repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
nathanbjenx/cairis
cairis/test/test_UseCaseAPI.py
1
14168
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import sys if (sys.version_info > (3,)): from urllib.parse import quote else: from urllib import quote import jsonpickle from cairis.core.UseCase import UseCase from cairis.core.Trace import Trace from cairis.tools.JsonConverter import json_deserialize from cairis.core.UseCaseEnvironmentProperties import UseCaseEnvironmentProperties from cairis.test.CairisDaemonTestCase import CairisDaemonTestCase import os from cairis.mio.ModelImport import importModelFile, importRequirementsFile from cairis.tools.JsonConverter import json_deserialize from cairis.tools.PseudoClasses import StepsAttributes, StepAttributes,ExceptionAttributes from cairis.tools.ModelDefinitions import UseCaseContributionModel __author__ = 'Shamal Faily' class UseCaseAPITests(CairisDaemonTestCase): @classmethod def setUpClass(cls): importModelFile(os.environ['CAIRIS_SRC'] + '/../examples/exemplars/NeuroGrid/NeuroGrid.xml',1,'test') importRequirementsFile(os.environ['CAIRIS_SRC'] + '/test/testusecase.xml','test') def setUp(self): # region Class fields self.logger = logging.getLogger(__name__) self.existing_usecase_name = 'Test use case' self.existing_environment_name = 'Psychosis' self.existing_author = 'Shamal Faily' self.existing_code = 'TUC-1' self.existing_description = 'A test description' self.existing_actors = ['Researcher'] self.existing_precond = 'Test preconditions' self.existing_steps = [] anException = ExceptionAttributes('anException','requirement','Anonymisation guidelines','Confidentiality Threat','anException description') self.existing_steps.append(StepAttributes('Researcher does something','','','',[anException])) self.existing_steps.append(StepAttributes('System does something','','','',[])) self.existing_postcond = 'Test postconditions' usecase_class = UseCase.__module__+'.'+UseCase.__name__ # endregion def test_get_all(self): method = 'test_get_all' rv = self.app.get('/api/usecases?session_id=test') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data usecases = jsonpickle.decode(responseData) self.assertIsNotNone(usecases, 'No results after deserialization') self.assertIsInstance(usecases, dict, 'The result is not a dictionary as expected') self.assertGreater(len(usecases), 0, 'No usecases in the dictionary') self.logger.info('[%s] Use Cases found: %d', method, len(usecases)) usecase = list(usecases.values())[0] self.logger.info('[%s] First usecase: %s\n', method, usecase['theName']) def test_get_all_summary(self): method = 'test_get_all_summary' rv = self.app.get('/api/usecases/summary?session_id=test') if (sys.version_info > (3,)): ucs = json_deserialize(rv.data.decode('utf-8')) else: ucs = json_deserialize(rv.data) self.assertIsNotNone(ucs, 'No results after deserialization') self.assertGreater(len(ucs), 0, 'No goal summaries') self.logger.info('[%s] Use Cases found: %d', method, len(ucs)) self.logger.info('[%s] First use case summary: %s \n', method, ucs[0]['theName']) def test_get_by_name(self): method = 'test_get_by_name' url = '/api/usecases/name/%s?session_id=test' % quote(self.existing_usecase_name) rv = self.app.get(url) self.assertIsNotNone(rv.data, 'No response') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data self.logger.debug('[%s] Response data: %s', method, responseData) usecase = jsonpickle.decode(responseData) self.assertIsNotNone(usecase, 'No results after deserialization') self.logger.info('[%s] UseCase: %s\n', method, usecase['theName']) def test_get_usecase_requirements(self): new_tr = Trace( fObjt = 'requirement', fName = 'Dataset policy', tObjt = 'usecase', tName = 'Test use case') new_tr_dict = { 'session_id' : 'test', 'object': new_tr } rv = self.app.post('/api/traces', content_type='application/json', data=jsonpickle.encode(new_tr_dict)) method = 'test_get_requirements_by_usecase_name' url = '/api/usecases/name/%s/requirements?session_id=test' % quote(self.existing_usecase_name) rv = self.app.get(url) self.assertIsNotNone(rv.data, 'No response') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data self.logger.debug('[%s] Response data: %s', method, responseData) reqs = jsonpickle.decode(responseData) self.assertIsNotNone(reqs, 'No results after deserialization') self.assertEqual(new_tr.theFromName,reqs[0]); def test_generate_obstacle_from_exception(self): method = 'test_generate_obstacle_from_exception' url = '/api/usecases/name/%s?session_id=test' % quote(self.existing_usecase_name) rv = self.app.get(url) if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data uc = jsonpickle.decode(responseData) url = '/api/usecases/environment/Psychosis/step/' + quote('Researcher does something') + '/exception/anException/generate_obstacle?session_id=test' existing_uc_dict = { 'session_id': 'test', 'object': uc } rv = self.app.post(url, content_type='application/json', data=jsonpickle.encode(existing_uc_dict)) self.assertIsNotNone(rv.data, 'No response') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data json_resp = jsonpickle.decode(responseData) self.assertIsNotNone(json_resp) self.assertIsInstance(json_resp, dict) message = json_resp.get('message', None) self.assertIsNotNone(message, 'No message in response') self.logger.info('[%s] Message: %s', method, message) self.assertGreater(message.find('generated from exception'), -1, 'The obstacle was not generated') def test_delete(self): method = 'test_delete' rv = self.app.get('/api/persona_characteristics/name/Managers%20delegate%20security%20decisions?session_id=test') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data pc = jsonpickle.decode(responseData) pc['theCharacteristicSynopsis'] = {"theActor" : "Claire", "theActorType" : "persona", "theSynopsis" : "Security delegated", "theDimension" : "goal"} pcDict = {'session_id' : 'test','object' : pc} rv = self.app.put('/api/persona_characteristics/name/Managers%20delegate%20security%20decisions?session_id=test', content_type='application/json', data=jsonpickle.encode(pcDict)) url = '/api/usecases/name/%s?session_id=test' % quote(self.prepare_new_usecase().name()) new_usecase_body = self.prepare_json() self.app.delete(url) self.logger.info('[%s] Object to delete: %s', method, new_usecase_body) self.app.post('/api/usecases', content_type='application/json', data=new_usecase_body) self.logger.info('[%s] URL: %s', method, url) rv = self.app.delete(url) if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data self.logger.info('[%s] Response data: %s', method, responseData) self.assertIsNotNone(responseData, 'No response') json_resp = jsonpickle.decode(responseData) self.assertIsInstance(json_resp, dict, 'The response cannot be converted to a dictionary') message = json_resp.get('message', None) self.assertIsNotNone(message, 'No message in response') self.logger.info('[%s] Message: %s\n', method, message) def test_post(self): method = 'test_post' rv = self.app.get('/api/persona_characteristics/name/Managers%20delegate%20security%20decisions?session_id=test') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data pc = jsonpickle.decode(responseData) pc['theCharacteristicSynopsis'] = {"theActor" : "Claire", "theActorType" : "persona", "theSynopsis" : "Security delegated", "theDimension" : "goal"} pcDict = {'session_id' : 'test','object' : pc} rv = self.app.put('/api/persona_characteristics/name/Managers%20delegate%20security%20decisions?session_id=test', content_type='application/json', data=jsonpickle.encode(pcDict)) if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data self.logger.debug('[%s] Response data: %s', method, responseData) json_resp = json_deserialize(responseData) self.assertIsNotNone(json_resp, 'No results after deserialization') ackMsg = json_resp.get('message', None) self.assertEqual(ackMsg, 'Persona Characteristic successfully updated') url = '/api/usecases' self.logger.info('[%s] URL: %s', method, url) new_usecase_body = self.prepare_json() self.app.delete('/api/usecases/name/%s?session_id=test' % quote(self.prepare_new_usecase().name())) rv = self.app.post(url, content_type='application/json', data=new_usecase_body) if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data self.logger.debug('[%s] Response data: %s', method, responseData) json_resp = jsonpickle.decode(responseData) self.assertIsNotNone(json_resp, 'No results after deserialization') msg = json_resp.get('message', None) self.assertIsNotNone(msg, 'No message returned') self.logger.info('[%s] Message: %s\n', method, msg) rv = self.app.delete('/api/usecases/name/%s?session_id=test' % quote(self.prepare_new_usecase().name())) def test_put(self): method = 'test_put' url = '/api/usecases' self.logger.info('[%s] URL: %s', method, url) new_usecase_body = self.prepare_json() rv = self.app.delete('/api/usecases/name/%s?session_id=test' % quote(self.prepare_new_usecase().name())) rv = self.app.post(url, content_type='application/json', data=new_usecase_body) if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data self.logger.debug('[%s] Response data: %s', method, responseData) json_resp = jsonpickle.decode(responseData) self.assertIsNotNone(json_resp, 'No results after deserialization') msg = json_resp.get('message', None) self.assertIsNotNone(msg, 'No message returned') self.logger.info('[%s] Message: %s', method, msg) usecase_to_update = self.prepare_new_usecase() usecase_to_update.theName = 'Edited test usecase' upd_env_body = self.prepare_json(usecase=usecase_to_update) rv = self.app.put('/api/usecases/name/%s?session_id=test' % quote(self.prepare_new_usecase().name()), data=upd_env_body, content_type='application/json') self.assertIsNotNone(rv.data, 'No response') if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data json_resp = jsonpickle.decode(responseData) self.assertIsNotNone(json_resp) self.assertIsInstance(json_resp, dict) message = json_resp.get('message', None) self.assertIsNotNone(message, 'No message in response') self.logger.info('[%s] Message: %s', method, message) self.assertGreater(message.find('successfully updated'), -1, 'The usecase was not successfully updated') rv = self.app.get('/api/usecases/name/%s?session_id=test' % quote(usecase_to_update.name())) if (sys.version_info > (3,)): responseData = rv.data.decode('utf-8') else: responseData = rv.data upd_usecase = jsonpickle.decode(responseData) self.assertIsNotNone(upd_usecase, 'Unable to decode JSON data') self.logger.debug('[%s] Response data: %s', method, responseData) self.logger.info('[%s] UseCase: %s\n', method, upd_usecase['theName']) rv = self.app.delete('/api/usecases/name/%s?session_id=test' % quote(usecase_to_update.theName)) def prepare_new_usecase(self): new_usecase_props = [ UseCaseEnvironmentProperties( environmentName=self.existing_environment_name, preCond=self.existing_precond, steps=self.existing_steps, postCond=self.existing_postcond ) ] new_usecase = UseCase( ucId=-1, ucName='New usecase', ucAuth='NU', ucCode='New objective', ucActors=['Researcher'], ucDesc='New Author', tags=[], cProps=[] ) new_usecase.theReferenceContributions = [UseCaseContributionModel('Security delegated',{'theMeansEnd':'means','theContribution':'SomePositive'})] new_usecase.theEnvironmentProperties = new_usecase_props new_usecase.theEnvironmentDictionary = {} delattr(new_usecase, 'theEnvironmentDictionary') return new_usecase def prepare_dict(self, usecase=None): if usecase is None: usecase = self.prepare_new_usecase() else: assert isinstance(usecase, UseCase) return { 'session_id': 'test', 'object': usecase, } def prepare_json(self, data_dict=None, usecase=None): if data_dict is None: data_dict = self.prepare_dict(usecase=usecase) else: assert isinstance(data_dict, dict) new_usecase_body = jsonpickle.encode(data_dict, unpicklable=False) self.logger.info('JSON data: %s', new_usecase_body) return new_usecase_body
apache-2.0
3,877,249,079,924,481,500
42.593846
182
0.687959
false
kupuguy/mg
SampleStatusHistory/SampleStatusHistory/tests/SampleStatushistoryTests.py
1
5985
# Copyright (c) 2014, Duncan Booth # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # "LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # "FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # "COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # "INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # "(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # "SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # "HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # "STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # "ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # "OF THE POSSIBILITY OF SUCH DAMAGE. import unittest from SampleStatusHistory import do_report from datetime import date, timedelta class SampleStatusHistoryTest_test1(unittest.TestCase): def test_null(self): """to_date before from_date returns empty list""" from_date = date(2014, 8, 2) to_date = date(2014, 8, 1) result = do_report(from_date, to_date, []) self.assertEqual(result, []) def test_no_events(self): """No events, but the resulting list should still have an entry for each date""" from_date = date(2014, 8, 2) to_date = from_date + timedelta(2) result = do_report(from_date, to_date, []) self.assertEqual(result, [{}, {}, {},]) def test_single_event(self): """No events, but the resulting list should still have an entry for each date""" from_date = date(2014, 8, 1) to_date = from_date events = [ (date(2014, 8, 1),1,"DISPATCH"), ] result = do_report(from_date, to_date, events) self.assertEqual(result, [{"DISPATCH":1}]) def test_multi_events_one_day(self): """Still on one day so we don't have to aggregate days, but multiple events.""" from_date = date(2014, 8, 1) to_date = from_date events = [ (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),-1,"DISPATCH"), (date(2014, 8, 1),1,"WITH_CUSTOMER"), ] result = do_report(from_date, to_date, events) self.assertEqual(result, [{"DISPATCH":2, "WITH_CUSTOMER":1}]) def test_multi_events_two_days(self): """Aggregate results from previous day""" from_date = date(2014, 8, 1) to_date = from_date + timedelta(1) events = [ (date(2014, 8, 2),-1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),-1,"DISPATCH"), (date(2014, 8, 1),1,"WITH_CUSTOMER"), (date(2014, 8, 2),1,"WITH_CUSTOMER"), ] result = do_report(from_date, to_date, events) self.assertEqual(result, [ {"DISPATCH":2, "WITH_CUSTOMER":1}, {"DISPATCH":1, "WITH_CUSTOMER":2}, ]) def test_data_out_of_range(self): """Include data before start, ignore data after end""" from_date = date(2014, 8, 1) to_date = from_date + timedelta(1) events = [ (date(2014, 8, 2),-1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 7, 31),1,"DISPATCH"), (date(2014, 8, 3),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),-1,"DISPATCH"), (date(2014, 8, 1),1,"WITH_CUSTOMER"), (date(2014, 8, 2),1,"WITH_CUSTOMER"), ] result = do_report(from_date, to_date, events) self.assertEqual(result, [ {"DISPATCH":2, "WITH_CUSTOMER":1}, {"DISPATCH":1, "WITH_CUSTOMER":2}, ]) def test_all_flags_exist(self): """Aggregate results from previous day""" from_date = date(2014, 8, 1) to_date = from_date + timedelta(1) events = [ (date(2014, 8, 2),-1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),1,"DISPATCH"), (date(2014, 8, 1),-1,"DISPATCH"), (date(2014, 8, 1),1,"WITH_CUSTOMER"), (date(2014, 8, 2),1,"WITH_CUSTOMER"), (date(2014, 8, 2),1,"EXTRACT"), (date(2014, 7, 2),1,"RECEIPT_EMAIL"), (date(2014, 7, 2),-1,"RECEIPT_EMAIL"), ] result = do_report(from_date, to_date, events) self.assertEqual(result, [ {"DISPATCH":2, "WITH_CUSTOMER":1, "EXTRACT":0, "RECEIPT_EMAIL":0}, {"DISPATCH":1, "WITH_CUSTOMER":2, "EXTRACT":1, "RECEIPT_EMAIL":0}, ]) if __name__ == '__main__': unittest.main()
bsd-3-clause
-3,036,616,602,388,525,600
40.853147
90
0.558229
false
seslab/MIPVC
HarmGen/HarmGen.py
1
1610
#!/usr/bin/env python # -*- coding: utf-8 -*- # -*- coding: utf-850 -*- #Titulo :HarmGen.py #Descripción :Biblioteca para la generación de vectores de señales con armonicas. #Autor :Javier Campos Rojas #Fecha :Junio-2017 #Versión :1.0 #Notas : #============================================================================== import matplotlib.pyplot as plt import numpy as np class HarmGen: def __init__(self, amplitud,freq,nHarm): ##Función para iniciar la self.tau=1.0/(2*freq); self.t0=self.tau/2.0; self.a=float(amplitud); self.f=float(freq); self.y=nHarm; Tp=1.0/self.f; self.Tp=Tp; #Tm=0.0002; Tm=0.0005; self.Tm=Tm; self.w0=2*np.pi*self.f; def fourier_ak(self,k): self.k=k; self.Tp=1/self.f; Y=(2/self.Tp)*np.sinc(self.k*self.w0*self.tau/2)*np.cos(self.w0*k*(self.t0+(self.tau/2))); return Y def fourier_bk(self,k): self.k=k; self.Tp=1/self.f; Y=(2/self.Tp)*np.sinc(self.k*self.w0*self.tau/2)*np.sin(self.w0*k*(self.t0+(self.tau/2))); return Y def Harm(self): a0=2/self.Tp; t=np.arange(0,2*self.Tp,self.Tm); Y=a0/2; if len(self.y)>1: for k in self.y: a=self.fourier_ak(k); b=self.fourier_bk(k); Y=Y+a*np.cos(self.w0*k*t)+b*np.sin(self.w0*k*t); elif len(self.y)==1: for k in range(1,self.y[0]+1 ): a=self.fourier_ak(k); b=self.fourier_bk(k); Y=Y+a*np.cos(self.w0*k*t)+b*np.sin(self.w0*k*t); m1=max(Y); m2=min(Y); m=m2+(m1-m2)/2; A=(m1-m2)/2; Y=(Y-m)*(self.a/A); #plt.plot(t,Y); #plt.show(block=False) #print(str(len(Y))); #print(Y); return Y
gpl-3.0
-899,932,597,048,497,400
23.692308
92
0.565109
false
smurfix/HomEvenT
homevent/base.py
1
3807
# -*- coding: utf-8 -*- ## ## Copyright © 2007-2012, Matthias Urlichs <[email protected]> ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License (included; see the file LICENSE) ## for more details. ## """\ This module holds a few random constants and stuff. """ SYS_PRIO = -10 MIN_PRIO = 0 MAX_PRIO = 100 # This construct represents a type as-is class singleNameMeta(type): def __repr__(cls): return cls.__name__ class singleName(object): __metaclass__ = singleNameMeta class Name(tuple): """A class that knows how to print itself the "right" way""" delim = u"¦" prefix = "" suffix = "" def __new__(cls,*data): if len(data) == 1 and isinstance(data[0],tuple): data = data[0] if len(data) > 0 and not isinstance(data[0],(basestring,int,float)): raise RuntimeError("Name:"+repr(data)) return super(Name,cls).__new__(cls,data) def __str__(self): return unicode(self).encode("utf-8") def __unicode__(self): return self.prefix + self.delim.join((unicode(x) for x in self)) + self.suffix def __repr__(self): return self.__class__.__name__+super(Name,self).__repr__() def apply(self, ctx=None, drop=0): """\ Copy a name, applying substitutions. This code dies with an AttributeError if there are no matching substitutes. This is intentional. """ if ctx is None: if drop: return self.__class__(*self[drop:]) else: return self res = [] for n in self[drop:]: if hasattr(n,"startswith") and n.startswith('$'): n = getattr(ctx,n[1:]) res.append(n) return self.__class__(*res) # The following are rich comparison and hashign methods, intended so # that one-element names compare identically to the corresponding strings for s in "hash".split(): ## id s="__"+s+"__" def gen_id(s): def f(self): if len(self) == 1: return getattr(unicode(self),s)() return getattr(super(Name,self),s)() f.__name__ = s return f setattr(Name,s,gen_id(s)) for s in "le lt ge gt eq ne".split(): ## cmp s="__"+s+"__" def gen_cmp(s): def f(self,other): if isinstance(other,basestring): return getattr(unicode(self),s)(other) return getattr(super(Name,self),s)(other) f.__name__ = s return f setattr(Name,s,gen_cmp(s)) def SName(data,attr="name"): """An alternate Name constructor that accepts a single argument""" if isinstance(data,Name): return data n = getattr(data,attr,None) if isinstance(n,Name): return n if isinstance(data,basestring): data = data.split(" ") return Name(*data) class RaisedError(RuntimeError): """An error that has been explicitly raised by a script""" no_backtrace = True def __init__(self,*params): self.params = params def __repr__(self): return u"‹%s: %s›" % (self.__class__.__name__, repr(self.params)) def __str__(self): return u"%s: %s" % (self.__class__.__name__, " ".join(str(x) for x in self.params)) def __unicode__(self): return u"%s: %s" % (self.__class__.__name__, " ".join(unicode(x) for x in self.params)) def flatten(out,s,p=""): if hasattr(s,"list") and callable(s.list): for ss in s.list(): flatten(out,ss,p) return s = list(s) t = s.pop() if p != "": s.insert(0,p) p = u" ".join((str(ss) for ss in s)) if hasattr(t,"list") and callable(t.list): t = t.list() if hasattr(t,"next"): pp = " "*len(p) for tt in t: flatten(out,tt,p) p = pp else: out.put((p,t))
gpl-3.0
2,617,710,084,144,590,300
25.767606
89
0.642463
false
ployground/ploy_virtualbox
setup.py
1
1216
from setuptools import setup import os here = os.path.abspath(os.path.dirname(__file__)) README = open(os.path.join(here, 'README.rst')).read() HISTORY = open(os.path.join(here, 'HISTORY.rst')).read() version = "1.2.1.dev0" setup( version=version, description="Plugin for ploy to provision virtual machines using VirtualBox.", long_description=README + "\n\n" + HISTORY, name="ploy_virtualbox", author='Florian Schulze', author_email='[email protected]', license="BSD 3-Clause License", url='http://github.com/ployground/ploy_virtualbox', classifiers=[ 'Environment :: Console', 'Intended Audience :: System Administrators', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Topic :: System :: Installation/Setup', 'Topic :: System :: Systems Administration'], include_package_data=True, zip_safe=False, packages=['ploy_virtualbox'], install_requires=[ 'setuptools', 'ploy >= 1.2.0, < 2dev', 'lazy'], entry_points=""" [ploy.plugins] virtualbox = ploy_virtualbox:plugin """)
bsd-3-clause
6,762,444,998,633,661,000
29.4
82
0.623355
false
katrid/keops
keops/api/views/rpc.py
1
2990
import json from django.shortcuts import render from django.conf import settings from django.http import JsonResponse from django.db import models from django.core import exceptions from django.db.utils import IntegrityError from django.contrib.auth.decorators import login_required from keops.api.services import ViewService, ModelService from keops.api.registry import site @login_required def rpc(request, service, method_name): svc = site.services[service] if issubclass(svc, ViewService): svc = svc(request) meth = getattr(svc, method_name) status = 200 if getattr(meth, 'exposed', None): if request.body: data = json.loads(request.body.decode('utf-8')) else: data = {} try: if 'args' in data: args = data['args'] elif 'args' in request.GET: args = request.GET.getlist('args') else: args = () if 'kwargs' in data: kwargs = data['kwargs'] else: kwargs = {} res = meth(*args, **kwargs) except models.ObjectDoesNotExist as e: status = 404 res = {'status': 'not found', 'ok': False, 'fail': True, 'result': None, 'message': str(e)} except exceptions.PermissionDenied as e: status = 403 res = {'status': 'denied', 'ok': False, 'fail': True, 'result': None, 'message': str(e)} except exceptions.ValidationError as e: res = {'status': 'fail', 'ok': False, 'fail': True, 'result': None, 'messages': e.message_dict} except IntegrityError as e: raise res = {'status': 'fail', 'ok': False, 'fail': True, 'result': None, 'message': str(e)} except Exception as e: raise status = 500 res = {'status': 'fail', 'ok': False, 'fail': True, 'result': None, 'message': str(e)} else: if isinstance(res, dict): if 'status' not in res and 'result' not in res: res = {'status': 'ok', 'ok': True, 'result': res} elif isinstance(res, models.Model) and isinstance(svc, ModelService): res = { 'status': 'ok', 'ok': True, 'result': { 'data': [svc.serialize(res, view_type='form')], } } elif isinstance(res, models.QuerySet) and isinstance(svc, ModelService): res = { 'status': 'ok', 'ok': True, 'result': { 'data': [svc.serialize(obj, view_type='search') for obj in res], 'count': getattr(res, '_count', None), } } else: res = {'result': res, 'status': 'ok', 'ok': True} return JsonResponse(res, status=status)
bsd-3-clause
4,315,749,456,939,318,300
38.342105
107
0.508027
false
sara-nl/opennaas-dc-gui
opennaas_manager.py
1
13590
#!/usr/bin/python # Copyright (c) 2014, Erik Ruiter, SURFsara BV, Amsterdam, The Netherlands # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions # and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions # and the following disclaimer in the documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED # WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. import requests from collections import defaultdict import xml.etree.ElementTree as ET import json, urllib, re import settings def etree_to_dict(t): """Function which converts a ElementTree XML object to a python Dictionary.""" d = {t.tag: {} if t.attrib else None} children = list(t) if children: dd = defaultdict(list) for dc in map(etree_to_dict, children): for k, v in dc.iteritems(): dd[k].append(v) d = {t.tag: {k:v[0] if len(v) == 1 else v for k, v in dd.iteritems()}} if t.attrib: d[t.tag].update(('@' + k, v) for k, v in t.attrib.iteritems()) if t.text: text = t.text.strip() if children or t.attrib: if text: d[t.tag]['#text'] = text else: d[t.tag] = text return d def getResourceName(resource_id, url, opennaas_user, opennaas_pwd): """Returns the name of a resource, using the resource ID.""" r = requests.get("%sresources/%s/name" % (url, resource_id), auth=(opennaas_user, opennaas_pwd)) return r.text def getResourceID(resource_name, url, opennaas_user, opennaas_pwd): """Returns the ID of a resource, using the resource name.""" r = requests.get("%sresources/type/router/name/%s" % (url, resource_name), auth=(opennaas_user, opennaas_pwd)) return r.text def getQueue(resource_name, url, opennaas_user, opennaas_pwd): """Returns the Queue of a resource, in JSON format.""" r = requests.get("%srouter/%s/queue/getActionsId" % (url, resource_name), auth=(opennaas_user, opennaas_pwd)) queue = r.text[1:-1].replace(" ","").split(",") return json.dumps(queue) def executeQueue(resources, url, opennaas_user, opennaas_pwd): """Executes the queues of all resources in a list of resourcenames.""" if isinstance(resources, list): for resource in resources: r = requests.post("%srouter/%s/queue/execute" % (url, resource), auth=(opennaas_user, opennaas_pwd)) else: r = requests.post("%srouter/%s/queue/execute" % (url, resources), auth=(opennaas_user, opennaas_pwd)) return json.dumps(r.text) def clearQueue(resources, url, opennaas_user, opennaas_pwd): """Clears the queues of all resources in a list of resourcenames.""" if isinstance(resources, list): for resource in resources: r = requests.post("%srouter/%s/queue/clear" % (url, resource), auth=(opennaas_user, opennaas_pwd)) else: r = requests.post("%srouter/%s/queue/clear" % (url, resources), auth=(opennaas_user, opennaas_pwd)) return json.dumps(r.text) def getContext(resource_name, url, opennaas_user, opennaas_pwd): context = dict() r = requests.get("%srouter/%s/protocolSessionManager/context" % (url, resource_name), auth=(opennaas_user, opennaas_pwd)) data = etree_to_dict( ET.fromstring(r.text) ) data = data['protocolSessionContexts']['protocolSessionContext']['sessionParameters']['entry'] for i in data: context.update( {i.get('key'): i.get('value').get('#text') }) return json.dumps(context) def removeQueueItems(resource_name, resources, url,opennaas_user,opennaas_pwd): """ <?xml version="1.0" encoding="UTF-8"?> <modifyParams> <posAction>0</posAction> <queueOper>REMOVE</queueOper> </modifyParams> """ return "ok" def getResource(resource_id, url, opennaas_user, opennaas_pwd): if re.match('[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}',resource_id) == None: resource_id = getResourceID(resource_id, url, opennaas_user, opennaas_pwd) r = requests.get("%sresources/%s" % (url, resource_id), auth=(opennaas_user, opennaas_pwd)) data = etree_to_dict( ET.fromstring(r.text) ) queue = getQueue(data['resourceInfo'].get('name'), url, opennaas_user, opennaas_pwd) data['resourceInfo'].update({'queue' : json.loads(queue)}) return json.dumps(data['resourceInfo']) def getResources(url, opennaas_user, opennaas_pwd): resources = list() r = requests.get(url + "resources/", auth=(opennaas_user, opennaas_pwd)) data = etree_to_dict( ET.fromstring(r.text) ) for i in data['resources']['resource']: resources.append(json.loads(getResource(i, url, opennaas_user, opennaas_pwd))) return json.dumps(resources) def updateResources(action, resources, url,opennaas_user,opennaas_pwd): for resource in resources: r = requests.put("%sresources/%s/status/%s" % ( url, resource, action), auth=(opennaas_user, opennaas_pwd)) def getResourceStatus(resourcename, url, opennaas_user, opennaas_pwd): id = getResourceID(resourcename , url, opennaas_user, opennaas_pwd) r = requests.get("%sresources/%s/status" % (url, id), auth=(opennaas_user, opennaas_pwd)) return r.text def getRouterInterfaces(resourcename, url , opennaas_user, opennaas_pwd): interfaces = list() # Get list of interfaces and convert to dict r = requests.get("%srouter/%s/chassis/interfaces" % (url, resourcename), auth=(opennaas_user, opennaas_pwd)) data = etree_to_dict( ET.fromstring(r.text) ) data = data['{opennaas.api}interfaces']['interface'] # Get list of aggregates aggregates = json.loads(getRouterAggregates(resourcename, url , opennaas_user, opennaas_pwd)) for i in data: #Get detailed interface info per interface ri = requests.get("%srouter/%s/chassis/interfaces/info?interfaceName=%s" % (url, resourcename, i), auth=(opennaas_user, opennaas_pwd)) ifInfo = etree_to_dict( ET.fromstring(ri.text) ) # Remove prepending '{opennaas.api}interfaceInfo' key ifInfo = ifInfo['{opennaas.api}interfaceInfo'] # If there are aggregates, add the info if aggregates['{opennaas.api}interfaces'] != None: ifInfo.update( {'isAggr' : ifInfo['name'][:-2] in aggregates['{opennaas.api}interfaces']['interface'] }) rip = requests.get("%srouter/%s/ip/interfaces/addresses?interface=%s" % (url, resourcename, i), auth=(opennaas_user, opennaas_pwd)) ipInfo = etree_to_dict( ET.fromstring(rip.text) ) if ipInfo['{opennaas.api}ipAddresses'] != None : ifInfo.update( ipInfo['{opennaas.api}ipAddresses'] ) else: ifInfo.update( {'ipAddress' : ""} ) if (ifInfo.get('description') == None): ifInfo['description'] = '' interfaces.append(ifInfo) return json.dumps(interfaces) def getRouterAggregates(resourcename, url , opennaas_user, opennaas_pwd): deviceInfo = json.loads(getResource(resourcename, url, opennaas_user, opennaas_pwd)) if 'linkaggregation' not in deviceInfo['capabilities']['capability']: return json.dumps({'{opennaas.api}interfaces': None}) r = requests.get("%srouter/%s/linkaggregation/" % (url, resourcename), auth=(opennaas_user, opennaas_pwd)) tree = ET.fromstring(r.text) data = etree_to_dict(tree) return json.dumps(data) def getRouterAggregate(resourcename, interfacename, url , opennaas_user, opennaas_pwd): r = requests.get("%srouter/%s/linkaggregation/%s" % (url, resourcename,interfacename), auth=(opennaas_user, opennaas_pwd)) tree = ET.fromstring(r.text) data = etree_to_dict(tree) data = data['{opennaas.api}aggregatedInterface'] return json.dumps(data) def getRouterVLANs(resourcename, url , opennaas_user, opennaas_pwd): interfaces = defaultdict(dict) vlanBridges = defaultdict(dict) vlaninterfaces = [] # Build dictionary of all vlans with their attached interfaces r = requests.get("%srouter/%s/vlanbridge" % (url, resourcename), auth=(opennaas_user, opennaas_pwd)) vlans = etree_to_dict( ET.fromstring(r.text) ) vlans = vlans['{opennaas.api}bridgeDomains']['domainName'] for i in vlans : rv = requests.get("%srouter/%s/vlanbridge/%s" % (url, resourcename, i), auth=(opennaas_user, opennaas_pwd)) vlanDetails = etree_to_dict( ET.fromstring(rv.text) ) vlanBridges.update({ i : vlanDetails['{opennaas.api}bridgeDomain']}) r = requests.get("%srouter/%s/chassis/interfaces" % (url, resourcename), auth=(opennaas_user, opennaas_pwd)) ifdata = etree_to_dict( ET.fromstring(r.text) ) ifdata = ifdata['{opennaas.api}interfaces']['interface'] for i in ifdata: rv = requests.get("%srouter/%s/vlanbridge/vlanoptions?iface=%s" % (url, resourcename, i), auth=(opennaas_user, opennaas_pwd)) vlanOptions = etree_to_dict( ET.fromstring(rv.text) ) print vlanOptions """rv_tree = ET.fromstring(rv.text) for rv_elem in rv_tree.iter(): print rv_elem.text if rv_elem.text == "native-vlan-id": print "bla" index = index + 1 """ def getNetworkOverview(url , opennaas_user, opennaas_pwd): domains = defaultdict(); routers = json.loads(getResources(url, opennaas_user, opennaas_pwd)) for router in routers: if router['type'] == 'router': r = requests.get("%srouter/%s/vlanbridge" % (url, router['name']), auth=(opennaas_user, opennaas_pwd)) vlans = etree_to_dict( ET.fromstring(r.text) ) vlans = vlans['{opennaas.api}bridgeDomains']['domainName'] for vlan in vlans: r = requests.get("%srouter/%s/vlanbridge/%s" % (url, router['name'],vlan), auth=(opennaas_user, opennaas_pwd)) domain = etree_to_dict( ET.fromstring(r.text) ) domain = domain['{opennaas.api}bridgeDomain'] domain.update( { 'resources' : [router['name']]}) if 'description' not in domain.keys(): domain.update({ 'description' : "" }) if vlan not in domains.keys(): domains.update( { vlan : domain }) else: resources = domains[vlan]['resources'] resources.append(router['name']) domains[vlan].update({ 'resources' : resources }) return json.dumps(domains) def buildTopology(resourcename, url, opennaas_user, opennaas_pwd): routers = json.loads(getResources(url, opennaas_user, opennaas_pwd)) for router in routers: if (router['type'] == 'router') and (router['state'] == 'ACTIVE') and ('topologydiscovery' in router['capabilities']['capability']): r = requests.post("%snetwork/%s/topology/resource" % (url, resourcename), data = str(router['resourceId']) , auth=(opennaas_user, opennaas_pwd), headers = {'Content-Type': 'application/xml','Accept' : 'application/xml'}) def getTopology(resourcename , url, opennaas_user, opennaas_pwd): r = requests.get("%snetwork/%s/topology" % (url, resourcename), auth=(opennaas_user, opennaas_pwd)) topo = etree_to_dict( ET.fromstring(r.text) ) topo = topo['{opennaas.api}network-topology'] resources = json.loads(getResources(url, opennaas_user, opennaas_pwd)) topo.update({'resources' : resources}) return json.dumps(topo) def createLinkAggregation(resourcename, interface, type, value, url,opennaas_user,opennaas_pwd): payload = """<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <ns2:aggregatedInterface xmlns:ns2="opennaas.api"> <id>ae2</id> <interfaces> <interface>ge-0/0/3</interface> <interface>ge-0/0/4</interface> </interfaces> <aggregationOptions> <entry> <key>link-speed</key> <value>1g</value> </entry> <entry> <key>minimum-links</key> <value>1</value> </entry> </aggregationOptions> </ns2:aggregatedInterface>""" r = requests.post("%srouter/%s/linkaggregation" % (url, resourcename), headers = {'Content-Type': 'application/xml'} , data = payload, auth=(opennaas_user, opennaas_pwd)) print r.status_code print r.headers print r.text return vlanBridges def addToQueue(resourcename, interface, type, value, url,opennaas_user,opennaas_pwd): if type == "description": url = "%srouter/%s/ip/interfaces/description?interface=%s" % (url, resourcename, interface) if type == "ipv4address": url = "%srouter/%s/ip/interfaces/addresses/ipv4?interface=%s" % (url, resourcename, interface) if type == "ipv6address": url = "%srouter/%s/ip/interfaces/addresses/ipv6?interface=%s" % (url, resourcename, interface) if type == "status": url = "%srouter/%s/chassis/interfaces/status/%s?ifaceName=%s" % (url, resourcename, value, interface[:-2]) if type == "status": r = requests.put(url, auth=(opennaas_user, opennaas_pwd), headers = {"content-type":"application/xml"}) else: r = requests.post(url, data = value, auth=(opennaas_user, opennaas_pwd), headers = {"content-type":"application/xml"}) return json.dumps(r.text) def main(): #print getRouterInterfaces('switch1',settings.opennaas_url,settings.opennaas_user, settings.opennaas_pwd) print getTopology("net1",settings.opennaas_url,settings.opennaas_user, settings.opennaas_pwd) #print getRouterAggregate("switch1","ae0",settings.opennaas_url,settings.opennaas_user, settings.opennaas_pwd) print "" if __name__ == "__main__": main()
apache-2.0
6,549,476,206,768,126,000
43.703947
223
0.709934
false
ulif/pulp
server/pulp/plugins/util/metadata_writer.py
4
16961
from gettext import gettext as _ import glob import gzip import logging import os import shutil import traceback from xml.sax.saxutils import XMLGenerator from pulp.common import error_codes from pulp.server.exceptions import PulpCodedValidationException, PulpCodedException from pulp.server.util import CHECKSUM_FUNCTIONS _LOG = logging.getLogger(__name__) BUFFER_SIZE = 1024 class MetadataFileContext(object): """ Context manager class for metadata file generation. """ def __init__(self, metadata_file_path, checksum_type=None): """ :param metadata_file_path: full path to metadata file to be generated :type metadata_file_path: str :param checksum_type: checksum type to be used to generate and prepend checksum to the file names of files. If checksum_type is None, no checksum is added to the filename :type checksum_type: str or None """ self.metadata_file_path = metadata_file_path self.metadata_file_handle = None self.checksum_type = checksum_type self.checksum = None if self.checksum_type is not None: checksum_function = CHECKSUM_FUNCTIONS.get(checksum_type) if not checksum_function: raise PulpCodedValidationException( [PulpCodedException(error_codes.PLP1005, checksum_type=checksum_type)]) self.checksum_constructor = checksum_function def __enter__(self): self.initialize() return self def __exit__(self, exc_type, exc_val, exc_tb): if None not in (exc_type, exc_val, exc_tb): err_msg = '\n'.join(traceback.format_exception(exc_type, exc_val, exc_tb)) log_msg = _('Exception occurred while writing [%(m)s]\n%(e)s') # any errors here should have already been caught and logged _LOG.debug(log_msg % {'m': self.metadata_file_path, 'e': err_msg}) self.finalize() return True def initialize(self): """ Create the new metadata file and write the header. """ if self.metadata_file_handle is not None: # initialize has already, at least partially, been run return self._open_metadata_file_handle() self._write_file_header() def finalize(self): """ Write the footer into the metadata file and close it. """ if self._is_closed(self.metadata_file_handle): # finalize has already been run or initialize has not been run return try: self._write_file_footer() except Exception, e: _LOG.exception(e) try: self._close_metadata_file_handle() except Exception, e: _LOG.exception(e) # Add calculated checksum to the filename file_name = os.path.basename(self.metadata_file_path) if self.checksum_type is not None: with open(self.metadata_file_path, 'rb') as file_handle: content = file_handle.read() checksum = self.checksum_constructor(content).hexdigest() self.checksum = checksum file_name_with_checksum = checksum + '-' + file_name new_file_path = os.path.join(os.path.dirname(self.metadata_file_path), file_name_with_checksum) os.rename(self.metadata_file_path, new_file_path) self.metadata_file_path = new_file_path # Set the metadata_file_handle to None so we don't double call finalize self.metadata_file_handle = None def _open_metadata_file_handle(self): """ Open the metadata file handle, creating any missing parent directories. If the file already exists, this will overwrite it. """ assert self.metadata_file_handle is None _LOG.debug('Opening metadata file: %s' % self.metadata_file_path) if not os.path.exists(self.metadata_file_path): parent_dir = os.path.dirname(self.metadata_file_path) if not os.path.exists(parent_dir): os.makedirs(parent_dir, mode=0770) elif not os.access(parent_dir, os.R_OK | os.W_OK | os.X_OK): msg = _('Insufficient permissions to write metadata file in directory [%(d)s]') raise RuntimeError(msg % {'d': parent_dir}) else: msg = _('Overwriting existing metadata file [%(p)s]') _LOG.warn(msg % {'p': self.metadata_file_path}) if not os.access(self.metadata_file_path, os.R_OK | os.W_OK): msg = _('Insufficient permissions to overwrite [%(p)s]') raise RuntimeError(msg % {'p': self.metadata_file_path}) msg = _('Opening metadata file handle for [%(p)s]') _LOG.debug(msg % {'p': self.metadata_file_path}) if self.metadata_file_path.endswith('.gz'): self.metadata_file_handle = gzip.open(self.metadata_file_path, 'w') else: self.metadata_file_handle = open(self.metadata_file_path, 'w') def _write_file_header(self): """ Write any headers for the metadata file """ pass def _write_file_footer(self): """ Write any file footers for the metadata file. """ pass def _close_metadata_file_handle(self): """ Flush any cached writes to the metadata file handle and close it. """ _LOG.debug('Closing metadata file: %s' % self.metadata_file_path) if not self._is_closed(self.metadata_file_handle): self.metadata_file_handle.flush() self.metadata_file_handle.close() @staticmethod def _is_closed(file_object): """ Determine if the file object has been closed. If it is None, it is assumed to be closed. :param file_object: a file object :type file_object: file :return: True if the file object is closed or is None, otherwise False :rtype: bool """ if file_object is None: # finalize has already been run or initialize has not been run return True try: return file_object.closed except AttributeError: # python 2.6 doesn't have a "closed" attribute on a GzipFile, # so we must look deeper. if isinstance(file_object, gzip.GzipFile): return file_object.myfileobj is None or file_object.myfileobj.closed else: raise class JSONArrayFileContext(MetadataFileContext): """ Context manager for writing out units as a json array. """ def __init__(self, *args, **kwargs): """ :param args: any positional arguments to be passed to the superclass :type args: list :param kwargs: any keyword arguments to be passed to the superclass :type kwargs: dict """ super(JSONArrayFileContext, self).__init__(*args, **kwargs) self.units_added = False def _write_file_header(self): """ Write out the beginning of the json file """ self.metadata_file_handle.write('[') def _write_file_footer(self): """ Write out the end of the json file """ self.metadata_file_handle.write(']') def add_unit_metadata(self, unit): """ Add the specific metadata for this unit """ if self.units_added: self.metadata_file_handle.write(',') else: self.units_added = True class XmlFileContext(MetadataFileContext): """ Context manager for writing out units as xml """ def __init__(self, metadata_file_path, root_tag, root_attributes=None, *args, **kwargs): """ :param metadata_file_path: The file path for the file to write :type metadata_file_path: str :param root_tag: The root tag for the xml tree :type root_tag: str :param root_attributes: Any attributes to populate on the root xml tag :type root_attributes: dict of str :param args: any positional arguments to be passed to the superclass :type args: list :param kwargs: any keyword arguments to be passed to the superclass :type kwargs: dict """ super(XmlFileContext, self).__init__(metadata_file_path, *args, **kwargs) self.root_tag = root_tag if not root_attributes: root_attributes = {} self.root_attributes = root_attributes def _open_metadata_file_handle(self): """ Open the metadata file handle, creating any missing parent directories. If the file already exists, this will overwrite it. """ super(XmlFileContext, self)._open_metadata_file_handle() self.xml_generator = XMLGenerator(self.metadata_file_handle, 'UTF-8') def _write_file_header(self): """ Write out the beginning of the json file """ self.xml_generator.startDocument() self.xml_generator.startElement(self.root_tag, self.root_attributes) def _write_file_footer(self): """ Write out the end of the json file """ self.xml_generator.endElement(self.root_tag) self.xml_generator.endDocument() class FastForwardXmlFileContext(XmlFileContext): """ Context manager for reopening an existing XML file context to insert more data. """ def __init__(self, metadata_file_path, root_tag, search_tag, root_attributes=None, *args, **kwargs): """ :param metadata_file_path: The file path for the file to write :type metadata_file_path: str :param root_tag: The root tag for the xml tree :type root_tag: str :param search_tag: The tag that denotes the beginning of content to copy. If None, no content will be copied. :param root_attributes: Any attributes to populate on the root xml tag :type root_attributes: dict of str, str :param args: any positional arguments to be passed to the superclass :type args: list :param kwargs: any keyword arguments to be passed to the superclass :type kwargs: dict """ super(FastForwardXmlFileContext, self).__init__(metadata_file_path, root_tag, root_attributes, *args, **kwargs) self.fast_forward = False self.search_tag = search_tag self.existing_file = None self.xml_generator = None def _open_metadata_file_handle(self): """ Open the metadata file handle, creating any missing parent directories. If the file already exists, this will copy it to a new name and open it as an input for filtering/modification. """ # Figure out if we are fast forwarding a file # find the primary file working_dir, file_name = os.path.split(self.metadata_file_path) if self.checksum_type: # Look for a file matching the checksum-filename pattern expression = '[0-9a-zA-Z]*-%s' % file_name expression = os.path.join(working_dir, expression) file_list = glob.glob(expression) if file_list: # We only want to work on the latest one stat_files = ((os.stat(path).st_mtime, path) for path in file_list) sorted_files = sorted(stat_files, reverse=True) working_dir, existing_file_name = os.path.split(sorted_files[0][1]) self.existing_file = existing_file_name self.fast_forward = True elif not self.checksum_type and os.path.exists(self.metadata_file_path): self.existing_file = file_name self.fast_forward = True if self.fast_forward: # move the file so that we can still process it if the name is the same if self.existing_file: new_file_name = 'original.%s' % self.existing_file shutil.move(os.path.join(working_dir, self.existing_file), os.path.join(working_dir, new_file_name)) self.existing_file = new_file_name self.existing_file = os.path.join(working_dir, self.existing_file) # Open the file, unzip if necessary so that seek operations can be performed self.original_file_handle = None if self.existing_file.endswith('.gz'): non_compressed_file = self.existing_file[:self.existing_file.rfind('.gz')] with open(os.path.join(working_dir, non_compressed_file), 'wb') as plain_handle: gzip_handle = gzip.open(os.path.join(working_dir, self.existing_file), 'rb') try: content = gzip_handle.read(BUFFER_SIZE) while content: plain_handle.write(content) content = gzip_handle.read(BUFFER_SIZE) finally: if gzip_handle: gzip_handle.close() # clean up the zipped file os.unlink(self.existing_file) self.existing_file = non_compressed_file self.original_file_handle = open(os.path.join(working_dir, self.existing_file), 'r') super(FastForwardXmlFileContext, self)._open_metadata_file_handle() def _write_file_header(self): """ Write out the beginning of the file only if we are not in fast forward mode. No fast forward will happen if search_tag attribute is None or not found. """ super(FastForwardXmlFileContext, self)._write_file_header() if self.fast_forward and self.search_tag is not None: start_tag = '<%s' % self.search_tag end_tag = '</%s' % self.root_tag # Find the start offset content = '' index = -1 while index < 0: content_buffer = self.original_file_handle.read(BUFFER_SIZE) if not content_buffer: # The search tag was never found, This is an empty file where no FF is necessary msg = _('When attempting to fast forward the file %(file)s, the search tag ' '%(tag)s was not found so the assumption is that no fast forward is to ' 'take place.') _LOG.debug(msg, {'file': self.metadata_file_path, 'tag': start_tag}) return content += content_buffer index = content.find(start_tag) start_offset = index # Find the end offset content = '' index = -1 self.original_file_handle.seek(0, os.SEEK_END) while index < 0: amount_to_read = min(BUFFER_SIZE, self.original_file_handle.tell()) self.original_file_handle.seek(-amount_to_read, os.SEEK_CUR) content_buffer = self.original_file_handle.read(amount_to_read) if not content_buffer: raise Exception(_('Error: %(tag)s not found in the xml file.') % {'tag': end_tag}) bytes_read = len(content_buffer) self.original_file_handle.seek(-bytes_read, os.SEEK_CUR) content = content_buffer + content index = content.rfind(end_tag) end_offset = self.original_file_handle.tell() + index # stream out the content self.original_file_handle.seek(start_offset) bytes_to_read = end_offset - start_offset content_buffer = self.original_file_handle.read(BUFFER_SIZE) while bytes_to_read > 0: buffer_size = len(content_buffer) if buffer_size > bytes_to_read: content_buffer = content_buffer[:bytes_to_read] self.metadata_file_handle.write(content_buffer) bytes_to_read -= buffer_size content_buffer = self.original_file_handle.read(BUFFER_SIZE) def _close_metadata_file_handle(self): """ Close any open file handles and remove the original file if a new one was generated """ super(FastForwardXmlFileContext, self)._close_metadata_file_handle() # Close & remove the existing file that was copied if self.fast_forward: if not self._is_closed(self.original_file_handle): self.original_file_handle.close() # We will always have renamed the original file so remove it os.unlink(self.existing_file)
gpl-2.0
-1,971,907,027,029,194,800
37.635535
100
0.583515
false
nditech/elections
apollo/participants/utils.py
1
1081
from apollo import services def update_participant_completion_rating(participant): forms = services.forms.find(form_type='CHECKLIST') submissions = services.submissions.find( contributor=participant, form__in=forms, submission_type='O' ) numerator = 0 denominator = 0 completion_map = { 'Missing': 0, 'Partial': 1, 'Complete': 2, 'Conflict': 2 # TODO: find a better way to compute the ratings } if submissions.count() == 0: participant.completion_rating = 1 else: for submission in submissions: completion_values = [ completion_map[i] for i in submission.completion.values() ] denominator += len(submission.form.groups) * 2.0 numerator += sum(completion_values) try: participant.completion_rating = (numerator / denominator) except ZeroDivisionError: # this should never happen participant.completion_rating = 1 participant.save()
gpl-3.0
-7,611,908,437,965,738,000
28.216216
71
0.590194
false
orbitinstasis/pifun
continuous_recordings_tester.py
1
2870
#!/usr/bin/env python3 # call with python3 # test [1] times; stream from [2]; play on [3] import os import time import sys import threading import saleae # from gtts import gTTS # TEST_SECONDS = 10 TEST_LOOPS = int(sys.argv[1]) TTY_SOURCE = "/dev/" + str(sys.argv[2]) TTY_DESTINATION = "/dev/" + str(sys.argv[3]) TTY_KILL_OMX = "/dev/" + str(sys.argv[4]) folder = time.strftime('%Y-%m-%d--%H-%M-%S') os.mkdir(folder) def _sendToTty(_input, _recipient): os.system("ttyecho -n " + _recipient + " " + _input) return; def _killBackend(): # _sendToTty("echo \"Debug\"", TTY_SOURCE) _sendToTty("./bBENSSHIT_2.sh", "/dev/ttys004") return; def _startBackend(): # _sendToTty("echo \"Debug\"", TTY_SOURCE) _sendToTty("./bBENSSHIT.sh", TTY_SOURCE) # NEED THIS TO BE THE MASSIVE STREAM START COMMAND return; def _probe(): s = saleae.Saleae() s.set_capture_seconds(5) # POSSIBLY CHANGE s.set_trigger_one_channel(2, saleae.Trigger.Posedge) path = os.path.abspath(os.path.join(folder, "Test " + str(i) + "; " + folder)) s.capture_to_file(path) return; def _testInfernoSide(): time.sleep(4) # POSSIBLY CHANGE i have it so that the scope is nice and ready bbefore playing _startBackend() time.sleep(2) _sayShit("Test " + str(i)) time.sleep(23) # POSSIBLY CHANGE we want this to be quite long now with streamer _killBackend() return; def _startWaitKillOMXplayer(): time.sleep(9) # POSSIBLY CHANGE _sendToTty("omxplayer --live udp://239.0.0.1:1234", TTY_DESTINATION) # _sendToTty("echo \"Debug\"", TTY_SOURCE) # POSSIBLY CHANGE time.sleep(17) _sendToTty("killall omxplayer.bin", TTY_KILL_OMX) return; def _startProbeThread(): try: threading.Thread(target=_probe).start() except: print ("Error: unable to start thread") return; def _startInfernoThread(): try: threading.Thread(target=_testInfernoSide).start() except: print ("Error: unable to start thread") return; def _startOMXThread(): try: threading.Thread(target=_startWaitKillOMXplayer).start() except: print ("Error: unable to start thread") return; def _sayShit(message): # tts = gTTS(text=message, lang='en') # tts.save("Audio.mp3") # os.system("mpg321 -q Audio.mp3") return; # _sayShit("Sup' my main nigga! Lets start, I Hope shit works!") print("\n\nTest folder " + folder + "\n") for i in range(TEST_LOOPS): print("Test: " + str(i) + "\n") _sendToTty("echo \"Test number: " + str(i) + "\"", TTY_SOURCE) _sendToTty("echo \"Test number: " + str(i) + "\"", TTY_DESTINATION) _sendToTty("echo \"Test number: " + str(i) + "\"", TTY_KILL_OMX) _startProbeThread() _startInfernoThread() _startOMXThread() time.sleep(36) # POSSIBLY CHANGE # os.system("rm *.mp3") sys.exit() # TEST THIS need to change the play durations in arecord apay ffmpeg raspivid etc # change the contents of killBackend and backend if necessary
gpl-3.0
3,837,845,235,144,074,000
25.574074
100
0.669686
false
mrjimenez/JTAG
extras/python/Uploader.py
1
4930
#!/usr/bin/python3 # coding: utf-8 import os import string import sys import time try: import serial except ImportError: print("Error importing pyserial. Please check if it is installed.") sys.exit(1) class Uploader(object): """Uploads a XSVF file to the arduino board. """ # Create a translation array of printable characters _printable_chars = string.printable _translate_str = ''.join( [(chr(x) in _printable_chars) and chr(x) or '.' for x in range(256)]) @staticmethod def add_arguments(p): """Adds the necessary arguments to the parser.""" p.add_argument( '-p', '--port', default='/dev/ttyACM0', help='Serial port device name' ' (default=%(default)s)') p.add_argument( '-b', '--baud', default=115200, type=int, help='BAUD rate' ' (type %(type)s, default=%(default)s)') def __init__(self, args): self._args = args self._serial = serial.Serial(port=args.port, baudrate=args.baud) # Help printing new lines self._need_lf = False # self._file_size = 0 # Hashes self._sum = 0 # To compute the elapsed time self._start_time = 0 # Error code self._error_code = 0 @property def error_code(self): return self._error_code @error_code.setter def error_code(self, value): self._error_code = value def reset_arduino(self): """Resets the arduino and clear any garbage on the serial port.""" self._serial.setDTR(False) time.sleep(1) self._serial.flushInput() self._serial.flushOutput() self._serial.setDTR(True) self._start_time = 0 def print_lf(self): if self._need_lf: self._need_lf = False print def initialize_hashes(self): self._sum = 0 def update_hashes(self, s): for c in s: self._sum += ord(c) def print_hashes(self): cksum = (-self._sum) & 0xFF if self._args.debug > 1: print(' Expected checksum: 0x%02X/%lu.' % (cksum, self._file_size)) print(' Expected sum: 0x%08lX/%lu.' % (self._sum, self._file_size)) if self._start_time > 0: print('Elapsed time: %.02f seconds.' % (time.time() - self._start_time)) def upload_one_file(self, fd): self.reset_arduino() self._file_size = os.fstat(fd.fileno()).st_size bytes_written = 0 while True: line = self._serial.readline().strip() if not line: continue command = line[0] argument = line[1:] if command == 'S': num_bytes = int(argument) xsvf_data = fd.read(num_bytes) bytes_written += len(xsvf_data) self.update_hashes(xsvf_data) xsvf_data += chr(0xff) * (num_bytes - len(xsvf_data)) self._serial.write(xsvf_data) if self._args.debug > 1: print('\rSent: %8d bytes, %8d remaining' % (bytes_written, self._file_size - bytes_written), end='') sys.stdout.flush() self._need_lf = True elif command == 'R': self.initialize_hashes() if self._args.debug > 1: print('File: %s' % os.path.realpath(fd.name)) print('Ready to send %d bytes.' % self._file_size) self._start_time = time.time() elif command == 'Q': self.print_lf() # Split the argument. The first field is the error code, # the next field is the error message. args = argument.split(',') self.error_code = int(args[0]) if self._args.debug > 1: print('Quit: {1:s} ({0:d}).'.format( self.error_code, args[1])) self.print_hashes() return self.error_code == 0 elif command == 'D': if self._args.debug > 0: self.print_lf() print('Device:', argument) elif command == '!': if self._args.debug > 0: self.print_lf() print('IMPORTANT:', argument) else: self.print_lf() print('Unrecognized line:', line.translate(Uploader._translate_str)) def upload_all_files(self, fd_list): ok = True for fd in fd_list: with fd: ok = self.upload_one_file(fd) if not ok: break return ok
bsd-2-clause
7,011,194,952,468,164,000
31.222222
83
0.486207
false
ymap/aioredis
tests/pool_test.py
1
15568
import asyncio import pytest import async_timeout from unittest.mock import patch from aioredis import ( ReplyError, PoolClosedError, ConnectionClosedError, ConnectionsPool, MaxClientsError, ) def _assert_defaults(pool): assert isinstance(pool, ConnectionsPool) assert pool.minsize == 1 assert pool.maxsize == 10 assert pool.size == 1 assert pool.freesize == 1 assert pool._close_waiter is None def test_connect(pool): _assert_defaults(pool) def test_global_loop(create_pool, loop, server): asyncio.set_event_loop(loop) pool = loop.run_until_complete(create_pool( server.tcp_address)) _assert_defaults(pool) @pytest.mark.run_loop async def test_clear(pool): _assert_defaults(pool) await pool.clear() assert pool.freesize == 0 @pytest.mark.run_loop @pytest.mark.parametrize('minsize', [None, -100, 0.0, 100]) async def test_minsize(minsize, create_pool, loop, server): with pytest.raises(AssertionError): await create_pool( server.tcp_address, minsize=minsize, maxsize=10, loop=loop) @pytest.mark.run_loop @pytest.mark.parametrize('maxsize', [None, -100, 0.0, 1]) async def test_maxsize(maxsize, create_pool, loop, server): with pytest.raises(AssertionError): await create_pool( server.tcp_address, minsize=2, maxsize=maxsize, loop=loop) @pytest.mark.run_loop async def test_create_connection_timeout(create_pool, loop, server): with patch.object(loop, 'create_connection') as\ open_conn_mock: open_conn_mock.side_effect = lambda *a, **kw: asyncio.sleep(0.2, loop=loop) with pytest.raises(asyncio.TimeoutError): await create_pool( server.tcp_address, loop=loop, create_connection_timeout=0.1) def test_no_yield_from(pool): with pytest.raises(RuntimeError): with pool: pass # pragma: no cover @pytest.mark.run_loop async def test_simple_command(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=10, loop=loop) with (await pool) as conn: msg = await conn.execute('echo', 'hello') assert msg == b'hello' assert pool.size == 10 assert pool.freesize == 9 assert pool.size == 10 assert pool.freesize == 10 @pytest.mark.run_loop async def test_create_new(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=1, loop=loop) assert pool.size == 1 assert pool.freesize == 1 with (await pool): assert pool.size == 1 assert pool.freesize == 0 with (await pool): assert pool.size == 2 assert pool.freesize == 0 assert pool.size == 2 assert pool.freesize == 2 @pytest.mark.run_loop async def test_create_constraints(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=1, maxsize=1, loop=loop) assert pool.size == 1 assert pool.freesize == 1 with (await pool): assert pool.size == 1 assert pool.freesize == 0 with pytest.raises(asyncio.TimeoutError): await asyncio.wait_for(pool.acquire(), timeout=0.2, loop=loop) @pytest.mark.run_loop async def test_create_no_minsize(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=0, maxsize=1, loop=loop) assert pool.size == 0 assert pool.freesize == 0 with (await pool): assert pool.size == 1 assert pool.freesize == 0 with pytest.raises(asyncio.TimeoutError): await asyncio.wait_for(pool.acquire(), timeout=0.2, loop=loop) assert pool.size == 1 assert pool.freesize == 1 @pytest.mark.run_loop async def test_create_pool_cls(create_pool, loop, server): class MyPool(ConnectionsPool): pass pool = await create_pool( server.tcp_address, loop=loop, pool_cls=MyPool) assert isinstance(pool, MyPool) @pytest.mark.run_loop async def test_create_pool_cls_invalid(create_pool, loop, server): with pytest.raises(AssertionError): await create_pool( server.tcp_address, loop=loop, pool_cls=type) @pytest.mark.run_loop async def test_release_closed(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=1, loop=loop) assert pool.size == 1 assert pool.freesize == 1 with (await pool) as conn: conn.close() await conn.wait_closed() assert pool.size == 0 assert pool.freesize == 0 @pytest.mark.run_loop async def test_release_pending(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=1, loop=loop) assert pool.size == 1 assert pool.freesize == 1 with pytest.logs('aioredis', 'WARNING') as cm: with (await pool) as conn: try: await asyncio.wait_for( conn.execute( b'blpop', b'somekey:not:exists', b'0'), 0.1, loop=loop) except asyncio.TimeoutError: pass assert pool.size == 0 assert pool.freesize == 0 assert cm.output == [ 'WARNING:aioredis:Connection <RedisConnection [db:0]>' ' has pending commands, closing it.' ] @pytest.mark.run_loop async def test_release_bad_connection(create_pool, create_redis, loop, server): pool = await create_pool( server.tcp_address, loop=loop) conn = await pool.acquire() assert conn.address[0] in ('127.0.0.1', '::1') assert conn.address[1] == server.tcp_address.port other_conn = await create_redis( server.tcp_address, loop=loop) with pytest.raises(AssertionError): pool.release(other_conn) pool.release(conn) other_conn.close() await other_conn.wait_closed() @pytest.mark.run_loop async def test_select_db(create_pool, loop, server): pool = await create_pool( server.tcp_address, loop=loop) await pool.select(1) with (await pool) as conn: assert conn.db == 1 @pytest.mark.run_loop async def test_change_db(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=1, db=0, loop=loop) assert pool.size == 1 assert pool.freesize == 1 with (await pool) as conn: await conn.select(1) assert pool.size == 0 assert pool.freesize == 0 with (await pool): assert pool.size == 1 assert pool.freesize == 0 await pool.select(1) assert pool.db == 1 assert pool.size == 1 assert pool.freesize == 0 assert pool.size == 0 assert pool.freesize == 0 assert pool.db == 1 @pytest.mark.run_loop async def test_change_db_errors(create_pool, loop, server): pool = await create_pool( server.tcp_address, minsize=1, db=0, loop=loop) with pytest.raises(TypeError): await pool.select(None) assert pool.db == 0 with (await pool): pass assert pool.size == 1 assert pool.freesize == 1 with pytest.raises(TypeError): await pool.select(None) assert pool.db == 0 with pytest.raises(ValueError): await pool.select(-1) assert pool.db == 0 with pytest.raises(ReplyError): await pool.select(100000) assert pool.db == 0 @pytest.mark.xfail(reason="Need to refactor this test") @pytest.mark.run_loop async def test_select_and_create(create_pool, loop, server): # trying to model situation when select and acquire # called simultaneously # but acquire freezes on _wait_select and # then continues with propper db # TODO: refactor this test as there's no _wait_select any more. with async_timeout.timeout(10, loop=loop): pool = await create_pool( server.tcp_address, minsize=1, db=0, loop=loop) db = 0 while True: db = (db + 1) & 1 _, conn = await asyncio.gather(pool.select(db), pool.acquire(), loop=loop) assert pool.db == db pool.release(conn) if conn.db == db: break # await asyncio.wait_for(test(), 3, loop=loop) @pytest.mark.run_loop async def test_response_decoding(create_pool, loop, server): pool = await create_pool( server.tcp_address, encoding='utf-8', loop=loop) assert pool.encoding == 'utf-8' with (await pool) as conn: await conn.execute('set', 'key', 'value') with (await pool) as conn: res = await conn.execute('get', 'key') assert res == 'value' @pytest.mark.run_loop async def test_hgetall_response_decoding(create_pool, loop, server): pool = await create_pool( server.tcp_address, encoding='utf-8', loop=loop) assert pool.encoding == 'utf-8' with (await pool) as conn: await conn.execute('del', 'key1') await conn.execute('hmset', 'key1', 'foo', 'bar') await conn.execute('hmset', 'key1', 'baz', 'zap') with (await pool) as conn: res = await conn.execute('hgetall', 'key1') assert res == ['foo', 'bar', 'baz', 'zap'] @pytest.mark.run_loop async def test_crappy_multiexec(create_pool, loop, server): pool = await create_pool( server.tcp_address, encoding='utf-8', loop=loop, minsize=1, maxsize=1) with (await pool) as conn: await conn.execute('set', 'abc', 'def') await conn.execute('multi') await conn.execute('set', 'abc', 'fgh') assert conn.closed is True with (await pool) as conn: value = await conn.execute('get', 'abc') assert value == 'def' @pytest.mark.run_loop async def test_pool_size_growth(create_pool, server, loop): pool = await create_pool( server.tcp_address, loop=loop, minsize=1, maxsize=1) done = set() tasks = [] async def task1(i): with (await pool): assert pool.size <= pool.maxsize assert pool.freesize == 0 await asyncio.sleep(0.2, loop=loop) done.add(i) async def task2(): with (await pool): assert pool.size <= pool.maxsize assert pool.freesize >= 0 assert done == {0, 1} for _ in range(2): tasks.append(asyncio.ensure_future(task1(_), loop=loop)) tasks.append(asyncio.ensure_future(task2(), loop=loop)) await asyncio.gather(*tasks, loop=loop) @pytest.mark.run_loop async def test_pool_with_closed_connections(create_pool, server, loop): pool = await create_pool( server.tcp_address, loop=loop, minsize=1, maxsize=2) assert 1 == pool.freesize conn1 = pool._pool[0] conn1.close() assert conn1.closed is True assert 1 == pool.freesize with (await pool) as conn2: assert conn2.closed is False assert conn1 is not conn2 @pytest.mark.run_loop async def test_pool_close(create_pool, server, loop): pool = await create_pool( server.tcp_address, loop=loop) assert pool.closed is False with (await pool) as conn: assert (await conn.execute('ping')) == b'PONG' pool.close() await pool.wait_closed() assert pool.closed is True with pytest.raises(PoolClosedError): with (await pool) as conn: assert (await conn.execute('ping')) == b'PONG' @pytest.mark.run_loop async def test_pool_close__used(create_pool, server, loop): pool = await create_pool( server.tcp_address, loop=loop) assert pool.closed is False with (await pool) as conn: pool.close() await pool.wait_closed() assert pool.closed is True with pytest.raises(ConnectionClosedError): await conn.execute('ping') @pytest.mark.run_loop @pytest.redis_version(2, 8, 0, reason="maxclients config setting") async def test_pool_check_closed_when_exception( create_pool, create_redis, start_server, loop): server = start_server('server-small') redis = await create_redis(server.tcp_address, loop=loop) await redis.config_set('maxclients', 2) errors = (MaxClientsError, ConnectionClosedError, ConnectionError) with pytest.logs('aioredis', 'DEBUG') as cm: with pytest.raises(errors): await create_pool(address=tuple(server.tcp_address), minsize=3, loop=loop) assert len(cm.output) >= 3 connect_msg = ( "DEBUG:aioredis:Creating tcp connection" " to ('localhost', {})".format(server.tcp_address.port)) assert cm.output[:2] == [connect_msg, connect_msg] assert cm.output[-1] == "DEBUG:aioredis:Closed 1 connection(s)" @pytest.mark.run_loop async def test_pool_get_connection(create_pool, server, loop): pool = await create_pool(server.tcp_address, minsize=1, maxsize=2, loop=loop) res = await pool.execute("set", "key", "val") assert res == b'OK' res = await pool.execute_pubsub("subscribe", "channel:1") assert res == [[b"subscribe", b"channel:1", 1]] res = await pool.execute("getset", "key", "value") assert res == b'val' res = await pool.execute_pubsub("subscribe", "channel:2") assert res == [[b"subscribe", b"channel:2", 2]] res = await pool.execute("get", "key") assert res == b'value' @pytest.mark.run_loop async def test_pool_get_connection_with_pipelining(create_pool, server, loop): pool = await create_pool(server.tcp_address, minsize=1, maxsize=2, loop=loop) fut1 = pool.execute('set', 'key', 'val') fut2 = pool.execute_pubsub("subscribe", "channel:1") fut3 = pool.execute('getset', 'key', 'next') fut4 = pool.execute_pubsub("subscribe", "channel:2") fut5 = pool.execute('get', 'key') res = await fut1 assert res == b'OK' res = await fut2 assert res == [[b"subscribe", b"channel:1", 1]] res = await fut3 assert res == b'val' res = await fut4 assert res == [[b"subscribe", b"channel:2", 2]] res = await fut5 assert res == b'next' @pytest.mark.run_loop async def test_pool_idle_close(create_pool, start_server, loop): server = start_server('idle') conn = await create_pool(server.tcp_address, minsize=2, loop=loop) ok = await conn.execute("config", "set", "timeout", 1) assert ok == b'OK' await asyncio.sleep(2, loop=loop) assert (await conn.execute('ping')) == b'PONG' @pytest.mark.run_loop async def test_await(create_pool, server, loop): pool = await create_pool( server.tcp_address, minsize=10, loop=loop) with await pool as conn: msg = await conn.execute('echo', 'hello') assert msg == b'hello' @pytest.mark.run_loop async def test_async_with(create_pool, server, loop): pool = await create_pool( server.tcp_address, minsize=10, loop=loop) async with pool.get() as conn: msg = await conn.execute('echo', 'hello') assert msg == b'hello'
mit
-4,112,878,076,831,393,000
27.101083
79
0.601747
false
oVirt/ovirt-hosted-engine-setup
src/plugins/gr-he-common/network/gateway.py
1
3548
# # ovirt-hosted-engine-setup -- ovirt hosted engine setup # Copyright (C) 2013-2019 Red Hat, Inc. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # """ gateway configuration plugin. """ import gettext import os import socket import struct from otopi import plugin from otopi import util from ovirt_hosted_engine_setup import constants as ohostedcons def _(m): return gettext.dgettext(message=m, domain='ovirt-hosted-engine-setup') @util.export class Plugin(plugin.PluginBase): """ gateway configuration plugin. """ ROUTE_DESTINATION = 1 ROUTE_GW = 2 def __init__(self, context): super(Plugin, self).__init__(context=context) self._enabled = True def _get_default_gw(self): gateway = '' with open('/proc/net/route', 'r') as f: lines = f.read().splitlines() for line in lines: data = line.split() if data[self.ROUTE_DESTINATION] == '00000000': gateway = socket.inet_ntoa( struct.pack( 'I', int(data[self.ROUTE_GW], 16) ) ) break return gateway @plugin.event( stage=plugin.Stages.STAGE_INIT, ) def _init(self): self.environment.setdefault( ohostedcons.NetworkEnv.GATEWAY, None ) @plugin.event( stage=plugin.Stages.STAGE_SETUP, ) def _setup(self): if ( os.environ.get('proxy') or os.environ.get('http_proxy') or os.environ.get('https_proxy') ): self.logger.warning(_( 'It seems that this host is configured to use a proxy, ' 'please ensure that this host will be able to reach the ' 'engine VM trough that proxy or add a specific exception.' )) @plugin.event( stage=plugin.Stages.STAGE_CUSTOMIZATION, after=( ohostedcons.Stages.DIALOG_TITLES_S_NETWORK, ), before=( ohostedcons.Stages.DIALOG_TITLES_E_NETWORK, ), name=ohostedcons.Stages.CONFIG_GATEWAY, ) def _customization(self): interactive = self.environment[ ohostedcons.NetworkEnv.GATEWAY ] is None if interactive: self.environment[ ohostedcons.NetworkEnv.GATEWAY ] = self.dialog.queryString( name='OVEHOSTED_GATEWAY', note=_( 'Please indicate the gateway IP address ' '[@DEFAULT@]: ' ), prompt=True, caseSensitive=True, default=self._get_default_gw(), ) # vim: expandtab tabstop=4 shiftwidth=4
lgpl-2.1
-8,138,350,650,244,593,000
27.845528
78
0.578072
false
mdasifhasan/Experiments_HTN_Planner
PyHop/pyhop.py
1
9847
""" Pyhop, version 1.2.2 -- a simple SHOP-like planner written in Python. Author: Dana S. Nau, 2013.05.31 Copyright 2013 Dana S. Nau - http://www.cs.umd.edu/~nau Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Pyhop should work correctly in both Python 2.7 and Python 3.2. For examples of how to use it, see the example files that come with Pyhop. Pyhop provides the following classes and functions: - foo = State('foo') tells Pyhop to create an empty state object named 'foo'. To put variables and values into it, you should do assignments such as foo.var1 = val1 - bar = Goal('bar') tells Pyhop to create an empty goal object named 'bar'. To put variables and values into it, you should do assignments such as bar.var1 = val1 - print_state(foo) will print the variables and values in the state foo. - print_goal(foo) will print the variables and values in the goal foo. - declare_operators(o1, o2, ..., ok) tells Pyhop that o1, o2, ..., ok are all of the planning operators; this supersedes any previous call to declare_operators. - print_operators() will print out the list of available operators. - declare_methods('foo', m1, m2, ..., mk) tells Pyhop that m1, m2, ..., mk are all of the methods for tasks having 'foo' as their taskname; this supersedes any previous call to declare_methods('foo', ...). - print_methods() will print out a list of all declared methods. - pyhop(state1,tasklist) tells Pyhop to find a plan for accomplishing tasklist (a list of tasks), starting from an initial state state1, using whatever methods and operators you declared previously. - In the above call to pyhop, you can add an optional 3rd argument called 'verbose' that tells pyhop how much debugging printout it should provide: - if verbose = 0 (the default), pyhop returns the solution but prints nothing; - if verbose = 1, it prints the initial parameters and the answer; - if verbose = 2, it also prints a message on each recursive call; - if verbose = 3, it also prints info about what it's computing. """ # Pyhop's planning algorithm is very similar to the one in SHOP and JSHOP # (see http://www.cs.umd.edu/projects/shop). Like SHOP and JSHOP, Pyhop uses # HTN methods to decompose tasks into smaller and smaller subtasks, until it # finds tasks that correspond directly to actions. But Pyhop differs from # SHOP and JSHOP in several ways that should make it easier to use Pyhop # as part of other programs: # # (1) In Pyhop, one writes methods and operators as ordinary Python functions # (rather than using a special-purpose language, as in SHOP and JSHOP). # # (2) Instead of representing states as collections of logical assertions, # Pyhop uses state-variable representation: a state is a Python object # that contains variable bindings. For example, to define a state in # which box b is located in room r1, you might write something like this: # s = State() # s.loc['b'] = 'r1' # # (3) You also can define goals as Python objects. For example, to specify # that a goal of having box b in room r2, you might write this: # g = Goal() # g.loc['b'] = 'r2' # Like most HTN planners, Pyhop will ignore g unless you explicitly # tell it what to do with g. You can do that by referring to g in # your methods and operators, and passing g to them as an argument. # In the same fashion, you could tell Pyhop to achieve any one of # several different goals, or to achieve them in some desired sequence. # # (4) Unlike SHOP and JSHOP, Pyhop doesn't include a Horn-clause inference # engine for evaluating preconditions of operators and methods. So far, # I've seen no need for it; I've found it easier to write precondition # evaluations directly in Python. But I could consider adding such a # feature if someone convinces me that it's really necessary. # # Accompanying this file are several files that give examples of how to use # Pyhop. To run them, launch python and type "import blocks_world_examples" # or "import simple_travel_example". from __future__ import print_function import copy,sys, pprint ############################################################ # States and goals class State(): """A state is just a collection of variable bindings.""" def __init__(self,name): self.__name__ = name class Goal(): """A goal is just a collection of variable bindings.""" def __init__(self,name): self.__name__ = name ### print_state and print_goal are identical except for the name def print_state(state,indent=4): """Print each variable in state, indented by indent spaces.""" if state != False: for (name,val) in vars(state).items(): if isinstance(val, State): # sys.stdout.write(state.__name__ + '.' + name + "\n") print_state(val) continue if name != '__name__': for x in range(indent): sys.stdout.write(' ') sys.stdout.write(state.__name__ + '.' + name) print(' =', val) else: print('False') def print_goal(goal,indent=4): """Print each variable in goal, indented by indent spaces.""" if goal != False: for (name,val) in vars(goal).items(): if name != '__name__': for x in range(indent): sys.stdout.write(' ') sys.stdout.write(goal.__name__ + '.' + name) print(' =', val) else: print('False') ############################################################ # Helper functions that may be useful in domain models def forall(seq,cond): """True if cond(x) holds for all x in seq, otherwise False.""" for x in seq: if not cond(x): return False return True def find_if(cond,seq): """ Return the first x in seq such that cond(x) holds, if there is one. Otherwise return None. """ for x in seq: if cond(x): return x return None ############################################################ # Commands to tell Pyhop what the operators and methods are operators = {} methods = {} def declare_operators(*op_list): """ Call this after defining the operators, to tell Pyhop what they are. op_list must be a list of functions, not strings. """ operators.update({op.__name__:op for op in op_list}) return operators def declare_methods(task_name,*method_list): """ Call this once for each task, to tell Pyhop what the methods are. task_name must be a string. method_list must be a list of functions, not strings. """ methods.update({task_name:list(method_list)}) return methods[task_name] ############################################################ # Commands to find out what the operators and methods are def print_operators(olist=operators): """Print out the names of the operators""" print('OPERATORS:', ', '.join(olist)) def print_methods(mlist=methods): """Print out a table of what the methods are for each task""" print('{:<14}{}'.format('TASK:','METHODS:')) for task in mlist: print('{:<14}'.format(task) + ', '.join([f.__name__ for f in mlist[task]])) ############################################################ # The actual planner def pyhop(state,tasks,verbose=0): """ Try to find a plan that accomplishes tasks in state. If successful, return the plan. Otherwise return False. """ if verbose>0: print('** pyhop, verbose={}: **\n state = {}\n tasks = {}'.format(verbose, state.__name__, tasks)) result = seek_plan(state,tasks,[],0,verbose) if verbose>0: print('** result =',result,'\n') return result def seek_plan(state,tasks,plan,depth,verbose=0): """ Workhorse for pyhop. state and tasks are as in pyhop. - plan is the current partial plan. - depth is the recursion depth, for use in debugging - verbose is whether to print debugging messages """ if verbose>1: print('depth {} tasks {}'.format(depth,tasks)) if tasks == []: if verbose>2: print('depth {} returns plan {}'.format(depth,plan)) return plan task1 = tasks[0] if verbose > 2: print("ah subtasks:", task1[0]) if task1[0] in operators: if verbose>2: print('depth {} action {}'.format(depth,task1)) operator = operators[task1[0]] newstate = operator(copy.deepcopy(state),*task1[1:]) if verbose>2: print('depth {} new state:'.format(depth)) print_state(newstate) if newstate: solution = seek_plan(newstate,tasks[1:],plan+[task1],depth+1,verbose) if solution != False: return solution if task1[0] in methods: if verbose>2: print('depth {} method instance {}'.format(depth,task1)) relevant = methods[task1[0]] for method in relevant: subtasks = method(state,*task1[1:]) # Can't just say "if subtasks:", because that's wrong if subtasks == [] if verbose>2: print('depth {} new tasks: {}'.format(depth,subtasks)) if subtasks != False: solution = seek_plan(state,subtasks+tasks[1:],plan,depth+1,verbose) if solution != False: return solution if verbose>2: print('depth {} returns failure'.format(depth)) return False
gpl-3.0
8,083,552,663,818,885,000
39.191837
120
0.639078
false
YuanYuLin/iopcbs
BuildRoot/BuildRootCommandHandler_Prepare.py
1
4713
import os import shutil from DefconfigParser import DefconfigParser from BuildRootCommandHandler import BuildRootCommandHandler from ScriptBuilder import ScriptBuilder class BuildRootCommandHandler_Prepare(BuildRootCommandHandler): def __init__(self, next_command_handler): BuildRootCommandHandler.__init__(self, next_command_handler) def action(self, config_obj): print 'BuildRootCommandHandler_Prepare' self._generate_buildroot_defconfig(config_obj) self._create_link_and_output(config_obj) self._create_rootfs_skeleton(config_obj) self._set_os_environ(config_obj) self._create_build_script(config_obj) self.do_next_command_handler(config_obj) def _generate_buildroot_defconfig(self, config_obj): project_buildroot_cfg = config_obj.get_project_top() + os.sep + config_obj.get_default_config_buildroot() parser = DefconfigParser(config_obj.get_default_config_buildroot()) parser.parse() parser.set_config("BR2_DEFCONFIG", config_obj.get_default_config_buildroot()) parser.set_config("BR2_DL_DIR", config_obj.get_download_top()) if config_obj.is_default_rootfs_override(): print "----------------------" parser.set_config("BR2_ROOTFS_SKELETON_CUSTOM_PATH", config_obj.get_rootfs_skeleton()) parser.set_config("BR2_ROOTFS_OVERLAY", "") else: print "=====================" parser.set_config("BR2_ROOTFS_SKELETON_CUSTOM_PATH", "") parser.set_config("BR2_ROOTFS_OVERLAY", config_obj.get_rootfs_skeleton()) parser.set_config("BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE", config_obj.get_default_config_linux()) parser.set_config("BR2_PACKAGE_BUSYBOX_CONFIG", config_obj.get_default_config_busybox()) parser.set_config("BR2_TARGET_GENERIC_ISSUE", "") parser.set_config("BR2_TARGET_GENERIC_HOSTNAME", "") #parser.show_configs() parser.save_configs(config_obj.get_default_config_buildroot()) def _create_rootfs_skeleton(self, config_obj): rootfs_top = config_obj.get_rootfs_skeleton() if not os.path.exists(rootfs_top): print 'Create ' + rootfs_top os.makedirs(rootfs_top) rootfs_list = config_obj.get_default_rootfs() for rootfs_name in sorted(rootfs_list.keys()): rootfs = rootfs_list[rootfs_name] print 'Copy ' + rootfs self._copy_tree(rootfs, rootfs_top) def _copy_tree(self, src, dst): names = os.listdir(src) errors = [] for name in names: srcname = os.path.join(src, name) dstname = os.path.join(dst, name) try: if os.path.islink(srcname): linkto = os.readlink(srcname) os.symlink(linkto, dstname) elif os.path.isdir(srcname): if not os.path.exists(dstname): os.makedirs(dstname) self._copy_tree(srcname, dstname) else: shutil.copy2(srcname, dstname) # XXX What about devices, sockets etc.? except (IOError, os.error) as why: errors.append((srcname, dstname, str(why))) try: shutil.copystat(src, dst) except OSError as why: errors.extend((src, dst, str(why))) def _create_link_and_output(self, config_obj): output_top = config_obj.get_output_top() output_link = config_obj.get_output_link() if (not os.path.exists(output_top)) and (not os.path.exists(output_link)): os.mkdir(output_top) os.symlink(output_top, output_link) print "create output and link" elif not os.path.exists(output_top): print "output is not exist ", output_top elif not os.path.exists(output_link): print "link is not exist ", output_link else: print "link and output are exist " buildroot_defconfig = output_top + os.sep + ".config" if not os.path.exists(buildroot_defconfig): os.symlink(config_obj.get_default_config_buildroot(), buildroot_defconfig) return 0 def _set_os_environ(self, config_obj): os.environ["BR2_DEFCONFIG"] = config_obj.get_default_config_buildroot() def _create_build_script(self, config_obj): output_top = config_obj.get_output_top() output_link = config_obj.get_output_link() build_script_path = output_top + os.sep + "BuildScript" builder = ScriptBuilder() builder.generate_buildscript(config_obj, build_script_path)
gpl-2.0
-8,869,341,640,128,807,000
38.940678
113
0.610651
false
petermlm/ProbPy
tests/test_base.py
1
2268
from ProbPy import RandVar, Factor class TestBase: def __init__(self): # Scalars self.scalar = 10 self.scalarf = Factor([], [10]) # Binary variables self.X = RandVar("X", ["T", "F"]) self.Y = RandVar("Y", ["T", "F"]) self.Z = RandVar("Z", ["T", "F"]) self.W = RandVar("W", ["T", "F"]) self.K = RandVar("K", ["T", "F"]) self.T = RandVar("T", ["T", "F"]) # Domains self.X_domain = list(range(1, 3)) self.Y_domain = list(range(3, 5)) self.Z_domain = list(range(5, 7)) self.XY_domain = list(range(1, 5)) self.XZ_domain = list(range(5, 9)) self.ZW_domain = list(range(9, 13)) self.XYZ_domain = list(range(1, 9)) self.XYW_domain = list(range(9, 17)) self.XKW_domain = list(range(17, 25)) self.TKW_domain = list(range(25, 33)) # Factors self.X_factor = Factor(self.X, self.X_domain) self.Y_factor = Factor(self.Y, self.Y_domain) self.Z_factor = Factor(self.Z, self.Z_domain) self.XY_factor = Factor([self.X, self.Y], self.XY_domain) self.XZ_factor = Factor([self.X, self.Z], self.XZ_domain) self.ZW_factor = Factor([self.Z, self.W], self.ZW_domain) self.XYZ_factor = Factor([self.X, self.Y, self.Z], self.XYZ_domain) self.XYW_factor = Factor([self.X, self.Y, self.W], self.XYW_domain) self.XKW_factor = Factor([self.X, self.K, self.W], self.XKW_domain) self.TKW_factor = Factor([self.T, self.K, self.W], self.TKW_domain) # Factors for normalization self.X_factor_n = Factor(self.X, [1, 2]) self.XY_factor_n = Factor([self.X, self.Y], [1, 1, 2, 2]) self.XYZ_factor_n = Factor([self.X, self.Y, self.Z], [1, 1, 2, 2, 3, 3, 4, 4]) # Distributions for expected value self.X_dist = Factor(self.X, [0.8, 0.2]) self.Y_dist = Factor(self.Y, [0.1, 0.9]) self.XY_dist = Factor([self.X, self.Y], [0.1, 0.2, 0.3, 0.4]) # Function for expected values f(X) self.x_ev = Factor(self.X, [10, 20]) self.y_ev = Factor(self.Y, [15, 25]) self.xy_ev = Factor([self.X, self.Y], [25, 35, 35, 45])
mit
3,184,444,580,707,223,600
36.8
75
0.525573
false
simgunz/anki
qt/aqt/progress.py
1
7938
# Copyright: Ankitects Pty Ltd and contributors # License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html from __future__ import annotations import time from typing import Callable, Optional import aqt.forms from aqt.qt import * from aqt.utils import TR, disable_help_button, tr # Progress info ########################################################################## class ProgressManager: def __init__(self, mw: aqt.AnkiQt) -> None: self.mw = mw self.app = QApplication.instance() self.inDB = False self.blockUpdates = False self._show_timer: Optional[QTimer] = None self._win: Optional[ProgressDialog] = None self._levels = 0 # Safer timers ########################################################################## # A custom timer which avoids firing while a progress dialog is active # (likely due to some long-running DB operation) def timer( self, ms: int, func: Callable, repeat: bool, requiresCollection: bool = True ) -> QTimer: """Create and start a standard Anki timer. If the timer fires while a progress window is shown: - if it is a repeating timer, it will wait the same delay again - if it is non-repeating, it will try again in 100ms If requiresCollection is True, the timer will not fire if the collection has been unloaded. Setting it to False will allow the timer to fire even when there is no collection, but will still only fire when there is no current progress dialog.""" def handler() -> None: if requiresCollection and not self.mw.col: # no current collection; timer is no longer valid print(f"Ignored progress func as collection unloaded: {repr(func)}") return if not self._levels: # no current progress; safe to fire func() else: if repeat: # skip this time; we'll fire again pass else: # retry in 100ms self.timer(100, func, False, requiresCollection) t = QTimer(self.mw) if not repeat: t.setSingleShot(True) qconnect(t.timeout, handler) t.start(ms) return t # Creating progress dialogs ########################################################################## def start( self, max: int = 0, min: int = 0, label: Optional[str] = None, parent: Optional[QDialog] = None, immediate: bool = False, ) -> Optional[ProgressDialog]: self._levels += 1 if self._levels > 1: return None # setup window parent = parent or self.app.activeWindow() if not parent and self.mw.isVisible(): parent = self.mw label = label or tr(TR.QT_MISC_PROCESSING) self._win = ProgressDialog(parent) self._win.form.progressBar.setMinimum(min) self._win.form.progressBar.setMaximum(max) self._win.form.progressBar.setTextVisible(False) self._win.form.label.setText(label) self._win.setWindowTitle("Anki") self._win.setWindowModality(Qt.ApplicationModal) self._win.setMinimumWidth(300) self._setBusy() self._shown: float = 0 self._counter = min self._min = min self._max = max self._firstTime = time.time() self._lastUpdate = time.time() self._updating = False self._show_timer = QTimer(self.mw) self._show_timer.setSingleShot(True) self._show_timer.start(immediate and 100 or 600) qconnect(self._show_timer.timeout, self._on_show_timer) return self._win def update( self, label: Optional[str] = None, value: Optional[int] = None, process: bool = True, maybeShow: bool = True, max: Optional[int] = None, ) -> None: # print self._min, self._counter, self._max, label, time.time() - self._lastTime if not self.mw.inMainThread(): print("progress.update() called on wrong thread") return if self._updating: return if maybeShow: self._maybeShow() if not self._shown: return elapsed = time.time() - self._lastUpdate if label: self._win.form.label.setText(label) self._max = max or 0 self._win.form.progressBar.setMaximum(self._max) if self._max: self._counter = value or (self._counter + 1) self._win.form.progressBar.setValue(self._counter) if process and elapsed >= 0.2: self._updating = True self.app.processEvents() # type: ignore #possibly related to https://github.com/python/mypy/issues/6910 self._updating = False self._lastUpdate = time.time() def finish(self) -> None: self._levels -= 1 self._levels = max(0, self._levels) if self._levels == 0: if self._win: self._closeWin() self._unsetBusy() if self._show_timer: self._show_timer.stop() self._show_timer = None def clear(self) -> None: "Restore the interface after an error." if self._levels: self._levels = 1 self.finish() def _maybeShow(self) -> None: if not self._levels: return if self._shown: return delta = time.time() - self._firstTime if delta > 0.5: self._showWin() def _showWin(self) -> None: self._shown = time.time() self._win.show() def _closeWin(self) -> None: if self._shown: while True: # give the window system a second to present # window before we close it again - fixes # progress window getting stuck, especially # on ubuntu 16.10+ elap = time.time() - self._shown if elap >= 0.5: break self.app.processEvents(QEventLoop.ExcludeUserInputEvents) # type: ignore #possibly related to https://github.com/python/mypy/issues/6910 self._win.cancel() self._win = None self._shown = 0 def _setBusy(self) -> None: self.mw.app.setOverrideCursor(QCursor(Qt.WaitCursor)) def _unsetBusy(self) -> None: self.app.restoreOverrideCursor() def busy(self) -> int: "True if processing." return self._levels def _on_show_timer(self) -> None: self._show_timer = None self._showWin() def want_cancel(self) -> bool: win = self._win if win: return win.wantCancel else: return False def set_title(self, title: str) -> None: win = self._win if win: win.setWindowTitle(title) class ProgressDialog(QDialog): def __init__(self, parent: QWidget) -> None: QDialog.__init__(self, parent) disable_help_button(self) self.form = aqt.forms.progress.Ui_Dialog() self.form.setupUi(self) self._closingDown = False self.wantCancel = False # required for smooth progress bars self.form.progressBar.setStyleSheet("QProgressBar::chunk { width: 1px; }") def cancel(self) -> None: self._closingDown = True self.hide() def closeEvent(self, evt: QCloseEvent) -> None: if self._closingDown: evt.accept() else: self.wantCancel = True evt.ignore() def keyPressEvent(self, evt: QKeyEvent) -> None: if evt.key() == Qt.Key_Escape: evt.ignore() self.wantCancel = True
agpl-3.0
-4,262,308,446,230,237,000
31.801653
153
0.546485
false
wackerly/faucet
faucet/faucet_dot1x.py
1
2989
"""802.1x implementation for FAUCET.""" # Copyright (C) 2013 Nippon Telegraph and Telephone Corporation. # Copyright (C) 2015 Brad Cowie, Christopher Lorier and Joe Stringer. # Copyright (C) 2015 Research and Education Advanced Network New Zealand Ltd. # Copyright (C) 2015--2017 The Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import eventlet eventlet.monkey_patch() from ryu.lib import hub # pylint: disable=wrong-import-position from chewie.chewie import Chewie # pylint: disable=wrong-import-position from chewie.mac_address import MacAddress # pylint: disable=wrong-import-position class FaucetDot1x(object): """Wrapper for experimental Chewie 802.1x authenticator.""" # TODO: support other credentials. CREDENTIALS = { 'gary': 'microphone', } def __init__(self, logger, metrics, send_flow_msgs): self.logger = logger self.metrics = metrics self._send_flow_msgs = send_flow_msgs self._valve = None self.dot1x_speaker = None self.dot1x_intf = None self.dot1x_port = None def _create_dot1x_speaker(self): chewie = Chewie( self.dot1x_intf, self.CREDENTIALS, self.logger, self.auth_handler, MacAddress.from_string('00:00:00:00:00:01')) hub.spawn(chewie.run) return chewie def auth_handler(self, address, _group_address): """Callback for when a successful auth happens.""" self.logger.info( 'Successful auth from MAC %s on %s' % ( str(address), self.dot1x_port)) flowmods = self._valve.add_authed_mac( self.dot1x_port.number, str(address)) if flowmods: self._send_flow_msgs(self._valve, flowmods) def reset(self, valves): """Set up a dot1x speaker.""" # TODO: support multiple Valves and ports. if self.dot1x_speaker is None: for valve in list(valves.values()): if valve.dp.dot1x and valve.dp.dot1x_ports(): self._valve = valve self.dot1x_intf = self._valve.dp.dot1x['nfv_intf'] self.dot1x_port = self._valve.dp.dot1x_ports()[0] self.dot1x_speaker = self._create_dot1x_speaker() self.logger.info( 'dot1x enabled on %s %s, NFV interface %s' % ( self._valve.dp, self.dot1x_port, self.dot1x_intf)) break
apache-2.0
-77,410,599,712,950,910
37.818182
81
0.632653
false
pombreda/https-gitorious.org-appstream-software-center
softwarecenter/backend/channel.py
1
12578
# Copyright (C) 2010 Canonical # # Authors: # Gary Lasker # Michael Vogt # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; version 3. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import logging import xapian from gettext import gettext as _ from softwarecenter.distro import get_distro from softwarecenter.enums import (SortMethods, Icons, ViewPages, ) LOG = logging.getLogger(__name__) class ChannelsManager(object): def __init__(self, db, **kwargs): self.distro = get_distro() self.db = db # public @property def channels(self): return self._get_channels_from_db() @property def channels_installed_only(self): return self._get_channels_from_db(True) @classmethod def channel_available(kls, channelname): pass # private def _get_channels_from_db(self, installed_only=False): """ (internal) implements 'channels()' and 'channels_installed_only()' properties """ distro_channel_origin = self.distro.get_distro_channel_name() # gather the set of software channels and order them other_channel_list = [] cached_origins = [] for channel_iter in self.db.xapiandb.allterms("XOL"): if len(channel_iter.term) == 3: continue channel_name = channel_iter.term[3:] channel_origin = "" # get origin information for this channel m = self.db.xapiandb.postlist_begin(channel_iter.term) doc = self.db.xapiandb.get_document(m.get_docid()) for term_iter in doc.termlist(): if (term_iter.term.startswith("XOO") and len(term_iter.term) > 3): channel_origin = term_iter.term[3:] break LOG.debug("channel_name: %s" % channel_name) LOG.debug("channel_origin: %s" % channel_origin) if channel_origin not in cached_origins: other_channel_list.append((channel_name, channel_origin)) cached_origins.append(channel_origin) dist_channel = None other_channels = [] unknown_channel = [] local_channel = None for (channel_name, channel_origin) in other_channel_list: if not channel_name: unknown_channel.append(SoftwareChannel( channel_name, channel_origin, None, installed_only=installed_only)) elif channel_origin == distro_channel_origin: dist_channel = (SoftwareChannel( channel_name, channel_origin, None, installed_only=installed_only)) elif channel_name == "notdownloadable": if installed_only: local_channel = SoftwareChannel( channel_name, None, None, installed_only=installed_only) else: other_channels.append(SoftwareChannel( channel_name, channel_origin, None, installed_only=installed_only)) # set them in order channels = [] if dist_channel is not None: channels.append(dist_channel) channels.extend(other_channels) channels.extend(unknown_channel) if local_channel is not None: channels.append(local_channel) for channel in channels: if installed_only: channel._channel_view_id = ViewPages.INSTALLED else: channel._channel_view_id = ViewPages.AVAILABLE return channels class SoftwareChannel(object): """ class to represent a software channel """ ICON_SIZE = 24 def __init__(self, channel_name, channel_origin, channel_component, source_entry=None, installed_only=False, channel_icon=None, channel_query=None, channel_sort_mode=SortMethods.BY_ALPHABET): """ configure the software channel object based on channel name, origin, and component (the latter for detecting the partner channel) """ self._channel_name = channel_name self._channel_origin = channel_origin self._channel_component = channel_component self._channel_color = None self._channel_view_id = None self.installed_only = installed_only self._channel_sort_mode = channel_sort_mode # distro specific stuff self.distro = get_distro() # configure the channel self._channel_display_name = self._get_display_name_for_channel( channel_name, channel_origin, channel_component) if channel_icon is None: self._channel_icon = self._get_icon_for_channel( channel_name, channel_origin, channel_component) else: self._channel_icon = channel_icon if channel_query is None: self._channel_query = self._get_channel_query_for_channel( channel_name, channel_origin, channel_component) else: self._channel_query = channel_query # a sources.list entry attached to the channel (this is currently # only used for not-yet-enabled channels) self._source_entry = source_entry # when the channel needs to be added to the systems sources.list self.needs_adding = False @property def name(self): """ return the channel name as represented in the xapian database """ return self._channel_name @property def origin(self): """ return the channel origin as represented in the xapian database """ return self._channel_origin @property def component(self): """ return the channel component as represented in the xapian database """ return self._channel_component @property def display_name(self): """ return the display name for the corresponding channel for use in the UI """ return self._channel_display_name @property def icon(self): """ return the icon that corresponds to each channel based on the channel name, its origin string or its component """ return self._channel_icon @property def query(self): """ return the xapian query to be used with this software channel """ return self._channel_query @property def sort_mode(self): """ return the sort mode for this software channel """ return self._channel_sort_mode # TODO: implement __cmp__ so that sort for channels is encapsulated # here as well def _get_display_name_for_channel(self, channel_name, channel_origin, channel_component): if channel_component == "partner": channel_display_name = _("Canonical Partners") elif not channel_origin: channel_display_name = _("Unknown") elif channel_origin == self.distro.get_distro_channel_name(): channel_display_name = self.distro.get_distro_channel_description() elif channel_name == "For Purchase": channel_display_name = _("For Purchase") elif channel_name == "Application Review Board PPA": channel_display_name = _("Independent") elif channel_name == "notdownloadable": channel_display_name = _("Other") else: return channel_name return channel_display_name def _get_icon_for_channel(self, channel_name, channel_origin, channel_component): if channel_component == "partner": channel_icon = "partner" elif not channel_name: channel_icon = "unknown-channel" elif channel_origin == self.distro.get_distro_channel_name(): channel_icon = "distributor-logo" elif channel_name == "Application Review Board PPA": channel_icon = "system-users" elif channel_name == "For Purchase": channel_icon = "emblem-money" elif channel_origin and channel_origin.startswith("LP-PPA"): channel_icon = "ppa" elif channel_name == "notdownloadable": channel_icon = "application-default-icon" # TODO: add check for generic repository source (e.g., Google, Inc.) # channel_icon = "generic-repository" else: channel_icon = "unknown-channel" return channel_icon def _get_channel_query_for_channel(self, channel_name, channel_origin, channel_component): if channel_component == "partner": q1 = xapian.Query("XOCpartner") q2 = xapian.Query("AH%s-partner" % self.distro.get_codename()) channel_query = xapian.Query(xapian.Query.OP_OR, q1, q2) # show only apps when displaying the new apps archive elif channel_name == "Application Review Board PPA": channel_query = xapian.Query(xapian.Query.OP_AND, xapian.Query("XOL" + channel_name), xapian.Query("ATapplication")) elif channel_origin: channel_query = xapian.Query("XOO" + channel_origin) else: channel_query = xapian.Query("XOL" + channel_name) return channel_query def __str__(self): details = [] details.append("* SoftwareChannel") details.append(" name: %s" % self.name) details.append(" origin: %s" % self.origin) details.append(" component: %s" % self.component) details.append(" display_name: %s" % self.display_name) details.append(" iconname: %s" % self.icon) details.append(" query: %s" % self.query) details.append(" sort_mode: %s" % self.sort_mode) details.append(" installed_only: %s" % self.installed_only) return unicode('\n'.join(details), 'utf8').encode('utf8') class AllChannel(SoftwareChannel): def __init__(self, channel_name, installed_only): SoftwareChannel.__init__( self, channel_name, "all", None, installed_only=installed_only, channel_icon=Icons.FALLBACK) # overrides def _get_display_name_for_channel(self, channel_name, channel_origin, channel_component): return channel_name def _get_channel_query_for_channel(self, *args): pass class AllAvailableChannel(AllChannel): def __init__(self): AllChannel.__init__(self, _("All Software"), False) class AllInstalledChannel(AllChannel): def __init__(self): AllChannel.__init__(self, _("All Installed"), True) # singleton channels_manager = None def get_channels_manager(db): global channels_manager if channels_manager is None: from softwarecenter.enums import USE_PACKAGEKIT_BACKEND if not USE_PACKAGEKIT_BACKEND: from softwarecenter.backend.channel_impl.aptchannels import ( AptChannelsManager) channels_manager = AptChannelsManager(db) else: channels_manager = ChannelsManager(db) return channels_manager def is_channel_available(channelname): from softwarecenter.backend.channel_impl.aptchannels import ( AptChannelsManager) return AptChannelsManager.channel_available(channelname) if __name__ == "__main__": distro = get_distro() channel = SoftwareChannel(distro.get_distro_channel_name(), None, None) print(channel) channel = SoftwareChannel(distro.get_distro_channel_name(), None, "partner") print(channel)
gpl-3.0
6,576,376,662,612,633,000
33.938889
79
0.591827
false
mteule/StationMeteo
messy-doc/StationMeteo.Diagram/StationMeteo.Diagram.py
1
1485
class Sensor : ''' https://www.google.fr/#q=NVARCHAR+encodage+mysql https://stackoverflow.com/questions/612430/when-must-we-use-nvarchar-nchar-instead-of-varchar-char-in-sql-servers Nvarchar ne sert que pour les utilisateurs MS-SQL. ''' def __init__(self) : pass class Station : '''(NULL)''' def __init__(self) : self.logger = logging.getLogger(__name__) # self.ser = serial.Serial() # self.datab = DatabManager() # self.raw_received_meterings = "" # str self.metering_quantity = 0 # int self.last_meterings_list = list() # self.sensor_dict = dict('id': ,'name': ) # pass def _get_meterings_raw_data (self) : # returns pass def _parse_raw_data (self) : # returns pass def _store_meterings (self) : # returns pass def setup (self) : # returns pass def loop (self) : # returns pass class DatabManager : ''' http://docs.sqlalchemy.org/en/rel_0_8/orm/tutorial.html#adding-new-objects''' def __init__(self) : self.logger = logging.getLogger(__name__) # self.engine_url = 'sqlite:///:memory:' # str self.engine = sqlalchemy.create_engine(engine_url, echo = True) # self.Session = sqlalchemy.orm.sessionmaker(bind=engine) # self.session = Session() # pass class Metering : ''' http://docs.sqlalchemy.org/en/rel_0_8/orm/tutorial.html#declare-a-mapping >>> from sqlalchemy.ext.declarative import declarative_base >>> declarative_base() <class 'sqlalchemy.ext.declarative.Base'> >>> ''' def __init__(self) : pass
mit
-8,164,009,308,065,374,000
26
113
0.665993
false
ppwwyyxx/tensorflow
tensorflow/python/ops/array_ops.py
1
192961
