repo_name
stringlengths
5
100
path
stringlengths
4
299
copies
stringclasses
990 values
size
stringlengths
4
7
content
stringlengths
666
1.03M
license
stringclasses
15 values
hash
int64
-9,223,351,895,964,839,000
9,223,297,778B
line_mean
float64
3.17
100
line_max
int64
7
1k
alpha_frac
float64
0.25
0.98
autogenerated
bool
1 class
fedral/ITK
Wrapping/Generators/Python/Tests/BinaryErodeImageFilter.py
19
1673
#!/usr/bin/env python #========================================================================== # # Copyright Insight Software Consortium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #==========================================================================*/ # # Test BinaryDilateImageFilter # import sys import itk itk.auto_progress(2) inputImage = sys.argv[1] outputImage = sys.argv[2] radiusValue = int(sys.argv[3]) PixelType = itk.UC Dimension = 2 ImageType = itk.Image[PixelType, Dimension] ReaderType = itk.ImageFileReader[ImageType] reader = ReaderType.New() reader.SetFileName(inputImage) StructuringElementType = itk.FlatStructuringElement[Dimension] structuringElement = StructuringElementType.Ball(radiusValue) ErodeFilterType = itk.BinaryErodeImageFilter[ ImageType, ImageType, StructuringElementType] erodeFilter = ErodeFilterType.New() erodeFilter.SetInput(reader.GetOutput()) erodeFilter.SetKernel(structuringElement) erodeFilter.SetErodeValue(200) WriterType = itk.ImageFileWriter[ImageType] writer = WriterType.New() writer.SetFileName(outputImage) writer.SetInput(erodeFilter.GetOutput()) writer.Update()
apache-2.0
-1,586,508,986,531,938,800
28.350877
77
0.704722
false
2014c2g12/c2g12
wsgi/exts/w2/static/Brython2.0.0-20140209-164925/Lib/reprlib.py
923
5110
"""Redo the builtin repr() (representation) but with limits on most sizes.""" __all__ = ["Repr", "repr", "recursive_repr"] import builtins from itertools import islice try: from _thread import get_ident except ImportError: from _dummy_thread import get_ident def recursive_repr(fillvalue='...'): 'Decorator to make a repr function return fillvalue for a recursive call' def decorating_function(user_function): repr_running = set() def wrapper(self): key = id(self), get_ident() if key in repr_running: return fillvalue repr_running.add(key) try: result = user_function(self) finally: repr_running.discard(key) return result # Can't use functools.wraps() here because of bootstrap issues wrapper.__module__ = getattr(user_function, '__module__') wrapper.__doc__ = getattr(user_function, '__doc__') wrapper.__name__ = getattr(user_function, '__name__') wrapper.__annotations__ = getattr(user_function, '__annotations__', {}) return wrapper return decorating_function class Repr: def __init__(self): self.maxlevel = 6 self.maxtuple = 6 self.maxlist = 6 self.maxarray = 5 self.maxdict = 4 self.maxset = 6 self.maxfrozenset = 6 self.maxdeque = 6 self.maxstring = 30 self.maxlong = 40 self.maxother = 30 def repr(self, x): return self.repr1(x, self.maxlevel) def repr1(self, x, level): typename = type(x).__name__ if ' ' in typename: parts = typename.split() typename = '_'.join(parts) if hasattr(self, 'repr_' + typename): return getattr(self, 'repr_' + typename)(x, level) else: return self.repr_instance(x, level) def _repr_iterable(self, x, level, left, right, maxiter, trail=''): n = len(x) if level <= 0 and n: s = '...' else: newlevel = level - 1 repr1 = self.repr1 pieces = [repr1(elem, newlevel) for elem in islice(x, maxiter)] if n > maxiter: pieces.append('...') s = ', '.join(pieces) if n == 1 and trail: right = trail + right return '%s%s%s' % (left, s, right) def repr_tuple(self, x, level): return self._repr_iterable(x, level, '(', ')', self.maxtuple, ',') def repr_list(self, x, level): return self._repr_iterable(x, level, '[', ']', self.maxlist) def repr_array(self, x, level): header = "array('%s', [" % x.typecode return self._repr_iterable(x, level, header, '])', self.maxarray) def repr_set(self, x, level): x = _possibly_sorted(x) return self._repr_iterable(x, level, 'set([', '])', self.maxset) def repr_frozenset(self, x, level): x = _possibly_sorted(x) return self._repr_iterable(x, level, 'frozenset([', '])', self.maxfrozenset) def repr_deque(self, x, level): return self._repr_iterable(x, level, 'deque([', '])', self.maxdeque) def repr_dict(self, x, level): n = len(x) if n == 0: return '{}' if level <= 0: return '{...}' newlevel = level - 1 repr1 = self.repr1 pieces = [] for key in islice(_possibly_sorted(x), self.maxdict): keyrepr = repr1(key, newlevel) valrepr = repr1(x[key], newlevel) pieces.append('%s: %s' % (keyrepr, valrepr)) if n > self.maxdict: pieces.append('...') s = ', '.join(pieces) return '{%s}' % (s,) def repr_str(self, x, level): s = builtins.repr(x[:self.maxstring]) if len(s) > self.maxstring: i = max(0, (self.maxstring-3)//2) j = max(0, self.maxstring-3-i) s = builtins.repr(x[:i] + x[len(x)-j:]) s = s[:i] + '...' + s[len(s)-j:] return s def repr_int(self, x, level): s = builtins.repr(x) # XXX Hope this isn't too slow... if len(s) > self.maxlong: i = max(0, (self.maxlong-3)//2) j = max(0, self.maxlong-3-i) s = s[:i] + '...' + s[len(s)-j:] return s def repr_instance(self, x, level): try: s = builtins.repr(x) # Bugs in x.__repr__() can cause arbitrary # exceptions -- then make up something except Exception: return '<%s instance at %x>' % (x.__class__.__name__, id(x)) if len(s) > self.maxother: i = max(0, (self.maxother-3)//2) j = max(0, self.maxother-3-i) s = s[:i] + '...' + s[len(s)-j:] return s def _possibly_sorted(x): # Since not all sequences of items can be sorted and comparison # functions may raise arbitrary exceptions, return an unsorted # sequence in that case. try: return sorted(x) except Exception: return list(x) aRepr = Repr() repr = aRepr.repr
gpl-2.0
-7,938,004,207,631,271,000
31.547771
79
0.526614
false
timcera/mettoolbox
mettoolbox/pet.py
1
10467
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import warnings from typing import Optional, Union import numpy as np import pandas as pd import typic from solarpy import declination from tstoolbox import tsutils from . import meteolib, utils warnings.filterwarnings("ignore") def _columns(tsd, req_column_list=[], optional_column_list=[]): if None in req_column_list: raise ValueError( tsutils.error_wrapper( """ You need to supply the column (name or number, data column numbering starts at 1) for {0} time-series. Instead you gave {1}""".format( len(req_column_list), req_column_list ) ) ) collect = [] for loopvar in req_column_list + optional_column_list: try: nloopvar = int(loopvar) - 1 except TypeError: nloopvar = loopvar if nloopvar is None: collect.append(None) else: collect.append(tsd.ix[:, nloopvar]) return collect def _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ): columns, column_names = utils._check_temperature_cols( temp_min_col=temp_min_col, temp_max_col=temp_max_col, temp_mean_col=temp_mean_col, temp_min_required=temp_min_required, temp_max_required=temp_max_required, ) tsd = tsutils.common_kwds( input_ts, skiprows=skiprows, names=names, index_type=index_type, start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, clean=clean, ) if source_units is None: # If "source_units" keyword is None must have source_units in column name. source_units = [] for units in tsd.columns: words = units.split(":") if len(words) >= 2: source_units.append(words[1]) else: raise ValueError( tsutils.error_wrapper( """ If "source_units" are not supplied as the second ":" delimited field in the column name they must be supplied with the "source_units" keyword. """ ) ) else: source_units = tsutils.make_list(source_units) if len(source_units) != len(tsd.columns): raise ValueError( tsutils.error_wrapper( """ The number of "source_units" terms must match the number of temperature columns. """ ) ) interim_target_units = ["degC"] * len(tsd.columns) tsd = tsutils.common_kwds( tsd, source_units=source_units, target_units=interim_target_units, ) tsd.columns = column_names tsd = utils._validate_temperatures(tsd, temp_min_col, temp_max_col) return tsd def et0_pm( input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, source_units=None, target_units=None, print_input=False, tablefmt="csv", avp=None, avp_from_tdew=None, avp_from_twet_tdry=None, avp_from_rhmin_rh_max=None, avp_from_rhmax=None, avp_from_rhmean=None, avp_from_tmin=None, lat=None, ): """Penman-Monteith evaporation.""" tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) return tsd @typic.constrained(ge=-90, le=90) class FloatLatitude(float): """-90 <= float <= 90""" @typic.al def hamon( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, k: float = 1, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, ): """hamon""" temp_min_required = True temp_max_required = True tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) decl = [declination(i) for i in tsd.index.to_pydatetime()] w = np.arccos(-np.tan(decl) * np.tan(lat)) es = meteolib.es_calc(tsd.tmean) N = 24 * w / np.pi # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_hamon:mm"]) pe["pet_hamon:mm"] = k * 29.8 * N * es / (273.3 + tsd.tmean) pe.loc[tsd.tmean <= 0, "pet_hamon:mm"] = 0.0 if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) @typic.al def hargreaves( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units="mm", print_input=False, ): """hargreaves""" temp_min_required = True temp_max_required = True tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) newra = utils.radiation(tsd, lat) tsdiff = tsd.tmax - tsd.tmin # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_hargreaves:mm"]) pe["pet_hargreaves:mm"] = ( 0.408 * 0.0023 * newra.ra.values * np.abs(tsdiff.values) ** 0.5 * (tsd.tmean.values + 17.8) ) if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) @typic.al def oudin_form( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, k1=100, k2=5, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, ): """oudin form""" temp_min_required = False temp_max_required = False tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) newra = utils.radiation(tsd, lat) # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_oudin:mm"]) gamma = 2.45 # the latent heat flux (MJ kg−1) rho = 1000.0 # density of water (kg m-3) pe.loc[tsd.tmean > k2, "pet_oudin:mm"] = ( newra.ra / (gamma * rho) * (tsd.tmean + k2) / k1 * 1000 ) if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) @typic.al def allen( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, ): """Allen""" temp_min_required = False temp_max_required = False tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) newra = utils.radiation(tsd, lat) # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_allen:mm"]) pe["pet_allen:mm"] = ( 0.408 * 0.0029 * newra.ra * (tsd.tmax - tsd.tmin) ** 0.4 * (tsd.tmean + 20) ) if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) def reference(): """reference penman-monteith""" print("reference") def potential(): """potential""" print("potential")
bsd-3-clause
-2,276,524,630,884,471,300
24.277778
87
0.587387
false
Teamxrtc/webrtc-streaming-node
third_party/depot_tools/third_party/logilab/common/optparser.py
92
3386
# -*- coding: utf-8 -*- # copyright 2003-2011 LOGILAB S.A. (Paris, FRANCE), all rights reserved. # contact http://www.logilab.fr/ -- mailto:[email protected] # # This file is part of logilab-common. # # logilab-common is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 2.1 of the License, or (at your option) any # later version. # # logilab-common is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License along # with logilab-common. If not, see <http://www.gnu.org/licenses/>. """Extend OptionParser with commands. Example: >>> parser = OptionParser() >>> parser.usage = '%prog COMMAND [options] <arg> ...' >>> parser.add_command('build', 'mymod.build') >>> parser.add_command('clean', run_clean, add_opt_clean) >>> run, options, args = parser.parse_command(sys.argv[1:]) >>> return run(options, args[1:]) With mymod.build that defines two functions run and add_options """ from __future__ import print_function __docformat__ = "restructuredtext en" from warnings import warn warn('lgc.optparser module is deprecated, use lgc.clcommands instead', DeprecationWarning, stacklevel=2) import sys import optparse class OptionParser(optparse.OptionParser): def __init__(self, *args, **kwargs): optparse.OptionParser.__init__(self, *args, **kwargs) self._commands = {} self.min_args, self.max_args = 0, 1 def add_command(self, name, mod_or_funcs, help=''): """name of the command, name of module or tuple of functions (run, add_options) """ assert isinstance(mod_or_funcs, str) or isinstance(mod_or_funcs, tuple), \ "mod_or_funcs has to be a module name or a tuple of functions" self._commands[name] = (mod_or_funcs, help) def print_main_help(self): optparse.OptionParser.print_help(self) print('\ncommands:') for cmdname, (_, help) in self._commands.items(): print('% 10s - %s' % (cmdname, help)) def parse_command(self, args): if len(args) == 0: self.print_main_help() sys.exit(1) cmd = args[0] args = args[1:] if cmd not in self._commands: if cmd in ('-h', '--help'): self.print_main_help() sys.exit(0) elif self.version is not None and cmd == "--version": self.print_version() sys.exit(0) self.error('unknown command') self.prog = '%s %s' % (self.prog, cmd) mod_or_f, help = self._commands[cmd] # optparse inserts self.description between usage and options help self.description = help if isinstance(mod_or_f, str): exec('from %s import run, add_options' % mod_or_f) else: run, add_options = mod_or_f add_options(self) (options, args) = self.parse_args(args) if not (self.min_args <= len(args) <= self.max_args): self.error('incorrect number of arguments') return run, options, args
mit
-7,316,781,646,560,002,000
35.804348
90
0.630538
false
bob-the-hamster/commandergenius
project/jni/python/src/Lib/bsddb/dbrecio.py
203
5308
""" File-like objects that read from or write to a bsddb record. This implements (nearly) all stdio methods. f = DBRecIO(db, key, txn=None) f.close() # explicitly release resources held flag = f.isatty() # always false pos = f.tell() # get current position f.seek(pos) # set current position f.seek(pos, mode) # mode 0: absolute; 1: relative; 2: relative to EOF buf = f.read() # read until EOF buf = f.read(n) # read up to n bytes f.truncate([size]) # truncate file at to at most size (default: current pos) f.write(buf) # write at current position f.writelines(list) # for line in list: f.write(line) Notes: - fileno() is left unimplemented so that code which uses it triggers an exception early. - There's a simple test set (see end of this file) - not yet updated for DBRecIO. - readline() is not implemented yet. From: Itamar Shtull-Trauring <[email protected]> """ import errno import string class DBRecIO: def __init__(self, db, key, txn=None): self.db = db self.key = key self.txn = txn self.len = None self.pos = 0 self.closed = 0 self.softspace = 0 def close(self): if not self.closed: self.closed = 1 del self.db, self.txn def isatty(self): if self.closed: raise ValueError, "I/O operation on closed file" return 0 def seek(self, pos, mode = 0): if self.closed: raise ValueError, "I/O operation on closed file" if mode == 1: pos = pos + self.pos elif mode == 2: pos = pos + self.len self.pos = max(0, pos) def tell(self): if self.closed: raise ValueError, "I/O operation on closed file" return self.pos def read(self, n = -1): if self.closed: raise ValueError, "I/O operation on closed file" if n < 0: newpos = self.len else: newpos = min(self.pos+n, self.len) dlen = newpos - self.pos r = self.db.get(self.key, txn=self.txn, dlen=dlen, doff=self.pos) self.pos = newpos return r __fixme = """ def readline(self, length=None): if self.closed: raise ValueError, "I/O operation on closed file" if self.buflist: self.buf = self.buf + string.joinfields(self.buflist, '') self.buflist = [] i = string.find(self.buf, '\n', self.pos) if i < 0: newpos = self.len else: newpos = i+1 if length is not None: if self.pos + length < newpos: newpos = self.pos + length r = self.buf[self.pos:newpos] self.pos = newpos return r def readlines(self, sizehint = 0): total = 0 lines = [] line = self.readline() while line: lines.append(line) total += len(line) if 0 < sizehint <= total: break line = self.readline() return lines """ def truncate(self, size=None): if self.closed: raise ValueError, "I/O operation on closed file" if size is None: size = self.pos elif size < 0: raise IOError(errno.EINVAL, "Negative size not allowed") elif size < self.pos: self.pos = size self.db.put(self.key, "", txn=self.txn, dlen=self.len-size, doff=size) def write(self, s): if self.closed: raise ValueError, "I/O operation on closed file" if not s: return if self.pos > self.len: self.buflist.append('\0'*(self.pos - self.len)) self.len = self.pos newpos = self.pos + len(s) self.db.put(self.key, s, txn=self.txn, dlen=len(s), doff=self.pos) self.pos = newpos def writelines(self, list): self.write(string.joinfields(list, '')) def flush(self): if self.closed: raise ValueError, "I/O operation on closed file" """ # A little test suite def _test(): import sys if sys.argv[1:]: file = sys.argv[1] else: file = '/etc/passwd' lines = open(file, 'r').readlines() text = open(file, 'r').read() f = StringIO() for line in lines[:-2]: f.write(line) f.writelines(lines[-2:]) if f.getvalue() != text: raise RuntimeError, 'write failed' length = f.tell() print 'File length =', length f.seek(len(lines[0])) f.write(lines[1]) f.seek(0) print 'First line =', repr(f.readline()) here = f.tell() line = f.readline() print 'Second line =', repr(line) f.seek(-len(line), 1) line2 = f.read(len(line)) if line != line2: raise RuntimeError, 'bad result after seek back' f.seek(len(line2), 1) list = f.readlines() line = list[-1] f.seek(f.tell() - len(line)) line2 = f.read() if line != line2: raise RuntimeError, 'bad result after seek back from EOF' print 'Read', len(list), 'more lines' print 'File length =', f.tell() if f.tell() != length: raise RuntimeError, 'bad length' f.close() if __name__ == '__main__': _test() """
lgpl-2.1
-5,446,701,761,817,104,000
26.936842
78
0.546722
false
eckucukoglu/arm-linux-gnueabihf
arm-linux-gnueabihf/libc/usr/lib/python2.7/unittest/test/test_break.py
105
9641
import gc import os import sys import signal import weakref from cStringIO import StringIO import unittest @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") @unittest.skipIf(sys.platform == 'freebsd6', "Test kills regrtest on freebsd6 " "if threads have been used") class TestBreak(unittest.TestCase): int_handler = None def setUp(self): self._default_handler = signal.getsignal(signal.SIGINT) if self.int_handler is not None: signal.signal(signal.SIGINT, self.int_handler) def tearDown(self): signal.signal(signal.SIGINT, self._default_handler) unittest.signals._results = weakref.WeakKeyDictionary() unittest.signals._interrupt_handler = None def testInstallHandler(self): default_handler = signal.getsignal(signal.SIGINT) unittest.installHandler() self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) try: pid = os.getpid() os.kill(pid, signal.SIGINT) except KeyboardInterrupt: self.fail("KeyboardInterrupt not handled") self.assertTrue(unittest.signals._interrupt_handler.called) def testRegisterResult(self): result = unittest.TestResult() unittest.registerResult(result) for ref in unittest.signals._results: if ref is result: break elif ref is not result: self.fail("odd object in result set") else: self.fail("result not found") def testInterruptCaught(self): default_handler = signal.getsignal(signal.SIGINT) result = unittest.TestResult() unittest.installHandler() unittest.registerResult(result) self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) def test(result): pid = os.getpid() os.kill(pid, signal.SIGINT) result.breakCaught = True self.assertTrue(result.shouldStop) try: test(result) except KeyboardInterrupt: self.fail("KeyboardInterrupt not handled") self.assertTrue(result.breakCaught) def testSecondInterrupt(self): # Can't use skipIf decorator because the signal handler may have # been changed after defining this method. if signal.getsignal(signal.SIGINT) == signal.SIG_IGN: self.skipTest("test requires SIGINT to not be ignored") result = unittest.TestResult() unittest.installHandler() unittest.registerResult(result) def test(result): pid = os.getpid() os.kill(pid, signal.SIGINT) result.breakCaught = True self.assertTrue(result.shouldStop) os.kill(pid, signal.SIGINT) self.fail("Second KeyboardInterrupt not raised") try: test(result) except KeyboardInterrupt: pass else: self.fail("Second KeyboardInterrupt not raised") self.assertTrue(result.breakCaught) def testTwoResults(self): unittest.installHandler() result = unittest.TestResult() unittest.registerResult(result) new_handler = signal.getsignal(signal.SIGINT) result2 = unittest.TestResult() unittest.registerResult(result2) self.assertEqual(signal.getsignal(signal.SIGINT), new_handler) result3 = unittest.TestResult() def test(result): pid = os.getpid() os.kill(pid, signal.SIGINT) try: test(result) except KeyboardInterrupt: self.fail("KeyboardInterrupt not handled") self.assertTrue(result.shouldStop) self.assertTrue(result2.shouldStop) self.assertFalse(result3.shouldStop) def testHandlerReplacedButCalled(self): # Can't use skipIf decorator because the signal handler may have # been changed after defining this method. if signal.getsignal(signal.SIGINT) == signal.SIG_IGN: self.skipTest("test requires SIGINT to not be ignored") # If our handler has been replaced (is no longer installed) but is # called by the *new* handler, then it isn't safe to delay the # SIGINT and we should immediately delegate to the default handler unittest.installHandler() handler = signal.getsignal(signal.SIGINT) def new_handler(frame, signum): handler(frame, signum) signal.signal(signal.SIGINT, new_handler) try: pid = os.getpid() os.kill(pid, signal.SIGINT) except KeyboardInterrupt: pass else: self.fail("replaced but delegated handler doesn't raise interrupt") def testRunner(self): # Creating a TextTestRunner with the appropriate argument should # register the TextTestResult it creates runner = unittest.TextTestRunner(stream=StringIO()) result = runner.run(unittest.TestSuite()) self.assertIn(result, unittest.signals._results) def testWeakReferences(self): # Calling registerResult on a result should not keep it alive result = unittest.TestResult() unittest.registerResult(result) ref = weakref.ref(result) del result # For non-reference counting implementations gc.collect();gc.collect() self.assertIsNone(ref()) def testRemoveResult(self): result = unittest.TestResult() unittest.registerResult(result) unittest.installHandler() self.assertTrue(unittest.removeResult(result)) # Should this raise an error instead? self.assertFalse(unittest.removeResult(unittest.TestResult())) try: pid = os.getpid() os.kill(pid, signal.SIGINT) except KeyboardInterrupt: pass self.assertFalse(result.shouldStop) def testMainInstallsHandler(self): failfast = object() test = object() verbosity = object() result = object() default_handler = signal.getsignal(signal.SIGINT) class FakeRunner(object): initArgs = [] runArgs = [] def __init__(self, *args, **kwargs): self.initArgs.append((args, kwargs)) def run(self, test): self.runArgs.append(test) return result class Program(unittest.TestProgram): def __init__(self, catchbreak): self.exit = False self.verbosity = verbosity self.failfast = failfast self.catchbreak = catchbreak self.testRunner = FakeRunner self.test = test self.result = None p = Program(False) p.runTests() self.assertEqual(FakeRunner.initArgs, [((), {'buffer': None, 'verbosity': verbosity, 'failfast': failfast})]) self.assertEqual(FakeRunner.runArgs, [test]) self.assertEqual(p.result, result) self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) FakeRunner.initArgs = [] FakeRunner.runArgs = [] p = Program(True) p.runTests() self.assertEqual(FakeRunner.initArgs, [((), {'buffer': None, 'verbosity': verbosity, 'failfast': failfast})]) self.assertEqual(FakeRunner.runArgs, [test]) self.assertEqual(p.result, result) self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) def testRemoveHandler(self): default_handler = signal.getsignal(signal.SIGINT) unittest.installHandler() unittest.removeHandler() self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) # check that calling removeHandler multiple times has no ill-effect unittest.removeHandler() self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) def testRemoveHandlerAsDecorator(self): default_handler = signal.getsignal(signal.SIGINT) unittest.installHandler() @unittest.removeHandler def test(): self.assertEqual(signal.getsignal(signal.SIGINT), default_handler) test() self.assertNotEqual(signal.getsignal(signal.SIGINT), default_handler) @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") @unittest.skipIf(sys.platform == 'freebsd6', "Test kills regrtest on freebsd6 " "if threads have been used") class TestBreakDefaultIntHandler(TestBreak): int_handler = signal.default_int_handler @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") @unittest.skipIf(sys.platform == 'freebsd6', "Test kills regrtest on freebsd6 " "if threads have been used") class TestBreakSignalIgnored(TestBreak): int_handler = signal.SIG_IGN @unittest.skipUnless(hasattr(os, 'kill'), "Test requires os.kill") @unittest.skipIf(sys.platform =="win32", "Test cannot run on Windows") @unittest.skipIf(sys.platform == 'freebsd6', "Test kills regrtest on freebsd6 " "if threads have been used") class TestBreakSignalDefault(TestBreak): int_handler = signal.SIG_DFL
gpl-2.0
5,198,870,914,712,312,000
32.947183
79
0.625972
false
GaryBrittain/DB2S3
process.py
1
3210
import dropbox import sys from sqlsync import * from boto.s3.connection import S3Connection from boto.s3.key import Key import os from pushover import message import json if check_lock() == 1: print 'Database is locked or unreachable, quitting...' sys.exit() conn = S3Connection('', '') pb = conn.get_bucket('') access_token = 'YOUR DROPBOX APP' client = dropbox.client.DropboxClient(access_token) curr_cursor_file = open("cursor.txt", "r") curr_cursor = curr_cursor_file.read() curr_cursor_file.close() next_cursor = client.delta(curr_cursor, '/Camera Uploads') curr_cursor_file = open("cursor.txt", "w") curr_cursor_file.write(next_cursor['cursor']) curr_cursor_file.close() new_files = 0 if len(next_cursor['entries']) > 0: for entry in next_cursor['entries']: if entry[1] != None: cur_path = entry[0] cur_file = cur_path.rsplit("/",1)[1] print 'processing file ['+str(new_files+1)+']: ' + cur_file post_file(cur_path, cur_file) new_files += 1 else: print entry[0] + " has been removed." with open("errors.txt", "a") as err: err.write('File removed from dropbox: '+str(entry[0])+"\n") err.close() else: print "No files have changed." uploaded = 0 failed = 0 path = next_file_to_process() workload = len(path) processed = 0 for i in path: if check_lock() == 1: print 'Process locked by database, terminating...' message('Process locked by database, terminating...') break processed += 1 cPath = i["PATH"] cFile = i["FILENAME"] print ' ' print 'Processing ' + str("{:,}".format(processed)) + ' of ' + str("{:,}".format(workload)) + ': ' + cPath meta = client.metadata(cPath) bytes = meta['bytes'] print meta['size'] #100MB chunks chunk_size = 104857600 chunk_loops = int(bytes / chunk_size) + 1 current = 0 chunk_loop = 1 out = open(cFile, 'wb') try: while (bytes > current): print 'Downloading chunk %s of %s' % (chunk_loop, chunk_loops) chunk_loop += 1 f = client.get_file(cPath, rev=None, start=current, length=chunk_size) out.write(f.read()) current += chunk_size except: failed += 1 print 'Error downloading ' + cPath with open("errors.txt", "a") as err: err.write('Could not download from dropbox file: '+str(cPath)+"\n") err.close() continue print 'Downloaded' out.close() filesize = os.path.getsize(cFile) if bytes != filesize: print 'Downloaded file corrupted' failed += 1 continue k = Key(pb) k.name = cPath try: k.set_contents_from_filename(cFile, encrypt_key=True) os.remove(cFile) print 'Uploaded' s3_uploaded_confirm(cPath, meta['size'], meta['bytes'], meta['rev'], meta['revision'], meta['mime_type'], meta['modified'], meta['client_mtime']) uploaded = uploaded + 1 except: print 'Error uploading ' + cPath try: k.name='/db2s3/cursor.txt' k.set_contents_from_filename('cursor.txt', encrypt_key=True) except: print 'could not copy cursor key to S3' print '******************************' summary = """%s new files found %s files uploaded %s failures - check errors.txt for info"""%(new_files,uploaded,failed) message(summary) print 'Finished!' print summary
mit
8,403,771,263,856,615,000
25.75
149
0.643614
false
yongtang/tensorflow
tensorflow/python/distribute/cluster_resolver/tfconfig_cluster_resolver.py
14
6847
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of Cluster Resolvers for TF_CONFIG Environment Variables.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os from tensorflow.python.distribute.cluster_resolver.cluster_resolver import ClusterResolver from tensorflow.python.training.server_lib import ClusterSpec from tensorflow.python.util.tf_export import tf_export _TF_CONFIG_ENV = 'TF_CONFIG' _SESSION_MASTER_KEY = 'session_master' _RPC_LAYER_KEY = 'rpc_layer' _TASK_KEY = 'task' def format_master_url(master, rpc_layer=None): if rpc_layer: return '%s://%s' % (rpc_layer, master) else: return master def _load_tf_config(): return json.loads(os.environ.get(_TF_CONFIG_ENV, '{}')) def _get_value_in_tfconfig(key, default=None): tf_config = _load_tf_config() return tf_config[key] if key in tf_config else default @tf_export('distribute.cluster_resolver.TFConfigClusterResolver') class TFConfigClusterResolver(ClusterResolver): """Implementation of a ClusterResolver which reads the TF_CONFIG EnvVar. This is an implementation of cluster resolvers when using TF_CONFIG to set information about the cluster. The cluster spec returned will be initialized from the TF_CONFIG environment variable. An example to set TF_CONFIG is: ```Python os.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': ["localhost:12345", "localhost:23456"] }, 'task': {'type': 'worker', 'index': 0} }) ``` However, sometimes the container orchestration framework will set TF_CONFIG for you. In this case, you can just create an instance without passing in any arguments. You can find an example here to let Kuburnetes set TF_CONFIG for you: https://github.com/tensorflow/ecosystem/tree/master/kubernetes. Then you can use it with `tf.distribute.Strategy` as: ```Python # `TFConfigClusterResolver` is already the default one in the following # strategy. strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy( cluster_resolver=TFConfigClusterResolver()) ``` """ def __init__(self, task_type=None, task_id=None, rpc_layer=None, environment=None): """Creates a new TFConfigClusterResolver. Args: task_type: (String, optional) Overrides the task type specified in the TF_CONFIG environment variable. task_id: (Integer, optional) Overrides the task index specified in the TF_CONFIG environment variable. rpc_layer: (String, optional) Overrides the rpc layer TensorFlow uses. environment: (String, optional) Overrides the environment TensorFlow operates in. """ self._task_type = task_type self._task_id = task_id self._rpc_layer = rpc_layer self._environment = environment @property def task_type(self): if self._task_type is None: task_info = _get_value_in_tfconfig(_TASK_KEY, {}) return str(task_info['type']) if 'type' in task_info else None else: return str(self._task_type) @property def task_id(self): if self._task_id is None: task_info = _get_value_in_tfconfig(_TASK_KEY, {}) return int(task_info['index']) if 'index' in task_info else None else: return int(self._task_id) @task_type.setter def task_type(self, task_type): self._task_type = task_type @task_id.setter def task_id(self, task_id): self._task_id = task_id @property def environment(self): return self._environment @property def rpc_layer(self): if self._rpc_layer is None: return _get_value_in_tfconfig(_RPC_LAYER_KEY) else: return self._rpc_layer @rpc_layer.setter def rpc_layer(self, rpc_layer): self._rpc_layer = rpc_layer def num_accelerators(self, task_type=None, task_id=None, config_proto=None): task_type = self.task_type if task_type is None else task_type task_id = self.task_id if task_id is None else task_id return super(TFConfigClusterResolver, self).num_accelerators( task_type, task_id, config_proto) def cluster_spec(self): """Returns a ClusterSpec based on the TF_CONFIG environment variable. Returns: A ClusterSpec with information from the TF_CONFIG environment variable. """ tf_config = _load_tf_config() if 'cluster' not in tf_config: return ClusterSpec({}) return ClusterSpec(tf_config['cluster']) def master(self, task_type=None, task_id=None, rpc_layer=None): """Returns the master address to use when creating a TensorFlow session. Note: this is only useful for TensorFlow 1.x. Args: task_type: (String, optional) Overrides and sets the task_type of the master. task_id: (Integer, optional) Overrides and sets the task id of the master. rpc_layer: (String, optional) Overrides and sets the protocol over which TensorFlow nodes communicate with each other. Returns: The address of the master. Raises: RuntimeError: If the task_type or task_id is not specified and the `TF_CONFIG` environment variable does not contain a task section. """ # If `session_master` is set, just use that. session_master = _get_value_in_tfconfig(_SESSION_MASTER_KEY) if session_master is not None: return session_master # Return an empty string if we are the only job in the ClusterSpec. cluster_spec = self.cluster_spec() if (not cluster_spec.jobs or (len(cluster_spec.jobs) == 1 and len(cluster_spec.job_tasks(cluster_spec.jobs[0])) == 1)): return '' # We try to auto-detect the task type and id, but uses the user-supplied one # where available task_type = task_type if task_type is not None else self.task_type task_id = task_id if task_id is not None else self.task_id rpc_layer = rpc_layer if rpc_layer is not None else self.rpc_layer return format_master_url(cluster_spec.task_address(task_type, task_id), rpc_layer)
apache-2.0
-3,824,496,371,474,636,000
32.563725
90
0.672703
false
saydulk/horizon
openstack_dashboard/usage/views.py
32
4722
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import tables from openstack_dashboard import api from openstack_dashboard.usage import base class UsageView(tables.DataTableView): usage_class = None show_terminated = True csv_template_name = None page_title = _("Overview") def __init__(self, *args, **kwargs): super(UsageView, self).__init__(*args, **kwargs) if not issubclass(self.usage_class, base.BaseUsage): raise AttributeError("You must specify a usage_class attribute " "which is a subclass of BaseUsage.") def get_template_names(self): if self.request.GET.get('format', 'html') == 'csv': return (self.csv_template_name or ".".join((self.template_name.rsplit('.', 1)[0], 'csv'))) return self.template_name def get_content_type(self): if self.request.GET.get('format', 'html') == 'csv': return "text/csv" return "text/html" def get_data(self): try: project_id = self.kwargs.get('project_id', self.request.user.tenant_id) self.usage = self.usage_class(self.request, project_id) self.usage.summarize(*self.usage.get_date_range()) self.usage.get_limits() self.kwargs['usage'] = self.usage return self.usage.usage_list except Exception: exceptions.handle(self.request, _('Unable to retrieve usage information.')) return [] def get_context_data(self, **kwargs): context = super(UsageView, self).get_context_data(**kwargs) context['table'].kwargs['usage'] = self.usage context['form'] = self.usage.form context['usage'] = self.usage context['charts'] = [] # (Used key, Max key, Human Readable Name, text to display when # describing the quota by default it is 'Used') types = [("totalInstancesUsed", "maxTotalInstances", _("Instances")), ("totalCoresUsed", "maxTotalCores", _("VCPUs")), ("totalRAMUsed", "maxTotalRAMSize", _("RAM")), ("totalFloatingIpsUsed", "maxTotalFloatingIps", "Floating IPs", _("Allocated")), ("totalSecurityGroupsUsed", "maxSecurityGroups", _("Security Groups"))] # Check for volume usage if 'totalVolumesUsed' in self.usage.limits and self.usage.limits[ 'totalVolumesUsed'] >= 0: types.append(("totalVolumesUsed", "maxTotalVolumes", _("Volumes"))) types.append(("totalGigabytesUsed", "maxTotalVolumeGigabytes", _("Volume Storage"))) for t in types: if t[0] in self.usage.limits and t[1] in self.usage.limits: text = False if len(t) > 3: text = t[3] context['charts'].append({ 'name': t[2], 'used': self.usage.limits[t[0]], 'max': self.usage.limits[t[1]], 'text': text }) try: context['simple_tenant_usage_enabled'] = \ api.nova.extension_supported('SimpleTenantUsage', self.request) except Exception: context['simple_tenant_usage_enabled'] = True return context def render_to_response(self, context, **response_kwargs): if self.request.GET.get('format', 'html') == 'csv': render_class = self.csv_response_class response_kwargs.setdefault("filename", "usage.csv") else: render_class = self.response_class context = self.render_context_with_title(context) resp = render_class(request=self.request, template=self.get_template_names(), context=context, content_type=self.get_content_type(), **response_kwargs) return resp
apache-2.0
-7,567,539,970,578,892,000
41.160714
79
0.56925
false
krahman/BuildingMachineLearningSystemsWithPython
ch04/build_lda.py
1
2472
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function try: import nltk.corpus except ImportError: print("nltk not found") print("please install it") raise from scipy.spatial import distance import numpy as np import string from gensim import corpora, models, similarities import sklearn.datasets import nltk.stem from collections import defaultdict english_stemmer = nltk.stem.SnowballStemmer('english') stopwords = set(nltk.corpus.stopwords.words('english')) stopwords.update(['from:', 'subject:', 'writes:', 'writes']) class DirectText(corpora.textcorpus.TextCorpus): def get_texts(self): return self.input def __len__(self): return len(self.input) try: dataset = sklearn.datasets.load_mlcomp("20news-18828", "train", mlcomp_root='./data') except: print("Newsgroup data not found.") print("Please download from http://mlcomp.org/datasets/379") print("And expand the zip into the subdirectory data/") print() print() raise otexts = dataset.data texts = dataset.data texts = [t.decode('utf-8', 'ignore') for t in texts] texts = [t.split() for t in texts] texts = [map(lambda w: w.lower(), t) for t in texts] texts = [filter(lambda s: not len(set("+-.?!()>@012345689") & set(s)), t) for t in texts] texts = [filter(lambda s: (len(s) > 3) and (s not in stopwords), t) for t in texts] texts = [map(english_stemmer.stem, t) for t in texts] usage = defaultdict(int) for t in texts: for w in set(t): usage[w] += 1 limit = len(texts) / 10 too_common = [w for w in usage if usage[w] > limit] too_common = set(too_common) texts = [filter(lambda s: s not in too_common, t) for t in texts] corpus = DirectText(texts) dictionary = corpus.dictionary try: dictionary['computer'] except: pass model = models.ldamodel.LdaModel( corpus, num_topics=100, id2word=dictionary.id2token) thetas = np.zeros((len(texts), 100)) for i, c in enumerate(corpus): for ti, v in model[c]: thetas[i, ti] += v distances = distance.squareform(distance.pdist(thetas)) large = distances.max() + 1 for i in xrange(len(distances)): distances[i, i] = large print(otexts[1]) print() print() print() print(otexts[distances[1].argmin()])
mit
2,488,482,030,953,443,000
26.466667
73
0.676375
false
point97/hapifis
server/apps/survey/migrations/0069_auto__add_field_response_answer_number.py
1
15989
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Response.answer_number' db.add_column(u'survey_response', 'answer_number', self.gf('django.db.models.fields.DecimalField')(null=True, max_digits=10, decimal_places=7, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Response.answer_number' db.delete_column(u'survey_response', 'answer_number') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'survey.block': { 'Meta': {'object_name': 'Block'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'skip_condition': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'skip_question': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Question']", 'null': 'True', 'blank': 'True'}) }, u'survey.gridanswer': { 'Meta': {'object_name': 'GridAnswer'}, 'answer_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'col_label': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'col_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'response': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Response']"}), 'row_label': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'row_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, u'survey.location': { 'Meta': {'object_name': 'Location'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lat': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '7'}), 'lng': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '7'}), 'respondant': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Respondant']", 'null': 'True', 'blank': 'True'}), 'response': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Response']"}) }, u'survey.locationanswer': { 'Meta': {'object_name': 'LocationAnswer'}, 'answer': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Location']"}) }, u'survey.multianswer': { 'Meta': {'object_name': 'MultiAnswer'}, 'answer_label': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'answer_text': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'response': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Response']"}) }, u'survey.option': { 'Meta': {'object_name': 'Option'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.SlugField', [], {'max_length': '64'}), 'max': ('django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'min': ('django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'rows': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '254'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'integer'", 'max_length': '20'}) }, u'survey.page': { 'Meta': {'ordering': "['survey', 'question__order']", 'object_name': 'Page'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Question']", 'null': 'True', 'blank': 'True'}), 'survey': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Survey']", 'null': 'True', 'blank': 'True'}) }, u'survey.question': { 'Meta': {'ordering': "['order']", 'object_name': 'Question'}, 'allow_other': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'blocks': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['survey.Block']", 'null': 'True', 'blank': 'True'}), 'cols': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'filterBy': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'filter_questions': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'filter_questions_rel_+'", 'null': 'True', 'to': u"orm['survey.Question']"}), 'foreach_question': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'foreach'", 'null': 'True', 'to': u"orm['survey.Question']"}), 'grid_cols': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'grid_cols'", 'null': 'True', 'symmetrical': 'False', 'to': u"orm['survey.Option']"}), 'hoist_answers': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'hoisted'", 'null': 'True', 'to': u"orm['survey.Question']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'info': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'integer_max': ('django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'integer_min': ('django.db.models.fields.IntegerField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '254'}), 'lat': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '7', 'blank': 'True'}), 'lng': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '7', 'blank': 'True'}), 'min_zoom': ('django.db.models.fields.IntegerField', [], {'default': '10', 'null': 'True', 'blank': 'True'}), 'modalQuestion': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'modal_question'", 'null': 'True', 'to': u"orm['survey.Question']"}), 'options': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['survey.Option']", 'null': 'True', 'blank': 'True'}), 'options_from_previous_answer': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'options_json': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'randomize_groups': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'report_type': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '20', 'null': 'True'}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'rows': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'skip_condition': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'skip_question': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Question']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '64'}), 'term_condition': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.TextField', [], {}), 'type': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '20'}), 'visualize': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'zoom': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}) }, u'survey.respondant': { 'Meta': {'object_name': 'Respondant'}, 'complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'county': ('django.db.models.fields.CharField', [], {'max_length': '240', 'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'default': 'None', 'max_length': '254', 'null': 'True', 'blank': 'True'}), 'last_question': ('django.db.models.fields.CharField', [], {'max_length': '240', 'null': 'True', 'blank': 'True'}), 'locations': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'responses': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'responses'", 'null': 'True', 'symmetrical': 'False', 'to': u"orm['survey.Response']"}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '240', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '20', 'null': 'True', 'blank': 'True'}), 'survey': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Survey']"}), 'surveyor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'ts': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 9, 12, 0, 0)'}), 'uuid': ('django.db.models.fields.CharField', [], {'default': "'ddec2809-7f56-44c8-adf6-d609312f8e15'", 'max_length': '36', 'primary_key': 'True'}) }, u'survey.response': { 'Meta': {'object_name': 'Response'}, 'answer': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'answer_number': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '7', 'blank': 'True'}), 'answer_raw': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Question']"}), 'respondant': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['survey.Respondant']", 'null': 'True', 'blank': 'True'}), 'ts': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 9, 12, 0, 0)'}) }, u'survey.survey': { 'Meta': {'object_name': 'Survey'}, 'anon': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '254'}), 'offline': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'questions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['survey.Question']", 'null': 'True', 'through': u"orm['survey.Page']", 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '254'}), 'states': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['survey']
gpl-3.0
8,509,431,234,108,823,000
83.603175
207
0.547439
false
nuagenetworks/vspk-python
vspk/v6/nuzfbrequest.py
1
35457
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .fetchers import NUPermissionsFetcher from .fetchers import NUMetadatasFetcher from .fetchers import NUGlobalMetadatasFetcher from .fetchers import NUJobsFetcher from bambou import NURESTObject class NUZFBRequest(NURESTObject): """ Represents a ZFBRequest in the VSD Notes: Pending requests reflect Network Services Gateways that have initiated request for bootstrapping. Requests can be assigned, or matched, to continue the bootstrapping process. If a request is rejected, the NSG will terminate the auto-bootstrapping attempts. """ __rest_name__ = "zfbrequest" __resource_name__ = "zfbrequests" ## Constants CONST_ZFB_APPROVAL_STATUS_DENIED = "DENIED" CONST_REQUEST_TYPE_SELF_REBOOTSTRAP = "SELF_REBOOTSTRAP" CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_REQUEST_TYPE_ZFB = "ZFB" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" CONST_ZFB_APPROVAL_STATUS_UNASSIGNED = "UNASSIGNED" CONST_ZFB_APPROVAL_STATUS_APPROVED = "APPROVED" CONST_ZFB_APPROVAL_STATUS_ASSIGNED = "ASSIGNED" CONST_ASSOCIATED_ENTITY_TYPE_GATEWAY = "GATEWAY" CONST_ASSOCIATED_ENTITY_TYPE_NSGATEWAY = "NSGATEWAY" def __init__(self, **kwargs): """ Initializes a ZFBRequest instance Notes: You can specify all parameters while calling this methods. A special argument named `data` will enable you to load the object from a Python dictionary Examples: >>> zfbrequest = NUZFBRequest(id=u'xxxx-xxx-xxx-xxx', name=u'ZFBRequest') >>> zfbrequest = NUZFBRequest(data=my_dict) """ super(NUZFBRequest, self).__init__() # Read/Write Attributes self._mac_address = None self._zfb_approval_status = None self._zfb_bootstrap_enabled = None self._zfb_info = None self._zfb_request_retry_timer = None self._sku = None self._ip_address = None self._cpu_type = None self._nsg_version = None self._uuid = None self._family = None self._last_connected_time = None self._last_updated_by = None self._last_updated_date = None self._registration_url = None self._request_type = None self._serial_number = None self._embedded_metadata = None self._entity_scope = None self._hostname = None self._creation_date = None self._original_enterprise_name = None self._original_gateway_datapath_id = None self._original_gateway_name = None self._original_uplink_connection_info = None self._associated_enterprise_id = None self._associated_enterprise_name = None self._associated_entity_type = None self._associated_gateway_id = None self._associated_gateway_name = None self._associated_ns_gateway_id = None self._associated_ns_gateway_name = None self._status_string = None self._owner = None self._external_id = None self.expose_attribute(local_name="mac_address", remote_name="MACAddress", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="zfb_approval_status", remote_name="ZFBApprovalStatus", attribute_type=str, is_required=False, is_unique=False, choices=[u'APPROVED', u'ASSIGNED', u'DENIED', u'UNASSIGNED']) self.expose_attribute(local_name="zfb_bootstrap_enabled", remote_name="ZFBBootstrapEnabled", attribute_type=bool, is_required=False, is_unique=False) self.expose_attribute(local_name="zfb_info", remote_name="ZFBInfo", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="zfb_request_retry_timer", remote_name="ZFBRequestRetryTimer", attribute_type=int, is_required=False, is_unique=False) self.expose_attribute(local_name="sku", remote_name="SKU", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="ip_address", remote_name="IPAddress", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="cpu_type", remote_name="CPUType", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="nsg_version", remote_name="NSGVersion", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="uuid", remote_name="UUID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="family", remote_name="family", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="last_connected_time", remote_name="lastConnectedTime", attribute_type=float, is_required=False, is_unique=False) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="last_updated_date", remote_name="lastUpdatedDate", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="registration_url", remote_name="registrationURL", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="request_type", remote_name="requestType", attribute_type=str, is_required=False, is_unique=False, choices=[u'SELF_REBOOTSTRAP', u'ZFB']) self.expose_attribute(local_name="serial_number", remote_name="serialNumber", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="embedded_metadata", remote_name="embeddedMetadata", attribute_type=list, is_required=False, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="hostname", remote_name="hostname", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="creation_date", remote_name="creationDate", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="original_enterprise_name", remote_name="originalEnterpriseName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="original_gateway_datapath_id", remote_name="originalGatewayDatapathID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="original_gateway_name", remote_name="originalGatewayName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="original_uplink_connection_info", remote_name="originalUplinkConnectionInfo", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_enterprise_id", remote_name="associatedEnterpriseID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_enterprise_name", remote_name="associatedEnterpriseName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_entity_type", remote_name="associatedEntityType", attribute_type=str, is_required=False, is_unique=False, choices=[u'GATEWAY', u'NSGATEWAY']) self.expose_attribute(local_name="associated_gateway_id", remote_name="associatedGatewayID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_gateway_name", remote_name="associatedGatewayName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_ns_gateway_id", remote_name="associatedNSGatewayID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="associated_ns_gateway_name", remote_name="associatedNSGatewayName", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="status_string", remote_name="statusString", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="owner", remote_name="owner", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) # Fetchers self.permissions = NUPermissionsFetcher.fetcher_with_object(parent_object=self, relationship="child") self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.jobs = NUJobsFetcher.fetcher_with_object(parent_object=self, relationship="child") self._compute_args(**kwargs) # Properties @property def mac_address(self): """ Get mac_address value. Notes: MAC Address fo the NSG Port1 interface This attribute is named `MACAddress` in VSD API. """ return self._mac_address @mac_address.setter def mac_address(self, value): """ Set mac_address value. Notes: MAC Address fo the NSG Port1 interface This attribute is named `MACAddress` in VSD API. """ self._mac_address = value @property def zfb_approval_status(self): """ Get zfb_approval_status value. Notes: the status of the request This attribute is named `ZFBApprovalStatus` in VSD API. """ return self._zfb_approval_status @zfb_approval_status.setter def zfb_approval_status(self, value): """ Set zfb_approval_status value. Notes: the status of the request This attribute is named `ZFBApprovalStatus` in VSD API. """ self._zfb_approval_status = value @property def zfb_bootstrap_enabled(self): """ Get zfb_bootstrap_enabled value. Notes: whether the NSG should bootstrap, or just simulate bootstrap. Set from System Config This attribute is named `ZFBBootstrapEnabled` in VSD API. """ return self._zfb_bootstrap_enabled @zfb_bootstrap_enabled.setter def zfb_bootstrap_enabled(self, value): """ Set zfb_bootstrap_enabled value. Notes: whether the NSG should bootstrap, or just simulate bootstrap. Set from System Config This attribute is named `ZFBBootstrapEnabled` in VSD API. """ self._zfb_bootstrap_enabled = value @property def zfb_info(self): """ Get zfb_info value. Notes: The Base64 encoded JSON string of ZFB Attributes This attribute is named `ZFBInfo` in VSD API. """ return self._zfb_info @zfb_info.setter def zfb_info(self, value): """ Set zfb_info value. Notes: The Base64 encoded JSON string of ZFB Attributes This attribute is named `ZFBInfo` in VSD API. """ self._zfb_info = value @property def zfb_request_retry_timer(self): """ Get zfb_request_retry_timer value. Notes: ZFB Request retry timer on the gateway. Set on VSD's System Config panel. This attribute is named `ZFBRequestRetryTimer` in VSD API. """ return self._zfb_request_retry_timer @zfb_request_retry_timer.setter def zfb_request_retry_timer(self, value): """ Set zfb_request_retry_timer value. Notes: ZFB Request retry timer on the gateway. Set on VSD's System Config panel. This attribute is named `ZFBRequestRetryTimer` in VSD API. """ self._zfb_request_retry_timer = value @property def sku(self): """ Get sku value. Notes: The part number of the gateway being bootstrapped through ZFB. This attribute is named `SKU` in VSD API. """ return self._sku @sku.setter def sku(self, value): """ Set sku value. Notes: The part number of the gateway being bootstrapped through ZFB. This attribute is named `SKU` in VSD API. """ self._sku = value @property def ip_address(self): """ Get ip_address value. Notes: IP Address of the gateway being bootstrapped using ZFB. This attribute is named `IPAddress` in VSD API. """ return self._ip_address @ip_address.setter def ip_address(self, value): """ Set ip_address value. Notes: IP Address of the gateway being bootstrapped using ZFB. This attribute is named `IPAddress` in VSD API. """ self._ip_address = value @property def cpu_type(self): """ Get cpu_type value. Notes: Processor Type This attribute is named `CPUType` in VSD API. """ return self._cpu_type @cpu_type.setter def cpu_type(self, value): """ Set cpu_type value. Notes: Processor Type This attribute is named `CPUType` in VSD API. """ self._cpu_type = value @property def nsg_version(self): """ Get nsg_version value. Notes: The Nuage NSG Version This attribute is named `NSGVersion` in VSD API. """ return self._nsg_version @nsg_version.setter def nsg_version(self, value): """ Set nsg_version value. Notes: The Nuage NSG Version This attribute is named `NSGVersion` in VSD API. """ self._nsg_version = value @property def uuid(self): """ Get uuid value. Notes: Redhat UUID This attribute is named `UUID` in VSD API. """ return self._uuid @uuid.setter def uuid(self, value): """ Set uuid value. Notes: Redhat UUID This attribute is named `UUID` in VSD API. """ self._uuid = value @property def family(self): """ Get family value. Notes: Gateway Type """ return self._family @family.setter def family(self, value): """ Set family value. Notes: Gateway Type """ self._family = value @property def last_connected_time(self): """ Get last_connected_time value. Notes: The time in which the last GET was made from the gateway. This attribute is named `lastConnectedTime` in VSD API. """ return self._last_connected_time @last_connected_time.setter def last_connected_time(self, value): """ Set last_connected_time value. Notes: The time in which the last GET was made from the gateway. This attribute is named `lastConnectedTime` in VSD API. """ self._last_connected_time = value @property def last_updated_by(self): """ Get last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): """ Set last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ self._last_updated_by = value @property def last_updated_date(self): """ Get last_updated_date value. Notes: Time stamp when this object was last updated. This attribute is named `lastUpdatedDate` in VSD API. """ return self._last_updated_date @last_updated_date.setter def last_updated_date(self, value): """ Set last_updated_date value. Notes: Time stamp when this object was last updated. This attribute is named `lastUpdatedDate` in VSD API. """ self._last_updated_date = value @property def registration_url(self): """ Get registration_url value. Notes: Registration URL to be used for a gateway to be bootstrapped using ZFB. This attribute is named `registrationURL` in VSD API. """ return self._registration_url @registration_url.setter def registration_url(self, value): """ Set registration_url value. Notes: Registration URL to be used for a gateway to be bootstrapped using ZFB. This attribute is named `registrationURL` in VSD API. """ self._registration_url = value @property def request_type(self): """ Get request_type value. Notes: Value that serves in indicating if the Auto-Bootstrapping request is made in the context of a new NSG instance being bootstrapped or an NSG going through a self-rebootstrapping phase following a revocation triggered by entering quarantine. This attribute is named `requestType` in VSD API. """ return self._request_type @request_type.setter def request_type(self, value): """ Set request_type value. Notes: Value that serves in indicating if the Auto-Bootstrapping request is made in the context of a new NSG instance being bootstrapped or an NSG going through a self-rebootstrapping phase following a revocation triggered by entering quarantine. This attribute is named `requestType` in VSD API. """ self._request_type = value @property def serial_number(self): """ Get serial_number value. Notes: The gateway's Serial Number. This attribute is named `serialNumber` in VSD API. """ return self._serial_number @serial_number.setter def serial_number(self, value): """ Set serial_number value. Notes: The gateway's Serial Number. This attribute is named `serialNumber` in VSD API. """ self._serial_number = value @property def embedded_metadata(self): """ Get embedded_metadata value. Notes: Metadata objects associated with this entity. This will contain a list of Metadata objects if the API request is made using the special flag to enable the embedded Metadata feature. Only a maximum of Metadata objects is returned based on the value set in the system configuration. This attribute is named `embeddedMetadata` in VSD API. """ return self._embedded_metadata @embedded_metadata.setter def embedded_metadata(self, value): """ Set embedded_metadata value. Notes: Metadata objects associated with this entity. This will contain a list of Metadata objects if the API request is made using the special flag to enable the embedded Metadata feature. Only a maximum of Metadata objects is returned based on the value set in the system configuration. This attribute is named `embeddedMetadata` in VSD API. """ self._embedded_metadata = value @property def entity_scope(self): """ Get entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ return self._entity_scope @entity_scope.setter def entity_scope(self, value): """ Set entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ self._entity_scope = value @property def hostname(self): """ Get hostname value. Notes: Hostname of the gateway bootstrapped using ZFB. """ return self._hostname @hostname.setter def hostname(self, value): """ Set hostname value. Notes: Hostname of the gateway bootstrapped using ZFB. """ self._hostname = value @property def creation_date(self): """ Get creation_date value. Notes: Time stamp when this object was created. This attribute is named `creationDate` in VSD API. """ return self._creation_date @creation_date.setter def creation_date(self, value): """ Set creation_date value. Notes: Time stamp when this object was created. This attribute is named `creationDate` in VSD API. """ self._creation_date = value @property def original_enterprise_name(self): """ Get original_enterprise_name value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents the original name of the enterprise/organisation to which the NSG belonged. This attribute is named `originalEnterpriseName` in VSD API. """ return self._original_enterprise_name @original_enterprise_name.setter def original_enterprise_name(self, value): """ Set original_enterprise_name value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents the original name of the enterprise/organisation to which the NSG belonged. This attribute is named `originalEnterpriseName` in VSD API. """ self._original_enterprise_name = value @property def original_gateway_datapath_id(self): """ Get original_gateway_datapath_id value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents the original datapath ID that it had before revoking. This attribute is named `originalGatewayDatapathID` in VSD API. """ return self._original_gateway_datapath_id @original_gateway_datapath_id.setter def original_gateway_datapath_id(self, value): """ Set original_gateway_datapath_id value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents the original datapath ID that it had before revoking. This attribute is named `originalGatewayDatapathID` in VSD API. """ self._original_gateway_datapath_id = value @property def original_gateway_name(self): """ Get original_gateway_name value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents the original name the gateway had before revoking. This attribute is named `originalGatewayName` in VSD API. """ return self._original_gateway_name @original_gateway_name.setter def original_gateway_name(self, value): """ Set original_gateway_name value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents the original name the gateway had before revoking. This attribute is named `originalGatewayName` in VSD API. """ self._original_gateway_name = value @property def original_uplink_connection_info(self): """ Get original_uplink_connection_info value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents an information blob of the original uplink connection information that applied to this NSG. This attribute is named `originalUplinkConnectionInfo` in VSD API. """ return self._original_uplink_connection_info @original_uplink_connection_info.setter def original_uplink_connection_info(self, value): """ Set original_uplink_connection_info value. Notes: For an NSG that is self-rebootstrapping following a quarantine action, this field represents an information blob of the original uplink connection information that applied to this NSG. This attribute is named `originalUplinkConnectionInfo` in VSD API. """ self._original_uplink_connection_info = value @property def associated_enterprise_id(self): """ Get associated_enterprise_id value. Notes: the ID of the associated enteprise This attribute is named `associatedEnterpriseID` in VSD API. """ return self._associated_enterprise_id @associated_enterprise_id.setter def associated_enterprise_id(self, value): """ Set associated_enterprise_id value. Notes: the ID of the associated enteprise This attribute is named `associatedEnterpriseID` in VSD API. """ self._associated_enterprise_id = value @property def associated_enterprise_name(self): """ Get associated_enterprise_name value. Notes: Name of the associated enterprise This attribute is named `associatedEnterpriseName` in VSD API. """ return self._associated_enterprise_name @associated_enterprise_name.setter def associated_enterprise_name(self, value): """ Set associated_enterprise_name value. Notes: Name of the associated enterprise This attribute is named `associatedEnterpriseName` in VSD API. """ self._associated_enterprise_name = value @property def associated_entity_type(self): """ Get associated_entity_type value. Notes: Associated Entity Type: NSGATEWAY or GATEWAY This attribute is named `associatedEntityType` in VSD API. """ return self._associated_entity_type @associated_entity_type.setter def associated_entity_type(self, value): """ Set associated_entity_type value. Notes: Associated Entity Type: NSGATEWAY or GATEWAY This attribute is named `associatedEntityType` in VSD API. """ self._associated_entity_type = value @property def associated_gateway_id(self): """ Get associated_gateway_id value. Notes: ID of the assigned Gateway This attribute is named `associatedGatewayID` in VSD API. """ return self._associated_gateway_id @associated_gateway_id.setter def associated_gateway_id(self, value): """ Set associated_gateway_id value. Notes: ID of the assigned Gateway This attribute is named `associatedGatewayID` in VSD API. """ self._associated_gateway_id = value @property def associated_gateway_name(self): """ Get associated_gateway_name value. Notes: Name of the associated Gateway This attribute is named `associatedGatewayName` in VSD API. """ return self._associated_gateway_name @associated_gateway_name.setter def associated_gateway_name(self, value): """ Set associated_gateway_name value. Notes: Name of the associated Gateway This attribute is named `associatedGatewayName` in VSD API. """ self._associated_gateway_name = value @property def associated_ns_gateway_id(self): """ Get associated_ns_gateway_id value. Notes: ID of the assigned NSG This attribute is named `associatedNSGatewayID` in VSD API. """ return self._associated_ns_gateway_id @associated_ns_gateway_id.setter def associated_ns_gateway_id(self, value): """ Set associated_ns_gateway_id value. Notes: ID of the assigned NSG This attribute is named `associatedNSGatewayID` in VSD API. """ self._associated_ns_gateway_id = value @property def associated_ns_gateway_name(self): """ Get associated_ns_gateway_name value. Notes: Name of the associated NSG This attribute is named `associatedNSGatewayName` in VSD API. """ return self._associated_ns_gateway_name @associated_ns_gateway_name.setter def associated_ns_gateway_name(self, value): """ Set associated_ns_gateway_name value. Notes: Name of the associated NSG This attribute is named `associatedNSGatewayName` in VSD API. """ self._associated_ns_gateway_name = value @property def status_string(self): """ Get status_string value. Notes: Extra status info This attribute is named `statusString` in VSD API. """ return self._status_string @status_string.setter def status_string(self, value): """ Set status_string value. Notes: Extra status info This attribute is named `statusString` in VSD API. """ self._status_string = value @property def owner(self): """ Get owner value. Notes: Identifies the user that has created this object. """ return self._owner @owner.setter def owner(self, value): """ Set owner value. Notes: Identifies the user that has created this object. """ self._owner = value @property def external_id(self): """ Get external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ return self._external_id @external_id.setter def external_id(self, value): """ Set external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ self._external_id = value
bsd-3-clause
4,490,000,848,658,600,000
30.574354
296
0.581324
false
os2webscanner/os2webscanner
scrapy-webscanner/scanners/rules/regexrule.py
1
6057
