codeShare commited on
Commit
60ccd04
·
verified ·
1 Parent(s): 48d2b52

Upload LoRa_Merge_Script.ipynb

Browse files
Files changed (1) hide show
  1. LoRa_Merge_Script.ipynb +1233 -0
LoRa_Merge_Script.ipynb ADDED
@@ -0,0 +1,1233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU"
17
+ },
18
+ "cells": [
19
+ {
20
+ "cell_type": "markdown",
21
+ "source": [
22
+ "# Cast civitai trained LoRa in torch.bfloat16 to Tensor Art Compatible torch.float16 dtype\n",
23
+ "\n",
24
+ "Created by Adcom: https://tensor.art/u/743241123023077878"
25
+ ],
26
+ "metadata": {
27
+ "id": "YDCnQpDdqDe4"
28
+ }
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "source": [
33
+ "#initialize\n",
34
+ "import torch\n",
35
+ "from safetensors.torch import load_file\n",
36
+ "from google.colab import drive\n",
37
+ "drive.mount('/content/drive')"
38
+ ],
39
+ "metadata": {
40
+ "id": "CBVTifA_ZwdC"
41
+ },
42
+ "execution_count": null,
43
+ "outputs": []
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "source": [
48
+ "\n",
49
+ "\n",
50
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
51
+ "\n",
52
+ "doll = load_file('/content/drive/MyDrive/Saved from Chrome/dolls.safetensors')\n",
53
+ "euro = load_file('/content/drive/MyDrive/Saved from Chrome/euro.safetensors')\n",
54
+ "scale = load_file('/content/drive/MyDrive/Saved from Chrome/scale.safetensors')\n",
55
+ "cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi.safetensors')\n",
56
+ "guns = load_file('/content/drive/MyDrive/Saved from Chrome/guns.safetensors')\n",
57
+ "iris = load_file('/content/drive/MyDrive/Saved from Chrome/iris.safetensors')\n",
58
+ "\n",
59
+ "for key in doll:\n",
60
+ " doll[f'{key}'] = doll[f'{key}'].to(device = device , dtype=torch.float16)\n",
61
+ " euro[f'{key}'] = euro[f'{key}'].to(device = device , dtype=torch.float16)\n",
62
+ " scale[f'{key}'] = scale[f'{key}'].to(device = device , dtype=torch.float16)\n",
63
+ " iris[f'{key}'] = iris[f'{key}'].to(device = device , dtype=torch.float16)\n",
64
+ " cgi[f'{key}'] = cgi[f'{key}'].to(device = device , dtype=torch.float16)\n",
65
+ " guns[f'{key}'] = guns[f'{key}'].to(device = device , dtype=torch.float16)"
66
+ ],
67
+ "metadata": {
68
+ "id": "1oxeJYHRqxQC"
69
+ },
70
+ "execution_count": 28,
71
+ "outputs": []
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "source": [
76
+ "cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')"
77
+ ],
78
+ "metadata": {
79
+ "id": "JuGDCX5272Bh"
80
+ },
81
+ "execution_count": 10,
82
+ "outputs": []
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "source": [
87
+ "#cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi_style.safetensors')\n",
88
+ "doll = load_file('/content/drive/MyDrive/Saved from Chrome/dolls.safetensors')\n",
89
+ "euro = load_file('/content/drive/MyDrive/Saved from Chrome/euro.safetensors')\n",
90
+ "scale = load_file('/content/drive/MyDrive/Saved from Chrome/scale.safetensors')\n",
91
+ "cgi = load_file('/content/drive/MyDrive/Saved from Chrome/cgi.safetensors')\n",
92
+ "guns = load_file('/content/drive/MyDrive/Saved from Chrome/guns.safetensors')\n",
93
+ "iris = load_file('/content/drive/MyDrive/Saved from Chrome/iris.safetensors')"
94
+ ],
95
+ "metadata": {
96
+ "id": "FftDdBRG7su6"
97
+ },
98
+ "execution_count": 57,
99
+ "outputs": []
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "source": [
104
+ "for key in doll:\n",
105
+ " doll[f'{key}'] = doll[f'{key}'].to(dtype=torch.float16)\n",
106
+ " euro[f'{key}'] = euro[f'{key}'].to(dtype=torch.float16)\n",
107
+ " scale[f'{key}'] = scale[f'{key}'].to(dtype=torch.float16)"
108
+ ],
109
+ "metadata": {
110
+ "id": "RII9SEqh8KH2"
111
+ },
112
+ "execution_count": 60,
113
+ "outputs": []
114
+ },
115
+ {
116
+ "cell_type": "code",
117
+ "source": [
118
+ "import torch\n",
119
+ "import torch.nn as nn\n",
120
+ "#define metric for similarity\n",
121
+ "tgt_dim = torch.Size([64, 3072])\n",
122
+ "cos0 = nn.CosineSimilarity(dim=1)\n",
123
+ "cos = nn.CosineSimilarity(dim=1)\n",
124
+ "\n",
125
+ "\n",
126
+ "def sim(tgt , ref ,key):\n",
127
+ " return torch.sum(torch.abs(cos(tgt, ref[f'{key}']))) + torch.sum(torch.abs(cos0(tgt, ref[f'{key}'])))\n",
128
+ "#-----#\n",
129
+ "\n",
130
+ "from torch import linalg as LA\n",
131
+ "\n",
132
+ "LA.matrix_norm\n",
133
+ "def rand_search(A , B , key , iters):\n",
134
+ " tgt_norm = (LA.matrix_norm(A[f'{key}']) + LA.matrix_norm(B[f'{key}']))/2\n",
135
+ " tgt_avg = (A[f'{key}'] + B[f'{key}'])/2\n",
136
+ "\n",
137
+ " max_sim = (sim(tgt_avg , A , key) + sim(tgt_avg , B , key))\n",
138
+ " cand = tgt_avg\n",
139
+ "\n",
140
+ " for iter in range(iters):\n",
141
+ " rand = torch.ones(tgt_dim)*(-0.5) + torch.rand(tgt_dim)\n",
142
+ " rand = rand * (tgt_norm/LA.matrix_norm(rand))\n",
143
+ " #rand = (rand + tgt_avg)/2\n",
144
+ " #rand = rand * (tgt_norm/LA.matrix_norm(rand))\n",
145
+ "\n",
146
+ " tmp = sim(rand,A, key) + sim(rand , B, key)\n",
147
+ " if (tmp > max_sim):\n",
148
+ " max_sim = tmp\n",
149
+ " cand = rand\n",
150
+ " print('found!')\n",
151
+ " break\n",
152
+ " #------#\n",
153
+ " print('returning')\n",
154
+ " return cand , max_sim\n",
155
+ "#-----#"
156
+ ],
157
+ "metadata": {
158
+ "id": "hJL6QEclHdHn"
159
+ },
160
+ "execution_count": 104,
161
+ "outputs": []
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "source": [
166
+ "cand , max_sim = rand_search(cgi , iris , 'lora_unet_double_blocks_0_img_attn_proj.lora_down.weight' , 1000)\n",
167
+ "print(sim(cand , iris , key))\n",
168
+ "print(sim(cand , cgi , key))"
169
+ ],
170
+ "metadata": {
171
+ "colab": {
172
+ "base_uri": "https://localhost:8080/"
173
+ },
174
+ "id": "ckyBSQi5Ll4F",
175
+ "outputId": "341f7192-083d-4423-f61f-4f49d5756e79"
176
+ },
177
+ "execution_count": 106,
178
+ "outputs": [
179
+ {
180
+ "output_type": "stream",
181
+ "name": "stdout",
182
+ "text": [
183
+ "returning\n",
184
+ "tensor(91.1875, dtype=torch.float16)\n",
185
+ "tensor(90.2500, dtype=torch.float16)\n"
186
+ ]
187
+ }
188
+ ]
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "source": [
193
+ "(torch.rand(1).to(dtype=torch.float16)*3).item()"
194
+ ],
195
+ "metadata": {
196
+ "colab": {
197
+ "base_uri": "https://localhost:8080/"
198
+ },
199
+ "id": "XLwslN61hiIJ",
200
+ "outputId": "9e3cbba6-3727-4772-f453-fecf8a408790"
201
+ },
202
+ "execution_count": 16,
203
+ "outputs": [
204
+ {
205
+ "output_type": "execute_result",
