 800 assert self.c.group.info()["name"] == 'a' assert self.c.group.info()["focus"] == 'xclock' @Xephyr(True, TestConfig(), xoffset=0) def test_clone_dim(self): self.testXclock() assert self.c.screen.info()["index"] == 0 assert self.c.screen.info()["x"] == 0 assert self.c.screen.info()["width"] == 800 assert self.c.group.info()["name"] == 'a' assert self.c.group.info()["focus"] == 'xclock' assert len(self.c.screens()) == 1 @Xephyr(True, TestConfig()) def test_to_screen(self): assert self.c.screen.info()["index"] == 0 self.c.to_screen(1) assert self.c.screen.info()["index"] == 1 self.testWindow("one") self.c.to_screen(0) self.testWindow("two") ga = self.c.groups()["a"] assert ga["windows"] == ["two"] gb = self.c.groups()["b"] assert gb["windows"] == ["one"] assert self.c.window.info()["name"] == "two" self.c.next_screen() assert self.c.window.info()["name"] == "one" self.c.next_screen() assert self.c.window.info()["name"] == "two" self.c.prev_screen() assert self.c.window.info()["name"] == "one" @Xephyr(True, TestConfig()) def test_togroup(self): self.testWindow("one") assert_raises(libqtile.command.CommandError, self.c.window.togroup, "nonexistent") assert self.c.groups()["a"]["focus"] == "one" self.c.window.togroup("a") assert self.c.groups()["a"]["focus"] == "one" self.c.window.togroup("b") assert self.c.groups()["b"]["focus"] == "one" assert self.c.groups()["a"]["focus"] == None self.c.to_screen(1) self.c.window.togroup("c") assert self.c.groups()["c"]["focus"] == "one" @Xephyr(True, TestConfig()) def test_resize(self): self.c.screen[0].resize(x=10, y=10, w=100, h=100) for _ in range(10): time.sleep(0.1) d = self.c.screen[0].info() if d["width"] == d["height"] == 100: break else: raise AssertionError("Screen didn't resize") assert d["x"] == d["y"] == 10 @Xephyr(False, BareConfig()) def test_minimal(self): assert self.c.status() == "OK" @Xephyr(False, TestConfig()) def test_events(self): assert self.c.status() == "OK" # FIXME: failing test disabled. For some reason we don't seem # to have a keymap in Xnest or Xephyr 99% of the time. @Xephyr(False, TestConfig()) def test_keypress(self): self.testWindow("one") self.testWindow("two") v = self.c.simulate_keypress(["unknown"], "j") assert v.startswith("Unknown modifier") assert self.c.groups()["a"]["focus"] == "two" self.c.simulate_keypress(["control"], "j") assert self.c.groups()["a"]["focus"] == "one" @Xephyr(False, TestConfig()) def test_spawn(self): # Spawn something with a pid greater than init's assert int(self.c.spawn("true")) > 1 @Xephyr(False, TestConfig()) def test_kill(self): self.testWindow("one") self.testwindows = [] self.c.window[self.c.window.info()["id"]].kill() self.c.sync() for _ in range(20): time.sleep(0.1) if len(self.c.windows()) == 0: break else: raise AssertionError("Window did not die...") @Xephyr(False, TestConfig()) def test_regression_groupswitch(self): self.c.group["c"].toscreen() self.c.group["d"].toscreen() assert self.c.groups()["c"]["screen"] == None @Xephyr(False, TestConfig()) def test_next_layout(self): self.testWindow("one") self.testWindow("two") assert len(self.c.layout.info()["stacks"]) == 1 self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.c.next_layout() self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 1 @Xephyr(False, TestConfig()) def test_setlayout(self): assert not self.c.layout.info()["name"] == "max" self.c.group.setlayout("max") assert self.c.layout.info()["name"] == "max" @Xephyr(False, TestConfig()) def test_adddelgroup(self): self.testWindow("one") self.c.addgroup("dummygroup") self.c.addgroup("testgroup") assert "testgroup" in self.c.groups().keys() self.c.window.togroup("testgroup") self.c.delgroup("testgroup") assert not "testgroup" in self.c.groups().keys() # Assert that the test window is still a member of some group. assert sum(len(i["windows"]) for i in self.c.groups().values()) for i in list(self.c.groups().keys())[:-1]: self.c.delgroup(i) assert_raises(libqtile.command.CommandException, self.c.delgroup, list(self.c.groups().keys())[0]) @Xephyr(False, TestConfig()) def test_delgroup(self): self.testWindow("one") for i in ['a', 'd', 'c']: self.c.delgroup(i) assert_raises(libqtile.command.CommandException, self.c.delgroup, 'b') @Xephyr(False, TestConfig()) def test_nextprevgroup(self): start = self.c.group.info()["name"] ret = self.c.screen.next_group() assert self.c.group.info()["name"] != start assert self.c.group.info()["name"] == ret ret = self.c.screen.prev_group() assert self.c.group.info()["name"] == start @Xephyr(False, TestConfig()) def test_togglegroup(self): self.c.group["a"].toscreen() self.c.group["b"].toscreen() self.c.screen.togglegroup("c") assert self.c.group.info()["name"] == "c" self.c.screen.togglegroup("c") assert self.c.group.info()["name"] == "b" self.c.screen.togglegroup() assert self.c.group.info()["name"] == "c" @Xephyr(False, TestConfig()) def test_inspect_xeyes(self): self.testXeyes() assert self.c.window.inspect() @Xephyr(False, TestConfig()) def test_inspect_xterm(self): self.testXterm() assert self.c.window.inspect()["wm_class"] @Xephyr(False, TestConfig()) def test_static(self): self.testXeyes() self.testWindow("one") self.c.window[self.c.window.info()["id"]].static(0, 0, 0, 100, 100) @Xephyr(False, TestConfig()) def test_match(self): self.testXeyes() assert self.c.window.match(wname="xeyes") assert not self.c.window.match(wname="nonexistent") @Xephyr(False, TestConfig()) def test_default_float(self): # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXclock() assert self.c.group.info()['focus'] == 'xclock' assert self.c.window.info()['width'] == 164 assert self.c.window.info()['height'] == 164 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 assert self.c.window.info()['floating'] == True self.c.window.move_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 164 assert self.c.window.info()['height'] == 164 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 assert self.c.window.info()['floating'] == True @Xephyr(False, TestConfig()) def test_last_float_size(self): """ When you re-float something it would be preferable to have it use the previous float size """ self.testXeyes() assert self.c.window.info()['name'] == 'xeyes' assert self.c.window.info()['width'] == 798 assert self.c.window.info()['height'] == 578 self.c.window.toggle_floating() assert self.c.window.info()['width'] == 150 assert self.c.window.info()['height'] == 100 # resize self.c.window.set_size_floating(50, 90, 42, 42) assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 self.c.window.toggle_floating() assert self.c.window.info()['width'] == 798 assert self.c.window.info()['height'] == 578 # float again, should use last float size self.c.window.toggle_floating() assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 # make sure it works through min and max self.c.window.toggle_maximize() self.c.window.toggle_minimize() self.c.window.toggle_minimize() self.c.window.toggle_floating() assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 @Xephyr(False, TestConfig()) def test_float_max_min_combo(self): # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 assert self.c.window.info()['floating'] == False self.c.window.toggle_maximize() assert self.c.window.info()['floating'] == True assert self.c.window.info()['maximized'] == True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 580 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_minimize() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] == True assert self.c.window.info()['minimized'] == True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 580 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_floating() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] == False assert self.c.window.info()['minimized'] == False assert self.c.window.info()['maximized'] == False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @Xephyr(False, TestConfig()) def test_toggle_fullscreen(self): # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['float_info'] == { 'y': 0, 'x': 400, 'w': 150, 'h': 100} assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_fullscreen() assert self.c.window.info()['floating'] == True assert self.c.window.info()['maximized'] == False assert self.c.window.info()['fullscreen'] == True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 600 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_fullscreen() assert self.c.window.info()['floating'] == False assert self.c.window.info()['maximized'] == False assert self.c.window.info()['fullscreen'] == False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @Xephyr(False, TestConfig()) def test_toggle_max(self): # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['float_info'] == { 'y': 0, 'x': 400, 'w': 150, 'h': 100} assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_maximize() assert self.c.window.info()['floating'] == True assert self.c.window.info()['maximized'] == True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 580 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_maximize() assert