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Tests for this file live in python/kernel_tests/array_ops_test.py """Support for manipulating tensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from tensorflow.python.compat import compat from tensorflow.python.eager import context from tensorflow.python.framework import common_shapes from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util # 'Constant' gets imported in the module 'array_ops'. from tensorflow.python.framework.constant_op import constant from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.ops.gen_array_ops import * from tensorflow.python.ops.gen_array_ops import reverse_v2 as reverse # pylint: disable=unused-import from tensorflow.python.util import deprecation from tensorflow.python.util import dispatch from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export # pylint: enable=wildcard-import # Used for slicing to specify a new 1 size dimension newaxis = None tf_export("newaxis").export_constant(__name__, "newaxis") # We override the 'slice' for the "slice" op, so we keep python's # existing 'slice' for later use in this module. _BaseSlice = slice # LINT.IfChange matrix_diag_v3_forward_compat_date = (2019, 12, 6) # LINT.ThenChange( # //tensorflow/compiler/tests/matrix_diag_ops_test.py, # //tensorflow/python/kernel_tests/diag_op_test.py, # //tensorflow/python/ops/parallel_for/array_test.py # ) @tf_export("reshape", v1=["reshape", "manip.reshape"]) def reshape(tensor, shape, name=None): # pylint: disable=redefined-outer-name r"""Reshapes a tensor. Given `tensor`, this operation returns a new `tf.Tensor` that has the same values as `tensor` in the same order, except with a new shape given by `shape`. >>> t1 = [[1, 2, 3], ... [4, 5, 6]] >>> print(tf.shape(t1).numpy()) [2 3] >>> t2 = tf.reshape(t1, [6]) >>> t2 <tf.Tensor: shape=(6,), dtype=int32, numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)> >>> tf.reshape(t2, [3, 2]) <tf.Tensor: shape=(3, 2), dtype=int32, numpy= array([[1, 2], [3, 4], [5, 6]], dtype=int32)> The `tf.reshape` does not change the order of or the total number of elements in the tensor, and so it can reuse the underlying data buffer. This makes it a fast operation independent of how big of a tensor it is operating on. >>> tf.reshape([1, 2, 3], [2, 2]) Traceback (most recent call last): ... InvalidArgumentError: Input to reshape is a tensor with 3 values, but the requested shape has 4 To instead reorder the data to rearrange the dimensions of a tensor, see `tf.transpose`. >>> t = [[1, 2, 3], ... [4, 5, 6]] >>> tf.reshape(t, [3, 2]).numpy() array([[1, 2], [3, 4], [5, 6]], dtype=int32) >>> tf.transpose(t, perm=[1, 0]).numpy() array([[1, 4], [2, 5], [3, 6]], dtype=int32) If one component of `shape` is the special value -1, the size of that dimension is computed so that the total size remains constant. In particular, a `shape` of `[-1]` flattens into 1-D. At most one component of `shape` can be -1. >>> t = [[1, 2, 3], ... [4, 5, 6]] >>> tf.reshape(t, [-1]) <tf.Tensor: shape=(6,), dtype=int32, numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)> >>> tf.reshape(t, [3, -1]) <tf.Tensor: shape=(3, 2), dtype=int32, numpy= array([[1, 2], [3, 4], [5, 6]], dtype=int32)> >>> tf.reshape(t, [-1, 2]) <tf.Tensor: shape=(3, 2), dtype=int32, numpy= array([[1, 2], [3, 4], [5, 6]], dtype=int32)> `tf.reshape(t, [])` reshapes a tensor `t` with one element to a scalar. >>> tf.reshape([7], []).numpy() 7 More examples: >>> t = [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> print(tf.shape(t).numpy()) [9] >>> tf.reshape(t, [3, 3]) <tf.Tensor: shape=(3, 3), dtype=int32, numpy= array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=int32)> >>> t = [[[1, 1], [2, 2]], ... [[3, 3], [4, 4]]] >>> print(tf.shape(t).numpy()) [2 2 2] >>> tf.reshape(t, [2, 4]) <tf.Tensor: shape=(2, 4), dtype=int32, numpy= array([[1, 1, 2, 2], [3, 3, 4, 4]], dtype=int32)> >>> t = [[[1, 1, 1], ... [2, 2, 2]], ... [[3, 3, 3], ... [4, 4, 4]], ... [[5, 5, 5], ... [6, 6, 6]]] >>> print(tf.shape(t).numpy()) [3 2 3] >>> # Pass '[-1]' to flatten 't'. >>> tf.reshape(t, [-1]) <tf.Tensor: shape=(18,), dtype=int32, numpy=array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6], dtype=int32)> >>> # -- Using -1 to infer the shape -- >>> # Here -1 is inferred to be 9: >>> tf.reshape(t, [2, -1]) <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)> >>> # -1 is inferred to be 2: >>> tf.reshape(t, [-1, 9]) <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]], dtype=int32)> >>> # -1 is inferred to be 3: >>> tf.reshape(t, [ 2, -1, 3]) <tf.Tensor: shape=(2, 3, 3), dtype=int32, numpy= array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]], dtype=int32)> Args: tensor: A `Tensor`. shape: A `Tensor`. Must be one of the following types: `int32`, `int64`. Defines the shape of the output tensor. name: Optional string. A name for the operation. Returns: A `Tensor`. Has the same type as `tensor`. """ result = gen_array_ops.reshape(tensor, shape, name) tensor_util.maybe_set_static_shape(result, shape) return result @tf_export("fill") def fill(dims, value, name=None): r"""Creates a tensor filled with a scalar value. This operation creates a tensor of shape `dims` and fills it with `value`. For example: ``` # Output tensor has shape [2, 3]. fill([2, 3], 9) ==> [[9, 9, 9] [9, 9, 9]] ``` `tf.fill` differs from `tf.constant` in a few ways: * `tf.fill` only supports scalar contents, whereas `tf.constant` supports Tensor values. * `tf.fill` creates an Op in the computation graph that constructs the actual Tensor value at runtime. This is in contrast to `tf.constant` which embeds the entire Tensor into the graph with a `Const` node. * Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes based on other runtime Tensors, unlike `tf.constant`. Args: dims: A `Tensor`. Must be one of the following types: `int32`, `int64`. 1-D. Represents the shape of the output tensor. value: A `Tensor`. 0-D (scalar). Value to fill the returned tensor. @compatibility(numpy) Equivalent to np.full @end_compatibility name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `value`. """ result = gen_array_ops.fill(dims, value, name=name) tensor_util.maybe_set_static_shape(result, dims) return result @tf_export("identity") @dispatch.add_dispatch_support def identity(input, name=None): # pylint: disable=redefined-builtin r"""Return a tensor with the same shape and contents as input. For example: ```python import tensorflow as tf val0 = tf.ones((1,), dtype=tf.float32) a = tf.atan2(val0, val0) a_identity = tf.identity(a) print(a.numpy()) #[0.7853982] print(a_identity.numpy()) #[0.7853982] ``` Args: input: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ if isinstance(input, composite_tensor.CompositeTensor): return nest.map_structure(identity, input, expand_composites=True) if context.executing_eagerly() and not hasattr(input, "graph"): # Make sure we get an input with handle data attached from resource # variables. Variables have correct handle data when graph building. input = ops.convert_to_tensor(input) ret = gen_array_ops.identity(input, name=name) # Propagate handle data for happier shape inference for resource variables. if hasattr(input, "_handle_data"): ret._handle_data = input._handle_data # pylint: disable=protected-access return ret # pylint: disable=redefined-builtin,protected-access @tf_export(v1=["expand_dims"]) @dispatch.add_dispatch_support @deprecation.deprecated_args(None, "Use the `axis` argument instead", "dim") def expand_dims(input, axis=None, name=None, dim=None): """Inserts a dimension of 1 into a tensor's shape. Given a tensor `input`, this operation inserts a dimension of 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end. This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`. Other examples: ```python # 't' is a tensor of shape [2] tf.shape(tf.expand_dims(t, 0)) # [1, 2] tf.shape(tf.expand_dims(t, 1)) # [2, 1] tf.shape(tf.expand_dims(t, -1)) # [2, 1] # 't2' is a tensor of shape [2, 3, 5] tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5] tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5] tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1] ``` This operation requires that: `-1-input.dims() <= dim <= input.dims()` This operation is related to `squeeze()`, which removes dimensions of size 1. Args: input: A `Tensor`. axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`. name: The name of the output `Tensor` (optional). dim: 0-D (scalar). Equivalent to `axis`, to be deprecated. Returns: A `Tensor` with the same data as `input`, but its shape has an additional dimension of size 1 added. Raises: ValueError: if either both or neither of `dim` and `axis` are specified. """ axis = deprecation.deprecated_argument_lookup("axis", axis, "dim", dim) if axis is None: raise ValueError("Must specify an axis argument to tf.expand_dims()") return expand_dims_v2(input, axis, name) @tf_export("expand_dims", v1=[]) @dispatch.add_dispatch_support def expand_dims_v2(input, axis, name=None): """Returns a tensor with an additional dimension inserted at index `axis`. Given a tensor `input`, this operation inserts a dimension of size 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end. This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of one image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`. Examples: >>> t = [[1, 2, 3],[4, 5, 6]] # shape [2, 3] >>> tf.expand_dims(t, 0) <tf.Tensor: shape=(1, 2, 3), dtype=int32, numpy= array([[[1, 2, 3], [4, 5, 6]]], dtype=int32)> >>> tf.expand_dims(t, 1) <tf.Tensor: shape=(2, 1, 3), dtype=int32, numpy= array([[[1, 2, 3]], [[4, 5, 6]]], dtype=int32)> >>> tf.expand_dims(t, 2) <tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy= array([[[1], [2], [3]], [[4], [5], [6]]], dtype=int32)> >>> tf.expand_dims(t, -1) # Last dimension index. In this case, same as 2. <tf.Tensor: shape=(2, 3, 1), dtype=int32, numpy= array([[[1], [2], [3]], [[4], [5], [6]]], dtype=int32)> This operation is related to: * `tf.squeeze`, which removes dimensions of size 1. * `tf.reshape`, which provides more flexible reshaping capability Args: input: A `Tensor`. axis: Integer specifying the dimension index at which to expand the shape of `input`. Given an input of D dimensions, `axis` must be in range `[-(D+1), D]` (inclusive). name: Optional string. The name of the output `Tensor`. Returns: A tensor with the same data as `input`, with an additional dimension inserted at the index specified by `axis`. Raises: ValueError: If `axis` is not specified. InvalidArgumentError: If `axis` is out of range `[-(D+1), D]`. """ return gen_array_ops.expand_dims(input, axis, name) # pylint: enable=redefined-builtin,protected-access # Aliases for some automatically-generated names. # pylint: disable=protected-access @deprecation.deprecated("2016-11-30", "This op will be removed after the deprecation date. " "Please switch to tf.setdiff1d().") def listdiff(x, y, out_idx=None, name=None): return gen_array_ops.list_diff(x, y, out_idx, name) listdiff.__doc__ = gen_array_ops.list_diff.__doc__ + "\n" + listdiff.__doc__ # pylint: enable=protected-access # pylint: disable=undefined-variable @deprecation.deprecated("2018-11-30", "This op will be removed after the deprecation date. " "Please switch to tf.sets.difference().") @tf_export(v1=["setdiff1d"]) def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops.list_diff(x, y, index_dtype, name) setdiff1d.__doc__ = gen_array_ops.list_diff.__doc__ @tf_export("broadcast_dynamic_shape") def broadcast_dynamic_shape(shape_x, shape_y): """Computes the shape of a broadcast given symbolic shapes. When shape_x and shape_y are Tensors representing shapes (i.e. the result of calling tf.shape on another Tensor) this computes a Tensor which is the shape of the result of a broadcasting op applied in tensors of shapes shape_x and shape_y. For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a Tensor whose value is [5, 2, 3]. This is useful when validating the result of a broadcasting operation when the tensors do not have statically known shapes. Args: shape_x: A rank 1 integer `Tensor`, representing the shape of x. shape_y: A rank 1 integer `Tensor`, representing the shape of y. Returns: A rank 1 integer `Tensor` representing the broadcasted shape. """ return gen_array_ops.broadcast_args(shape_x, shape_y) @tf_export("broadcast_static_shape") def broadcast_static_shape(shape_x, shape_y): """Computes the shape of a broadcast given known shapes. When shape_x and shape_y are fully known TensorShapes this computes a TensorShape which is the shape of the result of a broadcasting op applied in tensors of shapes shape_x and shape_y. For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a TensorShape whose value is [5, 2, 3]. This is useful when validating the result of a broadcasting operation when the tensors have statically known shapes. Args: shape_x: A `TensorShape` shape_y: A `TensorShape` Returns: A `TensorShape` representing the broadcasted shape. Raises: ValueError: If the two shapes can not be broadcasted. """ return common_shapes.broadcast_shape(shape_x, shape_y) @tf_export("shape", v1=[]) def shape_v2(input, out_type=dtypes.int32, name=None): # pylint: disable=redefined-builtin """Returns the shape of a tensor. This operation returns a 1-D integer tensor representing the shape of `input`. For example: >>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) >>> tf.shape(t) <tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 2, 3], dtype=int32)> >>> tf.shape(t).numpy() array([2, 2, 3], dtype=int32) Note: When using symbolic tensors, such as when using the Keras functional API, tf.shape() will return the shape of the symbolic tensor. >>> a = tf.keras.layers.Input((None, 10)) >>> tf.shape(a) <tf.Tensor ... shape=(3,) dtype=int32> In these cases, using `tf.Tensor.shape` will return more informative results. >>> a.shape TensorShape([None, None, 10]) Args: input: A `Tensor` or `SparseTensor`. out_type: (Optional) The specified output type of the operation (`int32` or `int64`). Defaults to `tf.int32`. name: A name for the operation (optional). Returns: A `Tensor` of type `out_type`. """ return shape(input, name, out_type) @tf_export(v1=["shape"]) def shape(input, name=None, out_type=dtypes.int32): # pylint: disable=redefined-builtin """Returns the shape of a tensor. This operation returns a 1-D integer tensor representing the shape of `input`. For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.shape(t) # [2, 2, 3] ``` Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). out_type: (Optional) The specified output type of the operation (`int32` or `int64`). Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. """ return shape_internal(input, name, optimize=True, out_type=out_type) def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32): # pylint: disable=redefined-builtin """Returns the shape of a tensor. Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). optimize: if true, encode the shape as a constant when possible. out_type: (Optional) The specified output type of the operation (`int32` or `int64`). Defaults to tf.int32. Returns: A `Tensor` of type `out_type`. """ with ops.name_scope(name, "Shape", [input]) as name: if isinstance( input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): return gen_math_ops.cast(input.dense_shape, out_type) else: if not context.executing_eagerly(): input = ops.convert_to_tensor(input) input_shape = input.get_shape() if optimize and input_shape.is_fully_defined(): return constant(input_shape.as_list(), out_type, name=name) return gen_array_ops.shape(input, name=name, out_type=out_type) @tf_export("shape_n") def shape_n(input, out_type=dtypes.int32, name=None): # pylint: disable=redefined-builtin """Returns shape of tensors. Args: input: A list of at least 1 `Tensor` object with the same type. out_type: The specified output type of the operation (`int32` or `int64`). Defaults to `tf.int32`(optional). name: A name for the operation (optional). Returns: A list with the same length as `input` of `Tensor` objects with type `out_type`. """ return gen_array_ops.shape_n(input, out_type=out_type, name=name) @tf_export("size", v1=[]) @dispatch.add_dispatch_support def size_v2(input, out_type=dtypes.int32, name=None): # pylint: disable=redefined-builtin """Returns the size of a tensor. Returns a 0-D `Tensor` representing the number of elements in `input` of type `out_type`. Defaults to tf.int32. For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.size(t) # 12 ``` Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). out_type: (Optional) The specified non-quantized numeric output type of the operation. Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. Defaults to `tf.int32`. @compatibility(numpy) Equivalent to np.size() @end_compatibility """ return size(input, name, out_type) @tf_export(v1=["size"]) @dispatch.add_dispatch_support def size(input, name=None, out_type=dtypes.int32): # pylint: disable=redefined-builtin """Returns the size of a tensor. Returns a 0-D `Tensor` representing the number of elements in `input` of type `out_type`. Defaults to tf.int32. For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.size(t) # 12 ``` Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). out_type: (Optional) The specified non-quantized numeric output type of the operation. Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. Defaults to `tf.int32`. @compatibility(numpy) Equivalent to np.size() @end_compatibility """ return size_internal(input, name, optimize=True, out_type=out_type) def size_internal(input, name=None, optimize=True, out_type=dtypes.int32): # pylint: disable=redefined-builtin,protected-access """Returns the size of a tensor. Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). optimize: if true, encode the size as a constant when possible. out_type: (Optional) The specified non-quantized numeric output type of the operation. Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. Defaults to `tf.int32`. """ if (context.executing_eagerly() and not hasattr(input, "graph") and not isinstance( input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue))): input = ops.convert_to_tensor(input) np_out_type = out_type.as_numpy_dtype num_elements = np.prod(input._shape_tuple(), dtype=np_out_type) # pylint: disable=protected-access return ops.convert_to_tensor(num_elements, dtype=out_type) with ops.name_scope(name, "Size", [input]) as name: if isinstance( input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): return gen_math_ops.prod( gen_math_ops.cast(input.dense_shape, out_type), 0, name=name) else: input = ops.convert_to_tensor(input) input_shape = input.get_shape() if optimize: if input_shape.is_fully_defined(): return constant(input_shape.num_elements(), out_type, name=name) if input_shape.dims and any(dim == 0 for dim in input_shape.dims): return constant(0, out_type, name=name) return gen_array_ops.size(input, name=name, out_type=out_type) @tf_export("rank") @dispatch.add_dispatch_support def rank(input, name=None): # pylint: disable=redefined-builtin """Returns the rank of a tensor. Returns a 0-D `int32` `Tensor` representing the rank of `input`. For example: ```python # shape of tensor 't' is [2, 2, 3] t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.rank(t) # 3 ``` **Note**: The rank of a tensor is not the same as the rank of a matrix. The rank of a tensor is the number of indices required to uniquely select each element of the tensor. Rank is also known as "order", "degree", or "ndims." Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. @compatibility(numpy) Equivalent to np.ndim @end_compatibility """ return rank_internal(input, name, optimize=True) def rank_internal(input, name=None, optimize=True): # pylint: disable=redefined-builtin """Returns the rank of a tensor. Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). optimize: if true, encode the rank as a constant when possible. Returns: A `Tensor` of type `int32`. """ with ops.name_scope(name, "Rank", [input]) as name: if isinstance( input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): return gen_array_ops.size(input.dense_shape, name=name) else: input = ops.convert_to_tensor(input) input_shape = input.get_shape() if optimize and input_shape.ndims is not None: return constant(input_shape.ndims, dtypes.int32, name=name) return gen_array_ops.rank(input, name=name) _SLICE_TYPE_ERROR = ( "Only integers, slices (`:`), ellipsis (`...`), " "tf.newaxis (`None`) and scalar tf.int32/tf.int64 tensors are valid " "indices") _SUPPORTED_SLICE_DTYPES = (dtypes.int32, dtypes.int32_ref, dtypes.int64, dtypes.int64_ref) def _check_index(idx): """Check if a given value is a valid index into a tensor.""" if isinstance(idx, (six.integer_types, tensor_shape.Dimension)): return # Optimistic check. Assumptions: # * any object with a dtype is supported # * any object with a dtype has a sizeable shape attribute. dtype = getattr(idx, "dtype", None) if (dtype is None or dtypes.as_dtype(dtype) not in _SUPPORTED_SLICE_DTYPES or idx.shape and len(idx.shape) == 1): # TODO(slebedev): IndexError seems more appropriate here, but it # will break `_slice_helper` contract. raise TypeError(_SLICE_TYPE_ERROR + ", got {!r}".format(idx)) def _is_undefined_dimension(d): return isinstance(d, tensor_shape.Dimension) and d.value is None def _slice_helper(tensor, slice_spec, var=None): """Overload for Tensor.__getitem__. This operation extracts the specified region from the tensor. The notation is similar to NumPy with the restriction that currently only support basic indexing. That means that using a non-scalar tensor as input is not currently allowed. Some useful examples: ```python # Strip leading and trailing 2 elements foo = tf.constant([1,2,3,4,5,6]) print(foo[2:-2].eval()) # => [3,4] # Skip every other row and reverse the order of the columns foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]] # Use scalar tensors as indices on both dimensions print(foo[tf.constant(0), tf.constant(2)].eval()) # => 3 # Insert another dimension foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]] print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]], [[7],[8],[9]]] # Ellipses (3 equivalent operations) foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] # Masks foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[foo > 2].eval()) # => [3, 4, 5, 6, 7, 8, 9] ``` Notes: - `tf.newaxis` is `None` as in NumPy. - An implicit ellipsis is placed at the end of the `slice_spec` - NumPy advanced indexing is currently not supported. Args: tensor: An ops.Tensor object. slice_spec: The arguments to Tensor.__getitem__. var: In the case of variable slice assignment, the Variable object to slice (i.e. tensor is the read-only view of this variable). Returns: The appropriate slice of "tensor", based on "slice_spec". Raises: ValueError: If a slice range is negative size. TypeError: If the slice indices aren't int, slice, ellipsis, tf.newaxis or scalar int32/int64 tensors. """ if isinstance(slice_spec, bool) or \ (isinstance(slice_spec, ops.Tensor) and slice_spec.dtype == dtypes.bool) or \ (isinstance(slice_spec, np.ndarray) and slice_spec.dtype == bool): return boolean_mask(tensor=tensor, mask=slice_spec) if not isinstance(slice_spec, (list, tuple)): slice_spec = [slice_spec] begin, end, strides = [], [], [] index = 0 new_axis_mask, shrink_axis_mask = 0, 0 begin_mask, end_mask = 0, 0 ellipsis_mask = 0 for s in slice_spec: if isinstance(s, _BaseSlice): if s.start is not None and not _is_undefined_dimension(s.start): _check_index(s.start) begin.append(s.start) else: begin.append(0) begin_mask |= (1 << index) if s.stop is not None and not _is_undefined_dimension(s.stop): _check_index(s.stop) end.append(s.stop) else: end.append(0) end_mask |= (1 << index) if s.step is not None and not _is_undefined_dimension(s.step): _check_index(s.step) strides.append(s.step) else: strides.append(1) elif s is Ellipsis: begin.append(0) end.append(0) strides.append(1) ellipsis_mask |= (1 << index) elif s is newaxis: begin.append(0) end.append(0) strides.append(1) new_axis_mask |= (1 << index) else: _check_index(s) begin.append(s) end.append(s + 1) strides.append(1) shrink_axis_mask |= (1 << index) index += 1 # stack possibly involves no tensors, so we must use op_scope correct graph. with ops.name_scope( None, "strided_slice", [tensor] + begin + end + strides, skip_on_eager=False) as name: if begin: packed_begin, packed_end, packed_strides = (stack(begin), stack(end), stack(strides)) if (packed_begin.dtype == dtypes.int64 or packed_end.dtype == dtypes.int64 or packed_strides.dtype == dtypes.int64): if packed_begin.dtype != dtypes.int64: packed_begin = gen_math_ops.cast(packed_begin, dtypes.int64) if packed_end.dtype != dtypes.int64: packed_end = gen_math_ops.cast(packed_end, dtypes.int64) if packed_strides.dtype != dtypes.int64: packed_strides = gen_math_ops.cast(packed_strides, dtypes.int64) else: var_empty = constant([], dtype=dtypes.int32) packed_begin = packed_end = packed_strides = var_empty return strided_slice( tensor, packed_begin, packed_end, packed_strides, begin_mask=begin_mask, end_mask=end_mask, shrink_axis_mask=shrink_axis_mask, new_axis_mask=new_axis_mask, ellipsis_mask=ellipsis_mask, var=var, name=name) # pylint: disable=undefined-variable,protected-access,redefined-outer-name @tf_export("slice") def slice(input_, begin, size, name=None): # pylint: disable=redefined-builtin """Extracts a slice from a tensor. This operation extracts a slice of size `size` from a tensor `input_` starting at the location specified by `begin`. The slice `size` is represented as a tensor shape, where `size[i]` is the number of elements of the 'i'th dimension of `input_` that you want to slice. The starting location (`begin`) for the slice is represented as an offset in each dimension of `input_`. In other words, `begin[i]` is the offset into the i'th dimension of `input_` that you want to slice from. Note that `tf.Tensor.__getitem__` is typically a more pythonic way to perform slices, as it allows you to write `foo[3:7, :-2]` instead of `tf.slice(foo, [3, 0], [4, foo.get_shape()[1]-2])`. `begin` is zero-based; `size` is one-based. If `size[i]` is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: `size[i] = input_.dim_size(i) - begin[i]` This operation requires that: `0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]` For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]) tf.slice(t, [1, 0, 0], [1, 1, 3]) # [[[3, 3, 3]]] tf.slice(t, [1, 0, 0], [1, 2, 3]) # [[[3, 3, 3], # [4, 4, 4]]] tf.slice(t, [1, 0, 0], [2, 1, 3]) # [[[3, 3, 3]], # [[5, 5, 5]]] ``` Args: input_: A `Tensor`. begin: An `int32` or `int64` `Tensor`. size: An `int32` or `int64` `Tensor`. name: A name for the operation (optional). Returns: A `Tensor` the same type as `input_`. """ return gen_array_ops._slice(input_, begin, size, name=name) # pylint: disable=invalid-name @tf_export("strided_slice") def strided_slice(input_, begin, end, strides=None, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, var=None, name=None): """Extracts a strided slice of a tensor (generalized python array indexing). **Instead of calling this op directly most users will want to use the NumPy-style slicing syntax (e.g. `tensor[..., 3:4:-1, tf.newaxis, 3]`), which is supported via `tf.Tensor.__getitem__` and `tf.Variable.__getitem__`.** The interface of this op is a low-level encoding of the slicing syntax. Roughly speaking, this op extracts a slice of size `(end-begin)/stride` from the given `input_` tensor. Starting at the location specified by `begin` the slice continues by adding `stride` to the index until all dimensions are not less than `end`. Note that a stride can be negative, which causes a reverse slice. Given a Python slice `input[spec0, spec1, ..., specn]`, this function will be called as follows. `begin`, `end`, and `strides` will be vectors of length n. n in general is not equal to the rank of the `input_` tensor. In each mask field (`begin_mask`, `end_mask`, `ellipsis_mask`, `new_axis_mask`, `shrink_axis_mask`) the ith bit will correspond to the ith spec. If the ith bit of `begin_mask` is set, `begin[i]` is ignored and the fullest possible range in that dimension is used instead. `end_mask` works analogously, except with the end range. `foo[5:,:,:3]` on a 7x8x9 tensor is equivalent to `foo[5:7,0:8,0:3]`. `foo[::-1]` reverses a tensor with shape 8. If the ith bit of `ellipsis_mask` is set, as many unspecified dimensions as needed will be inserted between other dimensions. Only one non-zero bit is allowed in `ellipsis_mask`. For example `foo[3:5,...,4:5]` on a shape 10x3x3x10 tensor is equivalent to `foo[3:5,:,:,4:5]` and `foo[3:5,...]` is equivalent to `foo[3:5,:,:,:]`. If the ith bit of `new_axis_mask` is set, then `begin`, `end`, and `stride` are ignored and a new length 1 dimension is added at this point in the output tensor. For example, `foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor. If the ith bit of `shrink_axis_mask` is set, it implies that the ith specification shrinks the dimensionality by 1, taking on the value at index `begin[i]`. `end[i]` and `strides[i]` are ignored in this case. For example in Python one might do `foo[:, 3, :]` which would result in `shrink_axis_mask` equal to 2. NOTE: `begin` and `end` are zero-indexed. `strides` entries must be non-zero. ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]) tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1]) # [[[3, 3, 3]]] tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1]) # [[[3, 3, 3], # [4, 4, 4]]] tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1]) # [[[4, 4, 4], # [3, 3, 3]]] ``` Args: input_: A `Tensor`. begin: An `int32` or `int64` `Tensor`. end: An `int32` or `int64` `Tensor`. strides: An `int32` or `int64` `Tensor`. begin_mask: An `int32` mask. end_mask: An `int32` mask. ellipsis_mask: An `int32` mask. new_axis_mask: An `int32` mask. shrink_axis_mask: An `int32` mask. var: The variable corresponding to `input_` or None name: A name for the operation (optional). Returns: A `Tensor` the same type as `input`. """ if strides is None: strides = ones_like(begin) op = gen_array_ops.strided_slice( input=input_, begin=begin, end=end, strides=strides, name=name, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask) parent_name = name if not (var is None and isinstance(op, ops.EagerTensor)): def assign(val, name=None): """Closure that holds all the arguments to create an assignment.""" if var is None: raise ValueError("Sliced assignment is only supported for variables") else: if name is None: name = parent_name + "_assign" return var._strided_slice_assign( begin=begin, end=end, strides=strides, value=val, name=name, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask) op.assign = assign return op def _SliceHelperVar(var, slice_spec): """Creates a slice helper object given a variable. This allows creating a sub-tensor from part of the current contents of a variable. See `tf.Tensor.__getitem__` for detailed examples of slicing. This function in addition also allows assignment to a sliced range. This is similar to `__setitem__` functionality in Python. However, the syntax is different so that the user can capture the assignment operation for grouping or passing to `sess.run()`. For example, ```python import tensorflow as tf A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32) with tf.compat.v1.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) print(sess.run(A[:2, :2])) # => [[1,2], [4,5]] op = A[:2,:2].assign(22. * tf.ones((2, 2))) print(sess.run(op)) # => [[22, 22, 3], [22, 22, 6], [7,8,9]] ``` Note that assignments currently do not support NumPy broadcasting semantics. Args: var: An `ops.Variable` object. slice_spec: The arguments to `Tensor.__getitem__`. Returns: The appropriate slice of "tensor", based on "slice_spec". As an operator. The operator also has a `assign()` method that can be used to generate an assignment operator. Raises: ValueError: If a slice range is negative size. TypeError: TypeError: If the slice indices aren't int, slice, ellipsis, tf.newaxis or int32/int64 tensors. """ return _slice_helper(var.value(), slice_spec, var) ops.Tensor._override_operator("__getitem__", _slice_helper) @tf_export("parallel_stack") def parallel_stack(values, name="parallel_stack"): """Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor in parallel. Requires that the shape of inputs be known at graph construction time. Packs the list of tensors in `values` into a tensor with rank one higher than each tensor in `values`, by packing them along the first dimension. Given a list of length `N` of tensors of shape `(A, B, C)`; the `output` tensor will have the shape `(N, A, B, C)`. For example: ```python x = tf.constant([1, 4]) y = tf.constant([2, 5]) z = tf.constant([3, 6]) tf.parallel_stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] ``` The difference between `stack` and `parallel_stack` is that `stack` requires all the inputs be computed before the operation will begin but doesn't require that the input shapes be known during graph construction. `parallel_stack` will copy pieces of the input into the output as they become available, in some situations this can provide a performance benefit. Unlike `stack`, `parallel_stack` does NOT support backpropagation. This is the opposite of unstack. The numpy equivalent is tf.parallel_stack([x, y, z]) = np.asarray([x, y, z]) Args: values: A list of `Tensor` objects with the same shape and type. name: A name for this operation (optional). Returns: output: A stacked `Tensor` with the same type as `values`. """ with ops.name_scope(name): value_t = ops.convert_to_tensor(values[0]) value_shape = ops.convert_to_tensor(value_t).get_shape() output_shape = tensor_shape.TensorShape([len(values)]) output_shape = output_shape.concatenate(value_shape) # expand_dims converts concat to stack. return gen_array_ops.parallel_concat( [expand_dims(value, 0) for value in values], shape=output_shape) @tf_export("stack") @dispatch.add_dispatch_support def stack(values, axis=0, name="stack"): """Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor. Packs the list of tensors in `values` into a tensor with rank one higher than each tensor in `values`, by packing them along the `axis` dimension. Given a list of length `N` of tensors of shape `(A, B, C)`; if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`. if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. Etc. For example: >>> x = tf.constant([1, 4]) >>> y = tf.constant([2, 5]) >>> z = tf.constant([3, 6]) >>> tf.stack([x, y, z]) <tf.Tensor: shape=(3, 2), dtype=int32, numpy= array([[1, 4], [2, 5], [3, 6]], dtype=int32)> >> tf.stack([x, y, z], axis=1) <tf.Tensor: shape=(2, 3), dtype=int32, numpy= array([[1, 2, 3], [4, 5, 6]], dtype=int32)> This is the opposite of unstack. The numpy equivalent is `np.stack` >>> np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z])) True Args: values: A list of `Tensor` objects with the same shape and type. axis: An `int`. The axis to stack along. Defaults to the first dimension. Negative values wrap around, so the valid range is `[-(R+1), R+1)`. name: A name for this operation (optional). Returns: output: A stacked `Tensor` with the same type as `values`. Raises: ValueError: If `axis` is out of the range [-(R+1), R+1). """ if axis == 0: try: # If the input is a constant list, it can be converted to a constant op return ops.convert_to_tensor(values, name=name) except (TypeError, ValueError): pass # Input list contains non-constant tensors value_shape = ops.convert_to_tensor(values[0], name=name)._shape_tuple() # pylint: disable=protected-access if value_shape is not None: expanded_num_dims = len(value_shape) + 1 if axis < -expanded_num_dims or axis >= expanded_num_dims: raise ValueError("axis = %d not in [%d, %d)" % (axis, -expanded_num_dims, expanded_num_dims)) return gen_array_ops.pack(values, axis=axis, name=name) # pylint: disable=invalid-name def _autopacking_helper(list_or_tuple, dtype, name): """Converts the given list or tuple to a tensor by packing. Args: list_or_tuple: A (possibly nested) list or tuple containing a tensor. dtype: The element type of the returned tensor. name: A name for the returned tensor. Returns: A `tf.Tensor` with value equivalent to `list_or_tuple`. """ if context.executing_eagerly(): # NOTE: Fast path when all the items are tensors, this doesn't do any type # checking. if all(ops.is_dense_tensor_like(elem) for elem in list_or_tuple): return gen_array_ops.pack(list_or_tuple, name=name) must_pack = False converted_elems = [] with ops.name_scope(name) as scope: for i, elem in enumerate(list_or_tuple): if ops.is_dense_tensor_like(elem): if dtype is not None and elem.dtype.base_dtype != dtype: raise TypeError("Cannot convert a list containing a tensor of dtype " "%s to %s (Tensor is: %r)" % (elem.dtype, dtype, elem)) converted_elems.append(elem) must_pack = True elif isinstance(elem, (list, tuple)): converted_elem = _autopacking_helper(elem, dtype, str(i)) if ops.is_dense_tensor_like(converted_elem): must_pack = True converted_elems.append(converted_elem) else: converted_elems.append(elem) if must_pack: elems_as_tensors = [] for i, elem in enumerate(converted_elems): if ops.is_dense_tensor_like(elem): elems_as_tensors.append(elem) else: # NOTE(mrry): This is inefficient, but it enables us to # handle the case where the list arguments are other # convertible-to-tensor types, such as numpy arrays. elems_as_tensors.append( constant_op.constant(elem, dtype=dtype, name=str(i))) return gen_array_ops.pack(elems_as_tensors, name=scope) else: return converted_elems def _get_dtype_from_nested_lists(list_or_tuple): """Returns the dtype of any tensor-like object in `list_or_tuple`, if found. Args: list_or_tuple: A list or tuple representing an object that can be converted to a `tf.Tensor`. Returns: The dtype of any tensor-like object in `list_or_tuple`, or `None` if no such object exists. """ for elem in list_or_tuple: if ops.is_dense_tensor_like(elem): return elem.dtype.base_dtype elif isinstance(elem, (list, tuple)): maybe_dtype = _get_dtype_from_nested_lists(elem) if maybe_dtype is not None: return maybe_dtype return None def _cast_nested_seqs_to_dtype(dtype): def _maybe_cast(elem): if ops.is_dense_tensor_like(elem): if dtype != elem.dtype.base_dtype: elem = gen_math_ops.cast(elem, dtype) return elem return _maybe_cast _NON_AUTOPACKABLE_TYPES = set(np.core.numerictypes.ScalarType) _NON_AUTOPACKABLE_TYPES.add(np.ndarray) def _should_not_autopack(v): # The condition we really want is # ops.is_dense_tensor_like(...) # but it is >5x slower due to abc.ABCMeta.__instancecheck__. # pylint: disable=unidiomatic-typecheck # TODO(slebedev): add nest.all? return all(type(elem) in _NON_AUTOPACKABLE_TYPES for elem in nest.flatten(v)) # pylint: enable=unidiomatic-typecheck def _autopacking_conversion_function(v, dtype=None, name=None, as_ref=False): """Tensor conversion function that automatically packs arguments.""" if as_ref or _should_not_autopack(v): return NotImplemented inferred_dtype = _get_dtype_from_nested_lists(v) if inferred_dtype is None: # We did not find any tensor-like objects in the nested lists, so defer to # other conversion functions. return NotImplemented if dtype is None: dtype = inferred_dtype elif dtype != inferred_dtype: v = nest.map_structure(_cast_nested_seqs_to_dtype(dtype), v) return _autopacking_helper(v, dtype, name or "packed") # pylint: enable=invalid-name # NOTE: Register this conversion function to run *before* one that # assumes every element is a value. ops.register_tensor_conversion_function((list, tuple), _autopacking_conversion_function, 99) @tf_export("unstack") def unstack(value, num=None, axis=0, name="unstack"): """Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. Unpacks `num` tensors from `value` by chipping it along the `axis` dimension. If `num` is not specified (the default), it is inferred from `value`'s shape. If `value.shape[axis]` is not known, `ValueError` is raised. For example, given a tensor of shape `(A, B, C, D)`; If `axis == 0` then the i'th tensor in `output` is the slice `value[i, :, :, :]` and each tensor in `output` will have shape `(B, C, D)`. (Note that the dimension unpacked along is gone, unlike `split`). If `axis == 1` then the i'th tensor in `output` is the slice `value[:, i, :, :]` and each tensor in `output` will have shape `(A, C, D)`. Etc. This is the opposite of stack. Args: value: A rank `R > 0` `Tensor` to be unstacked. num: An `int`. The length of the dimension `axis`. Automatically inferred if `None` (the default). axis: An `int`. The axis to unstack along. Defaults to the first dimension. Negative values wrap around, so the valid range is `[-R, R)`. name: A name for the operation (optional). Returns: The list of `Tensor` objects unstacked from `value`. Raises: ValueError: If `num` is unspecified and cannot be inferred. ValueError: If `axis` is out of the range [-R, R). """ if num is None: value = ops.convert_to_tensor(value) value_shape = value.get_shape() if value_shape.ndims is not None: if axis < -value_shape.ndims or axis >= value_shape.ndims: raise ValueError("axis = %d not in [%d, %d)" % (axis, -value_shape.ndims, value_shape.ndims)) num = value_shape.dims[axis].value if num is None: raise ValueError("Cannot infer num from shape %s" % value_shape) return gen_array_ops.unpack(value, num=num, axis=axis, name=name) @tf_export("concat") @dispatch.add_dispatch_support def concat(values, axis, name="concat"): """Concatenates tensors along one dimension. Concatenates the list of tensors `values` along dimension `axis`. If `values[i].shape = [D0, D1, ... Daxis(i), ...Dn]`, the concatenated result has shape [D0, D1, ... Raxis, ...Dn] where Raxis = sum(Daxis(i)) That is, the data from the input tensors is joined along the `axis` dimension. The number of dimensions of the input tensors must match, and all dimensions except `axis` must be equal. For example: >>> t1 = [[1, 2, 3], [4, 5, 6]] >>> t2 = [[7, 8, 9], [10, 11, 12]] >>> concat([t1, t2], 0) <tf.Tensor: shape=(4, 3), dtype=int32, numpy= array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [10, 11, 12]], dtype=int32)> >>> concat([t1, t2], 1) <tf.Tensor: shape=(2, 6), dtype=int32, numpy= array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 10, 11, 12]], dtype=int32)> As in Python, the `axis` could also be negative numbers. Negative `axis` are interpreted as counting from the end of the rank, i.e., `axis + rank(values)`-th dimension. For example: >>> t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]] >>> t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]] >>> tf.concat([t1, t2], -1) <tf.Tensor: shape=(2, 2, 4), dtype=int32, numpy= array([[[ 1, 2, 7, 4], [ 2, 3, 8, 4]], [[ 4, 4, 2, 10], [ 5, 3, 15, 11]]], dtype=int32)> Note: If you are concatenating along a new axis consider using stack. E.g. ```python tf.concat([tf.expand_dims(t, axis) for t in tensors], axis) ``` can be rewritten as ```python tf.stack(tensors, axis=axis) ``` Args: values: A list of `Tensor` objects or a single `Tensor`. axis: 0-D `int32` `Tensor`. Dimension along which to concatenate. Must be in the range `[-rank(values), rank(values))`. As in Python, indexing for axis is 0-based. Positive axis in the rage of `[0, rank(values))` refers to `axis`-th dimension. And negative axis refers to `axis + rank(values)`-th dimension. name: A name for the operation (optional). Returns: A `Tensor` resulting from concatenation of the input tensors. """ if not isinstance(values, (list, tuple)): values = [values] # TODO(mrry): Change to return values? if len(values) == 1: # Degenerate case of one tensor. # Make a throwaway call to convert_to_tensor to make sure # that axis is of the correct type, and make sure that # the returned tensor is a scalar. # TODO(keveman): Implement a standalone type and shape checker. with ops.name_scope(name) as scope: ops.convert_to_tensor( axis, name="concat_dim", dtype=dtypes.int32).get_shape().assert_has_rank(0) return identity(values[0], name=name) return gen_array_ops.concat_v2(values=values, axis=axis, name=name) @tf_export(v1=["boolean_mask"]) def boolean_mask(tensor, mask, name="boolean_mask", axis=None): """Apply boolean mask to tensor. Numpy equivalent is `tensor[mask]`. ```python # 1-D example tensor = [0, 1, 2, 3] mask = np.array([True, False, True, False]) boolean_mask(tensor, mask) # [0, 2] ``` In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match the first K dimensions of `tensor`'s shape. We then have: `boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]` where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order). The `axis` could be used with `mask` to indicate the axis to mask from. In that case, `axis + dim(mask) <= dim(tensor)` and `mask`'s shape must match the first `axis + dim(mask)` dimensions of `tensor`'s shape. See also: `tf.ragged.boolean_mask`, which can be applied to both dense and ragged tensors, and can be used if you need to preserve the masked dimensions of `tensor` (rather than flattening them, as `tf.boolean_mask` does). Args: tensor: N-D tensor. mask: K-D boolean tensor, K <= N and K must be known statically. name: A name for this operation (optional). axis: A 0-D int Tensor representing the axis in `tensor` to mask from. By default, axis is 0 which will mask from the first dimension. Otherwise K + axis <= N. Returns: (N-K+1)-dimensional tensor populated by entries in `tensor` corresponding to `True` values in `mask`. Raises: ValueError: If shapes do not conform. Examples: ```python # 2-D example tensor = [[1, 2], [3, 4], [5, 6]] mask = np.array([True, False, True]) boolean_mask(tensor, mask) # [[1, 2], [5, 6]] ``` """ def _apply_mask_1d(reshaped_tensor, mask, axis=None): """Mask tensor along dimension 0 with a 1-D mask.""" indices = squeeze(where_v2(mask), axis=[1]) return gather(reshaped_tensor, indices, axis=axis) with ops.name_scope(name, values=[tensor, mask]): tensor = ops.convert_to_tensor(tensor, name="tensor") mask = ops.convert_to_tensor(mask, name="mask") shape_mask = mask.get_shape() ndims_mask = shape_mask.ndims shape_tensor = tensor.get_shape() if ndims_mask == 0: raise ValueError("mask cannot be scalar.") if ndims_mask is None: raise ValueError( "Number of mask dimensions must be specified, even if some dimensions" " are None. E.g. shape=[None] is ok, but shape=None is not.") axis = 0 if axis is None else axis shape_tensor[axis:axis + ndims_mask].assert_is_compatible_with(shape_mask) leading_size = gen_math_ops.prod(shape(tensor)[axis:axis + ndims_mask], [0]) tensor = reshape( tensor, concat([ shape(tensor)[:axis], [leading_size], shape(tensor)[axis + ndims_mask:] ], 0)) first_dim = shape_tensor[axis:axis + ndims_mask].num_elements() tensor.set_shape( tensor_shape.as_shape(shape_tensor[:axis]).concatenate( [first_dim]).concatenate(shape_tensor[axis + ndims_mask:])) mask = reshape(mask, [-1]) return _apply_mask_1d(tensor, mask, axis) @tf_export("boolean_mask", v1=[]) @dispatch.add_dispatch_support def boolean_mask_v2(tensor, mask, axis=None, name="boolean_mask"): """Apply boolean mask to tensor. Numpy equivalent is `tensor[mask]`. ```python # 1-D example tensor = [0, 1, 2, 3] mask = np.array([True, False, True, False]) boolean_mask(tensor, mask) # [0, 2] ``` In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match the first K dimensions of `tensor`'s shape. We then have: `boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]` where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order). The `axis` could be used with `mask` to indicate the axis to mask from. In that case, `axis + dim(mask) <= dim(tensor)` and `mask`'s shape must match the first `axis + dim(mask)` dimensions of `tensor`'s shape. See also: `tf.ragged.boolean_mask`, which can be applied to both dense and ragged tensors, and can be used if you need to preserve the masked dimensions of `tensor` (rather than flattening them, as `tf.boolean_mask` does). Args: tensor: N-D tensor. mask: K-D boolean tensor, K <= N and K must be known statically. axis: A 0-D int Tensor representing the axis in `tensor` to mask from. By default, axis is 0 which will mask from the first dimension. Otherwise K + axis <= N. name: A name for this operation (optional). Returns: (N-K+1)-dimensional tensor populated by entries in `tensor` corresponding to `True` values in `mask`. Raises: ValueError: If shapes do not conform. Examples: ```python # 2-D example tensor = [[1, 2], [3, 4], [5, 6]] mask = np.array([True, False, True]) boolean_mask(tensor, mask) # [[1, 2], [5, 6]] ``` """ return boolean_mask(tensor, mask, name, axis) @tf_export("sparse.mask", v1=["sparse.mask", "sparse_mask"]) @deprecation.deprecated_endpoints("sparse_mask") def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices # [12, 26, 37, 45] tf.shape(a.values) # [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse.mask(a, [12, 45]) b.indices # [26, 37] tf.shape(b.values) # [2, 10] ``` Args: a: An `IndexedSlices` instance. mask_indices: Indices of elements to mask. name: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = gen_array_ops.list_diff(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape) @tf_export("unique") def unique(x, out_idx=dtypes.int32, name=None): # TODO(yongtang): switch to v2 once API deprecation # period (3 weeks) pass. # TODO(yongtang): The documentation should also # be updated when switch to v2. return gen_array_ops.unique(x, out_idx, name) unique.__doc__ = gen_array_ops.unique.__doc__ @tf_export("unique_with_counts") def unique_with_counts(x, out_idx=dtypes.int32, name=None): # TODO(yongtang): switch to v2 once API deprecation # period (3 weeks) pass. # TODO(yongtang): The documentation should also # be updated when switch to v2. return gen_array_ops.unique_with_counts(x, out_idx, name) unique_with_counts.__doc__ = gen_array_ops.unique_with_counts.__doc__ @tf_export("split") def split(value, num_or_size_splits, axis=0, num=None, name="split"): """Splits a tensor into sub tensors. If `num_or_size_splits` is an integer, then `value` is split along dimension `axis` into `num_split` smaller tensors. This requires that `num_split` evenly divides `value.shape[axis]`. If `num_or_size_splits` is a 1-D Tensor (or list), we call it `size_splits` and `value` is split into `len(size_splits)` elements. The shape of the `i`-th element has the same size as the `value` except along dimension `axis` where the size is `size_splits[i]`. For example: ```python # 'value' is a tensor with shape [5, 30] # Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1 split0, split1, split2 = tf.split(value, [4, 15, 11], 1) tf.shape(split0) # [5, 4] tf.shape(split1) # [5, 15] tf.shape(split2) # [5, 11] # Split 'value' into 3 tensors along dimension 1 split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1) tf.shape(split0) # [5, 10] ``` Args: value: The `Tensor` to split. num_or_size_splits: Either an integer indicating the number of splits along `axis` or a 1-D integer `Tensor` or Python list containing the sizes of each output tensor along `axis`. If a scalar, then it must evenly divide `value.shape[axis]`; otherwise the sum of sizes along the split axis must match that of the `value`. axis: An integer or scalar `int32` `Tensor`. The dimension along which to split. Must be in the range `[-rank(value), rank(value))`. Defaults to 0. num: Optional, used to specify the number of outputs when it cannot be inferred from the shape of `size_splits`. name: A name for the operation (optional). Returns: if `num_or_size_splits` is a scalar returns `num_or_size_splits` `Tensor` objects; if `num_or_size_splits` is a 1-D Tensor returns `num_or_size_splits.get_shape[0]` `Tensor` objects resulting from splitting `value`. Raises: ValueError: If `num` is unspecified and cannot be inferred. """ size_splits = ops.convert_to_tensor(num_or_size_splits) if isinstance(num_or_size_splits, six.integer_types + (tensor_shape.Dimension,)): return gen_array_ops.split( axis=axis, num_split=num_or_size_splits, value=value, name=name) if size_splits._rank() == 0: raise ValueError( "Rank-0 tensors are not supported as the num_or_size_splits argument " "to split. Argument provided: %s" % (num_or_size_splits,)) if num is None: size_splits_shape = size_splits._shape_tuple() if size_splits_shape: num = size_splits_shape[0] if num is None: raise ValueError("Cannot infer num from shape %s" % num_or_size_splits) return gen_array_ops.split_v( value=value, size_splits=size_splits, axis=axis, num_split=num, name=name) @tf_export("transpose", v1=[]) def transpose_v2(a, perm=None, conjugate=False, name="transpose"): """Transposes `a`. Permutes the dimensions according to `perm`. The returned tensor's dimension i will correspond to the input dimension `perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors. If conjugate is True and `a.dtype` is either `complex64` or `complex128` then the values of `a` are conjugated and transposed. @compatibility(numpy) In `numpy` transposes are memory-efficient constant time operations as they simply return a new view of the same data with adjusted `strides`. TensorFlow does not support strides, so `transpose` returns a new tensor with the items permuted. @end_compatibility For example: ```python x = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.transpose(x) # [[1, 4] # [2, 5] # [3, 6]] # Equivalently tf.transpose(x, perm=[1, 0]) # [[1, 4] # [2, 5] # [3, 6]] # If x is complex, setting conjugate=True gives the conjugate transpose x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]) tf.transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j], # [2 - 2j, 5 - 5j], # [3 - 3j, 6 - 6j]] # 'perm' is more useful for n-dimensional tensors, for n > 2 x = tf.constant([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]]) # Take the transpose of the matrices in dimension-0 # (this common operation has a shorthand `linalg.matrix_transpose`) tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4], # [2, 5], # [3, 6]], # [[7, 10], # [8, 11], # [9, 12]]] ``` Args: a: A `Tensor`. perm: A permutation of the dimensions of `a`. conjugate: Optional bool. Setting it to `True` is mathematically equivalent to tf.math.conj(tf.transpose(input)). name: A name for the operation (optional). Returns: A transposed `Tensor`. """ return transpose(a=a, perm=perm, name=name, conjugate=conjugate) @tf_export(v1=["transpose"]) def transpose(a, perm=None, name="transpose", conjugate=False): """Transposes `a`. Permutes the dimensions according to `perm`. The returned tensor's dimension i will correspond to the input dimension `perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors. If conjugate is True and `a.dtype` is either `complex64` or `complex128` then the values of `a` are conjugated and transposed. @compatibility(numpy) In `numpy` transposes are memory-efficient constant time operations as they simply return a new view of the same data with adjusted `strides`. TensorFlow does not support strides, so `transpose` returns a new tensor with the items permuted. @end_compatibility For example: ```python x = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.transpose(x) # [[1, 4] # [2, 5] # [3, 6]] # Equivalently tf.transpose(x, perm=[1, 0]) # [[1, 4] # [2, 5] # [3, 6]] # If x is complex, setting conjugate=True gives the conjugate transpose x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]) tf.transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j], # [2 - 2j, 5 - 5j], # [3 - 3j, 6 - 6j]] # 'perm' is more useful for n-dimensional tensors, for n > 2 x = tf.constant([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]]) # Take the transpose of the matrices in dimension-0 # (this common operation has a shorthand `linalg.matrix_transpose`) tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4], # [2, 5], # [3, 6]], # [[7, 10], # [8, 11], # [9, 12]]] ``` Args: a: A `Tensor`. perm: A permutation of the dimensions of `a`. name: A name for the operation (optional). conjugate: Optional bool. Setting it to `True` is mathematically equivalent to tf.math.conj(tf.transpose(input)). Returns: A transposed `Tensor`. """ with ops.name_scope(name, "transpose", [a]) as name: if not tensor_util.is_tensor(a): a = ops.convert_to_tensor(a, name="a") if conjugate and a.dtype.is_complex: transpose_fn = gen_array_ops.conjugate_transpose else: transpose_fn = gen_array_ops.transpose if perm is not None: return transpose_fn(a, perm, name=name) rank = a.shape.rank if rank is None: perm = gen_math_ops._range(gen_array_ops.rank(a) - 1, -1, -1) else: perm = np.arange(rank - 1, -1, -1, dtype=np.int32) return transpose_fn(a, perm, name=name) # pylint: disable=invalid-name @tf_export( "linalg.matrix_transpose", v1=["linalg.transpose", "linalg.matrix_transpose", "matrix_transpose"]) @deprecation.deprecated_endpoints("matrix_transpose", "linalg.transpose") def matrix_transpose(a, name="matrix_transpose", conjugate=False): """Transposes last two dimensions of tensor `a`. For example: ```python x = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.linalg.matrix_transpose(x) # [[1, 4], # [2, 5], # [3, 6]] x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]) tf.linalg.matrix_transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j], # [2 - 2j, 5 - 5j], # [3 - 3j, 6 - 6j]] # Matrix with two batch dimensions. # x.shape is [1, 2, 3, 4] # tf.linalg.matrix_transpose(x) is shape [1, 2, 4, 3] ``` Note that `tf.matmul` provides kwargs allowing for transpose of arguments. This is done with minimal cost, and is preferable to using this function. E.g. ```python # Good! Transpose is taken at minimal additional cost. tf.matmul(matrix, b, transpose_b=True) # Inefficient! tf.matmul(matrix, tf.linalg.matrix_transpose(b)) ``` @compatibility(numpy) In `numpy` transposes are memory-efficient constant time operations as they simply return a new view of the same data with adjusted `strides`. TensorFlow does not support strides, `linalg.matrix_transpose` returns a new tensor with the items permuted. @end_compatibility Args: a: A `Tensor` with `rank >= 2`. name: A name for the operation (optional). conjugate: Optional bool. Setting it to `True` is mathematically equivalent to tf.math.conj(tf.linalg.matrix_transpose(input)). Returns: A transposed batch matrix `Tensor`. Raises: ValueError: If `a` is determined statically to have `rank < 2`. """ with ops.name_scope(name, values=[a]): a = ops.convert_to_tensor(a, name="a") # If we know the number of dimensions (statically), we can do two things: # 1. Check that `a` is a (batch) matrix. # 2. Use a python list for perm. This preserves static shape information # and avoids extra computations. a_shape = a.get_shape() ndims = a_shape.ndims if ndims is not None: if ndims < 2: raise ValueError( "Argument 'a' should be a (batch) matrix, with rank >= 2. Found: " "%s" % a_shape) perm = list(range(ndims - 2)) + [ndims - 1] + [ndims - 2] else: a_rank = rank(a) perm = concat( (gen_math_ops._range(0, a_rank - 2, 1), [a_rank - 1, a_rank - 2]), 0) return transpose(a, perm=perm, conjugate=conjugate) @tf_export("linalg.diag", v1=["linalg.diag", "matrix_diag"]) @deprecation.deprecated_endpoints("matrix_diag") def matrix_diag(diagonal, name="diag", k=0, num_rows=-1, num_cols=-1, padding_value=0, align="RIGHT_LEFT"): """Returns a batched diagonal tensor with given batched diagonal values. Returns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th diagonals of a matrix, with everything else padded with `padding`. `num_rows` and `num_cols` specify the dimension of the innermost matrix of the output. If both are not specified, the op assumes the innermost matrix is square and infers its size from `k` and the innermost dimension of `diagonal`. If only one of them is specified, the op assumes the unspecified value is the smallest possible based on other criteria. Let `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor has rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only one diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has rank `r` with shape `[I, J, ..., L, num_rows, num_cols]`. The second innermost dimension of `diagonal` has double meaning. When `k` is scalar or `k[0] == k[1]`, `M` is part of the batch size [I, J, ..., M], and the output tensor is: ``` output[i, j, ..., l, m, n] = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper padding_value ; otherwise ``` Otherwise, `M` is treated as the number of diagonals for the matrix in the same batch (`M = k[1]-k[0]+1`), and the output tensor is: ``` output[i, j, ..., l, m, n] = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] padding_value ; otherwise ``` where `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0) + offset`. `offset` is zero except when the alignment of the diagonal is to the right. ``` offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} and `d >= 0`) or (`align` in {LEFT_RIGHT, RIGHT_RIGHT} and `d <= 0`) 0 ; otherwise ``` where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`. For example: ``` # The main diagonal. diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4) [5, 6, 7, 8]]) tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4) [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]], [[5, 0, 0, 0], [0, 6, 0, 0], [0, 0, 7, 0], [0, 0, 0, 8]]] # A superdiagonal (per batch). diagonal = np.array([[1, 2, 3], # Input shape: (2, 3) [4, 5, 6]]) tf.matrix_diag(diagonal, k = 1) ==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4) [0, 0, 2, 0], [0, 0, 0, 3], [0, 0, 0, 0]], [[0, 4, 0, 0], [0, 0, 5, 0], [0, 0, 0, 6], [0, 0, 0, 0]]] # A tridiagonal band (per batch). diagonals = np.array([[[8, 9, 0], # Input shape: (2, 2, 3) [1, 2, 3], [0, 4, 5]], [[2, 3, 0], [6, 7, 9], [0, 9, 1]]]) tf.matrix_diag(diagonals, k = (-1, 1)) ==> [[[1, 8, 0], # Output shape: (2, 3, 3) [4, 2, 9], [0, 5, 3]], [[6, 2, 0], [9, 7, 3], [0, 1, 9]]] # RIGHT_LEFT alignment. diagonals = np.array([[[0, 8, 9], # Input shape: (2, 2, 3) [1, 2, 3], [4, 5, 0]], [[0, 2, 3], [6, 7, 9], [9, 1, 0]]]) tf.matrix_diag(diagonals, k = (-1, 1), align="RIGHT_LEFT") ==> [[[1, 8, 0], # Output shape: (2, 3, 3) [4, 2, 9], [0, 5, 3]], [[6, 2, 0], [9, 7, 3], [0, 1, 9]]] # Rectangular matrix. diagonal = np.array([1, 2]) # Input shape: (2) tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4) ==> [[0, 0, 0, 0], # Output shape: (3, 4) [1, 0, 0, 0], [0, 2, 0, 0]] # Rectangular matrix with inferred num_cols and padding_value = 9. tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9) ==> [[9, 9], # Output shape: (3, 2) [1, 9], [9, 2]] ``` Args: diagonal: A `Tensor` with `rank k >= 1`. name: A name for the operation (optional). k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`. num_rows: The number of rows of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from `d_lower`, `d_upper`, and the innermost dimension of `diagonal`. num_cols: The number of columns of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from `d_lower`, `d_upper`, and the innermost dimension of `diagonal`. padding_value: The value to fill the area outside the specified diagonal band with. Default is 0. align: Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment. Returns: A Tensor. Has the same type as `diagonal`. """ if compat.forward_compatible(*matrix_diag_v3_forward_compat_date): # Special case to sidestep the tf.constant conversion error: # TypeError: Expected bool, got 0 of type 'int' instead. if hasattr(diagonal, "dtype") and diagonal.dtype == "bool": padding_value = bool(padding_value) return gen_array_ops.matrix_diag_v3( diagonal=diagonal, k=k, num_rows=num_rows, num_cols=num_cols, padding_value=padding_value, align=align, name=name) # Call v1 to maintain forward compatibility. # (We skip v2 because its alignment conflicts with v3's default alignment.) return gen_array_ops.matrix_diag(diagonal=diagonal, name=name) @tf_export("linalg.diag_part", v1=["linalg.diag_part", "matrix_diag_part"]) @deprecation.deprecated_endpoints("matrix_diag_part") @dispatch.add_dispatch_support def matrix_diag_part( input, # pylint:disable=redefined-builtin name="diag_part", k=0, padding_value=0, align="RIGHT_LEFT"): """Returns the batched diagonal part of a batched tensor. Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input`. Assume `input` has `r` dimensions `[I, J, ..., L, M, N]`. Let `max_diag_len` be the maximum length among all diagonals to be extracted, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` Let `num_diags` be the number of diagonals to extract, `num_diags = k[1] - k[0] + 1`. If `num_diags == 1`, the output tensor is of rank `r - 1` with shape `[I, J, ..., L, max_diag_len]` and values: ``` diagonal[i, j, ..., l, n] = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N, padding_value ; otherwise. ``` where `y = max(-k[1], 0)`, `x = max(k[1], 0)`. Otherwise, the output tensor has rank `r` with dimensions `[I, J, ..., L, num_diags, max_diag_len]` with values: ``` diagonal[i, j, ..., l, m, n] = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N, padding_value ; otherwise. ``` where `d = k[1] - m`, `y = max(-d, 0) - offset`, and `x = max(d, 0) - offset`. `offset` is zero except when the alignment of the diagonal is to the right. ``` offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} and `d >= 0`) or (`align` in {LEFT_RIGHT, RIGHT_RIGHT} and `d <= 0`) 0 ; otherwise ``` where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`. The input must be at least a matrix. For example: ``` input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4) [5, 6, 7, 8], [9, 8, 7, 6]], [[5, 4, 3, 2], [1, 2, 3, 4], [5, 6, 7, 8]]]) # A main diagonal from each batch. tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3) [5, 2, 7]] # A superdiagonal from each batch. tf.matrix_diag_part(input, k = 1) ==> [[2, 7, 6], # Output shape: (2, 3) [4, 3, 8]] # A band from each batch. tf.matrix_diag_part(input, k = (-1, 2)) ==> [[[3, 8, 0], # Output shape: (2, 4, 3) [2, 7, 6], [1, 6, 7], [0, 5, 8]], [[3, 4, 0], [4, 3, 8], [5, 2, 7], [0, 1, 6]]] # RIGHT_LEFT alignment. tf.matrix_diag_part(input, k = (-1, 2), align="RIGHT_LEFT") ==> [[[0, 3, 8], # Output shape: (2, 4, 3) [2, 7, 6], [1, 6, 7], [5, 8, 0]], [[0, 3, 4], [4, 3, 8], [5, 2, 7], [1, 6, 0]]] # max_diag_len can be shorter than the main diagonal. tf.matrix_diag_part(input, k = (-2, -1)) ==> [[[5, 8], [0, 9]], [[1, 6], [0, 5]]] # padding_value = 9 tf.matrix_diag_part(input, k = (1, 3), padding_value = 9) ==> [[[4, 9, 9], # Output shape: (2, 3, 3) [3, 8, 9], [2, 7, 6]], [[2, 9, 9], [3, 4, 9], [4, 3, 8]]] ``` Args: input: A `Tensor` with `rank k >= 2`. name: A name for the operation (optional). k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`. padding_value: The value to fill the area outside the specified diagonal band with. Default is 0. align: Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment. Returns: A Tensor containing diagonals of `input`. Has the same type as `input`. """ if compat.forward_compatible(*matrix_diag_v3_forward_compat_date): # Special case to sidestep the tf.constant conversion error: # TypeError: Expected bool, got 0 of type 'int' instead. if hasattr(input, "dtype") and input.dtype == "bool": padding_value = bool(padding_value) return gen_array_ops.matrix_diag_part_v3( input=input, k=k, padding_value=padding_value, align=align, name=name) # Call v1 to maintain forward compatibility. # (We skip v2 because its alignment conflicts with v3's default alignment.) return gen_array_ops.matrix_diag_part(input=input, name=name) @tf_export("linalg.set_diag", v1=["linalg.set_diag", "matrix_set_diag"]) @deprecation.deprecated_endpoints("matrix_set_diag") def matrix_set_diag( input, # pylint:disable=redefined-builtin diagonal, name="set_diag", k=0, align="RIGHT_LEFT"): """Returns a batched matrix tensor with new batched diagonal values. Given `input` and `diagonal`, this operation returns a tensor with the same shape and values as `input`, except for the specified diagonals of the innermost matrices. These will be overwritten by the values in `diagonal`. `input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or `k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`. Otherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`. `num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`. `max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` The output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`. If `k` is scalar or `k[0] == k[1]`: ``` output[i, j, ..., l, m, n] = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1] input[i, j, ..., l, m, n] ; otherwise ``` Otherwise, ``` output[i, j, ..., l, m, n] = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1] input[i, j, ..., l, m, n] ; otherwise ``` where `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0) + offset`. `offset` is zero except when the alignment of the diagonal is to the right. ``` offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT} and `d >= 0`) or (`align` in {LEFT_RIGHT, RIGHT_RIGHT} and `d <= 0`) 0 ; otherwise ``` where `diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))`. For example: ``` # The main diagonal. input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4) [7, 7, 7, 7], [7, 7, 7, 7]], [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]]]) diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3) [4, 5, 6]]) tf.matrix_set_diag(input, diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4) [7, 2, 7, 7], [7, 7, 3, 7]], [[4, 7, 7, 7], [7, 5, 7, 7], [7, 7, 6, 7]]] # A superdiagonal (per batch). tf.matrix_set_diag(input, diagonal, k = 1) ==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4) [7, 7, 2, 7], [7, 7, 7, 3]], [[7, 4, 7, 7], [7, 7, 5, 7], [7, 7, 7, 6]]] # A band of diagonals. diagonals = np.array([[[9, 1, 0], # Diagonal shape: (2, 4, 3) [6, 5, 8], [1, 2, 3], [0, 4, 5]], [[1, 2, 0], [5, 6, 4], [6, 1, 2], [0, 3, 4]]]) tf.matrix_set_diag(input, diagonals, k = (-1, 2)) ==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4) [4, 2, 5, 1], [7, 5, 3, 8]], [[6, 5, 1, 7], [3, 1, 6, 2], [7, 4, 2, 4]]] # RIGHT_LEFT alignment. diagonals = np.array([[[0, 9, 1], # Diagonal shape: (2, 4, 3) [6, 5, 8], [1, 2, 3], [4, 5, 0]], [[0, 1, 2], [5, 6, 4], [6, 1, 2], [3, 4, 0]]]) tf.matrix_set_diag(input, diagonals, k = (-1, 2), align="RIGHT_LEFT") ==> [[[1, 6, 9, 7], # Output shape: (2, 3, 4) [4, 2, 5, 1], [7, 5, 3, 8]], [[6, 5, 1, 7], [3, 1, 6, 2], [7, 4, 2, 4]]] ``` Args: input: A `Tensor` with rank `k + 1`, where `k >= 1`. diagonal: A `Tensor` with rank `k`, when `d_lower == d_upper`, or `k + 1`, otherwise. `k >= 1`. name: A name for the operation (optional). k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`. align: Some diagonals are shorter than `max_diag_len` and need to be padded. `align` is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment. """ if compat.forward_compatible(*matrix_diag_v3_forward_compat_date): return gen_array_ops.matrix_set_diag_v3( input=input, diagonal=diagonal, k=k, align=align, name=name) # Call v1 to maintain forward compatibility. # (We skip v2 because its alignment conflicts with v3's default alignment.) return gen_array_ops.matrix_set_diag( input=input, diagonal=diagonal, name=name) # pylint: enable=invalid-name def _constant_if_small(value, shape, dtype, name): try: if np.prod(shape) < 1000: return constant(value, shape=shape, dtype=dtype, name=name) except TypeError: # Happens when shape is a Tensor, list with Tensor elements, etc. pass return None @tf_export("zeros") def zeros(shape, dtype=dtypes.float32, name=None): """Creates a tensor with all elements set to zero. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to zero. >>> tf.zeros([3, 4], tf.int32) <tf.Tensor: shape=(3, 4), dtype=int32, numpy= array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int32)> Args: shape: A `list` of integers, a `tuple` of integers, or a 1-D `Tensor` of type `int32`. dtype: The DType of an element in the resulting `Tensor`. name: Optional string. A name for the operation. Returns: A `Tensor` with all elements set to zero. """ dtype = dtypes.as_dtype(dtype).base_dtype with ops.name_scope(name, "zeros", [shape]) as name: if dtype == dtypes.bool: zero = False elif dtype == dtypes.string: zero = "" else: zero = 0 if not isinstance(shape, ops.Tensor): try: if not context.executing_eagerly(): # Create a constant if it won't be very big. Otherwise create a fill # op to prevent serialized GraphDefs from becoming too large. output = _constant_if_small(zero, shape, dtype, name) if output is not None: return output # Go through tensor shapes to get int64-if-needed semantics shape = constant_op._tensor_shape_tensor_conversion_function( tensor_shape.TensorShape(shape)) except (TypeError, ValueError): # Happens when shape is a list with tensor elements shape = ops.convert_to_tensor(shape, dtype=dtypes.int32) if not shape._shape_tuple(): shape = reshape(shape, [-1]) # Ensure it's a vector output = fill(shape, constant(zero, dtype=dtype), name=name) assert output.dtype.base_dtype == dtype return output @tf_export(v1=["zeros_like"]) @dispatch.add_dispatch_support def zeros_like(tensor, dtype=None, name=None, optimize=True): """Creates a tensor with all elements set to zero. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to zero. Optionally, you can use `dtype` to specify a new type for the returned tensor. For example: ```python tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.zeros_like(tensor) # [[0, 0, 0], [0, 0, 0]] ``` Args: tensor: A `Tensor`. dtype: A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. name: A name for the operation (optional). optimize: if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns: A `Tensor` with all elements set to zero. """ return zeros_like_impl(tensor, dtype, name, optimize) @tf_export("zeros_like", v1=[]) @dispatch.add_dispatch_support def zeros_like_v2( input, # pylint: disable=redefined-builtin dtype=None, name=None): """Creates a tensor with all elements set to zero. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to zero. Optionally, you can use `dtype` to specify a new type for the returned tensor. For example: ```python tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.zeros_like(tensor) # [[0, 0, 0], [0, 0, 0]] with dtype=int32 If dtype of input `tensor` is `float32`, then the output is also of `float32` tensor = tf.constant([[1.0, 2.0, 3.0], [4, 5, 6]]) tf.zeros_like(tensor) # [[0., 0., 0.], [0., 0., 0.]] with dtype=floa32 If you want to specify desired dtype of output `tensor`, then specify it in the op tensor = tf.constant([[1.0, 2.0, 3.0], [4, 5, 6]]) tf.zeros_like(tensor,dtype=tf.int32) # [[0, 0, 0], [0, 0, 0]] with dtype=int32 ``` Args: input: A `Tensor`. dtype: A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. name: A name for the operation (optional). Returns: A `Tensor` with all elements set to zero. """ return zeros_like_impl(input, dtype, name, optimize=True) def zeros_like_impl(tensor, dtype, name, optimize=True): """Internal implementation for the v1/v2 zeros_like API calls.""" with ops.name_scope(name, "zeros_like", [tensor]) as name: if not tensor_util.is_tensor(tensor): tensor = ops.convert_to_tensor(tensor, name="tensor") tensor_shape = tensor.shape tensor_dtype = tensor.dtype if context.executing_eagerly(): if dtype is not None and dtype != tensor_dtype: return zeros( shape_internal(tensor, optimize=optimize), dtype=dtype, name=name) return gen_array_ops.zeros_like(tensor, name=name) # For now, variant types must be created via zeros_like; as we need to # pass the input variant object to the proper zeros callback. if (optimize and tensor_shape.is_fully_defined() and tensor_dtype != dtypes.variant): # We can produce a zeros tensor independent of the value of 'tensor', # since the shape is known statically. return zeros(tensor_shape, dtype=dtype or tensor_dtype, name=name) if dtype is not None and dtype != tensor_dtype and dtype != dtypes.variant: return zeros( shape_internal(tensor, optimize=optimize), dtype=dtype, name=name) else: return gen_array_ops.zeros_like(tensor, name=name) @tf_export(v1=["ones_like"]) @dispatch.add_dispatch_support def ones_like(tensor, dtype=None, name=None, optimize=True): """Creates a tensor with all elements set to 1. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to 1. Optionally, you can specify a new type (`dtype`) for the returned tensor. For example: ```python tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.ones_like(tensor) # [[1, 1, 1], [1, 1, 1]] ``` Args: tensor: A `Tensor`. dtype: A type for the returned `Tensor`. Must be `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128` or `bool`. name: A name for the operation (optional). optimize: if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns: A `Tensor` with all elements set to 1. """ return ones_like_impl(tensor, dtype, name, optimize) @tf_export("ones_like", v1=[]) @dispatch.add_dispatch_support def ones_like_v2( input, # pylint: disable=redefined-builtin dtype=None, name=None): """Creates a tensor with all elements set to one. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to 1. Optionally, you can use `dtype` to specify a new type for the returned tensor. For example: ```python tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.ones_like(tensor) # [[1, 1, 1], [1, 1, 1]] ``` Args: input: A `Tensor`. dtype: A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. name: A name for the operation (optional). Returns: A `Tensor` with all elements set to one. """ return ones_like_impl(input, dtype, name, optimize=True) def ones_like_impl(tensor, dtype, name, optimize=True): """Internal implementation for the v1/v2 ones_like API calls.""" with ops.name_scope(name, "ones_like", [tensor]) as name: tensor = ops.convert_to_tensor(tensor, name="tensor") ones_shape = shape_internal(tensor, optimize=optimize) if dtype is None: dtype = tensor.dtype ret = ones(ones_shape, dtype=dtype, name=name) if not context.executing_eagerly(): ret.set_shape(tensor.get_shape()) return ret @tf_export("ones") def ones(shape, dtype=dtypes.float32, name=None): """Creates a tensor with all elements set to one (1). This operation returns a tensor of type `dtype` with shape `shape` and all elements set to one. >>> tf.ones([3, 4], tf.int32) <tf.Tensor: shape=(3, 4), dtype=int32, numpy= array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=int32)> Args: shape: A `list` of integers, a `tuple` of integers, or a 1-D `Tensor` of type `int32`. dtype: Optional DType of an element in the resulting `Tensor`. Default is `tf.float32`. name: Optional string. A name for the operation. Returns: A `Tensor` with all elements set to one (1). """ dtype = dtypes.as_dtype(dtype).base_dtype with ops.name_scope(name, "ones", [shape]) as name: one = True if dtype == dtypes.bool else 1 if not isinstance(shape, ops.Tensor): try: if not context.executing_eagerly(): # Create a constant if it won't be very big. Otherwise create a fill # op to prevent serialized GraphDefs from becoming too large. output = _constant_if_small(one, shape, dtype, name) if output is not None: return output # Go through tensor shapes to get int64-if-needed semantics shape = constant_op._tensor_shape_tensor_conversion_function( tensor_shape.TensorShape(shape)) except (TypeError, ValueError): # Happens when shape is a list with tensor elements shape = ops.convert_to_tensor(shape, dtype=dtypes.int32) if not shape._shape_tuple(): shape = reshape(shape, [-1]) # Ensure it's a vector output = fill(shape, constant(one, dtype=dtype), name=name) assert output.dtype.base_dtype == dtype return output @tf_export(v1=["placeholder"]) def placeholder(dtype, shape=None, name=None): """Inserts a placeholder for a tensor that will be always fed. **Important**: This tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`. For example: ```python x = tf.compat.v1.placeholder(tf.float32, shape=(1024, 1024)) y = tf.matmul(x, x) with tf.compat.v1.Session() as sess: print(sess.run(y)) # ERROR: will fail because x was not fed. rand_array = np.random.rand(1024, 1024) print(sess.run(y, feed_dict={x: rand_array})) # Will succeed. ``` @compatibility(eager) Placeholders are not compatible with eager execution. @end_compatibility Args: dtype: The type of elements in the tensor to be fed. shape: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any shape. name: A name for the operation (optional). Returns: A `Tensor` that may be used as a handle for feeding a value, but not evaluated directly. Raises: RuntimeError: if eager execution is enabled """ if context.executing_eagerly(): raise RuntimeError("tf.placeholder() is not compatible with " "eager execution.") return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name) @tf_export(v1=["placeholder_with_default"]) def placeholder_with_default(input, shape, name=None): # pylint: disable=redefined-builtin """A placeholder op that passes through `input` when its output is not fed. Args: input: A `Tensor`. The default value to produce when output is not fed. shape: A `tf.TensorShape` or list of `int`s. The (possibly partial) shape of the tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ return gen_array_ops.placeholder_with_default(input, shape, name) # pylint: disable=redefined-outer-name def _normalize_sparse_shape(shape, name): """Returns a tuple of (Tensor or None, rank or None).""" if shape is None: return (None, None) rank = shape.get_shape()[0] if isinstance(shape, ops.Tensor) else len(shape) if not isinstance(shape, ops.Tensor) and None in shape: return (None, rank) return (ops.convert_to_tensor(shape, dtype=dtypes.int64, name=name), rank) @tf_export(v1=["sparse.placeholder", "sparse_placeholder"]) @deprecation.deprecated_endpoints("sparse_placeholder") def sparse_placeholder(dtype, shape=None, name=None): """Inserts a placeholder for a sparse tensor that will be always fed. **Important**: This sparse tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`. For example: ```python x = tf.compat.v1.sparse.placeholder(tf.float32) y = tf.sparse.reduce_sum(x) with tf.compat.v1.Session() as sess: print(sess.run(y)) # ERROR: will fail because x was not fed. indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64) values = np.array([1.0, 2.0], dtype=np.float32) shape = np.array([7, 9, 2], dtype=np.int64) print(sess.run(y, feed_dict={ x: tf.compat.v1.SparseTensorValue(indices, values, shape)})) # Will succeed. print(sess.run(y, feed_dict={ x: (indices, values, shape)})) # Will succeed. sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape) sp_value = sp.eval(session=sess) print(sess.run(y, feed_dict={x: sp_value})) # Will succeed. ``` @compatibility{eager} Placeholders are not compatible with eager execution. Args: dtype: The type of `values` elements in the tensor to be fed. shape: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a sparse tensor of any shape. name: A name for prefixing the operations (optional). Returns: A `SparseTensor` that may be used as a handle for feeding a value, but not evaluated directly. Raises: RuntimeError: if eager execution is enabled """ if context.executing_eagerly(): raise RuntimeError("tf.placeholder() is not compatible with " "eager execution.") shape_name = (name + "/shape") if name is not None else None shape, rank = _normalize_sparse_shape(shape, shape_name) if shape is None: shape = placeholder(dtypes.int64, shape=[rank], name=shape_name) return sparse_tensor.SparseTensor( values=placeholder( dtype, shape=[None], name=(name + "/values") if name is not None else None), indices=placeholder( dtypes.int64, shape=[None, rank], name=(name + "/indices") if name is not None else None), dense_shape=shape) # pylint: enable=redefined-outer-name @tf_export("pad", v1=[]) def pad_v2(tensor, paddings, mode="CONSTANT", constant_values=0, name=None): """Pads a tensor. This operation pads a `tensor` according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `tensor` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If `mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D)`. The padded size of each dimension D of the output is: `paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]` For example: ```python t = tf.constant([[1, 2, 3], [4, 5, 6]]) paddings = tf.constant([[1, 1,], [2, 2]]) # 'constant_values' is 0. # rank of 't' is 2. tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0], # [0, 0, 1, 2, 3, 0, 0], # [0, 0, 4, 5, 6, 0, 0], # [0, 0, 0, 0, 0, 0, 0]] tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1], # [6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1]] tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2], # [2, 1, 1, 2, 3, 3, 2], # [5, 4, 4, 5, 6, 6, 5], # [5, 4, 4, 5, 6, 6, 5]] ``` Args: tensor: A `Tensor`. paddings: A `Tensor` of type `int32`. mode: One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive) constant_values: In "CONSTANT" mode, the scalar pad value to use. Must be same type as `tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `tensor`. Raises: ValueError: When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC". """ return pad(tensor, paddings, mode, name, constant_values) @tf_export(v1=["pad"]) def pad(tensor, paddings, mode="CONSTANT", name=None, constant_values=0): # pylint: disable=invalid-name """Pads a tensor. This operation pads a `tensor` according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `tensor` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If `mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D)`. The padded size of each dimension D of the output is: `paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]` For example: ```python t = tf.constant([[1, 2, 3], [4, 5, 6]]) paddings = tf.constant([[1, 1,], [2, 2]]) # 'constant_values' is 0. # rank of 't' is 2. tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0], # [0, 0, 1, 2, 3, 0, 0], # [0, 0, 4, 5, 6, 0, 0], # [0, 0, 0, 0, 0, 0, 0]] tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1], # [6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1]] tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2], # [2, 1, 1, 2, 3, 3, 2], # [5, 4, 4, 5, 6, 6, 5], # [5, 4, 4, 5, 6, 6, 5]] ``` Args: tensor: A `Tensor`. paddings: A `Tensor` of type `int32`. mode: One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive) name: A name for the operation (optional). constant_values: In "CONSTANT" mode, the scalar pad value to use. Must be same type as `tensor`. Returns: A `Tensor`. Has the same type as `tensor`. Raises: ValueError: When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC". """ # Convert lower/mixed case to upper for NumPy compatibility # NumPy uses all lower-case modes. mode = mode.upper() if mode == "CONSTANT": # TODO(rjryan): Once the forward compatibility period (3 weeks) have passed # remove the "Pad" fallback here. if not tensor_util.is_tensor(constant_values) and constant_values == 0: result = gen_array_ops.pad(tensor, paddings, name=name) else: result = gen_array_ops.pad_v2( tensor, paddings, constant_values, name=name) elif mode == "REFLECT": result = gen_array_ops.mirror_pad( tensor, paddings, mode="REFLECT", name=name) elif mode == "SYMMETRIC": result = gen_array_ops.mirror_pad( tensor, paddings, mode="SYMMETRIC", name=name) else: raise ValueError("Unknown padding mode: %s" % mode) # Restore shape information where possible. if not context.executing_eagerly(): paddings_constant = _get_paddings_constant(paddings) input_shape = ( tensor_shape.TensorShape(tensor.shape) if isinstance(tensor, ops.Tensor) else result.op.inputs[0].shape) if (input_shape.ndims is not None and not result.shape.is_fully_defined() and paddings_constant is not None): new_shape = [] for padding, dim in zip(paddings_constant, input_shape.as_list()): if padding is None or dim is None or any((x is None for x in padding)): new_shape.append(None) else: new_shape.append(sum(padding) + dim) result.set_shape(new_shape) return result def _get_paddings_constant(paddings): """Helper to get the constant values of the paddings arg to pad(). Used under V1 graph mode to facilitate computation of the shape of the output tensor of `pad()`. Args: paddings: The same paddings arg as passed to pad(). Can be a Tensor, or a nested list or tuple of Tensor and/or numbers. Returns: A nested list or numbers or `None`, in which `None` indicates unknown padding size. """ if isinstance(paddings, ops.Tensor): return tensor_util.constant_value(paddings, partial=True) elif isinstance(paddings, (list, tuple)): return [_get_paddings_constant(x) for x in paddings] else: return paddings @tf_export("meshgrid") def meshgrid(*args, **kwargs): """Broadcasts parameters for evaluation on an N-D grid. Given N one-dimensional coordinate arrays `*args`, returns a list `outputs` of N-D coordinate arrays for evaluating expressions on an N-D grid. Notes: `meshgrid` supports cartesian ('xy') and matrix ('ij') indexing conventions. When the `indexing` argument is set to 'xy' (the default), the broadcasting instructions for the first two dimensions are swapped. Examples: Calling `X, Y = meshgrid(x, y)` with the tensors ```python x = [1, 2, 3] y = [4, 5, 6] X, Y = tf.meshgrid(x, y) # X = [[1, 2, 3], # [1, 2, 3], # [1, 2, 3]] # Y = [[4, 4, 4], # [5, 5, 5], # [6, 6, 6]] ``` Args: *args: `Tensor`s with rank 1. **kwargs: - indexing: Either 'xy' or 'ij' (optional, default: 'xy'). - name: A name for the operation (optional). Returns: outputs: A list of N `Tensor`s with rank N. Raises: TypeError: When no keyword arguments (kwargs) are passed. ValueError: When indexing keyword argument is not one of `xy` or `ij`. """ indexing = kwargs.pop("indexing", "xy") name = kwargs.pop("name", "meshgrid") if kwargs: key = list(kwargs.keys())[0] raise TypeError("'{}' is an invalid keyword argument " "for this function".format(key)) if indexing not in ("xy", "ij"): raise ValueError("indexing parameter must be either 'xy' or 'ij'") with ops.name_scope(name, "meshgrid", args) as name: ndim = len(args) s0 = (1,) * ndim # Prepare reshape by inserting dimensions with size 1 where needed output = [] for i, x in enumerate(args): output.append(reshape(stack(x), (s0[:i] + (-1,) + s0[i + 1::]))) # Create parameters for broadcasting each tensor to the full size shapes = [size(x) for x in args] output_dtype = ops.convert_to_tensor(args[0]).dtype.base_dtype if indexing == "xy" and ndim > 1: output[0] = reshape(output[0], (1, -1) + (1,) * (ndim - 2)) output[1] = reshape(output[1], (-1, 1) + (1,) * (ndim - 2)) shapes[0], shapes[1] = shapes[1], shapes[0] # TODO(nolivia): improve performance with a broadcast mult_fact = ones(shapes, output_dtype) return [x * mult_fact for x in output] NEW_AXIS = -1 SHRINK_AXIS = -2 # PEP-8 naming # pylint: disable=invalid-name,redefined-outer-name def _compute_size_of_strided_dim(shrink, spec, size): """Computes the size of a single strided slice dimension.""" unknown = None # Document what None means here. use_full_range = None # Document other use of None. # if this is a shrink axis (i.e. a non-range index) # it either will produce an error or return 1 if shrink: return 1 if size is unknown or size.value is unknown: return unknown size = size.value stride = spec.step if stride is not unknown: if stride == 0: return unknown stride = spec.step valid_range = [0, size] if stride > 0 else [-1, size - 1] # PEP-8 naming # pylint: disable=invalid-name def canonical(x, c): if x is use_full_range: return valid_range[c] if stride > 0 else valid_range[(c + 1) & 1] else: x_fwd = size + x if x < 0 else x # make negative indices positive return max(valid_range[0], min(valid_range[1], x_fwd)) begin = canonical(spec.start, 0) end = canonical(spec.stop, 1) interval_length = end - begin if interval_length == 0 or ((interval_length < 0) != (stride < 0)): return 0 else: remainder = 1 if interval_length % stride != 0 else 0 return interval_length // stride + remainder else: return unknown # unknown because stride is unknown def _TileGradShape(op): """Shape function for the TileGrad op.""" multiples_shape = op.inputs[1].get_shape().with_rank(1) input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0]) # NOTE(mrry): Represent `multiples` as a `TensorShape` because (i) # it is a vector of non-negative integers, and (ii) doing so allows # us to handle partially-known multiples. multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank( input_shape.ndims) if multiples.ndims is None: return [tensor_shape.unknown_shape()] else: output_dims = [] for dim, multiple in zip(input_shape.dims, multiples.dims): output_dims.append(dim // multiple) return [tensor_shape.TensorShape(output_dims)] @tf_export("edit_distance") def edit_distance(hypothesis, truth, normalize=True, name="edit_distance"): """Computes the Levenshtein distance between sequences. This operation takes variable-length sequences (`hypothesis` and `truth`), each provided as a `SparseTensor`, and computes the Levenshtein distance. You can normalize the edit distance by length of `truth` by setting `normalize` to true. For example, given the following input: ```python # 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values: # (0,0) = ["a"] # (1,0) = ["b"] hypothesis = tf.SparseTensor( [[0, 0, 0], [1, 0, 0]], ["a", "b"], (2, 1, 1)) # 'truth' is a tensor of shape `[2, 2]` with variable-length values: # (0,0) = [] # (0,1) = ["a"] # (1,0) = ["b", "c"] # (1,1) = ["a"] truth = tf.SparseTensor( [[0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]], ["a", "b", "c", "a"], (2, 2, 2)) normalize = True ``` This operation would return the following: ```python # 'output' is a tensor of shape `[2, 2]` with edit distances normalized # by 'truth' lengths. output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis ``` Args: hypothesis: A `SparseTensor` containing hypothesis sequences. truth: A `SparseTensor` containing truth sequences. normalize: A `bool`. If `True`, normalizes the Levenshtein distance by length of `truth.` name: A name for the operation (optional). Returns: A dense `Tensor` with rank `R - 1`, where R is the rank of the `SparseTensor` inputs `hypothesis` and `truth`. Raises: TypeError: If either `hypothesis` or `truth` are not a `SparseTensor`. """ if not isinstance( hypothesis, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Hypothesis must be a SparseTensor.") if not isinstance( truth, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Truth must be a SparseTensor.") return gen_array_ops.edit_distance( hypothesis.indices, hypothesis.values, hypothesis.dense_shape, truth.indices, truth.values, truth.dense_shape, normalize=normalize, name=name) @ops.RegisterGradient("FakeQuantWithMinMaxArgs") def _FakeQuantWithMinMaxArgsGradient(op, grad): """Gradient for FakeQuantWithMinMaxArgs op.""" return fake_quant_with_min_max_args_gradient( grad, op.inputs[0], min=op.get_attr("min"), max=op.get_attr("max"), num_bits=op.get_attr("num_bits"), narrow_range=op.get_attr("narrow_range")) @ops.RegisterGradient("FakeQuantWithMinMaxVars") def _FakeQuantWithMinMaxVarsGradient(op, grad): """Gradient for FakeQuantWithMinMaxVars op.""" return fake_quant_with_min_max_vars_gradient( grad, op.inputs[0], op.inputs[1], op.inputs[2], num_bits=op.get_attr("num_bits"), narrow_range=op.get_attr("narrow_range")) @ops.RegisterGradient("FakeQuantWithMinMaxVarsPerChannel") def _FakeQuantWithMinMaxVarsPerChannelGradient(op, grad): """Gradient for FakeQuantWithMinMaxVarsPerChannel op.""" return fake_quant_with_min_max_vars_per_channel_gradient( grad, op.inputs[0], op.inputs[1], op.inputs[2], num_bits=op.get_attr("num_bits"), narrow_range=op.get_attr("narrow_range")) @tf_export("required_space_to_batch_paddings") def required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None): """Calculate padding required to make block_shape divide input_shape. This function can be used to calculate a suitable paddings argument for use with space_to_batch_nd and batch_to_space_nd. Args: input_shape: int32 Tensor of shape [N]. block_shape: int32 Tensor of shape [N]. base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum amount of padding to use. All elements must be >= 0. If not specified, defaults to 0. name: string. Optional name prefix. Returns: (paddings, crops), where: `paddings` and `crops` are int32 Tensors of rank 2 and shape [N, 2] satisfying: paddings[i, 0] = base_paddings[i, 0]. 0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i] (input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0 crops[i, 0] = 0 crops[i, 1] = paddings[i, 1] - base_paddings[i, 1] Raises: ValueError if called with incompatible shapes. """ with ops.name_scope(name, "required_space_to_batch_paddings", [input_shape, block_shape]): input_shape = ops.convert_to_tensor( input_shape, dtype=dtypes.int32, name="input_shape") block_shape = ops.convert_to_tensor( block_shape, dtype=dtypes.int32, name="block_shape") block_shape.get_shape().assert_is_fully_defined() block_shape.get_shape().assert_has_rank(1) num_block_dims = block_shape.get_shape().dims[0].value if num_block_dims == 0: return zeros([0, 2], dtypes.int32), zeros([0, 2], dtypes.int32) input_shape.get_shape().assert_is_compatible_with([num_block_dims]) if base_paddings is not None: base_paddings = ops.convert_to_tensor( base_paddings, dtype=dtypes.int32, name="base_paddings") base_paddings.get_shape().assert_is_compatible_with([num_block_dims, 2]) else: base_paddings = zeros([num_block_dims, 2], dtypes.int32) const_block_shape = tensor_util.constant_value(block_shape) const_input_shape = tensor_util.constant_value(input_shape) const_base_paddings = tensor_util.constant_value(base_paddings) if (const_block_shape is not None and const_input_shape is not None and const_base_paddings is not None): block_shape = const_block_shape input_shape = const_input_shape base_paddings = const_base_paddings # Use same expression for both constant and non-constant case. pad_start = base_paddings[:, 0] orig_pad_end = base_paddings[:, 1] full_input_shape = input_shape + pad_start + orig_pad_end pad_end_extra = (block_shape - full_input_shape % block_shape) % block_shape pad_end = orig_pad_end + pad_end_extra result_paddings = stack( [[pad_start[i], pad_end[i]] for i in range(num_block_dims)], name="paddings") result_crops = stack([[0, pad_end_extra[i]] for i in range(num_block_dims)], name="crops") return result_paddings, result_crops @tf_export(v1=["nn.space_to_batch", "space_to_batch"]) @deprecation.deprecated_endpoints("space_to_batch") def space_to_batch( # pylint: disable=missing-docstring input, # pylint: disable=redefined-builtin paddings, block_size=None, name=None, block_shape=None): # pylint: disable=redefined-builtin block_size = deprecation.deprecated_argument_lookup("block_shape", block_shape, "block_size", block_size) result = space_to_batch_nd( input, paddings=paddings, block_shape=np.array([block_size, block_size], dtype=np.int64), name=name) result.set_shape(result.get_shape().with_rank(4)) return result space_to_batch.__doc__ = gen_array_ops.space_to_batch.__doc__ @tf_export("space_to_batch", "nn.space_to_batch", v1=[]) def space_to_batch_v2(input, block_shape, paddings, name=None): # pylint: disable=redefined-builtin return space_to_batch_nd(input, block_shape, paddings, name) space_to_batch_v2.__doc__ = gen_array_ops.space_to_batch_nd.__doc__ @tf_export(v1=["nn.space_to_depth", "space_to_depth"]) @deprecation.deprecated_endpoints("space_to_depth") def space_to_depth(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin return gen_array_ops.space_to_depth(input, block_size, data_format, name=name) space_to_depth.__doc__ = gen_array_ops.space_to_depth.__doc__ @tf_export("nn.space_to_depth", v1=[]) def space_to_depth_v2(input, block_size, data_format="NHWC", name=None): # pylint: disable=redefined-builtin return gen_array_ops.space_to_depth(input, block_size, data_format, name=name) space_to_depth_v2.__doc__ = gen_array_ops.space_to_depth.__doc__ @tf_export(v1=["nn.depth_to_space", "depth_to_space"]) @deprecation.deprecated_endpoints("depth_to_space") def depth_to_space(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin return gen_array_ops.depth_to_space(input, block_size, data_format, name=name) depth_to_space.__doc__ = gen_array_ops.depth_to_space.__doc__ @tf_export("nn.depth_to_space", v1=[]) def depth_to_space_v2(input, block_size, data_format="NHWC", name=None): # pylint: disable=redefined-builtin return gen_array_ops.depth_to_space(input, block_size, data_format, name=name) depth_to_space_v2.__doc__ = gen_array_ops.depth_to_space.__doc__ @tf_export(v1=["batch_to_space"]) def batch_to_space(input, crops, block_size, name=None, block_shape=None): # pylint: disable=redefined-builtin,missing-docstring block_size = deprecation.deprecated_argument_lookup("block_shape", block_shape, "block_size", block_size) result = batch_to_space_nd( input, crops=crops, block_shape=np.array([block_size, block_size], dtype=np.int64), name=name) result.set_shape(result.get_shape().with_rank(4)) return result batch_to_space.__doc__ = gen_array_ops.batch_to_space.__doc__ @tf_export("batch_to_space", v1=[]) def batch_to_space_v2(input, block_shape, crops, name=None): # pylint: disable=redefined-builtin """BatchToSpace for N-D tensors of type T. This operation reshapes the "batch" dimension 0 into `M + 1` dimensions of shape `block_shape + [batch]`, interleaves these blocks back into the grid defined by the spatial dimensions `[1, ..., M]`, to obtain a result with the same rank as the input. The spatial dimensions of this intermediate result are then optionally cropped according to `crops` to produce the output. This is the reverse of SpaceToBatch (see `tf.space_to_batch`). Args: input: A N-D `Tensor` with shape `input_shape = [batch] + spatial_shape + remaining_shape`, where `spatial_shape` has M dimensions. block_shape: A 1-D `Tensor` with shape [M]. Must be one of the following types: `int32`, `int64`. All values must be >= 1. For backwards compatibility with TF 1.0, this parameter may be an int, in which case it is converted to `numpy.array([block_shape, block_shape], dtype=numpy.int64)`. crops: A 2-D `Tensor` with shape `[M, 2]`. Must be one of the following types: `int32`, `int64`. All values must be >= 0. `crops[i] = [crop_start, crop_end]` specifies the amount to crop from input dimension `i + 1`, which corresponds to spatial dimension `i`. It is required that `crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`. This operation is equivalent to the following steps: 1. Reshape `input` to `reshaped` of shape: [block_shape[0], ..., block_shape[M-1], batch / prod(block_shape), input_shape[1], ..., input_shape[N-1]] 2. Permute dimensions of `reshaped` to produce `permuted` of shape [batch / prod(block_shape), input_shape[1], block_shape[0], ..., input_shape[M], block_shape[M-1], input_shape[M+1], ..., input_shape[N-1]] 3. Reshape `permuted` to produce `reshaped_permuted` of shape [batch / prod(block_shape), input_shape[1] * block_shape[0], ..., input_shape[M] * block_shape[M-1], input_shape[M+1], ..., input_shape[N-1]] 4. Crop the start and end of dimensions `[1, ..., M]` of `reshaped_permuted` according to `crops` to produce the output of shape: [batch / prod(block_shape), input_shape[1] * block_shape[0] - crops[0,0] - crops[0,1], ..., input_shape[M] * block_shape[M-1] - crops[M-1,0] - crops[M-1,1], input_shape[M+1], ..., input_shape[N-1]] Some Examples: (1) For the following input of shape `[4, 1, 1, 1]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`: ```python [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] ``` The output tensor has shape `[1, 2, 2, 1]` and value: ``` x = [[[[1], [2]], [[3], [4]]]] ``` (2) For the following input of shape `[4, 1, 1, 3]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`: ```python [[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] ``` The output tensor has shape `[1, 2, 2, 3]` and value: ```python x = [[[[1, 2, 3], [4, 5, 6 ]], [[7, 8, 9], [10, 11, 12]]]] ``` (3) For the following input of shape `[4, 2, 2, 1]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [0, 0]]`: ```python x = [[[[1], [3]], [[ 9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]] ``` The output tensor has shape `[1, 4, 4, 1]` and value: ```python x = [[[1], [2], [ 3], [ 4]], [[5], [6], [ 7], [ 8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]] ``` (4) For the following input of shape `[8, 1, 3, 1]`, `block_shape = [2, 2]`, and `crops = [[0, 0], [2, 0]]`: ```python x = [[[[0], [ 1], [ 3]]], [[[0], [ 9], [11]]], [[[0], [ 2], [ 4]]], [[[0], [10], [12]]], [[[0], [ 5], [ 7]]], [[[0], [13], [15]]], [[[0], [ 6], [ 8]]], [[[0], [14], [16]]]] ``` The output tensor has shape `[2, 2, 4, 1]` and value: ```python x = [[[[ 1], [ 2], [ 3], [ 4]], [[ 5], [ 6], [ 7], [ 8]]], [[[ 9], [10], [11], [12]], [[13], [14], [15], [16]]]] ``` name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ if isinstance(block_shape, int): block_shape = np.array([block_shape, block_shape], dtype=np.int64) return batch_to_space_nd( input=input, block_shape=block_shape, crops=crops, name=name) @tf_export("one_hot") @dispatch.add_dispatch_support def one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None): """Returns a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`. `on_value` and `off_value` must have matching data types. If `dtype` is also provided, they must be the same data type as specified by `dtype`. If `on_value` is not provided, it will default to the value `1` with type `dtype` If `off_value` is not provided, it will default to the value `0` with type `dtype` If the input `indices` is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis` (default: the new axis is appended at the end). If `indices` is a scalar the output shape will be a vector of length `depth` If `indices` is a vector of length `features`, the output shape will be: ``` features x depth if axis == -1 depth x features if axis == 0 ``` If `indices` is a matrix (batch) with shape `[batch, features]`, the output shape will be: ``` batch x features x depth if axis == -1 batch x depth x features if axis == 1 depth x batch x features if axis == 0 ``` If `indices` is a RaggedTensor, the 'axis' argument must be positive and refer to a non-ragged axis. The output will be equivalent to applying 'one_hot' on the values of the RaggedTensor, and creating a new RaggedTensor from the result. If `dtype` is not provided, it will attempt to assume the data type of `on_value` or `off_value`, if one or both are passed in. If none of `on_value`, `off_value`, or `dtype` are provided, `dtype` will default to the value `tf.float32`. Note: If a non-numeric data type output is desired (`tf.string`, `tf.bool`, etc.), both `on_value` and `off_value` _must_ be provided to `one_hot`. For example: ```python indices = [0, 1, 2] depth = 3 tf.one_hot(indices, depth) # output: [3 x 3] # [[1., 0., 0.], # [0., 1., 0.], # [0., 0., 1.]] indices = [0, 2, -1, 1] depth = 3 tf.one_hot(indices, depth, on_value=5.0, off_value=0.0, axis=-1) # output: [4 x 3] # [[5.0, 0.0, 0.0], # one_hot(0) # [0.0, 0.0, 5.0], # one_hot(2) # [0.0, 0.0, 0.0], # one_hot(-1) # [0.0, 5.0, 0.0]] # one_hot(1) indices = [[0, 2], [1, -1]] depth = 3 tf.one_hot(indices, depth, on_value=1.0, off_value=0.0, axis=-1) # output: [2 x 2 x 3] # [[[1.0, 0.0, 0.0], # one_hot(0) # [0.0, 0.0, 1.0]], # one_hot(2) # [[0.0, 1.0, 0.0], # one_hot(1) # [0.0, 0.0, 0.0]]] # one_hot(-1) indices = tf.ragged.constant([[0, 1], [2]]) depth = 3 tf.one_hot(indices, depth) # output: [2 x None x 3] # [[[1., 0., 0.], # [0., 1., 0.]], # [[0., 0., 1.]]] ``` Args: indices: A `Tensor` of indices. depth: A scalar defining the depth of the one hot dimension. on_value: A scalar defining the value to fill in output when `indices[j] = i`. (default: 1) off_value: A scalar defining the value to fill in output when `indices[j] != i`. (default: 0) axis: The axis to fill (default: -1, a new inner-most axis). dtype: The data type of the output tensor. name: A name for the operation (optional). Returns: output: The one-hot tensor. Raises: TypeError: If dtype of either `on_value` or `off_value` don't match `dtype` TypeError: If dtype of `on_value` and `off_value` don't match one another """ with ops.name_scope( name, "one_hot", [indices, depth, on_value, off_value, axis, dtype]) as name: on_exists = on_value is not None off_exists = off_value is not None on_dtype = ( ops.convert_to_tensor(on_value).dtype.base_dtype if on_exists else None) off_dtype = ( ops.convert_to_tensor(off_value).dtype.base_dtype if off_exists else None) if on_exists or off_exists: if dtype is not None: # Ensure provided on_value and/or off_value match dtype if on_exists and on_dtype != dtype: raise TypeError("dtype {0} of on_value does not match " "dtype parameter {1}".format(on_dtype, dtype)) if off_exists and off_dtype != dtype: raise TypeError("dtype {0} of off_value does not match " "dtype parameter {1}".format(off_dtype, dtype)) else: # dtype not provided: automatically assign it dtype = on_dtype if on_exists else off_dtype elif dtype is None: # None of on_value, off_value, or dtype provided. Default dtype to float32 dtype = dtypes.float32 if not on_exists: # on_value not provided: assign to value 1 of type dtype on_value = ops.convert_to_tensor(1, dtype, name="on_value") on_dtype = dtype if not off_exists: # off_value not provided: assign to value 0 of type dtype off_value = ops.convert_to_tensor(0, dtype, name="off_value") off_dtype = dtype if on_dtype != off_dtype: raise TypeError("dtype {0} of on_value does not match " "dtype {1} of off_value".format(on_dtype, off_dtype)) return gen_array_ops.one_hot(indices, depth, on_value, off_value, axis, name) def _all_dimensions(x): """Returns a 1D-tensor listing all dimensions in x.""" # Fast path: avoid creating Rank and Range ops if ndims is known. if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None: return constant_op.constant( np.arange(x.get_shape().ndims), dtype=dtypes.int32) if (isinstance(x, sparse_tensor.SparseTensor) and x.dense_shape.get_shape().is_fully_defined()): r = x.dense_shape.get_shape().dims[0].value # sparse.dense_shape is 1-D. return constant_op.constant(np.arange(r), dtype=dtypes.int32) # Otherwise, we rely on `range` and `rank` to do the right thing at runtime. return gen_math_ops._range(0, rank(x), 1) @tf_export("sequence_mask") def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None): """Returns a mask tensor representing the first N positions of each cell. If `lengths` has shape `[d_1, d_2, ..., d_n]` the resulting tensor `mask` has dtype `dtype` and shape `[d_1, d_2, ..., d_n, maxlen]`, with ``` mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n]) ``` Examples: ```python tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False], # [True, True, True, False, False], # [True, True, False, False, False]] tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False], # [True, True, True]], # [[True, True, False], # [False, False, False]]] ``` Args: lengths: integer tensor, all its values <= maxlen. maxlen: scalar integer tensor, size of last dimension of returned tensor. Default is the maximum value in `lengths`. dtype: output type of the resulting tensor. name: name of the op. Returns: A mask tensor of shape `lengths.shape + (maxlen,)`, cast to specified dtype. Raises: ValueError: if `maxlen` is not a scalar. """ with ops.name_scope(name, "SequenceMask", [lengths, maxlen]): lengths = ops.convert_to_tensor(lengths) if maxlen is None: maxlen = gen_math_ops._max(lengths, _all_dimensions(lengths)) maxlen = gen_math_ops.maximum(constant(0, maxlen.dtype), maxlen) else: maxlen = ops.convert_to_tensor(maxlen) if maxlen.get_shape().ndims is not None and maxlen.get_shape().ndims != 0: raise ValueError("maxlen must be scalar for sequence_mask") # The basic idea is to compare a range row vector of size maxlen: # [0, 1, 2, 3, 4] # to length as a matrix with 1 column: [[1], [3], [2]]. # Because of broadcasting on both arguments this comparison results # in a matrix of size (len(lengths), maxlen) row_vector = gen_math_ops._range( constant(0, maxlen.dtype), maxlen, constant(1, maxlen.dtype)) # Since maxlen >= max(lengths), it is safe to use maxlen as a cast # authoritative type. Whenever maxlen fits into tf.int32, so do the lengths. matrix = gen_math_ops.cast(expand_dims(lengths, -1), maxlen.dtype) result = row_vector < matrix if dtype is None or result.dtype.base_dtype == dtype.base_dtype: return result else: return gen_math_ops.cast(result, dtype) @tf_export(v1=["squeeze"]) @dispatch.add_dispatch_support @deprecation.deprecated_args(None, "Use the `axis` argument instead", "squeeze_dims") def squeeze(input, axis=None, name=None, squeeze_dims=None): # pylint: disable=redefined-builtin """Removes dimensions of size 1 from the shape of a tensor. Given a tensor `input`, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying `axis`. For example: >>> # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] >>> t = tf.ones([1, 2, 1, 3, 1, 1]) >>> print(tf.shape(tf.squeeze(t)).numpy()) [2 3] Or, to remove specific size 1 dimensions: >>> # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] >>> t = tf.ones([1, 2, 1, 3, 1, 1]) >>> print(tf.shape(tf.squeeze(t, [2, 4])).numpy()) [1 2 3 1] Note: if `input` is a `tf.RaggedTensor`, then this operation takes `O(N)` time, where `N` is the number of elements in the squeezed dimensions. Args: input: A `Tensor`. The `input` to squeeze. axis: An optional list of `ints`. Defaults to `[]`. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. Must be in the range `[-rank(input), rank(input))`. Must be specified if `input` is a `RaggedTensor`. name: A name for the operation (optional). squeeze_dims: Deprecated keyword argument that is now axis. Returns: A `Tensor`. Has the same type as `input`. Contains the same data as `input`, but has one or more dimensions of size 1 removed. Raises: ValueError: When both `squeeze_dims` and `axis` are specified. """ axis = deprecation.deprecated_argument_lookup("axis", axis, "squeeze_dims", squeeze_dims) if np.isscalar(axis): axis = [axis] return gen_array_ops.squeeze(input, axis, name) @tf_export("squeeze", v1=[]) @dispatch.add_dispatch_support def squeeze_v2(input, axis=None, name=None): """Removes dimensions of size 1 from the shape of a tensor. Given a tensor `input`, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying `axis`. For example: ```python # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] tf.shape(tf.squeeze(t)) # [2, 3] ``` Or, to remove specific size 1 dimensions: ```python # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] tf.shape(tf.squeeze(t, [2, 4])) # [1, 2, 3, 1] ``` Unlike the older op `tf.compat.v1.squeeze`, this op does not accept a deprecated `squeeze_dims` argument. Note: if `input` is a `tf.RaggedTensor`, then this operation takes `O(N)` time, where `N` is the number of elements in the squeezed dimensions. Args: input: A `Tensor`. The `input` to squeeze. axis: An optional list of `ints`. Defaults to `[]`. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. Must be in the range `[-rank(input), rank(input))`. Must be specified if `input` is a `RaggedTensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. Contains the same data as `input`, but has one or more dimensions of size 1 removed. Raises: ValueError: The input cannot be converted to a tensor, or the specified axis cannot be squeezed. """ # pylint: disable=redefined-builtin return squeeze(input, axis, name) @tf_export(v1=["where"]) @dispatch.add_dispatch_support def where(condition, x=None, y=None, name=None): """Return the elements, either from `x` or `y`, depending on the `condition`. If both `x` and `y` are None, then this operation returns the coordinates of true elements of `condition`. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order. If both non-None, `x` and `y` must have the same shape. The `condition` tensor must be a scalar if `x` and `y` are scalar. If `x` and `y` are tensors of higher rank, then `condition` must be either a vector with size matching the first dimension of `x`, or must have the same shape as `x`. The `condition` tensor acts as a mask that chooses, based on the value at each element, whether the corresponding element / row in the output should be taken from `x` (if true) or `y` (if false). If `condition` is a vector and `x` and `y` are higher rank matrices, then it chooses which row (outer dimension) to copy from `x` and `y`. If `condition` has the same shape as `x` and `y`, then it chooses which element to copy from `x` and `y`. Args: condition: A `Tensor` of type `bool` x: A Tensor which may have the same shape as `condition`. If `condition` is rank 1, `x` may have higher rank, but its first dimension must match the size of `condition`. y: A `tensor` with the same shape and type as `x`. name: A name of the operation (optional) Returns: A `Tensor` with the same type and shape as `x`, `y` if they are non-None. Otherwise, a `Tensor` with shape `(num_true, rank(condition))`. Raises: ValueError: When exactly one of `x` or `y` is non-None. """ if x is None and y is None: with ops.name_scope(name, "Where", [condition]) as name: condition = ops.convert_to_tensor( condition, preferred_dtype=dtypes.bool, name="condition") return gen_array_ops.where(condition=condition, name=name) elif x is not None and y is not None: return gen_math_ops.select(condition=condition, x=x, y=y, name=name) else: raise ValueError("x and y must both be non-None or both be None.") @tf_export("where", v1=["where_v2"]) def where_v2(condition, x=None, y=None, name=None): """Return the elements, either from `x` or `y`, depending on the `condition`. If both `x` and `y` are None, then this operation returns the coordinates of true elements of `condition`. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order. If both non-None, `condition`, `x` and `y` must be broadcastable to the same shape. The `condition` tensor acts as a mask that chooses, based on the value at each element, whether the corresponding element / row in the output should be taken from `x` (if true) or `y` (if false). Args: condition: A `Tensor` of type `bool` x: A Tensor which is of the same type as `y`, and may be broadcastable with `condition` and `y`. y: A Tensor which is of the same type as `x`, and may be broadcastable with `condition` and `x`. name: A name of the operation (optional). Returns: A `Tensor` with the same type as `x` and `y`, and shape that is broadcast from `condition`, `x`, and `y`, if `x`, `y` are non-None. Otherwise, a `Tensor` with shape `(num_true, dim_size(condition))`. Raises: ValueError: When exactly one of `x` or `y` is non-None. """ if x is None and y is None: with ops.name_scope(name, "Where", [condition]) as name: condition = ops.convert_to_tensor( condition, preferred_dtype=dtypes.bool, name="condition") return gen_array_ops.where(condition=condition, name=name) elif x is not None and y is not None: return gen_math_ops.select_v2(condition=condition, t=x, e=y, name=name) else: raise ValueError("x and y must both be non-None or both be None.") # pylint: disable=redefined-builtin @tf_export(v1=["reverse_sequence"]) @deprecation.deprecated_args(None, "seq_dim is deprecated, use seq_axis instead", "seq_dim") @deprecation.deprecated_args(None, "batch_dim is deprecated, use batch_axis instead", "batch_dim") def reverse_sequence(input, seq_lengths, seq_axis=None, batch_axis=None, name=None, seq_dim=None, batch_dim=None): """Reverses variable length slices. This op first slices `input` along the dimension `batch_axis`, and for each slice `i`, reverses the first `seq_lengths[i]` elements along the dimension `seq_axis`. The elements of `seq_lengths` must obey `seq_lengths[i] <= input.dims[seq_dim]`, and `seq_lengths` must be a vector of length `input.dims[batch_dim]`. The output slice `i` along dimension `batch_axis` is then given by input slice `i`, with the first `seq_lengths[i]` slices along dimension `seq_axis` reversed. Example usage: >>> seq_lengths = [7, 2, 3, 5] >>> input = [[1, 2, 3, 4, 5, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0], ... [1, 2, 3, 4, 0, 0, 0, 0], [1, 2, 3, 4, 5, 6, 7, 8]] >>> output = tf.reverse_sequence(input, seq_lengths, seq_axis=1, batch_axis=0) >>> output <tf.Tensor: shape=(4, 8), dtype=int32, numpy= array([[0, 0, 5, 4, 3, 2, 1, 0], [2, 1, 0, 0, 0, 0, 0, 0], [3, 2, 1, 4, 0, 0, 0, 0], [5, 4, 3, 2, 1, 6, 7, 8]], dtype=int32)> Args: `input`: A `Tensor`. The input to reverse. `seq_lengths`: A `Tensor`. Must be one of the following types: `int32`, `int64`. 1-D with length `input.dims(batch_dim)` and `max(seq_lengths) <= input.dims(seq_dim)` `seq_axis`: An `int`. The dimension which is partially reversed. `batch_axis`: An optional `int`. Defaults to `0`. The dimension along which reversal is performed. `name`: A name for the operation (optional). Returns: A Tensor. Has the same type as input. """ seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis, "seq_dim", seq_dim) batch_axis = deprecation.deprecated_argument_lookup("batch_axis", batch_axis, "batch_dim", batch_dim) return gen_array_ops.reverse_sequence( input=input, seq_lengths=seq_lengths, seq_dim=seq_axis, batch_dim=batch_axis, name=name) @tf_export("reverse_sequence", v1=[]) def reverse_sequence_v2(input, seq_lengths, seq_axis=None, batch_axis=None, name=None): return gen_array_ops.reverse_sequence( input=input, seq_lengths=seq_lengths, seq_dim=seq_axis, batch_dim=batch_axis, name=name) reverse_sequence_v2.__doc__ = reverse_sequence.__doc__ # pylint: enable=redefined-builtin @tf_export(v1=["gather"]) @dispatch.add_dispatch_support def gather(params, indices, validate_indices=None, name=None, axis=None, batch_dims=0): # pylint: disable=g-doc-args r"""Gather slices from params axis `axis` according to indices. Gather slices from params axis `axis` according to `indices`. `indices` must be an integer tensor of any dimension (usually 0-D or 1-D). For 0-D (scalar) `indices`: $$\begin{align*} output[p_0, ..., p_{axis-1}, && &&& p_{axis + 1}, ..., p_{N-1}] = \\ params[p_0, ..., p_{axis-1}, && indices, &&& p_{axis + 1}, ..., p_{N-1}] \end{align*}$$ Where *N* = `ndims(params)`. For 1-D (vector) `indices` with `batch_dims=0`: $$\begin{align*} output[p_0, ..., p_{axis-1}, && &i, &&p_{axis + 1}, ..., p_{N-1}] =\\ params[p_0, ..., p_{axis-1}, && indices[&i], &&p_{axis + 1}, ..., p_{N-1}] \end{align*}$$ In the general case, produces an output tensor where: $$\begin{align*} output[p_0, &..., p_{axis-1}, & &i_{B}, ..., i_{M-1}, & p_{axis + 1}, &..., p_{N-1}] = \\ params[p_0, &..., p_{axis-1}, & indices[p_0, ..., p_{B-1}, &i_{B}, ..., i_{M-1}], & p_{axis + 1}, &..., p_{N-1}] \end{align*}$$ Where *N* = `ndims(params)`, *M* = `ndims(indices)`, and *B* = `batch_dims`. Note that `params.shape[:batch_dims]` must be identical to `indices.shape[:batch_dims]`. The shape of the output tensor is: > `output.shape = params.shape[:axis] + indices.shape[batch_dims:] + > params.shape[axis + 1:]`. Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value. See also `tf.gather_nd`. <div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;"> <img style="width:100%" src="https://www.tensorflow.org/images/Gather.png" alt> </div> Args: params: The `Tensor` from which to gather values. Must be at least rank `axis + 1`. indices: The index `Tensor`. Must be one of the following types: `int32`, `int64`. Must be in range `[0, params.shape[axis])`. validate_indices: Deprecated, does nothing. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The `axis` in `params` to gather `indices` from. Must be greater than or equal to `batch_dims`. Defaults to the first non-batch dimension. Supports negative indexes. batch_dims: An `integer`. The number of batch dimensions. Must be less than `rank(indices)`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `params`. """ del validate_indices if axis is None: axis = batch_dims if tensor_util.constant_value(axis) != 0: return gen_array_ops.gather_v2( params, indices, axis, batch_dims=batch_dims, name=name) try: # TODO(apassos) find a less bad way of detecting resource variables # without introducing a circular dependency. return params.sparse_read(indices, name=name) except AttributeError: return gen_array_ops.gather_v2(params, indices, axis, name=name) @tf_export("gather", v1=[]) @dispatch.add_dispatch_support def gather_v2(params, indices, validate_indices=None, axis=None, batch_dims=0, name=None): return gather( params, indices, validate_indices=validate_indices, name=name, axis=axis, batch_dims=batch_dims) gather_v2.__doc__ = gather.