206
+ "data": {
207
+ "text/plain": [
208
+ "0.2138671875"
209
+ ]
210
+ },
211
+ "metadata": {},
212
+ "execution_count": 16
213
+ }
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "source": [
219
+ "torch.rand(1).to(dtype=torch.float16)*10"
220
+ ],
221
+ "metadata": {
222
+ "colab": {
223
+ "base_uri": "https://localhost:8080/"
224
+ },
225
+ "id": "AKwh0lZ1f8dJ",
226
+ "outputId": "59186526-bd73-4efe-925a-3e7a9c738e53"
227
+ },
228
+ "execution_count": 13,
229
+ "outputs": [
230
+ {
231
+ "output_type": "execute_result",
232
+ "data": {
233
+ "text/plain": [
234
+ "tensor([6.8555], dtype=torch.float16)"
235
+ ]
236
+ },
237
+ "metadata": {},
238
+ "execution_count": 13
239
+ }
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "source": [
245
+ "import torch\n",
246
+ "import torch.nn as nn\n",
247
+ "#define metric for similarity\n",
248
+ "tgt_dim = torch.Size([64, 3072])\n",
249
+ "cos0 = nn.CosineSimilarity(dim=0)\n",
250
+ "\n",
251
+ "\n",
252
+ "\n",
253
+ "cos = nn.CosineSimilarity(dim=1)\n",
254
+ "\n",
255
+ "\n",
256
+ "def sim(tgt , ref ,key):\n",
257
+ " return torch.sum(torch.abs(cos(tgt, ref[f'{key}']))) + torch.sum(torch.abs(cos0(tgt, ref[f'{key}'])))\n",
258
+ "#-----#"
259
+ ],
260
+ "metadata": {
261
+ "colab": {
262
+ "base_uri": "https://localhost:8080/"
263
+ },
264
+ "id": "SNCvvkb2h3Zb",
265
+ "outputId": "725fabd1-3fe2-4ac2-f24c-5f9309d45e4a"
266
+ },
267
+ "execution_count": 37,
268
+ "outputs": [
269
+ {
270
+ "output_type": "execute_result",
271
+ "data": {
272
+ "text/plain": [
273
+ "7.715576171875"
274
+ ]
275
+ },
276
+ "metadata": {},
277
+ "execution_count": 37
278
+ }
279
+ ]
280
+ },
281
+ {
282
+ "cell_type": "code",
283
+ "source": [
284
+ "from safetensors.torch import load_file , save_file\n",
285
+ "import torch\n",
286
+ "import torch.nn as nn\n",
287
+ "from torch import linalg as LA\n",
288
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
289
+ "#define metric for similarity\n",
290
+ "cos0 = nn.CosineSimilarity(dim=0).to(device)\n",
291
+ "final_score = 0\n",
292
+ "highest_score = 0\n",
293
+ "w_cgi = 1\n",
294
+ "w_doll = 2\n",
295
+ "w_euro = 2\n",
296
+ "w_guns = 1\n",
297
+ "w_iris = 2\n",
298
+ "w_scale = 1\n",
299
+ "\n",
300
+ "w_noise = 0.00001 * (w_cgi + w_doll + w_euro + w_guns + w_iris + w_scale)\n",
301
+ "fixed_noise = {}\n",
302
+ "\n",
303
+ "#for key in doll:\n",
304
+ "# fixed_noise[f'{key}'] = torch.zeros(doll[f'{key}'].shape).to(device = device , dtype=torch.float16)\n",
305
+ "#------#\n",
306
+ "#w_offset = 0* (w1+w2+w3)\n",
307
+ "#_w_offset = 0\n",
308
+ "\n",
309
+ "W = (w_cgi + w_doll + w_euro + w_guns + w_iris + w_scale + w_noise)*torch.ones(1).to(device = device,dtype=torch.float16)\n",
310
+ "\n",
311
+ "SCALE = 0.0001\n",
312
+ "one = torch.ones(1).to(dtype=torch.float16).to(device)\n",
313
+ "\n",
314
+ "for attempt in range(1000):\n",
315
+ " print(f'attempt no : {attempt+1} ')\n",
316
+ " merge = load_file('/content/drive/MyDrive/Saved from Chrome/dolls.safetensors')\n",
317
+ " for key in doll:\n",
318
+ " tgt_dim = doll[f'{key}'].shape\n",
319
+ " if tgt_dim == torch.Size([]): continue\n",
320
+ " r_cgi = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_cgi\n",
321
+ " r_doll = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_doll\n",
322
+ " r_euro = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_euro\n",
323
+ " r_guns = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_guns\n",
324
+ " r_iris = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_iris\n",
325
+ " r_scale = torch.rand(1).to(device = device,dtype=torch.float16).item()*w_scale\n",
326
+ " #------#\n",
327
+ " noise = torch.rand(tgt_dim).to(device = device,dtype=torch.float16)\n",
328
+ " noise_norm = LA.matrix_norm(noise).to(device = device,dtype=torch.float16).item()\n",
329
+ " noise = (w_noise/noise_norm)*noise.to(device = device,dtype=torch.float16)\n",
330
+ " #-----#\n",
331
+ " merge[f'{key}'] = r_cgi * cgi[f'{key}'] #overwrite\n",
332
+ " merge[f'{key}'] = merge[f'{key}'] + r_doll * doll[f'{key}']\n",
333
+ " merge[f'{key}'] = merge[f'{key}'] + r_euro * euro[f'{key}']\n",
334
+ " merge[f'{key}'] = merge[f'{key}'] + r_guns * guns[f'{key}']\n",
335
+ " merge[f'{key}'] = merge[f'{key}'] + r_iris * iris[f'{key}']\n",
336
+ " merge[f'{key}'] = merge[f'{key}'] + r_scale * scale[f'{key}']\n",
337
+ " merge[f'{key}'] = ((merge[f'{key}'] + noise)/W).to(device = device,dtype=torch.float16)\n",
338
+ " #-------#\n",
339
+ " score = torch.zeros(1).to(device = device, dtype=torch.float32)\n",
340
+ " #----#\n",
341
+ " NUM_ITERS = 10\n",
342
+ " for iter in range(NUM_ITERS):\n",
343
+ " for key in doll:\n",
344
+ " tgt_dim = doll[f'{key}'].shape\n",
345
+ " if tgt_dim == torch.Size([]): continue\n",
346
+ " vec = torch.rand(tgt_dim[0]).to(device = device,dtype=torch.float16)\n",
347
+ " cgi_out = torch.matmul(vec , cgi[f'{key}']).to(device = device,dtype=torch.float16)\n",
348
+ " doll_out = torch.matmul(vec , doll[f'{key}']).to(device = device,dtype=torch.float16)\n",
349
+ " euro_out = torch.matmul(vec , euro[f'{key}']).to(device = device,dtype=torch.float16)\n",
350
+ " guns_out = torch.matmul(vec , guns[f'{key}']).to(device = device,dtype=torch.float16)\n",
351
+ " iris_out = torch.matmul(vec , iris[f'{key}']).to(device = device,dtype=torch.float16)\n",
352
+ " scale_out = torch.matmul(vec , scale[f'{key}']).to(device = device,dtype=torch.float16)\n",
353
+ " merge_out = torch.matmul(vec , merge[f'{key}']).to(device = device,dtype=torch.float16)\n",
354
+ " #-------#\n",
355
+ " sim_value_cgi = torch.abs(cos0(cgi_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n",
356
+ " sim_value_doll = torch.abs(cos0(doll_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n",
357
+ " sim_value_euro = torch.abs(cos0(euro_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n",
358
+ " sim_value_guns = torch.abs(cos0(guns_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n",
359
+ " sim_value_iris = torch.abs(cos0(iris_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n",
360
+ " sim_value_scale = torch.abs(cos0(scale_out , merge_out)).to(device = device,dtype=torch.float32)*SCALE\n",
361
+ " score = score + SCALE*(sim_value_cgi + 2*sim_value_doll + 2*sim_value_euro + sim_value_guns + 2*sim_value_iris + sim_value_scale)/9 #<--- This score can be anything at all\n",
362
+ " #----#\n",
363
+ " #-----#\n",
364
+ "\n",