self.c.window.info()['floating'] == False assert self.c.window.info()['maximized'] == False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @Xephyr(False, TestConfig()) def test_toggle_min(self): # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['float_info'] == { 'y': 0, 'x': 400, 'w': 150, 'h': 100} assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_minimize() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] == True assert self.c.window.info()['minimized'] == True assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_minimize() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] == False assert self.c.window.info()['minimized'] == False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @Xephyr(False, TestConfig()) def test_toggle_floating(self): self.testXeyes() assert self.c.window.info()['floating'] == False self.c.window.toggle_floating() assert self.c.window.info()['floating'] == True self.c.window.toggle_floating() assert self.c.window.info()['floating'] == False self.c.window.toggle_floating() assert self.c.window.info()['floating'] == True #change layout (should still be floating) self.c.next_layout() assert self.c.window.info()['floating'] == True @Xephyr(False, TestConfig()) def test_floating_focus(self): # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() #self.testWindow("one") assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 self.c.window.toggle_floating() self.c.window.move_floating(10, 20, 42, 42) assert self.c.window.info()['name'] == 'xeyes' assert self.c.group.info()['focus'] == 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # change focus to xterm self.c.group.next_window() assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['name'] != 'xeyes' assert self.c.group.info()['focus'] != 'xeyes' # check what stack thinks is focus # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # focus back to xeyes self.c.group.next_window() assert self.c.window.info()['name'] == 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # now focusing via layout is borked (won't go to float) self.c.layout.up() assert self.c.window.info()['name'] != 'xeyes' self.c.layout.up() assert self.c.window.info()['name'] != 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # focus back to xeyes self.c.group.next_window() assert self.c.window.info()['name'] == 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] @Xephyr(False, TestConfig()) def test_move_floating(self): self.testXeyes() #self.testWindow("one") assert self.c.window.info()['width'] == 798 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_floating() assert self.c.window.info()['floating'] == True self.c.window.move_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 150 assert self.c.window.info()['height'] == 100 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 self.c.window.set_size_floating(50, 90, 42, 42) assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 self.c.window.resize_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 60 assert self.c.window.info()['height'] == 110 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 self.c.window.set_size_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 10 assert self.c.window.info()['height'] == 20 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 #change layout (x, y should be same) self.c.next_layout() assert self.c.window.info()['width'] == 10 assert self.c.window.info()['height'] == 20 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 @Xephyr(False, TestConfig(), randr=True) def test_screens(self): assert len(self.c.screens()) @Xephyr(False, TestConfig(), randr=True) def test_rotate(self): self.testWindow("one") s = self.c.screens()[0] height, width = s["height"], s["width"] subprocess.call( [ "xrandr", "--output", "default", "-display", self.display, "--rotate", "left" ], stderr=subprocess.PIPE, stdout=subprocess.PIPE ) for _ in range(10): time.sleep(0.1) s = self.c.screens()[0] if s["width"] == height and s["height"] == width: break else: raise AssertionError("Screen did not rotate") # TODO: see note on test_resize @Xephyr(False, TestConfig(), randr=True) def test_resize_(self): self.testWindow("one") subprocess.call( [ "xrandr", "-s", "480x640", "-display", self.display ] ) for _ in range(10): time.sleep(0.1) d = self.c.screen.info() if d["width"] == 480 and d["height"] == 640: break else: raise AssertionError("Screen did not resize") @Xephyr(False, TestConfig()) def test_focus_stays_on_layout_switch(xephyr): xephyr.testWindow("one") xephyr.testWindow("two") # switch