__doc__ @tf_export(v1=["batch_gather"]) @dispatch.add_dispatch_support @deprecation.deprecated( "2017-10-25", "`tf.batch_gather` is deprecated, please use `tf.gather` " "with `batch_dims=-1` instead.") # pylint: disable=missing-docstring def batch_gather(params, indices, name=None): """Gather slices from params according to indices with leading batch dims.""" with ops.name_scope(name, "BatchGather", [params, indices]): indices = ops.convert_to_tensor(indices, name="indices") params = ops.convert_to_tensor(params, name="params") if indices.shape.ndims is None: raise ValueError( "batch_gather does not allow indices with unknown shape.") return _batch_gather(params, indices, batch_dims=indices.shape.ndims - 1) def _batch_gather(params, indices, batch_dims, axis=None): r"""Gather slices from params according to indices with leading batch dims. This operation assumes that the leading `batch_dims` dimensions of `indices` and `params` are batch dimensions; and performs a `tf.gather` operation within each batch. (If `batch_dims` is not specified, then it defaults to `rank(indices)-1`.) In the case in which `batch_dims==0`, this operation is equivalent to `tf.gather`. Args: params: A Tensor. The tensor from which to gather values. indices: A Tensor. Must be one of the following types: int32, int64. Index tensor. Must be in range `[0, params.shape[batch_dims]]`. batch_dims: An integer or none. The number of batch dimensions. Must be less than `rank(indices)`. Defaults to `rank(indices) - 1` if None. axis: A `Tensor`. Must be one of the following types: `int32`, `int64`. The `axis` in `params` to gather `indices` from. Must be greater than or equal to `batch_dims`. Defaults to the first non-batch dimension. Supports negative indexes. Returns: A Tensor. Has the same type as `params`. Raises: ValueError: if `indices` has an unknown shape. """ if batch_dims is not None and not isinstance(batch_dims, int): raise TypeError("batch_dims must be an int; got %r" % (batch_dims,)) indices = ops.convert_to_tensor(indices, name="indices") params = ops.convert_to_tensor(params, name="params") indices_ndims = indices.shape.ndims if indices_ndims is None: raise ValueError("tf.gather does not allow indices with unknown " "rank when batch_dims is specified.") if batch_dims is None: batch_dims = indices_ndims - 1 if batch_dims < 0: batch_dims += indices_ndims if batch_dims < 0 or batch_dims >= indices_ndims: raise ValueError("batch_dims = %d must be less than rank(indices) = %d" % (batch_dims, indices_ndims)) if params.shape.ndims is not None and batch_dims >= params.shape.ndims: raise ValueError("batch_dims = %d must be less than rank(params) = %d" % (batch_dims, params.shape.ndims)) # Handle axis by transposing the axis dimension to be the first non-batch # dimension, recursively calling batch_gather with axis=0, and then # transposing the result to put the pre-axis dimensions before the indices # dimensions. if axis is not None and axis != batch_dims: # Adjust axis to be positive. if not isinstance(axis, int): axis = tf.where(axis < 0, axis + array_ops.rank(params), axis) elif axis < 0 and params.shape.ndims is None: axis = axis + array_ops.rank(params) else: if (axis < -params.shape.ndims) or (axis >= params.shape.ndims): raise ValueError("axis (%d) out of range [%d, %d)" % (axis, -params.shape.ndims, params.shape.ndims)) if axis < 0: axis += params.shape.ndims if axis < batch_dims: raise ValueError("batch_dims = %d must be less than or equal to " "axis = %d" % (batch_dims, axis)) # Move params[axis] up to params[batch_dims]. perm = [ list(range(batch_dims)), [axis], gen_math_ops._range(batch_dims, axis, 1), gen_math_ops._range(axis + 1, rank(params), 1) ] params = transpose(params, concat(perm, axis=0)) result = _batch_gather(params, indices, batch_dims=batch_dims) # Move the result dimensions corresponding to params[batch_dims:axis] # to just before the dimensions corresponding to indices[batch_dims:]. params_start = indices_ndims + axis - batch_dims perm = [ list(range(batch_dims)), gen_math_ops._range(indices_ndims, params_start, 1), list(range(batch_dims, indices_ndims)), gen_math_ops._range(params_start, rank(result), 1) ] return transpose(result, perm=concat(perm, axis=0)) indices_shape = shape(indices) params_shape = shape(params) batch_indices = indices indices_dtype = indices.dtype.base_dtype accum_dim_value = ones((), dtype=indices_dtype) # Use correct type for offset index computation casted_params_shape = gen_math_ops.cast(params_shape, indices_dtype) for dim in range(batch_dims, 0, -1): dim_value = casted_params_shape[dim - 1] accum_dim_value *= casted_params_shape[dim] start = zeros((), dtype=indices_dtype) step = ones((), dtype=indices_dtype) dim_indices = gen_math_ops._range(start, dim_value, step) dim_indices *= accum_dim_value dim_shape = stack( [1] * (dim - 1) + [dim_value] + [1] * (indices_ndims - dim), axis=0) batch_indices += reshape(dim_indices, dim_shape) flat_indices = reshape(batch_indices, [-1]) outer_shape = params_shape[batch_dims + 1:] flat_inner_shape = gen_math_ops.prod(params_shape[:batch_dims + 1], [0], False) flat_params = reshape(params, concat([[flat_inner_shape], outer_shape], axis=0)) flat_result = gather(flat_params, flat_indices) result = reshape(flat_result, concat([indices_shape, outer_shape], axis=0)) final_shape = indices.get_shape()[:batch_dims].merge_with( params.get_shape()[:batch_dims]) final_shape = final_shape.concatenate(indices.get_shape().dims[batch_dims:]) final_shape = final_shape.concatenate(params.get_shape()[batch_dims + 1:]) result.set_shape(final_shape) return result @tf_export(v1=["gather_nd", "manip.gather_nd"]) @dispatch.add_dispatch_support @deprecated_endpoints("manip.gather_nd") def gather_nd(params, indices, name=None, batch_dims=0): r"""Gather slices from `params` into a Tensor with shape specified by `indices`. `indices` is an K-dimensional integer tensor, best thought of as a (K-1)-dimensional tensor of indices into `params`, where each element defines a slice of `params`: output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]] Whereas in `tf.gather` `indices` defines slices into the first dimension of `params`, in `tf.gather_nd`, `indices` defines slices into the first `N` dimensions of `params`, where `N = indices.shape[-1]`. The last dimension of `indices` can be at most the rank of `params`: indices.shape[-1] <= params.rank The last dimension of `indices` corresponds to elements (if `indices.shape[-1] == params.rank`) or slices (if `indices.shape[-1] < params.rank`) along dimension `indices.shape[-1]` of `params`. The output tensor has shape indices.shape[:-1] + params.shape[indices.shape[-1]:] Additionally both 'params' and 'indices' can have M leading batch dimensions that exactly match. In this case 'batch_dims' must be M. Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value. Some examples below. Simple indexing into a matrix: ```python indices = [[0, 0], [1, 1]] params = [['a', 'b'], ['c', 'd']] output = ['a', 'd'] ``` Slice indexing into a matrix: ```python indices = [[1], [0]] params = [['a', 'b'], ['c', 'd']] output = [['c', 'd'], ['a', 'b']] ``` Indexing into a 3-tensor: ```python indices = [[1]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[['a1', 'b1'], ['c1', 'd1']]] indices = [[0, 1], [1, 0]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['c0', 'd0'], ['a1', 'b1']] indices = [[0, 0, 1], [1, 0, 1]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = ['b0', 'b1'] ``` The examples below are for the case when only indices have leading extra dimensions. If both 'params' and 'indices' have leading batch dimensions, use the 'batch_dims' parameter to run gather_nd in batch mode. Batched indexing into a matrix: ```python indices = [[[0, 0]], [[0, 1]]] params = [['a', 'b'], ['c', 'd']] output = [['a'], ['b']] ``` Batched slice indexing into a matrix: ```python indices = [[[1]], [[0]]] params = [['a', 'b'], ['c', 'd']] output = [[['c', 'd']], [['a', 'b']]] ``` Batched indexing into a 3-tensor: ```python indices = [[[1]], [[0]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[[['a1', 'b1'], ['c1', 'd1']]], [[['a0', 'b0'], ['c0', 'd0']]]] indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[['c0', 'd0'], ['a1', 'b1']], [['a0', 'b0'], ['c1', 'd1']]] indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['b0', 'b1'], ['d0', 'c1']] ``` Examples with batched 'params' and 'indices': ```python batch_dims = 1 indices = [[1], [0]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['c0', 'd0'], ['a1', 'b1']] batch_dims = 1 indices = [[[1]], [[0]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [[['c0', 'd0']], [['a1', 'b1']]] batch_dims = 1 indices = [[[1, 0]], [[0, 1]]] params = [[['a0', 'b0'], ['c0', 'd0']], [['a1', 'b1'], ['c1', 'd1']]] output = [['c0'], ['b1']] ``` See also `tf.gather`. Args: params: A `Tensor`. The tensor from which to gather values. indices: A `Tensor`. Must be one of the following types: `int32`, `int64`. Index tensor. name: A name for the operation (optional). batch_dims: An integer or a scalar 'Tensor'. The number of batch dimensions. Returns: A `Tensor`. Has the same type as `params`. """ batch_dims_ = tensor_util.constant_value(batch_dims) if batch_dims_ is not None: batch_dims = int(batch_dims_) if batch_dims == 0: try: # TODO(apassos) find a less bad way of detecting resource variables # without introducing a circular dependency. return params.gather_nd(indices, name=name) except AttributeError: return gen_array_ops.gather_nd(params, indices, name=name) else: return batch_gather_nd(params, indices, batch_dims=batch_dims, name=name) @tf_export("gather_nd", v1=[]) @dispatch.add_dispatch_support def gather_nd_v2(params, indices, batch_dims=0, name=None): return gather_nd(params, indices, name=name, batch_dims=batch_dims) gather_nd_v2.__doc__ = gather_nd.__doc__ def batch_gather_nd(params, indices, batch_dims, name=None): """gather_nd implementation with batch support.""" with ops.name_scope(name, "BatchGatherND", [params, indices]): indices = ops.convert_to_tensor(indices, name="indices") params = ops.convert_to_tensor(params, name="params") if not isinstance(batch_dims, int): raise TypeError("batch_dims must be an int; got %r" % (batch_dims,)) if batch_dims < 0: raise ValueError("tf.gather_nd does not allow negative batch_dims.") params_ndims = params.shape.ndims indices_ndims = indices.shape.ndims if indices_ndims is not None and batch_dims >= indices_ndims: raise ValueError("batch_dims = %d must be less than rank(indices) = %d" % (batch_dims, indices_ndims)) if params_ndims is not None and batch_dims >= params_ndims: raise ValueError("batch_dims = %d must be less than rank(params) = %d" % (batch_dims, params_ndims)) expand = batch_dims == 0 if expand: # Normally gather_nd will be called when batch_dims == 0. # But if this function is called with batch_dims = 0, e.g. for testing # purposes, this adds a dummy batch dimension to make batch_dims = 1. params = expand_dims(params, axis=0) indices = expand_dims(indices, axis=0) batch_dims = 1 params_shape = shape(params) indices_shape = shape(indices) batch_shape = params_shape[:batch_dims] batch_size = gen_math_ops.prod(batch_shape, [0]) index_internal_ndims = rank(indices) - batch_dims - 1 indices_internal_shape = indices_shape[batch_dims:-1] # Assuming a 'params' with shape [b1, ..., bM, g1, ..., gN] and an 'indices' # with shape [b1, ..., bM, i1, ..., iK, C], where C <= N, we need to modify # 'indices' s.t. it has shape [i1, ..., iK, D], where D <= M + N and slices # to the entire 'params' tensor. # Assuming we have a batch of shape [B1, B2], we use meshgrid to create a # grid of size B1 x B2. batch_dim_list = unstack(batch_shape, axis=0) dim_ranges = [ gen_math_ops.cast(gen_math_ops._range(0, x, 1), indices.dtype) for x in batch_dim_list ] mesh_list = meshgrid(*dim_ranges, indexing="ij") if dim_ranges else [] # Then we flatten and stack the tensors to form a (B1.B2) by 2 matrix. flat_list = [reshape(x, shape=(-1,)) for x in mesh_list] index_grid = transpose(stack(flat_list, axis=0)) # We need to concatenate these batch coordinates with the internal indices. # concat -> index_grid [B1.B2, 2] with indices [i1, ..., iK, C] # So we reshape them both to [(B1.B2), i1, ..., iK, *] index_grid_shape = shape(index_grid) index_grid = reshape( index_grid, concat([ index_grid_shape[:1], ones(index_internal_ndims, dtype=dtypes.int32), index_grid_shape[1:] ], axis=0)) tile_shape = concat(((1,), indices_internal_shape, (1,)), axis=0) index_grid = tile(index_grid, multiples=tile_shape) # index_grid now has shape [(B1.B2), i1, ..., iK, 2] flat_shape = concat(([batch_size], indices_shape[batch_dims:]), axis=0) flat_indices = reshape(indices, shape=flat_shape) # flat_indices now has shape [(B1.B2), i1, ..., iK, C] indices = concat((index_grid, flat_indices), axis=-1) # indices has shape [(B1.B2), i1, ..., iK, 2+C] out = gen_array_ops.gather_nd(params, indices) # out has shape [(B1.B2), i1, ..., iK, N-C]. Now we reshape batch to # its original form. out_shape = shape(out) out = reshape(out, shape=concat((batch_shape, out_shape[1:]), axis=0)) if expand: out = squeeze(out, axis=0) return out # Define quantize_v2 here in order to make name the second-to-last attribute, # because round_mode was added later. # (And also now because of 'axis' processing). @tf_export(v1=["quantize_v2"]) @deprecation.deprecated( "2017-10-25", "`tf.quantize_v2` is deprecated, please use `tf.quantization.quantize` " "instead.") # pylint: disable=missing-docstring def quantize_v2( input, # pylint: disable=redefined-builtin min_range, max_range, T, mode="MIN_COMBINED", name=None, round_mode="HALF_AWAY_FROM_ZERO", narrow_range=False, axis=None, ensure_minimum_range=0.01): if axis is None: axis = -1 elif axis < 0: if input.shape.ndims is None: raise ValueError("input should have known rank to use negative axis.") axis %= input.shape.ndims if compat.forward_compatible(2019, 11, 13) or ensure_minimum_range != 0.01: return gen_array_ops.quantize_v2( input, min_range, max_range, T=T, mode=mode, name=name, round_mode=round_mode, narrow_range=narrow_range, axis=axis, ensure_minimum_range=ensure_minimum_range) return gen_array_ops.quantize_v2( input, min_range, max_range, T=T, mode=mode, name=name, round_mode=round_mode, narrow_range=narrow_range, axis=axis) quantize_v2.__doc__ = """Please use `tf.quantization.quantize` instead.""" # We want to expose tf.quantization.quantize instead of # tf.quantization.quantize; we can deprecate tf.quantization.quantize in next # version of TensorFlow. @tf_export("quantization.quantize", v1=["quantization.quantize", "quantize"]) @deprecation.deprecated_endpoints("quantize") def quantize( input, # pylint: disable=redefined-builtin min_range, max_range, T, mode="MIN_COMBINED", round_mode="HALF_AWAY_FROM_ZERO", name=None, narrow_range=False, axis=None, ensure_minimum_range=0.01): """Quantize the input tensor.""" if compat.forward_compatible(2019, 11, 13) or ensure_minimum_range != 0.01: return quantize_v2( input, min_range, max_range, T, mode=mode, round_mode=round_mode, name=name, narrow_range=narrow_range, axis=axis, ensure_minimum_range=ensure_minimum_range) return quantize_v2( input, min_range, max_range, T, mode=mode, round_mode=round_mode, name=name, narrow_range=narrow_range, axis=axis) @tf_export("quantization.dequantize", v1=["quantization.dequantize", "dequantize"]) @deprecation.deprecated_endpoints("dequantize") def dequantize( # pylint: disable=missing-docstring input, # pylint: disable=redefined-builtin min_range, max_range, mode="MIN_COMBINED", name=None, axis=None, narrow_range=False): if axis is None: axis = -1 elif axis < 0: if input.shape.ndims is None: raise ValueError("input should have known rank to use negative axis.") axis %= input.shape.ndims if compat.forward_compatible(2019, 10, 22) or axis >= 0 or narrow_range: return gen_array_ops.dequantize( input, min_range, max_range, mode=mode, name=name, narrow_range=narrow_range, axis=axis) return gen_array_ops.dequantize( input, min_range, max_range, mode=mode, name=name) dequantize.__doc__ = gen_array_ops.dequantize.__doc__ @tf_export("quantization.quantize_and_dequantize") def quantize_and_dequantize( input, # pylint: disable=redefined-builtin input_min, input_max, signed_input=True, num_bits=8, range_given=False, round_mode="HALF_TO_EVEN", name=None, narrow_range=False, axis=None): """Quantizes then dequantizes a tensor. Args: input: A `Tensor` to quantize and dequantize. input_min: If range_given=True, the minimum input value, that needs to be represented in the quantized representation. If axis is specified, this should be a vector of minimum values for each slice along axis. input_max: If range_given=True, the maximum input value that needs to be represented in the quantized representation. If axis is specified, this should be a vector of maximum values for each slice along axis. signed_input: True if the quantization is signed or unsigned. num_bits: The bitwidth of the quantization. range_given: If true use `input_min` and `input_max` for the range of the input, otherwise determine min and max from the input `Tensor`. round_mode: Rounding mode when rounding from float values to quantized ones. one of ['HALF_TO_EVEN', 'HALF_UP'] name: Optional name for the operation. narrow_range: If true, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. i.e. for 8 bit quantization, the minimum value is -127 instead of -128. axis: Integer. If specified, refers to a dimension of the input tensor, such that quantization will be per slice along that dimension. Returns: A `Tensor`. Each element is the result of quantizing and dequantizing the corresponding element of `input`. """ if axis is None: axis = -1 elif axis < 0: if input.shape.ndims is None: raise ValueError("input should have known rank to use negative axis.") axis %= input.shape.ndims return gen_array_ops.quantize_and_dequantize_v2( input, input_min=input_min, input_max=input_max, signed_input=signed_input, num_bits=num_bits, range_given=range_given, round_mode=round_mode, narrow_range=narrow_range, axis=axis, name=name) @tf_export("searchsorted") def searchsorted(sorted_sequence, values, side="left", out_type=dtypes.int32, name=None): """Searches input tensor for values on the innermost dimension. A 2-D example: ``` sorted_sequence = [[0, 3, 9, 9, 10], [1, 2, 3, 4, 5]] values = [[2, 4, 9], [0, 2, 6]] result = searchsorted(sorted_sequence, values, side="left") result == [[1, 2, 2], [0, 1, 5]] result = searchsorted(sorted_sequence, values, side="right") result == [[1, 2, 4], [0, 2, 5]] ``` Args: sorted_sequence: N-D `Tensor` containing a sorted sequence. values: N-D `Tensor` containing the search values. side: 'left' or 'right'; 'left' corresponds to lower_bound and 'right' to upper_bound. out_type: The output type (`int32` or `int64`). Default is `tf.int32`. name: Optional name for the operation. Returns: An N-D `Tensor` the size of values containing the result of applying either lower_bound or upper_bound (depending on side) to each value. The result is not a global index to the entire `Tensor`, but the index in the last dimension. Raises: ValueError: If the last dimension of `sorted_sequence >= 2^31-1` elements. If the total size of values exceeds `2^31 - 1` elements. If the first `N-1` dimensions of the two tensors don't match. """ sequence_size = shape_internal(sorted_sequence)[-1] values_size = shape_internal(values)[-1] sorted_sequence_2d = reshape(sorted_sequence, [-1, sequence_size]) values_2d = reshape(values, [-1, values_size]) if side == "right": output = gen_array_ops.upper_bound(sorted_sequence_2d, values_2d, out_type, name) elif side == "left": output = gen_array_ops.lower_bound(sorted_sequence_2d, values_2d, out_type, name) else: raise ValueError("side must be either 'right' or 'left'. Saw: %s." % side) return reshape(output, shape_internal(values)) quantize.__doc__ = gen_array_ops.quantize_v2.__doc__ @tf_export("image.extract_patches") def extract_image_patches_v2(images, sizes, strides, rates, padding, name=None): r"""Extract `patches` from `images`. This op collects patches from the input image, as if applying a convolution. All extracted patches are stacked in the depth (last) dimension of the output. Specifically, the op extracts patches of shape `sizes` which are `strides` apart in the input image. The output is subsampled using the `rates` argument, in the same manner as "atrous" or "dilated" convolutions. The result is a 4D tensor which is indexed by batch, row, and column. `output[i, x, y]` contains a flattened patch of size `sizes[1], sizes[2]` which is taken from the input starting at `images[i, x*strides[1], y*strides[2]]`. Each output patch can be reshaped to `sizes[1], sizes[2], depth`, where `depth` is `images.shape[3]`. The output elements are taken from the input at intervals given by the `rate` argument, as in dilated convolutions. The `padding` argument has no effect on the size of each patch, it determines how many patches are extracted. If `VALID`, only patches which are fully contained in the input image are included. If `SAME`, all patches whose starting point is inside the input are included, and areas outside the input default to zero. Example: ``` n = 10 # images is a 1 x 10 x 10 x 1 array that contains the numbers 1 through 100 images = [[[[x * n + y + 1] for y in range(n)] for x in range(n)]] # We generate two outputs as follows: # 1. 3x3 patches with stride length 5 # 2. Same as above, but the rate is increased to 2 tf.extract_image_patches(images=images, ksizes=[1, 3, 3, 1], strides=[1, 5, 5, 1], rates=[1, 1, 1, 1], padding='VALID') # Yields: [[[[ 1 2 3 11 12 13 21 22 23] [ 6 7 8 16 17 18 26 27 28]] [[51 52 53 61 62 63 71 72 73] [56 57 58 66 67 68 76 77 78]]]] ``` If we mark the pixels in the input image which are taken for the output with `*`, we see the pattern: ``` * * * 4 5 * * * 9 10 * * * 14 15 * * * 19 20 * * * 24 25 * * * 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 * * * 54 55 * * * 59 60 * * * 64 65 * * * 69 70 * * * 74 75 * * * 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ``` ``` tf.extract_image_patches(images=images, sizes=[1, 3, 3, 1], strides=[1, 5, 5, 1], rates=[1, 2, 2, 1], padding='VALID') # Yields: [[[[ 1 3 5 21 23 25 41 43 45] [ 6 8 10 26 28 30 46 48 50]] [[ 51 53 55 71 73 75 91 93 95] [ 56 58 60 76 78 80 96 98 100]]]] ``` We can again draw the effect, this time using the symbols `*`, `x`, `+` and `o` to distinguish the patches: ``` * 2 * 4 * x 7 x 9 x 11 12 13 14 15 16 17 18 19 20 * 22 * 24 * x 27 x 29 x 31 32 33 34 35 36 37 38 39 40 * 42 * 44 * x 47 x 49 x + 52 + 54 + o 57 o 59 o 61 62 63 64 65 66 67 68 69 70 + 72 + 74 + o 77 o 79 o 81 82 83 84 85 86 87 88 89 90 + 92 + 94 + o 97 o 99 o ``` Args: images: A 4-D Tensor with shape `[batch, in_rows, in_cols, depth] sizes: The size of the extracted patches. Must be [1, size_rows, size_cols, 1]. strides: A 1-D Tensor of length 4. How far the centers of two consecutive patches are in the images. Must be: `[1, stride_rows, stride_cols, 1]`. rates: A 1-D Tensor of length 4. Must be: `[1, rate_rows, rate_cols, 1]`. This is the input stride, specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling them spatially by a factor of `rates`. This is equivalent to `rate` in dilated (a.k.a. Atrous) convolutions. padding: The type of padding algorithm to use. name: A name for the operation (optional). Returns: A 4-D Tensor of the same type as the input. """ return gen_array_ops.extract_image_patches(images, sizes, strides, rates, padding, name) @tf_export(v1=["image.extract_image_patches", "extract_image_patches"]) @deprecation.deprecated_args(None, "ksizes is deprecated, use sizes instead", "ksizes") def extract_image_patches( # pylint: disable=missing-docstring images, ksizes=None, strides=None, rates=None, padding=None, name=None, sizes=None): ksizes = deprecation.deprecated_argument_lookup("sizes", sizes, "ksizes", ksizes) return gen_array_ops.extract_image_patches(images, ksizes, strides, rates, padding, name) extract_image_patches.__doc__ = gen_array_ops.extract_image_patches.__doc__ @tf_export("fingerprint") def fingerprint(data, method="farmhash64", name=None): r"""Generates fingerprint values. Generates fingerprint values of `data`. Fingerprint op considers the first dimension of `data` as the batch dimension, and `output[i]` contains the fingerprint value generated from contents in `data[i, ...]` for all `i`. Fingerprint op writes fingerprint values as byte arrays. For example, the default method `farmhash64` generates a 64-bit fingerprint value at a time. This 8-byte value is written out as an `tf.uint8` array of size 8, in little-endian order. For example, suppose that `data` has data type `tf.int32` and shape (2, 3, 4), and that the fingerprint method is `farmhash64`. In this case, the output shape is (2, 8), where 2 is the batch dimension size of `data`, and 8 is the size of each fingerprint value in bytes. `output[0, :]` is generated from 12 integers in `data[0, :, :]` and similarly `output[1, :]` is generated from other 12 integers in `data[1, :, :]`. Note that this op fingerprints the raw underlying buffer, and it does not fingerprint Tensor's metadata such as data type and/or shape. For example, the fingerprint values are invariant under reshapes and bitcasts as long as the batch dimension remain the same: ```python tf.fingerprint(data) == tf.fingerprint(tf.reshape(data, ...)) tf.fingerprint(data) == tf.fingerprint(tf.bitcast(data, ...)) ``` For string data, one should expect `tf.fingerprint(data) != tf.fingerprint(tf.string.reduce_join(data))` in general. Args: data: A `Tensor`. Must have rank 1 or higher. method: A `Tensor` of type `tf.string`. Fingerprint method used by this op. Currently available method is `farmhash64`. name: A name for the operation (optional). Returns: A two-dimensional `Tensor` of type `tf.uint8`. The first dimension equals to `data`'s first dimension, and the second dimension size depends on the fingerprint algorithm. """ return gen_array_ops.fingerprint(data, method, name) def convert_to_int_tensor(tensor, name, dtype=dtypes.int32): """Converts the given value to an integer Tensor.""" tensor = ops.convert_to_tensor(tensor, name=name, preferred_dtype=dtype) if tensor.dtype.is_integer: tensor = gen_math_ops.cast(tensor, dtype) else: raise TypeError("%s must be an integer tensor; dtype=%s" % (name, tensor.dtype)) return tensor def get_positive_axis(axis, ndims): """Validate an `axis` parameter, and normalize it to be positive. If `ndims` is known (i.e., not `None`), then check that `axis` is in the range `-ndims <= axis < ndims`, and return `axis` (if `axis >= 0`) or `axis + ndims` (otherwise). If `ndims` is not known, and `axis` is positive, then return it as-is. If `ndims` is not known, and `axis` is negative, then report an error. Args: axis: An integer constant ndims: An integer constant, or `None` Returns: The normalized `axis` value. Raises: ValueError: If `axis` is out-of-bounds, or if `axis` is negative and `ndims is None`. """ if not isinstance(axis, int): raise TypeError("axis must be an int; got %s" % type(axis).__name__) if ndims is not None: if 0 <= axis < ndims: return axis elif -ndims <= axis < 0: return axis + ndims else: raise ValueError("axis=%s out of bounds: expected %s<=axis<%s" % (axis, -ndims, ndims)) elif axis < 0: raise ValueError("axis may only be negative if ndims is statically known.") return axis # This op is intended to exactly match the semantics of numpy.repeat, with # one exception: numpy.repeat has special (and somewhat non-intuitive) behavior # when axis is not specified. Rather than implement that special behavior, we # simply make `axis` be a required argument. # # External (OSS) `tf.repeat` feature request: # https://github.com/tensorflow/tensorflow/issues/8246 def repeat_with_axis(data, repeats, axis, name=None): """Repeats elements of `data`. Args: data: An `N`-dimensional tensor. repeats: A 1-D integer tensor specifying how many times each element in `axis` should be repeated. `len(repeats)` must equal `data.shape[axis]`. Supports broadcasting from a scalar value. axis: `int`. The axis along which to repeat values. Must be less than `max(N, 1)`. name: A name for the operation. Returns: A tensor with `max(N, 1)` dimensions. Has the same shape as `data`, except that dimension `axis` has size `sum(repeats)`. Example usage: >>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0) <tf.Tensor: shape=(5,), dtype=string, numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)> >>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0) <tf.Tensor: shape=(5, 2), dtype=int32, numpy= array([[1, 2], [1, 2], [3, 4], [3, 4], [3, 4]], dtype=int32)> >>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1) <tf.Tensor: shape=(2, 5), dtype=int32, numpy= array([[1, 1, 2, 2, 2], [3, 3, 4, 4, 4]], dtype=int32)> """ if not isinstance(axis, int): raise TypeError("axis must be an int; got %s" % type(axis).__name__) with ops.name_scope(name, "Repeat", [data, repeats]): data = ops.convert_to_tensor(data, name="data") repeats = convert_to_int_tensor(repeats, name="repeats") repeats.shape.with_rank_at_most(1) # If `data` is a scalar, then upgrade it to a vector. data = _with_nonzero_rank(data) data_shape = shape(data) # If `axis` is negative, then convert it to a positive value. axis = get_positive_axis(axis, data.shape.ndims) # Check data Tensor shapes. if repeats.shape.ndims == 1: data.shape.dims[axis].assert_is_compatible_with(repeats.shape[0]) # If we know that `repeats` is a scalar, then we can just tile & reshape. if repeats.shape.ndims == 0: expanded = expand_dims(data, axis + 1) tiled = tile_one_dimension(expanded, axis + 1, repeats) result_shape = concat([data_shape[:axis], [-1], data_shape[axis + 1:]], axis=0) return reshape(tiled, result_shape) # Broadcast the `repeats` tensor so rank(repeats) == axis + 1. if repeats.shape.ndims != axis + 1: repeats_shape = shape(repeats) repeats_ndims = rank(repeats) broadcast_shape = concat( [data_shape[:axis + 1 - repeats_ndims], repeats_shape], axis=0) repeats = broadcast_to(repeats, broadcast_shape) repeats.set_shape([None] * (axis + 1)) # Create a "sequence mask" based on `repeats`, where slices across `axis` # contain one `True` value for each repetition. E.g., if # `repeats = [3, 1, 2]`, then `mask = [[1, 1, 1], [1, 0, 0], [1, 1, 0]]`. max_repeat = gen_math_ops.maximum( 0, gen_math_ops._max(repeats, _all_dimensions(repeats))) mask = sequence_mask(repeats, max_repeat) # Add a new dimension around each value that needs to be repeated, and # then tile that new dimension to match the maximum number of repetitions. expanded = expand_dims(data, axis + 1) tiled = tile_one_dimension(expanded, axis + 1, max_repeat) # Use `boolean_mask` to discard the extra repeated values. This also # flattens all dimensions up through `axis`. masked = boolean_mask(tiled, mask) # Reshape the output tensor to add the outer dimensions back. if axis == 0: result = masked else: result_shape = concat([data_shape[:axis], [-1], data_shape[axis + 1:]], axis=0) result = reshape(masked, result_shape) # Preserve shape information. if data.shape.ndims is not None: new_axis_size = 0 if repeats.shape[0] == 0 else None result.set_shape(data.shape[:axis].concatenate( [new_axis_size]).concatenate(data.shape[axis + 1:])) return result def tile_one_dimension(data, axis, multiple): """Tiles a single dimension of a tensor.""" # Assumes axis is a nonnegative int. if data.shape.ndims is not None: multiples = [1] * data.shape.ndims multiples[axis] = multiple else: ones_value = ones(rank(data), dtypes.int32) multiples = concat([ones_value[:axis], [multiple], ones_value[axis + 1:]], axis=0) return tile(data, multiples) def _with_nonzero_rank(data): """If `data` is scalar, then add a dimension; otherwise return as-is.""" if data.shape.ndims is not None: if data.shape.ndims == 0: return stack([data]) else: return data else: data_shape = shape(data) data_ndims = rank(data) return reshape(data, concat([[1], data_shape], axis=0)[-data_ndims:]) @tf_export("repeat") def repeat(input, repeats, axis=None, name=None): # pylint: disable=redefined-builtin """Repeat elements of `input`. Args: input: An `N`-dimensional Tensor. repeats: An 1-D `int` Tensor. The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. `len(repeats)` must equal `input.shape[axis]` if axis is not None. axis: An int. The axis along which to repeat values. By default (axis=None), use the flattened input array, and return a flat output array. name: A name for the operation. Returns: A Tensor which has the same shape as `input`, except along the given axis. If axis is None then the output array is flattened to match the flattened input array. Example usage: >>> repeat(['a', 'b', 'c'], repeats=[3, 0, 2], axis=0) <tf.Tensor: shape=(5,), dtype=string, numpy=array([b'a', b'a', b'a', b'c', b'c'], dtype=object)> >>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=0) <tf.Tensor: shape=(5, 2), dtype=int32, numpy= array([[1, 2], [1, 2], [3, 4], [3, 4], [3, 4]], dtype=int32)> >>> repeat([[1, 2], [3, 4]], repeats=[2, 3], axis=1) <tf.Tensor: shape=(2, 5), dtype=int32, numpy= array([[1, 1, 2, 2, 2], [3, 3, 4, 4, 4]], dtype=int32)> >>> repeat(3, repeats=4) <tf.Tensor: shape=(4,), dtype=int32, numpy=array([3, 3, 3, 3], dtype=int32)> >>> repeat([[1,2], [3,4]], repeats=2) <tf.Tensor: shape=(8,), dtype=int32, numpy=array([1, 1, 2, 2, 3, 3, 4, 4], dtype=int32)> """ if axis is None: input = reshape(input, [-1]) axis = 0 return repeat_with_axis(input, repeats, axis, name)
apache-2.0
5,979,389,566,144,273,000
34.926457
129
0.608781
false
FKlama/hycud
REMO.py
1
2344
# HYCUD # Copyright (C) 2014 Klama, Nina Alexandra and Rezaei-Ghaleh, Nasrollah # # This file is part of HYCUD. # # HYCUD is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HYCUD is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HYCUD. If not, see <http://www.gnu.org/licenses/>. import os import tempfile import subprocess import gc from os import path from HelperFunctions import waitTillFileExists, ANSI_ESC, flush from multiprocessing import Pool esc = ANSI_ESC() class runREMO: """Class returning a function to run REMO for one model""" def __init__(self, opt, count): self.opt = opt self.size = count def __call__(self, model): tmpDir = "" if self.opt.keepTemp: tmpDir = path.join(self.opt.tmpPath, ("REMO_%09i" % model.num)) os.makedirs(tmpDir) else: tmpDir = tempfile.mkdtemp(prefix="REMO_", suffix="", dir=self.opt.tmpPath) (PDB_dir, PDB_file) = path.split(model.getPDB()) tmpPDB = path.join(tmpDir, PDB_file) remoExe = path.join(self.opt.REMOPath, "REMO.pl") subprocess.check_call(['ln', '-s', model.getPDB(), tmpPDB]) waitTillFileExists(tmpPDB) os.chdir(tmpDir) if self.opt.verbose > 1: print("nice -n", str(self.opt.nice), "perl" , remoExe, "0", PDB_file) elif self.opt.verbose > 0: print("{0}2K{0}1GCalculating REMO {1:6n}/{2:n}".format( esc, model.num, self.size), end='') flush() subprocess.check_output(['nice', '-n', str(self.opt.nice), 'perl', remoExe, "0", PDB_file]) waitTillFileExists(tmpPDB + ".h") subprocess.check_call(['mv', (tmpPDB + '.h'), model.getSprouted()]) def sproutModels(opt, models): """Function sprouts full sidechains for a given set of protein models""" sprout_pool = Pool(processes=opt.threads) task = runREMO(opt, models.size()) sprout_pool.map(task, models.models) if opt.verbose > 0: print("") gc.collect()
gpl-3.0
-9,100,186,542,631,282,000
32.971014
95
0.680461
false
rwth-ti/gr-ofdm
python/ofdm/qa_freqshift.py
1
13032
#!/usr/bin/env python # # Copyright 2014 Institute for Theoretical Information Technology, # RWTH Aachen University # www.ti.rwth-aachen.de # # This is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest, eng_notation import ofdm as ofdm import os import sys, numpy, random, math, cmath from numpy import concatenate import numpy class qa_ofdm (gr_unittest.TestCase): def setUp (self): self.fg = gr.top_block ("test_block") def tearDown (self): self.fg = None # no shift def test_001 (self): vlen = 128 syms = 4 freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 ifft = gr.fft_vcc(vlen, False, [], True) fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) vec = numpy.array(numpy.zeros(vlen), numpy.complex) vec[vlen/2-vlen/4] = 1.0 vec = concatenate([vec]*syms) src = gr.vector_source_c(vec) dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f([0.0]*syms) trig = gr.vector_source_b([1]*syms) self.fg.connect(src, s2v, ifft, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual(vec, numpy.array(dst.data())) # simple shift by -1.0, one frequency bin def test_002 (self): vlen = 128 syms = 4 vec = numpy.array(numpy.zeros(vlen), numpy.complex) vec[vlen/2-vlen/4] = 1.0 vec = concatenate([vec]*syms) epsilon = [-1] frame_trigger = numpy.concatenate([[1],[0]*(syms-1)]) expec = numpy.array(numpy.zeros(vlen*syms), numpy.complex) for i in range(syms): expec[vlen/2-vlen/4+i*vlen+epsilon[0]] = 1.0 freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 ifft = gr.fft_vcc(vlen, False, [], True) fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) src = gr.vector_source_c(vec) dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger.tolist()) self.fg.connect(src, s2v, ifft, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-6) # simple shift by -1.0, two frequency bins, asymmetric def test_003 (self): vlen = 128 syms = 4 bin1 = vlen/2-vlen/4 bin2 = vlen/2+vlen/3 vec = numpy.array(numpy.zeros(vlen), numpy.complex) vec[bin1] = 1.0 vec[bin2] = -1.0 vec = concatenate([vec]*syms) epsilon = [-1]*syms frame_trigger = [1]*syms expec = numpy.array(numpy.zeros(vlen*syms), numpy.complex) for i in range(syms): expec[bin1+i*vlen+epsilon[i]] = 1.0 expec[bin2+i*vlen+epsilon[i]] = -1.0 freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 ifft = gr.fft_vcc(vlen, False, [], True) fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) src = gr.vector_source_c(vec) dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger) self.fg.connect(src, s2v, ifft, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-6) # simple shift by -1.0, two frequency bins, _symmetric_ def test_004 (self): vlen = 128 syms = 4 bin1 = vlen/2-vlen/4 bin2 = vlen/2+vlen/4 vec = numpy.array(numpy.zeros(vlen), numpy.complex) vec[bin1] = 1.0 vec[bin2] = -1.0 vec = concatenate([vec]*syms) epsilon = [-1]*syms frame_trigger = [1]*syms expec = numpy.array(numpy.zeros(vlen*syms), numpy.complex) for i in range(syms): expec[bin1+i*vlen+epsilon[i]] = 1.0 expec[bin2+i*vlen+epsilon[i]] = -1.0 freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 ifft = gr.fft_vcc(vlen, False, [], True) fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) src = gr.vector_source_c(vec) dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger) self.fg.connect(src, s2v, ifft, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-6) # simple shift by +10.0, two frequency bins, asymmetric def test_005 (self): vlen = 128 syms = 4 bin1 = vlen/2-vlen/4 bin2 = vlen/2+vlen/3 bin1_val = 1.0 bin2_val = -1.0j vec = numpy.array(numpy.zeros(vlen), numpy.complex) vec[bin1] = bin1_val vec[bin2] = bin2_val vec = concatenate([vec]*syms) epsilon = [+10]*syms frame_trigger = [1]*syms expec = numpy.array(numpy.zeros(vlen*syms), numpy.complex) for i in range(syms): expec[bin1+i*vlen+epsilon[i]] = bin1_val expec[bin2+i*vlen+epsilon[i]] = bin2_val freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 ifft = gr.fft_vcc(vlen, False, [], True) fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) src = gr.vector_source_c(vec) dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger) self.fg.connect(src, s2v, ifft, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-5) # different shifts per symbol, two frequency bins, asymmetric def test_006 (self): vlen = 128 syms = 4 bin1 = vlen/2-vlen/4 bin2 = vlen/2+vlen/3 bin1_val = 1.0j bin2_val = -1.0 vec = numpy.array(numpy.zeros(vlen), numpy.complex) vec[bin1] = bin1_val vec[bin2] = bin2_val vec = concatenate([vec]*syms) epsilon = [1,-4,5,2] frame_trigger = [1]*syms expec = numpy.array(numpy.zeros(vlen*syms), numpy.complex) for i in range(syms): expec[bin1+i*vlen+epsilon[i]] = bin1_val expec[bin2+i*vlen+epsilon[i]] = bin2_val freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 ifft = gr.fft_vcc(vlen, False, [], True) fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) src = gr.vector_source_c(vec) dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger) self.fg.connect(src, s2v, ifft, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-5) # one signal at frequency 1.5 / vlen, shifted to 2.0+vlen/2 bin # initial phase offset remains constant through all symbols in one frame def test_007 (self): vlen = 128 syms = 4 bin1 = vlen/2 + 2 bin1_val = 1.0 expec = numpy.array(numpy.zeros(vlen), numpy.complex) expec[bin1] = bin1_val expec = concatenate([expec]*syms) epsilon = [0.5] frame_trigger = numpy.concatenate([[1],[0]*(syms-1)]) freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) src = gr.sig_source_c(vlen, gr.GR_COS_WAVE, 1.5, 1.0, 0.0) # bin vlen/2 + 1.5 dst = gr.vector_sink_c() s2v = gr.stream_to_vector(gr.sizeof_gr_complex, vlen) v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger.tolist()) self.fg.connect(src, s2v, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-5, 1e-5) # one signal at frequency 4.5 / vlen, shifted to 4.0+vlen/2 bin # tests phase correction for cyclic prefix def test_008 (self): vlen = 128 syms = 4 bin1 = vlen/2 + 4 bin1_val = 1.0 cp_length = vlen/4 expec = numpy.array(numpy.zeros(vlen), numpy.complex) expec[bin1] = bin1_val expec = concatenate([expec]*syms) epsilon = [-0.5] frame_trigger = numpy.concatenate([[1],[0]*(syms-1)]) freq_shift = ofdm.frequency_shift_vcc(vlen, 1.0/vlen, cp_length) fft = gr.fft_vcc(vlen, True, [], True) # natural order, dc = vlen / 2 fft_scale = gr.multiply_const_vcc([1.0/vlen]*vlen) sampler = ofdm.vector_sampler(gr.sizeof_gr_complex,vlen) trigger_vec = concatenate([[0]*(vlen+cp_length-1),[1]]) trigger_vec = concatenate([trigger_vec]*syms) trigger = gr.vector_source_b(trigger_vec.tolist()) src = gr.sig_source_c(vlen, gr.GR_COS_WAVE, 4.5, 1.0, 0.0) # bin vlen/2 + 4.5 dst = gr.vector_sink_c() v2s = gr.vector_to_stream(gr.sizeof_gr_complex, vlen) eps = gr.vector_source_f(epsilon) trig = gr.vector_source_b(frame_trigger.tolist()) self.fg.connect(src, (sampler,0)) self.fg.connect(trigger, (sampler,1)) self.fg.connect(sampler, (freq_shift,0)) self.fg.connect(eps, (freq_shift,1)) self.fg.connect(trig, (freq_shift,2)) self.fg.connect(freq_shift, fft, fft_scale, v2s, dst) self.fg.run() self.assertComplexTuplesAlmostEqual2(expec, dst.data(), 1e-5, 1e-5) def test_100(self): vlen = 256 cp_len = 12 M = 10 N = int(3e6) uut = ofdm.frequency_shift_vcc( vlen, 1.0/vlen, cp_len ) trig = [0]*M trig[0] = 1 eps = [1.]*M src1 = gr.vector_source_c( [1.]*(M*vlen), True, vlen ) src2 = gr.vector_source_f( eps, True ) src3 = gr.vector_source_b( trig, True ) dst = gr.null_sink( gr.sizeof_gr_complex * vlen ) limit3 = gr.head( gr.sizeof_char, N ) self.fg.connect( src1, ( uut, 0 ) ) self.fg.connect( src2, ( uut, 1 ) ) self.fg.connect( src3, limit3, ( uut, 2 ) ) self.fg.connect( uut, dst ) r = time_it( self.fg ) print "Rate %s" % \ ( eng_notation.num_to_str( float( ( vlen + cp_len ) * N ) / r ) ) def time_it(tb): start = os.times() tb.run() stop = os.times() delta = map((lambda a, b: a-b), stop, start) user, sys, childrens_user, childrens_sys, real = delta total_user = user + childrens_user total_sys = sys + childrens_sys print "real %7.3f" % (real,) print "user %7.3f" % (total_user,) print "sys %7.3f" % (total_sys,) return real if __name__ == '__main__': gr_unittest.main()
gpl-3.0
5,002,455,819,893,132,000
30.708029
81
0.607812
false
keishi/chromium
chrome/test/pyautolib/remote_inspector_client.py
1
39894
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Chrome remote inspector utility for pyauto tests. This script provides a python interface that acts as a front-end for Chrome's remote inspector module, communicating via sockets to interact with Chrome in the same way that the Developer Tools does. This -- in theory -- should allow a pyauto test to do anything that Chrome's Developer Tools does, as long as the appropriate communication with the remote inspector is implemented in this script. This script assumes that Chrome is already running on the local machine with flag '--remote-debugging-port=9222' to enable remote debugging on port 9222. To use this module, first create an instance of class RemoteInspectorClient; doing this sets up a connection to Chrome's remote inspector. Then call the appropriate functions on that object to perform the desired actions with the remote inspector. When done, call Stop() on the RemoteInspectorClient object to stop communication with the remote inspector. For example, to take v8 heap snapshots from a pyauto test: import remote_inspector_client my_client = remote_inspector_client.RemoteInspectorClient() snapshot_info = my_client.HeapSnapshot(include_summary=True) // Do some stuff... new_snapshot_info = my_client.HeapSnapshot(include_summary=True) my_client.Stop() It is expected that a test will only use one instance of RemoteInspectorClient at a time. If a second instance is instantiated, a RuntimeError will be raised. RemoteInspectorClient could be made into a singleton in the future if the need for it arises. """ import asyncore import datetime import logging import optparse import pprint import simplejson import socket import sys import threading import time import urllib2 import urlparse class _DevToolsSocketRequest(object): """A representation of a single DevToolsSocket request. A DevToolsSocket request is used for communication with a remote Chrome instance when interacting with the renderer process of a given webpage. Requests and results are passed as specially-formatted JSON messages, according to a communication protocol defined in WebKit. The string representation of this request will be a JSON message that is properly formatted according to the communication protocol. Public Attributes: method: The string method name associated with this request. id: A unique integer id associated with this request. params: A dictionary of input parameters associated with this request. results: A dictionary of relevant results obtained from the remote Chrome instance that are associated with this request. is_fulfilled: A boolean indicating whether or not this request has been sent and all relevant results for it have been obtained (i.e., this value is True only if all results for this request are known). is_fulfilled_condition: A threading.Condition for waiting for the request to be fulfilled. """ def __init__(self, method, params, message_id): """Initialize. Args: method: The string method name for this request. message_id: An integer id for this request, which is assumed to be unique from among all requests. """ self.method = method self.id = message_id self.params = params self.results = {} self.is_fulfilled = False self.is_fulfilled_condition = threading.Condition() def __repr__(self): json_dict = {} json_dict['method'] = self.method json_dict['id'] = self.id if self.params: json_dict['params'] = self.params return simplejson.dumps(json_dict, separators=(',', ':')) class _DevToolsSocketClient(asyncore.dispatcher): """Client that communicates with a remote Chrome instance via sockets. This class works in conjunction with the _RemoteInspectorThread class to communicate with a remote Chrome instance following the remote debugging communication protocol in WebKit. This class performs the lower-level work of socket communication. Public Attributes: handshake_done: A boolean indicating whether or not the client has completed the required protocol handshake with the remote Chrome instance. inspector_thread: An instance of the _RemoteInspectorThread class that is working together with this class to communicate with a remote Chrome instance. """ def __init__(self, verbose, show_socket_messages, hostname, port, path): """Initialize. Args: verbose: A boolean indicating whether or not to use verbose logging. show_socket_messages: A boolean indicating whether or not to show the socket messages sent/received when communicating with the remote Chrome instance. hostname: The string hostname of the DevToolsSocket to which to connect. port: The integer port number of the DevToolsSocket to which to connect. path: The string path of the DevToolsSocket to which to connect. """ asyncore.dispatcher.__init__(self) self._logger = logging.getLogger('_DevToolsSocketClient') self._logger.setLevel([logging.WARNING, logging.DEBUG][verbose]) self._show_socket_messages = show_socket_messages self._read_buffer = '' self._write_buffer = '' self._socket_buffer_lock = threading.Lock() self.handshake_done = False self.inspector_thread = None # Connect to the remote Chrome instance and initiate the protocol handshake. self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.connect((hostname, port)) fields = [ 'Upgrade: WebSocket', 'Connection: Upgrade', 'Host: %s:%d' % (hostname, port), 'Origin: http://%s:%d' % (hostname, port), 'Sec-WebSocket-Key1: 4k0L66E ZU 8 5 <18 <TK 7 7', 'Sec-WebSocket-Key2: s2 20 `# 4| 3 9 U_ 1299', ] handshake_msg = ('GET %s HTTP/1.1\r\n%s\r\n\r\n\x47\x30\x22\x2D\x5A\x3F' '\x47\x58' % (path, '\r\n'.join(fields))) self._Write(handshake_msg.encode('utf-8')) def SendMessage(self, msg): """Causes a request message to be sent to the remote Chrome instance. Args: msg: A string message to be sent; assumed to be a JSON message in proper format according to the remote debugging protocol in WebKit. """ # According to the communication protocol, each request message sent over # the wire must begin with '\x00' and end with '\xff'. self._Write('\x00' + msg.encode('utf-8') + '\xff') def _Write(self, msg): """Causes a raw message to be sent to the remote Chrome instance. Args: msg: A raw string message to be sent. """ self._write_buffer += msg self.handle_write() def handle_write(self): """Called if a writable socket can be written; overridden from asyncore.""" self._socket_buffer_lock.acquire() if self._write_buffer: sent = self.send(self._write_buffer) if self._show_socket_messages: msg_type = ['Handshake', 'Message'][self._write_buffer[0] == '\x00' and self._write_buffer[-1] == '\xff'] msg = ('========================\n' 'Sent %s:\n' '========================\n' '%s\n' '========================') % (msg_type, self._write_buffer[:sent-1]) print msg self._write_buffer = self._write_buffer[sent:] self._socket_buffer_lock.release() def handle_read(self): """Called when a socket can be read; overridden from asyncore.""" self._socket_buffer_lock.acquire() if self.handshake_done: # Process a message reply from the remote Chrome instance. self._read_buffer += self.recv(4096) pos = self._read_buffer.find('\xff') while pos >= 0: pos += len('\xff') data = self._read_buffer[:pos-len('\xff')] pos2 = data.find('\x00') if pos2 >= 0: data = data[pos2 + 1:] self._read_buffer = self._read_buffer[pos:] if self._show_socket_messages: msg = ('========================\n' 'Received Message:\n' '========================\n' '%s\n' '========================') % data print msg if self.inspector_thread: self.inspector_thread.NotifyReply(data) pos = self._read_buffer.find('\xff') else: # Process a handshake reply from the remote Chrome instance. self._read_buffer += self.recv(4096) pos = self._read_buffer.find('\r\n\r\n') if pos >= 0: pos += len('\r\n\r\n') data = self._read_buffer[:pos] self._read_buffer = self._read_buffer[pos:] self.handshake_done = True if self._show_socket_messages: msg = ('=========================\n' 'Received Handshake Reply:\n' '=========================\n' '%s\n' '=========================') % data print msg self._socket_buffer_lock.release() def handle_close(self): """Called when the socket is closed; overridden from asyncore.""" self.close() def writable(self): """Determines if writes can occur for this socket; overridden from asyncore. Returns: True, if there is something to write to the socket, or False, otherwise. """ return len(self._write_buffer) > 0 def handle_expt(self): """Called when out-of-band data exists; overridden from asyncore.""" self.handle_error() def handle_error(self): """Called when an exception is raised; overridden from asyncore.""" self.close() self.inspector_thread.ClientSocketExceptionOccurred() asyncore.dispatcher.handle_error(self) class _RemoteInspectorThread(threading.Thread): """Manages communication using Chrome's remote inspector protocol. This class works in conjunction with the _DevToolsSocketClient class to communicate with a remote Chrome instance following the remote inspector communication protocol in WebKit. This class performs the higher-level work of managing request and reply messages, whereas _DevToolsSocketClient handles the lower-level work of socket communication. """ def __init__(self, tab_index, verbose, show_socket_messages): """Initialize. Args: tab_index: The integer index of the tab in the remote Chrome instance to use for snapshotting. verbose: A boolean indicating whether or not to use verbose logging. show_socket_messages: A boolean indicating whether or not to show the socket messages sent/received when communicating with the remote Chrome instance. """ threading.Thread.__init__(self) self._logger = logging.getLogger('_RemoteInspectorThread') self._logger.setLevel([logging.WARNING, logging.DEBUG][verbose]) self._killed = False self._requests = [] self._action_queue = [] self._action_queue_condition = threading.Condition() self._action_specific_callback = None # Callback only for current action. self._action_specific_callback_lock = threading.Lock() self._general_callbacks = [] # General callbacks that can be long-lived. self._general_callbacks_lock = threading.Lock() self._condition_to_wait = None # Create a DevToolsSocket client and wait for it to complete the remote # debugging protocol handshake with the remote Chrome instance. result = self._IdentifyDevToolsSocketConnectionInfo(tab_index) self._client = _DevToolsSocketClient( verbose, show_socket_messages, result['host'], result['port'], result['path']) self._client.inspector_thread = self while asyncore.socket_map: if self._client.handshake_done or self._killed: break asyncore.loop(timeout=1, count=1, use_poll=True) def ClientSocketExceptionOccurred(self): """Notifies that the _DevToolsSocketClient encountered an exception.""" self.Kill() def NotifyReply(self, msg): """Notifies of a reply message received from the remote Chrome instance. Args: msg: A string reply message received from the remote Chrome instance; assumed to be a JSON message formatted according to the remote debugging communication protocol in WebKit. """ reply_dict = simplejson.loads(msg) # Notify callbacks of this message received from the remote inspector. self._action_specific_callback_lock.acquire() if self._action_specific_callback: self._action_specific_callback(reply_dict) self._action_specific_callback_lock.release() self._general_callbacks_lock.acquire() if self._general_callbacks: for callback in self._general_callbacks: callback(reply_dict) self._general_callbacks_lock.release() if 'result' in reply_dict: # This is the result message associated with a previously-sent request. request = self.GetRequestWithId(reply_dict['id']) if request: request.is_fulfilled_condition.acquire() request.is_fulfilled_condition.notify() request.is_fulfilled_condition.release() def run(self): """Start this thread; overridden from threading.Thread.""" while not self._killed: self._action_queue_condition.acquire() if self._action_queue: # There's a request to the remote inspector that needs to be processed. messages, callback = self._action_queue.pop(0) self._action_specific_callback_lock.acquire() self._action_specific_callback = callback self._action_specific_callback_lock.release() # Prepare the request list. for message_id, message in enumerate(messages): self._requests.append( _DevToolsSocketRequest(message[0], message[1], message_id)) # Send out each request. Wait until each request is complete before # sending the next request. for request in self._requests: self._FillInParams(request) self._client.SendMessage(str(request)) request.is_fulfilled_condition.acquire() self._condition_to_wait = request.is_fulfilled request.is_fulfilled_condition.wait() request.is_fulfilled_condition.release() if self._killed: self._client.close() return # Clean up so things are ready for the next request. self._requests = [] self._action_specific_callback_lock.acquire() self._action_specific_callback = None self._action_specific_callback_lock.release() # Wait until there is something to process. self._condition_to_wait = self._action_queue_condition self._action_queue_condition.wait() self._action_queue_condition.release() self._client.close() def Kill(self): """Notify this thread that it should stop executing.""" self._killed = True # The thread might be waiting on a condition. if self._condition_to_wait: self._condition_to_wait.acquire() self._condition_to_wait.notify() self._condition_to_wait.release() def PerformAction(self, request_messages, reply_message_callback): """Notify this thread of an action to perform using the remote inspector. Args: request_messages: A list of strings representing the requests to make using the remote inspector. reply_message_callback: A callable to be invoked any time a message is received from the remote inspector while the current action is being performed. The callable should accept a single argument, which is a dictionary representing a message received. """ self._action_queue_condition.acquire() self._action_queue.append((request_messages, reply_message_callback)) self._action_queue_condition.notify() self._action_queue_condition.release() def AddMessageCallback(self, callback): """Add a callback to invoke for messages received from the remote inspector. Args: callback: A callable to be invoked any time a message is received from the remote inspector. The callable should accept a single argument, which is a dictionary representing a message received. """ self._general_callbacks_lock.acquire() self._general_callbacks.append(callback) self._general_callbacks_lock.release() def RemoveMessageCallback(self, callback): """Remove a callback from the set of those to invoke for messages received. Args: callback: A callable to remove from consideration. """ self._general_callbacks_lock.acquire() self._general_callbacks.remove(callback) self._general_callbacks_lock.release() def GetRequestWithId(self, request_id): """Identifies the request with the specified id. Args: request_id: An integer request id; should be unique for each request. Returns: A request object associated with the given id if found, or None otherwise. """ found_request = [x for x in self._requests if x.id == request_id] if found_request: return found_request[0] return None def GetFirstUnfulfilledRequest(self, method): """Identifies the first unfulfilled request with the given method name. An unfulfilled request is one for which all relevant reply messages have not yet been received from the remote inspector. Args: method: The string method name of the request for which to search. Returns: The first request object in the request list that is not yet fulfilled and is also associated with the given method name, or None if no such request object can be found. """ for request in self._requests: if not request.is_fulfilled and request.method == method: return request return None def _GetLatestRequestOfType(self, ref_req, method): """Identifies the latest specified request before a reference request. This function finds the latest request with the specified method that occurs before the given reference request. Args: ref_req: A reference request from which to start looking. method: The string method name of the request for which to search. Returns: The latest _DevToolsSocketRequest object with the specified method, if found, or None otherwise. """ start_looking = False for request in self._requests[::-1]: if request.id == ref_req.id: start_looking = True elif start_looking: if request.method == method: return request return None def _FillInParams(self, request): """Fills in parameters for requests as necessary before the request is sent. Args: request: The _DevToolsSocketRequest object associated with a request message that is about to be sent. """ if request.method == 'Profiler.takeHeapSnapshot': # We always want detailed v8 heap snapshot information. request.params = {'detailed': True} elif request.method == 'Profiler.getProfile': # To actually request the snapshot data from a previously-taken snapshot, # we need to specify the unique uid of the snapshot we want. # The relevant uid should be contained in the last # 'Profiler.takeHeapSnapshot' request object. last_req = self._GetLatestRequestOfType(request, 'Profiler.takeHeapSnapshot') if last_req and 'uid' in last_req.results: request.params = {'type': 'HEAP', 'uid': last_req.results['uid']} @staticmethod def _IdentifyDevToolsSocketConnectionInfo(tab_index): """Identifies DevToolsSocket connection info from a remote Chrome instance. Args: tab_index: The integer index of the tab in the remote Chrome instance to which to connect. Returns: A dictionary containing the DevToolsSocket connection info: { 'host': string, 'port': integer, 'path': string, } Raises: RuntimeError: When DevToolsSocket connection info cannot be identified. """ try: # TODO(dennisjeffrey): Do not assume port 9222. The port should be passed # as input to this function. f = urllib2.urlopen('http://localhost:9222/json') result = f.read(); result = simplejson.loads(result) except urllib2.URLError, e: raise RuntimeError( 'Error accessing Chrome instance debugging port: ' + str(e)) if tab_index >= len(result): raise RuntimeError( 'Specified tab index %d doesn\'t exist (%d tabs found)' % (tab_index, len(result))) if 'webSocketDebuggerUrl' not in result[tab_index]: raise RuntimeError('No socket URL exists for the specified tab.') socket_url = result[tab_index]['webSocketDebuggerUrl'] parsed = urlparse.urlparse(socket_url) # On ChromeOS, the "ws://" scheme may not be recognized, leading to an # incorrect netloc (and empty hostname and port attributes) in |parsed|. # Change the scheme to "http://" to fix this. if not parsed.hostname or not parsed.port: socket_url = 'http' + socket_url[socket_url.find(':'):] parsed = urlparse.urlparse(socket_url) # Warning: |parsed.scheme| is incorrect after this point. return ({'host': parsed.hostname, 'port': parsed.port, 'path': parsed.path}) class _RemoteInspectorDriverThread(threading.Thread): """Drives the communication service with the remote inspector.""" def __init__(self): """Initialize.""" threading.Thread.__init__(self) def run(self): """Drives the communication service with the remote inspector.""" try: while asyncore.socket_map: asyncore.loop(timeout=1, count=1, use_poll=True) except KeyboardInterrupt: pass class _V8HeapSnapshotParser(object): """Parses v8 heap snapshot data.""" _CHILD_TYPES = ['context', 'element', 'property', 'internal', 'hidden', 'shortcut', 'weak'] _NODE_TYPES = ['hidden', 'array', 'string', 'object', 'code', 'closure', 'regexp', 'number', 'native', 'synthetic'] @staticmethod def ParseSnapshotData(raw_data): """Parses raw v8 heap snapshot data and returns the summarized results. The raw heap snapshot data is represented as a JSON object with the following keys: 'snapshot', 'nodes', and 'strings'. The 'snapshot' value provides the 'title' and 'uid' attributes for the snapshot. For example: { u'title': u'org.webkit.profiles.user-initiated.1', u'uid': 1} The 'nodes' value is a list of node information from the v8 heap, with a special first element that describes the node serialization layout (see HeapSnapshotJSONSerializer::SerializeNodes). All other list elements contain information about nodes in the v8 heap, according to the serialization layout. The 'strings' value is a list of strings, indexed by values in the 'nodes' list to associate nodes with strings. Args: raw_data: A string representing the raw v8 heap snapshot data. Returns: A dictionary containing the summarized v8 heap snapshot data: { 'total_v8_node_count': integer, # Total number of nodes in the v8 heap. 'total_shallow_size': integer, # Total heap size, in bytes. } """ total_node_count = 0 total_shallow_size = 0 constructors = {} # TODO(dennisjeffrey): The following line might be slow, especially on # ChromeOS. Investigate faster alternatives. heap = simplejson.loads(raw_data) index = 1 # Bypass the special first node list item. node_list = heap['nodes'] while index < len(node_list): node_type = node_list[index] node_name = node_list[index + 1] node_id = node_list[index + 2] node_self_size = node_list[index + 3] node_retained_size = node_list[index + 4] node_dominator = node_list[index + 5] node_children_count = node_list[index + 6] index += 7 node_children = [] for i in xrange(node_children_count): child_type = node_list[index] child_type_string = _V8HeapSnapshotParser._CHILD_TYPES[int(child_type)] child_name_index = node_list[index + 1] child_to_node = node_list[index + 2] index += 3 child_info = { 'type': child_type_string, 'name_or_index': child_name_index, 'to_node': child_to_node, } node_children.append(child_info) # Get the constructor string for this node so nodes can be grouped by # constructor. # See HeapSnapshot.js: WebInspector.HeapSnapshotNode.prototype. type_string = _V8HeapSnapshotParser._NODE_TYPES[int(node_type)] constructor_name = None if type_string == 'hidden': constructor_name = '(system)' elif type_string == 'object': constructor_name = heap['strings'][int(node_name)] elif type_string == 'native': pos = heap['strings'][int(node_name)].find('/') if pos >= 0: constructor_name = heap['strings'][int(node_name)][:pos].rstrip() else: constructor_name = heap['strings'][int(node_name)] elif type_string == 'code': constructor_name = '(compiled code)' else: constructor_name = '(' + type_string + ')' node_obj = { 'type': type_string, 'name': heap['strings'][int(node_name)], 'id': node_id, 'self_size': node_self_size, 'retained_size': node_retained_size, 'dominator': node_dominator, 'children_count': node_children_count, 'children': node_children, } if constructor_name not in constructors: constructors[constructor_name] = [] constructors[constructor_name].append(node_obj) total_node_count += 1 total_shallow_size += node_self_size # TODO(dennisjeffrey): Have this function also return more detailed v8 # heap snapshot data when a need for it arises (e.g., using |constructors|). result = {} result['total_v8_node_count'] = total_node_count result['total_shallow_size'] = total_shallow_size return result # TODO(dennisjeffrey): The "verbose" option used in this file should re-use # pyauto's verbose flag. class RemoteInspectorClient(object): """Main class for interacting with Chrome's remote inspector. Upon initialization, a socket connection to Chrome's remote inspector will be established. Users of this class should call Stop() to close the connection when it's no longer needed. Public Methods: Stop: Close the connection to the remote inspector. Should be called when a user is done using this module. HeapSnapshot: Takes a v8 heap snapshot and returns the summarized data. GetMemoryObjectCounts: Retrieves memory object count information. CollectGarbage: Forces a garbage collection. StartTimelineEventMonitoring: Starts monitoring for timeline events. StopTimelineEventMonitoring: Stops monitoring for timeline events. """ # TODO(dennisjeffrey): Allow a user to specify a window index too (not just a # tab index), when running through PyAuto. def __init__(self, tab_index=0, verbose=False, show_socket_messages=False): """Initialize. Args: tab_index: The integer index of the tab in the remote Chrome instance to which to connect. Defaults to 0 (the first tab). verbose: A boolean indicating whether or not to use verbose logging. show_socket_messages: A boolean indicating whether or not to show the socket messages sent/received when communicating with the remote Chrome instance. """ self._tab_index = tab_index self._verbose = verbose self._show_socket_messages = show_socket_messages self._timeline_started = False logging.basicConfig() self._logger = logging.getLogger('RemoteInspectorClient') self._logger.setLevel([logging.WARNING, logging.DEBUG][verbose]) # Creating _RemoteInspectorThread might raise an exception. This prevents an # AttributeError in the destructor. self._remote_inspector_thread = None self._remote_inspector_driver_thread = None # Start up a thread for long-term communication with the remote inspector. self._remote_inspector_thread = _RemoteInspectorThread( tab_index, verbose, show_socket_messages) self._remote_inspector_thread.start() # At this point, a connection has already been made to the remote inspector. # This thread calls asyncore.loop, which activates the channel service. self._remote_inspector_driver_thread = _RemoteInspectorDriverThread() self._remote_inspector_driver_thread.start() def __del__(self): """Called on destruction of this object.""" self.Stop() def Stop(self): """Stop/close communication with the remote inspector.""" if self._remote_inspector_thread: self._remote_inspector_thread.Kill() self._remote_inspector_thread.join() self._remote_inspector_thread = None if self._remote_inspector_driver_thread: self._remote_inspector_driver_thread.join() self._remote_inspector_driver_thread = None def HeapSnapshot(self, include_summary=False): """Takes a v8 heap snapshot. Returns: A dictionary containing information for a single v8 heap snapshot that was taken. { 'url': string, # URL of the webpage that was snapshotted. 'raw_data': string, # The raw data as JSON string. 'total_v8_node_count': integer, # Total number of nodes in the v8 heap. # Only if |include_summary| is True. 'total_heap_size': integer, # Total v8 heap size (number of bytes). # Only if |include_summary| is True. } """ HEAP_SNAPSHOT_MESSAGES = [ ('Page.getResourceTree', {}), ('Debugger.enable', {}), ('Profiler.clearProfiles', {}), ('Profiler.takeHeapSnapshot', {}), ('Profiler.getProfile', {}), ] self._current_heap_snapshot = [] self._url = '' self._collected_heap_snapshot_data = {} done_condition = threading.Condition() def HandleReply(reply_dict): """Processes a reply message received from the remote Chrome instance. Args: reply_dict: A dictionary object representing the reply message received from the remote inspector. """ if 'result' in reply_dict: # This is the result message associated with a previously-sent request. request = self._remote_inspector_thread.GetRequestWithId( reply_dict['id']) if 'frameTree' in reply_dict['result']: self._url = reply_dict['result']['frameTree']['frame']['url'] elif 'method' in reply_dict: # This is an auxiliary message sent from the remote Chrome instance. if reply_dict['method'] == 'Profiler.addProfileHeader': snapshot_req = ( self._remote_inspector_thread.GetFirstUnfulfilledRequest( 'Profiler.takeHeapSnapshot')) if snapshot_req: snapshot_req.results['uid'] = reply_dict['params']['header']['uid'] elif reply_dict['method'] == 'Profiler.addHeapSnapshotChunk': self._current_heap_snapshot.append(reply_dict['params']['chunk']) elif reply_dict['method'] == 'Profiler.finishHeapSnapshot': # A heap snapshot has been completed. Analyze and output the data. self._logger.debug('Heap snapshot taken: %s', self._url) # TODO(dennisjeffrey): Parse the heap snapshot on-the-fly as the data # is coming in over the wire, so we can avoid storing the entire # snapshot string in memory. raw_snapshot_data = ''.join(self._current_heap_snapshot) self._collected_heap_snapshot_data = { 'url': self._url, 'raw_data': raw_snapshot_data} if include_summary: self._logger.debug('Now analyzing heap snapshot...') parser = _V8HeapSnapshotParser() time_start = time.time() self._logger.debug('Raw snapshot data size: %.2f MB', len(raw_snapshot_data) / (1024.0 * 1024.0)) result = parser.ParseSnapshotData(raw_snapshot_data) self._logger.debug('Time to parse data: %.2f sec', time.time() - time_start) count = result['total_v8_node_count'] self._collected_heap_snapshot_data['total_v8_node_count'] = count total_size = result['total_shallow_size'] self._collected_heap_snapshot_data['total_heap_size'] = total_size done_condition.acquire() done_condition.notify() done_condition.release() # Tell the remote inspector to take a v8 heap snapshot, then wait until # the snapshot information is available to return. self._remote_inspector_thread.PerformAction(HEAP_SNAPSHOT_MESSAGES, HandleReply) done_condition.acquire() done_condition.wait() done_condition.release() return self._collected_heap_snapshot_data def EvaluateJavaScript(self, expression): """Evaluates a JavaScript expression and returns the result. Sends a message containing the expression to the remote Chrome instance we are connected to, and evaluates it in the context of the tab we are connected to. Blocks until the result is available and returns it. Returns: A dictionary representing the result. """ EVALUATE_MESSAGES = [ ('Runtime.evaluate', { 'expression': expression, 'objectGroup': 'group', 'returnByValue': True }), ('Runtime.releaseObjectGroup', { 'objectGroup': 'group' }) ] self._result = None done_condition = threading.Condition() def HandleReply(reply_dict): """Processes a reply message received from the remote Chrome instance. Args: reply_dict: A dictionary object representing the reply message received from the remote Chrome instance. """ if 'result' in reply_dict and 'result' in reply_dict['result']: self._result = reply_dict['result']['result']['value'] done_condition.acquire() done_condition.notify() done_condition.release() # Tell the remote inspector to evaluate the given expression, then wait # until that information is available to return. self._remote_inspector_thread.PerformAction(EVALUATE_MESSAGES, HandleReply) done_condition.acquire() done_condition.wait() done_condition.release() return self._result def GetMemoryObjectCounts(self): """Retrieves memory object count information. Returns: A dictionary containing the memory object count information: { 'DOMNodeCount': integer, # Total number of DOM nodes. 'EventListenerCount': integer, # Total number of event listeners. } """ MEMORY_COUNT_MESSAGES = [ ('Memory.getDOMNodeCount', {}) ] self._event_listener_count = None self._dom_node_count = None done_condition = threading.Condition() def HandleReply(reply_dict): """Processes a reply message received from the remote Chrome instance. Args: reply_dict: A dictionary object representing the reply message received from the remote Chrome instance. """ if 'result' in reply_dict and 'domGroups' in reply_dict['result']: event_listener_count = 0 dom_node_count = 0 dom_group_list = reply_dict['result']['domGroups'] for dom_group in dom_group_list: listener_array = dom_group['listenerCount'] for listener in listener_array: event_listener_count += listener['count'] dom_node_array = dom_group['nodeCount'] for dom_element in dom_node_array: dom_node_count += dom_element['count'] self._event_listener_count = event_listener_count self._dom_node_count = dom_node_count done_condition.acquire() done_condition.notify() done_condition.release() # Tell the remote inspector to collect memory count info, then wait until # that information is available to return. self._remote_inspector_thread.PerformAction(MEMORY_COUNT_MESSAGES, HandleReply) done_condition.acquire() done_condition.wait() done_condition.release() return { 'DOMNodeCount': self._dom_node_count, 'EventListenerCount': self._event_listener_count, } def CollectGarbage(self): """Forces a garbage collection.""" COLLECT_GARBAGE_MESSAGES = [ ('Profiler.collectGarbage', {}) ] # Tell the remote inspector to do a garbage collect. We can return # immediately, since there is no result for which to wait. self._remote_inspector_thread.PerformAction(COLLECT_GARBAGE_MESSAGES, None) def StartTimelineEventMonitoring(self, event_callback): """Starts timeline event monitoring. Args: event_callback: A callable to invoke whenever a timeline event is observed from the remote inspector. The callable should take a single input, which is a dictionary containing the detailed information of a timeline event. """ if self._timeline_started: self._logger.warning('Timeline monitoring already started.') return TIMELINE_MESSAGES = [ ('Timeline.start', {}) ] self._event_callback = event_callback def HandleReply(reply_dict): """Processes a reply message received from the remote Chrome instance. Args: reply_dict: A dictionary object representing the reply message received from the remote Chrome instance. """ if reply_dict.get('method') == 'Timeline.eventRecorded': self._event_callback(reply_dict['params']['record']) # Tell the remote inspector to start the timeline. We can return # immediately, since there is no result for which to wait. self._timeline_callback = HandleReply self._remote_inspector_thread.AddMessageCallback(self._timeline_callback) self._remote_inspector_thread.PerformAction(TIMELINE_MESSAGES, None) self._timeline_started = True def StopTimelineEventMonitoring(self): """Stops timeline event monitoring.""" if not self._timeline_started: self._logger.warning('Timeline monitoring already stopped.') return TIMELINE_MESSAGES = [ ('Timeline.stop', {}) ] # Tell the remote inspector to stop the timeline. We can return # immediately, since there is no result for which to wait. self._remote_inspector_thread.RemoveMessageCallback(self._timeline_callback) self._remote_inspector_thread.PerformAction(TIMELINE_MESSAGES, None) self._timeline_started = False def _ConvertByteCountToHumanReadableString(self, num_bytes): """Converts an integer number of bytes into a human-readable string. Args: num_bytes: An integer number of bytes. Returns: A human-readable string representation of the given number of bytes. """ if num_bytes < 1024: return '%d B' % num_bytes elif num_bytes < 1048576: return '%.2f KB' % (num_bytes / 1024.0) else: return '%.2f MB' % (num_bytes / 1048576.0)
bsd-3-clause
7,801,864,265,520,846,000
37.694471
80
0.657643
false
stackforge/cloudkitty
cloudkitty/backend/__init__.py
1
1671
# -*- coding: utf-8 -*- # Copyright 2014 Objectif Libre # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import abc import six @six.add_metaclass(abc.ABCMeta) class BaseIOBackend(object): def __init__(self, path): self.open(path) @abc.abstractmethod def open(self, path): """Open the connection/file on the backend. """ @abc.abstractmethod def tell(self): """Current position on the backend. """ @abc.abstractmethod def seek(self, offset, from_what=0): # 0 beg, 1 cur, 2 end """Change position in the backend. """ @abc.abstractmethod def flush(self): """Force write informations on the backend. """ @abc.abstractmethod def write(self, data): """Writer data on the backend. :param data: Data to be written on the backend. """ @abc.abstractmethod def read(self): """Read data from the backend. :return str: Data read from the backend. """ @abc.abstractmethod def close(self): """Close the connection/file on the backend. """
apache-2.0
6,410,223,103,262,482,000
23.217391
78
0.625374
false
patelrajnath/rnn4nlp
rnn/LSTM.py
1
38726
import theano import numpy import os from theano import tensor as T from collections import OrderedDict from utils.tools import numpy_floatX class LSTM(object): def __init__(self, nh, nc, de, cs, ne_char=None, de_char=None, ne_src=None, ne_tgt=None, emb_src=None, emb_tgt=None, max_char=10): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # parameters of the model self.emb = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (ne_tgt + 1, de)).astype(theano.config.floatX)) # add one for PADDING at the end #Input layer weghts self.Wx = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #Reccurant weight or g(t) in note self.Wh = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) self.bh = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #LSTM Gate #X(t) weights self.Wi = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wo = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wf = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #H(t-1) weights self.Ui = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) self.Uo = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) self.Uf = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) #Bias self.bi = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bo = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bf = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #output weights and biases self.W = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nc)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) #Recurent memory or h(t-1) self.h0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.c0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) # bundle self.params = [ self.emb, self.Wx, self.Wh, self.Wi, self.Wo, self.Wf, self.W, self.Ui, self.Uo, self.Uf, self.bh, self.bi, self.bo, self.bf, self.b, self.h0, self.c0] self.names = ['emb', 'Wx', 'Wh', 'Wi', 'Wo', 'Wf', 'W', 'Ui', 'Uo', 'Uf', 'bh', 'bi', 'bo', 'bf', 'b', 'h0', 'c0'] idxs = T.imatrix() # as many columns as context window size/lines as words in the sentence x = self.emb[idxs].reshape((idxs.shape[0], de*cs)) y = T.ivector('y') # label def recurrence(x_t, h_tm1, c_): #Gates g_i = T.nnet.sigmoid(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) g_o = T.nnet.sigmoid(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) g_f = T.nnet.sigmoid(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_t = T.tanh(T.dot(x_t, self.Wx) + T.dot(h_tm1, self.Wh) + self.bh) c = g_f*c_ + g_i*g_t h = g_o*T.tanh(c) s_t = T.nnet.softmax(T.dot(h, self.W) + self.b) return [h, c, s_t] [h, c, s_t],_ = theano.scan(fn=recurrence, \ sequences=x, outputs_info=[self.h0, self.c0, None], \ n_steps=x.shape[0]) p_y_given_x_lastword = s_t[-1,0,:] p_y_given_x_sentence = s_t[:,0,:] #p_y_given_x_lastword = s[-1] #p_y_given_x_sentence = s y_pred = T.argmax(p_y_given_x_sentence, axis=1) # cost and gradients and learning rate lr = T.scalar('lr') nll = -T.log(p_y_given_x_lastword)[y].sum() gradients = T.grad( nll, self.params ) updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) # theano functions self.classify = theano.function(inputs=[idxs], outputs=y_pred) self.train = theano.function( inputs = [idxs, y, lr], outputs = nll, updates = updates, on_unused_input='ignore', name='train_LSTM', allow_input_downcast=True) self.normalize = theano.function( inputs = [], updates = {self.emb:\ self.emb/T.sqrt((self.emb**2).sum(axis=1)).dimshuffle(0,'x')}) def save(self, folder): for param, name in zip(self.params, self.names): numpy.save(os.path.join(folder, name + '.npy'), param.get_value()) class LSTM_pretrain(object): def __init__(self, nh, nc, de, cs, ne_char=None, de_char=None, ne_src=None, ne_tgt=None, emb_src=None, emb_tgt=None, max_char=10): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # parameters of the model self.emb = theano.shared(numpy.asarray(emb_tgt).astype(theano.config.floatX)) #Input layer weghts self.Wx = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #Reccurant weight or g(t) in note self.Wh = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) self.bh = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #LSTM Gate #X(t) weights self.Wi = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wo = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wf = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #H(t-1) weights self.Ui = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) self.Uo = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) self.Uf = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nh)).astype(theano.config.floatX)) #Bias self.bi = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bo = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bf = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #output weights and biases self.W = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\ (nh, nc)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) #Recurent memory or h(t-1) self.h0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.c0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) # bundle self.params = [ self.emb, self.Wx, self.Wh, self.Wi, self.Wo, self.Wf, self.W, self.Ui, self.Uo, self.Uf, self.bh, self.bi, self.bo, self.bf, self.b, self.h0, self.c0] self.names = ['emb', 'Wx', 'Wh', 'Wi', 'Wo', 'Wf', 'W', 'Ui', 'Uo', 'Uf', 'bh', 'bi', 'bo', 'bf', 'b', 'h0', 'c0'] idxs = T.imatrix() # as many columns as context window size/lines as words in the sentence x = self.emb[idxs].reshape((idxs.shape[0], de*cs)) y = T.ivector('y') # label def recurrence(x_t, h_tm1, c_): #Gates g_i = T.nnet.sigmoid(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) g_o = T.nnet.sigmoid(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) g_f = T.nnet.sigmoid(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_t = T.tanh(T.dot(x_t, self.Wx) + T.dot(h_tm1, self.Wh) + self.bh) c = g_f*c_ + g_i*g_t h = g_o*T.tanh(c) s_t = T.nnet.softmax(T.dot(h, self.W) + self.b) return [h, c, s_t] [h, c, s_t],_ = theano.scan(fn=recurrence, \ sequences=x, outputs_info=[self.h0, self.c0, None], \ n_steps=x.shape[0]) p_y_given_x_lastword = s_t[-1,0,:] p_y_given_x_sentence = s_t[:,0,:] #p_y_given_x_lastword = s[-1] #p_y_given_x_sentence = s y_pred = T.argmax(p_y_given_x_sentence, axis=1) # cost and gradients and learning rate lr = T.scalar('lr') nll = -T.log(p_y_given_x_lastword)[y].sum() gradients = T.grad( nll, self.params ) updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) # theano functions self.classify = theano.function(inputs=[idxs], outputs=y_pred) self.train = theano.function( inputs = [idxs, y, lr], outputs = nll, updates = updates, on_unused_input='ignore', name='train_LSTM', allow_input_downcast=True) self.normalize = theano.function( inputs = [], updates = {self.emb:\ self.emb/T.sqrt((self.emb**2).sum(axis=1)).dimshuffle(0,'x')}) def save(self, folder): for param, name in zip(self.params, self.names): numpy.save(os.path.join(folder, name + '.npy'), param.get_value()) class LSTM_adadelta(object): def __init__(self, nh, nc, de, cs, ne_char=None, de_char=None, ne_src=None, ne_tgt=None, emb_src=None, emb_tgt=None, max_char=10): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # parameters of the model self.emb = theano.shared(numpy.random.normal(0.0, 1.0,\ (ne_tgt + 1, de)).astype(theano.config.floatX)) # add one for PADDING at the end #Input layer weghts self.Wx = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #Reccurant weight or g(t) in note self.Wh = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.bh = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #LSTM Gate #X(t) weights self.Wi = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wo = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wf = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #H(t-1) weights self.Ui = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uo = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uf = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) #Bias self.bi = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bo = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bf = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #output weights and biases self.W = theano.shared(numpy.random.normal(0.0, 1.0,\ (nh, nc)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) #Recurent memory or h(t-1) self.h0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.c0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) # bundle self.params = [ self.emb, self.Wx, self.Wh, self.Wi, self.Wo, self.Wf, self.W, self.Ui, self.Uo, self.Uf, self.bh, self.bi, self.bo, self.bf, self.b, self.h0, self.c0] self.names = ['emb', 'Wx', 'Wh', 'Wi', 'Wo', 'Wf', 'W', 'Ui', 'Uo', 'Uf', 'bh', 'bi', 'bo', 'bf', 'b', 'h0', 'c0'] idxs = T.imatrix() # as many columns as context window size/lines as words in the sentence x = self.emb[idxs].reshape((idxs.shape[0], de*cs)) y = T.ivector('y') # label def recurrence(x_t, h_tm1, c_): #Gates #g_i = T.nnet.relu(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) #g_o = T.nnet.relu(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) #g_f = T.nnet.relu(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_i = T.nnet.sigmoid(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) g_o = T.nnet.sigmoid(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) g_f = T.nnet.sigmoid(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_t = T.tanh(T.dot(x_t, self.Wx) + T.dot(h_tm1, self.Wh) + self.bh) c = g_f*c_ + g_i*g_t h = g_o*T.tanh(c) s_t = T.nnet.softmax(T.dot(h, self.W) + self.b) return [h, c, s_t] [h, c, s_t],_ = theano.scan(fn=recurrence, \ sequences=x, outputs_info=[self.h0, self.c0, None], \ n_steps=x.shape[0],\ truncate_gradient=7) #p_y_given_x_lastword = s_t[-1,0,:] p_y_given_x_sentence = s_t[:,0,:] y_pred = T.argmax(p_y_given_x_sentence, axis=1) # cost and gradients and learning rate lr = T.scalar('lr') nll = -(T.log(s_t[:,0,:])[T.arange(y.shape[0]), y]).sum() grads = T.grad( nll, self.params ) #updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) ''' Adadelta update ''' tparams = OrderedDict((p,q) for p,q in zip(self.names, self.params)) zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_grad' % k) for k, p in tparams.items()] running_up2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rup2' % k) for k, p in tparams.items()] running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rgrad2' % k) for k, p in tparams.items()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] updir = [-T.sqrt(ru2 + 1e-6) / T.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(tparams.values(), updir)] # theano functions self.train_grad_shared = theano.function(inputs=[idxs, y, lr], outputs=nll, updates=zgup + rg2up, on_unused_input='ignore', name='adadelta_train_grad_shared', allow_input_downcast=True) self.train_update = theano.function([lr], [], updates=ru2up + param_up, on_unused_input='ignore', name='adadelta_train_update') self.classify = theano.function(inputs=[idxs], outputs=y_pred) self.normalize = theano.function( inputs = [], updates = {self.emb:\ self.emb/T.sqrt((self.emb**2).sum(axis=1)).dimshuffle(0,'x')}) def save(self, folder): for param, name in zip(self.params, self.names): numpy.save(os.path.join(folder, name + '.npy'), param.get_value()) class LSTM_adadelta_pretrain(object): def __init__(self, nh, nc, de, cs, ne_char=None, de_char=None, ne_src=None, ne_tgt=None, emb_src=None, emb_tgt=None, max_char=10): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # parameters of the model self.emb = theano.shared(numpy.asarray(emb_tgt).astype(theano.config.floatX)) #Input layer weghts self.Wx = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #Reccurant weight or g(t) in note self.Wh = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.bh = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #LSTM Gate #X(t) weights self.Wi = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wo = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) self.Wf = theano.shared(numpy.random.normal(0.0, 1.0,\ (de * cs, nh)).astype(theano.config.floatX)) #H(t-1) weights self.Ui = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uo = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uf = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) #Bias self.bi = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bo = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bf = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #output weights and biases self.W = theano.shared(numpy.random.normal(0.0, 1.0,\ (nh, nc)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) #Recurent memory or h(t-1) self.h0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.c0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) # bundle self.params = [ self.emb, self.Wx, self.Wh, self.Wi, self.Wo, self.Wf, self.W, self.Ui, self.Uo, self.Uf, self.bh, self.bi, self.bo, self.bf, self.b, self.h0, self.c0] self.names = ['emb', 'Wx', 'Wh', 'Wi', 'Wo', 'Wf', 'W', 'Ui', 'Uo', 'Uf', 'bh', 'bi', 'bo', 'bf', 'b', 'h0', 'c0'] idxs = T.imatrix() # as many columns as context window size/lines as words in the sentence x = self.emb[idxs].reshape((idxs.shape[0], de*cs)) y = T.ivector('y') # label def recurrence(x_t, h_tm1, c_): #Gates #g_i = T.nnet.relu(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) #g_o = T.nnet.relu(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) #g_f = T.nnet.relu(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_i = T.nnet.sigmoid(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) g_o = T.nnet.sigmoid(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) g_f = T.nnet.sigmoid(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_t = T.tanh(T.dot(x_t, self.Wx) + T.dot(h_tm1, self.Wh) + self.bh) c = g_f*c_ + g_i*g_t #c = m_[:, None] * c + (1. - m_)[:, None] * c_ h = g_o*T.tanh(c) #h = m_[:, None] * h + (1. - m_)[:, None] * h_tm1 s_t = T.nnet.softmax(T.dot(h, self.W) + self.b) return [h, c, s_t] [h, c, s_t],_ = theano.scan(fn=recurrence, \ sequences=x, outputs_info=[self.h0, self.c0, None], \ n_steps=x.shape[0],\ truncate_gradient=7) #p_y_given_x_lastword = s_t[-1,0,:] p_y_given_x_sentence = s_t[:,0,:] y_pred = T.argmax(p_y_given_x_sentence, axis=1) # cost and gradients and learning rate lr = T.scalar('lr') nll = -(T.log(s_t[:,0,:])[T.arange(y.shape[0]), y]).sum() grads = T.grad( nll, self.params ) #updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) ''' Adadelta update ''' tparams = OrderedDict((p,q) for p,q in zip(self.names, self.params)) zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_grad' % k) for k, p in tparams.items()] running_up2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rup2' % k) for k, p in tparams.items()] running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rgrad2' % k) for k, p in tparams.items()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] updir = [-T.sqrt(ru2 + 1e-6) / T.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(tparams.values(), updir)] # theano functions self.train_grad_shared = theano.function(inputs=[idxs, y, lr], outputs=nll, updates=zgup + rg2up, on_unused_input='ignore', name='adadelta_train_grad_shared', allow_input_downcast=True) self.train_update = theano.function([lr], [], updates=ru2up + param_up, on_unused_input='ignore', name='adadelta_train_update') self.classify = theano.function(inputs=[idxs], outputs=y_pred) self.normalize = theano.function( inputs = [], updates = {self.emb:\ self.emb/T.sqrt((self.emb**2).sum(axis=1)).dimshuffle(0,'x')}) def save(self, folder): for param, name in zip(self.params, self.names): numpy.save(os.path.join(folder, name + '.npy'), param.get_value()) class LSTM_adadelta_bilingual(object): def __init__(self, nh, nc, de, cs, ne_char=None, de_char=None, ne_src=None, ne_tgt=None, emb_src=None, emb_tgt=None, max_char=10): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # parameters of the model self.emb_src = theano.shared(numpy.random.normal(0.0, 0.01,\ (ne_src + 1, de)).astype(theano.config.floatX)) # add one for PADDING at the end self.emb_tgt = theano.shared(numpy.random.normal(0.0, 0.01,\ (ne_tgt + 1, de)).astype(theano.config.floatX)) # add one for PADDING at the end normalization_list = [self.emb_src, self.emb_tgt] #Input layer weghts self.Wx = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) #Reccurant weight or g(t) in note self.Wh = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.bh = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #LSTM Gate #X(t) weights self.Wi = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) self.Wo = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) self.Wf = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) #H(t-1) weights self.Ui = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uo = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uf = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) #Bias self.bi = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bo = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bf = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #output weights and biases self.W = theano.shared(numpy.random.normal(0.0, 0.01,\ (nh, nc)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) #Recurent memory or h(t-1) self.h0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.c0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) # bundle self.params = [ self.emb_src, self.emb_tgt, self.Wx, self.Wh, self.Wi, self.Wo, self.Wf, self.W,self.Ui, self.Uo, self.Uf, self.bh, self.bi, self.bo, self.bf, self.b, self.h0, self.c0] self.names = ['emb_src', 'emb_tgt', 'Wx', 'Wh', 'Wi', 'Wo', 'Wf', 'W', 'Ui', 'Uo', 'Uf', 'bh', 'bi', 'bo', 'bf', 'b', 'h0', 'c0'] idxs_src = T.imatrix() # as many columns as context window size/lines as words in the sentence x_src = self.emb_src[idxs_src].reshape((idxs_src.shape[0], de*cs)) idxs_tgt = T.imatrix() # as many columns as context window size/lines as words in the sentence x_tgt = self.emb_tgt[idxs_tgt].reshape((idxs_tgt.shape[0], de*cs)) y = T.ivector('y') # label def recurrence(x1, x2, h_tm1, c_): #Gates #g_i = T.nnet.relu(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) #g_o = T.nnet.relu(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) #g_f = T.nnet.relu(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) x_t = T.concatenate([x1, x2]) g_i = T.nnet.sigmoid(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) g_o = T.nnet.sigmoid(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) g_f = T.nnet.sigmoid(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_t = T.tanh(T.dot(x_t, self.Wx) + T.dot(h_tm1, self.Wh) + self.bh) c = g_f*c_ + g_i*g_t #c = m_[:, None] * c + (1. - m_)[:, None] * c_ h = g_o*T.tanh(c) #h = m_[:, None] * h + (1. - m_)[:, None] * h_tm1 s_t = T.nnet.softmax(T.dot(h, self.W) + self.b) return [h, c, s_t] [h, c, s_t],_ = theano.scan(fn=recurrence, \ sequences=[x_src, x_tgt], outputs_info=[self.h0, self.c0, None], \ n_steps=x_src.shape[0],\ truncate_gradient=7) #p_y_given_x_lastword = s_t[-1,0,:] p_y_given_x_sentence = s_t[:,0,:] y_pred = T.argmax(p_y_given_x_sentence, axis=1) # cost and gradients and learning rate lr = T.scalar('lr') nll = -(T.log(s_t[:,0,:])[T.arange(y.shape[0]), y]).sum() grads = T.grad( nll, self.params ) #updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) ''' Adadelta update ''' tparams = OrderedDict((p,q) for p,q in zip(self.names, self.params)) zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_grad' % k) for k, p in tparams.items()] running_up2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rup2' % k) for k, p in tparams.items()] running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rgrad2' % k) for k, p in tparams.items()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] updir = [-T.sqrt(ru2 + 1e-6) / T.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(tparams.values(), updir)] # theano functions self.train_grad_shared = theano.function(inputs=[idxs_src, idxs_tgt, y, lr], outputs=nll, updates=zgup + rg2up, on_unused_input='ignore', name='adadelta_train_grad_shared', allow_input_downcast=True) self.train_update = theano.function([lr], [], updates=ru2up + param_up, on_unused_input='ignore', name='adadelta_train_update') self.classify = theano.function(inputs=[idxs_src, idxs_tgt], outputs=y_pred) self.normalize = theano.function( inputs = [], updates = OrderedDict((emb, emb/T.sqrt((emb**2).sum(axis=1)).dimshuffle(0,'x')) for emb in normalization_list)) def save(self, folder): for param, name in zip(self.params, self.names): numpy.save(os.path.join(folder, name + '.npy'), param.get_value()) class LSTM_adadelta_bilingual_pretrain(object): def __init__(self, nh, nc, de, cs, ne_char=None, de_char=None, ne_src=None, ne_tgt=None, emb_src=None, emb_tgt=None, max_char=10): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # parameters of the model self.emb_src = theano.shared(numpy.asarray(emb_src).astype(theano.config.floatX)) # add one for PADDING at the end self.emb_tgt = theano.shared(numpy.asarray(emb_tgt).astype(theano.config.floatX)) # add one for PADDING at the end normalization_list = [self.emb_src, self.emb_tgt] #Input layer weghts self.Wx = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) #Reccurant weight or g(t) in note self.Wh = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.bh = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #LSTM Gate #X(t) weights self.Wi = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) self.Wo = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) self.Wf = theano.shared(numpy.random.normal(0.0, 0.01,\ (2 * de * cs, nh)).astype(theano.config.floatX)) #H(t-1) weights self.Ui = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uo = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) self.Uf = theano.shared(numpy.linalg.svd(numpy.random.randn(\ nh, nh))[0].astype(theano.config.floatX)) #Bias self.bi = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bo = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.bf = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) #output weights and biases self.W = theano.shared(numpy.random.normal(0.0, 0.01,\ (nh, nc)).astype(theano.config.floatX)) self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX)) #Recurent memory or h(t-1) self.h0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) self.c0 = theano.shared(numpy.zeros(nh, dtype=theano.config.floatX)) # bundle self.params = [ self.emb_src, self.emb_tgt, self.Wx, self.Wh, self.Wi, self.Wo, self.Wf, self.W, self.Ui, self.Uo, self.Uf, self.bh, self.bi, self.bo, self.bf, self.b, self.h0, self.c0] self.names = ['emb_src', 'emb_tgt', 'Wx', 'Wh', 'Wi', 'Wo', 'Wf', 'W', 'Ui', 'Uo', 'Uf', 'bh', 'bi', 'bo', 'bf', 'b', 'h0', 'c0'] idxs_src = T.imatrix() # as many columns as context window size/lines as words in the sentence x_src = self.emb_src[idxs_src].reshape((idxs_src.shape[0], de*cs)) idxs_tgt = T.imatrix() # as many columns as context window size/lines as words in the sentence x_tgt = self.emb_tgt[idxs_tgt].reshape((idxs_tgt.shape[0], de*cs)) y = T.ivector('y') # label def recurrence(x1, x2, h_tm1, c_): #Gates #g_i = T.nnet.relu(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) #g_o = T.nnet.relu(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) #g_f = T.nnet.relu(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) x_t = T.concatenate([x1, x2]) g_i = T.nnet.sigmoid(T.dot(x_t, self.Wi) + T.dot(h_tm1, self.Ui) + self.bi) g_o = T.nnet.sigmoid(T.dot(x_t, self.Wo) + T.dot(h_tm1, self.Uo) + self.bo) g_f = T.nnet.sigmoid(T.dot(x_t, self.Wf) + T.dot(h_tm1, self.Uf) + self.bf) g_t = T.tanh(T.dot(x_t, self.Wx) + T.dot(h_tm1, self.Wh) + self.bh) c = g_f*c_ + g_i*g_t #c = m_[:, None] * c + (1. - m_)[:, None] * c_ h = g_o*T.tanh(c) #h = m_[:, None] * h + (1. - m_)[:, None] * h_tm1 s_t = T.nnet.softmax(T.dot(h, self.W) + self.b) return [h, c, s_t] [h, c, s_t],_ = theano.scan(fn=recurrence, sequences=[x_src, x_tgt], outputs_info=[self.h0, self.c0, None], n_steps=x_src.shape[0], truncate_gradient=7) #p_y_given_x_lastword = s_t[-1,0,:] p_y_given_x_sentence = s_t[:,0,:] y_pred = T.argmax(p_y_given_x_sentence, axis=1) # cost and gradients and learning rate lr = T.scalar('lr') nll = -(T.log(s_t[:,0,:])[T.arange(y.shape[0]), y]).sum() grads = T.grad( nll, self.params ) #updates = OrderedDict(( p, p-lr*g ) for p, g in zip( self.params , gradients)) ''' Adadelta update ''' tparams = OrderedDict((p,q) for p,q in zip(self.names, self.params)) zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_grad' % k) for k, p in tparams.items()] running_up2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rup2' % k) for k, p in tparams.items()] running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.), name='%s_rgrad2' % k) for k, p in tparams.items()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] updir = [-T.sqrt(ru2 + 1e-6) / T.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(tparams.values(), updir)] # theano functions self.train_grad_shared = theano.function(inputs=[idxs_src, idxs_tgt, y, lr], outputs=nll, updates=zgup + rg2up, on_unused_input='ignore', name='adadelta_train_grad_shared', allow_input_downcast=True) self.train_update = theano.function([lr], [], updates=ru2up + param_up, on_unused_input='ignore', name='adadelta_train_update') self.classify = theano.function(inputs=[idxs_src, idxs_tgt], outputs=y_pred) self.normalize = theano.function( inputs = [], updates = OrderedDict((emb, emb/T.sqrt((emb**2).sum(axis=1)).dimshuffle(0,'x')) for emb in normalization_list)) def save(self, folder): for param, name in zip(self.params, self.names): numpy.save(os.path.join(folder, name + '.npy'), param.get_value())
gpl-3.0
3,313,607,363,037,820,000
45.940606
193
0.522827
false
jskinn/robot-vision-experiment-framework
batch_analysis/tasks/tests/test_compare_trials_task.py
1
2374
# Copyright (c) 2017, John Skinner import unittest import numpy as np import bson import database.tests.test_entity import util.dict_utils as du import batch_analysis.task import batch_analysis.tasks.compare_trials_task as task class TestCompareTrialTask(database.tests.test_entity.EntityContract, unittest.TestCase): def get_class(self): return task.CompareTrialTask def make_instance(self, *args, **kwargs): kwargs = du.defaults(kwargs, { 'trial_result1_id': bson.ObjectId(), 'trial_result2_id': bson.ObjectId(), 'comparison_id': bson.ObjectId(), 'state': batch_analysis.task.JobState.RUNNING, 'num_cpus': np.random.randint(0, 1000), 'num_gpus': np.random.randint(0, 1000), 'memory_requirements': '{}MB'.format(np.random.randint(0, 50000)), 'expected_duration': '{0}:{1}:{2}'.format(np.random.randint(1000), np.random.randint(60), np.random.randint(60)), 'node_id': 'node-{}'.format(np.random.randint(10000)), 'job_id': np.random.randint(1000) }) return task.CompareTrialTask(*args, **kwargs) def assert_models_equal(self, task1, task2): """ Helper to assert that two tasks are equal We're going to violate encapsulation for a bit :param task1: :param task2: :return: """ if (not isinstance(task1, task.CompareTrialTask) or not isinstance(task2, task.CompareTrialTask)): self.fail('object was not an CompareTrialTask') self.assertEqual(task1.identifier, task2.identifier) self.assertEqual(task1.trial_result1, task2.trial_result1) self.assertEqual(task1.trial_result2, task2.trial_result2) self.assertEqual(task1.comparison, task2.comparison) self.assertEqual(task1._state, task2._state) self.assertEqual(task1.node_id, task2.node_id) self.assertEqual(task1.job_id, task2.job_id) self.assertEqual(task1.result, task2.result) self.assertEqual(task1.num_cpus, task2.num_cpus) self.assertEqual(task1.num_gpus, task2.num_gpus) self.assertEqual(task1.memory_requirements, task2.memory_requirements) self.assertEqual(task1.expected_duration, task2.expected_duration)
bsd-2-clause
6,094,099,744,451,289,000
42.962963
101
0.641112
false
aurelieladier/openturns
python/test/t_TriangularFactory_std.py
4
1499
#! /usr/bin/env python from __future__ import print_function from openturns import * TESTPREAMBLE() RandomGenerator.SetSeed(0) try: distribution = Triangular(1.0, 2.5, 4.0) size = 10000 sample = distribution.getSample(size) factory = TriangularFactory() estimatedDistribution = factory.build(sample) print("distribution=", repr(distribution)) print("Estimated distribution=", repr(estimatedDistribution)) estimatedDistribution = factory.build() print("Default distribution=", estimatedDistribution) estimatedDistribution = factory.build( distribution.getParameter()) print("Distribution from parameters=", estimatedDistribution) estimatedTriangular = factory.buildAsTriangular(sample) print("Triangular =", distribution) print("Estimated triangular=", estimatedTriangular) estimatedTriangular = factory.buildAsTriangular() print("Default triangular=", estimatedTriangular) estimatedTriangular = factory.buildAsTriangular( distribution.getParameter()) print("Triangular from parameters=", estimatedTriangular) sample = [[0.0]] * size estimatedDistribution = factory.build(sample) print("Estimated distribution=", repr(estimatedDistribution)) sample = [[1.0]] * size estimatedDistribution = factory.build(sample) print("Estimated distribution=", repr(estimatedDistribution)) except: import sys print("t_TriangularFactory_std.py", sys.exc_info()[0], sys.exc_info()[1])
lgpl-3.0
2,667,248,631,232,486,000
37.435897
77
0.727151
false
jgehring/Laudio
laudio/src/song/formats/mp3.py
1
2091
#!/usr/bin/env python #-*- coding:utf-8 -*- """ Laudio - A webbased musicplayer Copyright (C) 2010 Bernhard Posselt, [email protected] Laudio is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Laudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar. If not, see <http://www.gnu.org/licenses/>. """ import os from time import time from mutagen.mp3 import MP3 from mutagen.easyid3 import EasyID3 from mutagen.id3 import ID3NoHeaderError from laudio.src.song.song import Song class MP3Song (Song): def __init__(self, path): """ Read metainformation from an ogg file The multiple KeyErrors check if tags are not Null Keyword arguments: path -- the full path to the song """ self.codec = "mp3" self.path = path self.song = MP3(self.path) try: self.id3 = EasyID3(self.path) for key in ('title', 'artist', 'album', 'genre', 'date', 'tracknumber'): attr = self.id3.get(key, ('',))[0] setattr(self, key, attr.encode("utf-8") ) self.bitrate = int(self.song.info.bitrate) / 1000 self.length = int(self.song.info.length) # check if tracknumber is numeric if not self.tracknumber.isdigit(): self.tracknumber = 0 # except no id3 tags except (ID3NoHeaderError, AttributeError): for key in ('title', 'artist', 'album', 'genre', 'date'): setattr(self, key, "") self.tracknumber = 0 self.bitrate = 0 self.length = 0 self.title = os.path.basename(self.path)
gpl-3.0
3,334,994,844,228,916,000
34.440678
84
0.634146
false
Wopple/fimbulvetr
src/client/mapmode_c.py
1
3743
import os import sys import pygame from pygame.locals import * from common import mvc from common.constants import * from client.constants import * class Controller(mvc.Controller): def __init__(self, model=None, screen=None): super(Controller, self).__init__() self.shift = [False, False] def update(self): if self.model.initialCount == 0: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: self.model.leftClick() elif event.button == 3: self.model.rightClick(True in self.shift) elif event.button == 4: self.model.scrollIn() elif event.button == 5: self.model.scrollOut() elif event.type == pygame.KEYDOWN: if event.key == K_ESCAPE: sys.exit(0) elif event.key == K_SPACE: self.model.pausePressed() elif event.key == K_1: self.model.numberKey(1) elif event.key == K_2: self.model.numberKey(2) elif event.key == K_3: self.model.numberKey(3) elif event.key == K_4: self.model.numberKey(4) elif event.key == K_5: self.model.numberKey(5) elif event.key == K_6: self.model.numberKey(6) elif event.key == K_7: self.model.numberKey(7) elif event.key == K_8: self.model.numberKey(8) elif event.key == K_9: self.model.numberKey(9) elif event.key == K_UP: self.model.key(0, True) elif event.key == K_DOWN: self.model.key(1, True) elif event.key == K_LEFT: self.model.key(2, True) elif event.key == K_RIGHT: self.model.key(3, True) elif event.key == K_PAGEUP: self.model.key(4, True) elif event.key == K_PAGEDOWN: self.model.key(5, True) elif event.key == K_F1: self.model.testKey(1) elif event.key == K_F2: self.model.testKey(2) elif event.key == K_LSHIFT: self.shift[0] = True elif event.key == K_RSHIFT: self.shift[1] = True elif event.type == pygame.KEYUP: if event.key == K_UP: self.model.key(0, False) elif event.key == K_DOWN: self.model.key(1, False) elif event.key == K_LEFT: self.model.key(2, False) elif event.key == K_RIGHT: self.model.key(3, False) elif event.key == K_PAGEUP: self.model.key(4, False) elif event.key == K_PAGEDOWN: self.model.key(5, False) elif event.key == K_LSHIFT: self.shift[0] = False elif event.key == K_RSHIFT: self.shift[1] = False elif event.type == pygame.QUIT: sys.exit(0)
bsd-3-clause
4,532,720,471,375,591,000
40.131868
65
0.40716
false
asenovm/book-search-server
crawler/chitanka_crawler_get_books_list.py
1
3790
import requests import time import os import sqlite3 def init_make_request(): global conn global last_hour global last_minute global queries_for_last_minute global queries_for_last_hour last_hour = time.clock() last_minute = time.clock() queries_for_last_minute = 0 queries_for_last_hour = 0 conn = sqlite3.connect('chitanka.db') def make_request(req): global last_minute global last_hour global queries_for_last_minute global queries_for_last_hour time.sleep(2) while queries_for_last_hour > 175: delta = time.clock() - last_hour if delta < 3600: print "queries limit for hour reached, %d minutes remaining" % int(60-delta/60) time.sleep(60) else: last_hour = time.clock() queries_for_last_hour = 0 while queries_for_last_minute > 18: delta = time.clock() - last_hour if delta < 60: print "queries limit for minute reached, %d seconds remaining" % int(60-delta) time.sleep(10) else: last_minute = time.clock() queries_for_last_minute = 0 queries_for_last_hour += 1 queries_for_last_minute += 1 proxy = {'http': 'http://93.123.45.23:8008'} #r = requests.get(req, proxies = proxy) r = requests.get(req) return r def find_books_in_text(text): global conn #print text c = conn.cursor() ind = 0 ind = text.find('<span>epub</span></a></li>', ind) while ind != -1: ind = ind + 26 ind = text.find('"', ind) ind = ind + 1 book_name = text[ind:text.find('"', ind)] #print book_name c.execute('select * from books where name="%s"' % book_name) if len(c.fetchall()) == 0: c.execute('insert into books values ("%s", 0)' % book_name) conn.commit() print 'new book found: %s' % book_name ind = text.find('<span>epub</span></a></li>', ind) c.close() def main(): global conn c = conn.cursor() c.execute('select * from categories') cats = c.fetchall() flag = True for category in cats: print 'getting books in %s' % str(category[0]) if str(category[0]) == 'savremenni-romani-i-povesti': flag = False if flag: continue tries = 5 while tries: try: --tries r = make_request('http://www.chitanka.info/books/category/'+category[0]) break except: print "exception" time.sleep(30) find_books_in_text(r.text) pagination = r.text.find('<ul class="pagination">') if pagination != -1: ind = r.text.find('<li class="next">') while r.text[ind] != '"': ind = ind - 1 ind = ind + 2 second_ind = ind + 1 while r.text[second_ind] != '<': second_ind = second_ind + 1 pages_count = int(r.text[ind:second_ind]) for i in range(1, pages_count): print 'category page %d' % (i+1) tries = 5 while tries: try: --tries r = make_request('http://www.chitanka.info/books/category/'+category[0]+'.html/'+str(i+1)) break except: print "except" time.sleep(30) find_books_in_text(r.text) c.close() if __name__ == '__main__': init_make_request() main()
mit
-2,583,254,922,830,167,000
27.719697
114
0.492348
false
davidsminor/cortex
test/IECore/LinkedSceneTest.py
1
38697