365
+ " final_score = (1000/(NUM_ITERS * SCALE))*score.to(device = 'cpu' , dtype=torch.float32).item()\n",
366
+ " if (final_score>highest_score) :\n",
367
+ " highest_score = final_score\n",
368
+ " print('new highscore!')\n",
369
+ " print(f'score : {final_score} pts')\n",
370
+ " #------#\n",
371
+ " save_file(merge , 'all_merge_R4.safetensors')\n",
372
+ " #------#\n",
373
+ "\n",
374
+ "print(f'------------')\n",
375
+ "print(f'Final score : {highest_score} pts')\n",
376
+ "\n",
377
+ "\n",
378
+ "#all R1 23.190992578747682\n",
379
+ "\n",
380
+ "#all R2 23.333244826062582\n",
381
+ "\n",
382
+ "#all R3 23.34471355425194\n",
383
+ "\n",
384
+ "#all R4 23.402637452818453"
385
+ ],
386
+ "metadata": {
387
+ "colab": {
388
+ "base_uri": "https://localhost:8080/",
389
+ "height": 1000
390
+ },
391
+ "id": "9L_g5Zp9Du2E",
392
+ "outputId": "a3aa2bde-061e-43f5-ca35-96bdc470be80"
393
+ },
394
+ "execution_count": 33,
395
+ "outputs": [
396
+ {
397
+ "output_type": "stream",
398
+ "name": "stdout",
399
+ "text": [
400
+ "attempt no : 1 \n",
401
+ "new highscore!\n",
402
+ "score : 23.264414267032407 pts\n",
403
+ "attempt no : 2 \n",
404
+ "attempt no : 3 \n",
405
+ "attempt no : 4 \n",
406
+ "new highscore!\n",
407
+ "score : 23.29399467271287 pts\n",
408
+ "attempt no : 5 \n",
409
+ "attempt no : 6 \n",
410
+ "attempt no : 7 \n",
411
+ "attempt no : 8 \n",
412
+ "attempt no : 9 \n",
413
+ "attempt no : 10 \n",
414
+ "attempt no : 11 \n",
415
+ "new highscore!\n",
416
+ "score : 23.362628780887462 pts\n",
417
+ "attempt no : 12 \n",
418
+ "attempt no : 13 \n",
419
+ "attempt no : 14 \n",
420
+ "attempt no : 15 \n",
421
+ "attempt no : 16 \n",
422
+ "attempt no : 17 \n",
423
+ "attempt no : 18 \n",
424
+ "attempt no : 19 \n",
425
+ "attempt no : 20 \n",
426
+ "attempt no : 21 \n",
427
+ "attempt no : 22 \n",
428
+ "attempt no : 23 \n",
429
+ "new highscore!\n",
430
+ "score : 23.37011210329365 pts\n",
431
+ "attempt no : 24 \n",
432
+ "attempt no : 25 \n",
433
+ "attempt no : 26 \n",
434
+ "attempt no : 27 \n",
435
+ "attempt no : 28 \n",
436
+ "attempt no : 29 \n",
437
+ "attempt no : 30 \n",
438
+ "attempt no : 31 \n",
439
+ "attempt no : 32 \n",
440
+ "attempt no : 33 \n",
441
+ "attempt no : 34 \n",
442
+ "new highscore!\n",
443
+ "score : 23.402637452818453 pts\n",
444
+ "attempt no : 35 \n",
445
+ "attempt no : 36 \n",
446
+ "attempt no : 37 \n",
447
+ "attempt no : 38 \n",
448
+ "attempt no : 39 \n",
449
+ "attempt no : 40 \n",
450
+ "attempt no : 41 \n",
451
+ "attempt no : 42 \n",
452
+ "attempt no : 43 \n",
453
+ "attempt no : 44 \n",
454
+ "attempt no : 45 \n",
455
+ "attempt no : 46 \n",
456
+ "attempt no : 47 \n",
457
+ "attempt no : 48 \n",
458
+ "attempt no : 49 \n",
459
+ "attempt no : 50 \n",
460
+ "attempt no : 51 \n",
461
+ "attempt no : 52 \n",
462
+ "attempt no : 53 \n",
463
+ "attempt no : 54 \n",
464
+ "attempt no : 55 \n",
465
+ "attempt no : 56 \n",
466
+ "attempt no : 57 \n",
467
+ "attempt no : 58 \n",
468
+ "attempt no : 59 \n",
469
+ "attempt no : 60 \n",
470
+ "attempt no : 61 \n",
471
+ "attempt no : 62 \n",
472
+ "attempt no : 63 \n",
473
+ "attempt no : 64 \n",
474
+ "attempt no : 65 \n",
475
+ "attempt no : 66 \n",
476
+ "attempt no : 67 \n",
477
+ "attempt no : 68 \n",
478
+ "attempt no : 69 \n",
479
+ "attempt no : 70 \n",
480
+ "attempt no : 71 \n",
481
+ "attempt no : 72 \n",
482
+ "attempt no : 73 \n",
483
+ "attempt no : 74 \n",
484
+ "attempt no : 75 \n",
485
+ "attempt no : 76 \n",
486
+ "attempt no : 77 \n",
487
+ "attempt no : 78 \n",
488
+ "attempt no : 79 \n",
489
+ "attempt no : 80 \n",
490
+ "attempt no : 81 \n",
491
+ "attempt no : 82 \n",
492
+ "attempt no : 83 \n",
493
+ "attempt no : 84 \n",
494
+ "attempt no : 85 \n",
495
+ "attempt no : 86 \n"
496
+ ]
497
+ },
498
+ {
499
+ "output_type": "error",
500
+ "ename": "KeyboardInterrupt",
501
+ "evalue": "",
502
+ "traceback": [
503
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
504
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
505
+ "\u001b[0;32m<ipython-input-33-037249458db5>\u001b[0m in \u001b[0;36m<cell line: 31>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mtgt_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdoll\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{key}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtgt_dim\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0mvec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrand\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtgt_dim\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0mcgi_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvec\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mcgi\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{key}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0mdoll_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmatmul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvec\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0mdoll\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{key}'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
506
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
507
+ ]
508
+ }
509
+ ]
510
+ },
511
+ {
512
+ "cell_type": "code",
513
+ "source": [
514
+ " for key in doll:\n",
515
+ " if final_score<38.5: break\n",
516
+ " _w_offset = w_offset\n",
517
+ " W = (w1+w2+w3 + w_noise + _w_offset)*torch.ones(1).to(device = device,dtype=torch.float16)\n",
518
+ " tgt_dim = doll[f'{key}'].shape\n",
519
+ " if tgt_dim == torch.Size([]): continue\n",
520
+ " fixed_noise[f'{key}'] = fixed_noise[f'{key}'] + merge[f'{key}']\n",
521
+ " fixed_noise[f'{key}'] = (fixed_noise[f'{key}'] * (w_offset*torch.ones(1).to(device = device,dtype=torch.float16)/LA.matrix_norm(fixed_noise[f'{key}']))).to(device = device,dtype=torch.float16)"
522
+ ],
523
+ "metadata": {
524
+ "id": "jWFHMJN6TqDq"
525
+ },
526
+ "execution_count": null,
527
+ "outputs": []
528
+ },
529
+ {
530
+ "cell_type": "code",
531
+ "source": [
532
+ " vec = torch.rand(tgt_dim[0]).to(dtype=torch.float16)\n",
533
+ " same = torch.abs(cos0(vec ,vec))"
534
+ ],
535
+ "metadata": {
536
+ "id": "k7Pq-kDbuNnQ"
537
+ },
538
+ "execution_count": 64,
539
+ "outputs": []
540
+ },
541
+ {
542
+ "cell_type": "code",
543
+ "source": [
544
+ "same"
545
+ ],
546
+ "metadata": {
547
+ "colab": {
548
+ "base_uri": "https://localhost:8080/"
549
+ },
550
+ "id": "ANBPfP7tuOoa",