to a double stack layout xephyr.c.next_layout() # focus on a different window than the default xephyr.c.layout.next() # toggle the layout xephyr.c.next_layout() xephyr.c.prev_layout() assert xephyr.c.window.info()['name'] == 'one' # Due to https://github.com/nose-devs/nose/issues/478, nose 1.1.2 ignores # attributes on yielded functions. Workaround is to attach the attribute # to the generator function. Can be removed once the issue is resolved. @attr('xephyr') def qtile_tests(): for config in (BareConfig, TestConfig): for xinerama in (True, False): @Xephyr(xinerama, config) def test_xeyes(self): self.testXeyes() yield test_xeyes @Xephyr(xinerama, config) def test_xterm(self): self.testXterm() yield test_xterm @Xephyr(xinerama, config) def test_xterm_kill(self): self.testXterm() self.c.window.kill() self.c.sync() for _ in range(10): time.sleep(0.1) if not self.c.windows(): break else: raise AssertionError("xterm did not die") yield test_xterm_kill @Xephyr(xinerama, config) def test_mapRequest(self): self.testWindow("one") info = self.c.groups()["a"] assert "one" in info["windows"] assert info["focus"] == "one" self.testWindow("two") info = self.c.groups()["a"] assert "two" in info["windows"] assert info["focus"] == "two" yield test_mapRequest @Xephyr(xinerama, config) def test_unmap(self): one = self.testWindow("one") two = self.testWindow("two") three = self.testWindow("three") info = self.c.groups()["a"] assert info["focus"] == "three" assert len(self.c.windows()) == 3 self.kill(three) assert len(self.c.windows()) == 2 info = self.c.groups()["a"] assert info["focus"] == "two" self.kill(two) assert len(self.c.windows()) == 1 info = self.c.groups()["a"] assert info["focus"] == "one" self.kill(one) assert len(self.c.windows()) == 0 info = self.c.groups()["a"] assert info["focus"] == None yield test_unmap @Xephyr(xinerama, config) def test_setgroup(self): self.testWindow("one") self.c.group["b"].toscreen() self.groupconsistency() if len(self.c.screens()) == 1: assert self.c.groups()["a"]["screen"] == None else: assert self.c.groups()["a"]["screen"] == 1 assert self.c.groups()["b"]["screen"] == 0 self.c.group["c"].toscreen() self.groupconsistency() assert self.c.groups()["c"]["screen"] == 0 yield test_setgroup @Xephyr(xinerama, config) def test_unmap_noscreen(self): self.testWindow("one") pid = self.testWindow("two") assert len(self.c.windows()) == 2 self.c.group["c"].toscreen() self.groupconsistency() self.c.status() assert len(self.c.windows()) == 2 self.kill(pid) assert len(self.c.windows()) == 1 assert self.c.groups()["a"]["focus"] == "one" yield test_unmap_noscreen def test_init(): assert_raises( libqtile.manager.QtileError, libqtile.config.Key, [], "unknown", libqtile.command._Call("base", None, "foo") ) assert_raises( libqtile.manager.QtileError, libqtile.config.Key, ["unknown"], "x", libqtile.command._Call("base", None, "foo") ) class TScreen(libqtile.config.Screen): def setGroup(self, x): pass def test_dx(): s = TScreen(left=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dx == 10 def test_dwidth(): s = TScreen(left=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dwidth == 90 s.right = libqtile.bar.Gap(10) assert s.dwidth == 80 def test_dy(): s = TScreen(top=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dy == 10 def test_dheight(): s = TScreen(top=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dheight == 90 s.bottom = libqtile.bar.Gap(10) assert s.dheight == 80 class _Config: groups = [ libqtile.config.Group("a"), libqtile.config.Group("b"), libqtile.config.Group("c"), libqtile.config.Group("d") ] layouts = [ libqtile.layout.stack.Stack(num_stacks=1), libqtile.layout.stack.Stack(num_stacks=2) ] floating_layout = libqtile.layout.floating.Floating() keys = [ libqtile.config.Key( ["control"], "k", libqtile.command._Call([("layout", None)], "up") ), libqtile.config.Key( ["control"], "j", libqtile.command._Call([("layout", None)], "down") ), ] mouse = [] screens = [libqtile.config.Screen( bottom=libqtile.bar.Bar( [ libqtile.widget.GroupBox(), ], 20 ), )] auto_fullscreen = True class ClientNewStaticConfig(_Config): @staticmethod def main(c): def client_new(c): c.static(0) libqtile.hook.subscribe.client_new(client_new) @Xephyr(False, ClientNewStaticConfig()) def test_minimal_(self): a = self.testWindow("one") self.kill(a) if utils.whereis("gkrellm"): @Xephyr(False, ClientNewStaticConfig()) def test_gkrellm(self): self.testGkrellm() time.sleep(0.1) class ToGroupConfig(_Config): @staticmethod def main(c): def client_new(c): c.togroup("d") libqtile.hook.subscribe.client_new(client_new) @Xephyr(False, ToGroupConfig()) def test_minimal__(self): self.c.group["d"].toscreen() self.c.group["a"].toscreen() a = self.testWindow("one") assert len(self.c.group["d"].info()["windows"]) == 1 self.kill(a) @Xephyr(False, TestConfig) def test_colorPixel(self): # test for #394 self.c.eval("self.colorPixel(\"ffffff\")")