########################################################################## # # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import gc import sys import os import math import unittest import IECore class LinkedSceneTest( unittest.TestCase ) : @staticmethod def compareBBox( box1, box2 ): errorTolerance = IECore.V3d(1e-5, 1e-5, 1e-5) boxTmp = IECore.Box3d( box1.min - errorTolerance, box1.max + errorTolerance ) if not boxTmp.contains( box2 ): return False boxTmp = IECore.Box3d( box2.min - errorTolerance, box2.max + errorTolerance ) if not boxTmp.contains( box1 ): return False return True def testSupportedExtension( self ) : self.assertTrue( "lscc" in IECore.SceneInterface.supportedExtensions() ) self.assertTrue( "lscc" in IECore.SceneInterface.supportedExtensions( IECore.IndexedIO.OpenMode.Read ) ) self.assertTrue( "lscc" in IECore.SceneInterface.supportedExtensions( IECore.IndexedIO.OpenMode.Write ) ) self.assertTrue( "lscc" in IECore.SceneInterface.supportedExtensions( IECore.IndexedIO.OpenMode.Write + IECore.IndexedIO.OpenMode.Read ) ) self.assertFalse( "lscc" in IECore.SceneInterface.supportedExtensions( IECore.IndexedIO.OpenMode.Append ) ) def testFactoryFunction( self ): # test Write factory function m = IECore.SceneInterface.create( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) self.assertTrue( isinstance( m, IECore.LinkedScene ) ) self.assertEqual( m.fileName(), "/tmp/test.lscc" ) self.assertRaises( RuntimeError, m.readBound, 0.0 ) del m # test Read factory function m = IECore.SceneInterface.create( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) self.assertTrue( isinstance( m, IECore.LinkedScene ) ) self.assertEqual( m.fileName(), "/tmp/test.lscc" ) m.readBound( 0.0 ) def testConstructors( self ): # test Read from a previously opened scene. m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) l = IECore.LinkedScene( m ) # test Write mode m = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) self.assertTrue( isinstance( m, IECore.LinkedScene ) ) self.assertEqual( m.fileName(), "/tmp/test.lscc" ) self.assertRaises( RuntimeError, m.readBound, 0.0 ) del m # test Read mode m = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) self.assertTrue( isinstance( m, IECore.LinkedScene ) ) self.assertEqual( m.fileName(), "/tmp/test.lscc" ) m.readBound( 0.0 ) def testAppendRaises( self ) : self.assertRaises( RuntimeError, IECore.SceneInterface.create, "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Append ) self.assertRaises( RuntimeError, IECore.LinkedScene, "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Append ) def testReadNonExistentRaises( self ) : self.assertRaises( RuntimeError, IECore.LinkedScene, "iDontExist.lscc", IECore.IndexedIO.OpenMode.Read ) def testLinkAttribute( self ): self.assertEqual( IECore.LinkedScene.linkAttribute, "sceneInterface:link" ) m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) attr = IECore.LinkedScene.linkAttributeData( m ) expectedAttr = IECore.CompoundData( { "fileName": IECore.StringData("test/IECore/data/sccFiles/animatedSpheres.scc"), "root": IECore.InternedStringVectorData( [] ) } ) self.assertEqual( attr, expectedAttr ) A = m.child("A") attr = IECore.LinkedScene.linkAttributeData( A ) expectedAttr = IECore.CompoundData( { "fileName": IECore.StringData("test/IECore/data/sccFiles/animatedSpheres.scc"), "root": IECore.InternedStringVectorData( [ 'A' ] ) } ) self.assertEqual( attr, expectedAttr ) A = m.child("A") attr = IECore.LinkedScene.linkAttributeData( A, 10.0 ) expectedAttr['time'] = IECore.DoubleData(10.0) self.assertEqual( attr, expectedAttr ) def testWriting( self ): generateTestFiles = False # change this to True to recreate the LinkedScene files for other tests. testFilesSuffix = "_newTags" if generateTestFiles : outputPath = "test/IECore/data/sccFiles" else : outputPath = "/tmp" m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) A = m.child("A") l = IECore.LinkedScene( os.path.join(outputPath,"instancedSpheres%s.lscc"%testFilesSuffix), IECore.IndexedIO.OpenMode.Write ) i0 = l.createChild("instance0") i0.writeLink( m ) i1 = l.createChild("instance1") i1.writeLink( m ) i1.writeAttribute( "testAttr", IECore.StringData("test"), 0 ) i1.writeTransform( IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ), 0.0 ) i2 = l.createChild("instance2") i2.writeLink( A ) i2.writeTransform( IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ), 0.0 ) self.assertRaises( RuntimeError, i2.createChild, "cannotHaveChildrenAtLinks" ) i2.writeTags( ["canHaveTagsAtLinks"] ) self.assertRaises( RuntimeError, i2.writeObject, IECore.SpherePrimitive( 1 ), 0.0 ) # cannot save objects at link locations. b1 = l.createChild("branch1") b1.writeObject( IECore.SpherePrimitive( 1 ), 0.0 ) self.assertRaises( RuntimeError, b1.writeLink, A ) b2 = l.createChild("branch2") c2 = b2.createChild("child2") self.assertRaises( RuntimeError, b2.writeLink, A ) del i0, i1, i2, l, b1, b2, c2 l = IECore.LinkedScene( os.path.join(outputPath,"instancedSpheres%s.lscc"%testFilesSuffix), IECore.IndexedIO.OpenMode.Read ) self.assertEqual( l.numBoundSamples(), 4 ) self.assertEqual( set(l.childNames()), set(['instance0','instance1','instance2','branch1','branch2']) ) i0 = l.child("instance0") self.assertEqual( i0.numBoundSamples(), 4 ) self.failUnless( LinkedSceneTest.compareBBox( i0.readBoundAtSample(0), IECore.Box3d( IECore.V3d( -1,-1,-1 ), IECore.V3d( 2,2,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i0.readBoundAtSample(1), IECore.Box3d( IECore.V3d( -1,-1,-1 ), IECore.V3d( 3,3,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i0.readBoundAtSample(2), IECore.Box3d( IECore.V3d( -2,-1,-2 ), IECore.V3d( 4,5,2 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i0.readBoundAtSample(3), IECore.Box3d( IECore.V3d( -3,-1,-3 ), IECore.V3d( 4,6,3 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i0.readBound(0), IECore.Box3d( IECore.V3d( -1,-1,-1 ), IECore.V3d( 2,2,1 ) ) ) ) A = i0.child("A") self.failUnless( LinkedSceneTest.compareBBox( A.readBoundAtSample(0), IECore.Box3d(IECore.V3d( -1,-1,-1 ), IECore.V3d( 1,1,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( A.readBoundAtSample(1), IECore.Box3d(IECore.V3d( -1,-1,-1 ), IECore.V3d( 1,1,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( A.readBoundAtSample(2), IECore.Box3d(IECore.V3d( 0,-1,-1 ), IECore.V3d( 2,1,1 ) ) ) ) self.assertEqual( i0.readTransform( 0 ), IECore.M44dData( IECore.M44d() ) ) i1 = l.child("instance1") self.assertEqual( i1.numBoundSamples(), 4 ) self.failUnless( LinkedSceneTest.compareBBox( i1.readBoundAtSample(0), IECore.Box3d( IECore.V3d( -1,-1,-1 ), IECore.V3d( 2,2,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i1.readBoundAtSample(2), IECore.Box3d( IECore.V3d( -2,-1,-2 ), IECore.V3d( 4,5,2 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i1.readBoundAtSample(3), IECore.Box3d( IECore.V3d( -3,-1,-3 ), IECore.V3d( 4,6,3 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i1.readBound(0), IECore.Box3d( IECore.V3d( -1,-1,-1 ), IECore.V3d( 2,2,1 ) ) ) ) self.assertEqual( i1.readTransform( 0 ), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ) ) self.assertEqual( i1.readAttribute( "testAttr", 0 ), IECore.StringData("test") ) i2 = l.child("instance2") self.assertEqual( i2.numBoundSamples(), 3 ) self.failUnless( LinkedSceneTest.compareBBox( i2.readBoundAtSample(0), IECore.Box3d(IECore.V3d( -1,-1,-1 ), IECore.V3d( 1,1,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i2.readBoundAtSample(1), IECore.Box3d(IECore.V3d( -1,-1,-1 ), IECore.V3d( 1,1,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( i2.readBoundAtSample(2), IECore.Box3d(IECore.V3d( 0,-1,-1 ), IECore.V3d( 2,1,1 ) ) ) ) self.assertEqual( i2.readTransform( 0 ), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ) ) self.assertTrue( i2.hasTag( "canHaveTagsAtLinks", IECore.SceneInterface.TagFilter.EveryTag ) ) self.assertTrue( l.hasTag( "canHaveTagsAtLinks", IECore.SceneInterface.TagFilter.EveryTag ) ) # tags propagate up self.assertTrue( i2.child("a").hasTag( "canHaveTagsAtLinks", IECore.SceneInterface.TagFilter.EveryTag ) ) # tags at link locations propagate down as well self.assertEqual( l.scene( [ 'instance0' ] ).path(), [ 'instance0' ] ) self.assertEqual( l.scene( [ 'instance0', 'A' ] ).path(), [ 'instance0', 'A' ] ) self.assertEqual( i0.path(), [ 'instance0' ] ) # test saving a two level LinkedScene l2 = IECore.LinkedScene( os.path.join(outputPath,"environment%s.lscc"%testFilesSuffix), IECore.IndexedIO.OpenMode.Write ) base = l2.createChild("base") t1 = base.createChild("test1") t1.writeLink( l ) t2 = base.createChild("test2") t2.writeLink( i0 ) t3 = base.createChild("test3") t3.writeLink( i1 ) t4 = base.createChild("test4") t4.writeLink( i2 ) t5 = base.createChild("test5") t5.writeLink( A ) del l2, t1, t2, t3, t4, t5 def testWriteLinkAnimatedTransform( self ): messageHandler = IECore.CapturingMessageHandler() with messageHandler : m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) i0 = l.createChild("instance0") i0.writeLink( m ) # this was causing a problem upon deleting l, as the first transform sample doesn't coincide with the # first bound sample in the link i0.writeTransform( IECore.M44dData( IECore.M44d() ), 5.0 ) i0.writeTransform( IECore.M44dData( IECore.M44d() ), 6.0 ) del i0, l, m for messageInfo in messageHandler.messages: if not messageInfo.message.startswith( "Detected ancestor tags" ) : self.fail( messageInfo.message ) def testTimeRemapping( self ): m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) # save animated spheres with double the speed and with offset, using less samples (time remapping) i0 = l.createChild("instance0") i0.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 0.0 ), 1.0 ) i0.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 3.0 ), 2.0 ) # save animated spheres with same speed and with offset, same samples (time remapping is identity) i1 = l.createChild("instance1") i1.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 0.0 ), 1.0 ) i1.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 1.0 ), 2.0 ) i1.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 2.0 ), 3.0 ) i1.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 3.0 ), 4.0 ) # save animated spheres with half the speed, adding more samples to a range of the original (time remapping) i2 = l.createChild("instance2") i2.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 0.0 ), 0.0 ) i2.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 0.5 ), 1.0 ) i2.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 1.0 ), 2.0 ) del i0, i1, i2, l l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) self.assertEqual( l.numBoundSamples(), 5 ) self.assertEqual( l.hasAttribute( "sceneInterface:link.time" ), False ) i0 = l.child("instance0") self.assertEqual( i0.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i0.readAttribute( "sceneInterface:link.time", 1 ).value, 0 ) self.assertEqual( i0.readAttribute( "sceneInterface:link.time", 2 ).value, 3 ) self.assertEqual( i0.numBoundSamples(), 2 ) self.assertEqual( i0.numTransformSamples(), 1 ) self.assertEqual( i0.readTransformAtSample(0), IECore.M44dData() ) A0 = i0.child("A") self.assertEqual( A0.hasAttribute( "sceneInterface:link.time" ), False ) self.assertEqual( A0.numBoundSamples(), 2 ) self.assertEqual( A0.numTransformSamples(), 2 ) self.failUnless( LinkedSceneTest.compareBBox( A0.readBoundAtSample(0), IECore.Box3d(IECore.V3d( -1,-1,-1 ), IECore.V3d( 1,1,1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( A0.readBoundAtSample(1), IECore.Box3d(IECore.V3d( 0,-1,-1 ), IECore.V3d( 2,1,1 ) ) ) ) self.assertEqual( A0.readTransformAtSample(0), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ) ) self.assertEqual( A0.readTransformAtSample(1), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ) ) i1 = l.child("instance1") self.assertEqual( i1.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i1.readAttribute( "sceneInterface:link.time", 1 ).value, 0 ) self.assertEqual( i1.readAttribute( "sceneInterface:link.time", 2 ).value, 1 ) self.assertEqual( i1.readAttribute( "sceneInterface:link.time", 3 ).value, 2 ) self.assertEqual( i1.readAttribute( "sceneInterface:link.time", 4 ).value, 3 ) self.assertEqual( i1.numBoundSamples(), 4 ) self.assertEqual( i1.numTransformSamples(), 1 ) A1 = i1.child("A") self.assertEqual( A1.numTransformSamples(), 4 ) self.assertEqual( A1.readTransformAtSample(0), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ) ) self.assertEqual( A1.readTransformAtSample(1), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ) ) self.assertEqual( A1.readTransformAtSample(2), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ) ) self.assertEqual( A1.readTransformAtSample(3), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ) ) self.assertEqual( A1.hasAttribute( "sceneInterface:link.time" ), False ) i2 = l.child("instance2") self.assertEqual( i2.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i2.readAttribute( "sceneInterface:link.time", 0 ).value, 0 ) self.assertEqual( i2.readAttribute( "sceneInterface:link.time", 1 ).value, 0.5 ) self.assertEqual( i2.readAttribute( "sceneInterface:link.time", 2 ).value, 1 ) self.assertEqual( i2.numBoundSamples(), 3 ) self.assertEqual( i2.numTransformSamples(), 1 ) A2 = i2.child("A") self.assertEqual( A2.numBoundSamples(), 3 ) self.assertEqual( A2.numTransformSamples(), 3 ) self.assertEqual( A2.readTransform(1.0), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1.5, 0, 0 ) ) ) ) self.assertEqual( A2.readTransformAtSample(0), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ) ) self.assertEqual( A2.readTransformAtSample(1), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1.5, 0, 0 ) ) ) ) self.assertEqual( A2.readTransformAtSample(2), IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ) ) self.assertEqual( A2.hasAttribute( "sceneInterface:link.time" ), False ) def testNestedTimeRemapping( self ): m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) A = m.child("A") l2 = IECore.LinkedScene( "/tmp/test3.lscc", IECore.IndexedIO.OpenMode.Write ) t2 = l2.createChild("transform2") i2 = t2.createChild("instance2") i2.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 0.0 ), 0.0 ) i2.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( m, 2.0 ), 1.0 ) del l2, i2, t2 l2 = IECore.LinkedScene( "/tmp/test3.lscc", IECore.IndexedIO.OpenMode.Read ) l1 = IECore.LinkedScene( "/tmp/test2.lscc", IECore.IndexedIO.OpenMode.Write ) t1 = l1.createChild("transform1") i1 = t1.createChild("instance1") i1.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( l2, 0.0 ), 0.0 ) i1.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( l2, 2.0 ), 1.0 ) del l1, i1, t1 l1 = IECore.LinkedScene( "/tmp/test2.lscc", IECore.IndexedIO.OpenMode.Read ) l0 = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) t0 = l0.createChild("transform0") i0 = t0.createChild("instance0") i0.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( l1, 0.0 ), 0.0 ) i0.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( l1, 2.0 ), 1.0 ) del l0, i0, t0 l0 = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) l = IECore.LinkedScene( "/tmp/testTop.lscc", IECore.IndexedIO.OpenMode.Write ) t = l.createChild("transform") i = t.createChild("instance") i.writeLink( l0 ) del l, i, t del m, l0, l1, l2 l = IECore.LinkedScene( "/tmp/testTop.lscc", IECore.IndexedIO.OpenMode.Read ) t = l.child("transform") i = t.child("instance") t0 = i.child("transform0") i0 = t0.child("instance0") t1 = i0.child("transform1") i1 = t1.child("instance1") t2 = i1.child("transform2") i2 = t2.child("instance2") A = i2.child("A") # this location shouldn't be retimed: self.assertEqual( i.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i.readAttribute( "sceneInterface:link.time", 0.25 ).value, 0.25 ) # this location should be sped up by a factor of 2: self.assertEqual( i0.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i0.readAttribute( "sceneInterface:link.time", 0.25 ).value, 0.5 ) # this one is remapped twice, so it's sped up by a factor of 4: self.assertEqual( i1.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i1.readAttribute( "sceneInterface:link.time", 0.25 ).value, 1 ) # and this one is remapped three times, so it's sped up by a factor of 8: self.assertEqual( i2.hasAttribute( "sceneInterface:link.time" ), True ) self.assertEqual( i2.readAttribute( "sceneInterface:link.time", 0.25 ).value, 2 ) # sanity check: self.assertEqual( i.readAttribute( "sceneInterface:link.time", 0 ).value, 0 ) self.assertEqual( i0.readAttribute( "sceneInterface:link.time", 0 ).value, 0 ) self.assertEqual( i1.readAttribute( "sceneInterface:link.time", 0 ).value, 0 ) self.assertEqual( i2.readAttribute( "sceneInterface:link.time", 0 ).value, 0 ) # test multiple retiming of the transform: m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) Aa = m.child("A") self.assertEqual( Aa.readTransformAsMatrix( 0.1 ), A.readTransformAsMatrix( 0.1 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.2 ), A.readTransformAsMatrix( 0.2 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.3 ), A.readTransformAsMatrix( 0.3 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.4 ), A.readTransformAsMatrix( 0.4 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.5 ), A.readTransformAsMatrix( 0.5 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.6 ), A.readTransformAsMatrix( 0.6 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.7 ), A.readTransformAsMatrix( 0.7 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.8 ), A.readTransformAsMatrix( 0.8 / 8 ) ) self.assertEqual( Aa.readTransformAsMatrix( 0.9 ), A.readTransformAsMatrix( 0.9 / 8 ) ) def readSavedScenes( self, fileVersion ): def recurseCompare( basePath, virtualScene, realScene, atLink = True ) : self.assertEqual( basePath, virtualScene.path() ) if atLink : self.assertEqual( set(virtualScene.readTags(IECore.SceneInterface.TagFilter.DescendantTag)), set(realScene.readTags(IECore.SceneInterface.TagFilter.DescendantTag)) ) else: # attributes and tranforms at link location are not loaded. self.assertEqual( set(virtualScene.attributeNames()), set(realScene.attributeNames()) ) for attr in realScene.attributeNames() : self.assertTrue( virtualScene.hasAttribute( attr ) ) self.assertEqual( virtualScene.numAttributeSamples(attr), realScene.numAttributeSamples(attr) ) for s in xrange(0,virtualScene.numAttributeSamples(attr)) : self.assertEqual( virtualScene.readAttributeAtSample(attr, s), realScene.readAttributeAtSample(attr, s) ) self.assertEqual( virtualScene.numTransformSamples(), realScene.numTransformSamples() ) for s in xrange(0,virtualScene.numTransformSamples()) : self.assertEqual( virtualScene.readTransformAtSample(s), realScene.readTransformAtSample(s) ) self.assertEqual( set(virtualScene.readTags()), set(realScene.readTags()) ) self.assertEqual( set(virtualScene.readTags(IECore.SceneInterface.TagFilter.LocalTag|IECore.SceneInterface.TagFilter.DescendantTag)), set(realScene.readTags(IECore.SceneInterface.TagFilter.LocalTag|IECore.SceneInterface.TagFilter.DescendantTag)) ) self.assertEqual( virtualScene.numBoundSamples(), realScene.numBoundSamples() ) for s in xrange(0,virtualScene.numBoundSamples()) : self.assertEqual( virtualScene.readBoundAtSample(s), realScene.readBoundAtSample(s) ) self.assertEqual( virtualScene.hasObject(), realScene.hasObject() ) if virtualScene.hasObject() : self.assertEqual( virtualScene.numObjectSamples(), realScene.numObjectSamples() ) for s in xrange(0,virtualScene.numObjectSamples()) : self.assertEqual( virtualScene.readObjectAtSample(s), realScene.readObjectAtSample(s) ) self.assertEqual( set(virtualScene.childNames()), set(realScene.childNames()) ) for c in virtualScene.childNames() : self.assertTrue( virtualScene.hasChild(c) ) recurseCompare( basePath + [ str(c) ], virtualScene.child(c), realScene.child(c), False ) env = IECore.LinkedScene( "test/IECore/data/sccFiles/environment%s.lscc" % fileVersion, IECore.IndexedIO.OpenMode.Read ) # created by testWriting() when generateTestFiles=True and testFilesSuffix is defined. l = IECore.LinkedScene( "test/IECore/data/sccFiles/instancedSpheres%s.lscc" % fileVersion, IECore.IndexedIO.OpenMode.Read ) # created by testWriting() when generateTestFiles=True and testFilesSuffix is defined. m = IECore.SceneCache( "test/IECore/data/sccFiles/animatedSpheres.scc", IECore.IndexedIO.OpenMode.Read ) base = env.child('base') self.assertEqual( set(base.childNames()), set(['test1','test2','test3','test4','test5']) ) test1 = base.child('test1') self.assertEqual( test1.path(), [ "base", "test1" ] ) recurseCompare( test1.path(), test1, l ) test2 = base.child('test2') self.assertEqual( test2.path(), [ "base", "test2" ] ) recurseCompare( test2.path(), test2, l.child('instance0') ) test3 = base.child('test3') self.assertEqual( test3.path(), [ "base", "test3" ] ) recurseCompare( test3.path(), test3, l.child('instance1') ) test4 = base.child('test4') self.assertEqual( test4.path(), [ "base", "test4" ] ) recurseCompare( test4.path(), test4, l.child('instance2') ) test5 = base.child('test5') self.assertEqual( test5.path(), [ "base", "test5" ] ) recurseCompare( test5.path(), test5, l.child('instance1').child('A') ) # attributes like sceneInterface:link.root, sceneInterface:link.fileName, and sceneInterface:link.time shouldn't show up at links, although they might be there... self.assertEqual( test1.child('instance0').attributeNames(), [] ) self.assertEqual( test1.child('instance1').attributeNames(), [ 'testAttr' ] ) self.assertEqual( test1.child('instance2').attributeNames(), [] ) # hasAttribute should tell the truth though... self.assertEqual( test1.child('instance0').hasAttribute( "sceneInterface:link.fileName" ), True ) self.assertEqual( test1.child('instance0').hasAttribute( "sceneInterface:link.root" ), True ) self.assertEqual( test1.child('instance1').hasAttribute( "sceneInterface:link.fileName" ), True ) self.assertEqual( test1.child('instance1').hasAttribute( "sceneInterface:link.root" ), True ) self.assertEqual( test1.child('instance2').hasAttribute( "sceneInterface:link.fileName" ), True ) self.assertEqual( test1.child('instance2').hasAttribute( "sceneInterface:link.root" ), True ) self.assertEqual( test1.child('instance0').path(), [ "base", "test1", "instance0" ] ) recurseCompare( test1.child('instance0').path(), test1.child('instance0'), m ) recurseCompare( test2.path(), test2, m ) recurseCompare( test3.path(), test3, m ) recurseCompare( test4.path(), test4, m.child('A') ) recurseCompare( test5.path(), test5, m.child('A') ) recurseCompare( test1.path(), env.scene( [ 'base', 'test1' ] ), l ) recurseCompare( test1.path(), env.scene( [ 'base' ] ).child( 'test1' ), l ) def testReadingFormats( self ): self.readSavedScenes( "" ) # tests first LinkedScene file format, with tags represented under the entry "tags" self.readSavedScenes( "_newTags" ) # tests second LinkedScene file format, with tags represented in separated entries: "localTags", "descendentTags" and "ancestorTags". def testTags( self ) : def testSet( values ): return set( map( lambda s: IECore.InternedString(s), values ) ) # create a base scene l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) a = l.createChild('a') a.writeTags( [ "testA" ] ) b = l.createChild('b') b.writeTags( [ "testB" ] ) l.writeTags( [ "tags" ] ) del a, b, l # now create a linked scene that should inherit the tags from the base one, plus add other ones l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) a = l.child('a') b = l.child('b') self.assertEqual( set(l.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["testA", "testB", "tags"]) ) self.assertEqual( set(l.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["tags"]) ) self.assertEqual( set(a.readTags(IECore.SceneInterface.TagFilter.AncestorTag)), testSet(["tags"]) ) self.assertEqual( set(a.readTags(IECore.SceneInterface.TagFilter.DescendantTag)), set() ) self.assertEqual( set(a.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["testA"]) ) self.assertEqual( set(b.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["testB"]) ) self.assertEqual( set(b.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["testB"]) ) self.assertTrue( l.hasTag("testA", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertTrue( l.hasTag("testB", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertFalse( l.hasTag("testA", IECore.SceneInterface.TagFilter.LocalTag) ) self.assertFalse( l.hasTag("testB", IECore.SceneInterface.TagFilter.LocalTag) ) self.assertTrue( a.hasTag("testA", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertFalse( a.hasTag("testB", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertTrue( b.hasTag("testB", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertFalse( b.hasTag("testA", IECore.SceneInterface.TagFilter.EveryTag) ) l2 = IECore.LinkedScene( "/tmp/test2.lscc", IECore.IndexedIO.OpenMode.Write ) A = l2.createChild('A') A.writeLink( l ) A.writeTags( ['linkedA'] ) # creating tag after link B = l2.createChild('B') # creating a link to a branch of an external file. messageHandler = IECore.CapturingMessageHandler() with messageHandler : # will have warnings as the branch inherits ancestor tags... B.writeLink( a ) if not len( messageHandler.messages ): self.fail( "Was expecting a warning message when linking to a location that had ancestor tags!" ) else : for messageInfo in messageHandler.messages: if not messageInfo.message.startswith( "Detected ancestor tags" ) : self.fail( messageHandler.message ) C = l2.createChild('C') c = C.createChild('c') c.writeLink( l ) C.writeTags( [ 'C' ] ) D = l2.createChild('D') D.writeTags( [ 'D' ] ) D.writeLink( a ) # creating link after tag del l, a, b, l2, A, B, C, c, D l2 = IECore.LinkedScene( "/tmp/test2.lscc", IECore.IndexedIO.OpenMode.Read ) A = l2.child("A") Aa = A.child("a") B = l2.child("B") C = l2.child("C") c = C.child("c") ca = c.child("a") D = l2.child("D") self.assertTrue( l2.hasTag("testA", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertTrue( l2.hasTag("testB", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertFalse( l2.hasTag("t", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertEqual( set(l2.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet([]) ) self.assertEqual( set(l2.readTags(IECore.SceneInterface.TagFilter.DescendantTag)), testSet(["testA", "testB","tags", "C", "D","linkedA"]) ) self.assertEqual( set(l2.readTags(IECore.SceneInterface.TagFilter.LocalTag|IECore.SceneInterface.TagFilter.DescendantTag)), testSet(["testA", "testB","tags", "C", "D","linkedA"]) ) self.assertEqual( set(l2.readTags(IECore.SceneInterface.TagFilter.AncestorTag)), testSet([]) ) self.assertEqual( set(A.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["testA","testB", "tags","linkedA"]) ) self.assertTrue( A.hasTag( "linkedA", IECore.SceneInterface.TagFilter.EveryTag ) ) self.assertTrue( A.hasTag( "tags", IECore.SceneInterface.TagFilter.EveryTag ) ) self.assertTrue( A.hasTag( "testA", IECore.SceneInterface.TagFilter.EveryTag ) ) self.assertTrue( A.hasTag( "testB", IECore.SceneInterface.TagFilter.EveryTag ) ) self.assertFalse( A.hasTag("C", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertEqual( set(A.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["tags","linkedA"]) ) self.assertEqual( set(Aa.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["tags","testA", "linkedA"]) ) self.assertEqual( set(Aa.readTags(IECore.SceneInterface.TagFilter.AncestorTag)), testSet(["tags", "linkedA"]) ) self.assertEqual( set(Aa.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["testA"]) ) self.assertTrue( Aa.hasTag("testA", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertFalse( Aa.hasTag("testB", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertEqual( set(B.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["testA", "tags"]) ) # should not list "linkedA" as the link pointed to a child location. self.assertEqual( set(C.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["testA","testB","tags","C"]) ) self.assertEqual( set(C.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["C"]) ) self.assertEqual( set(c.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["C", "testA", "testB","tags"]) ) self.assertEqual( set(c.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["tags"]) ) self.assertEqual( set(c.readTags(IECore.SceneInterface.TagFilter.DescendantTag)), testSet([ "testA", "testB" ]) ) self.assertEqual( set(ca.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["testA"]) ) self.assertEqual( set(ca.readTags(IECore.SceneInterface.TagFilter.AncestorTag)), testSet(["C", "tags"]) ) self.assertTrue( ca.hasTag("testA", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertFalse( ca.hasTag("testB", IECore.SceneInterface.TagFilter.EveryTag) ) self.assertEqual( set(C.readTags(IECore.SceneInterface.TagFilter.LocalTag)), testSet(["C"]) ) self.assertEqual( set(D.readTags(IECore.SceneInterface.TagFilter.EveryTag)), testSet(["tags", "D", "testA"]) ) def testMissingLinkedScene( self ) : import shutil shutil.copyfile( "test/IECore/data/sccFiles/animatedSpheres.scc", "/tmp/toBeRemoved.scc" ) m = IECore.SceneCache( "/tmp/toBeRemoved.scc", IECore.IndexedIO.OpenMode.Read ) A = m.child("A") l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) i0 = l.createChild("instance0") i0.writeLink( m ) i1 = l.createChild("instance1") i1.writeLink( m ) i1.writeTransform( IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ), 0.0 ) i2 = l.createChild("instance2") i2.writeLink( A ) i2.writeTransform( IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 2, 0, 0 ) ) ), 0.0 ) del i0, i1, i2, l, m, A l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) self.assertEqual( sorted(l.childNames()), [ "instance0", "instance1", "instance2" ] ) i0 = l.child( "instance0" ) self.assertEqual( sorted(i0.childNames()), [ "A", "B" ] ) i1 = l.child( "instance1" ) self.assertEqual( sorted(i1.childNames()), [ "A", "B" ] ) i2 = l.child( "instance2" ) self.assertEqual( i2.childNames(), [ "a" ] ) del l, i0, i1, i2 os.remove( "/tmp/toBeRemoved.scc" ) IECore.SharedSceneInterfaces.clear() l = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) self.assertEqual( sorted(l.childNames()), [ "instance0", "instance1", "instance2" ] ) i0 = l.child( "instance0" ) self.assertEqual( i0.childNames(), [] ) i1 = l.child( "instance1" ) self.assertEqual( i1.childNames(), [] ) i2 = l.child( "instance2" ) self.assertEqual( i2.childNames(), [] ) def testLinkBoundTransformMismatch( self ) : scene = IECore.SceneCache( "/tmp/test.scc", IECore.IndexedIO.OpenMode.Write ) child = scene.createChild( "child" ) mesh = IECore.MeshPrimitive.createBox( IECore.Box3f( IECore.V3f( 0 ), IECore.V3f( 1 ) ) ) child.writeObject( mesh, 0 ) del scene, child child = IECore.SceneCache( "/tmp/test.scc", IECore.IndexedIO.OpenMode.Read ).child( "child" ) linked = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Write ) parent = linked.createChild( "parent" ) transform = IECore.M44dData( IECore.M44d.createTranslated( IECore.V3d( 1, 0, 0 ) ) ) parent.writeTransform( transform, 1.0 ) parent.writeObject( mesh, 1.0 ) childLink = parent.createChild( "childLink" ) childLink.writeTransform( transform, 1.0 ) childLink.writeAttribute( IECore.LinkedScene.linkAttribute, IECore.LinkedScene.linkAttributeData( child ), 1.0 ) del linked, parent, child, childLink linked = IECore.LinkedScene( "/tmp/test.lscc", IECore.IndexedIO.OpenMode.Read ) parent = linked.child( "parent" ) childLink = parent.child( "childLink" ) # there are 2 bound samples, because the link has bounds at time 0, but a transform at time 1 self.assertEqual( linked.numBoundSamples(), 2 ) self.assertEqual( parent.numBoundSamples(), 2 ) self.assertEqual( childLink.numBoundSamples(), 1 ) self.assertEqual( linked.numTransformSamples(), 1 ) self.assertEqual( parent.numTransformSamples(), 1 ) self.assertEqual( childLink.numTransformSamples(), 1 ) # object at the origin self.failUnless( LinkedSceneTest.compareBBox( childLink.readBoundAtSample( 0 ), IECore.Box3d( IECore.V3d( 0 ), IECore.V3d( 1 ) ) ) ) # transformed the childLink by ( 1, 0, 0 ) and added an object at the origin self.assertEqual( childLink.readTransformAtSample( 0 ), transform ) self.failUnless( LinkedSceneTest.compareBBox( parent.readBoundAtSample( 0 ), IECore.Box3d( IECore.V3d( 0 ), IECore.V3d( 2, 1, 1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( parent.readBoundAtSample( 0 ), parent.readBoundAtSample( 1 ) ) ) # transformed the parent by ( 1, 0, 0 ) self.assertEqual( parent.readTransformAtSample( 0 ), transform ) self.failUnless( LinkedSceneTest.compareBBox( linked.readBoundAtSample( 0 ), IECore.Box3d( IECore.V3d( 1, 0, 0 ), IECore.V3d( 3, 1, 1 ) ) ) ) self.failUnless( LinkedSceneTest.compareBBox( linked.readBoundAtSample( 0 ), linked.readBoundAtSample( 1 ) ) ) def testMemoryIndexedIOReadWrite( self ) : # create inital file structure in memory: mio = IECore.MemoryIndexedIO( IECore.CharVectorData(), IECore.IndexedIO.OpenMode.Write ) # write to the actual linkedscene: scc = IECore.SceneCache( mio ) l = IECore.LinkedScene( scc ) c0 = l.createChild("child0") c1 = l.createChild("child1") c0.writeAttribute( "testAttr", IECore.StringData("test0"), 0 ) c1.writeAttribute( "testAttr", IECore.StringData("test1"), 0 ) # write the "file" to memory del l, scc, c0, c1 # can we read it back again? mioData = mio.buffer() mio = IECore.MemoryIndexedIO( mioData, IECore.IndexedIO.OpenMode.Read ) scc = IECore.SceneCache( mio ) l = IECore.LinkedScene( scc ) self.assertEqual( set( l.childNames() ), set( ["child0", "child1"] ) ) # no write access! self.assertRaises( RuntimeError, l.createChild, "child2" ) c0 = l.child("child0") c1 = l.child("child1") self.assertEqual( c0.readAttribute( "testAttr", 0 ), IECore.StringData( "test0" ) ) self.assertEqual( c1.readAttribute( "testAttr", 0 ), IECore.StringData( "test1" ) ) if __name__ == "__main__": unittest.main()
bsd-3-clause
6,922,035,895,185,708,000
51.222672
251
0.716671
false
aashish24/dataset
dataset/persistence/table.py
1
13492
import logging from itertools import count from sqlalchemy.sql import and_, expression from sqlalchemy.schema import Column, Index from dataset.persistence.util import guess_type from dataset.persistence.util import ResultIter from dataset.util import DatasetException log = logging.getLogger(__name__) class Table(object): def __init__(self, database, table): self.indexes = dict([(i.name, i) for i in table.indexes]) self.database = database self.table = table self._is_dropped = False @property def columns(self): """ Get a listing of all columns that exist in the table. >>> print 'age' in table.columns True """ return set(self.table.columns.keys()) def drop(self): """ Drop the table from the database, deleting both the schema and all the contents within it. Note: the object will raise an Exception if you use it after dropping the table. If you want to re-create the table, make sure to get a fresh instance from the :py:class:`Database <dataset.Database>`. """ self.database._acquire() self._is_dropped = True self.database._tables.pop(self.table.name, None) self.table.drop(self.database.engine) def _check_dropped(self): if self._is_dropped: raise DatasetException('the table has been dropped. this object should not be used again.') def insert(self, row, ensure=True, types={}): """ Add a row (type: dict) by inserting it into the table. If ``ensure`` is set, any of the keys of the row are not table columns, they will be created automatically. During column creation, ``types`` will be checked for a key matching the name of a column to be created, and the given SQLAlchemy column type will be used. Otherwise, the type is guessed from the row value, defaulting to a simple unicode field. :: data = dict(title='I am a banana!') table.insert(data) """ self._check_dropped() if ensure: self._ensure_columns(row, types=types) res = self.database.executable.execute(self.table.insert(row)) return res.lastrowid def insert_many(self, rows, chunk_size=1000, ensure=True, types={}): """ Add many rows at a time, which is significantly faster than adding them one by one. Per default the rows are processed in chunks of 1000 per commit, unless you specify a different ``chunk_size``. See :py:meth:`insert() <dataset.Table.insert>` for details on the other parameters. :: rows = [dict(name='Dolly')] * 10000 table.insert_many(rows) """ def _process_chunk(chunk): if ensure: for row in chunk: self._ensure_columns(row, types=types) self.table.insert().execute(chunk) self._check_dropped() chunk = [] i = 0 for row in rows: chunk.append(row) i += 1 if i == chunk_size: _process_chunk(chunk) chunk = [] i = 0 if i > 0: _process_chunk(chunk) def update(self, row, keys, ensure=True, types={}): """ Update a row in the table. The update is managed via the set of column names stated in ``keys``: they will be used as filters for the data to be updated, using the values in ``row``. :: # update all entries with id matching 10, setting their title columns data = dict(id=10, title='I am a banana!') table.update(data, ['id']) If keys in ``row`` update columns not present in the table, they will be created based on the settings of ``ensure`` and ``types``, matching the behavior of :py:meth:`insert() <dataset.Table.insert>`. """ # check whether keys arg is a string and format as a list if isinstance(keys, basestring): keys = [keys] self._check_dropped() if not len(keys) or len(keys)==len(row): return False clause = [(u, row.get(u)) for u in keys] """ Don't update the key itself, so remove any keys from the row dict """ for key in keys: if key in row.keys(): del row[key] if ensure: self._ensure_columns(row, types=types) try: filters = self._args_to_clause(dict(clause)) stmt = self.table.update(filters, row) rp = self.database.executable.execute(stmt) return rp.rowcount > 0 except KeyError: return False def upsert(self, row, keys, ensure=True, types={}): """ An UPSERT is a smart combination of insert and update. If rows with matching ``keys`` exist they will be updated, otherwise a new row is inserted in the table. :: data = dict(id=10, title='I am a banana!') table.upsert(data, ['id']) """ # check whether keys arg is a string and format as a list if isinstance(keys, basestring): keys = [keys] self._check_dropped() if ensure: self.create_index(keys) filters = {} for key in keys: filters[key] = row.get(key) if self.find_one(**filters) is not None: self.update(row, keys, ensure=ensure, types=types) else: self.insert(row, ensure=ensure, types=types) def delete(self, **_filter): """ Delete rows from the table. Keyword arguments can be used to add column-based filters. The filter criterion will always be equality: .. code-block:: python table.delete(place='Berlin') If no arguments are given, all records are deleted. """ self._check_dropped() if len(_filter) > 0: q = self._args_to_clause(_filter) stmt = self.table.delete(q) else: stmt = self.table.delete() self.database.executable.execute(stmt) def _ensure_columns(self, row, types={}): for column in set(row.keys()) - set(self.table.columns.keys()): if column in types: _type = types[column] else: _type = guess_type(row[column]) log.debug("Creating column: %s (%s) on %r" % (column, _type, self.table.name)) self.create_column(column, _type) def _args_to_clause(self, args): self._ensure_columns(args) clauses = [] for k, v in args.items(): if isinstance(v, list) or isinstance(v, tuple): clauses.append(self.table.c[k].in_(v)) else: clauses.append(self.table.c[k] == v) return and_(*clauses) def create_column(self, name, type): """ Explicitely create a new column ``name`` of a specified type. ``type`` must be a `SQLAlchemy column type <http://docs.sqlalchemy.org/en/rel_0_8/core/types.html>`_. :: table.create_column('created_at', sqlalchemy.DateTime) """ self._check_dropped() self.database._acquire() try: if name not in self.table.columns.keys(): col = Column(name, type) col.create(self.table, connection=self.database.executable) finally: self.database._release() def create_index(self, columns, name=None): """ Create an index to speed up queries on a table. If no ``name`` is given a random name is created. :: table.create_index(['name', 'country']) """ self._check_dropped() if not name: sig = abs(hash('||'.join(columns))) name = 'ix_%s_%s' % (self.table.name, sig) if name in self.indexes: return self.indexes[name] try: self.database._acquire() columns = [self.table.c[c] for c in columns] idx = Index(name, *columns) idx.create(self.database.engine) except: idx = None finally: self.database._release() self.indexes[name] = idx return idx def find_one(self, **_filter): """ Works just like :py:meth:`find() <dataset.Table.find>` but returns one result, or None. :: row = table.find_one(country='United States') """ self._check_dropped() args = self._args_to_clause(_filter) query = self.table.select(whereclause=args, limit=1) rp = self.database.executable.execute(query) return rp.fetchone() def _args_to_order_by(self, order_by): if order_by[0] == '-': return self.table.c[order_by[1:]].desc() else: return self.table.c[order_by].asc() def find(self, _limit=None, _offset=0, _step=5000, order_by='id', **_filter): """ Performs a simple search on the table. Simply pass keyword arguments as ``filter``. :: results = table.find(country='France') results = table.find(country='France', year=1980) Using ``_limit``:: # just return the first 10 rows results = table.find(country='France', _limit=10) You can sort the results by single or multiple columns. Append a minus sign to the column name for descending order:: # sort results by a column 'year' results = table.find(country='France', order_by='year') # return all rows sorted by multiple columns (by year in descending order) results = table.find(order_by=['country', '-year']) By default :py:meth:`find() <dataset.Table.find>` will break the query into chunks of ``_step`` rows to prevent huge tables from being loaded into memory at once. For more complex queries, please use :py:meth:`db.query() <dataset.Database.query>` instead.""" self._check_dropped() if isinstance(order_by, (str, unicode)): order_by = [order_by] order_by = filter(lambda o: o in self.table.columns, order_by) order_by = [self._args_to_order_by(o) for o in order_by] args = self._args_to_clause(_filter) # query total number of rows first count_query = self.table.count(whereclause=args, limit=_limit, offset=_offset) rp = self.database.executable.execute(count_query) total_row_count = rp.fetchone()[0] if _step is None or _step is False or _step == 0: _step = total_row_count if total_row_count > _step and len(order_by) == 0: _step = total_row_count log.warn("query cannot be broken into smaller sections because it is unordered") queries = [] for i in count(): qoffset = _offset + (_step * i) qlimit = _step if _limit is not None: qlimit = min(_limit - (_step * i), _step) if qlimit <= 0: break if qoffset > total_row_count: break queries.append(self.table.select(whereclause=args, limit=qlimit, offset=qoffset, order_by=order_by)) return ResultIter((self.database.executable.execute(q) for q in queries)) def __len__(self): """ Returns the number of rows in the table. """ d = self.database.query(self.table.count()).next() return d.values().pop() def distinct(self, *columns, **_filter): """ Returns all rows of a table, but removes rows in with duplicate values in ``columns``. Interally this creates a `DISTINCT statement <http://www.w3schools.com/sql/sql_distinct.asp>`_. :: # returns only one row per year, ignoring the rest table.distinct('year') # works with multiple columns, too table.distinct('year', 'country') # you can also combine this with a filter table.distinct('year', country='China') """ self._check_dropped() qargs = [] try: columns = [self.table.c[c] for c in columns] for col, val in _filter.items(): qargs.append(self.table.c[col] == val) except KeyError: return [] q = expression.select(columns, distinct=True, whereclause=and_(*qargs), order_by=[c.asc() for c in columns]) return self.database.query(q) def all(self): """ Returns all rows of the table as simple dictionaries. This is simply a shortcut to *find()* called with no arguments. :: rows = table.all()""" return self.find() def __iter__(self): """ Allows for iterating over all rows in the table without explicetly calling :py:meth:`all() <dataset.Table.all>`. :: for row in table: print row """ return self.all()
mit
4,836,438,356,623,720,000
33.863049
109
0.552698
false
alisonbnt/watchtower
tower/elements/water.py
1
1249
exports = { "name": "Water", "aspects": { "amulets": [ { "item": "sailor", "effect": "health", "description": "By knowing the tides, your way home will be " "easier and faster." }, { "item": "wizard", "effect": "hit", "description": "Water runs in it's own course. Water seeks " "peace, but can cause harm when needed. " "More accurate attacks" } ], "potions": [ { "item": "youth", "effect": "health", "description": "Water carries away the meaning " "of time and space. Water can restore life, or " "destroy it quickly. Less health for opponents" }, { "item": "purity", "effect": "hit", "description": "Water cleans not only the body but doubt and " "fear. Raised hit ratio" } ] }, "traces": ['gemini', 'libra', 'aquarius'] }
mit
-1,760,138,044,276,598,500
33.694444
79
0.377102
false
wooga/airflow
airflow/providers/apache/hive/sensors/hive_partition.py
1
3014
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.providers.apache.hive.hooks.hive import HiveMetastoreHook from airflow.sensors.base_sensor_operator import BaseSensorOperator from airflow.utils.decorators import apply_defaults class HivePartitionSensor(BaseSensorOperator): """ Waits for a partition to show up in Hive. Note: Because ``partition`` supports general logical operators, it can be inefficient. Consider using NamedHivePartitionSensor instead if you don't need the full flexibility of HivePartitionSensor. :param table: The name of the table to wait for, supports the dot notation (my_database.my_table) :type table: str :param partition: The partition clause to wait for. This is passed as is to the metastore Thrift client ``get_partitions_by_filter`` method, and apparently supports SQL like notation as in ``ds='2015-01-01' AND type='value'`` and comparison operators as in ``"ds>=2015-01-01"`` :type partition: str :param metastore_conn_id: reference to the metastore thrift service connection id :type metastore_conn_id: str """ template_fields = ('schema', 'table', 'partition',) ui_color = '#C5CAE9' @apply_defaults def __init__(self, table, partition="ds='{{ ds }}'", metastore_conn_id='metastore_default', schema='default', poke_interval=60 * 3, *args, **kwargs): super().__init__( poke_interval=poke_interval, *args, **kwargs) if not partition: partition = "ds='{{ ds }}'" self.metastore_conn_id = metastore_conn_id self.table = table self.partition = partition self.schema = schema def poke(self, context): if '.' in self.table: self.schema, self.table = self.table.split('.') self.log.info( 'Poking for table %s.%s, partition %s', self.schema, self.table, self.partition ) if not hasattr(self, 'hook'): hook = HiveMetastoreHook( metastore_conn_id=self.metastore_conn_id) return hook.check_for_partition( self.schema, self.table, self.partition)
apache-2.0
333,490,660,544,972,600
39.72973
91
0.661911
false
Heufneutje/PyHeufyBot
heufybot/bot.py
1
4502
from twisted.internet import reactor from twisted.internet.task import LoopingCall from heufybot.config import Config from heufybot.factory import HeufyBotFactory from heufybot.modulehandler import ModuleHandler from heufybot.utils.timeutils import now import os, shelve, sys # Try to enable SSL support try: from twisted.internet import ssl except ImportError: ssl = None class HeufyBot(object): def __init__(self, configFile): self.config = Config(configFile) self.connectionFactory = HeufyBotFactory(self) self.log = None self.moduleHandler = ModuleHandler(self) self.servers = {} self.storage = None self.storageSync = None self.startTime = now() def startup(self): if ssl is None: self.log.warn("The PyOpenSSL package was not found. You will not be able to connect to servers using SSL.") self.log.info("Loading configuration file...") self.config.loadConfig() self.log.info("Loading storage...") self.storage = shelve.open(self.config.itemWithDefault("storage_path", "heufybot.db")) self.storageSync = LoopingCall(self.storage.sync) self.storageSync.start(self.config.itemWithDefault("storage_sync_interval", 5), now=False) self.log.info("Loading modules...") self.moduleHandler.loadAllModules() self.log.info("Initiating connections...") self._initiateConnections() self.log.info("Starting reactor...") reactor.run() def _initiateConnections(self): for server in self.config["servers"].iterkeys(): self.connectServer(server) def connectServer(self, host): if host in self.servers: error = "A connection to {} was requested, but already exists.".format(host) self.log.warn(error) return error if host not in self.config["servers"]: error = "A connection to {} was requested, but there is no config data for this server.".format(host) self.log.warn(error) return error port = int(self.config.serverItemWithDefault(host, "port", 6667)) if self.config.serverItemWithDefault(host, "ssl", False): self.log.info("Attempting secure connection to {host}/{port}...", host=host, port=port) if ssl is not None: reactor.connectSSL(host, port, self.connectionFactory, ssl.ClientContextFactory()) else: self.log.error("Can't connect to {host}/{port}; PyOpenSSL is required to allow secure connections.", host=host, port=port) else: self.log.info("Attempting connection to {host}/{port}...", host=host, port=port) reactor.connectTCP(host, port, self.connectionFactory) def disconnectServer(self, host, quitMessage = "Quitting..."): if host not in self.servers: error = "A disconnect from {} was requested, but this connection doesn't exist.".format(host) self.log.warn(error) return error self.servers[host].disconnect(quitMessage, True) def reconnectServer(self, host, quitMessage = "Reconnecting..."): if host not in self.servers: error = "A reconnect to {} was requested, but this connection doesn't exist.".format(host) self.log.warn(error) return error self.servers[host].disconnect(quitMessage) def shutdown(self, quitMessage = "Shutting down..."): serversCopy = self.servers.copy() for server in serversCopy.itervalues(): server.disconnect(quitMessage, True) def restart(self, quitMessage = "Restarting..."): reactor.addSystemEventTrigger("after", "shutdown", lambda: os.execl(sys.executable, sys.executable, *sys.argv)) self.shutdown(quitMessage) def countConnections(self): if len(self.servers) == 0: self.log.info("No more connections alive, shutting down...") # If we have any connections that have been started but never finished, stop trying self.connectionFactory.stopTrying() self.log.info("Closing storage...") if self.storageSync.running: self.storageSync.stop() self.storage.close() self.log.info("Unloading modules...") self.moduleHandler.unloadAllModules() self.log.info("Stopping reactor...") reactor.stop()
mit
-3,110,336,336,444,037,000
42.708738
119
0.637272
false
carpedm20/between
between/client.py
1
15097
# -*- coding: UTF-8 -*- """ between.client ~~~~~~~~~~~~~~ This module contains the client for Between. """ import json import requests import websocket from uuid import uuid1 from datetime import datetime from mimetypes import MimeTypes from random import random, choice from .utils import make_url from .models import Person, Message, Image from .preloads import sticker_tokens from .exceptions import LoginError, AuthenticateError, MessageError class Client(object): """A client for the Between. See http://github.com/carpedm20/between for complete documentation for the API. """ def __init__(self, email, password, debug=True, user_agent=None): """A client for the Between :param email: Between account `email` :param password: Between account password import between client = between.Client(email, password) """ self.email = email self.headers = {'User-Agent': 'python-between/1.0.0'} self.uuid = str(uuid1()) self.me = None self.lover = None self._session = requests.Session() self._request_id = 0 self.login(email, password) self.start() def start(self): self.get_status() self.set_device() self.get_endpoints() self.authenticate() def get(self, url, payload=None, is_json=True): r = self._session.get(make_url(url), params=payload, headers=self.headers) if is_json: return json.loads(r.text) else: return r.text def post(self, url, files=None, payload=None, is_json=True): r = self._session.post(make_url(url), data=payload, headers=self.headers, files=files) if is_json: return json.loads(r.text) else: return r.text def delete(self, url, files=None, payload=None, is_json=True): r = self._session.delete(make_url(url), data=payload, headers=self.headers, files=files) if is_json: return json.loads(r.text) else: return r.text def login(self, email, password): """Login to Between server :param email: Between account `email` :param password: Between account password """ payload = { "email" : email, "password" : password, "session[type]" : "S_WINDOWS", "session[name]" : "carpedm20", } j = self.get("/authentication/getAccessTokenV2", payload) if j.has_key("error"): raise LoginError(j["error"]["message"]) self.access_token = j["access_token"] self.account_id = j["account_id"] self.expires_at = j["expires_at"] self.relationship_id = j["relationship_id"] self.session_id = j["session_id"] # account_id + "xxx" self.user_id = j["user_id"] self.headers["x-between-authorization"] = self.access_token def authenticate(self): payload = { "name" : "basicAuthenticate", "body" : { "access_token" : self.access_token, "user_agent" : "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Between-PC/0.3.1 Safari/537.36", "device_uuid" : self.uuid } } j = self._send("/authentication", payload) if not j["m"]["body"]["success"]: raise AuthenticateError(j) payload = {"name" : "get"} j = self._send("/%s/threads" % self.user_id, payload) data = j["m"]["body"]["data"][0] self.thread_id = data["id"] self.chatroom = data["chatroom"] self.chatroom_id = data["chatroom_id"] payload = { "name" : "batch", "body" : { "requests":[ { "objectName" : "SUBSCRIPTIONS", "path" : "/subscriptions", "subscriptionsReq":{ "methodName" : "ADD_V4", "addV4Req":{ "subscriptions":[ { "path" : "/%s" % self.thread_id, "recursive":True }, { "path" : "/%s" % self.chatroom_id, "recursive":True }, { "path" : "/%s/push" % self.account_id, "recursive":True, "push_priority" : "HIGH" } ] } } }, { "objectName" : "CHAT_ROOM", "path" : "/%s" % self.chatroom_id, "chatRoomReq":{ "methodName" : "GET" } } ] } } j = self._send("/batch", payload) if not j["m"]["body"]["data"][0]["success"]: raise AuthenticateError(j) def send(self, content): """Send a message :param content: message content to send """ try: content = content.decode('utf-8') except: pass payload = { "name" : "batch", "body" : { "requests":[ { "objectName" : "MESSAGES", "path" : "/%s/messages" % self.thread_id, "messagesReq" : { "methodName" : "ADD", "addReq" : { "message" : { "content" : content } } } }, { "objectName" : "CHAT_MEMBER_STATE", "path" : "/chatMemberState", "chatMemberStateReq" : { "methodName" : "EDIT", "editReq" : { "state_param" : { "state" : "ST_ACTIVE" } } } } ] } } j = self._send("/batch", payload) #if not j["m"]["body"]["data"][0]["success"]: # raise MessageError(j) def send_sticker(self, sticker_id=None): """Send a sticker :param sticker: message content to send """ if not sticker_id: sticker_id = choice(sticker_tokens.keys()) try: token = sticker_tokens[sticker_id] except: raise MessageError("Don't have sticker token information of %s" % sticker_id) payload = { "name" : "batch", "body" : { "requests":[ { "objectName" : "MESSAGES", "path" : "/%s/messages" % self.thread_id, "messagesReq" : { "methodName" : "ADD", "addReq" : { "message" : { "attachments" : [ { "attachment_type" : "T_STICKER_V2", "sticker" : { "sticker_id" : str(sticker_id), "sticker_token" : token } } ] } } } }, { "objectName" : "CHAT_MEMBER_STATE", "path" : "/chatMemberState", "chatMemberStateReq" : { "methodName" : "EDIT", "editReq" : { "state_param" : { "state" : "ST_ACTIVE" } } } } ] } } j = self._send("/batch", payload) #if not j["m"]["body"]["data"][0]["success"]: # raise MessageError(j) def send_image(self, path=None, image_id=None): """Send an image :param path: path of image to upload """ if not path and not image_id: raise MessageError("path or image_id should be passed") if not image_id: image_id = self.upload_image(path)._id payload = { "name" : "batch", "body" : { "requests":[ { "objectName" : "MESSAGES", "path" : "/%s/messages" % self.thread_id, "messagesReq" : { "methodName" : "ADD", "addReq" : { "message" : { "attachments" : [ { "attachment_type" : "T_IMAGE", "reference" : image_id } ] } } } }, { "objectName" : "CHAT_MEMBER_STATE", "path" : "/chatMemberState", "chatMemberStateReq" : { "methodName" : "EDIT", "editReq" : { "state_param" : { "state" : "ST_ACTIVE" } } } } ] } } j = self._send("/batch", payload) #if not j["m"]["body"]["data"][0]["success"]: # raise MessageError(j) def get_images(self, limit=64): """Get uploaded images :param limit: the maximum number of images """ payload = { "range[limit]" : limit, "file_types[]" : "FT_IMAGE", "file_types[]" : "FT_VOUCHER" } #j = self.get("/%s/messages/byFileType" % self.thread_id, payload) url = "/%s/messages/byFileType?range[limit]=%s&file_types[]=FT_IMAGE&file_types[]=FT_VOUCHER" % (self.thread_id, limit) j = self.get(url) if j["status"] == "ERROR": raise MessageError(j) return j def get_recent_messages(self, limit=32): """Get recent messages :param limit: the maximum number of messages """ payload = { "name" : "getV4", "body" : { "range" : { "limit" : limit }, "glimpse" : True } } j = self._send("/%s/messages" % self.thread_id, payload) recent_messages = [] for message in j["m"]["body"]["data"]: recent_messages.append(Message(message)) return recent_messages def mark_read_message(self, message_id): """Mark a message as be read :param message_id: message_id to mark to be read """ payload = { "name" : "readMessages", "body" : { "message_id" : message_id } } return self._send("/%s/messages" % self.thread_id, payload) def _send(self, path, message, c=1, v=1): """Send websocket message :param path: command to execute :param message: message to send :param c: (optional) ? :param v: (optional) ? """ message["type"] = "CALL" payload = { "c" : c, "v" : v, "#" : self._request_id, "p" : path, "m" : message } msg = str(payload).replace("u'","'").replace("'",'"').replace("True","true") try: self._websocket.send(msg) except: self.start() self._websocket.send(msg) self._request_id += 1 result = self._websocket.recv() return json.loads(result) def upload_image(self, path): """Upload an image to Between server :param path: path of file to upload """ mime_type = MimeTypes().guess_type(path)[0] files = { 'file_body': open(path) } j = self.post("/%s/files/uploadPhoto" % self.user_id, files=files) image = Image(j['image'], _id=j['id']) return image def get_status(self): j = self.get("/%s/views/status" % self.relationship_id) for user in j['users']: if user['email'] == self.email: self.me = Person(user) else: self.lover = Person(user) return j def get_endpoints(self): j = self.get("/info/endpoints") self.message_endpoints = j['message'] self._websocket_url = "%s&access_token=%s" % (j['websocket'][0], self.access_token) self._websocket = websocket.create_connection(self._websocket_url) return j def run_forever(self, on_message, on_error=None, on_close=None): """Long polling method :param on_message: method that will executed when message is arrived. """ self._websocket_app = websocket.WebSocketApp(self._websocket_url, on_message = on_message, on_error = on_error, on_close = on_close) self.run_forever_mode = True self._websocket_app.run_forever() def set_device(self, os_type="D_WINDOWS"): payload = { "type" : os_type } j = self.get("/%s/device" % self.session_id, payload) return j def delete_session(self): j = self.delete('/%s/' % self.session_id) return j def __del__(self): j = self.get_status() j = self.delete_session() return j['value']
bsd-3-clause
-5,605,430,828,047,814,000
30.783158
139
0.400411
false
nektor211/imgaug
tests/check_noise.py
1
2519
from __future__ import print_function, division import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from scipy import misc import numpy as np from skimage import data import cv2 def main(): nb_rows = 8 nb_cols = 8 h, w = (128, 128) sample_size = 128 noise_gens = [ iap.SimplexNoise(), iap.FrequencyNoise(exponent=-4, size_px_max=sample_size, upscale_method="cubic"), iap.FrequencyNoise(exponent=-2, size_px_max=sample_size, upscale_method="cubic"), iap.FrequencyNoise(exponent=0, size_px_max=sample_size, upscale_method="cubic"), iap.FrequencyNoise(exponent=2, size_px_max=sample_size, upscale_method="cubic"), iap.FrequencyNoise(exponent=4, size_px_max=sample_size, upscale_method="cubic"), iap.FrequencyNoise(exponent=(-4, 4), size_px_max=(4, sample_size), upscale_method=["nearest", "linear", "cubic"]), iap.IterativeNoiseAggregator( other_param=iap.FrequencyNoise(exponent=(-4, 4), size_px_max=(4, sample_size), upscale_method=["nearest", "linear", "cubic"]), iterations=(1, 3), aggregation_method=["max", "avg"] ), iap.IterativeNoiseAggregator( other_param=iap.Sigmoid( iap.FrequencyNoise(exponent=(-4, 4), size_px_max=(4, sample_size), upscale_method=["nearest", "linear", "cubic"]), threshold=(-10, 10), activated=0.33, mul=20, add=-10 ), iterations=(1, 3), aggregation_method=["max", "avg"] ) ] samples = [[] for _ in range(len(noise_gens))] for _ in range(nb_rows * nb_cols): for i, noise_gen in enumerate(noise_gens): samples[i].append(noise_gen.draw_samples((h, w))) rows = [np.hstack(row) for row in samples] grid = np.vstack(rows) misc.imshow((grid*255).astype(np.uint8)) images = [ia.quokka_square(size=(128, 128)) for _ in range(16)] seqs = [ iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0)), iaa.SimplexNoiseAlpha(first=iaa.EdgeDetect(1.0), per_channel=True), iaa.FrequencyNoiseAlpha(first=iaa.EdgeDetect(1.0)), iaa.FrequencyNoiseAlpha(first=iaa.EdgeDetect(1.0), per_channel=True) ] images_aug = [] for seq in seqs: images_aug.append(np.hstack(seq.augment_images(images))) images_aug = np.vstack(images_aug) misc.imshow(images_aug) if __name__ == "__main__": main()
mit
3,232,499,235,980,668,000
37.166667
138
0.611354
false
gusnaughton/orbit
orbit/pyencoding.py
1
4918
# thrown when there isn't enough data from _codecs import utf_8_decode import struct big_endian, little_endian = range(2) packEndians = { big_endian: '>', little_endian: '<' } class ReadException(Exception): pass # endian is here for automatic struct.packing purposes def packByte(b, endian=big_endian): return struct.pack('%sB' % packEndians[endian], b) def packSByte(endian=big_endian): return struct.pack('%sb' % packEndians[endian], b) def packShort(endian=big_endian): return struct.pack('%sh' % packEndians[endian], s) def packUShort(s, endian=big_endian): return struct.pack('%sH' % packEndians[endian], s) def packInt(i, endian=big_endian): return struct.pack('%si' % packEndians[endian], i) def packUInt(i, endian=big_endian): return struct.pack('%sI' % packEndians[endian], i) def packLong(i, endian=big_endian): return struct.pack('%sq' % packEndians[endian], i) def packULong(i, endian=big_endian): return struct.pack('%sQ' % packEndians[endian], i) # All of the names of the compiled structs on the reader object # This makes dealing with endians faster compiled_struct_names = [ ('struct_sbyte', '%sb'), ('struct_short', '%sh'), ('struct_ushort', '%sH'), ('struct_int', '%si'), ('struct_uint', '%sI'), ('struct_long', '%sq'), ('struct_ulong', '%sQ'), ('struct_float', '%sf'), ('struct_double', '%sd'), ('struct_bool', '%s?'), ] class Reader(object): def __init__(self, data=None, endian=big_endian): self.index = 0 self.endian = packEndians[endian] for (struct_name, struct_prototype) in compiled_struct_names: setattr(self, struct_name, struct.Struct(struct_prototype % self.endian)) if data is None: self.data = '' else: self.data = data def addData(self, data): self.data += data def has(self, c): return len(self.data) - self.index >= c def advance(self, c): self.index += c def revert(self): self.index = 0 def commit(self): self.data = self.data[self.index:] self.index = 0 def empty(self): self.data = '' self.index = 0 def peekByte(self): if not self.has(1): raise ReadException() return ord(self.data[self.index]) def readByte(self): if not self.has(1): raise ReadException() self.advance(1) return ord(self.data[self.index - 1]) def readSByte(self): if not self.has(1): raise ReadException() self.advance(1) return self.struct_sbyte.unpack_from(self.data, self.index - 1)[0] def readChars(self, count): if not self.has(count): raise ReadException() self.advance(count) return self.data[self.index - count:self.index] def readBytes(self, count): if not self.has(count): raise ReadException() self.advance(count) return [ord(x) for x in list(self.data[self.index - count:self.index])] def readChar(self): if not self.has(1): raise ReadException() self.advance(1) return chr(self.data[self.index - 1]) def readShort(self): if not self.has(2): raise ReadException() self.advance(2) return self.struct_short.unpack_from(self.data, self.index - 2)[0] def readUShort(self): if not self.has(2): raise ReadException() self.advance(2) return self.struct_ushort.unpack_from(self.data, self.index - 2)[0] def readInt(self): if not self.has(4): raise ReadException() self.advance(4) return self.struct_int.unpack_from(self.data, self.index - 4)[0] def readUInt(self): if not self.has(4): raise ReadException() self.advance(4) return self.struct_uint.unpack_from(self.data, self.index - 4)[0] def readLong(self): if not self.has(8): raise ReadException() self.advance(8) return self.struct_long.unpack_from(self.data, self.index - 8)[0] def readULong(self): if not self.has(8): raise ReadException() self.advance(8) return self.struct_ulong.unpack_from(self.data, self.index - 8)[0] def readFloat(self): if not self.has(4): raise ReadException() self.advance(4) return self.struct_float.unpack_from(self.data, self.index - 4)[0] def readDouble(self): if not self.has(8): raise ReadException() self.advance(8) return self.struct_double.unpack_from(self.data, self.index - 8)[0] def readBool(self): if not self.has(1): raise ReadException() self.advance(1) return self.struct_bool.unpack_from(self.data, self.index - 1)[0] def readCharArray(self, len_func): if hasattr(len_func, '__call__'): l = len_func() else: l = len_func return self.readChars(l) def readArray(self, len_func, data_func, data_len=None): if hasattr(len_func, '__call__'): l = len_func() else: l = len_func if data_len is not None and not self.has(l * data_len): raise ReadException() ret = [] for i in range(l): ret.append(data_func()) return ret def readUTF8(self): l = self.readUShort() if not self.has(l): raise ReadException() ret = utf_8_decode(self.data[self.index:self.index + l])[0] self.advance(l) return ret
mit
-5,072,918,801,631,369,000
21.153153
76
0.672834
false
TobiasLohner/proSoar
prosoar/task/json_writer.py
1
1481
import json def write_json_task(task): database = {} database['type'] = task.type database['distance'] = task.distance database['aat_min_time'] = task.aat_min_time database['start_max_speed'] = task.start_max_speed database['start_max_height'] = task.start_max_height database['start_max_height_ref'] = task.start_max_height_ref database['finish_min_height'] = task.finish_min_height database['finish_min_height_ref'] = task.finish_min_height_ref database['fai_finish'] = task.fai_finish database['min_points'] = task.min_points database['max_points'] = task.max_points database['homogeneous_tps'] = task.homogeneous_tps database['is_closed'] = task.is_closed database['task_scored'] = task.task_scored for key, turnpoint in enumerate(task): database[key] = {'lon': turnpoint.lon, 'lat': turnpoint.lat, 'name': turnpoint.name, 'id': turnpoint.id, 'comment': turnpoint.comment, 'altitude': turnpoint.altitude, 'type': turnpoint.sector.type, 'radius': turnpoint.sector.radius, 'inner_radius': turnpoint.sector.inner_radius, 'start_radial': turnpoint.sector.start_radial, 'end_radial': turnpoint.sector.end_radial} return json.dumps(database, indent=1)
gpl-2.0
-5,785,154,506,445,901,000
41.314286
71
0.579338
false
andymckay/zamboni
mkt/constants/comm.py
1
5367
from tower import ugettext_lazy as _ # To add a note type: # - assign it a incremented number (MY_NOTE_TYPE = 42) # - give it a translation in NOTE_TYPES # - if adding from amo/log.py, add it to ACTION_MAP # - add the translation to Commbadge settings # Faith of the seven. NO_ACTION = 0 APPROVAL = 1 REJECTION = 2 DISABLED = 3 MORE_INFO_REQUIRED = 4 ESCALATION = 5 REVIEWER_COMMENT = 6 RESUBMISSION = 7 APPROVE_VERSION_PRIVATE = 8 ESCALATION_HIGH_ABUSE = 9 ESCALATION_HIGH_REFUNDS = 10 ESCALATION_CLEARED = 11 REREVIEW_CLEARED = 12 SUBMISSION = 13 DEVELOPER_COMMENT = 14 REVIEW_DEVICE_OVERRIDE = 15 REVIEW_FEATURES_OVERRIDE = 16 REREVIEW_MANIFEST_CHANGE = 17 REREVIEW_MANIFEST_URL_CHANGE = 18 REREVIEW_PREMIUM_TYPE_UPGRADE = 19 REREVIEW_DEVICES_ADDED = 20 REREVIEW_FEATURES_CHANGED = 21 REREVIEW_CONTENT_RATING_ADULT = 22 ESCALATION_VIP_APP = 22 ESCALATION_PRERELEASE_APP = 23 PRIORITY_REVIEW_REQUESTED = 24 ADDITIONAL_REVIEW = 25 NOTE_TYPES = { NO_ACTION: _('No action'), APPROVAL: _('Approved'), REJECTION: _('Rejected'), DISABLED: _('Banned'), MORE_INFO_REQUIRED: _('More information requested'), ESCALATION: _('Escalated'), REVIEWER_COMMENT: _('Comment'), RESUBMISSION: _('App resubmission'), APPROVE_VERSION_PRIVATE: _('Approved but private'), ESCALATION_CLEARED: _('Escalation cleared'), ESCALATION_HIGH_ABUSE: _('Escalated due to High Abuse Reports'), ESCALATION_HIGH_REFUNDS: _('Escalated due to High Refund Requests'), REREVIEW_CLEARED: _('Re-review cleared'), SUBMISSION: _('App submission notes'), DEVELOPER_COMMENT: _('Developer comment'), REVIEW_DEVICE_OVERRIDE: _('Device(s) changed by reviewer'), REVIEW_FEATURES_OVERRIDE: _('Requirement(s) changed by reviewer'), REREVIEW_MANIFEST_CHANGE: _('Rereview due to Manifest Change'), REREVIEW_MANIFEST_URL_CHANGE: _('Rereview due to Manifest URL Change'), REREVIEW_PREMIUM_TYPE_UPGRADE: _('Rrereview due to Premium Type Upgrade'), REREVIEW_DEVICES_ADDED: _('Rereview due to Devices Added'), REREVIEW_FEATURES_CHANGED: _('Rereview due to Requirements Change'), REREVIEW_CONTENT_RATING_ADULT: _('Rereview due to Adult Content Rating'), ESCALATION_VIP_APP: _('Escalation due to VIP App'), ESCALATION_PRERELEASE_APP: _('Escalation due to Prelease App'), PRIORITY_REVIEW_REQUESTED: _('Priority review requested'), ADDITIONAL_REVIEW: _('Additional review completed'), } # Note types only visible by reviewers and not developers. REVIEWER_NOTE_TYPES = ( ESCALATION, REVIEWER_COMMENT, ESCALATION_HIGH_ABUSE, ESCALATION_HIGH_REFUNDS, ESCALATION_CLEARED, REREVIEW_MANIFEST_CHANGE, REREVIEW_MANIFEST_URL_CHANGE, REREVIEW_PREMIUM_TYPE_UPGRADE, REREVIEW_DEVICES_ADDED, REREVIEW_FEATURES_CHANGED, REREVIEW_CONTENT_RATING_ADULT, ESCALATION_VIP_APP, ESCALATION_PRERELEASE_APP, PRIORITY_REVIEW_REQUESTED ) # Note types that can be created through the API view. API_NOTE_TYPE_WHITELIST = ( NO_ACTION, REVIEWER_COMMENT, DEVELOPER_COMMENT, ) def U_NOTE_TYPES(): return dict((key, unicode(value)) for (key, value) in NOTE_TYPES.iteritems()) def ACTION_MAP(activity_action): """Maps ActivityLog action ids to Commbadge note types.""" import amo if isinstance(activity_action, amo._LOG): activity_action = activity_action.id return { amo.LOG.APPROVE_VERSION.id: APPROVAL, amo.LOG.APPROVE_VERSION_PRIVATE.id: APPROVE_VERSION_PRIVATE, amo.LOG.APP_DISABLED.id: DISABLED, amo.LOG.ESCALATE_MANUAL.id: ESCALATION, amo.LOG.ESCALATE_VERSION.id: ESCALATION, amo.LOG.ESCALATION_VIP_APP.id: ESCALATION, amo.LOG.ESCALATED_HIGH_ABUSE.id: ESCALATION_HIGH_ABUSE, amo.LOG.ESCALATED_HIGH_REFUNDS.id: ESCALATION_HIGH_REFUNDS, amo.LOG.ESCALATION_CLEARED.id: ESCALATION_CLEARED, amo.LOG.REQUEST_INFORMATION.id: MORE_INFO_REQUIRED, amo.LOG.REJECT_VERSION.id: REJECTION, amo.LOG.REREVIEW_CLEARED.id: REREVIEW_CLEARED, amo.LOG.WEBAPP_RESUBMIT.id: RESUBMISSION, amo.LOG.COMMENT_VERSION.id: REVIEWER_COMMENT, amo.LOG.REVIEW_FEATURES_OVERRIDE.id: REVIEW_FEATURES_OVERRIDE, amo.LOG.REVIEW_DEVICE_OVERRIDE.id: REVIEW_DEVICE_OVERRIDE, amo.LOG.REREVIEW_MANIFEST_CHANGE.id: REREVIEW_MANIFEST_CHANGE, amo.LOG.REREVIEW_MANIFEST_URL_CHANGE.id: REREVIEW_MANIFEST_URL_CHANGE, amo.LOG.REREVIEW_PREMIUM_TYPE_UPGRADE.id: REREVIEW_PREMIUM_TYPE_UPGRADE, amo.LOG.REREVIEW_DEVICES_ADDED.id: REREVIEW_DEVICES_ADDED, amo.LOG.REREVIEW_FEATURES_CHANGED.id: REREVIEW_FEATURES_CHANGED, amo.LOG.CONTENT_RATING_TO_ADULT.id: REREVIEW_CONTENT_RATING_ADULT, amo.LOG.ESCALATION_VIP_APP.id: ESCALATION_VIP_APP, amo.LOG.ESCALATION_PRERELEASE_APP.id: ESCALATION_PRERELEASE_APP, amo.LOG.PRIORITY_REVIEW_REQUESTED.id: PRIORITY_REVIEW_REQUESTED, amo.LOG.PASS_ADDITIONAL_REVIEW.id: ADDITIONAL_REVIEW, amo.LOG.FAIL_ADDITIONAL_REVIEW.id: ADDITIONAL_REVIEW, }.get(activity_action, NO_ACTION) # Number of days a token is valid for. THREAD_TOKEN_EXPIRY = 30 # Number of times a token can be used. MAX_TOKEN_USE_COUNT = 5 MAX_ATTACH = 10 # Prefix of the reply to address in comm emails. REPLY_TO_PREFIX = 'commreply+'
bsd-3-clause
-4,813,002,732,634,742,000
35.263514
78
0.703931
false
yudingding6197/fin_script
debug/bs_record.py
1
1577
#!/usr/bin/env python # -*- coding:gbk -*- import sys import os import pandas as pd from openpyxl import Workbook from openpyxl.reader.excel import load_workbook # ͳ¼Æbuy_sellϵļǼ£¬½¨ÒéʹÓÃÉÏÒ»¼¶µÄtransaction_sum.py£¬Í³¼ÆÐÅÏ¢¸ü¶à # Main pindex = len(sys.argv) if pindex<2: sys.stderr.write("Usage: " +os.path.basename(sys.argv[0])+ " ´úÂë\n") exit(0) code = sys.argv[1] path = "../buy_sell/" file_list = [] filter_item = "A1:I1" for f in os.listdir(path): if os.path.isfile(path + f) is False: continue file_list.append(f) c_list = ['date','time','code','name','op','vol','price','amount'] df = pd.DataFrame() st_date = file_list[0][6:12] ed_date = file_list[-1][6:12] print st_date,ed_date for file in file_list: dt_str = file[6:12] if dt_str.isdigit() is False: print "Invalid file(%s) or date(%s)" % (file, dt_str) continue sheet_st = 'table' wb = load_workbook(path+file) ws = wb.get_sheet_by_name(sheet_st) for rx in range(2, ws.max_row+1): w1 = ws.cell(row = rx, column = 1).value w2 = ws.cell(row = rx, column = 2).value w3 = ws.cell(row = rx, column = 3).value w4 = ws.cell(row = rx, column = 4).value w5 = ws.cell(row = rx, column = 5).value w6 = ws.cell(row = rx, column = 6).value w7 = ws.cell(row = rx, column = 7).value w2 = "%06d" % (w2) if w2!=code: continue temp_list = [int(dt_str),w1,w2,w3,w4,w5,w6,w7] df1 = pd.DataFrame([temp_list], columns=c_list) df = df.append(df1) #print temp_list if len(df)>0: filename = "%s%s_S%s-%s_%s.xlsx" %(path, "trade/", code, st_date, ed_date) df.to_excel(filename)
gpl-2.0
-564,167,224,171,468,740
26.189655
75
0.636652
false
n3wb13/OpenNfrGui-5.0-1
lib/python/Plugins/Extensions/Infopanel/Softcam.py
1
4929
from Components.Console import Console from os import mkdir, path, remove from glob import glob from Components.config import config, ConfigSubsection, ConfigInteger, ConfigText, getConfigListEntry, ConfigSelection, ConfigIP, ConfigYesNo, ConfigSequence, ConfigNumber, NoSave, ConfigEnableDisable, configfile import os config.NFRSoftcam.camdir = ConfigText(default = "/usr/emu", fixed_size=False) config.NFRSoftcam.camconfig = ConfigText(default = "/usr/keys", fixed_size=False) def getcamcmd(cam): camname = cam.lower() xcamname = cam if getcamscript(camname): return config.NFRSoftcam.camdir.value + "/" + cam + " start" elif ".x" in camname: if "mgcamd" in camname: return config.NFRSoftcam.camdir.value + "/" + cam else: emus=[] i = 0 for fAdd in glob ('/etc/*.emu'): searchfile = open(fAdd, "r") emustart=[] cam_name = xcamname.strip(".x") for line in searchfile: if "binname" in line: emus.append(line[10:]) if cam_name in emus[i]: searchemu = open(fAdd, "r") for line in searchemu: if "startcam" in line: emustart.append(line[11:]) emustart = emustart[0].strip() cam_count_test = emustart.count(" ") start_emu = emustart.split(" ", 1 ) if (cam_count_test == 0): return config.NFRSoftcam.camdir.value + "/" + cam else: return config.NFRSoftcam.camdir.value + "/" + cam + " " + start_emu[1] i = i + 1 searchfile.close() else: if "oscam" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -bc " + \ config.NFRSoftcam.camconfig.value + "/" if "doscam" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -bc " + \ config.NFRSoftcam.camconfig.value + "/" elif "wicard" in camname: return "ulimit -s 512; " + config.NFRSoftcam.camdir.value + \ "/" + cam + " -d -c " + config.NFRSoftcam.camconfig.value + \ "/wicardd.conf" elif "camd3" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " " + \ config.NFRSoftcam.camconfig.value + "/camd3.config" elif "mbox" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " " + \ config.NFRSoftcam.camconfig.value + "/mbox.cfg" elif "cccam" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -C " + \ config.NFRSoftcam.camconfig.value + "/CCcam.cfg" elif "mgcamd" in camname: os.system("rm /dev/dvb/adapter0/ca1") os.system("ln -sf 'ca0' '/dev/dvb/adapter0/ca1'") return config.NFRSoftcam.camdir.value + "/" + cam + " -bc " + \ config.NFRSoftcam.camconfig.value + "/" elif "mpcs" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -c " + \ config.NFRSoftcam.camconfig.value elif "newcs" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -C " + \ config.NFRSoftcam.camconfig.value + "/newcs.conf" elif "vizcam" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -b -c " + \ config.NFRSoftcam.camconfig.value + "/" elif "rucam" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -b" elif "scam" in camname and not "oscam" in camname: return config.NFRSoftcam.camdir.value + "/" + cam + " -s " + \ config.NFRSoftcam.camconfig.value + "/" else: return config.NFRSoftcam.camdir.value + "/" + cam def getcamscript(cam): cam = cam.lower() if cam.endswith('.sh') or cam.startswith('softcam') or \ cam.startswith('cardserver'): return True else: return False def stopcam(cam): if getcamscript(cam): cmd = config.NFRSoftcam.camdir.value + "/" + cam + " stop" else: cmd = "killall -15 " + cam Console().ePopen(cmd) print "[NFR-SoftCam Manager] stopping", cam try: remove("/tmp/ecm.info") except: pass def __createdir(list): dir = "" for line in list[1:].split("/"): dir += "/" + line if not path.exists(dir): try: mkdir(dir) except: print "[NFR-SoftCam Manager] Failed to mkdir", dir def checkconfigdir(): if not path.exists(config.NFRSoftcam.camconfig.value): __createdir("/usr/keys") config.NFRSoftcam.camconfig.value = "/usr/keys" config.NFRSoftcam.camconfig.save() if not path.exists(config.NFRSoftcam.camdir.value): if path.exists("/usr/emu"): config.NFRSoftcam.camdir.value = "/usr/emu" else: __createdir("/usr/emu") config.NFRSoftcam.camdir.value = "/usr/emu" config.NFRSoftcam.camdir.save()
gpl-2.0
-4,713,683,582,130,165,000
38.75
213
0.577602
false
simsong/grr-insider
gui/plugins/inspect_view_test.py
1
2579
#!/usr/bin/env python # -*- mode: python; encoding: utf-8 -*- """Test the inspect interface.""" from grr.gui import runtests_test from grr.lib import flags from grr.lib import rdfvalue from grr.lib import test_lib class TestInspectView(test_lib.GRRSeleniumTest): """Test the inspect interface.""" def testInspect(self): """Test the inspect UI.""" with self.ACLChecksDisabled(): self.GrantClientApproval("C.0000000000000001") self.Open("/") self.Type("client_query", "0001") self.Click("client_query_submit") self.WaitUntilEqual(u"C.0000000000000001", self.GetText, "css=span[type=subject]") # Choose client 1 self.Click("css=td:contains('0001')") self.Click("css=a[grrtarget=LaunchFlows]") self.Click("css=#_Administrative ins") self.Click("css=a:contains(Interrogate)") self.Click("css=button.Launch") # Open the "Advanced" dropdown. self.Click("css=a[href='#HostAdvanced']") # Click on the "Debug client requests". self.Click("css=a[grrtarget=InspectView]") self.WaitUntil(self.IsElementPresent, "css=td:contains(GetPlatformInfo)") # Check that the we can see the requests in the table. for request in "GetPlatformInfo GetConfig EnumerateInterfaces".split(): self.assertTrue(self.IsElementPresent( "css=td:contains(%s)" % request)) self.Click("css=td:contains(GetPlatformInfo)") # Check that the proto is rendered inside the tab. self.WaitUntil(self.IsElementPresent, "css=.tab-content td.proto_value:contains(GetPlatformInfo)") # Check that the request tab is currently selected. self.assertTrue( self.IsElementPresent("css=li.active:contains(Request)")) # Here we emulate a mock client with no actions (None) this should produce # an error. with self.ACLChecksDisabled(): mock = test_lib.MockClient(rdfvalue.ClientURN("C.0000000000000001"), None, token=self.token) while mock.Next(): pass # Now select the Responses tab: self.Click("css=li a:contains(Responses)") self.WaitUntil(self.IsElementPresent, "css=td:contains('flow:response:')") self.assertTrue(self.IsElementPresent( "css=.tab-content td.proto_value:contains(GENERIC_ERROR)")) self.assertTrue(self.IsElementPresent( "css=.tab-content td.proto_value:contains(STATUS)")) def main(argv): # Run the full test suite runtests_test.SeleniumTestProgram(argv=argv) if __name__ == "__main__": flags.StartMain(main)
apache-2.0
6,400,125,217,869,577,000
28.306818
79
0.67119
false
weblyzard/ewrt
src/eWRT/ws/geonames/gazetteer/exception.py
1
1588
#!/usr/bin/env python """ @package eWRT.ws.geonames.gazetteer.exception exceptions related to the gazetteer class """ from __future__ import print_function # (C)opyrights 2009 by Heinz Lang <[email protected]> # Albert Weichselbraun <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. class GazetteerEntryNotFound(Exception): """ @class GazetteerEntryNotFound Base class for gazetteer lookup errors """ def __init__(self, id, query): self.id = id self.query = query print(id, query) def __str__(self): return "Gazetteer lookup for entity-id '%s' failed." % (self.id) class GazetteerNameNotFound(Exception): """ @class GazetteerNameNotFound This exception is thrown if a lookup name has not been found in the gazetteer """ def __init__(self, name): self.name = name def __str__(self): return "Gazetteer lookup of name '%s' failed." % (self.name)
gpl-3.0
-1,609,358,482,326,160,400
31.408163
85
0.687657
false
JeffDestroyerOfWorlds/hydro_examples
advection/advection.py
1
11152
""" 2nd-order accurate finite-volume implementation of linear advection with piecewise linear slope reconstruction. We are solving a_t + u a_x = 0 This script defines two classes: -- the Grid1d class that manages a cell-centered grid and holds the data that lives on that grid -- the Simulation class that is built on a Grid1d object and defines everything needed to do a advection. Options for several different slope limiters are provided. M. Zingale """ import numpy import pylab import math # helper functions for the limiting def minmod(a, b): if (abs(a) < abs(b) and a*b > 0.0): return a elif (abs(b) < abs(a) and a*b > 0.0): return b else: return 0.0 def maxmod(a, b): if (abs(a) > abs(b) and a*b > 0.0): return a elif (abs(b) > abs(a) and a*b > 0.0): return b else: return 0.0 class Grid1d: def __init__(self, nx, ng, xmin=0.0, xmax=1.0): self.ng = ng self.nx = nx self.xmin = xmin self.xmax = xmax # python is zero-based. Make easy intergers to know where the # real data lives self.ilo = ng self.ihi = ng+nx-1 # physical coords -- cell-centered, left and right edges self.dx = (xmax - xmin)/(nx) self.x = xmin + (numpy.arange(nx+2*ng)-ng+0.5)*self.dx # storage for the solution self.a = numpy.zeros((nx+2*ng), dtype=numpy.float64) def scratch_array(self): """ return a scratch array dimensioned for our grid """ return numpy.zeros((self.nx+2*self.ng), dtype=numpy.float64) def fill_BCs(self): """ fill all single ghostcell with periodic boundary conditions """ n = 0 while n < self.ng: # left boundary self.a[self.ilo-1-n] = self.a[self.ihi-n] # right boundary self.a[self.ihi+1+n] = self.a[self.ilo+n] n += 1 def norm(self, e): """ return the norm of quantity e which lives on the grid """ if not len(e) == (2*self.ng + self.nx): return None return numpy.sqrt(self.dx*numpy.sum(e[self.ilo:self.ihi+1]**2)) class Simulation: def __init__(self, grid, u, C=0.8, slope_type="centered"): self.grid = grid self.t = 0.0 # simulation time self.u = u # the constant advective velocity self.C = C # CFL number self.slope_type = slope_type def init_cond(self, type="tophat"): """ initialize the data """ if type == "tophat": self.grid.a[:] = 0.0 self.grid.a[numpy.logical_and(self.grid.x >= 0.333, self.grid.x <= 0.666)] = 1.0 elif type == "sine": self.grid.a[:] = numpy.sin(2.0*math.pi*self.grid.x/(self.grid.xmax-self.grid.xmin)) elif type == "gaussian": self.grid.a[:] = 1.0 + numpy.exp(-60.0*(self.grid.x - 0.5)**2) def timestep(self): """ return the advective timestep """ return self.C*self.grid.dx/self.u def period(self): """ return the period for advection with velocity u """ return (self.grid.xmax - self.grid.xmin)/self.u def states(self, dt): """ compute the left and right interface states """ # compute the piecewise linear slopes g = self.grid slope = g.scratch_array() g = self.grid if self.slope_type == "godunov": # piecewise constant = 0 slopes slope[:] = 0.0 elif self.slope_type == "centered": # unlimited centered difference slopes i = g.ilo-1 while i <= g.ihi+1: slope[i] = 0.5*(g.a[i+1] - g.a[i-1])/g.dx i += 1 elif self.slope_type == "minmod": # minmod limited slope i = g.ilo-1 while i <= g.ihi+1: slope[i] = minmod( (g.a[i] - g.a[i-1])/g.dx, (g.a[i+1] - g.a[i])/g.dx ) i += 1 elif self.slope_type == "MC": # MC limiter i = g.ilo-1 while i <= g.ihi+1: slope[i] = minmod(minmod( 2.0*(g.a[i] - g.a[i-1])/g.dx, 2.0*(g.a[i+1] - g.a[i])/g.dx ), 0.5*(g.a[i+1] - g.a[i-1])/g.dx) i += 1 elif self.slope_type == "superbee": # superbee limiter i = g.ilo-1 while i <= g.ihi+1: A = minmod( (g.a[i+1] - g.a[i])/g.dx, 2.0*(g.a[i] - g.a[i-1])/g.dx ) B = minmod( (g.a[i] - g.a[i-1])/g.dx, 2.0*(g.a[i+1] - g.a[i])/g.dx ) slope[i] = maxmod(A, B) i += 1 # loop over all the interfaces. Here, i refers to the left # interface of the zone. Note that thre are 1 more interfaces # than zones al = g.scratch_array() ar = g.scratch_array() i = g.ilo while i <= g.ihi+1: # left state on the current interface comes from zone i-1 al[i] = g.a[i-1] + 0.5*g.dx*(1.0 - u*dt/g.dx)*slope[i-1] # right state on the current interface comes from zone i ar[i] = g.a[i] - 0.5*g.dx*(1.0 + u*dt/g.dx)*slope[i] i += 1 return al, ar def riemann(self, al, ar): """ Riemann problem for advection -- this is simply upwinding, but we return the flux """ if self.u > 0.0: return self.u*al else: return self.u*ar def update(self, dt, flux): """ conservative update """ g = self.grid anew = g.scratch_array() anew[g.ilo:g.ihi+1] = g.a[g.ilo:g.ihi+1] + \ dt/g.dx * (flux[g.ilo:g.ihi+1] - flux[g.ilo+1:g.ihi+2]) return anew def evolve(self, num_periods=1): """ evolve the linear advection equation """ self.t = 0.0 g = self.grid tmax = num_periods*self.period() # main evolution loop while (self.t < tmax): # fill the boundary conditions g.fill_BCs() # get the timestep dt = self.timestep() if (self.t + dt > tmax): dt = tmax - self.t # get the interface states al, ar = self.states(dt) # solve the Riemann problem at all interfaces flux = self.riemann(al, ar) # do the conservative update anew = self.update(dt, flux) g.a[:] = anew[:] self.t += dt if __name__ == "__main__": #------------------------------------------------------------------------- # compare limiting and no-limiting xmin = 0.0 xmax = 1.0 nx = 64 ng = 2 g = Grid1d(nx, ng, xmin=xmin, xmax=xmax) u = 1.0 s = Simulation(g, u, C=0.7, slope_type="centered") s.init_cond("tophat") ainit = s.grid.a.copy() s.evolve(num_periods=5) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r", label="unlimited") s = Simulation(g, u, C=0.7, slope_type="minmod") s.init_cond("tophat") s.evolve(num_periods=5) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="b", label="minmod limiter") pylab.plot(g.x[g.ilo:g.ihi+1], ainit[g.ilo:g.ihi+1], ls=":", color="0.5", label="exact") pylab.legend(frameon=False, loc="best") pylab.xlabel(r"$x$") pylab.ylabel(r"$a$") pylab.savefig("fv-advect.eps") #------------------------------------------------------------------------- # convergence test problem = "gaussian" xmin = 0.0 xmax = 1.0 ng = 2 N = [32, 64, 128, 256, 512] err = [] for nx in N: g = Grid1d(nx, ng, xmin=xmin, xmax=xmax) u = 1.0 s = Simulation(g, u, C=0.8, slope_type="centered") s.init_cond("gaussian") ainit = s.grid.a.copy() s.evolve(num_periods=5) # compute the error err.append(g.norm(g.a - ainit)) print g.dx, nx, err[-1] pylab.clf() N = numpy.array(N, dtype=numpy.float64) err = numpy.array(err) pylab.scatter(N, err, color="r") pylab.plot(N, err[len(N)-1]*(N[len(N)-1]/N)**2, color="k", label=r"$\mathcal{O}(\Delta x^2)$") ax = pylab.gca() ax.set_xscale('log') ax.set_yscale('log') pylab.xlabel("N") pylab.ylabel(r"$\|\| a^\mathrm{final} - a^\mathrm{init} \|\|_2$", fontsize=16) pylab.legend(frameon=False) pylab.savefig("plm-converge.png") #------------------------------------------------------------------------- # different limiters: run both the Gaussian and tophat xmin = 0.0 xmax = 1.0 nx = 128 ng = 2 u = 1.0 g= Grid1d(nx, ng, xmin=xmin, xmax=xmax) for p in ["gaussian", "tophat"]: pylab.clf() s = Simulation(g, u, C=0.8, slope_type="godunov") s.init_cond(p) ainit = s.grid.a.copy() s.evolve(num_periods=5) pylab.subplot(231) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r") pylab.plot(g.x[g.ilo:g.ihi+1], ainit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.title("piecewise constant") s = Simulation(g, u, C=0.8, slope_type="centered") s.init_cond(p) ainit = s.grid.a.copy() s.evolve(num_periods=5) pylab.subplot(232) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r") pylab.plot(g.x[g.ilo:g.ihi+1], ainit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.title("centered (unlimited)") s = Simulation(g, u, C=0.8, slope_type="minmod") s.init_cond(p) ainit = s.grid.a.copy() s.evolve(num_periods=5) pylab.subplot(233) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r") pylab.plot(g.x[g.ilo:g.ihi+1], ainit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.title("minmod limiter") s = Simulation(g, u, C=0.8, slope_type="MC") s.init_cond(p) ainit = s.grid.a.copy() s.evolve(num_periods=5) pylab.subplot(234) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r") pylab.plot(g.x[g.ilo:g.ihi+1], ainit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.title("MC limiter") s = Simulation(g, u, C=0.8, slope_type="superbee") s.init_cond(p) ainit = s.grid.a.copy() s.evolve(num_periods=5) pylab.subplot(235) pylab.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], color="r") pylab.plot(g.x[g.ilo:g.ihi+1], ainit[g.ilo:g.ihi+1], ls=":", color="0.5") pylab.title("superbee limiter") f = pylab.gcf() f.set_size_inches(10.0,7.0) pylab.tight_layout() pylab.savefig("fv-{}-limiters.png".format(p), bbox_inches="tight")
bsd-3-clause
-5,731,016,496,385,529,000
24.060674
95
0.492019
false
nprapps/elections14
app.py
1
9458
#!/usr/bin/env python # -*- coding: utf-8 -*- from copy import copy import json import argparse from flask import Flask, render_template import app_config import app_utils from app_utils import get_last_updated from render_utils import make_context, smarty_filter, urlencode_filter import slides import static_app import static_theme app = Flask(__name__) app.jinja_env.filters['smarty'] = smarty_filter app.jinja_env.filters['urlencode'] = urlencode_filter @app.template_filter() def format_board_time(dt): """ Format a time for the big board """ if not dt: return '' return '{d:%l}:{d.minute:02}'.format(d=dt) + ' EST' @app.template_filter() def format_percent(num): """ Format a percentage """ return int(round(num)) @app.template_filter() def format_precincts_percent(num): """ Format a percentage for precincts reporting """ if num > 0 and num < 1: return '<1' if num > 99 and num < 100: return '>99' else: return int(round(num)) @app.template_filter() def signed(num): """ Add sign to number (e.g. +1, -1) """ return '{0:+d}'.format(num) @app.route('/') def index(): """ Example view demonstrating rendering a simple HTML page. """ from models import Race context = make_context() with open('data/featured.json') as f: context['featured'] = json.load(f) context['races'] = Race.select() """ Balance of Power data """ races = Race.select().where(Race.office_name == 'U.S. Senate').order_by(Race.state_postal) context['not_called'] = app_utils.calculate_seats_left(races) if app_config.DEPLOY_PROMO: template_file = 'promo.html' else: template_file = 'index.html' return render_template(template_file, **context), 200, @app.route('/promo/') def promo(): """ Test promo template. """ return render_template('promo.html', **make_context()) @app.route('/board/<slug>/') def _big_board(slug): """ Preview a slide outside of the stack. """ context = make_context() context['body'] = _slide(slug).data if slug == 'senate-big-board': title = 'U.S. Senate' elif slug == 'house-big-board-one': title = 'U.S. House 1' elif slug == 'house-big-board-two': title = 'U.S. House 2' elif slug == 'governor-big-board': title = 'Governors' elif slug == 'ballot-measures-big-board': title = 'Ballot measures' context['title'] = title return render_template('_big_board_wrapper.html', **context) @app.route('/bop.html') @app_utils.cors def _bop(): """ Serve the most recent bop data """ from models import Race context = make_context() races = Race.select().where(Race.office_name == 'U.S. Senate').order_by(Race.state_postal) context['bop'] = app_utils.calculate_bop(races, app_utils.SENATE_INITIAL_BOP) context['not_called'] = app_utils.calculate_seats_left(races) return render_template('bop.html', **context) @app.route('/live-data/stack.json') @app_utils.cors def _stack_json(): """ Serve up the current slide stack. """ from models import SlideSequence data = SlideSequence.stack() # There is one state slug to manipulate in the stack, but the client # should see two for i, d in enumerate(data): if d['slug'] == 'state-house-results': one = copy(d) one['slug'] = 'state-house-results-1' two = copy(d) two['slug'] = 'state-house-results-2' data[i:i + 1] = [ one, two ] break js = json.dumps(data) return js, 200, { 'Content-Type': 'application/javascript' } @app.route('/preview/state-house-results/index.html') @app.route('/preview/state-senate-results/index.html') def _state_picker_preview(): """ Preview a state slide outside of the stack. """ context = make_context() return render_template('_state_picker_preview.html', **context) @app.route('/preview/state-house-results-<string:slug>-<int:page>/index.html') @app_utils.cors def _state_house_slide_preview(slug, page): """ Preview a state slide outside of the stack. """ context = make_context() context['body'] = _state_house_slide(slug, page).data return render_template('slide_preview.html', **context) @app.route('/preview/state-senate-results-<slug>/index.html') @app_utils.cors def _state_senate_slide_preview(slug): """ Preview a state slide outside of the stack. """ context = make_context() resp = _state_senate_slide(slug) if resp.status_code == 200: context['body'] = resp.data return render_template('slide_preview.html', **context) else: return "404", 404 @app.route('/preview/<slug>/index.html') @app_utils.cors def _slide_preview(slug): """ Preview a slide outside of the stack. """ from models import SlideSequence context = make_context() sequence = SlideSequence.select() for slide in sequence: if slide.slide.slug == slug: context['in_sequence'] = True previous_slide_order = slide.order - 1 next_slide_order = slide.order + 1 break try: context['previous_slide'] = SlideSequence.get(SlideSequence.order == previous_slide_order).slide.slug except: pass try: context['next_slide'] = SlideSequence.get(SlideSequence.order == next_slide_order).slide.slug except: pass context['body'] = _slide(slug).data.decode('utf-8') context['slug'] = slug return render_template('slide_preview.html', **context) @app.route('/slides/state-house-results-<string:slug>-<int:page>.html') @app_utils.cors def _state_house_slide(slug, page): """ Serve a state slide. """ from models import Race, Slide slide = Slide.get(Slide.slug == 'state-house-results') slug = slug.upper() races = Race.select().where( (Race.office_name == 'U.S. House') & (Race.state_postal == slug) ).order_by(Race.seat_number) timestamp = get_last_updated(races) context = make_context(timestamp=timestamp) context['slide_class'] = 'state-house' context['state_postal'] = slug context['state_name'] = app_config.STATES.get(slug) # Calculate BOP using all races context.update(app_utils.calculate_state_bop(races)) # Filter to display races races = races.where(Race.featured_race == True) if slug in app_config.PAGINATED_STATES: race_count = races.count() page_size = race_count / 2 if page == 1: races = races.limit(page_size) elif page == 2: races = races.offset(page_size) context['page'] = page if races.count(): context['time_on_screen'] = slide.time_on_screen context['races'] = [race for race in races] context['body'] = render_template('slides/state_house.html', **context) return render_template('_slide.html', **context) else: return "no races", 404 @app.route('/slides/state-senate-results-<slug>.html') @app_utils.cors def _state_senate_slide(slug): """ Serve a state slide. """ from models import Race, Slide slide = Slide.get(Slide.slug == 'state-senate-results') slug = slug.upper() senate_races = Race.select().where( (Race.office_name == 'U.S. Senate') & (Race.state_postal == slug) ).order_by(Race.seat_number) governor_races = Race.select().where( (Race.office_name == 'Governor') & (Race.state_postal == slug) ) if senate_races.count() == 0 and governor_races.count() == 0: return "404", 404 senate_updated = get_last_updated(senate_races) governor_updated = get_last_updated(governor_races) if senate_updated > governor_updated: timestamp = senate_updated else: timestamp = governor_updated context = make_context(timestamp=timestamp) context['state_postal'] = slug context['state_name'] = app_config.STATES.get(slug) context['slide_class'] = 'state-senate' context['senate'] = senate_races context['governor'] = governor_races context['time_on_screen'] = slide.time_on_screen context['body'] = render_template('slides/state_senate.html', **context) return render_template('_slide.html', **context) @app.route('/slides/<slug>.html') @app_utils.cors def _slide(slug): """ Serve up slide html fragment """ from models import Slide context = make_context() slide = Slide.get(Slide.slug == slug) view_name = slide.view_name if slide.data: context['body'] = slides.__dict__[view_name](slide.data) else: context['body'] = slides.__dict__[view_name]() context['slide_class'] = view_name.replace('_', '-') context['time_on_screen'] = slide.time_on_screen return render_template('_slide.html', **context) app.register_blueprint(static_app.static_app) app.register_blueprint(static_theme.theme) # Boilerplate if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-p', '--port') args = parser.parse_args() server_port = 8000 if args.port: server_port = int(args.port) app.run(host='0.0.0.0', port=server_port, debug=app_config.DEBUG)
mit
3,996,981,375,998,131,000
24.771117
109
0.617467
false
Azure/azure-sdk-for-python
sdk/securityinsight/azure-mgmt-securityinsight/azure/mgmt/securityinsight/aio/operations/_incident_comments_operations.py
1
14785
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class IncidentCommentsOperations: """IncidentCommentsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.securityinsight.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_incident( self, resource_group_name: str, workspace_name: str, incident_id: str, filter: Optional[str] = None, orderby: Optional[str] = None, top: Optional[int] = None, skip_token: Optional[str] = None, **kwargs ) -> AsyncIterable["models.IncidentCommentList"]: """Gets all incident comments. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param incident_id: Incident ID. :type incident_id: str :param filter: Filters the results, based on a Boolean condition. Optional. :type filter: str :param orderby: Sorts the results. Optional. :type orderby: str :param top: Returns only the first n results. Optional. :type top: int :param skip_token: Skiptoken is only used if a previous operation returned a partial result. If a previous response contains a nextLink element, the value of the nextLink element will include a skiptoken parameter that specifies a starting point to use for subsequent calls. Optional. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either IncidentCommentList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.securityinsight.models.IncidentCommentList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.IncidentCommentList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-01-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_incident.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', pattern=r'^[0-9A-Fa-f]{8}-([0-9A-Fa-f]{4}-){3}[0-9A-Fa-f]{12}$'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str', max_length=90, min_length=1), 'incidentId': self._serialize.url("incident_id", incident_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if skip_token is not None: query_parameters['$skipToken'] = self._serialize.query("skip_token", skip_token, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('IncidentCommentList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_incident.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName}/providers/Microsoft.SecurityInsights/incidents/{incidentId}/comments'} # type: ignore async def get( self, resource_group_name: str, workspace_name: str, incident_id: str, incident_comment_id: str, **kwargs ) -> "models.IncidentComment": """Gets an incident comment. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param incident_id: Incident ID. :type incident_id: str :param incident_comment_id: Incident comment ID. :type incident_comment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: IncidentComment, or the result of cls(response) :rtype: ~azure.mgmt.securityinsight.models.IncidentComment :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.IncidentComment"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-01-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', pattern=r'^[0-9A-Fa-f]{8}-([0-9A-Fa-f]{4}-){3}[0-9A-Fa-f]{12}$'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str', max_length=90, min_length=1), 'incidentId': self._serialize.url("incident_id", incident_id, 'str'), 'incidentCommentId': self._serialize.url("incident_comment_id", incident_comment_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('IncidentComment', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName}/providers/Microsoft.SecurityInsights/incidents/{incidentId}/comments/{incidentCommentId}'} # type: ignore async def create_comment( self, resource_group_name: str, workspace_name: str, incident_id: str, incident_comment_id: str, message: Optional[str] = None, **kwargs ) -> "models.IncidentComment": """Creates the incident comment. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param incident_id: Incident ID. :type incident_id: str :param incident_comment_id: Incident comment ID. :type incident_comment_id: str :param message: The comment message. :type message: str :keyword callable cls: A custom type or function that will be passed the direct response :return: IncidentComment, or the result of cls(response) :rtype: ~azure.mgmt.securityinsight.models.IncidentComment :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.IncidentComment"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _incident_comment = models.IncidentComment(message=message) api_version = "2020-01-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_comment.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', pattern=r'^[0-9A-Fa-f]{8}-([0-9A-Fa-f]{4}-){3}[0-9A-Fa-f]{12}$'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str', max_length=90, min_length=1), 'incidentId': self._serialize.url("incident_id", incident_id, 'str'), 'incidentCommentId': self._serialize.url("incident_comment_id", incident_comment_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(_incident_comment, 'IncidentComment') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('IncidentComment', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_comment.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName}/providers/Microsoft.SecurityInsights/incidents/{incidentId}/comments/{incidentCommentId}'} # type: ignore
mit
862,310,406,738,324,700
50.515679
279
0.642611
false
rancavil/python-oauth2
oauth2/__init__.py
1
29076
""" The MIT License Copyright (c) 2007-2010 Leah Culver, Joe Stump, Mark Paschal, Vic Fryzel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import base64 import urllib import time import random import urlparse import hmac import binascii import httplib2 try: from urlparse import parse_qs parse_qs # placate pyflakes except ImportError: # fall back for Python 2.5 from cgi import parse_qs try: from hashlib import sha1 sha = sha1 except ImportError: # hashlib was added in Python 2.5 import sha import _version __version__ = _version.__version__ OAUTH_VERSION = '1.0' # Hi Blaine! HTTP_METHOD = 'GET' SIGNATURE_METHOD = 'PLAINTEXT' class Error(RuntimeError): """Generic exception class.""" def __init__(self, message='OAuth error occurred.'): self._message = message @property def message(self): """A hack to get around the deprecation errors in 2.6.""" return self._message def __str__(self): return self._message class MissingSignature(Error): pass def build_authenticate_header(realm=''): """Optional WWW-Authenticate header (401 error)""" return {'WWW-Authenticate': 'OAuth realm="%s"' % realm} def build_xoauth_string(url, consumer, token=None): """Build an XOAUTH string for use in SMTP/IMPA authentication.""" request = Request.from_consumer_and_token(consumer, token, "GET", url) signing_method = SignatureMethod_HMAC_SHA1() request.sign_request(signing_method, consumer, token) params = [] for k, v in sorted(request.iteritems()): if v is not None: params.append('%s="%s"' % (k, escape(v))) return "%s %s %s" % ("GET", url, ','.join(params)) def to_unicode(s): """ Convert to unicode, raise exception with instructive error message if s is not unicode, ascii, or utf-8. """ if not isinstance(s, unicode): if not isinstance(s, str): raise TypeError('You are required to pass either unicode or string here, not: %r (%s)' % (type(s), s)) try: s = s.decode('utf-8') except UnicodeDecodeError, le: raise TypeError('You are required to pass either a unicode object or a utf-8 string here. You passed a Python string object which contained non-utf-8: %r. The UnicodeDecodeError that resulted from attempting to interpret it as utf-8 was: %s' % (s, le,)) return s def to_utf8(s): return to_unicode(s).encode('utf-8') def to_unicode_if_string(s): if isinstance(s, basestring): return to_unicode(s) else: return s def to_utf8_if_string(s): if isinstance(s, basestring): return to_utf8(s) else: return s def to_unicode_optional_iterator(x): """ Raise TypeError if x is a str containing non-utf8 bytes or if x is an iterable which contains such a str. """ if isinstance(x, basestring): return to_unicode(x) try: l = list(x) except TypeError, e: assert 'is not iterable' in str(e) return x else: return [ to_unicode(e) for e in l ] def to_utf8_optional_iterator(x): """ Raise TypeError if x is a str or if x is an iterable which contains a str. """ if isinstance(x, basestring): return to_utf8(x) try: l = list(x) except TypeError, e: assert 'is not iterable' in str(e) return x else: return [ to_utf8_if_string(e) for e in l ] def escape(s): """Escape a URL including any /.""" return urllib.quote(s.encode('utf-8'), safe='~') def generate_timestamp(): """Get seconds since epoch (UTC).""" return int(time.time()) def generate_nonce(length=8): """Generate pseudorandom number.""" return ''.join([str(random.randint(0, 9)) for i in range(length)]) def generate_verifier(length=8): """Generate pseudorandom number.""" return ''.join([str(random.randint(0, 9)) for i in range(length)]) class Consumer(object): """A consumer of OAuth-protected services. The OAuth consumer is a "third-party" service that wants to access protected resources from an OAuth service provider on behalf of an end user. It's kind of the OAuth client. Usually a consumer must be registered with the service provider by the developer of the consumer software. As part of that process, the service provider gives the consumer a *key* and a *secret* with which the consumer software can identify itself to the service. The consumer will include its key in each request to identify itself, but will use its secret only when signing requests, to prove that the request is from that particular registered consumer. Once registered, the consumer can then use its consumer credentials to ask the service provider for a request token, kicking off the OAuth authorization process. """ key = None secret = None def __init__(self, key, secret): self.key = key self.secret = secret if self.key is None or self.secret is None: raise ValueError("Key and secret must be set.") def __str__(self): data = {'oauth_consumer_key': self.key, 'oauth_consumer_secret': self.secret} return urllib.urlencode(data) class Token(object): """An OAuth credential used to request authorization or a protected resource. Tokens in OAuth comprise a *key* and a *secret*. The key is included in requests to identify the token being used, but the secret is used only in the signature, to prove that the requester is who the server gave the token to. When first negotiating the authorization, the consumer asks for a *request token* that the live user authorizes with the service provider. The consumer then exchanges the request token for an *access token* that can be used to access protected resources. """ key = None secret = None callback = None callback_confirmed = None verifier = None def __init__(self, key, secret): self.key = key self.secret = secret if self.key is None or self.secret is None: raise ValueError("Key and secret must be set.") def set_callback(self, callback): self.callback = callback self.callback_confirmed = 'true' def set_verifier(self, verifier=None): if verifier is not None: self.verifier = verifier else: self.verifier = generate_verifier() def get_callback_url(self): if self.callback and self.verifier: # Append the oauth_verifier. parts = urlparse.urlparse(self.callback) scheme, netloc, path, params, query, fragment = parts[:6] if query: query = '%s&oauth_verifier=%s' % (query, self.verifier) else: query = 'oauth_verifier=%s' % self.verifier return urlparse.urlunparse((scheme, netloc, path, params, query, fragment)) return self.callback def to_string(self): """Returns this token as a plain string, suitable for storage. The resulting string includes the token's secret, so you should never send or store this string where a third party can read it. """ data = { 'oauth_token': self.key, 'oauth_token_secret': self.secret, } if self.callback_confirmed is not None: data['oauth_callback_confirmed'] = self.callback_confirmed return urllib.urlencode(data) @staticmethod def from_string(s): """Deserializes a token from a string like one returned by `to_string()`.""" if not len(s): raise ValueError("Invalid parameter string.") params = parse_qs(s, keep_blank_values=False) if not len(params): raise ValueError("Invalid parameter string.") try: key = params['oauth_token'][0] except Exception: raise ValueError("'oauth_token' not found in OAuth request.") try: secret = params['oauth_token_secret'][0] except Exception: raise ValueError("'oauth_token_secret' not found in " "OAuth request.") token = Token(key, secret) try: token.callback_confirmed = params['oauth_callback_confirmed'][0] except KeyError: pass # 1.0, no callback confirmed. return token def __str__(self): return self.to_string() def setter(attr): name = attr.__name__ def getter(self): try: return self.__dict__[name] except KeyError: raise AttributeError(name) def deleter(self): del self.__dict__[name] return property(getter, attr, deleter) class Request(dict): """The parameters and information for an HTTP request, suitable for authorizing with OAuth credentials. When a consumer wants to access a service's protected resources, it does so using a signed HTTP request identifying itself (the consumer) with its key, and providing an access token authorized by the end user to access those resources. """ version = OAUTH_VERSION def __init__(self, method=HTTP_METHOD, url=None, parameters=None, body='', is_form_encoded=False): if url is not None: self.url = to_unicode(url) self.method = method if parameters is not None: for k, v in parameters.iteritems(): k = to_unicode(k) v = to_unicode_optional_iterator(v) self[k] = v self.body = body self.is_form_encoded = is_form_encoded @setter def url(self, value): self.__dict__['url'] = value if value is not None: scheme, netloc, path, params, query, fragment = urlparse.urlparse(value) # Exclude default port numbers. if scheme == 'http' and netloc[-3:] == ':80': netloc = netloc[:-3] elif scheme == 'https' and netloc[-4:] == ':443': netloc = netloc[:-4] if scheme not in ('http', 'https'): raise ValueError("Unsupported URL %s (%s)." % (value, scheme)) # Normalized URL excludes params, query, and fragment. self.normalized_url = urlparse.urlunparse((scheme, netloc, path, None, None, None)) else: self.normalized_url = None self.__dict__['url'] = None @setter def method(self, value): self.__dict__['method'] = value.upper() def _get_timestamp_nonce(self): return self['oauth_timestamp'], self['oauth_nonce'] def get_nonoauth_parameters(self): """Get any non-OAuth parameters.""" return dict([(k, v) for k, v in self.iteritems() if not k.startswith('oauth_')]) def to_header(self, realm=''): """Serialize as a header for an HTTPAuth request.""" oauth_params = ((k, v) for k, v in self.items() if k.startswith('oauth_')) stringy_params = ((k, escape(str(v))) for k, v in oauth_params) header_params = ('%s="%s"' % (k, v) for k, v in stringy_params) params_header = ', '.join(header_params) auth_header = 'OAuth realm="%s"' % realm if params_header: auth_header = "%s, %s" % (auth_header, params_header) return {'Authorization': auth_header} def to_postdata(self): """Serialize as post data for a POST request.""" d = {} for k, v in self.iteritems(): d[k.encode('utf-8')] = to_utf8_optional_iterator(v) # tell urlencode to deal with sequence values and map them correctly # to resulting querystring. for example self["k"] = ["v1", "v2"] will # result in 'k=v1&k=v2' and not k=%5B%27v1%27%2C+%27v2%27%5D return urllib.urlencode(d, True).replace('+', '%20') def to_url(self): """Serialize as a URL for a GET request.""" base_url = urlparse.urlparse(self.url.encode('utf-8')) try: query = base_url.query except AttributeError: # must be python <2.5 query = base_url[4] query = parse_qs(query) for k, v in self.items(): query.setdefault(k.encode('utf-8'), []).append(v) try: scheme = base_url.scheme netloc = base_url.netloc path = base_url.path params = base_url.params fragment = base_url.fragment except AttributeError: # must be python <2.5 scheme = base_url[0] netloc = base_url[1] path = base_url[2] params = base_url[3] fragment = base_url[5] url = (scheme, netloc, path, params, urllib.urlencode(query, True), fragment) return urlparse.urlunparse(url) def get_parameter(self, parameter): ret = self.get(parameter) if ret is None: raise Error('Parameter not found: %s' % parameter) return ret def get_normalized_parameters(self): """Return a string that contains the parameters that must be signed.""" items = [] for key, value in self.iteritems(): if key == 'oauth_signature': continue # 1.0a/9.1.1 states that kvp must be sorted by key, then by value, # so we unpack sequence values into multiple items for sorting. if isinstance(value, basestring): items.append((to_utf8_if_string(key), to_utf8(value))) else: try: value = list(value) except TypeError, e: assert 'is not iterable' in str(e) items.append((to_utf8_if_string(key), to_utf8_if_string(value))) else: items.extend((to_utf8_if_string(key), to_utf8_if_string(item)) for item in value) # Include any query string parameters from the provided URL query = urlparse.urlparse(self.url)[4] url_items = self._split_url_string(query).items() url_items = [(to_utf8(k), to_utf8(v)) for k, v in url_items if k != 'oauth_signature' ] items.extend(url_items) items.sort() encoded_str = urllib.urlencode(items) # Encode signature parameters per Oauth Core 1.0 protocol # spec draft 7, section 3.6 # (http://tools.ietf.org/html/draft-hammer-oauth-07#section-3.6) # Spaces must be encoded with "%20" instead of "+" return encoded_str.replace('+', '%20').replace('%7E', '~') def sign_request(self, signature_method, consumer, token): """Set the signature parameter to the result of sign.""" if not self.is_form_encoded: # according to # http://oauth.googlecode.com/svn/spec/ext/body_hash/1.0/oauth-bodyhash.html # section 4.1.1 "OAuth Consumers MUST NOT include an # oauth_body_hash parameter on requests with form-encoded # request bodies." self['oauth_body_hash'] = base64.b64encode(sha(self.body).digest()) if 'oauth_consumer_key' not in self: self['oauth_consumer_key'] = consumer.key if token and 'oauth_token' not in self: self['oauth_token'] = token.key self['oauth_signature_method'] = signature_method.name self['oauth_signature'] = signature_method.sign(self, consumer, token) @classmethod def make_timestamp(cls): """Get seconds since epoch (UTC).""" return str(int(time.time())) @classmethod def make_nonce(cls): """Generate pseudorandom number.""" return str(random.randint(0, 100000000)) @classmethod def from_request(cls, http_method, http_url, headers=None, parameters=None, query_string=None): """Combines multiple parameter sources.""" if parameters is None: parameters = {} # Headers if headers and 'Authorization' in headers: auth_header = headers['Authorization'] # Check that the authorization header is OAuth. if auth_header[:6] == 'OAuth ': auth_header = auth_header[6:] try: # Get the parameters from the header. header_params = cls._split_header(auth_header) parameters.update(header_params) except: raise Error('Unable to parse OAuth parameters from ' 'Authorization header.') # GET or POST query string. if query_string: query_params = cls._split_url_string(query_string) parameters.update(query_params) # URL parameters. param_str = urlparse.urlparse(http_url)[4] # query url_params = cls._split_url_string(param_str) parameters.update(url_params) if parameters: return cls(http_method, http_url, parameters) return None @classmethod def from_consumer_and_token(cls, consumer, token=None, http_method=HTTP_METHOD, http_url=None, parameters=None, body='', is_form_encoded=False): if not parameters: parameters = {} defaults = { 'oauth_consumer_key': consumer.key, 'oauth_timestamp': cls.make_timestamp(), 'oauth_nonce': cls.make_nonce(), 'oauth_version': cls.version, } defaults.update(parameters) parameters = defaults if token: parameters['oauth_token'] = token.key if token.verifier: parameters['oauth_verifier'] = token.verifier return Request(http_method, http_url, parameters, body=body, is_form_encoded=is_form_encoded) @classmethod def from_token_and_callback(cls, token, callback=None, http_method=HTTP_METHOD, http_url=None, parameters=None): if not parameters: parameters = {} parameters['oauth_token'] = token.key if callback: parameters['oauth_callback'] = callback return cls(http_method, http_url, parameters) @staticmethod def _split_header(header): """Turn Authorization: header into parameters.""" params = {} parts = header.split(',') for param in parts: # Ignore realm parameter. if param.find('realm') > -1: continue # Remove whitespace. param = param.strip() # Split key-value. param_parts = param.split('=', 1) # Remove quotes and unescape the value. params[param_parts[0]] = urllib.unquote(param_parts[1].strip('\"')) return params @staticmethod def _split_url_string(param_str): """Turn URL string into parameters.""" parameters = parse_qs(param_str.encode('utf-8'), keep_blank_values=True) for k, v in parameters.iteritems(): parameters[k] = urllib.unquote(v[0]) return parameters class Client(httplib2.Http): """OAuthClient is a worker to attempt to execute a request.""" def __init__(self, consumer, token=None, cache=None, timeout=None, proxy_info=None): if consumer is not None and not isinstance(consumer, Consumer): raise ValueError("Invalid consumer.") if token is not None and not isinstance(token, Token): raise ValueError("Invalid token.") self.consumer = consumer self.token = token self.method = SignatureMethod_HMAC_SHA1() httplib2.Http.__init__(self, cache=cache, timeout=timeout, proxy_info=proxy_info) def set_signature_method(self, method): if not isinstance(method, SignatureMethod): raise ValueError("Invalid signature method.") self.method = method def request(self, uri, method="GET", body='', headers=None, redirections=httplib2.DEFAULT_MAX_REDIRECTS, connection_type=None): DEFAULT_POST_CONTENT_TYPE = 'application/x-www-form-urlencoded' if not isinstance(headers, dict): headers = {} if method == "POST": headers['Content-Type'] = headers.get('Content-Type', DEFAULT_POST_CONTENT_TYPE) is_form_encoded = \ headers.get('Content-Type') == 'application/x-www-form-urlencoded' if is_form_encoded and body: parameters = parse_qs(body) else: parameters = None req = Request.from_consumer_and_token(self.consumer, token=self.token, http_method=method, http_url=uri, parameters=parameters, body=body, is_form_encoded=is_form_encoded) req.sign_request(self.method, self.consumer, self.token) schema, rest = urllib.splittype(uri) if rest.startswith('//'): hierpart = '//' else: hierpart = '' host, rest = urllib.splithost(rest) realm = schema + ':' + hierpart + host if is_form_encoded: body = req.to_postdata() elif method == "GET": uri = req.to_url() else: headers.update(req.to_header(realm=realm)) return httplib2.Http.request(self, uri, method=method, body=body, headers=headers, redirections=redirections, connection_type=connection_type) class Server(object): """A skeletal implementation of a service provider, providing protected resources to requests from authorized consumers. This class implements the logic to check requests for authorization. You can use it with your web server or web framework to protect certain resources with OAuth. """ timestamp_threshold = 300 # In seconds, five minutes. version = OAUTH_VERSION signature_methods = None def __init__(self, signature_methods=None): self.signature_methods = signature_methods or {} def add_signature_method(self, signature_method): self.signature_methods[signature_method.name] = signature_method return self.signature_methods def verify_request(self, request, consumer, token): """Verifies an api call and checks all the parameters.""" self._check_version(request) self._check_signature(request, consumer, token) parameters = request.get_nonoauth_parameters() return parameters def build_authenticate_header(self, realm=''): """Optional support for the authenticate header.""" return {'WWW-Authenticate': 'OAuth realm="%s"' % realm} def _check_version(self, request): """Verify the correct version of the request for this server.""" version = self._get_version(request) if version and version != self.version: raise Error('OAuth version %s not supported.' % str(version)) def _get_version(self, request): """Return the version of the request for this server.""" try: version = request.get_parameter('oauth_version') except: version = OAUTH_VERSION return version def _get_signature_method(self, request): """Figure out the signature with some defaults.""" try: signature_method = request.get_parameter('oauth_signature_method') except: signature_method = SIGNATURE_METHOD try: # Get the signature method object. signature_method = self.signature_methods[signature_method] except: signature_method_names = ', '.join(self.signature_methods.keys()) raise Error('Signature method %s not supported try one of the following: %s' % (signature_method, signature_method_names)) return signature_method def _get_verifier(self, request): return request.get_parameter('oauth_verifier') def _check_signature(self, request, consumer, token): timestamp, nonce = request._get_timestamp_nonce() self._check_timestamp(timestamp) signature_method = self._get_signature_method(request) try: signature = request.get_parameter('oauth_signature') except: raise MissingSignature('Missing oauth_signature.') # Validate the signature. valid = signature_method.check(request, consumer, token, signature) if not valid: key, base = signature_method.signing_base(request, consumer, token) raise Error('Invalid signature. Expected signature base ' 'string: %s' % base) def _check_timestamp(self, timestamp): """Verify that timestamp is recentish.""" timestamp = int(timestamp) now = int(time.time()) lapsed = now - timestamp if lapsed > self.timestamp_threshold: raise Error('Expired timestamp: given %d and now %s has a ' 'greater difference than threshold %d' % (timestamp, now, self.timestamp_threshold)) class SignatureMethod(object): """A way of signing requests. The OAuth protocol lets consumers and service providers pick a way to sign requests. This interface shows the methods expected by the other `oauth` modules for signing requests. Subclass it and implement its methods to provide a new way to sign requests. """ def signing_base(self, request, consumer, token): """Calculates the string that needs to be signed. This method returns a 2-tuple containing the starting key for the signing and the message to be signed. The latter may be used in error messages to help clients debug their software. """ raise NotImplementedError def sign(self, request, consumer, token): """Returns the signature for the given request, based on the consumer and token also provided. You should use your implementation of `signing_base()` to build the message to sign. Otherwise it may be less useful for debugging. """ raise NotImplementedError def check(self, request, consumer, token, signature): """Returns whether the given signature is the correct signature for the given consumer and token signing the given request.""" built = self.sign(request, consumer, token) return built == signature class SignatureMethod_HMAC_SHA1(SignatureMethod): name = 'HMAC-SHA1' def signing_base(self, request, consumer, token): if not hasattr(request, 'normalized_url') or request.normalized_url is None: raise ValueError("Base URL for request is not set.") sig = ( escape(request.method), escape(request.normalized_url), escape(request.get_normalized_parameters()), ) key = '%s&' % escape(consumer.secret) if token: key += escape(token.secret) raw = '&'.join(sig) return key, raw def sign(self, request, consumer, token): """Builds the base signature string.""" key, raw = self.signing_base(request, consumer, token) hashed = hmac.new(key, raw, sha) # Calculate the digest base 64. return binascii.b2a_base64(hashed.digest())[:-1] class SignatureMethod_PLAINTEXT(SignatureMethod): name = 'PLAINTEXT' def signing_base(self, request, consumer, token): """Concatenates the consumer key and secret with the token's secret.""" sig = '%s&' % escape(consumer.secret) if token: sig = sig + escape(token.secret) return sig, sig def sign(self, request, consumer, token): key, raw = self.signing_base(request, consumer, token) return raw