# The contents of this file are subject to the Mozilla Public License # Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS"basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # # OS2Webscanner was developed by Magenta in collaboration with OS2 the # Danish community of open source municipalities (http://www.os2web.dk/). # # The code is currently governed by OS2 the Danish community of open # source municipalities ( http://www.os2web.dk/ ) """Regular expression-based rules.""" import logging import re import regex from .cpr import CPRRule from .rule import Rule from ..items import MatchItem class RegexRule(Rule): """Represents a rule which matches using a regular expression.""" def __init__(self, name, pattern_strings, sensitivity, cpr_enabled=False, ignore_irrelevant=False, do_modulus11=False, *args, **kwargs): """Initialize the rule. The sensitivity is used to assign a sensitivity value to matches. """ # Convert QuerySet to list super().__init__(*args, **kwargs) self.regex_patterns = list(pattern_strings.all()) self.name = name self.sensitivity = sensitivity self.cpr_enabled = cpr_enabled self.ignore_irrelevant = ignore_irrelevant self.do_modulus11 = do_modulus11 self.regex_str = '' if not self._is_cpr_only(): logging.info('------- Regex patters ---------') for _psuedoRule in self.regex_patterns: logging.info(_psuedoRule.pattern_string) logging.info('-----------------------------\n') self.regex_str = self.compund_rules() self.regex = regex.compile(self.regex_str, regex.DOTALL) # bind the 'do_modulus11' and 'ignore_irrelevant' variables to the cpr_enabled property so that they're always # false if it is false if not cpr_enabled: self.do_modulus11 = cpr_enabled self.ignore_irrelevant = cpr_enabled def __str__(self): """ Returns a string object representation of this object :return: """ return '{\n\tname: ' + self.name + \ ',\n\tregex: ' + self.regex_str + \ ',\n\tcpr_enabled: ' + str(self._is_cpr_only()) + \ ',\n\tsensitivity: ' + str(self.sensitivity) + '\n}' def compund_rules(self): """ This method compounds all the regex patterns in the rule set into one regex rule that is OR'ed e.g. A ruleSet of {pattern1, pattern2, pattern3} becomes (pattern1 | pattern2 | pattern3) :return: RegexRule representing the compound rule """ rule_set = set(self.regex_patterns) if len(rule_set) == 1: return rule_set.pop().pattern_string if len(rule_set) > 1: compound_rule = '(' for _ in self.regex_patterns: compound_rule += rule_set.pop().pattern_string if len(rule_set) <= 0: compound_rule += ')' else: compound_rule += '|' print('Returning< '+compound_rule+' >') return compound_rule if len(rule_set) < 1: return None def execute(self, text): """Execute the rule on the text.""" matches = set() if self._is_cpr_only(): cpr_rule = CPRRule(self.do_modulus11, self.ignore_irrelevant, whitelist=None) temp_matches = cpr_rule.execute(text) matches.update(temp_matches) else: re_matches = self.regex.finditer(text) if self.cpr_enabled: cpr_rule = CPRRule(self.do_modulus11, self.ignore_irrelevant, whitelist=None) matches.update(cpr_rule.execute(text)) for match in re_matches: matched_data = match.group(0) if len(matched_data) > 1024: # TODO: Get rid of magic number matched_data = match.group(1) matches.add(MatchItem(matched_data=matched_data, sensitivity=self.sensitivity)) return matches def is_all_match(self, matches): """ Checks if each rule is matched with the provided list of matches :param matches: List of matches :return: {True | false} """ if not isinstance(matches, set): return False cpr_match = False # If it turns out that we're only doing a cpr scan then scan for the first match and return true if self._is_cpr_only(): for match in matches: if re.match(self.cpr_pattern, match['original_matched_data']): return True else: regex_patterns = set(self.regex_patterns) # for rule in self.regex_patterns: for pattern in self.regex_patterns: for match in matches: if re.match(pattern.pattern_string, match['matched_data']) and regex_patterns: regex_patterns.pop() continue if self.cpr_enabled and not cpr_match and 'original_matched_data' in match: if re.match(self.cpr_pattern, match['original_matched_data']): cpr_match = True if not regex_patterns: break if not self.cpr_enabled: return not regex_patterns else: return not regex_patterns and cpr_match def _is_cpr_only(self): """Just a method to decide if we are only doing a CPR scan.""" return self.cpr_enabled and len(self.regex_patterns) <= 0
mpl-2.0
-2,763,163,922,065,293,000
37.826923
118
0.575698
false
magcius/dolphin
Tools/find-includes-cycles.py
157
2630
#! /usr/bin/env python ''' Run this script from Source/Core/ to find all the #include cycles. ''' import subprocess def get_local_includes_for(path): lines = open(path).read().split('\n') includes = [l.strip() for l in lines if l.strip().startswith('#include')] return [i.split()[1][1:-1] for i in includes if '"' in i.split()[1]] def find_all_files(): '''Could probably use os.walk, but meh.''' f = subprocess.check_output(['find', '.', '-name', '*.h'], universal_newlines=True).strip().split('\n') return [p[2:] for p in f] def make_include_graph(): return { f: get_local_includes_for(f) for f in find_all_files() } def strongly_connected_components(graph): """ Tarjan's Algorithm (named for its discoverer, Robert Tarjan) is a graph theory algorithm for finding the strongly connected components of a graph. Based on: http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm """ index_counter = [0] stack = [] lowlinks = {} index = {} result = [] def strongconnect(node): # set the depth index for this node to the smallest unused index index[node] = index_counter[0] lowlinks[node] = index_counter[0] index_counter[0] += 1 stack.append(node) # Consider successors of `node` try: successors = graph[node] except: successors = [] for successor in successors: if successor not in lowlinks: # Successor has not yet been visited; recurse on it strongconnect(successor) lowlinks[node] = min(lowlinks[node],lowlinks[successor]) elif successor in stack: # the successor is in the stack and hence in the current strongly connected component (SCC) lowlinks[node] = min(lowlinks[node],index[successor]) # If `node` is a root node, pop the stack and generate an SCC if lowlinks[node] == index[node]: connected_component = [] while True: successor = stack.pop() connected_component.append(successor) if successor == node: break component = tuple(connected_component) # storing the result result.append(component) for node in graph: if node not in lowlinks: strongconnect(node) return result if __name__ == '__main__': comp = strongly_connected_components(make_include_graph()) for c in comp: if len(c) != 1: print(c)
gpl-2.0
259,585,647,588,296,740
31.875
107
0.587452
false
stevelle/glance
glance/registry/api/v2/__init__.py
20
1125
# Copyright 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from glance.common import wsgi from glance.registry.api.v2 import rpc def init(mapper): rpc_resource = rpc.create_resource() mapper.connect("/rpc", controller=rpc_resource, conditions=dict(method=["POST"]), action="__call__") class API(wsgi.Router): """WSGI entry point for all Registry requests.""" def __init__(self, mapper): mapper = mapper or wsgi.APIMapper() init(mapper) super(API, self).__init__(mapper)
apache-2.0
4,267,301,022,425,531,400
31.142857
78
0.671111
false
bolkedebruin/airflow
airflow/providers/docker/example_dags/example_docker_swarm_operator.py
1
1606
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ from datetime import timedelta from airflow.utils.dates import days_ago from airflow import DAG from airflow.providers.docker.operators.docker_swarm import DockerSwarmOperator default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': days_ago(1), 'email': ['[email protected]'], 'email_on_failure': False, 'email_on_retry': False } dag = DAG( 'docker_swarm_sample', default_args=default_args, schedule_interval=timedelta(minutes=10), catchup=False ) with dag as dag: t1 = DockerSwarmOperator( api_version='auto', docker_url='tcp://localhost:2375', # Set your docker URL command='/bin/sleep 10', image='centos:latest', auto_remove=True, task_id='sleep_with_swarm', ) """
apache-2.0
1,583,269,313,751,345,400
30.490196
79
0.704857
false
mezz64/home-assistant
homeassistant/components/rpi_pfio/binary_sensor.py
14
2527
"""Support for binary sensor using the PiFace Digital I/O module on a RPi.""" import voluptuous as vol from homeassistant.components import rpi_pfio from homeassistant.components.binary_sensor import PLATFORM_SCHEMA, BinarySensorEntity from homeassistant.const import CONF_NAME, DEVICE_DEFAULT_NAME import homeassistant.helpers.config_validation as cv CONF_INVERT_LOGIC = "invert_logic" CONF_PORTS = "ports" CONF_SETTLE_TIME = "settle_time" DEFAULT_INVERT_LOGIC = False DEFAULT_SETTLE_TIME = 20 PORT_SCHEMA = vol.Schema( { vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_SETTLE_TIME, default=DEFAULT_SETTLE_TIME): cv.positive_int, vol.Optional(CONF_INVERT_LOGIC, default=DEFAULT_INVERT_LOGIC): cv.boolean, } ) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( {vol.Optional(CONF_PORTS, default={}): vol.Schema({cv.positive_int: PORT_SCHEMA})} ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the PiFace Digital Input devices.""" binary_sensors = [] ports = config.get(CONF_PORTS) for port, port_entity in ports.items(): name = port_entity.get(CONF_NAME) settle_time = port_entity[CONF_SETTLE_TIME] / 1000 invert_logic = port_entity[CONF_INVERT_LOGIC] binary_sensors.append( RPiPFIOBinarySensor(hass, port, name, settle_time, invert_logic) ) add_entities(binary_sensors, True) rpi_pfio.activate_listener(hass) class RPiPFIOBinarySensor(BinarySensorEntity): """Represent a binary sensor that a PiFace Digital Input.""" def __init__(self, hass, port, name, settle_time, invert_logic): """Initialize the RPi binary sensor.""" self._port = port self._name = name or DEVICE_DEFAULT_NAME self._invert_logic = invert_logic self._state = None def read_pfio(port): """Read state from PFIO.""" self._state = rpi_pfio.read_input(self._port) self.schedule_update_ha_state() rpi_pfio.edge_detect(hass, self._port, read_pfio, settle_time) @property def should_poll(self): """No polling needed.""" return False @property def name(self): """Return the name of the sensor.""" return self._name @property def is_on(self): """Return the state of the entity.""" return self._state != self._invert_logic def update(self): """Update the PFIO state.""" self._state = rpi_pfio.read_input(self._port)
apache-2.0
2,840,896,854,696,157,700
30.5875
86
0.657697
false
geishatokyo-lightning/lightning
lightning_core/test/testvg.py
1
5533
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2011 Geisha Tokyo Entertainment, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import unittest from lightning_core.vg.vg import * from lightning_core.vg.parser import * from lxml import etree class TestLinearGrad(unittest.TestCase): def test_constructor(self): c1 = [256,256,256,256] c2 = [ 0, 0, 0, 0] sp1 = Stop(c1, '100') sp2 = Stop(c2, '0') gtf = {'scaleX':'0', 'scaleY':'0.101'} lg = LinearGradient('100', gtf, (sp1,sp2)) self.assertEqual(lg.get('id'), '100') self.assertEqual(lg.get('gradientUnits'), 'userSpaceOnUse') self.assertEqual(lg.get('x1'), '-819') self.assertEqual(lg.get('x2'), '819') self.assertEqual(lg.get('gradientTransform'), 'matrix(0.00 0.00 0.00 0.10 0.0000 0.0000)') self.assertEqual(len(lg), 2) self.assertEqual(lg[0].get('stop-color'), '#ffffff') self.assertEqual(lg[0].get('stop-opacity'), '1.0') self.assertEqual(lg[0].get('offset'), str(100.0/255)) self.assertEqual(lg[1].get('stop-color'), '#000000') self.assertEqual(lg[1].get('stop-opacity'), str(0.0/255)) self.assertEqual(lg[1].get('offset'), str(0.0/255)) class TestTransform(unittest.TestCase): def setUp(self): filename = './lightning_core/test/xmlsamples.xml' f = open(filename,'r') samplexml = f.read() self.poxml = etree.XML(samplexml).xpath('.//PLACE_OBJECT2_HAS_COLORTRANS/PlaceObject2')[0] self.transform = Transform() self.parser = Parser() self.po = self.parser._get_place_object(self.poxml) def test_constructor(self): transform = Transform() self.assertEqual(transform.sx, 1.0) self.assertEqual(transform.sy, 1.0) self.assertEqual(transform.tx, 0.0) self.assertEqual(transform.ty, 0.0) self.assertEqual(transform.wx, 0.0) self.assertEqual(transform.wy, 0.0) self.assertEqual(transform.ctf, []) self.assertEqual(transform.depth, 1) self.assertEqual(transform.clipDepth, None) self.assertEqual(transform.name, None) self.assertEqual(transform.visible, True) def test_set_items_and_get_matrix(self): transform = Transform() transform.set_items(self.po.items()) self.assertEqual(transform.get_matrix(), (1.001770019531250, 0.0, 0.0, 1.0, -25.7, -57.0)) class TestTree(unittest.TestCase): def test_constructor(self): tree = Tree() self.assertAlmostEqual(tree.sx, 1.0) self.assertAlmostEqual(tree.sy, 1.0) self.assertAlmostEqual(tree.wx, 0.0) self.assertAlmostEqual(tree.wy, 0.0) self.assertAlmostEqual(tree.tx, 0.0) self.assertAlmostEqual(tree.ty, 0.0) self.assertEqual(len(tree.ctf), 0.0) self.assertEqual(tree.depth, 1) self.assertEqual(tree.name, None) self.assertEqual(len(tree.children), 0) self.assertEqual(tree.parent, None) def test_update(self): tree = Tree() tree.set_items({'tx':2.0}) self.assertAlmostEqual(tree.tx, 2.0) def test_str(self): tree = Tree() self.assertEqual(str(tree), 'key=None\n') tree.key = 'hoge' self.assertEqual(str(tree), 'key=hoge\n') tree2 = Tree() tree2.key = 'fuga' tree.children.append(tree2) self.assertEqual(str(tree), 'key=hoge\n\tkey=fuga') class TestAnimation(unittest.TestCase): def test_constructor(self): anim = Animation() self.assertEqual(anim.key, None) self.assertEqual(len(anim.frames), 0) def test_appendFrame(self): anim = Animation() index = 1 sx = 1.0 sy = 1.0 wx = 0.0 wy = 0.0 tx = 0.0 ty = 0.0 ctf = [] anim.key = 'hoge' anim.appendFrame(index, sx, sy, wx, wy, tx, ty, ctf) self.assertEqual(anim.key, 'hoge') self.assertEqual(len(anim.frames), 1) frame = anim.frames[0] self.assertEqual(frame['index'], 1) self.assertAlmostEqual(frame.sx, 1.0) self.assertAlmostEqual(frame['sy'], 1.0) self.assertAlmostEqual(frame['wx'], 0.0) self.assertAlmostEqual(frame['wy'], 0.0) self.assertAlmostEqual(frame['tx'], 0.0) self.assertAlmostEqual(frame['ty'], 0.0) self.assertEqual(frame['ctf'], []) if __name__ == '__main__': unittest.main()
mit
349,963,908,923,093,100
37.423611
98
0.632207
false
glorizen/nupic
tests/integration/nupic/opf/opf_description_template_test/opf_description_template_test.py
12
10082
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """Tests OPF descriptionTemplate.py-based experiment/sub-experiment pair""" import os import pprint import sys import unittest2 as unittest from pkg_resources import resource_filename from nupic.frameworks.opf.opfhelpers import ( loadExperimentDescriptionScriptFromDir, getExperimentDescriptionInterfaceFromModule ) from nupic.support.unittesthelpers.testcasebase import ( TestCaseBase as HelperTestCaseBase) # Our __main__ entry block sets this to an instance of MyTestEnvironment() g_myEnv = None g_debug = False class MyTestEnvironment(object): def __init__(self): examplesDir = resource_filename("nupic", os.path.join("..", "examples")) _debugOut("examplesDir=<%s>" % (examplesDir,)) assert os.path.exists(examplesDir), \ "%s is not present in filesystem" % examplesDir # This is where we find OPF binaries (e.g., run_opf_experiment.py, etc.) # In the autobuild, it is a read-only directory self.__opfBinDir = resource_filename("nupic", os.path.join("..", "scripts")) assert os.path.exists(self.__opfBinDir), \ "%s is not present in filesystem" % self.__opfBinDir _debugOut("self.__opfBinDir=<%s>" % self.__opfBinDir) # Where this script is running from (our autotest counterpart may have # copied it from its original location) self.__testRunDir = os.path.abspath(os.path.dirname(__file__)) _debugOut("self.__testRunDir=<%s>" % self.__testRunDir) # Parent directory of our private OPF experiments self.__opfExperimentsParentDir = os.path.join(self.__testRunDir, "experiments") assert os.path.exists(self.__opfExperimentsParentDir), \ "%s is not present in filesystem" % self.__opfExperimentsParentDir _debugOut("self.__opfExperimentsParentDir=<%s>" % self.__opfExperimentsParentDir) def getOpfRunExperimentPyPath(self): return os.path.join(self.__opfBinDir, "run_opf_experiment.py") def getOpfExperimentPath(self, experimentName): """ experimentName: e.g., "gym"; this string will be used to form a directory path to the experiment. Returns: absolute path to the experiment directory """ path = os.path.join(self.__opfExperimentsParentDir, experimentName) assert os.path.isdir(path), \ "Experiment path %s doesn't exist or is not a directory" % (path,) return path class MyTestCaseBase(HelperTestCaseBase): def setUp(self): """ Method called to prepare the test fixture. This is called immediately before calling the test method; any exception raised by this method will be considered an error rather than a test failure. The default implementation does nothing. """ global g_myEnv if not g_myEnv: # Setup environment g_myEnv = MyTestEnvironment() def tearDown(self): """ Method called immediately after the test method has been called and the result recorded. This is called even if the test method raised an exception, so the implementation in subclasses may need to be particularly careful about checking internal state. Any exception raised by this method will be considered an error rather than a test failure. This method will only be called if the setUp() succeeds, regardless of the outcome of the test method. The default implementation does nothing. """ # Reset our log items self.resetExtraLogItems() def shortDescription(self): """ Override to force unittest framework to use test method names instead of docstrings in the report. """ return None def executePositiveOpfExperiment(self, experimentName, short=False): """ Executes a positive OPF RunExperiment test as a subprocess and validates its exit status. experimentName: e.g., "gym"; this string will be used to form a directory path to the experiment. short: if True, attempt to run the experiment with --testMode flag turned on, which causes all inference and training iteration counts to be overridden with small counts. Returns: result from _executeExternalCmdAndReapOutputs """ opfRunner = g_myEnv.getOpfRunExperimentPyPath() opfExpDir = g_myEnv.getOpfExperimentPath(experimentName) r = self.__executePositiveRunExperimentTest(runnerPath=opfRunner, experimentDirPath=opfExpDir, short=short) return r def __executePositiveRunExperimentTest(self, runnerPath, experimentDirPath, customOptions=[], short=False): """ Executes a positive RunExperiment.py test and performs basic validation runnerPath: experiment running (LPF or OPF RunExperiment.py path) experimentDirPath: directory containing the description.py file of interest short: if True, attempt to run the experiment with --testMode flag turned on, which causes all inference and training iteration counts to be overridden with small counts. NOTE: if the (possibly aggregated) dataset has fewer rows than the count overrides, then an LPF experiment will fail. Returns: result from _executeExternalCmdAndReapOutputs """ #---------------------------------------- # Set up args command = [ "python", runnerPath, experimentDirPath, ] command.extend(customOptions) if short: command.append("--testMode") self.addExtraLogItem({'command':command}) #---------------------------------------- # Execute RunExperiment.py as subprocess and collect results r = _executeExternalCmdAndReapOutputs(command) self.addExtraLogItem({'result':r}) _debugOut(("_executeExternalCmdAndReapOutputs(%s)=%s") % (command, r)) #---------------------------------------- # Check subprocess exit status self.assertEqual(r['exitStatus'], 0, ("Expected status = 0 from %s; got: %s") % \ (runnerPath, r['exitStatus'],)) self.resetExtraLogItems() return r class PositiveTests(MyTestCaseBase): #======================== def test_sub_experiment_override(self): expDir = g_myEnv.getOpfExperimentPath("gym") module = loadExperimentDescriptionScriptFromDir(expDir) expIface = getExperimentDescriptionInterfaceFromModule(module) modelDesc = expIface.getModelDescription() tpActivationThreshold = modelDesc['modelParams'] \ ['tpParams']['activationThreshold'] expectedValue = 12 self.assertEqual(tpActivationThreshold, expectedValue, "Expected tp activationThreshold=%s, but got %s" % ( expectedValue, tpActivationThreshold)) def test_run_sub_experiment(self): self.executePositiveOpfExperiment(experimentName="gym", short=True) ################################################################################ # Support functions ################################################################################ def _executeExternalCmdAndReapOutputs(args): """ args: Args list as defined for the args parameter in subprocess.Popen() Returns: result dicionary: { 'exitStatus':<exit-status-of-external-command>, 'stdoutData':"string", 'stderrData':"string" } """ import subprocess _debugOut(("Starting...\n<%s>") % \ (args,)) p = subprocess.Popen(args, env=os.environ, stdout=subprocess.PIPE, stderr=subprocess.PIPE) _debugOut(("Process started for <%s>") % (args,)) (stdoutData, stderrData) = p.communicate() _debugOut(("Process completed for <%s>: exit status=%s, " + \ "stdoutDataType=%s, stdoutData=<%s>, stderrData=<%s>") % \ (args, p.returncode, type(stdoutData), stdoutData, stderrData)) result = dict( exitStatus = p.returncode, stdoutData = stdoutData, stderrData = stderrData, ) _debugOut(("args: <%s>: result:\n%s") % \ (args, pprint.pformat(result, indent=4))) return result def _debugOut(msg): if g_debug: callerTraceback = whoisCallersCaller() print "OPF TestDescriptionTemplate (f=%s;line=%s): %s" % \ (callerTraceback.function, callerTraceback.lineno, msg,) sys.stdout.flush() def whoisCallersCaller(): """ Returns: Traceback namedtuple for our caller's caller """ import inspect frameObj = inspect.stack()[2][0] return inspect.getframeinfo(frameObj) if __name__ == "__main__": g_myEnv = MyTestEnvironment() unittest.longMessage = True unittest.main()
agpl-3.0
284,778,791,718,727,900
32.384106
80
0.621702
false
fdzh/shadowsocks
shadowsocks/crypto/openssl.py
1038
5414
#!/usr/bin/env python # # Copyright 2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, \ with_statement from ctypes import c_char_p, c_int, c_long, byref,\ create_string_buffer, c_void_p from shadowsocks import common from shadowsocks.crypto import util __all__ = ['ciphers'] libcrypto = None loaded = False buf_size = 2048 def load_openssl(): global loaded, libcrypto, buf libcrypto = util.find_library(('crypto', 'eay32'), 'EVP_get_cipherbyname', 'libcrypto') if libcrypto is None: raise Exception('libcrypto(OpenSSL) not found') libcrypto.EVP_get_cipherbyname.restype = c_void_p libcrypto.EVP_CIPHER_CTX_new.restype = c_void_p libcrypto.EVP_CipherInit_ex.argtypes = (c_void_p, c_void_p, c_char_p, c_char_p, c_char_p, c_int) libcrypto.EVP_CipherUpdate.argtypes = (c_void_p, c_void_p, c_void_p, c_char_p, c_int) libcrypto.EVP_CIPHER_CTX_cleanup.argtypes = (c_void_p,) libcrypto.EVP_CIPHER_CTX_free.argtypes = (c_void_p,) if hasattr(libcrypto, 'OpenSSL_add_all_ciphers'): libcrypto.OpenSSL_add_all_ciphers() buf = create_string_buffer(buf_size) loaded = True def load_cipher(cipher_name): func_name = 'EVP_' + cipher_name.replace('-', '_') if bytes != str: func_name = str(func_name, 'utf-8') cipher = getattr(libcrypto, func_name, None) if cipher: cipher.restype = c_void_p return cipher() return None class OpenSSLCrypto(object): def __init__(self, cipher_name, key, iv, op): self._ctx = None if not loaded: load_openssl() cipher_name = common.to_bytes(cipher_name) cipher = libcrypto.EVP_get_cipherbyname(cipher_name) if not cipher: cipher = load_cipher(cipher_name) if not cipher: raise Exception('cipher %s not found in libcrypto' % cipher_name) key_ptr = c_char_p(key) iv_ptr = c_char_p(iv) self._ctx = libcrypto.EVP_CIPHER_CTX_new() if not self._ctx: raise Exception('can not create cipher context') r = libcrypto.EVP_CipherInit_ex(self._ctx, cipher, None, key_ptr, iv_ptr, c_int(op)) if not r: self.clean() raise Exception('can not initialize cipher context') def update(self, data): global buf_size, buf cipher_out_len = c_long(0) l = len(data) if buf_size < l: buf_size = l * 2 buf = create_string_buffer(buf_size) libcrypto.EVP_CipherUpdate(self._ctx, byref(buf), byref(cipher_out_len), c_char_p(data), l) # buf is copied to a str object when we access buf.raw return buf.raw[:cipher_out_len.value] def __del__(self): self.clean() def clean(self): if self._ctx: libcrypto.EVP_CIPHER_CTX_cleanup(self._ctx) libcrypto.EVP_CIPHER_CTX_free(self._ctx) ciphers = { 'aes-128-cfb': (16, 16, OpenSSLCrypto), 'aes-192-cfb': (24, 16, OpenSSLCrypto), 'aes-256-cfb': (32, 16, OpenSSLCrypto), 'aes-128-ofb': (16, 16, OpenSSLCrypto), 'aes-192-ofb': (24, 16, OpenSSLCrypto), 'aes-256-ofb': (32, 16, OpenSSLCrypto), 'aes-128-ctr': (16, 16, OpenSSLCrypto), 'aes-192-ctr': (24, 16, OpenSSLCrypto), 'aes-256-ctr': (32, 16, OpenSSLCrypto), 'aes-128-cfb8': (16, 16, OpenSSLCrypto), 'aes-192-cfb8': (24, 16, OpenSSLCrypto), 'aes-256-cfb8': (32, 16, OpenSSLCrypto), 'aes-128-cfb1': (16, 16, OpenSSLCrypto), 'aes-192-cfb1': (24, 16, OpenSSLCrypto), 'aes-256-cfb1': (32, 16, OpenSSLCrypto), 'bf-cfb': (16, 8, OpenSSLCrypto), 'camellia-128-cfb': (16, 16, OpenSSLCrypto), 'camellia-192-cfb': (24, 16, OpenSSLCrypto), 'camellia-256-cfb': (32, 16, OpenSSLCrypto), 'cast5-cfb': (16, 8, OpenSSLCrypto), 'des-cfb': (8, 8, OpenSSLCrypto), 'idea-cfb': (16, 8, OpenSSLCrypto), 'rc2-cfb': (16, 8, OpenSSLCrypto), 'rc4': (16, 0, OpenSSLCrypto), 'seed-cfb': (16, 16, OpenSSLCrypto), } def run_method(method): cipher = OpenSSLCrypto(method, b'k' * 32, b'i' * 16, 1) decipher = OpenSSLCrypto(method, b'k' * 32, b'i' * 16, 0) util.run_cipher(cipher, decipher) def test_aes_128_cfb(): run_method('aes-128-cfb') def test_aes_256_cfb(): run_method('aes-256-cfb') def test_aes_128_cfb8(): run_method('aes-128-cfb8') def test_aes_256_ofb(): run_method('aes-256-ofb') def test_aes_256_ctr(): run_method('aes-256-ctr') def test_bf_cfb(): run_method('bf-cfb') def test_rc4(): run_method('rc4') if __name__ == '__main__': test_aes_128_cfb()
apache-2.0
5,075,317,264,500,755,000
28.911602
77
0.597525
false
MattDevo/edk2
AppPkg/Applications/Python/Python-2.7.2/Lib/colorsys.py
75
3847
"""Conversion functions between RGB and other color systems. This modules provides two functions for each color system ABC: rgb_to_abc(r, g, b) --> a, b, c abc_to_rgb(a, b, c) --> r, g, b All inputs and outputs are triples of floats in the range [0.0...1.0] (with the exception of I and Q, which covers a slightly larger range). Inputs outside the valid range may cause exceptions or invalid outputs. Supported color systems: RGB: Red, Green, Blue components YIQ: Luminance, Chrominance (used by composite video signals) HLS: Hue, Luminance, Saturation HSV: Hue, Saturation, Value """ # References: # http://en.wikipedia.org/wiki/YIQ # http://en.wikipedia.org/wiki/HLS_color_space # http://en.wikipedia.org/wiki/HSV_color_space __all__ = ["rgb_to_yiq","yiq_to_rgb","rgb_to_hls","hls_to_rgb", "rgb_to_hsv","hsv_to_rgb"] # Some floating point constants ONE_THIRD = 1.0/3.0 ONE_SIXTH = 1.0/6.0 TWO_THIRD = 2.0/3.0 # YIQ: used by composite video signals (linear combinations of RGB) # Y: perceived grey level (0.0 == black, 1.0 == white) # I, Q: color components def rgb_to_yiq(r, g, b): y = 0.30*r + 0.59*g + 0.11*b i = 0.60*r - 0.28*g - 0.32*b q = 0.21*r - 0.52*g + 0.31*b return (y, i, q) def yiq_to_rgb(y, i, q): r = y + 0.948262*i + 0.624013*q g = y - 0.276066*i - 0.639810*q b = y - 1.105450*i + 1.729860*q if r < 0.0: r = 0.0 if g < 0.0: g = 0.0 if b < 0.0: b = 0.0 if r > 1.0: r = 1.0 if g > 1.0: g = 1.0 if b > 1.0: b = 1.0 return (r, g, b) # HLS: Hue, Luminance, Saturation # H: position in the spectrum # L: color lightness # S: color saturation def rgb_to_hls(r, g, b): maxc = max(r, g, b) minc = min(r, g, b) # XXX Can optimize (maxc+minc) and (maxc-minc) l = (minc+maxc)/2.0 if minc == maxc: return 0.0, l, 0.0 if l <= 0.5: s = (maxc-minc) / (maxc+minc) else: s = (maxc-minc) / (2.0-maxc-minc) rc = (maxc-r) / (maxc-minc) gc = (maxc-g) / (maxc-minc) bc = (maxc-b) / (maxc-minc) if r == maxc: h = bc-gc elif g == maxc: h = 2.0+rc-bc else: h = 4.0+gc-rc h = (h/6.0) % 1.0 return h, l, s def hls_to_rgb(h, l, s): if s == 0.0: return l, l, l if l <= 0.5: m2 = l * (1.0+s) else: m2 = l+s-(l*s) m1 = 2.0*l - m2 return (_v(m1, m2, h+ONE_THIRD), _v(m1, m2, h), _v(m1, m2, h-ONE_THIRD)) def _v(m1, m2, hue): hue = hue % 1.0 if hue < ONE_SIXTH: return m1 + (m2-m1)*hue*6.0 if hue < 0.5: return m2 if hue < TWO_THIRD: return m1 + (m2-m1)*(TWO_THIRD-hue)*6.0 return m1 # HSV: Hue, Saturation, Value # H: position in the spectrum # S: color saturation ("purity") # V: color brightness def rgb_to_hsv(r, g, b): maxc = max(r, g, b) minc = min(r, g, b) v = maxc if minc == maxc: return 0.0, 0.0, v s = (maxc-minc) / maxc rc = (maxc-r) / (maxc-minc) gc = (maxc-g) / (maxc-minc) bc = (maxc-b) / (maxc-minc) if r == maxc: h = bc-gc elif g == maxc: h = 2.0+rc-bc else: h = 4.0+gc-rc h = (h/6.0) % 1.0 return h, s, v def hsv_to_rgb(h, s, v): if s == 0.0: return v, v, v i = int(h*6.0) # XXX assume int() truncates! f = (h*6.0) - i p = v*(1.0 - s) q = v*(1.0 - s*f) t = v*(1.0 - s*(1.0-f)) i = i%6 if i == 0: return v, t, p if i == 1: return q, v, p if i == 2: return p, v, t if i == 3: return p, q, v if i == 4: return t, p, v if i == 5: return v, p, q # Cannot get here
bsd-2-clause
8,328,727,964,265,440,000
22.660256
76
0.493371
false
srault95/netcall
examples/threading/server_threading_prefork.py
1
3725
#!/usr/bin/env python # vim: fileencoding=utf-8 et ts=4 sts=4 sw=4 tw=0 fdm=indent """ A simple RPC server that shows how to: * start several worker processes * use zmq proxy device to load balance requests to the workers * make each worker to serve multiple RPC services asynchronously using the Python Threading multitasking """ #----------------------------------------------------------------------------- # Copyright (C) 2012-2014. Brian Granger, Min Ragan-Kelley, Alexander Glyzov # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE, distributed as part of this software. #----------------------------------------------------------------------------- from os import getpid from time import sleep from multiprocessing import Process, cpu_count from zmq import ROUTER, DEALER from zmq.devices import ThreadProxy from netcall.threading import ThreadingRPCService, JSONSerializer from netcall.utils import get_zmq_classes class EchoService(ThreadingRPCService): def echo(self, s): print "<pid:%s> %r echo %r" % (getpid(), self.connected, s) return s def sleep(self, t): print "<pid:%s> %r sleep %s" % (getpid(), self.connected, t) sleep(t) def error(self): raise ValueError('raising ValueError for fun!') class MathService(ThreadingRPCService): def add(self, a, b): print "<pid:%s> %r add %r %r" % (getpid(), self.connected, a, b) return a+b def subtract(self, a, b): print "<pid:%s> %r subtract %r %r" % (getpid(), self.connected, a, b) return a-b def multiply(self, a, b): print "<pid:%s> %r multiply %r %r" % (getpid(), self.connected, a, b) return a*b def divide(self, a, b): print "<pid:%s> %r divide %r %r" % (getpid(), self.connected, a, b) return a/b class Worker(Process): def run(self): # Multiple RPCService instances can be run in a single process # via Python Threads Context, _ = get_zmq_classes() context = Context() # Custom serializer/deserializer functions can be passed in. The server # side ones must match. echo = EchoService(context=context, serializer=JSONSerializer()) echo.connect('ipc:///tmp/rpc-demo-echo.service') # We create two Math services to simulate load balancing. A client can # connect to both of these services and requests will be load balanced. math1 = MathService(context=context) math1.connect('ipc:///tmp/rpc-demo-math1.service') math2 = MathService(context=context) math2.connect('ipc:///tmp/rpc-demo-math2.service') # Next we spawn service greenlets and wait for them to exit echo .start() math1 .start() math2 .start() echo .serve() math1 .serve() math2 .serve() if __name__ == '__main__': workers = [Worker() for _ in range(cpu_count())] for w in workers: w.start() echo_proxy = ThreadProxy(ROUTER, DEALER) math1_proxy = ThreadProxy(ROUTER, DEALER) math2_proxy = ThreadProxy(ROUTER, DEALER) echo_proxy .bind_in('tcp://127.0.0.1:5555') math1_proxy .bind_in('tcp://127.0.0.1:5556') math2_proxy .bind_in('tcp://127.0.0.1:5557') echo_proxy .bind_out('ipc:///tmp/rpc-demo-echo.service') math1_proxy .bind_out('ipc:///tmp/rpc-demo-math1.service') math2_proxy .bind_out('ipc:///tmp/rpc-demo-math2.service') echo_proxy .start() math1_proxy .start() math2_proxy .start() while True: echo_proxy .join(0.25) math1_proxy .join(0.25) math2_proxy .join(0.25)
bsd-3-clause
4,683,893,067,149,815,000
30.302521
79
0.600537
false
flavoi/diventi
diventi/adventures/migrations/0017_auto_20200504_2229.py
1
1287
# Generated by Django 2.2.12 on 2020-05-04 20:29 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('adventures', '0016_auto_20200503_1924'), ] operations = [ migrations.RemoveField( model_name='resolution', name='antagonist_goals', ), migrations.RemoveField( model_name='situation', name='resolution', ), migrations.AddField( model_name='antagonistgoal', name='situations', field=models.ManyToManyField(through='adventures.Resolution', to='adventures.Situation', verbose_name='situations'), ), migrations.AddField( model_name='resolution', name='antagonist_goal', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='adventures.AntagonistGoal', verbose_name='antagonist goal'), ), migrations.AddField( model_name='resolution', name='situation', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='adventures.Situation', verbose_name='situation'), ), ]
apache-2.0
6,941,592,988,053,494,000
33.783784
169
0.614608
false
n3storm/django-dynamic-preferences
dynamic_preferences/models.py
1
4395
""" Preference models, queryset and managers that handle the logic for persisting preferences. """ from django.db import models from django.db.models.query import QuerySet from django.conf import settings from django.utils.functional import cached_property from dynamic_preferences import user_preferences_registry, global_preferences_registry from dynamic_preferences.registries import preference_models from .utils import update class BasePreferenceModel(models.Model): """ A base model with common logic for all preferences models. """ #: The section under which the preference is declared section = models.CharField( max_length=255, db_index=True, blank=True, null=True, default=None) #: a name for the preference name = models.CharField(max_length=255, db_index=True) #: a value, serialized to a string. This field should not be accessed directly, use :py:attr:`BasePreferenceModel.value` instead raw_value = models.TextField(null=True, blank=True) class Meta: abstract = True app_label = 'dynamic_preferences' @cached_property def preference(self): return self.registry.get(section=self.section, name=self.name) @property def verbose_name(self): return self.preference.get('verbose_name', self.preference.identifier) @property def help_text(self): return self.preference.get('help_text', '') def set_value(self, value): """ Save serialized self.value to self.raw_value """ self.raw_value = self.preference.serializer.serialize(value) def get_value(self): """ Return deserialized self.raw_value """ return self.preference.serializer.deserialize(self.raw_value) value = property(get_value, set_value) def save(self, **kwargs): if self.pk is None and not self.raw_value: self.value = self.preference.default super(BasePreferenceModel, self).save(**kwargs) def __str__(self): return self.__repr__() def __repr__(self): return '{0} - {1}/{2}'.format(self.__class__.__name__, self.section, self.name) class GlobalPreferenceModel(BasePreferenceModel): registry = global_preferences_registry class Meta: unique_together = ('section', 'name') app_label = 'dynamic_preferences' verbose_name = "global preference" verbose_name_plural = "global preferences" class PerInstancePreferenceModel(BasePreferenceModel): """For preferences that are tied to a specific model instance""" #: the instance which is concerned by the preference #: use a ForeignKey pointing to the model of your choice instance = None class Meta(BasePreferenceModel.Meta): unique_together = ('instance', 'section', 'name') abstract = True @classmethod def get_instance_model(cls): return cls._meta.get_field('instance').rel.to @property def registry(self): return preference_models.get_by_instance(self.instance) class UserPreferenceModel(PerInstancePreferenceModel): instance = models.ForeignKey(settings.AUTH_USER_MODEL) class Meta(PerInstancePreferenceModel.Meta): app_label = 'dynamic_preferences' verbose_name = "user preference" verbose_name_plural = "user preferences" global_preferences_registry.preference_model = GlobalPreferenceModel # Create default preferences for new instances from django.db.models.signals import post_save def create_default_per_instance_preferences(sender, created, instance, **kwargs): """Create default preferences for PerInstancePreferenceModel""" if created: try: registry = preference_models.get_by_instance(instance) registry.create_default_preferences(instance) except AttributeError: pass def invalidate_cache(sender, created, instance, **kwargs): if not isinstance(instance, BasePreferenceModel): return registry = preference_models.get_by_preference(instance) linked_instance = getattr(instance, 'instance', None) kwargs = {} if linked_instance: kwargs['instance'] = linked_instance manager = registry.manager(**kwargs) manager.to_cache(instance) post_save.connect(create_default_per_instance_preferences) post_save.connect(invalidate_cache)
bsd-3-clause
-5,948,715,740,910,205,000
28.695946
132
0.689647
false
nekulin/arangodb
3rdParty/V8-4.3.61/third_party/python_26/Lib/site-packages/win32/Demos/cerapi.py
17
7436
# A demo of the Windows CE Remote API # # This connects to a CE device, and interacts with it. import wincerapi import win32event import win32api import win32con import os import sys import getopt from repr import repr def DumpPythonRegistry(): try: h = wincerapi.CeRegOpenKeyEx(win32con.HKEY_LOCAL_MACHINE, "Software\\Python\\PythonCore\\%s\\PythonPath" % sys.winver) except win32api.error: print "The remote device does not appear to have Python installed" return 0 path, typ = wincerapi.CeRegQueryValueEx(h, None) print "The remote PythonPath is '%s'" % (str(path), ) h.Close() return 1 def DumpRegistry(root, level=0): # A recursive dump of the remote registry to test most functions. h = wincerapi.CeRegOpenKeyEx(win32con.HKEY_LOCAL_MACHINE, None) level_prefix = " " * level index = 0 # Enumerate values. while 1: try: name, data, typ = wincerapi.CeRegEnumValue(root, index) except win32api.error: break print "%s%s=%s" % (level_prefix, name, repr(str(data))) index = index+1 # Now enumerate all keys. index=0 while 1: try: name, klass = wincerapi.CeRegEnumKeyEx(root, index) except win32api.error: break print "%s%s\\" % (level_prefix, name) subkey = wincerapi.CeRegOpenKeyEx(root, name) DumpRegistry(subkey, level+1) index = index+1 def DemoCopyFile(): # Create a file on the device, and write a string. cefile = wincerapi.CeCreateFile("TestPython", win32con.GENERIC_WRITE, 0, None, win32con.OPEN_ALWAYS, 0, None) wincerapi.CeWriteFile(cefile, "Hello from Python") cefile.Close() # reopen the file and check the data. cefile = wincerapi.CeCreateFile("TestPython", win32con.GENERIC_READ, 0, None, win32con.OPEN_EXISTING, 0, None) if wincerapi.CeReadFile(cefile, 100) != "Hello from Python": print "Couldnt read the data from the device!" cefile.Close() # Delete the test file wincerapi.CeDeleteFile("TestPython") print "Created, wrote to, read from and deleted a test file!" def DemoCreateProcess(): try: hp, ht, pid, tid = wincerapi.CeCreateProcess("Windows\\Python.exe", "", None, None, 0, 0, None, "", None) # Not necessary, except to see if handle closing raises an exception # (if auto-closed, the error is suppressed) hp.Close() ht.Close() print "Python is running on the remote device!" except win32api.error, (hr, fn, msg): print "Couldnt execute remote process -", msg def DumpRemoteMachineStatus(): ACLineStatus, BatteryFlag, BatteryLifePercent, BatteryLifeTime, BatteryFullLifeTime, BackupBatteryFlag, BackupBatteryLifePercent, BackupBatteryLifeTime, BackupBatteryLifeTime = \ wincerapi.CeGetSystemPowerStatusEx() if ACLineStatus: power = "AC" else: power = "battery" if BatteryLifePercent==255: batPerc = "unknown" else: batPerc = BatteryLifePercent print "The batteries are at %s%%, and is currently being powered by %s" % (batPerc, power) memLoad, totalPhys, availPhys, totalPage, availPage, totalVirt, availVirt = \ wincerapi.CeGlobalMemoryStatus() print "The memory is %d%% utilized." % (memLoad) print "%-20s%-10s%-10s" % ("", "Total", "Avail") print "%-20s%-10s%-10s" % ("Physical Memory", totalPhys, availPhys) print "%-20s%-10s%-10s" % ("Virtual Memory", totalVirt, availVirt) print "%-20s%-10s%-10s" % ("Paging file", totalPage, availPage) storeSize, freeSize = wincerapi.CeGetStoreInformation() print "%-20s%-10s%-10s" % ("File store", storeSize, freeSize) print "The CE temp path is", wincerapi.CeGetTempPath() print "The system info for the device is", wincerapi.CeGetSystemInfo() def DumpRemoteFolders(): # Dump all special folders possible. for name, val in wincerapi.__dict__.items(): if name[:6]=="CSIDL_": try: loc = str(wincerapi.CeGetSpecialFolderPath(val)) print "Folder %s is at %s" % (name, loc) except win32api.error, details: pass # Get the shortcut targets for the "Start Menu" print "Dumping start menu shortcuts..." try: startMenu = str(wincerapi.CeGetSpecialFolderPath(wincerapi.CSIDL_STARTMENU)) except win32api.error, details: print "This device has no start menu!", details startMenu = None if startMenu: for fileAttr in wincerapi.CeFindFiles(os.path.join(startMenu, "*")): fileName = fileAttr[8] fullPath = os.path.join(startMenu, str(fileName)) try: resolved = wincerapi.CeSHGetShortcutTarget(fullPath) except win32api.error, (rc, fn, msg): resolved = "#Error - %s" % msg print "%s->%s" % (fileName, resolved) # print "The start menu is at", # print wincerapi.CeSHGetShortcutTarget("\\Windows\\Start Menu\\Shortcut to Python.exe.lnk") def usage(): print "Options:" print "-a - Execute all demos" print "-p - Execute Python process on remote device" print "-r - Dump the remote registry" print "-f - Dump all remote special folder locations" print "-s - Dont dump machine status" print "-y - Perform asynch init of CE connection" def main(): async_init = bStartPython = bDumpRegistry = bDumpFolders = 0 bDumpStatus = 1 try: opts, args = getopt.getopt(sys.argv[1:], "apr") except getopt.error, why: print "Invalid usage:", why usage() return for o, v in opts: if o=="-a": bStartPython = bDumpRegistry = bDumpStatus = bDumpFolders = asynch_init = 1 if o=="-p": bStartPython=1 if o=="-r": bDumpRegistry=1 if o=="-s": bDumpStatus=0 if o=="-f": bDumpFolders = 1 if o=="-y": print "Doing asynch init of CE connection" async_init = 1 if async_init: event, rc = wincerapi.CeRapiInitEx() while 1: rc = win32event.WaitForSingleObject(event, 500) if rc==win32event.WAIT_OBJECT_0: # We connected. break else: print "Waiting for Initialize to complete (picture a Cancel button here :)" else: wincerapi.CeRapiInit() print "Connected to remote CE device." try: verinfo = wincerapi.CeGetVersionEx() print "The device is running windows CE version %d.%d - %s" % (verinfo[0], verinfo[1], verinfo[4]) if bDumpStatus: print "Dumping remote machine status" DumpRemoteMachineStatus() if bDumpRegistry: print "Dumping remote registry..." DumpRegistry(win32con.HKEY_LOCAL_MACHINE) if bDumpFolders: print "Dumping remote folder information" DumpRemoteFolders() DemoCopyFile() if bStartPython: print "Starting remote Python process" if DumpPythonRegistry(): DemoCreateProcess() else: print "Not trying to start Python, as it's not installed" finally: wincerapi.CeRapiUninit() print "Disconnected" if __name__=='__main__': main()
apache-2.0
-3,793,568,527,841,336,000
34.075472
182
0.617805
false
AnishShah/tensorflow
tensorflow/contrib/boosted_trees/lib/learner/batch/categorical_split_handler_test.py
2
22613
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for checking stats accumulator related ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.boosted_trees.lib.learner.batch import categorical_split_handler from tensorflow.contrib.boosted_trees.proto import learner_pb2 from tensorflow.contrib.boosted_trees.proto import split_info_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import resources from tensorflow.python.platform import googletest def get_empty_tensors(gradient_shape, hessian_shape): empty_hess_shape = [1] + hessian_shape.as_list() empty_grad_shape = [1] + gradient_shape.as_list() empty_gradients = constant_op.constant( [], dtype=dtypes.float32, shape=empty_grad_shape) empty_hessians = constant_op.constant( [], dtype=dtypes.float32, shape=empty_hess_shape) return empty_gradients, empty_hessians class EqualitySplitHandlerTest(test_util.TensorFlowTestCase): def testGenerateFeatureSplitCandidates(self): with self.cached_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Feature ID | # i0 | (0.2, 0.12) | 0 | 1,2 | # i1 | (-0.5, 0.07) | 0 | | # i2 | (1.2, 0.2) | 0 | 2 | # i3 | (4.0, 0.13) | 1 | 1 | gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = [0, 0, 0, 1] indices = [[0, 0], [0, 1], [2, 0], [3, 0]] values = array_ops.constant([1, 2, 2, 1], dtype=dtypes.int64) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = categorical_split_handler.EqualitySplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS, init_stamp_token=0) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) update_2 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1, update_2]): are_splits_ready, partitions, gains, splits = ( split_handler.make_splits(0, 1, class_id)) are_splits_ready, partitions, gains, splits = (sess.run( [are_splits_ready, partitions, gains, splits])) self.assertTrue(are_splits_ready) self.assertAllEqual([0, 1], partitions) # Check the split on partition 0. # -(0.2 + 1.2 - 0.1) / (0.12 + 0.2 + 1) expected_left_weight = -0.9848484848484846 # (0.2 + 1.2 - 0.1) ** 2 / (0.12 + 0.2 + 1) expected_left_gain = 1.2803030303030298 # -(-0.5 + 0.1) / (0.07 + 1) expected_right_weight = 0.37383177570093457 # (-0.5 + 0.1) ** 2 / (0.07 + 1) expected_right_gain = 0.14953271028037385 # (0.2 + -0.5 + 1.2 - 0.1) ** 2 / (0.12 + 0.07 + 0.2 + 1) expected_bias_gain = 0.46043165467625885 split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.categorical_id_binary_split self.assertEqual(0, split_node.feature_column) self.assertEqual(2, split_node.feature_id) self.assertAllClose( expected_left_gain + expected_right_gain - expected_bias_gain, gains[0], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) # Check the split on partition 1. # (-4 + 0.1) / (0.13 + 1) expected_left_weight = -3.4513274336283186 # (-4 + 0.1) ** 2 / (0.13 + 1) expected_left_gain = 13.460176991150442 expected_right_weight = 0 expected_right_gain = 0 # (-4 + 0.1) ** 2 / (0.13 + 1) expected_bias_gain = 13.460176991150442 # Verify candidate for partition 1, there's only one active feature here # so zero gain is expected. split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.categorical_id_binary_split self.assertAllClose(0.0, gains[1], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertEqual(1, split_node.feature_id) def testObliviousFeatureSplitGeneration(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Feature ID | # i0 | (0.2, 0.12) | 1 | 1 | # i1 | (-0.5, 0.07) | 1 | 2 | # i2 | (1.2, 0.2) | 1 | 1 | # i3 | (4.0, 0.13) | 2 | 2 | gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = [1, 1, 1, 2] indices = [[0, 0], [1, 0], [2, 0], [3, 0]] values = array_ops.constant([1, 2, 1, 2], dtype=dtypes.int64) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = categorical_split_handler.EqualitySplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS, init_stamp_token=0, weak_learner_type=learner_pb2.LearnerConfig.OBLIVIOUS_DECISION_TREE) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) update_2 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1, update_2]): are_splits_ready, partitions, gains, splits = ( split_handler.make_splits(0, 1, class_id)) are_splits_ready, partitions, gains, splits = ( sess.run([are_splits_ready, partitions, gains, splits])) self.assertTrue(are_splits_ready) self.assertAllEqual([1, 2], partitions) # For partition 1. # -(0.2 + 1.2 - 0.1) / (0.12 + 0.2 + 1) expected_left_weight1 = -0.9848484848484846 # (0.2 + 1.2 - 0.1) ** 2 / (0.12 + 0.2 + 1) expected_left_gain1 = 1.2803030303030298 # -(-0.5 + 0.1) / (0.07 + 1) expected_right_weight1 = 0.37383177570093457 # (-0.5 + 0.1) ** 2 / (0.07 + 1) expected_right_gain1 = 0.14953271028037385 # (0.2 + -0.5 + 1.2 - 0.1) ** 2 / (0.12 + 0.07 + 0.2 + 1) expected_bias_gain1 = 0.46043165467625885 split_info = split_info_pb2.ObliviousSplitInfo() split_info.ParseFromString(splits[0]) # Children of partition 1. left_child = split_info.children[0].vector right_child = split_info.children[1].vector split_node = split_info.split_node.oblivious_categorical_id_binary_split self.assertEqual(0, split_node.feature_column) self.assertEqual(1, split_node.feature_id) self.assertAllClose([expected_left_weight1], left_child.value, 0.00001) self.assertAllClose([expected_right_weight1], right_child.value, 0.00001) # For partition2. expected_left_weight2 = 0 expected_left_gain2 = 0 # -(4 - 0.1) / (0.13 + 1) expected_right_weight2 = -3.4513274336283186 # (4 - 0.1) ** 2 / (0.13 + 1) expected_right_gain2 = 13.460176991150442 # (4 - 0.1) ** 2 / (0.13 + 1) expected_bias_gain2 = 13.460176991150442 # Children of partition 2. left_child = split_info.children[2].vector right_child = split_info.children[3].vector self.assertAllClose([expected_left_weight2], left_child.value, 0.00001) self.assertAllClose([expected_right_weight2], right_child.value, 0.00001) self.assertAllClose( expected_left_gain1 + expected_right_gain1 - expected_bias_gain1 + expected_left_gain2 + expected_right_gain2 - expected_bias_gain2, gains[0], 0.00001) def testGenerateFeatureSplitCandidatesSumReduction(self): with self.cached_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Feature ID | # i0 | (0.2, 0.12) | 0 | 1,2 | # i1 | (-0.5, 0.07) | 0 | | # i2 | (1.2, 0.2) | 0 | 2 | # i3 | (4.0, 0.13) | 1 | 1 | gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = [0, 0, 0, 1] indices = [[0, 0], [0, 1], [2, 0], [3, 0]] values = array_ops.constant([1, 2, 2, 1], dtype=dtypes.int64) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = categorical_split_handler.EqualitySplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS, init_stamp_token=0, loss_uses_sum_reduction=True) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) update_2 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1, update_2]): are_splits_ready, partitions, gains, splits = ( split_handler.make_splits(0, 1, class_id)) are_splits_ready, partitions, gains, splits = ( sess.run([are_splits_ready, partitions, gains, splits])) self.assertTrue(are_splits_ready) self.assertAllEqual([0, 1], partitions) # Check the split on partition 0. # -(0.4 + 2.4 - 0.1) / (0.24 + 0.4 + 1) expected_left_weight = -1.6463414634146338 # (0.4 + 2.4 - 0.1) ** 2 / (0.24 + 0.4 + 1) expected_left_gain = 4.445121951219511 # -(-1 + 0.1) / (0.14 + 1) expected_right_weight = 0.789473684211 # (-1 + 0.1) ** 2 / (0.14 + 1) expected_right_gain = 0.710526315789 # (0.4 + -1 + 2.4 - 0.1) ** 2 / (0.24 + 0.14 + 0.4 + 1) expected_bias_gain = 1.6235955056179772 split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.categorical_id_binary_split self.assertEqual(0, split_node.feature_column) self.assertEqual(2, split_node.feature_id) self.assertAllClose( expected_left_gain + expected_right_gain - expected_bias_gain, gains[0], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) # Check the split on partition 1. # (-8 + 0.1) / (0.26 + 1) expected_left_weight = -6.26984126984 # (-8 + 0.1) ** 2 / (0.26 + 1) expected_left_gain = 49.5317460317 expected_right_weight = 0 expected_right_gain = 0 # (-8 + 0.1) ** 2 / (0.26 + 1) expected_bias_gain = 49.5317460317 # Verify candidate for partition 1, there's only one active feature here # so zero gain is expected. split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.categorical_id_binary_split self.assertAllClose(0.0, gains[1], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertEqual(1, split_node.feature_id) def testGenerateFeatureSplitCandidatesMulticlass(self): with self.cached_session() as sess: # Batch size is 4, 2 gradients per each instance. gradients = array_ops.constant( [[0.2, 0.1], [-0.5, 0.2], [1.2, 3.4], [4.0, -3.5]], shape=[4, 2]) # 2x2 matrix for each instance hessian_0 = [[0.12, 0.02], [0.3, 0.11]] hessian_1 = [[0.07, -0.2], [-0.5, 0.2]] hessian_2 = [[0.2, -0.23], [-0.8, 0.9]] hessian_3 = [[0.13, -0.3], [-1.5, 2.2]] hessians = array_ops.constant( [hessian_0, hessian_1, hessian_2, hessian_3]) partition_ids = [0, 0, 0, 1] indices = [[0, 0], [0, 1], [2, 0], [3, 0]] values = array_ops.constant([1, 2, 2, 1], dtype=dtypes.int64) hessians = array_ops.constant( [hessian_0, hessian_1, hessian_2, hessian_3]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) gradient_shape = tensor_shape.TensorShape([2]) hessian_shape = tensor_shape.TensorShape([2, 2]) class_id = -1 split_handler = categorical_split_handler.EqualitySplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.FULL_HESSIAN, init_stamp_token=0) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready, partitions, gains, splits = ( split_handler.make_splits(0, 1, class_id)) are_splits_ready, partitions, gains, splits = (sess.run( [are_splits_ready, partitions, gains, splits])) self.assertTrue(are_splits_ready) self.assertAllEqual([0, 1], partitions) split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.categorical_id_binary_split # Each leaf has 2 element vector. self.assertEqual(2, len(left_child.value)) self.assertEqual(2, len(right_child.value)) self.assertEqual(1, split_node.feature_id) split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.categorical_id_binary_split self.assertEqual(2, len(left_child.value)) self.assertEqual(0, len(right_child.value)) self.assertEqual(1, split_node.feature_id) def testEmpty(self): with self.cached_session() as sess: gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = [0, 0, 0, 1] indices = array_ops.constant([], dtype=dtypes.int64, shape=[0, 2]) values = array_ops.constant([], dtype=dtypes.int64) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = categorical_split_handler.EqualitySplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS, init_stamp_token=0) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready, partitions, gains, splits = ( split_handler.make_splits(0, 1, class_id)) are_splits_ready, partitions, gains, splits = (sess.run( [are_splits_ready, partitions, gains, splits])) self.assertTrue(are_splits_ready) self.assertEqual(len(partitions), 0) self.assertEqual(len(gains), 0) self.assertEqual(len(splits), 0) def testInactive(self): with self.cached_session() as sess: gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = [0, 0, 0, 1] indices = [[0, 0], [0, 1], [2, 0], [3, 0]] values = array_ops.constant([1, 2, 2, 1], dtype=dtypes.int64) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = categorical_split_handler.EqualitySplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, sparse_int_column=sparse_tensor.SparseTensor(indices, values, [4, 1]), feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS, init_stamp_token=0) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([False, False])) with ops.control_dependencies([update_1]): are_splits_ready, partitions, gains, splits = ( split_handler.make_splits(0, 1, class_id)) are_splits_ready, partitions, gains, splits = (sess.run( [are_splits_ready, partitions, gains, splits])) self.assertTrue(are_splits_ready) self.assertEqual(len(partitions), 0) self.assertEqual(len(gains), 0) self.assertEqual(len(splits), 0) if __name__ == "__main__": googletest.main()
apache-2.0
-7,559,824,180,958,474,000
37.853952
88
0.617079
false
dinghino/ecommerce_api
tests/test_pictures.py
2
7336
""" Test suite for PictureHandler and ItemPictureHandler """ from tests.test_case import TestCase import json from io import BytesIO import os import uuid import http.client as client from models import Item, Picture from tests import test_utils import utils EXPECTED_RESULTS = test_utils.RESULTS['pictures'] TEST_IMAGE_FOLDER = 'test_images' TEST_ITEM = { 'uuid': '429994bf-784e-47cc-a823-e0c394b823e8', 'name': 'mario', 'price': 20.20, 'description': 'svariati mariii', 'availability': 1, 'category': 'scarpe', } TEST_ITEM2 = { 'uuid': 'd46b13a1-f4bb-4cfb-8076-6953358145f3', 'name': 'GINO', 'price': 30.20, 'description': 'svariati GINIIIII', 'availability': 1, 'category': 'accessori', } TEST_PICTURE = { 'uuid': 'df690434-a488-419f-899e-8853cba1a22b', 'extension': 'jpg' } TEST_PICTURE2 = { 'uuid': 'c0001a48-10a3-43c1-b87b-eabac0b2d42f', 'extension': 'png' } WRONG_UUID = 'e8e42371-46de-4f5e-8927-e2cc34826269' class TestPictures(TestCase): @classmethod def setup_class(cls): super(TestPictures, cls).setup_class() utils.get_image_folder = lambda: os.path.join(utils.get_project_root(), TEST_IMAGE_FOLDER) test_utils.get_image_folder = utils.get_image_folder def test_get_picture__success(self): test_utils.setup_images() item = Item.create(**TEST_ITEM) picture = Picture.create(item=item, **TEST_PICTURE) open("{path}/{picture_uuid}.jpg".format( path=utils.get_image_folder(), picture_uuid=picture.uuid), "wb") resp = self.app.get('/pictures/{picture_uuid}'.format( picture_uuid=picture.uuid)) assert resp.status_code == client.OK test_picture = TEST_PICTURE.copy() test_picture['item_uuid'] = item.uuid assert resp.data == b'' assert resp.headers['Content-Type'] == 'image/jpeg' test_utils.clean_images() def test_get_picture__missing(self): resp = self.app.get('/pictures/{picture_uuid}'.format( picture_uuid=WRONG_UUID)) assert resp.status_code == client.NOT_FOUND def test_get_item_pictures__success(self): item = Item.create(**TEST_ITEM) Picture.create(item=item, **TEST_PICTURE) Picture.create(item=item, **TEST_PICTURE2) resp = self.app.get('/items/{item_uuid}/pictures/'.format( item_uuid=item.uuid)) assert resp.status_code == client.OK test_utils.assert_valid_response( resp.data, EXPECTED_RESULTS['get_item_pictures__success']) def test_get_item_pictures__empty(self): item = Item.create(**TEST_ITEM) resp = self.app.get('/items/{item_uuid}/pictures/'.format( item_uuid=item.uuid)) pictures = json.loads(resp.data) assert not pictures def test_get_item_pictures__wrong_item_uuid(self): resp = self.app.get('/items/{item_uuid}/pictures/'.format( item_uuid=WRONG_UUID)) assert resp.status_code == client.NOT_FOUND def test_post_picture__success(self): item = Item.create(**TEST_ITEM) resp = self.app.post('/items/{item_uuid}/pictures/'.format( item_uuid=item.uuid), data={'image': (BytesIO(b'my file contents'), 'testimage.jpg')}, content_type='multipart/form-data') assert resp.status_code == client.CREATED assert len(Picture.select()) == 1 picture = Picture.get() assert picture.item == item assert picture.extension == 'jpg' assert type(picture.uuid) == uuid.UUID def test_post_item_pictures__wrong_item_uuid(self): resp = self.app.post('/items/{item_uuid}/pictures/'.format( item_uuid=WRONG_UUID), data={'image': (BytesIO(b'my file contents'), 'testimage.jpg')}, content_type='multipart/form-data') assert resp.status_code == client.NOT_FOUND assert Picture.select().count() == 0 def test_post_item_pictures__wrong_extension(self): item = Item.create(**TEST_ITEM) resp = self.app.post('/items/{item_uuid}/pictures/'.format( item_uuid=item.uuid), data={'image': (BytesIO(b'my file contents'), 'testimage.txt')}, content_type='multipart/form-data') assert resp.status_code == client.BAD_REQUEST assert Picture.select().count() == 0 def test_post_picture__no_image(self): item = Item.create(**TEST_ITEM) resp = self.app.post('/items/{item_uuid}/pictures/'.format( item_uuid=item.uuid), data={}, content_type='multipart/form-data') assert resp.status_code == client.BAD_REQUEST assert Picture.select().count() == 0 def test_delete_picture__success(self): test_utils.setup_images() item = Item.create(**TEST_ITEM) picture = Picture.create(item=item, **TEST_PICTURE) picture2 = Picture.create(item=item, **TEST_PICTURE2) open("{path}/{picture_uuid}.{extension}".format( path=utils.get_image_folder(), picture_uuid=picture.uuid, extension=picture.extension), "wb") open("{path}/{picture_uuid}.{extension}".format( path=utils.get_image_folder(), picture_uuid=WRONG_UUID, extension='jpg'), "wb") open("{path}/{picture_uuid}.{extension}".format( path=utils.get_image_folder(), picture_uuid=picture2.uuid, extension=picture2.extension), "wb") resp = self.app.delete('/pictures/{picture_uuid}'.format( picture_uuid=picture.uuid)) assert resp.status_code == client.NO_CONTENT assert Picture.select().count() == 1 assert Item.select().count() == 1 item2 = Item.get() assert str(item2.uuid) == TEST_ITEM['uuid'] assert item2.name == TEST_ITEM['name'] assert float(item2.price) == TEST_ITEM['price'] assert item2.description == TEST_ITEM['description'] assert os.path.isfile("{path}/{picture_uuid}.{extension}".format( path=utils.get_image_folder(), picture_uuid=WRONG_UUID, extension='jpg')) assert not os.path.isfile("{path}/{picture_uuid}.{extension}".format( path=utils.get_image_folder(), picture_uuid=picture.uuid, extension=picture.extension)) assert os.path.isfile("{path}/{picture_uuid}.{extension}".format( path=utils.get_image_folder(), picture_uuid=picture2.uuid, extension=picture2.extension)) test_utils.clean_images() def test_delete_picture__wrong_uuid(self): resp = self.app.delete('/pictures/{picture_uuid}'.format( picture_uuid=WRONG_UUID)) assert resp.status_code == client.NOT_FOUND def test_delete_pictures__missing_file(self): item = Item.create(**TEST_ITEM) picture = Picture.create(item=item, **TEST_PICTURE) resp = self.app.delete('/pictures/{picture_uuid}'.format( picture_uuid=picture.uuid)) assert resp.status_code == client.NO_CONTENT assert not Picture.select().exists() assert Item.select().exists()
gpl-3.0
403,378,789,863,538,800
34.960784
79
0.605234
false
amagdas/eve
eve/tests/methods/delete.py
10
29272
from eve.tests import TestBase from eve.tests.utils import DummyEvent from eve.tests.test_settings import MONGO_DBNAME from eve import ETAG from bson import ObjectId from eve.utils import ParsedRequest import simplejson as json import copy from eve.methods.delete import deleteitem_internal class TestDelete(TestBase): def setUp(self): super(TestDelete, self).setUp() # Etag used to delete an item (a contact) self.etag_headers = [('If-Match', self.item_etag)] def test_unknown_resource(self): url = '%s%s/' % (self.unknown_resource_url, self.item_id) _, status = self.delete(url) self.assert404(status) def test_delete_from_resource_endpoint(self): r, status = self.delete(self.known_resource_url) self.assert204(status) r, status = self.parse_response(self.test_client.get( self.known_resource_url)) self.assert200(status) self.assertEqual(len(r['_items']), 0) def test_delete_from_resource_endpoint_write_concern(self): # should get a 500 since there's no replicaset on the mongod instance self.domain['contacts']['mongo_write_concern'] = {'w': 2} _, status = self.delete(self.known_resource_url) self.assert500(status) def test_delete_from_resource_endpoint_different_resource(self): r, status = self.delete(self.different_resource_url) self.assert204(status) r, status = self.parse_response(self.test_client.get( self.different_resource_url)) self.assert200(status) self.assertEqual(len(r['_items']), 0) # deletion of 'users' will still lave 'contacts' untouched (same db # collection) r, status = self.parse_response(self.test_client.get( self.known_resource_url)) self.assert200(status) self.assertEqual(len(r['_items']), 25) def test_delete_empty_resource(self): url = '%s%s/' % (self.empty_resource_url, self.item_id) _, status = self.delete(url) self.assert404(status) def test_delete_readonly_resource(self): _, status = self.delete(self.readonly_id_url) self.assert405(status) def test_delete_unknown_item(self): url = '%s%s/' % (self.known_resource_url, self.unknown_item_id) _, status = self.delete(url) self.assert404(status) def test_delete_ifmatch_missing(self): _, status = self.delete(self.item_id_url) self.assert403(status) def test_delete_ifmatch_disabled(self): self.app.config['IF_MATCH'] = False _, status = self.delete(self.item_id_url) self.assert204(status) def test_delete_ifmatch_bad_etag(self): _, status = self.delete(self.item_id_url, headers=[('If-Match', 'not-quite-right')]) self.assert412(status) def test_delete(self): r, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) r = self.test_client.get(self.item_id_url) self.assert404(r.status_code) def test_delete_non_existant(self): url = self.item_id_url[:-5] + "00000" r, status = self.delete(url, headers=self.etag_headers) self.assert404(status) def test_delete_write_concern(self): # should get a 500 since there's no replicaset on the mongod instance self.domain['contacts']['mongo_write_concern'] = {'w': 2} _, status = self.delete(self.item_id_url, headers=[('If-Match', self.item_etag)]) self.assert500(status) def test_delete_different_resource(self): r, status = self.delete(self.user_id_url, headers=[('If-Match', self.user_etag)]) self.assert204(status) r = self.test_client.get(self.user_id_url) self.assert404(r.status_code) def test_delete_with_post_override(self): # POST request with DELETE override turns into a DELETE headers = [('X-HTTP-Method-Override', 'DELETE'), ('If-Match', self.item_etag)] r = self.test_client.post(self.item_id_url, data={}, headers=headers) self.assert204(r.status_code) def test_delete_subresource(self): _db = self.connection[MONGO_DBNAME] # create random contact fake_contact = self.random_contacts(1) fake_contact_id = _db.contacts.insert(fake_contact)[0] # grab parent collection count; we will use this later to make sure we # didn't delete all the users in the datanase. We add one extra invoice # to make sure that the actual count will never be 1 (which would # invalidate the test) _db.invoices.insert({'inv_number': 1}) response, status = self.get('invoices') invoices = len(response[self.app.config['ITEMS']]) # update first invoice to reference the new contact _db.invoices.update({'_id': ObjectId(self.invoice_id)}, {'$set': {'person': fake_contact_id}}) # verify that the only document retrieved is referencing the correct # parent document response, status = self.get('users/%s/invoices' % fake_contact_id) person_id = ObjectId(response[self.app.config['ITEMS']][0]['person']) self.assertEqual(person_id, fake_contact_id) # delete all documents at the sub-resource endpoint response, status = self.delete('users/%s/invoices' % fake_contact_id) self.assert204(status) # verify that the no documents are left at the sub-resource endpoint response, status = self.get('users/%s/invoices' % fake_contact_id) self.assertEqual(len(response['_items']), 0) # verify that other documents in the invoices collection have not neen # deleted response, status = self.get('invoices') self.assertEqual(len(response['_items']), invoices - 1) def test_delete_subresource_item(self): _db = self.connection[MONGO_DBNAME] # create random contact fake_contact = self.random_contacts(1) fake_contact_id = _db.contacts.insert(fake_contact)[0] # update first invoice to reference the new contact _db.invoices.update({'_id': ObjectId(self.invoice_id)}, {'$set': {'person': fake_contact_id}}) # GET all invoices by new contact response, status = self.get('users/%s/invoices/%s' % (fake_contact_id, self.invoice_id)) etag = response[ETAG] headers = [('If-Match', etag)] response, status = self.delete('users/%s/invoices/%s' % (fake_contact_id, self.invoice_id), headers=headers) self.assert204(status) def test_deleteitem_internal(self): # test that deleteitem_internal is available and working properly. with self.app.test_request_context(self.item_id_url): r, _, _, status = deleteitem_internal( self.known_resource, concurrency_check=False, **{'_id': self.item_id}) self.assert204(status) r = self.test_client.get(self.item_id_url) self.assert404(r.status_code) def delete(self, url, headers=None): r = self.test_client.delete(url, headers=headers) return self.parse_response(r) class TestSoftDelete(TestDelete): def setUp(self): super(TestSoftDelete, self).setUp() # Enable soft delete self.app.config['SOFT_DELETE'] = True domain = copy.copy(self.domain) for resource, settings in domain.items(): # rebuild resource settings for soft delete del settings['soft_delete'] self.app.register_resource(resource, settings) # alias for the configured DELETED field name self.deleted_field = self.app.config['DELETED'] # TestDelete overrides def test_delete(self): """Soft delete should mark an item as deleted and cause subsequent requests to return 404 Not Found responses. 