{ "content_hash": "9911e638434132d5b9b9b6a67ee64b1d", "timestamp": "", "source": "github", "line_count": 921, "max_line_length": 75, "avg_line_length": 31.140065146579804, "alnum_prop": 0.5773012552301255, "repo_name": "nxnfufunezn/qtile", "id": "1df7800bb05518009a7a1a1181c1d15d498a8ee2", "size": "30013", "binary": false, "copies": "6", "ref": "refs/heads/develop", "path": "test/test_manager.py", "mode": "33188", "license": "mit", "language": [ { "name": "Groff", "bytes": "3598" }, { "name": "Makefile", "bytes": "1180" }, { "name": "Python", "bytes": "918526" }, { "name": "Shell", "bytes": "2833" } ], "symlink_target": "" }
import numpy as np class KNearestNeighbor: """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Input: X - A num_train x dimension array where each row is a training point. y - A vector of length num_train, where y[i] is the label for X[i, :] """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Input: X - A num_test x dimension array where each row is a test point. k - The number of nearest neighbors that vote for predicted label num_loops - Determines which method to use to compute distances between training points and test points. Output: y - A vector of length num_test, where y[i] is the predicted label for the test point X[i, :]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Input: X - An num_test x dimension array where each row is a test point. Output: dists - A num_test x num_train array where dists[i, j] is the distance between the ith test point and the jth training point. """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in xrange(num_test): for j in xrange(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j] # ##################################################################### pass ##################################################################### # END OF YOUR CODE # ##################################################################### return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in xrange(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # ####################################################################### pass ####################################################################### # END OF YOUR CODE # ####################################################################### return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### pass ######################################################################### # END OF YOUR CODE # ######################################################################### return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Input: dists - A num_test x num_train array where dists[i, j] gives the distance between the ith test point and the jth training point. Output: y - A vector of length num_test where y[i] is the predicted label for the ith test point. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in xrange(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # training point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### pass ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### pass ######################################################################### # END OF YOUR CODE # ######################################################################### return y_pred
{ "content_hash": "1180c60ba4a730cb447ca8e228f6c5d0", "timestamp": "", "source": "github", "line_count": 161, "max_line_length": 80, "avg_line_length": 43.22360248447205, "alnum_prop": 0.4323897111653973, "repo_name": "DeercoderCourse/cs231n", "id": "cc094f8fe033bea5b083583d11051e8e3727a0ab", "size": "6959", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "assignment1/cs231n/classifiers/k_nearest_neighbor.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "148422" }, { "name": "Shell", "bytes": "1296" } ], "symlink_target": "" }