mit
3,934,429,948,027,602,400
32.809302
265
0.609575
false
auready/django
django/db/models/query.py
1
69244
""" The main QuerySet implementation. This provides the public API for the ORM. """ import copy import sys import warnings from collections import OrderedDict, deque from django.conf import settings from django.core import exceptions from django.db import ( DJANGO_VERSION_PICKLE_KEY, IntegrityError, connections, router, transaction, ) from django.db.models import DateField, DateTimeField, sql from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import Collector from django.db.models.expressions import F from django.db.models.fields import AutoField from django.db.models.functions import Trunc from django.db.models.query_utils import InvalidQuery, Q from django.db.models.sql.constants import CURSOR from django.utils import timezone from django.utils.functional import cached_property, partition from django.utils.version import get_version # The maximum number of items to display in a QuerySet.__repr__ REPR_OUTPUT_SIZE = 20 # Pull into this namespace for backwards compatibility. EmptyResultSet = sql.EmptyResultSet class BaseIterable: def __init__(self, queryset, chunked_fetch=False): self.queryset = queryset self.chunked_fetch = chunked_fetch class ModelIterable(BaseIterable): """ Iterable that yields a model instance for each row. """ def __iter__(self): queryset = self.queryset db = queryset.db compiler = queryset.query.get_compiler(using=db) # Execute the query. This will also fill compiler.select, klass_info, # and annotations. results = compiler.execute_sql(chunked_fetch=self.chunked_fetch) select, klass_info, annotation_col_map = (compiler.select, compiler.klass_info, compiler.annotation_col_map) model_cls = klass_info['model'] select_fields = klass_info['select_fields'] model_fields_start, model_fields_end = select_fields[0], select_fields[-1] + 1 init_list = [f[0].target.attname for f in select[model_fields_start:model_fields_end]] related_populators = get_related_populators(klass_info, select, db) for row in compiler.results_iter(results): obj = model_cls.from_db(db, init_list, row[model_fields_start:model_fields_end]) if related_populators: for rel_populator in related_populators: rel_populator.populate(row, obj) if annotation_col_map: for attr_name, col_pos in annotation_col_map.items(): setattr(obj, attr_name, row[col_pos]) # Add the known related objects to the model, if there are any if queryset._known_related_objects: for field, rel_objs in queryset._known_related_objects.items(): # Avoid overwriting objects loaded e.g. by select_related if hasattr(obj, field.get_cache_name()): continue pk = getattr(obj, field.get_attname()) try: rel_obj = rel_objs[pk] except KeyError: pass # may happen in qs1 | qs2 scenarios else: setattr(obj, field.name, rel_obj) yield obj class ValuesIterable(BaseIterable): """ Iterable returned by QuerySet.values() that yields a dict for each row. """ def __iter__(self): queryset = self.queryset query = queryset.query compiler = query.get_compiler(queryset.db) field_names = list(query.values_select) extra_names = list(query.extra_select) annotation_names = list(query.annotation_select) # extra(select=...) cols are always at the start of the row. names = extra_names + field_names + annotation_names for row in compiler.results_iter(): yield dict(zip(names, row)) class ValuesListIterable(BaseIterable): """ Iterable returned by QuerySet.values_list(flat=False) that yields a tuple for each row. """ def __iter__(self): queryset = self.queryset query = queryset.query compiler = query.get_compiler(queryset.db) if not query.extra_select and not query.annotation_select: for row in compiler.results_iter(): yield tuple(row) else: field_names = list(query.values_select) extra_names = list(query.extra_select) annotation_names = list(query.annotation_select) # extra(select=...) cols are always at the start of the row. names = extra_names + field_names + annotation_names if queryset._fields: # Reorder according to fields. fields = list(queryset._fields) + [f for f in annotation_names if f not in queryset._fields] else: fields = names for row in compiler.results_iter(): data = dict(zip(names, row)) yield tuple(data[f] for f in fields) class FlatValuesListIterable(BaseIterable): """ Iterable returned by QuerySet.values_list(flat=True) that yields single values. """ def __iter__(self): queryset = self.queryset compiler = queryset.query.get_compiler(queryset.db) for row in compiler.results_iter(): yield row[0] class QuerySet: """ Represents a lazy database lookup for a set of objects. """ def __init__(self, model=None, query=None, using=None, hints=None): self.model = model self._db = using self._hints = hints or {} self.query = query or sql.Query(self.model) self._result_cache = None self._sticky_filter = False self._for_write = False self._prefetch_related_lookups = () self._prefetch_done = False self._known_related_objects = {} # {rel_field: {pk: rel_obj}} self._iterable_class = ModelIterable self._fields = None def as_manager(cls): # Address the circular dependency between `Queryset` and `Manager`. from django.db.models.manager import Manager manager = Manager.from_queryset(cls)() manager._built_with_as_manager = True return manager as_manager.queryset_only = True as_manager = classmethod(as_manager) ######################## # PYTHON MAGIC METHODS # ######################## def __deepcopy__(self, memo): """ Deep copy of a QuerySet doesn't populate the cache """ obj = self.__class__() for k, v in self.__dict__.items(): if k == '_result_cache': obj.__dict__[k] = None else: obj.__dict__[k] = copy.deepcopy(v, memo) return obj def __getstate__(self): # Force the cache to be fully populated. self._fetch_all() obj_dict = self.__dict__.copy() obj_dict[DJANGO_VERSION_PICKLE_KEY] = get_version() return obj_dict def __setstate__(self, state): msg = None pickled_version = state.get(DJANGO_VERSION_PICKLE_KEY) if pickled_version: current_version = get_version() if current_version != pickled_version: msg = ( "Pickled queryset instance's Django version %s does not " "match the current version %s." % (pickled_version, current_version) ) else: msg = "Pickled queryset instance's Django version is not specified." if msg: warnings.warn(msg, RuntimeWarning, stacklevel=2) self.__dict__.update(state) def __repr__(self): data = list(self[:REPR_OUTPUT_SIZE + 1]) if len(data) > REPR_OUTPUT_SIZE: data[-1] = "...(remaining elements truncated)..." return '<%s %r>' % (self.__class__.__name__, data) def __len__(self): self._fetch_all() return len(self._result_cache) def __iter__(self): """ The queryset iterator protocol uses three nested iterators in the default case: 1. sql.compiler:execute_sql() - Returns 100 rows at time (constants.GET_ITERATOR_CHUNK_SIZE) using cursor.fetchmany(). This part is responsible for doing some column masking, and returning the rows in chunks. 2. sql/compiler.results_iter() - Returns one row at time. At this point the rows are still just tuples. In some cases the return values are converted to Python values at this location. 3. self.iterator() - Responsible for turning the rows into model objects. """ self._fetch_all() return iter(self._result_cache) def __bool__(self): self._fetch_all() return bool(self._result_cache) def __getitem__(self, k): """ Retrieves an item or slice from the set of results. """ if not isinstance(k, (int, slice)): raise TypeError assert ((not isinstance(k, slice) and (k >= 0)) or (isinstance(k, slice) and (k.start is None or k.start >= 0) and (k.stop is None or k.stop >= 0))), \ "Negative indexing is not supported." if self._result_cache is not None: return self._result_cache[k] if isinstance(k, slice): qs = self._clone() if k.start is not None: start = int(k.start) else: start = None if k.stop is not None: stop = int(k.stop) else: stop = None qs.query.set_limits(start, stop) return list(qs)[::k.step] if k.step else qs qs = self._clone() qs.query.set_limits(k, k + 1) return list(qs)[0] def __and__(self, other): self._merge_sanity_check(other) if isinstance(other, EmptyQuerySet): return other if isinstance(self, EmptyQuerySet): return self combined = self._clone() combined._merge_known_related_objects(other) combined.query.combine(other.query, sql.AND) return combined def __or__(self, other): self._merge_sanity_check(other) if isinstance(self, EmptyQuerySet): return other if isinstance(other, EmptyQuerySet): return self combined = self._clone() combined._merge_known_related_objects(other) combined.query.combine(other.query, sql.OR) return combined #################################### # METHODS THAT DO DATABASE QUERIES # #################################### def iterator(self): """ An iterator over the results from applying this QuerySet to the database. """ return iter(self._iterable_class(self, chunked_fetch=True)) def aggregate(self, *args, **kwargs): """ Returns a dictionary containing the calculations (aggregation) over the current queryset If args is present the expression is passed as a kwarg using the Aggregate object's default alias. """ if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") for arg in args: # The default_alias property may raise a TypeError, so we use # a try/except construct rather than hasattr in order to remain # consistent between PY2 and PY3 (hasattr would swallow # the TypeError on PY2). try: arg.default_alias except (AttributeError, TypeError): raise TypeError("Complex aggregates require an alias") kwargs[arg.default_alias] = arg query = self.query.clone() for (alias, aggregate_expr) in kwargs.items(): query.add_annotation(aggregate_expr, alias, is_summary=True) if not query.annotations[alias].contains_aggregate: raise TypeError("%s is not an aggregate expression" % alias) return query.get_aggregation(self.db, kwargs.keys()) def count(self): """ Performs a SELECT COUNT() and returns the number of records as an integer. If the QuerySet is already fully cached this simply returns the length of the cached results set to avoid multiple SELECT COUNT(*) calls. """ if self._result_cache is not None: return len(self._result_cache) return self.query.get_count(using=self.db) def get(self, *args, **kwargs): """ Performs the query and returns a single object matching the given keyword arguments. """ clone = self.filter(*args, **kwargs) if self.query.can_filter() and not self.query.distinct_fields: clone = clone.order_by() num = len(clone) if num == 1: return clone._result_cache[0] if not num: raise self.model.DoesNotExist( "%s matching query does not exist." % self.model._meta.object_name ) raise self.model.MultipleObjectsReturned( "get() returned more than one %s -- it returned %s!" % (self.model._meta.object_name, num) ) def create(self, **kwargs): """ Creates a new object with the given kwargs, saving it to the database and returning the created object. """ obj = self.model(**kwargs) self._for_write = True obj.save(force_insert=True, using=self.db) return obj def _populate_pk_values(self, objs): for obj in objs: if obj.pk is None: obj.pk = obj._meta.pk.get_pk_value_on_save(obj) def bulk_create(self, objs, batch_size=None): """ Inserts each of the instances into the database. This does *not* call save() on each of the instances, does not send any pre/post save signals, and does not set the primary key attribute if it is an autoincrement field (except if features.can_return_ids_from_bulk_insert=True). Multi-table models are not supported. """ # When you bulk insert you don't get the primary keys back (if it's an # autoincrement, except if can_return_ids_from_bulk_insert=True), so # you can't insert into the child tables which references this. There # are two workarounds: # 1) This could be implemented if you didn't have an autoincrement pk # 2) You could do it by doing O(n) normal inserts into the parent # tables to get the primary keys back and then doing a single bulk # insert into the childmost table. # We currently set the primary keys on the objects when using # PostgreSQL via the RETURNING ID clause. It should be possible for # Oracle as well, but the semantics for extracting the primary keys is # trickier so it's not done yet. assert batch_size is None or batch_size > 0 # Check that the parents share the same concrete model with the our # model to detect the inheritance pattern ConcreteGrandParent -> # MultiTableParent -> ProxyChild. Simply checking self.model._meta.proxy # would not identify that case as involving multiple tables. for parent in self.model._meta.get_parent_list(): if parent._meta.concrete_model is not self.model._meta.concrete_model: raise ValueError("Can't bulk create a multi-table inherited model") if not objs: return objs self._for_write = True connection = connections[self.db] fields = self.model._meta.concrete_fields objs = list(objs) self._populate_pk_values(objs) with transaction.atomic(using=self.db, savepoint=False): objs_with_pk, objs_without_pk = partition(lambda o: o.pk is None, objs) if objs_with_pk: self._batched_insert(objs_with_pk, fields, batch_size) if objs_without_pk: fields = [f for f in fields if not isinstance(f, AutoField)] ids = self._batched_insert(objs_without_pk, fields, batch_size) if connection.features.can_return_ids_from_bulk_insert: assert len(ids) == len(objs_without_pk) for obj_without_pk, pk in zip(objs_without_pk, ids): obj_without_pk.pk = pk obj_without_pk._state.adding = False obj_without_pk._state.db = self.db return objs def get_or_create(self, defaults=None, **kwargs): """ Looks up an object with the given kwargs, creating one if necessary. Returns a tuple of (object, created), where created is a boolean specifying whether an object was created. """ lookup, params = self._extract_model_params(defaults, **kwargs) # The get() needs to be targeted at the write database in order # to avoid potential transaction consistency problems. self._for_write = True try: return self.get(**lookup), False except self.model.DoesNotExist: return self._create_object_from_params(lookup, params) def update_or_create(self, defaults=None, **kwargs): """ Looks up an object with the given kwargs, updating one with defaults if it exists, otherwise creates a new one. Returns a tuple (object, created), where created is a boolean specifying whether an object was created. """ defaults = defaults or {} lookup, params = self._extract_model_params(defaults, **kwargs) self._for_write = True with transaction.atomic(using=self.db): try: obj = self.select_for_update().get(**lookup) except self.model.DoesNotExist: obj, created = self._create_object_from_params(lookup, params) if created: return obj, created for k, v in defaults.items(): setattr(obj, k, v() if callable(v) else v) obj.save(using=self.db) return obj, False def _create_object_from_params(self, lookup, params): """ Tries to create an object using passed params. Used by get_or_create and update_or_create """ try: with transaction.atomic(using=self.db): params = {k: v() if callable(v) else v for k, v in params.items()} obj = self.create(**params) return obj, True except IntegrityError: exc_info = sys.exc_info() try: return self.get(**lookup), False except self.model.DoesNotExist: pass raise exc_info[0](exc_info[1]).with_traceback(exc_info[2]) def _extract_model_params(self, defaults, **kwargs): """ Prepares `lookup` (kwargs that are valid model attributes), `params` (for creating a model instance) based on given kwargs; for use by get_or_create and update_or_create. """ defaults = defaults or {} lookup = kwargs.copy() for f in self.model._meta.fields: if f.attname in lookup: lookup[f.name] = lookup.pop(f.attname) params = {k: v for k, v in kwargs.items() if LOOKUP_SEP not in k} params.update(defaults) invalid_params = [] for param in params: try: self.model._meta.get_field(param) except exceptions.FieldDoesNotExist: if param != 'pk': # It's okay to use a model's pk property. invalid_params.append(param) if invalid_params: raise exceptions.FieldError( "Invalid field name(s) for model %s: '%s'." % ( self.model._meta.object_name, "', '".join(sorted(invalid_params)), )) return lookup, params def _earliest_or_latest(self, field_name=None, direction="-"): """ Returns the latest object, according to the model's 'get_latest_by' option or optional given field_name. """ order_by = field_name or getattr(self.model._meta, 'get_latest_by') assert bool(order_by), "earliest() and latest() require either a "\ "field_name parameter or 'get_latest_by' in the model" assert self.query.can_filter(), \ "Cannot change a query once a slice has been taken." obj = self._clone() obj.query.set_limits(high=1) obj.query.clear_ordering(force_empty=True) obj.query.add_ordering('%s%s' % (direction, order_by)) return obj.get() def earliest(self, field_name=None): return self._earliest_or_latest(field_name=field_name, direction="") def latest(self, field_name=None): return self._earliest_or_latest(field_name=field_name, direction="-") def first(self): """ Returns the first object of a query, returns None if no match is found. """ objects = list((self if self.ordered else self.order_by('pk'))[:1]) if objects: return objects[0] return None def last(self): """ Returns the last object of a query, returns None if no match is found. """ objects = list((self.reverse() if self.ordered else self.order_by('-pk'))[:1]) if objects: return objects[0] return None def in_bulk(self, id_list=None): """ Returns a dictionary mapping each of the given IDs to the object with that ID. If `id_list` isn't provided, the entire QuerySet is evaluated. """ assert self.query.can_filter(), \ "Cannot use 'limit' or 'offset' with in_bulk" if id_list is not None: if not id_list: return {} qs = self.filter(pk__in=id_list).order_by() else: qs = self._clone() return {obj._get_pk_val(): obj for obj in qs} def delete(self): """ Deletes the records in the current QuerySet. """ assert self.query.can_filter(), \ "Cannot use 'limit' or 'offset' with delete." if self._fields is not None: raise TypeError("Cannot call delete() after .values() or .values_list()") del_query = self._clone() # The delete is actually 2 queries - one to find related objects, # and one to delete. Make sure that the discovery of related # objects is performed on the same database as the deletion. del_query._for_write = True # Disable non-supported fields. del_query.query.select_for_update = False del_query.query.select_related = False del_query.query.clear_ordering(force_empty=True) collector = Collector(using=del_query.db) collector.collect(del_query) deleted, _rows_count = collector.delete() # Clear the result cache, in case this QuerySet gets reused. self._result_cache = None return deleted, _rows_count delete.alters_data = True delete.queryset_only = True def _raw_delete(self, using): """ Deletes objects found from the given queryset in single direct SQL query. No signals are sent, and there is no protection for cascades. """ return sql.DeleteQuery(self.model).delete_qs(self, using) _raw_delete.alters_data = True def update(self, **kwargs): """ Updates all elements in the current QuerySet, setting all the given fields to the appropriate values. """ assert self.query.can_filter(), \ "Cannot update a query once a slice has been taken." self._for_write = True query = self.query.clone(sql.UpdateQuery) query.add_update_values(kwargs) # Clear any annotations so that they won't be present in subqueries. query._annotations = None with transaction.atomic(using=self.db, savepoint=False): rows = query.get_compiler(self.db).execute_sql(CURSOR) self._result_cache = None return rows update.alters_data = True def _update(self, values): """ A version of update that accepts field objects instead of field names. Used primarily for model saving and not intended for use by general code (it requires too much poking around at model internals to be useful at that level). """ assert self.query.can_filter(), \ "Cannot update a query once a slice has been taken." query = self.query.clone(sql.UpdateQuery) query.add_update_fields(values) self._result_cache = None return query.get_compiler(self.db).execute_sql(CURSOR) _update.alters_data = True _update.queryset_only = False def exists(self): if self._result_cache is None: return self.query.has_results(using=self.db) return bool(self._result_cache) def _prefetch_related_objects(self): # This method can only be called once the result cache has been filled. prefetch_related_objects(self._result_cache, *self._prefetch_related_lookups) self._prefetch_done = True ################################################## # PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS # ################################################## def raw(self, raw_query, params=None, translations=None, using=None): if using is None: using = self.db return RawQuerySet(raw_query, model=self.model, params=params, translations=translations, using=using) def _values(self, *fields, **expressions): clone = self._clone() if expressions: clone = clone.annotate(**expressions) clone._fields = fields clone.query.set_values(fields) return clone def values(self, *fields, **expressions): fields += tuple(expressions) clone = self._values(*fields, **expressions) clone._iterable_class = ValuesIterable return clone def values_list(self, *fields, flat=False): if flat and len(fields) > 1: raise TypeError("'flat' is not valid when values_list is called with more than one field.") _fields = [] expressions = {} for field in fields: if hasattr(field, 'resolve_expression'): field_id = str(id(field)) expressions[field_id] = field _fields.append(field_id) else: _fields.append(field) clone = self._values(*_fields, **expressions) clone._iterable_class = FlatValuesListIterable if flat else ValuesListIterable return clone def dates(self, field_name, kind, order='ASC'): """ Returns a list of date objects representing all available dates for the given field_name, scoped to 'kind'. """ assert kind in ("year", "month", "day"), \ "'kind' must be one of 'year', 'month' or 'day'." assert order in ('ASC', 'DESC'), \ "'order' must be either 'ASC' or 'DESC'." return self.annotate( datefield=Trunc(field_name, kind, output_field=DateField()), plain_field=F(field_name) ).values_list( 'datefield', flat=True ).distinct().filter(plain_field__isnull=False).order_by(('-' if order == 'DESC' else '') + 'datefield') def datetimes(self, field_name, kind, order='ASC', tzinfo=None): """ Returns a list of datetime objects representing all available datetimes for the given field_name, scoped to 'kind'. """ assert kind in ("year", "month", "day", "hour", "minute", "second"), \ "'kind' must be one of 'year', 'month', 'day', 'hour', 'minute' or 'second'." assert order in ('ASC', 'DESC'), \ "'order' must be either 'ASC' or 'DESC'." if settings.USE_TZ: if tzinfo is None: tzinfo = timezone.get_current_timezone() else: tzinfo = None return self.annotate( datetimefield=Trunc(field_name, kind, output_field=DateTimeField(), tzinfo=tzinfo), plain_field=F(field_name) ).values_list( 'datetimefield', flat=True ).distinct().filter(plain_field__isnull=False).order_by(('-' if order == 'DESC' else '') + 'datetimefield') def none(self): """ Returns an empty QuerySet. """ clone = self._clone() clone.query.set_empty() return clone ################################################################## # PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET # ################################################################## def all(self): """ Returns a new QuerySet that is a copy of the current one. This allows a QuerySet to proxy for a model manager in some cases. """ return self._clone() def filter(self, *args, **kwargs): """ Returns a new QuerySet instance with the args ANDed to the existing set. """ return self._filter_or_exclude(False, *args, **kwargs) def exclude(self, *args, **kwargs): """ Returns a new QuerySet instance with NOT (args) ANDed to the existing set. """ return self._filter_or_exclude(True, *args, **kwargs) def _filter_or_exclude(self, negate, *args, **kwargs): if args or kwargs: assert self.query.can_filter(), \ "Cannot filter a query once a slice has been taken." clone = self._clone() if negate: clone.query.add_q(~Q(*args, **kwargs)) else: clone.query.add_q(Q(*args, **kwargs)) return clone def complex_filter(self, filter_obj): """ Returns a new QuerySet instance with filter_obj added to the filters. filter_obj can be a Q object (or anything with an add_to_query() method) or a dictionary of keyword lookup arguments. This exists to support framework features such as 'limit_choices_to', and usually it will be more natural to use other methods. """ if isinstance(filter_obj, Q) or hasattr(filter_obj, 'add_to_query'): clone = self._clone() clone.query.add_q(filter_obj) return clone else: return self._filter_or_exclude(None, **filter_obj) def _combinator_query(self, combinator, *other_qs, all=False): # Clone the query to inherit the select list and everything clone = self._clone() # Clear limits and ordering so they can be reapplied clone.query.clear_ordering(True) clone.query.clear_limits() clone.query.combined_queries = (self.query,) + tuple(qs.query for qs in other_qs) clone.query.combinator = combinator clone.query.combinator_all = all return clone def union(self, *other_qs, all=False): return self._combinator_query('union', *other_qs, all=all) def intersection(self, *other_qs): return self._combinator_query('intersection', *other_qs) def difference(self, *other_qs): return self._combinator_query('difference', *other_qs) def select_for_update(self, nowait=False, skip_locked=False): """ Returns a new QuerySet instance that will select objects with a FOR UPDATE lock. """ if nowait and skip_locked: raise ValueError('The nowait option cannot be used with skip_locked.') obj = self._clone() obj._for_write = True obj.query.select_for_update = True obj.query.select_for_update_nowait = nowait obj.query.select_for_update_skip_locked = skip_locked return obj def select_related(self, *fields): """ Returns a new QuerySet instance that will select related objects. If fields are specified, they must be ForeignKey fields and only those related objects are included in the selection. If select_related(None) is called, the list is cleared. """ if self._fields is not None: raise TypeError("Cannot call select_related() after .values() or .values_list()") obj = self._clone() if fields == (None,): obj.query.select_related = False elif fields: obj.query.add_select_related(fields) else: obj.query.select_related = True return obj def prefetch_related(self, *lookups): """ Returns a new QuerySet instance that will prefetch the specified Many-To-One and Many-To-Many related objects when the QuerySet is evaluated. When prefetch_related() is called more than once, the list of lookups to prefetch is appended to. If prefetch_related(None) is called, the list is cleared. """ clone = self._clone() if lookups == (None,): clone._prefetch_related_lookups = () else: clone._prefetch_related_lookups = clone._prefetch_related_lookups + lookups return clone def annotate(self, *args, **kwargs): """ Return a query set in which the returned objects have been annotated with extra data or aggregations. """ annotations = OrderedDict() # To preserve ordering of args for arg in args: # The default_alias property may raise a TypeError, so we use # a try/except construct rather than hasattr in order to remain # consistent between PY2 and PY3 (hasattr would swallow # the TypeError on PY2). try: if arg.default_alias in kwargs: raise ValueError("The named annotation '%s' conflicts with the " "default name for another annotation." % arg.default_alias) except (AttributeError, TypeError): raise TypeError("Complex annotations require an alias") annotations[arg.default_alias] = arg annotations.update(kwargs) clone = self._clone() names = self._fields if names is None: names = {f.name for f in self.model._meta.get_fields()} for alias, annotation in annotations.items(): if alias in names: raise ValueError("The annotation '%s' conflicts with a field on " "the model." % alias) clone.query.add_annotation(annotation, alias, is_summary=False) for alias, annotation in clone.query.annotations.items(): if alias in annotations and annotation.contains_aggregate: if clone._fields is None: clone.query.group_by = True else: clone.query.set_group_by() break return clone def order_by(self, *field_names): """ Returns a new QuerySet instance with the ordering changed. """ assert self.query.can_filter(), \ "Cannot reorder a query once a slice has been taken." obj = self._clone() obj.query.clear_ordering(force_empty=False) obj.query.add_ordering(*field_names) return obj def distinct(self, *field_names): """ Returns a new QuerySet instance that will select only distinct results. """ assert self.query.can_filter(), \ "Cannot create distinct fields once a slice has been taken." obj = self._clone() obj.query.add_distinct_fields(*field_names) return obj def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None): """ Adds extra SQL fragments to the query. """ assert self.query.can_filter(), \ "Cannot change a query once a slice has been taken" clone = self._clone() clone.query.add_extra(select, select_params, where, params, tables, order_by) return clone def reverse(self): """ Reverses the ordering of the QuerySet. """ clone = self._clone() clone.query.standard_ordering = not clone.query.standard_ordering return clone def defer(self, *fields): """ Defers the loading of data for certain fields until they are accessed. The set of fields to defer is added to any existing set of deferred fields. The only exception to this is if None is passed in as the only parameter, in which case all deferrals are removed (None acts as a reset option). """ if self._fields is not None: raise TypeError("Cannot call defer() after .values() or .values_list()") clone = self._clone() if fields == (None,): clone.query.clear_deferred_loading() else: clone.query.add_deferred_loading(fields) return clone def only(self, *fields): """ Essentially, the opposite of defer. Only the fields passed into this method and that are not already specified as deferred are loaded immediately when the queryset is evaluated. """ if self._fields is not None: raise TypeError("Cannot call only() after .values() or .values_list()") if fields == (None,): # Can only pass None to defer(), not only(), as the rest option. # That won't stop people trying to do this, so let's be explicit. raise TypeError("Cannot pass None as an argument to only().") clone = self._clone() clone.query.add_immediate_loading(fields) return clone def using(self, alias): """ Selects which database this QuerySet should execute its query against. """ clone = self._clone() clone._db = alias return clone ################################### # PUBLIC INTROSPECTION ATTRIBUTES # ################################### @property def ordered(self): """ Returns True if the QuerySet is ordered -- i.e. has an order_by() clause or a default ordering on the model. """ if self.query.extra_order_by or self.query.order_by: return True elif self.query.default_ordering and self.query.get_meta().ordering: return True else: return False @property def db(self): "Return the database that will be used if this query is executed now" if self._for_write: return self._db or router.db_for_write(self.model, **self._hints) return self._db or router.db_for_read(self.model, **self._hints) ################### # PRIVATE METHODS # ################### def _insert(self, objs, fields, return_id=False, raw=False, using=None): """ Inserts a new record for the given model. This provides an interface to the InsertQuery class and is how Model.save() is implemented. """ self._for_write = True if using is None: using = self.db query = sql.InsertQuery(self.model) query.insert_values(fields, objs, raw=raw) return query.get_compiler(using=using).execute_sql(return_id) _insert.alters_data = True _insert.queryset_only = False def _batched_insert(self, objs, fields, batch_size): """ A little helper method for bulk_insert to insert the bulk one batch at a time. Inserts recursively a batch from the front of the bulk and then _batched_insert() the remaining objects again. """ if not objs: return ops = connections[self.db].ops batch_size = (batch_size or max(ops.bulk_batch_size(fields, objs), 1)) inserted_ids = [] for item in [objs[i:i + batch_size] for i in range(0, len(objs), batch_size)]: if connections[self.db].features.can_return_ids_from_bulk_insert: inserted_id = self._insert(item, fields=fields, using=self.db, return_id=True) if isinstance(inserted_id, list): inserted_ids.extend(inserted_id) else: inserted_ids.append(inserted_id) else: self._insert(item, fields=fields, using=self.db) return inserted_ids def _clone(self, **kwargs): query = self.query.clone() if self._sticky_filter: query.filter_is_sticky = True clone = self.__class__(model=self.model, query=query, using=self._db, hints=self._hints) clone._for_write = self._for_write clone._prefetch_related_lookups = self._prefetch_related_lookups clone._known_related_objects = self._known_related_objects clone._iterable_class = self._iterable_class clone._fields = self._fields clone.__dict__.update(kwargs) return clone def _fetch_all(self): if self._result_cache is None: self._result_cache = list(self._iterable_class(self)) if self._prefetch_related_lookups and not self._prefetch_done: self._prefetch_related_objects() def _next_is_sticky(self): """ Indicates that the next filter call and the one following that should be treated as a single filter. This is only important when it comes to determining when to reuse tables for many-to-many filters. Required so that we can filter naturally on the results of related managers. This doesn't return a clone of the current QuerySet (it returns "self"). The method is only used internally and should be immediately followed by a filter() that does create a clone. """ self._sticky_filter = True return self def _merge_sanity_check(self, other): """ Checks that we are merging two comparable QuerySet classes. """ if self._fields is not None and ( set(self.query.values_select) != set(other.query.values_select) or set(self.query.extra_select) != set(other.query.extra_select) or set(self.query.annotation_select) != set(other.query.annotation_select)): raise TypeError( "Merging '%s' classes must involve the same values in each case." % self.__class__.__name__ ) def _merge_known_related_objects(self, other): """ Keep track of all known related objects from either QuerySet instance. """ for field, objects in other._known_related_objects.items(): self._known_related_objects.setdefault(field, {}).update(objects) def _prepare_as_filter_value(self): if self._fields is None: queryset = self.values('pk') queryset.query._forced_pk = True else: # values() queryset can only be used as nested queries # if they are set up to select only a single field. if len(self._fields) > 1: raise TypeError('Cannot use multi-field values as a filter value.') queryset = self._clone() return queryset.query.as_subquery_filter(queryset._db) def _add_hints(self, **hints): """ Update hinting information for later use by Routers """ # If there is any hinting information, add it to what we already know. # If we have a new hint for an existing key, overwrite with the new value. self._hints.update(hints) def _has_filters(self): """ Checks if this QuerySet has any filtering going on. Note that this isn't equivalent for checking if all objects are present in results, for example qs[1:]._has_filters() -> False. """ return self.query.has_filters() class InstanceCheckMeta(type): def __instancecheck__(self, instance): return isinstance(instance, QuerySet) and instance.query.is_empty() class EmptyQuerySet(metaclass=InstanceCheckMeta): """ Marker class usable for checking if a queryset is empty by .none(): isinstance(qs.none(), EmptyQuerySet) -> True """ def __init__(self, *args, **kwargs): raise TypeError("EmptyQuerySet can't be instantiated") class RawQuerySet: """ Provides an iterator which converts the results of raw SQL queries into annotated model instances. """ def __init__(self, raw_query, model=None, query=None, params=None, translations=None, using=None, hints=None): self.raw_query = raw_query self.model = model self._db = using self._hints = hints or {} self.query = query or sql.RawQuery(sql=raw_query, using=self.db, params=params) self.params = params or () self.translations = translations or {} def resolve_model_init_order(self): """ Resolve the init field names and value positions """ model_init_fields = [f for f in self.model._meta.fields if f.column in self.columns] annotation_fields = [(column, pos) for pos, column in enumerate(self.columns) if column not in self.model_fields] model_init_order = [self.columns.index(f.column) for f in model_init_fields] model_init_names = [f.attname for f in model_init_fields] return model_init_names, model_init_order, annotation_fields def __iter__(self): # Cache some things for performance reasons outside the loop. db = self.db compiler = connections[db].ops.compiler('SQLCompiler')( self.query, connections[db], db ) query = iter(self.query) try: model_init_names, model_init_pos, annotation_fields = self.resolve_model_init_order() # Find out which model's fields are not present in the query. skip = set() for field in self.model._meta.fields: if field.attname not in model_init_names: skip.add(field.attname) if skip: if self.model._meta.pk.attname in skip: raise InvalidQuery('Raw query must include the primary key') model_cls = self.model fields = [self.model_fields.get(c) for c in self.columns] converters = compiler.get_converters([ f.get_col(f.model._meta.db_table) if f else None for f in fields ]) for values in query: if converters: values = compiler.apply_converters(values, converters) # Associate fields to values model_init_values = [values[pos] for pos in model_init_pos] instance = model_cls.from_db(db, model_init_names, model_init_values) if annotation_fields: for column, pos in annotation_fields: setattr(instance, column, values[pos]) yield instance finally: # Done iterating the Query. If it has its own cursor, close it. if hasattr(self.query, 'cursor') and self.query.cursor: self.query.cursor.close() def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self.query) def __getitem__(self, k): return list(self)[k] @property def db(self): "Return the database that will be used if this query is executed now" return self._db or router.db_for_read(self.model, **self._hints) def using(self, alias): """ Selects which database this Raw QuerySet should execute its query against. """ return RawQuerySet( self.raw_query, model=self.model, query=self.query.clone(using=alias), params=self.params, translations=self.translations, using=alias, ) @cached_property def columns(self): """ A list of model field names in the order they'll appear in the query results. """ columns = self.query.get_columns() # Adjust any column names which don't match field names for (query_name, model_name) in self.translations.items(): try: index = columns.index(query_name) columns[index] = model_name except ValueError: # Ignore translations for non-existent column names pass return columns @cached_property def model_fields(self): """ A dict mapping column names to model field names. """ converter = connections[self.db].introspection.table_name_converter model_fields = {} for field in self.model._meta.fields: name, column = field.get_attname_column() model_fields[converter(column)] = field return model_fields class Prefetch: def __init__(self, lookup, queryset=None, to_attr=None): # `prefetch_through` is the path we traverse to perform the prefetch. self.prefetch_through = lookup # `prefetch_to` is the path to the attribute that stores the result. self.prefetch_to = lookup if queryset is not None and queryset._iterable_class is not ModelIterable: raise ValueError('Prefetch querysets cannot use values().') if to_attr: self.prefetch_to = LOOKUP_SEP.join(lookup.split(LOOKUP_SEP)[:-1] + [to_attr]) self.queryset = queryset self.to_attr = to_attr def __getstate__(self): obj_dict = self.__dict__.copy() if self.queryset is not None: # Prevent the QuerySet from being evaluated obj_dict['queryset'] = self.queryset._clone( _result_cache=[], _prefetch_done=True, ) return obj_dict def add_prefix(self, prefix): self.prefetch_through = LOOKUP_SEP.join([prefix, self.prefetch_through]) self.prefetch_to = LOOKUP_SEP.join([prefix, self.prefetch_to]) def get_current_prefetch_to(self, level): return LOOKUP_SEP.join(self.prefetch_to.split(LOOKUP_SEP)[:level + 1]) def get_current_to_attr(self, level): parts = self.prefetch_to.split(LOOKUP_SEP) to_attr = parts[level] as_attr = self.to_attr and level == len(parts) - 1 return to_attr, as_attr def get_current_queryset(self, level): if self.get_current_prefetch_to(level) == self.prefetch_to: return self.queryset return None def __eq__(self, other): if isinstance(other, Prefetch): return self.prefetch_to == other.prefetch_to return False def __hash__(self): return hash(self.__class__) ^ hash(self.prefetch_to) def normalize_prefetch_lookups(lookups, prefix=None): """ Helper function that normalize lookups into Prefetch objects. """ ret = [] for lookup in lookups: if not isinstance(lookup, Prefetch): lookup = Prefetch(lookup) if prefix: lookup.add_prefix(prefix) ret.append(lookup) return ret def prefetch_related_objects(model_instances, *related_lookups): """ Populate prefetched object caches for a list of model instances based on the lookups/Prefetch instances given. """ if len(model_instances) == 0: return # nothing to do related_lookups = normalize_prefetch_lookups(related_lookups) # We need to be able to dynamically add to the list of prefetch_related # lookups that we look up (see below). So we need some book keeping to # ensure we don't do duplicate work. done_queries = {} # dictionary of things like 'foo__bar': [results] auto_lookups = set() # we add to this as we go through. followed_descriptors = set() # recursion protection all_lookups = deque(related_lookups) while all_lookups: lookup = all_lookups.popleft() if lookup.prefetch_to in done_queries: if lookup.queryset: raise ValueError("'%s' lookup was already seen with a different queryset. " "You may need to adjust the ordering of your lookups." % lookup.prefetch_to) continue # Top level, the list of objects to decorate is the result cache # from the primary QuerySet. It won't be for deeper levels. obj_list = model_instances through_attrs = lookup.prefetch_through.split(LOOKUP_SEP) for level, through_attr in enumerate(through_attrs): # Prepare main instances if len(obj_list) == 0: break prefetch_to = lookup.get_current_prefetch_to(level) if prefetch_to in done_queries: # Skip any prefetching, and any object preparation obj_list = done_queries[prefetch_to] continue # Prepare objects: good_objects = True for obj in obj_list: # Since prefetching can re-use instances, it is possible to have # the same instance multiple times in obj_list, so obj might # already be prepared. if not hasattr(obj, '_prefetched_objects_cache'): try: obj._prefetched_objects_cache = {} except (AttributeError, TypeError): # Must be an immutable object from # values_list(flat=True), for example (TypeError) or # a QuerySet subclass that isn't returning Model # instances (AttributeError), either in Django or a 3rd # party. prefetch_related() doesn't make sense, so quit. good_objects = False break if not good_objects: break # Descend down tree # We assume that objects retrieved are homogeneous (which is the premise # of prefetch_related), so what applies to first object applies to all. first_obj = obj_list[0] to_attr = lookup.get_current_to_attr(level)[0] prefetcher, descriptor, attr_found, is_fetched = get_prefetcher(first_obj, through_attr, to_attr) if not attr_found: raise AttributeError("Cannot find '%s' on %s object, '%s' is an invalid " "parameter to prefetch_related()" % (through_attr, first_obj.__class__.__name__, lookup.prefetch_through)) if level == len(through_attrs) - 1 and prefetcher is None: # Last one, this *must* resolve to something that supports # prefetching, otherwise there is no point adding it and the # developer asking for it has made a mistake. raise ValueError("'%s' does not resolve to an item that supports " "prefetching - this is an invalid parameter to " "prefetch_related()." % lookup.prefetch_through) if prefetcher is not None and not is_fetched: obj_list, additional_lookups = prefetch_one_level(obj_list, prefetcher, lookup, level) # We need to ensure we don't keep adding lookups from the # same relationships to stop infinite recursion. So, if we # are already on an automatically added lookup, don't add # the new lookups from relationships we've seen already. if not (lookup in auto_lookups and descriptor in followed_descriptors): done_queries[prefetch_to] = obj_list new_lookups = normalize_prefetch_lookups(additional_lookups, prefetch_to) auto_lookups.update(new_lookups) all_lookups.extendleft(new_lookups) followed_descriptors.add(descriptor) else: # Either a singly related object that has already been fetched # (e.g. via select_related), or hopefully some other property # that doesn't support prefetching but needs to be traversed. # We replace the current list of parent objects with the list # of related objects, filtering out empty or missing values so # that we can continue with nullable or reverse relations. new_obj_list = [] for obj in obj_list: try: new_obj = getattr(obj, through_attr) except exceptions.ObjectDoesNotExist: continue if new_obj is None: continue # We special-case `list` rather than something more generic # like `Iterable` because we don't want to accidentally match # user models that define __iter__. if isinstance(new_obj, list): new_obj_list.extend(new_obj) else: new_obj_list.append(new_obj) obj_list = new_obj_list def get_prefetcher(instance, through_attr, to_attr): """ For the attribute 'through_attr' on the given instance, finds an object that has a get_prefetch_queryset(). Returns a 4 tuple containing: (the object with get_prefetch_queryset (or None), the descriptor object representing this relationship (or None), a boolean that is False if the attribute was not found at all, a boolean that is True if the attribute has already been fetched) """ prefetcher = None is_fetched = False # For singly related objects, we have to avoid getting the attribute # from the object, as this will trigger the query. So we first try # on the class, in order to get the descriptor object. rel_obj_descriptor = getattr(instance.__class__, through_attr, None) if rel_obj_descriptor is None: attr_found = hasattr(instance, through_attr) else: attr_found = True if rel_obj_descriptor: # singly related object, descriptor object has the # get_prefetch_queryset() method. if hasattr(rel_obj_descriptor, 'get_prefetch_queryset'): prefetcher = rel_obj_descriptor if rel_obj_descriptor.is_cached(instance): is_fetched = True else: # descriptor doesn't support prefetching, so we go ahead and get # the attribute on the instance rather than the class to # support many related managers rel_obj = getattr(instance, through_attr) if hasattr(rel_obj, 'get_prefetch_queryset'): prefetcher = rel_obj if through_attr != to_attr: # Special case cached_property instances because hasattr # triggers attribute computation and assignment. if isinstance(getattr(instance.__class__, to_attr, None), cached_property): is_fetched = to_attr in instance.__dict__ else: is_fetched = hasattr(instance, to_attr) else: is_fetched = through_attr in instance._prefetched_objects_cache return prefetcher, rel_obj_descriptor, attr_found, is_fetched def prefetch_one_level(instances, prefetcher, lookup, level): """ Helper function for prefetch_related_objects Runs prefetches on all instances using the prefetcher object, assigning results to relevant caches in instance. The prefetched objects are returned, along with any additional prefetches that must be done due to prefetch_related lookups found from default managers. """ # prefetcher must have a method get_prefetch_queryset() which takes a list # of instances, and returns a tuple: # (queryset of instances of self.model that are related to passed in instances, # callable that gets value to be matched for returned instances, # callable that gets value to be matched for passed in instances, # boolean that is True for singly related objects, # cache name to assign to). # The 'values to be matched' must be hashable as they will be used # in a dictionary. rel_qs, rel_obj_attr, instance_attr, single, cache_name = ( prefetcher.get_prefetch_queryset(instances, lookup.get_current_queryset(level))) # We have to handle the possibility that the QuerySet we just got back # contains some prefetch_related lookups. We don't want to trigger the # prefetch_related functionality by evaluating the query. Rather, we need # to merge in the prefetch_related lookups. # Copy the lookups in case it is a Prefetch object which could be reused # later (happens in nested prefetch_related). additional_lookups = [ copy.copy(additional_lookup) for additional_lookup in getattr(rel_qs, '_prefetch_related_lookups', ()) ] if additional_lookups: # Don't need to clone because the manager should have given us a fresh # instance, so we access an internal instead of using public interface # for performance reasons. rel_qs._prefetch_related_lookups = () all_related_objects = list(rel_qs) rel_obj_cache = {} for rel_obj in all_related_objects: rel_attr_val = rel_obj_attr(rel_obj) rel_obj_cache.setdefault(rel_attr_val, []).append(rel_obj) to_attr, as_attr = lookup.get_current_to_attr(level) # Make sure `to_attr` does not conflict with a field. if as_attr and instances: # We assume that objects retrieved are homogeneous (which is the premise # of prefetch_related), so what applies to first object applies to all. model = instances[0].__class__ try: model._meta.get_field(to_attr) except exceptions.FieldDoesNotExist: pass else: msg = 'to_attr={} conflicts with a field on the {} model.' raise ValueError(msg.format(to_attr, model.__name__)) # Whether or not we're prefetching the last part of the lookup. leaf = len(lookup.prefetch_through.split(LOOKUP_SEP)) - 1 == level for obj in instances: instance_attr_val = instance_attr(obj) vals = rel_obj_cache.get(instance_attr_val, []) if single: val = vals[0] if vals else None to_attr = to_attr if as_attr else cache_name setattr(obj, to_attr, val) else: if as_attr: setattr(obj, to_attr, vals) else: manager = getattr(obj, to_attr) if leaf and lookup.queryset is not None: qs = manager._apply_rel_filters(lookup.queryset) else: qs = manager.get_queryset() qs._result_cache = vals # We don't want the individual qs doing prefetch_related now, # since we have merged this into the current work. qs._prefetch_done = True obj._prefetched_objects_cache[cache_name] = qs return all_related_objects, additional_lookups class RelatedPopulator: """ RelatedPopulator is used for select_related() object instantiation. The idea is that each select_related() model will be populated by a different RelatedPopulator instance. The RelatedPopulator instances get klass_info and select (computed in SQLCompiler) plus the used db as input for initialization. That data is used to compute which columns to use, how to instantiate the model, and how to populate the links between the objects. The actual creation of the objects is done in populate() method. This method gets row and from_obj as input and populates the select_related() model instance. """ def __init__(self, klass_info, select, db): self.db = db # Pre-compute needed attributes. The attributes are: # - model_cls: the possibly deferred model class to instantiate # - either: # - cols_start, cols_end: usually the columns in the row are # in the same order model_cls.__init__ expects them, so we # can instantiate by model_cls(*row[cols_start:cols_end]) # - reorder_for_init: When select_related descends to a child # class, then we want to reuse the already selected parent # data. However, in this case the parent data isn't necessarily # in the same order that Model.__init__ expects it to be, so # we have to reorder the parent data. The reorder_for_init # attribute contains a function used to reorder the field data # in the order __init__ expects it. # - pk_idx: the index of the primary key field in the reordered # model data. Used to check if a related object exists at all. # - init_list: the field attnames fetched from the database. For # deferred models this isn't the same as all attnames of the # model's fields. # - related_populators: a list of RelatedPopulator instances if # select_related() descends to related models from this model. # - cache_name, reverse_cache_name: the names to use for setattr # when assigning the fetched object to the from_obj. If the # reverse_cache_name is set, then we also set the reverse link. select_fields = klass_info['select_fields'] from_parent = klass_info['from_parent'] if not from_parent: self.cols_start = select_fields[0] self.cols_end = select_fields[-1] + 1 self.init_list = [ f[0].target.attname for f in select[self.cols_start:self.cols_end] ] self.reorder_for_init = None else: model_init_attnames = [ f.attname for f in klass_info['model']._meta.concrete_fields ] reorder_map = [] for idx in select_fields: field = select[idx][0].target init_pos = model_init_attnames.index(field.attname) reorder_map.append((init_pos, field.attname, idx)) reorder_map.sort() self.init_list = [v[1] for v in reorder_map] pos_list = [row_pos for _, _, row_pos in reorder_map] def reorder_for_init(row): return [row[row_pos] for row_pos in pos_list] self.reorder_for_init = reorder_for_init self.model_cls = klass_info['model'] self.pk_idx = self.init_list.index(self.model_cls._meta.pk.attname) self.related_populators = get_related_populators(klass_info, select, self.db) field = klass_info['field'] reverse = klass_info['reverse'] self.reverse_cache_name = None if reverse: self.cache_name = field.remote_field.get_cache_name() self.reverse_cache_name = field.get_cache_name() else: self.cache_name = field.get_cache_name() if field.unique: self.reverse_cache_name = field.remote_field.get_cache_name() def populate(self, row, from_obj): if self.reorder_for_init: obj_data = self.reorder_for_init(row) else: obj_data = row[self.cols_start:self.cols_end] if obj_data[self.pk_idx] is None: obj = None else: obj = self.model_cls.from_db(self.db, self.init_list, obj_data) if obj and self.related_populators: for rel_iter in self.related_populators: rel_iter.populate(row, obj) setattr(from_obj, self.cache_name, obj) if obj and self.reverse_cache_name: setattr(obj, self.reverse_cache_name, from_obj) def get_related_populators(klass_info, select, db): iterators = [] related_klass_infos = klass_info.get('related_klass_infos', []) for rel_klass_info in related_klass_infos: rel_cls = RelatedPopulator(rel_klass_info, select, db) iterators.append(rel_cls) return iterators
bsd-3-clause
2,804,857,369,781,657,600
39.37551
115
0.589784
false
VerTiGoEtrex/spideTor
spideTor/Metafile.py
1
7762
# coding: utf-8 ''' Created on Jul 24, 2014 @author: Noah ''' import bencode import logging import pprint import os.path log = logging.getLogger(__name__) pp = pprint.PrettyPrinter(indent = 1, width = 80) HASHLEN = 20 class Metafile: ''' Decodes the metadata stored in a .torrent metafile and presents a standard interface to access it Notice about the bencode library. Everything is encoded in UTF-8 strings, so you must .decode them to get them back to unicode ''' def __init__(self, metafilepath): self.metafilepath = metafilepath with open(metafilepath, 'rb') as metafile: encoded = metafile.read() log.debug("Read metafile successfully") log.debug("decoding bencoded data") self.decoded = bencode.bdecode(encoded) log.debug("decoded as {}".format(pp.pformat(self.decoded))) if self.isSingleFileTorrent(): log.debug("metafile appears to be a single file metafile") else: log.debug("metafile appears to contain many files") self.files = None def __unicode__(self): return self.metafilepath def __str__(self): return self.__unicode__().encode("utf-8") def getMetafileFiles(self): if self.files != None: return self.files self.files = [] if self.isSingleFileTorrent(): self.files.append(MetafileFile(self.getName(), self.decoded['info']['length'])) else: for metadata in self.decoded['info']['files']: self.files.append(MetafileFile(os.path.join(*(path.decode("utf-8") for path in metadata['path'])), metadata['length'])) return self.files def getPieces(self): hashes = self.getHashes() log.debug("Number of pieces: {}".format(len(hashes))) pieceLength = self.decoded['info']['piece length'] log.debug("Piece length: {}".format(pieceLength)) pieces = [] # Populate all of the constant-length pieces metafileFiles = self.getMetafileFiles() fileIterator = iter(metafileFiles) currentFile = fileIterator.next() currentPiecePosition = 0 currentFileReadPosition = 0 prevPiece = None for pieceNumber in xrange(0, len(hashes)): # Get files in this piece (similar to a merge) # This is a list, because ordering matters filesInPiece = [] # If this file ends inside this piece, then advance to the next one and add it too #Piece ------XXXXX----- #File --XXXXXX++++---- #AND ALSO #Piece ------XXXXX----- #File --XXXXXXXXX+++-- bytesReadInPiece = 0 while currentPiecePosition + currentFile.getSize() <= (pieceNumber + 1) * pieceLength: currentPiecePosition += currentFile.getSize() bytesRemainingInFile = currentFile.getSize() - currentFileReadPosition filesInPiece.append(MetafileFileWithOffset(currentFile, currentFileReadPosition, bytesRemainingInFile, (currentFileReadPosition == 0))) bytesReadInPiece += bytesRemainingInFile currentFileReadPosition = 0 try: currentFile = fileIterator.next() except StopIteration, e: # That was the last file. This should be the last piece, which is asserted later. currentFile = None break if currentFile != None: bytesToRead = min(pieceLength - bytesReadInPiece, currentFile.getSize() - currentFileReadPosition) filesInPiece.append(MetafileFileWithOffset(currentFile, currentFileReadPosition, bytesToRead, False)) currentFileReadPosition += bytesToRead elif not pieceNumber == len(hashes)-1 or len(filesInPiece) == 0: #Assert that this is the last piece log.error("Ran out of files on piece {} / {}".format(pieceNumber, len(hashes)-1)) return log.debug("Piece [{}/{}]: {} files".format(pieceNumber, len(hashes)-1, len(filesInPiece))) pieceToInsert = Piece(pieceNumber, hashes[pieceNumber], pieceLength, filesInPiece) # Setup linked list (for heapq updating) pieceToInsert.setPrevPiece(prevPiece) if prevPiece != None: prevPiece.setNextPiece(pieceToInsert) pieces.append(pieceToInsert) prevPiece = pieceToInsert return pieces def getHashes(self): allHashes = self.decoded['info']['pieces'] return [allHashes[window:window+HASHLEN] for window in xrange(0, len(allHashes), HASHLEN)] def getName(self): return self.decoded['info']['name'].decode("utf-8") def isSingleFileTorrent(self): return 'length' in self.decoded['info'] def getMetafilePath(self): return self.metafilepath class Piece: ''' Holds information about a "piece" in the metafile ''' def __init__(self, pieceNumber, pieceHash, pieceLength, fileWithOffsetsInPiece): self.pieceNumber = pieceNumber self.pieceHash = pieceHash self.pieceLength = pieceLength self.fileWithOffsetsInPiece = fileWithOffsetsInPiece self.nextPiece = None self.prevPiece = None def getPieceNumber(self): return self.pieceNumber def getFileWithOffsetsInPiece(self): return self.fileWithOffsetsInPiece def getHash(self): return self.pieceHash def getPieceLength(self): return self.pieceLength def oneFileInPiece(self): return len(self.fileWithOffsetsInPiece) == 1 def getOneFileInPiece(self): if self.oneFileInPiece(): return next(iter(self.fileWithOffsetsInPiece)) def setPrevPiece(self, prevPiece): self.prevPiece = prevPiece def setNextPiece(self, nextPiece): self.nextPiece = nextPiece def getPrevPiece(self): return self.prevPiece def getNextPiece(self): return self.nextPiece class MetafileFile: ''' Holds more detailed information about a file within a metafile ''' def __init__(self, file_path, size): ''' Constructs a new MetafileFile object ''' self.file_path = file_path self.size = size def __unicode__(self): return self.getPath() def __str__(self): return self.__unicode__().encode("utf-8") def getPath(self): return self.file_path def getSize(self): return self.size class MetafileFileWithOffset: ''' Holds some additional information about a file as it relates to a piece ''' def __init__(self, metafileFile, startOffset, readLength, entirelyInPiece): self.metafileFile = metafileFile self.startOffset = startOffset self.readLength = readLength self.entirelyInPiece = entirelyInPiece def __str__(self): return self.__unicode__().encode("utf-8") def __unicode__(self): return unicode(self.metafileFile) def __repr__(self): return "MFWO|" + self.__str__() def getMetafileFile(self): return self.metafileFile def getStartOffset(self): return self.startOffset def getReadLength(self): return self.readLength def fileEntirelyInPiece(self): return self.entirelyInPiece
apache-2.0
-5,599,650,462,333,740,000
32.606061
151
0.598171
false
onepercentclub/onepercentclub-site
apps/projects/management/commands/cron_status_realised.py
1
3907
from datetime import datetime from django.core.management.base import BaseCommand, CommandError from django.utils.timezone import now from django.utils.translation import ugettext as _ class Command(BaseCommand): args = 'No arguments required' help = 'Sets projects to "Done Incomplete" and task status to "Realised" when the deadline is passed' def handle(self, *args, **options): from apps.projects.models import Project from bluebottle.bb_projects.models import ProjectPhase from apps.tasks.models import Task """ Projects which have expired but have been funded will already have their status set to done-complete so these can be ignored. We only need to update projects which haven't been funded but have expired, or they have been overfunded and have expired. """ try: done_incomplete_phase = ProjectPhase.objects.get(slug='done-incomplete') self.stdout.write("Found ProjectPhase model with name 'Done Incomplete'") except ProjectPhase.DoesNotExist: raise CommandError("A ProjectPhase with name 'Done Incomplete' does not exist") try: done_complete_phase = ProjectPhase.objects.get(slug='done-complete') self.stdout.write("Found ProjectPhase model with name 'Done Complete'") except ProjectPhase.DoesNotExist: raise CommandError("A ProjectPhase with name 'Done Complete' does not exist") try: campaign_phase = ProjectPhase.objects.get(slug='campaign') self.stdout.write("Found ProjectPhase model with name 'Campaign'") except ProjectPhase.DoesNotExist: raise CommandError("A ProjectPhase with name 'Campaign' does not exist") """ Projects which have at least the funds asked, are still in campaign phase and have not expired need the campaign funded date set to now. FIXME: this action should be moved into the code where 'amount_needed' is calculated => when the value is lte 0 then set campaign_funded. """ self.stdout.write("Checking Project funded and still running...") Project.objects.filter(amount_needed__lte=0, status=campaign_phase, deadline__gt=now()).update(campaign_funded=now()) """ Projects which have at least the funds asked, are still in campaign phase but have expired need to be set to 'done complete' and the campaign ended date set to now. Iterate over projects and save them one by one so the receivers get a signal """ self.stdout.write("Checking Project overfunded deadlines...") for project in Project.objects.filter(amount_needed__lt=0, status=campaign_phase, deadline__lte=now()).all(): project.status = done_complete_phase project.campaign_ended = now() project.save() """ Projects which don't have the funds asked, are still in campaign phase but have expired need to be set to 'done incomplete' and the campaign ended date set to now. Iterate over projects and save them one by one so the receivers get a signal """ self.stdout.write("Checking Project unfunded deadlines...") for project in Project.objects.filter(status=campaign_phase, deadline__lt=now()).all(): project.status = done_incomplete_phase project.campaign_ended = now() project.save() """ Iterate over tasks and save them one by one so the receivers get a signal """ self.stdout.write("Checking Task deadlines...\n\n") for task in Task.objects.filter(status='in progress', deadline__lt=now()).all(): task.status = 'realized' task.save() self.stdout.write("Successfully updated the status of expired Project and Task models.\n\n")
bsd-3-clause
7,871,289,710,018,549,000
49.102564
125
0.666752
false
Blazemeter/taurus
bzt/jmx/base.py
1
55715
""" Module holds base stuff regarding JMX format Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import os import traceback from cssselect import GenericTranslator from lxml import etree from urllib import parse from bzt import TaurusInternalException, TaurusConfigError from bzt.engine import Scenario from bzt.utils import BetterDict, iteritems, numeric_types from bzt.requests_model import has_variable_pattern LOG = logging.getLogger("") def try_convert(val, func=int, default=None): if val is None: res = val elif has_variable_pattern(val): # it's property... if default is not None: val = get_prop_default(val) or default res = func(val) else: res = val else: res = func(val) return res def get_prop_default(val): comma_ind = val.find(",") comma_found = comma_ind > -1 is_property = val.startswith("${__property(") or val.startswith("${__P(") if has_variable_pattern(val) and is_property and comma_found: return val[comma_ind + 1: -2] else: return None def cond_int(val): if isinstance(val, float): return int(val) return val def cond_float(val, rounding=None): if isinstance(val, numeric_types): return round(float(val), rounding) if rounding is not None else float(val) return val class JMX(object): """ A class to manipulate and generate JMX test plans for JMeter :param original: path to existing JMX to load. If it is None, then creates empty test plan """ TEST_PLAN_SEL = "jmeterTestPlan>hashTree>hashTree" THR_GROUP_SEL = TEST_PLAN_SEL + ">hashTree[type=tg]" THR_TIMER = "kg.apc.jmeter.timers.VariableThroughputTimer" SET_VAR_ACTION = "kg.apc.jmeter.control.sampler.SetVariablesAction" def __init__(self, original=None, test_plan_name="BZT Generated Test Plan"): self.log = logging.getLogger(self.__class__.__name__) if original: self.load(original) else: root = etree.Element("jmeterTestPlan") self.tree = etree.ElementTree(root) test_plan = etree.Element("TestPlan", guiclass="TestPlanGui", testname=test_plan_name, testclass="TestPlan", enabled="true") htree = etree.Element("hashTree") htree.append(test_plan) htree.append(etree.Element("hashTree")) self.append("jmeterTestPlan", htree) element_prop = self._get_arguments_panel("TestPlan.user_defined_variables") self.append("jmeterTestPlan>hashTree>TestPlan", element_prop) def load(self, original): """ Load existing JMX file :param original: JMX file path :raise TaurusInternalException: in case of XML parsing error """ try: self.tree = etree.ElementTree() self.tree.parse(original) except BaseException as exc: msg = "XML parsing failed for file %s: %s" raise TaurusInternalException(msg % (original, exc)) def get(self, selector): """ Returns tree elements by CSS selector :type selector: str :return: """ expression = GenericTranslator().css_to_xpath(selector) nodes = self.tree.xpath(expression) return nodes def append(self, selector, node): """ Add node to container specified by selector. If multiple nodes will match the selector, first of them will be used as container. :param selector: CSS selector for container :param node: Element instance to add :raise TaurusInternalException: if container was not found """ container = self.get(selector) if not len(container): msg = "Failed to find TestPlan node in file: %s" raise TaurusInternalException(msg % selector) container[0].append(node) def save(self, filename): """ Save JMX into file :param filename: """ self.log.debug("Saving JMX to: %s", filename) with open(filename, "wb") as fhd: self.tree.write(fhd, pretty_print=True, encoding="UTF-8", xml_declaration=True) @staticmethod def _flag(flag_name, bool_value): """ Generates element for JMX flag node :param flag_name: :param bool_value: :return: """ elm = etree.Element(flag_name) elm.text = "true" if bool_value else "false" return elm @staticmethod def __jtl_writer(filename, label, flags): """ Generates JTL writer :param filename: :return: """ jtl = etree.Element("stringProp", {"name": "filename"}) jtl.text = filename name = etree.Element("name") name.text = "saveConfig" value = etree.Element("value") value.set("class", "SampleSaveConfiguration") for key, val in iteritems(flags): value.append(JMX._flag(key, val)) obj_prop = etree.Element("objProp") obj_prop.append(name) obj_prop.append(value) listener = etree.Element("ResultCollector", testname=label, testclass="ResultCollector", guiclass="SimpleDataWriter") listener.append(jtl) listener.append(obj_prop) return listener @staticmethod def new_kpi_listener(filename, flag_overrides=None): """ Generates listener for writing basic KPI data in CSV format :param filename: :return: """ defaults = { "xml": False, "fieldNames": True, "time": True, "timestamp": True, "latency": True, "connectTime": True, "success": True, "label": True, "code": True, "message": True, "threadName": True, "dataType": False, "encoding": False, "assertions": False, "subresults": False, "responseData": False, "samplerData": False, "responseHeaders": False, "requestHeaders": False, "responseDataOnError": False, "saveAssertionResultsFailureMessage": False, "bytes": True, "hostname": True, "threadCounts": True, "url": False } flags = BetterDict.from_dict(defaults) if flag_overrides: flags.merge(flag_overrides) return JMX.__jtl_writer(filename, "KPI Writer", flags) @staticmethod def new_xml_listener(filename, is_full, user_flags): """ :param is_full: bool :param filename: str :param user_flags: BetterDict :return: """ default_flags = { "xml": True, "fieldNames": True, "time": True, "timestamp": True, "latency": True, "success": True, "label": True, "code": True, "message": True, "threadName": True, "dataType": True, "encoding": True, "assertions": True, "subresults": True, "responseData": False, "samplerData": False, "responseHeaders": True, "requestHeaders": True, "responseDataOnError": True, "saveAssertionResultsFailureMessage": True, "bytes": True, "threadCounts": True, "url": True } flags = BetterDict.from_dict(default_flags) flags.merge(user_flags) if is_full: writer = JMX.__jtl_writer(filename, "Trace Writer", flags) else: writer = JMX.__jtl_writer(filename, "Errors Writer", flags) writer.append(JMX._bool_prop("ResultCollector.error_logging", True)) return writer @staticmethod def _get_arguments_panel(name): """ Generates ArgumentsPanel node :param name: :return: """ return etree.Element("elementProp", name=name, elementType="Arguments", guiclass="ArgumentsPanel", testclass="Arguments") @staticmethod def get_auth_manager(authorizations, clear_flag): mgr = etree.Element("AuthManager", guiclass="AuthPanel", testclass="AuthManager", testname="HTTP Authorization Manager") if clear_flag: mgr.append(JMX._bool_prop("AuthManager.clearEachIteration", True)) auth_coll = JMX._collection_prop("AuthManager.auth_list") mgr.append(auth_coll) for authorization in authorizations: auth_element = JMX._element_prop(name="", element_type="Authorization") conf_url = authorization.get("url", "") conf_name = authorization.get("name", "") conf_pass = authorization.get("password", "") conf_domain = authorization.get("domain", "") conf_realm = authorization.get("realm", "") conf_mech = authorization.get("mechanism", "").upper() if not (conf_name and conf_pass and (conf_url or conf_domain)): LOG.warning("Wrong authorization: %s" % authorization) continue auth_element.append(JMX._string_prop("Authorization.url", conf_url)) auth_element.append(JMX._string_prop("Authorization.username", conf_name)) auth_element.append(JMX._string_prop("Authorization.password", conf_pass)) auth_element.append(JMX._string_prop("Authorization.domain", conf_domain)) auth_element.append(JMX._string_prop("Authorization.realm", conf_realm)) if conf_mech == "KERBEROS": # optional prop auth_element.append(JMX._string_prop("Authorization.mechanism", "KERBEROS")) auth_coll.append(auth_element) return mgr @staticmethod def _get_http_request(url, label, method, timeout, body, keepalive, files=(), encoding=None, follow_redirects=True, use_random_host_ip=False, host_ips=()): """ Generates HTTP request :type method: str :type label: str :type url: str :rtype: lxml.etree.Element """ proxy = etree.Element("HTTPSamplerProxy", guiclass="HttpTestSampleGui", testclass="HTTPSamplerProxy") proxy.set("testname", label) args = JMX._get_arguments_panel("HTTPsampler.Arguments") if isinstance(body, str): JMX.__add_body_from_string(args, body, proxy) elif isinstance(body, dict): JMX.__add_body_from_script(args, body, proxy) elif body: msg = "Cannot handle 'body' option of type %s: %s" raise TaurusInternalException(msg % (type(body), body)) parsed_url = parse.urlparse(url) JMX.__add_hostnameport_2sampler(parsed_url, proxy, url) path = parsed_url.path if parsed_url.params: path += ";" + parsed_url.params if parsed_url.query: path += "?" + parsed_url.query proxy.append(JMX._string_prop("HTTPSampler.path", path)) proxy.append(JMX._string_prop("HTTPSampler.method", method)) proxy.append(JMX._bool_prop("HTTPSampler.use_keepalive", keepalive)) proxy.append(JMX._bool_prop("HTTPSampler.follow_redirects", follow_redirects)) proxy.append(JMX._bool_prop("HTTPSampler.auto_redirects", False)) if timeout is not None: proxy.append(JMX._string_prop("HTTPSampler.connect_timeout", timeout)) proxy.append(JMX._string_prop("HTTPSampler.response_timeout", timeout)) if encoding is not None: proxy.append(JMX._string_prop("HTTPSampler.contentEncoding", encoding)) proxy.extend(JMX.get_files_elements(files)) if use_random_host_ip and host_ips: if len(host_ips) > 1: expr = "${__chooseRandom(%s,randomAddr)}" % ",".join(host_ips) else: expr = host_ips[0] proxy.append(JMX._string_prop("HTTPSampler.ipSource", expr)) return proxy @staticmethod def get_files_elements(files): elements = [] if files: files_prop = JMX._element_prop("HTTPsampler.Files", "HTTPFileArgs") elements.append(files_prop) files_coll = JMX._collection_prop("HTTPFileArgs.files") for file_dict in files: file_elem = JMX._element_prop(file_dict.get("path", ""), "HTTPFileArg") file_elem.append(JMX._string_prop("File.path", file_dict.get("path", ""))) file_elem.append(JMX._string_prop("File.paramname", file_dict.get("param", ""))) file_elem.append(JMX._string_prop("File.mimetype", file_dict.get("mime-type", ""))) files_coll.append(file_elem) files_prop.append(files_coll) return elements @staticmethod def get_keystore_config_elements(variable_name, start_index, end_index, preload): elements = [] if variable_name: elements = etree.Element("KeystoreConfig", guiclass="TestBeanGUI", testclass="KeystoreConfig", testname="Taurus-Keystore-Configuration") elements.append(JMX._string_prop("clientCertAliasVarName", variable_name)) elements.append(JMX._string_prop("startIndex", start_index)) elements.append(JMX._string_prop("endIndex", end_index)) elements.append(JMX._string_prop("preload", preload)) return elements @staticmethod def __add_body_from_string(args, body, proxy): proxy.append(JMX._bool_prop("HTTPSampler.postBodyRaw", True)) coll_prop = JMX._collection_prop("Arguments.arguments") header = JMX._element_prop("elementProp", "HTTPArgument") try: header.append(JMX._string_prop("Argument.value", body)) except ValueError: LOG.warning("Failed to set body: %s", traceback.format_exc()) header.append(JMX._string_prop("Argument.value", "BINARY-STUB")) coll_prop.append(header) args.append(coll_prop) proxy.append(args) @staticmethod def __add_body_from_script(args, body, proxy): http_args_coll_prop = JMX._collection_prop("Arguments.arguments") for arg_name, arg_value in body.items(): try: http_element_prop = JMX._element_prop(arg_name, "HTTPArgument") except ValueError: LOG.warning("Failed to get element property: %s", traceback.format_exc()) http_element_prop = JMX._element_prop('BINARY-STUB', "HTTPArgument") try: http_element_prop.append(JMX._string_prop("Argument.name", arg_name)) except ValueError: LOG.warning("Failed to set arg name: %s", traceback.format_exc()) http_element_prop.append(JMX._string_prop("Argument.name", "BINARY-STUB")) try: http_element_prop.append( JMX._string_prop("Argument.value", arg_value if arg_value is not None else '')) except ValueError: LOG.warning("Failed to set arg name: %s", traceback.format_exc()) http_element_prop.append(JMX._string_prop("Argument.value", "BINARY-STUB")) http_element_prop.append(JMX._bool_prop("HTTPArgument.always_encode", True)) use_equals = arg_value is not None http_element_prop.append(JMX._bool_prop("HTTPArgument.use_equals", arg_value is not None)) http_element_prop.append(JMX._string_prop("Argument.metadata", '=' if use_equals else '')) http_args_coll_prop.append(http_element_prop) args.append(http_args_coll_prop) proxy.append(args) @staticmethod def __add_hostnameport_2sampler(parsed_url, proxy, url): if parsed_url.scheme: proxy.append(JMX._string_prop("HTTPSampler.protocol", parsed_url.scheme)) if parsed_url.netloc: netloc_parts = parsed_url.netloc.split(':') if netloc_parts[0]: proxy.append(JMX._string_prop("HTTPSampler.domain", netloc_parts[0])) if len(netloc_parts) > 1 and netloc_parts[1]: proxy.append(JMX._string_prop("HTTPSampler.port", netloc_parts[1])) else: try: if parsed_url.port: proxy.append(JMX._string_prop("HTTPSampler.port", parsed_url.port)) else: proxy.append(JMX._string_prop("HTTPSampler.port", "")) except ValueError: LOG.debug("Non-parsable port: %s", url) proxy.append(JMX._string_prop("HTTPSampler.port", "")) @staticmethod def _element_prop(name, element_type): """ Generates element property node :param name: :param element_type: :return: """ res = etree.Element("elementProp", name=name, elementType=element_type) return res @staticmethod def _collection_prop(name): """ Adds Collection prop :param name: :return: """ res = etree.Element("collectionProp", name=name) return res @staticmethod def _string_prop(name, value): """ Generates string property node :param name: :param value: :return: """ res = etree.Element("stringProp", name=name) res.text = str(value) return res @staticmethod def _long_prop(name, value): """ Generates long property node :param name: :param value: :return: """ res = etree.Element("longProp", name=name) res.text = str(value) return res @staticmethod def _bool_prop(name, value): """ Generates boolean property :param name: :param value: :return: """ res = etree.Element("boolProp", name=name) res.text = 'true' if value else 'false' return res @staticmethod def int_prop(name, value): """ JMX int property :param name: :param value: :return: """ res = etree.Element("intProp", name=name) res.text = str(value) return res @staticmethod def get_thread_group(concurrency=None, rampup=0, hold=0, iterations=None, testname="ThreadGroup", on_error="continue", thread_delay=False, scheduler_delay=None): """ Generates ThreadGroup Expected values (by JMeter): ThreadGroup.num_threads (concurrency): int ThreadGroup.ramp_time (rampup): int ThreadGroup.scheduler (need to hold): boolean ThreadGroup.duration (rampup + hold): int LoopController.loops (iterations): int ThreadGroup.delayedStart: boolean :return: etree element, ThreadGroup """ rampup = cond_int(rampup or 0) hold = cond_int(hold or 0) if concurrency is None: concurrency = 1 if isinstance(concurrency, numeric_types) and concurrency <= 0: enabled = "false" else: enabled = "true" if not hold: duration = rampup elif not rampup: duration = hold elif isinstance(rampup, numeric_types) and isinstance(hold, numeric_types): duration = hold + rampup else: duration = "${__intSum(%s,%s)}" % (rampup, hold) trg = etree.Element("ThreadGroup", guiclass="ThreadGroupGui", testclass="ThreadGroup", testname=testname, enabled=enabled) if not iterations: if duration: iterations = -1 else: iterations = 1 scheduler = False if hold or (rampup and (iterations == -1)): scheduler = True if on_error is not None: trg.append(JMX._string_prop("ThreadGroup.on_sample_error", on_error)) loop = etree.Element("elementProp", name="ThreadGroup.main_controller", elementType="LoopController", guiclass="LoopControlPanel", testclass="LoopController") # 'true' causes endless execution of TG in non-gui mode loop.append(JMX._bool_prop("LoopController.continue_forever", False)) loop.append(JMX._string_prop("LoopController.loops", iterations)) trg.append(loop) trg.append(JMX._string_prop("ThreadGroup.num_threads", concurrency)) trg.append(JMX._string_prop("ThreadGroup.ramp_time", rampup)) trg.append(JMX._string_prop("ThreadGroup.start_time", "")) trg.append(JMX._string_prop("ThreadGroup.end_time", "")) trg.append(JMX._bool_prop("ThreadGroup.scheduler", scheduler)) trg.append(JMX._string_prop("ThreadGroup.duration", duration)) if scheduler_delay: trg.append(JMX._string_prop("ThreadGroup.delay", scheduler_delay)) if thread_delay: trg.append(JMX._bool_prop("ThreadGroup.delayedStart", thread_delay)) return trg def get_rps_shaper(self): """ :return: etree.Element """ throughput_timer_element = etree.Element(self.THR_TIMER, guiclass=self.THR_TIMER + "Gui", testclass=self.THR_TIMER, testname="Throughput_Limiter", enabled="true") shaper_load_prof = self._collection_prop("load_profile") throughput_timer_element.append(shaper_load_prof) return throughput_timer_element def add_rps_shaper_schedule(self, shaper_etree, start_rps, end_rps, duration): """ Adds schedule to rps shaper Expected values (by JMeter): <first> ('start_rps'): float <second> ('end_rps'): float <third> ('duration'): int """ shaper_collection = shaper_etree.find(".//collectionProp[@name='load_profile']") coll_prop = self._collection_prop("") start_rps_prop = self._string_prop("", cond_float(start_rps, 3)) end_rps_prop = self._string_prop("", cond_float(end_rps, 3)) duration_prop = self._string_prop("", cond_int(duration)) coll_prop.append(start_rps_prop) coll_prop.append(end_rps_prop) coll_prop.append(duration_prop) shaper_collection.append(coll_prop) @staticmethod def get_set_var_action(udv_dict, testname="Variables from Taurus"): """ :type testname: str :type udv_dict: dict[str,str] :rtype: etree.Element """ udv_element = etree.Element(JMX.SET_VAR_ACTION, guiclass=JMX.SET_VAR_ACTION + "Gui", testclass=JMX.SET_VAR_ACTION, testname=testname) arg_element = etree.Element("elementProp", name="SetVariablesAction", guiclass="ArgumentsPanel", testclass="Arguments", testname="User Defined Variables", elementType="Arguments") udv_element.append(arg_element) udv_collection_prop = JMX._collection_prop("Arguments.arguments") arg_element.append(udv_collection_prop) for var_name in sorted(udv_dict.keys(), key=str): udv_element_prop = JMX._element_prop(name=str(var_name), element_type="Argument") udv_collection_prop.append(udv_element_prop) udv_arg_name_prop = JMX._string_prop("Argument.name", var_name) udv_arg_value_prop = JMX._string_prop("Argument.value", udv_dict[var_name]) udv_arg_meta_prop = JMX._string_prop("Argument.metadata", "=") udv_element_prop.append(udv_arg_name_prop) udv_element_prop.append(udv_arg_value_prop) udv_element_prop.append(udv_arg_meta_prop) return udv_element @staticmethod def add_user_def_vars_elements(udv_dict, testname="Variables from Taurus"): """ :type testname: str :type udv_dict: dict[str,str] :rtype: etree.Element """ udv_element = etree.Element("Arguments", guiclass="ArgumentsPanel", testclass="Arguments", testname=testname) udv_collection_prop = JMX._collection_prop("Arguments.arguments") for var_name in sorted(udv_dict.keys(), key=str): udv_element_prop = JMX._element_prop(str(var_name), "Argument") udv_arg_name_prop = JMX._string_prop("Argument.name", var_name) udv_arg_value_prop = JMX._string_prop("Argument.value", udv_dict[var_name]) udv_arg_desc_prop = JMX._string_prop("Argument.desc", "") udv_arg_meta_prop = JMX._string_prop("Argument.metadata", "=") udv_element_prop.append(udv_arg_name_prop) udv_element_prop.append(udv_arg_value_prop) udv_element_prop.append(udv_arg_desc_prop) udv_element_prop.append(udv_arg_meta_prop) udv_collection_prop.append(udv_element_prop) udv_element.append(udv_collection_prop) return udv_element @staticmethod def get_concurrency_thread_group(concurrency=None, rampup=0, hold=0, steps=None, on_error="continue", testname="ConcurrencyThreadGroup", iterations=""): """ Generates ConcurrencyThreadGroup Expected values (by JMeter): Targetlevel (concurrency): int RampUp (rampup): float Steps (steps): boolean Hold (hold): float :return: etree element, Concurrency Thread Group """ if not rampup: rampup = 0 if concurrency is None: concurrency = 1 if isinstance(concurrency, numeric_types) and concurrency <= 0: enabled = "false" else: enabled = "true" if steps is None: # zero means infinity of steps steps = 0 name = 'com.blazemeter.jmeter.threads.concurrency.ConcurrencyThreadGroup' concurrency_thread_group = etree.Element( name, guiclass=name + "Gui", testclass=name, testname=testname, enabled=enabled) virtual_user_controller = etree.Element( "elementProp", name="ThreadGroup.main_controller", elementType="com.blazemeter.jmeter.control.VirtualUserController") concurrency_thread_group.append(virtual_user_controller) concurrency_thread_group.append(JMX._string_prop("ThreadGroup.on_sample_error", on_error)) concurrency_thread_group.append(JMX._string_prop("TargetLevel", str(concurrency))) concurrency_thread_group.append(JMX._string_prop("RampUp", str(cond_int(rampup)))) concurrency_thread_group.append(JMX._string_prop("Steps", steps)) concurrency_thread_group.append(JMX._string_prop("Hold", str(cond_int(hold)))) concurrency_thread_group.append(JMX._string_prop("LogFilename", "")) concurrency_thread_group.append(JMX._string_prop("Iterations", iterations or "")) concurrency_thread_group.append(JMX._string_prop("Unit", "S")) return concurrency_thread_group @staticmethod def get_dns_cache_mgr(): """ Adds dns cache element with defaults parameters :return: """ dns_element = etree.Element("DNSCacheManager", guiclass="DNSCachePanel", testclass="DNSCacheManager", testname="DNS Cache Manager") dns_element.append(JMX._collection_prop("DNSCacheManager.servers")) dns_element.append(JMX._bool_prop("DNSCacheManager.clearEachIteration", False)) dns_element.append(JMX._bool_prop("DNSCacheManager.isCustomResolver", False)) return dns_element @staticmethod def _get_header_mgr(hdict): """ :type hdict: dict[str,str] :rtype: lxml.etree.Element """ mgr = etree.Element("HeaderManager", guiclass="HeaderPanel", testclass="HeaderManager", testname="Headers") coll_prop = etree.Element("collectionProp", name="HeaderManager.headers") for hname, hval in iteritems(hdict): header = etree.Element("elementProp", name="", elementType="Header") header.append(JMX._string_prop("Header.name", hname)) header.append(JMX._string_prop("Header.value", hval)) coll_prop.append(header) mgr.append(coll_prop) return mgr @staticmethod def _get_cache_mgr(): """ :rtype: lxml.etree.Element """ mgr = etree.Element("CacheManager", guiclass="CacheManagerGui", testclass="CacheManager", testname="Cache") mgr.append(JMX._bool_prop("clearEachIteration", True)) mgr.append(JMX._bool_prop("useExpires", True)) return mgr @staticmethod def _get_cookie_mgr(scenario=None): """ :rtype: lxml.etree.Element """ mgr = etree.Element("CookieManager", guiclass="CookiePanel", testclass="CookieManager", testname="Cookies") mgr.append(JMX._bool_prop("CookieManager.clearEachIteration", False)) mgr.append(JMX._string_prop("CookieManager.implementation", "org.apache.jmeter.protocol.http.control.HC4CookieHandler")) if scenario: cookies = scenario.get(Scenario.COOKIES) if cookies: cookies_coll = JMX._collection_prop("CookieManager.cookies") mgr.append(cookies_coll) for cookie in cookies: if not isinstance(cookie, dict): raise TaurusConfigError("Cookie must be dictionary: %s" % cookie) c_name = cookie.get("name", TaurusConfigError("Name of cookie isn't found: %s" % cookie)) c_value = cookie.get("value", TaurusConfigError("Value of cookie isn't found: %s" % cookie)) c_domain = cookie.get("domain", TaurusConfigError("Domain of cookie isn't found: %s" % cookie)) c_path = cookie.get("path", "") c_secure = cookie.get("secure", False) # follow params are hardcoded in JMeter c_expires = 0 c_path_specified = True c_domain_specified = True c_elem = etree.Element("elementProp", name=c_name, elementType="Cookie", testname=c_name) c_elem.append(JMX._string_prop("Cookie.value", c_value)) c_elem.append(JMX._string_prop("Cookie.domain", c_domain)) c_elem.append(JMX._string_prop("Cookie.path", c_path)) c_elem.append(JMX._bool_prop("Cookie.secure", c_secure)) c_elem.append(JMX._long_prop("Cookie.expires", c_expires)) c_elem.append(JMX._bool_prop("Cookie.path_specified", c_path_specified)) c_elem.append(JMX._bool_prop("Cookie.domain_specified", c_domain_specified)) cookies_coll.append(c_elem) return mgr @staticmethod def _get_http_defaults(default_address=None, timeout=None, retrieve_resources=None, concurrent_pool_size=4, content_encoding=None, resources_regex=None): """ :rtype: lxml.etree.Element """ cfg = etree.Element("ConfigTestElement", guiclass="HttpDefaultsGui", testclass="ConfigTestElement", testname="Defaults") if retrieve_resources: cfg.append(JMX._bool_prop("HTTPSampler.image_parser", True)) cfg.append(JMX._bool_prop("HTTPSampler.concurrentDwn", True)) if concurrent_pool_size: cfg.append(JMX._string_prop("HTTPSampler.concurrentPool", concurrent_pool_size)) params = etree.Element("elementProp", name="HTTPsampler.Arguments", elementType="Arguments", guiclass="HTTPArgumentsPanel", testclass="Arguments", testname="user_defined") cfg.append(params) if default_address: parsed_url = parse.urlsplit(default_address) if parsed_url.scheme: cfg.append(JMX._string_prop("HTTPSampler.protocol", parsed_url.scheme)) if parsed_url.netloc: netloc = parsed_url.netloc if ':' in netloc: index = netloc.rfind(':') cfg.append(JMX._string_prop("HTTPSampler.port", netloc[index + 1:])) netloc = netloc[:index] cfg.append(JMX._string_prop("HTTPSampler.domain", netloc)) if timeout: cfg.append(JMX._string_prop("HTTPSampler.connect_timeout", timeout)) cfg.append(JMX._string_prop("HTTPSampler.response_timeout", timeout)) if content_encoding: cfg.append(JMX._string_prop("HTTPSampler.contentEncoding", content_encoding)) if resources_regex: cfg.append(JMX._string_prop("HTTPSampler.embedded_url_re", resources_regex)) return cfg @staticmethod def _get_dur_assertion(timeout): """ :type timeout: int :return: """ element = etree.Element("DurationAssertion", guiclass="DurationAssertionGui", testclass="DurationAssertion", testname="Timeout Check") element.append(JMX._string_prop("DurationAssertion.duration", timeout)) return element @staticmethod def get_constant_timer(delay): timer_type = "ConstantTimer" element = etree.Element(timer_type, guiclass="%sGui" % timer_type, testclass=timer_type, testname="Think-Time") element.append(JMX._string_prop("%s.delay" % timer_type, delay)) return [element, etree.Element("hashTree")] @staticmethod def get_uniform_timer(maximum, offset): timer_type = "UniformRandomTimer" element = etree.Element(timer_type, guiclass="%sGui" % timer_type, testclass=timer_type, testname="Think-Time") element.append(JMX._string_prop("ConstantTimer.delay", offset)) element.append(JMX._string_prop("RandomTimer.range", maximum)) return [element, etree.Element("hashTree")] @staticmethod def get_gaussian_timer(dev, offset): timer_type = "GaussianRandomTimer" element = etree.Element(timer_type, guiclass="%sGui" % timer_type, testclass=timer_type, testname="Think-Time") element.append(JMX._string_prop("ConstantTimer.delay", offset)) element.append(JMX._string_prop("RandomTimer.range", dev)) return [element, etree.Element("hashTree")] @staticmethod def get_poisson_timer(lam, delay): timer_type = "PoissonRandomTimer" element = etree.Element(timer_type, guiclass="%sGui" % timer_type, testclass=timer_type, testname="Think-Time") element.append(JMX._string_prop("ConstantTimer.delay", delay)) element.append(JMX._string_prop("RandomTimer.range", lam)) return [element, etree.Element("hashTree")] @staticmethod def _get_extractor(varname, headers, regexp, template, match_no, default='NOT_FOUND', scope='', from_var=''): """ :type varname: str :type regexp: str :type template: str|int :type match_no: int :type default: str :type scope: str :type from_var: str :rtype: lxml.etree.Element """ if isinstance(template, int): template = '$%s$' % template if headers.lower() == 'headers': headers = 'true' elif headers.lower() == 'http-code': headers = 'code' elif headers.lower() == 'url': headers = 'URL' else: headers = 'body' element = etree.Element("RegexExtractor", guiclass="RegexExtractorGui", testclass="RegexExtractor", testname="Get %s" % varname, enabled="true") element.append(JMX._string_prop("RegexExtractor.useHeaders", headers)) element.append(JMX._string_prop("RegexExtractor.refname", varname)) element.append(JMX._string_prop("RegexExtractor.regex", regexp)) element.append(JMX._string_prop("RegexExtractor.template", template)) element.append(JMX._string_prop("RegexExtractor.default", default)) element.append(JMX._string_prop("RegexExtractor.match_number", match_no)) element.extend(JMX.get_scope_props(scope, from_var)) return element @staticmethod def _get_boundary_extractor(varname, subject, left, right, match_no, defvalue='NOT_FOUND', scope='', from_var=''): """ :type varname: str :type regexp: str :type template: str|int :type match_no: int :type default: str :type scope: str :type from_var: str :rtype: lxml.etree.Element """ subjects = { 'body': 'false', 'body-unescaped': 'unescaped', 'body-as-document': 'as_document', 'response-headers': 'true', 'request-headers': 'request_headers', 'url': 'URL', 'code': 'code', 'message': 'message', } subject = subjects.get(subject) element = etree.Element("BoundaryExtractor", guiclass="BoundaryExtractorGui", testclass="BoundaryExtractor", testname="Get %s" % varname, enabled="true") element.append(JMX._string_prop("BoundaryExtractor.useHeaders", subject)) element.append(JMX._string_prop("BoundaryExtractor.refname", varname)) element.append(JMX._string_prop("BoundaryExtractor.lboundary", left)) # TODO: html-escape boundaries? element.append(JMX._string_prop("BoundaryExtractor.rboundary", right)) element.append(JMX._string_prop("RegexExtractor.default", defvalue)) element.append(JMX._string_prop("RegexExtractor.match_number", match_no)) element.extend(JMX.get_scope_props(scope, from_var)) return element @staticmethod def _get_jquerycss_extractor(varname, selector, attribute, match_no, default="NOT_FOUND", scope='', from_var=''): """ :type varname: str :type regexp: str :type match_no: int :type default: str :type scope: str :type from_var: str :rtype: lxml.etree.Element """ element = etree.Element("HtmlExtractor", guiclass="HtmlExtractorGui", testclass="HtmlExtractor", testname="Get %s" % varname) element.append(JMX._string_prop("HtmlExtractor.refname", varname)) element.append(JMX._string_prop("HtmlExtractor.expr", selector)) element.append(JMX._string_prop("HtmlExtractor.attribute", attribute)) element.append(JMX._string_prop("HtmlExtractor.match_number", match_no)) element.append(JMX._string_prop("HtmlExtractor.default", default)) element.extend(JMX.get_scope_props(scope, from_var)) return element @staticmethod def _get_json_extractor(varname, jsonpath, default='NOT_FOUND', from_variable=None): """ :type varname: str :type default: str :rtype: lxml.etree.Element """ package = "com.atlantbh.jmeter.plugins.jsonutils.jsonpathextractor" element = etree.Element("%s.JSONPathExtractor" % package, guiclass="%s.gui.JSONPathExtractorGui" % package, testclass="%s.JSONPathExtractor" % package, testname="Get %s" % varname) element.append(JMX._string_prop("VAR", varname)) element.append(JMX._string_prop("JSONPATH", jsonpath)) element.append(JMX._string_prop("DEFAULT", default)) if from_variable: element.append(JMX._string_prop("VARIABLE", from_variable)) element.append(JMX._string_prop("SUBJECT", "VAR")) return element @staticmethod def get_scope_props(scope, from_variable): props = [] if scope: props.append(JMX._string_prop("Sample.scope", scope)) if scope == "variable": props.append(JMX._string_prop("Scope.variable", from_variable)) return props @staticmethod def _get_internal_json_extractor(varname, jsonpath, default, scope, from_variable, match_no, concat): """ :type varname: str :type default: str :rtype: lxml.etree.Element """ package = "JSONPostProcessor" element = etree.Element(package, guiclass="%sGui" % package, testclass="%s" % package, testname="Get %s" % varname) element.append(JMX._string_prop("JSONPostProcessor.referenceNames", varname)) element.append(JMX._string_prop("JSONPostProcessor.jsonPathExprs", jsonpath)) element.append(JMX._string_prop("JSONPostProcessor.match_numbers", match_no)) if default: element.append(JMX._string_prop("JSONPostProcessor.defaultValues", default)) element.extend(JMX.get_scope_props(scope, from_variable)) if concat: element.append(JMX._bool_prop("JSONPostProcessor.compute_concat", True)) return element @staticmethod def _get_json_path_assertion(jsonpath, expected_value, json_validation, expect_null, invert, regexp=True): """ :type jsonpath: str :type expected_value: str :type json_validation: bool :type expect_null: bool :type invert: bool :type regexp: bool :return: lxml.etree.Element """ package = "com.atlantbh.jmeter.plugins.jsonutils.jsonpathassertion" element = etree.Element("%s.JSONPathAssertion" % package, guiclass="%s.gui.JSONPathAssertionGui" % package, testclass="%s.JSONPathAssertion" % package, testname="JSon path assertion") element.append(JMX._string_prop("JSON_PATH", jsonpath)) element.append(JMX._string_prop("EXPECTED_VALUE", expected_value)) element.append(JMX._bool_prop("JSONVALIDATION", json_validation)) element.append(JMX._bool_prop("EXPECT_NULL", expect_null)) element.append(JMX._bool_prop("INVERT", invert)) element.append(JMX._bool_prop("ISREGEX", regexp)) return element @staticmethod def _get_xpath_extractor(varname, xpath, default, validate_xml, ignore_whitespace, match_no, use_namespaces, use_tolerant_parser, scope, from_var): """ :type varname: str :type xpath: str :type default: str :type validate_xml: bool :type ignore_whitespace: bool :type use_tolerant_parser: bool :type scope: str :type from_var: str :rtype: lxml.etree.Element """ element = etree.Element("XPathExtractor", guiclass="XPathExtractorGui", testclass="XPathExtractor", testname="Get %s" % varname) element.append(JMX._string_prop("XPathExtractor.refname", varname)) element.append(JMX._string_prop("XPathExtractor.xpathQuery", xpath)) element.append(JMX._string_prop("XPathExtractor.default", default)) element.append(JMX._bool_prop("XPathExtractor.validate", validate_xml)) element.append(JMX._bool_prop("XPathExtractor.whitespace", ignore_whitespace)) element.append(JMX._string_prop("XPathExtractor.matchNumber", match_no)) element.append(JMX._bool_prop("XPathExtractor.namespace", use_namespaces)) element.append(JMX._bool_prop("XPathExtractor.tolerant", use_tolerant_parser)) element.extend(JMX.get_scope_props(scope, from_var)) return element @staticmethod def _get_xpath_assertion(xpath, validate_xml, ignore_whitespace, use_tolerant_parser, invert): """ :type xpath: str :type validate_xml: bool :type ignore_whitespace: bool :type use_tolerant_parser: bool :return: lxml.etree.Element """ element = etree.Element("XPathAssertion", guiclass="XPathAssertionGui", testclass="XPathAssertion", testname="XPath Assertion") element.append(JMX._string_prop("XPath.xpath", xpath)) element.append(JMX._bool_prop("XPath.validate", validate_xml)) element.append(JMX._bool_prop("XPath.whitespace", ignore_whitespace)) element.append(JMX._bool_prop("XPath.tolerant", use_tolerant_parser)) element.append(JMX._bool_prop("XPath.negate", invert)) return element @staticmethod def _get_resp_assertion(field, contains, is_regexp, is_invert, assume_success=False): """ :type field: str :type contains: list[str] :type is_regexp: bool :type is_invert: bool :rtype: lxml.etree.Element """ tname = "Assert %s %s" % ("hasn't" if is_invert else "has", "[" + ", ".join('"' + str(x) + '"' for x in contains) + "]") element = etree.Element("ResponseAssertion", guiclass="AssertionGui", testclass="ResponseAssertion", testname=tname) if field == Scenario.FIELD_HEADERS: fld = "Assertion.response_headers" elif field == Scenario.FIELD_RESP_CODE: fld = "Assertion.response_code" else: fld = "Assertion.response_data" if is_regexp: if is_invert: mtype = 6 # not contains else: mtype = 2 # contains else: if is_invert: mtype = 20 # not substring else: mtype = 16 # substring element.append(JMX._string_prop("Assertion.test_field", fld)) element.append(JMX._string_prop("Assertion.test_type", mtype)) element.append(JMX._bool_prop("Assertion.assume_success", assume_success)) coll_prop = etree.Element("collectionProp", name="Asserion.test_strings") for string in contains: coll_prop.append(JMX._string_prop("", string)) element.append(coll_prop) return element @staticmethod def _get_jsr223_element(language, script_file, parameters, execute, script_text=None, cache_key='true'): if execute == "before": proc = "JSR223PreProcessor" else: proc = "JSR223PostProcessor" element = etree.Element(proc, guiclass="TestBeanGUI", testclass=proc, testname=proc) element.append(JMX._string_prop("filename", script_file if script_file else '')) element.append(JMX._string_prop("script", script_text if script_text else '')) element.append(JMX._string_prop("parameters", parameters)) element.append(JMX._string_prop("scriptLanguage", language)) element.append(JMX._string_prop("cacheKey", cache_key)) return element @staticmethod def _get_csv_config(path, delimiter, loop, variable_names, is_quoted): """ :type path: str :type delimiter: str :type is_quoted: bool :type loop: bool :type variable_names: string :return: """ element = etree.Element("CSVDataSet", guiclass="TestBeanGUI", testclass="CSVDataSet", testname="CSV %s" % os.path.basename(path)) element.append(JMX._string_prop("filename", path)) element.append(JMX._string_prop("delimiter", delimiter)) element.append(JMX._bool_prop("quotedData", is_quoted)) element.append(JMX._bool_prop("recycle", loop)) element.append(JMX._bool_prop("stopThread", not loop)) element.append(JMX._string_prop("variableNames", variable_names)) return element @staticmethod def _get_csv_config_random(path, delimiter, loop, variable_names): """ :type path: str :type delimiter: str :type loop: bool :type variable_names: string :return: """ element = etree.Element("com.blazemeter.jmeter.RandomCSVDataSetConfig", guiclass="com.blazemeter.jmeter.RandomCSVDataSetConfigGui", testclass="com.blazemeter.jmeter.RandomCSVDataSetConfig", testname="bzm - Random CSV Data Set Config") element.append(JMX._string_prop("filename", path)) element.append(JMX._string_prop("fileEncoding", "UTF-8")) element.append(JMX._string_prop("delimiter", delimiter)) element.append(JMX._string_prop("variableNames", variable_names)) element.append(JMX._bool_prop("randomOrder", True)) element.append(JMX._bool_prop("ignoreFirstLine", False if variable_names else True)) element.append(JMX._bool_prop("rewindOnTheEndOfList", loop)) element.append(JMX._bool_prop("independentListPerThread", False)) return element def set_enabled(self, sel, state): """ Toggle items by selector :type sel: str :type state: bool """ items = self.get(sel) self.log.debug("Enable %s elements %s: %s", state, sel, items) for item in items: item.set("enabled", 'true' if state else 'false') def set_text(self, sel, text): """ Set text value :type sel: str :type text: str """ items = self.get(sel) res = 0 for item in items: item.text = str(text) res += 1 return res @staticmethod def _get_simple_controller(name): return etree.Element("GenericController", guiclass="LogicControllerGui", testclass="GenericController", testname=name) def _add_results_tree(self): dbg_tree = etree.Element("ResultCollector", testname="View Results Tree", testclass="ResultCollector", guiclass="ViewResultsFullVisualizer") self.append(self.TEST_PLAN_SEL, dbg_tree) self.append(self.TEST_PLAN_SEL, etree.Element("hashTree")) @staticmethod def _get_results_tree(): dbg_tree = etree.Element("ResultCollector", testname="View Results Tree", testclass="ResultCollector", guiclass="ViewResultsFullVisualizer") return dbg_tree @staticmethod def _get_if_controller(condition): controller = etree.Element("IfController", guiclass="IfControllerPanel", testclass="IfController", testname="If Controller") controller.append(JMX._string_prop("IfController.condition", condition)) return controller @staticmethod def _get_once_controller(): """ Generates Once Only Controller :return: etree element, OnceOnlyController """ controller = etree.Element("OnceOnlyController", guiclass="OnceOnlyControllerGui", testclass="OnceOnlyController", testname="Once Only Controller") return controller @staticmethod def _get_loop_controller(loops): """ Generates Loop Controller Expected values(by JMeter): LoopController.loops(iterations): int LoopController.continue_forever: boolean :return: etree element, LoopController """ if loops == 'forever': iterations = -1 else: iterations = loops controller = etree.Element("LoopController", guiclass="LoopControlPanel", testclass="LoopController", testname="Loop Controller") # 'false' means controller can be called only one time (by parent) controller.append(JMX._bool_prop("LoopController.continue_forever", True)) controller.append(JMX._string_prop("LoopController.loops", str(iterations))) return controller @staticmethod def _get_foreach_controller(input_var, loop_var): # TODO: useSeparator option controller = etree.Element("ForeachController", guiclass="ForeachControlPanel", testclass="ForeachController", testname="ForEach Controller") controller.append(JMX._string_prop("ForeachController.inputVal", input_var)) controller.append(JMX._string_prop("ForeachController.returnVal", loop_var)) controller.append(JMX._bool_prop("ForeachController.useSeparator", True)) return controller @staticmethod def _get_while_controller(condition): controller = etree.Element("WhileController", guiclass="WhileControllerGui", testclass="WhileController", testname="While Controller") controller.append(JMX._string_prop("WhileController.condition", condition)) return controller @staticmethod def _get_transaction_controller(transaction_name, force_parent_sample=False, include_timers=False): controller = etree.Element("TransactionController", guiclass="TransactionControllerGui", testclass="TransactionController", testname=transaction_name) controller.append(JMX._bool_prop("TransactionController.parent", force_parent_sample)) controller.append(JMX._bool_prop("TransactionController.includeTimers", include_timers)) return controller @staticmethod def _get_functional_mode_prop(enabled): return JMX._bool_prop("TestPlan.functional_mode", enabled) @staticmethod def _get_action_block(action_index, target_index, duration_ms): action = etree.Element("TestAction", guiclass="TestActionGui", testclass="TestAction", testname="Test Action") action.append(JMX.int_prop("ActionProcessor.action", action_index)) action.append(JMX.int_prop("ActionProcessor.target", target_index)) action.append(JMX._string_prop("ActionProcessor.duration", str(duration_ms))) return action
apache-2.0
-383,183,640,151,168,500
38.542229
119
0.590631
false
magenta/magenta
magenta/models/onsets_frames_transcription/create_dataset_lib_test.py
1
3341
# Copyright 2021 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for create_dataset_lib.""" import itertools from magenta.models.onsets_frames_transcription import create_dataset_lib import numpy as np import tensorflow.compat.v1 as tf tf.disable_v2_behavior() class CreateDatasetLibTest(tf.test.TestCase): def test_generate_unique_mixes(self): sourceid_to_exids = [('source1', 'a'), ('source1', 'b'), ('source2', 'c'), ('source2', 'd')] exid_to_mixids = create_dataset_lib.generate_mixes( val='unused', num_mixes=100, sourceid_to_exids=sourceid_to_exids) mix_ids = set(itertools.chain(*list(exid_to_mixids.values()))) # Requested 100, but there are only 4 unique mixes, so that's how many # we should end up with. self.assertEqual(4, len(mix_ids)) def test_generate_num_mixes(self): sourceid_to_exids = [('source1', 'a'), ('source1', 'b'), ('source1', 'c'), ('source2', 'd'), ('source2', 'e'), ('source2', 'f')] exid_to_mixids = create_dataset_lib.generate_mixes( val='unused', num_mixes=4, sourceid_to_exids=sourceid_to_exids) mix_ids = set(itertools.chain(*list(exid_to_mixids.values()))) # Ensure we get the number of mixes we requested even when more unique mixes # would be possible. self.assertEqual(4, len(mix_ids)) def test_unique_mixes_duplicate_sources(self): sourceid_to_exids = [('source1', 'a'), ('source1', 'b'), ('source1', 'c'), ('source2', 'a'), ('source2', 'b'), ('source2', 'c'), ('source3', 'a'), ('source3', 'b'), ('source3', 'c')] exid_to_mixids = create_dataset_lib.generate_mixes( val='unused', num_mixes=100, sourceid_to_exids=sourceid_to_exids) mix_ids = set(itertools.chain(*list(exid_to_mixids.values()))) # There are only 3 unique ids, but we're request mixes of 3 items, so only # 1 unique mix is possible. self.assertEqual(1, len(mix_ids)) def test_generate_mixes_using_all_examples(self): sourceid_to_exids = { 'source1': ['a', 'b', 'c', 'd'], 'source2': ['a', 'b', 'c', 'd'], } rs = np.random.RandomState(seed=0) mixes = create_dataset_lib.generate_mixes_using_all_examples( sourceid_to_exids, rs) self.assertEqual(set(['a', 'b', 'c', 'd']), set(itertools.chain(*mixes))) def test_generate_mixes_using_all_examples_plus_random_examples(self): sourceid_to_exids = ( [('source1', i) for i in range(100)] + [('source2', i) for i in range(100)]) exid_to_mixids = create_dataset_lib.generate_mixes( val='unused', num_mixes=200, sourceid_to_exids=sourceid_to_exids) self.assertEqual(set(range(100)), exid_to_mixids.keys()) if __name__ == '__main__': tf.test.main()
apache-2.0
1,089,513,554,171,817,200
40.7625
80
0.640826
false
titilambert/harbour-squilla
squilla/lib/friend.py
1
8123