551
+ "outputId": "24300487-f874-4f1b-beb7-0f441ec7df4a"
552
+ },
553
+ "execution_count": 65,
554
+ "outputs": [
555
+ {
556
+ "output_type": "execute_result",
557
+ "data": {
558
+ "text/plain": [
559
+ "tensor(1., dtype=torch.float16)"
560
+ ]
561
+ },
562
+ "metadata": {},
563
+ "execution_count": 65
564
+ }
565
+ ]
566
+ },
567
+ {
568
+ "cell_type": "code",
569
+ "source": [
570
+ "torch.ones(1).to(dtype=torch.float16)"
571
+ ],
572
+ "metadata": {
573
+ "colab": {
574
+ "base_uri": "https://localhost:8080/"
575
+ },
576
+ "id": "zN92j8JJuQ6G",
577
+ "outputId": "b810f4e6-a8f3-426a-ae52-ffbd44fb3f00"
578
+ },
579
+ "execution_count": 66,
580
+ "outputs": [
581
+ {
582
+ "output_type": "execute_result",
583
+ "data": {
584
+ "text/plain": [
585
+ "tensor([1.], dtype=torch.float16)"
586
+ ]
587
+ },
588
+ "metadata": {},
589
+ "execution_count": 66
590
+ }
591
+ ]
592
+ },
593
+ {
594
+ "cell_type": "code",
595
+ "source": [
596
+ "\n",
597
+ "\n",
598
+ "\n",
599
+ "\n",
600
+ "\n",
601
+ ""
602
+ ],
603
+ "metadata": {
604
+ "colab": {
605
+ "base_uri": "https://localhost:8080/"
606
+ },
607
+ "id": "py-JMJzhsAI4",
608
+ "outputId": "207cd809-031c-48e3-af0a-98bc114d910e"
609
+ },
610
+ "execution_count": 85,
611
+ "outputs": [
612
+ {
613
+ "output_type": "stream",
614
+ "name": "stdout",
615
+ "text": [
616
+ "score : 45.8125 pts\n"
617
+ ]
618
+ }
619
+ ]
620
+ },
621
+ {
622
+ "cell_type": "code",
623
+ "source": [
624
+ "%cd /content/\n",
625
+ "save_file(merge , 'doll_euro_scale_R_merge.safetensors')"
626
+ ],
627
+ "metadata": {
628
+ "id": "7qogsYsAr2QU"
629
+ },
630
+ "execution_count": null,
631
+ "outputs": []
632
+ },
633
+ {
634
+ "cell_type": "code",
635
+ "source": [],
636
+ "metadata": {
637
+ "id": "9wzLwurSpwpL"
638
+ },
639
+ "execution_count": null,
640
+ "outputs": []
641
+ },
642
+ {
643
+ "cell_type": "code",
644
+ "source": [
645
+ "test = torch.rand(tgt_dim)\n",
646
+ "vec = torch.rand(tgt_dim[0])"
647
+ ],
648
+ "metadata": {
649
+ "id": "DHdy4DptowYG"
650
+ },
651
+ "execution_count": 47,
652
+ "outputs": []
653
+ },
654
+ {
655
+ "cell_type": "code",
656
+ "source": [
657
+ "tgt_dim[0]"
658
+ ],
659
+ "metadata": {
660
+ "colab": {
661
+ "base_uri": "https://localhost:8080/"
662
+ },
663
+ "id": "WeNJ0bquphtx",
664
+ "outputId": "442bfb2e-c1ab-4549-a4ea-ca80d3cc9a7d"
665
+ },
666
+ "execution_count": 46,
667
+ "outputs": [
668
+ {
669
+ "output_type": "execute_result",
670
+ "data": {
671
+ "text/plain": [
672
+ "9216"
673
+ ]
674
+ },
675
+ "metadata": {},
676
+ "execution_count": 46
677
+ }
678
+ ]
679
+ },
680
+ {
681
+ "cell_type": "code",
682
+ "source": [
683
+ "(torch.matmul(vec,test)).shape"
684
+ ],
685
+ "metadata": {
686
+ "colab": {
687
+ "base_uri": "https://localhost:8080/"
688
+ },
689
+ "id": "xqZp3Xo8pQuW",
690
+ "outputId": "68e5c25e-3391-45e7-9c73-45e0174ddbc1"
691
+ },
692
+ "execution_count": 48,
693
+ "outputs": [
694
+ {
695
+ "output_type": "execute_result",
696
+ "data": {
697
+ "text/plain": [
698
+ "torch.Size([64])"
699
+ ]
700
+ },
701
+ "metadata": {},
702
+ "execution_count": 48
703
+ }
704
+ ]
705
+ },
706
+ {
707
+ "cell_type": "code",
708
+ "source": [
709
+ "tgt_dim = torch.Size([64, 3072])\n",
710
+ "cosa = nn.CosineSimilarity(dim=0)\n",
711
+ "cos_dim1 = nn.CosineSimilarity(dim=1)\n",
712
+ "\n",
713
+ "for key in cgi:\n",
714
+ " if not cgi[f'{key}'].shape == torch.Size([64, 3072]): continue\n",
715
+ " print(f'{key} : ')\n",
716
+ " print(torch.sum(torch.abs(cos_dim1(cgi[f'{key}'] , iris[f'{key}']))))"
717
+ ],
718
+ "metadata": {
719
+ "colab": {
720
+ "base_uri": "https://localhost:8080/"
721
+ },
722
+ "id": "VFNw0Nck8V6Q",
723
+ "outputId": "e48bab98-18f7-43bb-d1cf-89f3e00f7ccf"
724
+ },
725
+ "execution_count": 39,
726
+ "outputs": [
727
+ {
728
+ "output_type": "stream",
729
+ "name": "stdout",
730
+ "text": [
731
+ "lora_unet_double_blocks_0_img_attn_proj.lora_down.weight : \n",
732
+ "tensor(1.6982, dtype=torch.float16)\n",
733
+ "lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight : \n",
734
+ "tensor(1.8145, dtype=torch.float16)\n",
735
+ "lora_unet_double_blocks_0_img_mlp_0.lora_down.weight : \n",
736
+ "tensor(1.6309, dtype=torch.float16)\n",
737
+ "lora_unet_double_blocks_0_img_mod_lin.lora_down.weight : \n",
738
+ "tensor(2.6211, dtype=torch.float16)\n",
739
+ "lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight : \n",
740
+ "tensor(2.3203, dtype=torch.float16)\n",
741
+ "lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight : \n",
742
+ "tensor(2.3027, dtype=torch.float16)\n",
743
+ "lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight : \n",
744
+ "tensor(2.5898, dtype=torch.float16)\n",
745
+ "lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight : \n",
746
+ "tensor(2.7402, dtype=torch.float16)\n",
747
+ "lora_unet_double_blocks_10_img_attn_proj.lora_down.weight : \n",
748
+ "tensor(2.0410, dtype=torch.float16)\n",
749
+ "lora_unet_double_blocks_10_img_attn_qkv.lora_down.weight : \n",
750
+ "tensor(1.3350, dtype=torch.float16)\n",
751
+ "lora_unet_double_blocks_10_img_mlp_0.lora_down.weight : \n",
752
+ "tensor(2.0020, dtype=torch.float16)\n",
753
+ "lora_unet_double_blocks_10_img_mod_lin.lora_down.weight : \n",
754
+ "tensor(2.6562, dtype=torch.float16)\n",
755
+ "lora_unet_double_blocks_10_txt_attn_proj.lora_down.weight : \n",
756
+ "tensor(1.1816, dtype=torch.float16)\n",
757
+ "lora_unet_double_blocks_10_txt_attn_qkv.lora_down.weight : \n",
758
+ "tensor(1.1348, dtype=torch.float16)\n",
759
+ "lora_unet_double_blocks_10_txt_mlp_0.lora_down.weight : \n",
760
+ "tensor(3.0156, dtype=torch.float16)\n",
761
+ "lora_unet_double_blocks_10_txt_mod_lin.lora_down.weight : \n",
762
+ "tensor(1.4746, dtype=torch.float16)\n",
763
+ "lora_unet_double_blocks_11_img_attn_proj.lora_down.weight : \n",
764
+ "tensor(1.8359, dtype=torch.float16)\n",
765
+ "lora_unet_double_blocks_11_img_attn_qkv.lora_down.weight : \n",
766
+ "tensor(1.5312, dtype=torch.float16)\n",
767
+ "lora_unet_double_blocks_11_img_mlp_0.lora_down.weight : \n",
768
+ "tensor(2.1465, dtype=torch.float16)\n",
769
+ "lora_unet_double_blocks_11_img_mod_lin.lora_down.weight : \n",
770
+ "tensor(3.9277, dtype=torch.float16)\n",
771
+ "lora_unet_double_blocks_11_txt_attn_proj.lora_down.weight : \n",
772
+ "tensor(1.7246, dtype=torch.float16)\n",
773
+ "lora_unet_double_blocks_11_txt_attn_qkv.lora_down.weight : \n",