404s in response to GET requests should include the document in their body with the _deleted flag set to True. """ r, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) r = self.test_client.get(self.item_id_url) data, status = self.parse_response(r) self.assert404(status) self.assertEqual(data.get(self.deleted_field), True) self.assertNotEqual(data.get('_etag'), self.item_etag) # 404 should still include a status and an error field self.assertTrue(self.app.config['ERROR'] in data) def test_deleteitem_internal(self): """Deleteitem internal should honor soft delete settings. """ # test that deleteitem_internal is available and working properly. with self.app.test_request_context(self.item_id_url): r, _, _, status = deleteitem_internal( self.known_resource, concurrency_check=False, **{'_id': self.item_id}) self.assert204(status) r = self.test_client.get(self.item_id_url) data, status = self.parse_response(r) self.assert404(status) self.assertEqual(data.get(self.deleted_field), True) def test_delete_different_resource(self): r, status = self.delete(self.user_id_url, headers=[('If-Match', self.user_etag)]) self.assert204(status) r = self.test_client.get(self.user_id_url) data, status = self.parse_response(r) self.assert404(status) self.assertEqual(data.get(self.deleted_field), True) def test_delete_from_resource_endpoint(self): """Soft deleting an entire resource should mark each individual item as deleted, queries to that resource should return no items, and GETs on any individual items should return 404 responses. """ # TestDelete deletes resource at known_resource_url, and confirms # subsequent queries to the resource return zero items super(TestSoftDelete, self).test_delete_from_resource_endpoint() r = self.test_client.get(self.item_id_url) data, status = self.parse_response(r) self.assert404(status) self.assertEqual(data.get(self.deleted_field), True) # TetsSoftDelete specific tests def test_restore_softdeleted(self): """Sending a PUT or PATCH to a soft deleted document should restore the document. """ def soft_delete_item(etag): r, status = self.delete( self.item_id_url, headers=[('If-Match', etag)]) self.assert204(status) # GET soft deleted etag return self.test_client.get(self.item_id_url) # Restore via PATCH deleted_etag = soft_delete_item(self.item_etag).headers['ETag'] r = self.test_client.patch( self.item_id_url, data=json.dumps({}), headers=[('Content-Type', 'application/json'), ('If-Match', deleted_etag)]) self.assert200(r.status_code) r = self.test_client.get(self.item_id_url) self.assert200(r.status_code) new_etag = r.headers['ETag'] # Restore via PUT r = soft_delete_item(new_etag) deleted_etag = r.headers['ETag'] restored_doc = {"ref": "1234567890123456789012345"} r = self.test_client.put( self.item_id_url, data=json.dumps(restored_doc), headers=[('Content-Type', 'application/json'), ('If-Match', deleted_etag)]) self.assert200(r.status_code) r = self.test_client.get(self.item_id_url) self.assert200(r.status_code) def test_multiple_softdelete(self): """After an item has been soft deleted, subsequent DELETEs should return a 404 Not Found response. """ r, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) # GET soft deleted etag r = self.test_client.get(self.item_id_url) new_etag = r.headers['ETag'] # Second soft DELETE should return 404 Not Found r, status = self.delete( self.item_id_url, headers=[('If-Match', new_etag)]) self.assert404(status) def test_softdelete_deleted_field(self): """The configured 'deleted' field should be added to all documents to indicate whether that document has been soft deleted or not. """ r = self.test_client.get(self.item_id_url) data, status = self.parse_response(r) self.assert200(status) self.assertEqual(data.get(self.deleted_field), False) def test_softdelete_show_deleted(self): """GETs on resource endpoints should include soft deleted items when the 'show_deleted' param is included in the query, or when the DELETED field is explicitly included in the lookup. """ r, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) data, status = self.get(self.known_resource) after_softdelete_count = data[self.app.config['META']]['total'] self.assertEqual(after_softdelete_count, self.known_resource_count - 1) data, status = self.get(self.known_resource, query="?show_deleted") show_deleted_count = data[self.app.config['META']]['total'] self.assertEqual(show_deleted_count, self.known_resource_count) # Test show_deleted with additional queries role_query = '?where={"role": "' + self.item['role'] + '"}' data, status = self.get(self.known_resource, query=role_query) role_count = data[self.app.config['META']]['total'] data, status = self.get( self.known_resource, query=role_query + "&show_deleted") show_deleted_role_count = data[self.app.config['META']]['total'] self.assertEqual(show_deleted_role_count, role_count + 1) # Test explicit _deleted query data, status = self.get( self.known_resource, query='?where={"_deleted": true}') deleted_query_count = data[self.app.config['META']]['total'] self.assertEqual(deleted_query_count, 1) def test_softdeleted_embedded_doc(self): """Soft deleted documents embedded in other documents should not be included. They will resolve to None as if the document was actually deleted. """ # Set up and confirm embedded document _db = self.connection[MONGO_DBNAME] fake_contact = self.random_contacts(1) fake_contact_id = _db.contacts.insert(fake_contact)[0] fake_contact_url = self.known_resource_url + "/" + str(fake_contact_id) _db.invoices.update({'_id': ObjectId(self.invoice_id)}, {'$set': {'person': fake_contact_id}}) invoices = self.domain['invoices'] invoices['embedding'] = True invoices['schema']['person']['data_relation']['embeddable'] = True embedded = '{"person": 1}' r = self.test_client.get( self.invoice_id_url + '?embedded=%s' % embedded) data, status = self.parse_response(r) self.assert200(status) self.assertTrue('location' in data['person']) # Get embedded doc etag so we can delete it r = self.test_client.get(fake_contact_url) embedded_contact_etag = r.headers['ETag'] # Delete embedded contact data, status = self.delete( fake_contact_url, headers=[('If-Match', embedded_contact_etag)]) self.assert204(status) # embedded 'person' should now be empty r = self.test_client.get( self.invoice_id_url + '?embedded=%s' % embedded) data, status = self.parse_response(r) self.assert200(status) self.assertEqual(data['person'], None) def test_softdeleted_get_response_skips_embedded_expansion(self): """Soft deleted documents should not expand their embedded documents when returned in a 404 Not Found response. The deleted document data should reflect the state of the document when it was deleted, not change if still active embedded documents are updated """ # Confirm embedded document works before delete _db = self.connection[MONGO_DBNAME] fake_contact = self.random_contacts(1) fake_contact_id = _db.contacts.insert(fake_contact)[0] _db.invoices.update({'_id': ObjectId(self.invoice_id)}, {'$set': {'person': fake_contact_id}}) invoices = self.domain['invoices'] invoices['embedding'] = True invoices['schema']['person']['data_relation']['embeddable'] = True embedded = '{"person": 1}' r = self.test_client.get( self.invoice_id_url + '?embedded=%s' % embedded) invoice_etag = r.headers['ETag'] data, status = self.parse_response(r) self.assert200(status) self.assertTrue('location' in data['person']) # Soft delete document data, status = self.delete( self.invoice_id_url, headers=[('If-Match', invoice_etag)]) self.assert204(status) # Document in 404 should not expand person r = self.test_client.get( self.invoice_id_url + '?embedded=%s' % embedded) data, status = self.parse_response(r) self.assert404(status) self.assertEqual(data['person'], str(fake_contact_id)) def test_softdelete_caching(self): """404 Not Found responses after soft delete should be cacheable """ # Soft delete item r, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) # delete should have invalidated any previously cached 200 responses r = self.test_client.get( self.item_id_url, headers=[('If-None-Match', self.item_etag)]) self.assert404(r.status_code) post_delete_etag = r.headers['ETag'] # validate cached 404 response data r = status = self.test_client.get( self.item_id_url, headers=[('If-None-Match', post_delete_etag)]) self.assert304(r.status_code) def test_softdelete_datalayer(self): """Soft deleted items should not be returned by find methods in the Eve data layer unless show_deleted is explicitly configured in the request, the deleted field is included in the lookup, or the operation is 'raw'. """ # Soft delete item r, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) with self.app.test_request_context(): # find_one should only return item if a request w/ show_deleted == # True is passed or if the deleted field is part of the lookup req = ParsedRequest() doc = self.app.data.find_one( self.known_resource, req, _id=self.item_id) self.assertEqual(doc, None) req.show_deleted = True doc = self.app.data.find_one( self.known_resource, req, _id=self.item_id) self.assertNotEqual(doc, None) self.assertEqual(doc.get(self.deleted_field), True) req.show_deleted = False doc = self.app.data.find_one( self.known_resource, req, _id=self.item_id, _deleted=True) self.assertNotEqual(doc, None) self.assertEqual(doc.get(self.deleted_field), True) # find_one_raw should always return a document, soft deleted or not doc = self.app.data.find_one_raw( self.known_resource, _id=ObjectId(self.item_id)) self.assertNotEqual(doc, None) self.assertEqual(doc.get(self.deleted_field), True) # find should only return deleted items if a request with # show_deleted == True is passed or if the deleted field is part of # the lookup req.show_deleted = False docs = self.app.data.find(self.known_resource, req, None) undeleted_count = docs.count() req.show_deleted = True docs = self.app.data.find(self.known_resource, req, None) with_deleted_count = docs.count() self.assertEqual(undeleted_count, with_deleted_count - 1) req.show_deleted = False docs = self.app.data.find( self.known_resource, req, {self.deleted_field: True}) deleted_count = docs.count() self.assertEqual(deleted_count, 1) # find_list_of_ids will return deleted documents if given their id docs = self.app.data.find_list_of_ids( self.known_resource, [ObjectId(self.item_id)]) self.assertEqual(docs.count(), 1) def test_softdelete_db_fields(self): """Documents created when soft delete is enabled should include and maintain the DELETED field in the db. """ r = self.test_client.post(self.known_resource_url, data={ 'ref': "1234567890123456789054321" }) data, status = self.parse_response(r) self.assert201(status) new_item_id = data[self.app.config['ID_FIELD']] new_item_etag = data[self.app.config['ETAG']] with self.app.test_request_context(): db_stored_doc = self.app.data.find_one_raw( self.known_resource, _id=ObjectId(new_item_id)) self.assertTrue(self.deleted_field in db_stored_doc) # PUT updates to the document should maintain the DELETED field r = self.test_client.put( self.known_resource_url + "/" + new_item_id, data={'ref': '5432109876543210987654321'}, headers=[('If-Match', new_item_etag)] ) data, status = self.parse_response(r) self.assert200(status) new_item_etag = data[self.app.config['ETAG']] with self.app.test_request_context(): db_stored_doc = self.app.data.find_one_raw( self.known_resource, _id=ObjectId(new_item_id)) self.assertTrue(self.deleted_field in db_stored_doc) # PATCH updates to the document should maintain the DELETED field r = self.test_client.patch( self.known_resource_url + "/" + new_item_id, data={'ref': '5555544444333332222211111'}, headers=[('If-Match', new_item_etag)] ) self.assert200(r.status_code) with self.app.test_request_context(): db_stored_doc = self.app.data.find_one_raw( self.known_resource, _id=ObjectId(new_item_id)) self.assertTrue(self.deleted_field in db_stored_doc) class TestResourceSpecificSoftDelete(TestBase): def setUp(self): super(TestResourceSpecificSoftDelete, self).setUp() # Enable soft delete for one resource domain = copy.copy(self.domain) resource_settings = domain[self.known_resource] resource_settings['soft_delete'] = True self.app.register_resource(self.known_resource, resource_settings) self.deleted_field = self.app.config['DELETED'] # Etag used to delete an item (a contact) self.etag_headers = [('If-Match', self.item_etag)] def test_resource_specific_softdelete(self): """ Resource level soft delete configuration should override application configuration. """ # Confirm soft delete is enabled for known resource. data, status = self.delete(self.item_id_url, headers=self.etag_headers) self.assert204(status) r = self.test_client.get(self.item_id_url) data, status = self.parse_response(r) self.assert404(status) self.assertEqual(data.get(self.deleted_field), True) # DELETE on other resources should be hard deletes data, status = self.delete( self.invoice_id_url, headers=[('If-Match', self.invoice_etag)]) self.assert204(status) r = self.test_client.get(self.invoice_id_url) data, status = self.parse_response(r) self.assert404(status) self.assertTrue(self.deleted_field not in data) class TestDeleteEvents(TestBase): def test_on_pre_DELETE_for_item(self): devent = DummyEvent(self.before_delete) self.app.on_pre_DELETE += devent self.delete_item() self.assertEqual('contacts', devent.called[0]) self.assertFalse(devent.called[1] is None) def test_on_pre_DELETE_resource_for_item(self): devent = DummyEvent(self.before_delete) self.app.on_pre_DELETE_contacts += devent self.delete_item() self.assertFalse(devent.called is None) def test_on_pre_DELETE_for_resource(self): devent = DummyEvent(self.before_delete) self.app.on_pre_DELETE += devent self.delete_resource() self.assertFalse(devent.called is None) def test_on_pre_DELETE_resource_for_resource(self): devent = DummyEvent(self.before_delete) self.app.on_pre_DELETE_contacts += devent self.delete_resource() self.assertFalse(devent.called is None) def test_on_pre_DELETE_dynamic_filter(self): def filter_this(resource, request, lookup): lookup["_id"] = self.unknown_item_id self.app.on_pre_DELETE += filter_this # Would normally delete the known document; will return 404 instead. r, s = self.parse_response(self.delete_item()) self.assert404(s) def test_on_post_DELETE_for_item(self): devent = DummyEvent(self.after_delete) self.app.on_post_DELETE += devent self.delete_item() self.assertFalse(devent.called is None) def test_on_post_DELETE_resource_for_item(self): devent = DummyEvent(self.after_delete) self.app.on_post_DELETE_contacts += devent self.delete_item() self.assertFalse(devent.called is None) def test_on_post_DELETE_for_resource(self): devent = DummyEvent(self.after_delete) self.app.on_post_DELETE += devent self.delete_resource() self.assertFalse(devent.called is None) def test_on_post_DELETE_resource_for_resource(self): devent = DummyEvent(self.after_delete) self.app.on_post_DELETE_contacts += devent self.delete_resource() self.assertFalse(devent.called is None) def test_on_delete_resource(self): devent = DummyEvent(self.before_delete) self.app.on_delete_resource += devent self.delete_resource() self.assertEqual(('contacts',), devent.called) def test_on_delete_resource_contacts(self): devent = DummyEvent(self.before_delete) self.app.on_delete_resource_contacts += devent self.delete_resource() self.assertEqual(tuple(), devent.called) def test_on_deleted_resource(self): devent = DummyEvent(self.after_delete) self.app.on_deleted_resource += devent self.delete_resource() self.assertEqual(('contacts',), devent.called) def test_on_deleted_resource_contacts(self): devent = DummyEvent(self.after_delete) self.app.on_deleted_resource_contacts += devent self.delete_resource() self.assertEqual(tuple(), devent.called) def test_on_delete_item(self): devent = DummyEvent(self.before_delete) self.app.on_delete_item += devent self.delete_item() self.assertEqual('contacts', devent.called[0]) self.assertEqual( self.item_id, str(devent.called[1][self.app.config['ID_FIELD']])) def test_on_delete_item_contacts(self): devent = DummyEvent(self.before_delete) self.app.on_delete_item_contacts += devent self.delete_item() self.assertEqual( self.item_id, str(devent.called[0][self.app.config['ID_FIELD']])) def test_on_deleted_item(self): devent = DummyEvent(self.after_delete) self.app.on_deleted_item += devent self.delete_item() self.assertEqual('contacts', devent.called[0]) self.assertEqual( self.item_id, str(devent.called[1][self.app.config['ID_FIELD']])) def test_on_deleted_item_contacts(self): devent = DummyEvent(self.after_delete) self.app.on_deleted_item_contacts += devent self.delete_item() self.assertEqual( self.item_id, str(devent.called[0][self.app.config['ID_FIELD']])) def delete_resource(self): self.test_client.delete(self.known_resource_url) def delete_item(self): return self.test_client.delete( self.item_id_url, headers=[('If-Match', self.item_etag)]) def before_delete(self): db = self.connection[MONGO_DBNAME] return db.contacts.find_one(ObjectId(self.item_id)) is not None def after_delete(self): return not self.before_delete()
bsd-3-clause
-8,660,333,842,002,928,000
39.48686
86
0.61827
false
mrucci/moto
moto/cloudwatch/models.py
3
3720
from moto.core import BaseBackend import boto.ec2.cloudwatch import datetime class Dimension(object): def __init__(self, name, value): self.name = name self.value = value class FakeAlarm(object): def __init__(self, name, comparison_operator, evaluation_periods, period, threshold, statistic, description, dimensions, alarm_actions, ok_actions, insufficient_data_actions, unit): self.name = name self.comparison_operator = comparison_operator self.evaluation_periods = evaluation_periods self.period = period self.threshold = threshold self.statistic = statistic self.description = description self.dimensions = [Dimension(dimension['name'], dimension['value']) for dimension in dimensions] self.alarm_actions = alarm_actions self.ok_actions = ok_actions self.insufficient_data_actions = insufficient_data_actions self.unit = unit self.state_updated_timestamp = datetime.datetime.now() self.configuration_updated_timestamp = datetime.datetime.now() class MetricDatum(object): def __init__(self, namespace, name, value, dimensions): self.namespace = namespace self.name = name self.value = value self.dimensions = [Dimension(dimension['name'], dimension['value']) for dimension in dimensions] class CloudWatchBackend(BaseBackend): def __init__(self): self.alarms = {} self.metric_data = [] def put_metric_alarm(self, name, comparison_operator, evaluation_periods, period, threshold, statistic, description, dimensions, alarm_actions, ok_actions, insufficient_data_actions, unit): alarm = FakeAlarm(name, comparison_operator, evaluation_periods, period, threshold, statistic, description, dimensions, alarm_actions, ok_actions, insufficient_data_actions, unit) self.alarms[name] = alarm return alarm def get_all_alarms(self): return self.alarms.values() @staticmethod def _list_element_starts_with(items, needle): """True of any of the list elements starts with needle""" for item in items: if item.startswith(needle): return True return False def get_alarms_by_action_prefix(self, action_prefix): return [ alarm for alarm in self.alarms.values() if CloudWatchBackend._list_element_starts_with( alarm.alarm_actions, action_prefix ) ] def get_alarms_by_alarm_name_prefix(self, name_prefix): return [ alarm for alarm in self.alarms.values() if alarm.name.startswith(name_prefix) ] def get_alarms_by_alarm_names(self, alarm_names): return [ alarm for alarm in self.alarms.values() if alarm.name in alarm_names ] def get_alarms_by_state_value(self, state): raise NotImplementedError( "DescribeAlarm by state is not implemented in moto." ) def delete_alarms(self, alarm_names): for alarm_name in alarm_names: self.alarms.pop(alarm_name, None) def put_metric_data(self, namespace, metric_data): for name, value, dimensions in metric_data: self.metric_data.append(MetricDatum(namespace, name, value, dimensions)) def get_all_metrics(self): return self.metric_data cloudwatch_backends = {} for region in boto.ec2.cloudwatch.regions(): cloudwatch_backends[region.name] = CloudWatchBackend()
apache-2.0
-609,949,406,410,304,500
33.444444
104
0.625
false
robk5uj/invenio
modules/websubmit/lib/functions/Ask_For_Record_Details_Confirmation.py
35
5952
## This file is part of Invenio. ## Copyright (C) 2008, 2010, 2011 CERN. ## ## Invenio is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 2 of the ## License, or (at your option) any later version. ## ## Invenio is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Invenio; if not, write to the Free Software Foundation, Inc., ## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """Display the details of a record on which some operation is to be carried out and prompt for the user's confirmation that it is the correct record. Upon the clicking of the confirmation button, augment step by one. """ __revision__ = "$Id$" import cgi from invenio.config import CFG_SITE_ADMIN_EMAIL from invenio.websubmit_config import \ InvenioWebSubmitFunctionStop, \ InvenioWebSubmitFunctionError from invenio.search_engine import print_record, record_exists ## Details of record to display to the user for confirmation: CFG_DOCUMENT_DETAILS_MESSAGE = """ <div> We're about to process your request for the following document:<br /><br /> <table border="0"> <tr> <td>Report Number(s):</td><td>%(report-numbers)s</td> </tr> <tr> <td>Title:</td><td>%(title)s</td> </tr> <tr> <td>Author(s):</td><td>%(author)s</td> </tr> </table> <br /> If this is correct, please CONFIRM it:<br /> <br /> <input type="submit" width="350" height="50" name="CONFIRM" value="CONFIRM" onClick="document.forms[0].step.value=%(newstep)s;"> <br /> If you think that there is a problem, please contact <a href="mailto:%(admin-email)s">%(admin-email)s</a>.<br /> </div> """ def Ask_For_Record_Details_Confirmation(parameters, \ curdir, \ form, \ user_info=None): """ Display the details of a record on which some operation is to be carried out and prompt for the user's confirmation that it is the correct record. Upon the clicking of the confirmation button, augment step by one. Given the "recid" (001) of a record, retrieve the basic metadata (title, report-number(s) and author(s)) and display them in the user's browser along with a prompt asking them to confirm that it is indeed the record that they expected to see. The function depends upon the presence of the "sysno" global and the presence of the "step" field in the "form" parameter. When the user clicks on the "confirm" button, step will be augmented by 1 and the form will be submitted. @parameters: None. @return: None. @Exceptions raise: InvenioWebSubmitFunctionError if problems are encountered; InvenioWebSubmitFunctionStop in order to display the details of the record and the confirmation message. """ global sysno ## Make sure that we know the current step: try: current_step = int(form['step']) except TypeError: ## Can't determine step. msg = "Unable to determine submission step. Cannot continue." raise InvenioWebSubmitFunctionError(msg) else: newstep = current_step + 1 ## Make sure that the sysno is valid: try: working_recid = int(sysno) except TypeError: ## Unable to find the details of this record - cannot query the database msg = "Unable to retrieve details of record - record id was invalid." raise InvenioWebSubmitFunctionError(msg) if not record_exists(working_recid): ## Record doesn't exist. msg = "Unable to retrieve details of record [%s] - record does not " \ "exist." % working_recid raise InvenioWebSubmitFunctionError(msg) ## Retrieve the details to be displayed: ## ## Author(s): rec_authors = "" rec_first_author = print_record(int(sysno), 'tm', "100__a") rec_other_authors = print_record(int(sysno), 'tm', "700__a") if rec_first_author != "": rec_authors += "".join(["%s<br />\n" % cgi.escape(author.strip()) for \ author in rec_first_author.split("\n")]) if rec_other_authors != "": rec_authors += "".join(["%s<br />\n" % cgi.escape(author.strip()) for \ author in rec_other_authors.split("\n")]) ## Title: rec_title = "".join(["%s<br />\n" % cgi.escape(title.strip()) for title in \ print_record(int(sysno), 'tm', "245__a").split("\n")]) ## Report numbers: rec_reportnums = "" rec_reportnum = print_record(int(sysno), 'tm', "037__a") rec_other_reportnums = print_record(int(sysno), 'tm', "088__a") if rec_reportnum != "": rec_reportnums += "".join(["%s<br />\n" % cgi.escape(repnum.strip()) \ for repnum in rec_reportnum.split("\n")]) if rec_other_reportnums != "": rec_reportnums += "".join(["%s<br />\n" % cgi.escape(repnum.strip()) \ for repnum in \ rec_other_reportnums.split("\n")]) raise InvenioWebSubmitFunctionStop(CFG_DOCUMENT_DETAILS_MESSAGE % \ { 'report-numbers' : rec_reportnums, \ 'title' : rec_title, \ 'author' : rec_authors, \ 'newstep' : newstep, \ 'admin-email' : CFG_SITE_ADMIN_EMAIL, \ } )
gpl-2.0
-7,923,146,746,006,533,000
40.048276
80
0.598958
false
olhoneles/politicos
settings.py
1
1327
# -*- coding: utf-8 -*- # # Copyright (c) 2018, Marcelo Jorge Vieira <[email protected]> # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License # for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from tornado.options import define, options define('debug', default=True, help='debug mode') define('port', default=8888, help='port to listen on', type=int) define('redis_port', default=6379, help='redis port') define('redis_host', default='localhost', help='redis hostname or IP') define('es_hosts', default='localhost', help='elasticsearch hosts') define('es_index', default='politicians', help='elasticsearch index') options.parse_command_line() define('per_page', default=10, help='items per page') define('max_per_page', default=50, help='max items per page')
agpl-3.0
6,976,442,247,888,095,000
43.233333
79
0.740015
false
GheRivero/ansible
lib/ansible/modules/cloud/azure/azure_rm_acs.py
15
29357
#!/usr/bin/python # # Copyright (c) 2017 Julien Stroheker, <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_acs version_added: "2.4" short_description: Manage an Azure Container Service Instance (ACS). description: - Create, update and delete an Azure Container Service Instance. options: resource_group: description: - Name of a resource group where the Container Services exists or will be created. required: true name: description: - Name of the Container Services instance. required: true state: description: - Assert the state of the ACS. Use 'present' to create or update an ACS and 'absent' to delete it. default: present choices: - absent - present location: description: - Valid azure location. Defaults to location of the resource group. orchestration_platform: description: - Specifies the Container Orchestration Platform to use. Currently can be either DCOS, Kubernetes or Swarm. choices: - 'DCOS' - 'Kubernetes' - 'Swarm' required: true master_profile: description: - Master profile suboptions. required: true suboptions: count: description: - Number of masters (VMs) in the container service cluster. Allowed values are 1, 3, and 5. required: true choices: - 1 - 3 - 5 vm_size: description: - The VM Size of each of the Agent Pool VM's (e.g. Standard_F1 / Standard_D2v2). required: true version_added: 2.5 dns_prefix: description: - The DNS Prefix to use for the Container Service master nodes. required: true linux_profile: description: - The linux profile suboptions. required: true suboptions: admin_username: description: - The Admin Username for the Cluster. required: true ssh_key: description: - The Public SSH Key used to access the cluster. required: true agent_pool_profiles: description: - The agent pool profile suboptions. required: true suboptions: name: description: - Unique name of the agent pool profile in the context of the subscription and resource group. required: true count: description: - Number of agents (VMs) to host docker containers. Allowed values must be in the range of 1 to 100 (inclusive). required: true dns_prefix: description: - The DNS Prefix given to Agents in this Agent Pool. required: true vm_size: description: - The VM Size of each of the Agent Pool VM's (e.g. Standard_F1 / Standard_D2v2). required: true service_principal: description: - The service principal suboptions. suboptions: client_id: description: - The ID for the Service Principal. required: false client_secret: description: - The secret password associated with the service principal. required: false diagnostics_profile: description: - Should VM Diagnostics be enabled for the Container Service VM's. required: true type: bool extends_documentation_fragment: - azure - azure_tags author: - "Julien Stroheker (@julienstroheker)" ''' EXAMPLES = ''' - name: Create an azure container services instance running Kubernetes azure_rm_acs: name: acctestcontservice1 location: eastus resource_group: Testing orchestration_platform: Kubernetes master_profile: - count: 3 dns_prefix: acsk8smasterdns vm_size: Standard_D2_v2 linux_profile: - admin_username: azureuser ssh_key: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAA... service_principal: - client_id: "cf72ca99-f6b9-4004-b0e0-bee10c521948" client_secret: "mySPNp@ssw0rd!" agent_pool_profiles: - name: default count: 5 dns_prefix: acsk8sagent vm_size: Standard_D2_v2 diagnostics_profile: false tags: Environment: Production - name: Create an azure container services instance running DCOS azure_rm_acs: name: acctestcontservice2 location: eastus resource_group: Testing orchestration_platform: DCOS master_profile: - count: 3 dns_prefix: acsdcosmasterdns vm_size: Standard_D2_v2 linux_profile: - admin_username: azureuser ssh_key: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAA... agent_pool_profiles: - name: default count: 5 dns_prefix: acscdcosagent vm_size: Standard_D2_v2 diagnostics_profile: false tags: Environment: Production - name: Create an azure container services instance running Swarm azure_rm_acs: name: acctestcontservice3 location: eastus resource_group: Testing orchestration_platform: Swarm master_profile: - count: 3 dns_prefix: acsswarmmasterdns vm_size: Standard_D2_v2 linux_profile: - admin_username: azureuser ssh_key: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAA... agent_pool_profiles: - name: default count: 5 dns_prefix: acsswarmagent vm_size: Standard_D2_v2 diagnostics_profile: false tags: Environment: Production # Deletes the specified container service in the specified subscription and resource group. # The operation does not delete other resources created as part of creating a container service, # including storage accounts, VMs, and availability sets. All the other resources created with the container # service are part of the same resource group and can be deleted individually. - name: Remove an azure container services instance azure_rm_acs: name: acctestcontservice3 location: eastus resource_group: Testing state: absent orchestration_platform: Swarm master_profile: - count: 1 vm_size: Standard_A0 dns_prefix: acstestingmasterdns5 linux_profile: - admin_username: azureuser ssh_key: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAA... agent_pool_profiles: - name: default count: 4 dns_prefix: acctestagent15 vm_size: Standard_A0 diagnostics_profile: false tags: Ansible: azure_rm_acs ''' RETURN = ''' state: description: Current state of the azure container service returned: always type: dict ''' from ansible.module_utils.azure_rm_common import AzureRMModuleBase try: from msrestazure.azure_exceptions import CloudError from azure.mgmt.containerservice.models import ( ContainerService, ContainerServiceOrchestratorProfile, ContainerServiceCustomProfile, ContainerServiceServicePrincipalProfile, ContainerServiceMasterProfile, ContainerServiceAgentPoolProfile, ContainerServiceWindowsProfile, ContainerServiceLinuxProfile, ContainerServiceSshConfiguration, ContainerServiceDiagnosticsProfile, ContainerServiceSshPublicKey, ContainerServiceVMDiagnostics ) except ImportError: # This is handled in azure_rm_common pass def create_agent_pool_profile_instance(agentpoolprofile): ''' Helper method to serialize a dict to a ContainerServiceAgentPoolProfile :param: agentpoolprofile: dict with the parameters to setup the ContainerServiceAgentPoolProfile :return: ContainerServiceAgentPoolProfile ''' return ContainerServiceAgentPoolProfile( name=agentpoolprofile['name'], count=agentpoolprofile['count'], dns_prefix=agentpoolprofile['dns_prefix'], vm_size=agentpoolprofile['vm_size'] ) def create_orch_platform_instance(orchestrator): ''' Helper method to serialize a dict to a ContainerServiceOrchestratorProfile :param: orchestrator: dict with the parameters to setup the ContainerServiceOrchestratorProfile :return: ContainerServiceOrchestratorProfile ''' return ContainerServiceOrchestratorProfile( orchestrator_type=orchestrator, ) def create_service_principal_profile_instance(spnprofile): ''' Helper method to serialize a dict to a ContainerServiceServicePrincipalProfile :param: spnprofile: dict with the parameters to setup the ContainerServiceServicePrincipalProfile :return: ContainerServiceServicePrincipalProfile ''' return ContainerServiceServicePrincipalProfile( client_id=spnprofile[0]['client_id'], secret=spnprofile[0]['client_secret'] ) def create_linux_profile_instance(linuxprofile): ''' Helper method to serialize a dict to a ContainerServiceLinuxProfile :param: linuxprofile: dict with the parameters to setup the ContainerServiceLinuxProfile :return: ContainerServiceLinuxProfile ''' return ContainerServiceLinuxProfile( admin_username=linuxprofile[0]['admin_username'], ssh=create_ssh_configuration_instance(linuxprofile[0]['ssh_key']) ) def create_ssh_configuration_instance(sshconf): ''' Helper method to serialize a dict to a ContainerServiceSshConfiguration :param: sshconf: dict with the parameters to setup the ContainerServiceSshConfiguration :return: ContainerServiceSshConfiguration ''' listssh = [] key = ContainerServiceSshPublicKey(key_data=str(sshconf)) listssh.append(key) return ContainerServiceSshConfiguration( public_keys=listssh ) def create_master_profile_instance(masterprofile): ''' Helper method to serialize a dict to a ContainerServiceMasterProfile Note: first_consecutive_static_ip is specifically set to None, for Azure server doesn't accept request body with this property. This should be an inconsistency bug before Azure client SDK and Azure server. :param: masterprofile: dict with the parameters to setup the ContainerServiceMasterProfile :return: ContainerServiceMasterProfile ''' return ContainerServiceMasterProfile( count=masterprofile[0]['count'], dns_prefix=masterprofile[0]['dns_prefix'], vm_size=masterprofile[0]['vm_size'], first_consecutive_static_ip=None ) def create_diagnostics_profile_instance(diagprofile): ''' Helper method to serialize a dict to a ContainerServiceDiagnosticsProfile :param: diagprofile: dict with the parameters to setup the ContainerServiceDiagnosticsProfile :return: ContainerServiceDiagnosticsProfile ''' return ContainerServiceDiagnosticsProfile( vm_diagnostics=create_vm_diagnostics_instance(diagprofile) ) def create_vm_diagnostics_instance(vmdiag): ''' Helper method to serialize a dict to a ContainerServiceVMDiagnostics :param: vmdiag: dict with the parameters to setup the ContainerServiceVMDiagnostics :return: ContainerServiceVMDiagnostics ''' return ContainerServiceVMDiagnostics( enabled=vmdiag ) def create_acs_dict(acs): ''' Helper method to deserialize a ContainerService to a dict :param: acs: ContainerService or AzureOperationPoller with the Azure callback object :return: dict with the state on Azure ''' service_principal_profile_dict = None if acs.orchestrator_profile.orchestrator_type == 'Kubernetes': service_principal_profile_dict = create_service_principal_profile_dict(acs.service_principal_profile) return dict( id=acs.id, name=acs.name, location=acs.location, tags=acs.tags, orchestrator_profile=create_orchestrator_profile_dict(acs.orchestrator_profile), master_profile=create_master_profile_dict(acs.master_profile), linux_profile=create_linux_profile_dict(acs.linux_profile), service_principal_profile=service_principal_profile_dict, diagnostics_profile=create_diagnotstics_profile_dict(acs.diagnostics_profile), provisioning_state=acs.provisioning_state, agent_pool_profiles=create_agent_pool_profiles_dict(acs.agent_pool_profiles), type=acs.type ) def create_linux_profile_dict(linuxprofile): ''' Helper method to deserialize a ContainerServiceLinuxProfile to a dict :param: linuxprofile: ContainerServiceLinuxProfile with the Azure callback object :return: dict with the state on Azure ''' return dict( ssh_key=linuxprofile.ssh.public_keys[0].key_data, admin_username=linuxprofile.admin_username ) def create_master_profile_dict(masterprofile): ''' Helper method to deserialize a ContainerServiceMasterProfile to a dict :param: masterprofile: ContainerServiceMasterProfile with the Azure callback object :return: dict with the state on Azure ''' return dict( count=masterprofile.count, fqdn=masterprofile.fqdn, vm_size=masterprofile.vm_size, dns_prefix=masterprofile.dns_prefix ) def create_service_principal_profile_dict(serviceprincipalprofile): ''' Helper method to deserialize a ContainerServiceServicePrincipalProfile to a dict Note: For security reason, the service principal secret is skipped on purpose. :param: serviceprincipalprofile: ContainerServiceServicePrincipalProfile with the Azure callback object :return: dict with the state on Azure ''' return dict( client_id=serviceprincipalprofile.client_id ) def create_diagnotstics_profile_dict(diagnosticsprofile): ''' Helper method to deserialize a ContainerServiceVMDiagnostics to a dict :param: diagnosticsprofile: ContainerServiceVMDiagnostics with the Azure callback object :return: dict with the state on Azure ''' return dict( vm_diagnostics=diagnosticsprofile.vm_diagnostics.enabled ) def create_orchestrator_profile_dict(orchestratorprofile): ''' Helper method to deserialize a ContainerServiceOrchestratorProfile to a dict :param: orchestratorprofile: ContainerServiceOrchestratorProfile with the Azure callback object :return: dict with the state on Azure ''' return dict( orchestrator_type=str(orchestratorprofile.orchestrator_type) ) def create_agent_pool_profiles_dict(agentpoolprofiles): ''' Helper method to deserialize a ContainerServiceAgentPoolProfile to a dict :param: agentpoolprofiles: ContainerServiceAgentPoolProfile with the Azure callback object :return: dict with the state on Azure ''' return [dict( count=profile.count, vm_size=profile.vm_size, name=profile.name, dns_prefix=profile.dns_prefix, fqdn=profile.fqdn ) for profile in agentpoolprofiles] class AzureRMContainerService(AzureRMModuleBase): """Configuration class for an Azure RM container service resource""" def __init__(self): self.module_arg_spec = dict( resource_group=dict( type='str', required=True ), name=dict( type='str', required=True ), state=dict( type='str', required=False, default='present', choices=['present', 'absent'] ), location=dict( type='str', required=False ), orchestration_platform=dict( type='str', required=True, choices=['DCOS', 'Kubernetes', 'Swarm'] ), master_profile=dict( type='list', required=True ), linux_profile=dict( type='list', required=True ), agent_pool_profiles=dict( type='list', required=True ), service_principal=dict( type='list', required=False ), diagnostics_profile=dict( type='bool', required=True ) ) self.resource_group = None self.name = None self.location = None self.tags = None self.state = None self.orchestration_platform = None self.master_profile = None self.linux_profile = None self.agent_pool_profiles = None self.service_principal = None self.diagnostics_profile = None self.results = dict(changed=False, state=dict()) super(AzureRMContainerService, self).__init__(derived_arg_spec=self.module_arg_spec, supports_check_mode=True, supports_tags=True) def exec_module(self, **kwargs): """Main module execution method""" for key in list(self.module_arg_spec.keys()) + ['tags']: setattr(self, key, kwargs[key]) resource_group = None response = None results = dict() to_be_updated = False resource_group = self.get_resource_group(self.resource_group) if not self.location: self.location = resource_group.location # Check if the ACS instance already present in the RG if self.state == 'present': if self.orchestration_platform == 'Kubernetes': if not self.service_principal: self.fail('service_principal should be specified when using Kubernetes') if not self.service_principal[0].get('client_id'): self.fail('service_principal.client_id should be specified when using Kubernetes') if not self.service_principal[0].get('client_secret'): self.fail('service_principal.client_secret should be specified when using Kubernetes') mastercount = self.master_profile[0].get('count') if mastercount != 1 and mastercount != 3 and mastercount != 5: self.fail('Master Count number wrong : {} / should be 1 3 or 5'.format(mastercount)) # For now Agent Pool cannot be more than 1, just remove this part in the future if it change agentpoolcount = len(self.agent_pool_profiles) if agentpoolcount > 1: self.fail('You cannot specify more than agent_pool_profiles') response = self.get_acs() self.results['state'] = response if not response: to_be_updated = True else: self.log('Results : {0}'.format(response)) update_tags, response['tags'] = self.update_tags(response['tags']) if response['provisioning_state'] == "Succeeded": if update_tags: to_be_updated = True def is_property_changed(profile, property, ignore_case=False): base = response[profile].get(property) new = getattr(self, profile)[0].get(property) if ignore_case: return base.lower() != new.lower() else: return base != new # Cannot Update the master count for now // Uncomment this block in the future to support it if is_property_changed('master_profile', 'count'): # self.log(("Master Profile Count Diff, Was {0} / Now {1}" # .format(response['master_profile'].count, # self.master_profile[0].get('count')))) # to_be_updated = True self.module.warn("master_profile.count cannot be updated") # Cannot Update the master vm_size for now. Could be a client SDK bug # Uncomment this block in the future to support it if is_property_changed('master_profile', 'vm_size', True): # self.log(("Master Profile VM Size Diff, Was {0} / Now {1}" # .format(response['master_profile'].get('vm_size'), # self.master_profile[0].get('vm_size')))) # to_be_updated = True self.module.warn("master_profile.vm_size cannot be updated") # Cannot Update the SSH Key for now // Uncomment this block in the future to support it if is_property_changed('linux_profile', 'ssh_key'): # self.log(("Linux Profile Diff SSH, Was {0} / Now {1}" # .format(response['linux_profile'].ssh.public_keys[0].key_data, # self.linux_profile[0].get('ssh_key')))) # to_be_updated = True self.module.warn("linux_profile.ssh_key cannot be updated") # self.log("linux_profile response : {0}".format(response['linux_profile'].get('admin_username'))) # self.log("linux_profile self : {0}".format(self.linux_profile[0].get('admin_username'))) # Cannot Update the Username for now // Uncomment this block in the future to support it if is_property_changed('linux_profile', 'admin_username'): # self.log(("Linux Profile Diff User, Was {0} / Now {1}" # .format(response['linux_profile'].admin_username, # self.linux_profile[0].get('admin_username')))) # to_be_updated = True self.module.warn("linux_profile.admin_username cannot be updated") # Cannot have more that one agent pool profile for now // Uncomment this block in the future to support it # if len(response['agent_pool_profiles']) != len(self.agent_pool_profiles): # self.log("Agent Pool count is diff, need to updated") # to_be_updated = True for profile_result in response['agent_pool_profiles']: matched = False for profile_self in self.agent_pool_profiles: if profile_result['name'] == profile_self['name']: matched = True if profile_result['count'] != profile_self['count'] or profile_result['vm_size'] != \ profile_self['vm_size']: self.log(("Agent Profile Diff - Count was {0} / Now {1} - Vm_size was {2} / Now {3}" .format(profile_result['count'], profile_self['count'], profile_result['vm_size'], profile_self['vm_size']))) to_be_updated = True if not matched: self.log("Agent Pool not found") to_be_updated = True if to_be_updated: self.log("Need to Create / Update the ACS instance") if self.check_mode: return self.results self.results['state'] = self.create_update_acs() self.results['changed'] = True self.log("Creation / Update done") elif self.state == 'absent': if self.check_mode: return self.results self.delete_acs() self.log("ACS instance deleted") return self.results def create_update_acs(self): ''' Creates or updates a container service with the specified configuration of orchestrator, masters, and agents. :return: deserialized ACS instance state dictionary ''' self.log("Creating / Updating the ACS instance {0}".format(self.name)) service_principal_profile = None agentpools = [] if self.agent_pool_profiles: for profile in self.agent_pool_profiles: self.log("Trying to push the following Profile {0}".format(profile)) agentpools.append(create_agent_pool_profile_instance(profile)) if self.orchestration_platform == 'Kubernetes': service_principal_profile = create_service_principal_profile_instance(self.service_principal) parameters = ContainerService( location=self.location, tags=self.tags, orchestrator_profile=create_orch_platform_instance(self.orchestration_platform), service_principal_profile=service_principal_profile, linux_profile=create_linux_profile_instance(self.linux_profile), master_profile=create_master_profile_instance(self.master_profile), agent_pool_profiles=agentpools, diagnostics_profile=create_diagnostics_profile_instance(self.diagnostics_profile) ) # self.log("orchestrator_profile : {0}".format(parameters.orchestrator_profile)) # self.log("service_principal_profile : {0}".format(parameters.service_principal_profile)) # self.log("linux_profile : {0}".format(parameters.linux_profile)) # self.log("ssh from yaml : {0}".format(results.get('linux_profile')[0])) # self.log("ssh : {0}".format(parameters.linux_profile.ssh)) # self.log("master_profile : {0}".format(parameters.master_profile)) # self.log("agent_pool_profiles : {0}".format(parameters.agent_pool_profiles)) # self.log("vm_diagnostics : {0}".format(parameters.diagnostics_profile.vm_diagnostics)) try: poller = self.containerservice_client.container_services.create_or_update(self.resource_group, self.name, parameters) response = self.get_poller_result(poller) except CloudError as exc: self.log('Error attempting to create the ACS instance.') self.fail("Error creating the ACS instance: {0}".format(str(exc))) return create_acs_dict(response) def delete_acs(self): ''' Deletes the specified container service in the specified subscription and resource group. The operation does not delete other resources created as part of creating a container service, including storage accounts, VMs, and availability sets. All the other resources created with the container service are part of the same resource group and can be deleted individually. :return: True ''' self.log("Deleting the ACS instance {0}".format(self.name)) try: poller = self.containerservice_client.container_services.delete(self.resource_group, self.name) self.get_poller_result(poller) except CloudError as e: self.log('Error attempting to delete the ACS instance.') self.fail("Error deleting the ACS instance: {0}".format(str(e))) return True def get_acs(self): ''' Gets the properties of the specified container service. :return: deserialized ACS instance state dictionary ''' self.log("Checking if the ACS instance {0} is present".format(self.name)) found = False try: response = self.containerservice_client.container_services.get(self.resource_group, self.name) found = True self.log("Response : {0}".format(response)) self.log("ACS instance : {0} found".format(response.name)) except CloudError as e: self.log('Did not find the ACS instance.') if found is True: return create_acs_dict(response) else: return False def main(): """Main execution""" AzureRMContainerService() if __name__ == '__main__': main()
gpl-3.0
4,845,411,957,356,731,000
38.247326
135
0.600266
false
drmateo/ecto
test/benchmark/metrics.py
4
4501
#!/usr/bin/env python # # Copyright (c) 2011, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import ecto import ecto_test import sys def test_nodelay(): plasm = ecto.Plasm() ping = ecto_test.Ping("Ping") metrics = ecto_test.Metrics("Metrics", queue_size=10) plasm.connect(ping[:] >> metrics[:]) sched = ecto.Scheduler(plasm) sched.execute(niter=10000) print "Hz:", metrics.outputs.hz, " Latency in seconds: %f" % metrics.outputs.latency_seconds # these are kinda loose assert metrics.outputs.hz > 5000 assert metrics.outputs.latency_seconds < 0.0001 def test_20hz(): plasm = ecto.Plasm() ping = ecto_test.Ping("Ping") throttle = ecto_test.Throttle("Throttle", rate=20) metrics = ecto_test.Metrics("Metrics", queue_size=10) plasm.connect(ping[:] >> throttle[:], throttle[:] >> metrics[:]) sched = ecto.Scheduler(plasm) sched.execute(niter=100) print "Hz:", metrics.outputs.hz, " Latency in seconds: %f" % metrics.outputs.latency_seconds # these are kinda loose assert 19 < metrics.outputs.hz < 21 assert 0.04 < metrics.outputs.latency_seconds < 0.06 def makeplasm(n_nodes): plasm = ecto.Plasm() ping = ecto_test.Ping("Ping") throttle = ecto_test.Sleep("Sleep_0", seconds=1.0/n_nodes) plasm.connect(ping[:] >> throttle[:]) for j in range(n_nodes-1): # one has already been added throttle_next = ecto_test.Sleep("Sleep_%u" % (j+1), seconds=1.0/n_nodes) plasm.connect(throttle, "out", throttle_next, "in") throttle = throttle_next metrics = ecto_test.Metrics("Metrics", queue_size=4) plasm.connect(throttle[:] >> metrics[:]) # o = open('graph.dot', 'w') # print >>o, plasm.viz() # o.close() # print "\n", plasm.viz(), "\n" return (plasm, metrics) def test_st(niter, n_nodes): (plasm, metrics) = makeplasm(n_nodes) #sched = ecto.Scheduler(plasm) #sched.execute(niter) sched = ecto.Scheduler(plasm) sched.execute(niter) print "Hz:", metrics.outputs.hz, " Latency in seconds:", metrics.outputs.latency_seconds assert 0.95 < metrics.outputs.hz < 1.05 assert 0.95 < metrics.outputs.latency_seconds < 1.05 # # It is hard to test the middle cases, i.e. if you have one thread # per node, things should run at n_nodes hz and 1 second latency but # if there are less than that, things are somewhere in the middle. # Also your latency tends to be worse as you have to wait for the # graph to "fill up" # def test_tp(niter, n_nodes): (plasm, metrics) = makeplasm(n_nodes) sched = ecto.Scheduler(plasm) sched.execute(niter=niter) print "Hz:", metrics.outputs.hz, " Latency in seconds:", metrics.outputs.latency_seconds assert n_nodes * 0.95 < metrics.outputs.hz < n_nodes * 1.05 assert 0.9 < metrics.outputs.latency_seconds < 1.1 test_nodelay() test_20hz() test_st(5, 5) test_st(5, 12) test_tp(20, 15) test_tp(20, 10) test_tp(20, 5)
bsd-3-clause
7,519,755,807,337,033,000
33.891473
96
0.688291
false
hpcugent/hanythingondemand
hod/subcommands/relabel.py
2
2618
#!/usr/bin/env python # # # Copyright 2009-2016 Ghent University # # This file is part of hanythingondemand # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # the Hercules foundation (http://www.herculesstichting.be/in_English) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/hanythingondemand # # hanythingondemand is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # hanythingondemand is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with hanythingondemand. If not, see <http://www.gnu.org/licenses/>. # # """ Relabel a cluster. @author: Ewan Higgs (Universiteit Gent) @author: Kenneth Hoste (Universiteit Gent) """ import sys from vsc.utils.generaloption import GeneralOption from hod import VERSION as HOD_VERSION from hod.subcommands.subcommand import SubCommand import hod.cluster as hc class RelabelOptions(GeneralOption): """Option parser for 'relabel' subcommand.""" VERSION = HOD_VERSION ALLOPTSMANDATORY = False # let us use optionless arguments. class RelabelSubCommand(SubCommand): """Implementation of HOD 'relabel' subcommand.""" CMD = 'relabel' EXAMPLE = "<source-cluster-label> <dest-cluster-label>" HELP = "Change the label of an existing job." def run(self, args): """Run 'relabel' subcommand.""" optparser = RelabelOptions(go_args=args, envvar_prefix=self.envvar_prefix, usage=self.usage_txt) try: if len(optparser.args) != 3: self.report_error(self.usage()) labels = hc.known_cluster_labels() if optparser.args[1] not in labels: self.report_error("Cluster with label '%s' not found", optparser.args[1]) try: hc.mv_cluster_info(optparser.args[1], optparser.args[2]) except (IOError, OSError) as err: self.report_error("Could not change label '%s' to '%s': %s", optparser.args[1], optparser.args[2], err) except StandardError as err: self._log_and_raise(err) return 0
gpl-2.0
-950,074,991,606,819,100
35.361111
119
0.694423
false
aferr/TemporalPartitioningMemCtl
src/arch/x86/isa/insts/general_purpose/flags/push_and_pop.py
90
2440
# Copyright (c) 2007-2008 The Hewlett-Packard Development Company # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Gabe Black microcode = ''' def macroop PUSHF { .adjust_env oszIn64Override rflags t1 st t1, ss, [1, t0, rsp], "-env.stackSize", dataSize=ssz subi rsp, rsp, ssz }; def macroop POPF { .adjust_env oszIn64Override ld t1, ss, [1, t0, rsp], dataSize=ssz addi rsp, rsp, ssz wrflags t1, t0 }; '''
bsd-3-clause
-3,986,826,135,170,318,300
44.185185
72
0.772951
false
aaltinisik/OCBAltinkaya
addons/fetchmail/fetchmail.py
6
15874
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import logging import poplib import time from imaplib import IMAP4 from imaplib import IMAP4_SSL from poplib import POP3 from poplib import POP3_SSL try: import cStringIO as StringIO except ImportError: import StringIO import zipfile import base64 from openerp import addons from openerp.osv import fields, osv from openerp import tools, api from openerp.tools.translate import _ _logger = logging.getLogger(__name__) MAX_POP_MESSAGES = 50 MAIL_TIMEOUT = 60 # Workaround for Python 2.7.8 bug https://bugs.python.org/issue23906 poplib._MAXLINE = 65536 class fetchmail_server(osv.osv): """Incoming POP/IMAP mail server account""" _name = 'fetchmail.server' _description = "POP/IMAP Server" _order = 'priority' _columns = { 'name':fields.char('Name', required=True, readonly=False), 'active':fields.boolean('Active', required=False), 'state':fields.selection([ ('draft', 'Not Confirmed'), ('done', 'Confirmed'), ], 'Status', select=True, readonly=True, copy=False), 'server' : fields.char('Server Name', readonly=True, help="Hostname or IP of the mail server", states={'draft':[('readonly', False)]}), 'port' : fields.integer('Port', readonly=True, states={'draft':[('readonly', False)]}), 'type':fields.selection([ ('pop', 'POP Server'), ('imap', 'IMAP Server'), ('local', 'Local Server'), ], 'Server Type', select=True, required=True, readonly=False), 'is_ssl':fields.boolean('SSL/TLS', help="Connections are encrypted with SSL/TLS through a dedicated port (default: IMAPS=993, POP3S=995)"), 'attach':fields.boolean('Keep Attachments', help="Whether attachments should be downloaded. " "If not enabled, incoming emails will be stripped of any attachments before being processed"), 'original':fields.boolean('Keep Original', help="Whether a full original copy of each email should be kept for reference" "and attached to each processed message. This will usually double the size of your message database."), 'date': fields.datetime('Last Fetch Date', readonly=True), 'user' : fields.char('Username', readonly=True, states={'draft':[('readonly', False)]}), 'password' : fields.char('Password', readonly=True, states={'draft':[('readonly', False)]}), 'action_id':fields.many2one('ir.actions.server', 'Server Action', help="Optional custom server action to trigger for each incoming mail, " "on the record that was created or updated by this mail"), 'object_id': fields.many2one('ir.model', "Create a New Record", help="Process each incoming mail as part of a conversation " "corresponding to this document type. This will create " "new documents for new conversations, or attach follow-up " "emails to the existing conversations (documents)."), 'priority': fields.integer('Server Priority', readonly=True, states={'draft':[('readonly', False)]}, help="Defines the order of processing, " "lower values mean higher priority"), 'message_ids': fields.one2many('mail.mail', 'fetchmail_server_id', 'Messages', readonly=True), 'configuration' : fields.text('Configuration', readonly=True), 'script' : fields.char('Script', readonly=True), } _defaults = { 'state': "draft", 'type': "pop", 'active': True, 'priority': 5, 'attach': True, 'script': '/mail/static/scripts/openerp_mailgate.py', } def onchange_server_type(self, cr, uid, ids, server_type=False, ssl=False, object_id=False): port = 0 values = {} if server_type == 'pop': port = ssl and 995 or 110 elif server_type == 'imap': port = ssl and 993 or 143 else: values['server'] = '' values['port'] = port conf = { 'dbname' : cr.dbname, 'uid' : uid, 'model' : 'MODELNAME', } if object_id: m = self.pool.get('ir.model') r = m.read(cr,uid,[object_id],['model']) conf['model']=r[0]['model'] values['configuration'] = """Use the below script with the following command line options with your Mail Transport Agent (MTA) openerp_mailgate.py --host=HOSTNAME --port=PORT -u %(uid)d -p PASSWORD -d %(dbname)s Example configuration for the postfix mta running locally: /etc/postfix/virtual_aliases: @youdomain openerp_mailgate@localhost /etc/aliases: openerp_mailgate: "|/path/to/openerp-mailgate.py --host=localhost -u %(uid)d -p PASSWORD -d %(dbname)s" """ % conf return {'value':values} def set_draft(self, cr, uid, ids, context=None): self.write(cr, uid, ids , {'state':'draft'}) return True @api.cr_uid_ids_context def connect(self, cr, uid, server_id, context=None): if isinstance(server_id, (list,tuple)): server_id = server_id[0] server = self.browse(cr, uid, server_id, context) if server.type == 'imap': if server.is_ssl: connection = IMAP4_SSL(server.server, int(server.port)) else: connection = IMAP4(server.server, int(server.port)) connection.login(server.user, server.password) elif server.type == 'pop': if server.is_ssl: connection = POP3_SSL(server.server, int(server.port)) else: connection = POP3(server.server, int(server.port)) #TODO: use this to remove only unread messages #connection.user("recent:"+server.user) connection.user(server.user) connection.pass_(server.password) # Add timeout on socket connection.sock.settimeout(MAIL_TIMEOUT) return connection def button_confirm_login(self, cr, uid, ids, context=None): if context is None: context = {} for server in self.browse(cr, uid, ids, context=context): try: connection = server.connect() server.write({'state':'done'}) except Exception, e: _logger.exception("Failed to connect to %s server %s.", server.type, server.name) raise osv.except_osv(_("Connection test failed!"), _("Here is what we got instead:\n %s.") % tools.ustr(e)) finally: try: if connection: if server.type == 'imap': connection.close() elif server.type == 'pop': connection.quit() except Exception: # ignored, just a consequence of the previous exception pass return True def _fetch_mails(self, cr, uid, ids=False, context=None): if not ids: ids = self.search(cr, uid, [('state','=','done'),('type','in',['pop','imap'])]) return self.fetch_mail(cr, uid, ids, context=context) def fetch_mail(self, cr, uid, ids, context=None): """WARNING: meant for cron usage only - will commit() after each email!""" context = dict(context or {}) context['fetchmail_cron_running'] = True mail_thread = self.pool.get('mail.thread') action_pool = self.pool.get('ir.actions.server') for server in self.browse(cr, uid, ids, context=context): _logger.info('start checking for new emails on %s server %s', server.type, server.name) context.update({'fetchmail_server_id': server.id, 'server_type': server.type}) count, failed = 0, 0 imap_server = False pop_server = False if server.type == 'imap': try: imap_server = server.connect() imap_server.select() result, data = imap_server.search(None, '(UNSEEN)') for num in data[0].split(): res_id = None result, data = imap_server.fetch(num, '(RFC822)') imap_server.store(num, '-FLAGS', '\\Seen') try: res_id = mail_thread.message_process(cr, uid, server.object_id.model, data[0][1], save_original=server.original, strip_attachments=(not server.attach), context=context) imap_server.store(num, '+FLAGS', '\\Seen') except Exception: _logger.exception('Failed to process mail from %s server %s.', server.type, server.name) failed += 1 if res_id and server.action_id: action_pool.run(cr, uid, [server.action_id.id], {'active_id': res_id, 'active_ids': [res_id], 'active_model': context.get("thread_model", server.object_id.model)}) cr.commit() count += 1 _logger.info("Fetched %d email(s) on %s server %s; %d succeeded, %d failed.", count, server.type, server.name, (count - failed), failed) except Exception: _logger.exception("General failure when trying to fetch mail from %s server %s.", server.type, server.name) finally: if imap_server: imap_server.close() imap_server.logout() elif server.type == 'pop': try: while True: pop_server = server.connect() (numMsgs, totalSize) = pop_server.stat() pop_server.list() for num in range(1, min(MAX_POP_MESSAGES, numMsgs) + 1): (header, msges, octets) = pop_server.retr(num) msg = '\n'.join(msges) res_id = None try: res_id = mail_thread.message_process(cr, uid, server.object_id.model, msg, save_original=server.original, strip_attachments=(not server.attach), context=context) pop_server.dele(num) except Exception: _logger.exception('Failed to process mail from %s server %s.', server.type, server.name) failed += 1 if res_id and server.action_id: action_pool.run(cr, uid, [server.action_id.id], {'active_id': res_id, 'active_ids': [res_id], 'active_model': context.get("thread_model", server.object_id.model)}) cr.commit() if numMsgs < MAX_POP_MESSAGES: break pop_server.quit() _logger.info("Fetched %d email(s) on %s server %s; %d succeeded, %d failed.", numMsgs, server.type, server.name, (numMsgs - failed), failed) except Exception: _logger.exception("General failure when trying to fetch mail from %s server %s.", server.type, server.name) finally: if pop_server: pop_server.quit() server.write({'date': time.strftime(tools.DEFAULT_SERVER_DATETIME_FORMAT)}) return True def _update_cron(self, cr, uid, context=None): if context and context.get('fetchmail_cron_running'): return try: cron = self.pool['ir.model.data'].get_object( cr, uid, 'fetchmail', 'ir_cron_mail_gateway_action', context=context) except ValueError: # Nevermind if default cron cannot be found return # Enabled/Disable cron based on the number of 'done' server of type pop or imap cron.toggle(model=self._name, domain=[('state','=','done'), ('type','in',['pop','imap'])]) def create(self, cr, uid, values, context=None): res = super(fetchmail_server, self).create(cr, uid, values, context=context) self._update_cron(cr, uid, context=context) return res def write(self, cr, uid, ids, values, context=None): res = super(fetchmail_server, self).write(cr, uid, ids, values, context=context) self._update_cron(cr, uid, context=context) return res def unlink(self, cr, uid, ids, context=None): res = super(fetchmail_server, self).unlink(cr, uid, ids, context=context) self._update_cron(cr, uid, context=context) return res class mail_mail(osv.osv): _inherit = "mail.mail" _columns = { 'fetchmail_server_id': fields.many2one('fetchmail.server', "Inbound Mail Server", readonly=True, select=True, oldname='server_id'), } def create(self, cr, uid, values, context=None): if context is None: context = {} fetchmail_server_id = context.get('fetchmail_server_id') if fetchmail_server_id: values['fetchmail_server_id'] = fetchmail_server_id res = super(mail_mail, self).create(cr, uid, values, context=context) return res def write(self, cr, uid, ids, values, context=None): if context is None: context = {} fetchmail_server_id = context.get('fetchmail_server_id') if fetchmail_server_id: values['fetchmail_server_id'] = fetchmail_server_id res = super(mail_mail, self).write(cr, uid, ids, values, context=context) return res # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
-3,146,645,553,006,914,600
48.145511
195
0.525702
false
gnuhub/intellij-community
python/lib/Lib/site-packages/django/utils/autoreload.py
135
4239
# Autoreloading launcher. # Borrowed from Peter Hunt and the CherryPy project (http://www.cherrypy.org). # Some taken from Ian Bicking's Paste (http://pythonpaste.org/). # # Portions copyright (c) 2004, CherryPy Team ([email protected]) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the CherryPy Team nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys, time try: import thread except ImportError: import dummy_thread as thread # This import does nothing, but it's necessary to avoid some race conditions # in the threading module. See http://code.djangoproject.com/ticket/2330 . try: import threading except ImportError: pass RUN_RELOADER = True _mtimes = {} _win = (sys.platform == "win32") def code_changed(): global _mtimes, _win for filename in filter(lambda v: v, map(lambda m: getattr(m, "__file__", None), sys.modules.values())): if filename.endswith(".pyc") or filename.endswith(".pyo"): filename = filename[:-1] if not os.path.exists(filename): continue # File might be in an egg, so it can't be reloaded. stat = os.stat(filename) mtime = stat.st_mtime if _win: mtime -= stat.st_ctime if filename not in _mtimes: _mtimes[filename] = mtime continue if mtime != _mtimes[filename]: _mtimes = {} return True return False def reloader_thread(): while RUN_RELOADER: if code_changed(): sys.exit(3) # force reload time.sleep(1) def restart_with_reloader(): while True: args = [sys.executable] + sys.argv if sys.platform == "win32": args = ['"%s"' % arg for arg in args] new_environ = os.environ.copy() new_environ["RUN_MAIN"] = 'true' exit_code = os.spawnve(os.P_WAIT, sys.executable, args, new_environ) if exit_code != 3: return exit_code def python_reloader(main_func, args, kwargs): if os.environ.get("RUN_MAIN") == "true": thread.start_new_thread(main_func, args, kwargs) try: reloader_thread() except KeyboardInterrupt: pass else: try: sys.exit(restart_with_reloader()) except KeyboardInterrupt: pass def jython_reloader(main_func, args, kwargs): from _systemrestart import SystemRestart thread.start_new_thread(main_func, args) while True: if code_changed(): raise SystemRestart time.sleep(1) def main(main_func, args=None, kwargs=None): if args is None: args = () if kwargs is None: kwargs = {} if sys.platform.startswith('java'): reloader = jython_reloader else: reloader = python_reloader reloader(main_func, args, kwargs)
apache-2.0
898,659,058,366,997,100
34.621849
107
0.664308
false
anomitra/articleScraper
PyQt-gpl-5.4.1/examples/widgets/stylesheet/stylesheeteditor.py
3
4557
############################################################################# ## ## Copyright (C) 2010 Hans-Peter Jansen <[email protected]>. ## Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). ## All rights reserved. ## ## This file is part of the examples of PyQt. ## ## $QT_BEGIN_LICENSE:BSD$ ## You may use this file under the terms of the BSD license as follows: ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are ## met: ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in ## the documentation and/or other materials provided with the ## distribution. ## * Neither the name of Nokia Corporation and its Subsidiary(-ies) nor ## the names of its contributors may be used to endorse or promote ## products derived from this software without specific prior written ## permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## $QT_END_LICENSE$ ## ########################################################################### from PyQt5.QtCore import pyqtSlot, QFile, QRegExp, Qt, QTextStream from PyQt5.QtWidgets import (QApplication, QDialog, QFileDialog, QMessageBox, QStyleFactory) from ui_stylesheeteditor import Ui_StyleSheetEditor class StyleSheetEditor(QDialog): def __init__(self, parent=None): super(StyleSheetEditor, self).__init__(parent) self.ui = Ui_StyleSheetEditor() self.ui.setupUi(self) regExp = QRegExp(r'.(.*)\+?Style') defaultStyle = QApplication.style().metaObject().className() if regExp.exactMatch(defaultStyle): defaultStyle = regExp.cap(1) self.ui.styleCombo.addItems(QStyleFactory.keys()) self.ui.styleCombo.setCurrentIndex( self.ui.styleCombo.findText(defaultStyle, Qt.MatchContains)) self.ui.styleSheetCombo.setCurrentIndex( self.ui.styleSheetCombo.findText('Coffee')) self.loadStyleSheet('Coffee') @pyqtSlot(str) def on_styleCombo_activated(self, styleName): QApplication.setStyle(styleName) self.ui.applyButton.setEnabled(False) @pyqtSlot(str) def on_styleSheetCombo_activated(self, sheetName): self.loadStyleSheet(sheetName) def on_styleTextEdit_textChanged(self): self.ui.applyButton.setEnabled(True) def on_applyButton_clicked(self): QApplication.instance().setStyleSheet( self.ui.styleTextEdit.toPlainText()) self.ui.applyButton.setEnabled(False) def on_saveButton_clicked(self): fileName, _ = QFileDialog.getSaveFileName(self) if fileName: self.saveStyleSheet(fileName) def loadStyleSheet(self, sheetName): file = QFile(':/qss/%s.qss' % sheetName.lower()) file.open(QFile.ReadOnly) styleSheet = file.readAll() try: # Python v2. styleSheet = unicode(styleSheet, encoding='utf8') except NameError: # Python v3. styleSheet = str(styleSheet, encoding='utf8') self.ui.styleTextEdit.setPlainText(styleSheet) QApplication.instance().setStyleSheet(styleSheet) self.ui.applyButton.setEnabled(False) def saveStyleSheet(self, fileName): styleSheet = self.ui.styleTextEdit.toPlainText() file = QFile(fileName) if file.open(QFile.WriteOnly): QTextStream(file) << styleSheet else: QMessageBox.information(self, "Unable to open file", file.errorString())
gpl-2.0
5,889,234,866,323,355,000
38.626087
77
0.667983
false
nebril/fuel-web
nailgun/nailgun/openstack/common/timeutils.py
16
5967
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Time related utilities and helper functions. """ import calendar import datetime import time import iso8601 import six # ISO 8601 extended time format with microseconds _ISO8601_TIME_FORMAT_SUBSECOND = '%Y-%m-%dT%H:%M:%S.%f' _ISO8601_TIME_FORMAT = '%Y-%m-%dT%H:%M:%S' PERFECT_TIME_FORMAT = _ISO8601_TIME_FORMAT_SUBSECOND def isotime(at=None, subsecond=False): """Stringify time in ISO 8601 format.""" if not at: at = utcnow() st = at.strftime(_ISO8601_TIME_FORMAT if not subsecond else _ISO8601_TIME_FORMAT_SUBSECOND) tz = at.tzinfo.tzname(None) if at.tzinfo else 'UTC' st += ('Z' if tz == 'UTC' else tz) return st def parse_isotime(timestr): """Parse time from ISO 8601 format.""" try: return iso8601.parse_date(timestr) except iso8601.ParseError as e: raise ValueError(six.text_type(e)) except TypeError as e: raise ValueError(six.text_type(e)) def strtime(at=None, fmt=PERFECT_TIME_FORMAT): """Returns formatted utcnow.""" if not at: at = utcnow() return at.strftime(fmt) def parse_strtime(timestr, fmt=PERFECT_TIME_FORMAT): """Turn a formatted time back into a datetime.""" return datetime.datetime.strptime(timestr, fmt) def normalize_time(timestamp): """Normalize time in arbitrary timezone to UTC naive object.""" offset = timestamp.utcoffset() if offset is None: return timestamp return timestamp.replace(tzinfo=None) - offset def is_older_than(before, seconds): """Return True if before is older than seconds.""" if isinstance(before, six.string_types): before = parse_strtime(before).replace(tzinfo=None) return utcnow() - before > datetime.timedelta(seconds=seconds) def is_newer_than(after, seconds): """Return True if after is newer than seconds.""" if isinstance(after, six.string_types): after = parse_strtime(after).replace(tzinfo=None) return after - utcnow() > datetime.timedelta(seconds=seconds) def utcnow_ts(): """Timestamp version of our utcnow function.""" if utcnow.override_time is None: # NOTE(kgriffs): This is several times faster # than going through calendar.timegm(...) return int(time.time()) return calendar.timegm(utcnow().timetuple()) def utcnow(): """Overridable version of utils.utcnow.""" if utcnow.override_time: try: return utcnow.override_time.pop(0) except AttributeError: return utcnow.override_time return datetime.datetime.utcnow() def iso8601_from_timestamp(timestamp): """Returns a iso8601 formated date from timestamp.""" return isotime(datetime.datetime.utcfromtimestamp(timestamp)) utcnow.override_time = None def set_time_override(override_time=None): """Overrides utils.utcnow. Make it return a constant time or a list thereof, one at a time. :param override_time: datetime instance or list thereof. If not given, defaults to the current UTC time. """ utcnow.override_time = override_time or datetime.datetime.utcnow() def advance_time_delta(timedelta): """Advance overridden time using a datetime.timedelta.""" assert(not utcnow.override_time is None) try: for dt in utcnow.override_time: dt += timedelta except TypeError: utcnow.override_time += timedelta def advance_time_seconds(seconds): """Advance overridden time by seconds.""" advance_time_delta(datetime.timedelta(0, seconds)) def clear_time_override(): """Remove the overridden time.""" utcnow.override_time = None def marshall_now(now=None): """Make an rpc-safe datetime with microseconds. Note: tzinfo is stripped, but not required for relative times. """ if not now: now = utcnow() return dict(day=now.day, month=now.month, year=now.year, hour=now.hour, minute=now.minute, second=now.second, microsecond=now.microsecond) def unmarshall_time(tyme): """Unmarshall a datetime dict.""" return datetime.datetime(day=tyme['day'], month=tyme['month'], year=tyme['year'], hour=tyme['hour'], minute=tyme['minute'], second=tyme['second'], microsecond=tyme['microsecond']) def delta_seconds(before, after): """Return the difference between two timing objects. Compute the difference in seconds between two date, time, or datetime objects (as a float, to microsecond resolution). """ delta = after - before try: return delta.total_seconds() except AttributeError: return ((delta.days * 24 * 3600) + delta.seconds + float(delta.microseconds) / (10 ** 6)) def is_soon(dt, window): """Determines if time is going to happen in the next window seconds. :params dt: the time :params window: minimum seconds to remain to consider the time not soon :return: True if expiration is within the given duration """ soon = (utcnow() + datetime.timedelta(seconds=window)) return normalize_time(dt) <= soon
apache-2.0
-4,972,100,476,774,550,000
29.28934
78
0.652589
false
molobrakos/home-assistant
homeassistant/components/fints/sensor.py
7
9289