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # friend.py # # This file is part of Squilla # # Copyright (C) 2014 Thibault Cohen # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # import select import random import socket from time import sleep import subprocess from socket import inet_aton from threading import Thread import pyotherside from mdns.zeroconf import ServiceInfo import dbus from squilla.lib.logger import logger from squilla.lib.config import is_favorite, get_favorites from squilla.lib import get_presence_auth_user, friend_list from squilla.lib.presence_browser import zeroconf from squilla.lib.utils import get_interface_address from squilla.lib.config import get_interface_name port = 5299 # NEED TO GET THE GOOD IP!!!! ip_address = '192.168.13.15' ip_address = get_interface_address(get_interface_name()) #ip_address = '0.0.0.0' class Friend(Thread): def __init__(self, fullname, number, auth_user, parent=None): Thread.__init__(self) global ip_address self.fullname = fullname self.number = number self.port = port if ip_address == None: ip_address = get_interface_address(get_interface_name()) self.ip_address = ip_address self.auth_user = auth_user self.node = fullname + "@jolla" self.favorite = False self.parent = parent self.client = None # Bonjour socket client self.is_ready = False self.id = 0 def set_data(self, value, attr): """ For view """ if attr == "favorite": value, bool = value.toInt() if bool: if value == QtCore.Qt.Checked: setattr(self, "favorite", QtCore.Qt.Checked) else: setattr(self, "favorite", QtCore.Qt.Unchecked) return True return False def run(self): # Register on bonjour chat self.id = random.randint(0, 10000000) # Prepare properties txt = {} txt['1st'] = str(self.fullname) txt['1st'] = self.fullname.encode('utf-8') #txt['1st'] = "aaa" txt['last'] = "" txt['status'] = 'avail' txt['port.p2pj'] = 5299 txt['nick'] = self.fullname.encode('utf-8') txt['node'] = self.node.encode('utf-8') txt['jid'] = self.node.encode('utf-8') txt['email'] = self.node.encode('utf-8') txt['version'] = 1 txt['txtvers'] = 1 name = self.node + '._presence._tcp.local.' reg_type = '_presence._tcp.local.' # Prepare service informations self.info = ServiceInfo(reg_type, name, inet_aton(self.ip_address), self.port, properties=txt) # Register service zeroconf.register_service(self.info) self.is_ready = True # Join thread zeroconf.engine.join() def unregister(self): """ Unregister service """ zeroconf.unregister_service(self.info) def send_sms(self, message): logger.debug("Sending sms using 'dbus'") bus = dbus.SystemBus() smsobject = bus.get_object('org.ofono', '/ril_0') smsiface = dbus.Interface(smsobject, 'org.ofono.MessageManager') message = message.encode('utf-8') smsiface.SendMessage(self.number, message) logger.debug("Sms send: %s" % message) logger.debug("to: %s " % self.number) def sms_to_bonjour(self, msg): logger.debug("Forward sms to bonjour") msg = msg.replace("<", "&lt;") msg = msg.replace(">", "&gt;") # Waiting self is bonjour registered while self.is_ready == False: logger.debug("Waiting bonjour contact " "registered: %s" % self.fullname) sleep(1) # Connect to bonjour server self.auth_user = get_presence_auth_user() if self.auth_user is None: logger.debug("Authentication user not set") return False #logger.debug(self.auth_user) #logger.debug(self.auth_user.values()) #logger.debug(list(self.auth_user.values())) host = self.auth_user['host'] port = self.auth_user['port'] so = socket.socket(socket.AF_INET, socket.SOCK_STREAM) logger.debug("Connecting to %s:%s" % (host, port)) try: so.connect((host, port)) except TypeError as e: logger.debug("Connection error: %s" % str(e)) return False # Dont need this !? so.setblocking(1) so.settimeout(2) # Prepare variables username = self.auth_user['name'] dic = {"to": username, "from": self.node, "msg": msg, "id": self.id} # Hand check # Send data xml = (u"""<?xml version='1.0' encoding='UTF-8'?><stream:stream """ u"""xmlns='jabber:client' """ u"""xmlns:stream='http://etherx.jabber.org/streams' """ u"""to="%(to)s" from="%(from)s" version="1.0">""" % dic) logger.debug(xml) so.send(xml.encode('utf-8')) # Read data try: data = so.recv(1024) except socket.timeout: logger.debug("socket.timeout1") except Exception as e: logger.debug(e) # Send data so.send("""<stream:features/>""".encode('utf-8')) # Read data try: data = so.recv(1024) except socket.timeout: logger.debug("socket.timeout2") # Send data xml = ("""<message from="%(from)s" to="%(to)s" type="chat" """ """id="%(id)s"><body>%(msg)s</body></message>""" % dic) logger.debug(xml) logger.debug("Send message") so.send(xml.encode('utf-8')) try: data = so.recv(1024) except socket.timeout: logger.debug("socket.timeout3") # Close connection logger.debug("End foward sms to bonjour") so.close() return True def delete_friend(number): global friend_list for friend in friend_list: if friend.number == number: logger.debug("Friend %s deleted" % friend.fullname) index = friend_list.index(friend) friend_list.remove(friend) friend.unregister() del(friend) return index return None def add_friend(fullname, number): global friend_list number_list = [friend.number for friend in friend_list] if not number in number_list: # Create a new friend logger.debug("This is a new friend: %s" % number) # Save it ! logger.debug("PRESENCE_AUTH: " + str(get_presence_auth_user())) auth_user = get_presence_auth_user() new_friend = Friend(fullname, number, auth_user) # append to friend list friend_list.append(new_friend) # Register it on bonjour new_friend.start() tmp_dict = {'name': new_friend.fullname, 'favorite': is_favorite(number), 'number': new_friend.number} # Add friend in listmodel pyotherside.send('add_friend_list', tmp_dict) def load_favorite_friends(): favorites = get_favorites() for number, name in favorites: if number and name: add_friend(name, number)
gpl-3.0
8,010,937,772,864,076,000
31.62249
102
0.577004
false
narurien/ganeti-ceph
lib/objects.py
1
66234
# # # Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Google Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. """Transportable objects for Ganeti. This module provides small, mostly data-only objects which are safe to pass to and from external parties. """ # pylint: disable=E0203,W0201,R0902 # E0203: Access to member %r before its definition, since we use # objects.py which doesn't explicitly initialise its members # W0201: Attribute '%s' defined outside __init__ # R0902: Allow instances of these objects to have more than 20 attributes import ConfigParser import re import copy import logging import time from cStringIO import StringIO from ganeti import errors from ganeti import constants from ganeti import netutils from ganeti import outils from ganeti import utils from socket import AF_INET __all__ = ["ConfigObject", "ConfigData", "NIC", "Disk", "Instance", "OS", "Node", "NodeGroup", "Cluster", "FillDict", "Network"] _TIMESTAMPS = ["ctime", "mtime"] _UUID = ["uuid"] def FillDict(defaults_dict, custom_dict, skip_keys=None): """Basic function to apply settings on top a default dict. @type defaults_dict: dict @param defaults_dict: dictionary holding the default values @type custom_dict: dict @param custom_dict: dictionary holding customized value @type skip_keys: list @param skip_keys: which keys not to fill @rtype: dict @return: dict with the 'full' values """ ret_dict = copy.deepcopy(defaults_dict) ret_dict.update(custom_dict) if skip_keys: for k in skip_keys: try: del ret_dict[k] except KeyError: pass return ret_dict def FillIPolicy(default_ipolicy, custom_ipolicy): """Fills an instance policy with defaults. """ assert frozenset(default_ipolicy.keys()) == constants.IPOLICY_ALL_KEYS ret_dict = copy.deepcopy(custom_ipolicy) for key in default_ipolicy: if key not in ret_dict: ret_dict[key] = copy.deepcopy(default_ipolicy[key]) elif key == constants.ISPECS_STD: ret_dict[key] = FillDict(default_ipolicy[key], ret_dict[key]) return ret_dict def FillDiskParams(default_dparams, custom_dparams, skip_keys=None): """Fills the disk parameter defaults. @see: L{FillDict} for parameters and return value """ assert frozenset(default_dparams.keys()) == constants.DISK_TEMPLATES return dict((dt, FillDict(default_dparams[dt], custom_dparams.get(dt, {}), skip_keys=skip_keys)) for dt in constants.DISK_TEMPLATES) def UpgradeGroupedParams(target, defaults): """Update all groups for the target parameter. @type target: dict of dicts @param target: {group: {parameter: value}} @type defaults: dict @param defaults: default parameter values """ if target is None: target = {constants.PP_DEFAULT: defaults} else: for group in target: target[group] = FillDict(defaults, target[group]) return target def UpgradeBeParams(target): """Update the be parameters dict to the new format. @type target: dict @param target: "be" parameters dict """ if constants.BE_MEMORY in target: memory = target[constants.BE_MEMORY] target[constants.BE_MAXMEM] = memory target[constants.BE_MINMEM] = memory del target[constants.BE_MEMORY] def UpgradeDiskParams(diskparams): """Upgrade the disk parameters. @type diskparams: dict @param diskparams: disk parameters to upgrade @rtype: dict @return: the upgraded disk parameters dict """ if not diskparams: result = {} else: result = FillDiskParams(constants.DISK_DT_DEFAULTS, diskparams) return result def UpgradeNDParams(ndparams): """Upgrade ndparams structure. @type ndparams: dict @param ndparams: disk parameters to upgrade @rtype: dict @return: the upgraded node parameters dict """ if ndparams is None: ndparams = {} if (constants.ND_OOB_PROGRAM in ndparams and ndparams[constants.ND_OOB_PROGRAM] is None): # will be reset by the line below del ndparams[constants.ND_OOB_PROGRAM] return FillDict(constants.NDC_DEFAULTS, ndparams) def MakeEmptyIPolicy(): """Create empty IPolicy dictionary. """ return {} class ConfigObject(outils.ValidatedSlots): """A generic config object. It has the following properties: - provides somewhat safe recursive unpickling and pickling for its classes - unset attributes which are defined in slots are always returned as None instead of raising an error Classes derived from this must always declare __slots__ (we use many config objects and the memory reduction is useful) """ __slots__ = [] def __getattr__(self, name): if name not in self.GetAllSlots(): raise AttributeError("Invalid object attribute %s.%s" % (type(self).__name__, name)) return None def __setstate__(self, state): slots = self.GetAllSlots() for name in state: if name in slots: setattr(self, name, state[name]) def Validate(self): """Validates the slots. """ def ToDict(self): """Convert to a dict holding only standard python types. The generic routine just dumps all of this object's attributes in a dict. It does not work if the class has children who are ConfigObjects themselves (e.g. the nics list in an Instance), in which case the object should subclass the function in order to make sure all objects returned are only standard python types. """ result = {} for name in self.GetAllSlots(): value = getattr(self, name, None) if value is not None: result[name] = value return result __getstate__ = ToDict @classmethod def FromDict(cls, val): """Create an object from a dictionary. This generic routine takes a dict, instantiates a new instance of the given class, and sets attributes based on the dict content. As for `ToDict`, this does not work if the class has children who are ConfigObjects themselves (e.g. the nics list in an Instance), in which case the object should subclass the function and alter the objects. """ if not isinstance(val, dict): raise errors.ConfigurationError("Invalid object passed to FromDict:" " expected dict, got %s" % type(val)) val_str = dict([(str(k), v) for k, v in val.iteritems()]) obj = cls(**val_str) # pylint: disable=W0142 return obj def Copy(self): """Makes a deep copy of the current object and its children. """ dict_form = self.ToDict() clone_obj = self.__class__.FromDict(dict_form) return clone_obj def __repr__(self): """Implement __repr__ for ConfigObjects.""" return repr(self.ToDict()) def UpgradeConfig(self): """Fill defaults for missing configuration values. This method will be called at configuration load time, and its implementation will be object dependent. """ pass class TaggableObject(ConfigObject): """An generic class supporting tags. """ __slots__ = ["tags"] VALID_TAG_RE = re.compile("^[\w.+*/:@-]+$") @classmethod def ValidateTag(cls, tag): """Check if a tag is valid. If the tag is invalid, an errors.TagError will be raised. The function has no return value. """ if not isinstance(tag, basestring): raise errors.TagError("Invalid tag type (not a string)") if len(tag) > constants.MAX_TAG_LEN: raise errors.TagError("Tag too long (>%d characters)" % constants.MAX_TAG_LEN) if not tag: raise errors.TagError("Tags cannot be empty") if not cls.VALID_TAG_RE.match(tag): raise errors.TagError("Tag contains invalid characters") def GetTags(self): """Return the tags list. """ tags = getattr(self, "tags", None) if tags is None: tags = self.tags = set() return tags def AddTag(self, tag): """Add a new tag. """ self.ValidateTag(tag) tags = self.GetTags() if len(tags) >= constants.MAX_TAGS_PER_OBJ: raise errors.TagError("Too many tags") self.GetTags().add(tag) def RemoveTag(self, tag): """Remove a tag. """ self.ValidateTag(tag) tags = self.GetTags() try: tags.remove(tag) except KeyError: raise errors.TagError("Tag not found") def ToDict(self): """Taggable-object-specific conversion to standard python types. This replaces the tags set with a list. """ bo = super(TaggableObject, self).ToDict() tags = bo.get("tags", None) if isinstance(tags, set): bo["tags"] = list(tags) return bo @classmethod def FromDict(cls, val): """Custom function for instances. """ obj = super(TaggableObject, cls).FromDict(val) if hasattr(obj, "tags") and isinstance(obj.tags, list): obj.tags = set(obj.tags) return obj class MasterNetworkParameters(ConfigObject): """Network configuration parameters for the master @ivar uuid: master nodes UUID @ivar ip: master IP @ivar netmask: master netmask @ivar netdev: master network device @ivar ip_family: master IP family """ __slots__ = [ "uuid", "ip", "netmask", "netdev", "ip_family", ] class ConfigData(ConfigObject): """Top-level config object.""" __slots__ = [ "version", "cluster", "nodes", "nodegroups", "instances", "networks", "serial_no", ] + _TIMESTAMPS def ToDict(self): """Custom function for top-level config data. This just replaces the list of instances, nodes and the cluster with standard python types. """ mydict = super(ConfigData, self).ToDict() mydict["cluster"] = mydict["cluster"].ToDict() for key in "nodes", "instances", "nodegroups", "networks": mydict[key] = outils.ContainerToDicts(mydict[key]) return mydict @classmethod def FromDict(cls, val): """Custom function for top-level config data """ obj = super(ConfigData, cls).FromDict(val) obj.cluster = Cluster.FromDict(obj.cluster) obj.nodes = outils.ContainerFromDicts(obj.nodes, dict, Node) obj.instances = \ outils.ContainerFromDicts(obj.instances, dict, Instance) obj.nodegroups = \ outils.ContainerFromDicts(obj.nodegroups, dict, NodeGroup) obj.networks = outils.ContainerFromDicts(obj.networks, dict, Network) return obj def HasAnyDiskOfType(self, dev_type): """Check if in there is at disk of the given type in the configuration. @type dev_type: L{constants.LDS_BLOCK} @param dev_type: the type to look for @rtype: boolean @return: boolean indicating if a disk of the given type was found or not """ for instance in self.instances.values(): for disk in instance.disks: if disk.IsBasedOnDiskType(dev_type): return True return False def UpgradeConfig(self): """Fill defaults for missing configuration values. """ self.cluster.UpgradeConfig() for node in self.nodes.values(): node.UpgradeConfig() for instance in self.instances.values(): instance.UpgradeConfig() if self.nodegroups is None: self.nodegroups = {} for nodegroup in self.nodegroups.values(): nodegroup.UpgradeConfig() if self.cluster.drbd_usermode_helper is None: # To decide if we set an helper let's check if at least one instance has # a DRBD disk. This does not cover all the possible scenarios but it # gives a good approximation. if self.HasAnyDiskOfType(constants.LD_DRBD8): self.cluster.drbd_usermode_helper = constants.DEFAULT_DRBD_HELPER if self.networks is None: self.networks = {} for network in self.networks.values(): network.UpgradeConfig() self._UpgradeEnabledDiskTemplates() def _UpgradeEnabledDiskTemplates(self): """Upgrade the cluster's enabled disk templates by inspecting the currently enabled and/or used disk templates. """ # enabled_disk_templates in the cluster config were introduced in 2.8. # Remove this code once upgrading from earlier versions is deprecated. if not self.cluster.enabled_disk_templates: template_set = \ set([inst.disk_template for inst in self.instances.values()]) # Add drbd and plain, if lvm is enabled (by specifying a volume group) if self.cluster.volume_group_name: template_set.add(constants.DT_DRBD8) template_set.add(constants.DT_PLAIN) # FIXME: Adapt this when dis/enabling at configure time is removed. # Enable 'sharedfile', if they are enabled, even though they might # currently not be used. if constants.ENABLE_SHARED_FILE_STORAGE: template_set.add(constants.DT_SHARED_FILE) # Set enabled_disk_templates to the inferred disk templates. Order them # according to a preference list that is based on Ganeti's history of # supported disk templates. self.cluster.enabled_disk_templates = [] for preferred_template in constants.DISK_TEMPLATE_PREFERENCE: if preferred_template in template_set: self.cluster.enabled_disk_templates.append(preferred_template) template_set.remove(preferred_template) self.cluster.enabled_disk_templates.extend(list(template_set)) class NIC(ConfigObject): """Config object representing a network card.""" __slots__ = ["name", "mac", "ip", "network", "nicparams", "netinfo"] + _UUID @classmethod def CheckParameterSyntax(cls, nicparams): """Check the given parameters for validity. @type nicparams: dict @param nicparams: dictionary with parameter names/value @raise errors.ConfigurationError: when a parameter is not valid """ mode = nicparams[constants.NIC_MODE] if (mode not in constants.NIC_VALID_MODES and mode != constants.VALUE_AUTO): raise errors.ConfigurationError("Invalid NIC mode '%s'" % mode) if (mode == constants.NIC_MODE_BRIDGED and not nicparams[constants.NIC_LINK]): raise errors.ConfigurationError("Missing bridged NIC link") class Disk(ConfigObject): """Config object representing a block device.""" __slots__ = (["name", "dev_type", "logical_id", "physical_id", "children", "iv_name", "size", "mode", "params", "spindles"] + _UUID) def CreateOnSecondary(self): """Test if this device needs to be created on a secondary node.""" return self.dev_type in (constants.LD_DRBD8, constants.LD_LV) def AssembleOnSecondary(self): """Test if this device needs to be assembled on a secondary node.""" return self.dev_type in (constants.LD_DRBD8, constants.LD_LV) def OpenOnSecondary(self): """Test if this device needs to be opened on a secondary node.""" return self.dev_type in (constants.LD_LV,) def StaticDevPath(self): """Return the device path if this device type has a static one. Some devices (LVM for example) live always at the same /dev/ path, irrespective of their status. For such devices, we return this path, for others we return None. @warning: The path returned is not a normalized pathname; callers should check that it is a valid path. """ if self.dev_type == constants.LD_LV: return "/dev/%s/%s" % (self.logical_id[0], self.logical_id[1]) elif self.dev_type == constants.LD_BLOCKDEV: return self.logical_id[1] elif self.dev_type == constants.LD_RBD: return "/dev/%s/%s" % (self.logical_id[0], self.logical_id[1]) return None def ChildrenNeeded(self): """Compute the needed number of children for activation. This method will return either -1 (all children) or a positive number denoting the minimum number of children needed for activation (only mirrored devices will usually return >=0). Currently, only DRBD8 supports diskless activation (therefore we return 0), for all other we keep the previous semantics and return -1. """ if self.dev_type == constants.LD_DRBD8: return 0 return -1 def IsBasedOnDiskType(self, dev_type): """Check if the disk or its children are based on the given type. @type dev_type: L{constants.LDS_BLOCK} @param dev_type: the type to look for @rtype: boolean @return: boolean indicating if a device of the given type was found or not """ if self.children: for child in self.children: if child.IsBasedOnDiskType(dev_type): return True return self.dev_type == dev_type def GetNodes(self, node_uuid): """This function returns the nodes this device lives on. Given the node on which the parent of the device lives on (or, in case of a top-level device, the primary node of the devices' instance), this function will return a list of nodes on which this devices needs to (or can) be assembled. """ if self.dev_type in [constants.LD_LV, constants.LD_FILE, constants.LD_BLOCKDEV, constants.LD_RBD, constants.LD_EXT]: result = [node_uuid] elif self.dev_type in constants.LDS_DRBD: result = [self.logical_id[0], self.logical_id[1]] if node_uuid not in result: raise errors.ConfigurationError("DRBD device passed unknown node") else: raise errors.ProgrammerError("Unhandled device type %s" % self.dev_type) return result def ComputeNodeTree(self, parent_node_uuid): """Compute the node/disk tree for this disk and its children. This method, given the node on which the parent disk lives, will return the list of all (node UUID, disk) pairs which describe the disk tree in the most compact way. For example, a drbd/lvm stack will be returned as (primary_node, drbd) and (secondary_node, drbd) which represents all the top-level devices on the nodes. """ my_nodes = self.GetNodes(parent_node_uuid) result = [(node, self) for node in my_nodes] if not self.children: # leaf device return result for node in my_nodes: for child in self.children: child_result = child.ComputeNodeTree(node) if len(child_result) == 1: # child (and all its descendants) is simple, doesn't split # over multiple hosts, so we don't need to describe it, our # own entry for this node describes it completely continue else: # check if child nodes differ from my nodes; note that # subdisk can differ from the child itself, and be instead # one of its descendants for subnode, subdisk in child_result: if subnode not in my_nodes: result.append((subnode, subdisk)) # otherwise child is under our own node, so we ignore this # entry (but probably the other results in the list will # be different) return result def ComputeGrowth(self, amount): """Compute the per-VG growth requirements. This only works for VG-based disks. @type amount: integer @param amount: the desired increase in (user-visible) disk space @rtype: dict @return: a dictionary of volume-groups and the required size """ if self.dev_type == constants.LD_LV: return {self.logical_id[0]: amount} elif self.dev_type == constants.LD_DRBD8: if self.children: return self.children[0].ComputeGrowth(amount) else: return {} else: # Other disk types do not require VG space return {} def RecordGrow(self, amount): """Update the size of this disk after growth. This method recurses over the disks's children and updates their size correspondigly. The method needs to be kept in sync with the actual algorithms from bdev. """ if self.dev_type in (constants.LD_LV, constants.LD_FILE, constants.LD_RBD, constants.LD_EXT): self.size += amount elif self.dev_type == constants.LD_DRBD8: if self.children: self.children[0].RecordGrow(amount) self.size += amount else: raise errors.ProgrammerError("Disk.RecordGrow called for unsupported" " disk type %s" % self.dev_type) def Update(self, size=None, mode=None, spindles=None): """Apply changes to size, spindles and mode. """ if self.dev_type == constants.LD_DRBD8: if self.children: self.children[0].Update(size=size, mode=mode) else: assert not self.children if size is not None: self.size = size if mode is not None: self.mode = mode if spindles is not None: self.spindles = spindles def UnsetSize(self): """Sets recursively the size to zero for the disk and its children. """ if self.children: for child in self.children: child.UnsetSize() self.size = 0 def SetPhysicalID(self, target_node_uuid, nodes_ip): """Convert the logical ID to the physical ID. This is used only for drbd, which needs ip/port configuration. The routine descends down and updates its children also, because this helps when the only the top device is passed to the remote node. Arguments: - target_node_uuid: the node UUID we wish to configure for - nodes_ip: a mapping of node name to ip The target_node must exist in in nodes_ip, and must be one of the nodes in the logical ID for each of the DRBD devices encountered in the disk tree. """ if self.children: for child in self.children: child.SetPhysicalID(target_node_uuid, nodes_ip) if self.logical_id is None and self.physical_id is not None: return if self.dev_type in constants.LDS_DRBD: pnode_uuid, snode_uuid, port, pminor, sminor, secret = self.logical_id if target_node_uuid not in (pnode_uuid, snode_uuid): raise errors.ConfigurationError("DRBD device not knowing node %s" % target_node_uuid) pnode_ip = nodes_ip.get(pnode_uuid, None) snode_ip = nodes_ip.get(snode_uuid, None) if pnode_ip is None or snode_ip is None: raise errors.ConfigurationError("Can't find primary or secondary node" " for %s" % str(self)) p_data = (pnode_ip, port) s_data = (snode_ip, port) if pnode_uuid == target_node_uuid: self.physical_id = p_data + s_data + (pminor, secret) else: # it must be secondary, we tested above self.physical_id = s_data + p_data + (sminor, secret) else: self.physical_id = self.logical_id return def ToDict(self): """Disk-specific conversion to standard python types. This replaces the children lists of objects with lists of standard python types. """ bo = super(Disk, self).ToDict() for attr in ("children",): alist = bo.get(attr, None) if alist: bo[attr] = outils.ContainerToDicts(alist) return bo @classmethod def FromDict(cls, val): """Custom function for Disks """ obj = super(Disk, cls).FromDict(val) if obj.children: obj.children = outils.ContainerFromDicts(obj.children, list, Disk) if obj.logical_id and isinstance(obj.logical_id, list): obj.logical_id = tuple(obj.logical_id) if obj.physical_id and isinstance(obj.physical_id, list): obj.physical_id = tuple(obj.physical_id) if obj.dev_type in constants.LDS_DRBD: # we need a tuple of length six here if len(obj.logical_id) < 6: obj.logical_id += (None,) * (6 - len(obj.logical_id)) return obj def __str__(self): """Custom str() formatter for disks. """ if self.dev_type == constants.LD_LV: val = "<LogicalVolume(/dev/%s/%s" % self.logical_id elif self.dev_type in constants.LDS_DRBD: node_a, node_b, port, minor_a, minor_b = self.logical_id[:5] val = "<DRBD8(" if self.physical_id is None: phy = "unconfigured" else: phy = ("configured as %s:%s %s:%s" % (self.physical_id[0], self.physical_id[1], self.physical_id[2], self.physical_id[3])) val += ("hosts=%s/%d-%s/%d, port=%s, %s, " % (node_a, minor_a, node_b, minor_b, port, phy)) if self.children and self.children.count(None) == 0: val += "backend=%s, metadev=%s" % (self.children[0], self.children[1]) else: val += "no local storage" else: val = ("<Disk(type=%s, logical_id=%s, physical_id=%s, children=%s" % (self.dev_type, self.logical_id, self.physical_id, self.children)) if self.iv_name is None: val += ", not visible" else: val += ", visible as /dev/%s" % self.iv_name if self.spindles is not None: val += ", spindles=%s" % self.spindles if isinstance(self.size, int): val += ", size=%dm)>" % self.size else: val += ", size='%s')>" % (self.size,) return val def Verify(self): """Checks that this disk is correctly configured. """ all_errors = [] if self.mode not in constants.DISK_ACCESS_SET: all_errors.append("Disk access mode '%s' is invalid" % (self.mode, )) return all_errors def UpgradeConfig(self): """Fill defaults for missing configuration values. """ if self.children: for child in self.children: child.UpgradeConfig() # FIXME: Make this configurable in Ganeti 2.7 self.params = {} # add here config upgrade for this disk @staticmethod def ComputeLDParams(disk_template, disk_params): """Computes Logical Disk parameters from Disk Template parameters. @type disk_template: string @param disk_template: disk template, one of L{constants.DISK_TEMPLATES} @type disk_params: dict @param disk_params: disk template parameters; dict(template_name -> parameters @rtype: list(dict) @return: a list of dicts, one for each node of the disk hierarchy. Each dict contains the LD parameters of the node. The tree is flattened in-order. """ if disk_template not in constants.DISK_TEMPLATES: raise errors.ProgrammerError("Unknown disk template %s" % disk_template) assert disk_template in disk_params result = list() dt_params = disk_params[disk_template] if disk_template == constants.DT_DRBD8: result.append(FillDict(constants.DISK_LD_DEFAULTS[constants.LD_DRBD8], { constants.LDP_RESYNC_RATE: dt_params[constants.DRBD_RESYNC_RATE], constants.LDP_BARRIERS: dt_params[constants.DRBD_DISK_BARRIERS], constants.LDP_NO_META_FLUSH: dt_params[constants.DRBD_META_BARRIERS], constants.LDP_DEFAULT_METAVG: dt_params[constants.DRBD_DEFAULT_METAVG], constants.LDP_DISK_CUSTOM: dt_params[constants.DRBD_DISK_CUSTOM], constants.LDP_NET_CUSTOM: dt_params[constants.DRBD_NET_CUSTOM], constants.LDP_PROTOCOL: dt_params[constants.DRBD_PROTOCOL], constants.LDP_DYNAMIC_RESYNC: dt_params[constants.DRBD_DYNAMIC_RESYNC], constants.LDP_PLAN_AHEAD: dt_params[constants.DRBD_PLAN_AHEAD], constants.LDP_FILL_TARGET: dt_params[constants.DRBD_FILL_TARGET], constants.LDP_DELAY_TARGET: dt_params[constants.DRBD_DELAY_TARGET], constants.LDP_MAX_RATE: dt_params[constants.DRBD_MAX_RATE], constants.LDP_MIN_RATE: dt_params[constants.DRBD_MIN_RATE], })) # data LV result.append(FillDict(constants.DISK_LD_DEFAULTS[constants.LD_LV], { constants.LDP_STRIPES: dt_params[constants.DRBD_DATA_STRIPES], })) # metadata LV result.append(FillDict(constants.DISK_LD_DEFAULTS[constants.LD_LV], { constants.LDP_STRIPES: dt_params[constants.DRBD_META_STRIPES], })) elif disk_template in (constants.DT_FILE, constants.DT_SHARED_FILE): result.append(constants.DISK_LD_DEFAULTS[constants.LD_FILE]) elif disk_template == constants.DT_PLAIN: result.append(FillDict(constants.DISK_LD_DEFAULTS[constants.LD_LV], { constants.LDP_STRIPES: dt_params[constants.LV_STRIPES], })) elif disk_template == constants.DT_BLOCK: result.append(constants.DISK_LD_DEFAULTS[constants.LD_BLOCKDEV]) elif disk_template == constants.DT_RBD: result.append(FillDict(constants.DISK_LD_DEFAULTS[constants.LD_RBD], { constants.LDP_POOL: dt_params[constants.RBD_POOL], constants.LDP_ACCESS: dt_params[constants.RBD_ACCESS], })) elif disk_template == constants.DT_EXT: result.append(constants.DISK_LD_DEFAULTS[constants.LD_EXT]) return result class InstancePolicy(ConfigObject): """Config object representing instance policy limits dictionary. Note that this object is not actually used in the config, it's just used as a placeholder for a few functions. """ @classmethod def CheckParameterSyntax(cls, ipolicy, check_std): """ Check the instance policy for validity. @type ipolicy: dict @param ipolicy: dictionary with min/max/std specs and policies @type check_std: bool @param check_std: Whether to check std value or just assume compliance @raise errors.ConfigurationError: when the policy is not legal """ InstancePolicy.CheckISpecSyntax(ipolicy, check_std) if constants.IPOLICY_DTS in ipolicy: InstancePolicy.CheckDiskTemplates(ipolicy[constants.IPOLICY_DTS]) for key in constants.IPOLICY_PARAMETERS: if key in ipolicy: InstancePolicy.CheckParameter(key, ipolicy[key]) wrong_keys = frozenset(ipolicy.keys()) - constants.IPOLICY_ALL_KEYS if wrong_keys: raise errors.ConfigurationError("Invalid keys in ipolicy: %s" % utils.CommaJoin(wrong_keys)) @classmethod def _CheckIncompleteSpec(cls, spec, keyname): missing_params = constants.ISPECS_PARAMETERS - frozenset(spec.keys()) if missing_params: msg = ("Missing instance specs parameters for %s: %s" % (keyname, utils.CommaJoin(missing_params))) raise errors.ConfigurationError(msg) @classmethod def CheckISpecSyntax(cls, ipolicy, check_std): """Check the instance policy specs for validity. @type ipolicy: dict @param ipolicy: dictionary with min/max/std specs @type check_std: bool @param check_std: Whether to check std value or just assume compliance @raise errors.ConfigurationError: when specs are not valid """ if constants.ISPECS_MINMAX not in ipolicy: # Nothing to check return if check_std and constants.ISPECS_STD not in ipolicy: msg = "Missing key in ipolicy: %s" % constants.ISPECS_STD raise errors.ConfigurationError(msg) stdspec = ipolicy.get(constants.ISPECS_STD) if check_std: InstancePolicy._CheckIncompleteSpec(stdspec, constants.ISPECS_STD) if not ipolicy[constants.ISPECS_MINMAX]: raise errors.ConfigurationError("Empty minmax specifications") std_is_good = False for minmaxspecs in ipolicy[constants.ISPECS_MINMAX]: missing = constants.ISPECS_MINMAX_KEYS - frozenset(minmaxspecs.keys()) if missing: msg = "Missing instance specification: %s" % utils.CommaJoin(missing) raise errors.ConfigurationError(msg) for (key, spec) in minmaxspecs.items(): InstancePolicy._CheckIncompleteSpec(spec, key) spec_std_ok = True for param in constants.ISPECS_PARAMETERS: par_std_ok = InstancePolicy._CheckISpecParamSyntax(minmaxspecs, stdspec, param, check_std) spec_std_ok = spec_std_ok and par_std_ok std_is_good = std_is_good or spec_std_ok if not std_is_good: raise errors.ConfigurationError("Invalid std specifications") @classmethod def _CheckISpecParamSyntax(cls, minmaxspecs, stdspec, name, check_std): """Check the instance policy specs for validity on a given key. We check if the instance specs makes sense for a given key, that is if minmaxspecs[min][name] <= stdspec[name] <= minmaxspec[max][name]. @type minmaxspecs: dict @param minmaxspecs: dictionary with min and max instance spec @type stdspec: dict @param stdspec: dictionary with standard instance spec @type name: string @param name: what are the limits for @type check_std: bool @param check_std: Whether to check std value or just assume compliance @rtype: bool @return: C{True} when specs are valid, C{False} when standard spec for the given name is not valid @raise errors.ConfigurationError: when min/max specs for the given name are not valid """ minspec = minmaxspecs[constants.ISPECS_MIN] maxspec = minmaxspecs[constants.ISPECS_MAX] min_v = minspec[name] max_v = maxspec[name] if min_v > max_v: err = ("Invalid specification of min/max values for %s: %s/%s" % (name, min_v, max_v)) raise errors.ConfigurationError(err) elif check_std: std_v = stdspec.get(name, min_v) return std_v >= min_v and std_v <= max_v else: return True @classmethod def CheckDiskTemplates(cls, disk_templates): """Checks the disk templates for validity. """ if not disk_templates: raise errors.ConfigurationError("Instance policy must contain" + " at least one disk template") wrong = frozenset(disk_templates).difference(constants.DISK_TEMPLATES) if wrong: raise errors.ConfigurationError("Invalid disk template(s) %s" % utils.CommaJoin(wrong)) @classmethod def CheckParameter(cls, key, value): """Checks a parameter. Currently we expect all parameters to be float values. """ try: float(value) except (TypeError, ValueError), err: raise errors.ConfigurationError("Invalid value for key" " '%s':" " '%s', error: %s" % (key, value, err)) class Instance(TaggableObject): """Config object representing an instance.""" __slots__ = [ "name", "primary_node", "os", "hypervisor", "hvparams", "beparams", "osparams", "admin_state", "nics", "disks", "disk_template", "disks_active", "network_port", "serial_no", ] + _TIMESTAMPS + _UUID def _ComputeSecondaryNodes(self): """Compute the list of secondary nodes. This is a simple wrapper over _ComputeAllNodes. """ all_nodes = set(self._ComputeAllNodes()) all_nodes.discard(self.primary_node) return tuple(all_nodes) secondary_nodes = property(_ComputeSecondaryNodes, None, None, "List of names of secondary nodes") def _ComputeAllNodes(self): """Compute the list of all nodes. Since the data is already there (in the drbd disks), keeping it as a separate normal attribute is redundant and if not properly synchronised can cause problems. Thus it's better to compute it dynamically. """ def _Helper(nodes, device): """Recursively computes nodes given a top device.""" if device.dev_type in constants.LDS_DRBD: nodea, nodeb = device.logical_id[:2] nodes.add(nodea) nodes.add(nodeb) if device.children: for child in device.children: _Helper(nodes, child) all_nodes = set() all_nodes.add(self.primary_node) for device in self.disks: _Helper(all_nodes, device) return tuple(all_nodes) all_nodes = property(_ComputeAllNodes, None, None, "List of names of all the nodes of the instance") def MapLVsByNode(self, lvmap=None, devs=None, node_uuid=None): """Provide a mapping of nodes to LVs this instance owns. This function figures out what logical volumes should belong on which nodes, recursing through a device tree. @type lvmap: dict @param lvmap: optional dictionary to receive the 'node' : ['lv', ...] data. @type devs: list of L{Disk} @param devs: disks to get the LV name for. If None, all disk of this instance are used. @type node_uuid: string @param node_uuid: UUID of the node to get the LV names for. If None, the primary node of this instance is used. @return: None if lvmap arg is given, otherwise, a dictionary of the form { 'node_uuid' : ['volume1', 'volume2', ...], ... }; volumeN is of the form "vg_name/lv_name", compatible with GetVolumeList() """ if node_uuid is None: node_uuid = self.primary_node if lvmap is None: lvmap = { node_uuid: [], } ret = lvmap else: if not node_uuid in lvmap: lvmap[node_uuid] = [] ret = None if not devs: devs = self.disks for dev in devs: if dev.dev_type == constants.LD_LV: lvmap[node_uuid].append(dev.logical_id[0] + "/" + dev.logical_id[1]) elif dev.dev_type in constants.LDS_DRBD: if dev.children: self.MapLVsByNode(lvmap, dev.children, dev.logical_id[0]) self.MapLVsByNode(lvmap, dev.children, dev.logical_id[1]) elif dev.children: self.MapLVsByNode(lvmap, dev.children, node_uuid) return ret def FindDisk(self, idx): """Find a disk given having a specified index. This is just a wrapper that does validation of the index. @type idx: int @param idx: the disk index @rtype: L{Disk} @return: the corresponding disk @raise errors.OpPrereqError: when the given index is not valid """ try: idx = int(idx) return self.disks[idx] except (TypeError, ValueError), err: raise errors.OpPrereqError("Invalid disk index: '%s'" % str(err), errors.ECODE_INVAL) except IndexError: raise errors.OpPrereqError("Invalid disk index: %d (instace has disks" " 0 to %d" % (idx, len(self.disks) - 1), errors.ECODE_INVAL) def ToDict(self): """Instance-specific conversion to standard python types. This replaces the children lists of objects with lists of standard python types. """ bo = super(Instance, self).ToDict() for attr in "nics", "disks": alist = bo.get(attr, None) if alist: nlist = outils.ContainerToDicts(alist) else: nlist = [] bo[attr] = nlist return bo @classmethod def FromDict(cls, val): """Custom function for instances. """ if "admin_state" not in val: if val.get("admin_up", False): val["admin_state"] = constants.ADMINST_UP else: val["admin_state"] = constants.ADMINST_DOWN if "admin_up" in val: del val["admin_up"] obj = super(Instance, cls).FromDict(val) obj.nics = outils.ContainerFromDicts(obj.nics, list, NIC) obj.disks = outils.ContainerFromDicts(obj.disks, list, Disk) return obj def UpgradeConfig(self): """Fill defaults for missing configuration values. """ for nic in self.nics: nic.UpgradeConfig() for disk in self.disks: disk.UpgradeConfig() if self.hvparams: for key in constants.HVC_GLOBALS: try: del self.hvparams[key] except KeyError: pass if self.osparams is None: self.osparams = {} UpgradeBeParams(self.beparams) if self.disks_active is None: self.disks_active = self.admin_state == constants.ADMINST_UP class OS(ConfigObject): """Config object representing an operating system. @type supported_parameters: list @ivar supported_parameters: a list of tuples, name and description, containing the supported parameters by this OS @type VARIANT_DELIM: string @cvar VARIANT_DELIM: the variant delimiter """ __slots__ = [ "name", "path", "api_versions", "create_script", "export_script", "import_script", "rename_script", "verify_script", "supported_variants", "supported_parameters", ] VARIANT_DELIM = "+" @classmethod def SplitNameVariant(cls, name): """Splits the name into the proper name and variant. @param name: the OS (unprocessed) name @rtype: list @return: a list of two elements; if the original name didn't contain a variant, it's returned as an empty string """ nv = name.split(cls.VARIANT_DELIM, 1) if len(nv) == 1: nv.append("") return nv @classmethod def GetName(cls, name): """Returns the proper name of the os (without the variant). @param name: the OS (unprocessed) name """ return cls.SplitNameVariant(name)[0] @classmethod def GetVariant(cls, name): """Returns the variant the os (without the base name). @param name: the OS (unprocessed) name """ return cls.SplitNameVariant(name)[1] class ExtStorage(ConfigObject): """Config object representing an External Storage Provider. """ __slots__ = [ "name", "path", "create_script", "remove_script", "grow_script", "attach_script", "detach_script", "setinfo_script", "verify_script", "supported_parameters", ] class NodeHvState(ConfigObject): """Hypvervisor state on a node. @ivar mem_total: Total amount of memory @ivar mem_node: Memory used by, or reserved for, the node itself (not always available) @ivar mem_hv: Memory used by hypervisor or lost due to instance allocation rounding @ivar mem_inst: Memory used by instances living on node @ivar cpu_total: Total node CPU core count @ivar cpu_node: Number of CPU cores reserved for the node itself """ __slots__ = [ "mem_total", "mem_node", "mem_hv", "mem_inst", "cpu_total", "cpu_node", ] + _TIMESTAMPS class NodeDiskState(ConfigObject): """Disk state on a node. """ __slots__ = [ "total", "reserved", "overhead", ] + _TIMESTAMPS class Node(TaggableObject): """Config object representing a node. @ivar hv_state: Hypervisor state (e.g. number of CPUs) @ivar hv_state_static: Hypervisor state overriden by user @ivar disk_state: Disk state (e.g. free space) @ivar disk_state_static: Disk state overriden by user """ __slots__ = [ "name", "primary_ip", "secondary_ip", "serial_no", "master_candidate", "offline", "drained", "group", "master_capable", "vm_capable", "ndparams", "powered", "hv_state", "hv_state_static", "disk_state", "disk_state_static", ] + _TIMESTAMPS + _UUID def UpgradeConfig(self): """Fill defaults for missing configuration values. """ # pylint: disable=E0203 # because these are "defined" via slots, not manually if self.master_capable is None: self.master_capable = True if self.vm_capable is None: self.vm_capable = True if self.ndparams is None: self.ndparams = {} # And remove any global parameter for key in constants.NDC_GLOBALS: if key in self.ndparams: logging.warning("Ignoring %s node parameter for node %s", key, self.name) del self.ndparams[key] if self.powered is None: self.powered = True def ToDict(self): """Custom function for serializing. """ data = super(Node, self).ToDict() hv_state = data.get("hv_state", None) if hv_state is not None: data["hv_state"] = outils.ContainerToDicts(hv_state) disk_state = data.get("disk_state", None) if disk_state is not None: data["disk_state"] = \ dict((key, outils.ContainerToDicts(value)) for (key, value) in disk_state.items()) return data @classmethod def FromDict(cls, val): """Custom function for deserializing. """ obj = super(Node, cls).FromDict(val) if obj.hv_state is not None: obj.hv_state = \ outils.ContainerFromDicts(obj.hv_state, dict, NodeHvState) if obj.disk_state is not None: obj.disk_state = \ dict((key, outils.ContainerFromDicts(value, dict, NodeDiskState)) for (key, value) in obj.disk_state.items()) return obj class NodeGroup(TaggableObject): """Config object representing a node group.""" __slots__ = [ "name", "members", "ndparams", "diskparams", "ipolicy", "serial_no", "hv_state_static", "disk_state_static", "alloc_policy", "networks", ] + _TIMESTAMPS + _UUID def ToDict(self): """Custom function for nodegroup. This discards the members object, which gets recalculated and is only kept in memory. """ mydict = super(NodeGroup, self).ToDict() del mydict["members"] return mydict @classmethod def FromDict(cls, val): """Custom function for nodegroup. The members slot is initialized to an empty list, upon deserialization. """ obj = super(NodeGroup, cls).FromDict(val) obj.members = [] return obj def UpgradeConfig(self): """Fill defaults for missing configuration values. """ if self.ndparams is None: self.ndparams = {} if self.serial_no is None: self.serial_no = 1 if self.alloc_policy is None: self.alloc_policy = constants.ALLOC_POLICY_PREFERRED # We only update mtime, and not ctime, since we would not be able # to provide a correct value for creation time. if self.mtime is None: self.mtime = time.time() if self.diskparams is None: self.diskparams = {} if self.ipolicy is None: self.ipolicy = MakeEmptyIPolicy() if self.networks is None: self.networks = {} def FillND(self, node): """Return filled out ndparams for L{objects.Node} @type node: L{objects.Node} @param node: A Node object to fill @return a copy of the node's ndparams with defaults filled """ return self.SimpleFillND(node.ndparams) def SimpleFillND(self, ndparams): """Fill a given ndparams dict with defaults. @type ndparams: dict @param ndparams: the dict to fill @rtype: dict @return: a copy of the passed in ndparams with missing keys filled from the node group defaults """ return FillDict(self.ndparams, ndparams) class Cluster(TaggableObject): """Config object representing the cluster.""" __slots__ = [ "serial_no", "rsahostkeypub", "highest_used_port", "tcpudp_port_pool", "mac_prefix", "volume_group_name", "reserved_lvs", "drbd_usermode_helper", "default_bridge", "default_hypervisor", "master_node", "master_ip", "master_netdev", "master_netmask", "use_external_mip_script", "cluster_name", "file_storage_dir", "shared_file_storage_dir", "enabled_hypervisors", "hvparams", "ipolicy", "os_hvp", "beparams", "osparams", "nicparams", "ndparams", "diskparams", "candidate_pool_size", "modify_etc_hosts", "modify_ssh_setup", "maintain_node_health", "uid_pool", "default_iallocator", "hidden_os", "blacklisted_os", "primary_ip_family", "prealloc_wipe_disks", "hv_state_static", "disk_state_static", "enabled_disk_templates", ] + _TIMESTAMPS + _UUID def UpgradeConfig(self): """Fill defaults for missing configuration values. """ # pylint: disable=E0203 # because these are "defined" via slots, not manually if self.hvparams is None: self.hvparams = constants.HVC_DEFAULTS else: for hypervisor in self.hvparams: self.hvparams[hypervisor] = FillDict( constants.HVC_DEFAULTS[hypervisor], self.hvparams[hypervisor]) if self.os_hvp is None: self.os_hvp = {} # osparams added before 2.2 if self.osparams is None: self.osparams = {} self.ndparams = UpgradeNDParams(self.ndparams) self.beparams = UpgradeGroupedParams(self.beparams, constants.BEC_DEFAULTS) for beparams_group in self.beparams: UpgradeBeParams(self.beparams[beparams_group]) migrate_default_bridge = not self.nicparams self.nicparams = UpgradeGroupedParams(self.nicparams, constants.NICC_DEFAULTS) if migrate_default_bridge: self.nicparams[constants.PP_DEFAULT][constants.NIC_LINK] = \ self.default_bridge if self.modify_etc_hosts is None: self.modify_etc_hosts = True if self.modify_ssh_setup is None: self.modify_ssh_setup = True # default_bridge is no longer used in 2.1. The slot is left there to # support auto-upgrading. It can be removed once we decide to deprecate # upgrading straight from 2.0. if self.default_bridge is not None: self.default_bridge = None # default_hypervisor is just the first enabled one in 2.1. This slot and # code can be removed once upgrading straight from 2.0 is deprecated. if self.default_hypervisor is not None: self.enabled_hypervisors = ([self.default_hypervisor] + [hvname for hvname in self.enabled_hypervisors if hvname != self.default_hypervisor]) self.default_hypervisor = None # maintain_node_health added after 2.1.1 if self.maintain_node_health is None: self.maintain_node_health = False if self.uid_pool is None: self.uid_pool = [] if self.default_iallocator is None: self.default_iallocator = "" # reserved_lvs added before 2.2 if self.reserved_lvs is None: self.reserved_lvs = [] # hidden and blacklisted operating systems added before 2.2.1 if self.hidden_os is None: self.hidden_os = [] if self.blacklisted_os is None: self.blacklisted_os = [] # primary_ip_family added before 2.3 if self.primary_ip_family is None: self.primary_ip_family = AF_INET if self.master_netmask is None: ipcls = netutils.IPAddress.GetClassFromIpFamily(self.primary_ip_family) self.master_netmask = ipcls.iplen if self.prealloc_wipe_disks is None: self.prealloc_wipe_disks = False # shared_file_storage_dir added before 2.5 if self.shared_file_storage_dir is None: self.shared_file_storage_dir = "" if self.use_external_mip_script is None: self.use_external_mip_script = False if self.diskparams: self.diskparams = UpgradeDiskParams(self.diskparams) else: self.diskparams = constants.DISK_DT_DEFAULTS.copy() # instance policy added before 2.6 if self.ipolicy is None: self.ipolicy = FillIPolicy(constants.IPOLICY_DEFAULTS, {}) else: # we can either make sure to upgrade the ipolicy always, or only # do it in some corner cases (e.g. missing keys); note that this # will break any removal of keys from the ipolicy dict wrongkeys = frozenset(self.ipolicy.keys()) - constants.IPOLICY_ALL_KEYS if wrongkeys: # These keys would be silently removed by FillIPolicy() msg = ("Cluster instance policy contains spurious keys: %s" % utils.CommaJoin(wrongkeys)) raise errors.ConfigurationError(msg) self.ipolicy = FillIPolicy(constants.IPOLICY_DEFAULTS, self.ipolicy) @property def primary_hypervisor(self): """The first hypervisor is the primary. Useful, for example, for L{Node}'s hv/disk state. """ return self.enabled_hypervisors[0] def ToDict(self): """Custom function for cluster. """ mydict = super(Cluster, self).ToDict() if self.tcpudp_port_pool is None: tcpudp_port_pool = [] else: tcpudp_port_pool = list(self.tcpudp_port_pool) mydict["tcpudp_port_pool"] = tcpudp_port_pool return mydict @classmethod def FromDict(cls, val): """Custom function for cluster. """ obj = super(Cluster, cls).FromDict(val) if obj.tcpudp_port_pool is None: obj.tcpudp_port_pool = set() elif not isinstance(obj.tcpudp_port_pool, set): obj.tcpudp_port_pool = set(obj.tcpudp_port_pool) return obj def SimpleFillDP(self, diskparams): """Fill a given diskparams dict with cluster defaults. @param diskparams: The diskparams @return: The defaults dict """ return FillDiskParams(self.diskparams, diskparams) def GetHVDefaults(self, hypervisor, os_name=None, skip_keys=None): """Get the default hypervisor parameters for the cluster. @param hypervisor: the hypervisor name @param os_name: if specified, we'll also update the defaults for this OS @param skip_keys: if passed, list of keys not to use @return: the defaults dict """ if skip_keys is None: skip_keys = [] fill_stack = [self.hvparams.get(hypervisor, {})] if os_name is not None: os_hvp = self.os_hvp.get(os_name, {}).get(hypervisor, {}) fill_stack.append(os_hvp) ret_dict = {} for o_dict in fill_stack: ret_dict = FillDict(ret_dict, o_dict, skip_keys=skip_keys) return ret_dict def SimpleFillHV(self, hv_name, os_name, hvparams, skip_globals=False): """Fill a given hvparams dict with cluster defaults. @type hv_name: string @param hv_name: the hypervisor to use @type os_name: string @param os_name: the OS to use for overriding the hypervisor defaults @type skip_globals: boolean @param skip_globals: if True, the global hypervisor parameters will not be filled @rtype: dict @return: a copy of the given hvparams with missing keys filled from the cluster defaults """ if skip_globals: skip_keys = constants.HVC_GLOBALS else: skip_keys = [] def_dict = self.GetHVDefaults(hv_name, os_name, skip_keys=skip_keys) return FillDict(def_dict, hvparams, skip_keys=skip_keys) def FillHV(self, instance, skip_globals=False): """Fill an instance's hvparams dict with cluster defaults. @type instance: L{objects.Instance} @param instance: the instance parameter to fill @type skip_globals: boolean @param skip_globals: if True, the global hypervisor parameters will not be filled @rtype: dict @return: a copy of the instance's hvparams with missing keys filled from the cluster defaults """ return self.SimpleFillHV(instance.hypervisor, instance.os, instance.hvparams, skip_globals) def SimpleFillBE(self, beparams): """Fill a given beparams dict with cluster defaults. @type beparams: dict @param beparams: the dict to fill @rtype: dict @return: a copy of the passed in beparams with missing keys filled from the cluster defaults """ return FillDict(self.beparams.get(constants.PP_DEFAULT, {}), beparams) def FillBE(self, instance): """Fill an instance's beparams dict with cluster defaults. @type instance: L{objects.Instance} @param instance: the instance parameter to fill @rtype: dict @return: a copy of the instance's beparams with missing keys filled from the cluster defaults """ return self.SimpleFillBE(instance.beparams) def SimpleFillNIC(self, nicparams): """Fill a given nicparams dict with cluster defaults. @type nicparams: dict @param nicparams: the dict to fill @rtype: dict @return: a copy of the passed in nicparams with missing keys filled from the cluster defaults """ return FillDict(self.nicparams.get(constants.PP_DEFAULT, {}), nicparams) def SimpleFillOS(self, os_name, os_params): """Fill an instance's osparams dict with cluster defaults. @type os_name: string @param os_name: the OS name to use @type os_params: dict @param os_params: the dict to fill with default values @rtype: dict @return: a copy of the instance's osparams with missing keys filled from the cluster defaults """ name_only = os_name.split("+", 1)[0] # base OS result = self.osparams.get(name_only, {}) # OS with variant result = FillDict(result, self.osparams.get(os_name, {})) # specified params return FillDict(result, os_params) @staticmethod def SimpleFillHvState(hv_state): """Fill an hv_state sub dict with cluster defaults. """ return FillDict(constants.HVST_DEFAULTS, hv_state) @staticmethod def SimpleFillDiskState(disk_state): """Fill an disk_state sub dict with cluster defaults. """ return FillDict(constants.DS_DEFAULTS, disk_state) def FillND(self, node, nodegroup): """Return filled out ndparams for L{objects.NodeGroup} and L{objects.Node} @type node: L{objects.Node} @param node: A Node object to fill @type nodegroup: L{objects.NodeGroup} @param nodegroup: A Node object to fill @return a copy of the node's ndparams with defaults filled """ return self.SimpleFillND(nodegroup.FillND(node)) def SimpleFillND(self, ndparams): """Fill a given ndparams dict with defaults. @type ndparams: dict @param ndparams: the dict to fill @rtype: dict @return: a copy of the passed in ndparams with missing keys filled from the cluster defaults """ return FillDict(self.ndparams, ndparams) def SimpleFillIPolicy(self, ipolicy): """ Fill instance policy dict with defaults. @type ipolicy: dict @param ipolicy: the dict to fill @rtype: dict @return: a copy of passed ipolicy with missing keys filled from the cluster defaults """ return FillIPolicy(self.ipolicy, ipolicy) def IsDiskTemplateEnabled(self, disk_template): """Checks if a particular disk template is enabled. """ return utils.storage.IsDiskTemplateEnabled( disk_template, self.enabled_disk_templates) def IsFileStorageEnabled(self): """Checks if file storage is enabled. """ return utils.storage.IsFileStorageEnabled(self.enabled_disk_templates) def IsSharedFileStorageEnabled(self): """Checks if shared file storage is enabled. """ return utils.storage.IsSharedFileStorageEnabled( self.enabled_disk_templates) class BlockDevStatus(ConfigObject): """Config object representing the status of a block device.""" __slots__ = [ "dev_path", "major", "minor", "sync_percent", "estimated_time", "is_degraded", "ldisk_status", ] class ImportExportStatus(ConfigObject): """Config object representing the status of an import or export.""" __slots__ = [ "recent_output", "listen_port", "connected", "progress_mbytes", "progress_throughput", "progress_eta", "progress_percent", "exit_status", "error_message", ] + _TIMESTAMPS class ImportExportOptions(ConfigObject): """Options for import/export daemon @ivar key_name: X509 key name (None for cluster certificate) @ivar ca_pem: Remote peer CA in PEM format (None for cluster certificate) @ivar compress: Compression method (one of L{constants.IEC_ALL}) @ivar magic: Used to ensure the connection goes to the right disk @ivar ipv6: Whether to use IPv6 @ivar connect_timeout: Number of seconds for establishing connection """ __slots__ = [ "key_name", "ca_pem", "compress", "magic", "ipv6", "connect_timeout", ] class ConfdRequest(ConfigObject): """Object holding a confd request. @ivar protocol: confd protocol version @ivar type: confd query type @ivar query: query request @ivar rsalt: requested reply salt """ __slots__ = [ "protocol", "type", "query", "rsalt", ] class ConfdReply(ConfigObject): """Object holding a confd reply. @ivar protocol: confd protocol version @ivar status: reply status code (ok, error) @ivar answer: confd query reply @ivar serial: configuration serial number """ __slots__ = [ "protocol", "status", "answer", "serial", ] class QueryFieldDefinition(ConfigObject): """Object holding a query field definition. @ivar name: Field name @ivar title: Human-readable title @ivar kind: Field type @ivar doc: Human-readable description """ __slots__ = [ "name", "title", "kind", "doc", ] class _QueryResponseBase(ConfigObject): __slots__ = [ "fields", ] def ToDict(self): """Custom function for serializing. """ mydict = super(_QueryResponseBase, self).ToDict() mydict["fields"] = outils.ContainerToDicts(mydict["fields"]) return mydict @classmethod def FromDict(cls, val): """Custom function for de-serializing. """ obj = super(_QueryResponseBase, cls).FromDict(val) obj.fields = \ outils.ContainerFromDicts(obj.fields, list, QueryFieldDefinition) return obj class QueryResponse(_QueryResponseBase): """Object holding the response to a query. @ivar fields: List of L{QueryFieldDefinition} objects @ivar data: Requested data """ __slots__ = [ "data", ] class QueryFieldsRequest(ConfigObject): """Object holding a request for querying available fields. """ __slots__ = [ "what", "fields", ] class QueryFieldsResponse(_QueryResponseBase): """Object holding the response to a query for fields. @ivar fields: List of L{QueryFieldDefinition} objects """ __slots__ = [] class MigrationStatus(ConfigObject): """Object holding the status of a migration. """ __slots__ = [ "status", "transferred_ram", "total_ram", ] class InstanceConsole(ConfigObject): """Object describing how to access the console of an instance. """ __slots__ = [ "instance", "kind", "message", "host", "port", "user", "command", "display", ] def Validate(self): """Validates contents of this object. """ assert self.kind in constants.CONS_ALL, "Unknown console type" assert self.instance, "Missing instance name" assert self.message or self.kind in [constants.CONS_SSH, constants.CONS_SPICE, constants.CONS_VNC] assert self.host or self.kind == constants.CONS_MESSAGE assert self.port or self.kind in [constants.CONS_MESSAGE, constants.CONS_SSH] assert self.user or self.kind in [constants.CONS_MESSAGE, constants.CONS_SPICE, constants.CONS_VNC] assert self.command or self.kind in [constants.CONS_MESSAGE, constants.CONS_SPICE, constants.CONS_VNC] assert self.display or self.kind in [constants.CONS_MESSAGE, constants.CONS_SPICE, constants.CONS_SSH] return True class Network(TaggableObject): """Object representing a network definition for ganeti. """ __slots__ = [ "name", "serial_no", "mac_prefix", "network", "network6", "gateway", "gateway6", "reservations", "ext_reservations", ] + _TIMESTAMPS + _UUID def HooksDict(self, prefix=""): """Export a dictionary used by hooks with a network's information. @type prefix: String @param prefix: Prefix to prepend to the dict entries """ result = { "%sNETWORK_NAME" % prefix: self.name, "%sNETWORK_UUID" % prefix: self.uuid, "%sNETWORK_TAGS" % prefix: " ".join(self.GetTags()), } if self.network: result["%sNETWORK_SUBNET" % prefix] = self.network if self.gateway: result["%sNETWORK_GATEWAY" % prefix] = self.gateway if self.network6: result["%sNETWORK_SUBNET6" % prefix] = self.network6 if self.gateway6: result["%sNETWORK_GATEWAY6" % prefix] = self.gateway6 if self.mac_prefix: result["%sNETWORK_MAC_PREFIX" % prefix] = self.mac_prefix return result @classmethod def FromDict(cls, val): """Custom function for networks. Remove deprecated network_type and family. """ if "network_type" in val: del val["network_type"] if "family" in val: del val["family"] obj = super(Network, cls).FromDict(val) return obj class SerializableConfigParser(ConfigParser.SafeConfigParser): """Simple wrapper over ConfigParse that allows serialization. This class is basically ConfigParser.SafeConfigParser with two additional methods that allow it to serialize/unserialize to/from a buffer. """ def Dumps(self): """Dump this instance and return the string representation.""" buf = StringIO() self.write(buf) return buf.getvalue() @classmethod def Loads(cls, data): """Load data from a string.""" buf = StringIO(data) cfp = cls() cfp.readfp(buf) return cfp class LvmPvInfo(ConfigObject): """Information about an LVM physical volume (PV). @type name: string @ivar name: name of the PV @type vg_name: string @ivar vg_name: name of the volume group containing the PV @type size: float @ivar size: size of the PV in MiB @type free: float @ivar free: free space in the PV, in MiB @type attributes: string @ivar attributes: PV attributes @type lv_list: list of strings @ivar lv_list: names of the LVs hosted on the PV """ __slots__ = [ "name", "vg_name", "size", "free", "attributes", "lv_list" ] def IsEmpty(self): """Is this PV empty? """ return self.size <= (self.free + 1) def IsAllocatable(self): """Is this PV allocatable? """ return ("a" in self.attributes)
gpl-2.0
8,113,824,897,905,943,000
28.555556
80
0.650119
false
qingshuimonk/STA663
vae/Vanilla_GAN.py
1
3540
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np import matplotlib matplotlib.use('PS') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os from time import gmtime, strftime def xavier_init(size): in_dim = size[0] xavier_stddev = 1. / tf.sqrt(in_dim / 2.) return tf.random_normal(shape=size, stddev=xavier_stddev) X = tf.placeholder(tf.float32, shape=[None, 784]) D_W1 = tf.Variable(xavier_init([784, 128])) D_b1 = tf.Variable(tf.zeros(shape=[128])) D_W2 = tf.Variable(xavier_init([128, 1])) D_b2 = tf.Variable(tf.zeros(shape=[1])) theta_D = [D_W1, D_W2, D_b1, D_b2] Z = tf.placeholder(tf.float32, shape=[None, 100]) G_W1 = tf.Variable(xavier_init([100, 128])) G_b1 = tf.Variable(tf.zeros(shape=[128])) G_W2 = tf.Variable(xavier_init([128, 784])) G_b2 = tf.Variable(tf.zeros(shape=[784])) theta_G = [G_W1, G_W2, G_b1, G_b2] def sample_Z(m, n): return np.random.uniform(-1., 1., size=[m, n]) def generator(z): G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 G_prob = tf.nn.sigmoid(G_log_prob) return G_prob def discriminator(x): D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) D_logit = tf.matmul(D_h1, D_W2) + D_b2 D_prob = tf.nn.sigmoid(D_logit) return D_prob, D_logit def plot(samples): fig = plt.figure(figsize=(8, 2)) gs = gridspec.GridSpec(2, 8) gs.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(sample.reshape(28, 28), cmap='Greys_r') return fig G_sample = generator(Z) D_real, D_logit_real = discriminator(X) D_fake, D_logit_fake = discriminator(G_sample) # D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake)) # G_loss = -tf.reduce_mean(tf.log(D_fake)) # Alternative losses: # ------------------- D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) D_loss = D_loss_real + D_loss_fake G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake))) D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) mb_size = 128 Z_dim = 100 mnist = input_data.read_data_sets('/docs/MNIST_data', one_hot=True) sess = tf.Session() sess.run(tf.global_variables_initializer()) if not os.path.exists('/]data/GAN_pics/'): os.makedirs('/]data/GAN_pics/') i = 0 for it in range(100000): if it == 99999: samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)}) fig = plot(samples) plt.savefig('/]data/GAN_pics/{}.png'.format(strftime("%m-%d_%H:%M:%S", gmtime())), bbox_inches='tight') i += 1 plt.close(fig) X_mb, _ = mnist.train.next_batch(mb_size) _, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)}) _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(mb_size, Z_dim)}) if it % 1000 == 0: print('Iter: {}'.format(it)) print('D loss: {:.4}'. format(D_loss_curr)) print('G_loss: {:.4}'.format(G_loss_curr)) print()
mit
-5,731,070,445,213,390,000
27.556452
126
0.632768
false
pytorch/fairseq
fairseq/models/nat/nat_crf_transformer.py
1
4378
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel, base_architecture from fairseq.modules import DynamicCRF @register_model("nacrf_transformer") class NACRFTransformerModel(NATransformerModel): def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) self.crf_layer = DynamicCRF( num_embedding=len(self.tgt_dict), low_rank=args.crf_lowrank_approx, beam_size=args.crf_beam_approx, ) @property def allow_ensemble(self): return False @staticmethod def add_args(parser): NATransformerModel.add_args(parser) parser.add_argument( "--crf-lowrank-approx", type=int, help="the dimension of low-rank approximation of transition", ) parser.add_argument( "--crf-beam-approx", type=int, help="the beam size for apporixmating the normalizing factor", ) parser.add_argument( "--word-ins-loss-factor", type=float, help="weights on NAT loss used to co-training with CRF loss.", ) def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_tgt, word_ins_mask = tgt_tokens, tgt_tokens.ne(self.pad) # compute the log-likelihood of CRF crf_nll = -self.crf_layer(word_ins_out, word_ins_tgt, word_ins_mask) crf_nll = (crf_nll / word_ins_mask.type_as(crf_nll).sum(-1)).mean() return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, "factor": self.args.word_ins_loss_factor, }, "word_crf": {"loss": crf_nll}, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder and get emission scores output_masks = output_tokens.ne(self.pad) word_ins_out = self.decoder( normalize=False, prev_output_tokens=output_tokens, encoder_out=encoder_out ) # run viterbi decoding through CRF _scores, _tokens = self.crf_layer.forward_decoder(word_ins_out, output_masks) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) @register_model_architecture("nacrf_transformer", "nacrf_transformer") def nacrf_base_architecture(args): args.crf_lowrank_approx = getattr(args, "crf_lowrank_approx", 32) args.crf_beam_approx = getattr(args, "crf_beam_approx", 64) args.word_ins_loss_factor = getattr(args, "word_ins_loss_factor", 0.5) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) base_architecture(args)
mit
8,179,743,690,239,201,000
35.181818
88
0.604386
false
NicWayand/xray
xarray/core/combine.py
1
15635
import warnings import pandas as pd from . import utils from .alignment import align from .merge import merge from .pycompat import iteritems, OrderedDict, basestring from .variable import Variable, as_variable, Coordinate, concat as concat_vars def concat(objs, dim=None, data_vars='all', coords='different', compat='equals', positions=None, indexers=None, mode=None, concat_over=None): """Concatenate xarray objects along a new or existing dimension. Parameters ---------- objs : sequence of Dataset and DataArray objects xarray objects to concatenate together. Each object is expected to consist of variables and coordinates with matching shapes except for along the concatenated dimension. dim : str or DataArray or pandas.Index Name of the dimension to concatenate along. This can either be a new dimension name, in which case it is added along axis=0, or an existing dimension name, in which case the location of the dimension is unchanged. If dimension is provided as a DataArray or Index, its name is used as the dimension to concatenate along and the values are added as a coordinate. data_vars : {'minimal', 'different', 'all' or list of str}, optional These data variables will be concatenated together: * 'minimal': Only data variables in which the dimension already appears are included. * 'different': Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * 'all': All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the 'minimal' data variables. If objects are DataArrays, data_vars must be 'all'. coords : {'minimal', 'different', 'all' o list of str}, optional These coordinate variables will be concatenated together: * 'minimal': Only coordinates in which the dimension already appears are included. * 'different': Coordinates which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of coordinate variables into memory if they are not already loaded. * 'all': All coordinate variables will be concatenated, except those corresponding to other dimensions. * list of str: The listed coordinate variables will be concatenated, in addition the 'minimal' coordinates. compat : {'equals', 'identical'}, optional String indicating how to compare non-concatenated variables and dataset global attributes for potential conflicts. 'equals' means that all variable values and dimensions must be the same; 'identical' means that variable attributes and global attributes must also be equal. positions : None or list of integer arrays, optional List of integer arrays which specifies the integer positions to which to assign each dataset along the concatenated dimension. If not supplied, objects are concatenated in the provided order. indexers, mode, concat_over : deprecated Returns ------- concatenated : type of objs See also -------- merge auto_combine """ # TODO: add join and ignore_index arguments copied from pandas.concat # TODO: support concatenating scalar coordinates even if the concatenated # dimension already exists from .dataset import Dataset from .dataarray import DataArray try: first_obj, objs = utils.peek_at(objs) except StopIteration: raise ValueError('must supply at least one object to concatenate') if dim is None: warnings.warn('the `dim` argument to `concat` will be required ' 'in a future version of xarray; for now, setting it to ' "the old default of 'concat_dim'", FutureWarning, stacklevel=2) dim = 'concat_dims' if indexers is not None: # pragma: nocover warnings.warn('indexers has been renamed to positions; the alias ' 'will be removed in a future version of xarray', FutureWarning, stacklevel=2) positions = indexers if mode is not None: raise ValueError('`mode` is no longer a valid argument to ' 'xarray.concat; it has been split into the `data_vars` ' 'and `coords` arguments') if concat_over is not None: raise ValueError('`concat_over` is no longer a valid argument to ' 'xarray.concat; it has been split into the `data_vars` ' 'and `coords` arguments') if isinstance(first_obj, DataArray): f = _dataarray_concat elif isinstance(first_obj, Dataset): f = _dataset_concat else: raise TypeError('can only concatenate xarray Dataset and DataArray ' 'objects, got %s' % type(first_obj)) return f(objs, dim, data_vars, coords, compat, positions) def _calc_concat_dim_coord(dim): """ Infer the dimension name and 1d coordinate variable (if appropriate) for concatenating along the new dimension. """ if isinstance(dim, basestring): coord = None elif not hasattr(dim, 'dims'): # dim is not a DataArray or Coordinate dim_name = getattr(dim, 'name', None) if dim_name is None: dim_name = 'concat_dim' coord = Coordinate(dim_name, dim) dim = dim_name elif not hasattr(dim, 'name'): coord = as_variable(dim).to_coord() dim, = coord.dims else: coord = dim dim, = coord.dims return dim, coord def _calc_concat_over(datasets, dim, data_vars, coords): """ Determine which dataset variables need to be concatenated in the result, and which can simply be taken from the first dataset. """ def process_subset_opt(opt, subset): if subset == 'coords': subset_long_name = 'coordinates' else: subset_long_name = 'data variables' if isinstance(opt, basestring): if opt == 'different': def differs(vname): # simple helper function which compares a variable # across all datasets and indicates whether that # variable differs or not. v = datasets[0].variables[vname] return any(not ds.variables[vname].equals(v) for ds in datasets[1:]) # all nonindexes that are not the same in each dataset concat_new = set(k for k in getattr(datasets[0], subset) if k not in concat_over and differs(k)) elif opt == 'all': concat_new = (set(getattr(datasets[0], subset)) - set(datasets[0].dims)) elif opt == 'minimal': concat_new = set() else: raise ValueError("unexpected value for concat_%s: %s" % (subset, opt)) else: invalid_vars = [k for k in opt if k not in getattr(datasets[0], subset)] if invalid_vars: raise ValueError('some variables in %s are not ' '%s on the first dataset: %s' % (subset, subset_long_name, invalid_vars)) concat_new = set(opt) return concat_new concat_over = set() for ds in datasets: concat_over.update(k for k, v in ds.variables.items() if dim in v.dims) concat_over.update(process_subset_opt(data_vars, 'data_vars')) concat_over.update(process_subset_opt(coords, 'coords')) if dim in datasets[0]: concat_over.add(dim) return concat_over def _dataset_concat(datasets, dim, data_vars, coords, compat, positions): """ Concatenate a sequence of datasets along a new or existing dimension """ from .dataset import Dataset, as_dataset if compat not in ['equals', 'identical']: raise ValueError("compat=%r invalid: must be 'equals' " "or 'identical'" % compat) dim, coord = _calc_concat_dim_coord(dim) datasets = [as_dataset(ds) for ds in datasets] datasets = align(*datasets, join='outer', copy=False, exclude=[dim]) concat_over = _calc_concat_over(datasets, dim, data_vars, coords) def insert_result_variable(k, v): assert isinstance(v, Variable) if k in datasets[0].coords: result_coord_names.add(k) result_vars[k] = v # create the new dataset and add constant variables result_vars = OrderedDict() result_coord_names = set(datasets[0].coords) result_attrs = datasets[0].attrs for k, v in datasets[0].variables.items(): if k not in concat_over: insert_result_variable(k, v) # check that global attributes and non-concatenated variables are fixed # across all datasets for ds in datasets[1:]: if (compat == 'identical' and not utils.dict_equiv(ds.attrs, result_attrs)): raise ValueError('dataset global attributes not equal') for k, v in iteritems(ds.variables): if k not in result_vars and k not in concat_over: raise ValueError('encountered unexpected variable %r' % k) elif (k in result_coord_names) != (k in ds.coords): raise ValueError('%r is a coordinate in some datasets but not ' 'others' % k) elif (k in result_vars and k != dim and not getattr(v, compat)(result_vars[k])): verb = 'equal' if compat == 'equals' else compat raise ValueError( 'variable %r not %s across datasets' % (k, verb)) # we've already verified everything is consistent; now, calculate # shared dimension sizes so we can expand the necessary variables dim_lengths = [ds.dims.get(dim, 1) for ds in datasets] non_concat_dims = {} for ds in datasets: non_concat_dims.update(ds.dims) non_concat_dims.pop(dim, None) def ensure_common_dims(vars): # ensure each variable with the given name shares the same # dimensions and the same shape for all of them except along the # concat dimension common_dims = tuple(pd.unique([d for v in vars for d in v.dims])) if dim not in common_dims: common_dims = (dim,) + common_dims for var, dim_len in zip(vars, dim_lengths): if var.dims != common_dims: common_shape = tuple(non_concat_dims.get(d, dim_len) for d in common_dims) var = var.expand_dims(common_dims, common_shape) yield var # stack up each variable to fill-out the dataset for k in concat_over: vars = ensure_common_dims([ds.variables[k] for ds in datasets]) combined = concat_vars(vars, dim, positions) insert_result_variable(k, combined) result = Dataset(result_vars, attrs=result_attrs) result = result.set_coords(result_coord_names) if coord is not None: # add concat dimension last to ensure that its in the final Dataset result[coord.name] = coord return result def _dataarray_concat(arrays, dim, data_vars, coords, compat, positions): arrays = list(arrays) if data_vars != 'all': raise ValueError('data_vars is not a valid argument when ' 'concatenating DataArray objects') datasets = [] for n, arr in enumerate(arrays): if n == 0: name = arr.name elif name != arr.name: if compat == 'identical': raise ValueError('array names not identical') else: arr = arr.rename(name) datasets.append(arr._to_temp_dataset()) ds = _dataset_concat(datasets, dim, data_vars, coords, compat, positions) return arrays[0]._from_temp_dataset(ds, name) def _auto_concat(datasets, dim=None): if len(datasets) == 1: return datasets[0] else: if dim is None: ds0 = datasets[0] ds1 = datasets[1] concat_dims = set(ds0.dims) if ds0.dims != ds1.dims: dim_tuples = set(ds0.dims.items()) - set(ds1.dims.items()) concat_dims = set(i for i, _ in dim_tuples) if len(concat_dims) > 1: concat_dims = set(d for d in concat_dims if not ds0[d].equals(ds1[d])) if len(concat_dims) > 1: raise ValueError('too many different dimensions to ' 'concatenate: %s' % concat_dims) elif len(concat_dims) == 0: raise ValueError('cannot infer dimension to concatenate: ' 'supply the ``concat_dim`` argument ' 'explicitly') dim, = concat_dims return concat(datasets, dim=dim) def auto_combine(datasets, concat_dim=None): """Attempt to auto-magically combine the given datasets into one. This method attempts to combine a list of datasets into a single entity by inspecting metadata and using a combination of concat and merge. It does not concatenate along more than one dimension or align or sort data under any circumstances. It will fail in complex cases, for which you should use ``concat`` and ``merge`` explicitly. When ``auto_combine`` may succeed: * You have N years of data and M data variables. Each combination of a distinct time period and test of data variables is saved its own dataset. Examples of when ``auto_combine`` fails: * In the above scenario, one file is missing, containing the data for one year's data for one variable. * In the most recent year, there is an additional data variable. * Your data includes "time" and "station" dimensions, and each year's data has a different set of stations. Parameters ---------- datasets : sequence of xarray.Dataset Dataset objects to merge. concat_dim : str or DataArray or Index, optional Dimension along which to concatenate variables, as used by :py:func:`xarray.concat`. You only need to provide this argument if the dimension along which you want to concatenate is not a dimension in the original datasets, e.g., if you want to stack a collection of 2D arrays along a third dimension. Returns ------- combined : xarray.Dataset See also -------- concat Dataset.merge """ from toolz import itertoolz grouped = itertoolz.groupby(lambda ds: tuple(sorted(ds.data_vars)), datasets).values() concatenated = [_auto_concat(ds, dim=concat_dim) for ds in grouped] merged = merge(concatenated) return merged
apache-2.0
-1,998,947,403,007,847,000
40.144737
81
0.6055
false
register-v1/PyBot
API/wisdom.py
1
6947
#!/usr/bin/python3 import random as r def pick_random(value): return value[r.randint(0, len(value)-1)] abbreviation = ["TCP", "HTTP", "SDD", "RAM", "GB", "CSS", "SSL", "AGP", "SQL", "FTP", "PCI", "AI", "ADP", "RSS", "XML", "EXE", "COM", "HDD", "THX", "SMTP", "SMS", "USB", "PNG", "XSS", "SFTP", "MITM"] adjective = ["auxiliary", "primary", "back-end", "digital", "open-source", "virtual", "cross-platform", "redundant", "online", "haptic","multi-byte", "bluetooth", "wireless", "1080p", "neural", "optical", "solid state", "mobile"] noun = ["driver", "protocol", "bandwidth", "panel", "microchip", "program", "port", "card", "array", "interface", "system", "sensor", "firewall", "hard drive", "pixel", "alarm", "feed", "monitor", "application", "transmitter", "bus", "circuit", "capacitor", "matrix", "socket", "database"] verb = ["back up", "bypass", "hack", "override", "compress", "copy", "navigate", "index", "connect", "generate", "quantify", "calculate", "synthesize", "input", "transmit", "program", "reboot", "parse", "analyze"] ingverb = ["backing up", "bypassing", "hacking", "overriding", "compressing", "copying", "navigating", "indexing", "connecting", "generating", "quantifying", "calculating", "synthesizing", "transmitting", "programming", "parsing", "DDoSing", "scamming", "pwning", "rooting", "pigning", "lurking"] sentences = [ "If we {} the {}, we can get to the {} {} throught the {} {} {}!" .format( pick_random(verb), pick_random(noun), pick_random(abbreviation), pick_random(noun), pick_random(adjective), pick_random(abbreviation), pick_random(noun) ), "We need to {} the {} {} {}!" .format( pick_random(verb), pick_random(adjective), pick_random(abbreviation), pick_random(noun), ), "Try to {} the {} {}, maybe it will {} the {} {}!" .format( pick_random(verb), pick_random(abbreviation), pick_random(noun), pick_random(verb), pick_random(adjective), pick_random(noun), ), "You can't {} the {} without {} the {} {} {}!" .format( pick_random(verb), pick_random(noun), pick_random(ingverb), pick_random(adjective), pick_random(abbreviation), pick_random(noun), )] wise_sentences = [ "Practice makes perect!", "Rome was not built in a day!", "Shoot for the moon! Even if you miss, you'll land amongst the stars!", "There is no such thing as a hacker that never made a mistake - Anon", "Learning to code is like growing a tree, takes time - Anon", "If you work for Microsoft or Apple, get a life - Anon", "It is easier to build good habits than break bad ones - Forgotton", "Education makes man unfit for a slave - Frederick Douglas", "Life as a script kiddie is not a life worth living - Anon", "A person who never made a mistake, never tried anything new - Einstein", "If you're not willing to learn code, you don't deserve to know how to code - v1", "Well being worth a god damn comes with an ability to not be a complete and total retard all the time ~ mickers" ] urls = [ "https://www.youtube.com/watch?v=ZzfHjytDceU - Topics of Interest: Asyncio", "https://www.youtube.com/watch?v=lyDLAutA88s - David Beazley: Builtin Superheros!", "https://www.youtube.com/watch?v=E-1Y4kSsAFc - Fear and awaiting in Async", "https://www.youtube.com/watch?v=OSGv2VnC0go - Idiomatic, Pythonic code", "https://www.youtube.com/watch?v=N4mEzFDjqtA - Python in one video : Derek Banas", "https://www.youtube.com/watch?v=XXmzYY03t64 - Basic SysAdmin's Guide to Python", "https://www.youtube.com/watch?v=s1SkCYMnfbY - MulitProcessing with Python", "https://www.youtube.com/watch?v=l_HBRhcgeuQ - Global Interpreter Lock", "https://www.youtube.com/watch?v=ciNHn38EyRc - SQL Injections with exmaples", "https://www.youtube.com/watch?v=GMGbOkKfZRo - Beginner SysAdmin with Python", "https://www.youtube.com/watch?v=yHO8hdqzKw8 - Basic Python for the OS", "https://www.youtube.com/watch?v=Thd8yoBou7k - SQL for Python Developers", "https://www.youtube.com/watch?v=T1QEs3mdJoc - Cookie Grabbing Basics", "https://www.youtube.com/watch?v=Pi9NpxAvYSs - Python Epiphanies" ] courses = [ "AI! - https://www.youtube.com/watch?v=OGxgnH8y2NM&list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v" ] topics = [ ] sciences = [ "https://www.youtube.com/watch?v=9Cd36WJ79z4 : Poetry of Reality", "https://www.youtube.com/watch?v=1PT90dAA49Q : Wave of Reason", "https://www.youtube.com/watch?v=zSgiXGELjbc : Glorious Dawn - Carl Sagan", "https://www.youtube.com/watch?v=vioZf4TjoUI : The Cosmic Perspective", "https://www.youtube.com/watch?v=hOLAGYmUQV0 : The Unbroken Thread" ] music = [ "https://www.youtube.com/watch?v=X6t3CVafuec : YTCracker - Bazaar", "https://www.youtube.com/watch?v=ieDBrlKnaAM : YTCracker - Starship", "https://www.youtube.com/watch?v=2tRKH_BSsk0 : YTCracker - Social Engineering", "https://www.youtube.com/watch?v=lIuEuJvKos4 : Astrix - Jungle Walk", "https://www.youtube.com/watch?v=FoUWHfh733Y : Dual Core - All the things", "https://www.youtube.com/watch?v=zeIjmvZZ_SQ : Zearle - Hackers and Crackers", "https://www.youtube.com/watch?v=v1BXfMNfjFo : Deep Space House 061", "https://www.youtube.com/watch?v=scPU1tTIg7Y : VOICIANS - Stranger", "https://www.youtube.com/watch?v=8fIjqPqJYhA : VOICIANS - Wolves", "https://www.youtube.com/watch?v=8EQzx-OzQmU : Wavve - 9 is God", "https://www.youtube.com/watch?v=2GLGZQ4Y8SM : YTCracker - Crack", "https://www.youtube.com/watch?v=YEP7rhDuWVE : YTCracker - Untouchable", "https://www.youtube.com/watch?v=Sr8ILq1a_yw : Dual Core - 0x0A Commandments", "https://www.youtube.com/watch?v=yc7_NHx6oHw : YTCracker - Packets", "https://www.youtube.com/watch?v=YrRa6dEkzmk : Beat Hackers - Experience", "https://www.youtube.com/watch?v=f04pC0_U5-I : Talamasca - Psychedelic Trance" ] noob_quotes = [ "So if I want to write a maleware i must use a github? ~ EniGmis7", "Windows wouldn't be popular if microsoft didn't know what they were doing ~ leaxyz", "how hax facebook? ~ Virtually every noob ever.", "I'm a hacker. Can someone help me reverse an md5? ~ MoHD" ] def noob(): data = noob_quotes[r.randint(0, len(noob_quotes))] return data def troll(): troll = sentences[r.randint(0, len(sentences)-1)] return troll def science(): return sciences[r.randint(0, len(sciences))] def science_song(number): data = sciences[number] ; return data def wisdom(): return wise_sentences[r.randint(0, len(wise_sentences))] def urlpls(): return urls[r.randint(0, len(urls))] def url(num): data = urls[num] ; return data def song(number): data = music[number] ; return data def quote(number): data = wise_sentences[number] ; return data def songpls(): return music[r.randint(0, len(music))] def randomtopic(): return topics[r.randint(0, len(topics))] def randomcourse(): return courses[r.randint(0,len(courses))]
gpl-3.0
-2,541,187,709,382,089,700
37.17033
112
0.673816
false
ismailsunni/healthsites
django_project/localities/tests/test_model_LocalityArchive.py
2
1292
# -*- coding: utf-8 -*- from django.test import TestCase from django.contrib.gis.geos import Point from .model_factories import LocalityF, DomainF from ..models import LocalityArchive class TestModelLocalityArchive(TestCase): def test_LocalityArchive_fields(self): self.assertListEqual( [fld.name for fld in LocalityArchive._meta.fields], [ u'id', 'changeset', 'version', 'content_type', 'object_id', 'domain_id', 'uuid', 'upstream_id', 'geom' ] ) def test_archiving_locality(self): domain = DomainF(id=1, name='A domain') locality = LocalityF.create(domain=domain) locality.geom = Point(1, 1) locality.save() # test save with no changes, should not trigger model archival locality.save() self.assertEqual(LocalityArchive.objects.count(), 2) self.assertListEqual( [loc.geom.ewkt for loc in LocalityArchive.objects.all()], [ u'SRID=4326;POINT (0.0000000000000000 0.0000000000000000)', u'SRID=4326;POINT (1.0000000000000000 1.0000000000000000)' ] ) self.assertListEqual( [loc.version for loc in LocalityArchive.objects.all()], [1, 2] )
bsd-2-clause
4,821,071,091,769,891,000
30.512195
75
0.607585
false
minicole/elpolitico
elpolitico/elpolitico/MyState.py
1
2660
__author__ = 'Nicole' import json import random import time GREEN = 'green' CONSERVATIVE = 'conservative' LIBERAL = 'liberal' LIBERTARIAN = 'libertarian' MAX_CACHED_POINTS = 400 STATES = [GREEN, CONSERVATIVE, LIBERAL, LIBERTARIAN] class MyStates: def __init__(self): self.currentStates = [CurrentStateOfParty(GREEN), CurrentStateOfParty(CONSERVATIVE), CurrentStateOfParty(LIBERAL), CurrentStateOfParty(LIBERTARIAN)] self.newPoints = list() self.existingPoints = list() self.totalPoints = 0 def passStateToFrontEnd(self): pointsToPass = list() for point in self.newPoints: self.existingPoints.append(point) # serialize points: pointsToPass.append(json.dumps(point.newPoint.exportToFrontEnd())) # empty the old new points: self.newPoints = list() return {'newPoints': pointsToPass, 'timestamp': time.time()} def addNewPoint(self, point): self.newPoints.append(point) state = self.getState(point.party) self.totalPoints += 1 state.percentTotal = state.totalPoints / self.totalPoints if self.totalPoints >= MAX_CACHED_POINTS: self.existingPoints.pop(1) self.totalPoints -= 1 class CurrentStateOfParty: def __init__(self, party): self.party = party self.percentTotal = 0 self.certainty = 0 self.positivity = 0 self.totalPoints = 0 def addNewPoint(self, point): self.certainty = (self.certainty * self.totalPoints + point.newPoint.tendency) / (self.totalPoints + 1) self.positivity = (self.positivity * self.totalPoints + point.positivity) / (self.totalPoints + 1) self.totalPoints += 1 def exportToFrontEnd(self): return {'party': self.party, 'percentTotal': self.percentTotal, 'certainty': self.certainty, 'positivity': self.positivity} def exportRandomness(self): return {'party': "conservative", 'percentTotal': random.randint(-60,60), 'certainty': random.randint(-60,60), 'positivity': random.randint(-60,60)} class StateOfPoint: def __init__(self): self.newPoint = NewPoint() self.positivity = 0 class NewPoint: def __init__(self): self.tendency = 0 self.lat = 0 self.long = 0 self.party = None def exportToFrontEnd(self): return {"lat": self.lat, "long": self.long, "tendency": self.tendency, "party": self.party} def exportRandomness(self): return {"lat": random.randint(-60,60), "long": random.randint(-60,60), "tendency": random.randint(-60,60), "party": random.randint(-60,60)}
mit
-5,317,939,568,438,419,000
32.2625
156
0.645865
false
fullmooninu/messy
testIfCanCheat.py
1
1065
import random n = 10 print("strategy 1") s1_points = 0 for i in range(100000): num1 = random.randint(1,n) num2 = num1 while num2==num1: num2 = random.randint(1,n) choice = random.randint(1,2) if choice == 1: if num1 > num2: s1_points = s1_points +1 if choice == 2: if num2 > num1: s1_points = s1_points +1 print("points",s1_points) print("strategy 2") s2_points = 0 for i in range(100000): num1 = random.randint(1,n) num2 = num1 while num2==num1: num2 = random.randint(1,n) num3 = random.randint(1,n) choice = random.randint(1,2) if choice == 1: if num3 > num1: if num2 > num1: s2_points = s2_points + 1 elif num1 > num2: s2_points = s2_points +1 if choice == 2: if num3 > num2: if num1 > num2: s2_points = s2_points + 1 elif num2 > num1: s2_points = s2_points + 1 print("points",s2_points)
unlicense
6,161,339,017,714,504,000
22.666667
41
0.501408
false
gsnbng/erpnext
erpnext/hr/doctype/salary_slip/test_salary_slip.py
1
26910
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import unittest import frappe import erpnext import calendar import random from erpnext.accounts.utils import get_fiscal_year from frappe.utils.make_random import get_random from frappe.utils import getdate, nowdate, add_days, add_months, flt, get_first_day, get_last_day from erpnext.hr.doctype.salary_structure.salary_structure import make_salary_slip from erpnext.hr.doctype.payroll_entry.payroll_entry import get_month_details from erpnext.hr.doctype.employee.test_employee import make_employee from erpnext.hr.doctype.employee_tax_exemption_declaration.test_employee_tax_exemption_declaration \ import create_payroll_period, create_exemption_category class TestSalarySlip(unittest.TestCase): def setUp(self): make_earning_salary_component(setup=True, company_list=["_Test Company"]) make_deduction_salary_component(setup=True, company_list=["_Test Company"]) for dt in ["Leave Application", "Leave Allocation", "Salary Slip", "Attendance"]: frappe.db.sql("delete from `tab%s`" % dt) self.make_holiday_list() frappe.db.set_value("Company", erpnext.get_default_company(), "default_holiday_list", "Salary Slip Test Holiday List") frappe.db.set_value("HR Settings", None, "email_salary_slip_to_employee", 0) frappe.db.set_value('HR Settings', None, 'leave_status_notification_template', None) frappe.db.set_value('HR Settings', None, 'leave_approval_notification_template', None) def tearDown(self): frappe.db.set_value("HR Settings", None, "include_holidays_in_total_working_days", 0) frappe.set_user("Administrator") def test_payment_days_based_on_attendance(self): from erpnext.hr.doctype.attendance.attendance import mark_attendance no_of_days = self.get_no_of_days() # Payroll based on attendance frappe.db.set_value("HR Settings", None, "payroll_based_on", "Attendance") frappe.db.set_value("HR Settings", None, "daily_wages_fraction_for_half_day", 0.75) emp_id = make_employee("[email protected]") frappe.db.set_value("Employee", emp_id, {"relieving_date": None, "status": "Active"}) frappe.db.set_value("Leave Type", "Leave Without Pay", "include_holiday", 0) month_start_date = get_first_day(nowdate()) month_end_date = get_last_day(nowdate()) first_sunday = frappe.db.sql(""" select holiday_date from `tabHoliday` where parent = 'Salary Slip Test Holiday List' and holiday_date between %s and %s order by holiday_date """, (month_start_date, month_end_date))[0][0] mark_attendance(emp_id, first_sunday, 'Absent', ignore_validate=True) # invalid lwp mark_attendance(emp_id, add_days(first_sunday, 1), 'Absent', ignore_validate=True) # valid lwp mark_attendance(emp_id, add_days(first_sunday, 2), 'Half Day', leave_type='Leave Without Pay', ignore_validate=True) # valid 0.75 lwp mark_attendance(emp_id, add_days(first_sunday, 3), 'On Leave', leave_type='Leave Without Pay', ignore_validate=True) # valid lwp mark_attendance(emp_id, add_days(first_sunday, 4), 'On Leave', leave_type='Casual Leave', ignore_validate=True) # invalid lwp mark_attendance(emp_id, add_days(first_sunday, 7), 'On Leave', leave_type='Leave Without Pay', ignore_validate=True) # invalid lwp ss = make_employee_salary_slip("[email protected]", "Monthly") self.assertEqual(ss.leave_without_pay, 2.25) days_in_month = no_of_days[0] no_of_holidays = no_of_days[1] self.assertEqual(ss.payment_days, days_in_month - no_of_holidays - 2.25) #Gross pay calculation based on attendances gross_pay = 78000 - ((78000 / (days_in_month - no_of_holidays)) * flt(ss.leave_without_pay)) self.assertEqual(ss.gross_pay, gross_pay) frappe.db.set_value("HR Settings", None, "payroll_based_on", "Leave") def test_payment_days_based_on_leave_application(self): no_of_days = self.get_no_of_days() # Payroll based on attendance frappe.db.set_value("HR Settings", None, "payroll_based_on", "Leave") emp_id = make_employee("[email protected]") frappe.db.set_value("Employee", emp_id, {"relieving_date": None, "status": "Active"}) frappe.db.set_value("Leave Type", "Leave Without Pay", "include_holiday", 0) month_start_date = get_first_day(nowdate()) month_end_date = get_last_day(nowdate()) first_sunday = frappe.db.sql(""" select holiday_date from `tabHoliday` where parent = 'Salary Slip Test Holiday List' and holiday_date between %s and %s order by holiday_date """, (month_start_date, month_end_date))[0][0] make_leave_application(emp_id, first_sunday, add_days(first_sunday, 3), "Leave Without Pay") ss = make_employee_salary_slip("[email protected]", "Monthly") self.assertEqual(ss.leave_without_pay, 3) days_in_month = no_of_days[0] no_of_holidays = no_of_days[1] self.assertEqual(ss.payment_days, days_in_month - no_of_holidays - 3) #Gross pay calculation based on attendances gross_pay = 78000 - ((78000 / (days_in_month - no_of_holidays)) * flt(ss.leave_without_pay)) self.assertEqual(ss.gross_pay, gross_pay) frappe.db.set_value("HR Settings", None, "payroll_based_on", "Leave") def test_salary_slip_with_holidays_included(self): no_of_days = self.get_no_of_days() frappe.db.set_value("HR Settings", None, "include_holidays_in_total_working_days", 1) make_employee("[email protected]") frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "relieving_date", None) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "status", "Active") ss = make_employee_salary_slip("[email protected]", "Monthly") self.assertEqual(ss.total_working_days, no_of_days[0]) self.assertEqual(ss.payment_days, no_of_days[0]) self.assertEqual(ss.earnings[0].amount, 50000) self.assertEqual(ss.earnings[1].amount, 3000) self.assertEqual(ss.gross_pay, 78000) def test_salary_slip_with_holidays_excluded(self): no_of_days = self.get_no_of_days() frappe.db.set_value("HR Settings", None, "include_holidays_in_total_working_days", 0) make_employee("[email protected]") frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "relieving_date", None) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "status", "Active") ss = make_employee_salary_slip("[email protected]", "Monthly") self.assertEqual(ss.total_working_days, no_of_days[0] - no_of_days[1]) self.assertEqual(ss.payment_days, no_of_days[0] - no_of_days[1]) self.assertEqual(ss.earnings[0].amount, 50000) self.assertEqual(ss.earnings[0].default_amount, 50000) self.assertEqual(ss.earnings[1].amount, 3000) self.assertEqual(ss.gross_pay, 78000) def test_payment_days(self): no_of_days = self.get_no_of_days() # Holidays not included in working days frappe.db.set_value("HR Settings", None, "include_holidays_in_total_working_days", 1) # set joinng date in the same month make_employee("[email protected]") if getdate(nowdate()).day >= 15: relieving_date = getdate(add_days(nowdate(),-10)) date_of_joining = getdate(add_days(nowdate(),-10)) elif getdate(nowdate()).day < 15 and getdate(nowdate()).day >= 5: date_of_joining = getdate(add_days(nowdate(),-3)) relieving_date = getdate(add_days(nowdate(),-3)) elif getdate(nowdate()).day < 5 and not getdate(nowdate()).day == 1: date_of_joining = getdate(add_days(nowdate(),-1)) relieving_date = getdate(add_days(nowdate(),-1)) elif getdate(nowdate()).day == 1: date_of_joining = getdate(nowdate()) relieving_date = getdate(nowdate()) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "date_of_joining", date_of_joining) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "relieving_date", None) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "status", "Active") ss = make_employee_salary_slip("[email protected]", "Monthly") self.assertEqual(ss.total_working_days, no_of_days[0]) self.assertEqual(ss.payment_days, (no_of_days[0] - getdate(date_of_joining).day + 1)) # set relieving date in the same month frappe.db.set_value("Employee",frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "date_of_joining", (add_days(nowdate(),-60))) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "relieving_date", relieving_date) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "status", "Left") ss.save() self.assertEqual(ss.total_working_days, no_of_days[0]) self.assertEqual(ss.payment_days, getdate(relieving_date).day) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "relieving_date", None) frappe.db.set_value("Employee", frappe.get_value("Employee", {"employee_name":"[email protected]"}, "name"), "status", "Active") def test_employee_salary_slip_read_permission(self): make_employee("[email protected]") salary_slip_test_employee = make_employee_salary_slip("[email protected]", "Monthly") frappe.set_user("[email protected]") self.assertTrue(salary_slip_test_employee.has_permission("read")) def test_email_salary_slip(self): frappe.db.sql("delete from `tabEmail Queue`") frappe.db.set_value("HR Settings", None, "email_salary_slip_to_employee", 1) make_employee("[email protected]") ss = make_employee_salary_slip("[email protected]", "Monthly") ss.company = "_Test Company" ss.save() ss.submit() email_queue = frappe.db.sql("""select name from `tabEmail Queue`""") self.assertTrue(email_queue) def test_loan_repayment_salary_slip(self): from erpnext.loan_management.doctype.loan.test_loan import create_loan_type, create_loan, make_loan_disbursement_entry, create_loan_accounts from erpnext.loan_management.doctype.process_loan_interest_accrual.process_loan_interest_accrual import process_loan_interest_accrual_for_term_loans applicant = make_employee("[email protected]", company="_Test Company") create_loan_accounts() create_loan_type("Car Loan", 500000, 8.4, is_term_loan=1, mode_of_payment='Cash', payment_account='Payment Account - _TC', loan_account='Loan Account - _TC', interest_income_account='Interest Income Account - _TC', penalty_income_account='Penalty Income Account - _TC') loan = create_loan(applicant, "Car Loan", 11000, "Repay Over Number of Periods", 20, posting_date=add_months(nowdate(), -1)) loan.repay_from_salary = 1 loan.submit() make_loan_disbursement_entry(loan.name, loan.loan_amount, disbursement_date=add_months(nowdate(), -1)) process_loan_interest_accrual_for_term_loans(posting_date=nowdate()) ss = make_employee_salary_slip("[email protected]", "Monthly") ss.submit() self.assertEqual(ss.total_loan_repayment, 592) self.assertEqual(ss.net_pay, (flt(ss.gross_pay) - (flt(ss.total_deduction) + flt(ss.total_loan_repayment)))) def test_payroll_frequency(self): fiscal_year = get_fiscal_year(nowdate(), company=erpnext.get_default_company())[0] month = "%02d" % getdate(nowdate()).month m = get_month_details(fiscal_year, month) for payroll_frequency in ["Monthly", "Bimonthly", "Fortnightly", "Weekly", "Daily"]: make_employee(payroll_frequency + "[email protected]") ss = make_employee_salary_slip(payroll_frequency + "[email protected]", payroll_frequency) if payroll_frequency == "Monthly": self.assertEqual(ss.end_date, m['month_end_date']) elif payroll_frequency == "Bimonthly": if getdate(ss.start_date).day <= 15: self.assertEqual(ss.end_date, m['month_mid_end_date']) else: self.assertEqual(ss.end_date, m['month_end_date']) elif payroll_frequency == "Fortnightly": self.assertEqual(ss.end_date, add_days(nowdate(),13)) elif payroll_frequency == "Weekly": self.assertEqual(ss.end_date, add_days(nowdate(),6)) elif payroll_frequency == "Daily": self.assertEqual(ss.end_date, nowdate()) def test_tax_for_payroll_period(self): data = {} # test the impact of tax exemption declaration, tax exemption proof submission # and deduct check boxes in annual tax calculation # as per assigned salary structure 40500 in monthly salary so 236000*5/100/12 frappe.db.sql("""delete from `tabPayroll Period`""") frappe.db.sql("""delete from `tabSalary Component`""") payroll_period = create_payroll_period() create_tax_slab(payroll_period, allow_tax_exemption=True) employee = make_employee("[email protected]") delete_docs = [ "Salary Slip", "Additional Salary", "Employee Tax Exemption Declaration", "Employee Tax Exemption Proof Submission", "Employee Benefit Claim", "Salary Structure Assignment" ] for doc in delete_docs: frappe.db.sql("delete from `tab%s` where employee='%s'" % (doc, employee)) from erpnext.hr.doctype.salary_structure.test_salary_structure import \ make_salary_structure, create_salary_structure_assignment salary_structure = make_salary_structure("Stucture to test tax", "Monthly", other_details={"max_benefits": 100000}, test_tax=True) create_salary_structure_assignment(employee, salary_structure.name, payroll_period.start_date) # create salary slip for whole period deducting tax only on last period # to find the total tax amount paid create_salary_slips_for_payroll_period(employee, salary_structure.name, payroll_period, deduct_random=False) tax_paid = get_tax_paid_in_period(employee) annual_tax = 113589.0 try: self.assertEqual(tax_paid, annual_tax) except AssertionError: print("\nSalary Slip - Annual tax calculation failed\n") raise frappe.db.sql("""delete from `tabSalary Slip` where employee=%s""", (employee)) # create exemption declaration so the tax amount varies create_exemption_declaration(employee, payroll_period.name) # create for payroll deducting in random months data["deducted_dates"] = create_salary_slips_for_payroll_period(employee, salary_structure.name, payroll_period) tax_paid = get_tax_paid_in_period(employee) # No proof, benefit claim sumitted, total tax paid, should not change try: self.assertEqual(tax_paid, annual_tax) except AssertionError: print("\nSalary Slip - Tax calculation failed on following case\n", data, "\n") raise # Submit proof for total 120000 data["proof"] = create_proof_submission(employee, payroll_period, 120000) # Submit benefit claim for total 50000 data["benefit-1"] = create_benefit_claim(employee, payroll_period, 15000, "Medical Allowance") data["benefit-2"] = create_benefit_claim(employee, payroll_period, 35000, "Leave Travel Allowance") frappe.db.sql("""delete from `tabSalary Slip` where employee=%s""", (employee)) data["deducted_dates"] = create_salary_slips_for_payroll_period(employee, salary_structure.name, payroll_period) tax_paid = get_tax_paid_in_period(employee) # total taxable income 416000, 166000 @ 5% ie. 8300 try: self.assertEqual(tax_paid, 82389.0) except AssertionError: print("\nSalary Slip - Tax calculation failed on following case\n", data, "\n") raise # create additional salary of 150000 frappe.db.sql("""delete from `tabSalary Slip` where employee=%s""", (employee)) data["additional-1"] = create_additional_salary(employee, payroll_period, 50000) data["additional-2"] = create_additional_salary(employee, payroll_period, 100000) data["deducted_dates"] = create_salary_slips_for_payroll_period(employee, salary_structure.name, payroll_period) # total taxable income 566000, 250000 @ 5%, 66000 @ 20%, 12500 + 13200 tax_paid = get_tax_paid_in_period(employee) try: self.assertEqual(tax_paid, annual_tax) except AssertionError: print("\nSalary Slip - Tax calculation failed on following case\n", data, "\n") raise frappe.db.sql("""delete from `tabAdditional Salary` where employee=%s""", (employee)) # undelete fixture data frappe.db.rollback() def make_holiday_list(self): fiscal_year = get_fiscal_year(nowdate(), company=erpnext.get_default_company()) if not frappe.db.get_value("Holiday List", "Salary Slip Test Holiday List"): holiday_list = frappe.get_doc({ "doctype": "Holiday List", "holiday_list_name": "Salary Slip Test Holiday List", "from_date": fiscal_year[1], "to_date": fiscal_year[2], "weekly_off": "Sunday" }).insert() holiday_list.get_weekly_off_dates() holiday_list.save() def make_activity_for_employee(self): activity_type = frappe.get_doc("Activity Type", "_Test Activity Type") activity_type.billing_rate = 50 activity_type.costing_rate = 20 activity_type.wage_rate = 25 activity_type.save() def get_no_of_days(self): no_of_days_in_month = calendar.monthrange(getdate(nowdate()).year, getdate(nowdate()).month) no_of_holidays_in_month = len([1 for i in calendar.monthcalendar(getdate(nowdate()).year, getdate(nowdate()).month) if i[6] != 0]) return [no_of_days_in_month[1], no_of_holidays_in_month] def make_employee_salary_slip(user, payroll_frequency, salary_structure=None): from erpnext.hr.doctype.salary_structure.test_salary_structure import make_salary_structure if not salary_structure: salary_structure = payroll_frequency + " Salary Structure Test for Salary Slip" employee = frappe.db.get_value("Employee", {"user_id": user}) salary_structure_doc = make_salary_structure(salary_structure, payroll_frequency, employee) salary_slip = frappe.db.get_value("Salary Slip", {"employee": frappe.db.get_value("Employee", {"user_id": user})}) if not salary_slip: salary_slip = make_salary_slip(salary_structure_doc.name, employee = employee) salary_slip.employee_name = frappe.get_value("Employee", {"name":frappe.db.get_value("Employee", {"user_id": user})}, "employee_name") salary_slip.payroll_frequency = payroll_frequency salary_slip.posting_date = nowdate() salary_slip.insert() return salary_slip def make_salary_component(salary_components, test_tax, company_list=None): for salary_component in salary_components: if not frappe.db.exists('Salary Component', salary_component["salary_component"]): if test_tax: if salary_component["type"] == "Earning": salary_component["is_tax_applicable"] = 1 elif salary_component["salary_component"] == "TDS": salary_component["variable_based_on_taxable_salary"] = 1 salary_component["amount_based_on_formula"] = 0 salary_component["amount"] = 0 salary_component["formula"] = "" salary_component["condition"] = "" salary_component["doctype"] = "Salary Component" salary_component["salary_component_abbr"] = salary_component["abbr"] frappe.get_doc(salary_component).insert() get_salary_component_account(salary_component["salary_component"], company_list) def get_salary_component_account(sal_comp, company_list=None): company = erpnext.get_default_company() if company_list and company not in company_list: company_list.append(company) sal_comp = frappe.get_doc("Salary Component", sal_comp) if not sal_comp.get("accounts"): for d in company_list: sal_comp.append("accounts", { "company": d, "default_account": create_account(d) }) sal_comp.save() def create_account(company): salary_account = frappe.db.get_value("Account", "Salary - " + frappe.get_cached_value('Company', company, 'abbr')) if not salary_account: frappe.get_doc({ "doctype": "Account", "account_name": "Salary", "parent_account": "Indirect Expenses - " + frappe.get_cached_value('Company', company, 'abbr'), "company": company }).insert() return salary_account def make_earning_salary_component(setup=False, test_tax=False, company_list=None): data = [ { "salary_component": 'Basic Salary', "abbr":'BS', "condition": 'base > 10000', "formula": 'base', "type": "Earning", "amount_based_on_formula": 1 }, { "salary_component": 'HRA', "abbr":'H', "amount": 3000, "type": "Earning" }, { "salary_component": 'Special Allowance', "abbr":'SA', "condition": 'H < 10000', "formula": 'BS*.5', "type": "Earning", "amount_based_on_formula": 1 }, { "salary_component": "Leave Encashment", "abbr": 'LE', "type": "Earning" } ] if test_tax: data.extend([ { "salary_component": "Leave Travel Allowance", "abbr": 'B', "is_flexible_benefit": 1, "type": "Earning", "pay_against_benefit_claim": 1, "max_benefit_amount": 100000, "depends_on_payment_days": 0 }, { "salary_component": "Medical Allowance", "abbr": 'B', "is_flexible_benefit": 1, "pay_against_benefit_claim": 0, "type": "Earning", "max_benefit_amount": 15000 }, { "salary_component": "Performance Bonus", "abbr": 'B', "type": "Earning" } ]) if setup or test_tax: make_salary_component(data, test_tax, company_list) data.append({ "salary_component": 'Basic Salary', "abbr":'BS', "condition": 'base < 10000', "formula": 'base*.2', "type": "Earning", "amount_based_on_formula": 1 }) return data def make_deduction_salary_component(setup=False, test_tax=False, company_list=None): data = [ { "salary_component": 'Professional Tax', "abbr":'PT', "type": "Deduction", "amount": 200, "exempted_from_income_tax": 1 }, { "salary_component": 'TDS', "abbr":'T', "type": "Deduction", "depends_on_payment_days": 0, "variable_based_on_taxable_salary": 1, "round_to_the_nearest_integer": 1 } ] if not test_tax: data.append({ "salary_component": 'TDS', "abbr":'T', "condition": 'employment_type=="Intern"', "type": "Deduction", "round_to_the_nearest_integer": 1 }) if setup or test_tax: make_salary_component(data, test_tax, company_list) return data def get_tax_paid_in_period(employee): tax_paid_amount = frappe.db.sql("""select sum(sd.amount) from `tabSalary Detail` sd join `tabSalary Slip` ss where ss.name=sd.parent and ss.employee=%s and ss.docstatus=1 and sd.salary_component='TDS'""", (employee)) return tax_paid_amount[0][0] def create_exemption_declaration(employee, payroll_period): create_exemption_category() declaration = frappe.get_doc({ "doctype": "Employee Tax Exemption Declaration", "employee": employee, "payroll_period": payroll_period, "company": erpnext.get_default_company() }) declaration.append("declarations", { "exemption_sub_category": "_Test Sub Category", "exemption_category": "_Test Category", "amount": 100000 }) declaration.submit() def create_proof_submission(employee, payroll_period, amount): submission_date = add_months(payroll_period.start_date, random.randint(0, 11)) proof_submission = frappe.get_doc({ "doctype": "Employee Tax Exemption Proof Submission", "employee": employee, "payroll_period": payroll_period.name, "submission_date": submission_date }) proof_submission.append("tax_exemption_proofs", { "exemption_sub_category": "_Test Sub Category", "exemption_category": "_Test Category", "type_of_proof": "Test", "amount": amount }) proof_submission.submit() return submission_date def create_benefit_claim(employee, payroll_period, amount, component): claim_date = add_months(payroll_period.start_date, random.randint(0, 11)) frappe.get_doc({ "doctype": "Employee Benefit Claim", "employee": employee, "claimed_amount": amount, "claim_date": claim_date, "earning_component": component }).submit() return claim_date def create_tax_slab(payroll_period, effective_date = None, allow_tax_exemption = False, dont_submit = False): if frappe.db.exists("Income Tax Slab", "Tax Slab: " + payroll_period.name): return slabs = [ { "from_amount": 250000, "to_amount": 500000, "percent_deduction": 5, "condition": "annual_taxable_earning > 500000" }, { "from_amount": 500001, "to_amount": 1000000, "percent_deduction": 20 }, { "from_amount": 1000001, "percent_deduction": 30 } ] income_tax_slab = frappe.new_doc("Income Tax Slab") income_tax_slab.name = "Tax Slab: " + payroll_period.name income_tax_slab.effective_from = effective_date or add_days(payroll_period.start_date, -2) if allow_tax_exemption: income_tax_slab.allow_tax_exemption = 1 income_tax_slab.standard_tax_exemption_amount = 50000 for item in slabs: income_tax_slab.append("slabs", item) income_tax_slab.append("other_taxes_and_charges", { "description": "cess", "percent": 4 }) income_tax_slab.save() if not dont_submit: income_tax_slab.submit() def create_salary_slips_for_payroll_period(employee, salary_structure, payroll_period, deduct_random=True): deducted_dates = [] i = 0 while i < 12: slip = frappe.get_doc({"doctype": "Salary Slip", "employee": employee, "salary_structure": salary_structure, "frequency": "Monthly"}) if i == 0: posting_date = add_days(payroll_period.start_date, 25) else: posting_date = add_months(posting_date, 1) if i == 11: slip.deduct_tax_for_unsubmitted_tax_exemption_proof = 1 slip.deduct_tax_for_unclaimed_employee_benefits = 1 if deduct_random and not random.randint(0, 2): slip.deduct_tax_for_unsubmitted_tax_exemption_proof = 1 deducted_dates.append(posting_date) slip.posting_date = posting_date slip.start_date = get_first_day(posting_date) slip.end_date = get_last_day(posting_date) doc = make_salary_slip(salary_structure, slip, employee) doc.submit() i += 1 return deducted_dates def create_additional_salary(employee, payroll_period, amount): salary_date = add_months(payroll_period.start_date, random.randint(0, 11)) frappe.get_doc({ "doctype": "Additional Salary", "employee": employee, "company": erpnext.get_default_company(), "salary_component": "Performance Bonus", "payroll_date": salary_date, "amount": amount, "type": "Earning" }).submit() return salary_date def make_leave_application(employee, from_date, to_date, leave_type, company=None): leave_application = frappe.get_doc(dict( doctype = 'Leave Application', employee = employee, leave_type = leave_type, from_date = from_date, to_date = to_date, company = company or erpnext.get_default_company() or "_Test Company", docstatus = 1, status = "Approved", leave_approver = '[email protected]' )) leave_application.submit()
agpl-3.0
7,116,116,027,504,919,000
37.171631
150
0.70301
false
Florianjw/NiceCharts
nicechart.py
1
22515