774
+ "tensor(1.8594, dtype=torch.float16)\n",
775
+ "lora_unet_double_blocks_11_txt_mlp_0.lora_down.weight : \n",
776
+ "tensor(3.6465, dtype=torch.float16)\n",
777
+ "lora_unet_double_blocks_11_txt_mod_lin.lora_down.weight : \n",
778
+ "tensor(2.6152, dtype=torch.float16)\n",
779
+ "lora_unet_double_blocks_12_img_attn_proj.lora_down.weight : \n",
780
+ "tensor(1.7295, dtype=torch.float16)\n",
781
+ "lora_unet_double_blocks_12_img_attn_qkv.lora_down.weight : \n",
782
+ "tensor(1.4795, dtype=torch.float16)\n",
783
+ "lora_unet_double_blocks_12_img_mlp_0.lora_down.weight : \n",
784
+ "tensor(3.4043, dtype=torch.float16)\n",
785
+ "lora_unet_double_blocks_12_img_mod_lin.lora_down.weight : \n",
786
+ "tensor(2.0137, dtype=torch.float16)\n",
787
+ "lora_unet_double_blocks_12_txt_attn_proj.lora_down.weight : \n",
788
+ "tensor(1.4375, dtype=torch.float16)\n",
789
+ "lora_unet_double_blocks_12_txt_attn_qkv.lora_down.weight : \n",
790
+ "tensor(1.8994, dtype=torch.float16)\n",
791
+ "lora_unet_double_blocks_12_txt_mlp_0.lora_down.weight : \n",
792
+ "tensor(2.1152, dtype=torch.float16)\n",
793
+ "lora_unet_double_blocks_12_txt_mod_lin.lora_down.weight : \n",
794
+ "tensor(1.2744, dtype=torch.float16)\n",
795
+ "lora_unet_double_blocks_13_img_attn_proj.lora_down.weight : \n",
796
+ "tensor(3.0742, dtype=torch.float16)\n",
797
+ "lora_unet_double_blocks_13_img_attn_qkv.lora_down.weight : \n",
798
+ "tensor(1.4980, dtype=torch.float16)\n",
799
+ "lora_unet_double_blocks_13_img_mlp_0.lora_down.weight : \n",
800
+ "tensor(1.9609, dtype=torch.float16)\n",
801
+ "lora_unet_double_blocks_13_img_mod_lin.lora_down.weight : \n",
802
+ "tensor(2.6133, dtype=torch.float16)\n",
803
+ "lora_unet_double_blocks_13_txt_attn_proj.lora_down.weight : \n",
804
+ "tensor(1.6904, dtype=torch.float16)\n",
805
+ "lora_unet_double_blocks_13_txt_attn_qkv.lora_down.weight : \n",
806
+ "tensor(2.1680, dtype=torch.float16)\n",
807
+ "lora_unet_double_blocks_13_txt_mlp_0.lora_down.weight : \n",
808
+ "tensor(2.8574, dtype=torch.float16)\n",
809
+ "lora_unet_double_blocks_13_txt_mod_lin.lora_down.weight : \n",
810
+ "tensor(1.9053, dtype=torch.float16)\n",
811
+ "lora_unet_double_blocks_14_img_attn_proj.lora_down.weight : \n",
812
+ "tensor(1.8135, dtype=torch.float16)\n",
813
+ "lora_unet_double_blocks_14_img_attn_qkv.lora_down.weight : \n",
814
+ "tensor(1.4033, dtype=torch.float16)\n",
815
+ "lora_unet_double_blocks_14_img_mlp_0.lora_down.weight : \n",
816
+ "tensor(1.5547, dtype=torch.float16)\n",
817
+ "lora_unet_double_blocks_14_img_mod_lin.lora_down.weight : \n",
818
+ "tensor(2.8906, dtype=torch.float16)\n",
819
+ "lora_unet_double_blocks_14_txt_attn_proj.lora_down.weight : \n",
820
+ "tensor(1.1328, dtype=torch.float16)\n",
821
+ "lora_unet_double_blocks_14_txt_attn_qkv.lora_down.weight : \n",
822
+ "tensor(1.3701, dtype=torch.float16)\n",
823
+ "lora_unet_double_blocks_14_txt_mlp_0.lora_down.weight : \n",
824
+ "tensor(3.3145, dtype=torch.float16)\n",
825
+ "lora_unet_double_blocks_14_txt_mod_lin.lora_down.weight : \n",
826
+ "tensor(1.2031, dtype=torch.float16)\n",
827
+ "lora_unet_double_blocks_15_img_attn_proj.lora_down.weight : \n",
828
+ "tensor(1.5137, dtype=torch.float16)\n",
829
+ "lora_unet_double_blocks_15_img_attn_qkv.lora_down.weight : \n",
830
+ "tensor(1.3809, dtype=torch.float16)\n",
831
+ "lora_unet_double_blocks_15_img_mlp_0.lora_down.weight : \n",
832
+ "tensor(1.4834, dtype=torch.float16)\n",
833
+ "lora_unet_double_blocks_15_img_mod_lin.lora_down.weight : \n",
834
+ "tensor(1.6465, dtype=torch.float16)\n",
835
+ "lora_unet_double_blocks_15_txt_attn_proj.lora_down.weight : \n",
836
+ "tensor(1.7256, dtype=torch.float16)\n",
837
+ "lora_unet_double_blocks_15_txt_attn_qkv.lora_down.weight : \n",
838
+ "tensor(2.8672, dtype=torch.float16)\n",
839
+ "lora_unet_double_blocks_15_txt_mlp_0.lora_down.weight : \n",
840
+ "tensor(2.1953, dtype=torch.float16)\n",
841
+ "lora_unet_double_blocks_15_txt_mod_lin.lora_down.weight : \n",
842
+ "tensor(0.9858, dtype=torch.float16)\n",
843
+ "lora_unet_double_blocks_16_img_attn_proj.lora_down.weight : \n",
844
+ "tensor(1.5703, dtype=torch.float16)\n",
845
+ "lora_unet_double_blocks_16_img_attn_qkv.lora_down.weight : \n",
846
+ "tensor(1.4648, dtype=torch.float16)\n",
847
+ "lora_unet_double_blocks_16_img_mlp_0.lora_down.weight : \n",
848
+ "tensor(1.5537, dtype=torch.float16)\n",
849
+ "lora_unet_double_blocks_16_img_mod_lin.lora_down.weight : \n",
850
+ "tensor(2.6133, dtype=torch.float16)\n",
851
+ "lora_unet_double_blocks_16_txt_attn_proj.lora_down.weight : \n",
852
+ "tensor(2.2559, dtype=torch.float16)\n",
853
+ "lora_unet_double_blocks_16_txt_attn_qkv.lora_down.weight : \n",
854
+ "tensor(1.9365, dtype=torch.float16)\n",
855
+ "lora_unet_double_blocks_16_txt_mlp_0.lora_down.weight : \n",
856
+ "tensor(2.7891, dtype=torch.float16)\n",
857
+ "lora_unet_double_blocks_16_txt_mod_lin.lora_down.weight : \n",
858
+ "tensor(1.3174, dtype=torch.float16)\n",
859
+ "lora_unet_double_blocks_17_img_attn_proj.lora_down.weight : \n",
860
+ "tensor(2.4609, dtype=torch.float16)\n",
861
+ "lora_unet_double_blocks_17_img_attn_qkv.lora_down.weight : \n",
862
+ "tensor(1.6240, dtype=torch.float16)\n",
863
+ "lora_unet_double_blocks_17_img_mlp_0.lora_down.weight : \n",
864
+ "tensor(3.1406, dtype=torch.float16)\n",
865
+ "lora_unet_double_blocks_17_img_mod_lin.lora_down.weight : \n",
866
+ "tensor(2.1055, dtype=torch.float16)\n",
867
+ "lora_unet_double_blocks_17_txt_attn_proj.lora_down.weight : \n",
868
+ "tensor(1.7480, dtype=torch.float16)\n",
869
+ "lora_unet_double_blocks_17_txt_attn_qkv.lora_down.weight : \n",
870
+ "tensor(1.6436, dtype=torch.float16)\n",
871
+ "lora_unet_double_blocks_17_txt_mlp_0.lora_down.weight : \n",
872
+ "tensor(1.9688, dtype=torch.float16)\n",
873
+ "lora_unet_double_blocks_17_txt_mod_lin.lora_down.weight : \n",
874
+ "tensor(1.8184, dtype=torch.float16)\n",
875
+ "lora_unet_double_blocks_18_img_attn_proj.lora_down.weight : \n",
876
+ "tensor(2.3887, dtype=torch.float16)\n",
877
+ "lora_unet_double_blocks_18_img_attn_qkv.lora_down.weight : \n",
878
+ "tensor(1.6738, dtype=torch.float16)\n",
879
+ "lora_unet_double_blocks_18_img_mlp_0.lora_down.weight : \n",
880
+ "tensor(3.7500, dtype=torch.float16)\n",
881
+ "lora_unet_double_blocks_18_img_mod_lin.lora_down.weight : \n",
882
+ "tensor(2.7285, dtype=torch.float16)\n",
883