"""Read the balance of your bank accounts via FinTS.""" from collections import namedtuple from datetime import timedelta import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_USERNAME, CONF_PIN, CONF_URL, CONF_NAME import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(hours=4) ICON = 'mdi:currency-eur' BankCredentials = namedtuple('BankCredentials', 'blz login pin url') CONF_BIN = 'bank_identification_number' CONF_ACCOUNTS = 'accounts' CONF_HOLDINGS = 'holdings' CONF_ACCOUNT = 'account' ATTR_ACCOUNT = CONF_ACCOUNT ATTR_BANK = 'bank' ATTR_ACCOUNT_TYPE = 'account_type' SCHEMA_ACCOUNTS = vol.Schema({ vol.Required(CONF_ACCOUNT): cv.string, vol.Optional(CONF_NAME, default=None): vol.Any(None, cv.string), }) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_BIN): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PIN): cv.string, vol.Required(CONF_URL): cv.string, vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_ACCOUNTS, default=[]): cv.ensure_list(SCHEMA_ACCOUNTS), vol.Optional(CONF_HOLDINGS, default=[]): cv.ensure_list(SCHEMA_ACCOUNTS), }) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the sensors. Login to the bank and get a list of existing accounts. Create a sensor for each account. """ credentials = BankCredentials(config[CONF_BIN], config[CONF_USERNAME], config[CONF_PIN], config[CONF_URL]) fints_name = config.get(CONF_NAME, config[CONF_BIN]) account_config = {acc[CONF_ACCOUNT]: acc[CONF_NAME] for acc in config[CONF_ACCOUNTS]} holdings_config = {acc[CONF_ACCOUNT]: acc[CONF_NAME] for acc in config[CONF_HOLDINGS]} client = FinTsClient(credentials, fints_name) balance_accounts, holdings_accounts = client.detect_accounts() accounts = [] for account in balance_accounts: if config[CONF_ACCOUNTS] and account.iban not in account_config: _LOGGER.info('skipping account %s for bank %s', account.iban, fints_name) continue account_name = account_config.get(account.iban) if not account_name: account_name = '{} - {}'.format(fints_name, account.iban) accounts.append(FinTsAccount(client, account, account_name)) _LOGGER.debug('Creating account %s for bank %s', account.iban, fints_name) for account in holdings_accounts: if config[CONF_HOLDINGS] and \ account.accountnumber not in holdings_config: _LOGGER.info('skipping holdings %s for bank %s', account.accountnumber, fints_name) continue account_name = holdings_config.get(account.accountnumber) if not account_name: account_name = '{} - {}'.format( fints_name, account.accountnumber) accounts.append(FinTsHoldingsAccount(client, account, account_name)) _LOGGER.debug('Creating holdings %s for bank %s', account.accountnumber, fints_name) add_entities(accounts, True) class FinTsClient: """Wrapper around the FinTS3PinTanClient. Use this class as Context Manager to get the FinTS3Client object. """ def __init__(self, credentials: BankCredentials, name: str): """Initialize a FinTsClient.""" self._credentials = credentials self.name = name @property def client(self): """Get the client object. As the fints library is stateless, there is not benefit in caching the client objects. If that ever changes, consider caching the client object and also think about potential concurrency problems. """ from fints.client import FinTS3PinTanClient return FinTS3PinTanClient( self._credentials.blz, self._credentials.login, self._credentials.pin, self._credentials.url) def detect_accounts(self): """Identify the accounts of the bank.""" from fints.dialog import FinTSDialogError balance_accounts = [] holdings_accounts = [] for account in self.client.get_sepa_accounts(): try: self.client.get_balance(account) balance_accounts.append(account) except IndexError: # account is not a balance account. pass except FinTSDialogError: # account is not a balance account. pass try: self.client.get_holdings(account) holdings_accounts.append(account) except FinTSDialogError: # account is not a holdings account. pass return balance_accounts, holdings_accounts class FinTsAccount(Entity): """Sensor for a FinTS balance account. A balance account contains an amount of money (=balance). The amount may also be negative. """ def __init__(self, client: FinTsClient, account, name: str) -> None: """Initialize a FinTs balance account.""" self._client = client # type: FinTsClient self._account = account self._name = name # type: str self._balance = None # type: float self._currency = None # type: str @property def should_poll(self) -> bool: """Return True. Data needs to be polled from the bank servers. """ return True def update(self) -> None: """Get the current balance and currency for the account.""" bank = self._client.client balance = bank.get_balance(self._account) self._balance = balance.amount.amount self._currency = balance.amount.currency _LOGGER.debug('updated balance of account %s', self.name) @property def name(self) -> str: """Friendly name of the sensor.""" return self._name @property def state(self) -> float: """Return the balance of the account as state.""" return self._balance @property def unit_of_measurement(self) -> str: """Use the currency as unit of measurement.""" return self._currency @property def device_state_attributes(self) -> dict: """Additional attributes of the sensor.""" attributes = { ATTR_ACCOUNT: self._account.iban, ATTR_ACCOUNT_TYPE: 'balance', } if self._client.name: attributes[ATTR_BANK] = self._client.name return attributes @property def icon(self) -> str: """Set the icon for the sensor.""" return ICON class FinTsHoldingsAccount(Entity): """Sensor for a FinTS holdings account. A holdings account does not contain money but rather some financial instruments, e.g. stocks. """ def __init__(self, client: FinTsClient, account, name: str) -> None: """Initialize a FinTs holdings account.""" self._client = client # type: FinTsClient self._name = name # type: str self._account = account self._holdings = [] self._total = None # type: float @property def should_poll(self) -> bool: """Return True. Data needs to be polled from the bank servers. """ return True def update(self) -> None: """Get the current holdings for the account.""" bank = self._client.client self._holdings = bank.get_holdings(self._account) self._total = sum(h.total_value for h in self._holdings) @property def state(self) -> float: """Return total market value as state.""" return self._total @property def icon(self) -> str: """Set the icon for the sensor.""" return ICON @property def device_state_attributes(self) -> dict: """Additional attributes of the sensor. Lists each holding of the account with the current value. """ attributes = { ATTR_ACCOUNT: self._account.accountnumber, ATTR_ACCOUNT_TYPE: 'holdings', } if self._client.name: attributes[ATTR_BANK] = self._client.name for holding in self._holdings: total_name = '{} total'.format(holding.name) attributes[total_name] = holding.total_value pieces_name = '{} pieces'.format(holding.name) attributes[pieces_name] = holding.pieces price_name = '{} price'.format(holding.name) attributes[price_name] = holding.market_value return attributes @property def name(self) -> str: """Friendly name of the sensor.""" return self._name @property def unit_of_measurement(self) -> str: """Get the unit of measurement. Hardcoded to EUR, as the library does not provide the currency for the holdings. And as FinTS is only used in Germany, most accounts will be in EUR anyways. """ return "EUR"
apache-2.0
-8,379,134,397,970,261,000
31.823322
78
0.616859
false
irwinlove/django
django/template/__init__.py
198
2022
""" Django's support for templates. The django.template namespace contains two independent subsystems: 1. Multiple Template Engines: support for pluggable template backends, built-in backends and backend-independent APIs 2. Django Template Language: Django's own template engine, including its built-in loaders, context processors, tags and filters. Ideally these subsystems would be implemented in distinct packages. However keeping them together made the implementation of Multiple Template Engines less disruptive . Here's a breakdown of which modules belong to which subsystem. Multiple Template Engines: - django.template.backends.* - django.template.loader - django.template.response Django Template Language: - django.template.base - django.template.context - django.template.context_processors - django.template.loaders.* - django.template.debug - django.template.defaultfilters - django.template.defaulttags - django.template.engine - django.template.loader_tags - django.template.smartif Shared: - django.template.utils """ # Multiple Template Engines from .engine import Engine from .utils import EngineHandler engines = EngineHandler() __all__ = ('Engine', 'engines') # Django Template Language # Public exceptions from .base import VariableDoesNotExist # NOQA isort:skip from .context import ContextPopException # NOQA isort:skip from .exceptions import TemplateDoesNotExist, TemplateSyntaxError # NOQA isort:skip # Template parts from .base import ( # NOQA isort:skip Context, Node, NodeList, Origin, RequestContext, Template, Variable, ) # Deprecated in Django 1.8, will be removed in Django 1.10. from .base import resolve_variable # NOQA isort:skip # Library management from .library import Library # NOQA isort:skip __all__ += ('Template', 'Context', 'RequestContext')
bsd-3-clause
8,233,015,189,121,580,000
27.478873
89
0.705242
false
lawl/pmbootstrap
pmb/aportgen/linux.py
2
4781
""" Copyright 2017 Oliver Smith This file is part of pmbootstrap. pmbootstrap is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. pmbootstrap is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with pmbootstrap. If not, see <http://www.gnu.org/licenses/>. """ import pmb.helpers.run import pmb.aportgen.core import pmb.parse.apkindex import pmb.parse.arch def generate_apkbuild(args, pkgname, manufacturer, name, arch): device = "-".join(pkgname.split("-")[1:]) carch = pmb.parse.arch.alpine_to_kernel(arch) content = """\ # Kernel config based on: arch/""" + carch + """/configs/(CHANGEME!) pkgname=\"""" + pkgname + """\" pkgver=3.x.x pkgrel=0 pkgdesc=\"""" + manufacturer + " " + name + """ kernel fork\" arch=\"""" + arch + """\" _carch=\"""" + carch + """\" _flavor=\"""" + device + """\" url="https://kernel.org" license="GPL2" options="!strip !check !tracedeps" makedepends="perl sed installkernel bash gmp-dev bc linux-headers elfutils-dev" HOSTCC="${CC:-gcc}" HOSTCC="${HOSTCC#${CROSS_COMPILE}}" # Source _repository="(CHANGEME!)" _commit="ffffffffffffffffffffffffffffffffffffffff" _config="config-${_flavor}.${arch}" source=" $pkgname-$_commit.tar.gz::https://github.com/LineageOS/${_repository}/archive/${_commit}.tar.gz $_config compiler-gcc6.h 01_msm-fix-perf_trace_counters.patch 02_gpu-msm-fix-gcc5-compile.patch " builddir="$srcdir/${_repository}-${_commit}" prepare() { default_prepare # gcc6 support cp -v "$srcdir/compiler-gcc6.h" "$builddir/include/linux/" # Remove -Werror from all makefiles find . -type f -name Makefile -print0 | \\ xargs -0 sed -i 's/-Werror-/-W/g' find . -type f -name Makefile -print0 | \\ xargs -0 sed -i 's/-Werror//g' # Prepare kernel config ('yes ""' for kernels lacking olddefconfig) cp "$srcdir"/$_config "$builddir"/.config yes "" | make ARCH="$_carch" HOSTCC="$HOSTCC" oldconfig } menuconfig() { cd "$builddir" make ARCH="$_carch" menuconfig cp .config "$startdir"/$_config } build() { unset LDFLAGS make ARCH="$_carch" CC="${CC:-gcc}" \\ KBUILD_BUILD_VERSION="$((pkgrel + 1 ))-postmarketOS" } package() { # kernel.release install -D "$builddir/include/config/kernel.release" \\ "$pkgdir/usr/share/kernel/$_flavor/kernel.release" # zImage (find the right one) cd "$builddir/arch/$_carch/boot" _target="$pkgdir/boot/vmlinuz-$_flavor" for _zimg in zImage-dtb Image.gz-dtb *zImage Image; do [ -e "$_zimg" ] || continue msg "zImage found: $_zimg" install -Dm644 "$_zimg" "$_target" break done if ! [ -e "$_target" ]; then error "Could not find zImage in $PWD!" return 1 fi } sha512sums="(run 'pmbootstrap checksum """ + pkgname + """' to fill)" """ # Write the file with open(args.work + "/aportgen/APKBUILD", "w", encoding="utf-8") as handle: for line in content.split("\n"): handle.write(line[8:].replace(" " * 4, "\t") + "\n") def generate(args, pkgname): device = "-".join(pkgname.split("-")[1:]) deviceinfo = pmb.parse.deviceinfo(args, device) # Copy gcc6 support header and the patches from lg-mako for now # (automatically finding the right patches is planned in #688) pmb.helpers.run.user(args, ["mkdir", "-p", args.work + "/aportgen"]) for file in ["compiler-gcc6.h", "01_msm-fix-perf_trace_counters.patch", "02_gpu-msm-fix-gcc5-compile.patch"]: pmb.helpers.run.user(args, ["cp", args.aports + "/device/linux-lg-mako/" + file, args.work + "/aportgen/"]) generate_apkbuild(args, pkgname, deviceinfo["manufacturer"], deviceinfo["name"], deviceinfo["arch"])
gpl-3.0
-4,634,088,153,215,434,000
35.776923
107
0.560552
false
a-b/PopClip-Extensions
source/InstantTranslate/requests/packages/chardet/gb2312prober.py
2994
1681
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is mozilla.org code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from .mbcharsetprober import MultiByteCharSetProber from .codingstatemachine import CodingStateMachine from .chardistribution import GB2312DistributionAnalysis from .mbcssm import GB2312SMModel class GB2312Prober(MultiByteCharSetProber): def __init__(self): MultiByteCharSetProber.__init__(self) self._mCodingSM = CodingStateMachine(GB2312SMModel) self._mDistributionAnalyzer = GB2312DistributionAnalysis() self.reset() def get_charset_name(self): return "GB2312"
mit
8,072,512,576,601,159,000
40
69
0.718025
false
stevenmizuno/QGIS
python/user.py
7
4676
# -*- coding: utf-8 -*- """ *************************************************************************** user.py --------------------- Date : January 2015 Copyright : (C) 2015 by Nathan Woodrow Email : woodrow dot nathan at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Nathan Woodrow' __date__ = 'January 2015' __copyright__ = '(C) 2015, Nathan Woodrow' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os import sys import glob import traceback from qgis.PyQt.QtCore import QCoreApplication from qgis.core import Qgis, QgsApplication, QgsMessageLog def load_user_expressions(path): """ Load all user expressions from the given paths """ #Loop all py files and import them modules = glob.glob(path + "/*.py") names = [os.path.basename(f)[:-3] for f in modules] for name in names: if name == "__init__": continue # As user expression functions should be registered with qgsfunction # just importing the file is enough to get it to load the functions into QGIS try: __import__("expressions.{0}".format(name), locals(), globals()) except: error = traceback.format_exc() msgtitle = QCoreApplication.translate("UserExpressions", "User expressions") msg = QCoreApplication.translate("UserExpressions", "The user expression {0} is not valid").format(name) QgsMessageLog.logMessage(msg + "\n" + error, msgtitle, Qgis.Warning) userpythonhome = os.path.join(QgsApplication.qgisSettingsDirPath(), "python") expressionspath = os.path.join(userpythonhome, "expressions") sys.path.append(userpythonhome) if not os.path.exists(expressionspath): os.makedirs(expressionspath) initfile = os.path.join(expressionspath, "__init__.py") if not os.path.exists(initfile): open(initfile, "w").close() template = """\"\"\" Define a new function using the @qgsfunction decorator. The function accept the following parameters :param [any]: Define any parameters you want to pass to your function before the following arguments. :param feature: The current feature :param parent: The QgsExpression object :param context: If there is an argument called ``context`` found at the last position, this variable will contain a ``QgsExpressionContext`` object, that gives access to various additional information like expression variables. E.g. ``context.variable('layer_id')`` :returns: The result of the expression. The @qgsfunction decorator accepts the following arguments: :param args: Defines the number of arguments. With ``args='auto'`` the number arguments will automatically be extracted from the signature. :param group: The name of the group under which this expression function will be listed. :param usesgeometry: Set this to False if your function does not access feature.geometry(). Defaults to True. :param referenced_columns: An array of attribute names that are required to run this function. Defaults to [QgsFeatureRequest.ALL_ATTRIBUTES]. \"\"\" from qgis.core import * from qgis.gui import * @qgsfunction(args='auto', group='Custom') def my_sum(value1, value2, feature, parent): \"\"\" Calculates the sum of the two parameters value1 and value2. <h2>Example usage:</h2> <ul> <li>my_sum(5, 8) -> 13</li> <li>my_sum(\"fiel1\", \"field2\") -> 42</li> </ul> \"\"\" return value1 + value2 """ try: import expressions expressions.load = load_user_expressions expressions.load(expressionspath) expressions.template = template except ImportError: # We get a import error and crash for some reason even if we make the expressions package # TODO Fix the crash on first load with no expressions folder # But for now it's not the end of the world if it doesn't load the first time pass
gpl-2.0
-5,102,627,090,604,626,000
36.709677
116
0.605004
false
heidtn/PyDataLearn
PyDataLearn/NeuralNet.py
1
6181
from math import tanh from pysqlite2 import dbapi2 as sqlite def dtanh(y): #this effectively creates a smaller change multiplier when the value is closest to 0 (when the slope is steepest) P_D controller? return 1.0-y*y class SearchNet: def __init__(self, dbname): self.con = sqlite.connect(dbname) def __del__(self): self.con.close() def maketables(self): self.con.execute('create table hiddennode(create_key)') self.con.execute('create table wordhidden(fromid, toid, strength)') self.con.execute('create table hiddenurl(fromid, toid, strength)') self.con.commit() def getstrength(self, fromid, toid, layer): #returns strength of connection from fromid to toid #layer specifies the table, whether dendrites connecting input to hidden or hidden to output if layer == 0: table = 'wordhidden' else: table = 'hiddenurl' res = self.con.execute('select strength from %s where fromid=%d and toid=%d' % (table, fromid, toid)).fetchone() if res == None: if layer == 0: return -0.2 #if extra word, we want negative effects if layer == 1: return 0 return res[0] def setstrength(self, fromid, toid, layer, strength): if layer == 0: table = 'wordhidden' else: table = 'hiddenurl' res = self.con.execute('select rowid from %s where fromid=%d and toid=%d' % (table, fromid, toid)).fetchone() if res == None: #we generate nodes as we need them/use them self.con.execute('insert into %s (fromid,toid,strength) values (%d,%d,%f)' % (table, fromid, toid, strength)) else: rowid = res[0] self.con.execute('update %s set strength=%f where rowid=%d' % (table, strength, rowid)) def generatehiddennode(self, wordids, urls): #generates new nodes for searches we haven't done yet if len(wordids) > 3: return None #check to see if we've created a node for this set of words createkey = '_'.join(sorted([str(wi) for wi in wordids])) #sorting ensures any combination of these words res = self.con.execute("select rowid from hiddennode where create_key='%s'" % createkey).fetchone() #if we haven't seen this set of words if res == None: cur = self.con.execute("insert into hiddennode (create_key) values ('%s')" % createkey) hiddenid = cur.lastrowid for wordid in wordids: self.setstrength(wordid, hiddenid, 0, 1.0/len(wordids)) for urlid in urls: self.setstrength(hiddenid, urlid, 1, 0.1) self.con.commit() def getallhiddenids(self, wordids, urlids): l1 = {} for wordid in wordids: cur = self.con.execute('select toid from wordhidden where fromid=%d' % wordid) for row in cur: l1[row[0]] = 1 for urlid in urlids: cur = self.con.execute('select fromid from hiddenurl where toid=%d' % urlid) for row in cur: l1[row[0]] = 1 return l1.keys() #load weights into memory for speeeed def setupnetwork(self, wordids, urlids): #values lists self.wordids = wordids #current list of words we're searching for self.hiddenids = self.getallhiddenids(wordids, urlids) #current list of hidden ids relevant to our input wordids and urlids self.urlids = urlids #node outputs self.ai = [1.0]*len(self.wordids) #input layer outputs for each word self.ah = [1.0]*len(self.hiddenids) #hidden layer outputs self.ao = [1.0]*len(self.urlids) #output layer outputs #create weights matrix self.wi = [[self.getstrength(wordid, hiddenid, 0) #2d array of weights between input array and hidden array for hiddenid in self.hiddenids] #for each word what are the weights of all relevant hidden neurons for wordid in self.wordids] self.wo = [[self.getstrength(hiddenid, urlid, 1) #same as wi, but from hidden layer to output layer for urlid in self.urlids] for hiddenid in self.hiddenids] def feedforward(self): #only query words for inputs for i in xrange(len(self.wordids)): #reset input layer values to 1 self.ai[i] = 1.0 #hidden activations for j in xrange(len(self.hiddenids)): tot = 0.0 for i in xrange(len(self.wordids)): #iterate through weights 2d array and apply to input layer strength tot += self.ai[i]*self.wi[i][j] self.ah[j] = tanh(tot) #set hidden layer outputs to tanh of sum of input weights axon=tanh(sum(dendrites)) #output activations (feed forward from hidden layer) for k in xrange(len(self.urlids)): tot = 0.0 for j in xrange(len(self.hiddenids)): tot += self.ah[j]*self.wo[j][k] self.ao[k] = tanh(tot) #return the outputs of the output layer return self.ao[:] def backpropagate(self, targets, N=0.5): #calcuate all errors for output output_deltas = [0.0] * len(self.urlids) for k in xrange(len(self.urlids)): error = targets[k] - self.ao[k] output_deltas[k] = dtanh(self.ao[k]) * error #do the same for hiden layer hidden_deltas = [0.0] * len(self.hiddenids) for j in xrange(len(self.hiddenids)): error = 0.0 for k in xrange(len(self.urlids)): error += output_deltas[k]*self.wo[j][k] hidden_deltas[j] = dtanh(self.ah[j])*error #update the weights for j in xrange(len(self.hiddenids)): for k in xrange(len(self.urlids)): change = output_deltas[k]*self.ah[j] self.wo[j][k] = self.wo[j][k] + N*change #update input weights for j in xrange(len(self.wordids)): for k in xrange(len(self.hiddenids)): change = hidden_deltas[k]*self.ai[j] self.wi[j][k] = self.wi[j][k] + N*change def trainquery(self, wordids, urlids, selectedurl): #generate the hidden nodes if we have new words self.generatehiddennode(wordids, urlids) self.setupnetwork(wordids, urlids) self.feedforward() targets = [0.0]*len(urlids) targets[urlids.index(selectedurl)] = 1.0 self.backpropagate(targets) self.updatedatabase() def updatedatabase(self): #save our instance variables into the database for i in xrange(len(self.wordids)): for j in xrange(len(self.hiddenids)): self.setstrength(self.wordids[i], self.hiddenids[j], 0, self.wi[i][j]) for i in xrange(len(self.hiddenids)): for j in xrange(len(self.urlids)): self.setstrength(self.hiddenids[i],self.urlids[j], 1, self.wo[i][j]) self.con.commit() def getresult(self, wordids, urlids): self.setupnetwork(wordids, urlids) return self.feedforward()
mit
-4,046,923,939,482,413,000
36.011976
130
0.695195
false
dfdx2/ancfinder
scripts/update_311.py
1
2533
import datetime, json, urllib2, os, errno, requests # Open/create file, deleting info already in it so that we can make fresh info file_name = open('data/311.json', 'w') issues = [] working = {'issues':issues} data = {} # Get date in the past to start start_date = (datetime.datetime.today() + datetime.timedelta(-180)).isoformat() # Request info from SeeClickFix API url = 'https://seeclickfix.com/api/v2/issues?place_url=district-of-columbia&&after='+start_date+'&page=1&per_page=100' response = urllib2.urlopen(url) info = json.load(response) endpoint = info['metadata']['pagination']['pages'] page = 1 while page < endpoint: url = 'https://seeclickfix.com/api/v2/issues?place_url=district-of-columbia&&after='+start_date+'&page='+str(page)+'&per_page=100' response = urllib2.urlopen(url) info = json.load(response) working['issues'] += info['issues'] page +=1 #Locate in ANC using lat/long coordinates, then calculate the totals for issue in working['issues']: url = 'http://gis.govtrack.us/boundaries/dc-smd-2013/?contains='+str(issue['lat'])+','+str(issue['lng']) request = requests.get(url) info = json.loads(request.text) try: smd = info['objects'][0]['external_id'] anc = info['objects'][0]['external_id'][:2] variety = issue['summary'] print smd, issue['lng'], issue['lat'], variety if anc in data: if smd in data[anc]['smds']: data[anc]['smds'][smd]['total'] += 1 else: data[anc]['smds'][smd] = {} data[anc]['smds'][smd]['total'] = 1 data[anc]['smds'][smd]['types'] = {} data[anc]['total'] += 1 else: data[anc] = {} data[anc]['total'] = 1 data[anc]['types'] = {} data[anc]['smds'] = {} data[anc]['smds'][smd] = {} data[anc]['smds'][smd]['total'] = 1 data[anc]['smds'][smd]['types'] = {} if variety in data[anc]['types']: data[anc]['types'][variety] += 1 if variety in data[anc]['smds'][smd]['types']: data[anc]['smds'][smd]['types'][variety] += 1 else: data[anc]['smds'][smd]['types'][variety] = 1 else: data[anc]['types'][variety] = 1 data[anc]['smds'][smd]['types'][variety] = 1 except IndexError: continue # Save the JSON file with open('data/311.json', 'w') as output: json.dump(data, output, sort_keys=True, indent=4)
cc0-1.0
4,926,069,178,004,750,000
35.185714
134
0.562179
false
aveshagarwal/openshift-ansible
roles/lib_openshift/src/lib/storageclass.py
18
3122
# pylint: skip-file # flake8: noqa # pylint: disable=too-many-instance-attributes class StorageClassConfig(object): ''' Handle service options ''' # pylint: disable=too-many-arguments def __init__(self, name, provisioner, parameters=None, annotations=None, default_storage_class="false", api_version='v1', kubeconfig='/etc/origin/master/admin.kubeconfig', mount_options=None, reclaim_policy=None): ''' constructor for handling storageclass options ''' self.name = name self.parameters = parameters self.annotations = annotations self.provisioner = provisioner self.api_version = api_version self.default_storage_class = str(default_storage_class).lower() self.kubeconfig = kubeconfig self.mount_options = mount_options self.reclaim_policy = reclaim_policy self.data = {} self.create_dict() def create_dict(self): ''' instantiates a storageclass dict ''' self.data['apiVersion'] = self.api_version self.data['kind'] = 'StorageClass' self.data['metadata'] = {} self.data['metadata']['name'] = self.name self.data['metadata']['annotations'] = {} if self.annotations is not None: self.data['metadata']['annotations'] = self.annotations self.data['metadata']['annotations']['storageclass.beta.kubernetes.io/is-default-class'] = \ self.default_storage_class self.data['provisioner'] = self.provisioner self.data['parameters'] = {} if self.parameters is not None: self.data['parameters'].update(self.parameters) # default to aws if no params were passed else: self.data['parameters']['type'] = 'gp2' self.data['mountOptions'] = self.mount_options or [] if self.reclaim_policy is not None: self.data['reclaimPolicy'] = self.reclaim_policy # pylint: disable=too-many-instance-attributes,too-many-public-methods class StorageClass(Yedit): ''' Class to model the oc storageclass object ''' annotations_path = "metadata.annotations" provisioner_path = "provisioner" parameters_path = "parameters" mount_options_path = "mountOptions" reclaim_policy_path = "reclaimPolicy" kind = 'StorageClass' def __init__(self, content): '''StorageClass constructor''' super(StorageClass, self).__init__(content=content) def get_annotations(self): ''' get a list of ports ''' return self.get(StorageClass.annotations_path) or {} def get_parameters(self): ''' get the service selector''' return self.get(StorageClass.parameters_path) or {} def get_mount_options(self): ''' get mount options''' return self.get(StorageClass.mount_options_path) or [] def get_reclaim_policy(self): ''' get reclaim policy''' return self.get(StorageClass.reclaim_policy_path)
apache-2.0
-6,098,967,058,869,367,000
32.934783
100
0.607944
false
izpack/izpack
izpack-wrapper/src/main/resources/utils/wrappers/izpack2jnlp/setup.py
26
1070
#!/usr/bin/env python # ........................................................................... # # # IzPack - Copyright 2008 Julien Ponge, All Rights Reserved. # # http://izpack.org/ # http://izpack.codehaus.org/ # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ........................................................................... # from distutils.core import setup import py2exe setup( console = [{ 'script': 'izpack2jnlp.py', 'icon_resources': [(0, 'app.ico')] }], script_args=['py2exe', '--bundle-files', '1'] )
apache-2.0
2,066,892,054,722,120,400
33.666667
79
0.58972
false
bbc/kamaelia
Code/Python/Kamaelia/Kamaelia/Apps/Compose/GUI/ArgumentsPanel.py
6
6027
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- from Kamaelia.UI.Tk.TkWindow import TkWindow from Kamaelia.Support.Tk.Scrolling import ScrollingMenu from Axon.Ipc import producerFinished, shutdownMicroprocess import Tkinter import pprint class ArgumentsPanel(Tkinter.Frame): def __init__(self, parent, theclass): Tkinter.Frame.__init__(self, parent) self.theclass = theclass # pprint.pprint(theclass) # build widgets row=0 if self.theclass['classdoc']: self.classdoclabel = Tkinter.Label(self, text = self.theclass['classdoc'], justify="left") self.classdoclabel['font'] = " ".join(self.classdoclabel['font'].split(" ")[0:2]) self.classdoclabel.grid(row=row, column=0,columnspan=2, sticky=Tkinter.N+Tkinter.E+Tkinter.W+Tkinter.S, padx=4, pady=4) row+=1 if self.theclass['initdoc']: self.initdoclabel = Tkinter.Label(self, text = self.theclass['initdoc'], justify="left") self.initdoclabel['font'] = " ".join(self.initdoclabel['font'].split(" ")[0:2]) self.initdoclabel.grid(row=row, column=0, columnspan=2, sticky=Tkinter.N+Tkinter.E+Tkinter.W+Tkinter.S, padx=4, pady=4) row+=1 self.label = Tkinter.Label(self, text="ARGUMENTS:") self.label.grid(row=row, column=0, columnspan=2,sticky=Tkinter.W+Tkinter.S, padx=4, pady=4) row+=1 # enumerate std args self.args = [] for arg in self.theclass['args']['std']: arglabel = Tkinter.Label(self, text=arg[0]) arglabel.grid(row=row,column=0, sticky=Tkinter.E) svar = Tkinter.StringVar() argfield = Tkinter.Entry(self, bg="white", textvariable=svar, takefocus=1) default="" if len(arg)>=2: default = arg[1] svar.set(default) argfield.grid(row=row,column=1, sticky=Tkinter.W) self.args.append( (arg[0], svar, default) ) row+=1 # now do * and ** args for argname in ["*","**"]: if self.theclass['args'][argname]: arglabel = Tkinter.Label(self, text=argname) arglabel.grid(row=row,column=0, sticky=Tkinter.E) arglabel = None svar = Tkinter.StringVar() argfield = Tkinter.Entry(self, bg="white", textvariable=svar, takefocus=1) argfield.grid(row=row,column=1, sticky=Tkinter.W) self.args.append( (argname, svar, "") ) row+=1 # self.rowconfigure(row, weight=1) # self.grid() def getDef(self): return { "name" : self.theclass['class'], "module" : self.theclass['module'], "instantiation" : self.getInstantiation(), "configuration" : self.getConfiguration() } def getConfiguration(self): """Return the instantiation string""" argstr = "" prefix = "" SEQUENTIALARGS = [] TUPLEARGS = None DICTARGS = None for (argname, svar, default) in self.args: unspecified = False value = None text = svar.get().strip() default = default.strip() if argname != "*" and argname != "**": if default=="" or text != default: if not text: unspecified = True value = text SEQUENTIALARGS.append( [argname, unspecified,value, default ] ) else: if text: if argname == "*": TUPLEARGS = text if argname == "**": DICTARGS = text return { "args" : SEQUENTIALARGS, "tupleargs" : TUPLEARGS , "dictargs" : DICTARGS, "theclass" : self.theclass["theclass"], # FIXME: Is this a mistake, should we pass everything out? } def getInstantiation(self): """Return the instantiation string""" argstr = "" prefix = "" for (argname, svar, default) in self.args: text = svar.get().strip() default = default.strip() if argname != "*" and argname != "**": if argname[0]=="[" and argname[-1]=="]": if text: argname=argname[1:-1] argstr = argstr + prefix + argname + " = " + text prefix=", " elif (default=="" or text != default): if not text: text = "<<unspecified>>" argstr = argstr + prefix + argname + " = " + text prefix=", " else: if text: argstr = argstr + prefix + text prefix=", " return argstr
apache-2.0
2,363,039,460,338,130,000
36.90566
115
0.51767
false
NoahFlowa/glowing-spoon
forms.py
2
1139
from flask_wtf import Form from wtforms import StringField, PasswordField, SubmitField from wtforms.validators import DataRequired, Email, Length class SignupForm(Form): first_name = StringField('First name', validators=[DataRequired("Please enter your first name.")]) last_name = StringField('Last name', validators=[DataRequired("Please enter your last name.")]) email = StringField('Email', validators=[DataRequired("Please enter your email address."), Email("Please enter your email address.")]) password = PasswordField('Password', validators=[DataRequired("Please enter a password."), Length(min=6, message="Passwords must be 6 characters or more.")]) submit = SubmitField('Sign up') class LoginForm(Form): email = StringField('Email', validators=[DataRequired("Please enter your email address."), Email("Please enter your email address.")]) password = PasswordField('Password', validators=[DataRequired("Please enter a password.")]) submit = SubmitField("Sign in") class AddressForm(Form): address = StringField('Address', validators=[DataRequired("Please enter an address.")]) submit = SubmitField("Search")
apache-2.0
-1,769,809,363,986,679,800
59
159
0.75417
false
tangfeng1/flask
flask/helpers.py
133
36499
# -*- coding: utf-8 -*- """ flask.helpers ~~~~~~~~~~~~~ Implements various helpers. :copyright: (c) 2015 by Armin Ronacher. :license: BSD, see LICENSE for more details. """ import os import sys import pkgutil import posixpath import mimetypes from time import time from zlib import adler32 from threading import RLock from werkzeug.routing import BuildError from functools import update_wrapper try: from werkzeug.urls import url_quote except ImportError: from urlparse import quote as url_quote from werkzeug.datastructures import Headers from werkzeug.exceptions import NotFound # this was moved in 0.7 try: from werkzeug.wsgi import wrap_file except ImportError: from werkzeug.utils import wrap_file from jinja2 import FileSystemLoader from .signals import message_flashed from .globals import session, _request_ctx_stack, _app_ctx_stack, \ current_app, request from ._compat import string_types, text_type # sentinel _missing = object() # what separators does this operating system provide that are not a slash? # this is used by the send_from_directory function to ensure that nobody is # able to access files from outside the filesystem. _os_alt_seps = list(sep for sep in [os.path.sep, os.path.altsep] if sep not in (None, '/')) def _endpoint_from_view_func(view_func): """Internal helper that returns the default endpoint for a given function. This always is the function name. """ assert view_func is not None, 'expected view func if endpoint ' \ 'is not provided.' return view_func.__name__ def stream_with_context(generator_or_function): """Request contexts disappear when the response is started on the server. This is done for efficiency reasons and to make it less likely to encounter memory leaks with badly written WSGI middlewares. The downside is that if you are using streamed responses, the generator cannot access request bound information any more. This function however can help you keep the context around for longer:: from flask import stream_with_context, request, Response @app.route('/stream') def streamed_response(): @stream_with_context def generate(): yield 'Hello ' yield request.args['name'] yield '!' return Response(generate()) Alternatively it can also be used around a specific generator:: from flask import stream_with_context, request, Response @app.route('/stream') def streamed_response(): def generate(): yield 'Hello ' yield request.args['name'] yield '!' return Response(stream_with_context(generate())) .. versionadded:: 0.9 """ try: gen = iter(generator_or_function) except TypeError: def decorator(*args, **kwargs): gen = generator_or_function() return stream_with_context(gen) return update_wrapper(decorator, generator_or_function) def generator(): ctx = _request_ctx_stack.top if ctx is None: raise RuntimeError('Attempted to stream with context but ' 'there was no context in the first place to keep around.') with ctx: # Dummy sentinel. Has to be inside the context block or we're # not actually keeping the context around. yield None # The try/finally is here so that if someone passes a WSGI level # iterator in we're still running the cleanup logic. Generators # don't need that because they are closed on their destruction # automatically. try: for item in gen: yield item finally: if hasattr(gen, 'close'): gen.close() # The trick is to start the generator. Then the code execution runs until # the first dummy None is yielded at which point the context was already # pushed. This item is discarded. Then when the iteration continues the # real generator is executed. wrapped_g = generator() next(wrapped_g) return wrapped_g def make_response(*args): """Sometimes it is necessary to set additional headers in a view. Because views do not have to return response objects but can return a value that is converted into a response object by Flask itself, it becomes tricky to add headers to it. This function can be called instead of using a return and you will get a response object which you can use to attach headers. If view looked like this and you want to add a new header:: def index(): return render_template('index.html', foo=42) You can now do something like this:: def index(): response = make_response(render_template('index.html', foo=42)) response.headers['X-Parachutes'] = 'parachutes are cool' return response This function accepts the very same arguments you can return from a view function. This for example creates a response with a 404 error code:: response = make_response(render_template('not_found.html'), 404) The other use case of this function is to force the return value of a view function into a response which is helpful with view decorators:: response = make_response(view_function()) response.headers['X-Parachutes'] = 'parachutes are cool' Internally this function does the following things: - if no arguments are passed, it creates a new response argument - if one argument is passed, :meth:`flask.Flask.make_response` is invoked with it. - if more than one argument is passed, the arguments are passed to the :meth:`flask.Flask.make_response` function as tuple. .. versionadded:: 0.6 """ if not args: return current_app.response_class() if len(args) == 1: args = args[0] return current_app.make_response(args) def url_for(endpoint, **values): """Generates a URL to the given endpoint with the method provided. Variable arguments that are unknown to the target endpoint are appended to the generated URL as query arguments. If the value of a query argument is ``None``, the whole pair is skipped. In case blueprints are active you can shortcut references to the same blueprint by prefixing the local endpoint with a dot (``.``). This will reference the index function local to the current blueprint:: url_for('.index') For more information, head over to the :ref:`Quickstart <url-building>`. To integrate applications, :class:`Flask` has a hook to intercept URL build errors through :attr:`Flask.url_build_error_handlers`. The `url_for` function results in a :exc:`~werkzeug.routing.BuildError` when the current app does not have a URL for the given endpoint and values. When it does, the :data:`~flask.current_app` calls its :attr:`~Flask.url_build_error_handlers` if it is not ``None``, which can return a string to use as the result of `url_for` (instead of `url_for`'s default to raise the :exc:`~werkzeug.routing.BuildError` exception) or re-raise the exception. An example:: def external_url_handler(error, endpoint, values): "Looks up an external URL when `url_for` cannot build a URL." # This is an example of hooking the build_error_handler. # Here, lookup_url is some utility function you've built # which looks up the endpoint in some external URL registry. url = lookup_url(endpoint, **values) if url is None: # External lookup did not have a URL. # Re-raise the BuildError, in context of original traceback. exc_type, exc_value, tb = sys.exc_info() if exc_value is error: raise exc_type, exc_value, tb else: raise error # url_for will use this result, instead of raising BuildError. return url app.url_build_error_handlers.append(external_url_handler) Here, `error` is the instance of :exc:`~werkzeug.routing.BuildError`, and `endpoint` and `values` are the arguments passed into `url_for`. Note that this is for building URLs outside the current application, and not for handling 404 NotFound errors. .. versionadded:: 0.10 The `_scheme` parameter was added. .. versionadded:: 0.9 The `_anchor` and `_method` parameters were added. .. versionadded:: 0.9 Calls :meth:`Flask.handle_build_error` on :exc:`~werkzeug.routing.BuildError`. :param endpoint: the endpoint of the URL (name of the function) :param values: the variable arguments of the URL rule :param _external: if set to ``True``, an absolute URL is generated. Server address can be changed via ``SERVER_NAME`` configuration variable which defaults to `localhost`. :param _scheme: a string specifying the desired URL scheme. The `_external` parameter must be set to ``True`` or a :exc:`ValueError` is raised. The default behavior uses the same scheme as the current request, or ``PREFERRED_URL_SCHEME`` from the :ref:`app configuration <config>` if no request context is available. As of Werkzeug 0.10, this also can be set to an empty string to build protocol-relative URLs. :param _anchor: if provided this is added as anchor to the URL. :param _method: if provided this explicitly specifies an HTTP method. """ appctx = _app_ctx_stack.top reqctx = _request_ctx_stack.top if appctx is None: raise RuntimeError('Attempted to generate a URL without the ' 'application context being pushed. This has to be ' 'executed when application context is available.') # If request specific information is available we have some extra # features that support "relative" URLs. if reqctx is not None: url_adapter = reqctx.url_adapter blueprint_name = request.blueprint if not reqctx.request._is_old_module: if endpoint[:1] == '.': if blueprint_name is not None: endpoint = blueprint_name + endpoint else: endpoint = endpoint[1:] else: # TODO: get rid of this deprecated functionality in 1.0 if '.' not in endpoint: if blueprint_name is not None: endpoint = blueprint_name + '.' + endpoint elif endpoint.startswith('.'): endpoint = endpoint[1:] external = values.pop('_external', False) # Otherwise go with the url adapter from the appctx and make # the URLs external by default. else: url_adapter = appctx.url_adapter if url_adapter is None: raise RuntimeError('Application was not able to create a URL ' 'adapter for request independent URL generation. ' 'You might be able to fix this by setting ' 'the SERVER_NAME config variable.') external = values.pop('_external', True) anchor = values.pop('_anchor', None) method = values.pop('_method', None) scheme = values.pop('_scheme', None) appctx.app.inject_url_defaults(endpoint, values) if scheme is not None: if not external: raise ValueError('When specifying _scheme, _external must be True') url_adapter.url_scheme = scheme try: rv = url_adapter.build(endpoint, values, method=method, force_external=external) except BuildError as error: # We need to inject the values again so that the app callback can # deal with that sort of stuff. values['_external'] = external values['_anchor'] = anchor values['_method'] = method return appctx.app.handle_url_build_error(error, endpoint, values) if anchor is not None: rv += '#' + url_quote(anchor) return rv def get_template_attribute(template_name, attribute): """Loads a macro (or variable) a template exports. This can be used to invoke a macro from within Python code. If you for example have a template named :file:`_cider.html` with the following contents: .. sourcecode:: html+jinja {% macro hello(name) %}Hello {{ name }}!{% endmacro %} You can access this from Python code like this:: hello = get_template_attribute('_cider.html', 'hello') return hello('World') .. versionadded:: 0.2 :param template_name: the name of the template :param attribute: the name of the variable of macro to access """ return getattr(current_app.jinja_env.get_template(template_name).module, attribute) def flash(message, category='message'): """Flashes a message to the next request. In order to remove the flashed message from the session and to display it to the user, the template has to call :func:`get_flashed_messages`. .. versionchanged:: 0.3 `category` parameter added. :param message: the message to be flashed. :param category: the category for the message. The following values are recommended: ``'message'`` for any kind of message, ``'error'`` for errors, ``'info'`` for information messages and ``'warning'`` for warnings. However any kind of string can be used as category. """ # Original implementation: # # session.setdefault('_flashes', []).append((category, message)) # # This assumed that changes made to mutable structures in the session are # are always in sync with the session object, which is not true for session # implementations that use external storage for keeping their keys/values. flashes = session.get('_flashes', []) flashes.append((category, message)) session['_flashes'] = flashes message_flashed.send(current_app._get_current_object(), message=message, category=category) def get_flashed_messages(with_categories=False, category_filter=[]): """Pulls all flashed messages from the session and returns them. Further calls in the same request to the function will return the same messages. By default just the messages are returned, but when `with_categories` is set to ``True``, the return value will be a list of tuples in the form ``(category, message)`` instead. Filter the flashed messages to one or more categories by providing those categories in `category_filter`. This allows rendering categories in separate html blocks. The `with_categories` and `category_filter` arguments are distinct: * `with_categories` controls whether categories are returned with message text (``True`` gives a tuple, where ``False`` gives just the message text). * `category_filter` filters the messages down to only those matching the provided categories. See :ref:`message-flashing-pattern` for examples. .. versionchanged:: 0.3 `with_categories` parameter added. .. versionchanged:: 0.9 `category_filter` parameter added. :param with_categories: set to ``True`` to also receive categories. :param category_filter: whitelist of categories to limit return values """ flashes = _request_ctx_stack.top.flashes if flashes is None: _request_ctx_stack.top.flashes = flashes = session.pop('_flashes') \ if '_flashes' in session else [] if category_filter: flashes = list(filter(lambda f: f[0] in category_filter, flashes)) if not with_categories: return [x[1] for x in flashes] return flashes def send_file(filename_or_fp, mimetype=None, as_attachment=False, attachment_filename=None, add_etags=True, cache_timeout=None, conditional=False): """Sends the contents of a file to the client. This will use the most efficient method available and configured. By default it will try to use the WSGI server's file_wrapper support. Alternatively you can set the application's :attr:`~Flask.use_x_sendfile` attribute to ``True`` to directly emit an ``X-Sendfile`` header. This however requires support of the underlying webserver for ``X-Sendfile``. By default it will try to guess the mimetype for you, but you can also explicitly provide one. For extra security you probably want to send certain files as attachment (HTML for instance). The mimetype guessing requires a `filename` or an `attachment_filename` to be provided. Please never pass filenames to this function from user sources; you should use :func:`send_from_directory` instead. .. versionadded:: 0.2 .. versionadded:: 0.5 The `add_etags`, `cache_timeout` and `conditional` parameters were added. The default behavior is now to attach etags. .. versionchanged:: 0.7 mimetype guessing and etag support for file objects was deprecated because it was unreliable. Pass a filename if you are able to, otherwise attach an etag yourself. This functionality will be removed in Flask 1.0 .. versionchanged:: 0.9 cache_timeout pulls its default from application config, when None. :param filename_or_fp: the filename of the file to send in `latin-1`. This is relative to the :attr:`~Flask.root_path` if a relative path is specified. Alternatively a file object might be provided in which case ``X-Sendfile`` might not work and fall back to the traditional method. Make sure that the file pointer is positioned at the start of data to send before calling :func:`send_file`. :param mimetype: the mimetype of the file if provided, otherwise auto detection happens. :param as_attachment: set to ``True`` if you want to send this file with a ``Content-Disposition: attachment`` header. :param attachment_filename: the filename for the attachment if it differs from the file's filename. :param add_etags: set to ``False`` to disable attaching of etags. :param conditional: set to ``True`` to enable conditional responses. :param cache_timeout: the timeout in seconds for the headers. When ``None`` (default), this value is set by :meth:`~Flask.get_send_file_max_age` of :data:`~flask.current_app`. """ mtime = None if isinstance(filename_or_fp, string_types): filename = filename_or_fp file = None else: from warnings import warn file = filename_or_fp filename = getattr(file, 'name', None) # XXX: this behavior is now deprecated because it was unreliable. # removed in Flask 1.0 if not attachment_filename and not mimetype \ and isinstance(filename, string_types): warn(DeprecationWarning('The filename support for file objects ' 'passed to send_file is now deprecated. Pass an ' 'attach_filename if you want mimetypes to be guessed.'), stacklevel=2) if add_etags: warn(DeprecationWarning('In future flask releases etags will no ' 'longer be generated for file objects passed to the send_file ' 'function because this behavior was unreliable. Pass ' 'filenames instead if possible, otherwise attach an etag ' 'yourself based on another value'), stacklevel=2) if filename is not None: if not os.path.isabs(filename): filename = os.path.join(current_app.root_path, filename) if mimetype is None and (filename or attachment_filename): mimetype = mimetypes.guess_type(filename or attachment_filename)[0] if mimetype is None: mimetype = 'application/octet-stream' headers = Headers() if as_attachment: if attachment_filename is None: if filename is None: raise TypeError('filename unavailable, required for ' 'sending as attachment') attachment_filename = os.path.basename(filename) headers.add('Content-Disposition', 'attachment', filename=attachment_filename) if current_app.use_x_sendfile and filename: if file is not None: file.close() headers['X-Sendfile'] = filename headers['Content-Length'] = os.path.getsize(filename) data = None else: if file is None: file = open(filename, 'rb') mtime = os.path.getmtime(filename) headers['Content-Length'] = os.path.getsize(filename) data = wrap_file(request.environ, file) rv = current_app.response_class(data, mimetype=mimetype, headers=headers, direct_passthrough=True) # if we know the file modification date, we can store it as # the time of the last modification. if mtime is not None: rv.last_modified = int(mtime) rv.cache_control.public = True if cache_timeout is None: cache_timeout = current_app.get_send_file_max_age(filename) if cache_timeout is not None: rv.cache_control.max_age = cache_timeout rv.expires = int(time() + cache_timeout) if add_etags and filename is not None: try: rv.set_etag('flask-%s-%s-%s' % ( os.path.getmtime(filename), os.path.getsize(filename), adler32( filename.encode('utf-8') if isinstance(filename, text_type) else filename ) & 0xffffffff )) except OSError: warn('Access %s failed, maybe it does not exist, so ignore etags in ' 'headers' % filename, stacklevel=2) if conditional: rv = rv.make_conditional(request) # make sure we don't send x-sendfile for servers that # ignore the 304 status code for x-sendfile. if rv.status_code == 304: rv.headers.pop('x-sendfile', None) return rv def safe_join(directory, filename): """Safely join `directory` and `filename`. Example usage:: @app.route('/wiki/<path:filename>') def wiki_page(filename): filename = safe_join(app.config['WIKI_FOLDER'], filename) with open(filename, 'rb') as fd: content = fd.read() # Read and process the file content... :param directory: the base directory. :param filename: the untrusted filename relative to that directory. :raises: :class:`~werkzeug.exceptions.NotFound` if the resulting path would fall out of `directory`. """ filename = posixpath.normpath(filename) for sep in _os_alt_seps: if sep in filename: raise NotFound() if os.path.isabs(filename) or \ filename == '..' or \ filename.startswith('../'): raise NotFound() return os.path.join(directory, filename) def send_from_directory(directory, filename, **options): """Send a file from a given directory with :func:`send_file`. This is a secure way to quickly expose static files from an upload folder or something similar. Example usage:: @app.route('/uploads/<path:filename>') def download_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename, as_attachment=True) .. admonition:: Sending files and Performance It is strongly recommended to activate either ``X-Sendfile`` support in your webserver or (if no authentication happens) to tell the webserver to serve files for the given path on its own without calling into the web application for improved performance. .. versionadded:: 0.5 :param directory: the directory where all the files are stored. :param filename: the filename relative to that directory to download. :param options: optional keyword arguments that are directly forwarded to :func:`send_file`. """ filename = safe_join(directory, filename) if not os.path.isabs(filename): filename = os.path.join(current_app.root_path, filename) if not os.path.isfile(filename): raise NotFound() options.setdefault('conditional', True) return send_file(filename, **options) def get_root_path(import_name): """Returns the path to a package or cwd if that cannot be found. This returns the path of a package or the folder that contains a module. Not to be confused with the package path returned by :func:`find_package`. """ # Module already imported and has a file attribute. Use that first. mod = sys.modules.get(import_name) if mod is not None and hasattr(mod, '__file__'): return os.path.dirname(os.path.abspath(mod.__file__)) # Next attempt: check the loader. loader = pkgutil.get_loader(import_name) # Loader does not exist or we're referring to an unloaded main module # or a main module without path (interactive sessions), go with the # current working directory. if loader is None or import_name == '__main__': return os.getcwd() # For .egg, zipimporter does not have get_filename until Python 2.7. # Some other loaders might exhibit the same behavior. if hasattr(loader, 'get_filename'): filepath = loader.get_filename(import_name) else: # Fall back to imports. __import__(import_name) mod = sys.modules[import_name] filepath = getattr(mod, '__file__', None) # If we don't have a filepath it might be because we are a # namespace package. In this case we pick the root path from the # first module that is contained in our package. if filepath is None: raise RuntimeError('No root path can be found for the provided ' 'module "%s". This can happen because the ' 'module came from an import hook that does ' 'not provide file name information or because ' 'it\'s a namespace package. In this case ' 'the root path needs to be explicitly ' 'provided.' % import_name) # filepath is import_name.py for a module, or __init__.py for a package. return os.path.dirname(os.path.abspath(filepath)) def _matching_loader_thinks_module_is_package(loader, mod_name): """Given the loader that loaded a module and the module this function attempts to figure out if the given module is actually a package. """ # If the loader can tell us if something is a package, we can # directly ask the loader. if hasattr(loader, 'is_package'): return loader.is_package(mod_name) # importlib's namespace loaders do not have this functionality but # all the modules it loads are packages, so we can take advantage of # this information. elif (loader.__class__.__module__ == '_frozen_importlib' and loader.__class__.__name__ == 'NamespaceLoader'): return True # Otherwise we need to fail with an error that explains what went # wrong. raise AttributeError( ('%s.is_package() method is missing but is required by Flask of ' 'PEP 302 import hooks. If you do not use import hooks and ' 'you encounter this error please file a bug against Flask.') % loader.__class__.__name__) def find_package(import_name): """Finds a package and returns the prefix (or None if the package is not installed) as well as the folder that contains the package or module as a tuple. The package path returned is the module that would have to be added to the pythonpath in order to make it possible to import the module. The prefix is the path below which a UNIX like folder structure exists (lib, share etc.). """ root_mod_name = import_name.split('.')[0] loader = pkgutil.get_loader(root_mod_name) if loader is None or import_name == '__main__': # import name is not found, or interactive/main module package_path = os.getcwd() else: # For .egg, zipimporter does not have get_filename until Python 2.7. if hasattr(loader, 'get_filename'): filename = loader.get_filename(root_mod_name) elif hasattr(loader, 'archive'): # zipimporter's loader.archive points to the .egg or .zip # archive filename is dropped in call to dirname below. filename = loader.archive else: # At least one loader is missing both get_filename and archive: # Google App Engine's HardenedModulesHook # # Fall back to imports. __import__(import_name) filename = sys.modules[import_name].__file__ package_path = os.path.abspath(os.path.dirname(filename)) # In case the root module is a package we need to chop of the # rightmost part. This needs to go through a helper function # because of python 3.3 namespace packages. if _matching_loader_thinks_module_is_package( loader, root_mod_name): package_path = os.path.dirname(package_path) site_parent, site_folder = os.path.split(package_path) py_prefix = os.path.abspath(sys.prefix) if package_path.startswith(py_prefix): return py_prefix, package_path elif site_folder.lower() == 'site-packages': parent, folder = os.path.split(site_parent) # Windows like installations if folder.lower() == 'lib': base_dir = parent # UNIX like installations elif os.path.basename(parent).lower() == 'lib': base_dir = os.path.dirname(parent) else: base_dir = site_parent return base_dir, package_path return None, package_path class locked_cached_property(object): """A decorator that converts a function into a lazy property. The function wrapped is called the first time to retrieve the result and then that calculated result is used the next time you access the value. Works like the one in Werkzeug but has a lock for thread safety. """ def __init__(self, func, name=None, doc=None): self.__name__ = name or func.__name__ self.__module__ = func.__module__ self.__doc__ = doc or func.__doc__ self.func = func self.lock = RLock() def __get__(self, obj, type=None): if obj is None: return self with self.lock: value = obj.__dict__.get(self.__name__, _missing) if value is _missing: value = self.func(obj) obj.__dict__[self.__name__] = value return value class _PackageBoundObject(object): def __init__(self, import_name, template_folder=None, root_path=None): #: The name of the package or module. Do not change this once #: it was set by the constructor. self.import_name = import_name #: location of the templates. ``None`` if templates should not be #: exposed. self.template_folder = template_folder if root_path is None: root_path = get_root_path(self.import_name) #: Where is the app root located? self.root_path = root_path self._static_folder = None self._static_url_path = None def _get_static_folder(self): if self._static_folder is not None: return os.path.join(self.root_path, self._static_folder) def _set_static_folder(self, value): self._static_folder = value static_folder = property(_get_static_folder, _set_static_folder, doc=''' The absolute path to the configured static folder. ''') del _get_static_folder, _set_static_folder def _get_static_url_path(self): if self._static_url_path is not None: return self._static_url_path if self.static_folder is not None: return '/' + os.path.basename(self.static_folder) def _set_static_url_path(self, value): self._static_url_path = value static_url_path = property(_get_static_url_path, _set_static_url_path) del _get_static_url_path, _set_static_url_path @property def has_static_folder(self): """This is ``True`` if the package bound object's container has a folder for static files. .. versionadded:: 0.5 """ return self.static_folder is not None @locked_cached_property def jinja_loader(self): """The Jinja loader for this package bound object. .. versionadded:: 0.5 """ if self.template_folder is not None: return FileSystemLoader(os.path.join(self.root_path, self.template_folder)) def get_send_file_max_age(self, filename): """Provides default cache_timeout for the :func:`send_file` functions. By default, this function returns ``SEND_FILE_MAX_AGE_DEFAULT`` from the configuration of :data:`~flask.current_app`. Static file functions such as :func:`send_from_directory` use this function, and :func:`send_file` calls this function on :data:`~flask.current_app` when the given cache_timeout is ``None``. If a cache_timeout is given in :func:`send_file`, that timeout is used; otherwise, this method is called. This allows subclasses to change the behavior when sending files based on the filename. For example, to set the cache timeout for .js files to 60 seconds:: class MyFlask(flask.Flask): def get_send_file_max_age(self, name): if name.lower().endswith('.js'): return 60 return flask.Flask.get_send_file_max_age(self, name) .. versionadded:: 0.9 """ return current_app.config['SEND_FILE_MAX_AGE_DEFAULT'] def send_static_file(self, filename): """Function used internally to send static files from the static folder to the browser. .. versionadded:: 0.5 """ if not self.has_static_folder: raise RuntimeError('No static folder for this object') # Ensure get_send_file_max_age is called in all cases. # Here, we ensure get_send_file_max_age is called for Blueprints. cache_timeout = self.get_send_file_max_age(filename) return send_from_directory(self.static_folder, filename, cache_timeout=cache_timeout) def open_resource(self, resource, mode='rb'): """Opens a resource from the application's resource folder. To see how this works, consider the following folder structure:: /myapplication.py /schema.sql /static /style.css /templates /layout.html /index.html If you want to open the :file:`schema.sql` file you would do the following:: with app.open_resource('schema.sql') as f: contents = f.read() do_something_with(contents) :param resource: the name of the resource. To access resources within subfolders use forward slashes as separator. :param mode: resource file opening mode, default is 'rb'. """ if mode not in ('r', 'rb'): raise ValueError('Resources can only be opened for reading') return open(os.path.join(self.root_path, resource), mode)
bsd-3-clause
6,769,140,311,341,379,000
39.554444
85
0.628264
false
AlphaX2/FotoShareN9
1.6.1/fotoshare/opt/FotoShareN9/plugins/flickr/libs/flickrapi/reportinghttp.py
10
2712
# -*- encoding: utf-8 -*- '''HTTPHandler that supports a callback method for progress reports. ''' import urllib2 import httplib import logging __all__ = ['urlopen'] logging.basicConfig() LOG = logging.getLogger(__name__) progress_callback = None class ReportingSocket(object): '''Wrapper around a socket. Gives progress report through a callback function. ''' min_chunksize = 10240 def __init__(self, socket): self.socket = socket def sendall(self, bits): '''Sends all data, calling the callback function for every sent chunk. ''' LOG.debug("SENDING: %s..." % bits[0:30]) total = len(bits) sent = 0 chunksize = max(self.min_chunksize, total // 100) while len(bits) > 0: send = bits[0:chunksize] self.socket.sendall(send) sent += len(send) if progress_callback: progress = float(sent) / total * 100 progress_callback(progress, sent == total) bits = bits[chunksize:] def makefile(self, mode, bufsize): '''Returns a file-like object for the socket.''' return self.socket.makefile(mode, bufsize) def close(self): '''Closes the socket.''' return self.socket.close() class ProgressHTTPConnection(httplib.HTTPConnection): '''HTTPConnection that gives regular progress reports during sending of data. ''' def connect(self): '''Connects to a HTTP server.''' httplib.HTTPConnection.connect(self) self.sock = ReportingSocket(self.sock) class ProgressHTTPHandler(urllib2.HTTPHandler): '''HTTPHandler that gives regular progress reports during sending of data. ''' def http_open(self, req): return self.do_open(ProgressHTTPConnection, req) def set_callback(method): '''Sets the callback function to use for progress reports.''' global progress_callback # IGNORE:W0603 if not hasattr(method, '__call__'): raise ValueError('Callback method must be callable') progress_callback = method def urlopen(url_or_request, callback, body=None): '''Opens an URL using the ProgressHTTPHandler.''' set_callback(callback) opener = urllib2.build_opener(ProgressHTTPHandler) return opener.open(url_or_request, body) if __name__ == '__main__': def upload(progress, finished): '''Upload progress demo''' LOG.info("%3.0f - %s" % (progress, finished)) conn = urlopen("http://www.flickr.com/", 'x' * 10245, upload) data = conn.read() LOG.info("Read data") print data[:100].split('\n')[0]
gpl-3.0
4,877,104,695,099,435,000
25.588235
69
0.610988
false
CyrilPeponnet/Archipel
ArchipelAgent/archipel-agent-vmparking/setup.py
4
3362
# # setup.py # # Copyright (C) 2010 Antoine Mercadal <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from setuptools import setup, find_packages VERSION = '0.6.0' AUTHOR = 'Antoine Mercadal' MAIL = '[email protected]' URL = 'http://archipelproject.org' LICENSE = 'AGPL' NAME = 'archipel-agent-vmparking' SHORTDESCRIPTION = "Handle the virtual machine parking" LONGDESCRIPTION = "" ENTRY_POINTS = { 'archipel.plugin.hypervisor' : [ 'factory=archipelagentvmparking:make_archipel_plugin'], 'archipel.plugin.virtualmachine' : [ 'factory=archipelagentvmparking:make_archipel_plugin'], 'archipel.plugin' : [ 'version=archipelagentvmparking:version']} RPM_REQUIRED_DEPS = "archipel-core" RPM_POST_INSTALL = "%post\narchipel-initinstall -m {0}\n".format(NAME) ## HACK FOR DEPS IN RPMS from setuptools.command.bdist_rpm import bdist_rpm def custom_make_spec_file(self): spec = self._original_make_spec_file() lineDescription = "%description" spec.insert(spec.index(lineDescription) - 1, "requires: %s" % RPM_REQUIRED_DEPS) spec.append(RPM_POST_INSTALL) return spec bdist_rpm._original_make_spec_file = bdist_rpm._make_spec_file bdist_rpm._make_spec_file = custom_make_spec_file ## END OF HACK setup(name=NAME, version=VERSION, description=SHORTDESCRIPTION, long_description=LONGDESCRIPTION, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Environment :: No Input/Output (Daemon)', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Science/Research', 'Intended Audience :: System Administrators', 'Intended Audience :: Telecommunications Industry', 'License :: OSI Approved :: GNU Affero General Public License v3', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: Internet', 'Topic :: System :: Emulators', 'Topic :: System :: Operating System'], keywords='archipel, virtualization, libvirt, orchestration', author=AUTHOR, author_email=MAIL, url=URL, license=LICENSE, packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), include_package_data=True, zip_safe=False, install_requires=[ "archipel-core>=0.6.0beta" ], entry_points=ENTRY_POINTS )
agpl-3.0
8,921,930,473,874,930,000
40.506173
84
0.640988
false
pantaloons/4charm
libvpx/tools/intersect-diffs.py
98
2364
#!/usr/bin/env python ## Copyright (c) 2012 The WebM project authors. All Rights Reserved. ## ## Use of this source code is governed by a BSD-style license ## that can be found in the LICENSE file in the root of the source ## tree. An additional intellectual property rights grant can be found ## in the file PATENTS. All contributing project authors may ## be found in the AUTHORS file in the root of the source tree. ## """Calculates the "intersection" of two unified diffs. Given two diffs, A and B, it finds all hunks in B that had non-context lines in A and prints them to stdout. This is useful to determine the hunks in B that are relevant to A. The resulting file can be applied with patch(1) on top of A. """ __author__ = "[email protected]" import sys import diff def FormatDiffHunks(hunks): """Re-serialize a list of DiffHunks.""" r = [] last_header = None for hunk in hunks: this_header = hunk.header[0:2] if last_header != this_header: r.extend(hunk.header) last_header = this_header else: r.extend(hunk.header[2]) r.extend(hunk.lines) r.append("\n") return "".join(r) def ZipHunks(rhs_hunks, lhs_hunks): """Join two hunk lists on filename.""" for rhs_hunk in rhs_hunks: rhs_file = rhs_hunk.right.filename.split("/")[1:] for lhs_hunk in lhs_hunks: lhs_file = lhs_hunk.left.filename.split("/")[1:] if lhs_file != rhs_file: continue yield (rhs_hunk, lhs_hunk) def main(): old_hunks = [x for x in diff.ParseDiffHunks(open(sys.argv[1], "r"))] new_hunks = [x for x in diff.ParseDiffHunks(open(sys.argv[2], "r"))] out_hunks = [] # Join the right hand side of the older diff with the left hand side of the # newer diff. for old_hunk, new_hunk in ZipHunks(old_hunks, new_hunks): if new_hunk in out_hunks: continue old_lines = old_hunk.right new_lines = new_hunk.left # Determine if this hunk overlaps any non-context line from the other for i in old_lines.delta_line_nums: if i in new_lines: out_hunks.append(new_hunk) break if out_hunks: print FormatDiffHunks(out_hunks) sys.exit(1) if __name__ == "__main__": main()
mit
4,926,596,401,171,371,000
30.105263
79
0.619289
false
SatelliteQE/robottelo
tests/foreman/api/test_hostcollection.py
1
14844