""" Handler for the generated preferences stuff. """ import base64 import codecs import logging from StringIO import StringIO from xml.parsers.expat import ExpatError from datafinder.core.configuration.gen import preferences from datafinder.core.error import ConfigurationError from datafinder.persistence.error import PersistenceError __version__ = "$Revision-Id:$" _DEFAULT_ENCODING = "UTF-8" preferences.ExternalEncoding = _DEFAULT_ENCODING class PreferencesHandler(object): """ Handles the local preferences information. """ _streamWriterClass = codecs.getwriter(_DEFAULT_ENCODING) _preferencesFileName = "preferences.xml" _log = logging.getLogger() def __init__(self, fileStorer): """ Constructor. @param fileStorer: Points to the parent directory of the preferences file. @type fileStorer: L{FileStorer<datafinder.persistence.factory.FileStorer>} @note: Call C{load} to initialize the handler. """ self._fileStorer = fileStorer.getChild(self._preferencesFileName) self._connections = None self._connectionOrder = list() self._preferences = None def _reset(self): """ Resets current configuration. """ self._connections = None self._connectionOrder = list() self._preferences = None def load(self): """ Loads the preferences. @note: When a problem occurs a new default preferences configuration is created. """ self._reset() try: if self._fileStorer.isLeaf: data = self._fileStorer.readData() content = data.read() data.close() try: self._preferences = preferences.parseString(unicode(content, _DEFAULT_ENCODING)) except (ValueError, ExpatError, UnicodeDecodeError, SyntaxError): self._log.error("Problem occurred during parsing preferences. Default preferences used.", exc_info=True) self._preferences = self._getDefaultPreferences() else: self._preferences = self._getDefaultPreferences() except PersistenceError: self._preferences = self._getDefaultPreferences() self._getConnections() @staticmethod def _getDefaultPreferences(): """ Creates the default preferences. """ return preferences.preferences(scriptUris=list(), searchQueries=list()) def store(self): """ Stores the preferences. @raise ConfigurationError: Indicating problems on storage. """ try: if not self._fileStorer.exists(): self._fileStorer.createResource() stream = self._streamWriterClass(StringIO()) self._preferences.connections = list() for connectionUri in self._connectionOrder: connection = self._connections[connectionUri] if connection.password is None: encryptedPassword = None else: encryptedPassword = base64.encodestring(connection.password) copiedConnection = preferences.connection(connection.url, connection.username, encryptedPassword, connection.useLdap, connection.ldapServerUri, connection.ldapBaseDn, connection.useLucene, connection.luceneIndexUri, connection.defaultDataStore, connection.defaultArchiveStore, connection.defaultOfflineStore) if not copiedConnection.url is None: self._preferences.addConnections(copiedConnection) self._preferences.__dict__.update(self.__dict__) try: self._preferences.export(stream, 0) except ExpatError: raise ConfigurationError("Cannot persist preferences configuration.") stream.seek(0) self._fileStorer.writeData(stream) except PersistenceError, error: raise ConfigurationError("Unable to store preferences file.\nReason: '%s'" % error.message) def getConnection(self, configurationUri): """ Returns the connection information for the given URI. @param configurationUri: URI of the configuration. @type configurationUri: C{unicode} @return: Object containing the configuration parameters. @rtype: C{object} """ result = None if not configurationUri is None: configurationUri = self._normalizeConfigurationUri(configurationUri) if configurationUri in self._connections: result = self._connections[configurationUri] return result def addScriptUri(self, scriptUri): """ Adds a script URI to the preferences. @param scriptUri: URI identifying the script extension. @type scriptUri: C{unicode} """ if not scriptUri in self._preferences.scriptUris: self._preferences.scriptUris.append(scriptUri) def removeScriptUri(self, scriptUri): """ Removes a script URI from the preferences. @param scriptPath: URI identifying the script extension. @type scriptPath: C{unicode} """ if scriptUri in self._preferences.scriptUris: self._preferences.scriptUris.remove(scriptUri) def clearScriptUris(self): """ Removes all existing script URIs from preferences. """ self._preferences.scriptUris = list() def addSearchQuery(self, name, query): """ Adds a search query to the preferences. @param name: Name of the search query. @type name: C{unicode} @param query: A search query string. @type query: C{unicode} """ if not name is None and not query is None: searchQuery = self._getSearchQuery(name) if searchQuery is None: searchQuery = preferences.searchQuery(name, query) self._preferences.searchQueries.append(searchQuery) else: searchQuery.query = query def _getSearchQuery(self, name): """ Returns the query under the given name or C{None} if it does not exist. """ for searchQuery in self._preferences.searchQueries: if searchQuery.name == name: return searchQuery return None def removeSearchQuery(self, name): """ Removes a search query from the preferences. @param name: Name of the search query. @type name: C{unicode} """ searchQuery = self._getSearchQuery(name) if not searchQuery is None: self._preferences.searchQueries.remove(searchQuery) def clearSearchQueries(self): """ Removes all existing search queries from preferences. """ self._preferences.searchQueries = list() def addConnection(self, configurationUri, username=None, password=None, useLdap=None, ldapServerUri=None, ldapBaseDn=None, useLucene=None, luceneIndexUri=None, defaultDataStore=None, defaultArchiveStore=None, defaultOfflineStore=None): """ Adds a connection. @param configurationUri: URI of the configuration. @type configurationUri: C{unicode} @param username: Username for authentication. @type username: C{unicode} @param password: Not encrypted password. @type password: C{unicode} """ if not configurationUri is None: configurationUri = self._normalizeConfigurationUri(configurationUri) if configurationUri in self._connectionOrder: connection = self.getConnection(configurationUri) self._connectionOrder.remove(configurationUri) else: connection = preferences.connection(configurationUri, username, password, useLdap, ldapServerUri, ldapBaseDn, useLucene, luceneIndexUri, defaultDataStore, defaultArchiveStore) connection.username = username connection.password = password connection.useLdap = useLdap connection.ldapServerUri = ldapServerUri connection.ldapBaseDn = ldapBaseDn connection.useLucene = useLucene connection.luceneIndexUri = luceneIndexUri connection.defaultDataStore = defaultDataStore connection.defaultArchiveStore = defaultArchiveStore connection.defaultOfflineStore = defaultOfflineStore self._connections[configurationUri] = connection self._connectionOrder.insert(0, configurationUri) @staticmethod def _normalizeConfigurationUri(configurationUri): """ Ensures that the path component of the URI is in the correct format, i.e. without trailing slash. """ if configurationUri.endswith("/"): configurationUri = configurationUri[:-1] return configurationUri def removeConnection(self, configurationUri): """ Removes a connection. @param configurationUri: URI of the configuration. @type configurationUri: C{unicode} """ if not configurationUri is None: configurationUri = self._normalizeConfigurationUri(configurationUri) if configurationUri in self._connections: del self._connections[configurationUri] if configurationUri in self._connectionOrder: self._connectionOrder.remove(configurationUri) def clearConnections(self): """ Clears all connections. """ self._connections.clear() self._connectionOrder = list() def _getConnections(self): """ Getter for the connections. """ if self._connections is None or self._connectionOrder is None: self._connections = dict() for connection in self._preferences.connections: if not connection.url is None: self._connectionOrder.append(connection.url) decryptedPassword = connection.password if not decryptedPassword is None: decryptedPassword = base64.decodestring(connection.password) copiedConnection = preferences.connection(connection.url, connection.username, decryptedPassword, connection.useLdap, connection.ldapServerUri, connection.ldapBaseDn, connection.useLucene, connection.luceneIndexUri, connection.defaultDataStore, connection.defaultArchiveStore, connection.defaultOfflineStore) self._connections[copiedConnection.url] = copiedConnection return self._connectionOrder[:] connectionUris = property(_getConnections) def __getattr__(self, name): """ Automatically redirects property calls to the generated class. """ return getattr(self._preferences, name)
{ "content_hash": "d2fc202cb81a843fef6c6e8942777fc8", "timestamp": "", "source": "github", "line_count": 304, "max_line_length": 130, "avg_line_length": 40.29934210526316, "alnum_prop": 0.5737490817076157, "repo_name": "DLR-SC/DataFinder", "id": "07b1cc97ac59671bf113fb595f8c8764f50db5a5", "size": "13945", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/datafinder/core/configuration/preferences.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "NSIS", "bytes": "7649" }, { "name": "Python", "bytes": "7056802" }, { "name": "QMake", "bytes": "1975" } ], "symlink_target": "" }