+ "lora_unet_double_blocks_18_txt_attn_proj.lora_down.weight : \n",
884
+ "tensor(2.0410, dtype=torch.float16)\n",
885
+ "lora_unet_double_blocks_18_txt_attn_qkv.lora_down.weight : \n",
886
+ "tensor(2.0586, dtype=torch.float16)\n",
887
+ "lora_unet_double_blocks_18_txt_mlp_0.lora_down.weight : \n",
888
+ "tensor(2.0801, dtype=torch.float16)\n",
889
+ "lora_unet_double_blocks_18_txt_mod_lin.lora_down.weight : \n",
890
+ "tensor(1.5684, dtype=torch.float16)\n",
891
+ "lora_unet_double_blocks_1_img_attn_proj.lora_down.weight : \n",
892
+ "tensor(4.9844, dtype=torch.float16)\n",
893
+ "lora_unet_double_blocks_1_img_attn_qkv.lora_down.weight : \n",
894
+ "tensor(1.8613, dtype=torch.float16)\n",
895
+ "lora_unet_double_blocks_1_img_mlp_0.lora_down.weight : \n",
896
+ "tensor(2.2266, dtype=torch.float16)\n",
897
+ "lora_unet_double_blocks_1_img_mod_lin.lora_down.weight : \n",
898
+ "tensor(2.8164, dtype=torch.float16)\n",
899
+ "lora_unet_double_blocks_1_txt_attn_proj.lora_down.weight : \n",
900
+ "tensor(1.7500, dtype=torch.float16)\n",
901
+ "lora_unet_double_blocks_1_txt_attn_qkv.lora_down.weight : \n",
902
+ "tensor(2.3105, dtype=torch.float16)\n",
903
+ "lora_unet_double_blocks_1_txt_mlp_0.lora_down.weight : \n",
904
+ "tensor(1.9639, dtype=torch.float16)\n",
905
+ "lora_unet_double_blocks_1_txt_mod_lin.lora_down.weight : \n",
906
+ "tensor(2.6504, dtype=torch.float16)\n",
907
+ "lora_unet_double_blocks_2_img_attn_proj.lora_down.weight : \n",
908
+ "tensor(4.6367, dtype=torch.float16)\n",
909
+ "lora_unet_double_blocks_2_img_attn_qkv.lora_down.weight : \n",
910
+ "tensor(1.7988, dtype=torch.float16)\n",
911
+ "lora_unet_double_blocks_2_img_mlp_0.lora_down.weight : \n",
912
+ "tensor(4.6758, dtype=torch.float16)\n",
913
+ "lora_unet_double_blocks_2_img_mod_lin.lora_down.weight : \n",
914
+ "tensor(3.1445, dtype=torch.float16)\n",
915
+ "lora_unet_double_blocks_2_txt_attn_proj.lora_down.weight : \n",
916
+ "tensor(2.2285, dtype=torch.float16)\n",
917
+ "lora_unet_double_blocks_2_txt_attn_qkv.lora_down.weight : \n",
918
+ "tensor(1.4990, dtype=torch.float16)\n",
919
+ "lora_unet_double_blocks_2_txt_mlp_0.lora_down.weight : \n",
920
+ "tensor(2.3984, dtype=torch.float16)\n",
921
+ "lora_unet_double_blocks_2_txt_mod_lin.lora_down.weight : \n",
922
+ "tensor(1.4443, dtype=torch.float16)\n",
923
+ "lora_unet_double_blocks_3_img_attn_proj.lora_down.weight : \n",
924
+ "tensor(3.6855, dtype=torch.float16)\n",
925
+ "lora_unet_double_blocks_3_img_attn_qkv.lora_down.weight : \n",
926
+ "tensor(1.9971, dtype=torch.float16)\n",
927
+ "lora_unet_double_blocks_3_img_mlp_0.lora_down.weight : \n",
928
+ "tensor(3.3301, dtype=torch.float16)\n",
929
+ "lora_unet_double_blocks_3_img_mod_lin.lora_down.weight : \n",
930
+ "tensor(2.3379, dtype=torch.float16)\n",
931
+ "lora_unet_double_blocks_3_txt_attn_proj.lora_down.weight : \n",
932
+ "tensor(2.0117, dtype=torch.float16)\n",
933
+ "lora_unet_double_blocks_3_txt_attn_qkv.lora_down.weight : \n",
934
+ "tensor(2.1621, dtype=torch.float16)\n",
935
+ "lora_unet_double_blocks_3_txt_mlp_0.lora_down.weight : \n",
936
+ "tensor(2.7676, dtype=torch.float16)\n",
937
+ "lora_unet_double_blocks_3_txt_mod_lin.lora_down.weight : \n",
938
+ "tensor(3.1895, dtype=torch.float16)\n",
939
+ "lora_unet_double_blocks_4_img_attn_proj.lora_down.weight : \n",
940
+ "tensor(2.3848, dtype=torch.float16)\n",
941
+ "lora_unet_double_blocks_4_img_attn_qkv.lora_down.weight : \n",
942
+ "tensor(1.7783, dtype=torch.float16)\n",
943
+ "lora_unet_double_blocks_4_img_mlp_0.lora_down.weight : \n",
944
+ "tensor(2.0234, dtype=torch.float16)\n",
945
+ "lora_unet_double_blocks_4_img_mod_lin.lora_down.weight : \n",
946
+ "tensor(1.9082, dtype=torch.float16)\n",
947
+ "lora_unet_double_blocks_4_txt_attn_proj.lora_down.weight : \n",
948
+ "tensor(1.7588, dtype=torch.float16)\n",
949
+ "lora_unet_double_blocks_4_txt_attn_qkv.lora_down.weight : \n",
950
+ "tensor(2.9902, dtype=torch.float16)\n",
951
+ "lora_unet_double_blocks_4_txt_mlp_0.lora_down.weight : \n",
952
+ "tensor(1.5859, dtype=torch.float16)\n",
953
+ "lora_unet_double_blocks_4_txt_mod_lin.lora_down.weight : \n",
954
+ "tensor(1.5654, dtype=torch.float16)\n",
955
+ "lora_unet_double_blocks_5_img_attn_proj.lora_down.weight : \n",
956
+ "tensor(2.7402, dtype=torch.float16)\n",
957
+ "lora_unet_double_blocks_5_img_attn_qkv.lora_down.weight : \n",
958
+ "tensor(1.6221, dtype=torch.float16)\n",
959
+ "lora_unet_double_blocks_5_img_mlp_0.lora_down.weight : \n",
960
+ "tensor(1.6318, dtype=torch.float16)\n",
961
+ "lora_unet_double_blocks_5_img_mod_lin.lora_down.weight : \n",
962
+ "tensor(1.7988, dtype=torch.float16)\n",
963
+ "lora_unet_double_blocks_5_txt_attn_proj.lora_down.weight : \n",
964
+ "tensor(1.1699, dtype=torch.float16)\n",
965
+ "lora_unet_double_blocks_5_txt_attn_qkv.lora_down.weight : \n",
966
+ "tensor(3.5566, dtype=torch.float16)\n",
967
+ "lora_unet_double_blocks_5_txt_mlp_0.lora_down.weight : \n",
968
+ "tensor(1.5791, dtype=torch.float16)\n",
969
+ "lora_unet_double_blocks_5_txt_mod_lin.lora_down.weight : \n",
970
+ "tensor(1.5547, dtype=torch.float16)\n",
971
+ "lora_unet_double_blocks_6_img_attn_proj.lora_down.weight : \n",
972
+ "tensor(1.7988, dtype=torch.float16)\n",
973
+ "lora_unet_double_blocks_6_img_attn_qkv.lora_down.weight : \n",
974
+ "tensor(1.4531, dtype=torch.float16)\n",
975
+ "lora_unet_double_blocks_6_img_mlp_0.lora_down.weight : \n",
976
+ "tensor(2.4141, dtype=torch.float16)\n",
977
+ "lora_unet_double_blocks_6_img_mod_lin.lora_down.weight : \n",
978
+ "tensor(6.0234, dtype=torch.float16)\n",
979
+ "lora_unet_double_blocks_6_txt_attn_proj.lora_down.weight : \n",
980
+ "tensor(1.0068, dtype=torch.float16)\n",
981
+ "lora_unet_double_blocks_6_txt_attn_qkv.lora_down.weight : \n",
982
+ "tensor(2.0098, dtype=torch.float16)\n",
983
+ "lora_unet_double_blocks_6_txt_mlp_0.lora_down.weight : \n",
984
+ "tensor(4.0312, dtype=torch.float16)\n",
985
+ "lora_unet_double_blocks_6_txt_mod_lin.lora_down.weight : \n",
986
+ "tensor(2.6309, dtype=torch.float16)\n",
987
+ "lora_unet_double_blocks_7_img_attn_proj.lora_down.weight : \n",
988
+ "tensor(1.4814, dtype=torch.float16)\n",
989
+ "lora_unet_double_blocks_7_img_attn_qkv.lora_down.weight : \n",
990
+ "tensor(1.4854, dtype=torch.float16)\n",
991
+ "lora_unet_double_blocks_7_img_mlp_0.lora_down.weight : \n",
992
+ "tensor(1.3877, dtype=torch.float16)\n",
993
+ "lora_unet_double_blocks_7_img_mod_lin.lora_down.weight : \n",