#!/usr/bin/env python # nicechart.py # # Copyright 2011 # # Christoph Sterz # Florian Weber # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # # These two lines are only needed if you don't put the script directly into # the installation directory import sys #sys.path.append('/usr/share/inkscape/extensions') # We will use the inkex module with the predefined Effect base class. import inkex # The simplestyle module provides functions for style parsing. from simplestyle import * import math, re, nicechart_colors as nc_colors class NiceChart(inkex.Effect): """ Example Inkscape effect extension. Creates a new layer with a "Hello World!" text centered in the middle of the document. """ def __init__(self): """ Constructor. Defines the "--what" option of a script. """ # Call the base class constructor. inkex.Effect.__init__(self) # Define string option "--what" with "-w" shortcut and default chart values. self.OptionParser.add_option('-w', '--what', action = 'store', type = 'string', dest = 'what', default = '22,11,67', help = 'Chart Values') # Define string option "--type" with "-t" shortcut. self.OptionParser.add_option("-t", "--type", action="store", type="string", dest="type", default='', help="Chart Type") # Define bool option "--blur" with "-b" shortcut. self.OptionParser.add_option("-b", "--blur", action="store", type="inkbool", dest="blur", default='True', help="Blur Type") # Define string option "--file" with "-f" shortcut. self.OptionParser.add_option("-f", "--filename", action="store", type="string", dest="filename", default='', help="Name of File") # Define string option "--input_type" with "-i" shortcut. self.OptionParser.add_option("-i", "--input_type", action="store", type="string", dest="input_type", default='file', help="Chart Type") # Define string option "--delimiter" with "-d" shortcut. self.OptionParser.add_option("-d", "--delimiter", action="store", type="string", dest="csv_delimiter", default=';', help="delimiter") # Define string option "--colors" with "-c" shortcut. self.OptionParser.add_option("-c", "--colors", action="store", type="string", dest="colors", default='default', help="color-scheme") # Define string option "--colors_override" self.OptionParser.add_option("", "--colors_override", action="store", type="string", dest="colors_override", default='', help="color-scheme-override") self.OptionParser.add_option("", "--reverse_colors", action="store", type="inkbool", dest="reverse_colors", default='False', help="reverse color-scheme") self.OptionParser.add_option("-k", "--col_key", action="store", type="int", dest="col_key", default='0', help="column that contains the keys") self.OptionParser.add_option("-v", "--col_val", action="store", type="int", dest="col_val", default='1', help="column that contains the values") self.OptionParser.add_option("-r", "--rotate", action="store", type="inkbool", dest="rotate", default='False', help="Draw barchart horizontally") self.OptionParser.add_option("-W", "--bar-width", action="store", type="int", dest="bar_width", default='10', help="width of bars") self.OptionParser.add_option("-p", "--pie-radius", action="store", type="int", dest="pie_radius", default='100', help="radius of pie-charts") self.OptionParser.add_option("-H", "--bar-height", action="store", type="int", dest="bar_height", default='100', help="height of bars") self.OptionParser.add_option("-O", "--bar-offset", action="store", type="int", dest="bar_offset", default='5', help="distance between bars") self.OptionParser.add_option("", "--stroke-width", action="store", type="int", dest="stroke_width", default='2') self.OptionParser.add_option("-o", "--text-offset", action="store", type="int", dest="text_offset", default='5', help="distance between bar and descriptions") self.OptionParser.add_option("-F", "--font", action="store", type="string", dest="font", default='sans-serif', help="font of description") self.OptionParser.add_option("-S", "--font-size", action="store", type="int", dest="font_size", default='10', help="font size of description") self.OptionParser.add_option("-C", "--font-color", action="store", type="string", dest="font_color", default='black', help="font color of description") #Dummy: self.OptionParser.add_option("","--input_sections") self.OptionParser.add_option("-V", "--show_values", action="store", type="inkbool", dest="show_values", default='False', help="Show values in chart") def effect(self): """ Effect behaviour. Overrides base class' method and inserts a nice looking chart into SVG document. """ # Get script's "--what" option value and process the data type --- i concess the if term is a little bit of magic what = self.options.what keys=[] values=[] orig_values=[] keys_present=True pie_abs=False cnt=0 csv_file_name=self.options.filename csv_delimiter=self.options.csv_delimiter input_type=self.options.input_type col_key=self.options.col_key col_val=self.options.col_val show_values=self.options.show_values if(input_type=="\"file\""): csv_file=open(csv_file_name,"r") for line in csv_file: value=line.split(csv_delimiter) if(len(value)>=1): #make sure that there is at least one value (someone may want to use it as description) keys.append(value[col_key]) values.append(float(value[col_val])) csv_file.close() elif(input_type=="\"direct_input\""): what=re.findall("([A-Z|a-z|0-9]+:[0-9]+\.?[0-9]*)",what) for value in what: value=value.split(":") keys.append(value[0]) values.append(float(value[1])) # Get script's "--type" option value. charttype=self.options.type if(charttype=="pie_abs"): pie_abs=True charttype="pie" # Get access to main SVG document element and get its dimensions. svg = self.document.getroot() # Get the page attibutes: width = self.getUnittouu(svg.get('width')) height = self.getUnittouu(svg.attrib['height']) # Create a new layer. layer = inkex.etree.SubElement(svg, 'g') layer.set(inkex.addNS('label', 'inkscape'), 'Chart-Layer: %s' % (what)) layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer') # Check if Blur should be drawn: draw_blur=self.options.blur #draw_blur=False # Set Default Colors self.options.colors_override.strip() if (len(self.options.colors_override)>0): Colors=self.options.colors_override else: Colors=self.options.colors if(Colors[0].isalpha()): Colors=nc_colors.get_color_scheme(Colors) else: Colors=re.findall("(#[0-9a-fA-F]{6})",Colors) #to be sure we create a fallback: if(len(Colors)==0): Colors=nc_colors.get_color_scheme() color_count=len(Colors) if(self.options.reverse_colors): Colors.reverse() #Those values should be self-explaining: bar_height=self.options.bar_height bar_width=self.options.bar_width bar_offset=self.options.bar_offset #offset of the description in stacked-bar-charts: #stacked_bar_text_offset=self.options.stacked_bar_text_offset text_offset=self.options.text_offset #get font font=self.options.font font_size=self.options.font_size font_color=self.options.font_color #get rotation rotate = self.options.rotate pie_radius=self.options.pie_radius stroke_width=self.options.stroke_width if(charttype=="bar"): ######### ###BAR### ######### #iterate all values, use offset to draw the bars in different places offset=0 color=0 # Normalize the bars to the largest value try: value_max=max(values) except ValueError: value_max=0.0 for x in range(len(values)): orig_values.append(values[x]) values[x]=(values[x]/value_max)*bar_height # Get defs of Document defs = self.xpathSingle('/svg:svg//svg:defs') if defs == None: defs = inkex.etree.SubElement(self.document.getroot(),inkex.addNS('defs','svg')) # Create new Filter filt = inkex.etree.SubElement(defs,inkex.addNS('filter','svg')) filtId = self.uniqueId('filter') self.filtId = 'filter:url(#%s);' % filtId for k, v in [('id', filtId), ('height', "3"), ('width', "3"), ('x', '-0.5'), ('y', '-0.5')]: filt.set(k, v) # Append Gaussian Blur to that Filter fe = inkex.etree.SubElement(filt,inkex.addNS('feGaussianBlur','svg')) fe.set('stdDeviation', "1.1") # Draw Single bars with their shadows for value in values: #draw blur, if it is wanted if(draw_blur): # Create shadow element shadow = inkex.etree.Element(inkex.addNS("rect","svg")) # Set chart position to center of document. Make it horizontal or vertical if(not rotate): shadow.set('x', str(width / 2 + offset +1)) shadow.set('y', str(height / 2 - int(value)+1)) else: shadow.set('y', str(width / 2 + offset +1)) shadow.set('x', str(height / 2 +1)) # Set shadow properties if(not rotate): shadow.set("width", str(bar_width)) shadow.set("height", str(int(value))) else: shadow.set("height", str(bar_width)) shadow.set("width", str(int(value))) # Set shadow blur (connect to filter object in xml path) shadow.set("style","filter:url(#filter)") # Create rectangle element #shadow = inkex.etree.Element(inkex.addNS("rect","svg")) rect = inkex.etree.Element(inkex.addNS('rect','svg')) # Set chart position to center of document. if(not rotate): rect.set('x', str(width/2+offset)) rect.set('y', str(height/2-int(value))) else: rect.set('y', str(width/2+offset)) rect.set('x', str(height/2)) # Set rectangle properties if(not rotate): rect.set("width", str(bar_width)) rect.set("height", str(int(value))) else: rect.set("height", str(bar_width)) rect.set("width", str(int(value))) rect.set("style","fill:"+Colors[color%color_count]) # Set shadow blur (connect to filter object in xml path) if(draw_blur): shadow.set("style","filter:url(#filter)") # If keys are given create text elements if(keys_present): text = inkex.etree.Element(inkex.addNS('text','svg')) if(not rotate): #=vertical text.set("transform","matrix(0,-1,1,0,0,0)") #y after rotation: text.set("x", "-"+str(height/2+text_offset)) #x after rotation: text.set("y", str(width/2+offset+bar_width/2+font_size/3)) else: #=horizontal text.set("y", str(width/2+offset+bar_width/2+font_size/3)) text.set("x", str(height/2-text_offset)) text.set("style","font-size:"+str(font_size)\ +"px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:"\ +font+";-inkscape-font-specification:Bitstream Charter;text-align:end;text-anchor:end;fill:"\ +font_color) text.text=keys[cnt] #cnt=cnt+1 # Increase Offset and Color #offset=offset+bar_width+bar_offset color=(color+1)%8 # Connect elements together. if(draw_blur): layer.append(shadow) layer.append(rect) if(keys_present): layer.append(text) if(show_values): vtext = inkex.etree.Element(inkex.addNS('text','svg')) if(not rotate): #=vertical vtext.set("transform","matrix(0,-1,1,0,0,0)") #y after rotation: vtext.set("x", "-"+str(height/2+text_offset-value-text_offset-text_offset)) #x after rotation: vtext.set("y", str(width/2+offset+bar_width/2+font_size/3)) else: #=horizontal vtext.set("y", str(width/2+offset+bar_width/2+font_size/3)) vtext.set("x", str(height/2-text_offset+value+text_offset+text_offset)) vtext.set("style","font-size:"+str(font_size)\ +"px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:"\ +font+";-inkscape-font-specification:Bitstream Charter;text-align:start;text-anchor:start;fill:"\ +font_color) vtext.text=str(int(orig_values[cnt])) layer.append(vtext) cnt=cnt+1 offset=offset+bar_width+bar_offset elif(charttype=="pie"): ######### ###PIE### ######### # Iterate all values to draw the different slices color=0 # Set Default Colors # Get defs of Document defs = self.xpathSingle('/svg:svg//svg:defs') if defs == None: defs = inkex.etree.SubElement(self.document.getroot(),inkex.addNS('defs','svg')) # Create new Filter filt = inkex.etree.SubElement(defs,inkex.addNS('filter','svg')) filtId = self.uniqueId('filter') self.filtId = 'filter:url(#%s);' % filtId for k, v in [('id', filtId), ('height', "3"), ('width', "3"), ('x', '-0.5'), ('y', '-0.5')]: filt.set(k, v) # Append Gaussian Blur to that Filter fe = inkex.etree.SubElement(filt,inkex.addNS('feGaussianBlur','svg')) fe.set('stdDeviation', "1.1") # Add a grey background circle background=inkex.etree.Element(inkex.addNS("circle","svg")) background.set("cx", str(width/2)) background.set("cy", str(height/2)) background.set("r", str(pie_radius)) if pie_abs: background.set("style","stroke:#ececec;fill:#f9f9f9") else: background.set("style","fill:#aaaaaa;stroke:none") layer.append(background) #create value sum in order to divide the slices try: valuesum=sum(values) except ValueError: valuesum=0 if pie_abs: valuesum=100 # Set an offsetangle offset=0 # Draw single slices with their shadow for value in values: # Calculate the PI-angles for start and end angle=(2*3.141592)/valuesum*float(value) # Create the shadow first (if it should be created): if(draw_blur): shadow=inkex.etree.Element(inkex.addNS("path","svg")) shadow.set(inkex.addNS('type', 'sodipodi'), 'arc') shadow.set(inkex.addNS('cx', 'sodipodi'), str(width/2)) shadow.set(inkex.addNS('cy', 'sodipodi'), str(height/2)) shadow.set(inkex.addNS('rx', 'sodipodi'), str(pie_radius)) shadow.set(inkex.addNS('ry', 'sodipodi'), str(pie_radius)) shadow.set(inkex.addNS('start', 'sodipodi'), str(offset)) shadow.set(inkex.addNS('end', 'sodipodi'), str(offset+angle)) shadow.set("style","filter:url(#filter);fill:#000000") #then add the slice pieslice=inkex.etree.Element(inkex.addNS("path","svg")) pieslice.set(inkex.addNS('type', 'sodipodi'), 'arc') pieslice.set(inkex.addNS('cx', 'sodipodi'), str(width/2)) pieslice.set(inkex.addNS('cy', 'sodipodi'), str(height/2)) pieslice.set(inkex.addNS('rx', 'sodipodi'), str(pie_radius)) pieslice.set(inkex.addNS('ry', 'sodipodi'), str(pie_radius)) pieslice.set(inkex.addNS('start', 'sodipodi'), str(offset)) pieslice.set(inkex.addNS('end', 'sodipodi'), str(offset+angle)) pieslice.set("style","fill:"+Colors[color%color_count]+";stroke:none;fill-opacity:1") #If text is given, draw short paths and add the text if(keys_present): path=inkex.etree.Element(inkex.addNS("path","svg")) path.set("d","m "+str((width/2)+pie_radius*math.cos(angle/2+offset))+","+str((height/2)+pie_radius*math.sin(angle/2+offset))+" "+str((text_offset-2)*math.cos(angle/2+offset))+","+str((text_offset-2)*math.sin(angle/2+offset))) path.set("style","fill:none;stroke:"+font_color+";stroke-width:"+str(stroke_width)+"px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1") layer.append(path) text = inkex.etree.Element(inkex.addNS('text','svg')) text.set("x", str((width/2)+(pie_radius+text_offset)*math.cos(angle/2+offset))) text.set("y", str((height/2)+(pie_radius+text_offset)*math.sin(angle/2+offset)+font_size/3)) textstyle="font-size:"+str(font_size)+"px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:"+font+";-inkscape-font-specification:Bitstream Charter;fill:"+font_color #check if it is right or left of the Pie if(math.cos(angle/2+offset)>0): text.set("style",textstyle) else: text.set("style",textstyle+";text-align:end;text-anchor:end") text.text=keys[cnt] if show_values: text.text=text.text+"("+str(values[cnt]) if pie_abs: text.text=text.text+" %" text.text=text.text+")" cnt=cnt+1 layer.append(text) #increase the rotation-offset and the colorcycle-position offset=offset+angle color=(color+1)%8 #append the objects to the extension-layer if(draw_blur): layer.append(shadow) layer.append(pieslice) elif(charttype=="stbar"): ################# ###STACKED BAR### ################# # Iterate all values to draw the different slices color=0 # Get defs of Document defs = self.xpathSingle('/svg:svg//svg:defs') if defs == None: defs = inkex.etree.SubElement(self.document.getroot(),inkex.addNS('defs','svg')) # Create new Filter filt = inkex.etree.SubElement(defs,inkex.addNS('filter','svg')) filtId = self.uniqueId('filter') self.filtId = 'filter:url(#%s);' % filtId for k, v in [('id', filtId), ('height', "3"), ('width', "3"), ('x', '-0.5'), ('y', '-0.5')]: filt.set(k, v) # Append Gaussian Blur to that Filter fe = inkex.etree.SubElement(filt,inkex.addNS('feGaussianBlur','svg')) fe.set('stdDeviation', "1.1") #create value sum in order to divide the bars try: valuesum=sum(values) except ValueError: valuesum=0.0 for value in values: valuesum=valuesum+float(value) # Init offset offset=0 i=len(values)-1 #loopcounter # Draw Single bars with their shadows for value in values: # Calculate the individual heights normalized on 100units normedvalue=(bar_height/valuesum)*float(value) if(draw_blur): # Create rectangle element shadow = inkex.etree.Element(inkex.addNS("rect","svg")) # Set chart position to center of document. if(not rotate): shadow.set('x', str(width / 2 + 1)) shadow.set('y', str(height / 2 - offset - (normedvalue)+1)) else: shadow.set('x', str(width / 2 + 1 + offset)) shadow.set('y', str(height / 2 +1)) # Set rectangle properties if(not rotate): shadow.set("width",str(bar_width)) shadow.set("height", str((normedvalue))) else: shadow.set("width",str((normedvalue))) shadow.set("height", str(bar_width)) # Set shadow blur (connect to filter object in xml path) shadow.set("style","filter:url(#filter)") # Create rectangle element rect = inkex.etree.Element(inkex.addNS('rect','svg')) # Set chart position to center of document. if( not rotate ): rect.set('x', str(width / 2 )) rect.set('y', str(height / 2 - offset - (normedvalue))) else: rect.set('x', str(width / 2 + offset )) rect.set('y', str(height / 2 )) # Set rectangle properties if( not rotate ): rect.set("width", str(bar_width)) rect.set("height", str((normedvalue))) else: rect.set("height", str(bar_width)) rect.set("width", str((normedvalue))) rect.set("style","fill:"+Colors[color%color_count]) #If text is given, draw short paths and add the text if(keys_present): if(not rotate): path=inkex.etree.Element(inkex.addNS("path","svg")) path.set("d","m "+str((width+bar_width)/2)+","+str(height / 2 - offset - (normedvalue / 2))+" "+str(bar_width/2+text_offset)+",0") path.set("style","fill:none;stroke:"+font_color+";stroke-width:"+str(stroke_width)+"px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1") layer.append(path) text = inkex.etree.Element(inkex.addNS('text','svg')) text.set("x", str(width/2+bar_width+text_offset+1)) text.set("y", str(height / 2 - offset + font_size/3 - (normedvalue / 2))) text.set("style","font-size:"+str(font_size)+"px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:"+font+";-inkscape-font-specification:Bitstream Charter;fill:"+font_color) text.text=keys[cnt] cnt=cnt+1 layer.append(text) else: path=inkex.etree.Element(inkex.addNS("path","svg")) path.set("d","m "+str((width)/2+offset+normedvalue/2)+"," +str(height / 2 + bar_width/2) +" 0,"+str(bar_width/2+(font_size*i)+text_offset)) #line path.set("style","fill:none;stroke:"+font_color+";stroke-width:"+str(stroke_width)+"px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1") layer.append(path) text = inkex.etree.Element(inkex.addNS('text','svg')) text.set("x", str((width)/2+offset+normedvalue/2-font_size/3)) text.set("y", str((height/2)+bar_width+(font_size*(i+1))+text_offset )) text.set("style","font-size:"+str(font_size)+"px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-family:"+font+";-inkscape-font-specification:Bitstream Charter;fill:"+font_color) text.text=keys[color] layer.append(text) # Increase Offset and Color offset=offset+normedvalue color=(color+1)%8 # Connect elements together. if(draw_blur): layer.append(shadow) layer.append(rect) i-=1 #loopcounter def getUnittouu(self, param): #compatibility wrapper try: return inkex.unittouu(param) except AttributeError: return self.unittouu(param) # Create effect instance and apply it. effect = NiceChart() effect.affect()
gpl-3.0
8,903,890,283,883,620,000
33.852941
230
0.639129
false
janusnic/shoop-wintergear-demo
shoop_demo/settings/base_settings.py
1
4291
# This file is part of Shoop Wintergear Demo. # # Copyright (c) 2012-2015, Shoop Ltd. All rights reserved. # # This source code is licensed under the AGPLv3 license found in the # LICENSE file in the root directory of this source tree. from shoop.addons import add_enabled_addons import os BASE_DIR = os.path.realpath( os.path.join(os.path.dirname(__file__), "..", "..")) SECRET_KEY = "Shhhhh" DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] MEDIA_ROOT = os.path.join(BASE_DIR, "var", "media") STATIC_ROOT = os.path.join(BASE_DIR, "var", "static") MEDIA_URL = "/media/" SHOOP_ENABLED_ADDONS_FILE = os.path.join(BASE_DIR, "var", "enabled_addons") INSTALLED_APPS = add_enabled_addons(SHOOP_ENABLED_ADDONS_FILE, ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #### 'shoop_demo', 'wintergear_theme', 'wintergear_demo_content', #### 'django_jinja', 'filer', 'easy_thumbnails', 'shoop.core', 'shoop.simple_pricing', 'shoop.simple_supplier', 'shoop.default_tax', 'shoop.front', 'shoop.front.apps.registration', 'shoop.front.apps.auth', 'shoop.front.apps.customer_information', 'shoop.front.apps.personal_order_history', 'shoop.front.apps.simple_order_notification', 'shoop.front.apps.simple_search', 'shoop.admin', 'shoop.addons', 'shoop.testing', 'bootstrap3', 'shoop.notify', 'shoop.simple_cms', 'shoop.stripe', 'registration', )) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'shoop.front.middleware.ProblemMiddleware', 'shoop.front.middleware.ShoopFrontMiddleware', ) ROOT_URLCONF = 'shoop_demo.urls' WSGI_APPLICATION = 'shoop_demo.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), 'TEST': { 'NAME': os.path.join(BASE_DIR, 'db_test.sqlite3'), } } } LANGUAGE_CODE = 'en' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/' LOGIN_REDIRECT_URL = '/' SOUTH_TESTS_MIGRATE = False # Makes tests that much faster. LANGUAGES = [ ('en', 'English'), ('fi', 'Finnish'), ] PARLER_DEFAULT_LANGUAGE_CODE = "en" PARLER_LANGUAGES = { None: [{"code": c, "name": n} for (c, n) in LANGUAGES], 'default': { 'hide_untranslated': False, } } TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.request", "django.core.context_processors.tz", "django.contrib.messages.context_processors.messages" ) TEMPLATES = [ { "BACKEND": "django_jinja.backend.Jinja2", "APP_DIRS": True, "OPTIONS": { "match_extension": ".jinja", "context_processors": TEMPLATE_CONTEXT_PROCESSORS, "newstyle_gettext": True, }, "NAME": "jinja2", }, { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": TEMPLATE_CONTEXT_PROCESSORS, } }, ] SESSION_SERIALIZER = "django.contrib.sessions.serializers.PickleSerializer" SHOOP_PAYMENT_MODULE_IMPLEMENTATIONS = { "pseudo": "shoop.testing.pseudo_payment.PseudoPaymentMethodModule", } SHOOP_BASKET_COMMAND_DISPATCHER_SPEC = ( "shoop_demo.basket_command_dispatcher:WintergearBasketCommandDispatcher") SHOOP_BASKET_VIEW_SPEC = "shoop_demo.views.basket:WintergearBasketView" DEMO_CREDENTIALS = "admin / admin" def configure(setup): setup.commit(globals())
agpl-3.0
4,649,339,829,990,463,000
26.863636
77
0.662783
false
nirs/hpy
hpy/htokenize.py
1
12383
"""Tokenization help for Python programs. This is tokenize module from Python 2.4.3 with minor modification needed to support Hebrew tokens. generate_tokens(readline) is a generator that breaks a stream of text into Python tokens. It accepts a readline-like method which is called repeatedly to get the next line of input (or "" for EOF). It generates 5-tuples with these members: the token type (see token.py) the token (a string) the starting (row, column) indices of the token (a 2-tuple of ints) the ending (row, column) indices of the token (a 2-tuple of ints) the original line (string) It is designed to match the working of the Python tokenizer exactly, except that it produces COMMENT tokens for comments and gives type OP for all operators Older entry points tokenize_loop(readline, tokeneater) tokenize(readline, tokeneater=printtoken) are the same, except instead of generating tokens, tokeneater is a callback function to which the 5 fields described above are passed as 5 arguments, each time a new token is found. @license: Python license. """ __author__ = 'Ka-Ping Yee <[email protected]>' __credits__ = \ 'GvR, ESR, Tim Peters, Thomas Wouters, Fred Drake, Skip Montanaro' import string, re from token import * import token __all__ = [x for x in dir(token) if x[0] != '_'] + ["COMMENT", "tokenize", "generate_tokens", "NL"] del x del token from hpy import hebrew COMMENT = N_TOKENS tok_name[COMMENT] = 'COMMENT' NL = N_TOKENS + 1 tok_name[NL] = 'NL' N_TOKENS += 2 def group(*choices): return '(' + '|'.join(choices) + ')' def any(*choices): return group(*choices) + '*' def maybe(*choices): return group(*choices) + '?' Whitespace = r'[ \f\t]*' Comment = r'#[^\r\n]*' Ignore = Whitespace + any(r'\\\r?\n' + Whitespace) + maybe(Comment) Name = ur'[a-zA-Z_%s]\w*' % ''.join(hebrew.alpha) Hexnumber = r'0[xX][\da-fA-F]*[lL]?' Octnumber = r'0[0-7]*[lL]?' Decnumber = r'[1-9]\d*[lL]?' Intnumber = group(Hexnumber, Octnumber, Decnumber) Exponent = r'[eE][-+]?\d+' Pointfloat = group(r'\d+\.\d*', r'\.\d+') + maybe(Exponent) Expfloat = r'\d+' + Exponent Floatnumber = group(Pointfloat, Expfloat) Imagnumber = group(r'\d+[jJ]', Floatnumber + r'[jJ]') Number = group(Imagnumber, Floatnumber, Intnumber) # Tail end of ' string. Single = r"[^'\\]*(?:\\.[^'\\]*)*'" # Tail end of " string. Double = r'[^"\\]*(?:\\.[^"\\]*)*"' # Tail end of ''' string. Single3 = r"[^'\\]*(?:(?:\\.|'(?!''))[^'\\]*)*'''" # Tail end of """ string. Double3 = r'[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*"""' Triple = group("[uU]?[rR]?'''", '[uU]?[rR]?"""') # Single-line ' or " string. String = group(r"[uU]?[rR]?'[^\n'\\]*(?:\\.[^\n'\\]*)*'", r'[uU]?[rR]?"[^\n"\\]*(?:\\.[^\n"\\]*)*"') # Because of leftmost-then-longest match semantics, be sure to put the # longest operators first (e.g., if = came before ==, == would get # recognized as two instances of =). Operator = group(r"\*\*=?", r">>=?", r"<<=?", r"<>", r"!=", r"//=?", r"[+\-*/%&|^=<>]=?", r"~") Bracket = '[][(){}]' Special = group(r'\r?\n', r'[:;.,`@]') Funny = group(Operator, Bracket, Special) PlainToken = group(Number, Funny, String, Name) Token = Ignore + PlainToken # First (or only) line of ' or " string. ContStr = group(r"[uU]?[rR]?'[^\n'\\]*(?:\\.[^\n'\\]*)*" + group("'", r'\\\r?\n'), r'[uU]?[rR]?"[^\n"\\]*(?:\\.[^\n"\\]*)*' + group('"', r'\\\r?\n')) PseudoExtras = group(r'\\\r?\n', Comment, Triple) PseudoToken = Whitespace + group(PseudoExtras, Number, Funny, ContStr, Name) pseudoprog = re.compile(PseudoToken, re.U) tokenprog = re.compile(Token, re.U) single3prog = re.compile(Single3, re.U) double3prog = re.compile(Double3, re.U) endprogs = {"'": re.compile(Single, re.U), '"': re.compile(Double, re.U), "'''": single3prog, '"""': double3prog, "r'''": single3prog, 'r"""': double3prog, "u'''": single3prog, 'u"""': double3prog, "ur'''": single3prog, 'ur"""': double3prog, "R'''": single3prog, 'R"""': double3prog, "U'''": single3prog, 'U"""': double3prog, "uR'''": single3prog, 'uR"""': double3prog, "Ur'''": single3prog, 'Ur"""': double3prog, "UR'''": single3prog, 'UR"""': double3prog, 'r': None, 'R': None, 'u': None, 'U': None} triple_quoted = {} for t in ("'''", '"""', "r'''", 'r"""', "R'''", 'R"""', "u'''", 'u"""', "U'''", 'U"""', "ur'''", 'ur"""', "Ur'''", 'Ur"""', "uR'''", 'uR"""', "UR'''", 'UR"""'): triple_quoted[t] = t single_quoted = {} for t in ("'", '"', "r'", 'r"', "R'", 'R"', "u'", 'u"', "U'", 'U"', "ur'", 'ur"', "Ur'", 'Ur"', "uR'", 'uR"', "UR'", 'UR"' ): single_quoted[t] = t tabsize = 8 class TokenError(Exception): pass class StopTokenizing(Exception): pass def printtoken(type, token, (srow, scol), (erow, ecol), line): # for testing print "%d,%d-%d,%d:\t%s\t%s" % \ (srow, scol, erow, ecol, tok_name[type], repr(token)) def tokenize(readline, tokeneater=printtoken): """ The tokenize() function accepts two parameters: one representing the input stream, and one providing an output mechanism for tokenize(). The first parameter, readline, must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. The second parameter, tokeneater, must also be a callable object. It is called once for each token, with five arguments, corresponding to the tuples generated by generate_tokens(). """ try: tokenize_loop(readline, tokeneater) except StopTokenizing: pass # backwards compatible interface def tokenize_loop(readline, tokeneater): for token_info in generate_tokens(readline): tokeneater(*token_info) def generate_tokens(readline): """ The generate_tokens() generator requires one argment, readline, which must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow, scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol) of ints specifying the row and column where the token ends in the source; and the line on which the token was found. The line passed is the logical line; continuation lines are included. """ lnum = parenlev = continued = 0 namechars = string.ascii_letters + '_' + ''.join(hebrew.alpha) numchars = '0123456789' contstr, needcont = '', 0 contline = None indents = [0] while 1: # loop over lines in stream line = readline() lnum = lnum + 1 pos, max = 0, len(line) if contstr: # continued string if not line: raise TokenError, ("EOF in multi-line string", strstart) endmatch = endprog.match(line) if endmatch: pos = end = endmatch.end(0) yield (STRING, contstr + line[:end], strstart, (lnum, end), contline + line) contstr, needcont = '', 0 contline = None elif needcont and line[-2:] != '\\\n' and line[-3:] != '\\\r\n': yield (ERRORTOKEN, contstr + line, strstart, (lnum, len(line)), contline) contstr = '' contline = None continue else: contstr = contstr + line contline = contline + line continue elif parenlev == 0 and not continued: # new statement if not line: break column = 0 while pos < max: # measure leading whitespace if line[pos] == ' ': column = column + 1 elif line[pos] == '\t': column = (column/tabsize + 1)*tabsize elif line[pos] == '\f': column = 0 else: break pos = pos + 1 if pos == max: break if line[pos] in '#\r\n': # skip comments or blank lines yield ((NL, COMMENT)[line[pos] == '#'], line[pos:], (lnum, pos), (lnum, len(line)), line) continue if column > indents[-1]: # count indents or dedents indents.append(column) yield (INDENT, line[:pos], (lnum, 0), (lnum, pos), line) while column < indents[-1]: if column not in indents: raise IndentationError( "unindent does not match any outer indentation level") indents = indents[:-1] yield (DEDENT, '', (lnum, pos), (lnum, pos), line) else: # continued statement if not line: raise TokenError, ("EOF in multi-line statement", (lnum, 0)) continued = 0 while pos < max: pseudomatch = pseudoprog.match(line, pos) if pseudomatch: # scan for tokens start, end = pseudomatch.span(1) spos, epos, pos = (lnum, start), (lnum, end), end token, initial = line[start:end], line[start] if initial in numchars or \ (initial == '.' and token != '.'): # ordinary number yield (NUMBER, token, spos, epos, line) elif initial in '\r\n': yield (parenlev > 0 and NL or NEWLINE, token, spos, epos, line) elif initial == '#': yield (COMMENT, token, spos, epos, line) elif token in triple_quoted: endprog = endprogs[token] endmatch = endprog.match(line, pos) if endmatch: # all on one line pos = endmatch.end(0) token = line[start:pos] yield (STRING, token, spos, (lnum, pos), line) else: strstart = (lnum, start) # multiple lines contstr = line[start:] contline = line break elif initial in single_quoted or \ token[:2] in single_quoted or \ token[:3] in single_quoted: if token[-1] == '\n': # continued string strstart = (lnum, start) endprog = (endprogs[initial] or endprogs[token[1]] or endprogs[token[2]]) contstr, needcont = line[start:], 1 contline = line break else: # ordinary string yield (STRING, token, spos, epos, line) elif initial in namechars: # ordinary name yield (NAME, token, spos, epos, line) elif initial == '\\': # continued stmt continued = 1 else: if initial in '([{': parenlev = parenlev + 1 elif initial in ')]}': parenlev = parenlev - 1 yield (OP, token, spos, epos, line) else: yield (ERRORTOKEN, line[pos], (lnum, pos), (lnum, pos+1), line) pos = pos + 1 for indent in indents[1:]: # pop remaining indent levels yield (DEDENT, '', (lnum, 0), (lnum, 0), '') yield (ENDMARKER, '', (lnum, 0), (lnum, 0), '') if __name__ == '__main__': # testing import sys if len(sys.argv) > 1: tokenize(open(sys.argv[1]).readline) else: tokenize(sys.stdin.readline)
gpl-2.0
-847,647,740,305,693,600
39.074434
78
0.515465
false
thp/backuppurge
lib/backuppurge/__init__.py
1
7956
# -*- coding: utf-8 -*- # # backuppurge: Selectively purge daily full backups # # Copyright (c) 2013, 2015 Thomas Perl <[email protected]> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ Selectively purge daily full backups Lists files in that should be purged in a backup strategy where daily backups are kept for *DAYS* days, monthly backups for *MONTHS* months and yearly backups for *YEARS* years. Monthly and yearly backups are always the oldest possible daily backup (e.g. first of month and first of year that is available). Files are expected to have their date embedded as ``YYYY-MM-DD`` somewhere in the filename, e.g. ``homedir-2013-03-31.tgz`` For monthly and yearly backups, the first day available will be kept (e.g. January 1st for yearly, but if that is not available, January 2nd will be kept, etc..). This program can be used together with xargs(1) from GNU findutils:: backuppurge --print0 /var/backups/ | xargs -r -0 rm Only files directly in the specified **DIRECTORY** will be searched (in the above example, ``/var/backups/homedir-2013-03-31.tgz`` will be considered, but not ``/var/backups/etc/etc-2013-03-31.tgz``). This prevents accidental deletion of files. If --include-directories (-D) is used, directories directly below the path will be included in the search (e.g. the directory ``/var/backups/etc-2015-07-24/`` will be included in the purge search). This script assumes daily backups are FULL backups, not incremental. For example, a full daily backup of your ``/etc`` can be created by adding (``crontab -e``) a command like the following to your crontab(5) file:: tar czf /var/backups/etc/etc-$(date +%F).tgz /etc """ from __future__ import print_function import logging import warnings import datetime import re import os __author__ = 'Thomas Perl <[email protected]>' __license__ = 'Simplified BSD License' __url__ = 'http://thp.io/2013/backuppurge/' __version__ = '1.0.4' class MixedFilenames(BaseException): """ Raised when the list of filenames passed to PurgeList don't have the same prefix and postfix (before/after the date). """ pass class NoBackupsFound(Warning): """ Warning raised when no backup files (with a date) are found. """ pass warnings.simplefilter('always', NoBackupsFound) def find_backups(directory, include_directories): """ Find backup files in directory """ return filter(lambda f: (include_directories and os.path.isdir(f)) or os.path.isfile(f), map(lambda filename: os.path.join(directory, filename), os.listdir(directory))) class PurgeList: def __init__(self, filenames, today, prefix): self.logger = logging.getLogger(self.__class__.__name__) self.filenames = filenames self.today = today self.prefix = prefix # Check prefix of files (before date), bail out if not all equal self.check_file_list() # By default, purge everything self.purge = set(self.filenames) def check_file_list(self): regex = re.compile(r'^(.*)(\d{4}-\d{2}-\d{2})(.*)$') # Remove all filenames without a date string in them self.filenames = list(filter(regex.match, self.filenames)) if self.prefix is not None: self.filenames = [filename for filename in self.filenames if regex.match(filename).group(1) == self.prefix] if len(self.filenames) == 0: warnings.warn('File list is empty', NoBackupsFound) return prefixes, _, postfixes = map(set, zip(*[regex.match(filename).groups() for filename in self.filenames])) if len(prefixes) != 1: raise MixedFilenames('Non-unique prefixes: {0}'.format(prefixes)) if len(postfixes) != 1: raise MixedFilenames('Non-unique postfixes: {0}'.format(postfixes)) def keep(self, filename, kind): """Mark filename to be kept""" if filename is None: return if filename in self.purge: self.logger.info('Keeping file for %s: %s', kind, filename) self.purge.remove(filename) else: self.logger.debug('File for %s already kept: %s', kind, filename) def get_all(self, year, month=None, day=None): """Get all backups for a specific year""" month_re = r'{0:02d}'.format(month) if month else r'\d{2}' day_re = r'{0:02d}'.format(day) if day else r'\d{2}' regex = re.compile(r'{0:04d}-{1:s}-{2:s}'.format(year, month_re, day_re)) return sorted(filter(regex.search, self.filenames)) def get_first(self, year, month=None, day=None): """Get first backup for a specific year, month or day get_first(2013) -> First available backup in 2013 get_first(2013, 3) -> First available backup in March 2013 get_first(2013, 3, 31) -> First available backup for March 31st 2013 """ matches = self.get_all(year, month, day) if matches: return matches[0] return None def recent_days(self, count): day = self.today while count > 0: yield (day.year, day.month, day.day) day -= datetime.timedelta(days=1) count -= 1 def recent_months(self, count): month = (self.today.year, self.today.month) while count > 0: yield month if month[1] == 1: month = (month[0]-1, 12) else: month = (month[0], month[1]-1) count -= 1 def recent_years(self, count): year = self.today.year while count > 0: yield year year -= 1 count -= 1 def keep_daily(self, days): for year, month, day in self.recent_days(days): self.keep(self.get_first(year, month, day), 'daily') def keep_monthly(self, months): for year, month in self.recent_months(months): self.keep(self.get_first(year, month), 'monthly ({0}-{1:02d})'.format(year, month)) def keep_yearly(self, years): for year in self.recent_years(years): self.keep(self.get_first(year), 'yearly ({0})'.format(year)) def get_filenames(self): return self.purge def main(directory, days, months, years, separator, include_directories, prefix): today = datetime.date.today() filenames = find_backups(directory, include_directories) purge_list = PurgeList(filenames, today, prefix) purge_list.keep_daily(days) purge_list.keep_monthly(months) purge_list.keep_yearly(years) purge_files = purge_list.get_filenames() if purge_files: print(separator.join(purge_files), end=separator)
bsd-2-clause
-5,817,171,671,719,729,000
33.894737
97
0.653343
false
personalrobotics/prpy
src/prpy/planning/snap.py
1
6317
#!/usr/bin/env python # Copyright (c) 2013, Carnegie Mellon University # All rights reserved. # Authors: Michael Koval <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of Carnegie Mellon University nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy import openravepy from openravepy import Robot from prpy.util import SetTrajectoryTags from prpy.planning.base import ( Planner, PlanningError, LockedPlanningMethod, Tags ) from ..collision import DefaultRobotCollisionCheckerFactory class SnapPlanner(Planner): """Planner that checks the straight-line trajectory to the goal. SnapPlanner is a utility planner class that collision checks the straight-line trajectory to the goal. If that trajectory is invalid, e.g. due to an environment or self collision, the planner immediately returns failure by raising a PlanningError. SnapPlanner is intended to be used only as a "short circuit" to speed-up planning between nearby configurations. This planner is most commonly used as the first item in a Sequence meta-planner to avoid calling a motion planner when the trivial solution is valid. """ def __init__(self, robot_checker_factory=None): super(SnapPlanner, self).__init__() if robot_checker_factory is None: robot_checker_factory = DefaultRobotCollisionCheckerFactory self.robot_checker_factory = robot_checker_factory def __str__(self): return 'SnapPlanner' @LockedPlanningMethod def PlanToConfiguration(self, robot, goal, **kw_args): """ Attempt to plan a straight line trajectory from the robot's current configuration to the goal configuration. This will fail if the straight-line path is not collision free. @param robot @param goal desired configuration @return traj """ return self._Snap(robot, goal, **kw_args) def _Snap(self, robot, goal, **kw_args): from prpy.util import CheckJointLimits from prpy.util import GetLinearCollisionCheckPts from prpy.planning.exceptions import CollisionPlanningError from prpy.planning.exceptions import SelfCollisionPlanningError # Create a two-point trajectory between the # current configuration and the goal. # (a straight line in joint space) env = robot.GetEnv() traj = openravepy.RaveCreateTrajectory(env, '') cspec = robot.GetActiveConfigurationSpecification('linear') active_indices = robot.GetActiveDOFIndices() # Check the start position is within joint limits, # this can throw a JointLimitError start = robot.GetActiveDOFValues() CheckJointLimits(robot, start, deterministic=True) # Add the start waypoint start_waypoint = numpy.zeros(cspec.GetDOF()) cspec.InsertJointValues(start_waypoint, start, robot, active_indices, False) traj.Init(cspec) traj.Insert(0, start_waypoint.ravel()) # Make the trajectory end at the goal configuration, as # long as it is not in collision and is not identical to # the start configuration. CheckJointLimits(robot, goal, deterministic=True) if not numpy.allclose(start, goal): goal_waypoint = numpy.zeros(cspec.GetDOF()) cspec.InsertJointValues(goal_waypoint, goal, robot, active_indices, False) traj.Insert(1, goal_waypoint.ravel()) # Get joint configurations to check # Note: this returns a python generator, and if the # trajectory only has one waypoint then only the # start configuration will be collisioned checked. # # Sampling function: # 'linear' # from prpy.util import SampleTimeGenerator # linear = SampleTimeGenerator # 'Van der Corput' from prpy.util import VanDerCorputSampleGenerator vdc = VanDerCorputSampleGenerator checks = GetLinearCollisionCheckPts(robot, traj, norm_order=2, sampling_func=vdc) with self.robot_checker_factory(robot) as robot_checker, \ robot.CreateRobotStateSaver(Robot.SaveParameters.LinkTransformation): # Run constraint checks at DOF resolution: for t, q in checks: # Set the joint positions # Note: the planner is using a cloned 'robot' object robot.SetActiveDOFValues(q) # Check collision (throws an exception on collision) robot_checker.VerifyCollisionFree() SetTrajectoryTags(traj, { Tags.SMOOTH: True, Tags.DETERMINISTIC_TRAJECTORY: True, Tags.DETERMINISTIC_ENDPOINT: True, }, append=True) return traj
bsd-3-clause
-6,315,070,951,300,979,000
41.113333
81
0.684186
false
goblinhack/MundusMeus
python/things/weapon.py
1
13288
import tp import mm def thing_init(t): return def weapon_init(name, short_name, long_name, damage, is_double_handed=False): x = tp.Tp(name) x.set_long_name(long_name) x.set_short_name(short_name) x.set_is_weapon(True) x.set_z_depth(mm.Z_DEPTH_TREASURE) x.set_damage(damage) x.set_is_double_handed(is_double_handed) x.set_tile(tile=name) x.thing_init = thing_init def init(): weapon_init(name="axe1.1", short_name="Hand Axe", long_name="Very handy axe. Useful for all axeing occasions.", damage="1d4", is_double_handed=True ) weapon_init(name="axe1.2", short_name="Battle Axe", long_name="Dont battle without this axe.", damage="1d6" ) weapon_init(name="axe1.3", short_name="Greataxe", long_name="This axe is great indeed. " + "Not the greatest, but still pretty great.", damage="1d8+1", is_double_handed=True ) weapon_init(name="axe1.4", short_name="Even Greater Axe", long_name="The greatest of great great axes.", damage="1d10+2", is_double_handed=True ) weapon_init(name="axe1.5", short_name="Masterwork Axe", long_name="Finest craftwork axe. Definately not made by orcs.", damage="1d12" ) weapon_init(name="axe1.6", short_name="Diamond Axe", long_name="Diamond encrusted bladed axe. " + "Glistens in the dark.", damage="1d14" ) weapon_init(name="axe1.7", short_name="Blood Axe", long_name="This axe yearns to be whetted with blood. " "Hopefully not your own.", damage="2d6+2" ) weapon_init(name="axe1.9", short_name="Cleaver Axe", long_name="An edge so sharp, " + "you might lose your head over it.", damage="1d10", is_double_handed=True ) weapon_init(name="ball_chain1.1", short_name="Flail", long_name="Don't flail around with this flail.", damage="1d4" ) weapon_init(name="ball_chain1.2", short_name="Masterwork Flail", long_name="If you need to flail, this is the weapon for you.", damage="1d6" ) weapon_init(name="ball_chain1.3", short_name="Diamond Flail", long_name="Flailing with a sharp edge.", damage="1d12" ) weapon_init(name="bow1.1", short_name="Bow", long_name="Standard issue bow. Wooden. " + "Bowish. What more can be said?", damage="1d6", is_double_handed=True ) weapon_init(name="bow1.2", short_name="Longishbow", long_name="Not quite a long bow, but long enough.", damage="1d8", is_double_handed=True ) weapon_init(name="bow1.3", short_name="Metal Longbow", long_name="A tough bow for a tough individual.", damage="1d10", is_double_handed=True ) weapon_init(name="bow1.4", short_name="Bowmaster", long_name="The bow of masters. The bow master.", damage="1d10", is_double_handed=True ) weapon_init(name="bow1.5", short_name="Masterwork Bow", long_name="Beautiful oaken bow with inlaid markings " + "and a silver handle. Probably fires well too.", damage="1d12", is_double_handed=True ) weapon_init(name="bow1.6", short_name="Crossbow", long_name="If your angry and have targets, " + "this is the bow for you. " + "No archery training required.", damage="1d6", is_double_handed=True ) weapon_init(name="bow1.7", short_name="Metal cross", long_name="Resounding thuds will come from " + "this device. And screams.", damage="1d8", is_double_handed=True ) weapon_init(name="bow1.8", short_name="Masterwork cross", long_name="It's a weapon of pointy death, " + "but it's beautifully made. Shiny.", damage="1d6", is_double_handed=True ) weapon_init(name="mace1.1", short_name="Mace", long_name="No powder here, this is a serious mace, " + "made for resounding head impacts.", damage="1d8" ) weapon_init(name="mace1.2", short_name="War Mace", long_name="If you need to go to war, you need this mace.", damage="1d10" ) weapon_init(name="quiver1.1", short_name="Arrows", long_name="Standard issue ACME arrows.", damage="1d6" ) weapon_init(name="quiver1.2", short_name="Flame Arrows", long_name="Arrows that will ingite on use. No returns.", damage="1d6" ) weapon_init(name="quiver1.3", short_name="Energy Arrows", long_name="Arrows that transform into beams of " + "energy on use. No kidding.", damage="1d6" ) weapon_init(name="quiver1.4", short_name="Acid Arrows", long_name="Don't touch the end of these arrows. " + "And don't try and taste them either.", damage="1d6" ) weapon_init(name="stick1.1", short_name="Just a stick", long_name="Sticky the stick.", damage="1d4" ) weapon_init(name="stick1.2", short_name="Flame Stick", long_name="Sticky the stick, burning version.", damage="1d4" ) weapon_init(name="stick1.3", short_name="Magic Stick", long_name="It's a magically enhanced stick... " + "Who would believe that?", damage="1d4+1" ) weapon_init(name="stick2.1", short_name="Stick V2", long_name="Sticky the stick, mildly improved version.", damage="1d4+2" ) weapon_init(name="stick2.2", short_name="Hooked Stick", long_name="Great stick for inflicting a bit of extra " + "damage than your common stick.", damage="1d4+3" ) weapon_init(name="stick2.3", short_name="Gnarly Stick", long_name="An oaken stick with gnarly stuff on " + "the business end. Good for hitting things with.", damage="1d4+4" ) weapon_init(name="stick2.4", short_name="Battle Stick", long_name="The stick of the professional peasant.", damage="1d6" ) weapon_init(name="sword1.1", short_name="Shortest Sword", long_name="The shortest of short swords.", damage="1d4" ) weapon_init(name="sword1.2", short_name="Short Sword", long_name="The second shortest of short swords.", damage="1d6" ) weapon_init(name="sword1.3", short_name="Needle Sword", long_name="A sword with a point so fine it will " + "pierce you to the heart.", damage="1d4+2" ) weapon_init(name="sword1.4", short_name="Meat Cleaver", long_name="Not exactly a skillful weapon, but it does " + "the job. The job of a lunatic.", damage="1d6" ) weapon_init(name="sword1.5", short_name="Ice Shortsword", long_name="It's short, blue and icy.", damage="1d6+1" ) weapon_init(name="sword1.6", short_name="Platinum Shortsword", long_name="Of short swords, this is one of the best. " + "Durable, short and shiny.", damage="1d8" ) weapon_init(name="sword1.7", short_name="Flaming Shortsword", long_name="Mesmerizing blade. Flame ripples along its edges.", damage="1d6+2" ) weapon_init(name="sword1.8", short_name="Gladius", long_name="Wide bladed Roman style sword. " + "Great for leaving big wounds.", damage="1d4+3" ) weapon_init(name="sword1.9", short_name="Dao", long_name="Wicked curved blade.", damage="1d6+2" ) weapon_init(name="sword1.10", short_name="Khopesh", long_name="The oriental blade of the professional.", damage="1d6+4" ) weapon_init(name="sword1.11", short_name="Long Sword", long_name="It's long. And a sword.", damage="1d8", is_double_handed=True ) weapon_init(name="sword1.12", short_name="Claymore", long_name="The sword of the Highlander. This sword " + "will give you your freedom. Or someone elses.", damage="1d8+2", is_double_handed=True ) weapon_init(name="sword1.13", short_name="Greatsword", long_name="It's a sword and it's great.", damage="1d10", is_double_handed=True ) weapon_init(name="sword1.14", short_name="Masterwork Greatsword", long_name="Don't mess around. Get this great sword.", damage="1d10+2", is_double_handed=True ) weapon_init(name="sword1.15", short_name="Platinum Greatsword", long_name="They don't come much tougher than this.", damage="1d12+5", is_double_handed=True ) weapon_init(name="sword1.16", short_name="Flaiming Greatsword", long_name="Dismember and cook your enemies.", damage="1d10+3", is_double_handed=True ) weapon_init(name="sword1.17", short_name="Serrated Sword", long_name="Slice and dice with greatness.", damage="1d6+4" ) weapon_init(name="sword1.18", short_name="Ulfbehrt", long_name="Quality hybrid of Viking and Knightly sword", damage="1d8+2", is_double_handed=True ) weapon_init(name="sword1.19", short_name="Khanda", long_name="Double edged straight sword", damage="1d10" ) weapon_init(name="sword1.20", short_name="Ice Sword", long_name="Ice ice sword.", damage="1d10+3" ) weapon_init(name="sword1.22", short_name="Zweihander", long_name="Massive two handed ultra great sword.", damage="1d12+6", is_double_handed=True ) weapon_init(name="sword_wooden1.1", short_name="Wooden Sword aka Stick", long_name="It's a stick", damage="1d4" ) weapon_init(name="warhammer1.1", short_name="Maul", long_name="Long handled warhammer with metal head", damage="1d8" ) weapon_init(name="warhammer1.2", short_name="Warhammer", long_name="It's a hammer. For war.", damage="1d10+1", is_double_handed=True ) weapon_init(name="warhammer1.3", short_name="Masterwork Warhammer", long_name="A war hammer of distinction.", damage="1d12+2", is_double_handed=True ) init()
lgpl-3.0
-4,042,375,541,105,230,000
36.643059
79
0.45748
false
GeoMop/GeoMop
testing/Analysis/test_pipeline_module_import.py
1
1187
import Analysis.pipeline as p def test_classes(): try: p.Int() p.Bool() p.Float() p.String() p.Struct() p.Ensemble(p.Int()) p.And(p.Bool(True), p.Bool(False)) p.Or(p.Bool(True), p.Bool(False)) p.Input() p.Connector() p.RangeGenerator() p.VariableGenerator() p.Flow123dAction() p.Convertor(p.Input(0)) p.Predicate(p.Input(0)) p.KeyConvertor(p.Input(0)) p.Adapter(p.Input(0)) p.Pipeline() p.Workflow() p.ForEach() except: assert False, "All public classes are not vissible" for types in ( "DTT", "BaseDTT", " CompositeDTT", "CompositiIter", "SortableDTT", "PredicatePoint", "TT", "GDTT", "GDTTFunc", "Bridge", " ActionType", "ActionStateType", "BaseActionType", "ConnectorActionType", " GeneratorActionType", "ParametrizedActionType", "WrapperActionType", "WorkflowActionType" ): try: test = eval("p."+types+"()") except: continue assert test is None , "Private module class {0} is vissible".format(types)
gpl-3.0
-4,680,865,433,653,834,000
29.435897
82
0.544229
false
DreamerBear/awesome-py3-webapp
www/core/common/apis.py
1
2526
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : 2017/10/18 16:34 # @Author : xxc727xxc ([email protected]) # @Version : 1.0.0 ''' JSON API definition ''' class Page(object): ''' Page object for display pages. ''' def __init__(self, item_count, page_index=1, page_size=10): ''' Init Pagination by item_count, page_index and page_size. >>> p1 = Page(100, 1) >>> p1.page_count 10 >>> p1.offset 0 >>> p1.limit 10 >>> p2 = Page(90, 9, 10) >>> p2.page_count 9 >>> p2.offset 80 >>> p2.limit 10 >>> p3 = Page(91, 10, 10) >>> p3.page_count 10 >>> p3.offset 90 >>> p3.limit 10 ''' self.item_count = item_count self.page_size = page_size self.page_count = item_count // page_size + (1 if item_count % page_size > 0 else 0) if (item_count == 0) or (page_index > self.page_count): self.offset = 0 self.limit = 0 self.page_index = 1 else: self.page_index = page_index self.offset = self.page_size * (page_index - 1) self.limit = self.page_size self.has_next = self.page_index < self.page_count self.has_previous = self.page_index > 1 def __str__(self): return 'item_count: %s, page_count: %s, page_index: %s, page_size: %s, offset: %s, limit: %s' % ( self.item_count, self.page_count, self.page_index, self.page_size, self.offset, self.limit) __repr__ = __str__ class APIError(Exception): def __init__(self, error, data='', message=''): super().__init__(message) self.error = error self.data = data self.message = message class APIValueError(APIError): ''' Indicate the input value has error or invalid. The data specifies the error field of input form. ''' def __init__(self, field, message=''): super().__init__('value:invalid', field, message) class APIResourceNotFoundError(APIError): ''' Indicate the resource was not found. The data specifies the resource name. ''' def __init__(self, field, message=''): super().__init__('value:notfound', field, message) class APIPermissionError(APIError): ''' Indicate the api has no permission. ''' def __init__(self, message=''): super().__init__('permission:forbidden', 'permission', message)
gpl-3.0
-5,158,730,437,111,365,000
25.589474
105
0.538797
false
trbarrettjr/research-apps
projected.py
1
1091
#!/usr/bin/env python import re import sys def getData(data): name = re.search(r'\w\s\w\s[\w]+|\w\s{3}\w+', data) employee = name.group() # Headers are as follows below: # Event, Date, Time, Train, OD Date, OD Time tuples = re.findall(r'(\w+|\w+\s\w+|\w+\s\w+\s\w+|[\w-]+)\s+(\d+)\s(\d+)\s(\w+)\s(\d+)\s(\d+)', data) #print employee #print tuples outFileName = employee + '.csv' employeeName = employee + '\n' header = 'Event Type,Date Checked,Time Checked,Train Projected,Date Projected,Time Projected\n' outfile = open(outFileName, 'w') outfile.write(employeeName) outfile.write(header) for projected in tuples: (type, checkDate, checkTime, train, odDate, odTime) = projected outdata = type + ",'" + checkDate + ",'" + checkTime + "," + train + ",'" + odDate + ",'" + odTime + "\n" outfile.write(outdata) def main(): if len(sys.argv) >= 2: filename = sys.argv[1] else: print 'Missing: filename' sys.exit(1) f = open(filename, 'r') text = f.read() f.close() getData(text) if __name__ == '__main__': main()
cc0-1.0
3,289,933,708,136,195,600
23.244444
109
0.594867
false
GNOME/chronojump-server
chronojumpserver/views.py
1
9513
# -*- coding: utf-8 -*- """Chronojump Server views controller.""" from chronojumpserver import app from flask import render_template, request, redirect, url_for, abort, flash from urlparse import urlparse, urljoin from flask_wtf.file import FileField from chronojumpserver.models import Person, Station, RFIDHistory, User, Group, GroupCoach, GroupPerson, Coach from chronojumpserver.forms import PersonForm, LoginForm from flask_login import login_required, login_user, logout_user, current_user from chronojumpserver.database import db_session import os from time import time def is_safe_url(target): """ Snippet to check if the url is safe, specially when coming from login action. """ ref_url = urlparse(request.host_url) test_url = urlparse(urljoin(request.host_url, target)) return test_url.scheme in ('http', 'https') and \ ref_url.netloc == test_url.netloc @app.route('/') @login_required def index(): """Chronojump Server Home page.""" return render_template('index.html') @app.route('/home') def airport(): """Airport mode.""" #stations = [ station.serialize for station in Station.query.filter(Station.type != 'S')] stations = [ station.serialize for station in Station.query.all()] players = [ player.serialize for player in Person.query.all()] return render_template('airport.html', stations=stations, players=players) @app.route('/results') @login_required def show_results(): user_id = current_user.id coach = Coach.query.filter(Coach.user_id == user_id).first() groups = [] groups_by_coach = [ g.id for g in GroupCoach.query.filter(GroupCoach.coach_id == coach.id)] for g in Group.query.filter(Group.id.in_(groups_by_coach)): groups.append({ 'id': g.id, 'name': g.name.decode('utf-8') }) return render_template('results.html', groups=groups, coach_id=coach.id, org_id=2) @app.route('/sprints') @login_required def show_sprints(): """Show sprints view.""" return render_template('sprints.html') @app.route('/player_list') def show_players(): """Show players view.""" stations = [] for station in Station.query.filter(Station.exercises is not None ): stations.append({ 'id': station.id, 'name': station.name.decode('utf-8'), 'type': station.type }) return render_template('player_list.html', stations=stations) @app.route('/stations') @login_required def show_stations(): """Show Stations and Exercises.""" stations = [] for station in Station.query.all(): stations.append({ 'id': station.id, 'name': station.name.decode('utf-8'), 'type': station.type }) return render_template('station_list.html', stations=stations) def _update_player_photo(player_id, photo, previous_imageName): """Update the photo of the player, and return the path.""" # First remove the previous photo if previous_imageName: previous_path = os.path.join('chronojumpserver', app.config['UPLOAD_FOLDER'], previous_imageName) # Remove if exists if os.path.exists(previous_path): os.unlink(previous_path) # Set the new photo filename new_photo = 'player_' + str(player_id) + '_' + str(int(time())) full_path = os.path.join('chronojumpserver', app.config['UPLOAD_FOLDER'], new_photo) # save the photo in the disk photo.save(full_path) # Update the photo in the database db_session.query(Person).filter_by(id=player_id).update({ "imageName": new_photo }) # Commit the changes db_session.commit() @app.route('/player/<player_id>', methods=['GET', 'POST']) @login_required def player_detail(player_id): """Show players detail.""" has_errors = False msg = None # Get the player id passed by argument player = Person.query.filter(Person.id == player_id).first() form = PersonForm() if request.method == "GET": form.fullname.data = player.name.decode('utf-8') form.height.data = player.height form.weight.data = player.weight form.rfid.data = player.rfid elif request.method == "POST": # Save the image in photos folder if form.validate_on_submit(): """Form Valid. Update the player.""" # Update the player db_session.query(Person).filter_by(id=player_id).update({ "name": form.fullname.data, "height": form.height.data, "weight": form.weight.data, "rfid": form.rfid.data }) # Commit the changes db_session.commit() # If a new photo has passed, update it too # Check if a photo has been passed too if form.photo.data: _update_player_photo(player_id, form.photo.data, player.imageName) # If rfid is new, add the new rfid into history table r = RFIDHistory.query.filter(RFIDHistory.rfid == form.rfid.data).first() if not r: # Add this new rfid into rfidHistory table r = RFIDHistory(rfid=form.rfid.data, person_id=player_id) db_session.add(r) db_session.commit() # Update done msg = "Les dades del jugador %s s'han guardat correctament." % form.fullname.data else: # There are some errors in the form msg = 'Hi han hagut errors, revisa el formulari.' has_errors = True form.photo.data = player.imageName return render_template('player_detail.html', form=form, msg=msg, has_errors=has_errors) @app.route('/player/add', methods=['GET', 'POST']) @login_required def add_player(): """Show form to add a new player.""" has_errors = False msg = None form = PersonForm() if request.method == "POST": if form.validate_on_submit(): """Form is valid, add the new player.""" player = Person( name=form.fullname.data, height=form.height.data, weight=form.weight.data, rfid=form.rfid.data ) db_session.add(player) # Commit the changes db_session.commit() # If a photo has given, update after person creation if form.photo.data: _update_player_photo(player.id, form.photo.data, None) # Add the rfid into rfidHistory table r = RFIDHistory(rfid=form.rfid.data, person_id=player.id) db_session.add(r) db_session.commit() msg = "Ej jugador %s s'ha creat correctament." % (form.fullname.data,) return redirect('/player_list') else: # There are some errors in the form msg = 'Hi han hagut errors, revisa el formulari.' has_errors = True else: """To remove None default values in the form.""" form.fullname.data = "" form.rfid.data = "" return render_template('player_detail.html', form=form, msg=msg, has_errors=has_errors) @app.route('/login', methods=['GET', 'POST']) def login(): # Here we use a class of some kind to represent and validate our # client-side form data. For example, WTForms is a library that will # handle this for us, and we use a custom LoginForm to validate. form = LoginForm() if request.method == "GET": form.organization.data = "" form.coach.data = "" form.password.data = "" if form.validate_on_submit(): import md5 username = form.coach.data password = md5.md5(form.password.data).hexdigest() print password user = User.query.filter(User.username == username).first() if user: print "DEBUG: User %s found" % user.username print user.password if password == user.password: print "DEBUG: Passwords match. Allow login" # Login and validate the user. # user should be an instance of your `User` class login_user(user) flash('Logged in successfully.') next = request.args.get('next') # is_safe_url should check if the url is safe for redirects. # See http://flask.pocoo.org/snippets/62/ for an example. if not is_safe_url(next): return abort(400) return redirect(next or url_for('index')) else: # Invalid password error_msg = u"Contrasenya invàlida" return render_template('login.html', form=form, error_msg=error_msg) else: # Invalid user error_msg = u"El usuari %s no existeix!" % username return render_template('login.html', form=form, error_msg=error_msg) return render_template('login.html', form=form) @app.route("/logout") @login_required def logout(): logout_user() return redirect(url_for('login')) # Networks changes @app.route("/group-players") @login_required def show_groups_and_players(): return render_template('groups_and_players.html')
agpl-3.0
-1,233,406,085,584,981,500
33.32491
109
0.589924
false
f41c0r/Cipher-Frequency-Analyzer
lettercounter.py
1
2928
#!/usr/bin/env python2 #fills a sqlite3 database with data from a plaintext file import sys import re myFile = open(sys.argv[1],"r") line = myFile.readline() myDict = {} myDict2 = {} myDict3 = {} totalLength = 0 freqDict = {"a" : 8.167, "b" : 1.49, "c" : 2.78, "d" : 4.253, "e" : 12.702, "f" : 2.228, "g" : 2.015, "h" : 6.094, "i" : 6.966, "j" : 0.153, "k" : 0.772, "l" : 4.025, "m" : 2.406, "n" : 6.749, "o" : 7.507, "p" : 1.929, "q" : 0.095, "r" : 5.987, "s" : 6.327, "t" : 9.056, "u" : 2.758, "v" : 0.978, "w" : 2.360, "x" : 0.150, "y" : 1.974, "z" : 0.07} firstletterlength = 0 while line: for i, letter in enumerate(line): #comment out the next time if the " " is also encrypted if letter is not " ": if i == 0: myDict3[letter] = 1 firstletterlength +=1 if i !=0 and line[i-1] == " ": if letter in myDict3: myDict3[letter] += 1 firstletterlength +=1 else: myDict3[letter] = 1 firstletterlength +=1 if letter in myDict: myDict[letter] += 1 else: myDict[letter] = 1 # comment out if " " is also encrypted totalLength += len(re.sub(" ","",line)) # comment out if " " is NOT encrypted # totalLength += len(line) line = myFile.readline() myFile.close() print print "PERCENTAGES OF FIRST LETTERS" print for k in sorted(myDict3, key=lambda k: myDict3[k], reverse=True): print (k,':', str(100 * float(float(myDict3[k]) / float(firstletterlength)))) # print print "TOTAL FREQUENCIES PER LETTER IN CIPHERTEXT:" print for letter in myDict: print (letter,':',str(myDict[letter])) print print "FREQUENCIES IN CIPHERTEXT IN ALPHABETICAL ORDER WITH PERCENTAGES" print for letter in myDict: myDict2[letter] = float(float(myDict[letter]) / float(totalLength)) * 100 print (letter,':',str(myDict2[letter])) reverseFreqDict = {} listFreq = [] print print "FREQUENCES IN THE ENGLISH LANGUAGE IN ALPHABETICAL ORDER WITH PERCENTAGES" print for letter in freqDict: print (letter, ":",str(freqDict[letter])) reverseFreqDict[freqDict[letter]] = letter listFreq.append(freqDict[letter]) print print "LETTERS IN THE ENGLISH LANGUAGE IN ORDER OF FREQUENCY:" print listFreq = sorted(listFreq,reverse=True) for number in listFreq: print(reverseFreqDict[number], ":", str(number)) print print "LETTERS IN CIPHERTEXT IN ORDER OF FREQUENCY" print reverseFreqDict = {} listFreq = [] for letter in myDict2: if myDict2[letter] not in reverseFreqDict: reverseFreqDict[myDict2[letter]] = letter else: reverseFreqDict[myDict2[letter]] = reverseFreqDict[myDict2[letter]] + "," + letter listFreq.append(myDict2[letter]) listFreq = sorted(listFreq,reverse=True) for number in listFreq: print(reverseFreqDict[number], ":", str(number))
gpl-3.0
-4,992,788,253,731,573,000
30.483871
347
0.614754
false
mhrivnak/crane
tests/test_app.py
2
3074
import logging from flask import Flask import mock import unittest2 from crane import app, config, app_util, exceptions, search from crane.search import GSA from crane.views import v1 from . import demo_data @mock.patch('os.environ.get', spec_set=True, return_value=demo_data.demo_config_path) class TestCreateApp(unittest2.TestCase): def setUp(self): super(TestCreateApp, self).setUp() with mock.patch('crane.app.init_logging') as mock_init_logging: self.app = app.create_app() # hold this so one of the tests can inspect it self.mock_init_logging = mock_init_logging def test_returns_app(self, mock_environ_get): self.assertIsInstance(self.app, Flask) def test_loads_config(self, mock_environ_get): self.assertTrue(config.KEY_DATA_DIR in self.app.config) def test_blueprints_loaded(self, mock_environ_get): self.assertTrue(v1.section.name in self.app.blueprints) def test_handlers_added(self, mock_environ_get): handlers = self.app.error_handler_spec[None][None] self.assertEquals(handlers[0], (exceptions.HTTPError, app_util.http_error_handler)) def test_calls_init_logging(self, mock_environ_get): self.mock_init_logging.assert_called_once_with() def test_calls_search(self, mock_environ_get): # reset to the default state search.backend = search.SearchBackend() # run the "create_app", which because of the mock_environ_get, will load # our demo config. That config has GSA info. with mock.patch('crane.app.init_logging'): app.create_app() # this will only be true if the search config was parsed self.assertIsInstance(search.backend, GSA) @mock.patch('logging.Logger.addHandler', spec_set=True) class TestInitLogging(unittest2.TestCase): def test_adds_handler(self, mock_add_handler): app.create_app() # make sure it was called self.assertEqual(mock_add_handler.call_count, 1) # make sure the first argument is the right type self.assertIsInstance(mock_add_handler.call_args[0][0], logging.Handler) # make sure the first argument was the only argument mock_add_handler.assert_called_once_with(mock_add_handler.call_args[0][0]) @mock.patch('logging.Logger.setLevel', spec_set=True) class TestSetLogLevel(unittest2.TestCase): def setUp(self): super(TestSetLogLevel, self).setUp() with mock.patch('crane.app.init_logging') as mock_init_logging: self.app = app.create_app() def test_debug(self, mock_set_level): self.app.config['DEBUG'] = True app.set_log_level(self.app) # make sure it set the level to debug mock_set_level.assert_called_once_with(logging.DEBUG) def test_not_debug(self, mock_set_level): self.app.config['DEBUG'] = False app.set_log_level(self.app) # make sure it did not change the log level self.assertEqual(mock_set_level.call_count, 0)
gpl-2.0
-1,201,378,466,537,246,000
35.164706
85
0.670787
false
guydavis/lane-detect
older/lane_detect.v2.py
1
6587
# # Attempting to replicate lane detection results described in this tutorial by Naoki Shibuya: # https://medium.com/towards-data-science/finding-lane-lines-on-the-road-30cf016a1165 # For more see: https://github.com/naokishibuya/car-finding-lane-lines # # This 2nd version does a much better job of processing images. # import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 import math import sys import subprocess import os import shutil def convert_hls(image): return cv2.cvtColor(image, cv2.COLOR_RGB2HLS) def select_white_yellow(image): converted = convert_hls(image) lower = np.uint8([ 0, 200, 0]) upper = np.uint8([255, 255, 255]) white_mask = cv2.inRange(converted, lower, upper) lower = np.uint8([ 10, 0, 100]) upper = np.uint8([ 40, 255, 255]) yellow_mask = cv2.inRange(converted, lower, upper) mask = cv2.bitwise_or(white_mask, yellow_mask) return cv2.bitwise_and(image, image, mask = mask) def convert_gray_scale(image): return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) def apply_smoothing(image, kernel_size=15): return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0) def detect_edges(image, low_threshold=50, high_threshold=150): return cv2.Canny(image, low_threshold, high_threshold) def filter_region(image, vertices): mask = np.zeros_like(image) if len(mask.shape)==2: cv2.fillPoly(mask, vertices, 255) else: cv2.fillPoly(mask, vertices, (255,)*mask.shape[2]) return cv2.bitwise_and(image, mask) def select_region(image): rows, cols = image.shape[:2] bottom_left = [cols*0.1, rows*0.95] top_left = [cols*0.4, rows*0.6] bottom_right = [cols*0.9, rows*0.95] top_right = [cols*0.6, rows*0.6] vertices = np.array([[bottom_left, top_left, top_right, bottom_right]], dtype=np.int32) return filter_region(image, vertices) def hough_lines(image): return cv2.HoughLinesP(image, rho=1, theta=np.pi/180, threshold=20, minLineLength=20, maxLineGap=300) def average_slope_intercept(lines): left_lines = [] left_weights = [] right_lines = [] right_weights = [] for line in lines: for x1, y1, x2, y2 in line: if x2==x1: continue slope = (y2-y1)/(x2-x1) intercept = y1 - slope*x1 length = np.sqrt((y2-y1)**2+(x2-x1)**2) if slope < 0: left_lines.append((slope, intercept)) left_weights.append((length)) else: right_lines.append((slope, intercept)) right_weights.append((length)) left_lane = np.dot(left_weights, left_lines) /np.sum(left_weights) if len(left_weights) >0 else None right_lane = np.dot(right_weights, right_lines)/np.sum(right_weights) if len(right_weights)>0 else None return left_lane, right_lane def make_line_points(y1, y2, line): if line is None: return None slope, intercept = line x1 = int((y1 - intercept)/slope) x2 = int((y2 - intercept)/slope) y1 = int(y1) y2 = int(y2) return ((x1, y1), (x2, y2)) def lane_lines(image, lines): left_lane, right_lane = average_slope_intercept(lines) y1 = image.shape[0] y2 = y1*0.6 left_line = make_line_points(y1, y2, left_lane) right_line = make_line_points(y1, y2, right_lane) return left_line, right_line def draw_lane_lines(image, lines, color=[255, 0, 0], thickness=20): line_image = np.zeros_like(image) for line in lines: if line is not None: cv2.line(line_image, *line, color, thickness) return cv2.addWeighted(image, 1.0, line_image, 0.95, 0.0) def mark_failed(image): font = cv2.FONT_HERSHEY_SIMPLEX text = "DETECT FAILED!" textsize = cv2.getTextSize(text, font, 2, 5)[0] textX = int((image.shape[1] - textsize[0]) / 2) textY = int((image.shape[0] + textsize[1]) / 2) cv2.putText(image, text, (textX, textY), font, 2, (255, 0, 0), 5) return image def process_image(dirpath, image_file): if not os.path.exists('tmp'): os.mkdir('tmp') if not os.path.exists('output'): os.makedirs('output') image_name = os.path.splitext(image_file)[0] # First load and show the sample image image = mpimg.imread("{0}/{1}".format(dirpath, image_file)) im = plt.imshow(image) plt.savefig('tmp/1.png') # Now select the white and yellow lines white_yellow = select_white_yellow(image) im = plt.imshow(white_yellow, cmap='gray') plt.savefig('tmp/2.png') # Now convert to grayscale gray_scale = convert_gray_scale(white_yellow) im = plt.imshow(gray_scale, cmap='gray') plt.savefig('tmp/3.png') # Then apply a Gaussian blur blurred_image = apply_smoothing(gray_scale) im = plt.imshow(blurred_image, cmap='gray') plt.savefig('tmp/4.png') # Detect line edges edged_image = detect_edges(blurred_image) im = plt.imshow(edged_image, cmap='gray') plt.savefig('tmp/5.png') # Now ignore all but the area of interest masked_image = select_region(edged_image) im = plt.imshow(masked_image, cmap='gray') plt.savefig('tmp/6.png') # Apply Houghed lines algorithm houghed_lines = hough_lines(masked_image) if houghed_lines is not None: houghed_image = draw_lane_lines(image, lane_lines(image, houghed_lines)) im = plt.imshow(houghed_image, cmap='gray') output_name = "output/{0}_passed.gif".format(image_name) print("Detected lanes in '{0}/{1}'. See result in '{2}'.".format(dirpath, image_file, output_name)) else: im = plt.imshow(mark_failed(image), cmap='gray') output_name = "output/{0}_failed.gif".format(image_name) print("Failed detection in '{0}/{1}'. See result in '{2}'.".format(dirpath, image_file, output_name)) plt.savefig('tmp/7.png') # Repeat last image in the loop a couple of times. plt.savefig('tmp/8.png') plt.savefig('tmp/9.png') # Now generate an animated gif of the image stages subprocess.call( ['convert', '-delay', '100', '-loop', '0', 'tmp/*.png', output_name] ) shutil.rmtree('tmp') if __name__ == "__main__": if len(sys.argv) == 1: print("Usage: python3 ./lane_detect.py images/*") else: for arg in sys.argv[1:]: if not os.path.isfile(arg): print("Not a file: {0}".format(arg)) else: dirpath,filename = os.path.split(arg) process_image(dirpath, filename)
mit
2,390,023,151,074,185,000
34.610811
109
0.627752
false
hrantzsch/signature-verification
tools/mkdata_background.py
1
3585
""" This script is used to create a training database based on GPDSSynth signatures. Images are scaled to 192x96; Paper-like backgrounds are added """ import argparse import numpy as np from scipy.misc import imread, imresize, imshow, imsave from PIL import Image import os from skimage.transform import rotate import time import prepimage def load_backgrounds(folder): """read image file and convert to grayscale""" return [imresize( np.dot(imread(os.path.join(folder, bg_file))[..., :3], [0.299, 0.587, 0.144]), 0.5) for bg_file in os.listdir(folder) if '.jpg' in bg_file or '.png' in bg_file] def get_background(img, size): """crop a random piece of desired size from the given image""" y = np.random.randint(0, img.shape[0]-size[0]) x = np.random.randint(0, img.shape[1]-size[1]) return imresize(img[y:y+size[0], x:x+size[1]], (size[0], size[1])) def get_signatures(data_dir, no_forgeries=False): for (path, _, files) in os.walk(data_dir): for f in files: if '.png' in f and not (no_forgeries and 'cf' in f): yield os.path.join(path, f) def get_signatures_(data_dir, no_forgeries=False): for f in os.listdir(data_dir): if '.png' in f and not (no_forgeries and 'cf' in f): yield os.path.join(data_dir, f) def get_roi(image, pad=20): roix, roiy = prepimage.min_max(prepimage.binarize(image)) roix = (max(0, roix[0] - pad), min(roix[1] + pad, image.shape[1])) roiy = (max(0, roiy[0] - pad), min(roiy[1] + pad, image.shape[0])) return roiy, roix def process_signature(sig_path): sig = imread(sig_path).astype(np.float32) / 255.0 sig = rotate(sig, np.random.randint(-25, 25), cval=1.0, resize=True) roiy, roix = get_roi(sig) shape = (roiy[1] - roiy[0], roix[1] - roix[0]) bg = get_background(np.random.choice(backgrounds), shape).astype(np.float32) / 255.0 img = bg + sig[roiy[0]:roiy[1], roix[0]:roix[1]] img = imresize(img, target_size, mode='L').astype(np.float32) img *= 1.0/img.max() # return np.minimum(img, 1.0) return img if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('signatures', help='Path to extracted GPDS data') parser.add_argument('backgrounds', help='Path to background files (jpg or png)') parser.add_argument('--out', '-o', default='images', help='Path to save output images') parser.add_argument('--start', '-s', default=1, type=int, help='User to start with (for resumes)') args = parser.parse_args() target_size = (384, 768) # signatures = list(get_signatures(args.signatures)) backgrounds = load_backgrounds(args.backgrounds) print("Loaded {} backgrounds".format(len(backgrounds))) for user in range(args.start, 20): user_str = "{}".format(user) print("processing user " + user_str) os.makedirs(os.path.join(args.out, user_str), exist_ok=True) count = 0 start = time.clock() for sig in get_signatures_(os.path.join(args.signatures, user_str)): fname, _ = os.path.splitext(os.path.basename(sig)) for i in range(1, 21): outname = os.path.join(args.out, user_str, "{}-{:02d}.png".format(fname, i)) imsave(outname, process_signature(sig), 'png') count += 1 print("{} images in {:3f} sec".format(count, time.clock() - start))
gpl-3.0
3,424,798,210,652,326,400
35.212121
92
0.600558
false
runt18/nupic
examples/prediction/experiments/confidenceTest/base/description.py
1
13918
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import os import imp from nupic.encoders import (LogEncoder, DateEncoder, MultiEncoder, CategoryEncoder, SDRCategoryEncoder, ScalarEncoder) from nupic.data.file_record_stream import FileRecordStream from nupic.frameworks.prediction.callbacks import (printSPCoincidences, printTPCells, printTPTiming, displaySPCoincidences, setAttribute, sensorRewind, sensorOpen) from nupic.frameworks.prediction.helpers import updateConfigFromSubConfig # ---------------------------------------------------------------------- # Define this experiment's base configuration, and adjust for any modifications # if imported from a sub-experiment. config = dict( sensorVerbosity = 0, spVerbosity = 0, tpVerbosity = 0, ppVerbosity = 0, dataSetPackage = None, # This can be specified in place of the next 6: filenameTrain = 'confidence/confidence1.csv', filenameTest = 'confidence/confidence1.csv', filenameCategory = None, dataGenScript = None, dataDesc = None, dataGenNumCategories = None, dataGenNumTraining = None, dataGenNumTesting = None, noiseAmts = [], iterationCountTrain = None, iterationCountTest = None, evalTrainingSetNumIterations = 10000, # Set to 0 to disable completely trainSP = True, trainTP = True, trainTPRepeats = 1, computeTopDown = 1, # Encoder overlappingPatterns = 0, # SP params disableSpatial = 1, spPrintPeriodicStats = 0, # An integer N: print stats every N iterations spCoincCount = 200, spNumActivePerInhArea = 3, # TP params tpNCellsPerCol = 20, tpInitialPerm = 0.6, tpPermanenceInc = 0.1, tpPermanenceDec = 0.000, tpGlobalDecay = 0.0, tpPAMLength = 1, tpMaxSeqLength = 0, tpMaxAge = 1, tpTimingEvery = 0, temporalImp = 'cpp', ) updateConfigFromSubConfig(config) # ========================================================================== # Was a complete dataset package specified? This is an alternate way to # specify a bunch of dataset related config parameters at once. They are # especially helpful when running permutations - it keeps the permutations # directory names shorter. if config['dataSetPackage'] is not None: assert (config['filenameTrain'] == 'confidence/confidence1.csv') assert (config['filenameTest'] == 'confidence/confidence1.csv') assert (config['filenameCategory'] is None) assert (config['dataGenScript'] is None) assert (config['dataDesc'] is None) assert (config['dataGenNumCategories'] is None) assert (config['dataGenNumTraining'] is None) assert (config['dataGenNumTesting'] is None) if config['dataSetPackage'] == 'firstOrder': config['filenameTrain'] = 'extra/firstOrder/fo_1000_10_train_resets.csv' config['filenameTest'] = 'extra/firstOrder/fo_10000_10_test_resets.csv' config['filenameCategory'] = 'extra/firstOrder/categories.txt' elif config['dataSetPackage'] == 'secondOrder0': config['filenameTrain'] = None config['filenameTest'] = None config['filenameCategory'] = None config['dataGenScript'] = 'extra/secondOrder/makeDataset.py' config['dataDesc'] = 'model0' config['dataGenNumCategories'] = 20 config['dataGenNumTraining'] = 5000 config['dataGenNumTesting'] = 1000 elif config['dataSetPackage'] == 'secondOrder1': config['filenameTrain'] = None config['filenameTest'] = None config['filenameCategory'] = None config['dataGenScript'] = 'extra/secondOrder/makeDataset.py' config['dataDesc'] = 'model1' config['dataGenNumCategories'] = 25 config['dataGenNumTraining'] = 5000 config['dataGenNumTesting'] = 1000 elif config['dataSetPackage'] == 'secondOrder2': config['filenameTrain'] = None config['filenameTest'] = None config['filenameCategory'] = None config['dataGenScript'] = 'extra/secondOrder/makeDataset.py' config['dataDesc'] = 'model2' config['dataGenNumCategories'] = 5 config['dataGenNumTraining'] = 5000 config['dataGenNumTesting'] = 1000 else: assert False def getBaseDatasets(): datasets = dict() for name in ['filenameTrain', 'filenameTest', 'filenameCategory', 'dataGenScript']: if config[name] is not None: datasets[name] = config[name] return datasets def getDatasets(baseDatasets, generate=False): # nothing to generate if no script if not 'dataGenScript' in baseDatasets: return baseDatasets # ------------------------------------------------------------------- # Form the path to each dataset datasets = dict(baseDatasets) dataPath = os.path.dirname(baseDatasets['dataGenScript']) # At some point, this prefix will be modified to be unique for each # possible variation of parameters into the data generation script. prefix = '{0!s}'.format((config['dataDesc'])) datasets['filenameTrain'] = os.path.join(dataPath, '{0!s}_train.csv'.format(prefix)) datasets['filenameTest'] = os.path.join(dataPath, '{0!s}_test.csv'.format(prefix)) datasets['filenameCategory'] = os.path.join(dataPath, '{0!s}_categories.txt'.format(prefix)) if not generate: return datasets # ------------------------------------------------------------------- # Generate our data makeDataset = imp.load_source('makeDataset', baseDatasets['dataGenScript']) makeDataset.generate(model = config['dataDesc'], filenameTrain = datasets['filenameTrain'], filenameTest = datasets['filenameTest'], filenameCategory = datasets['filenameCategory'], numCategories=config['dataGenNumCategories'], numTrainingRecords=config['dataGenNumTraining'], numTestingRecords=config['dataGenNumTesting'], numNoise=0, resetsEvery=None) return datasets def getDescription(datasets): # ======================================================================== # Network definition # Encoder for the sensor encoder = MultiEncoder() if 'filenameCategory' in datasets: categories = [x.strip() for x in open(datasets['filenameCategory']).xreadlines()] else: categories = [chr(x+ord('a')) for x in range(26)] if config['overlappingPatterns']: encoder.addEncoder("name", SDRCategoryEncoder(n=200, w=config['spNumActivePerInhArea'], categoryList=categories, name="name")) else: encoder.addEncoder("name", CategoryEncoder(w=config['spNumActivePerInhArea'], categoryList=categories, name="name")) # ------------------------------------------------------------------ # Node params # The inputs are long, horizontal vectors inputDimensions = (1, encoder.getWidth()) # Layout the coincidences vertically stacked on top of each other, each # looking at the entire input field. columnDimensions = (config['spCoincCount'], 1) # If we have disableSpatial, then set the number of "coincidences" to be the # same as the encoder width if config['disableSpatial']: columnDimensions = (encoder.getWidth(), 1) config['trainSP'] = 0 sensorParams = dict( # encoder/datasource are not parameters so don't include here verbosity=config['sensorVerbosity'] ) CLAParams = dict( # SP params disableSpatial = config['disableSpatial'], inputDimensions = inputDimensions, columnDimensions = columnDimensions, potentialRadius = inputDimensions[1]/2, potentialPct = 1.00, gaussianDist = 0, commonDistributions = 0, # should be False if possibly not training localAreaDensity = -1, #0.05, numActiveColumnsPerInhArea = config['spNumActivePerInhArea'], dutyCyclePeriod = 1000, stimulusThreshold = 1, synPermInactiveDec=0.11, synPermActiveInc=0.11, synPermActiveSharedDec=0.0, synPermOrphanDec = 0.0, minPctDutyCycleBeforeInh = 0.001, minPctDutyCycleAfterInh = 0.001, spVerbosity = config['spVerbosity'], spSeed = 1, printPeriodicStats = int(config['spPrintPeriodicStats']), # TP params tpSeed = 1, disableTemporal = 0 if config['trainTP'] else 1, temporalImp = config['temporalImp'], nCellsPerCol = config['tpNCellsPerCol'] if config['trainTP'] else 1, collectStats = 1, burnIn = 2, verbosity = config['tpVerbosity'], newSynapseCount = config['spNumActivePerInhArea'], minThreshold = config['spNumActivePerInhArea'], activationThreshold = config['spNumActivePerInhArea'], initialPerm = config['tpInitialPerm'], connectedPerm = 0.5, permanenceInc = config['tpPermanenceInc'], permanenceDec = config['tpPermanenceDec'], # perhaps tune this globalDecay = config['tpGlobalDecay'], pamLength = config['tpPAMLength'], maxSeqLength = config['tpMaxSeqLength'], maxAge = config['tpMaxAge'], # General params computeTopDown = config['computeTopDown'], trainingStep = 'spatial', ) dataSource = FileRecordStream(datasets['filenameTrain']) description = dict( options = dict( logOutputsDuringInference = False, ), network = dict( sensorDataSource = dataSource, sensorEncoder = encoder, sensorParams = sensorParams, CLAType = 'py.CLARegion', CLAParams = CLAParams, classifierType = None, classifierParams = None), ) if config['trainSP']: description['spTrain'] = dict( iterationCount=config['iterationCountTrain'], #iter=displaySPCoincidences(50), #finish=printSPCoincidences() ), else: description['spTrain'] = dict( # need to train with one iteration just to initialize data structures iterationCount=1) if config['trainTP']: description['tpTrain'] = [] for i in xrange(config['trainTPRepeats']): stepDict = dict(name='step_{0:d}'.format((i)), setup=sensorRewind, iterationCount=config['iterationCountTrain'], ) if config['tpTimingEvery'] > 0: stepDict['iter'] = printTPTiming(config['tpTimingEvery']) stepDict['finish'] = [printTPTiming(), printTPCells] description['tpTrain'].append(stepDict) # ---------------------------------------------------------------------------- # Inference tests inferSteps = [] if config['evalTrainingSetNumIterations'] > 0: # The training set. Used to train the n-grams. inferSteps.append( dict(name = 'confidenceTrain_baseline', iterationCount = min(config['evalTrainingSetNumIterations'], config['iterationCountTrain']), ppOptions = dict(verbosity=config['ppVerbosity'], printLearnedCoincidences=True, nGrams='train', #ipsDetailsFor = "name,None,2", ), #finish=printTPCells, ) ) # Testing the training set on both the TP and n-grams. inferSteps.append( dict(name = 'confidenceTrain_nonoise', iterationCount = min(config['evalTrainingSetNumIterations'], config['iterationCountTrain']), setup = [sensorOpen(datasets['filenameTrain'])], ppOptions = dict(verbosity=config['ppVerbosity'], printLearnedCoincidences=False, nGrams='test', burnIns = [1,2,3,4], #ipsDetailsFor = "name,None,2", #ipsAt = [1,2,3,4], ), ) ) # The test set if True: if datasets['filenameTest'] != datasets['filenameTrain']: inferSteps.append( dict(name = 'confidenceTest_baseline', iterationCount = config['iterationCountTest'], setup = [sensorOpen(datasets['filenameTest'])], ppOptions = dict(verbosity=config['ppVerbosity'], printLearnedCoincidences=False, nGrams='test', burnIns = [1,2,3,4], #ipsAt = [1,2,3,4], ipsDetailsFor = "name,None,2", ), ) ) description['infer'] = inferSteps return description
agpl-3.0
-5,982,191,251,469,909,000
33.969849
82
0.596709
false
crDDI/dbgap
tests/test_file_downloader.py
1
2787
# -*- coding: utf-8 -*- # Copyright (c) 2015, Mayo Clinic # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of the <ORGANIZATION> nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. import os import unittest import shutil from dbgap.file_downloader import FileDownloader single_file_template = 'dbgap/studies/%(study)s/%(fullname)s/GapExchange_%(fullname)s.xml' directory_template = '/dbgap/studies/%(study)s/%(fullname)s/pheno_variable_summaries' class FileDownloaderTestCase(unittest.TestCase): def test_dowload_single_file(self): study = 'phs001007' fullname = study + ".v1.p1" dld = FileDownloader('ftp.ncbi.nlm.nih.gov') self.assertEqual(open(os.path.join('data', 'phs001007.xml')).read(), dld.download_file(single_file_template % dict(study=study, fullname=fullname))) def test_dir_download(self): test_dir = os.path.join('data', 'dltest') shutil.rmtree(test_dir, ignore_errors=True) os.makedirs(test_dir) study = 'phs000722' fullname = study + ".v1.p1" dld = FileDownloader('ftp.ncbi.nlm.nih.gov') self.assertEqual(4, dld.download_dir(directory_template % dict(study=study, fullname=fullname), test_dir, name_map=lambda s: s.replace('.xml', '.tst'), file_filtr=lambda s: 'data_dict' in s)) if __name__ == '__main__': unittest.main()
bsd-3-clause
7,975,316,140,981,146,000
47.051724
113
0.717259
false
perclasson/trail
trail/main.py
1
4059
"""Implements a wrapper script for executing a Python program from the command line. The wrapper script works by adding a special directory into the 'PYTHONPATH' environment variable, describing additional Python module search directories, which contains a custom 'sitecustomize' module. When the Python interpreter is started that custom 'sitecustomize' module will be automatically loaded. This allows the custom 'sitecustomize' file to then load any original 'sitecustomize' file which may have been hidden and then bootstrap the registration of the post import hook callback functions.""" import sys import os import time _debug = os.environ.get( 'TRAIL_DEBUG', 'off').lower() in ('on', 'true', '1') def log_message(text, *args): if _debug: text = text % args timestamp = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) print('TRAIL: %s (%d) - %s' % (timestamp, os.getpid(), text)) def run_program(args): log_message('trail - wrapper (%s)', __file__) log_message('working_directory = %r', os.getcwd()) log_message('current_command = %r', sys.argv) log_message('sys.prefix = %r', os.path.normpath(sys.prefix)) try: log_message('sys.real_prefix = %r', sys.real_prefix) except AttributeError: pass log_message('sys.version_info = %r', sys.version_info) log_message('sys.executable = %r', sys.executable) log_message('sys.flags = %r', sys.flags) log_message('sys.path = %r', sys.path) # Determine the location of the special bootstrap directory. Add # this into the 'PYTHONPATH' environment variable, preserving any # existing value the 'PYTHONPATH' environment variable may have. root_directory = os.path.dirname(__file__) boot_directory = os.path.join(root_directory, '__startup__') log_message('root_directory = %r', root_directory) log_message('boot_directory = %r', boot_directory) python_path = boot_directory if 'PYTHONPATH' in os.environ: path = os.environ['PYTHONPATH'].split(os.path.pathsep) if boot_directory not in path: python_path = "%s%s%s" % ( boot_directory, os.path.pathsep, os.environ['PYTHONPATH'] ) os.environ['PYTHONPATH'] = python_path # Set special environment variables which record the location of the # Python installation or virtual environment being used as well as # the Python version. The values of these are compared in the # 'sitecustomize' module with the values for the Python interpreter # which is later executed by the wrapper. If they don't match then # nothing will be done. This check is made as using the wrapper # script from one Python installation around 'python' executing from # a different installation can cause problems. os.environ['TRAIL_PYTHON_PREFIX'] = os.path.realpath( os.path.normpath(sys.prefix)) os.environ['TRAIL_PYTHON_VERSION'] = '.'.join( map(str, sys.version_info[:2])) # Now launch the wrapped program. If the program to run was not an # absolute or relative path then we need to search the directories # specified in the 'PATH' environment variable to try and work out # where it is actually located. program_exe_path = args[0] if not os.path.dirname(program_exe_path): program_search_path = os.environ.get( 'PATH', '').split(os.path.pathsep) for path in program_search_path: path = os.path.join(path, program_exe_path) if os.path.exists(path) and os.access(path, os.X_OK): program_exe_path = path break log_message('program_exe_path = %r', program_exe_path) log_message('execl_arguments = %r', [program_exe_path]+args) os.execl(program_exe_path, *args) def main(): if len(sys.argv) <= 1: sys.exit('Usage: %s program [options]' % os.path.basename( sys.argv[0])) run_program(sys.argv[1:]) if __name__ == '__main__': main()
bsd-2-clause
-460,797,675,587,299,260
34.605263
72
0.654348
false
Einsteinish/PyTune3
apps/reader/models.py
1
71869
import datetime import time import re import redis from collections import defaultdict from operator import itemgetter from pprint import pprint from utils import log as logging from utils import json_functions as json from django.db import models, IntegrityError from django.db.models import Q, F from django.db.models import Count from django.conf import settings from django.contrib.auth.models import User from django.core.cache import cache from django.template.defaultfilters import slugify from mongoengine.queryset import OperationError from mongoengine.queryset import NotUniqueError from apps.reader.managers import UserSubscriptionManager from apps.rss_feeds.models import Feed, MStory, DuplicateFeed from apps.rss_feeds.tasks import NewFeeds from apps.analyzer.models import MClassifierFeed, MClassifierAuthor, MClassifierTag, MClassifierTitle from apps.analyzer.models import apply_classifier_titles, apply_classifier_feeds, apply_classifier_authors, apply_classifier_tags from apps.analyzer.tfidf import tfidf from utils.feed_functions import add_object_to_folder, chunks class UserSubscription(models.Model): """ A feed which a user has subscribed to. Carries all of the cached information about the subscription, including unread counts of the three primary scores. Also has a dirty flag (needs_unread_recalc) which means that the unread counts are not accurate and need to be calculated with `self.calculate_feed_scores()`. """ UNREAD_CUTOFF = datetime.datetime.utcnow() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) user = models.ForeignKey(User, related_name='subscriptions') feed = models.ForeignKey(Feed, related_name='subscribers') user_title = models.CharField(max_length=255, null=True, blank=True) active = models.BooleanField(default=False) last_read_date = models.DateTimeField(default=UNREAD_CUTOFF) mark_read_date = models.DateTimeField(default=UNREAD_CUTOFF) unread_count_neutral = models.IntegerField(default=0) unread_count_positive = models.IntegerField(default=0) unread_count_negative = models.IntegerField(default=0) unread_count_updated = models.DateTimeField(default=datetime.datetime.now) oldest_unread_story_date = models.DateTimeField(default=datetime.datetime.now) needs_unread_recalc = models.BooleanField(default=False) feed_opens = models.IntegerField(default=0) is_trained = models.BooleanField(default=False) objects = UserSubscriptionManager() def __unicode__(self): return '[%s (%s): %s (%s)] ' % (self.user.username, self.user.pk, self.feed.feed_title, self.feed.pk) class Meta: unique_together = ("user", "feed") def canonical(self, full=False, include_favicon=True, classifiers=None): feed = self.feed.canonical(full=full, include_favicon=include_favicon) feed['feed_title'] = self.user_title or feed['feed_title'] feed['ps'] = self.unread_count_positive feed['nt'] = self.unread_count_neutral feed['ng'] = self.unread_count_negative feed['active'] = self.active feed['feed_opens'] = self.feed_opens feed['subscribed'] = True if classifiers: feed['classifiers'] = classifiers return feed def save(self, *args, **kwargs): user_title_max = self._meta.get_field('user_title').max_length if self.user_title and len(self.user_title) > user_title_max: self.user_title = self.user_title[:user_title_max] try: super(UserSubscription, self).save(*args, **kwargs) except IntegrityError: duplicate_feeds = DuplicateFeed.objects.filter(duplicate_feed_id=self.feed_id) for duplicate_feed in duplicate_feeds: already_subscribed = UserSubscription.objects.filter(user=self.user, feed=duplicate_feed.feed) if not already_subscribed: self.feed = duplicate_feed.feed super(UserSubscription, self).save(*args, **kwargs) break else: if self: self.delete() @classmethod def subs_for_feeds(cls, user_id, feed_ids=None, read_filter="unread"): usersubs = cls.objects if read_filter == "unread": usersubs = usersubs.filter(Q(unread_count_neutral__gt=0) | Q(unread_count_positive__gt=0)) if not feed_ids: usersubs = usersubs.filter(user=user_id, active=True).only('feed', 'mark_read_date', 'is_trained') else: usersubs = usersubs.filter(user=user_id, active=True, feed__in=feed_ids).only('feed', 'mark_read_date', 'is_trained') return usersubs @classmethod def story_hashes(cls, user_id, feed_ids=None, usersubs=None, read_filter="unread", order="newest", include_timestamps=False, group_by_feed=True, cutoff_date=None, across_all_feeds=True): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) pipeline = r.pipeline() story_hashes = {} if group_by_feed else [] if not feed_ids and not across_all_feeds: return story_hashes if not usersubs: usersubs = cls.subs_for_feeds(user_id, feed_ids=feed_ids, read_filter=read_filter) feed_ids = [sub.feed_id for sub in usersubs] if not feed_ids: return story_hashes current_time = int(time.time() + 60*60*24) if not cutoff_date: cutoff_date = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_STORY_HASHES) unread_timestamp = int(time.mktime(cutoff_date.timetuple()))-1000 feed_counter = 0 read_dates = dict() for us in usersubs: read_dates[us.feed_id] = int(max(us.mark_read_date, cutoff_date).strftime('%s')) for feed_id_group in chunks(feed_ids, 20): pipeline = r.pipeline() for feed_id in feed_id_group: stories_key = 'F:%s' % feed_id sorted_stories_key = 'zF:%s' % feed_id read_stories_key = 'RS:%s:%s' % (user_id, feed_id) unread_stories_key = 'U:%s:%s' % (user_id, feed_id) unread_ranked_stories_key = 'zU:%s:%s' % (user_id, feed_id) expire_unread_stories_key = False max_score = current_time if read_filter == 'unread': # +1 for the intersection b/w zF and F, which carries an implicit score of 1. min_score = read_dates[feed_id] + 1 pipeline.sdiffstore(unread_stories_key, stories_key, read_stories_key) expire_unread_stories_key = True else: min_score = 0 unread_stories_key = stories_key if order == 'oldest': byscorefunc = pipeline.zrangebyscore else: byscorefunc = pipeline.zrevrangebyscore min_score, max_score = max_score, min_score pipeline.zinterstore(unread_ranked_stories_key, [sorted_stories_key, unread_stories_key]) byscorefunc(unread_ranked_stories_key, min_score, max_score, withscores=include_timestamps) pipeline.delete(unread_ranked_stories_key) if expire_unread_stories_key: pipeline.delete(unread_stories_key) results = pipeline.execute() for hashes in results: if not isinstance(hashes, list): continue if group_by_feed: story_hashes[feed_ids[feed_counter]] = hashes feed_counter += 1 else: story_hashes.extend(hashes) return story_hashes def get_stories(self, offset=0, limit=6, order='newest', read_filter='all', withscores=False, hashes_only=False, cutoff_date=None, default_cutoff_date=None): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) rt = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_TEMP_POOL) ignore_user_stories = False stories_key = 'F:%s' % (self.feed_id) read_stories_key = 'RS:%s:%s' % (self.user_id, self.feed_id) unread_stories_key = 'U:%s:%s' % (self.user_id, self.feed_id) unread_ranked_stories_key = 'z%sU:%s:%s' % ('h' if hashes_only else '', self.user_id, self.feed_id) if withscores or not offset or not rt.exists(unread_ranked_stories_key): rt.delete(unread_ranked_stories_key) if not r.exists(stories_key): # print " ---> No stories on feed: %s" % self return [] elif read_filter == 'all' or not r.exists(read_stories_key): ignore_user_stories = True unread_stories_key = stories_key else: r.sdiffstore(unread_stories_key, stories_key, read_stories_key) sorted_stories_key = 'zF:%s' % (self.feed_id) r.zinterstore(unread_ranked_stories_key, [sorted_stories_key, unread_stories_key]) if not ignore_user_stories: r.delete(unread_stories_key) dump = r.dump(unread_ranked_stories_key) if dump: pipeline = rt.pipeline() pipeline.delete(unread_ranked_stories_key) pipeline.restore(unread_ranked_stories_key, 1*60*60*1000, dump) pipeline.execute() r.delete(unread_ranked_stories_key) current_time = int(time.time() + 60*60*24) if not cutoff_date: cutoff_date = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_UNREAD) if read_filter == "unread": cutoff_date = max(cutoff_date, self.mark_read_date) elif default_cutoff_date: cutoff_date = default_cutoff_date if order == 'oldest': byscorefunc = rt.zrangebyscore if read_filter == 'unread': min_score = int(time.mktime(cutoff_date.timetuple())) + 1 else: min_score = int(time.mktime(cutoff_date.timetuple())) - 1000 max_score = current_time else: byscorefunc = rt.zrevrangebyscore min_score = current_time if read_filter == 'unread': # +1 for the intersection b/w zF and F, which carries an implicit score of 1. max_score = int(time.mktime(cutoff_date.timetuple())) + 1 else: max_score = 0 if settings.DEBUG and False: debug_stories = rt.zrevrange(unread_ranked_stories_key, 0, -1, withscores=True) print " ---> Unread all stories (%s - %s) %s stories: %s" % ( min_score, max_score, len(debug_stories), debug_stories) story_ids = byscorefunc(unread_ranked_stories_key, min_score, max_score, start=offset, num=500, withscores=withscores)[:limit] if withscores: story_ids = [(s[0], int(s[1])) for s in story_ids] if withscores or hashes_only: return story_ids elif story_ids: story_date_order = "%sstory_date" % ('' if order == 'oldest' else '-') mstories = MStory.objects(story_hash__in=story_ids).order_by(story_date_order) stories = Feed.format_stories(mstories) return stories else: return [] @classmethod def feed_stories(cls, user_id, feed_ids=None, offset=0, limit=6, order='newest', read_filter='all', usersubs=None, cutoff_date=None, all_feed_ids=None, cache_prefix=""): rt = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_TEMP_POOL) across_all_feeds = False if order == 'oldest': range_func = rt.zrange else: range_func = rt.zrevrange if feed_ids is None: across_all_feeds = True feed_ids = [] if not all_feed_ids: all_feed_ids = [f for f in feed_ids] # feeds_string = "" feeds_string = ','.join(str(f) for f in sorted(all_feed_ids))[:30] ranked_stories_keys = '%szU:%s:feeds:%s' % (cache_prefix, user_id, feeds_string) unread_ranked_stories_keys = '%szhU:%s:feeds:%s' % (cache_prefix, user_id, feeds_string) stories_cached = rt.exists(ranked_stories_keys) unreads_cached = True if read_filter == "unread" else rt.exists(unread_ranked_stories_keys) if offset and stories_cached and unreads_cached: story_hashes = range_func(ranked_stories_keys, offset, limit) if read_filter == "unread": unread_story_hashes = story_hashes else: unread_story_hashes = range_func(unread_ranked_stories_keys, 0, offset+limit) return story_hashes, unread_story_hashes else: rt.delete(ranked_stories_keys) rt.delete(unread_ranked_stories_keys) story_hashes = cls.story_hashes(user_id, feed_ids=feed_ids, read_filter=read_filter, order=order, include_timestamps=True, group_by_feed=False, usersubs=usersubs, cutoff_date=cutoff_date, across_all_feeds=across_all_feeds) if not story_hashes: return [], [] pipeline = rt.pipeline() for story_hash_group in chunks(story_hashes, 100): pipeline.zadd(ranked_stories_keys, **dict(story_hash_group)) pipeline.execute() story_hashes = range_func(ranked_stories_keys, offset, limit) if read_filter == "unread": unread_feed_story_hashes = story_hashes rt.zunionstore(unread_ranked_stories_keys, [ranked_stories_keys]) else: unread_story_hashes = cls.story_hashes(user_id, feed_ids=feed_ids, read_filter="unread", order=order, include_timestamps=True, group_by_feed=False, cutoff_date=cutoff_date) if unread_story_hashes: for unread_story_hash_group in chunks(unread_story_hashes, 100): rt.zadd(unread_ranked_stories_keys, **dict(unread_story_hash_group)) unread_feed_story_hashes = range_func(unread_ranked_stories_keys, offset, limit) rt.expire(ranked_stories_keys, 60*60) rt.expire(unread_ranked_stories_keys, 60*60) return story_hashes, unread_feed_story_hashes @classmethod def add_subscription(cls, user, feed_address, folder=None, bookmarklet=False, auto_active=True, skip_fetch=False): feed = None us = None logging.user(user, "~FRAdding URL: ~SB%s (in %s) %s" % (feed_address, folder, "~FCAUTO-ADD" if not auto_active else "")) feed = Feed.get_feed_from_url(feed_address) if not feed: code = -1 if bookmarklet: message = "This site does not have an RSS feed. Nothing is linked to from this page." else: message = "This address does not point to an RSS feed or a website with an RSS feed." else: us, subscription_created = cls.objects.get_or_create( feed=feed, user=user, defaults={ 'needs_unread_recalc': True, 'active': auto_active, } ) code = 1 message = "" if us: user_sub_folders_object, created = UserSubscriptionFolders.objects.get_or_create( user=user, defaults={'folders': '[]'} ) if created: user_sub_folders = [] else: user_sub_folders = json.decode(user_sub_folders_object.folders) user_sub_folders = add_object_to_folder(feed.pk, folder, user_sub_folders) user_sub_folders_object.folders = json.encode(user_sub_folders) user_sub_folders_object.save() if auto_active or user.profile.is_premium: us.active = True us.save() if not skip_fetch and feed.last_update < datetime.datetime.utcnow() - datetime.timedelta(days=1): feed = feed.update() from apps.social.models import MActivity MActivity.new_feed_subscription(user_id=user.pk, feed_id=feed.pk, feed_title=feed.title) feed.setup_feed_for_premium_subscribers() return code, message, us @classmethod def feeds_with_updated_counts(cls, user, feed_ids=None, check_fetch_status=False, force=False): feeds = {} # Get subscriptions for user user_subs = cls.objects.select_related('feed').filter(user=user, active=True) feed_ids = [f for f in feed_ids if f and not f.startswith('river')] if feed_ids: user_subs = user_subs.filter(feed__in=feed_ids) for i, sub in enumerate(user_subs): # Count unreads if subscription is stale. if (force or sub.needs_unread_recalc or sub.unread_count_updated < user.profile.unread_cutoff or sub.oldest_unread_story_date < user.profile.unread_cutoff): sub = sub.calculate_feed_scores(silent=True, force=force) if not sub: continue # TODO: Figure out the correct sub and give it a new feed_id feed_id = sub.feed_id feeds[feed_id] = { 'ps': sub.unread_count_positive, 'nt': sub.unread_count_neutral, 'ng': sub.unread_count_negative, 'id': feed_id, } if not sub.feed.fetched_once or check_fetch_status: feeds[feed_id]['fetched_once'] = sub.feed.fetched_once feeds[feed_id]['not_yet_fetched'] = not sub.feed.fetched_once # Legacy. Dammit. if sub.feed.favicon_fetching: feeds[feed_id]['favicon_fetching'] = True if sub.feed.has_feed_exception or sub.feed.has_page_exception: feeds[feed_id]['has_exception'] = True feeds[feed_id]['exception_type'] = 'feed' if sub.feed.has_feed_exception else 'page' feeds[feed_id]['feed_address'] = sub.feed.feed_address feeds[feed_id]['exception_code'] = sub.feed.exception_code return feeds @classmethod def queue_new_feeds(cls, user, new_feeds=None): if not isinstance(user, User): user = User.objects.get(pk=user) if not new_feeds: new_feeds = cls.objects.filter(user=user, feed__fetched_once=False, active=True).values('feed_id') new_feeds = list(set([f['feed_id'] for f in new_feeds])) if not new_feeds: return logging.user(user, "~BB~FW~SBQueueing NewFeeds: ~FC(%s) %s" % (len(new_feeds), new_feeds)) size = 4 for t in (new_feeds[pos:pos + size] for pos in xrange(0, len(new_feeds), size)): NewFeeds.apply_async(args=(t,), queue="new_feeds") @classmethod def refresh_stale_feeds(cls, user, exclude_new=False): if not isinstance(user, User): user = User.objects.get(pk=user) stale_cutoff = datetime.datetime.now() - datetime.timedelta(days=settings.SUBSCRIBER_EXPIRE) # TODO: Refactor below using last_update from REDIS_FEED_UPDATE_POOL stale_feeds = UserSubscription.objects.filter(user=user, active=True, feed__last_update__lte=stale_cutoff) if exclude_new: stale_feeds = stale_feeds.filter(feed__fetched_once=True) all_feeds = UserSubscription.objects.filter(user=user, active=True) logging.user(user, "~FG~BBRefreshing stale feeds: ~SB%s/%s" % ( stale_feeds.count(), all_feeds.count())) for sub in stale_feeds: sub.feed.fetched_once = False sub.feed.save() if stale_feeds: stale_feeds = list(set([f.feed_id for f in stale_feeds])) cls.queue_new_feeds(user, new_feeds=stale_feeds) @classmethod def identify_deleted_feed_users(cls, old_feed_id): users = UserSubscriptionFolders.objects.filter(folders__contains=old_feed_id).only('user') user_ids = [usf.user_id for usf in users] f = open('utils/backups/users.txt', 'w') f.write('\n'.join([str(u) for u in user_ids])) return user_ids @classmethod def recreate_deleted_feed(cls, new_feed_id, old_feed_id=None, skip=0): user_ids = sorted([int(u) for u in open('utils/backups/users.txt').read().split('\n') if u]) count = len(user_ids) for i, user_id in enumerate(user_ids): if i < skip: continue if i % 1000 == 0: print "\n\n ------------------------------------------------" print "\n ---> %s/%s (%s%%)" % (i, count, round(float(i)/count)) print "\n ------------------------------------------------\n" try: user = User.objects.get(pk=user_id) except User.DoesNotExist: print " ***> %s has no account" % user_id continue us, created = UserSubscription.objects.get_or_create(user_id=user_id, feed_id=new_feed_id, defaults={ 'needs_unread_recalc': True, 'active': True, 'is_trained': True }) if not created: print " ***> %s already subscribed" % user.username try: usf = UserSubscriptionFolders.objects.get(user_id=user_id) usf.add_missing_feeds() except UserSubscriptionFolders.DoesNotExist: print " ***> %s has no USF" % user.username # Move classifiers if old_feed_id: classifier_count = 0 for classifier_type in (MClassifierAuthor, MClassifierFeed, MClassifierTag, MClassifierTitle): classifiers = classifier_type.objects.filter(user_id=user_id, feed_id=old_feed_id) classifier_count += classifiers.count() for classifier in classifiers: classifier.feed_id = new_feed_id try: classifier.save() except NotUniqueError: continue if classifier_count: print " Moved %s classifiers for %s" % (classifier_count, user.username) def trim_read_stories(self, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) read_stories_key = "RS:%s:%s" % (self.user_id, self.feed_id) stale_story_hashes = r.sdiff(read_stories_key, "F:%s" % self.feed_id) if not stale_story_hashes: return logging.user(self.user, "~FBTrimming ~FR%s~FB read stories (~SB%s~SN)..." % (len(stale_story_hashes), self.feed_id)) r.srem(read_stories_key, *stale_story_hashes) r.srem("RS:%s" % self.feed_id, *stale_story_hashes) @classmethod def trim_user_read_stories(self, user_id): user = User.objects.get(pk=user_id) r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) subs = UserSubscription.objects.filter(user_id=user_id).only('feed') if not subs: return key = "RS:%s" % user_id feeds = [f.feed_id for f in subs] old_rs = r.smembers(key) old_count = len(old_rs) if not old_count: logging.user(user, "~FBTrimming all read stories, ~SBnone found~SN.") return # r.sunionstore("%s:backup" % key, key) # r.expire("%s:backup" % key, 60*60*24) r.sunionstore(key, *["%s:%s" % (key, f) for f in feeds]) new_rs = r.smembers(key) missing_rs = [] missing_count = 0 feed_re = re.compile(r'(\d+):.*?') for i, rs in enumerate(old_rs): if i and i % 1000 == 0: if missing_rs: r.sadd(key, *missing_rs) missing_count += len(missing_rs) missing_rs = [] found = feed_re.search(rs) if not found: print " ---> Not found: %s" % rs continue rs_feed_id = found.groups()[0] if int(rs_feed_id) not in feeds: missing_rs.append(rs) if missing_rs: r.sadd(key, *missing_rs) missing_count += len(missing_rs) new_count = len(new_rs) new_total = new_count + missing_count logging.user(user, "~FBTrimming ~FR%s~FB/%s (~SB%s sub'ed ~SN+ ~SB%s unsub'ed~SN saved)" % (old_count - new_total, old_count, new_count, missing_count)) def mark_feed_read(self, cutoff_date=None): if (self.unread_count_negative == 0 and self.unread_count_neutral == 0 and self.unread_count_positive == 0 and not self.needs_unread_recalc): return recount = True # Use the latest story to get last read time. if cutoff_date: cutoff_date = cutoff_date + datetime.timedelta(seconds=1) else: latest_story = MStory.objects(story_feed_id=self.feed.pk)\ .order_by('-story_date').only('story_date').limit(1) if latest_story and len(latest_story) >= 1: cutoff_date = (latest_story[0]['story_date'] + datetime.timedelta(seconds=1)) else: cutoff_date = datetime.datetime.utcnow() recount = False if cutoff_date > self.mark_read_date or cutoff_date > self.oldest_unread_story_date: self.last_read_date = cutoff_date self.mark_read_date = cutoff_date self.oldest_unread_story_date = cutoff_date else: logging.user(self.user, "Not marking %s as read: %s > %s/%s" % (self, cutoff_date, self.mark_read_date, self.oldest_unread_story_date)) if not recount: self.unread_count_negative = 0 self.unread_count_positive = 0 self.unread_count_neutral = 0 self.unread_count_updated = datetime.datetime.utcnow() self.needs_unread_recalc = False else: self.needs_unread_recalc = True self.save() return True def mark_newer_stories_read(self, cutoff_date): if (self.unread_count_negative == 0 and self.unread_count_neutral == 0 and self.unread_count_positive == 0 and not self.needs_unread_recalc): return cutoff_date = cutoff_date - datetime.timedelta(seconds=1) story_hashes = self.get_stories(limit=500, order="newest", cutoff_date=cutoff_date, read_filter="unread", hashes_only=True) data = self.mark_story_ids_as_read(story_hashes, aggregated=True) return data def mark_story_ids_as_read(self, story_hashes, request=None, aggregated=False): data = dict(code=0, payload=story_hashes) if not request: request = self.user if not self.needs_unread_recalc: self.needs_unread_recalc = True self.save() if len(story_hashes) > 1: logging.user(request, "~FYRead %s stories in feed: %s" % (len(story_hashes), self.feed)) else: logging.user(request, "~FYRead story in feed: %s" % (self.feed)) RUserStory.aggregate_mark_read(self.feed_id) for story_hash in set(story_hashes): RUserStory.mark_read(self.user_id, self.feed_id, story_hash, aggregated=aggregated) return data def invert_read_stories_after_unread_story(self, story, request=None): data = dict(code=1) if story.story_date > self.mark_read_date: return data # Story is outside the mark as read range, so invert all stories before. newer_stories = MStory.objects(story_feed_id=story.story_feed_id, story_date__gte=story.story_date, story_date__lte=self.mark_read_date ).only('story_hash') newer_stories = [s.story_hash for s in newer_stories] self.mark_read_date = story.story_date - datetime.timedelta(minutes=1) self.needs_unread_recalc = True self.save() # Mark stories as read only after the mark_read_date has been moved, otherwise # these would be ignored. data = self.mark_story_ids_as_read(newer_stories, request=request, aggregated=True) return data def calculate_feed_scores(self, silent=False, stories=None, force=False): # now = datetime.datetime.strptime("2009-07-06 22:30:03", "%Y-%m-%d %H:%M:%S") now = datetime.datetime.now() oldest_unread_story_date = now if self.user.profile.last_seen_on < self.user.profile.unread_cutoff and not force: # if not silent: # logging.info(' ---> [%s] SKIPPING Computing scores: %s (1 week+)' % (self.user, self.feed)) return self ong = self.unread_count_negative ont = self.unread_count_neutral ops = self.unread_count_positive oousd = self.oldest_unread_story_date ucu = self.unread_count_updated onur = self.needs_unread_recalc oit = self.is_trained # if not self.feed.fetched_once: # if not silent: # logging.info(' ---> [%s] NOT Computing scores: %s' % (self.user, self.feed)) # self.needs_unread_recalc = False # self.save() # return feed_scores = dict(negative=0, neutral=0, positive=0) # Two weeks in age. If mark_read_date is older, mark old stories as read. date_delta = self.user.profile.unread_cutoff if date_delta < self.mark_read_date: date_delta = self.mark_read_date else: self.mark_read_date = date_delta if self.is_trained: if not stories: stories = cache.get('S:%s' % self.feed_id) unread_story_hashes = self.story_hashes(user_id=self.user_id, feed_ids=[self.feed_id], usersubs=[self], read_filter='unread', group_by_feed=False, cutoff_date=self.user.profile.unread_cutoff) if not stories: stories_db = MStory.objects(story_hash__in=unread_story_hashes) stories = Feed.format_stories(stories_db, self.feed_id) unread_stories = [] for story in stories: if story['story_date'] < date_delta: continue if story['story_hash'] in unread_story_hashes: unread_stories.append(story) if story['story_date'] < oldest_unread_story_date: oldest_unread_story_date = story['story_date'] # if not silent: # logging.info(' ---> [%s] Format stories: %s' % (self.user, datetime.datetime.now() - now)) classifier_feeds = list(MClassifierFeed.objects(user_id=self.user_id, feed_id=self.feed_id, social_user_id=0)) classifier_authors = list(MClassifierAuthor.