"""Unit tests for host collections. :Requirement: Hostcollection :CaseAutomation: Automated :CaseLevel: Acceptance :CaseComponent: HostCollections :Assignee: swadeley :TestType: Functional :CaseImportance: High :Upstream: No """ from random import choice from random import randint import pytest from broker import VMBroker from nailgun import entities from requests.exceptions import HTTPError from robottelo.datafactory import invalid_values_list from robottelo.datafactory import parametrized from robottelo.datafactory import valid_data_list from robottelo.hosts import ContentHost @pytest.fixture(scope='module') def fake_hosts(module_org): """Create content hosts that can be shared by tests.""" hosts = [entities.Host(organization=module_org).create() for _ in range(2)] return hosts @pytest.mark.parametrize('name', **parametrized(valid_data_list())) @pytest.mark.tier1 def test_positive_create_with_name(module_org, name): """Create host collections with different names. :id: 8f2b9223-f5be-4cb1-8316-01ea747cae14 :parametrized: yes :expectedresults: The host collection was successfully created and has appropriate name. :CaseImportance: Critical """ host_collection = entities.HostCollection(name=name, organization=module_org).create() assert host_collection.name == name @pytest.mark.tier1 def test_positive_list(module_org): """Create new host collection and then retrieve list of all existing host collections :id: 6ae32df2-b917-4830-8709-15fb272b76c1 :BZ: 1331875 :expectedresults: Returned list of host collections for the system contains at least one collection :CaseImportance: Critical """ entities.HostCollection(organization=module_org).create() hc_list = entities.HostCollection().search() assert len(hc_list) >= 1 @pytest.mark.tier1 def test_positive_list_for_organization(): """Create host collection for specific organization. Retrieve list of host collections for that organization :id: 5f9de8ab-2c53-401b-add3-57d86c97563a :expectedresults: The host collection was successfully created and present in the list of collections for specific organization :CaseImportance: Critical """ org = entities.Organization().create() hc = entities.HostCollection(organization=org).create() hc_list = entities.HostCollection(organization=org).search() assert len(hc_list) == 1 assert hc_list[0].id == hc.id @pytest.mark.parametrize('desc', **parametrized(valid_data_list())) @pytest.mark.tier1 def test_positive_create_with_description(module_org, desc): """Create host collections with different descriptions. :id: 9d13392f-8d9d-4ff1-8909-4233e4691055 :parametrized: yes :expectedresults: The host collection was successfully created and has appropriate description. :CaseImportance: Critical """ host_collection = entities.HostCollection(description=desc, organization=module_org).create() assert host_collection.description == desc @pytest.mark.tier1 def test_positive_create_with_limit(module_org): """Create host collections with different limits. :id: 86d9387b-7036-4794-96fd-5a3472dd9160 :expectedresults: The host collection was successfully created and has appropriate limit. :CaseImportance: Critical """ for _ in range(5): limit = randint(1, 30) host_collection = entities.HostCollection(max_hosts=limit, organization=module_org).create() assert host_collection.max_hosts == limit @pytest.mark.parametrize("unlimited", [False, True]) @pytest.mark.tier1 def test_positive_create_with_unlimited_hosts(module_org, unlimited): """Create host collection with different values of 'unlimited hosts' parameter. :id: d385574e-5794-4442-b6cd-e5ded001d877 :parametrized: yes :expectedresults: The host collection was successfully created and has appropriate 'unlimited hosts' parameter value. :CaseImportance: Critical """ host_collection = entities.HostCollection( max_hosts=None if unlimited else 1, organization=module_org, unlimited_hosts=unlimited, ).create() assert host_collection.unlimited_hosts == unlimited @pytest.mark.tier1 def test_positive_create_with_host(module_org, fake_hosts): """Create a host collection that contains a host. :id: 9dc0ad72-58c2-4079-b1ca-2c4373472f0f :expectedresults: The host collection can be read back, and it includes one host. :CaseImportance: Critical :BZ: 1325989 """ host_collection = entities.HostCollection( host=[fake_hosts[0]], organization=module_org ).create() assert len(host_collection.host) == 1 @pytest.mark.tier1 def test_positive_create_with_hosts(module_org, fake_hosts): """Create a host collection that contains hosts. :id: bb8d2b42-9a8b-4c4f-ba0c-c56ae5a7eb1d :expectedresults: The host collection can be read back, and it references two hosts. :CaseImportance: Critical :BZ: 1325989 """ host_collection = entities.HostCollection(host=fake_hosts, organization=module_org).create() assert len(host_collection.host) == len(fake_hosts) @pytest.mark.tier2 def test_positive_add_host(module_org, fake_hosts): """Add a host to host collection. :id: da8bc901-7ac8-4029-bb62-af21aa4d3a88 :expectedresults: Host was added to the host collection. :CaseLevel: Integration :BZ:1325989 """ host_collection = entities.HostCollection(organization=module_org).create() host_collection.host_ids = [fake_hosts[0].id] host_collection = host_collection.update(['host_ids']) assert len(host_collection.host) == 1 @pytest.mark.upgrade @pytest.mark.tier2 def test_positive_add_hosts(module_org, fake_hosts): """Add hosts to host collection. :id: f76b4db1-ccd5-47ab-be15-8c7d91d03b22 :expectedresults: Hosts were added to the host collection. :CaseLevel: Integration :BZ: 1325989 """ host_collection = entities.HostCollection(organization=module_org).create() host_ids = [str(host.id) for host in fake_hosts] host_collection.host_ids = host_ids host_collection = host_collection.update(['host_ids']) assert len(host_collection.host) == len(fake_hosts) @pytest.mark.tier1 def test_positive_read_host_ids(module_org, fake_hosts): """Read a host collection and look at the ``host_ids`` field. :id: 444a1528-64c8-41b6-ba2b-6c49799d5980 :expectedresults: The ``host_ids`` field matches the host IDs passed in when creating the host collection. :CaseImportance: Critical :BZ:1325989 """ host_collection = entities.HostCollection(host=fake_hosts, organization=module_org).create() assert frozenset(host.id for host in host_collection.host) == frozenset( host.id for host in fake_hosts ) @pytest.mark.parametrize('new_name', **parametrized(valid_data_list())) @pytest.mark.tier1 def test_positive_update_name(module_org, new_name): """Check if host collection name can be updated :id: b2dedb99-6dd7-41be-8aaa-74065c820ac6 :parametrized: yes :expectedresults: Host collection name was successfully updated :CaseImportance: Critical """ host_collection = entities.HostCollection(organization=module_org).create() host_collection.name = new_name assert host_collection.update().name == new_name @pytest.mark.parametrize('new_desc', **parametrized(valid_data_list())) @pytest.mark.tier1 def test_positive_update_description(module_org, new_desc): """Check if host collection description can be updated :id: f8e9bd1c-1525-4b5f-a07c-eb6b6e7aa628 :parametrized: yes :expectedresults: Host collection description was updated :CaseImportance: Critical """ host_collection = entities.HostCollection(organization=module_org).create() host_collection.description = new_desc assert host_collection.update().description == new_desc @pytest.mark.tier1 def test_positive_update_limit(module_org): """Check if host collection limit can be updated :id: 4eda7796-cd81-453b-9b72-4ef84b2c1d8c :expectedresults: Host collection limit was updated :CaseImportance: Critical """ host_collection = entities.HostCollection( max_hosts=1, organization=module_org, unlimited_hosts=False ).create() for limit in (1, 3, 5, 10, 20): host_collection.max_hosts = limit assert host_collection.update().max_hosts == limit @pytest.mark.tier1 def test_positive_update_unlimited_hosts(module_org): """Check if host collection 'unlimited hosts' parameter can be updated :id: 09a3973d-9832-4255-87bf-f9eaeab4aee8 :expectedresults: Host collection 'unlimited hosts' parameter was updated :CaseImportance: Critical """ random_unlimited = choice([True, False]) host_collection = entities.HostCollection( max_hosts=1 if not random_unlimited else None, organization=module_org, unlimited_hosts=random_unlimited, ).create() for unlimited in (not random_unlimited, random_unlimited): host_collection.max_hosts = 1 if not unlimited else None host_collection.unlimited_hosts = unlimited host_collection = host_collection.update(['max_hosts', 'unlimited_hosts']) assert host_collection.unlimited_hosts == unlimited @pytest.mark.tier1 def test_positive_update_host(module_org, fake_hosts): """Update host collection's host. :id: 23082854-abcf-4085-be9c-a5d155446acb :expectedresults: The host collection was updated with a new host. :CaseImportance: Critical """ host_collection = entities.HostCollection( host=[fake_hosts[0]], organization=module_org ).create() host_collection.host_ids = [fake_hosts[1].id] host_collection = host_collection.update(['host_ids']) assert host_collection.host[0].id == fake_hosts[1].id @pytest.mark.upgrade @pytest.mark.tier1 def test_positive_update_hosts(module_org, fake_hosts): """Update host collection's hosts. :id: 0433b37d-ae16-456f-a51d-c7b800334861 :expectedresults: The host collection was updated with new hosts. :CaseImportance: Critical """ host_collection = entities.HostCollection(host=fake_hosts, organization=module_org).create() new_hosts = [entities.Host(organization=module_org).create() for _ in range(2)] host_ids = [str(host.id) for host in new_hosts] host_collection.host_ids = host_ids host_collection = host_collection.update(['host_ids']) assert {host.id for host in host_collection.host} == {host.id for host in new_hosts} @pytest.mark.upgrade @pytest.mark.tier1 def test_positive_delete(module_org): """Check if host collection can be deleted :id: 13a16cd2-16ce-4966-8c03-5d821edf963b :expectedresults: Host collection was successfully deleted :CaseImportance: Critical """ host_collection = entities.HostCollection(organization=module_org).create() host_collection.delete() with pytest.raises(HTTPError): host_collection.read() @pytest.mark.parametrize('name', **parametrized(invalid_values_list())) @pytest.mark.tier1 def test_negative_create_with_invalid_name(module_org, name): """Try to create host collections with different invalid names :id: 38f67d04-a19d-4eab-a577-21b8d62c7389 :parametrized: yes :expectedresults: The host collection was not created :CaseImportance: Critical """ with pytest.raises(HTTPError): entities.HostCollection(name=name, organization=module_org).create() @pytest.mark.tier1 def test_positive_add_remove_subscription(module_org, module_ak_cv_lce): """Try to bulk add and remove a subscription to members of a host collection. :id: c4ec5727-eb25-452e-a91f-87cafb16666b :steps: 1. Create HC, add AK to HC 2. Create product so we can use it's subscription 3. Create some VMs and register them with AK so they are in HC 4. Add the subscription to the members of the Host Collection 5. Assert subscription is added 6. Bulk remove subscription 7. Assert it is removed :expectedresults: subscription added to, and removed from, members of host collection :CaseImportance: Critical """ # this command creates a host collection and "appends", makes available, to the AK module_ak_cv_lce.host_collection.append( entities.HostCollection(organization=module_org).create() ) # Move HC from Add tab to List tab on AK view module_ak_cv_lce = module_ak_cv_lce.update(['host_collection']) # Create a product so we have a subscription to use product = entities.Product(organization=module_org).create() prod_name = product.name product_subscription = entities.Subscription(organization=module_org).search( query={'search': f'name={prod_name}'} )[0] # Create and register VMs as members of Host Collection with VMBroker(nick='rhel7', host_classes={'host': ContentHost}, _count=2) as hosts: for client in hosts: client.install_katello_ca() client.register_contenthost(module_org.label, module_ak_cv_lce.name) # Read host_collection back from Satellite to get host_ids host_collection = module_ak_cv_lce.host_collection[0].read() host_ids = [host.id for host in host_collection.host] # Add subscription # Call nailgun to make the API PUT to members of Host Collection entities.Host().bulk_add_subscriptions( data={ "organization_id": module_org.id, "included": {"ids": host_ids}, "subscriptions": [{"id": product_subscription.id, "quantity": 1}], } ) # GET the subscriptions from hosts and assert they are there for host_id in host_ids: req = entities.HostSubscription(host=host_id).subscriptions() assert ( prod_name in req['results'][0]['product_name'] ), 'Subscription not applied to HC members' # Remove the subscription # Call nailgun to make the API PUT to members of Host Collection entities.Host().bulk_remove_subscriptions( data={ "organization_id": module_org.id, "included": {"ids": host_ids}, "subscriptions": [{"id": product_subscription.id, "quantity": 1}], } ) # GET the subscriptions from hosts and assert they are gone for host_id in host_ids: req = entities.HostSubscription(host=host_id).subscriptions() assert not req['results'], 'Subscription not removed from HC members'
gpl-3.0
-7,841,114,450,710,041,000
31.060475
100
0.699542
false
druids/django-chamber
setup.py
1
1138
from setuptools import setup, find_packages from chamber.version import get_version setup( name='django-chamber', version=get_version(), description='Utilities library meant as a complement to django-is-core.', author='Lubos Matl, Oskar Hollmann', author_email='[email protected], [email protected]', url='http://github.com/druids/django-chamber', packages=find_packages(include=['chamber']), include_package_data=True, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Framework :: Django', ], install_requires=[ 'Django>=2.2', 'Unidecode>=1.1.1', 'pyprind>=2.11.2', 'filemagic>=1.6', ], extras_require={ 'boto3storage': ['django-storages<2.0', 'boto3'], }, )
bsd-3-clause
-6,346,957,805,061,011,000
31.514286
89
0.615114
false
rgom/Pydev
plugins/org.python.pydev.jython/Lib/cmd.py
145
15026
"""A generic class to build line-oriented command interpreters. Interpreters constructed with this class obey the following conventions: 1. End of file on input is processed as the command 'EOF'. 2. A command is parsed out of each line by collecting the prefix composed of characters in the identchars member. 3. A command `foo' is dispatched to a method 'do_foo()'; the do_ method is passed a single argument consisting of the remainder of the line. 4. Typing an empty line repeats the last command. (Actually, it calls the method `emptyline', which may be overridden in a subclass.) 5. There is a predefined `help' method. Given an argument `topic', it calls the command `help_topic'. With no arguments, it lists all topics with defined help_ functions, broken into up to three topics; documented commands, miscellaneous help topics, and undocumented commands. 6. The command '?' is a synonym for `help'. The command '!' is a synonym for `shell', if a do_shell method exists. 7. If completion is enabled, completing commands will be done automatically, and completing of commands args is done by calling complete_foo() with arguments text, line, begidx, endidx. text is string we are matching against, all returned matches must begin with it. line is the current input line (lstripped), begidx and endidx are the beginning and end indexes of the text being matched, which could be used to provide different completion depending upon which position the argument is in. The `default' method may be overridden to intercept commands for which there is no do_ method. The `completedefault' method may be overridden to intercept completions for commands that have no complete_ method. The data member `self.ruler' sets the character used to draw separator lines in the help messages. If empty, no ruler line is drawn. It defaults to "=". If the value of `self.intro' is nonempty when the cmdloop method is called, it is printed out on interpreter startup. This value may be overridden via an optional argument to the cmdloop() method. The data members `self.doc_header', `self.misc_header', and `self.undoc_header' set the headers used for the help function's listings of documented functions, miscellaneous topics, and undocumented functions respectively. These interpreters use raw_input; thus, if the readline module is loaded, they automatically support Emacs-like command history and editing features. """ import string __all__ = ["Cmd"] PROMPT = '(Cmd) ' IDENTCHARS = string.ascii_letters + string.digits + '_' class Cmd: """A simple framework for writing line-oriented command interpreters. These are often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface. A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason to instantiate Cmd itself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit Cmd's methods and encapsulate action methods. """ prompt = PROMPT identchars = IDENTCHARS ruler = '=' lastcmd = '' intro = None doc_leader = "" doc_header = "Documented commands (type help <topic>):" misc_header = "Miscellaneous help topics:" undoc_header = "Undocumented commands:" nohelp = "*** No help on %s" use_rawinput = 1 def __init__(self, completekey='tab', stdin=None, stdout=None): """Instantiate a line-oriented interpreter framework. The optional argument 'completekey' is the readline name of a completion key; it defaults to the Tab key. If completekey is not None and the readline module is available, command completion is done automatically. The optional arguments stdin and stdout specify alternate input and output file objects; if not specified, sys.stdin and sys.stdout are used. """ import sys if stdin is not None: self.stdin = stdin else: self.stdin = sys.stdin if stdout is not None: self.stdout = stdout else: self.stdout = sys.stdout self.cmdqueue = [] self.completekey = completekey def cmdloop(self, intro=None): """Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action methods, passing them the remainder of the line as argument. """ self.preloop() if self.use_rawinput and self.completekey: try: import readline self.old_completer = readline.get_completer() readline.set_completer(self.complete) readline.parse_and_bind(self.completekey+": complete") except ImportError: pass try: if intro is not None: self.intro = intro if self.intro: self.stdout.write(str(self.intro)+"\n") stop = None while not stop: if self.cmdqueue: line = self.cmdqueue.pop(0) else: if self.use_rawinput: try: line = raw_input(self.prompt) except EOFError: line = 'EOF' else: self.stdout.write(self.prompt) self.stdout.flush() line = self.stdin.readline() if not len(line): line = 'EOF' else: line = line.rstrip('\r\n') line = self.precmd(line) stop = self.onecmd(line) stop = self.postcmd(stop, line) self.postloop() finally: if self.use_rawinput and self.completekey: try: import readline readline.set_completer(self.old_completer) except ImportError: pass def precmd(self, line): """Hook method executed just before the command line is interpreted, but after the input prompt is generated and issued. """ return line def postcmd(self, stop, line): """Hook method executed just after a command dispatch is finished.""" return stop def preloop(self): """Hook method executed once when the cmdloop() method is called.""" pass def postloop(self): """Hook method executed once when the cmdloop() method is about to return. """ pass def parseline(self, line): """Parse the line into a command name and a string containing the arguments. Returns a tuple containing (command, args, line). 'command' and 'args' may be None if the line couldn't be parsed. """ line = line.strip() if not line: return None, None, line elif line[0] == '?': line = 'help ' + line[1:] elif line[0] == '!': if hasattr(self, 'do_shell'): line = 'shell ' + line[1:] else: return None, None, line i, n = 0, len(line) while i < n and line[i] in self.identchars: i = i+1 cmd, arg = line[:i], line[i:].strip() return cmd, arg, line def onecmd(self, line): """Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter should stop. """ cmd, arg, line = self.parseline(line) if not line: return self.emptyline() if cmd is None: return self.default(line) self.lastcmd = line if line == 'EOF' : self.lastcmd = '' if cmd == '': return self.default(line) else: try: func = getattr(self, 'do_' + cmd) except AttributeError: return self.default(line) return func(arg) def emptyline(self): """Called when an empty line is entered in response to the prompt. If this method is not overridden, it repeats the last nonempty command entered. """ if self.lastcmd: return self.onecmd(self.lastcmd) def default(self, line): """Called on an input line when the command prefix is not recognized. If this method is not overridden, it prints an error message and returns. """ self.stdout.write('*** Unknown syntax: %s\n'%line) def completedefault(self, *ignored): """Method called to complete an input line when no command-specific complete_*() method is available. By default, it returns an empty list. """ return [] def completenames(self, text, *ignored): dotext = 'do_'+text return [a[3:] for a in self.get_names() if a.startswith(dotext)] def complete(self, text, state): """Return the next possible completion for 'text'. If a command has not been entered, then complete against command list. Otherwise try to call complete_<command> to get list of completions. """ if state == 0: import readline origline = readline.get_line_buffer() line = origline.lstrip() stripped = len(origline) - len(line) begidx = readline.get_begidx() - stripped endidx = readline.get_endidx() - stripped if begidx>0: cmd, args, foo = self.parseline(line) if cmd == '': compfunc = self.completedefault else: try: compfunc = getattr(self, 'complete_' + cmd) except AttributeError: compfunc = self.completedefault else: compfunc = self.completenames self.completion_matches = compfunc(text, line, begidx, endidx) try: return self.completion_matches[state] except IndexError: return None def get_names(self): # This method used to pull in base class attributes # at a time dir() didn't do it yet. return dir(self.__class__) def complete_help(self, *args): commands = set(self.completenames(*args)) topics = set(a[5:] for a in self.get_names() if a.startswith('help_' + args[0])) return list(commands | topics) def do_help(self, arg): 'List available commands with "help" or detailed help with "help cmd".' if arg: # XXX check arg syntax try: func = getattr(self, 'help_' + arg) except AttributeError: try: doc=getattr(self, 'do_' + arg).__doc__ if doc: self.stdout.write("%s\n"%str(doc)) return except AttributeError: pass self.stdout.write("%s\n"%str(self.nohelp % (arg,))) return func() else: names = self.get_names() cmds_doc = [] cmds_undoc = [] help = {} for name in names: if name[:5] == 'help_': help[name[5:]]=1 names.sort() # There can be duplicates if routines overridden prevname = '' for name in names: if name[:3] == 'do_': if name == prevname: continue prevname = name cmd=name[3:] if cmd in help: cmds_doc.append(cmd) del help[cmd] elif getattr(self, name).__doc__: cmds_doc.append(cmd) else: cmds_undoc.append(cmd) self.stdout.write("%s\n"%str(self.doc_leader)) self.print_topics(self.doc_header, cmds_doc, 15,80) self.print_topics(self.misc_header, help.keys(),15,80) self.print_topics(self.undoc_header, cmds_undoc, 15,80) def print_topics(self, header, cmds, cmdlen, maxcol): if cmds: self.stdout.write("%s\n"%str(header)) if self.ruler: self.stdout.write("%s\n"%str(self.ruler * len(header))) self.columnize(cmds, maxcol-1) self.stdout.write("\n") def columnize(self, list, displaywidth=80): """Display a list of strings as a compact set of columns. Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough). """ if not list: self.stdout.write("<empty>\n") return nonstrings = [i for i in range(len(list)) if not isinstance(list[i], str)] if nonstrings: raise TypeError, ("list[i] not a string for i in %s" % ", ".join(map(str, nonstrings))) size = len(list) if size == 1: self.stdout.write('%s\n'%str(list[0])) return # Try every row count from 1 upwards for nrows in range(1, len(list)): ncols = (size+nrows-1) // nrows colwidths = [] totwidth = -2 for col in range(ncols): colwidth = 0 for row in range(nrows): i = row + nrows*col if i >= size: break x = list[i] colwidth = max(colwidth, len(x)) colwidths.append(colwidth) totwidth += colwidth + 2 if totwidth > displaywidth: break if totwidth <= displaywidth: break else: nrows = len(list) ncols = 1 colwidths = [0] for row in range(nrows): texts = [] for col in range(ncols): i = row + nrows*col if i >= size: x = "" else: x = list[i] texts.append(x) while texts and not texts[-1]: del texts[-1] for col in range(len(texts)): texts[col] = texts[col].ljust(colwidths[col]) self.stdout.write("%s\n"%str(" ".join(texts)))
epl-1.0
2,622,969,642,988,453,400
36.193069
79
0.554239
false
Jhaefner/PressureDrop
master_example.py
1
2607
""" @author: Jonah Haefner and Lane Carasik Title: master_example.py The purpose of this script is to ensure the four functions included in this package are functioning properly and as an example of use for the user. It currently only provides checks for the inline geometry with the fluid at a Reynolds number of 22000. The expected output is: Zhukauskas: dP_1 = 21.94 kPa Gaddis-Gnielinski: dP 2 = 25.67 kPa Zhukauskas: Nu1 = 142.52 Gaddis-Gnielinski: Nu2 = 147.31 """ import TORCHE as TE # Geometric parameters d = 0.0254 # Outside diameter of tube or cylinder (m) a = 1.25 # Transverse pitch to diameter ratio b = 1.25 # Longitudinal pitch to diameter ratio geom = 'inline' # Tube geometry (inline or staggered) N_rows = 10 # Number of tube rows ''' # Fluid thermo-physical properties rho = 1940 # Density of the working fluid - FLiBe salt (kg/m^3) mu = 0.0056 # Dynamic visocity of the working fluid - FLiBe salt (Pa-s) Pr = 1 # Prandtl number of the working fluid Pr_w = 1 # Prandtl number of the working fluid based on the wall film temperature ''' # Fluid thermo-physical properties - H2O rho = 998.6 # Density of the working fluid - water at 20 C (kg/m^3) mu = 0.00100124 # Dynamic visocity of the working fluid - water 20 C (Pa-s) Pr = 6.99 # Prandtl number of the working fluid Pr_w = 6.99 # Prandtl number of the working fluid based on the wall film temperature # Flow behavior vel = 0.5 # Free-stream velocity before interacting with the tube bank (m/s) v_max = vel*(a/(a-1)) # Maximum velocity based in the minimum area between the tubes (m/s) Re = rho*v_max*d/mu # Reynolds number of the flow based on the maximium velocity in the minimum area between tubes # Expected Results dP_Zu_Ex = 21.94 # Expected Zukauskas results for Pressure drop (kPa) dP_GG_Ex = 25.67 # Expected Gaddis-Gnielinski results for Pressure drop (kPa) Nu_Zu_Ex = 142.52 # Expected Zukauskas results for Nusselt Number Nu_GG_Ex = 147.31 # Expected Gaddis-Gnielinski results for Nusselt Number dP_1 = TE.dP_Zu(rho,a,b,geom,N_rows,vel,Re) print('The Pressure Drop calculated by Zukauskas is',round(dP_1/1000,2),'kPa') dP_2 = TE.dP_GG(rho,a,b,geom,N_rows,vel,Re,Return="") print('The Pressure Drop calculated by Gaddis-Gnielinski is',round(dP_2/1000,2),'kPa') Nu_1 = TE.HT_Zu(rho,Pr,Pr_w,a,b,d,geom,N_rows,vel,Re) print('The Nusselt Number calculated by Zukauskas is', round(Nu_1,2)) Nu_2 = TE.HT_GG(rho,Pr,a,b,d,geom,N_rows,vel,Re) print('The Nusselt Number calculated by Gnielinski is', round(Nu_2,2))
mit
-4,553,694,799,183,054,000
43.736842
148
0.703874
false
krkhan/azure-linux-extensions
OSPatching/test/FakePatching3.py
8
1623
#!/usr/bin/python # # Copyright 2014 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from AbstractPatching import AbstractPatching sys.path.append('../patch') class FakePatching(AbstractPatching): def __init__(self, hutil=None): super(FakePatching,self).__init__(hutil) self.pkg_query_cmd = 'dpkg-query -L' self.gap_between_stage = 20 self.download_duration = 60 self.security_download_list = ['a', 'b', 'c', 'd', 'e'] self.all_download_list = ['1', '2', '3', '4', 'a', 'b', 'c', 'd', 'e'] def install(self): """ Install for dependencies. """ pass def check(self, category): """ Check valid upgrades, Return the package list to download & upgrade """ if category == 'important': return 0, self.security_download_list else: return 0, self.all_download_list def download_package(self, package): return 0 def patch_package(self, package): return 0 def check_reboot(self): return False
apache-2.0
7,190,143,803,900,370,000
27.982143
78
0.635243
false
hehongliang/tensorflow
tensorflow/contrib/specs/python/summaries_test.py
25
3070
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for specs-related summarization functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.specs.python import specs from tensorflow.contrib.specs.python import summaries from tensorflow.python.framework import constant_op from tensorflow.python.ops import variables from tensorflow.python.platform import test def _rand(*size): return np.random.uniform(size=size).astype("f") class SummariesTest(test.TestCase): def testStructure(self): with self.cached_session(): inputs_shape = (1, 18, 19, 5) inputs = constant_op.constant(_rand(*inputs_shape)) spec = "net = Cr(64, [5, 5])" outputs = specs.create_net(spec, inputs) variables.global_variables_initializer().run() result = outputs.eval() self.assertEqual(tuple(result.shape), (1, 18, 19, 64)) self.assertEqual( summaries.tf_spec_structure( spec, input_shape=inputs_shape), "_ variablev2 conv variablev2 biasadd relu") def testStructureFromTensor(self): with self.cached_session(): inputs = constant_op.constant(_rand(1, 18, 19, 5)) spec = "net = Cr(64, [5, 5])" outputs = specs.create_net(spec, inputs) variables.global_variables_initializer().run() result = outputs.eval() self.assertEqual(tuple(result.shape), (1, 18, 19, 64)) self.assertEqual( summaries.tf_spec_structure(spec, inputs), "_ variablev2 conv variablev2 biasadd relu") def testPrint(self): with self.cached_session(): inputs = constant_op.constant(_rand(1, 18, 19, 5)) spec = "net = Cr(64, [5, 5])" outputs = specs.create_net(spec, inputs) variables.global_variables_initializer().run() result = outputs.eval() self.assertEqual(tuple(result.shape), (1, 18, 19, 64)) summaries.tf_spec_print(spec, inputs) def testSummary(self): with self.cached_session(): inputs = constant_op.constant(_rand(1, 18, 19, 5)) spec = "net = Cr(64, [5, 5])" outputs = specs.create_net(spec, inputs) variables.global_variables_initializer().run() result = outputs.eval() self.assertEqual(tuple(result.shape), (1, 18, 19, 64)) summaries.tf_spec_summary(spec, inputs) if __name__ == "__main__": test.main()
apache-2.0
-2,874,759,165,899,760,000
35.547619
80
0.661564
false
markYoungH/chromium.src
third_party/closure_linter/closure_linter/not_strict_test.py
129
2318
#!/usr/bin/env python # # Copyright 2011 The Closure Linter Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gjslint --nostrict. Tests errors that can be thrown by gjslint when not in strict mode. """ import os import sys import unittest import gflags as flags import unittest as googletest from closure_linter import errors from closure_linter import runner from closure_linter.common import filetestcase _RESOURCE_PREFIX = 'closure_linter/testdata' flags.FLAGS.strict = False flags.FLAGS.custom_jsdoc_tags = ('customtag', 'requires') flags.FLAGS.closurized_namespaces = ('goog', 'dummy') flags.FLAGS.limited_doc_files = ('externs.js', 'dummy.js', 'limited_doc_checks.js') # List of files under testdata to test. # We need to list files explicitly since pyglib can't list directories. _TEST_FILES = [ 'not_strict.js' ] class GJsLintTestSuite(unittest.TestSuite): """Test suite to run a GJsLintTest for each of several files. If sys.argv[1:] is non-empty, it is interpreted as a list of filenames in testdata to test. Otherwise, _TEST_FILES is used. """ def __init__(self, tests=()): unittest.TestSuite.__init__(self, tests) argv = sys.argv and sys.argv[1:] or [] if argv: test_files = argv else: test_files = _TEST_FILES for test_file in test_files: resource_path = os.path.join(_RESOURCE_PREFIX, test_file) self.addTest(filetestcase.AnnotatedFileTestCase(resource_path, runner.Run, errors.ByName)) if __name__ == '__main__': # Don't let main parse args; it happens in the TestSuite. googletest.main(argv=sys.argv[0:1], defaultTest='GJsLintTestSuite')
bsd-3-clause
-1,590,271,656,067,317,000
30.324324
75
0.680759
false
gertingold/scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_Y.py
47
2514
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import from numpy import abs, sum, cos, pi from .go_benchmark import Benchmark class YaoLiu04(Benchmark): r""" Yao-Liu 4 objective function. This class defines the Yao-Liu function 4 [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{YaoLiu04}}(x) = {max}_i \left\{ \left | x_i \right | , 1 \leq i \leq n \right\} Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-10, 10]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005 TODO line 1201. Gavana code and documentation differ. max(abs(x)) != abs(max(x)) """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N)) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 self.change_dimensionality = True def fun(self, x, *args): self.nfev += 1 return abs(x).max() class YaoLiu09(Benchmark): r""" Yao-Liu 9 objective function. This class defines the Yao-Liu [1]_ function 9 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{YaoLiu09}}(x) = \sum_{i=1}^n \left [ x_i^2 - 10 \cos(2 \pi x_i ) + 10 \right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-5.12, 5.12]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 TODO Yao-Liu Fast Evolutionary programming is the the original ref. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-5.12] * self.N, [5.12] * self.N)) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 self.change_dimensionality = True def fun(self, x, *args): self.nfev += 1 return sum(x ** 2.0 - 10.0 * cos(2 * pi * x) + 10)
bsd-3-clause
-3,328,109,869,316,967,400
28.232558
84
0.57677
false
achals/servo
tests/wpt/web-platform-tests/tools/py/py/_path/local.py
171
32118
""" local path implementation. """ from __future__ import with_statement from contextlib import contextmanager import sys, os, re, atexit, io import py from py._path import common from py._path.common import iswin32 from stat import S_ISLNK, S_ISDIR, S_ISREG from os.path import abspath, normpath, isabs, exists, isdir, isfile, islink, dirname if sys.version_info > (3,0): def map_as_list(func, iter): return list(map(func, iter)) else: map_as_list = map class Stat(object): def __getattr__(self, name): return getattr(self._osstatresult, "st_" + name) def __init__(self, path, osstatresult): self.path = path self._osstatresult = osstatresult @property def owner(self): if iswin32: raise NotImplementedError("XXX win32") import pwd entry = py.error.checked_call(pwd.getpwuid, self.uid) return entry[0] @property def group(self): """ return group name of file. """ if iswin32: raise NotImplementedError("XXX win32") import grp entry = py.error.checked_call(grp.getgrgid, self.gid) return entry[0] def isdir(self): return S_ISDIR(self._osstatresult.st_mode) def isfile(self): return S_ISREG(self._osstatresult.st_mode) def islink(self): st = self.path.lstat() return S_ISLNK(self._osstatresult.st_mode) class PosixPath(common.PathBase): def chown(self, user, group, rec=0): """ change ownership to the given user and group. user and group may be specified by a number or by a name. if rec is True change ownership recursively. """ uid = getuserid(user) gid = getgroupid(group) if rec: for x in self.visit(rec=lambda x: x.check(link=0)): if x.check(link=0): py.error.checked_call(os.chown, str(x), uid, gid) py.error.checked_call(os.chown, str(self), uid, gid) def readlink(self): """ return value of a symbolic link. """ return py.error.checked_call(os.readlink, self.strpath) def mklinkto(self, oldname): """ posix style hard link to another name. """ py.error.checked_call(os.link, str(oldname), str(self)) def mksymlinkto(self, value, absolute=1): """ create a symbolic link with the given value (pointing to another name). """ if absolute: py.error.checked_call(os.symlink, str(value), self.strpath) else: base = self.common(value) # with posix local paths '/' is always a common base relsource = self.__class__(value).relto(base) reldest = self.relto(base) n = reldest.count(self.sep) target = self.sep.join(('..', )*n + (relsource, )) py.error.checked_call(os.symlink, target, self.strpath) def getuserid(user): import pwd if not isinstance(user, int): user = pwd.getpwnam(user)[2] return user def getgroupid(group): import grp if not isinstance(group, int): group = grp.getgrnam(group)[2] return group FSBase = not iswin32 and PosixPath or common.PathBase class LocalPath(FSBase): """ object oriented interface to os.path and other local filesystem related information. """ class ImportMismatchError(ImportError): """ raised on pyimport() if there is a mismatch of __file__'s""" sep = os.sep class Checkers(common.Checkers): def _stat(self): try: return self._statcache except AttributeError: try: self._statcache = self.path.stat() except py.error.ELOOP: self._statcache = self.path.lstat() return self._statcache def dir(self): return S_ISDIR(self._stat().mode) def file(self): return S_ISREG(self._stat().mode) def exists(self): return self._stat() def link(self): st = self.path.lstat() return S_ISLNK(st.mode) def __init__(self, path=None, expanduser=False): """ Initialize and return a local Path instance. Path can be relative to the current directory. If path is None it defaults to the current working directory. If expanduser is True, tilde-expansion is performed. Note that Path instances always carry an absolute path. Note also that passing in a local path object will simply return the exact same path object. Use new() to get a new copy. """ if path is None: self.strpath = py.error.checked_call(os.getcwd) elif isinstance(path, common.PathBase): self.strpath = path.strpath elif isinstance(path, py.builtin._basestring): if expanduser: path = os.path.expanduser(path) self.strpath = abspath(path) else: raise ValueError("can only pass None, Path instances " "or non-empty strings to LocalPath") def __hash__(self): return hash(self.strpath) def __eq__(self, other): s1 = self.strpath s2 = getattr(other, "strpath", other) if iswin32: s1 = s1.lower() try: s2 = s2.lower() except AttributeError: return False return s1 == s2 def __ne__(self, other): return not (self == other) def __lt__(self, other): return self.strpath < getattr(other, "strpath", other) def __gt__(self, other): return self.strpath > getattr(other, "strpath", other) def samefile(self, other): """ return True if 'other' references the same file as 'self'. """ other = getattr(other, "strpath", other) if not isabs(other): other = abspath(other) if self == other: return True if iswin32: return False # there is no samefile return py.error.checked_call( os.path.samefile, self.strpath, other) def remove(self, rec=1, ignore_errors=False): """ remove a file or directory (or a directory tree if rec=1). if ignore_errors is True, errors while removing directories will be ignored. """ if self.check(dir=1, link=0): if rec: # force remove of readonly files on windows if iswin32: self.chmod(448, rec=1) # octcal 0700 py.error.checked_call(py.std.shutil.rmtree, self.strpath, ignore_errors=ignore_errors) else: py.error.checked_call(os.rmdir, self.strpath) else: if iswin32: self.chmod(448) # octcal 0700 py.error.checked_call(os.remove, self.strpath) def computehash(self, hashtype="md5", chunksize=524288): """ return hexdigest of hashvalue for this file. """ try: try: import hashlib as mod except ImportError: if hashtype == "sha1": hashtype = "sha" mod = __import__(hashtype) hash = getattr(mod, hashtype)() except (AttributeError, ImportError): raise ValueError("Don't know how to compute %r hash" %(hashtype,)) f = self.open('rb') try: while 1: buf = f.read(chunksize) if not buf: return hash.hexdigest() hash.update(buf) finally: f.close() def new(self, **kw): """ create a modified version of this path. the following keyword arguments modify various path parts:: a:/some/path/to/a/file.ext xx drive xxxxxxxxxxxxxxxxx dirname xxxxxxxx basename xxxx purebasename xxx ext """ obj = object.__new__(self.__class__) if not kw: obj.strpath = self.strpath return obj drive, dirname, basename, purebasename,ext = self._getbyspec( "drive,dirname,basename,purebasename,ext") if 'basename' in kw: if 'purebasename' in kw or 'ext' in kw: raise ValueError("invalid specification %r" % kw) else: pb = kw.setdefault('purebasename', purebasename) try: ext = kw['ext'] except KeyError: pass else: if ext and not ext.startswith('.'): ext = '.' + ext kw['basename'] = pb + ext if ('dirname' in kw and not kw['dirname']): kw['dirname'] = drive else: kw.setdefault('dirname', dirname) kw.setdefault('sep', self.sep) obj.strpath = normpath( "%(dirname)s%(sep)s%(basename)s" % kw) return obj def _getbyspec(self, spec): """ see new for what 'spec' can be. """ res = [] parts = self.strpath.split(self.sep) args = filter(None, spec.split(',') ) append = res.append for name in args: if name == 'drive': append(parts[0]) elif name == 'dirname': append(self.sep.join(parts[:-1])) else: basename = parts[-1] if name == 'basename': append(basename) else: i = basename.rfind('.') if i == -1: purebasename, ext = basename, '' else: purebasename, ext = basename[:i], basename[i:] if name == 'purebasename': append(purebasename) elif name == 'ext': append(ext) else: raise ValueError("invalid part specification %r" % name) return res def dirpath(self, *args, **kwargs): """ return the directory path joined with any given path arguments. """ if not kwargs: path = object.__new__(self.__class__) path.strpath = dirname(self.strpath) if args: path = path.join(*args) return path return super(LocalPath, self).dirpath(*args, **kwargs) def join(self, *args, **kwargs): """ return a new path by appending all 'args' as path components. if abs=1 is used restart from root if any of the args is an absolute path. """ sep = self.sep strargs = [getattr(arg, "strpath", arg) for arg in args] strpath = self.strpath if kwargs.get('abs'): newargs = [] for arg in reversed(strargs): if isabs(arg): strpath = arg strargs = newargs break newargs.insert(0, arg) for arg in strargs: arg = arg.strip(sep) if iswin32: # allow unix style paths even on windows. arg = arg.strip('/') arg = arg.replace('/', sep) strpath = strpath + sep + arg obj = object.__new__(self.__class__) obj.strpath = normpath(strpath) return obj def open(self, mode='r', ensure=False, encoding=None): """ return an opened file with the given mode. If ensure is True, create parent directories if needed. """ if ensure: self.dirpath().ensure(dir=1) if encoding: return py.error.checked_call(io.open, self.strpath, mode, encoding=encoding) return py.error.checked_call(open, self.strpath, mode) def _fastjoin(self, name): child = object.__new__(self.__class__) child.strpath = self.strpath + self.sep + name return child def islink(self): return islink(self.strpath) def check(self, **kw): if not kw: return exists(self.strpath) if len(kw) == 1: if "dir" in kw: return not kw["dir"] ^ isdir(self.strpath) if "file" in kw: return not kw["file"] ^ isfile(self.strpath) return super(LocalPath, self).check(**kw) _patternchars = set("*?[" + os.path.sep) def listdir(self, fil=None, sort=None): """ list directory contents, possibly filter by the given fil func and possibly sorted. """ if fil is None and sort is None: names = py.error.checked_call(os.listdir, self.strpath) return map_as_list(self._fastjoin, names) if isinstance(fil, py.builtin._basestring): if not self._patternchars.intersection(fil): child = self._fastjoin(fil) if exists(child.strpath): return [child] return [] fil = common.FNMatcher(fil) names = py.error.checked_call(os.listdir, self.strpath) res = [] for name in names: child = self._fastjoin(name) if fil is None or fil(child): res.append(child) self._sortlist(res, sort) return res def size(self): """ return size of the underlying file object """ return self.stat().size def mtime(self): """ return last modification time of the path. """ return self.stat().mtime def copy(self, target, mode=False): """ copy path to target.""" if self.check(file=1): if target.check(dir=1): target = target.join(self.basename) assert self!=target copychunked(self, target) if mode: copymode(self.strpath, target.strpath) else: def rec(p): return p.check(link=0) for x in self.visit(rec=rec): relpath = x.relto(self) newx = target.join(relpath) newx.dirpath().ensure(dir=1) if x.check(link=1): newx.mksymlinkto(x.readlink()) continue elif x.check(file=1): copychunked(x, newx) elif x.check(dir=1): newx.ensure(dir=1) if mode: copymode(x.strpath, newx.strpath) def rename(self, target): """ rename this path to target. """ target = getattr(target, "strpath", target) return py.error.checked_call(os.rename, self.strpath, target) def dump(self, obj, bin=1): """ pickle object into path location""" f = self.open('wb') try: py.error.checked_call(py.std.pickle.dump, obj, f, bin) finally: f.close() def mkdir(self, *args): """ create & return the directory joined with args. """ p = self.join(*args) py.error.checked_call(os.mkdir, getattr(p, "strpath", p)) return p def write_binary(self, data, ensure=False): """ write binary data into path. If ensure is True create missing parent directories. """ if ensure: self.dirpath().ensure(dir=1) with self.open('wb') as f: f.write(data) def write_text(self, data, encoding, ensure=False): """ write text data into path using the specified encoding. If ensure is True create missing parent directories. """ if ensure: self.dirpath().ensure(dir=1) with self.open('w', encoding=encoding) as f: f.write(data) def write(self, data, mode='w', ensure=False): """ write data into path. If ensure is True create missing parent directories. """ if ensure: self.dirpath().ensure(dir=1) if 'b' in mode: if not py.builtin._isbytes(data): raise ValueError("can only process bytes") else: if not py.builtin._istext(data): if not py.builtin._isbytes(data): data = str(data) else: data = py.builtin._totext(data, sys.getdefaultencoding()) f = self.open(mode) try: f.write(data) finally: f.close() def _ensuredirs(self): parent = self.dirpath() if parent == self: return self if parent.check(dir=0): parent._ensuredirs() if self.check(dir=0): try: self.mkdir() except py.error.EEXIST: # race condition: file/dir created by another thread/process. # complain if it is not a dir if self.check(dir=0): raise return self def ensure(self, *args, **kwargs): """ ensure that an args-joined path exists (by default as a file). if you specify a keyword argument 'dir=True' then the path is forced to be a directory path. """ p = self.join(*args) if kwargs.get('dir', 0): return p._ensuredirs() else: p.dirpath()._ensuredirs() if not p.check(file=1): p.open('w').close() return p def stat(self, raising=True): """ Return an os.stat() tuple. """ if raising == True: return Stat(self, py.error.checked_call(os.stat, self.strpath)) try: return Stat(self, os.stat(self.strpath)) except KeyboardInterrupt: raise except Exception: return None def lstat(self): """ Return an os.lstat() tuple. """ return Stat(self, py.error.checked_call(os.lstat, self.strpath)) def setmtime(self, mtime=None): """ set modification time for the given path. if 'mtime' is None (the default) then the file's mtime is set to current time. Note that the resolution for 'mtime' is platform dependent. """ if mtime is None: return py.error.checked_call(os.utime, self.strpath, mtime) try: return py.error.checked_call(os.utime, self.strpath, (-1, mtime)) except py.error.EINVAL: return py.error.checked_call(os.utime, self.strpath, (self.atime(), mtime)) def chdir(self): """ change directory to self and return old current directory """ try: old = self.__class__() except py.error.ENOENT: old = None py.error.checked_call(os.chdir, self.strpath) return old @contextmanager def as_cwd(self): """ return context manager which changes to current dir during the managed "with" context. On __enter__ it returns the old dir. """ old = self.chdir() try: yield old finally: old.chdir() def realpath(self): """ return a new path which contains no symbolic links.""" return self.__class__(os.path.realpath(self.strpath)) def atime(self): """ return last access time of the path. """ return self.stat().atime def __repr__(self): return 'local(%r)' % self.strpath def __str__(self): """ return string representation of the Path. """ return self.strpath def chmod(self, mode, rec=0): """ change permissions to the given mode. If mode is an integer it directly encodes the os-specific modes. if rec is True perform recursively. """ if not isinstance(mode, int): raise TypeError("mode %r must be an integer" % (mode,)) if rec: for x in self.visit(rec=rec): py.error.checked_call(os.chmod, str(x), mode) py.error.checked_call(os.chmod, self.strpath, mode) def pypkgpath(self): """ return the Python package path by looking for the last directory upwards which still contains an __init__.py. Return None if a pkgpath can not be determined. """ pkgpath = None for parent in self.parts(reverse=True): if parent.isdir(): if not parent.join('__init__.py').exists(): break if not isimportable(parent.basename): break pkgpath = parent return pkgpath def _ensuresyspath(self, ensuremode, path): if ensuremode: s = str(path) if ensuremode == "append": if s not in sys.path: sys.path.append(s) else: if s != sys.path[0]: sys.path.insert(0, s) def pyimport(self, modname=None, ensuresyspath=True): """ return path as an imported python module. If modname is None, look for the containing package and construct an according module name. The module will be put/looked up in sys.modules. if ensuresyspath is True then the root dir for importing the file (taking __init__.py files into account) will be prepended to sys.path if it isn't there already. If ensuresyspath=="append" the root dir will be appended if it isn't already contained in sys.path. if ensuresyspath is False no modification of syspath happens. """ if not self.check(): raise py.error.ENOENT(self) pkgpath = None if modname is None: pkgpath = self.pypkgpath() if pkgpath is not None: pkgroot = pkgpath.dirpath() names = self.new(ext="").relto(pkgroot).split(self.sep) if names[-1] == "__init__": names.pop() modname = ".".join(names) else: pkgroot = self.dirpath() modname = self.purebasename self._ensuresyspath(ensuresyspath, pkgroot) __import__(modname) mod = sys.modules[modname] if self.basename == "__init__.py": return mod # we don't check anything as we might # we in a namespace package ... too icky to check modfile = mod.__file__ if modfile[-4:] in ('.pyc', '.pyo'): modfile = modfile[:-1] elif modfile.endswith('$py.class'): modfile = modfile[:-9] + '.py' if modfile.endswith(os.path.sep + "__init__.py"): if self.basename != "__init__.py": modfile = modfile[:-12] try: issame = self.samefile(modfile) except py.error.ENOENT: issame = False if not issame: raise self.ImportMismatchError(modname, modfile, self) return mod else: try: return sys.modules[modname] except KeyError: # we have a custom modname, do a pseudo-import mod = py.std.types.ModuleType(modname) mod.__file__ = str(self) sys.modules[modname] = mod try: py.builtin.execfile(str(self), mod.__dict__) except: del sys.modules[modname] raise return mod def sysexec(self, *argv, **popen_opts): """ return stdout text from executing a system child process, where the 'self' path points to executable. The process is directly invoked and not through a system shell. """ from subprocess import Popen, PIPE argv = map_as_list(str, argv) popen_opts['stdout'] = popen_opts['stderr'] = PIPE proc = Popen([str(self)] + argv, **popen_opts) stdout, stderr = proc.communicate() ret = proc.wait() if py.builtin._isbytes(stdout): stdout = py.builtin._totext(stdout, sys.getdefaultencoding()) if ret != 0: if py.builtin._isbytes(stderr): stderr = py.builtin._totext(stderr, sys.getdefaultencoding()) raise py.process.cmdexec.Error(ret, ret, str(self), stdout, stderr,) return stdout def sysfind(cls, name, checker=None, paths=None): """ return a path object found by looking at the systems underlying PATH specification. If the checker is not None it will be invoked to filter matching paths. If a binary cannot be found, None is returned Note: This is probably not working on plain win32 systems but may work on cygwin. """ if isabs(name): p = py.path.local(name) if p.check(file=1): return p else: if paths is None: if iswin32: paths = py.std.os.environ['Path'].split(';') if '' not in paths and '.' not in paths: paths.append('.') try: systemroot = os.environ['SYSTEMROOT'] except KeyError: pass else: paths = [re.sub('%SystemRoot%', systemroot, path) for path in paths] else: paths = py.std.os.environ['PATH'].split(':') tryadd = [] if iswin32: tryadd += os.environ['PATHEXT'].split(os.pathsep) tryadd.append("") for x in paths: for addext in tryadd: p = py.path.local(x).join(name, abs=True) + addext try: if p.check(file=1): if checker: if not checker(p): continue return p except py.error.EACCES: pass return None sysfind = classmethod(sysfind) def _gethomedir(cls): try: x = os.environ['HOME'] except KeyError: try: x = os.environ["HOMEDRIVE"] + os.environ['HOMEPATH'] except KeyError: return None return cls(x) _gethomedir = classmethod(_gethomedir) #""" #special class constructors for local filesystem paths #""" def get_temproot(cls): """ return the system's temporary directory (where tempfiles are usually created in) """ return py.path.local(py.std.tempfile.gettempdir()) get_temproot = classmethod(get_temproot) def mkdtemp(cls, rootdir=None): """ return a Path object pointing to a fresh new temporary directory (which we created ourself). """ import tempfile if rootdir is None: rootdir = cls.get_temproot() return cls(py.error.checked_call(tempfile.mkdtemp, dir=str(rootdir))) mkdtemp = classmethod(mkdtemp) def make_numbered_dir(cls, prefix='session-', rootdir=None, keep=3, lock_timeout = 172800): # two days """ return unique directory with a number greater than the current maximum one. The number is assumed to start directly after prefix. if keep is true directories with a number less than (maxnum-keep) will be removed. """ if rootdir is None: rootdir = cls.get_temproot() def parse_num(path): """ parse the number out of a path (if it matches the prefix) """ bn = path.basename if bn.startswith(prefix): try: return int(bn[len(prefix):]) except ValueError: pass # compute the maximum number currently in use with the # prefix lastmax = None while True: maxnum = -1 for path in rootdir.listdir(): num = parse_num(path) if num is not None: maxnum = max(maxnum, num) # make the new directory try: udir = rootdir.mkdir(prefix + str(maxnum+1)) except py.error.EEXIST: # race condition: another thread/process created the dir # in the meantime. Try counting again if lastmax == maxnum: raise lastmax = maxnum continue break # put a .lock file in the new directory that will be removed at # process exit if lock_timeout: lockfile = udir.join('.lock') mypid = os.getpid() if hasattr(lockfile, 'mksymlinkto'): lockfile.mksymlinkto(str(mypid)) else: lockfile.write(str(mypid)) def try_remove_lockfile(): # in a fork() situation, only the last process should # remove the .lock, otherwise the other processes run the # risk of seeing their temporary dir disappear. For now # we remove the .lock in the parent only (i.e. we assume # that the children finish before the parent). if os.getpid() != mypid: return try: lockfile.remove() except py.error.Error: pass atexit.register(try_remove_lockfile) # prune old directories if keep: for path in rootdir.listdir(): num = parse_num(path) if num is not None and num <= (maxnum - keep): lf = path.join('.lock') try: t1 = lf.lstat().mtime t2 = lockfile.lstat().mtime if not lock_timeout or abs(t2-t1) < lock_timeout: continue # skip directories still locked except py.error.Error: pass # assume that it means that there is no 'lf' try: path.remove(rec=1) except KeyboardInterrupt: raise except: # this might be py.error.Error, WindowsError ... pass # make link... try: username = os.environ['USER'] #linux, et al except KeyError: try: username = os.environ['USERNAME'] #windows except KeyError: username = 'current' src = str(udir) dest = src[:src.rfind('-')] + '-' + username try: os.unlink(dest) except OSError: pass try: os.symlink(src, dest) except (OSError, AttributeError, NotImplementedError): pass return udir make_numbered_dir = classmethod(make_numbered_dir) def copymode(src, dest): py.std.shutil.copymode(src, dest) def copychunked(src, dest): chunksize = 524288 # half a meg of bytes fsrc = src.open('rb') try: fdest = dest.open('wb') try: while 1: buf = fsrc.read(chunksize) if not buf: break fdest.write(buf) finally: fdest.close() finally: fsrc.close() def isimportable(name): if name and (name[0].isalpha() or name[0] == '_'): name = name.replace("_", '') return not name or name.isalnum()
mpl-2.0
-6,434,963,838,657,129,000
34.255763
88
0.517654
false
carolinux/QGIS
scripts/mkuidefaults.py
23
1400
from PyQt4.QtCore import QCoreApplication, QSettings def chunks(l, n): for i in xrange(0, len(l), n): yield l[i:i+n] QCoreApplication.setOrganizationName( "QGIS" ) QCoreApplication.setOrganizationDomain( "qgis.org" ) QCoreApplication.setApplicationName( "QGIS2" ) s = QSettings() ba = s.value("/UI/geometry").toByteArray() f = open("src/app/ui_defaults.h", "w") f.write( "#ifndef UI_DEFAULTS_H\n#define UI_DEFAULTS_H\n\nstatic const unsigned char defaultUIgeometry[] =\n{\n" ) for chunk in chunks(ba,16): f.write( " %s,\n" % ", ".join( map( lambda x : "0x%02x" % ord(x), chunk ) ) ) f.write( "};\n\nstatic const unsigned char defaultUIstate[] =\n{\n" ) ba = s.value("/UI/state").toByteArray() for chunk in chunks(ba,16): f.write( " %s,\n" % ", ".join( map( lambda x : "0x%02x" % ord(x), chunk ) ) ) ba = s.value("/Composer/geometry").toByteArray() f.write( "};\n\nstatic const unsigned char defaultComposerUIgeometry[] =\n{\n" ) for chunk in chunks(ba,16): f.write( " %s,\n" % ", ".join( map( lambda x : "0x%02x" % ord(x), chunk ) ) ) f.write( "};\n\nstatic const unsigned char defaultComposerUIstate[] =\n{\n" ) ba = s.value("/ComposerUI/state").toByteArray() for chunk in chunks(ba,16): f.write( " %s,\n" % ", ".join( map( lambda x : "0x%02x" % ord(x), chunk ) ) ) f.write( "};\n\n#endif // UI_DEFAULTS_H\n" ) f.close()
gpl-2.0
7,778,649,341,955,544,000
30.111111
114
0.616429
false
pinterest/pinball
tests/pinball/master/master_handler_test.py
6
3216
# Copyright 2015, Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Validation tests for master handler.""" import sys import unittest from pinball.master.master_handler import MasterHandler from pinball.master.thrift_lib.ttypes import ArchiveRequest from pinball.master.thrift_lib.ttypes import GroupRequest from pinball.master.thrift_lib.ttypes import ModifyRequest from pinball.master.thrift_lib.ttypes import Query from pinball.master.thrift_lib.ttypes import QueryAndOwnRequest from pinball.master.thrift_lib.ttypes import QueryRequest from pinball.master.thrift_lib.ttypes import Token from tests.pinball.persistence.ephemeral_store import EphemeralStore __author__ = 'Pawel Garbacki' __copyright__ = 'Copyright 2015, Pinterest, Inc.' __credits__ = [__author__] __license__ = 'Apache' __version__ = '2.0' class MasterHandlerTestCase(unittest.TestCase): def _insert_token(self, handler): request = ModifyRequest() token = Token(name='/some_other_dir/some_token', data='some data') request.updates = [token] response = handler.modify(request) self.assertEqual(1, len(response.updates)) return response.updates[0] def test_archive(self): handler = MasterHandler(EphemeralStore()) token = self._insert_token(handler) request = ArchiveRequest() request.tokens = [token] handler.archive(request) # The logic handling the request is tested thoroughly in # transaction tests. Here we only make sure that the plumbing is in # place. def test_group(self): request = GroupRequest() request.namePrefix = '/' handler = MasterHandler(EphemeralStore()) response = handler.group(request) self.assertEqual(1, len(response.counts)) self.assertEqual(1, response.counts.values()[0]) def test_modify(self): handler = MasterHandler(EphemeralStore()) self._insert_token(handler) def test_query(self): query = Query() query.namePrefix = '' query.maxTokens = 10 request = QueryRequest() request.queries = [query] handler = MasterHandler(EphemeralStore()) response = handler.query(request) self.assertEqual(1, len(response.tokens)) def test_query_and_own(self): query = Query() query.namePrefix = '' query.maxTokens = 10 request = QueryAndOwnRequest() request.owner = 'some_owner' request.expirationTime = sys.maxint request.query = query handler = MasterHandler(EphemeralStore()) response = handler.query_and_own(request) self.assertEqual(0, len(response.tokens))
apache-2.0
6,024,022,944,879,980,000
35.545455
76
0.689988
false
isandlaTech/cohorte-runtime
python/src/lib/python/unidecode/x057.py
252
4631
data = ( 'Guo ', # 0x00 'Yin ', # 0x01 'Hun ', # 0x02 'Pu ', # 0x03 'Yu ', # 0x04 'Han ', # 0x05 'Yuan ', # 0x06 'Lun ', # 0x07 'Quan ', # 0x08 'Yu ', # 0x09 'Qing ', # 0x0a 'Guo ', # 0x0b 'Chuan ', # 0x0c 'Wei ', # 0x0d 'Yuan ', # 0x0e 'Quan ', # 0x0f 'Ku ', # 0x10 'Fu ', # 0x11 'Yuan ', # 0x12 'Yuan ', # 0x13 'E ', # 0x14 'Tu ', # 0x15 'Tu ', # 0x16 'Tu ', # 0x17 'Tuan ', # 0x18 'Lue ', # 0x19 'Hui ', # 0x1a 'Yi ', # 0x1b 'Yuan ', # 0x1c 'Luan ', # 0x1d 'Luan ', # 0x1e 'Tu ', # 0x1f 'Ya ', # 0x20 'Tu ', # 0x21 'Ting ', # 0x22 'Sheng ', # 0x23 'Pu ', # 0x24 'Lu ', # 0x25 'Iri ', # 0x26 'Ya ', # 0x27 'Zai ', # 0x28 'Wei ', # 0x29 'Ge ', # 0x2a 'Yu ', # 0x2b 'Wu ', # 0x2c 'Gui ', # 0x2d 'Pi ', # 0x2e 'Yi ', # 0x2f 'Di ', # 0x30 'Qian ', # 0x31 'Qian ', # 0x32 'Zhen ', # 0x33 'Zhuo ', # 0x34 'Dang ', # 0x35 'Qia ', # 0x36 'Akutsu ', # 0x37 'Yama ', # 0x38 'Kuang ', # 0x39 'Chang ', # 0x3a 'Qi ', # 0x3b 'Nie ', # 0x3c 'Mo ', # 0x3d 'Ji ', # 0x3e 'Jia ', # 0x3f 'Zhi ', # 0x40 'Zhi ', # 0x41 'Ban ', # 0x42 'Xun ', # 0x43 'Tou ', # 0x44 'Qin ', # 0x45 'Fen ', # 0x46 'Jun ', # 0x47 'Keng ', # 0x48 'Tun ', # 0x49 'Fang ', # 0x4a 'Fen ', # 0x4b 'Ben ', # 0x4c 'Tan ', # 0x4d 'Kan ', # 0x4e 'Pi ', # 0x4f 'Zuo ', # 0x50 'Keng ', # 0x51 'Bi ', # 0x52 'Xing ', # 0x53 'Di ', # 0x54 'Jing ', # 0x55 'Ji ', # 0x56 'Kuai ', # 0x57 'Di ', # 0x58 'Jing ', # 0x59 'Jian ', # 0x5a 'Tan ', # 0x5b 'Li ', # 0x5c 'Ba ', # 0x5d 'Wu ', # 0x5e 'Fen ', # 0x5f 'Zhui ', # 0x60 'Po ', # 0x61 'Pan ', # 0x62 'Tang ', # 0x63 'Kun ', # 0x64 'Qu ', # 0x65 'Tan ', # 0x66 'Zhi ', # 0x67 'Tuo ', # 0x68 'Gan ', # 0x69 'Ping ', # 0x6a 'Dian ', # 0x6b 'Gua ', # 0x6c 'Ni ', # 0x6d 'Tai ', # 0x6e 'Pi ', # 0x6f 'Jiong ', # 0x70 'Yang ', # 0x71 'Fo ', # 0x72 'Ao ', # 0x73 'Liu ', # 0x74 'Qiu ', # 0x75 'Mu ', # 0x76 'Ke ', # 0x77 'Gou ', # 0x78 'Xue ', # 0x79 'Ba ', # 0x7a 'Chi ', # 0x7b 'Che ', # 0x7c 'Ling ', # 0x7d 'Zhu ', # 0x7e 'Fu ', # 0x7f 'Hu ', # 0x80 'Zhi ', # 0x81 'Chui ', # 0x82 'La ', # 0x83 'Long ', # 0x84 'Long ', # 0x85 'Lu ', # 0x86 'Ao ', # 0x87 'Tay ', # 0x88 'Pao ', # 0x89 '[?] ', # 0x8a 'Xing ', # 0x8b 'Dong ', # 0x8c 'Ji ', # 0x8d 'Ke ', # 0x8e 'Lu ', # 0x8f 'Ci ', # 0x90 'Chi ', # 0x91 'Lei ', # 0x92 'Gai ', # 0x93 'Yin ', # 0x94 'Hou ', # 0x95 'Dui ', # 0x96 'Zhao ', # 0x97 'Fu ', # 0x98 'Guang ', # 0x99 'Yao ', # 0x9a 'Duo ', # 0x9b 'Duo ', # 0x9c 'Gui ', # 0x9d 'Cha ', # 0x9e 'Yang ', # 0x9f 'Yin ', # 0xa0 'Fa ', # 0xa1 'Gou ', # 0xa2 'Yuan ', # 0xa3 'Die ', # 0xa4 'Xie ', # 0xa5 'Ken ', # 0xa6 'Jiong ', # 0xa7 'Shou ', # 0xa8 'E ', # 0xa9 'Ha ', # 0xaa 'Dian ', # 0xab 'Hong ', # 0xac 'Wu ', # 0xad 'Kua ', # 0xae '[?] ', # 0xaf 'Tao ', # 0xb0 'Dang ', # 0xb1 'Kai ', # 0xb2 'Gake ', # 0xb3 'Nao ', # 0xb4 'An ', # 0xb5 'Xing ', # 0xb6 'Xian ', # 0xb7 'Huan ', # 0xb8 'Bang ', # 0xb9 'Pei ', # 0xba 'Ba ', # 0xbb 'Yi ', # 0xbc 'Yin ', # 0xbd 'Han ', # 0xbe 'Xu ', # 0xbf 'Chui ', # 0xc0 'Cen ', # 0xc1 'Geng ', # 0xc2 'Ai ', # 0xc3 'Peng ', # 0xc4 'Fang ', # 0xc5 'Que ', # 0xc6 'Yong ', # 0xc7 'Xun ', # 0xc8 'Jia ', # 0xc9 'Di ', # 0xca 'Mai ', # 0xcb 'Lang ', # 0xcc 'Xuan ', # 0xcd 'Cheng ', # 0xce 'Yan ', # 0xcf 'Jin ', # 0xd0 'Zhe ', # 0xd1 'Lei ', # 0xd2 'Lie ', # 0xd3 'Bu ', # 0xd4 'Cheng ', # 0xd5 'Gomi ', # 0xd6 'Bu ', # 0xd7 'Shi ', # 0xd8 'Xun ', # 0xd9 'Guo ', # 0xda 'Jiong ', # 0xdb 'Ye ', # 0xdc 'Nian ', # 0xdd 'Di ', # 0xde 'Yu ', # 0xdf 'Bu ', # 0xe0 'Ya ', # 0xe1 'Juan ', # 0xe2 'Sui ', # 0xe3 'Pi ', # 0xe4 'Cheng ', # 0xe5 'Wan ', # 0xe6 'Ju ', # 0xe7 'Lun ', # 0xe8 'Zheng ', # 0xe9 'Kong ', # 0xea 'Chong ', # 0xeb 'Dong ', # 0xec 'Dai ', # 0xed 'Tan ', # 0xee 'An ', # 0xef 'Cai ', # 0xf0 'Shu ', # 0xf1 'Beng ', # 0xf2 'Kan ', # 0xf3 'Zhi ', # 0xf4 'Duo ', # 0xf5 'Yi ', # 0xf6 'Zhi ', # 0xf7 'Yi ', # 0xf8 'Pei ', # 0xf9 'Ji ', # 0xfa 'Zhun ', # 0xfb 'Qi ', # 0xfc 'Sao ', # 0xfd 'Ju ', # 0xfe 'Ni ', # 0xff )
apache-2.0
6,737,367,888,080,055,000
16.949612
20
0.389117
false
akashsinghal/Speech-Memorization-App
Python_Backend/env/lib/python3.6/site-packages/pip/utils/packaging.py
343
2080
from __future__ import absolute_import from email.parser import FeedParser import logging import sys from pip._vendor.packaging import specifiers from pip._vendor.packaging import version from pip._vendor import pkg_resources from pip import exceptions logger = logging.getLogger(__name__) def check_requires_python(requires_python): """ Check if the python version in use match the `requires_python` specifier. Returns `True` if the version of python in use matches the requirement. Returns `False` if the version of python in use does not matches the requirement. Raises an InvalidSpecifier if `requires_python` have an invalid format. """ if requires_python is None: # The package provides no information return True requires_python_specifier = specifiers.SpecifierSet(requires_python) # We only use major.minor.micro python_version = version.parse('.'.join(map(str, sys.version_info[:3]))) return python_version in requires_python_specifier def get_metadata(dist): if (isinstance(dist, pkg_resources.DistInfoDistribution) and dist.has_metadata('METADATA')): return dist.get_metadata('METADATA') elif dist.has_metadata('PKG-INFO'): return dist.get_metadata('PKG-INFO') def check_dist_requires_python(dist): metadata = get_metadata(dist) feed_parser = FeedParser() feed_parser.feed(metadata) pkg_info_dict = feed_parser.close() requires_python = pkg_info_dict.get('Requires-Python') try: if not check_requires_python(requires_python): raise exceptions.UnsupportedPythonVersion( "%s requires Python '%s' but the running Python is %s" % ( dist.project_name, requires_python, '.'.join(map(str, sys.version_info[:3])),) ) except specifiers.InvalidSpecifier as e: logger.warning( "Package %s has an invalid Requires-Python entry %s - %s" % ( dist.project_name, requires_python, e)) return
apache-2.0
219,264,717,010,636,830
32.015873
77
0.666827
false
nickanderson/ansible
lib/ansible/inventory/ini.py
25
7628
# (c) 2012-2014, Michael DeHaan <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ############################################# import ansible.constants as C from ansible.inventory.host import Host from ansible.inventory.group import Group from ansible.inventory.expand_hosts import detect_range from ansible.inventory.expand_hosts import expand_hostname_range from ansible import errors from ansible import utils import shlex import re import ast class InventoryParser(object): """ Host inventory for ansible. """ def __init__(self, filename=C.DEFAULT_HOST_LIST): with open(filename) as fh: self.lines = fh.readlines() self.groups = {} self.hosts = {} self._parse() def _parse(self): self._parse_base_groups() self._parse_group_children() self._add_allgroup_children() self._parse_group_variables() return self.groups @staticmethod def _parse_value(v): if "#" not in v: try: return ast.literal_eval(v) # Using explicit exceptions. # Likely a string that literal_eval does not like. We wil then just set it. except ValueError: # For some reason this was thought to be malformed. pass except SyntaxError: # Is this a hash with an equals at the end? pass return v # [webservers] # alpha # beta:2345 # gamma sudo=True user=root # delta asdf=jkl favcolor=red def _add_allgroup_children(self): for group in self.groups.values(): if group.depth == 0 and group.name != 'all': self.groups['all'].add_child_group(group) def _parse_base_groups(self): # FIXME: refactor ungrouped = Group(name='ungrouped') all = Group(name='all') all.add_child_group(ungrouped) self.groups = dict(all=all, ungrouped=ungrouped) active_group_name = 'ungrouped' for line in self.lines: line = utils.before_comment(line).strip() if line.startswith("[") and line.endswith("]"): active_group_name = line.replace("[","").replace("]","") if ":vars" in line or ":children" in line: active_group_name = active_group_name.rsplit(":", 1)[0] if active_group_name not in self.groups: new_group = self.groups[active_group_name] = Group(name=active_group_name) active_group_name = None elif active_group_name not in self.groups: new_group = self.groups[active_group_name] = Group(name=active_group_name) elif line.startswith(";") or line == '': pass elif active_group_name: tokens = shlex.split(line) if len(tokens) == 0: continue hostname = tokens[0] port = C.DEFAULT_REMOTE_PORT # Three cases to check: # 0. A hostname that contains a range pesudo-code and a port # 1. A hostname that contains just a port if hostname.count(":") > 1: # Possible an IPv6 address, or maybe a host line with multiple ranges # IPv6 with Port XXX:XXX::XXX.port # FQDN foo.example.com if hostname.count(".") == 1: (hostname, port) = hostname.rsplit(".", 1) elif ("[" in hostname and "]" in hostname and ":" in hostname and (hostname.rindex("]") < hostname.rindex(":")) or ("]" not in hostname and ":" in hostname)): (hostname, port) = hostname.rsplit(":", 1) hostnames = [] if detect_range(hostname): hostnames = expand_hostname_range(hostname) else: hostnames = [hostname] for hn in hostnames: host = None if hn in self.hosts: host = self.hosts[hn] else: host = Host(name=hn, port=port) self.hosts[hn] = host if len(tokens) > 1: for t in tokens[1:]: if t.startswith('#'): break try: (k,v) = t.split("=", 1) except ValueError, e: raise errors.AnsibleError("Invalid ini entry: %s - %s" % (t, str(e))) host.set_variable(k, self._parse_value(v)) self.groups[active_group_name].add_host(host) # [southeast:children] # atlanta # raleigh def _parse_group_children(self): group = None for line in self.lines: line = line.strip() if line is None or line == '': continue if line.startswith("[") and ":children]" in line: line = line.replace("[","").replace(":children]","") group = self.groups.get(line, None) if group is None: group = self.groups[line] = Group(name=line) elif line.startswith("#") or line.startswith(";"): pass elif line.startswith("["): group = None elif group: kid_group = self.groups.get(line, None) if kid_group is None: raise errors.AnsibleError("child group is not defined: (%s)" % line) else: group.add_child_group(kid_group) # [webservers:vars] # http_port=1234 # maxRequestsPerChild=200 def _parse_group_variables(self): group = None for line in self.lines: line = line.strip() if line.startswith("[") and ":vars]" in line: line = line.replace("[","").replace(":vars]","") group = self.groups.get(line, None) if group is None: raise errors.AnsibleError("can't add vars to undefined group: %s" % line) elif line.startswith("#") or line.startswith(";"): pass elif line.startswith("["): group = None elif line == '': pass elif group: if "=" not in line: raise errors.AnsibleError("variables assigned to group must be in key=value form") else: (k, v) = [e.strip() for e in line.split("=", 1)] group.set_variable(k, self._parse_value(v)) def get_host_variables(self, host): return {}
gpl-3.0
2,175,336,850,531,327,700
36.392157
102
0.510881
false
matteoalessiocarrara/HTML-Facebook-API
src/lib/fbwrapper/src/lib/bot_virtualbrowser/src/lib/human/src/requests2.py
6
2370
#!/usr/bin/python2 # -*- coding: utf-8 -*- # # Copyright 2015 - 2016 Matteo Alessio Carrara <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. """ Estensione della libreria requests """ import logging import os import requests import version # Configurazione del sistema di logging logger = logging.getLogger(version.lib_name) logger.addHandler(logging.NullHandler()) class Session(requests.Session): """Versione modificata di requests.Session""" def __init__(self): super(Session, self).__init__() self.__set_owner_pid() def __set_owner_pid(self): """Imposta il pid del processo creatore, ovvero quello attuale""" self.__owner_pid = os.getpid() logger.debug("Owner pid: %s", self.__owner_pid) def get_owner_pid(self): """Restituisce il pid del processo creatore""" return self.__owner_pid def get2(self, url, **kwargs): """ Versione modificata di get * Controlla che questo oggetto non sia condiviso fra più processi * Crea un eccezione HTTPError quando necessario * Stampa informazioni di debug """ if os.getpid() != self.owner_pid: # STACCAAAA STACCAAAAAAAAAAH w = "Sembra che l'oggetto requests.Session sia utilizzato da più processi. Questo è sconsigliato e potrebbe creare dei problemi" logger.warning(w) if (url[:8] == "https://") and (os.getpid() != self.owner_pid): logger.info("Casini in arrivo... io ti avevo avvertito, auguri :)") ret = self.get(url, **kwargs) try: ret.raise_for_status() except requests.HTTPError as e: logger.error("url %s: %s ", url, e.message) logger.debug("<!-- ret.text -->\n%s", ret.text) raise return ret owner_pid = property(get_owner_pid)