994
+ "tensor(2.3125, dtype=torch.float16)\n",
995
+ "lora_unet_double_blocks_7_txt_attn_proj.lora_down.weight : \n",
996
+ "tensor(3.4746, dtype=torch.float16)\n",
997
+ "lora_unet_double_blocks_7_txt_attn_qkv.lora_down.weight : \n",
998
+ "tensor(2.0430, dtype=torch.float16)\n",
999
+ "lora_unet_double_blocks_7_txt_mlp_0.lora_down.weight : \n",
1000
+ "tensor(1.8018, dtype=torch.float16)\n",
1001
+ "lora_unet_double_blocks_7_txt_mod_lin.lora_down.weight : \n",
1002
+ "tensor(1.1709, dtype=torch.float16)\n",
1003
+ "lora_unet_double_blocks_8_img_attn_proj.lora_down.weight : \n",
1004
+ "tensor(1.8857, dtype=torch.float16)\n",
1005
+ "lora_unet_double_blocks_8_img_attn_qkv.lora_down.weight : \n",
1006
+ "tensor(1.8848, dtype=torch.float16)\n",
1007
+ "lora_unet_double_blocks_8_img_mlp_0.lora_down.weight : \n",
1008
+ "tensor(1.7627, dtype=torch.float16)\n",
1009
+ "lora_unet_double_blocks_8_img_mod_lin.lora_down.weight : \n",
1010
+ "tensor(4.2852, dtype=torch.float16)\n",
1011
+ "lora_unet_double_blocks_8_txt_attn_proj.lora_down.weight : \n",
1012
+ "tensor(1.3887, dtype=torch.float16)\n",
1013
+ "lora_unet_double_blocks_8_txt_attn_qkv.lora_down.weight : \n",
1014
+ "tensor(1.6289, dtype=torch.float16)\n",
1015
+ "lora_unet_double_blocks_8_txt_mlp_0.lora_down.weight : \n",
1016
+ "tensor(2.2188, dtype=torch.float16)\n",
1017
+ "lora_unet_double_blocks_8_txt_mod_lin.lora_down.weight : \n",
1018
+ "tensor(1.5742, dtype=torch.float16)\n",
1019
+ "lora_unet_double_blocks_9_img_attn_proj.lora_down.weight : \n",
1020
+ "tensor(2.3125, dtype=torch.float16)\n",
1021
+ "lora_unet_double_blocks_9_img_attn_qkv.lora_down.weight : \n",
1022
+ "tensor(1.4854, dtype=torch.float16)\n",
1023
+ "lora_unet_double_blocks_9_img_mlp_0.lora_down.weight : \n",
1024
+ "tensor(1.9492, dtype=torch.float16)\n",
1025
+ "lora_unet_double_blocks_9_img_mod_lin.lora_down.weight : \n",
1026
+ "tensor(2.2949, dtype=torch.float16)\n",
1027
+ "lora_unet_double_blocks_9_txt_attn_proj.lora_down.weight : \n",
1028
+ "tensor(2.0781, dtype=torch.float16)\n",
1029
+ "lora_unet_double_blocks_9_txt_attn_qkv.lora_down.weight : \n",
1030
+ "tensor(2.6172, dtype=torch.float16)\n",
1031
+ "lora_unet_double_blocks_9_txt_mlp_0.lora_down.weight : \n",
1032
+ "tensor(3.1367, dtype=torch.float16)\n",
1033
+ "lora_unet_double_blocks_9_txt_mod_lin.lora_down.weight : \n",
1034
+ "tensor(1.2451, dtype=torch.float16)\n",
1035
+ "lora_unet_single_blocks_0_linear1.lora_down.weight : \n",
1036
+ "tensor(2.4375, dtype=torch.float16)\n",
1037
+ "lora_unet_single_blocks_0_modulation_lin.lora_down.weight : \n",
1038
+ "tensor(3.5684, dtype=torch.float16)\n",
1039
+ "lora_unet_single_blocks_10_linear1.lora_down.weight : \n",
1040
+ "tensor(2.6328, dtype=torch.float16)\n",
1041
+ "lora_unet_single_blocks_10_modulation_lin.lora_down.weight : \n",
1042
+ "tensor(2.9961, dtype=torch.float16)\n",
1043
+ "lora_unet_single_blocks_11_linear1.lora_down.weight : \n",
1044
+ "tensor(3.1211, dtype=torch.float16)\n",
1045
+ "lora_unet_single_blocks_11_modulation_lin.lora_down.weight : \n",
1046
+ "tensor(3.3672, dtype=torch.float16)\n",
1047
+ "lora_unet_single_blocks_12_linear1.lora_down.weight : \n",
1048
+ "tensor(3.0293, dtype=torch.float16)\n",
1049
+ "lora_unet_single_blocks_12_modulation_lin.lora_down.weight : \n",
1050
+ "tensor(3.6602, dtype=torch.float16)\n",
1051
+ "lora_unet_single_blocks_13_linear1.lora_down.weight : \n",
1052
+ "tensor(2.5918, dtype=torch.float16)\n",
1053
+ "lora_unet_single_blocks_13_modulation_lin.lora_down.weight : \n",
1054
+ "tensor(4.6367, dtype=torch.float16)\n",
1055
+ "lora_unet_single_blocks_14_linear1.lora_down.weight : \n",
1056
+ "tensor(2.0215, dtype=torch.float16)\n",
1057
+ "lora_unet_single_blocks_14_modulation_lin.lora_down.weight : \n",
1058
+ "tensor(3.5371, dtype=torch.float16)\n",
1059
+ "lora_unet_single_blocks_15_linear1.lora_down.weight : \n",
1060
+ "tensor(2.1719, dtype=torch.float16)\n",
1061
+ "lora_unet_single_blocks_15_modulation_lin.lora_down.weight : \n",
1062
+ "tensor(4.2812, dtype=torch.float16)\n",
1063
+ "lora_unet_single_blocks_16_linear1.lora_down.weight : \n",
1064
+ "tensor(2.1992, dtype=torch.float16)\n",
1065
+ "lora_unet_single_blocks_16_modulation_lin.lora_down.weight : \n",
1066
+ "tensor(4.1094, dtype=torch.float16)\n",
1067
+ "lora_unet_single_blocks_17_linear1.lora_down.weight : \n",
1068
+ "tensor(2.0703, dtype=torch.float16)\n",
1069
+ "lora_unet_single_blocks_17_modulation_lin.lora_down.weight : \n",
1070
+ "tensor(2.9277, dtype=torch.float16)\n",
1071
+ "lora_unet_single_blocks_18_linear1.lora_down.weight : \n",
1072
+ "tensor(2.0371, dtype=torch.float16)\n",
1073
+ "lora_unet_single_blocks_18_modulation_lin.lora_down.weight : \n",
1074
+ "tensor(2.6133, dtype=torch.float16)\n",
1075
+ "lora_unet_single_blocks_19_linear1.lora_down.weight : \n",
1076
+ "tensor(2.0723, dtype=torch.float16)\n",
1077
+ "lora_unet_single_blocks_19_modulation_lin.lora_down.weight : \n",
1078
+ "tensor(3.4980, dtype=torch.float16)\n",
1079
+ "lora_unet_single_blocks_1_linear1.lora_down.weight : \n",
1080
+ "tensor(1.7432, dtype=torch.float16)\n",
1081
+ "lora_unet_single_blocks_1_modulation_lin.lora_down.weight : \n",
1082
+ "tensor(2.3848, dtype=torch.float16)\n",
1083
+ "lora_unet_single_blocks_20_linear1.lora_down.weight : \n",
1084
+ "tensor(2.0137, dtype=torch.float16)\n",
1085
+ "lora_unet_single_blocks_20_modulation_lin.lora_down.weight : \n",
1086
+ "tensor(2.8203, dtype=torch.float16)\n",
1087
+ "lora_unet_single_blocks_21_linear1.lora_down.weight : \n",
1088
+ "tensor(1.8955, dtype=torch.float16)\n",
1089
+ "lora_unet_single_blocks_21_modulation_lin.lora_down.weight : \n",
1090
+ "tensor(2.7305, dtype=torch.float16)\n",
1091
+ "lora_unet_single_blocks_22_linear1.lora_down.weight : \n",
1092
+ "tensor(2.7559, dtype=torch.float16)\n",
1093
+ "lora_unet_single_blocks_22_modulation_lin.lora_down.weight : \n",
1094
+ "tensor(4.6133, dtype=torch.float16)\n",
1095
+ "lora_unet_single_blocks_23_linear1.lora_down.weight : \n",
1096
+ "tensor(2.5508, dtype=torch.float16)\n",
1097
+ "lora_unet_single_blocks_23_modulation_lin.lora_down.weight : \n",
1098
+ "tensor(4.4180, dtype=torch.float16)\n",
1099
+ "lora_unet_single_blocks_24_linear1.lora_down.weight : \n",
1100
+ "tensor(1.9219, dtype=torch.float16)\n",
1101
+ "lora_unet_single_blocks_24_modulation_lin.lora_down.weight : \n",
1102
+ "tensor(2.9453, dtype=torch.float16)\n",
1103
+ "lora_unet_single_blocks_25_linear1.lora_down.weight : \n",
1104
+ "tensor(2.7539, dtype=torch.float16)\n",
1105
+ "lora_unet_single_blocks_25_modulation_lin.lora_down.weight : \n",
1106
+ "tensor(4.5938, dtype=torch.float16)\n",
1107
+ "lora_unet_single_blocks_26_linear1.lora_down.weight : \n",
1108
+ "tensor(3.3750, dtype=torch.float16)\n",
1109
+ "lora_unet_single_blocks_26_modulation_lin.lora_down.weight : \n",
1110
+ "tensor(4.7344, dtype=torch.float16)\n",
1111
+ "lora_unet_single_blocks_27_linear1.lora_down.weight : \n",
1112
+ "tensor(2.3809, dtype=torch.float16)\n",
1113
+ "lora_unet_single_blocks_27_modulation_lin.lora_down.weight : \n",
1114
+ "tensor(4.9883, dtype=torch.float16)\n",
1115
+ "lora_unet_single_blocks_28_linear1.lora_down.weight : \n",
1116
+ "tensor(3.0859, dtype=torch.float16)\n",
1117
+ "lora_unet_single_blocks_28_modulation_lin.lora_down.weight : \n",
1118
+ "tensor(5.7539, dtype=torch.float16)\n",
1119
+ "lora_unet_single_blocks_29_linear1.lora_down.weight : \n",
1120
+ "tensor(2.3242, dtype=torch.float16)\n",
1121
+ "lora_unet_single_blocks_29_modulation_lin.lora_down.weight : \n",
1122
+ "tensor(3.9160, dtype=torch.float16)\n",
1123
+ "lora_unet_single_blocks_2_linear1.lora_down.weight : \n",
1124
+ "tensor(2.1406, dtype=torch.float16)\n",
1125
+ "lora_unet_single_blocks_2_modulation_lin.lora_down.weight : \n",
1126
+ "tensor(2.1621, dtype=torch.float16)\n",
1127
+ "lora_unet_single_blocks_30_linear1.lora_down.weight : \n",
1128
+ "tensor(2.1211, dtype=torch.float16)\n",
1129
+ "lora_unet_single_blocks_30_modulation_lin.lora_down.weight : \n",
1130
+ "tensor(4.8516, dtype=torch.float16)\n",
1131
+ "lora_unet_single_blocks_31_linear1.lora_down.weight : \n",
1132
+ "tensor(2.2773, dtype=torch.float16)\n",
1133
+ "lora_unet_single_blocks_31_modulation_lin.lora_down.weight : \n",
1134
+ "tensor(4.1367, dtype=torch.float16)\n",
1135
+ "lora_unet_single_blocks_32_linear1.lora_down.weight : \n",
1136
+ "tensor(2.5273, dtype=torch.float16)\n",
1137
+ "lora_unet_single_blocks_32_modulation_lin.lora_down.weight : \n",
1138
+ "tensor(5.0508, dtype=torch.float16)\n",
1139
+ "lora_unet_single_blocks_33_linear1.lora_down.weight : \n",
1140
+ "tensor(2.7051, dtype=torch.float16)\n",
1141
+ "lora_unet_single_blocks_33_modulation_lin.lora_down.weight : \n",
1142
+ "tensor(5.2930, dtype=torch.float16)\n",
1143
+ "lora_unet_single_blocks_34_linear1.lora_down.weight : \n",
1144
+ "tensor(2.6738, dtype=torch.float16)\n",
1145
+ "lora_unet_single_blocks_34_modulation_lin.lora_down.weight : \n",
1146
+ "tensor(4.7852, dtype=torch.float16)\n",
1147
+ "lora_unet_single_blocks_35_linear1.lora_down.weight : \n",
1148
+ "tensor(2.5117, dtype=torch.float16)\n",
1149
+ "lora_unet_single_blocks_35_modulation_lin.lora_down.weight : \n",
1150
+ "tensor(6.7734, dtype=torch.float16)\n",
1151
+ "lora_unet_single_blocks_36_linear1.lora_down.weight : \n",
1152
+ "tensor(1.8418, dtype=torch.float16)\n",
1153
+ "lora_unet_single_blocks_36_modulation_lin.lora_down.weight : \n",
1154
+ "tensor(6.5859, dtype=torch.float16)\n",
1155
+ "lora_unet_single_blocks_37_linear1.lora_down.weight : \n",
1156
+ "tensor(2.4473, dtype=torch.float16)\n",
1157
+ "lora_unet_single_blocks_37_modulation_lin.lora_down.weight : \n",
1158
+ "tensor(2.5742, dtype=torch.float16)\n",
1159
+ "lora_unet_single_blocks_3_linear1.lora_down.weight : \n",
1160
+ "tensor(2.5566, dtype=torch.float16)\n",
1161
+ "lora_unet_single_blocks_3_modulation_lin.lora_down.weight : \n",
1162
+ "tensor(4.7148, dtype=torch.float16)\n",
1163
+ "lora_unet_single_blocks_4_linear1.lora_down.weight : \n",
1164
+ "tensor(2.2832, dtype=torch.float16)\n",
1165
+ "lora_unet_single_blocks_4_modulation_lin.lora_down.weight : \n",
1166
+ "tensor(2.0566, dtype=torch.float16)\n",
1167
+ "lora_unet_single_blocks_5_linear1.lora_down.weight : \n",
1168
+ "tensor(2.2109, dtype=torch.float16)\n",
1169
+ "lora_unet_single_blocks_5_modulation_lin.lora_down.weight : \n",
1170
+ "tensor(2.7793, dtype=torch.float16)\n",
1171
+ "lora_unet_single_blocks_6_linear1.lora_down.weight : \n",
1172
+ "tensor(3.0176, dtype=torch.float16)\n",
1173
+ "lora_unet_single_blocks_6_modulation_lin.lora_down.weight : \n",
1174
+ "tensor(2.9180, dtype=torch.float16)\n",
1175
+ "lora_unet_single_blocks_7_linear1.lora_down.weight : \n",
1176
+ "tensor(2.2461, dtype=torch.float16)\n",
1177
+ "lora_unet_single_blocks_7_modulation_lin.lora_down.weight : \n",
1178
+ "tensor(2.1074, dtype=torch.float16)\n",
1179
+ "lora_unet_single_blocks_8_linear1.lora_down.weight : \n",
1180
+ "tensor(3.0391, dtype=torch.float16)\n",
1181
+ "lora_unet_single_blocks_8_modulation_lin.lora_down.weight : \n",
1182
+ "tensor(2.0039, dtype=torch.float16)\n",
1183
+ "lora_unet_single_blocks_9_linear1.lora_down.weight : \n",
1184
+ "tensor(3.8789, dtype=torch.float16)\n",
1185
+ "lora_unet_single_blocks_9_modulation_lin.lora_down.weight : \n",
1186
+ "tensor(4.0547, dtype=torch.float16)\n"
1187
+ ]
1188
+ }
1189
+ ]
1190
+ },
1191
+ {
1192
+ "cell_type": "markdown",
1193
+ "source": [
1194
+ "<---- Upload your civiai trained .safetensor file to Google Colab before running the next cell\n",
1195
+ "\n"
1196
+ ],
1197
+ "metadata": {
1198
+ "id": "oDAUwfFzqzgj"
1199
+ }
1200
+ },
1201
+ {
1202
+ "cell_type": "code",
1203
+ "execution_count": null,
1204
+ "metadata": {
1205
+ "id": "WQZ3BZn1p-pw"
1206
+ },
1207
+ "outputs": [],
1208
+ "source": [
1209
+ "civiai_lora = '' # @param {type:'string' ,placeholder:'ex. civitai_trained_e19.safetensors'}\n",
1210
+ "tensor_art_filename = '' # @param {type:'string' ,placeholder:'ex. e19.safetensors'}\n",
1211
+ "%cd /content/\n",
1212
+ "tgt = load_file(f'{civiai_lora}')\n",
1213
+ "for key in tgt:\n",
1214
+ " tgt[f'{key}'] = tgt[f'{key}'].to(dtype=torch.float16)\n",
1215
+ "%cd /content/\n",
1216
+ "save_file(tgt , f'{tensor_art_filename}')"
1217
+ ]
1218
+ },
1219
+ {
1220
+ "cell_type": "markdown",
1221
+ "source": [
1222
+ "Download the new .safetensor file to your device.\n",
1223
+ "\n",
1224
+ "Downloading from CoLab Notebook will seemingly do nothing for ~5min. Then the file will download , so be patient.\n",
1225
+ "\n",
1226
+ "For faster/more consistent downloads , download your .safetensor file from your Google Drive"
1227
+ ],
1228
+ "metadata": {
1229
+ "id": "blnBW-U4rAS7"
1230
+ }
1231
+ }
1232
+ ]
1233
+ }