gpl-2.0
-9,117,452,735,417,555,000
28.962025
131
0.705957
false
UTSA-ICS/keystone-kerberos
keystone/credential/backends/sql.py
15
3846
# Copyright 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from keystone.common import sql from keystone import credential from keystone import exception class CredentialModel(sql.ModelBase, sql.DictBase): __tablename__ = 'credential' attributes = ['id', 'user_id', 'project_id', 'blob', 'type'] id = sql.Column(sql.String(64), primary_key=True) user_id = sql.Column(sql.String(64), nullable=False) project_id = sql.Column(sql.String(64)) blob = sql.Column(sql.JsonBlob(), nullable=False) type = sql.Column(sql.String(255), nullable=False) extra = sql.Column(sql.JsonBlob()) class Credential(credential.Driver): # credential crud @sql.handle_conflicts(conflict_type='credential') def create_credential(self, credential_id, credential): session = sql.get_session() with session.begin(): ref = CredentialModel.from_dict(credential) session.add(ref) return ref.to_dict() @sql.truncated def list_credentials(self, hints): session = sql.get_session() credentials = session.query(CredentialModel) credentials = sql.filter_limit_query(CredentialModel, credentials, hints) return [s.to_dict() for s in credentials] def list_credentials_for_user(self, user_id): session = sql.get_session() query = session.query(CredentialModel) refs = query.filter_by(user_id=user_id).all() return [ref.to_dict() for ref in refs] def _get_credential(self, session, credential_id): ref = session.query(CredentialModel).get(credential_id) if ref is None: raise exception.CredentialNotFound(credential_id=credential_id) return ref def get_credential(self, credential_id): session = sql.get_session() return self._get_credential(session, credential_id).to_dict() @sql.handle_conflicts(conflict_type='credential') def update_credential(self, credential_id, credential): session = sql.get_session() with session.begin(): ref = self._get_credential(session, credential_id) old_dict = ref.to_dict() for k in credential: old_dict[k] = credential[k] new_credential = CredentialModel.from_dict(old_dict) for attr in CredentialModel.attributes: if attr != 'id': setattr(ref, attr, getattr(new_credential, attr)) ref.extra = new_credential.extra return ref.to_dict() def delete_credential(self, credential_id): session = sql.get_session() with session.begin(): ref = self._get_credential(session, credential_id) session.delete(ref) def delete_credentials_for_project(self, project_id): session = sql.get_session() with session.begin(): query = session.query(CredentialModel) query = query.filter_by(project_id=project_id) query.delete() def delete_credentials_for_user(self, user_id): session = sql.get_session() with session.begin(): query = session.query(CredentialModel) query = query.filter_by(user_id=user_id) query.delete()
apache-2.0
3,235,210,525,702,219,300
35.980769
75
0.639626
false
topic2k/EventGhost
_build/builder/__init__.py
1
7152
# -*- coding: utf-8 -*- # # This file is part of EventGhost. # Copyright © 2005-2019 EventGhost Project <http://www.eventghost.org/> # # EventGhost is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation, either version 2 of the License, or (at your option) # any later version. # # EventGhost is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along # with EventGhost. If not, see <http://www.gnu.org/licenses/>. import argparse import logging import os import sys import tempfile import threading from os.path import abspath, dirname, exists, join # Local imports import builder from builder import VirtualEnv from builder.Logging import LogToFile from builder.Utils import ( GetGitHubConfig, GetVersion, Is64bitInterpreter, IsCIBuild ) logger = logging.getLogger() class Task(object): value = None visible = True enabled = True activated = True def __init__(self, buildSetup): self.buildSetup = buildSetup def Setup(self): pass def DoTask(self): raise NotImplementedError @classmethod def GetId(cls): return cls.__module__ + "." + cls.__name__ def Print(self, *args): logger.log(22, " ".join(args)) class Builder(object): def __init__(self): if not VirtualEnv.Running() and VirtualEnv.Exists(): VirtualEnv.Activate() global buildSetup Task.buildSetup = self buildSetup = self self.pyVersionStr = "%d%d" % sys.version_info[:2] self.buildDir = abspath(join(dirname(__file__), "..")) self.sourceDir = abspath(join(self.buildDir, "..")) self.libraryName = "lib%s" % self.pyVersionStr self.libraryDir = join(self.sourceDir, self.libraryName) self.dataDir = join(self.buildDir, "data") self.docsDir = join(self.dataDir, "docs") self.pyVersionDir = join(self.dataDir, "Python%s" % self.pyVersionStr) self.outputDir = join(self.buildDir, "output") self.websiteDir = join(self.outputDir, "website") if Is64bitInterpreter(): print( "ERROR: Sorry, EventGhost can't be built with the 64-bit " "version of Python!" ) sys.exit(1) elif not exists(self.pyVersionDir): print( "ERROR: Sorry, EventGhost can't be built with Python %d.%d!" % sys.version_info[:2] ) sys.exit(1) sys.path.append(self.sourceDir) sys.path.append(join(self.libraryDir, "site-packages")) self.args = self.ParseArgs() self.showGui = not ( self.args.build or self.args.check or self.args.package or self.args.release or self.args.sync ) if os.environ.get( "APPVEYOR_REPO_COMMIT_MESSAGE", "" ).upper().startswith("VERBOSE:"): self.args.verbose = True os.chdir(self.buildDir) if not exists(self.outputDir): os.mkdir(self.outputDir) LogToFile(join(self.outputDir, "Build.log"), self.args.verbose) from CheckDependencies import CheckDependencies if not CheckDependencies(self): sys.exit(1) try: self.gitConfig = GetGitHubConfig() except Exception as e: msg = ( "WARNING: To change version or release to GitHub, you must:\n" " $ git config --global github.user <your github username>\n" " $ git config --global github.token <your github token>\n" "To create a token, go to: https://github.com/settings/tokens\n" ) if type(e) is ValueError: msg = "WARNING: Specified `github.token` is invalid!\n" + msg if not IsCIBuild(): token = "" print msg else: token = os.environ["GITHUB_TOKEN"] self.gitConfig = { "all_repos": { "EventGhost/EventGhost": { "all_branches": ["master"], "def_branch": "master", "name": "EventGhost", }, }, "branch": "master", "repo": "EventGhost", "repo_full": "EventGhost/EventGhost", "token": token, "user": "EventGhost", } self.appVersion = None self.appVersionInfo = None self.tmpDir = tempfile.mkdtemp() self.appName = self.name def ParseArgs(self): parser = argparse.ArgumentParser() parser.add_argument( "-b", "--build", action="store_true", help="build imports, lib%s, and interpreters" % self.pyVersionStr, ) parser.add_argument( "-c", "--check", action="store_true", help="check source code for issues", ) parser.add_argument( "-m", "--make-env", action="store_true", help="auto-install dependencies into a virtualenv", ) parser.add_argument( "-p", "--package", action="store_true", help="build changelog, docs, and setup.exe", ) parser.add_argument( "-r", "--release", action="store_true", help="release to github and web if credentials available", ) parser.add_argument( "-s", "--sync", action="store_true", help="build and synchronize website", ) parser.add_argument( "-d", "--docs", action="store_true", help="build and synchronize usr and dev docs", ) parser.add_argument( "-u", "--url", dest="websiteUrl", default='', type=str, help="sftp url for doc synchronizing", ) parser.add_argument( "-vv", "--verbose", action="store_true", help="give a more verbose output", ) parser.add_argument( "-v", "--version", action="store", help="package as the specified version", ) return parser.parse_args() def Start(self): from Tasks import TASKS self.tasks = [task(self) for task in TASKS] from Config import Config self.config = Config(self, join(self.outputDir, "Build.ini")) for task in self.tasks: task.Setup() (self.appVersion, self.appVersionInfo) = GetVersion(self) if self.showGui: import Gui Gui.Main(self) else: builder.Tasks.Main(self)
gpl-2.0
-2,435,615,217,317,113,000
30.641593
80
0.549154
false
wolverineav/neutron
neutron/tests/unit/agent/common/test_ovs_lib.py
3
39120
# Copyright 2012, VMware, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import mock from oslo_serialization import jsonutils from oslo_utils import uuidutils import testtools from neutron.agent.common import ovs_lib from neutron.agent.common import utils from neutron.common import exceptions from neutron.plugins.common import constants from neutron.plugins.ml2.drivers.openvswitch.agent.common \ import constants as p_const from neutron.tests import base from neutron.tests import tools OVS_LINUX_KERN_VERS_WITHOUT_VXLAN = "3.12.0" # some test data for get_vif_port_to_ofport_map that exhibited bug 1444269 OVSLIST_WITH_UNSET_PORT = ( '{"data":[["patch-tun",["map",[]],1],["tap2ab72a72-44",["map",[["attached-' 'mac","fa:16:3e:b0:f8:38"],["iface-id","2ab72a72-4407-4ef3-806a-b2172f3e4d' 'c7"],["iface-status","active"]]],2],["tap6b108774-15",["map",[["attached-' 'mac","fa:16:3e:02:f5:91"],["iface-id","6b108774-1559-45e9-a7c3-b714f11722' 'cf"],["iface-status","active"]]],["set",[]]]],"headings":["name","externa' 'l_ids","ofport"]}') class OFCTLParamListMatcher(object): def _parse(self, params): actions_pos = params.find('actions') return set(params[:actions_pos].split(',')), params[actions_pos:] def __init__(self, params): self.expected = self._parse(params) def __eq__(self, other): return self.expected == self._parse(other) def __str__(self): return 'ovs-ofctl parameters: %s, "%s"' % self.expected __repr__ = __str__ class OVS_Lib_Test(base.BaseTestCase): """A test suite to exercise the OVS libraries shared by Neutron agents. Note: these tests do not actually execute ovs-* utilities, and thus can run on any system. That does, however, limit their scope. """ def setUp(self): super(OVS_Lib_Test, self).setUp() self.BR_NAME = "br-int" self.br = ovs_lib.OVSBridge(self.BR_NAME) self.execute = mock.patch.object( utils, "execute", spec=utils.execute).start() @property def TO(self): return "--timeout=%s" % self.br.vsctl_timeout def _vsctl_args(self, *args): cmd = ['ovs-vsctl', self.TO, '--oneline', '--format=json', '--'] cmd += args return cmd def _vsctl_mock(self, *args): cmd = self._vsctl_args(*args) return mock.call(cmd, run_as_root=True, log_fail_as_error=False) def _verify_vsctl_mock(self, *args): cmd = self._vsctl_args(*args) self.execute.assert_called_once_with(cmd, run_as_root=True, log_fail_as_error=False) def test_vifport(self): """Create and stringify vif port, confirm no exceptions.""" pname = "vif1.0" ofport = 5 vif_id = uuidutils.generate_uuid() mac = "ca:fe:de:ad:be:ef" # test __init__ port = ovs_lib.VifPort(pname, ofport, vif_id, mac, self.br) self.assertEqual(port.port_name, pname) self.assertEqual(port.ofport, ofport) self.assertEqual(port.vif_id, vif_id) self.assertEqual(port.vif_mac, mac) self.assertEqual(port.switch.br_name, self.BR_NAME) # test __str__ str(port) def _build_timeout_opt(self, exp_timeout): return "--timeout=%d" % exp_timeout if exp_timeout else self.TO def test_add_flow(self): ofport = "99" vid = 4000 lsw_id = 18 cidr = '192.168.1.0/24' flow_dict_1 = collections.OrderedDict([ ('cookie', 1234), ('priority', 2), ('dl_src', 'ca:fe:de:ad:be:ef'), ('actions', 'strip_vlan,output:0')]) flow_dict_2 = collections.OrderedDict([ ('cookie', 1254), ('priority', 1), ('actions', 'normal')]) flow_dict_3 = collections.OrderedDict([ ('cookie', 1257), ('priority', 2), ('actions', 'drop')]) flow_dict_4 = collections.OrderedDict([ ('cookie', 1274), ('priority', 2), ('in_port', ofport), ('actions', 'drop')]) flow_dict_5 = collections.OrderedDict([ ('cookie', 1284), ('priority', 4), ('in_port', ofport), ('dl_vlan', vid), ('actions', "strip_vlan,set_tunnel:%s,normal" % (lsw_id))]) flow_dict_6 = collections.OrderedDict([ ('cookie', 1754), ('priority', 3), ('tun_id', lsw_id), ('actions', "mod_vlan_vid:%s,output:%s" % (vid, ofport))]) flow_dict_7 = collections.OrderedDict([ ('cookie', 1256), ('priority', 4), ('nw_src', cidr), ('proto', 'arp'), ('actions', 'drop')]) self.br.add_flow(**flow_dict_1) self.br.add_flow(**flow_dict_2) self.br.add_flow(**flow_dict_3) self.br.add_flow(**flow_dict_4) self.br.add_flow(**flow_dict_5) self.br.add_flow(**flow_dict_6) self.br.add_flow(**flow_dict_7) expected_calls = [ self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1234," "priority=2,dl_src=ca:fe:de:ad:be:ef," "actions=strip_vlan,output:0")), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1254," "priority=1,actions=normal")), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1257," "priority=2,actions=drop")), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1274," "priority=2,in_port=%s,actions=drop" % ofport )), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1284," "priority=4,dl_vlan=%s,in_port=%s," "actions=strip_vlan,set_tunnel:%s,normal" % (vid, ofport, lsw_id))), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1754," "priority=3," "tun_id=%s,actions=mod_vlan_vid:%s,output:%s" % (lsw_id, vid, ofport))), self._ofctl_mock("add-flows", self.BR_NAME, '-', process_input=OFCTLParamListMatcher( "hard_timeout=0,idle_timeout=0,cookie=1256," "priority=4,nw_src=%s,arp,actions=drop" % cidr)), ] self.execute.assert_has_calls(expected_calls) def _ofctl_args(self, cmd, *args): cmd = ['ovs-ofctl', cmd] cmd += args return cmd def _ofctl_mock(self, cmd, *args, **kwargs): cmd = self._ofctl_args(cmd, *args) return mock.call(cmd, run_as_root=True, **kwargs) def _verify_ofctl_mock(self, cmd, *args, **kwargs): cmd = self._ofctl_args(cmd, *args) return self.execute.assert_called_once_with(cmd, run_as_root=True, **kwargs) def test_add_flow_timeout_set(self): flow_dict = collections.OrderedDict([ ('cookie', 1234), ('priority', 1), ('hard_timeout', 1000), ('idle_timeout', 2000), ('actions', 'normal')]) self.br.add_flow(**flow_dict) self._verify_ofctl_mock( "add-flows", self.BR_NAME, '-', process_input="hard_timeout=1000,idle_timeout=2000," "priority=1,cookie=1234,actions=normal") def test_add_flow_default_priority(self): flow_dict = collections.OrderedDict([('actions', 'normal'), ('cookie', 1234)]) self.br.add_flow(**flow_dict) self._verify_ofctl_mock( "add-flows", self.BR_NAME, '-', process_input="hard_timeout=0,idle_timeout=0,priority=1," "cookie=1234,actions=normal") def _test_get_port_ofport(self, ofport, expected_result): pname = "tap99" self.br.vsctl_timeout = 0 # Don't waste precious time retrying self.execute.return_value = self._encode_ovs_json( ['ofport'], [[ofport]]) self.assertEqual(self.br.get_port_ofport(pname), expected_result) self._verify_vsctl_mock("--columns=ofport", "list", "Interface", pname) def test_get_port_ofport_succeeds_for_valid_ofport(self): self._test_get_port_ofport(6, 6) def test_get_port_ofport_returns_invalid_ofport_for_non_int(self): self._test_get_port_ofport([], ovs_lib.INVALID_OFPORT) def test_get_port_ofport_returns_invalid_for_invalid(self): self._test_get_port_ofport(ovs_lib.INVALID_OFPORT, ovs_lib.INVALID_OFPORT) def test_default_datapath(self): # verify kernel datapath is default expected = p_const.OVS_DATAPATH_SYSTEM self.assertEqual(expected, self.br.datapath_type) def test_non_default_datapath(self): expected = p_const.OVS_DATAPATH_NETDEV self.br = ovs_lib.OVSBridge(self.BR_NAME, datapath_type=expected) self.assertEqual(expected, self.br.datapath_type) def test_count_flows(self): self.execute.return_value = 'ignore\nflow-1\n' # counts the number of flows as total lines of output - 2 self.assertEqual(self.br.count_flows(), 1) self._verify_ofctl_mock("dump-flows", self.BR_NAME, process_input=None) def test_delete_flow(self): ofport = "5" lsw_id = 40 vid = 39 self.br.delete_flows(in_port=ofport) self.br.delete_flows(tun_id=lsw_id) self.br.delete_flows(dl_vlan=vid) expected_calls = [ self._ofctl_mock("del-flows", self.BR_NAME, '-', process_input="in_port=" + ofport), self._ofctl_mock("del-flows", self.BR_NAME, '-', process_input="tun_id=%s" % lsw_id), self._ofctl_mock("del-flows", self.BR_NAME, '-', process_input="dl_vlan=%s" % vid), ] self.execute.assert_has_calls(expected_calls) def test_delete_flow_with_priority_set(self): params = {'in_port': '1', 'priority': '1'} self.assertRaises(exceptions.InvalidInput, self.br.delete_flows, **params) def test_dump_flows(self): table = 23 nxst_flow = "NXST_FLOW reply (xid=0x4):" flows = "\n".join([" cookie=0x0, duration=18042.514s, table=0, " "n_packets=6, n_bytes=468, " "priority=2,in_port=1 actions=drop", " cookie=0x0, duration=18027.562s, table=0, " "n_packets=0, n_bytes=0, " "priority=3,in_port=1,dl_vlan=100 " "actions=mod_vlan_vid:1,NORMAL", " cookie=0x0, duration=18044.351s, table=0, " "n_packets=9, n_bytes=594, priority=1 " "actions=NORMAL", " cookie=0x0, " "duration=18044.211s, table=23, n_packets=0, " "n_bytes=0, priority=0 actions=drop"]) flow_args = '\n'.join([nxst_flow, flows]) run_ofctl = mock.patch.object(self.br, 'run_ofctl').start() run_ofctl.side_effect = [flow_args] retflows = self.br.dump_flows_for_table(table) self.assertEqual(flows, retflows) def test_dump_flows_ovs_dead(self): table = 23 run_ofctl = mock.patch.object(self.br, 'run_ofctl').start() run_ofctl.side_effect = [''] retflows = self.br.dump_flows_for_table(table) self.assertIsNone(retflows) def test_mod_flow_with_priority_set(self): params = {'in_port': '1', 'priority': '1'} self.assertRaises(exceptions.InvalidInput, self.br.mod_flow, **params) def test_mod_flow_no_actions_set(self): params = {'in_port': '1'} self.assertRaises(exceptions.InvalidInput, self.br.mod_flow, **params) def test_run_ofctl_retry_on_socket_error(self): err = RuntimeError('failed to connect to socket') self.execute.side_effect = [err] * 5 with mock.patch('time.sleep') as sleep: self.br.run_ofctl('add-flows', []) self.assertEqual(5, sleep.call_count) self.assertEqual(6, self.execute.call_count) # a regular exception fails right away self.execute.side_effect = RuntimeError('garbage') self.execute.reset_mock() with mock.patch('time.sleep') as sleep: self.br.run_ofctl('add-flows', []) self.assertEqual(0, sleep.call_count) self.assertEqual(1, self.execute.call_count) def test_add_tunnel_port(self): pname = "tap99" local_ip = "1.1.1.1" remote_ip = "9.9.9.9" ofport = 6 command = ["--may-exist", "add-port", self.BR_NAME, pname] command.extend(["--", "set", "Interface", pname]) command.extend(["type=gre", "options:df_default=true", "options:remote_ip=" + remote_ip, "options:local_ip=" + local_ip, "options:in_key=flow", "options:out_key=flow"]) # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock(*command), None), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), self._encode_ovs_json(['ofport'], [[ofport]])), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertEqual( self.br.add_tunnel_port(pname, remote_ip, local_ip), ofport) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_add_vxlan_fragmented_tunnel_port(self): pname = "tap99" local_ip = "1.1.1.1" remote_ip = "9.9.9.9" ofport = 6 vxlan_udp_port = "9999" dont_fragment = False command = ["--may-exist", "add-port", self.BR_NAME, pname] command.extend(["--", "set", "Interface", pname]) command.extend(["type=" + constants.TYPE_VXLAN, "options:dst_port=" + vxlan_udp_port, "options:df_default=false", "options:remote_ip=" + remote_ip, "options:local_ip=" + local_ip, "options:in_key=flow", "options:out_key=flow"]) # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock(*command), None), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), self._encode_ovs_json(['ofport'], [[ofport]])), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertEqual( self.br.add_tunnel_port(pname, remote_ip, local_ip, constants.TYPE_VXLAN, vxlan_udp_port, dont_fragment), ofport) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_add_vxlan_csum_tunnel_port(self): pname = "tap99" local_ip = "1.1.1.1" remote_ip = "9.9.9.9" ofport = 6 vxlan_udp_port = "9999" dont_fragment = True tunnel_csum = True command = ["--may-exist", "add-port", self.BR_NAME, pname] command.extend(["--", "set", "Interface", pname]) command.extend(["type=" + constants.TYPE_VXLAN, "options:dst_port=" + vxlan_udp_port, "options:df_default=true", "options:remote_ip=" + remote_ip, "options:local_ip=" + local_ip, "options:in_key=flow", "options:out_key=flow", "options:csum=true"]) # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock(*command), None), (self._vsctl_mock("--columns=ofport", "list", "Interface", pname), self._encode_ovs_json(['ofport'], [[ofport]])), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertEqual( self.br.add_tunnel_port(pname, remote_ip, local_ip, constants.TYPE_VXLAN, vxlan_udp_port, dont_fragment, tunnel_csum), ofport) tools.verify_mock_calls(self.execute, expected_calls_and_values) def _test_get_vif_ports(self, is_xen=False): pname = "tap99" ofport = 6 vif_id = uuidutils.generate_uuid() mac = "ca:fe:de:ad:be:ef" id_field = 'xs-vif-uuid' if is_xen else 'iface-id' external_ids = {"attached-mac": mac, id_field: vif_id} self.br.get_ports_attributes = mock.Mock(return_value=[{ 'name': pname, 'ofport': ofport, 'external_ids': external_ids}]) self.br.get_xapi_iface_id = mock.Mock(return_value=vif_id) ports = self.br.get_vif_ports() self.assertEqual(1, len(ports)) self.assertEqual(ports[0].port_name, pname) self.assertEqual(ports[0].ofport, ofport) self.assertEqual(ports[0].vif_id, vif_id) self.assertEqual(ports[0].vif_mac, mac) self.assertEqual(ports[0].switch.br_name, self.BR_NAME) self.br.get_ports_attributes.assert_called_once_with( 'Interface', columns=['name', 'external_ids', 'ofport'], if_exists=True) def _encode_ovs_json(self, headings, data): # See man ovs-vsctl(8) for the encoding details. r = {"data": [], "headings": headings} for row in data: ovs_row = [] r["data"].append(ovs_row) for cell in row: if isinstance(cell, (str, int, list)): ovs_row.append(cell) elif isinstance(cell, dict): ovs_row.append(["map", cell.items()]) elif isinstance(cell, set): ovs_row.append(["set", cell]) else: raise TypeError('%r not int, str, list, set or dict' % type(cell)) return jsonutils.dumps(r) def _test_get_vif_port_set(self, is_xen): if is_xen: id_key = 'xs-vif-uuid' else: id_key = 'iface-id' headings = ['name', 'external_ids', 'ofport'] data = [ # A vif port on this bridge: ['tap99', {id_key: 'tap99id', 'attached-mac': 'tap99mac'}, 1], # A vif port on this bridge not yet configured ['tap98', {id_key: 'tap98id', 'attached-mac': 'tap98mac'}, []], # Another vif port on this bridge not yet configured ['tap97', {id_key: 'tap97id', 'attached-mac': 'tap97mac'}, ['set', []]], # Non-vif port on this bridge: ['bogus', {}, 2], ] # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), 'tap99\\ntun22'), (self._vsctl_mock("--if-exists", "--columns=name,external_ids,ofport", "list", "Interface", 'tap99', 'tun22'), self._encode_ovs_json(headings, data)), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) if is_xen: get_xapi_iface_id = mock.patch.object(self.br, 'get_xapi_iface_id').start() get_xapi_iface_id.return_value = 'tap99id' port_set = self.br.get_vif_port_set() self.assertEqual(set(['tap99id']), port_set) tools.verify_mock_calls(self.execute, expected_calls_and_values) if is_xen: get_xapi_iface_id.assert_called_once_with('tap99id') def test_get_vif_port_to_ofport_map(self): self.execute.return_value = OVSLIST_WITH_UNSET_PORT results = self.br.get_vif_port_to_ofport_map() expected = {'2ab72a72-4407-4ef3-806a-b2172f3e4dc7': 2, 'patch-tun': 1} self.assertEqual(expected, results) def test_get_vif_ports_nonxen(self): self._test_get_vif_ports(is_xen=False) def test_get_vif_ports_xen(self): self._test_get_vif_ports(is_xen=True) def test_get_vif_port_set_nonxen(self): self._test_get_vif_port_set(False) def test_get_vif_port_set_xen(self): self._test_get_vif_port_set(True) def test_get_vif_ports_list_ports_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.get_vif_ports) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_vif_port_set_list_ports_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.get_vif_port_set) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_vif_port_set_list_interface_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), 'tap99\n'), (self._vsctl_mock("--if-exists", "--columns=name,external_ids,ofport", "list", "Interface", "tap99"), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.get_vif_port_set) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_port_tag_dict(self): headings = ['name', 'tag'] data = [ ['int-br-eth2', set()], ['patch-tun', set()], ['qr-76d9e6b6-21', 1], ['tapce5318ff-78', 1], ['tape1400310-e6', 1], ] # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), '\\n'.join((iface for iface, tag in data))), (self._vsctl_mock("--columns=name,tag", "list", "Port"), self._encode_ovs_json(headings, data)), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) port_tags = self.br.get_port_tag_dict() self.assertEqual( port_tags, {u'int-br-eth2': [], u'patch-tun': [], u'qr-76d9e6b6-21': 1, u'tapce5318ff-78': 1, u'tape1400310-e6': 1} ) def test_clear_db_attribute(self): pname = "tap77" self.br.clear_db_attribute("Port", pname, "tag") self._verify_vsctl_mock("clear", "Port", pname, "tag") def _test_iface_to_br(self, exp_timeout=None): iface = 'tap0' br = 'br-int' if exp_timeout: self.br.vsctl_timeout = exp_timeout self.execute.return_value = 'br-int' self.assertEqual(self.br.get_bridge_for_iface(iface), br) self._verify_vsctl_mock("iface-to-br", iface) def test_iface_to_br(self): self._test_iface_to_br() def test_iface_to_br_non_default_timeout(self): new_timeout = 5 self._test_iface_to_br(new_timeout) def test_iface_to_br_handles_ovs_vsctl_exception(self): iface = 'tap0' self.execute.side_effect = Exception self.assertIsNone(self.br.get_bridge_for_iface(iface)) self._verify_vsctl_mock("iface-to-br", iface) def test_delete_all_ports(self): with mock.patch.object(self.br, 'get_port_name_list', return_value=['port1']) as get_port: with mock.patch.object(self.br, 'delete_port') as delete_port: self.br.delete_ports(all_ports=True) get_port.assert_called_once_with() delete_port.assert_called_once_with('port1') def test_delete_neutron_ports(self): port1 = ovs_lib.VifPort('tap1234', 1, uuidutils.generate_uuid(), 'ca:fe:de:ad:be:ef', 'br') port2 = ovs_lib.VifPort('tap5678', 2, uuidutils.generate_uuid(), 'ca:ee:de:ad:be:ef', 'br') with mock.patch.object(self.br, 'get_vif_ports', return_value=[port1, port2]) as get_ports: with mock.patch.object(self.br, 'delete_port') as delete_port: self.br.delete_ports(all_ports=False) get_ports.assert_called_once_with() delete_port.assert_has_calls([ mock.call('tap1234'), mock.call('tap5678') ]) def test_delete_neutron_ports_list_error(self): expected_calls_and_values = [ (self._vsctl_mock("list-ports", self.BR_NAME), RuntimeError()), ] tools.setup_mock_calls(self.execute, expected_calls_and_values) self.assertRaises(RuntimeError, self.br.delete_ports, all_ports=False) tools.verify_mock_calls(self.execute, expected_calls_and_values) def test_get_bridges_not_default_timeout(self): bridges = ['br-int', 'br-ex'] self.br.vsctl_timeout = 5 self.execute.return_value = 'br-int\\nbr-ex\n' self.assertEqual(self.br.get_bridges(), bridges) self._verify_vsctl_mock("list-br") def test_get_local_port_mac_succeeds(self): with mock.patch('neutron.agent.linux.ip_lib.IpLinkCommand', return_value=mock.Mock(address='foo')): self.assertEqual('foo', self.br.get_local_port_mac()) def test_get_local_port_mac_raises_exception_for_missing_mac(self): with mock.patch('neutron.agent.linux.ip_lib.IpLinkCommand', return_value=mock.Mock(address=None)): with testtools.ExpectedException(Exception): self.br.get_local_port_mac() def test_get_vifs_by_ids(self): db_list_res = [ {'name': 'qvo1', 'ofport': 1, 'external_ids': {'iface-id': 'pid1', 'attached-mac': '11'}}, {'name': 'qvo2', 'ofport': 2, 'external_ids': {'iface-id': 'pid2', 'attached-mac': '22'}}, {'name': 'qvo4', 'ofport': -1, 'external_ids': {'iface-id': 'pid4', 'attached-mac': '44'}}, ] self.br.get_ports_attributes = mock.Mock(return_value=db_list_res) self.br.ovsdb = mock.Mock() self.br.ovsdb.list_ports.return_value.execute.return_value = [ 'qvo1', 'qvo2', 'qvo4'] by_id = self.br.get_vifs_by_ids(['pid1', 'pid2', 'pid3', 'pid4']) # pid3 isn't on bridge and pid4 doesn't have a valid ofport self.assertIsNone(by_id['pid3']) self.assertIsNone(by_id['pid4']) self.assertEqual('pid1', by_id['pid1'].vif_id) self.assertEqual('qvo1', by_id['pid1'].port_name) self.assertEqual(1, by_id['pid1'].ofport) self.assertEqual('pid2', by_id['pid2'].vif_id) self.assertEqual('qvo2', by_id['pid2'].port_name) self.assertEqual(2, by_id['pid2'].ofport) self.br.get_ports_attributes.assert_has_calls( [mock.call('Interface', columns=['name', 'external_ids', 'ofport'], if_exists=True)]) def _test_get_vif_port_by_id(self, iface_id, data, br_name=None, extra_calls_and_values=None): headings = ['external_ids', 'name', 'ofport'] # Each element is a tuple of (expected mock call, return_value) expected_calls_and_values = [ (self._vsctl_mock("--columns=external_ids,name,ofport", "find", "Interface", 'external_ids:iface-id=%s' % iface_id, 'external_ids:attached-mac!=""'), self._encode_ovs_json(headings, data))] if data: if not br_name: br_name = self.BR_NAME # Only the last information list in 'data' is used, so if more # than one vif is described in data, the rest must be declared # in the argument 'expected_calls_and_values'. if extra_calls_and_values: expected_calls_and_values.extend(extra_calls_and_values) expected_calls_and_values.append( (self._vsctl_mock("iface-to-br", data[-1][headings.index('name')]), br_name)) tools.setup_mock_calls(self.execute, expected_calls_and_values) vif_port = self.br.get_vif_port_by_id(iface_id) tools.verify_mock_calls(self.execute, expected_calls_and_values) return vif_port def _assert_vif_port(self, vif_port, ofport=None, mac=None): if not ofport or ofport == -1 or not mac: self.assertIsNone(vif_port, "Got %s" % vif_port) return self.assertEqual('tap99id', vif_port.vif_id) self.assertEqual(mac, vif_port.vif_mac) self.assertEqual('tap99', vif_port.port_name) self.assertEqual(ofport, vif_port.ofport) def _test_get_vif_port_by_id_with_data(self, ofport=None, mac=None): external_ids = [["iface-id", "tap99id"], ["iface-status", "active"], ["attached-mac", mac]] data = [[["map", external_ids], "tap99", ofport if ofport else ["set", []]]] vif_port = self._test_get_vif_port_by_id('tap99id', data) self._assert_vif_port(vif_port, ofport, mac) def test_get_vif_by_port_id_with_ofport(self): self._test_get_vif_port_by_id_with_data( ofport=1, mac="aa:bb:cc:dd:ee:ff") def test_get_vif_by_port_id_without_ofport(self): self._test_get_vif_port_by_id_with_data(mac="aa:bb:cc:dd:ee:ff") def test_get_vif_by_port_id_with_invalid_ofport(self): self._test_get_vif_port_by_id_with_data( ofport=-1, mac="aa:bb:cc:dd:ee:ff") def test_get_vif_by_port_id_with_no_data(self): self.assertIsNone(self._test_get_vif_port_by_id('whatever', [])) def test_get_vif_by_port_id_different_bridge(self): external_ids = [["iface-id", "tap99id"], ["iface-status", "active"]] data = [[["map", external_ids], "tap99", 1]] self.assertIsNone(self._test_get_vif_port_by_id('tap99id', data, "br-ext")) def test_get_vif_by_port_id_multiple_vifs(self): external_ids = [["iface-id", "tap99id"], ["iface-status", "active"], ["attached-mac", "de:ad:be:ef:13:37"]] data = [[["map", external_ids], "dummytap", 1], [["map", external_ids], "tap99", 1337]] extra_calls_and_values = [ (self._vsctl_mock("iface-to-br", "dummytap"), "br-ext")] vif_port = self._test_get_vif_port_by_id( 'tap99id', data, extra_calls_and_values=extra_calls_and_values) self._assert_vif_port(vif_port, ofport=1337, mac="de:ad:be:ef:13:37") class TestDeferredOVSBridge(base.BaseTestCase): def setUp(self): super(TestDeferredOVSBridge, self).setUp() self.br = mock.Mock() self.mocked_do_action_flows = mock.patch.object( self.br, 'do_action_flows').start() self.add_flow_dict1 = dict(in_port=11, actions='drop') self.add_flow_dict2 = dict(in_port=12, actions='drop') self.mod_flow_dict1 = dict(in_port=21, actions='drop') self.mod_flow_dict2 = dict(in_port=22, actions='drop') self.del_flow_dict1 = dict(in_port=31) self.del_flow_dict2 = dict(in_port=32) def test_right_allowed_passthroughs(self): expected_passthroughs = ('add_port', 'add_tunnel_port', 'delete_port') self.assertEqual(expected_passthroughs, ovs_lib.DeferredOVSBridge.ALLOWED_PASSTHROUGHS) def _verify_mock_call(self, expected_calls): self.mocked_do_action_flows.assert_has_calls(expected_calls) self.assertEqual(len(expected_calls), len(self.mocked_do_action_flows.mock_calls)) def test_apply_on_exit(self): expected_calls = [ mock.call('add', [self.add_flow_dict1]), mock.call('mod', [self.mod_flow_dict1]), mock.call('del', [self.del_flow_dict1]), ] with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) self._verify_mock_call([]) self._verify_mock_call(expected_calls) def test_apply_on_exit_with_errors(self): try: with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) raise Exception() except Exception: self._verify_mock_call([]) else: self.fail('Exception would be reraised') def test_apply(self): expected_calls = [ mock.call('add', [self.add_flow_dict1]), mock.call('mod', [self.mod_flow_dict1]), mock.call('del', [self.del_flow_dict1]), ] with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) self._verify_mock_call([]) deferred_br.apply_flows() self._verify_mock_call(expected_calls) self._verify_mock_call(expected_calls) def test_apply_order(self): expected_calls = [ mock.call('del', [self.del_flow_dict1, self.del_flow_dict2]), mock.call('mod', [self.mod_flow_dict1, self.mod_flow_dict2]), mock.call('add', [self.add_flow_dict1, self.add_flow_dict2]), ] order = 'del', 'mod', 'add' with ovs_lib.DeferredOVSBridge(self.br, order=order) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict2) deferred_br.add_flow(**self.add_flow_dict2) deferred_br.mod_flow(**self.mod_flow_dict2) self._verify_mock_call(expected_calls) def test_apply_full_ordered(self): expected_calls = [ mock.call('add', [self.add_flow_dict1]), mock.call('mod', [self.mod_flow_dict1]), mock.call('del', [self.del_flow_dict1, self.del_flow_dict2]), mock.call('add', [self.add_flow_dict2]), mock.call('mod', [self.mod_flow_dict2]), ] with ovs_lib.DeferredOVSBridge(self.br, full_ordered=True) as deferred_br: deferred_br.add_flow(**self.add_flow_dict1) deferred_br.mod_flow(**self.mod_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict1) deferred_br.delete_flows(**self.del_flow_dict2) deferred_br.add_flow(**self.add_flow_dict2) deferred_br.mod_flow(**self.mod_flow_dict2) self._verify_mock_call(expected_calls) def test_getattr_unallowed_attr(self): with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: self.assertEqual(self.br.add_port, deferred_br.add_port) def test_getattr_unallowed_attr_failure(self): with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: self.assertRaises(AttributeError, getattr, deferred_br, 'failure') def test_default_cookie(self): self.br = ovs_lib.OVSBridge("br-tun") uuid_stamp1 = self.br.default_cookie self.assertEqual(uuid_stamp1, self.br.default_cookie) def test_cookie_passed_to_addmod(self): self.br = ovs_lib.OVSBridge("br-tun") stamp = str(self.br.default_cookie) expected_calls = [ mock.call('add-flows', ['-'], 'hard_timeout=0,idle_timeout=0,priority=1,' 'cookie=' + stamp + ',actions=drop'), mock.call('mod-flows', ['-'], 'cookie=' + stamp + ',actions=drop') ] with mock.patch.object(self.br, 'run_ofctl') as f: with ovs_lib.DeferredOVSBridge(self.br) as deferred_br: deferred_br.add_flow(actions='drop') deferred_br.mod_flow(actions='drop') f.assert_has_calls(expected_calls)
apache-2.0
1,059,533,844,783,685,100
41.155172
79
0.547393
false
Ken69267/config-stuff
.vim/eclim/autoload/eclim/python/rope/base/oi/objectinfo.py
115
8767
import warnings from rope.base import exceptions, resourceobserver from rope.base.oi import objectdb, memorydb, transform class ObjectInfoManager(object): """Stores object information It uses an instance of `objectdb.ObjectDB` for storing information. """ def __init__(self, project): self.project = project self.to_textual = transform.PyObjectToTextual(project) self.to_pyobject = transform.TextualToPyObject(project) self.doi_to_pyobject = transform.DOITextualToPyObject(project) self._init_objectdb() if project.prefs.get('validate_objectdb', False): self._init_validation() def _init_objectdb(self): dbtype = self.project.get_prefs().get('objectdb_type', None) persist = None if dbtype is not None: warnings.warn( '"objectdb_type" project config is deprecated;\n' 'Use "save_objectdb" instead in your project ' 'config file.\n(".ropeproject/config.py" by default)\n', DeprecationWarning) if dbtype != 'memory' and self.project.ropefolder is not None: persist = True self.validation = TextualValidation(self.to_pyobject) db = memorydb.MemoryDB(self.project, persist=persist) self.objectdb = objectdb.ObjectDB(db, self.validation) def _init_validation(self): self.objectdb.validate_files() observer = resourceobserver.ResourceObserver( changed=self._resource_changed, moved=self._resource_moved, removed=self._resource_moved) files = [] for path in self.objectdb.get_files(): resource = self.to_pyobject.path_to_resource(path) if resource is not None and resource.project == self.project: files.append(resource) self.observer = resourceobserver.FilteredResourceObserver(observer, files) self.objectdb.add_file_list_observer(_FileListObserver(self)) self.project.add_observer(self.observer) def _resource_changed(self, resource): try: self.objectdb.validate_file( self.to_textual.resource_to_path(resource)) except exceptions.ModuleSyntaxError: pass def _resource_moved(self, resource, new_resource=None): self.observer.remove_resource(resource) if new_resource is not None: old = self.to_textual.resource_to_path(resource) new = self.to_textual.resource_to_path(new_resource) self.objectdb.file_moved(old, new) self.observer.add_resource(new_resource) def get_returned(self, pyobject, args): result = self.get_exact_returned(pyobject, args) if result is not None: return result path, key = self._get_scope(pyobject) if path is None: return None for call_info in self.objectdb.get_callinfos(path, key): returned = call_info.get_returned() if returned and returned[0] not in ('unknown', 'none'): result = returned break if result is None: result = returned if result is not None: return self.to_pyobject(result) def get_exact_returned(self, pyobject, args): path, key = self._get_scope(pyobject) if path is not None: returned = self.objectdb.get_returned( path, key, self._args_to_textual(pyobject, args)) if returned is not None: return self.to_pyobject(returned) def _args_to_textual(self, pyfunction, args): parameters = list(pyfunction.get_param_names(special_args=False)) arguments = args.get_arguments(parameters)[:len(parameters)] textual_args = tuple([self.to_textual(arg) for arg in arguments]) return textual_args def get_parameter_objects(self, pyobject): path, key = self._get_scope(pyobject) if path is None: return None arg_count = len(pyobject.get_param_names(special_args=False)) unknowns = arg_count parameters = [None] * arg_count for call_info in self.objectdb.get_callinfos(path, key): args = call_info.get_parameters() for index, arg in enumerate(args[:arg_count]): old = parameters[index] if self.validation.is_more_valid(arg, old): parameters[index] = arg if self.validation.is_value_valid(arg): unknowns -= 1 if unknowns == 0: break if unknowns < arg_count: return [self.to_pyobject(parameter) for parameter in parameters] def get_passed_objects(self, pyfunction, parameter_index): path, key = self._get_scope(pyfunction) if path is None: return [] result = [] for call_info in self.objectdb.get_callinfos(path, key): args = call_info.get_parameters() if len(args) > parameter_index: parameter = self.to_pyobject(args[parameter_index]) if parameter is not None: result.append(parameter) return result def doa_data_received(self, data): def doi_to_normal(textual): pyobject = self.doi_to_pyobject(textual) return self.to_textual(pyobject) function = doi_to_normal(data[0]) args = tuple([doi_to_normal(textual) for textual in data[1]]) returned = doi_to_normal(data[2]) if function[0] == 'defined' and len(function) == 3: self._save_data(function, args, returned) def function_called(self, pyfunction, params, returned=None): function_text = self.to_textual(pyfunction) params_text = tuple([self.to_textual(param) for param in params]) returned_text = ('unknown',) if returned is not None: returned_text = self.to_textual(returned) self._save_data(function_text, params_text, returned_text) def save_per_name(self, scope, name, data): path, key = self._get_scope(scope.pyobject) if path is not None: self.objectdb.add_pername(path, key, name, self.to_textual(data)) def get_per_name(self, scope, name): path, key = self._get_scope(scope.pyobject) if path is not None: result = self.objectdb.get_pername(path, key, name) if result is not None: return self.to_pyobject(result) def _save_data(self, function, args, returned=('unknown',)): self.objectdb.add_callinfo(function[1], function[2], args, returned) def _get_scope(self, pyobject): resource = pyobject.get_module().get_resource() if resource is None: return None, None textual = self.to_textual(pyobject) if textual[0] == 'defined': path = textual[1] if len(textual) == 3: key = textual[2] else: key = '' return path, key return None, None def sync(self): self.objectdb.sync() def __str__(self): return str(self.objectdb) class TextualValidation(object): def __init__(self, to_pyobject): self.to_pyobject = to_pyobject def is_value_valid(self, value): # ???: Should none and unknown be considered valid? if value is None or value[0] in ('none', 'unknown'): return False return self.to_pyobject(value) is not None def is_more_valid(self, new, old): if old is None: return True return new[0] not in ('unknown', 'none') def is_file_valid(self, path): return self.to_pyobject.path_to_resource(path) is not None def is_scope_valid(self, path, key): if key == '': textual = ('defined', path) else: textual = ('defined', path, key) return self.to_pyobject(textual) is not None class _FileListObserver(object): def __init__(self, object_info): self.object_info = object_info self.observer = self.object_info.observer self.to_pyobject = self.object_info.to_pyobject def removed(self, path): resource = self.to_pyobject.path_to_resource(path) if resource is not None: self.observer.remove_resource(resource) def added(self, path): resource = self.to_pyobject.path_to_resource(path) if resource is not None: self.observer.add_resource(resource)
mit
-5,783,436,503,925,363,000
36.788793
77
0.58994
false
AntidoteLabs/Antidote-DM
Antidotes DM/youtube_dl/extractor/footyroom.py
13
1647
# coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor class FootyRoomIE(InfoExtractor): _VALID_URL = r'http://footyroom\.com/(?P<id>[^/]+)' _TESTS = [{ 'url': 'http://footyroom.com/schalke-04-0-2-real-madrid-2015-02/', 'info_dict': { 'id': 'schalke-04-0-2-real-madrid-2015-02', 'title': 'Schalke 04 0 – 2 Real Madrid', }, 'playlist_count': 3, 'skip': 'Video for this match is not available', }, { 'url': 'http://footyroom.com/georgia-0-2-germany-2015-03/', 'info_dict': { 'id': 'georgia-0-2-germany-2015-03', 'title': 'Georgia 0 – 2 Germany', }, 'playlist_count': 1, }] def _real_extract(self, url): playlist_id = self._match_id(url) webpage = self._download_webpage(url, playlist_id) playlist = self._parse_json( self._search_regex( r'VideoSelector\.load\((\[.+?\])\);', webpage, 'video selector'), playlist_id) playlist_title = self._og_search_title(webpage) entries = [] for video in playlist: payload = video.get('payload') if not payload: continue playwire_url = self._search_regex( r'data-config="([^"]+)"', payload, 'playwire url', default=None) if playwire_url: entries.append(self.url_result(self._proto_relative_url( playwire_url, 'http:'), 'Playwire')) return self.playlist_result(entries, playlist_id, playlist_title)
gpl-2.0
-7,329,513,082,234,937,000
31.86
81
0.530736
false
FeMTTU/femus
external/jsoncpp/jsoncpp-src-0.5.0/test/rununittests.py
249
2507
import sys import os import os.path import subprocess from glob import glob import optparse VALGRIND_CMD = 'valgrind --tool=memcheck --leak-check=yes --undef-value-errors=yes' class TestProxy(object): def __init__( self, test_exe_path, use_valgrind=False ): self.test_exe_path = os.path.normpath( os.path.abspath( test_exe_path ) ) self.use_valgrind = use_valgrind def run( self, options ): if self.use_valgrind: cmd = VALGRIND_CMD.split() else: cmd = [] cmd.extend( [self.test_exe_path, '--test-auto'] + options ) process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) stdout = process.communicate()[0] if process.returncode: return False, stdout return True, stdout def runAllTests( exe_path, use_valgrind=False ): test_proxy = TestProxy( exe_path, use_valgrind=use_valgrind ) status, test_names = test_proxy.run( ['--list-tests'] ) if not status: print >> sys.stderr, "Failed to obtain unit tests list:\n" + test_names return 1 test_names = [name.strip() for name in test_names.strip().split('\n')] failures = [] for name in test_names: print 'TESTING %s:' % name, succeed, result = test_proxy.run( ['--test', name] ) if succeed: print 'OK' else: failures.append( (name, result) ) print 'FAILED' failed_count = len(failures) pass_count = len(test_names) - failed_count if failed_count: print for name, result in failures: print result print '%d/%d tests passed (%d failure(s))' % ( pass_count, len(test_names), failed_count) return 1 else: print 'All %d tests passed' % len(test_names) return 0 def main(): from optparse import OptionParser parser = OptionParser( usage="%prog [options] <path to test_lib_json.exe>" ) parser.add_option("--valgrind", action="store_true", dest="valgrind", default=False, help="run all the tests using valgrind to detect memory leaks") parser.enable_interspersed_args() options, args = parser.parse_args() if len(args) != 1: parser.error( 'Must provides at least path to test_lib_json executable.' ) sys.exit( 1 ) exit_code = runAllTests( args[0], use_valgrind=options.valgrind ) sys.exit( exit_code ) if __name__ == '__main__': main()
lgpl-2.1
5,270,087,245,698,930,000
33.342466
91
0.603111
false
xutian/virt-test
virttest/libvirt_xml/nwfilter_protocols/ah_ipv6.py
26
5826
""" ah-ipv6 protocl support class(es) http://libvirt.org/formatnwfilter.html#nwfelemsRulesProtoMiscv6 """ from virttest.libvirt_xml import accessors, xcepts from virttest.libvirt_xml.nwfilter_protocols import base class Ah_ipv6(base.TypedDeviceBase): """ Create new Ah_ipv6 xml instances Properties: attrs: libvirt_xml.nwfilter_protocols.Ah_ipv6.Attr instance """ __slots__ = ('attrs',) def __init__(self, type_name='file', virsh_instance=base.base.virsh): accessors.XMLElementNest('attrs', self, parent_xpath='/', tag_name='ah_ipv6', subclass=self.Attr, subclass_dargs={ 'virsh_instance': virsh_instance}) super(Ah_ipv6, self).__init__(protocol_tag='ah-ipv6', type_name=type_name, virsh_instance=virsh_instance) def new_attr(self, **dargs): """ Return a new Attr instance and set properties from dargs :param dargs: dict of attributes :return: new Attr instance """ new_one = self.Attr(virsh_instance=self.virsh) for key, value in dargs.items(): setattr(new_one, key, value) return new_one def get_attr(self): """ Return ah-ipv6 attribute dict :return: None if no ah-ipv6 in xml, dict of ah-ipv6's attributes. """ try: ah_node = self.xmltreefile.reroot('/ah-ipv6') except KeyError, detail: raise xcepts.LibvirtXMLError(detail) node = ah_node.getroot() ah_attr = dict(node.items()) return ah_attr class Attr(base.base.LibvirtXMLBase): """ Ah_ipv6 attribute XML class Properties: srcmacaddr: string, MAC address of sender srcmacmask: string, Mask applied to MAC address of sender dstmacaddr: string, MAC address of destination dstmacmask: string, Mask applied to MAC address of destination srcipaddr: string, Source IP address srcipmask: string, Mask applied to source IP address dstipaddr: string, Destination IP address dstipmask: string, Mask applied to destination IP address srcipfrom: string, Start of range of source IP address srcipto: string, End of range of source IP address dstipfrom: string, Start of range of destination IP address dstipto: string, End of range of destination IP address comment: string, text with max. 256 characters state: string, comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE ipset: The name of an IPSet managed outside of libvirt ipsetflags: flags for the IPSet; requires ipset attribute """ __slots__ = ('srcmacaddr', 'srcmacmask', 'dstmacaddr', 'dstmacmask', 'srcipaddr', 'srcipmask', 'dstipaddr', 'dstipmask', 'srcipfrom', 'srcipto', 'dstipfrom', 'dstipto', 'dscp', 'comment', 'state', 'ipset', 'ipsetflags') def __init__(self, virsh_instance=base.base.virsh): accessors.XMLAttribute('srcmacaddr', self, parent_xpath='/', tag_name='ah-ipv6', attribute='srcmacaddr') accessors.XMLAttribute('srcmacmask', self, parent_xpath='/', tag_name='ah-ipv6', attribute='srcmacmask') accessors.XMLAttribute('dstmacaddr', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dstmacaddr') accessors.XMLAttribute('dstmacmask', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dstmacmask') accessors.XMLAttribute('srcipaddr', self, parent_xpath='/', tag_name='ah-ipv6', attribute='srcipaddr') accessors.XMLAttribute('srcipmask', self, parent_xpath='/', tag_name='ah-ipv6', attribute='srcipmask') accessors.XMLAttribute('dstipaddr', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dstipaddr') accessors.XMLAttribute('dstipmask', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dstipmask') accessors.XMLAttribute('srcipfrom', self, parent_xpath='/', tag_name='ah-ipv6', attribute='srcipfrom') accessors.XMLAttribute('srcipto', self, parent_xpath='/', tag_name='ah-ipv6', attribute='srcipto') accessors.XMLAttribute('dstipfrom', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dstipfrom') accessors.XMLAttribute('dstipto', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dstipto') accessors.XMLAttribute('dscp', self, parent_xpath='/', tag_name='ah-ipv6', attribute='dscp') accessors.XMLAttribute('comment', self, parent_xpath='/', tag_name='ah-ipv6', attribute='comment') accessors.XMLAttribute('state', self, parent_xpath='/', tag_name='ah-ipv6', attribute='state') accessors.XMLAttribute('ipset', self, parent_xpath='/', tag_name='ah-ipv6', attribute='ipset') accessors.XMLAttribute('ipsetflags', self, parent_xpath='/', tag_name='ah-ipv6', attribute='ipsetflags') super(self.__class__, self).__init__(virsh_instance=virsh_instance) self.xml = '<ah-ipv6/>'
gpl-2.0
6,297,954,871,406,577,000
44.874016
86
0.555784
false
olafhauk/mne-python
mne/datasets/__init__.py
6
1103
"""Functions for fetching remote datasets. See :ref:`datasets` for more information. """ from . import fieldtrip_cmc from . import brainstorm from . import visual_92_categories from . import kiloword from . import eegbci from . import hf_sef from . import misc from . import mtrf from . import sample from . import somato from . import multimodal from . import fnirs_motor from . import opm from . import spm_face from . import testing from . import _fake from . import phantom_4dbti from . import sleep_physionet from . import limo from . import refmeg_noise from .utils import (_download_all_example_data, fetch_hcp_mmp_parcellation, fetch_aparc_sub_parcellation) from ._fsaverage.base import fetch_fsaverage __all__ = [ '_download_all_example_data', '_fake', 'brainstorm', 'eegbci', 'fetch_aparc_sub_parcellation', 'fetch_fsaverage', 'fetch_hcp_mmp_parcellation', 'fieldtrip_cmc', 'hf_sef', 'kiloword', 'misc', 'mtrf', 'multimodal', 'opm', 'phantom_4dbti', 'sample', 'sleep_physionet', 'somato', 'spm_face', 'testing', 'visual_92_categories', 'limo', ]
bsd-3-clause
710,153,336,659,270,500
28.810811
79
0.703536
false
ProfessorX/Config
.PyCharm30/system/python_stubs/-1247971765/PyKDE4/kdeui/KButtonGroup.py
1
1093
# encoding: utf-8 # module PyKDE4.kdeui # from /usr/lib/python3/dist-packages/PyKDE4/kdeui.cpython-34m-x86_64-linux-gnu.so # by generator 1.135 # no doc # imports import PyKDE4.kdecore as __PyKDE4_kdecore import PyQt4.QtCore as __PyQt4_QtCore import PyQt4.QtGui as __PyQt4_QtGui import PyQt4.QtSvg as __PyQt4_QtSvg class KButtonGroup(__PyQt4_QtGui.QGroupBox): # no doc def changed(self, *args, **kwargs): # real signature unknown pass def childEvent(self, *args, **kwargs): # real signature unknown pass def clicked(self, *args, **kwargs): # real signature unknown pass def id(self, *args, **kwargs): # real signature unknown pass def pressed(self, *args, **kwargs): # real signature unknown pass def released(self, *args, **kwargs): # real signature unknown pass def selected(self, *args, **kwargs): # real signature unknown pass def setSelected(self, *args, **kwargs): # real signature unknown pass def __init__(self, *args, **kwargs): # real signature unknown pass
gpl-2.0
-3,835,212,938,206,663,000
24.418605
82
0.654163
false
Intel-tensorflow/tensorflow
tensorflow/python/ops/ctc_ops.py
6
57164
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CTC (Connectionist Temporal Classification) Operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import uuid from tensorflow.python.eager import context from tensorflow.python.eager import function as function_eager from tensorflow.python.framework import constant_op from tensorflow.python.framework import device from tensorflow.python.framework import dtypes from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import custom_gradient from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_ctc_ops from tensorflow.python.ops import inplace_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import map_fn from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops.nn_grad import _BroadcastMul from tensorflow.python.util import deprecation from tensorflow.python.util import dispatch from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export _DEFUN_API_NAME_ATTRIBUTE = "api_implements" _DEFUN_DEVICE_ATTRIBUTE = "api_preferred_device" _CPU_DEVICE_NAME = "CPU" _GPU_DEVICE_NAME = "GPU" def _get_context_device_type(): """Parse the current context and return the device type, eg CPU/GPU.""" current_device = context.context().device_name if current_device is None: return None return device.DeviceSpec.from_string(current_device).device_type def _generate_defun_backend(unique_api_name, preferred_device, func): function_attributes = { _DEFUN_API_NAME_ATTRIBUTE: unique_api_name, _DEFUN_DEVICE_ATTRIBUTE: preferred_device, } return function_eager.defun_with_attributes( func=func, attributes=function_attributes, autograph=False) # pylint: disable=protected-access, invalid-name @tf_export(v1=["nn.ctc_loss"]) @dispatch.add_dispatch_support def ctc_loss(labels, inputs=None, sequence_length=None, preprocess_collapse_repeated=False, ctc_merge_repeated=True, ignore_longer_outputs_than_inputs=False, time_major=True, logits=None): """Computes the CTC (Connectionist Temporal Classification) Loss. This op implements the CTC loss as presented in (Graves et al., 2006). Input requirements: ``` sequence_length(b) <= time for all b max(labels.indices(labels.indices[:, 1] == b, 2)) <= sequence_length(b) for all b. ``` Notes: This class performs the softmax operation for you, so inputs should be e.g. linear projections of outputs by an LSTM. The `inputs` Tensor's innermost dimension size, `num_classes`, represents `num_labels + 1` classes, where num_labels is the number of true labels, and the largest value `(num_classes - 1)` is reserved for the blank label. For example, for a vocabulary containing 3 labels `[a, b, c]`, `num_classes = 4` and the labels indexing is `{a: 0, b: 1, c: 2, blank: 3}`. Regarding the arguments `preprocess_collapse_repeated` and `ctc_merge_repeated`: If `preprocess_collapse_repeated` is True, then a preprocessing step runs before loss calculation, wherein repeated labels passed to the loss are merged into single labels. This is useful if the training labels come from, e.g., forced alignments and therefore have unnecessary repetitions. If `ctc_merge_repeated` is set False, then deep within the CTC calculation, repeated non-blank labels will not be merged and are interpreted as individual labels. This is a simplified (non-standard) version of CTC. Here is a table of the (roughly) expected first order behavior: * `preprocess_collapse_repeated=False`, `ctc_merge_repeated=True` Classical CTC behavior: Outputs true repeated classes with blanks in between, and can also output repeated classes with no blanks in between that need to be collapsed by the decoder. * `preprocess_collapse_repeated=True`, `ctc_merge_repeated=False` Never learns to output repeated classes, as they are collapsed in the input labels before training. * `preprocess_collapse_repeated=False`, `ctc_merge_repeated=False` Outputs repeated classes with blanks in between, but generally does not require the decoder to collapse/merge repeated classes. * `preprocess_collapse_repeated=True`, `ctc_merge_repeated=True` Untested. Very likely will not learn to output repeated classes. The `ignore_longer_outputs_than_inputs` option allows to specify the behavior of the CTCLoss when dealing with sequences that have longer outputs than inputs. If true, the CTCLoss will simply return zero gradient for those items, otherwise an InvalidArgument error is returned, stopping training. Args: labels: An `int32` `SparseTensor`. `labels.indices[i, :] == [b, t]` means `labels.values[i]` stores the id for (batch b, time t). `labels.values[i]` must take on values in `[0, num_labels)`. See `core/ops/ctc_ops.cc` for more details. inputs: 3-D `float` `Tensor`. If time_major == False, this will be a `Tensor` shaped: `[batch_size, max_time, num_classes]`. If time_major == True (default), this will be a `Tensor` shaped: `[max_time, batch_size, num_classes]`. The logits. sequence_length: 1-D `int32` vector, size `[batch_size]`. The sequence lengths. preprocess_collapse_repeated: Boolean. Default: False. If True, repeated labels are collapsed prior to the CTC calculation. ctc_merge_repeated: Boolean. Default: True. ignore_longer_outputs_than_inputs: Boolean. Default: False. If True, sequences with longer outputs than inputs will be ignored. time_major: The shape format of the `inputs` Tensors. If True, these `Tensors` must be shaped `[max_time, batch_size, num_classes]`. If False, these `Tensors` must be shaped `[batch_size, max_time, num_classes]`. Using `time_major = True` (default) is a bit more efficient because it avoids transposes at the beginning of the ctc_loss calculation. However, most TensorFlow data is batch-major, so by this function also accepts inputs in batch-major form. logits: Alias for inputs. Returns: A 1-D `float` `Tensor`, size `[batch]`, containing the negative log probabilities. Raises: TypeError: if labels is not a `SparseTensor`. References: Connectionist Temporal Classification - Labeling Unsegmented Sequence Data with Recurrent Neural Networks: [Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891) ([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf)) """ return _ctc_loss_impl( labels, inputs, sequence_length, preprocess_collapse_repeated, ctc_merge_repeated, ignore_longer_outputs_than_inputs, time_major, logits, use_cudnn=False) def _ctc_loss_impl(labels, inputs=None, sequence_length=None, preprocess_collapse_repeated=False, ctc_merge_repeated=True, ignore_longer_outputs_than_inputs=False, time_major=True, logits=None, use_cudnn=False): # Helper function of ctc_loss with one additional param: # use_cudnn: A bool to enable cuDNN CTC loss operation. If true, the blank # index has to be 0. # The second, third, etc output tensors contain the gradients. We use it in # _CTCLossGrad() below. if not isinstance(labels, sparse_tensor.SparseTensor): raise TypeError("Expected labels (first argument) to be a SparseTensor") # For internal calculations, we transpose to [time, batch, num_classes] inputs = deprecation.deprecated_argument_lookup("logits", logits, "inputs", inputs) if not time_major: inputs = array_ops.transpose(inputs, [1, 0, 2]) # (B,T,N) => (T,B,N) # gen_ctc_ops.ctc_loss_v2 differs from gen_ctc_ops.ctc_loss. v2 assumes the # blank index to be 0, but v1 views it as the last index. if use_cudnn: ctc_loss_func = gen_ctc_ops.ctc_loss_v2 else: ctc_loss_func = gen_ctc_ops.ctc_loss loss, _ = ctc_loss_func( inputs, labels.indices, labels.values, sequence_length, preprocess_collapse_repeated=preprocess_collapse_repeated, ctc_merge_repeated=ctc_merge_repeated, ignore_longer_outputs_than_inputs=ignore_longer_outputs_than_inputs) return loss # pylint: disable=unused-argument def _CTCLossGradImpl(op, grad_loss, _): # Outputs are: loss, grad # # Currently there is no way to take the second derivative of this op # due to the fused implementation's interaction with tf.gradients(), # so we make sure we prevent silently incorrect results by raising # an error if the second derivative is requested via prevent_gradient. grad_without_gradient = array_ops.prevent_gradient( op.outputs[1], message="Currently there is no way to take the second " " derivative of ctc_loss due to the fused implementation's interaction " " with tf.gradients()") # Return gradient for inputs and None for # labels_indices, labels_values and sequence_length return [_BroadcastMul(grad_loss, grad_without_gradient), None, None, None] # pylint: disable=unused-argument @ops.RegisterGradient("CTCLoss") def _CTCLossGrad(op, grad_loss, _): """The derivative provided by CTC Loss. Args: op: the CTCLoss op. grad_loss: The backprop for cost. Returns: The CTC Loss gradient. """ return _CTCLossGradImpl(op, grad_loss, _) # pylint: disable=unused-argument @ops.RegisterGradient("CTCLossV2") def _CTCLossV2Grad(op, grad_loss, _): """The derivative provided by CTC Loss V2. Args: op: the CTCLossV2 op. grad_loss: The backprop for cost. Returns: The CTC Loss V2 gradient. """ return _CTCLossGradImpl(op, grad_loss, _) @tf_export("nn.ctc_greedy_decoder") @dispatch.add_dispatch_support def ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True, blank_index=None): """Performs greedy decoding on the logits given in input (best path). Given a tensor as `inputs`, the `blank_index` parameter defines the class index of the blank symbol. For example: If `blank_index` is equal to 1: >>> inf = float("inf") >>> logits = tf.constant([[[ 0., -inf, -inf], ... [ -2.3, -inf, -0.1]], ... [[ -inf, -0.5, -inf], ... [ -inf, -inf, -0.1]], ... [[ -inf, -inf, -inf], ... [ -0.1, -inf, -2.3]]]) >>> seq_lens = tf.constant([2, 3]) >>> outputs = tf.nn.ctc_greedy_decoder( ... logits, ... seq_lens, ... blank_index=1) Notes: - Regardless of the value of `merge_repeated`, if an index of a given time and batch corresponds to the `blank_index`, no new element is emitted. - Default `blank_index` is `(num_classes - 1)`, unless overriden. If `merge_repeated` is `True`, merge repeated classes in output. This means that if consecutive logits' maximum indices are the same, only the first of these is emitted. The sequence `A B B * B * B` (where '*' is the blank label) becomes * `A B B B` if `merge_repeated=True`. * `A B B B B` if `merge_repeated=False`. Args: inputs: 3-D `float` `Tensor` sized `[max_time, batch_size, num_classes]`. The logits. sequence_length: 1-D `int32` vector containing sequence lengths, having size `[batch_size]`. merge_repeated: Boolean. Default: True. blank_index: (Optional). Default: `num_classes - 1`. Define the class index to use for the blank label. Negative values will start from num_classes, ie, -1 will reproduce the ctc_greedy_decoder behavior of using num_classes - 1 for the blank symbol, which corresponds to the default. Returns: A tuple `(decoded, neg_sum_logits)` where decoded: A single-element list. `decoded[0]` is an `SparseTensor` containing the decoded outputs s.t.: `decoded.indices`: Indices matrix `(total_decoded_outputs, 2)`. The rows store: `[batch, time]`. `decoded.values`: Values vector, size `(total_decoded_outputs)`. The vector stores the decoded classes. `decoded.dense_shape`: Shape vector, size `(2)`. The shape values are: `[batch_size, max_decoded_length]` neg_sum_logits: A `float` matrix `(batch_size x 1)` containing, for the sequence found, the negative of the sum of the greatest logit at each timeframe. """ outputs = gen_ctc_ops.ctc_greedy_decoder( inputs, sequence_length, merge_repeated=merge_repeated, blank_index=blank_index) (decoded_ix, decoded_val, decoded_shape, log_probabilities) = outputs return ([sparse_tensor.SparseTensor(decoded_ix, decoded_val, decoded_shape)], log_probabilities) @tf_export(v1=["nn.ctc_beam_search_decoder"]) @dispatch.add_dispatch_support def ctc_beam_search_decoder(inputs, sequence_length, beam_width=100, top_paths=1, merge_repeated=True): """Performs beam search decoding on the logits given in input. **Note** The `ctc_greedy_decoder` is a special case of the `ctc_beam_search_decoder` with `top_paths=1` and `beam_width=1` (but that decoder is faster for this special case). If `merge_repeated` is `True`, merge repeated classes in the output beams. This means that if consecutive entries in a beam are the same, only the first of these is emitted. That is, when the sequence is `A B B * B * B` (where '*' is the blank label), the return value is: * `A B` if `merge_repeated = True`. * `A B B B` if `merge_repeated = False`. Args: inputs: 3-D `float` `Tensor`, size `[max_time x batch_size x num_classes]`. The logits. sequence_length: 1-D `int32` vector containing sequence lengths, having size `[batch_size]`. beam_width: An int scalar >= 0 (beam search beam width). top_paths: An int scalar >= 0, <= beam_width (controls output size). merge_repeated: Boolean. Default: True. Returns: A tuple `(decoded, log_probabilities)` where decoded: A list of length top_paths, where `decoded[j]` is a `SparseTensor` containing the decoded outputs: `decoded[j].indices`: Indices matrix `(total_decoded_outputs[j] x 2)` The rows store: [batch, time]. `decoded[j].values`: Values vector, size `(total_decoded_outputs[j])`. The vector stores the decoded classes for beam j. `decoded[j].dense_shape`: Shape vector, size `(2)`. The shape values are: `[batch_size, max_decoded_length[j]]`. log_probability: A `float` matrix `(batch_size x top_paths)` containing sequence log-probabilities. """ decoded_ixs, decoded_vals, decoded_shapes, log_probabilities = ( gen_ctc_ops.ctc_beam_search_decoder( inputs, sequence_length, beam_width=beam_width, top_paths=top_paths, merge_repeated=merge_repeated)) return ([ sparse_tensor.SparseTensor(ix, val, shape) for (ix, val, shape) in zip(decoded_ixs, decoded_vals, decoded_shapes) ], log_probabilities) @tf_export("nn.ctc_beam_search_decoder", v1=["nn.ctc_beam_search_decoder_v2"]) @dispatch.add_dispatch_support def ctc_beam_search_decoder_v2(inputs, sequence_length, beam_width=100, top_paths=1): """Performs beam search decoding on the logits given in input. **Note** The `ctc_greedy_decoder` is a special case of the `ctc_beam_search_decoder` with `top_paths=1` and `beam_width=1` (but that decoder is faster for this special case). Args: inputs: 3-D `float` `Tensor`, size `[max_time, batch_size, num_classes]`. The logits. sequence_length: 1-D `int32` vector containing sequence lengths, having size `[batch_size]`. beam_width: An int scalar >= 0 (beam search beam width). top_paths: An int scalar >= 0, <= beam_width (controls output size). Returns: A tuple `(decoded, log_probabilities)` where decoded: A list of length top_paths, where `decoded[j]` is a `SparseTensor` containing the decoded outputs: `decoded[j].indices`: Indices matrix `[total_decoded_outputs[j], 2]`; The rows store: `[batch, time]`. `decoded[j].values`: Values vector, size `[total_decoded_outputs[j]]`. The vector stores the decoded classes for beam `j`. `decoded[j].dense_shape`: Shape vector, size `(2)`. The shape values are: `[batch_size, max_decoded_length[j]]`. log_probability: A `float` matrix `[batch_size, top_paths]` containing sequence log-probabilities. """ # Note, merge_repeated is an invalid optimization that is removed from the # public API: it returns low probability paths. return ctc_beam_search_decoder( inputs, sequence_length=sequence_length, beam_width=beam_width, top_paths=top_paths, merge_repeated=False) ops.NotDifferentiable("CTCGreedyDecoder") ops.NotDifferentiable("CTCBeamSearchDecoder") def _ctc_state_trans(label_seq): """Compute CTC alignment model transition matrix. Args: label_seq: tensor of shape [batch_size, max_seq_length] Returns: tensor of shape [batch_size, states, states] with a state transition matrix computed for each sequence of the batch. """ with ops.name_scope("ctc_state_trans"): label_seq = ops.convert_to_tensor(label_seq, name="label_seq") batch_size = _get_dim(label_seq, 0) num_labels = _get_dim(label_seq, 1) num_label_states = num_labels + 1 num_states = 2 * num_label_states label_states = math_ops.range(num_label_states) blank_states = label_states + num_label_states # Start state to first label. start_to_label = [[1, 0]] # Blank to label transitions. blank_to_label = array_ops.stack([label_states[1:], blank_states[:-1]], 1) # Label to blank transitions. label_to_blank = array_ops.stack([blank_states, label_states], 1) # Scatter transitions that don't depend on sequence. indices = array_ops.concat([start_to_label, blank_to_label, label_to_blank], 0) values = array_ops.ones([_get_dim(indices, 0)]) trans = array_ops.scatter_nd( indices, values, shape=[num_states, num_states]) trans += linalg_ops.eye(num_states) # Self-loops. # Label to label transitions. Disallow transitions between repeated labels # with no blank state in between. batch_idx = array_ops.zeros_like(label_states[2:]) indices = array_ops.stack([batch_idx, label_states[2:], label_states[1:-1]], 1) indices = array_ops.tile( array_ops.expand_dims(indices, 0), [batch_size, 1, 1]) batch_idx = array_ops.expand_dims(math_ops.range(batch_size), 1) * [1, 0, 0] indices += array_ops.expand_dims(batch_idx, 1) repeats = math_ops.equal(label_seq[:, :-1], label_seq[:, 1:]) values = 1.0 - math_ops.cast(repeats, dtypes.float32) batched_shape = [batch_size, num_states, num_states] label_to_label = array_ops.scatter_nd(indices, values, batched_shape) return array_ops.expand_dims(trans, 0) + label_to_label def ctc_state_log_probs(seq_lengths, max_seq_length): """Computes CTC alignment initial and final state log probabilities. Create the initial/final state values directly as log values to avoid having to take a float64 log on tpu (which does not exist). Args: seq_lengths: int tensor of shape [batch_size], seq lengths in the batch. max_seq_length: int, max sequence length possible. Returns: initial_state_log_probs, final_state_log_probs """ batch_size = _get_dim(seq_lengths, 0) num_label_states = max_seq_length + 1 num_duration_states = 2 num_states = num_duration_states * num_label_states log_0 = math_ops.cast( math_ops.log(math_ops.cast(0, dtypes.float64) + 1e-307), dtypes.float32) initial_state_log_probs = array_ops.one_hot( indices=array_ops.zeros([batch_size], dtype=dtypes.int32), depth=num_states, on_value=0.0, off_value=log_0, axis=1) label_final_state_mask = array_ops.one_hot( seq_lengths, depth=num_label_states, axis=0) duration_final_state_mask = array_ops.ones( [num_duration_states, 1, batch_size]) final_state_mask = duration_final_state_mask * label_final_state_mask final_state_log_probs = (1.0 - final_state_mask) * log_0 final_state_log_probs = array_ops.reshape(final_state_log_probs, [num_states, batch_size]) return initial_state_log_probs, array_ops.transpose(final_state_log_probs) def _ilabel_to_state(labels, num_labels, ilabel_log_probs): """Project ilabel log probs to state log probs.""" num_label_states = _get_dim(labels, 1) blank = ilabel_log_probs[:, :, :1] blank = array_ops.tile(blank, [1, 1, num_label_states + 1]) one_hot = array_ops.one_hot(labels, depth=num_labels) one_hot = array_ops.expand_dims(one_hot, axis=0) ilabel_log_probs = array_ops.expand_dims(ilabel_log_probs, axis=2) state_log_probs = math_ops.reduce_sum(ilabel_log_probs * one_hot, axis=3) state_log_probs = array_ops.concat([state_log_probs, blank], axis=2) return array_ops.pad( state_log_probs, [[0, 0], [0, 0], [1, 0]], constant_values=math_ops.log(0.0)) def _state_to_olabel(labels, num_labels, states): """Sum state log probs to ilabel log probs.""" num_label_states = _get_dim(labels, 1) + 1 label_states = states[:, :, 1:num_label_states] blank_states = states[:, :, num_label_states:] one_hot = array_ops.one_hot( labels - 1, depth=(num_labels - 1), on_value=0.0, off_value=math_ops.log(0.0)) one_hot = array_ops.expand_dims(one_hot, axis=0) label_states = array_ops.expand_dims(label_states, axis=3) label_olabels = math_ops.reduce_logsumexp(label_states + one_hot, axis=2) blank_olabels = math_ops.reduce_logsumexp(blank_states, axis=2, keepdims=True) return array_ops.concat([blank_olabels, label_olabels], axis=-1) # pylint: disable=redefined-outer-name def _state_to_olabel_unique(labels, num_labels, states, unique): """Sum state log probs to ilabel log probs using unique label indices.""" num_label_states = _get_dim(labels, 1) + 1 label_states = states[:, :, 1:num_label_states] blank_states = states[:, :, num_label_states:] unique_y, unique_idx = unique mul_reduce = _sum_states(unique_idx, label_states) num_frames = states.shape[0] batch_size = states.shape[1] num_states = num_label_states - 1 batch_state_major = array_ops.transpose(mul_reduce, perm=[1, 2, 0]) batch_state_major = array_ops.reshape(batch_state_major, [batch_size * num_states, num_frames]) batch_offset = math_ops.range(batch_size, dtype=unique_y.dtype) * num_labels indices = unique_y + array_ops.expand_dims(batch_offset, axis=-1) indices = array_ops.reshape(indices, [-1, 1]) scatter = array_ops.scatter_nd( indices=indices, updates=batch_state_major, shape=[batch_size * num_labels, num_frames]) scatter = array_ops.reshape(scatter, [batch_size, num_labels, num_frames]) mask = array_ops.ones_like(batch_state_major, dtype=dtypes.bool) mask = array_ops.scatter_nd( indices=indices, updates=mask, shape=[batch_size * num_labels, num_frames]) mask = array_ops.reshape(mask, [batch_size, num_labels, num_frames]) scatter = array_ops.where( mask, scatter, array_ops.fill(array_ops.shape(scatter), math_ops.log(0.0))) label_olabels = array_ops.transpose(scatter, [2, 0, 1]) label_olabels = label_olabels[:, :, 1:] blank_olabels = math_ops.reduce_logsumexp(blank_states, axis=2, keepdims=True) return array_ops.concat([blank_olabels, label_olabels], axis=-1) def ctc_loss_and_grad(logits, labels, label_length, logit_length, unique=None): """Computes the CTC loss and gradients. Most users will want fwd_bwd.ctc_loss This function returns the computed gradient, it does not have a gradient of its own defined. Args: logits: tensor of shape [frames, batch_size, num_labels] labels: tensor of shape [batch_size, max_label_seq_length] label_length: tensor of shape [batch_size] Length of reference label sequence in labels. logit_length: tensor of shape [batch_size] Length of input sequence in logits. unique: (optional) unique label indices as computed by unique(labels) If supplied, enables an implementation that is faster and more memory efficient on TPU. Returns: loss: tensor of shape [batch_size] gradient: tensor of shape [frames, batch_size, num_labels] """ num_labels = _get_dim(logits, 2) max_label_seq_length = _get_dim(labels, 1) ilabel_log_probs = nn_ops.log_softmax(logits) state_log_probs = _ilabel_to_state(labels, num_labels, ilabel_log_probs) state_trans_probs = _ctc_state_trans(labels) initial_state_log_probs, final_state_log_probs = ctc_state_log_probs( label_length, max_label_seq_length) fwd_bwd_log_probs, log_likelihood = _forward_backward_log( state_trans_log_probs=math_ops.log(state_trans_probs), initial_state_log_probs=initial_state_log_probs, final_state_log_probs=final_state_log_probs, observed_log_probs=state_log_probs, sequence_length=logit_length) if unique: olabel_log_probs = _state_to_olabel_unique(labels, num_labels, fwd_bwd_log_probs, unique) else: olabel_log_probs = _state_to_olabel(labels, num_labels, fwd_bwd_log_probs) grad = math_ops.exp(ilabel_log_probs) - math_ops.exp(olabel_log_probs) # Applies the sequence mask for the gradient. It is enough to appply the mask # only for ilabel_log_probs because olabel_log_probs already consider the # mask. However, it is just safe and clean to apply it for the gradient. max_logit_length = _get_dim(logits, 0) logit_mask = array_ops.sequence_mask(logit_length, max_logit_length, dtypes.float32) logit_mask = array_ops.transpose(logit_mask, perm=[1, 0]) logit_mask = array_ops.expand_dims(logit_mask, axis=2) grad *= logit_mask loss = -log_likelihood return loss, grad def _ctc_loss_grad(op, grad_loss, _): grad = op.outputs[1] grad = [array_ops.reshape(grad_loss, [1, -1, 1]) * grad] grad += [None] * (len(op.inputs) - len(grad)) return grad def _ctc_loss_op_standard(labels, logits, logit_length, logits_time_major, blank_index): part_before = logits[:, :, :blank_index] part_after = logits[:, :, blank_index + 1:] part_blank = logits[:, :, blank_index:blank_index + 1] logits = array_ops.concat([part_before, part_after, part_blank], axis=2) labels = sparse_tensor.SparseTensor( labels.indices, array_ops.where(labels.values < blank_index, labels.values, labels.values - 1), labels.dense_shape) return _ctc_loss_impl( labels=labels, inputs=logits, sequence_length=logit_length, time_major=logits_time_major, use_cudnn=False) def _ctc_loss_op_cudnn(labels, logits, logit_length, logits_time_major, blank_index): part_before = logits[:, :, :blank_index] part_after = logits[:, :, blank_index + 1:] part_blank = logits[:, :, blank_index:blank_index + 1] logits = array_ops.concat([part_blank, part_before, part_after], axis=2) labels = sparse_tensor.SparseTensor( labels.indices, array_ops.where(labels.values < blank_index, labels.values + 1, labels.values), labels.dense_shape) return _ctc_loss_impl( labels=labels, inputs=logits, sequence_length=logit_length, time_major=logits_time_major, use_cudnn=True) def _ctc_loss_shape(op): return [op.inputs[2].get_shape(), op.inputs[0].get_shape()] # pylint: disable=protected-access, invalid-name @tf_export(v1=["nn.ctc_loss_v2"]) @dispatch.add_dispatch_support def ctc_loss_v2(labels, logits, label_length, logit_length, logits_time_major=True, unique=None, blank_index=None, name=None): """Computes CTC (Connectionist Temporal Classification) loss. This op implements the CTC loss as presented in (Graves et al., 2006). Notes: - Same as the "Classic CTC" in TensorFlow 1.x's tf.compat.v1.nn.ctc_loss setting of preprocess_collapse_repeated=False, ctc_merge_repeated=True - Labels may be supplied as either a dense, zero-padded tensor with a vector of label sequence lengths OR as a SparseTensor. - On TPU and GPU: Only dense padded labels are supported. - On CPU: Caller may use SparseTensor or dense padded labels but calling with a SparseTensor will be significantly faster. - Default blank label is 0 rather num_classes - 1, unless overridden by blank_index. Args: labels: tensor of shape [batch_size, max_label_seq_length] or SparseTensor logits: tensor of shape [frames, batch_size, num_labels], if logits_time_major == False, shape is [batch_size, frames, num_labels]. label_length: tensor of shape [batch_size], None if labels is SparseTensor Length of reference label sequence in labels. logit_length: tensor of shape [batch_size] Length of input sequence in logits. logits_time_major: (optional) If True (default), logits is shaped [time, batch, logits]. If False, shape is [batch, time, logits] unique: (optional) Unique label indices as computed by ctc_unique_labels(labels). If supplied, enable a faster, memory efficient implementation on TPU. blank_index: (optional) Set the class index to use for the blank label. Negative values will start from num_classes, ie, -1 will reproduce the ctc_loss behavior of using num_classes - 1 for the blank symbol. There is some memory/performance overhead to switching from the default of 0 as an additional shifted copy of the logits may be created. name: A name for this `Op`. Defaults to "ctc_loss_dense". Returns: loss: tensor of shape [batch_size], negative log probabilities. References: Connectionist Temporal Classification - Labeling Unsegmented Sequence Data with Recurrent Neural Networks: [Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891) ([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf)) """ if isinstance(labels, sparse_tensor.SparseTensor): if blank_index is None: raise ValueError( "blank_index must be given when using SparseTensor labels.") if blank_index < 0: blank_index += _get_dim(logits, 2) if blank_index != _get_dim(logits, 2) - 1: logits = array_ops.concat([ logits[:, :, :blank_index], logits[:, :, blank_index + 1:], logits[:, :, blank_index:blank_index + 1], ], axis=2) labels = sparse_tensor.SparseTensor( labels.indices, array_ops.where(labels.values < blank_index, labels.values, labels.values - 1), labels.dense_shape) return ctc_loss( labels=labels, inputs=logits, sequence_length=logit_length, time_major=logits_time_major) if blank_index is None: blank_index = 0 return ctc_loss_dense( labels=labels, logits=logits, label_length=label_length, logit_length=logit_length, logits_time_major=logits_time_major, unique=unique, blank_index=blank_index, name=name) @tf_export("nn.ctc_loss", v1=[]) @dispatch.add_dispatch_support def ctc_loss_v3(labels, logits, label_length, logit_length, logits_time_major=True, unique=None, blank_index=None, name=None): """Computes CTC (Connectionist Temporal Classification) loss. This op implements the CTC loss as presented in (Graves et al., 2006). Notes: - Same as the "Classic CTC" in TensorFlow 1.x's tf.compat.v1.nn.ctc_loss setting of preprocess_collapse_repeated=False, ctc_merge_repeated=True - Labels may be supplied as either a dense, zero-padded tensor with a vector of label sequence lengths OR as a SparseTensor. - On TPU and GPU: Only dense padded labels are supported. - On CPU: Caller may use SparseTensor or dense padded labels but calling with a SparseTensor will be significantly faster. - Default blank label is 0 rather num_classes - 1, unless overridden by blank_index. Args: labels: tensor of shape [batch_size, max_label_seq_length] or SparseTensor logits: tensor of shape [frames, batch_size, num_labels], if logits_time_major == False, shape is [batch_size, frames, num_labels]. label_length: tensor of shape [batch_size], None if labels is SparseTensor Length of reference label sequence in labels. logit_length: tensor of shape [batch_size] Length of input sequence in logits. logits_time_major: (optional) If True (default), logits is shaped [time, batch, logits]. If False, shape is [batch, time, logits] unique: (optional) Unique label indices as computed by ctc_unique_labels(labels). If supplied, enable a faster, memory efficient implementation on TPU. blank_index: (optional) Set the class index to use for the blank label. Negative values will start from num_classes, ie, -1 will reproduce the ctc_loss behavior of using num_classes - 1 for the blank symbol. There is some memory/performance overhead to switching from the default of 0 as an additional shifted copy of the logits may be created. name: A name for this `Op`. Defaults to "ctc_loss_dense". Returns: loss: tensor of shape [batch_size], negative log probabilities. References: Connectionist Temporal Classification - Labeling Unsegmented Sequence Data with Recurrent Neural Networks: [Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891) ([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf)) """ if isinstance(labels, sparse_tensor.SparseTensor): if blank_index is None: raise ValueError( "blank_index must be given when using SparseTensor labels.") if blank_index < 0: blank_index += _get_dim(logits, 2) params = { "labels": labels, "logits": logits, "logit_length": logit_length, "logits_time_major": logits_time_major, "blank_index": blank_index } if context.executing_eagerly(): device_type = _get_context_device_type() can_use_gpu = ( # Either user specified GPU or unspecified but GPU is available. (device_type == _GPU_DEVICE_NAME or (device_type is None and context.num_gpus() > 0))) # Under eager context, check the device placement and prefer the if can_use_gpu: res = _ctc_loss_op_cudnn(**params) else: res = _ctc_loss_op_standard(**params) else: api_name = "ctc_loss_" + str(uuid.uuid4()) ctc_loss_op_standard = _generate_defun_backend(api_name, _CPU_DEVICE_NAME, _ctc_loss_op_standard) ctc_loss_op_cudnn = _generate_defun_backend(api_name, _GPU_DEVICE_NAME, _ctc_loss_op_cudnn) res = ctc_loss_op_standard(**params) function_eager.register(ctc_loss_op_cudnn, **params) return res if blank_index is None: blank_index = 0 return ctc_loss_dense( labels=labels, logits=logits, label_length=label_length, logit_length=logit_length, logits_time_major=logits_time_major, unique=unique, blank_index=blank_index, name=name) def ctc_loss_dense(labels, logits, label_length, logit_length, logits_time_major=True, unique=None, blank_index=0, name=None): """Computes CTC (Connectionist Temporal Classification) loss. This op implements the CTC loss as presented in (Graves et al., 2006), using the batched forward backward algorithm described in (Sim et al., 2017). Notes: Significant differences from tf.compat.v1.nn.ctc_loss: Supports GPU and TPU (tf.compat.v1.nn.ctc_loss supports CPU only): For batched operations, GPU and TPU are significantly faster than using ctc_loss on CPU. This implementation runs on CPU, but significantly slower than ctc_loss. Blank label is 0 rather num_classes - 1, unless overridden by blank_index. Logits and labels are dense arrays with padding rather than SparseTensor. The only mode supported is the same as: preprocess_collapse_repeated=False, ctc_merge_repeated=True To collapse labels, the caller can preprocess label sequence first. The dense implementation supports both CPU, GPU and TPU. A fast path is provided that significantly improves memory use for large vocabulary if the caller preprocesses label sequences to get unique label indices on the CPU (eg. in the data input pipeline) using ctc_ops.unique and simplifies this in the optional "unique" kwarg. This is especially useful for TPU and GPU but also works with if used on CPU. Args: labels: tensor of shape [batch_size, max_label_seq_length] logits: tensor of shape [frames, batch_size, num_labels], if logits_time_major == False, shape is [batch_size, frames, num_labels]. label_length: tensor of shape [batch_size] Length of reference label sequence in labels. logit_length: tensor of shape [batch_size] Length of input sequence in logits. logits_time_major: (optional) If True (default), logits is shaped [time, batch, logits]. If False, shape is [batch, time, logits] unique: (optional) Unique label indices as computed by unique(labels). If supplied, enable a faster, memory efficient implementation on TPU. blank_index: (optional) Set the class index to use for the blank label. Negative values will start from num_classes, ie, -1 will reproduce the ctc_loss behavior of using num_classes - 1 for the blank symbol. There is some memory/performance overhead to switching from the default of 0 as an additional shifted copy of the logits may be created. name: A name for this `Op`. Defaults to "ctc_loss_dense". Returns: loss: tensor of shape [batch_size], negative log probabilities. References: Connectionist Temporal Classification - Labeling Unsegmented Sequence Data with Recurrent Neural Networks: [Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891) ([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf)) Improving the efficiency of forward-backward algorithm using batched computation in TensorFlow: [Sim et al., 2017](https://ieeexplore.ieee.org/document/8268944) ([pdf](http://bacchiani.net/resume/papers/ASRU2017.pdf)) """ with ops.name_scope(name, "ctc_loss_dense", [logits, labels, label_length, logit_length]): logits = ops.convert_to_tensor(logits, name="logits") labels = ops.convert_to_tensor(labels, name="labels") label_length = ops.convert_to_tensor(label_length, name="label_length") logit_length = ops.convert_to_tensor(logit_length, name="logit_length") if not logits_time_major: logits = array_ops.transpose(logits, perm=[1, 0, 2]) if blank_index != 0: if blank_index < 0: blank_index += _get_dim(logits, 2) logits = array_ops.concat([ logits[:, :, blank_index:blank_index + 1], logits[:, :, :blank_index], logits[:, :, blank_index + 1:], ], axis=2) labels = array_ops.where(labels < blank_index, labels + 1, labels) args = [logits, labels, label_length, logit_length] if unique: unique_y, unique_idx = unique if blank_index != 0: unique_y = array_ops.where(unique_y < blank_index, unique_y + 1, unique_y) label_mask_len = math_ops.reduce_max(unique_idx, axis=1) + 1 max_label_length = _get_dim(unique_y, 1) label_mask = array_ops.sequence_mask(label_mask_len, max_label_length) unique_y = array_ops.where(label_mask, unique_y, array_ops.zeros_like(unique_y)) args.extend([unique_y, unique_idx]) @custom_gradient.custom_gradient def compute_ctc_loss(logits_t, labels_t, label_length_t, logit_length_t, *unique_t): """Compute CTC loss.""" logits_t.set_shape(logits.shape) labels_t.set_shape(labels.shape) label_length_t.set_shape(label_length.shape) logit_length_t.set_shape(logit_length.shape) kwargs = dict( logits=logits_t, labels=labels_t, label_length=label_length_t, logit_length=logit_length_t) if unique_t: kwargs["unique"] = unique_t result = ctc_loss_and_grad(**kwargs) def grad(grad_loss): grad = [array_ops.reshape(grad_loss, [1, -1, 1]) * result[1]] grad += [None] * (len(args) - len(grad)) return grad return result[0], grad return compute_ctc_loss(*args) @tf_export("nn.collapse_repeated") @dispatch.add_dispatch_support def collapse_repeated(labels, seq_length, name=None): """Merge repeated labels into single labels. Args: labels: Tensor of shape [batch, max value in seq_length] seq_length: Tensor of shape [batch], sequence length of each batch element. name: A name for this `Op`. Defaults to "collapse_repeated_labels". Returns: A tuple `(collapsed_labels, new_seq_length)` where collapsed_labels: Tensor of shape [batch, max_seq_length] with repeated labels collapsed and padded to max_seq_length, eg: `[[A, A, B, B, A], [A, B, C, D, E]] => [[A, B, A, 0, 0], [A, B, C, D, E]]` new_seq_length: int tensor of shape [batch] with new sequence lengths. """ with ops.name_scope(name, "collapse_repeated_labels", [labels, seq_length]): labels = ops.convert_to_tensor(labels, name="labels") seq_length = ops.convert_to_tensor(seq_length, name="seq_length") # Mask labels that don't equal previous label. label_mask = array_ops.concat([ array_ops.ones_like(labels[:, :1], dtypes.bool), math_ops.not_equal(labels[:, 1:], labels[:, :-1]) ], axis=1) # Filter labels that aren't in the original sequence. maxlen = _get_dim(labels, 1) seq_mask = array_ops.sequence_mask(seq_length, maxlen=maxlen) label_mask = math_ops.logical_and(label_mask, seq_mask) # Count masks for new sequence lengths. new_seq_len = math_ops.reduce_sum( math_ops.cast(label_mask, dtypes.int32), axis=1) # Mask indexes based on sequence length mask. new_maxlen = math_ops.reduce_max(new_seq_len) idx_mask = array_ops.sequence_mask(new_seq_len, maxlen=new_maxlen) # Flatten everything and mask out labels to keep and sparse indices. flat_labels = array_ops.reshape(labels, [-1]) flat_label_mask = array_ops.reshape(label_mask, [-1]) flat_idx_mask = array_ops.reshape(idx_mask, [-1]) idx = math_ops.range(_get_dim(flat_idx_mask, 0)) # Scatter to flat shape. flat = array_ops.scatter_nd( indices=array_ops.expand_dims( array_ops.boolean_mask(idx, flat_idx_mask), axis=1), updates=array_ops.boolean_mask(flat_labels, flat_label_mask), shape=array_ops.shape(flat_idx_mask)) # Reshape back to square batch. batch_size = _get_dim(labels, 0) new_shape = [batch_size, new_maxlen] return (array_ops.reshape(flat, new_shape), math_ops.cast(new_seq_len, seq_length.dtype)) def dense_labels_to_sparse(dense, length): """Convert dense labels with sequence lengths to sparse tensor. Args: dense: tensor of shape [batch, max_length] length: int tensor of shape [batch] The length of each sequence in dense. Returns: tf.sparse.SparseTensor with values only for the valid elements of sequences. """ flat_values = array_ops.reshape(dense, [-1]) flat_indices = math_ops.range( array_ops.shape(flat_values, out_type=dtypes.int64)[0]) mask = array_ops.sequence_mask(length, maxlen=array_ops.shape(dense)[1]) flat_mask = array_ops.reshape(mask, [-1]) indices = array_ops.expand_dims( array_ops.boolean_mask(flat_indices, flat_mask), 1) values = array_ops.boolean_mask(flat_values, flat_mask) sparse = sparse_tensor.SparseTensor( indices=indices, values=math_ops.cast(values, dtypes.int32), dense_shape=array_ops.shape(flat_values, out_type=dtypes.int64)) reshaped = sparse_ops.sparse_reshape(sparse, array_ops.shape(dense)) max_length = math_ops.reduce_max(length) return sparse_tensor.SparseTensor( indices=reshaped.indices, values=reshaped.values, dense_shape=[ math_ops.cast(reshaped.dense_shape[0], dtypes.int64), math_ops.cast(max_length, dtypes.int64) ]) @tf_export("nn.ctc_unique_labels") @dispatch.add_dispatch_support def ctc_unique_labels(labels, name=None): """Get unique labels and indices for batched labels for `tf.nn.ctc_loss`. For use with `tf.nn.ctc_loss` optional argument `unique`: This op can be used to preprocess labels in input pipeline to for better speed/memory use computing the ctc loss on TPU. Example: ctc_unique_labels([[3, 4, 4, 3]]) -> unique labels padded with 0: [[3, 4, 0, 0]] indices of original labels in unique: [0, 1, 1, 0] Args: labels: tensor of shape [batch_size, max_label_length] padded with 0. name: A name for this `Op`. Defaults to "ctc_unique_labels". Returns: tuple of - unique labels, tensor of shape `[batch_size, max_label_length]` - indices into unique labels, shape `[batch_size, max_label_length]` """ with ops.name_scope(name, "ctc_unique_labels", [labels]): labels = ops.convert_to_tensor(labels, name="labels") def _unique(x): u = array_ops.unique(x) y = array_ops.pad(u.y, [[0, _get_dim(u.idx, 0) - _get_dim(u.y, 0)]]) y = math_ops.cast(y, dtypes.int64) return [y, u.idx] return map_fn.map_fn(_unique, labels, dtype=[dtypes.int64, dtypes.int32]) def _sum_states(idx, states): """Take logsumexp for each unique state out of all label states. Args: idx: tensor of shape [batch, label_length] For each sequence, indices into a set of unique labels as computed by calling unique. states: tensor of shape [frames, batch, label_length] Log probabilities for each label state. Returns: tensor of shape [frames, batch_size, label_length], log probabilites summed for each unique label of the sequence. """ with ops.name_scope("sum_states"): idx = ops.convert_to_tensor(idx, name="idx") num_states = _get_dim(states, 2) states = array_ops.expand_dims(states, axis=2) one_hot = array_ops.one_hot( idx, depth=num_states, on_value=0.0, off_value=math_ops.log(0.0), axis=1) return math_ops.reduce_logsumexp(states + one_hot, axis=-1) def _forward_backward_log(state_trans_log_probs, initial_state_log_probs, final_state_log_probs, observed_log_probs, sequence_length): """Forward-backward algorithm computed in log domain. Args: state_trans_log_probs: tensor of shape [states, states] or if different transition matrix per batch [batch_size, states, states] initial_state_log_probs: tensor of shape [batch_size, states] final_state_log_probs: tensor of shape [batch_size, states] observed_log_probs: tensor of shape [frames, batch_size, states] sequence_length: tensor of shape [batch_size] Returns: forward backward log probabilites: tensor of shape [frames, batch, states] log_likelihood: tensor of shape [batch_size] Raises: ValueError: If state_trans_log_probs has unknown or incorrect rank. """ if state_trans_log_probs.shape.ndims == 2: perm = [1, 0] elif state_trans_log_probs.shape.ndims == 3: perm = [0, 2, 1] else: raise ValueError( "state_trans_log_probs rank must be known and == 2 or 3, is: %s" % state_trans_log_probs.shape.ndims) bwd_state_trans_log_probs = array_ops.transpose(state_trans_log_probs, perm) batch_size = _get_dim(observed_log_probs, 1) def _forward(state_log_prob, obs_log_prob): state_log_prob = array_ops.expand_dims(state_log_prob, axis=1) # Broadcast. state_log_prob += state_trans_log_probs state_log_prob = math_ops.reduce_logsumexp(state_log_prob, axis=-1) state_log_prob += obs_log_prob log_prob_sum = math_ops.reduce_logsumexp( state_log_prob, axis=-1, keepdims=True) state_log_prob -= log_prob_sum return state_log_prob fwd = _scan( _forward, observed_log_probs, initial_state_log_probs, inclusive=True) def _backward(accs, elems): """Calculate log probs and cumulative sum masked for sequence length.""" state_log_prob, cum_log_sum = accs obs_log_prob, mask = elems state_log_prob += obs_log_prob state_log_prob = array_ops.expand_dims(state_log_prob, axis=1) # Broadcast. state_log_prob += bwd_state_trans_log_probs state_log_prob = math_ops.reduce_logsumexp(state_log_prob, axis=-1) log_prob_sum = math_ops.reduce_logsumexp( state_log_prob, axis=-1, keepdims=True) state_log_prob -= log_prob_sum cum_log_sum += array_ops.squeeze(log_prob_sum) * mask batched_mask = array_ops.expand_dims(mask, axis=1) out = state_log_prob * batched_mask out += final_state_log_probs * (1.0 - batched_mask) return out, cum_log_sum zero_log_sum = array_ops.zeros([batch_size]) maxlen = _get_dim(observed_log_probs, 0) mask = array_ops.sequence_mask(sequence_length, maxlen, dtypes.float32) mask = array_ops.transpose(mask, perm=[1, 0]) bwd, cum_log_sum = _scan( _backward, (observed_log_probs, mask), (final_state_log_probs, zero_log_sum), reverse=True, inclusive=True) fwd_bwd_log_probs = fwd[1:] + bwd[1:] fwd_bwd_log_probs_sum = math_ops.reduce_logsumexp( fwd_bwd_log_probs, axis=2, keepdims=True) fwd_bwd_log_probs -= fwd_bwd_log_probs_sum fwd_bwd_log_probs += math_ops.log(array_ops.expand_dims(mask, axis=2)) log_likelihood = bwd[0, :, 0] + cum_log_sum[0] return fwd_bwd_log_probs, log_likelihood # TODO(tombagby): This is currently faster for the ctc implementation than using # functional_ops.scan, but could be replaced by that or something similar if # things change. def _scan(fn, elems, initial, reverse=False, inclusive=False, final_only=False): """Repeatedly applies callable `fn` to a sequence of elements. Implemented by functional_ops.While, tpu friendly, no gradient. This is similar to functional_ops.scan but significantly faster on tpu/gpu for the forward backward use case. Examples: scan(lambda a, e: a + e, [1.0, 2.0, 3.0], 1.0) => [2.0, 4.0, 7.0] Multiple accumulators: scan(lambda a, e: (a[0] + e, a[1] * e), [1.0, 2.0, 3.0], (0.0, 1.0)) Multiple inputs: scan(lambda a, e: a + (e[0] * e[1]), (elems1, elems2), 0.0) Args: fn: callable, fn(accumulators, element) return new accumulator values. The (possibly nested) sequence of accumulators is the same as `initial` and the return value must have the same structure. elems: A (possibly nested) tensor which will be unpacked along the first dimension. The resulting slices will be the second argument to fn. The first dimension of all nested input tensors must be the same. initial: A tensor or (possibly nested) sequence of tensors with initial values for the accumulators. reverse: (optional) True enables scan and output elems in reverse order. inclusive: (optional) True includes the initial accumulator values in the output. Length of output will be len(elem sequence) + 1. Not meaningful if final_only is True. final_only: (optional) When True, return only the final accumulated values, not the concatenation of accumulated values for each input. Returns: A (possibly nested) sequence of tensors with the results of applying fn to tensors unpacked from elems and previous accumulator values. """ flat_elems = [ops.convert_to_tensor(x) for x in nest.flatten(elems)] num_elems = array_ops.shape(flat_elems[0])[0] pack_elems = lambda x: nest.pack_sequence_as(structure=elems, flat_sequence=x) flat_initial = [ops.convert_to_tensor(x) for x in nest.flatten(initial)] pack = lambda x: nest.pack_sequence_as(structure=initial, flat_sequence=x) accum_dtypes = [x.dtype for x in flat_initial] num_accums = len(flat_initial) # Types for counter, [outputs], [accumulators] loop arguments. if final_only: loop_dtypes = [dtypes.int32, dtypes.int32] + accum_dtypes else: loop_dtypes = [dtypes.int32, dtypes.int32] + accum_dtypes + accum_dtypes # TODO(tombagby): Update to tfe.defun def cond(i, num_elems, *args): del args return i >= 0 if reverse else i < num_elems # The loop *args are [output tensors] + [accumulator tensors] which must # be paired. Each output corresponds to one accumulator. def body(i, num_elems, *args): """Loop body.""" i.set_shape([]) if final_only: accum = args else: out, accum = args[:num_accums], args[num_accums:] slices = [array_ops.gather(e, i) for e in flat_elems] accum = fn(pack(accum), pack_elems(slices)) flat_accum = nest.flatten(accum) if final_only: new_out = [] else: update_i = i + 1 if inclusive and not reverse else i new_out = [ inplace_ops.alias_inplace_update(x, update_i, y) for x, y in zip(out, flat_accum) ] i = i - 1 if reverse else i + 1 return [i, num_elems] + new_out + flat_accum init_i = ( array_ops.shape(flat_elems[0])[0] - 1 if reverse else constant_op.constant(0, dtype=dtypes.int32)) outputs = [] if not final_only: num_outputs = array_ops.shape(flat_elems[0])[0] + (1 if inclusive else 0) for initial_accum in flat_initial: out_shape = array_ops.concat( [[num_outputs], array_ops.shape(initial_accum)], 0) out = inplace_ops.empty(out_shape, dtype=initial_accum.dtype, init=True) if inclusive: out = inplace_ops.alias_inplace_add(out, init_i + (1 if reverse else 0), initial_accum) outputs.append(out) loop_in = [init_i, num_elems] + outputs + flat_initial hostmem = [ i for i, x in enumerate(loop_in) if x.dtype.base_dtype in (dtypes.int32, dtypes.int64) ] if context.executing_eagerly(): loop_results = loop_in while cond(*loop_results): loop_results = body(*loop_results) else: # TODO(tombagby): Update to while_v2. cond = function.Defun(*loop_dtypes)(cond) body = function.Defun(*loop_dtypes)(body) loop_results = functional_ops.While(loop_in, cond, body, hostmem=hostmem) out = loop_results[2:num_accums + 2] return pack(out) def _get_dim(tensor, i): """Get value of tensor shape[i] preferring static value if available.""" return tensor_shape.dimension_value( tensor.shape[i]) or array_ops.shape(tensor)[i]
apache-2.0
-1,484,289,627,133,780,500
37.993179
80
0.662322
false
schmidtc/pysal
pysal/spreg/diagnostics.py
6
35451
""" Diagnostics for regression estimations. """ __author__ = "Luc Anselin [email protected], Nicholas Malizia [email protected] " import pysal from pysal.common import * import scipy.sparse as SP from math import sqrt from utils import spmultiply, sphstack, spmin, spmax __all__ = [ "f_stat", "t_stat", "r2", "ar2", "se_betas", "log_likelihood", "akaike", "schwarz", "condition_index", "jarque_bera", "breusch_pagan", "white", "koenker_bassett", "vif", "likratiotest"] def f_stat(reg): """ Calculates the f-statistic and associated p-value of the regression. [Greene2003]_ (For two stage least squares see f_stat_tsls) Parameters ---------- reg : regression object output instance from a regression model Returns ---------- fs_result : tuple includes value of F statistic and associated p-value Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the F-statistic for the regression. >>> testresult = diagnostics.f_stat(reg) Print the results tuple, including the statistic and its significance. >>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1]) ('28.385629224695', '0.000000009341') """ k = reg.k # (scalar) number of ind. vars (includes constant) n = reg.n # (scalar) number of observations utu = reg.utu # (scalar) residual sum of squares predy = reg.predy # (array) vector of predicted values (n x 1) mean_y = reg.mean_y # (scalar) mean of dependent observations Q = utu U = np.sum((predy - mean_y) ** 2) fStat = (U / (k - 1)) / (Q / (n - k)) pValue = stats.f.sf(fStat, k - 1, n - k) fs_result = (fStat, pValue) return fs_result def t_stat(reg, z_stat=False): """ Calculates the t-statistics (or z-statistics) and associated p-values. [Greene2003]_ Parameters ---------- reg : regression object output instance from a regression model z_stat : boolean If True run z-stat instead of t-stat Returns ------- ts_result : list of tuples each tuple includes value of t statistic (or z statistic) and associated p-value Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate t-statistics for the regression coefficients. >>> testresult = diagnostics.t_stat(reg) Print the tuples that contain the t-statistics and their significances. >>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"%testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.12f"%testresult[2][1]) ('14.490373143689', '0.000000000000', '-4.780496191297', '0.000018289595', '-2.654408642718', '0.010874504910') """ k = reg.k # (scalar) number of ind. vars (includes constant) n = reg.n # (scalar) number of observations vm = reg.vm # (array) coefficients of variance matrix (k x k) betas = reg.betas # (array) coefficients of the regressors (1 x k) variance = vm.diagonal() tStat = betas[range(0, len(vm))].reshape(len(vm),) / np.sqrt(variance) ts_result = [] for t in tStat: if z_stat: ts_result.append((t, stats.norm.sf(abs(t)) * 2)) else: ts_result.append((t, stats.t.sf(abs(t), n - k) * 2)) return ts_result def r2(reg): """ Calculates the R^2 value for the regression. [Greene2003]_ Parameters ---------- reg : regression object output instance from a regression model Returns ---------- r2_result : float value of the coefficient of determination for the regression Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the R^2 value for the regression. >>> testresult = diagnostics.r2(reg) Print the result. >>> print("%1.8f"%testresult) 0.55240404 """ y = reg.y # (array) vector of dep observations (n x 1) mean_y = reg.mean_y # (scalar) mean of dep observations utu = reg.utu # (scalar) residual sum of squares ss_tot = ((y - mean_y) ** 2).sum(0) r2 = 1 - utu / ss_tot r2_result = r2[0] return r2_result def ar2(reg): """ Calculates the adjusted R^2 value for the regression. [Greene2003]_ Parameters ---------- reg : regression object output instance from a regression model Returns ---------- ar2_result : float value of R^2 adjusted for the number of explanatory variables. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the adjusted R^2 value for the regression. >>> testresult = diagnostics.ar2(reg) Print the result. >>> print("%1.8f"%testresult) 0.53294335 """ k = reg.k # (scalar) number of ind. variables (includes constant) n = reg.n # (scalar) number of observations ar2_result = 1 - (1 - r2(reg)) * (n - 1) / (n - k) return ar2_result def se_betas(reg): """ Calculates the standard error of the regression coefficients. [Greene2003]_ Parameters ---------- reg : regression object output instance from a regression model Returns ---------- se_result : array includes standard errors of each coefficient (1 x k) Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the standard errors of the regression coefficients. >>> testresult = diagnostics.se_betas(reg) Print the vector of standard errors. >>> testresult array([ 4.73548613, 0.33413076, 0.10319868]) """ vm = reg.vm # (array) coefficients of variance matrix (k x k) variance = vm.diagonal() se_result = np.sqrt(variance) return se_result def log_likelihood(reg): """ Calculates the log-likelihood value for the regression. [Greene2003]_ Parameters ---------- reg : regression object output instance from a regression model Returns ------- ll_result : float value for the log-likelihood of the regression. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the log-likelihood for the regression. >>> testresult = diagnostics.log_likelihood(reg) Print the result. >>> testresult -187.3772388121491 """ n = reg.n # (scalar) number of observations utu = reg.utu # (scalar) residual sum of squares ll_result = -0.5 * \ (n * (np.log(2 * math.pi)) + n * np.log(utu / n) + (utu / (utu / n))) return ll_result def akaike(reg): """ Calculates the Akaike Information Criterion. [Akaike1974]_ Parameters ---------- reg : regression object output instance from a regression model Returns ------- aic_result : scalar value for Akaike Information Criterion of the regression. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the Akaike Information Criterion (AIC). >>> testresult = diagnostics.akaike(reg) Print the result. >>> testresult 380.7544776242982 """ k = reg.k # (scalar) number of explanatory vars (including constant) try: # ML estimation, logll already exists # spatial coefficient included in k aic_result = 2.0 * k - 2.0 * reg.logll except AttributeError: # OLS case n = reg.n # (scalar) number of observations utu = reg.utu # (scalar) residual sum of squares aic_result = 2 * k + n * (np.log((2 * np.pi * utu) / n) + 1) return aic_result def schwarz(reg): """ Calculates the Schwarz Information Criterion. [Schwarz1978]_ Parameters ---------- reg : regression object output instance from a regression model Returns ------- bic_result : scalar value for Schwarz (Bayesian) Information Criterion of the regression. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the Schwarz Information Criterion. >>> testresult = diagnostics.schwarz(reg) Print the results. >>> testresult 386.42993851863008 """ n = reg.n # (scalar) number of observations k = reg.k # (scalar) number of ind. variables (including constant) try: # ML case logll already computed # spatial coeff included in k sc_result = k * np.log(n) - 2.0 * reg.logll except AttributeError: # OLS case utu = reg.utu # (scalar) residual sum of squares sc_result = k * np.log(n) + n * (np.log((2 * np.pi * utu) / n) + 1) return sc_result def condition_index(reg): """ Calculates the multicollinearity condition index according to Belsey, Kuh and Welsh (1980) [Belsley1980]_. Parameters ---------- reg : regression object output instance from a regression model Returns ------- ci_result : float scalar value for the multicollinearity condition index. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the condition index to check for multicollinearity. >>> testresult = diagnostics.condition_index(reg) Print the result. >>> print("%1.3f"%testresult) 6.542 """ if hasattr(reg, 'xtx'): xtx = reg.xtx # (array) k x k projection matrix (includes constant) elif hasattr(reg, 'hth'): xtx = reg.hth # (array) k x k projection matrix (includes constant) diag = np.diagonal(xtx) scale = xtx / diag eigval = np.linalg.eigvals(scale) max_eigval = max(eigval) min_eigval = min(eigval) ci_result = sqrt(max_eigval / min_eigval) return ci_result def jarque_bera(reg): """ Jarque-Bera test for normality in the residuals. [Jarque1980]_ Parameters ---------- reg : regression object output instance from a regression model Returns ------- jb_result : dictionary contains the statistic (jb) for the Jarque-Bera test and the associated p-value (p-value) df : integer degrees of freedom for the test (always 2) jb : float value of the test statistic pvalue : float p-value associated with the statistic (chi^2 distributed with 2 df) Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the Jarque-Bera test for normality of residuals. >>> testresult = diagnostics.jarque_bera(reg) Print the degrees of freedom for the test. >>> testresult['df'] 2 Print the test statistic. >>> print("%1.3f"%testresult['jb']) 1.836 Print the associated p-value. >>> print("%1.4f"%testresult['pvalue']) 0.3994 """ n = reg.n # (scalar) number of observations u = reg.u # (array) residuals from regression u2 = u ** 2 u3 = u ** 3 u4 = u ** 4 mu2 = np.mean(u2) mu3 = np.mean(u3) mu4 = np.mean(u4) S = mu3 / (mu2 ** (1.5)) # skewness measure K = (mu4 / (mu2 ** 2)) # kurtosis measure jb = n * (((S ** 2) / 6) + ((K - 3) ** 2) / 24) pvalue = stats.chisqprob(jb, 2) jb_result = {"df": 2, "jb": jb, 'pvalue': pvalue} return jb_result def breusch_pagan(reg, z=None): """ Calculates the Breusch-Pagan test statistic to check for heteroscedasticity. [Breusch1979]_ Parameters ---------- reg : regression object output instance from a regression model z : array optional input for specifying an alternative set of variables (Z) to explain the observed variance. By default this is a matrix of the squared explanatory variables (X**2) with a constant added to the first column if not already present. In the default case, the explanatory variables are squared to eliminate negative values. Returns ------- bp_result : dictionary contains the statistic (bp) for the test and the associated p-value (p-value) bp : float scalar value for the Breusch-Pagan test statistic df : integer degrees of freedom associated with the test (k) pvalue : float p-value associated with the statistic (chi^2 distributed with k df) Notes ----- x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"), "r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the Breusch-Pagan test for heteroscedasticity. >>> testresult = diagnostics.breusch_pagan(reg) Print the degrees of freedom for the test. >>> testresult['df'] 2 Print the test statistic. >>> print("%1.3f"%testresult['bp']) 7.900 Print the associated p-value. >>> print("%1.4f"%testresult['pvalue']) 0.0193 """ e2 = reg.u ** 2 e = reg.u n = reg.n k = reg.k ete = reg.utu den = ete / n g = e2 / den - 1.0 if z == None: x = reg.x #constant = constant_check(x) # if constant == False: # z = np.hstack((np.ones((n,1)),x))**2 # else: # z = x**2 z = spmultiply(x, x) else: #constant = constant_check(z) # if constant == False: # z = np.hstack((np.ones((n,1)),z)) pass n, p = z.shape # Check to identify any duplicate columns in Z omitcolumn = [] for i in range(p): current = z[:, i] for j in range(p): check = z[:, j] if i < j: test = abs(current - check).sum() if test == 0: omitcolumn.append(j) uniqueomit = set(omitcolumn) omitcolumn = list(uniqueomit) # Now the identified columns must be removed (done in reverse to # prevent renumbering) omitcolumn.sort() omitcolumn.reverse() for c in omitcolumn: z = np.delete(z, c, 1) n, p = z.shape df = p - 1 # Now that the variables are prepared, we calculate the statistic zt = np.transpose(z) gt = np.transpose(g) gtz = np.dot(gt, z) ztg = np.dot(zt, g) ztz = np.dot(zt, z) ztzi = la.inv(ztz) part1 = np.dot(gtz, ztzi) part2 = np.dot(part1, ztg) bp_array = 0.5 * part2 bp = bp_array[0, 0] pvalue = stats.chisqprob(bp, df) bp_result = {'df': df, 'bp': bp, 'pvalue': pvalue} return bp_result def white(reg): """ Calculates the White test to check for heteroscedasticity. [White1980]_ Parameters ---------- reg : regression object output instance from a regression model Returns ------- white_result : dictionary contains the statistic (white), degrees of freedom (df) and the associated p-value (pvalue) for the White test. white : float scalar value for the White test statistic. df : integer degrees of freedom associated with the test pvalue : float p-value associated with the statistic (chi^2 distributed with k df) Notes ----- x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the White test for heteroscedasticity. >>> testresult = diagnostics.white(reg) Print the degrees of freedom for the test. >>> print testresult['df'] 5 Print the test statistic. >>> print("%1.3f"%testresult['wh']) 19.946 Print the associated p-value. >>> print("%1.4f"%testresult['pvalue']) 0.0013 """ e = reg.u ** 2 k = int(reg.k) n = int(reg.n) y = reg.y X = reg.x #constant = constant_check(X) # Check for constant, if none add one, see Greene 2003, pg. 222 # if constant == False: # X = np.hstack((np.ones((n,1)),X)) # Check for multicollinearity in the X matrix ci = condition_index(reg) if ci > 30: white_result = "Not computed due to multicollinearity." return white_result # Compute cross-products and squares of the regression variables if type(X).__name__ == 'ndarray': A = np.zeros((n, (k * (k + 1)) // 2)) elif type(X).__name__ == 'csc_matrix' or type(X).__name__ == 'csr_matrix': # this is probably inefficient A = SP.lil_matrix((n, (k * (k + 1)) // 2)) else: raise Exception, "unknown X type, %s" % type(X).__name__ counter = 0 for i in range(k): for j in range(i, k): v = spmultiply(X[:, i], X[:, j], False) A[:, counter] = v counter += 1 # Append the original variables A = sphstack(X, A) # note: this also converts a LIL to CSR n, k = A.shape # Check to identify any duplicate or constant columns in A omitcolumn = [] for i in range(k): current = A[:, i] # remove all constant terms (will add a constant back later) if spmax(current) == spmin(current): omitcolumn.append(i) pass # do not allow duplicates for j in range(k): check = A[:, j] if i < j: test = abs(current - check).sum() if test == 0: omitcolumn.append(j) uniqueomit = set(omitcolumn) omitcolumn = list(uniqueomit) # Now the identified columns must be removed if type(A).__name__ == 'ndarray': A = np.delete(A, omitcolumn, 1) elif type(A).__name__ == 'csc_matrix' or type(A).__name__ == 'csr_matrix': # this is probably inefficient keepcolumn = range(k) for i in omitcolumn: keepcolumn.remove(i) A = A[:, keepcolumn] else: raise Exception, "unknown A type, %s" % type(X).__name__ A = sphstack(np.ones((A.shape[0], 1)), A) # add a constant back in n, k = A.shape # Conduct the auxiliary regression and calculate the statistic import ols as OLS aux_reg = OLS.BaseOLS(e, A) aux_r2 = r2(aux_reg) wh = aux_r2 * n df = k - 1 pvalue = stats.chisqprob(wh, df) white_result = {'df': df, 'wh': wh, 'pvalue': pvalue} return white_result def koenker_bassett(reg, z=None): """ Calculates the Koenker-Bassett test statistic to check for heteroscedasticity. [Koenker1982]_ [Greene2003]_ Parameters ---------- reg : regression output output from an instance of a regression class z : array optional input for specifying an alternative set of variables (Z) to explain the observed variance. By default this is a matrix of the squared explanatory variables (X**2) with a constant added to the first column if not already present. In the default case, the explanatory variables are squared to eliminate negative values. Returns ------- kb_result : dictionary contains the statistic (kb), degrees of freedom (df) and the associated p-value (pvalue) for the test. kb : float scalar value for the Koenker-Bassett test statistic. df : integer degrees of freedom associated with the test pvalue : float p-value associated with the statistic (chi^2 distributed) Notes ----- x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant. Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the Koenker-Bassett test for heteroscedasticity. >>> testresult = diagnostics.koenker_bassett(reg) Print the degrees of freedom for the test. >>> testresult['df'] 2 Print the test statistic. >>> print("%1.3f"%testresult['kb']) 5.694 Print the associated p-value. >>> print("%1.4f"%testresult['pvalue']) 0.0580 """ # The notation here matches that of Greene (2003). u = reg.u ** 2 e = reg.u n = reg.n k = reg.k x = reg.x ete = reg.utu #constant = constant_check(x) ubar = ete / n ubari = ubar * np.ones((n, 1)) g = u - ubari v = (1.0 / n) * np.sum((u - ubar) ** 2) if z == None: x = reg.x #constant = constant_check(x) # if constant == False: # z = np.hstack((np.ones((n,1)),x))**2 # else: # z = x**2 z = spmultiply(x, x) else: #constant = constant_check(z) # if constant == False: # z = np.hstack((np.ones((n,1)),z)) pass n, p = z.shape # Check to identify any duplicate columns in Z omitcolumn = [] for i in range(p): current = z[:, i] for j in range(p): check = z[:, j] if i < j: test = abs(current - check).sum() if test == 0: omitcolumn.append(j) uniqueomit = set(omitcolumn) omitcolumn = list(uniqueomit) # Now the identified columns must be removed (done in reverse to # prevent renumbering) omitcolumn.sort() omitcolumn.reverse() for c in omitcolumn: z = np.delete(z, c, 1) n, p = z.shape df = p - 1 # Conduct the auxiliary regression. zt = np.transpose(z) gt = np.transpose(g) gtz = np.dot(gt, z) ztg = np.dot(zt, g) ztz = np.dot(zt, z) ztzi = la.inv(ztz) part1 = np.dot(gtz, ztzi) part2 = np.dot(part1, ztg) kb_array = (1.0 / v) * part2 kb = kb_array[0, 0] pvalue = stats.chisqprob(kb, df) kb_result = {'kb': kb, 'df': df, 'pvalue': pvalue} return kb_result def vif(reg): """ Calculates the variance inflation factor for each independent variable. For the ease of indexing the results, the constant is currently included. This should be omitted when reporting the results to the output text. [Greene2003]_ Parameters ---------- reg : regression object output instance from a regression model Returns ------- vif_result : list of tuples each tuple includes the vif and the tolerance, the order of the variables corresponds to their order in the reg.x matrix Examples -------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS Read the DBF associated with the Columbus data. >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") Create the dependent variable vector. >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) Create the matrix of independent variables. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T Run an OLS regression. >>> reg = OLS(y,X) Calculate the variance inflation factor (VIF). >>> testresult = diagnostics.vif(reg) Select the tuple for the income variable. >>> incvif = testresult[1] Print the VIF for income. >>> print("%12.12f"%incvif[0]) 1.333117497189 Print the tolerance for income. >>> print("%12.12f"%incvif[1]) 0.750121427487 Repeat for the home value variable. >>> hovalvif = testresult[2] >>> print("%12.12f"%hovalvif[0]) 1.333117497189 >>> print("%12.12f"%hovalvif[1]) 0.750121427487 """ X = reg.x n, k = X.shape vif_result = [] for j in range(k): Z = X.copy() Z = np.delete(Z, j, 1) y = X[:, j] import ols as OLS aux = OLS.BaseOLS(y, Z) mean_y = aux.mean_y utu = aux.utu ss_tot = sum((y - mean_y) ** 2) if ss_tot == 0: resj = pysal.MISSINGVALUE else: r2aux = 1 - utu / ss_tot tolj = 1 - r2aux vifj = 1 / tolj resj = (vifj, tolj) vif_result.append(resj) return vif_result def constant_check(array): """ Checks to see numpy array includes a constant. Parameters ---------- array : array an array of variables to be inspected Returns ------- constant : boolean true signifies the presence of a constant Example ------- >>> import numpy as np >>> import pysal >>> import diagnostics >>> from ols import OLS >>> db = pysal.open(pysal.examples.get_path("columbus.dbf"),"r") >>> y = np.array(db.by_col("CRIME")) >>> y = np.reshape(y, (49,1)) >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("HOVAL")) >>> X = np.array(X).T >>> reg = OLS(y,X) >>> diagnostics.constant_check(reg.x) True """ n, k = array.shape constant = False for j in range(k): variable = array[:, j] varmin = variable.min() varmax = variable.max() if varmin == varmax: constant = True break return constant def likratiotest(reg0, reg1): """ Likelihood ratio test statistic [Greene2003]_ Parameters ---------- reg0 : regression object for constrained model (H0) reg1 : regression object for unconstrained model (H1) Returns ------- likratio : dictionary contains the statistic (likr), the degrees of freedom (df) and the p-value (pvalue) likr : float likelihood ratio statistic df : integer degrees of freedom p-value : float p-value Examples -------- >>> import numpy as np >>> import pysal as ps >>> import scipy.stats as stats >>> import pysal.spreg.ml_lag as lag Use the baltim sample data set >>> db = ps.open(ps.examples.get_path("baltim.dbf"),'r') >>> y_name = "PRICE" >>> y = np.array(db.by_col(y_name)).T >>> y.shape = (len(y),1) >>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"] >>> x = np.array([db.by_col(var) for var in x_names]).T >>> ww = ps.open(ps.examples.get_path("baltim_q.gal")) >>> w = ww.read() >>> ww.close() >>> w.transform = 'r' OLS regression >>> ols1 = ps.spreg.OLS(y,x) ML Lag regression >>> mllag1 = lag.ML_Lag(y,x,w) >>> lr = likratiotest(ols1,mllag1) >>> print "Likelihood Ratio Test: {0:.4f} df: {1} p-value: {2:.4f}".format(lr["likr"],lr["df"],lr["p-value"]) Likelihood Ratio Test: 44.5721 df: 1 p-value: 0.0000 """ likratio = {} try: likr = 2.0 * (reg1.logll - reg0.logll) except AttributeError: raise Exception, "Missing or improper log-likelihoods in regression objects" if likr < 0.0: # always enforces positive likelihood ratio likr = -likr pvalue = stats.chisqprob(likr, 1) likratio = {"likr": likr, "df": 1, "p-value": pvalue} return likratio def _test(): import doctest doctest.testmod() if __name__ == '__main__': _test()
bsd-3-clause
-1,719,425,724,766,710,800
25.396873
181
0.546416
false
olologin/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
-297,516,978,173,786,430
26.525
75
0.620345
false
qvit/django-color-captcha
color_captcha/utils.py
1
1095
# -*- coding: utf-8 -*- class IncorrectCaptchaColorsFormatError(Exception): message = "Incorrect 'CAPTCHA_COLORS' setting format (must be iterable of two-string-value tuples)" def __str__(self): return self.message class TooFewCaptchaColorsError(Exception): message = "Please specify al least two colors in 'CAPTCHA_COLORS' setting" def __str__(self): return self.message def check_colors(COLORS): def check_color_option(color_option): try: if not (len(color_option) == 2 and isinstance(color_option[0], basestring) and isinstance(color_option[1], basestring)): raise IncorrectCaptchaColorsFormatError() except IndexError: raise IncorrectCaptchaColorsFormatError() try: iter(COLORS) except TypeError: raise IncorrectCaptchaColorsFormatError() else: if len(COLORS) < 2: raise TooFewCaptchaColorsError() else: for color_option in COLORS: check_color_option(color_option)
mit
5,993,354,313,832,439,000
27.815789
103
0.624658
false
salabim/salabim
test/test_componentgenerator.py
1
4345
import salabim as sim import pytest class X(sim.Component): def setup(self, color='red'): self.color = color self.enter(components) class Vehicle(sim.Component): def setup(self): self.enter(components) class Car(Vehicle): pass class Bus(Vehicle): pass class Truck(Vehicle): pass def exp(X, run_time=None, *args, **kwargs): global components env = sim.Environment() components = sim.Queue() sim.ComponentGenerator(X, *args, **kwargs) env.run(run_time) return components def test_iat(): components = exp(X, iat=sim.Uniform(0, 2), at=500, till=1000, force_at=True) assert len(components) == pytest.approx(500, rel=1e-2) assert components[0].enter_time(components) == 500 assert 998 <= components[-1].enter_time(components) <= 1000 with pytest.raises(ValueError): components = exp(X, iat=sim.Uniform(0, 2), at=500, till=1000, force_at=True, force_till=True) components = exp(X, iat=sim.Uniform(0, 2), till=1000, force_at=True) assert len(components) == pytest.approx(1000, rel=1e-2) assert components[-1].enter_time(components) <= 1000 components = exp(X, iat=20,at=10, till=111,force_at=True) assert len(components) == 6 assert components[0].enter_time(components) == 10 assert components[-1].enter_time(components) == 110 components = exp(X, iat=20,at=10, till=111) assert len(components) == 5 assert components[-1].enter_time(components) == 110 components = exp(X, iat=20,at=10,number=5,force_at=True) assert len(components) == 5 assert components[0].enter_time(components) == 10 assert components[-1].enter_time(components) == 90 components = exp(X, iat=20,at=10,number=5) assert len(components) == 5 assert components[0].enter_time(components) == 30 assert components[-1].enter_time(components) == 110 components = exp(X, run_time=110, iat=20, at=10) assert len(components) == 4 assert components[0].enter_time(components) == 30 assert components[-1].enter_time(components) == 90 def test_spread(): components = exp(X, at=100, till=200, number=10) assert len(components) == 10 assert components[0].enter_time(components) > 100 assert components[-1].enter_time(components) < 200 components = exp(X, at=100, till=200, number=10, force_at=True) assert len(components) == 10 assert components[0].enter_time(components) == 100 assert components[-1].enter_time(components) < 200 components = exp(X, at=100, till=200, number=10, force_till=True) assert len(components) == 10 assert components[0].enter_time(components) > 100 assert components[-1].enter_time(components) == 200 components = exp(X, at=100, till=200, number=10, force_at=True, force_till=True) assert len(components) == 10 assert components[0].enter_time(components) ==100 assert components[-1].enter_time(components) == 200 components = exp(X, at=100, till=200, number=1, force_till=True) assert len(components) == 1 assert components[0].enter_time(components) == 200 components = exp(X, at=100, till=200, number=1, force_at=True) assert len(components) == 1 assert components[0].enter_time(components) == 100 with pytest.raises(ValueError): components = exp(X, at=100, till=200, number=1, force_at=True, force_till=True) components = exp(X, at=100, till=200, number=0, force_till=True) assert len(components) == 0 def test_propagate(): components = exp(X, number=1, iat=1) assert components[0].color == 'red' assert components[0].name() == 'x.0' components = exp(X, number=1, iat=1, color='blue', name='my name,') assert components[0].color == 'blue' assert components[0].name() == 'my name.1' def test_dis(): components = exp(sim.Pdf((Car, Bus, Truck), (50, 30, 20)), iat=1, number=1000) names = sim.Monitor() for component in components: names.tally(component.name().split('.')[0]) # names.print_histogram(values=True, sort_on_weight=True) if __name__ == "__main__": pytest.main(["-vv", "-s", __file__])
mit
-4,639,386,344,932,780,000
33.76
101
0.625547
false
imatge-upc/unsupervised-2017-cvprw
autoencoder_train.py
1
7127
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='1' from os import listdir import sys import time import tools.ops import subprocess import numpy as np import tensorflow as tf import scipy.misc as sm from models.autoencoder_net import * from tools.utilities import * from tools.ops import * from random import randint flags = tf.app.flags flags.DEFINE_integer('batch_size', 10, 'Batch size.') flags.DEFINE_integer('num_epochs', 2000, 'Number of epochs.') # ~13 min per epoch flags.DEFINE_integer('num_gpus', 4, 'Number of GPUs.') flags.DEFINE_integer('seq_length', 16, 'Length of each video clip.') flags.DEFINE_integer('height', 128, 'Height of video frame.') flags.DEFINE_integer('width', 128, 'Width of video frame.') flags.DEFINE_integer('channel', 3, 'Number of channels for each frame.') flags.DEFINE_integer('num_sample', 10060, 'Number of samples in this dataset.') FLAGS = flags.FLAGS prefix = 'autoencoder' model_save_dir = './ckpt/' + prefix logs_save_dir = './logs/' + prefix pred_save_dir = './output/' + prefix loss_save_dir = './loss' train_list_path = './dataset/trainlist.txt' dataset_path = './dataset/UCF-101-tf-records' evaluation_job = './jobs/autoencoder_val' use_pretrained_model = True save_predictions = True def run_training(): # Create model directory if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) model_filename = "./mfb_ae_ucf24.model" # Consturct computational graph tower_grads = [] tower_losses, tower_rec_losses, tower_wd_losses = [], [], [] global_step = tf.get_variable( 'global_step', [], initializer=tf.constant_initializer(0), trainable=False ) starter_learning_rate = 1e-4 learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 1000000, 0.8, staircase=True) opt = tf.train.AdamOptimizer(learning_rate) # Create a session for running Ops on the Graph. config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) coord = tf.train.Coordinator() threads = None train_list_file = open(train_list_path, 'r') train_list = train_list_file.read().splitlines() for i, line in enumerate(train_list): train_list[i] = os.path.join(dataset_path, train_list[i]) assert(len(train_list) % FLAGS.num_gpus == 0) num_for_each_gpu = len(train_list) // FLAGS.num_gpus clips_list = [] with sess.as_default(): for i in range(FLAGS.num_gpus): clips, _, _ = input_pipeline(train_list[i*num_for_each_gpu:(i+1)*num_for_each_gpu], \ FLAGS.batch_size, num_epochs=FLAGS.num_epochs, is_training=True) clips_list.append(clips) autoencoder_list = [] with tf.variable_scope('vars') as var_scope: for gpu_index in range(FLAGS.num_gpus): with tf.device('/gpu:%d' % (gpu_index)): with tf.name_scope('%s_%d' % ('tower', gpu_index)) as scope: # construct model autoencoder = autoencoder_net(clips_list[gpu_index], FLAGS.height, FLAGS.width, FLAGS.seq_length, \ FLAGS.channel, FLAGS.batch_size) autoencoder_list.append(autoencoder) loss, rec_loss, wd_loss = tower_loss(scope, autoencoder, clips_list[gpu_index]) var_scope.reuse_variables() vars_to_optimize = tf.trainable_variables() grads = opt.compute_gradients(loss, var_list=vars_to_optimize) tower_grads.append(grads) tower_losses.append(loss) tower_rec_losses.append(rec_loss) tower_wd_losses.append(wd_loss) # concatenate the losses of all towers loss_op = tf.reduce_mean(tower_losses) rec_loss_op = tf.reduce_mean(tower_rec_losses) wd_loss_op = tf.reduce_mean(tower_wd_losses) tf.summary.scalar('loss', loss_op) tf.summary.scalar('rec_loss', rec_loss_op) tf.summary.scalar('wd_loss', wd_loss_op) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) grads = average_gradients(tower_grads) with tf.control_dependencies(update_ops): train_op = opt.apply_gradients(grads, global_step=global_step) # saver for saving checkpoints saver = tf.train.Saver(max_to_keep=10) init = tf.initialize_all_variables() sess.run(init) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) if use_pretrained_model: print('[*] Loading checkpoint ...') model = tf.train.latest_checkpoint(model_save_dir) if model is not None: saver.restore(sess, model) print('[*] Loading success: %s!'%model) else: print('[*] Loading failed ...') # Create summary writer merged = tf.summary.merge_all() if not os.path.exists(logs_save_dir): os.makedirs(logs_save_dir) sum_writer = tf.summary.FileWriter(logs_save_dir, sess.graph) # Create prediction output folder if not os.path.exists(pred_save_dir): os.makedirs(pred_save_dir) # Create loss output folder if not os.path.exists(loss_save_dir): os.makedirs(loss_save_dir) loss_file = open(os.path.join(loss_save_dir, prefix+'.txt'), 'w') total_steps = (FLAGS.num_sample / (FLAGS.num_gpus * FLAGS.batch_size)) * FLAGS.num_epochs # start queue runner coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) gpu_idx = 0 try: with sess.as_default(): print('\n\n\n*********** start training ***********\n\n\n') while not coord.should_stop(): # Run training steps or whatever start_time = time.time() sess.run(train_op) duration = time.time() - start_time step = global_step.eval() if step == 1 or step % 10 == 0: # evaluate loss loss, rec_loss, wd_loss, lr = sess.run([loss_op, rec_loss_op, wd_loss_op, learning_rate]) line = 'step %d/%d, loss=%.8f, rec=%.8f, lwd=%.8f, dur=%.3f, lr=%.8f' \ %(step, total_steps, loss, rec_loss, wd_loss, duration, lr) print(line) loss_file.write(line + '\n') loss_file.flush() if step == 1 or step % 10 == 0: # save summary summary = summary_str = sess.run(merged) sum_writer.add_summary(summary, step) if step % 100 == 0 and save_predictions: # save current predictions clips = clips_list[gpu_idx] autoencoder = autoencoder_list[gpu_idx] gt_vid, rec_vid = sess.run([clips[0], autoencoder.rec_vid[0]]) gt_vid, rec_vid = (gt_vid+1)/2*255.0, (rec_vid+1)/2*255.0 rec_img = gen_pred_vid(rec_vid) gt_img = gen_pred_vid(gt_vid) save_img = np.concatenate((rec_img, gt_img)) sm.imsave(os.path.join(pred_save_dir, '%07d.jpg'%step), save_img) gpu_idx += 1 if gpu_idx == FLAGS.num_gpus: gpu_idx = 0 if step % 500 == 0: # save checkpoint saver.save(sess, os.path.join(model_save_dir, model_filename), global_step=global_step) if step % 500 == 0: pass # launch a new script for validation (please modify it for your own script) #subprocess.check_output(['python', evaluation_job]) except tf.errors.OutOfRangeError: print('Done training -- epoch limit reached') finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() def main(_): run_training() if __name__ == '__main__': tf.app.run()
mit
-5,307,854,796,434,053,000
30.816964
104
0.664515
false
pichillilorenzo/JavaScriptEnhancements
src/libs/__init__.py
1
1423
from . import global_vars from .javascript_enhancements_settings import javaScriptEnhancements from . import util from .node import NodeJS from .npm import NPM from .flow import main as flow from .flow.flow_cli import FlowCLI from .flow.flow_ide_server import FlowIDEServer, flow_ide_clients, JavascriptEnhancementsStartFlowIDEServerEventListener from .animation_loader import AnimationLoader from .repeated_timer import RepeatedTimer from .hook import Hook from .terminal import Terminal from .popup_manager import popup_manager from .socket import SocketClient from .socket import SocketServer from .folder_explorer import FolderExplorer from .window_view import window_view_manager, WindowView, JavascriptEnhancementsWindowViewKeypressCommand,JavascriptEnhancementsWindowViewEventListener from .execute_on_terminal import JavascriptEnhancementsExecuteOnTerminalCommand __all__ = [ "global_vars", "javaScriptEnhancements", "util", "NodeJS", "NPM", "AnimationLoader", "RepeatedTimer", "Hook", "Terminal", "popup_manager", "SocketClient", "SocketServer", "FolderExplorer", "window_view_manager", "WindowView", "JavascriptEnhancementsWindowViewKeypressCommand", "JavascriptEnhancementsWindowViewEventListener", "JavascriptEnhancementsExecuteOnTerminalCommand", "flow", "FlowCLI", "FlowIDEServer", "flow_ide_clients", "JavascriptEnhancementsStartFlowIDEServerEventListener" ]
mit
8,745,076,949,346,265,000
31.340909
151
0.804638
false
ESOedX/edx-platform
lms/djangoapps/commerce/tests/test_signals.py
1
13844
# coding=UTF-8 """ Tests for signal handling in commerce djangoapp. """ from __future__ import absolute_import, unicode_literals import base64 import json import ddt import httpretty import mock from django.conf import settings from django.contrib.auth.models import AnonymousUser from django.test import TestCase from django.test.utils import override_settings from opaque_keys.edx.keys import CourseKey from requests import Timeout from six.moves.urllib.parse import urljoin # pylint: disable=import-error from course_modes.models import CourseMode from student.signals import REFUND_ORDER from student.tests.factories import CourseEnrollmentFactory, UserFactory from ..models import CommerceConfiguration from ..utils import _generate_refund_notification_body, _send_refund_notification, create_zendesk_ticket from . import JSON from .mocks import mock_create_refund, mock_process_refund ZENDESK_URL = 'http://zendesk.example.com/' ZENDESK_USER = '[email protected]' ZENDESK_API_KEY = 'abc123' @ddt.ddt @override_settings(ZENDESK_URL=ZENDESK_URL, ZENDESK_USER=ZENDESK_USER, ZENDESK_API_KEY=ZENDESK_API_KEY) class TestRefundSignal(TestCase): """ Exercises logic triggered by the REFUND_ORDER signal. """ def setUp(self): super(TestRefundSignal, self).setUp() # Ensure the E-Commerce service user exists UserFactory(username=settings.ECOMMERCE_SERVICE_WORKER_USERNAME, is_staff=True) self.requester = UserFactory(username="test-requester") self.student = UserFactory( username="test-student", email="[email protected]", ) self.course_enrollment = CourseEnrollmentFactory( user=self.student, course_id=CourseKey.from_string('course-v1:org+course+run'), mode=CourseMode.VERIFIED, ) self.course_enrollment.refundable = mock.Mock(return_value=True) self.config = CommerceConfiguration.current() self.config.enable_automatic_refund_approval = True self.config.save() def send_signal(self): """ DRY helper: emit the REFUND_ORDER signal, as is done in common.djangoapps.student.models after a successful unenrollment. """ REFUND_ORDER.send(sender=None, course_enrollment=self.course_enrollment) @override_settings( ECOMMERCE_PUBLIC_URL_ROOT=None, ECOMMERCE_API_URL=None, ) def test_no_service(self): """ Ensure that the receiver quietly bypasses attempts to initiate refunds when there is no external service configured. """ with mock.patch('lms.djangoapps.commerce.signals.refund_seat') as mock_refund_seat: self.send_signal() self.assertFalse(mock_refund_seat.called) @mock.patch('lms.djangoapps.commerce.signals.refund_seat') def test_receiver(self, mock_refund_seat): """ Ensure that the REFUND_ORDER signal triggers correct calls to refund_seat(), when it is appropriate to do so. TODO (jsa): ideally we would assert that the signal receiver got wired up independently of the import statement in this module. I'm not aware of any reliable / sane way to do this. """ self.send_signal() self.assertTrue(mock_refund_seat.called) self.assertEqual(mock_refund_seat.call_args[0], (self.course_enrollment,)) # if the course_enrollment is not refundable, we should not try to initiate a refund. mock_refund_seat.reset_mock() self.course_enrollment.refundable = mock.Mock(return_value=False) self.send_signal() self.assertFalse(mock_refund_seat.called) @mock.patch('lms.djangoapps.commerce.signals.refund_seat') @mock.patch('lms.djangoapps.commerce.signals.get_request_user', return_value=None) def test_requester(self, mock_get_request_user, mock_refund_seat): """ Ensure the right requester is specified when initiating refunds. """ # no HTTP request/user: auth to commerce service as the unenrolled student. self.send_signal() self.assertTrue(mock_refund_seat.called) self.assertEqual(mock_refund_seat.call_args[0], (self.course_enrollment,)) # HTTP user is the student: auth to commerce service as the unenrolled student. mock_get_request_user.return_value = self.student mock_refund_seat.reset_mock() self.send_signal() self.assertTrue(mock_refund_seat.called) self.assertEqual(mock_refund_seat.call_args[0], (self.course_enrollment,)) # HTTP user is another user: auth to commerce service as the requester. mock_get_request_user.return_value = self.requester mock_refund_seat.reset_mock() self.send_signal() self.assertTrue(mock_refund_seat.called) self.assertEqual(mock_refund_seat.call_args[0], (self.course_enrollment,)) # HTTP user is another server (AnonymousUser): do not try to initiate a refund at all. mock_get_request_user.return_value = AnonymousUser() mock_refund_seat.reset_mock() self.send_signal() self.assertFalse(mock_refund_seat.called) @mock.patch('lms.djangoapps.commerce.signals.log.exception') def test_error_logging(self, mock_log_exception): """ Ensure that unexpected Exceptions are logged as errors (but do not break program flow). """ with mock_create_refund(status=500): self.send_signal() self.assertTrue(mock_log_exception.called) @mock.patch('lms.djangoapps.commerce.utils._send_refund_notification') def test_notification_when_approval_fails(self, mock_send_notification): """ Ensure the notification function is triggered when refunds are initiated, and cannot be automatically approved. """ refund_id = 1 failed_refund_id = 2 with mock_create_refund(status=201, response=[refund_id, failed_refund_id]): with mock_process_refund(refund_id, reset_on_exit=False): with mock_process_refund(failed_refund_id, status=500, reset_on_exit=False): self.send_signal() self.assertTrue(mock_send_notification.called) mock_send_notification.assert_called_with(self.course_enrollment.user, [failed_refund_id]) @mock.patch('lms.djangoapps.commerce.utils._send_refund_notification') def test_notification_if_automatic_approval_disabled(self, mock_send_notification): """ Ensure the notification is always sent if the automatic approval functionality is disabled. """ refund_id = 1 self.config.enable_automatic_refund_approval = False self.config.save() with mock_create_refund(status=201, response=[refund_id]): self.send_signal() self.assertTrue(mock_send_notification.called) mock_send_notification.assert_called_with(self.course_enrollment.user, [refund_id]) @mock.patch('lms.djangoapps.commerce.utils._send_refund_notification') def test_no_notification_after_approval(self, mock_send_notification): """ Ensure the notification function is triggered when refunds are initiated, and cannot be automatically approved. """ refund_id = 1 with mock_create_refund(status=201, response=[refund_id]): with mock_process_refund(refund_id, reset_on_exit=False): self.send_signal() self.assertFalse(mock_send_notification.called) last_request = httpretty.last_request() self.assertDictEqual(json.loads(last_request.body.decode('utf8')), {'action': 'approve_payment_only'}) @mock.patch('lms.djangoapps.commerce.utils._send_refund_notification') def test_notification_no_refund(self, mock_send_notification): """ Ensure the notification function is NOT triggered when no refunds are initiated """ with mock_create_refund(status=200, response=[]): self.send_signal() self.assertFalse(mock_send_notification.called) @mock.patch('lms.djangoapps.commerce.utils._send_refund_notification') @ddt.data( CourseMode.HONOR, CourseMode.PROFESSIONAL, CourseMode.AUDIT, CourseMode.NO_ID_PROFESSIONAL_MODE, CourseMode.CREDIT_MODE, ) def test_notification_not_verified(self, mode, mock_send_notification): """ Ensure the notification function is NOT triggered when the unenrollment is for any mode other than verified (i.e. any mode other than one for which refunds are presently supported). See the TODO associated with XCOM-371 in the signals module in the commerce package for more information. """ self.course_enrollment.mode = mode with mock_create_refund(status=200, response=[1, 2, 3]): self.send_signal() self.assertFalse(mock_send_notification.called) @mock.patch('lms.djangoapps.commerce.utils._send_refund_notification', side_effect=Exception("Splat!")) @mock.patch('lms.djangoapps.commerce.utils.log.warning') def test_notification_error(self, mock_log_warning, mock_send_notification): """ Ensure an error occuring during notification does not break program flow, but a warning is logged. """ with mock_create_refund(status=200, response=[1, 2, 3]): self.send_signal() self.assertTrue(mock_send_notification.called) self.assertTrue(mock_log_warning.called) @mock.patch('openedx.core.djangoapps.theming.helpers.is_request_in_themed_site', return_value=True) def test_notification_themed_site(self, mock_is_request_in_themed_site): # pylint: disable=unused-argument """ Ensure the notification function raises an Exception if used in the context of themed site. """ with self.assertRaises(NotImplementedError): _send_refund_notification(self.course_enrollment.user, [1, 2, 3]) @ddt.data('[email protected]', 'üñî[email protected]') @mock.patch('lms.djangoapps.commerce.utils.create_zendesk_ticket') def test_send_refund_notification(self, student_email, mock_zendesk): """ Verify the support team is notified of the refund request. """ refund_ids = [1, 2, 3] # pass a student with unicode and ascii email to ensure that # generate_refund_notification_body can handle formatting a unicode # message self.student.email = student_email _send_refund_notification(self.course_enrollment.user, refund_ids) body = _generate_refund_notification_body(self.student, refund_ids) mock_zendesk.assert_called_with( self.student.profile.name, self.student.email, "[Refund] User-Requested Refund", body, ['auto_refund'] ) def _mock_zendesk_api(self, status=201): """ Mock Zendesk's ticket creation API. """ httpretty.register_uri(httpretty.POST, urljoin(ZENDESK_URL, '/api/v2/tickets.json'), status=status, body='{}', content_type=JSON) def call_create_zendesk_ticket(self, name='Test user', email='[email protected]', subject='Test Ticket', body='I want a refund!', tags=None): """ Call the create_zendesk_ticket function. """ tags = tags or ['auto_refund'] return create_zendesk_ticket(name, email, subject, body, tags) @override_settings(ZENDESK_URL=ZENDESK_URL, ZENDESK_USER=None, ZENDESK_API_KEY=None) def test_create_zendesk_ticket_no_settings(self): """ Verify the Zendesk API is not called if the settings are not all set. """ with mock.patch('requests.post') as mock_post: success = self.call_create_zendesk_ticket() self.assertFalse(success) self.assertFalse(mock_post.called) def test_create_zendesk_ticket_request_error(self): """ Verify exceptions are handled appropriately if the request to the Zendesk API fails. We simply need to ensure the exception is not raised beyond the function. """ with mock.patch('requests.post', side_effect=Timeout) as mock_post: success = self.call_create_zendesk_ticket() self.assertFalse(success) self.assertTrue(mock_post.called) @httpretty.activate def test_create_zendesk_ticket(self): """ Verify the Zendesk API is called. """ self._mock_zendesk_api() name = 'Test user' email = '[email protected]' subject = 'Test Ticket' body = 'I want a refund!' tags = ['auto_refund'] ticket_created = self.call_create_zendesk_ticket(name, email, subject, body, tags) self.assertTrue(ticket_created) last_request = httpretty.last_request() # Verify the headers expected = { 'content-type': JSON, 'Authorization': 'Basic {}'.format(base64.b64encode( '{user}/token:{pwd}'.format(user=ZENDESK_USER, pwd=ZENDESK_API_KEY).encode('utf8')).decode('utf8') ) } self.assertDictContainsSubset(expected, last_request.headers) # Verify the content expected = { 'ticket': { 'requester': { 'name': name, 'email': email }, 'subject': subject, 'comment': {'body': body}, 'tags': ['LMS'] + tags } } self.assertDictEqual(json.loads(last_request.body.decode('utf8')), expected)
agpl-3.0
-3,551,410,567,111,405,000
41.457055
119
0.65306
false
ff94315/hiwifi-openwrt-HC5661-HC5761
staging_dir/host/lib/python2.7/encodings/punycode.py
586
6813
# -*- coding: iso-8859-1 -*- """ Codec for the Punicode encoding, as specified in RFC 3492 Written by Martin v. Löwis. """ import codecs ##################### Encoding ##################################### def segregate(str): """3.1 Basic code point segregation""" base = [] extended = {} for c in str: if ord(c) < 128: base.append(c) else: extended[c] = 1 extended = extended.keys() extended.sort() return "".join(base).encode("ascii"),extended def selective_len(str, max): """Return the length of str, considering only characters below max.""" res = 0 for c in str: if ord(c) < max: res += 1 return res def selective_find(str, char, index, pos): """Return a pair (index, pos), indicating the next occurrence of char in str. index is the position of the character considering only ordinals up to and including char, and pos is the position in the full string. index/pos is the starting position in the full string.""" l = len(str) while 1: pos += 1 if pos == l: return (-1, -1) c = str[pos] if c == char: return index+1, pos elif c < char: index += 1 def insertion_unsort(str, extended): """3.2 Insertion unsort coding""" oldchar = 0x80 result = [] oldindex = -1 for c in extended: index = pos = -1 char = ord(c) curlen = selective_len(str, char) delta = (curlen+1) * (char - oldchar) while 1: index,pos = selective_find(str,c,index,pos) if index == -1: break delta += index - oldindex result.append(delta-1) oldindex = index delta = 0 oldchar = char return result def T(j, bias): # Punycode parameters: tmin = 1, tmax = 26, base = 36 res = 36 * (j + 1) - bias if res < 1: return 1 if res > 26: return 26 return res digits = "abcdefghijklmnopqrstuvwxyz0123456789" def generate_generalized_integer(N, bias): """3.3 Generalized variable-length integers""" result = [] j = 0 while 1: t = T(j, bias) if N < t: result.append(digits[N]) return result result.append(digits[t + ((N - t) % (36 - t))]) N = (N - t) // (36 - t) j += 1 def adapt(delta, first, numchars): if first: delta //= 700 else: delta //= 2 delta += delta // numchars # ((base - tmin) * tmax) // 2 == 455 divisions = 0 while delta > 455: delta = delta // 35 # base - tmin divisions += 36 bias = divisions + (36 * delta // (delta + 38)) return bias def generate_integers(baselen, deltas): """3.4 Bias adaptation""" # Punycode parameters: initial bias = 72, damp = 700, skew = 38 result = [] bias = 72 for points, delta in enumerate(deltas): s = generate_generalized_integer(delta, bias) result.extend(s) bias = adapt(delta, points==0, baselen+points+1) return "".join(result) def punycode_encode(text): base, extended = segregate(text) base = base.encode("ascii") deltas = insertion_unsort(text, extended) extended = generate_integers(len(base), deltas) if base: return base + "-" + extended return extended ##################### Decoding ##################################### def decode_generalized_number(extended, extpos, bias, errors): """3.3 Generalized variable-length integers""" result = 0 w = 1 j = 0 while 1: try: char = ord(extended[extpos]) except IndexError: if errors == "strict": raise UnicodeError, "incomplete punicode string" return extpos + 1, None extpos += 1 if 0x41 <= char <= 0x5A: # A-Z digit = char - 0x41 elif 0x30 <= char <= 0x39: digit = char - 22 # 0x30-26 elif errors == "strict": raise UnicodeError("Invalid extended code point '%s'" % extended[extpos]) else: return extpos, None t = T(j, bias) result += digit * w if digit < t: return extpos, result w = w * (36 - t) j += 1 def insertion_sort(base, extended, errors): """3.2 Insertion unsort coding""" char = 0x80 pos = -1 bias = 72 extpos = 0 while extpos < len(extended): newpos, delta = decode_generalized_number(extended, extpos, bias, errors) if delta is None: # There was an error in decoding. We can't continue because # synchronization is lost. return base pos += delta+1 char += pos // (len(base) + 1) if char > 0x10FFFF: if errors == "strict": raise UnicodeError, ("Invalid character U+%x" % char) char = ord('?') pos = pos % (len(base) + 1) base = base[:pos] + unichr(char) + base[pos:] bias = adapt(delta, (extpos == 0), len(base)) extpos = newpos return base def punycode_decode(text, errors): pos = text.rfind("-") if pos == -1: base = "" extended = text else: base = text[:pos] extended = text[pos+1:] base = unicode(base, "ascii", errors) extended = extended.upper() return insertion_sort(base, extended, errors) ### Codec APIs class Codec(codecs.Codec): def encode(self,input,errors='strict'): res = punycode_encode(input) return res, len(input) def decode(self,input,errors='strict'): if errors not in ('strict', 'replace', 'ignore'): raise UnicodeError, "Unsupported error handling "+errors res = punycode_decode(input, errors) return res, len(input) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return punycode_encode(input) class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): if self.errors not in ('strict', 'replace', 'ignore'): raise UnicodeError, "Unsupported error handling "+self.errors return punycode_decode(input, self.errors) class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='punycode', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamwriter=StreamWriter, streamreader=StreamReader, )
gpl-2.0
5,143,402,574,014,110,000
27.62605
74
0.552033
false
groschovskiy/keyczar
cpp/src/tools/swtoolkit/test/help_test.py
18
2153
#!/usr/bin/python2.4 # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Test hammer displays SCons help for SCons help options (MEDIUM TEST).""" import TestFramework def main(): test = TestFramework.TestFramework() expect = "usage: scons [OPTION] [TARGET] ..." test.run(arguments="-h") test.fail_test(test.stdout().find(expect) == -1) test.run(arguments="--help") test.fail_test(test.stdout().find(expect) == -1) test.run(arguments="-H") test.fail_test(test.stdout().find(expect) == -1) test.run(arguments="--help-options") test.fail_test(test.stdout().find(expect) == -1) test.pass_test() return 0 if __name__ == "__main__": main()
apache-2.0
1,675,598,016,119,672,600
34.883333
75
0.741291
false
erdc-cm/air-water-vv
2d/floatingStructures/floating_caisson_chrono/redist_n.py
12
3054
from proteus.default_n import * from proteus import (StepControl, TimeIntegration, NonlinearSolvers, LinearSolvers, LinearAlgebraTools, NumericalFlux) from proteus.mprans import RDLS import redist_p as physics from proteus import Context ct = Context.get() domain = ct.domain nd = ct.domain.nd mesh = domain.MeshOptions # time stepping runCFL = ct.runCFL # mesh options nLevels = ct.nLevels parallelPartitioningType = mesh.parallelPartitioningType nLayersOfOverlapForParallel = mesh.nLayersOfOverlapForParallel restrictFineSolutionToAllMeshes = mesh.restrictFineSolutionToAllMeshes triangleOptions = mesh.triangleOptions elementQuadrature = ct.elementQuadrature elementBoundaryQuadrature = ct.elementBoundaryQuadrature femSpaces = {0: ct.basis} elementQuadrature = ct.elementQuadrature elementBoundaryQuadrature = ct.elementBoundaryQuadrature massLumping = False numericalFluxType = NumericalFlux.DoNothing conservativeFlux = None subgridError = RDLS.SubgridError(coefficients=physics.coefficients, nd=ct.domain.nd) shockCapturing = RDLS.ShockCapturing(coefficients=physics.coefficients, nd=ct.domain.nd, shockCapturingFactor=ct.rd_shockCapturingFactor, lag=ct.rd_lag_shockCapturing) fullNewtonFlag = True multilevelNonlinearSolver = NonlinearSolvers.Newton levelNonlinearSolver = NonlinearSolvers.Newton nonlinearSmoother = NonlinearSolvers.NLGaussSeidel linearSmoother = None matrix = LinearAlgebraTools.SparseMatrix if ct.useOldPETSc: multilevelLinearSolver = LinearSolvers.PETSc levelLinearSolver = LinearSolvers.PETSc else: multilevelLinearSolver = LinearSolvers.KSP_petsc4py levelLinearSolver = LinearSolvers.KSP_petsc4py if ct.useSuperlu: multilevelLinearSolver = LinearSolvers.LU levelLinearSolver = LinearSolvers.LU if ct.redist_Newton: timeIntegration = TimeIntegration.NoIntegration stepController = StepControl.Newton_controller maxNonlinearIts = 25 maxLineSearches = 0 nonlinearSolverConvergenceTest = 'rits' levelNonlinearSolverConvergenceTest = 'rits' linearSolverConvergenceTest = 'r-true' else: timeIntegration = TimeIntegration.BackwardEuler_cfl stepController = RDLS.PsiTC runCFL = 0.5 psitc['nStepsForce'] = 6 psitc['nStepsMax'] = 25 psitc['reduceRatio'] = 3.0 psitc['startRatio'] = 1.0 rtol_res[0] = 0.0 atol_res[0] = ct.rd_nl_atol_res useEisenstatWalker = False#True maxNonlinearIts = 1 maxLineSearches = 0 nonlinearSolverConvergenceTest = 'rits' levelNonlinearSolverConvergenceTest = 'rits' linearSolverConvergenceTest = 'r-true' linear_solver_options_prefix = 'rdls_' nl_atol_res = ct.rd_nl_atol_res tolFac = 0.0 linTolFac = 0.001 l_atol_res = 0.001*ct.rd_nl_atol_res useEisenstatWalker = False#True
mit
4,571,420,932,611,224,600
30.8125
88
0.714473
false
ishanic/scikit-learn
sklearn/manifold/tests/test_t_sne.py
162
9771
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) for init in ('random', 'pca'): tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, init=init, random_state=0) X_embedded = tsne.fit_transform(X) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0) X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, metric="precomputed", random_state=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca' or 'random'. assert_raises_regexp(ValueError, "'init' must be either 'pca' or 'random'", TSNE, init="not available") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_verbose(): random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded)))
bsd-3-clause
-2,494,690,223,185,617,400
34.791209
79
0.631767
false
adamreis/nyc-jazz
src/lib/werkzeug/testsuite/multipart/collect.py
78
1584
#!/usr/bin/env python """ Hacky helper application to collect form data. """ from werkzeug.serving import run_simple from werkzeug.wrappers import Request, Response def copy_stream(request): from os import mkdir from time import time folder = 'request-%d' % time() mkdir(folder) environ = request.environ f = file(folder + '/request.txt', 'wb+') f.write(environ['wsgi.input'].read(int(environ['CONTENT_LENGTH']))) f.flush() f.seek(0) environ['wsgi.input'] = f request.stat_folder = folder def stats(request): copy_stream(request) f1 = request.files['file1'] f2 = request.files['file2'] text = request.form['text'] f1.save(request.stat_folder + '/file1.bin') f2.save(request.stat_folder + '/file2.bin') file(request.stat_folder + '/text.txt', 'w').write(text.encode('utf-8')) return Response('Done.') def upload_file(request): return Response(''' <h1>Upload File</h1> <form action="" method="post" enctype="multipart/form-data"> <input type="file" name="file1"><br> <input type="file" name="file2"><br> <textarea name="text"></textarea><br> <input type="submit" value="Send"> </form> ''', mimetype='text/html') def application(environ, start_responseonse): request = Request(environ) if request.method == 'POST': response = stats(request) else: response = upload_file(request) return response(environ, start_responseonse) if __name__ == '__main__': run_simple('localhost', 5000, application, use_debugger=True)
mit
-1,148,820,576,218,409,100
27.285714
76
0.636364
false
mikhail-gorobets/chipsec
chipsec/modules/tools/smm/smm_ptr.py
8
24962
#CHIPSEC: Platform Security Assessment Framework #Copyright (c) 2010-2015, Intel Corporation # #This program is free software; you can redistribute it and/or #modify it under the terms of the GNU General Public License #as published by the Free Software Foundation; Version 2. # #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with this program; if not, write to the Free Software #Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # #Contact information: #[email protected] # """ CanSecWest 2015 `A New Class of Vulnerability in SMI Handlers of BIOS/UEFI Firmware <https://cansecwest.com/slides/2015/A%20New%20Class%20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf>`_ A tool to test SMI handlers for pointer validation vulnerabilities Usage: ``chipsec_main -m tools.smm.smm_ptr -l log.txt \`` ``[-a <mode>,<config_file>|<smic_start:smic_end>,<size>,<address>]`` - ``mode``: SMI fuzzing mode * ``config`` = use SMI configuration file <config_file> * ``fuzz`` = fuzz all SMI handlers with code in the range <smic_start:smic_end> * ``fuzzmore`` = fuzz mode + pass 2nd-order pointers within buffer to SMI handlers - ``size``: size of the memory buffer (in Hex) - ``address``: physical address of memory buffer to pass in GP regs to SMI handlers (in Hex) * ``smram`` = option passes address of SMRAM base (system may hang in this mode!) In ``config`` mode, SMI configuration file should have the following format :: SMI_code=<SMI code> or * SMI_data=<SMI data> or * RAX=<value of RAX> or * or PTR or VAL RBX=<value of RBX> or * or PTR or VAL RCX=<value of RCX> or * or PTR or VAL RDX=<value of RDX> or * or PTR or VAL RSI=<value of RSI> or * or PTR or VAL RDI=<value of RDI> or * or PTR or VAL [PTR_OFFSET=<offset to pointer in the buffer>] [SIG=<signature>] [SIG_OFFSET=<offset to signature in the buffer>] [Name=<SMI name>] [Desc=<SMI description>] Where - ``[]``: optional line - ``*``: Don't Care (the module will replace * with 0x0) - ``PTR``: Physical address SMI handler will write to (the module will replace PTR with physical address provided as a command-line argument) - ``VAL``: Value SMI handler will write to PTR address (the module will replace VAL with hardcoded _FILL_VALUE_xx) """ from chipsec.module_common import * from chipsec.file import * from chipsec.hal.interrupts import Interrupts #logger.VERBOSE = False ################################################################# # Fuzzing configuration ################################################################# # # Logging option # # False - better performance, True - better results tracking DUMP_MEMORY_ON_DETECT = False # False - better performance, True - better results tracking FLUSH_OUTPUT_ALWAYS = False # makes sure SMI code is logged in case of a crash FLUSH_OUTPUT_AFTER_SMI = True # dump all registers in log before every SMI (True - large size of log file) DUMP_GPRS_EVERY_SMI = True # # SMI fuzzing options # # stop fuzzing after the first potential issue detected FUZZ_BAIL_ON_1ST_DETECT = True # Consider SMI handler subfunctions are passed in RCX GP register # Fuzz RCX as SMI subfunctions: from 0 to MAX_SMI_FUNCTIONS # False - better performance, True - smarter fuzzing FUZZ_SMI_FUNCTIONS_IN_ECX = True MAX_SMI_FUNCTIONS = 0x10 # Max value of the value written to SMI data port (0xB3) MAX_SMI_DATA = 0x100 # # Pass the pointer to SMI handlers in all general-purpose registers # rather than in one register # True - faster, False - gives you specific GPR that the vulnerable SMI handler is consuming # PTR_IN_ALL_GPRS = False # # SMI handler may take a pointer/PA from (some offset of off) address passed in GPRs and write to it # Treat contents at physical address passed in GPRs as pointers and check contents at that pointer # If they changed, SMI handler might have modified them # #MODE_SECOND_ORDER_BUFFER = True # Max offset of the pointer (physical address) # of the 2nd order buffer written in the memory buffer passed to SMI MAX_PTR_OFFSET_IN_BUFFER = 0x20 # very obscure option, don't even try to understand GPR_2ADDR = False # # Defaults # _FILL_VALUE_QWORD = 0x5A5A5A5A5A5A5A5A _FILL_VALUE_BYTE = 0x5A _SMI_CODE_DATA = 0x0 _MEM_FILL_VALUE = chr(0x11) _MEM_FILL_SIZE = 0x500 _MAX_ALLOC_PA = 0xFFFFFFFF _DEFAULT_GPRS = {'rax' : _FILL_VALUE_QWORD, 'rbx' : _FILL_VALUE_QWORD, 'rcx' : _FILL_VALUE_QWORD, 'rdx' : _FILL_VALUE_QWORD, 'rsi' : _FILL_VALUE_QWORD, 'rdi' : _FILL_VALUE_QWORD} _pth = 'smm_ptr' class BadSMIDetected (RuntimeError): pass class smi_desc( object ): def __init__(self): self.smi_code = None self.smi_data = None self.name = 'smi' self.desc = '' self.gprs = _DEFAULT_GPRS self.ptr_in_buffer = False self.ptr = None self.ptr_offset = 0 self.sig = None self.sig_offset = 0 def DIFF( s, t, sz ): return [ pos for pos in range( sz ) if s[pos] != t[pos] ] def FILL_BUFFER( _fill_byte, _fill_size, _ptr_in_buffer, _ptr, _ptr_offset, _sig, _sig_offset ): fill_buf = _fill_byte*_fill_size if _ptr_in_buffer and _ptr is not None: fill_buf = fill_buf[ : _ptr_offset ] + struct.pack('=I',_ptr&0xFFFFFFFF) + fill_buf[ _ptr_offset + 4 : ] if _sig is not None: fill_buf = fill_buf[ : _sig_offset ] + _sig + fill_buf[ _sig_offset + len(_sig) : ] return fill_buf class smm_ptr(BaseModule): def __init__(self): BaseModule.__init__(self) self.interrupts = Interrupts( self.cs ) self.is_check_memory = True self.test_ptr_in_buffer = False self.fill_byte = _MEM_FILL_VALUE self.fill_size = _MEM_FILL_SIZE def is_supported(self): return True def fill_memory( self, _addr, is_ptr_in_buffer, _ptr, _ptr_offset, _sig, _sig_offset ): # # Fill in contents at PA = _addr with known pattern to check later if any SMI handler modifies them # fill_buf = FILL_BUFFER( self.fill_byte, self.fill_size, is_ptr_in_buffer, _ptr, _ptr_offset, _sig, _sig_offset ) s = "[*] writing 0x%X bytes at 0x%016X" % (self.fill_size, _addr) if is_ptr_in_buffer: s += " -> PTR at +0x%X" % _ptr_offset if _sig is not None: s += " -> SIG at +0x%X" % _sig_offset self.logger.log( s ) self.cs.mem.write_physical_mem( _addr, self.fill_size, fill_buf ) if self.logger.VERBOSE: self.logger.log( "filling in contents at PA 0x%016X:" % _addr ) chipsec.logger.print_buffer( fill_buf ) if is_ptr_in_buffer and _ptr is not None: self.logger.log( "[*] writing buffer at PA 0x%016X with 0x%X bytes '%c'" % (_ptr, self.fill_size, self.fill_byte) ) self.cs.mem.write_physical_mem( _ptr, self.fill_size, self.fill_byte*self.fill_size ) return True def send_smi( self, thread_id, smi_code, smi_data, name, desc, rax, rbx, rcx, rdx, rsi, rdi ): self.logger.log( " > SMI %02X (data: %02X)" % (smi_code,smi_data) ) if DUMP_GPRS_EVERY_SMI: self.logger.log( " RAX: 0x%016X\n RBX: 0x%016X\n RCX: 0x%016X\n RDX: 0x%016X\n RSI: 0x%016X\n RDI: 0x%016X" % (rax,rbx,rcx,rdx,rsi,rdi) ) self.interrupts.send_SW_SMI( thread_id, smi_code, smi_data, rax, rbx, rcx, rdx, rsi, rdi ) return True def check_memory( self, _addr, _smi_desc, fn, restore_contents=False ): _ptr = _smi_desc.ptr filler = self.fill_byte*self.fill_size # # Check if contents have changed at physical address passed in GPRs to SMI handler # If changed, SMI handler might have written to that address # self.logger.log( " < checking buffers" ) expected_buf = FILL_BUFFER( self.fill_byte, self.fill_size, _smi_desc.ptr_in_buffer, _smi_desc.ptr, _smi_desc.ptr_offset, _smi_desc.sig, _smi_desc.sig_offset ) buf = self.cs.mem.read_physical_mem( _addr, self.fill_size ) differences = DIFF( expected_buf, buf, self.fill_size ) _changed = (len(differences) > 0) if self.logger.VERBOSE: self.logger.log( "checking contents at PA 0x%016X:" % _addr ) chipsec.logger.print_buffer( buf ) self.logger.log( "expected contents:" ) chipsec.logger.print_buffer( expected_buf ) if _changed: self.logger.log( " contents changed at 0x%016X +%s" % (_addr,differences) ) if restore_contents: self.logger.log( " restoring 0x%X bytes at 0x%016X" % (self.fill_size, _addr) ) self.cs.mem.write_physical_mem( _addr, self.fill_size, expected_buf ) if DUMP_MEMORY_ON_DETECT: _pth_smi = os.path.join( _pth, '%X_%s'% (_smi_desc.smi_code,_smi_desc.name) ) if not os.path.exists( _pth_smi ): os.makedirs( _pth_smi ) _f = os.path.join( _pth_smi, fn + '.dmp' ) self.logger.log( " dumping buffer to '%s'" % _f ) write_file( _f, buf ) _changed1 = False expected_buf = filler if _smi_desc.ptr_in_buffer and _ptr is not None: buf1 = self.cs.mem.read_physical_mem( _ptr, self.fill_size ) differences1 = DIFF( expected_buf, buf1, self.fill_size ) _changed1 = (len(differences1) > 0) if self.logger.VERBOSE: self.logger.log( "checking contents at PA 0x%016X:" % _ptr ) chipsec.logger.print_buffer( buf1 ) if _changed1: self.logger.log( " contents changed at 0x%016X +%s" % (_ptr,differences1) ) if restore_contents: self.logger.log( " restoring 0x%X bytes at PA 0x%016X" % (self.fill_size, _ptr) ) self.cs.mem.write_physical_mem( _ptr, self.fill_size, expected_buf ) if DUMP_MEMORY_ON_DETECT: _pth_smi = os.path.join( _pth, '%X_%s'% (_smi_desc.smi_code,_smi_desc.name) ) if not os.path.exists( _pth_smi ): os.makedirs( _pth_smi ) _f = os.path.join( _pth_smi, fn + ('_ptr%X.dmp' % _smi_desc.ptr_offset) ) self.logger.log( " dumping buffer to '%s'" % _f ) write_file( _f, buf1 ) return (_changed or _changed1) def smi_fuzz_iter( self, thread_id, _addr, _smi_desc, fill_contents=True, restore_contents=False ): # # Fill memory buffer if not in 'No Fill' mode # if self.is_check_memory and fill_contents: self.fill_memory( _addr, _smi_desc.ptr_in_buffer, _smi_desc.ptr, _smi_desc.ptr_offset, _smi_desc.sig, _smi_desc.sig_offset ) # # Invoke SW SMI Handler # _rax = _smi_desc.gprs['rax'] _rbx = _smi_desc.gprs['rbx'] _rcx = _smi_desc.gprs['rcx'] _rdx = _smi_desc.gprs['rdx'] _rsi = _smi_desc.gprs['rsi'] _rdi = _smi_desc.gprs['rdi'] self.send_smi( thread_id, _smi_desc.smi_code, _smi_desc.smi_data, _smi_desc.name, _smi_desc.desc, _rax, _rbx, _rcx, _rdx, _rsi, _rdi ) # # Check memory buffer if not in 'No Fill' mode # contents_changed = False if self.is_check_memory: fn = '%X-a%X_b%X_c%X_d%X_si%X_di%X' % (_smi_desc.smi_data,_rax,_rbx,_rcx,_rdx,_rsi,_rdi) contents_changed = self.check_memory( _addr, _smi_desc, fn, restore_contents ) if contents_changed: msg = "DETECTED: SMI# %X data %X (rax=%X rbx=%X rcx=%X rdx=%X rsi=%X rdi=%X)" % (_smi_desc.smi_code,_smi_desc.smi_data,_rax,_rbx,_rcx,_rdx,_rsi,_rdi) self.logger.log_important( msg ) if FUZZ_BAIL_ON_1ST_DETECT: raise BadSMIDetected, msg if FLUSH_OUTPUT_AFTER_SMI: self.logger.flush() return contents_changed def test_config( self, thread_id, _smi_config_fname, _addr, _addr1 ): # # Parse SMM config file describing SMI handlers and their call arguments # Then invoke SMI handlers # fcfg = open( _smi_config_fname, 'r' ) self.logger.log( "\n[*] >>> Testing SMI handlers defined in '%s'.." % _smi_config_fname ) bad_ptr_cnt = 0 _smi_desc = smi_desc() for line in fcfg: if '' == line.strip(): self.logger.log( "\n[*] testing SMI# 0x%02X (data: 0x%02X) %s (%s)" % (_smi_desc.smi_code,_smi_desc.smi_data,_smi_desc.name,_smi_desc.desc) ) if self.smi_fuzz_iter( thread_id, _addr, _smi_desc ): bad_ptr_cnt += 1 _smi_desc = None _smi_desc = smi_desc() else: name, var = line.strip().partition('=')[::2] _n = name.strip().lower() if 'name' == _n: _smi_desc.name = var elif 'desc' == _n: _smi_desc.desc = var elif 'smi_code' == _n: _smi_desc.smi_code = int(var,16) if '*'!=var else _SMI_CODE_DATA elif 'smi_data' == _n: _smi_desc.smi_data = int(var,16) if '*'!=var else _SMI_CODE_DATA elif 'ptr_offset' == _n: _smi_desc.ptr_in_buffer = True _smi_desc.ptr_offset = int(var,16) _smi_desc.ptr = _addr1 elif 'sig' == _n: _smi_desc.sig = str( bytearray.fromhex( var ) ) elif 'sig_offset' == _n: _smi_desc.sig_offset = int(var,16) else: _smi_desc.gprs[ _n ] = ( _addr if 'PTR'==var else (_FILL_VALUE_BYTE if 'VAL'==var else int(var,16)) ) if '*'!=var else _FILL_VALUE_QWORD return bad_ptr_cnt def test_fuzz( self, thread_id, smic_start, smic_end, _addr, _addr1 ): gpr_value = ((_addr<<32)|_addr) if GPR_2ADDR else _addr gprs_addr = {'rax' : gpr_value, 'rbx' : gpr_value, 'rcx' : gpr_value, 'rdx' : gpr_value, 'rsi' : gpr_value, 'rdi' : gpr_value} gprs_fill = {'rax' : _FILL_VALUE_QWORD, 'rbx' : _FILL_VALUE_QWORD, 'rcx' : _FILL_VALUE_QWORD, 'rdx' : _FILL_VALUE_QWORD, 'rsi' : _FILL_VALUE_QWORD, 'rdi' : _FILL_VALUE_QWORD} self.logger.log( "\n[*] >>> Fuzzing SMI handlers.." ) self.logger.log( "[*] AX in RAX will be overwridden with values of SW SMI ports 0xB2/0xB3" ) self.logger.log( " DX in RDX will be overwridden with value 0x00B2" ) bad_ptr_cnt = 0 _smi_desc = smi_desc() _smi_desc.gprs = gprs_addr if PTR_IN_ALL_GPRS else gprs_fill self.logger.log( "\n[*] Setting values of general purpose registers to 0x%016X" % _smi_desc.gprs['rax'] ) max_ptr_off = 1 if self.is_check_memory and self.test_ptr_in_buffer: _smi_desc.ptr_in_buffer = True _smi_desc.ptr = _addr1 max_ptr_off = MAX_PTR_OFFSET_IN_BUFFER+1 # if we are not in fuzzmore mode, i.e. we are not testing the pointer within memory buffer # then this outer loop will only have 1 iteration for off in range(max_ptr_off): _smi_desc.ptr_offset = off self.logger.log( "\n[*] reloading buffer with PTR at offset 0x%X.." % off ) if self.is_check_memory: self.fill_memory( _addr, _smi_desc.ptr_in_buffer, _smi_desc.ptr, _smi_desc.ptr_offset, None, None ) for smi_code in range(smic_start, smic_end + 1, 1): _smi_desc.smi_code = smi_code for smi_data in range(MAX_SMI_DATA): _smi_desc.smi_data = smi_data self.logger.log( "\n[*] fuzzing SMI# 0x%02X (data: 0x%02X)" % (smi_code,smi_data) ) if FUZZ_SMI_FUNCTIONS_IN_ECX: for _rcx in range(MAX_SMI_FUNCTIONS): self.logger.log( " >> function (RCX): 0x%016X" % _rcx ) _smi_desc.gprs['rcx'] = _rcx if PTR_IN_ALL_GPRS: if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 else: self.logger.log( " RBX: 0x%016X" % _addr ) _smi_desc.gprs['rbx'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rbx'] = _FILL_VALUE_QWORD self.logger.log( " RSI: 0x%016X" % _addr ) _smi_desc.gprs['rsi'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rsi'] = _FILL_VALUE_QWORD self.logger.log( " RDI: 0x%016X" % _addr ) _smi_desc.gprs['rdi'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rdi'] = _FILL_VALUE_QWORD else: if PTR_IN_ALL_GPRS: if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 else: self.logger.log( " RBX: 0x%016X" % _addr ) _smi_desc.gprs['rbx'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rbx'] = _FILL_VALUE_QWORD self.logger.log( " RCX: 0x%016X" % _addr ) _smi_desc.gprs['rcx'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rcx'] = _FILL_VALUE_QWORD self.logger.log( " RSI: 0x%016X" % _addr ) _smi_desc.gprs['rsi'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rsi'] = _FILL_VALUE_QWORD self.logger.log( " RDI: 0x%016X" % _addr ) _smi_desc.gprs['rdi'] = gpr_value if self.smi_fuzz_iter( thread_id, _addr, _smi_desc, False, True ): bad_ptr_cnt += 1 _smi_desc.gprs['rdi'] = _FILL_VALUE_QWORD return bad_ptr_cnt def run( self, module_argv ): self.logger.start_test( "A tool to test SMI handlers for pointer validation vulnerabilies" ) self.logger.log( "Usage: chipsec_main -m tools.smm.smm_ptr [ -a <mode>,<config_file>|<smic_start:smic_end>,<size>,<address> ]" ) self.logger.log( " mode SMI handlers testing mode" ) self.logger.log( " = config use SMI configuration file <config_file>" ) self.logger.log( " = fuzz fuzz all SMI handlers with code in the range <smic_start:smic_end>" ) self.logger.log( " = fuzzmore fuzz mode + pass '2nd-order' pointers within buffer to SMI handlers") self.logger.log( " size size of the memory buffer (in Hex)" ) self.logger.log( " address physical address of memory buffer to pass in GP regs to SMI handlers (in Hex)" ) self.logger.log( " = smram pass address of SMRAM base (system may hang in this mode!)\n" ) test_mode = 'config' _smi_config_fname = 'chipsec/modules/tools/smm/smm_config.ini' _addr = None _addr1 = None thread_id = 0x0 global DUMP_GPRS_EVERY_SMI if len(module_argv) > 1: test_mode = module_argv[0].lower() if 'config' == test_mode: _smi_config_fname = module_argv[1] elif 'fuzz' == test_mode or 'fuzzmore' == test_mode: smic_arr = module_argv[1].split(':') smic_start = int(smic_arr[0],16) smic_end = int(smic_arr[1],16) if 'fuzzmore' == test_mode: self.test_ptr_in_buffer = True DUMP_GPRS_EVERY_SMI = False else: self.logger.error( "Unknown fuzzing mode '%s'" % module_argv[0] ) return ModuleResult.ERROR if len(module_argv) > 2: self.fill_size = int(module_argv[2],16) if len(module_argv) > 3: if 'smram' == module_argv[3]: (_addr, smram_limit, smram_size) = self.cs.cpu.get_SMRAM() self.is_check_memory = False self.logger.log( "[*] Using SMRAM base address (0x%016X) to pass to SMI handlers" % _addr ) else: _addr = int(module_argv[3],16) self.logger.log( "[*] Using address from command-line (0x%016X) to pass to SMI handlers" % _addr ) else: (va, _addr) = self.cs.mem.alloc_physical_mem( self.fill_size, _MAX_ALLOC_PA ) self.logger.log( "[*] Allocated memory buffer (to pass to SMI handlers) : 0x%016X" % _addr ) if self.is_check_memory: (va1, _addr1) = self.cs.mem.alloc_physical_mem( self.fill_size, _MAX_ALLOC_PA ) self.logger.log( "[*] Allocated 2nd buffer (address will be in the 1st buffer): 0x%016X" % _addr1 ) # # @TODO: Need to check that SW/APMC SMI is enabled # self.logger.log( "\n[*] Configuration" ) self.logger.log( " SMI testing mode : %s" % test_mode ) if 'config' == test_mode: self.logger.log( " Config file : %s" % _smi_config_fname ) else: self.logger.log( " Range of SMI codes (B2) : 0x%02X:0x%02X" % (smic_start,smic_end) ) self.logger.log( " Memory buffer pointer : 0x%016X (address passed in GP regs to SMI)" % _addr ) self.logger.log( " Filling/checking memory? : %s" % ('YES' if self.is_check_memory else 'NO')) if self.is_check_memory: self.logger.log( " Second buffer pointer : 0x%016X (address written to memory buffer)" % _addr1 ) self.logger.log( " Number of bytes to fill : 0x%X" % self.fill_size ) self.logger.log( " Byte to fill with : 0x%X" % ord(self.fill_byte) ) self.logger.log( " Additional options (can be changed in the source code):" ) self.logger.log( " Fuzzing SMI functions in ECX? : %d" % FUZZ_SMI_FUNCTIONS_IN_ECX ) self.logger.log( " Max value of SMI function in ECX : 0x%X" % MAX_SMI_FUNCTIONS ) self.logger.log( " Max value of SMI data (B3) : 0x%X" % MAX_SMI_DATA ) self.logger.log( " Max offset of the pointer in the buffer: 0x%X" % MAX_PTR_OFFSET_IN_BUFFER ) self.logger.log( " Passing pointer in all GP registers? : %d" % PTR_IN_ALL_GPRS ) self.logger.log( " Default values of the registers : 0x%016X" % _FILL_VALUE_QWORD ) self.logger.log( " Dump all register values every SMI : %d" % DUMP_GPRS_EVERY_SMI ) self.logger.log( " Bail on first detection : %d" % FUZZ_BAIL_ON_1ST_DETECT ) self.logger.set_always_flush( FLUSH_OUTPUT_ALWAYS ) if DUMP_MEMORY_ON_DETECT and not os.path.exists( _pth ): os.makedirs( _pth ) bad_ptr_cnt = 0 try: if 'config' == test_mode: bad_ptr_cnt = self.test_config( thread_id, _smi_config_fname, _addr, _addr1 ) elif 'fuzz' == test_mode or 'fuzzmore' == test_mode: bad_ptr_cnt = self.test_fuzz ( thread_id, smic_start, smic_end, _addr, _addr1 ) except BadSMIDetected, msg: bad_ptr_cnt = 1 self.logger.log_important( "Potentially bad SMI detected! Stopped fuzing (see FUZZ_BAIL_ON_1ST_DETECT option)" ) if bad_ptr_cnt > 0: self.logger.log_bad( "<<< Done: found %d potential occurrences of unchecked input pointers" % bad_ptr_cnt ) else: self.logger.log_good( "<<< Done: didn't find unchecked input pointers in tested SMI handlers" ) res = ModuleResult.FAILED if (bad_ptr_cnt > 0) else ModuleResult.PASSED return res
gpl-2.0
3,814,541,026,084,775,000
47.469903
182
0.557367
false
afaheem88/rally
tests/unit/plugins/openstack/scenarios/sahara/test_node_group_templates.py
12
3700
# Copyright 2014: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from rally.plugins.openstack.scenarios.sahara import (node_group_templates as ngts) from tests.unit import test SAHARA_NGTS = ("rally.plugins.openstack.scenarios.sahara.node_group_templates" ".SaharaNodeGroupTemplates") class SaharaNodeGroupTemplatesTestCase(test.TestCase): def setUp(self): super(SaharaNodeGroupTemplatesTestCase, self).setUp() self.context = test.get_test_context() @mock.patch(SAHARA_NGTS + "._list_node_group_templates") @mock.patch(SAHARA_NGTS + "._create_master_node_group_template", return_value=object()) @mock.patch(SAHARA_NGTS + "._create_worker_node_group_template", return_value=object) def test_create_and_list_node_group_templates( self, mock__create_worker_node_group_template, mock__create_master_node_group_template, mock__list_node_group_templates): ngts_scenario = ngts.SaharaNodeGroupTemplates(self.context) ngts_scenario.create_and_list_node_group_templates("test_flavor", "test_plugin", "test_version") mock__create_master_node_group_template.assert_called_once_with( flavor_id="test_flavor", plugin_name="test_plugin", hadoop_version="test_version") mock__create_worker_node_group_template.assert_called_once_with( flavor_id="test_flavor", plugin_name="test_plugin", hadoop_version="test_version") mock__list_node_group_templates.assert_called_once_with() @mock.patch(SAHARA_NGTS + "._delete_node_group_template") @mock.patch(SAHARA_NGTS + "._create_master_node_group_template", return_value=mock.MagicMock(id=1)) @mock.patch(SAHARA_NGTS + "._create_worker_node_group_template", return_value=mock.MagicMock(id=2)) def test_create_delete_node_group_templates( self, mock__create_worker_node_group_template, mock__create_master_node_group_template, mock__delete_node_group_template): ngts_scenario = ngts.SaharaNodeGroupTemplates(self.context) ngts_scenario.create_delete_node_group_templates( "test_flavor", "test_plugin", "test_version") mock__create_master_node_group_template.assert_called_once_with( flavor_id="test_flavor", plugin_name="test_plugin", hadoop_version="test_version") mock__create_worker_node_group_template.assert_called_once_with( flavor_id="test_flavor", plugin_name="test_plugin", hadoop_version="test_version") mock__delete_node_group_template.assert_has_calls(calls=[ mock.call(mock__create_master_node_group_template.return_value), mock.call(mock__create_worker_node_group_template.return_value)])
apache-2.0
-6,835,626,747,357,833,000
42.023256
78
0.627027
false
flingone/frameworks_base_cmds_remoted
libs/boost/libs/python/pyste/src/Pyste/infos.py
13
9212
# Copyright Bruno da Silva de Oliveira 2003. Use, modification and # distribution is subject to the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os.path import copy import exporters from ClassExporter import ClassExporter from FunctionExporter import FunctionExporter from EnumExporter import EnumExporter from HeaderExporter import HeaderExporter from VarExporter import VarExporter from CodeExporter import CodeExporter from exporterutils import FunctionWrapper from utils import makeid import warnings #============================================================================== # DeclarationInfo #============================================================================== class DeclarationInfo: def __init__(self, otherInfo=None): self.__infos = {} self.__attributes = {} if otherInfo is not None: self.__infos = copy.deepcopy(otherInfo.__infos) self.__attributes = copy.deepcopy(otherInfo.__attributes) def __getitem__(self, name): 'Used to access sub-infos' if name.startswith('__'): raise AttributeError default = DeclarationInfo() default._Attribute('name', name) return self.__infos.setdefault(name, default) def __getattr__(self, name): return self[name] def _Attribute(self, name, value=None): if value is None: # get value return self.__attributes.get(name) else: # set value self.__attributes[name] = value def AddExporter(self, exporter): # this was causing a much serious bug, as reported by Niall Douglas: # another solution must be found! #if not exporters.importing: if exporter not in exporters.exporters: exporters.exporters.append(exporter) exporter.interface_file = exporters.current_interface #============================================================================== # FunctionInfo #============================================================================== class FunctionInfo(DeclarationInfo): def __init__(self, name, include, tail=None, otherOption=None, exporter_class = FunctionExporter): DeclarationInfo.__init__(self, otherOption) self._Attribute('name', name) self._Attribute('include', include) self._Attribute('exclude', False) # create a FunctionExporter exporter = exporter_class(InfoWrapper(self), tail) self.AddExporter(exporter) #============================================================================== # ClassInfo #============================================================================== class ClassInfo(DeclarationInfo): def __init__(self, name, include, tail=None, otherInfo=None, exporter_class = ClassExporter): DeclarationInfo.__init__(self, otherInfo) self._Attribute('name', name) self._Attribute('include', include) self._Attribute('exclude', False) # create a ClassExporter exporter = exporter_class(InfoWrapper(self), tail) self.AddExporter(exporter) #============================================================================== # templates #============================================================================== def GenerateName(name, type_list): name = name.replace('::', '_') names = [name] + type_list return makeid('_'.join(names)) class ClassTemplateInfo(DeclarationInfo): def __init__(self, name, include, exporter_class = ClassExporter): DeclarationInfo.__init__(self) self._Attribute('name', name) self._Attribute('include', include) self._exporter_class = exporter_class def Instantiate(self, type_list, rename=None): if not rename: rename = GenerateName(self._Attribute('name'), type_list) # generate code to instantiate the template types = ', '.join(type_list) tail = 'typedef %s< %s > %s;\n' % (self._Attribute('name'), types, rename) tail += 'void __instantiate_%s()\n' % rename tail += '{ sizeof(%s); }\n\n' % rename # create a ClassInfo class_ = ClassInfo(rename, self._Attribute('include'), tail, self, exporter_class = self._exporter_class) return class_ def __call__(self, types, rename=None): if isinstance(types, str): types = types.split() return self.Instantiate(types, rename) #============================================================================== # EnumInfo #============================================================================== class EnumInfo(DeclarationInfo): def __init__(self, name, include, exporter_class = EnumExporter): DeclarationInfo.__init__(self) self._Attribute('name', name) self._Attribute('include', include) self._Attribute('exclude', False) self._Attribute('export_values', False) exporter = exporter_class(InfoWrapper(self)) self.AddExporter(exporter) #============================================================================== # HeaderInfo #============================================================================== class HeaderInfo(DeclarationInfo): def __init__(self, include, exporter_class = HeaderExporter): warnings.warn('AllFromHeader is not working in all cases in the current version.') DeclarationInfo.__init__(self) self._Attribute('include', include) exporter = exporter_class(InfoWrapper(self)) self.AddExporter(exporter) #============================================================================== # VarInfo #============================================================================== class VarInfo(DeclarationInfo): def __init__(self, name, include, exporter_class = VarExporter): DeclarationInfo.__init__(self) self._Attribute('name', name) self._Attribute('include', include) exporter = exporter_class(InfoWrapper(self)) self.AddExporter(exporter) #============================================================================== # CodeInfo #============================================================================== class CodeInfo(DeclarationInfo): def __init__(self, code, section, exporter_class = CodeExporter): DeclarationInfo.__init__(self) self._Attribute('code', code) self._Attribute('section', section) exporter = exporter_class(InfoWrapper(self)) self.AddExporter(exporter) #============================================================================== # InfoWrapper #============================================================================== class InfoWrapper: 'Provides a nicer interface for a info' def __init__(self, info): self.__dict__['_info'] = info # so __setattr__ is not called def __getitem__(self, name): return InfoWrapper(self._info[name]) def __getattr__(self, name): return self._info._Attribute(name) def __setattr__(self, name, value): self._info._Attribute(name, value) #============================================================================== # Functions #============================================================================== def exclude(info): info._Attribute('exclude', True) def set_policy(info, policy): info._Attribute('policy', policy) def rename(info, name): info._Attribute('rename', name) def set_wrapper(info, wrapper): if isinstance(wrapper, str): wrapper = FunctionWrapper(wrapper) info._Attribute('wrapper', wrapper) def instantiate(template, types, rename=None): if isinstance(types, str): types = types.split() return template.Instantiate(types, rename) def use_shared_ptr(info): info._Attribute('smart_ptr', 'boost::shared_ptr< %s >') def use_auto_ptr(info): info._Attribute('smart_ptr', 'std::auto_ptr< %s >') def holder(info, function): msg = "Expected a callable that accepts one string argument." assert callable(function), msg info._Attribute('holder', function) def add_method(info, name, rename=None): added = info._Attribute('__added__') if added is None: info._Attribute('__added__', [(name, rename)]) else: added.append((name, rename)) def class_code(info, code): added = info._Attribute('__code__') if added is None: info._Attribute('__code__', [code]) else: added.append(code) def final(info): info._Attribute('no_override', True) def export_values(info): info._Attribute('export_values', True)
apache-2.0
-8,874,559,424,288,964,000
33.567568
90
0.499566
false
aerickson/ansible
lib/ansible/modules/network/nxos/_nxos_mtu.py
59
11681
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'status': ['deprecated'], 'supported_by': 'community', 'metadata_version': '1.0'} DOCUMENTATION = ''' --- module: nxos_mtu extends_documentation_fragment: nxos version_added: "2.2" deprecated: Deprecated in 2.3 use M(nxos_system)'s C(mtu) option. short_description: Manages MTU settings on Nexus switch. description: - Manages MTU settings on Nexus switch. author: - Jason Edelman (@jedelman8) notes: - Either C(sysmtu) param is required or (C(interface) AND C(mtu)) parameters are required. - C(state=absent) unconfigures a given MTU if that value is currently present. options: interface: description: - Full name of interface, i.e. Ethernet1/1. required: false default: null mtu: description: - MTU for a specific interface. Must be an even number between 576 and 9216. required: false default: null sysmtu: description: - System jumbo MTU. Must be an even number between 576 and 9216. required: false default: null state: description: - Specify desired state of the resource. required: false default: present choices: ['present','absent'] ''' EXAMPLES = ''' # Ensure system mtu is 9126 - nxos_mtu: sysmtu: 9216 host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ pwd }}" # Config mtu on Eth1/1 (routed interface) - nxos_mtu: interface: Ethernet1/1 mtu: 1600 host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ pwd }}" # Config mtu on Eth1/3 (switched interface) - nxos_mtu: interface: Ethernet1/3 mtu: 9216 host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ pwd }}" # Unconfigure mtu on a given interface - nxos_mtu: interface: Ethernet1/3 mtu: 9216 host: "{{ inventory_hostname }}" username: "{{ un }}" password: "{{ pwd }}" state: absent ''' RETURN = ''' proposed: description: k/v pairs of parameters passed into module returned: always type: dict sample: {"mtu": "1700"} existing: description: - k/v pairs of existing mtu/sysmtu on the interface/system returned: always type: dict sample: {"mtu": "1600", "sysmtu": "9216"} end_state: description: k/v pairs of mtu/sysmtu values after module execution returned: always type: dict sample: {"mtu": "1700", sysmtu": "9216"} updates: description: command sent to the device returned: always type: list sample: ["interface vlan10", "mtu 1700"] changed: description: check to see if a change was made on the device returned: always type: boolean sample: true ''' from ansible.module_utils.nxos import load_config, run_commands from ansible.module_utils.nxos import nxos_argument_spec, check_args from ansible.module_utils.basic import AnsibleModule def execute_show_command(command, module, command_type='cli_show'): if module.params['transport'] == 'cli': if 'show run' not in command: command += ' | json' cmds = [command] body = run_commands(module, cmds) elif module.params['transport'] == 'nxapi': cmds = [command] body = run_commands(module, cmds) return body def flatten_list(command_lists): flat_command_list = [] for command in command_lists: if isinstance(command, list): flat_command_list.extend(command) else: flat_command_list.append(command) return flat_command_list def get_mtu(interface, module): command = 'show interface {0}'.format(interface) mtu = {} body = execute_show_command(command, module) try: mtu_table = body[0]['TABLE_interface']['ROW_interface'] mtu['mtu'] = str( mtu_table.get('eth_mtu', mtu_table.get('svi_mtu', 'unreadable_via_api'))) mtu['sysmtu'] = get_system_mtu(module)['sysmtu'] except KeyError: mtu = {} return mtu def get_system_mtu(module): command = 'show run all | inc jumbomtu' sysmtu = '' body = execute_show_command(command, module, command_type='cli_show_ascii') if body: sysmtu = str(body[0].split(' ')[-1]) try: sysmtu = int(sysmtu) except: sysmtu = "" return dict(sysmtu=str(sysmtu)) def get_commands_config_mtu(delta, interface): CONFIG_ARGS = { 'mtu': 'mtu {mtu}', 'sysmtu': 'system jumbomtu {sysmtu}', } commands = [] for param, value in delta.items(): command = CONFIG_ARGS.get(param, 'DNE').format(**delta) if command and command != 'DNE': commands.append(command) command = None mtu_check = delta.get('mtu', None) if mtu_check: commands.insert(0, 'interface {0}'.format(interface)) return commands def get_commands_remove_mtu(delta, interface): CONFIG_ARGS = { 'mtu': 'no mtu {mtu}', 'sysmtu': 'no system jumbomtu {sysmtu}', } commands = [] for param, value in delta.items(): command = CONFIG_ARGS.get(param, 'DNE').format(**delta) if command and command != 'DNE': commands.append(command) command = None mtu_check = delta.get('mtu', None) if mtu_check: commands.insert(0, 'interface {0}'.format(interface)) return commands def get_interface_type(interface): if interface.upper().startswith('ET'): return 'ethernet' elif interface.upper().startswith('VL'): return 'svi' elif interface.upper().startswith('LO'): return 'loopback' elif interface.upper().startswith('MG'): return 'management' elif interface.upper().startswith('MA'): return 'management' elif interface.upper().startswith('PO'): return 'portchannel' else: return 'unknown' def is_default(interface, module): command = 'show run interface {0}'.format(interface) try: body = execute_show_command( command, module, command_type='cli_show_ascii')[0] if body == 'DNE': return 'DNE' else: raw_list = body.split('\n') if raw_list[-1].startswith('interface'): return True else: return False except (KeyError): return 'DNE' def get_interface_mode(interface, intf_type, module): command = 'show interface {0}'.format(interface) mode = 'unknown' interface_table = {} body = execute_show_command(command, module) try: interface_table = body[0]['TABLE_interface']['ROW_interface'] except (KeyError, AttributeError, IndexError): return mode if intf_type in ['ethernet', 'portchannel']: mode = str(interface_table.get('eth_mode', 'layer3')) if mode in ['access', 'trunk']: mode = 'layer2' elif mode == 'routed': mode = 'layer3' elif intf_type in ['loopback', 'svi']: mode = 'layer3' return mode def main(): argument_spec = dict( mtu=dict(type='str'), interface=dict(type='str'), sysmtu=dict(type='str'), state=dict(choices=['absent', 'present'], default='present'), ) argument_spec.update(nxos_argument_spec) module = AnsibleModule(argument_spec=argument_spec, required_together=[['mtu', 'interface']], supports_check_mode=True) warnings = list() check_args(module, warnings) interface = module.params['interface'] mtu = module.params['mtu'] sysmtu = module.params['sysmtu'] state = module.params['state'] if sysmtu and (interface or mtu): module.fail_json(msg='Proper usage-- either just use the sysmtu param ' 'or use interface AND mtu params') if interface: intf_type = get_interface_type(interface) if intf_type != 'ethernet': if is_default(interface, module) == 'DNE': module.fail_json(msg='Invalid interface. It does not exist ' 'on the switch.') existing = get_mtu(interface, module) else: existing = get_system_mtu(module) if interface and mtu: if intf_type == 'loopback': module.fail_json(msg='Cannot set MTU for loopback interface.') mode = get_interface_mode(interface, intf_type, module) if mode == 'layer2': if intf_type in ['ethernet', 'portchannel']: if mtu not in [existing['sysmtu'], '1500']: module.fail_json(msg='MTU on L2 interfaces can only be set' ' to the system default (1500) or ' 'existing sysmtu value which is ' ' {0}'.format(existing['sysmtu'])) elif mode == 'layer3': if intf_type in ['ethernet', 'portchannel', 'svi']: if ((int(mtu) < 576 or int(mtu) > 9216) or ((int(mtu) % 2) != 0)): module.fail_json(msg='Invalid MTU for Layer 3 interface' 'needs to be an even number between' '576 and 9216') if sysmtu: if ((int(sysmtu) < 576 or int(sysmtu) > 9216 or ((int(sysmtu) % 2) != 0))): module.fail_json(msg='Invalid MTU- needs to be an even ' 'number between 576 and 9216') args = dict(mtu=mtu, sysmtu=sysmtu) proposed = dict((k, v) for k, v in args.items() if v is not None) delta = dict(set(proposed.items()).difference(existing.items())) changed = False end_state = existing commands = [] if state == 'present': if delta: command = get_commands_config_mtu(delta, interface) commands.append(command) elif state == 'absent': common = set(proposed.items()).intersection(existing.items()) if common: command = get_commands_remove_mtu(dict(common), interface) commands.append(command) cmds = flatten_list(commands) if cmds: if module.check_mode: module.exit_json(changed=True, commands=cmds) else: changed = True load_config(module, cmds) if interface: end_state = get_mtu(interface, module) else: end_state = get_system_mtu(module) if 'configure' in cmds: cmds.pop(0) results = {} results['proposed'] = proposed results['existing'] = existing results['end_state'] = end_state results['updates'] = cmds results['changed'] = changed results['warnings'] = warnings module.exit_json(**results) if __name__ == '__main__': main()
gpl-3.0
-6,297,521,848,106,136,000
29.578534
94
0.582912
false
grpc/grpc
src/python/grpcio/support.py
10
4388
# Copyright 2016 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path import shutil import sys import tempfile from distutils import errors import commands C_PYTHON_DEV = """ #include <Python.h> int main(int argc, char **argv) { return 0; } """ C_PYTHON_DEV_ERROR_MESSAGE = """ Could not find <Python.h>. This could mean the following: * You're on Ubuntu and haven't run `apt-get install <PY_REPR>-dev`. * You're on RHEL/Fedora and haven't run `yum install <PY_REPR>-devel` or `dnf install <PY_REPR>-devel` (make sure you also have redhat-rpm-config installed) * You're on Mac OS X and the usual Python framework was somehow corrupted (check your environment variables or try re-installing?) * You're on Windows and your Python installation was somehow corrupted (check your environment variables or try re-installing?) """ if sys.version_info[0] == 2: PYTHON_REPRESENTATION = 'python' elif sys.version_info[0] == 3: PYTHON_REPRESENTATION = 'python3' else: raise NotImplementedError('Unsupported Python version: %s' % sys.version) C_CHECKS = { C_PYTHON_DEV: C_PYTHON_DEV_ERROR_MESSAGE.replace('<PY_REPR>', PYTHON_REPRESENTATION), } def _compile(compiler, source_string): tempdir = tempfile.mkdtemp() cpath = os.path.join(tempdir, 'a.c') with open(cpath, 'w') as cfile: cfile.write(source_string) try: compiler.compile([cpath]) except errors.CompileError as error: return error finally: shutil.rmtree(tempdir) def _expect_compile(compiler, source_string, error_message): if _compile(compiler, source_string) is not None: sys.stderr.write(error_message) raise commands.CommandError( "Diagnostics found a compilation environment issue:\n{}".format( error_message)) def diagnose_compile_error(build_ext, error): """Attempt to diagnose an error during compilation.""" for c_check, message in C_CHECKS.items(): _expect_compile(build_ext.compiler, c_check, message) python_sources = [ source for source in build_ext.get_source_files() if source.startswith('./src/python') and source.endswith('c') ] for source in python_sources: if not os.path.isfile(source): raise commands.CommandError(( "Diagnostics found a missing Python extension source file:\n{}\n\n" "This is usually because the Cython sources haven't been transpiled " "into C yet and you're building from source.\n" "Try setting the environment variable " "`GRPC_PYTHON_BUILD_WITH_CYTHON=1` when invoking `setup.py` or " "when using `pip`, e.g.:\n\n" "pip install -rrequirements.txt\n" "GRPC_PYTHON_BUILD_WITH_CYTHON=1 pip install .").format(source)) def diagnose_attribute_error(build_ext, error): if any('_needs_stub' in arg for arg in error.args): raise commands.CommandError( "We expect a missing `_needs_stub` attribute from older versions of " "setuptools. Consider upgrading setuptools.") _ERROR_DIAGNOSES = { errors.CompileError: diagnose_compile_error, AttributeError: diagnose_attribute_error, } def diagnose_build_ext_error(build_ext, error, formatted): diagnostic = _ERROR_DIAGNOSES.get(type(error)) if diagnostic is None: raise commands.CommandError( "\n\nWe could not diagnose your build failure. If you are unable to " "proceed, please file an issue at http://www.github.com/grpc/grpc " "with `[Python install]` in the title; please attach the whole log " "(including everything that may have appeared above the Python " "backtrace).\n\n{}".format(formatted)) else: diagnostic(build_ext, error)
apache-2.0
1,985,814,918,368,222,200
36.186441
85
0.672288
false
loco-odoo/localizacion_co
openerp/addons-extra/print_receipt/reports/account_cheque_bancolombia.py
3
1068
# -*- coding: utf-8 -*- import time from openerp.report import report_sxw from openerp import pooler class account_voucher(report_sxw.rml_parse): def __init__(self, cr, uid, name, context): super(account_voucher, self).__init__(cr, uid, name, context=context) self.localcontext.update({ 'time': time, 'getLines': self._lines_get, }) self.context = context def _lines_get(self, voucher): voucherline_obj = pooler.get_pool(self.cr.dbname).get('account.voucher.line') voucherlines = voucherline_obj.search(self.cr, self.uid,[('voucher_id','=',voucher.id)]) voucherlines = voucherline_obj.browse(self.cr, self.uid, voucherlines) return voucherlines report_sxw.report_sxw('report.account_cheque_bancolombia', 'account.voucher', 'addons/print_receipt/reports/account_cheque_bancolombia.rml', parser=account_voucher)
agpl-3.0
-3,243,311,462,761,863,700
37.142857
96
0.571161
false
dbarbier/privot-doc
src/UseCasesGuide/script_WhiteNoise.py
1
1386
from openturns import * # Time grid over which all the processes will be defined nt = 100 timeGrid = RegularGrid(0.0, 1.0, nt) # Definition of the distribution sigma = 1.0 myDistribution = Normal(0., sigma) # Definition of the process myProcess = WhiteNoise(myDistribution, timeGrid) # We get a realization of the white noise process realization = myProcess.getRealization() # The realization is a time series # we draw it as function of time thanks to the drawMarginal method # We rework the legend name and color to have pretty graph graph = Graph() marginalDraw = realization.drawMarginal(0) drawable = marginalDraw.getDrawable(0) drawable.setLegendName('realization') drawable.setColor('blue') graph.add(drawable) graph.setXTitle('Time') graph.setYTitle('Values') graph.setTitle("White noise process") graph.setLegendPosition('topright') graph.draw("whitenoise_realization", 800, 600, GraphImplementation.PNG) # Several realization ==> here we fix 5 in order to be able to compare and visualize difference sample = myProcess.getSample(5) graphSample = sample.drawMarginal(0) graphSample.setTitle("5 realizations of the White noise process") for k in range(5): drawable = graphSample.getDrawable(k) drawable.setLegendName('realization ' + str(k+1)) graphSample.setDrawable(drawable, k) graphSample.draw("whitenoise_realizations", 800, 600, GraphImplementation.PNG)
lgpl-2.1
2,781,032,347,835,453,400
29.8
95
0.777056
false
AdrianGaudebert/elmo
vendor-local/lib/python/south/management/commands/datamigration.py
10
4665
""" Data migration creation command """ from __future__ import print_function import sys import os import re from optparse import make_option try: set except NameError: from sets import Set as set from django.core.management.base import BaseCommand from django.core.management.color import no_style from django.db import models from django.conf import settings from south.migration import Migrations from south.exceptions import NoMigrations from south.creator import freezer class Command(BaseCommand): option_list = BaseCommand.option_list + ( make_option('--freeze', action='append', dest='freeze_list', type='string', help='Freeze the specified app(s). Provide an app name with each; use the option multiple times for multiple apps'), make_option('--stdout', action='store_true', dest='stdout', default=False, help='Print the migration to stdout instead of writing it to a file.'), ) help = "Creates a new template data migration for the given app" usage_str = "Usage: ./manage.py datamigration appname migrationname [--stdout] [--freeze appname]" def handle(self, app=None, name="", freeze_list=None, stdout=False, verbosity=1, **options): # Any supposed lists that are None become empty lists freeze_list = freeze_list or [] # --stdout means name = - if stdout: name = "-" # Only allow valid names if re.search('[^_\w]', name) and name != "-": self.error("Migration names should contain only alphanumeric characters and underscores.") # if not name, there's an error if not name: self.error("You must provide a name for this migration\n" + self.usage_str) if not app: self.error("You must provide an app to create a migration for.\n" + self.usage_str) # Get the Migrations for this app (creating the migrations dir if needed) migrations = Migrations(app, force_creation=True, verbose_creation=verbosity > 0) # See what filename is next in line. We assume they use numbers. new_filename = migrations.next_filename(name) # Work out which apps to freeze apps_to_freeze = self.calc_frozen_apps(migrations, freeze_list) # So, what's in this file, then? file_contents = MIGRATION_TEMPLATE % { "frozen_models": freezer.freeze_apps_to_string(apps_to_freeze), "complete_apps": apps_to_freeze and "complete_apps = [%s]" % (", ".join(map(repr, apps_to_freeze))) or "" } # - is a special name which means 'print to stdout' if name == "-": print(file_contents) # Write the migration file if the name isn't - else: fp = open(os.path.join(migrations.migrations_dir(), new_filename), "w") fp.write(file_contents) fp.close() print("Created %s." % new_filename, file=sys.stderr) def calc_frozen_apps(self, migrations, freeze_list): """ Works out, from the current app, settings, and the command line options, which apps should be frozen. """ apps_to_freeze = [] for to_freeze in freeze_list: if "." in to_freeze: self.error("You cannot freeze %r; you must provide an app label, like 'auth' or 'books'." % to_freeze) # Make sure it's a real app if not models.get_app(to_freeze): self.error("You cannot freeze %r; it's not an installed app." % to_freeze) # OK, it's fine apps_to_freeze.append(to_freeze) if getattr(settings, 'SOUTH_AUTO_FREEZE_APP', True): apps_to_freeze.append(migrations.app_label()) return apps_to_freeze def error(self, message, code=1): """ Prints the error, and exits with the given code. """ print(message, file=sys.stderr) sys.exit(code) MIGRATION_TEMPLATE = """# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." # Note: Don't use "from appname.models import ModelName". # Use orm.ModelName to refer to models in this application, # and orm['appname.ModelName'] for models in other applications. def backwards(self, orm): "Write your backwards methods here." models = %(frozen_models)s %(complete_apps)s symmetrical = True """
mpl-2.0
-2,866,289,819,673,576,400
35.445313
128
0.620579
false
ehashman/oh-mainline
vendor/packages/sqlparse/tests/test_parse.py
16
6668
# -*- coding: utf-8 -*- """Tests sqlparse function.""" import pytest from tests.utils import TestCaseBase import sqlparse import sqlparse.sql from sqlparse import tokens as T class SQLParseTest(TestCaseBase): """Tests sqlparse.parse().""" def test_tokenize(self): sql = 'select * from foo;' stmts = sqlparse.parse(sql) self.assertEqual(len(stmts), 1) self.assertEqual(str(stmts[0]), sql) def test_multistatement(self): sql1 = 'select * from foo;' sql2 = 'select * from bar;' stmts = sqlparse.parse(sql1 + sql2) self.assertEqual(len(stmts), 2) self.assertEqual(str(stmts[0]), sql1) self.assertEqual(str(stmts[1]), sql2) def test_newlines(self): sql = u'select\n*from foo;' p = sqlparse.parse(sql)[0] self.assertEqual(unicode(p), sql) sql = u'select\r\n*from foo' p = sqlparse.parse(sql)[0] self.assertEqual(unicode(p), sql) sql = u'select\r*from foo' p = sqlparse.parse(sql)[0] self.assertEqual(unicode(p), sql) sql = u'select\r\n*from foo\n' p = sqlparse.parse(sql)[0] self.assertEqual(unicode(p), sql) def test_within(self): sql = 'foo(col1, col2)' p = sqlparse.parse(sql)[0] col1 = p.tokens[0].tokens[1].tokens[1].tokens[0] self.assert_(col1.within(sqlparse.sql.Function)) def test_child_of(self): sql = '(col1, col2)' p = sqlparse.parse(sql)[0] self.assert_(p.tokens[0].tokens[1].is_child_of(p.tokens[0])) sql = 'select foo' p = sqlparse.parse(sql)[0] self.assert_(not p.tokens[2].is_child_of(p.tokens[0])) self.assert_(p.tokens[2].is_child_of(p)) def test_has_ancestor(self): sql = 'foo or (bar, baz)' p = sqlparse.parse(sql)[0] baz = p.tokens[-1].tokens[1].tokens[-1] self.assert_(baz.has_ancestor(p.tokens[-1].tokens[1])) self.assert_(baz.has_ancestor(p.tokens[-1])) self.assert_(baz.has_ancestor(p)) def test_float(self): t = sqlparse.parse('.5')[0].tokens self.assertEqual(len(t), 1) self.assert_(t[0].ttype is sqlparse.tokens.Number.Float) t = sqlparse.parse('.51')[0].tokens self.assertEqual(len(t), 1) self.assert_(t[0].ttype is sqlparse.tokens.Number.Float) t = sqlparse.parse('1.5')[0].tokens self.assertEqual(len(t), 1) self.assert_(t[0].ttype is sqlparse.tokens.Number.Float) t = sqlparse.parse('12.5')[0].tokens self.assertEqual(len(t), 1) self.assert_(t[0].ttype is sqlparse.tokens.Number.Float) def test_placeholder(self): def _get_tokens(sql): return sqlparse.parse(sql)[0].tokens[-1].tokens t = _get_tokens('select * from foo where user = ?') self.assert_(t[-1].ttype is sqlparse.tokens.Name.Placeholder) self.assertEqual(t[-1].value, '?') t = _get_tokens('select * from foo where user = :1') self.assert_(t[-1].ttype is sqlparse.tokens.Name.Placeholder) self.assertEqual(t[-1].value, ':1') t = _get_tokens('select * from foo where user = :name') self.assert_(t[-1].ttype is sqlparse.tokens.Name.Placeholder) self.assertEqual(t[-1].value, ':name') t = _get_tokens('select * from foo where user = %s') self.assert_(t[-1].ttype is sqlparse.tokens.Name.Placeholder) self.assertEqual(t[-1].value, '%s') t = _get_tokens('select * from foo where user = $a') self.assert_(t[-1].ttype is sqlparse.tokens.Name.Placeholder) self.assertEqual(t[-1].value, '$a') def test_access_symbol(self): # see issue27 t = sqlparse.parse('select a.[foo bar] as foo')[0].tokens self.assert_(isinstance(t[-1], sqlparse.sql.Identifier)) self.assertEqual(t[-1].get_name(), 'foo') self.assertEqual(t[-1].get_real_name(), '[foo bar]') self.assertEqual(t[-1].get_parent_name(), 'a') def test_keyword_like_identifier(self): # see issue47 t = sqlparse.parse('foo.key')[0].tokens self.assertEqual(len(t), 1) self.assert_(isinstance(t[0], sqlparse.sql.Identifier)) def test_function_parameter(self): # see issue94 t = sqlparse.parse('abs(some_col)')[0].tokens[0].get_parameters() self.assertEqual(len(t), 1) self.assert_(isinstance(t[0], sqlparse.sql.Identifier)) def test_function_param_single_literal(self): t = sqlparse.parse('foo(5)')[0].tokens[0].get_parameters() self.assertEqual(len(t), 1) self.assert_(t[0].ttype is T.Number.Integer) def test_nested_function(self): t = sqlparse.parse('foo(bar(5))')[0].tokens[0].get_parameters() self.assertEqual(len(t), 1) self.assert_(type(t[0]) is sqlparse.sql.Function) def test_quoted_identifier(): t = sqlparse.parse('select x.y as "z" from foo')[0].tokens assert isinstance(t[2], sqlparse.sql.Identifier) assert t[2].get_name() == 'z' assert t[2].get_real_name() == 'y' def test_psql_quotation_marks(): # issue83 # regression: make sure plain $$ work t = sqlparse.split(""" CREATE OR REPLACE FUNCTION testfunc1(integer) RETURNS integer AS $$ .... $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION testfunc2(integer) RETURNS integer AS $$ .... $$ LANGUAGE plpgsql;""") assert len(t) == 2 # make sure $SOMETHING$ works too t = sqlparse.split(""" CREATE OR REPLACE FUNCTION testfunc1(integer) RETURNS integer AS $PROC_1$ .... $PROC_1$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION testfunc2(integer) RETURNS integer AS $PROC_2$ .... $PROC_2$ LANGUAGE plpgsql;""") assert len(t) == 2 @pytest.mark.parametrize('ph', ['?', ':1', ':foo', '%s', '%(foo)s']) def test_placeholder(ph): p = sqlparse.parse(ph)[0].tokens assert len(p) == 1 assert p[0].ttype is T.Name.Placeholder @pytest.mark.parametrize('num', ['6.67428E-8', '1.988e33', '1e-12']) def test_scientific_numbers(num): p = sqlparse.parse(num)[0].tokens assert len(p) == 1 assert p[0].ttype is T.Number.Float def test_single_quotes_are_strings(): p = sqlparse.parse("'foo'")[0].tokens assert len(p) == 1 assert p[0].ttype is T.String.Single def test_double_quotes_are_identifiers(): p = sqlparse.parse('"foo"')[0].tokens assert len(p) == 1 assert isinstance(p[0], sqlparse.sql.Identifier) def test_single_quotes_with_linebreaks(): # issue118 p = sqlparse.parse("'f\nf'")[0].tokens assert len(p) == 1 assert p[0].ttype is T.String.Single
agpl-3.0
-7,683,300,934,872,038,000
34.657754
77
0.603629
false