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_titles = list(MClassifierTitle.objects(user_id=self.user_id, feed_id=self.feed_id)) classifier_tags = list(MClassifierTag.objects(user_id=self.user_id, feed_id=self.feed_id)) if (not len(classifier_feeds) and not len(classifier_authors) and not len(classifier_titles) and not len(classifier_tags)): self.is_trained = False # if not silent: # logging.info(' ---> [%s] Classifiers: %s (%s)' % (self.user, datetime.datetime.now() - now, classifier_feeds.count() + classifier_authors.count() + classifier_tags.count() + classifier_titles.count())) scores = { 'feed': apply_classifier_feeds(classifier_feeds, self.feed), } for story in unread_stories: scores.update({ 'author' : apply_classifier_authors(classifier_authors, story), 'tags' : apply_classifier_tags(classifier_tags, story), 'title' : apply_classifier_titles(classifier_titles, story), }) max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: feed_scores['positive'] += 1 elif min_score < 0: feed_scores['negative'] += 1 else: if scores['feed'] > 0: feed_scores['positive'] += 1 elif scores['feed'] < 0: feed_scores['negative'] += 1 else: feed_scores['neutral'] += 1 else: unread_story_hashes = self.story_hashes(user_id=self.user_id, feed_ids=[self.feed_id], usersubs=[self], read_filter='unread', group_by_feed=False, include_timestamps=True, cutoff_date=date_delta) feed_scores['neutral'] = len(unread_story_hashes) if feed_scores['neutral']: oldest_unread_story_date = datetime.datetime.fromtimestamp(unread_story_hashes[-1][1]) if not silent or settings.DEBUG: logging.user(self.user, '~FBUnread count (~SB%s~SN%s): ~SN(~FC%s~FB/~FC%s~FB/~FC%s~FB) ~SBto~SN (~FC%s~FB/~FC%s~FB/~FC%s~FB)' % (self.feed_id, '/~FMtrained~FB' if self.is_trained else '', ong, ont, ops, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) self.unread_count_positive = feed_scores['positive'] self.unread_count_neutral = feed_scores['neutral'] self.unread_count_negative = feed_scores['negative'] self.unread_count_updated = datetime.datetime.now() self.oldest_unread_story_date = oldest_unread_story_date self.needs_unread_recalc = False update_fields = [] if self.unread_count_positive != ops: update_fields.append('unread_count_positive') if self.unread_count_neutral != ont: update_fields.append('unread_count_neutral') if self.unread_count_negative != ong: update_fields.append('unread_count_negative') if self.unread_count_updated != ucu: update_fields.append('unread_count_updated') if self.oldest_unread_story_date != oousd: update_fields.append('oldest_unread_story_date') if self.needs_unread_recalc != onur: update_fields.append('needs_unread_recalc') if self.is_trained != oit: update_fields.append('is_trained') if len(update_fields): self.save(update_fields=update_fields) if (self.unread_count_positive == 0 and self.unread_count_neutral == 0): self.mark_feed_read() if not silent: logging.user(self.user, '~FC~SNComputing scores: %s (~SB%s~SN/~SB%s~SN/~SB%s~SN)' % (self.feed, feed_scores['negative'], feed_scores['neutral'], feed_scores['positive'])) self.trim_read_stories() return self @staticmethod def score_story(scores): max_score = max(scores['author'], scores['tags'], scores['title']) min_score = min(scores['author'], scores['tags'], scores['title']) if max_score > 0: return 1 elif min_score < 0: return -1 return scores['feed'] def switch_feed(self, new_feed, old_feed): # Rewrite feed in subscription folders try: user_sub_folders = UserSubscriptionFolders.objects.get(user=self.user) except Exception, e: logging.info(" *** ---> UserSubscriptionFolders error: %s" % e) return logging.info(" ===> %s " % self.user) # Switch read stories RUserStory.switch_feed(user_id=self.user_id, old_feed_id=old_feed.pk, new_feed_id=new_feed.pk) def switch_feed_for_classifier(model): duplicates = model.objects(feed_id=old_feed.pk, user_id=self.user_id) if duplicates.count(): logging.info(" ---> Switching %s %s" % (duplicates.count(), model)) for duplicate in duplicates: duplicate.feed_id = new_feed.pk if duplicate.social_user_id is None: duplicate.social_user_id = 0 try: duplicate.save() pass except (IntegrityError, OperationError): logging.info(" !!!!> %s already exists" % duplicate) duplicate.delete() switch_feed_for_classifier(MClassifierTitle) switch_feed_for_classifier(MClassifierAuthor) switch_feed_for_classifier(MClassifierFeed) switch_feed_for_classifier(MClassifierTag) # Switch to original feed for the user subscription self.feed = new_feed self.needs_unread_recalc = True try: UserSubscription.objects.get(user=self.user, feed=new_feed) except UserSubscription.DoesNotExist: self.save() user_sub_folders.rewrite_feed(new_feed, old_feed) else: # except (IntegrityError, OperationError): logging.info(" !!!!> %s already subscribed" % self.user) self.delete() return @classmethod def collect_orphan_feeds(cls, user): us = cls.objects.filter(user=user) try: usf = UserSubscriptionFolders.objects.get(user=user) except UserSubscriptionFolders.DoesNotExist: return us_feed_ids = set([sub.feed_id for sub in us]) folders = json.decode(usf.folders) def collect_ids(folders, found_ids): for item in folders: # print ' --> %s' % item if isinstance(item, int): # print ' --> Adding feed: %s' % item found_ids.add(item) elif isinstance(item, dict): # print ' --> Descending folder dict: %s' % item.values() found_ids.update(collect_ids(item.values(), found_ids)) elif isinstance(item, list): # print ' --> Descending folder list: %s' % len(item) found_ids.update(collect_ids(item, found_ids)) # print ' --> Returning: %s' % found_ids return found_ids found_ids = collect_ids(folders, set()) diff = len(us_feed_ids) - len(found_ids) if diff > 0: logging.info(" ---> Collecting orphans on %s. %s feeds with %s orphans" % (user.username, len(us_feed_ids), diff)) orphan_ids = us_feed_ids - found_ids folders.extend(list(orphan_ids)) usf.folders = json.encode(folders) usf.save() @classmethod def verify_feeds_scheduled(cls, user_id): r = redis.Redis(connection_pool=settings.REDIS_FEED_UPDATE_POOL) user = User.objects.get(pk=user_id) subs = cls.objects.filter(user=user) feed_ids = [sub.feed.pk for sub in subs] p = r.pipeline() for feed_id in feed_ids: p.zscore('scheduled_updates', feed_id) p.zscore('error_feeds', feed_id) results = p.execute() p = r.pipeline() for feed_id in feed_ids: p.zscore('queued_feeds', feed_id) try: results_queued = p.execute() except: results_queued = map(lambda x: False, range(len(feed_ids))) safety_net = [] for f, feed_id in enumerate(feed_ids): scheduled_updates = results[f*2] error_feeds = results[f*2+1] queued_feeds = results[f] if not scheduled_updates and not queued_feeds and not error_feeds: safety_net.append(feed_id) if not safety_net: return logging.user(user, "~FBFound ~FR%s unscheduled feeds~FB, scheduling..." % len(safety_net)) for feed_id in safety_net: feed = Feed.get_by_id(feed_id) feed.set_next_scheduled_update() @classmethod def count_subscribers_to_other_subscriptions(cls, feed_id): # feeds = defaultdict(int) subscribing_users = cls.objects.filter(feed=feed_id).values('user', 'feed_opens').order_by('-feed_opens')[:25] print "Got subscribing users" subscribing_user_ids = [sub['user'] for sub in subscribing_users] print "Got subscribing user ids" cofeeds = cls.objects.filter(user__in=subscribing_user_ids).values('feed').annotate( user_count=Count('user')).order_by('-user_count')[:200] print "Got cofeeds: %s" % len(cofeeds) # feed_subscribers = Feed.objects.filter(pk__in=[f['feed'] for f in cofeeds]).values('pk', 'num_subscribers') # max_local_subscribers = float(max([f['user_count'] for f in cofeeds])) # max_total_subscribers = float(max([f['num_subscribers'] for f in feed_subscribers])) # feed_subscribers = dict([(s['pk'], float(s['num_subscribers'])) for s in feed_subscribers]) # pctfeeds = [(f['feed'], # f['user_count'], # feed_subscribers[f['feed']], # f['user_count']/max_total_subscribers, # f['user_count']/max_local_subscribers, # max_local_subscribers, # max_total_subscribers) for f in cofeeds] # print pctfeeds[:5] # orderedpctfeeds = sorted(pctfeeds, key=lambda f: .5*f[3]+.5*f[4], reverse=True)[:8] # pprint([(Feed.get_by_id(o[0]), o[1], o[2], o[3], o[4]) for o in orderedpctfeeds]) users_by_feeds = {} for feed in [f['feed'] for f in cofeeds]: users_by_feeds[feed] = [u['user'] for u in cls.objects.filter(feed=feed, user__in=subscribing_user_ids).values('user')] print "Got users_by_feeds" table = tfidf() for feed in users_by_feeds.keys(): table.addDocument(feed, users_by_feeds[feed]) print "Got table" sorted_table = sorted(table.similarities(subscribing_user_ids), key=itemgetter(1), reverse=True)[:8] pprint([(Feed.get_by_id(o[0]), o[1]) for o in sorted_table]) return table # return cofeeds class RUserStory: @classmethod def mark_story_hashes_read(cls, user_id, story_hashes, r=None, s=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) if not s: s = redis.Redis(connection_pool=settings.REDIS_POOL) # if not r2: # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) p = r.pipeline() # p2 = r2.pipeline() feed_ids = set() friend_ids = set() if not isinstance(story_hashes, list): story_hashes = [story_hashes] single_story = len(story_hashes) == 1 for story_hash in story_hashes: feed_id, _ = MStory.split_story_hash(story_hash) feed_ids.add(feed_id) if single_story: cls.aggregate_mark_read(feed_id) # Find other social feeds with this story to update their counts friend_key = "F:%s:F" % (user_id) share_key = "S:%s" % (story_hash) friends_with_shares = [int(f) for f in s.sinter(share_key, friend_key)] friend_ids.update(friends_with_shares) cls.mark_read(user_id, feed_id, story_hash, social_user_ids=friends_with_shares, r=p) p.execute() # p2.execute() return list(feed_ids), list(friend_ids) @classmethod def mark_story_hash_unread(cls, user_id, story_hash, r=None, s=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) if not s: s = redis.Redis(connection_pool=settings.REDIS_POOL) # if not r2: # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) friend_ids = set() feed_id, _ = MStory.split_story_hash(story_hash) # Find other social feeds with this story to update their counts friend_key = "F:%s:F" % (user_id) share_key = "S:%s" % (story_hash) friends_with_shares = [int(f) for f in s.sinter(share_key, friend_key)] friend_ids.update(friends_with_shares) cls.mark_unread(user_id, feed_id, story_hash, social_user_ids=friends_with_shares, r=r) return feed_id, list(friend_ids) @classmethod def aggregate_mark_read(cls, feed_id): if not feed_id: logging.debug(" ***> ~BR~FWNo feed_id on aggregate mark read. Ignoring.") return r = redis.Redis(connection_pool=settings.REDIS_FEED_READ_POOL) week_of_year = datetime.datetime.now().strftime('%Y-%U') feed_read_key = "fR:%s:%s" % (feed_id, week_of_year) r.incr(feed_read_key) r.expire(feed_read_key, 2*settings.DAYS_OF_STORY_HASHES*24*60*60) @classmethod def mark_read(cls, user_id, story_feed_id, story_hash, social_user_ids=None, aggregated=False, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # if not r2: # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) story_hash = MStory.ensure_story_hash(story_hash, story_feed_id=story_feed_id) if not story_hash: return def redis_commands(key): r.sadd(key, story_hash) # r2.sadd(key, story_hash) r.expire(key, settings.DAYS_OF_STORY_HASHES*24*60*60) # r2.expire(key, settings.DAYS_OF_STORY_HASHES*24*60*60) all_read_stories_key = 'RS:%s' % (user_id) redis_commands(all_read_stories_key) read_story_key = 'RS:%s:%s' % (user_id, story_feed_id) redis_commands(read_story_key) if social_user_ids: for social_user_id in social_user_ids: social_read_story_key = 'RS:%s:B:%s' % (user_id, social_user_id) redis_commands(social_read_story_key) if not aggregated: key = 'lRS:%s' % user_id r.lpush(key, story_hash) r.ltrim(key, 0, 1000) r.expire(key, settings.DAYS_OF_STORY_HASHES*24*60*60) @staticmethod def story_can_be_marked_read_by_user(story, user): message = None if story.story_date < user.profile.unread_cutoff: if user.profile.is_premium: message = "Story is more than %s days old, cannot mark as unread." % ( settings.DAYS_OF_UNREAD) elif story.story_date > user.profile.unread_cutoff_premium: message = "Story is more than %s days old. Premiums can mark unread up to 30 days." % ( settings.DAYS_OF_UNREAD_FREE) else: message = "Story is more than %s days old, cannot mark as unread." % ( settings.DAYS_OF_UNREAD_FREE) return message @staticmethod def mark_unread(user_id, story_feed_id, story_hash, social_user_ids=None, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) story_hash = MStory.ensure_story_hash(story_hash, story_feed_id=story_feed_id) if not story_hash: return def redis_commands(key): r.srem(key, story_hash) # r2.srem(key, story_hash) r.expire(key, settings.DAYS_OF_STORY_HASHES*24*60*60) # r2.expire(key, settings.DAYS_OF_STORY_HASHES*24*60*60) all_read_stories_key = 'RS:%s' % (user_id) redis_commands(all_read_stories_key) read_story_key = 'RS:%s:%s' % (user_id, story_feed_id) redis_commands(read_story_key) read_stories_list_key = 'lRS:%s' % user_id r.lrem(read_stories_list_key, story_hash) if social_user_ids: for social_user_id in social_user_ids: social_read_story_key = 'RS:%s:B:%s' % (user_id, social_user_id) redis_commands(social_read_story_key) @staticmethod def get_stories(user_id, feed_id, r=None): if not r: r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) story_hashes = r.smembers("RS:%s:%s" % (user_id, feed_id)) return story_hashes @staticmethod def get_read_stories(user_id, offset=0, limit=12, order="newest"): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) key = "lRS:%s" % user_id if order == "oldest": count = r.llen(key) if offset >= count: return [] offset = max(0, count - (offset+limit)) story_hashes = r.lrange(key, offset, offset+limit) elif order == "newest": story_hashes = r.lrange(key, offset, offset+limit) return story_hashes @classmethod def switch_feed(cls, user_id, old_feed_id, new_feed_id): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) p = r.pipeline() # p2 = r2.pipeline() story_hashes = cls.get_stories(user_id, old_feed_id, r=r) for story_hash in story_hashes: _, hash_story = MStory.split_story_hash(story_hash) new_story_hash = "%s:%s" % (new_feed_id, hash_story) read_feed_key = "RS:%s:%s" % (user_id, new_feed_id) p.sadd(read_feed_key, new_story_hash) # p2.sadd(read_feed_key, new_story_hash) p.expire(read_feed_key, settings.DAYS_OF_STORY_HASHES*24*60*60) # p2.expire(read_feed_key, settings.DAYS_OF_STORY_HASHES*24*60*60) read_user_key = "RS:%s" % (user_id) p.sadd(read_user_key, new_story_hash) # p2.sadd(read_user_key, new_story_hash) p.expire(read_user_key, settings.DAYS_OF_STORY_HASHES*24*60*60) # p2.expire(read_user_key, settings.DAYS_OF_STORY_HASHES*24*60*60) p.execute() # p2.execute() if len(story_hashes) > 0: logging.info(" ---> %s read stories" % len(story_hashes)) @classmethod def switch_hash(cls, feed_id, old_hash, new_hash): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) # r2 = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL2) p = r.pipeline() # p2 = r2.pipeline() UNREAD_CUTOFF = datetime.datetime.now() - datetime.timedelta(days=settings.DAYS_OF_STORY_HASHES) usersubs = UserSubscription.objects.filter(feed_id=feed_id, last_read_date__gte=UNREAD_CUTOFF) logging.info(" ---> ~SB%s usersubs~SN to switch read story hashes..." % len(usersubs)) for sub in usersubs: rs_key = "RS:%s:%s" % (sub.user.pk, feed_id) read = r.sismember(rs_key, old_hash) if read: p.sadd(rs_key, new_hash) # p2.sadd(rs_key, new_hash) p.expire(rs_key, settings.DAYS_OF_STORY_HASHES*24*60*60) # p2.expire(rs_key, settings.DAYS_OF_STORY_HASHES*24*60*60) read_user_key = "RS:%s" % sub.user.pk p.sadd(read_user_key, new_hash) # p2.sadd(read_user_key, new_hash) p.expire(read_user_key, settings.DAYS_OF_STORY_HASHES*24*60*60) # p2.expire(read_user_key, settings.DAYS_OF_STORY_HASHES*24*60*60) p.execute() # p2.execute() @classmethod def read_story_count(cls, user_id): r = redis.Redis(connection_pool=settings.REDIS_STORY_HASH_POOL) key = "RS:%s" % user_id count = r.scard(key) return count class UserSubscriptionFolders(models.Model): """ A JSON list of folders and feeds for while a user has subscribed. The list is a recursive descent of feeds and folders in folders. Used to layout the feeds and folders in the Reader's feed navigation pane. """ user = models.ForeignKey(User, unique=True) folders = models.TextField(default="[]") def __unicode__(self): return "[%s]: %s" % (self.user, len(self.folders),) class Meta: verbose_name_plural = "folders" verbose_name = "folder" def compact(self): folders = json.decode(self.folders) def _compact(folder): new_folder = [] for item in folder: if isinstance(item, int) and item not in new_folder: new_folder.append(item) elif isinstance(item, dict): for f_k, f_v in item.items(): new_folder.append({f_k: _compact(f_v)}) return new_folder new_folders = _compact(folders) logging.info(" ---> Compacting from %s to %s" % (folders, new_folders)) new_folders = json.encode(new_folders) logging.info(" ---> Compacting from %s to %s" % (len(self.folders), len(new_folders))) self.folders = new_folders self.save() def add_folder(self, parent_folder, folder): if self.folders: user_sub_folders = json.decode(self.folders) else: user_sub_folders = [] obj = {folder: []} user_sub_folders = add_object_to_folder(obj, parent_folder, user_sub_folders) self.folders = json.encode(user_sub_folders) self.save() def arranged_folders(self): user_sub_folders = json.decode(self.folders) def _arrange_folder(folder): folder_feeds = [] folder_folders = [] for item in folder: if isinstance(item, int): folder_feeds.append(item) elif isinstance(item, dict): for f_k, f_v in item.items(): arranged_folder = _arrange_folder(f_v) folder_folders.append({f_k: arranged_folder}) arranged_folder = folder_feeds + folder_folders return arranged_folder return _arrange_folder(user_sub_folders) def flatten_folders(self, feeds=None, inactive_feeds=None): folders = json.decode(self.folders) flat_folders = {" ": []} if feeds and not inactive_feeds: inactive_feeds = [] def _flatten_folders(items, parent_folder="", depth=0): for item in items: if (isinstance(item, int) and (not feeds or (item in feeds or item in inactive_feeds))): if not parent_folder: parent_folder = ' ' if parent_folder in flat_folders: flat_folders[parent_folder].append(item) else: flat_folders[parent_folder] = [item] elif isinstance(item, dict): for folder_name in item: folder = item[folder_name] flat_folder_name = "%s%s%s" % ( parent_folder if parent_folder and parent_folder != ' ' else "", " - " if parent_folder and parent_folder != ' ' else "", folder_name ) flat_folders[flat_folder_name] = [] _flatten_folders(folder, flat_folder_name, depth+1) _flatten_folders(folders) return flat_folders def delete_feed(self, feed_id, in_folder, commit_delete=True): feed_id = int(feed_id) def _find_feed_in_folders(old_folders, folder_name='', multiples_found=False, deleted=False): new_folders = [] for k, folder in enumerate(old_folders): if isinstance(folder, int): if (folder == feed_id and in_folder is not None and ( (folder_name != in_folder) or (folder_name == in_folder and deleted))): multiples_found = True logging.user(self.user, "~FB~SBDeleting feed, and a multiple has been found in '%s' / '%s' %s" % (folder_name, in_folder, '(deleted)' if deleted else '')) if (folder == feed_id and (folder_name == in_folder or in_folder is None) and not deleted): logging.user(self.user, "~FBDelete feed: %s'th item: %s folders/feeds" % ( k, len(old_folders) )) deleted = True else: new_folders.append(folder) elif isinstance(folder, dict): for f_k, f_v in folder.items(): nf, multiples_found, deleted = _find_feed_in_folders(f_v, f_k, multiples_found, deleted) new_folders.append({f_k: nf}) return new_folders, multiples_found, deleted user_sub_folders = self.arranged_folders() user_sub_folders, multiples_found, deleted = _find_feed_in_folders(user_sub_folders) self.folders = json.encode(user_sub_folders) self.save() if not multiples_found and deleted and commit_delete: try: user_sub = UserSubscription.objects.get(user=self.user, feed=feed_id) except Feed.DoesNotExist: duplicate_feed = DuplicateFeed.objects.filter(duplicate_feed_id=feed_id) if duplicate_feed: try: user_sub = UserSubscription.objects.get(user=self.user, feed=duplicate_feed[0].feed) except Feed.DoesNotExist: return if user_sub: user_sub.delete() def delete_folder(self, folder_to_delete, in_folder, feed_ids_in_folder, commit_delete=True): def _find_folder_in_folders(old_folders, folder_name, feeds_to_delete, deleted_folder=None): new_folders = [] for k, folder in enumerate(old_folders): if isinstance(folder, int): new_folders.append(folder) if folder in feeds_to_delete: feeds_to_delete.remove(folder) elif isinstance(folder, dict): for f_k, f_v in folder.items(): if f_k == folder_to_delete and (folder_name == in_folder or in_folder is None): logging.user(self.user, "~FBDeleting folder '~SB%s~SN' in '%s': %s" % (f_k, folder_name, folder)) deleted_folder = folder else: nf, feeds_to_delete, deleted_folder = _find_folder_in_folders(f_v, f_k, feeds_to_delete, deleted_folder) new_folders.append({f_k: nf}) return new_folders, feeds_to_delete, deleted_folder user_sub_folders = json.decode(self.folders) user_sub_folders, feeds_to_delete, deleted_folder = _find_folder_in_folders(user_sub_folders, '', feed_ids_in_folder) self.folders = json.encode(user_sub_folders) self.save() if commit_delete: UserSubscription.objects.filter(user=self.user, feed__in=feeds_to_delete).delete() return deleted_folder def delete_feeds_by_folder(self, feeds_by_folder): logging.user(self.user, "~FBDeleting ~FR~SB%s~SN feeds~FB: ~SB%s" % ( len(feeds_by_folder), feeds_by_folder)) for feed_id, in_folder in feeds_by_folder: self.delete_feed(feed_id, in_folder) return self def rename_folder(self, folder_to_rename, new_folder_name, in_folder): def _find_folder_in_folders(old_folders, folder_name): new_folders = [] for k, folder in enumerate(old_folders): if isinstance(folder, int): new_folders.append(folder) elif isinstance(folder, dict): for f_k, f_v in folder.items(): nf = _find_folder_in_folders(f_v, f_k) if f_k == folder_to_rename and folder_name == in_folder: logging.user(self.user, "~FBRenaming folder '~SB%s~SN' in '%s' to: ~SB%s" % ( f_k, folder_name, new_folder_name)) f_k = new_folder_name new_folders.append({f_k: nf}) return new_folders user_sub_folders = json.decode(self.folders) user_sub_folders = _find_folder_in_folders(user_sub_folders, '') self.folders = json.encode(user_sub_folders) self.save() def move_feed_to_folders(self, feed_id, in_folders=None, to_folders=None): logging.user(self.user, "~FBMoving feed '~SB%s~SN' in '%s' to: ~SB%s" % ( feed_id, in_folders, to_folders)) user_sub_folders = json.decode(self.folders) for in_folder in in_folders: self.delete_feed(feed_id, in_folder, commit_delete=False) user_sub_folders = json.decode(self.folders) for to_folder in to_folders: user_sub_folders = add_object_to_folder(int(feed_id), to_folder, user_sub_folders) self.folders = json.encode(user_sub_folders) self.save() return self def move_feed_to_folder(self, feed_id, in_folder=None, to_folder=None): logging.user(self.user, "~FBMoving feed '~SB%s~SN' in '%s' to: ~SB%s" % ( feed_id, in_folder, to_folder)) user_sub_folders = json.decode(self.folders) self.delete_feed(feed_id, in_folder, commit_delete=False) user_sub_folders = json.decode(self.folders) user_sub_folders = add_object_to_folder(int(feed_id), to_folder, user_sub_folders) self.folders = json.encode(user_sub_folders) self.save() return self def move_folder_to_folder(self, folder_name, in_folder=None, to_folder=None): logging.user(self.user, "~FBMoving folder '~SB%s~SN' in '%s' to: ~SB%s" % ( folder_name, in_folder, to_folder)) user_sub_folders = json.decode(self.folders) deleted_folder = self.delete_folder(folder_name, in_folder, [], commit_delete=False) user_sub_folders = json.decode(self.folders) user_sub_folders = add_object_to_folder(deleted_folder, to_folder, user_sub_folders) self.folders = json.encode(user_sub_folders) self.save() return self def move_feeds_by_folder_to_folder(self, feeds_by_folder, to_folder): logging.user(self.user, "~FBMoving ~SB%s~SN feeds to folder: ~SB%s" % ( len(feeds_by_folder), to_folder)) for feed_id, in_folder in feeds_by_folder: feed_id = int(feed_id) self.move_feed_to_folder(feed_id, in_folder, to_folder) return self def rewrite_feed(self, original_feed, duplicate_feed): def rewrite_folders(folders, original_feed, duplicate_feed): new_folders = [] for k, folder in enumerate(folders): if isinstance(folder, int): if folder == duplicate_feed.pk: # logging.info(" ===> Rewrote %s'th item: %s" % (k+1, folders)) new_folders.append(original_feed.pk) else: new_folders.append(folder) elif isinstance(folder, dict): for f_k, f_v in folder.items(): new_folders.append({f_k: rewrite_folders(f_v, original_feed, duplicate_feed)}) return new_folders folders = json.decode(self.folders) folders = rewrite_folders(folders, original_feed, duplicate_feed) self.folders = json.encode(folders) self.save() def flat(self): folders = json.decode(self.folders) def _flat(folder, feeds=None): if not feeds: feeds = [] for item in folder: if isinstance(item, int) and item not in feeds: feeds.append(item) elif isinstance(item, dict): for f_k, f_v in item.items(): feeds.extend(_flat(f_v)) return feeds return _flat(folders) def feed_ids_under_folder_slug(self, slug): folders = json.decode(self.folders) def _feeds(folder, found=False, folder_title=None): feeds = [] local_found = False for item in folder: if isinstance(item, int) and item not in feeds and found: feeds.append(item) elif isinstance(item, dict): for f_k, f_v in item.items(): if slugify(f_k) == slug: found = True local_found = True folder_title = f_k found_feeds, folder_title = _feeds(f_v, found, folder_title) feeds.extend(found_feeds) if local_found: found = False local_found = False return feeds, folder_title return _feeds(folders) @classmethod def add_all_missing_feeds(cls): usf = cls.objects.all().order_by('pk') total = usf.count() for i, f in enumerate(usf): print "%s/%s: %s" % (i, total, f) f.add_missing_feeds() def add_missing_feeds(self): all_feeds = self.flat() subs = [us.feed_id for us in UserSubscription.objects.filter(user=self.user).only('feed')] missing_subs = set(all_feeds) - set(subs) if missing_subs: logging.debug(" ---> %s is missing %s subs. Adding %s..." % ( self.user, len(missing_subs), missing_subs)) for feed_id in missing_subs: feed = Feed.get_by_id(feed_id) if feed: us, _ = UserSubscription.objects.get_or_create(user=self.user, feed=feed, defaults={ 'needs_unread_recalc': True }) if not us.needs_unread_recalc: us.needs_unread_recalc = True us.save() missing_folder_feeds = set(subs) - set(all_feeds) if missing_folder_feeds: user_sub_folders = json.decode(self.folders) logging.debug(" ---> %s is missing %s folder feeds. Adding %s..." % ( self.user, len(missing_folder_feeds), missing_folder_feeds)) for feed_id in missing_folder_feeds: feed = Feed.get_by_id(feed_id) if feed and feed.pk == feed_id: user_sub_folders = add_object_to_folder(feed_id, "", user_sub_folders) self.folders = json.encode(user_sub_folders) self.save() def auto_activate(self): if self.user.profile.is_premium: return active_count = UserSubscription.objects.filter(user=self.user, active=True).count() if active_count: return all_feeds = self.flat() if not all_feeds: return for feed in all_feeds[:64]: try: sub = UserSubscription.objects.get(user=self.user, feed=feed) except UserSubscription.DoesNotExist: continue sub.active = True sub.save() if sub.feed.active_subscribers <= 0: sub.feed.count_subscribers() class Feature(models.Model): """ Simple blog-like feature board shown to all users on the home page. """ description = models.TextField(default="") date = models.DateTimeField(default=datetime.datetime.now) def __unicode__(self): return "[%s] %s" % (self.date, self.description[:50]) class Meta: ordering = ["-date"]
mit
-6,377,939,261,452,766,000
43.556107
289
0.542445
false
dhwang99/statistics_introduction
learning/lasso_linear.py
1
5562
#encoding: utf8 import pdb import numpy as np import matplotlib.pyplot as plt from data_loader import load_data from cv_common import one_std_error_rule, gen_CV_samples_by_K_folds ''' 在特征之间有一定线性相关度时(协方差不为0),一个大的特征参数有可能会增加而另一些变为负数或趋于0 这导致方差很大 L1通过收缩参数,减小了相关特征的影响,部分特征的参数项可以为0 f(x) = seta * x J(X;seta) = 1/2n*(f(X) - Y)**2 + lambda * np.linalg.norm(seta, 1) 1. 坐标下降法求解 psj = partial J/partial seta_j = 1/n*sum_i[(f(X_i) - Y_i)*X_ij] + r_l1 = 1/n*sum_i[(seta * X_i - Y_i) * X_ij] + r_l1 = 1/n*sum_i[sum_k(seta_k * X_ik<k!=j>)*X_ij + seta_j * X_ij**2 - Y_i*X_ij] + r_l1 or = 1/n*sum_i[(seta * X_i - Y_i) * X_ij - seta_j * X_ij**2 + seta_j*X_ij**2] + r_l1 let: p_j = 1/n*sum_i[(Y_i - seta * X_i) * X_ij + seta_j * X_ij**2] z_j = 1/n*sum_i(X_ij**2) ps = -p_j + seta_j*z_j + r_l1 r_l1 = lambda, seta_j > 0 [-lambda, lambda], seta_j = 0 -lambda, seta_j < 0 seta_j = (p_j - lambd)/z_j, if p_j > lambd = (p_j + lambd)/z_j, if p_j < -lambd = 0, else 2. 最小角回归求解(LARS) waiting 用k折交叉验证法进行df选择 注意下: 1. 如果不用bias/intercept, 对Y要进行均值化 2. numpy 的 svd, 返回的是V的转秩,用的时候需要再转秩一下 3. 求估计(均值)的标准差时,记得除以sqrt(n) 4. 对数据标准化时,倾向于用全局数据,并除以方差,即: xi = (xi - mean_hat)/sigma_hat 不过本例子给的示例只做了中心标准化,未除以方差(个人觉得需要除以方差) 但在全局子集选择里,CV方法下又做了标准化(即除了方差) 稍后这儿也试一下标准化后的结果 ''' def lasso_cd(X, Y, lamb): it_count = 5000 epilson = 1e-6 n,m = X.shape seta = np.ones(m) mse = 1e10 mse_new = 1e10 for it_i in xrange(it_count): for j in xrange(m): Xj2Xj = np.dot(X[:,j], X[:,j]) p_j = 1./n * (np.dot(Y-np.dot(X, seta), X[:,j]) + seta[j]*Xj2Xj) z_j = 1./n * Xj2Xj if p_j > lamb: seta[j] = (p_j - lamb)/z_j elif p_j < -lamb: seta[j] = (p_j + lamb)/z_j else: seta[j] = 0. err1 = np.dot(X, seta) - Y mse_new = np.dot(err1, err1) / n if np.abs(mse_new - mse) < epilson: break mse = mse_new return seta, mse_new def lasso_leasq_cd_CV(): ''' 注:实际训练时,标准化应该针对train_X_CV进行,不能把test_X_CV加进来, 避免影响样本的独立性 本试验为了方便,把这个加起来了 ''' train_X, train_Y, test_X, test_Y, dt_stand_fun = load_data(type=1, need_bias=0, y_standard=1) K = 10 lamb_lst = np.logspace(-3, 0, 100) train_mid_rst = [] cv_samples = gen_CV_samples_by_K_folds(train_X, train_Y, K) for lid in xrange(len(lamb_lst)): lamb = lamb_lst[lid] test_mses = np.zeros(K) ki_rst = [] for ki in range(K): X_CV, Y_CV, X_t_CV, Y_t_CV = cv_samples[ki] # wait for coding seta, train_mse = lasso_cd(X_CV, Y_CV, lamb) y_hat_err = np.dot(X_t_CV, seta) - Y_t_CV test_mse = np.dot(y_hat_err, y_hat_err) / len(Y_t_CV) df = len(np.where(np.abs(seta) < 1e-5)[0]) ki_rst.append((lamb, seta, df, train_mse, test_mse)) train_mid_rst.append(ki_rst) #计算不同lamb下的训练误差和方差 dfs = np.zeros(len(lamb_lst)) mse_means = np.zeros(len(lamb_lst)) mse_mean_stds = np.zeros(len(lamb_lst)) for lid in range(len(lamb_lst)): #K折CV下误差均值和标准差 test_msees = np.array(map(lambda i:train_mid_rst[lid][i][4], range(0,K))) train_msees = np.array(map(lambda i:train_mid_rst[lid][i][3], range(0,K))) mse_means[lid] = test_msees.mean() #!!!!!注意:这儿求的是估计的标准差 1/K mean(sum(Xi)), 故而要除以K mse_mean_stds[lid] = test_msees.std()/np.sqrt(K) print "lasso CD for lambda: %.4f, CV train mse: %.4f, test mse: %.4f, std: %.4f" % \ (lamb_lst[lid], train_msees.mean(), mse_means[lid], mse_mean_stds[lid]) ''' #一倍方差准则 ''' best_lamb_id, minid = one_std_error_rule(mse_means, mse_mean_stds) best_lamb = lamb_lst[best_lamb_id] print "Best lambid: %d, lambda: %.4f, degree of free: %.4f" % (best_lamb_id, best_lamb, dfs[best_lamb_id]) one_std_val = mse_means[minid] + mse_mean_stds[minid] plt.plot((dfs[0],dfs[-1]), (one_std_val, one_std_val), 'r-') plt.errorbar(dfs, mse_means, yerr=mse_mean_stds, fmt='-o') plt.savefig('images/lasso_mse_errorbar.png', format='png') #用K折选出来的最优 lambda 进行回归预测 ''' #非一倍方差准则 best_lamb_id = np.argmin(mse_means) best_lamb = lamb_lst[best_lamb_id] ''' seta, train_mse = lasso_cd(train_X, train_Y, best_lamb) y_hat_err = np.dot(test_X, seta) - test_Y test_mse = np.dot(y_hat_err, y_hat_err) / len(test_Y) print "Test error: train mse: %.4f, test mse: %.4f" % (train_mse, test_mse) print "seta: %s" % seta if __name__ == '__main__': print "lasso leasq by corr descent:" lasso_leasq_cd_CV() print ""
gpl-3.0
-1,762,243,759,084,949,000
27.461538
111
0.54158
false
okdshin/Yender
tutorial/tutorial.py
1
3955
import os, random, time import yender import numpy as np import collections block_set = collections.OrderedDict() block_set["."] = yender.Block(char=".", name="air", visible=False) block_set["#"] = yender.Block(char="#", name="stone", color=(127, 127, 127), movable=False) block_set["R"] = yender.Block(char="R", name="red_tile", block_type="tile", color=(255, 0, 0)) block_set["B"] = yender.Block(char="B", name="blue_tile", block_type="tile", color=(0, 0, 255)) block_set["Y"] = yender.Block(char="Y", name="yellow_tile", block_type="tile", color=(255, 255, 0)) block_set["G"] = yender.Block(char="G", name="green_tile", block_type="tile", color=(0, 255, 0)) block_id_dict = {} for i, block in enumerate(block_set.values()): block_id_dict[block.name] = i def make_i_maze_map(): map_source = [ "#######", "#2...3#", "###.###", "###.###", "###.###", "#..0.1#", "#######", ] map_, place_holders = yender.load_map(block_set, map_source) # place goal tiles and an indicator tile start_pos = place_holders["0"] indicator_pos = place_holders["1"] blue_pos = place_holders["2"] red_pos = place_holders["3"] indicator_color = random.choice(("G", "Y")) map_.set_block(start_pos, block_set["."]) map_.set_block(indicator_pos, block_set[indicator_color]) map_.set_block(blue_pos, block_set["B"]) map_.set_block(red_pos, block_set["R"]) return map_, indicator_color, start_pos, blue_pos, red_pos class I_MazeEnv: max_step = 50 def __init__(self): self.rogue_env = yender.RogueEnv() def get_ob(self): block_ob = yender.map_to_block_ob(self.map_, direction=self.rogue_env.agent_direction, pos=self.rogue_env.agent_position, block_id_dict=block_id_dict, default_block=block_set["#"]) ob = yender.block_ob_to_hot_vectors(block_ob, len(block_id_dict)) return ob def reset(self): self.t = 0 self.total_reward = 0.0 self.map_, self.indicator, start_pos, self.blue_pos, self.red_pos = make_i_maze_map() start_direction = random.choice(list(self.rogue_env.DIRECTION_SET.values())) self.rogue_env.reset(self.map_, start_direction, start_pos) ob = self.get_ob() return ob def step(self, action): self.rogue_env.step(action) # reward and done check if self.rogue_env.map_.get_block(self.rogue_env.agent_position).name == "red_tile": done = True reward = 1.0 if self.indicator == "Y" else -1.0 elif self.rogue_env.map_.get_block(self.rogue_env.agent_position).name == "blue_tile": done = True reward = 1.0 if self.indicator == "G" else -1.0 elif self.t == self.max_step: done = True reward = -0.04 else: done = False reward = -0.04 # get observation ob = self.get_ob() self.t += 1 self.total_reward += reward return ob, reward, done, self.rogue_env def render(self): self.rogue_env.print_map() print("total_reward {0:0.2f}".format(self.total_reward)) max_episode = 20 max_step = 50 def render(env, episode, t, ob, sleep_time, message=""): os.system("clear") print("episode", episode) print("step", t) env.render() print("ob", ob) time.sleep(sleep_time) print(message) def main(): env = I_MazeEnv() for episode in range(max_episode): ob = env.reset() for t in range(max_step): render(env, episode, t, ob, 0.1) action = random.choice(range(4)) # random agent ob, reward, done, info = env.step(action) if done: render(env, episode, t, ob, 10, "Episode finished after {} timesteps".format(t+1)) break if __name__ == "__main__": main()
mit
2,953,751,811,628,154,000
31.418033
99
0.565613
false
kata198/AdvancedHTMLParser
AdvancedHTMLParser/xpath/_body.py
1
84083
''' Copyright (c) 2019 Timothy Savannah under terms of LGPLv3. All Rights Reserved. See LICENSE (https://gnu.org/licenses/lgpl-3.0.txt) for more information. See: https://github.com/kata198/AdvancedHTMLParser for full information ==INTERNAL== xpath._body.py - Internal module for dealing with items within the "body" of a filter expression on a tag ''' # vim: set ts=4 sw=4 st=4 expandtab : import copy import re from ..Tags import TagCollection from ..compat import STRING_TYPES from ..utils import tostr from .exceptions import XPathNotImplementedError, XPathRuntimeError, XPathParseError from ._filters import _mk_xpath_op_filter_tag_is_nth_child_index from .null import Null # __all__ is currently set to what "parsing" imports __all__ = ('parseBodyStringIntoBodyElements', 'BodyElement', 'BodyElementOperation', 'BodyElementValue', 'BodyElementValueGenerator', 'BodyLevel_Top') class BodyElement(object): ''' BodyElement - Base class of body elements. Every distinct "unit" within a body, be it a static value or a function call, or otherwise, are subclassed from this type. ''' @classmethod def createFromMatch(cls, curBodyStr, matchObj): ''' createFromMatch - Create this BodyElement from a given match object, and return the element and remainder for parsing @param curBodyStr <str> - The current body string (matchObj should have matched at the head of this) @param matchObj <re.match> - The match object @return tuple( createdElement<BodyElement>, remainingBodyStr<str> ) - A tuple of the created element and the remaining portion to parse ''' groupDict = matchObj.groupdict() thisElement = cls( **groupDict ) curBodyStr = curBodyStr[ matchObj.span()[1] : ] return ( thisElement, curBodyStr ) # XXX: This is a container for BodyElements, but itself can be treated as a BodyElement. # Should give same parent class, or keep separate? class BodyLevel(BodyElement): ''' BodyLevel - A single "level" of a body ''' VALIDATE_ONLY_BOOLEAN_OR_STR = False def __init__(self): ''' __init__ - Create this object ''' self.bodyElements = [] def __repr__(self): ''' __repr__ - Get a string representation of this object as codeish @return <str> - String repr ''' return "%s( bodyElements = %s )" %( self.__class__.__name__, repr(self.bodyElements)) # TODO: Give these a better name, as they could contain BodyElement or BodyLevels def appendBodyElement(self, bodyElement): ''' appendBodyElement - Add a body element to the current tail of this level @param bodyElement <BodyElement> - The body element to add ''' self.bodyElements.append(bodyElement) def appendBodyElements(self, bodyElements): ''' addBodyElements - Add a list of body elements to the current tail of this level @param bodyElements list<BodyElement> - A list of BodyElements to add ''' self.bodyElements += bodyElements def __len__(self): ''' __len__ - Get number of elements in this group @return <int> - Number of BodyElements in this group (just this level) ''' return len(self.bodyElements) def getBodyElements(self): ''' getBodyElements - Get the body elements associated with this level @return list<BodyElement> - List of BodyElements associated with this level ''' return self.bodyElements def __iter__(self): ''' __iter__ - Iterate over this object ''' for bodyElement in self.bodyElements: yield bodyElement raise StopIteration() def evaluateLevelForTag(self, currentTag): ''' evaluateLevelForTag - Shorthand version of "evaluateLevelForTags" but for one tag @param currentTag <AdvancedTag> - A single tag @return <BodyElementValue> - Resulting value for running this level against given tag @see evaluateLevelForTags ''' # TODO: Clean up this function return self.evaluateLevelForTags( [currentTag] )[0] def evaluateLevelForTags(self, currentTags): ''' evaluate - Evaluate this level, and return the final value, for each tag. @param currentTags list/TagCollection < AdvancedTag > - The current set of tags to process @return list< BodyElementValue > - The BodyElementValue of the results, in a list 1:1 same order same size as #currentTags ''' # thisLevelElements - local reference to our elements thisLevelElements = self.bodyElements # resultPerTag - This list contains the values to be returned for each tag, in same order as #currentTags resultPerTag = [] if len(thisLevelElements) == 0: # This is an empty [], so just return the same return resultPerTag # TODO: Optimize this function, further ## These next two arrays provide the common and ordered interface to iterate through all various types which # need evaluation. # They are tuples, ( Class, Lambda to Evaluate ). All lambdas within the same set follow same signature # ORDERED_BE_TYPES_TO_PROCESS_TAGS - The ordered types to process which generate values from the tag itself ORDERED_BE_TYPES_TO_PROCESS_TAGS = [ (BodyLevel, lambda _bl, _curTag : _bl.evaluateLevelForTag(_curTag) ), (BodyElementValueGenerator, lambda _bevg, _curTag : _bevg.resolveValueFromTag(_curTag) ), ] # ORDERED_BE_TYPES_TO_PROCESS_VALUES - The ordered types to process which generate values from left side and right side ORDERED_BE_TYPES_TO_PROCESS_VALUES = [ (BodyElementOperation, lambda _beo, _leftSide, _rightSide : _beo.performOperation(_leftSide, _rightSide) ), (BodyElementComparison, lambda _bec, _leftSide, _rightSide : _bec.doComparison(_leftSide, _rightSide) ), (BodyElementBooleanOps, lambda _bebo, _leftSide, _rightSide : _bebo.doBooleanOp(_leftSide, _rightSide) ), ] # Iterate over all tags for thisTag in currentTags: # curElements - The current set of elements for this tag, as we unroll, this will change. # Initial value will be reference to the original set of elements curElements = thisLevelElements # Run through the tag-processing (value generators, sublevels) ones first for typeToProcess, processFunction in ORDERED_BE_TYPES_TO_PROCESS_TAGS: curElements = [ (issubclass( curElement.__class__, typeToProcess ) and processFunction( curElement, thisTag )) or curElement for curElement in curElements ] # # nextElements - We will assemble into this list the next iteration of #curElements # nextElements = [] # # for curElement in curElements: # # curElementClass = curElement.__class__ # # if not issubclass(curElementClass, typeToProcess): # # Not processing this type, just put back on the list # nextElements.append( curElement ) # # else: # # Processing type, get new value # generatedValue = processFunction( curElement, thisTag ) # nextElements.append( generatedValue ) # # # Update #curElements # curElements = nextElements # Great, now we have to start keeping track of left/right and process the rest for typeToProcess, processFunction in ORDERED_BE_TYPES_TO_PROCESS_VALUES: # nextElements - We will assemble into this list the next iteration of #curElements nextElements = [] # leftSide - this will be the left side value leftSide = None numElements = len(curElements) i = 0 while i < numElements: curElement = curElements[i] curElementClass = curElement.__class__ if not issubclass(curElementClass, typeToProcess ): # We aren't processing this type, just add it back nextElements.append( curElement ) # Update previous value and increment counter leftSide = curElement i += 1 # Loop back continue else: # Validate that we are not at the end (need to gather a right) if (i + 1) >= numElements: # TODO: Better error message? raise XPathParseError('XPath expression ends in an operation, no right-side to operation.') # Validate left is right type if not issubclass(leftSide.__class__, BodyElementValue): # TODO: Better error message? raise XPathParseError('XPath expression contains two consecutive operations (left side)') # Grab and validate right is right type rightSide = curElements[i + 1] if not issubclass(rightSide.__class__, BodyElementValue): # TODO: Better error message? raise XPathParseError('XPath expression contains two consecutive operations (right side)') # Resolve a new value feeding left, right into the function resolvedValue = processFunction( curElement, leftSide, rightSide) # TODO: Remove this check? if not issubclass(resolvedValue.__class__, BodyElementValue): # Not a value? Error for now, may add back looping later if necessary for some ops raise XPathRuntimeError('XPath expression for op "%s" did not return a BodyElementValue, as expected. Got: <%s> %s' % ( \ repr(curElement), resolvedValue.__class__.__name__, repr(resolvedValue), ) ) # Pop the last value (left side), drop the operation, load the resolved value in place. nextElements = nextElements[ : -1 ] + [resolvedValue] # Update new left to this generated value leftSide = resolvedValue # Move past right side i += 2 # Update #curElements curElements = nextElements # END: for typeToProcess, processFunction in ORDERED_BE_TYPES_TO_PROCESS_VALUES: # At this point, should be only one value left. Zero was already handled at start numElementsRemaining = len(curElements) if numElementsRemaining != 1: raise XPathRuntimeError('Got unexpected current number of elements at the end. Expected 1, got %d. Repr: %s' % ( \ numElementsRemaining, repr(curElements), ) ) finalElement = curElements[0] finalElementClass = finalElement.__class__ # TODO: Remove this check? try: finalElementValueType = finalElement.VALUE_TYPE except AttributeError: # Missing this class attribute implicitly also checks the type, # as no other types provide such a name. # TODO: Do a better repr, maybe with string of the xpath? raise XPathRuntimeError('Final Value resolved from level """%s""" was not a BodyElementValue, as was expected.\nIt is a: %s \nrepr: %s' % ( \ repr(self), finalElementClass.__name__, repr(finalElement), ) ) if self.VALIDATE_ONLY_BOOLEAN_OR_STR and finalElementValueType not in (BODY_VALUE_TYPE_BOOLEAN, BODY_VALUE_TYPE_NUMBER): raise XPathRuntimeError('Final value resolved from level """%s""" was not an integer or a boolean, cannot proceed.\nVALUE_TYPE is %s.\nClass: %s\nRepr: %s' % ( \ repr(self), _bodyValueTypeToDebugStr(finalElementValueType), finalElementClass.__name__, repr(finalElement), ) ) # Validated and processed this tag on this level, append to the result array resultPerTag.append(finalElement) # END for thisTag in currentTags return resultPerTag # TODO: Need to refactor this a bit maybe, to support levels as designed class BodyLevel_Top(BodyLevel): ''' BodyLevel_Top - The topmost level of a body. This is the final evaluation before passing onto the next tag filter ''' VALIDATE_ONLY_BOOLEAN_OR_STR = True def filterTagsByBody(self, currentTags): ''' evaluate - Evaluate the topmost level (and all sub levels), and return tags that match. For the topmost level, we run all components left-to-right, and evaluate the result. If an integer remains, we use that 1-origin Nth child of parent. If a boolean remains, we use True to retain, False to discard. @param currentTags TagCollection/list<AdvancedTag> - Current set of tags to validate @return TagCollection - The tags which passed validation ''' retTags = [] if not currentTags: return retTags # Process this level and all subs, get the final value per tag for processing # validation to retain or discard finalResultPerTag = self.evaluateLevelForTags(currentTags) numTags = len(currentTags) for i in range(numTags): currentTag = currentTags[i] finalValue = finalResultPerTag[i] #finalValueClass = finalValue.__class__ # TODO: We should be able to optimize this loop as all results will have either # a number, or a boolean if finalValue.VALUE_TYPE == BODY_VALUE_TYPE_BOOLEAN: shouldRetainTag = finalValue.getValue() if shouldRetainTag is True: retTags.append( currentTag ) #elif finalValue.VALUE_TYPE == BODY_VALUE_TYPE_NUMBER: else: # This should have already been validated theValue = finalValue.getValue() innerNum = int( theValue ) if float(innerNum) != theValue: # Float value, not integer, return nothing. continue # TODO: Better. testFunc = _mk_xpath_op_filter_tag_is_nth_child_index(currentTag.tagName, innerNum) retTags += testFunc( currentTag ) #else: # raise XPathRuntimeError('Error, unexpected value type %s on value: %s' %( _bodyValueTypeToDebugStr(finalValue.VALUE_TYPE), repr(finalValue) ) ) return TagCollection(retTags) # applyFunction - follow this interface, for now. applyFunction = filterTagsByBody ############################# ## Values ## ############################# ## Values are calculated (returned from a BodyElementValueGenerator or otherwise), # or static (provided explicitly in body string). # These are given separate bases, and are all subclasses of BodyElement. # Values are associated with a type (cls.VALUE_TYPE), defined as one of the types below. # Values are wrapped within the associated BodyElementValue subclasses rather than as native python types ##### ##### ### BodyElementValue types ### ##### ##### # NOTE: Use enum type? Requires additional package under python2 # An enumeration of the possible types a BodyElementValue subclass may hold BODY_VALUE_TYPE_UNKNOWN = 0 BODY_VALUE_TYPE_NUMBER = 1 # Leave a gap for 2 should we split float/int BODY_VALUE_TYPE_STRING = 3 BODY_VALUE_TYPE_BOOLEAN = 4 # List - Unimplemented BODY_VALUE_TYPE_LIST = 5 BODY_VALUE_TYPE_NULL = 6 # BODY_VALUE_TYPE_TO_STR - The value type integer to a string representation. BODY_VALUE_TYPE_TO_STR = { BODY_VALUE_TYPE_UNKNOWN : "unknown", BODY_VALUE_TYPE_NUMBER : "number", BODY_VALUE_TYPE_STRING : "string", BODY_VALUE_TYPE_BOOLEAN : "boolean", BODY_VALUE_TYPE_LIST : "list", BODY_VALUE_TYPE_NULL : "null", } def _bodyValueTypeToDebugStr(bodyValue): return "<%d>%s" %(bodyValue, BODY_VALUE_TYPE_TO_STR[bodyValue]) class BodyElementValue(BodyElement): ''' BodyElementValue - Base class of BodyElements which represent a static or resolved value. These wrap the native python representation of the values. A class-level varible, VALUE_TYPE, defines the type associated with the value. ''' # VALUE_TYPE - The type of this value. Should be set by subclass VALUE_TYPE = BODY_VALUE_TYPE_UNKNOWN def __init__(self, value): ''' __init__ - Create this element as a wrapper around an already-calculated value @param value <...> - The python-native value to be held by this element. This will be passed into self.setValue for processing/validation ''' self.value = None self.setValue(value) def getValue(self): ''' getvalue - Get the value associated with this object @return <...> - The python-native value wrapped by this object ''' return self.value def setValue(self, newValue): ''' setValue - Sets the value associated with this object This will be called on all value sets, including __init__ (and from regex) @param newValue <???> - The new value for this object ''' self.value = newValue def __repr__(self): ''' __repr__ - Get a string representation of this value, with code information ''' className = self.__class__.__name__ valueType = self.VALUE_TYPE valueTypeStr = BODY_VALUE_TYPE_TO_STR[ valueType ] valueRepr = repr( self.getValue() ) return "%s<VALUE_TYPE=%d[%s]>(value=%s)" %( className, valueType, valueTypeStr, valueRepr ) class BodyElementValue_Boolean(BodyElementValue): ''' BodyElementValue_Boolean - A True/False BodyElementValue, like returned by a comparison operation ''' VALUE_TYPE = BODY_VALUE_TYPE_BOOLEAN def setValue(self, newValue): ''' setValue - Set a boolean value @param newValue <bool> - Boolean value @see BodyElementValue.setValue ''' if not isinstance(newValue, bool): raise XPathRuntimeError('BodyElementValue_Boolean tried to setValue as a non-boolean type. Was: %s . Repr: %s' %( newValue.__class__.__name__, repr(newValue) )) self.value = newValue class BodyElementValue_String(BodyElementValue): ''' BodyElementValue_String - A string BodyElementValue ''' VALUE_TYPE = BODY_VALUE_TYPE_STRING def setValue(self, newValue): ''' setValue - Set a string value @param newValue <str> - String value @see BodyElementValue.setValue ''' # TODO: Check type of newValue against str (or str/unicode for py2) ? self.value = tostr(newValue) class BodyElementValue_Null(BodyElementValue): ''' BodyElementValue_Null - A null BodyElementValue ''' VALUE_TYPE = BODY_VALUE_TYPE_NULL def __init__(self, value=Null): ''' __init__ - Create this object. Override default to allow passing no value (there is only one) ''' BodyElementValue.__init__(self, value) def setValue(self, newValue=Null): ''' setValue - Set a null value @param newValue <str> - String value @see BodyElementValue.setValue ''' # TODO: Do we want this? None == Null? if newValue is None: newValue = Null if newValue != Null: raise XPathRuntimeError('BodyElementValue_Null tried to set a value but was not Null. Was: %s . Repr: %s' %( newValue.__class__.__name__, repr(newValue))) self.value = newValue class BodyElementValue_Number(BodyElementValue): ''' BodyElementValue_Number - A numeric BodyElementValue ''' VALUE_TYPE = BODY_VALUE_TYPE_NUMBER def setValue(self, newValue): ''' setValue - Sets the inner value to a float, or raises exception on failure to convert. @param newValue <str/float> - A number (positive or negative, integer or float) @raises XPathRuntimeError - Type passed is not convertable to float @see BodyElementValue_StaticValue.setValue ''' try: self.value = float(newValue) except Exception as fe: raise XPathRuntimeError('Runtime Type Error: BodyElementValue_StaticValue_Number was passed a value, <%s> %s -- but could not convert to float. %s %s' %( \ type(newValue).__name__, repr(newValue), fe.__class__.__name__, str(fe), ) ) class BodyElementValue_List(BodyElementValue): ''' BodyElementValue_List - A BodyElementValue which is a list of other values. All elements within this list will be other BodyElementValues, rather than raw values. ''' VALUE_TYPE = BODY_VALUE_TYPE_LIST def __init__(self, initialValues=None): ''' __init__ - Create this object @param initialValues <None/list> Initial values to load into the internal list. ''' if not initialValues: initialValues = [] BodyElementValue.__init__(self, initialValues) def setValue(self, newValues): ''' setValue - Replace the previous lists with new list @param newValues list<...> - A new list from which to create the internal list. All items must have a related BodyElementValue type, or already be one. ''' updatedList = [ ( issubclass(thisVal.__class__, BodyElementValue) and thisVal ) or _pythonValueToBodyElementValue(thisVal) for thisVal in newValues ] self.value = updatedList # PYTHON_TYPE_NAME_TO_BODY_VALUE_CLASS - The __name__ of the type(val), to the associated BEV container PYTHON_TYPE_NAME_TO_BODY_VALUE_CLASS = { 'int' : BodyElementValue_Number, 'float' : BodyElementValue_Number, 'str' : BodyElementValue_String, 'unicode' : BodyElementValue_String, 'bool' : BodyElementValue_Boolean, 'NoneType' : BodyElementValue_Null, 'list' : BodyElementValue_List, 'tuple' : BodyElementValue_List, 'set' : BodyElementValue_List, } def _pythonValueToBodyElementValue(pythonValue): ''' _pythonValueToBodyElementValue - Convert a native/raw python value to its respective BodyElementValue subclassed container. @param pythonValue <???> - The python "raw" value (such as an int or a string) @return <BodyElementValue subclass> - A created container body element value wrapping provided value ''' pythonValueTypeName = type(pythonValue).__name__ try: bodyElementValueClass = PYTHON_TYPE_NAME_TO_BODY_VALUE_CLASS[ pythonValueTypeName ] except KeyError: # XXX: Exception or just use an "unknown" base BodyElementValue? # Maybe better to just shut it down early rather than introduce questionable things on down the line raise XPathRuntimeError('Failed to find a matching BodyElementValue type from python type "%s" ! Repr: %s' %( pythonValueTypeName, repr(pythonValue) ) ) return bodyElementValueClass( pythonValue ) ############################# ## Static Values ## ############################# # STATIC_VALUES_RES - A list of tuples, which will be iterated upon parsing a body to create the BodyElementValue_StaticValue types # Tuples are in format: ( re.compile'd expression, BodyElementValue_StaticValue child class implementing related ) # # Where all of the named groups within the compiled regular expression are passed to __init__ of the related class. STATIC_VALUES_RES = [] class BodyElementValue_StaticValue(BodyElementValue): ''' BodyElementValue_StaticValue - Base class of static values ( appear in the body string directly, e.x. "hello" or 12 ) ''' pass class BodyElementValue_StaticValue_String(BodyElementValue_StaticValue): ''' BodyElementValue_StaticValue_String - A StaticValue which represents a string ''' VALUE_TYPE = BODY_VALUE_TYPE_STRING ## String will have two expressions to generate -- one for single quotes, one for double quotes. Both extract the inner string # Can combine into one, but this is more clear. # Double quoted string #BEV_SV_STRING_DOUBLE_QUOTE_RE = re.compile(r'''^([ \t]*[\"](?P<value>[^"]*)[\"][ \t]*)''') BEV_SV_STRING_DOUBLE_QUOTE_RE = re.compile(r'''^([ \t]*[\"](?P<value>([\\]["]|[^"])*)[\"][ \t]*)''') STATIC_VALUES_RES.append( (BEV_SV_STRING_DOUBLE_QUOTE_RE, BodyElementValue_StaticValue_String) ) # Single quoted string #BEV_SV_STRING_SINGLE_QUOTE_RE = re.compile(r"""^([ \t]*[\'](?P<value>[^']*)[\'][ \t]*)""") BEV_SV_STRING_SINGLE_QUOTE_RE = re.compile(r"""^([ \t]*[\'](?P<value>([\\][']|[^'])*)[\'][ \t]*)""") STATIC_VALUES_RES.append( (BEV_SV_STRING_SINGLE_QUOTE_RE, BodyElementValue_StaticValue_String) ) class BodyElementValue_StaticValue_Number(BodyElementValue_StaticValue): ''' BodyElementValue_StaticValue_Number - StaticValue to represent a number ''' VALUE_TYPE = BODY_VALUE_TYPE_NUMBER def setValue(self, newValue): ''' setValue - Sets the inner value to a float, or raises exception on failure to convert. @param newValue <str/float> - A number (positive or negative, integer or float) @raises XPathRuntimeError - Type passed is not convertable to float @see BodyElementValue_StaticValue.setValue ''' try: self.value = float(newValue) except Exception as fe: raise XPathRuntimeError('Runtime Type Error: BodyElementValue_StaticValue_Number was passed a value, <%s> %s -- but could not convert to float. %s %s' %( \ type(newValue).__name__, repr(newValue), fe.__class__.__name__, str(fe), ) ) # NOTE: Look into spaces after negative sign BEV_SV_NUMBER_RE = re.compile(r'''^([ \t]*(?P<value>([-]){0,1}([\d]*[\.][\d]+)|([\d]+))[ \t]*)''') STATIC_VALUES_RES.append( (BEV_SV_NUMBER_RE, BodyElementValue_StaticValue_Number) ) ############################# ## Value Generators ## ############################# # VALUE_GENERATOR_RES - A list of tuples, which will be iterated upon parsing a body to create the ValueGenerator types # Tuples are in format: ( re.compile'd expression, BodyElementValueGenerator child class implementing related ) # # Where all of the named groups within the compiled regular expression are passed to __init__ of the related class. VALUE_GENERATOR_RES = [] class BodyElementValueGenerator(BodyElement): ''' BodyElementValueGenerator - Base class of BodyElements which resolve to a BodyValue after execution with context of a tag ''' def resolveValueFromTag(self, thisTag): ''' resolveValueFromTag - Process "thisTag" to obtain a BodyElementValue relative to this tag and the extending class's implementation @param thisTag <Tags.AdvancedTag> - The tag of relevance @return <BodyElementValue> - The resulting value ''' raise NotImplementedError('BodyElementValueGenerator.resolveValueFromTag is not implemented in type %s! Must use a class extending BodyElementValueGenerator' % ( \ self.__class__.__name__, ) ) class BodyElementValueGenerator_FetchAttribute(BodyElementValueGenerator): def __init__(self, attributeName): ''' __init__ - Create this Value Generator to fetch the value of an attribute on a tag. @param attributeName <str> - The name of the attribute to fetch ''' BodyElementValueGenerator.__init__(self) self.attributeName = attributeName def resolveValueFromTag(self, thisTag): ''' resolveValueFromTag - Fetch the value of a given attribute from a tag, and return the value. @param thisTag <Tags.AdvancedTag> - An instance of a tag on which to work @return <BodyElementValue> - The value of the attribute, or Null, wrapped in a BodyElementValue container ''' attributeName = self.attributeName if attributeName == '*' or '*' in attributeName: raise XPathNotImplementedError('Wildcard attributes are not yet supported!') # TODO: Can just use getAttribute with a default? if not thisTag.hasAttribute( attributeName ): # No attribute present, return Null return BodyElementValue_Null() val = '%s' %( thisTag.getAttribute(attributeName), ) return BodyElementValue_String(val) def __repr__(self): ''' __repr__ - Get string representation of this object ''' return """%s( attributeName = "%s" )""" %( self.__class__.__name__, self.attributeName) BEVG_FETCH_ATTRIBUTE_RE = re.compile(r'^[ \t]*[@](?P<attributeName>([*]|[a-zA-Z_][a-zA-Z0-9_\-]*))[ \t]*') VALUE_GENERATOR_RES.append( (BEVG_FETCH_ATTRIBUTE_RE, BodyElementValueGenerator_FetchAttribute) ) class BodyElementValueGenerator_Text(BodyElementValueGenerator): ''' BodyElementValueGenerator_Text - Implement the 'text()' function ''' def __init__(self, functionInner=None): BodyElementValueGenerator.__init__(self) def resolveValueFromTag(self, thisTag): return BodyElementValue_String( thisTag.innerText ) BEVG_TEXT_RE = re.compile(r'^([ \t]*[tT][eE][xX][tT][ \t]*[\(][ \t]*[\)][ \t]*)') VALUE_GENERATOR_RES.append( (BEVG_TEXT_RE, BodyElementValueGenerator_Text) ) class BodyElementValueGenerator_Last(BodyElementValueGenerator): ''' BodyElementValueGenerator_Text - Implement the 'text()' function ''' def __init__(self, functionInner=None): BodyElementValueGenerator.__init__(self) def resolveValueFromTag(self, thisTag): parentElement = thisTag.parentElement if parentElement is None: # No parent, last() must be 1 return '1' thisTagName = thisTag.tagName childrenOfRelevance = [ childEm for childEm in parentElement.children if childEm.tagName == thisTagName ] return BodyElementValue_Number( len( childrenOfRelevance ) ) BEVG_LAST_RE = re.compile(r'''^([ \t]*[lL][aA][sS][tT][ \t]*[\(][ \t]*[\)][ \t]*)''') VALUE_GENERATOR_RES.append( (BEVG_LAST_RE, BodyElementValueGenerator_Last) ) class BodyElementValueGenerator_Position(BodyElementValueGenerator): ''' BodyElementValueGenerator_Position - Implement the 'position()' function ''' def __init__(self, functionInner=None): BodyElementValueGenerator.__init__(self) def resolveValueFromTag(self, thisTag): parentElement = thisTag.parentElement if parentElement is None: # No parent, position() must be 1 return '1' thisTagName = thisTag.tagName childrenOfRelevance = [ childEm for childEm in parentElement.children if childEm.tagName == thisTagName ] return BodyElementValue_Number( childrenOfRelevance.index( thisTag ) + 1 ) BEVG_POSITION_RE = re.compile(r'^([ \t]*[pP][oO][sS][iI][tT][iI][oO][nN][ \t]*[\(][ \t]*[\)][ \t]*)') VALUE_GENERATOR_RES.append( (BEVG_POSITION_RE, BodyElementValueGenerator_Position) ) ############################## # ValueGenerator Functions # ############################## # TODO: Create a separate list for REs that associate with functions, rather than sharing with single-level BodyElementValueGenerators? class BodyElementValueGenerator_Function(BodyElementValueGenerator): ''' BodyElementValueGenerator_Function - Base class for BodyElementValueGenerator's which are functions (and can take nested levels) ''' # FUNCTION_MIN_ARGS - Class attribute for the minimum number of args lest there be a parsing error FUNCTION_MIN_ARGS = 0 # FUNCTION_NAME_STR - Name of the function FUNCTION_NAME_STR = 'unknown' @classmethod def createFromMatch(cls, curBodyStr, matchObj): ''' createFromMatch - Create this BodyElement from a given match object, and return the element and remainder for parsing @param curBodyStr <str> - The current body string (matchObj should have matched at the head of this) @param matchObj <re.match> - The match object @return tuple( createdElement<BodyElement>, remainingBodyStr<str> ) - A tuple of the created element and the remaining portion to parse ''' groupDict = matchObj.groupdict() restOfBody = groupDict['restOfBody'] ( fnArgElements, remainingStr ) = _parseFunctionArgsToBodyElements(restOfBody) if len(fnArgElements) < cls.FUNCTION_MIN_ARGS: raise XPathParseError('"%s" function takes at least %d arguments, but found only %d.\nError at: %s' % ( \ cls.FUNCTION_NAME_STR, cls.FUNCTION_MIN_ARGS, len(fnArgElements), repr(curBodyStr), ) ) thisElement = cls( fnArgElements ) return ( thisElement, remainingStr ) def __init__(self, fnArgElements=None): ''' __init__ - Create this object ''' if fnArgElements is None: # TODO: Error? fnArgElements = [] if len(fnArgElements) < self.FUNCTION_MIN_ARGS: # TODO: More context? Should be raised in #createFromMatch but do here as well for completeness... raise XPathParseError('"%s" function takes at least %d arguments, but found only %d.' %( self.FUNCTION_NAME_STR, self.FUNCTION_MIN_ARGS, len(fnArgElements) ) ) self.fnArgElements = fnArgElements def resolveValueFromTag(self, thisTag): ''' resolveValueFromTag - Return the BodyElementValue produced by executing this function in the context of a given tag @param thisTag <AdvancedTag> - The tag of interest @return <BodyElementValue> - The calculated value derived by executing this function ''' raise NotImplementedError('BodyElement type "%s" (function "%s" ) must implement "BodyElementValueGenerator_Function.resolveValueFromTag" but does not!' % ( \ self.__class__.__name__, self.FUNCTION_NAME_STR, ) ) def __repr__(self): ''' __repr__ - String repr of this class ''' return """BodyElementValueGenerator_Function<functionName = "%s"> ( fnArgElements = %s )""" %(self.FUNCTION_NAME_STR, repr(self.fnArgElements) ) class BodyElementValueGenerator_Function_Concat(BodyElementValueGenerator_Function): ''' BodyElementValueGenerator_Function_Concat - BodyElementValueGenerator class implementing concat function ''' # FUNCTION_MIN_ARGS - Class attribute for the minimum number of args lest there be a parsing error FUNCTION_MIN_ARGS = 2 # FUNCTION_NAME_STR - Name of the function FUNCTION_NAME_STR = 'concat' @classmethod def createFromMatch(cls, curBodyStr, matchObj): ''' createFromMatch - Create this BodyElement from a given match object, and return the element and remainder for parsing @param curBodyStr <str> - The current body string (matchObj should have matched at the head of this) @param matchObj <re.match> - The match object @return tuple( createdElement<BodyElement>, remainingBodyStr<str> ) - A tuple of the created element and the remaining portion to parse ''' # NOTE: The first part is copied for now due to inheritence # # We are looking to see if we can optimize this function call to a static value, if resolveable at run time # Generate the base levels for all the args groupDict = matchObj.groupdict() restOfBody = groupDict['restOfBody'] ( fnArgElements, remainingStr ) = _parseFunctionArgsToBodyElements(restOfBody) if len(fnArgElements) < cls.FUNCTION_MIN_ARGS: raise XPathParseError('"%s" function takes at least %d arguments, but found only %d.\nError at: %s' % ( \ cls.FUNCTION_NAME_STR, cls.FUNCTION_MIN_ARGS, len(fnArgElements), repr(curBodyStr), ) ) thisElement = cls( fnArgElements ) # Check if we can optimize this whole thing to a static value staticValueParts = [] isStillStatic = True for fnArgElement in thisElement.fnArgElements: fnArgElementClass = fnArgElement.__class__ if issubclass(fnArgElementClass, BodyElementValue): # Already a value, throw it on the heap thisPartValue = fnArgElement.getValue() # TODO: Handle Null -> '' ? staticValueParts.append(thisPartValue) continue elif issubclass(fnArgElementClass, BodyLevel): # A level, iterate over it. # Don't bother with recursive, if more than one level deep we won't optimize for sublevelBodyElement in fnArgElement: if issubclass(sublevelBodyElement.__class__, BodyElementValue): sublevelPartValue = sublevelBodyElement.getValue() staticValueParts.append(sublevelPartValue) continue # Not a value already, abort optimization attempt isStillStatic = False break else: # Not a value already, abort optimization attempt isStillStatic = False break if isStillStatic is False: # Leave the loop if not static break if isStillStatic is True: # Huzzah! We have unrolled everything and retained a static value! newElementValue = BodyElementValue_String( ''.join( staticValueParts ) ) #print ( "\nOptimized!\nFrom: %s\nTo: %s\n" %( repr(thisElement), repr(newElementValue) ) ) return (newElementValue, remainingStr) #else: #print ( "\nFAILED TO OPTIMIZE!\nFrom: %s\n" %( repr(thisElement), )) # Failed to optimize, return the concat instance with levels return ( thisElement, remainingStr ) def resolveValueFromTag(self, thisTag): ''' resolveValueFromTag - Return the concatenated string @param thisTag <AdvancedTag> - The tag of interest @return <BodyElementValue_String> - The concatenated string as a body element value @see BodyElementValueGenerator_Function.resolveValueFromTag ''' valParts = [] for fnArgElement in self.fnArgElements: valPartElement = fnArgElement.evaluateLevelForTag(thisTag) valPartElementValue = valPartElement.getValue() if valPartElementValue == Null: # If we got a null, treat it as an empty string for concatenation purposes valPartElementValue = '' valParts.append(valPartElementValue) val = ''.join(valParts) return BodyElementValue_String(val) #BEVG_CONCAT_FUNCTION_RE = re.compile(r'''^([ \t]*[cC][oO][nN][cC][aA][tT][ \t]*[\(][ \t]*(?P<fnArgsStr>[^\)]+)[ \t]*[\)][ \t]*)''') BEVG_FUNCTION_CONCAT_RE = re.compile(r'''^([ \t]*[cC][oO][nN][cC][aA][tT][ \t]*[\(][ \t]*(?P<restOfBody>.+))$''') VALUE_GENERATOR_RES.append( (BEVG_FUNCTION_CONCAT_RE, BodyElementValueGenerator_Function_Concat) ) class BodyElementValueGenerator_Function_Contains(BodyElementValueGenerator_Function): ''' BodyElementValueGenerator_Function_Contains - BodyElementValueGenerator class implementing contains function ''' # FUNCTION_MIN_ARGS - Class attribute for the minimum number of args lest there be a parsing error FUNCTION_MIN_ARGS = 2 # FUNCTION_NAME_STR - Name of the function FUNCTION_NAME_STR = 'contains' def __init__(self, fnArgElements=None): ''' __init__ - Create this object ''' BodyElementValueGenerator_Function.__init__(self, fnArgElements) # Ensure we are given exactly two arguments fnArgElements = self.fnArgElements if len(fnArgElements) != 2: raise XPathParseError('"contains" function takes exactly two arguments, but got %d. Args were: %s' % ( \ len(fnArgElements), repr(fnArgElements), ) ) self.string1Arg = fnArgElements[0] self.string2Arg = fnArgElements[1] def resolveValueFromTag(self, thisTag): ''' resolveValueFromTag - Test if one string occurs within the other, and return the boolean result @param thisTag <AdvancedTag> - The tag of interest @return <BodyElementValue_Boolean> - True if string1 contains string2, otherwise False @see BodyElementValueGenerator_Function.resolveValueFromTag ''' string1ValueElement = self.string1Arg.evaluateLevelForTag(thisTag) string2ValueElement = self.string2Arg.evaluateLevelForTag(thisTag) try: string1Value = str( string1ValueElement.getValue() ) except Exception as e1: raise XPathRuntimeError('Error in contains() - cannot convert first argument to a string! It is %s' %( repr(string1ValueElement.getValue()), )) try: string2Value = str( string2ValueElement.getValue() ) except Exception as e2: raise XPathRuntimeError('Error in contains() - cannot convert second argument to a string! It is %s' %( repr(string2ValueElement.getValue()), )) containsResult = bool( string2Value in string1Value ) return BodyElementValue_Boolean(containsResult) BEVG_FUNCTION_CONTAINS_RE = re.compile(r'''^([ \t]*[cC][oO][nN][tT][aA][iI][nN][sS][ \t]*[\(][ \t]*(?P<restOfBody>.+))$''') VALUE_GENERATOR_RES.append( (BEVG_FUNCTION_CONTAINS_RE, BodyElementValueGenerator_Function_Contains) ) class BodyElementValueGenerator_Function_NormalizeSpace(BodyElementValueGenerator_Function): ''' BodyElementValueGenerator_NormalizeSpace - Implement the 'normalize-space()' function ''' # FUNCTION_MIN_ARGS - Class attribute for the minimum number of args lest there be a parsing error FUNCTION_MIN_ARGS = 0 # FUNCTION_NAME_STR - Name of the function FUNCTION_NAME_STR = 'normalize-space' def __init__(self, fnArgElements=None): ''' __init__ - Create this object ''' BodyElementValueGenerator_Function.__init__(self, fnArgElements) # Ensure we are given exactly two arguments fnArgElements = self.fnArgElements numArguments = len(fnArgElements) if numArguments > 1: raise XPathParseError('normalize-space function called with too many arguments (0 or 1 supported)') if numArguments == 1: self.getString = lambda _thisTag : self._getStringFromArgumentAndTag(0, _thisTag) else: self.getString = lambda _thisTag : _thisTag.innerText def _getStringFromArgumentAndTag(self, argumentNum, thisTag): ''' _getStringFromArgument - Get the string for the given argument and tag @param argumentNum <int> - The argument index @param thisTag <AdvancedTag> - The tag of reference @return <str> - The string held by that value ''' valueEm = self.fnArgElements[0].evaluateLevelForTag(thisTag) if not issubclass(valueEm.__class__, (BodyElementValue_String, BodyElementValue_Null) ): raise XPathRuntimeError('Got a value returned from within argument to normalize-text which was not string! It was: %s' %( valueEm.VALUE_TYPE, )) value = str(valueEm.getValue()) return value def resolveValueFromTag(self, thisTag): ''' resolveValueFromTag - Test if one string occurs within the other, and return the boolean result @param thisTag <AdvancedTag> - The tag of interest @return <BodyElementValue_Boolean> - True if string1 contains string2, otherwise False @see BodyElementValueGenerator_Function.resolveValueFromTag ''' stringValue = self.getString(thisTag) return BodyElementValue_String(stringValue.strip()) BEVG_FUNCTION_NORMALIZE_SPACE_RE = re.compile(r'''^([ \t]*[nN][oO][rR][mM][aA][lL][iI][zZ][eE][\-][sS][pP][aA][cC][eE][ \t]*[\(][ \t]*(?P<restOfBody>.+))$''') VALUE_GENERATOR_RES.append( (BEVG_FUNCTION_NORMALIZE_SPACE_RE, BodyElementValueGenerator_Function_NormalizeSpace) ) ############################# ## Operations ## ############################# # OPERATION_RES - A list of tuples, which will be iterated upon parsing a body to create the Operation types # Tuples are in format: ( re.compile'd expression, BodyElementOperation child class implementing related ) # # Where all of the named groups within the compiled regular expression are passed to __init__ of the related class. OPERATION_RES = [] class BodyElementOperation(BodyElement): ''' BodyElementOperation - Base class of BodyElements which perform some operation against the other body elements ''' def performOperation(self, leftSide, rightSide): raise NotImplementedError('BodyElementOperation.performOperation is not implemented in type %s! Must use a class extending BodyElementOperation' % ( \ self.__class__.__name__, ) ) pass class BodyElementOperation_Concat(BodyElementOperation): ''' BodyElementOperation_Concat - Operation to handle the concat operator, "||" ''' def performOperation(self, leftSide, rightSide): ''' performOperation - Concatenate two strings @param leftSide <str/BodyElementValue_String> - The left side string (will be the prefix) @param rightSide <str/BodyElementValue_String> - The right side string (will be the suffix) @return <BodyElementValue_String> - The concatenated string of leftSide + rightSide ''' if issubclass(leftSide.__class__, BodyElementValue): leftSideValue = leftSide.getValue() else: leftSideValue = leftSide if issubclass(rightSide.__class__, BodyElementValue): rightSideValue = rightSide.getValue() else: rightSideValue = rightSide if not issubclass(leftSideValue.__class__, STRING_TYPES): raise XPathRuntimeError('Concat operator tried to concatenate, but left side is not a string type! It is a %s . repr: %s' % ( \ type(leftSideValue).__name__, repr(leftSideValue), ) ) if not issubclass(rightSideValue.__class__, STRING_TYPES): raise XPathRuntimeError('Concat operator tried to concatenate, but right side is not a string type! It is a %s . repr: %s' % ( \ type(rightSideValue).__name__, repr(rightSideValue), ) ) #print ( "Left: %s\nRight: %s\n" %(repr(leftSideValue), repr(rightSideValue)) ) val = leftSideValue + rightSideValue return BodyElementValue_String(val) BEO_CONCAT_RE = re.compile(r'''^([ \t]*[\|][\|][ \t]*)''') OPERATION_RES.append( (BEO_CONCAT_RE, BodyElementOperation_Concat) ) class BodyElementOperation_Math(BodyElementOperation): ''' BodyElementOperation_Math - Base class for math operators ''' # MATH_OPERATOR_STR - Override with the math operator (e.x. "+") MATH_OPERATOR_STR = 'unknown' def _prepareValuesForOperation(self, leftSide, rightSide): ''' _prepareValuesForOperation - Prepare values for a numeric operation @param leftSide <str/BodyElementValue/int/float> - The left side of the operation @param rightSide <str/BodyElementValue/int/float> - The right side of the operation @return tuple( leftSideValue<float>, rightSideValue<float> ) ''' if issubclass(leftSide.__class__, BodyElementValue): leftSideValue = leftSide.getValue() else: leftSideValue = leftSide if issubclass(rightSide.__class__, BodyElementValue): rightSideValue = rightSide.getValue() else: rightSideValue = rightSide try: return ( float(leftSideValue), float(rightSideValue) ) except: raise XPathRuntimeError('Math operation "%s" attempted, but could not convert body sides to numbers!\nLeft side: <%s> %s\nRight side: <%s> %s' % ( \ self.MATH_OPERATOR_STR, type(leftSideValue).__name__, repr(leftSideValue), type(rightSideValue).__name__, repr(rightSideValue), ) ) def performOperation(self, leftSide, rightSide): ''' performOperation - Perform a math operation (see type for details) @param leftSide <...> - The left side (must be convertable to float) @param rightSide <...> - The right side (must be convertable to float) @return <BodyElementValue_Number> - The calculated value ''' (leftSideValue, rightSideValue) = self._prepareValuesForOperation(leftSide, rightSide) return self.doCalculation(leftSideValue, rightSideValue) def doCalculation(self, leftSideValue, rightSideValue): ''' doCalculation - Perform the math operation implemented by this subclas. Subclass must override this method. @param leftSideValue <float> - Left side value @param rightSideValue <float> - Right side value @return <BodyElementValue_Number> - The result of the operation ''' raise NotImplementedError('BodyElementOperation_Math class "%s" must implement doCalculation function!' %( self.__class__.__name__, )) class BodyElementOperation_Math_Plus(BodyElementOperation_Math): ''' BodyElementOperation_Math_Plus - BodyElementOperation that implements the Math operation "plus" / "addition" / "+" ''' MATH_OPERATOR_STR = '+' def doCalculation(self, leftSideValue, rightSideValue): ''' doCalculation - Add two values, return the result. @param leftSideValue <float> - Left side value @param rightSideValue <float> - Right side value @return <BodyElementValue_Number> - The result of the operation ''' result = leftSideValue + rightSideValue return BodyElementValue_Number(result) BEO_MATH_PLUS_RE = re.compile(r'''^([ \t]*[+][ \t]*)''') OPERATION_RES.append( (BEO_MATH_PLUS_RE, BodyElementOperation_Math_Plus) ) class BodyElementOperation_Math_Minus(BodyElementOperation_Math): ''' BodyElementOperation_Math_Minus - BodyElementOperation that implements the Math operation "minus" / "subtraction" / "-" ''' MATH_OPERATOR_STR = '-' def doCalculation(self, leftSideValue, rightSideValue): ''' doCalculation - Subtract two values, return the result. @param leftSideValue <float> - Left side value @param rightSideValue <float> - Right side value @return <BodyElementValue_Number> - The result of the operation ''' result = leftSideValue - rightSideValue return BodyElementValue_Number(result) BEO_MATH_MINUS_RE = re.compile(r'''^([ \t]*[-][ \t]*)''') OPERATION_RES.append( (BEO_MATH_MINUS_RE, BodyElementOperation_Math_Minus) ) class BodyElementOperation_Math_Multiply(BodyElementOperation_Math): ''' BodyElementOperation_Math_Multiply - BodyElementOperation that implements the Math operation "multiply" / "multiplication" / "*" ''' MATH_OPERATOR_STR = '*' def doCalculation(self, leftSideValue, rightSideValue): ''' doCalculation - Multiply two values, return the result. @param leftSideValue <float> - Left side value @param rightSideValue <float> - Right side value @return <BodyElementValue_Number> - The result of the operation ''' result = leftSideValue * rightSideValue return BodyElementValue_Number(result) BEO_MATH_MULTIPLY_RE = re.compile(r'''^([ \t]*[\*][ \t]*)''') OPERATION_RES.append( (BEO_MATH_MULTIPLY_RE, BodyElementOperation_Math_Multiply) ) class BodyElementOperation_Math_Divide(BodyElementOperation_Math): ''' BodyElementOperation_Math_Divide - BodyElementOperation that implements the Math operation "divide" / "division" / "div" ''' MATH_OPERATOR_STR = 'div' def doCalculation(self, leftSideValue, rightSideValue): ''' doCalculation - Divide two values, return the result. @param leftSideValue <float> - Left side value @param rightSideValue <float> - Right side value @return <BodyElementValue_Number> - The result of the operation ''' result = leftSideValue / rightSideValue return BodyElementValue_Number(result) BEO_MATH_DIVIDE_RE = re.compile(r'''^([ \t]*[dD][iI][vV][ \t]*)''') OPERATION_RES.append( (BEO_MATH_DIVIDE_RE, BodyElementOperation_Math_Divide) ) class BodyElementOperation_Math_Modulus(BodyElementOperation_Math): ''' BodyElementOperation_Math_Modulus - BodyElementOperation that implements the Math operation "modulus" / "%" / "mod" ''' MATH_OPERATOR_STR = 'mod' def doCalculation(self, leftSideValue, rightSideValue): ''' doCalculation - Divide two values, return the remainder. @param leftSideValue <float> - Left side value @param rightSideValue <float> - Right side value @return <BodyElementValue_Number> - The result of the operation ''' result = leftSideValue % rightSideValue return BodyElementValue_Number(result) BEO_MATH_MODULUS_RE = re.compile(r'''^([ \t]*[mM][oO][dD][ \t]*)''') OPERATION_RES.append( (BEO_MATH_MODULUS_RE, BodyElementOperation_Math_Modulus) ) ############################# ## Comparisons ## ############################# # COMPARISON_RES - A list of tuples, which will be iterated upon parsing a body to create the Comparison types # Tuples are in format: ( re.compile'd expression, BodyElementComparison child class implementing related ) # # Where all of the named groups within the compiled regular expression are passed to __init__ of the related class. COMPARISON_RES = [] class BodyElementComparison(BodyElement): ''' BodyElementComparison - Base class of Comparison operations (such as equals, not equals, greater than, etc.) ''' # NUMERIC_ONLY - If True, the value must be represenatble as a float (Number), or error. # If False, other values (e.x. string) are supported. NUMERIC_ONLY = False # COMPARISON_OPERATOR_STR - This should be set to the operator associated with the comparison (e.x. "!=" or "<") COMPARISON_OPERATOR_STR = 'UNKNOWN' def doComparison(self, leftSide, rightSide): ''' doComparison - Do the comparison associated with the subclass of BodyElementComparison and return the result. @param leftSide <BodyElementValue/str/float/BodyElementValue> - Left side of comparison operator @param rightSideValue <BodyElementValue/str/float/other?> - Right side of comparison operator @return <bool> - The result of the comparison operation ''' (leftSideValue, rightSideValue) = BodyElementComparison._resolveTypesForComparison(leftSide, rightSide) return self._doComparison(leftSideValue, rightSideValue) def _doComparison(self, leftSideValue, rightSideValue): ''' _doComparison - TYPE INTERNAL. Do the comparison associated with the subclass of BodyElementComparison and return the result. This should be implemented by each comparison type, rather than doComparison directly (which prepares arguments) @param leftSideValue <str/float/other?> - Left side of comparison operator's value (unrolled from its BodyElementValue wrapper) @param rightSideValue <str/float/other?> - Right side of comparison operator's value (unrolled from its BodyElementValue wrapper) @return <BodyElementValue_Boolean> - The result of the comparison operation ''' raise NotImplementedError('BodyElementComparison._doComparison must be implemented by extending subclass, but %s does not implement!' % ( \ self.__class__.__name__, ) ) @classmethod def _resolveTypesForComparison(cls, leftSide, rightSide): ''' _resolveTypesForComparison - Resolve the given leftSide and rightSide dynamic types for comparison @param leftSide <BodyElementValue/...> - A value, either wrapped in a BodyElementValue or direct. Represents the left side of the operator @param rightSide <BodyElementValue/...> - A value, either wrapped in a BodyElementValue or direct. Represents the right side of the operator @return tuple(left, right) of either <float, float> if castable, or the original raw pythonic types instead (pulled out of BodyElementValue if provided in one) @notes - If cls.NUMERIC_ONLY is True, will throw an exception if cannot cast both sides to float. See raises section, below. @raises XPathRuntimeError - If NUMERIC_ONLY is True, and cannot cast both sides to a float. ''' if issubclass(leftSide.__class__, BodyElementValue): leftSideValue = leftSide.getValue() else: leftSideValue = leftSide if issubclass(rightSide.__class__, BodyElementValue): rightSideValue = rightSide.getValue() else: rightSideValue = rightSide # Try to represent both sides as floats (Number), if possible try: return ( float(leftSideValue), float(rightSideValue) ) except: # If we failed to convert both sides to number (e.x. strings), then check if this is a NUMERIC_ONLY type, # in which case we will throw an error. # Otherwise, return the raw python types if cls.NUMERIC_ONLY is False: return ( leftSideValue, rightSideValue ) else: # TODO: Say explicitly which side won't convert? raise XPathRuntimeError('XPath Runtime Error: Numeric-only comparison attempted with non-numeric values! Comparison "%s" only supports both sides being numeric, and cannot convert. Left side is <%s> ( %s ) and Right side is <%s> ( %s )' % ( \ cls.COMPARISON_OPERATOR_STR, type(leftSideValue).__name__, repr(leftSideValue), type(rightSideValue).__name__, repr(rightSideValue), ) ) class BodyElementComparison_Equal(BodyElementComparison): ''' BodyElementComparison_Equal - A BodyElementComparison which represents the "equals" operation, "=" ''' COMPARISON_OPERATOR_STR = "=" def _doComparison(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue == rightSideValue ) BEC_EQUAL_RE = re.compile(r'^([ \t]*[=][ \t]*)') COMPARISON_RES.append( (BEC_EQUAL_RE, BodyElementComparison_Equal) ) class BodyElementComparison_NotEqual(BodyElementComparison): ''' BodyElementComparison_NotEqual - A BodyElementComparison which represents the "not equals" operation, "!=" ''' COMPARISON_OPERATOR_STR = "!=" def _doComparison(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue != rightSideValue ) BEC_NOT_EQUAL_RE = re.compile(r'^([ \t]*[!][=][ \t]*)') COMPARISON_RES.append( (BEC_NOT_EQUAL_RE, BodyElementComparison_NotEqual) ) # TODO: Other types of comparison (greater than, less than or equal, etc.) class BodyElementComparison_LessThan(BodyElementComparison): ''' BodyElementComparison_LessThan - A BodyElementComparison which represents the "less than" operation, "<" This is a "NUMERIC_ONLY" comparison operation. ''' NUMERIC_ONLY = True COMPARISON_OPERATOR_STR = '<' def _doComparison(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue < rightSideValue ) BEC_LESS_THAN_RE = re.compile(r'^([ \t]*[<][ \t]*)') COMPARISON_RES.append( (BEC_LESS_THAN_RE, BodyElementComparison_LessThan) ) class BodyElementComparison_LessThanOrEqual(BodyElementComparison): ''' BodyElementComparison_LessThanOrEqual - A BodyElementComparison which represents the "less than or equal" operation, "<=" This is a "NUMERIC_ONLY" comparison operation. ''' NUMERIC_ONLY = True COMPARISON_OPERATOR_STR = '<=' def _doComparison(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue <= rightSideValue ) BEC_LESS_THAN_OR_EQUAL_RE = re.compile(r'^([ \t]*[<][=][ \t]*)') COMPARISON_RES.append( (BEC_LESS_THAN_OR_EQUAL_RE, BodyElementComparison_LessThanOrEqual) ) class BodyElementComparison_GreaterThan(BodyElementComparison): ''' BodyElementComparison_GreaterThan - A BodyElementComparison which represents the "greater than" operation, ">" This is a "NUMERIC_ONLY" comparison operation. ''' NUMERIC_ONLY = True COMPARISON_OPERATOR_STR = '>' def _doComparison(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue > rightSideValue ) BEC_GREATER_THAN_RE = re.compile(r'^([ \t]*[>][ \t]*)') COMPARISON_RES.append( (BEC_GREATER_THAN_RE, BodyElementComparison_GreaterThan) ) class BodyElementComparison_GreaterThanOrEqual(BodyElementComparison): ''' BodyElementComparison_GreaterThanOrEqual - A BodyElementComparison which represents the "greater than or equal" operation, ">=" This is a "NUMERIC_ONLY" comparison operation. ''' NUMERIC_ONLY = True COMPARISON_OPERATOR_STR = '>=' def _doComparison(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue <= rightSideValue ) BEC_GREATER_THAN_OR_EQUAL_RE = re.compile(r'^([ \t]*[>][=][ \t]*)') COMPARISON_RES.append( (BEC_GREATER_THAN_OR_EQUAL_RE, BodyElementComparison_GreaterThanOrEqual) ) ############################# ## Boolean Ops ## ############################# # BOOLEAN_OPS_RES - A list of tuples, which will be iterated upon parsing a body to create the BooleanOps types # Tuples are in format: ( re.compile'd expression, BodyElementBooleanOps child class implementing related ) # # Where all of the named groups within the compiled regular expression are passed to __init__ of the related class. BOOLEAN_OPS_RES = [] class BodyElementBooleanOps(BodyElement): ''' BodyElementBooleanOps - Base comparison class for boolean comparison operations (e.x. "and" , "or" ) ''' # BOOLEAN_OP_STR - The boolean operation being implemented, should be set by the subclass. BOOLEAN_OP_STR = 'unknown' def doBooleanOp(self, leftSide, rightSide): ''' doBooleanOp - Do the comparison associated with the subclass of BodyElementBooleanOps and return the result. @param leftSide <BodyElementValue/str/float/BodyElementValue> - Left side of comparison operator @param rightSideValue <BodyElementValue/str/float/other?> - Right side of comparison operator @return <bool> - The result of the comparison operation ''' (leftSideValue, rightSideValue) = BodyElementBooleanOps._resolveTypesForBooleanOp(leftSide, rightSide) return self._doBooleanOp(leftSideValue, rightSideValue) def _doBooleanOp(self, leftSideValue, rightSideValue): ''' _doBooleanOp - TYPE INTERNAL. Do the comparison associated with the subclass of BodyElementBooleanOp and return the result. This should be implemented by each comparison type, rather than doBooleanOp directly (which prepares arguments) @param leftSideValue <str/float/other?> - Left side of comparison operator's value @param rightSideValue <str/float/other?> - Right side of comparison operator's value @return <bool> - The result of the comparison operation ''' raise NotImplementedError('BodyElementBooleanOps._doBooleanOp must be implemented by extending subclass, but %s does not implement!' % ( \ self.__class__.__name__, ) ) @classmethod def _resolveTypesForBooleanOp(cls, leftSide, rightSide): ''' _resolveTypesForBooleanOp - Resolve the given leftSide and rightSide dynamic types for comparison Boolean type overrides the comparison base in order to only accept booleans (instead of numeric / strings) @param leftSide <BodyElementValue/...> - A value, either wrapped in a BodyElementValue or direct. Represents the left side of the operator. Must be or resolve to a boolean @param rightSide <BodyElementValue/...> - A value, either wrapped in a BodyElementValue or direct. Represents the right side of the operator Must be or resolve to a boolean @return tuple(left<bool>, right<bool>) @raises XPathRuntimeError - If either side is not a boolean, or a boolean-wrapped BodyElementValue ''' if issubclass(leftSide.__class__, BodyElementValue): leftSideValue = leftSide.getValue() else: leftSideValue = leftSide if issubclass(rightSide.__class__, BodyElementValue): rightSideValue = rightSide.getValue() else: rightSideValue = rightSide # TODO: Provide better context here of where this operation was in the xpath string? if not isinstance(leftSideValue, bool): # Should this be a parse error? Their expression caused it.... raise XPathRuntimeError('XPath Runtime Error: Boolean comparison attempted ( "%s" operator ) but left side was not a boolean! Was: %s . Repr: %s' % ( \ cls.BOOLEAN_OP_STR, type(leftSideValue).__name__, repr(leftSideValue), ) ) if not isinstance(rightSideValue, bool): raise XPathRuntimeError('XPath Runtime Error: Boolean comparison attempted ( "%s" operator ) but right side was not a boolean! Was: %s . Repr: %s' % ( \ cls.BOOLEAN_OP_STR, type(rightSideValue).__name__, repr(rightSideValue), ) ) return ( leftSideValue, rightSideValue ) class BodyElementBooleanOps_And(BodyElementBooleanOps): ''' BodyElementBooleanOps_And - A BodyElementBooleanOps which represents the "and" operation - will check that both the left and right side are True ''' BOOLEAN_OP_STR = 'and' def _doBooleanOp(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue and rightSideValue ) # NOTE: these requires a whitespace after, unlike other operators. BEBO_AND_RE = re.compile(r'^([ \t]*[aA][nN][dD][ \t]+)') BOOLEAN_OPS_RES.append( (BEBO_AND_RE, BodyElementBooleanOps_And) ) class BodyElementBooleanOps_Or(BodyElementBooleanOps): ''' BodyElementBooleanOps_Or - A BodyElementBooleanOps which represents the "or" operation - will check that either the left and right side are True ''' BOOLEAN_OP_STR = 'or' def _doBooleanOp(self, leftSideValue, rightSideValue): return BodyElementValue_Boolean( leftSideValue or rightSideValue ) BEBO_OR_RE = re.compile(r'^([ \t]*[oO][rR][ \t]+)') BOOLEAN_OPS_RES.append( (BEBO_OR_RE, BodyElementBooleanOps_Or) ) # ALL_BODY_ELEMENT_RES - All regular expressions used in parsing out a body into individual operations ALL_BODY_ELEMENT_RES = VALUE_GENERATOR_RES + STATIC_VALUES_RES + COMPARISON_RES + OPERATION_RES + BOOLEAN_OPS_RES # NOTE: Static values should come before operations, so negative values match as a static value and not a substract operation class BodyLevel_Group(BodyLevel): ''' BodyLevel_Group - A group of elements ''' def __init__(self, groupMembers=None): ''' __init__ - Create this element @param groupMembers list<BodyElement> - Members of this group ''' BodyLevel.__init__(self) if not groupMembers: groupMembers = [] self.appendBodyElements(groupMembers) # BODY_ELEMENT_GROUP_OPEN_RE - The opening of a parenthesis group BODY_ELEMENT_GROUP_OPEN_RE = re.compile(r'^([ \t]*[\(](?P<restOfBody>.+)[ \t]*)$') # BODY_ELEMENT_GROUP_CLOSE_RE - The closing of a parenthesis group BODY_ELEMENT_GROUP_CLOSE_RE = re.compile(r'^(?P<endOfGroup>[ \t]*[\)][ \t]*)') def _parseBodyLevelGroup(restOfBody): ''' _parseBodyLevelGroup - Parse a group, within parenthesis @param restOfBody <str> - The remainder of the body string to parse @return tuple< <BodyLevel_Group>, remainderStr<str> > - The group parsed, and the unused portion of the str on which to continue parsing at parent level ''' allBodyElementREs = ALL_BODY_ELEMENT_RES bodyElementGroupOpenRE = BODY_ELEMENT_GROUP_OPEN_RE bodyElementGroupCloseRE = BODY_ELEMENT_GROUP_CLOSE_RE curString = restOfBody[:].strip() ret = [] foundCloseParen = False while curString: gotMatch = False groupCloseMatch = bodyElementGroupCloseRE.match(curString) if groupCloseMatch: # We are at the end of this group, return the rest of the string back upward gotMatch = True newCurString = curString[ groupCloseMatch.span()[1] : ] curString = newCurString foundCloseParen = True break groupOpenMatch = bodyElementGroupOpenRE.match(curString) if groupOpenMatch: gotMatch = True (subLevel, newCurString) = _parseBodyLevelGroup( groupOpenMatch.groupdict()['restOfBody'] ) ret.append(subLevel) curString = newCurString continue else: for ( bodyElementRE, bodyElementClass ) in allBodyElementREs: matchObj = bodyElementRE.match(curString) if matchObj is None: continue gotMatch = True break if gotMatch is False: raise XPathParseError('Failed to parse body string into usable part, at: "%s"' %(curString, )) (thisElement, newCurString) = bodyElementClass.createFromMatch(curString, matchObj) ret.append(thisElement) curString = newCurString if foundCloseParen is False: raise XPathParseError('Missing close parenthesis for section: "%s"' %(restOfBody, )) # Optimization: Before returning, run through and perform any operations against static values possible #newRet = _optimizeStaticValueCalculations(ret) ret = _optimizeStaticValueCalculations(ret) #print ( "\nPrevious BodyElements(%2d): %s\n\n New BodyElements(%2d): %s\n" %( len(ret), repr(ret), len(newRet), repr(newRet)) ) #return newRet return ( BodyLevel_Group(ret), curString ) # BODY_ELEMENT_GROUP_FUNCTION_NEXT_ARG_RE - The next argument BODY_ELEMENT_GROUP_FUNCTION_NEXT_ARG_RE = re.compile(r'^([ \t]*[,][ \t]*)') def _parseFunctionArgsToBodyElements(restOfBody): ''' _parseFunctionArgsToBodyElements - Parse function arguments into BodyElements @param restOfBody <str> - The remainder of the body string to parse @return tuple< list<BodyLevel_Group>, remainderStr<str> > - The groups parsed (one per arg), and the unused portion of the str on which to continue parsing at parent level ''' allBodyElementREs = ALL_BODY_ELEMENT_RES bodyElementGroupOpenRE = BODY_ELEMENT_GROUP_OPEN_RE bodyElementGroupCloseRE = BODY_ELEMENT_GROUP_CLOSE_RE bodyElementGroupFunctionNextArgRE = BODY_ELEMENT_GROUP_FUNCTION_NEXT_ARG_RE curString = restOfBody[:].strip() fnArgs = [] curGroupElements = [] foundCloseParen = False while curString: gotMatch = False groupCloseMatch = bodyElementGroupCloseRE.match(curString) if groupCloseMatch: # We are at the end of this group, return the rest of the string back upward gotMatch = True newCurString = curString[ groupCloseMatch.span()[1] : ] curString = newCurString foundCloseParen = True break nextArgMatch = bodyElementGroupFunctionNextArgRE.match(curString) if nextArgMatch: # We hit a comma, should move onto the next arg gotMatch = True if len(curGroupElements) == 0: # TODO: More information here? raise XPathParseError('Function call has empty argument, at: %s' %(curString, )) # Append the current group and begin the next # Optimize the group elements curGroupElements = _optimizeStaticValueCalculations(curGroupElements) if False and len(curGroupElements) == 1: # TODO: Support this optimization -- will require a bit of interface massaging so common interface # We have optimized down to a single element, so add that instead of the level fnArgs.append( curGroupElements[0] ) else: # More than one, create a group and append it curGroup = BodyLevel_Group( curGroupElements ) fnArgs.append( curGroup ) # TODO: Validate we don't just have trailing comma # Create a new list for future elements curGroupElements = [] newCurString = curString[ nextArgMatch.span()[1] : ] curString = newCurString continue groupOpenMatch = bodyElementGroupOpenRE.match(curString) if groupOpenMatch: gotMatch = True (subLevel, newCurString) = _parseBodyLevelGroup( groupOpenMatch.groupdict()['restOfBody'] ) curGroupElements.append( subLevel ) curString = newCurString continue else: for ( bodyElementRE, bodyElementClass ) in allBodyElementREs: matchObj = bodyElementRE.match(curString) if matchObj is None: continue gotMatch = True break if gotMatch is False: raise XPathParseError('Failed to parse body string into usable part, at: "%s"' %(curString, )) (thisElement, newCurString) = bodyElementClass.createFromMatch(curString, matchObj) curGroupElements.append( thisElement ) curString = newCurString if foundCloseParen is False: raise XPathParseError('Missing close parenthesis for section: "%s"' %(restOfBody, )) if len(curGroupElements) > 0: # Optimize the group elements curGroupElements = _optimizeStaticValueCalculations(curGroupElements) if False and len(curGroupElements) == 1: # We have optimized down to a single element, so add that instead of the level fnArgs.append( curGroupElements[0] ) else: # More than one, create a group and append it curGroup = BodyLevel_Group( curGroupElements ) fnArgs.append( curGroup ) # TODO: Optimize the args, can pull out of levels if only one arg return ( fnArgs, curString ) def parseBodyStringIntoBodyElements(bodyString): ''' parseBodyStringIntoBodyElements - Parses the body string of a tag filter expression (between square brackets) into individual body elements. @param bodyString <str> - A body string of an XPath expression @return list<BodyElement> - A list of matched BodyElement items, in order of appearance. @raises XPathParseError - Failure to parse ''' allBodyElementREs = ALL_BODY_ELEMENT_RES bodyElementGroupOpenRE = BODY_ELEMENT_GROUP_OPEN_RE curString = bodyString[:].strip() ret = [] while curString: gotMatch = False groupOpenMatch = bodyElementGroupOpenRE.match(curString) if groupOpenMatch: gotMatch = True (subLevel, newCurString) = _parseBodyLevelGroup( groupOpenMatch.groupdict()['restOfBody'] ) ret.append(subLevel) curString = newCurString continue else: for ( bodyElementRE, bodyElementClass ) in allBodyElementREs: matchObj = bodyElementRE.match(curString) if matchObj is None: continue gotMatch = True break if gotMatch is False: raise XPathParseError('Failed to parse body string into usable part, at: "%s"' %(curString, )) (thisElement, newCurString) = bodyElementClass.createFromMatch(curString, matchObj) ret.append(thisElement) curString = newCurString # Optimization: Before returning, run through and perform any operations against static values possible #newRet = _optimizeStaticValueCalculations(ret) ret = _optimizeStaticValueCalculations(ret) #print ( "\nPrevious BodyElements(%2d): %s\n\n New BodyElements(%2d): %s\n" %( len(ret), repr(ret), len(newRet), repr(newRet)) ) #return newRet return ret def _optimizeStaticValueCalculations(bodyElements): ''' _optimizeStaticValueCalculations - Optimize element portions that can be pre-calculated @param bodyElements - list<BodyElement> - List of BodyElements following parsing of XPath string @return list<BodyElement> - Optimized list of BodyElements, where pre-calculated operations are ran once at parse-time instead of per tag at run-time. ''' numOrigElements = len(bodyElements) if numOrigElements <= 2: # Nothing to do return bodyElements # We are already going to hit __class__ on every object, so do it ahead of time # in a quicker list comprehension, which we will reference later bodyElementClasses = [bodyElement.__class__ for bodyElement in bodyElements] # No benefit in checking if we have any BodyElementOperation (or future optimizations) first, # as we will already iterate over everything. The only thing saved when none would be recreating the list, # at the expense of O(n) vs O(2n) for the check in the event we can optimize. ret = [] prevElement = bodyElements[0] prevElementClass = bodyElementClasses[0] ret.append(prevElement) i = 1 while i < numOrigElements: curElement = bodyElements[i] curElementClass = bodyElementClasses[i] if issubclass(curElementClass, (BodyElementOperation, BodyElementComparison)): # If we have an operation to optimize, check if left and right are already values. # If so, we can run it. if (i+1) < numOrigElements and issubclass(prevElementClass, BodyElementValue): # We are not on the last element, and the previous was a value. # If next is value, run the operation. nextElement = bodyElements[i + 1] nextElementClass = bodyElementClasses[i + 1] if issubclass(nextElementClass, BodyElementValue): # Score! We can optimize! if issubclass(curElementClass, BodyElementOperation): calculatedValue = curElement.performOperation(prevElement, nextElement) #elif issubclass(curElementClass, BodyElementComparison): else: # Only Comparison left calculatedValue = curElement.doComparison(prevElement, nextElement) # Strip off the previous value, and replace this operation and next value with calculated ret = ret[ : -1 ] + [calculatedValue] # Set previous value to this value prevElement = calculatedValue prevElementClass = prevElement.__class__ # And increment past the next element i += 2 continue # No optimization available, add the element as-is ret.append(curElement) # Update previous element to this element for next round prevElement = curElement prevElementClass = curElementClass # Increment to next element i += 1 return ret # vim: set ts=4 sw=4 st=4 expandtab :
lgpl-3.0
-9,045,549,128,452,777,000
33.874741
258
0.621279
false
dcos/dcos
packages/adminrouter/extra/src/test-harness/modules/mocker/common.py
1
7971
# Copyright (C) Mesosphere, Inc. See LICENSE file for details. """ Shared management code for DC/OS mocks used by AR instances, both EE and Open. """ import concurrent.futures import logging from mocker.endpoints.marathon import MarathonEndpoint from mocker.endpoints.mesos import MesosEndpoint from mocker.endpoints.mesos_dns import MesosDnsEndpoint from mocker.endpoints.reflectors import ( ReflectingTcpIpEndpoint, ReflectingUnixSocketEndpoint, ) log = logging.getLogger(__name__) class MockerBase: """This class represents mocking behaviour shared between both EE and Open repositories. It should not be instantiated directly but instead inheriting classes should override/extend it's methods. """ _endpoints = None def _register_endpoints(self, endpoints): """Register given endpoints list with the mock This method registers all the endpoints that are going to be managed by this Mocker instance. Args: endpoints (object: [EndpointA, EndpointB,...]): list of endpoints that should be registered """ self._endpoints = {} for endpoint in endpoints: log.info("Registering endpoint `%s`", endpoint.id) assert endpoint.id not in self._endpoints self._endpoints[endpoint.id] = endpoint @staticmethod def _create_common_endpoints(): """Helper function that takes care of creating/instantiating all the endpoints that are common for both EE and Open repositories""" res = [] # pkgpanda endpoint res.append(ReflectingUnixSocketEndpoint('/run/dcos/pkgpanda-api.sock')) # exhibitor res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=8181)) # Mesos masters res.append(MesosEndpoint(ip='127.0.0.2', port=5050)) res.append(MesosEndpoint(ip='127.0.0.3', port=5050)) # Marathon instances running on the masters res.append(MarathonEndpoint(ip='127.0.0.1', port=8080)) res.append(MarathonEndpoint(ip='127.0.0.2', port=8080)) # cosmos res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=7070)) # dcos-net res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=62080)) # Mesos agents: # - plain/without TLS res.append(ReflectingTcpIpEndpoint(ip='127.0.0.2', port=15001)) res.append(ReflectingTcpIpEndpoint(ip='127.0.0.3', port=15002)) # - TLS version. It's used for testing e.g. DEFAULT_SCHEME variable # where AR is connecting to the upstream Mesos Agent using TLS. # 127.0.0.1 address stems from certificate names matching. res.append(ReflectingTcpIpEndpoint( ip='127.0.0.1', port=15401, certfile='/run/dcos/pki/tls/certs/adminrouter-ec.crt', keyfile='/run/dcos/pki/tls/private/adminrouter-ec.key')) # Agent3 res.append(ReflectingTcpIpEndpoint(ip='127.0.0.4', port=15003)) # Agent AR 1 res.append(ReflectingTcpIpEndpoint(ip='127.0.0.2', port=61001)) # Agent AR 2 res.append(ReflectingTcpIpEndpoint(ip='127.0.0.3', port=61001)) # task /scheduler-alwaysthere res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=16000)) # task /nest1/scheduler-alwaysthere res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=17000)) # task /nest2/nest1/scheduler-alwaysthere res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=18000)) # task /nest2/nest1/scheduler-onlymarathon res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=18001)) # task /nest2/nest1/scheduler-onlymesos res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=18002)) # task /nest2/nest1/scheduler-onlymesosdns res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=18003)) # task /scheduler-alwaysthere but with different ip+port, used i.e. in # `/service` endpoint tests res.append(ReflectingTcpIpEndpoint(ip='127.0.0.15', port=16001)) # catch-all for /scheduler-alwaysthere task. Its role is to respond for all # the requests which i.e. used mesos_dns'es second entry in SRV reply. # Successfull tests will never use it. res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=16002)) # other Admin Router Masters, used i.e. during Marathon leader testing res.append(ReflectingTcpIpEndpoint(ip='127.0.0.2', port=80)) res.append(ReflectingTcpIpEndpoint(ip='127.0.0.3', port=80)) res.append(ReflectingTcpIpEndpoint( ip='127.0.0.4', port=443, certfile='/run/dcos/pki/tls/certs/adminrouter-ec.crt', keyfile='/run/dcos/pki/tls/private/adminrouter-ec.key')) # metrics endpoint res.append(ReflectingUnixSocketEndpoint('/run/dcos/telegraf-dcos-metrics.sock')) # log endpoint res.append(ReflectingUnixSocketEndpoint('/run/dcos/dcos-log.sock')) # Mesos DNS res.append(MesosDnsEndpoint(ip='127.0.0.1', port=8123)) # DDDT, two variants: # TODO (prozlach): cleanup DDDT sockets res.append( ReflectingTcpIpEndpoint(ip='127.0.0.1', port=1050)) res.append( ReflectingUnixSocketEndpoint('/run/dcos/dcos-diagnostics.sock')) # DC/OS Metronome res.append(ReflectingTcpIpEndpoint(ip='127.0.0.1', port=9000)) # Checks API res.append( ReflectingUnixSocketEndpoint('/run/dcos/dcos-checks-api.sock')) # TODO - other endpoints common for all flavours go here... return res def __init__(self, extra_endpoints=None): """Initialize new MockerBase instance Args: extra_endpoints (obj: [EndpointA, EndpointB,...]): list of endpoints that are unique to the inheriting class/represent specific behaviour of given flavour """ common_endpoints = self._create_common_endpoints() endpoints = common_endpoints + extra_endpoints self._register_endpoints(endpoints) def start(self): """Start all endpoints registered with this Mocker instance""" with concurrent.futures.ThreadPoolExecutor() as executor: for endpoint in self._endpoints.values(): executor.submit(endpoint.start) def stop(self): """Stop all endpoints registered with this Mocker instance. Usually called right before object destruction """ with concurrent.futures.ThreadPoolExecutor() as executor: for endpoint in self._endpoints.values(): executor.submit(endpoint.stop) def reset(self): """Reset all the endpoints to their initial state Used to make sure that all the tests start with fresh state/are not interfering with each other through Mocker """ for endpoint in self._endpoints.values(): endpoint.reset() def send_command(self, endpoint_id, func_name, aux_data=None): """Reconfigure endpoint manager by Mocker This method reconfigures endpoint previously started by Mocker. The reconfiguration is basically calling method `func_name` belonging to endpoint `endpoint_id` with data `aux_data` Args: endpoint_id (str): id of the endpoint to reconfigure func_name (str): name of the endpoint's function to call aux_data (str): auxilary data to pass to function Returns: Depends on the endpoint - it returns anything that endpoint returns. Raises: KeyError: endpoint with given id does not exists AttributeError: endpoint does not defines function `func_name` """ endpoint = self._endpoints[endpoint_id] f = getattr(endpoint, func_name) return f(aux_data)
apache-2.0
-4,933,649,222,516,970,000
40.952632
88
0.648476
false
gnachman/iTerm2
api/library/python/iterm2/iterm2/variables.py
1
3098
""" Provides support for iTerm2 variables, which hold information associated with various objects such as sessions, tabs, and windows. """ import asyncio import enum import json import typing import iterm2.connection import iterm2.notifications class VariableScopes(enum.Enum): """Describes the scope in which a variable can be evaluated.""" SESSION = iterm2.api_pb2.VariableScope.Value("SESSION") #: Session scope TAB = iterm2.api_pb2.VariableScope.Value("TAB") #: Tab scope WINDOW = iterm2.api_pb2.VariableScope.Value("WINDOW") #: Window scope APP = iterm2.api_pb2.VariableScope.Value("APP") #: Whole-app scope class VariableMonitor: """ Watches for changes to a variable. `VariableMonitor` is a context manager that helps observe changes in iTerm2 Variables. :param connection: The connection to iTerm2. :param scope: The scope in which the variable should be evaluated. :param name: The variable name. :param identifier: A tab, window, or session identifier. Must correspond to the passed-in scope. If the scope is `APP` this should be None. If the scope is `SESSION` or `WINDOW` the identifier may be "all" or "active". .. seealso:: * Example ":ref:`colorhost_example`" * Example ":ref:`theme_example`" Example: .. code-block:: python async with iterm2.VariableMonitor( connection, iterm2.VariableScopes.SESSION, "jobName", my_session.session_id) as mon: while True: new_value = await mon.async_get() DoSomething(new_value) """ def __init__( self, connection: iterm2.connection.Connection, scope: VariableScopes, name: str, identifier: typing.Optional[str]): self.__connection = connection self.__scope = scope self.__name = name self.__identifier = identifier self.__token = None self.__queue: asyncio.Queue = asyncio.Queue( loop=asyncio.get_event_loop()) async def __aenter__(self): async def callback(_connection, message): """Called when a variable changes.""" await self.__queue.put(message) self.__token = await ( iterm2.notifications. async_subscribe_to_variable_change_notification( self.__connection, callback, self.__scope.value, self.__name, self.__identifier)) return self async def async_get(self) -> typing.Any: """Returns the new value of the variable.""" result = await self.__queue.get() json_new_value = result.json_new_value return json.loads(json_new_value) async def __aexit__(self, exc_type, exc, _tb): try: await iterm2.notifications.async_unsubscribe( self.__connection, self.__token) except iterm2.notifications.SubscriptionException: pass
gpl-2.0
-8,994,132,710,832,068,000
31.957447
79
0.603938
false
breuderink/psychic
psychic/nodes/filter.py
1
1820
import numpy as np from scipy import signal from golem import DataSet from golem.nodes import BaseNode from psychic.utils import get_samplerate class Filter(BaseNode): def __init__(self, filt_design_func): ''' Forward-backward filtering node. filt_design_func is a function that takes the sample rate as an argument, and returns the filter coefficients (b, a). ''' BaseNode.__init__(self) self.filt_design_func = filt_design_func def train_(self, d): fs = get_samplerate(d) self.log.info('Detected sample rate of %d Hz' % fs) self.filter = self.filt_design_func(fs) def apply_(self, d): b, a = self.filter xs = np.hstack([signal.filtfilt(b, a, d.xs[:, i]).reshape(-1, 1) for i in range(d.nfeatures)]) return DataSet(xs=xs, default=d) class OnlineFilter(Filter): def __init__(self, filt_design_func): Filter.__init__(self, filt_design_func) self.zi = [] def apply_(self, d): b, a = self.filter if self.zi == []: self.zi = [signal.lfiltic(b, a, np.zeros(b.size)) for fi in range(d.nfeatures)] new_zi = [] xs = [] for i in range(d.nfeatures): xi, zii = signal.lfilter(b, a, d.xs[:, i], zi=self.zi[i]) xs.append(xi.reshape(-1, 1)) new_zi.append(zii) self.zi = new_zi return DataSet(xs=np.hstack(xs), default=d) class Winsorize(BaseNode): def __init__(self, cutoff=[.05, .95]): self.cutoff = np.atleast_1d(cutoff) assert self.cutoff.size == 2 BaseNode.__init__(self) def train_(self, d): assert len(d.feat_shape) == 1 self.lims = np.apply_along_axis(lambda x: np.interp(self.cutoff, np.linspace(0, 1, d.ninstances), np.sort(x)), 0, d.xs) def apply_(self, d): return DataSet(xs=np.clip(d.xs, self.lims[0,:], self.lims[1:]), default=d)
bsd-3-clause
3,304,547,324,791,819,000
28.836066
79
0.621978
false
Ferjapolis/Indexador-MongoDB
sv03ToMongo.py
1
2461
# -*- coding: cp1252 -*- from pymongo import MongoClient from pymongo.errors import ConnectionFailure import os import sys from PyPDF2 import PdfFileReader enc = sys.stdin.encoding c = MongoClient("localhost",27017) print ("Conectado") dbh = c["sv03"] errores = dbh["errores"] def carga(tabla,carpeta): collections = dbh[tabla] listaB= [""] rootdir = r"\\sv-03\QA12\GENERAL\PROYECTOS\\"+str(carpeta) for path, dirs, files in os.walk(rootdir): for fil in files: ruta = str(path)+"\\"+str(fil) search = collections.find_one({"path":ruta}) if search is None: try: datos = {} statinfo = os.stat(ruta) datos["size"] = statinfo.st_size datos["path"] = ruta ext = fil.lower().rsplit('.', 1)[-1] extension = "."+ext datos["name"] = fil.replace(extension,"") datos["format"] = ext if ext =="pdf": try: Formatos = [] Point = 0.0353 pdf = PdfFileReader(open(ruta,'rb')) num_pages = int(pdf.getNumPages()) datos["pag"]=num_pages for i in range(0, num_pages): hoja = pdf.getPage(i).mediaBox.upperRight ancho = int(int(hoja[0])*Point) largo = int(int(hoja[1])*Point) formato = str(ancho)+"x"+str(largo) Formatos.append(formato) except: datos["pag"]="Error" hojas = {} for elemn in Formatos: if not elemn in hojas: hojas[elemn] = 1 if elemn in hojas: hojas[elemn] = 1 + hojas[elemn] datos["pagF"] = hojas if not datos["name"] in listaB: collections.insert_one(datos) except: falla = {"path":ruta} errores.insert_one(falla) else: "error" print("cargado")
unlicense
5,193,583,938,490,873,000
37.453125
76
0.407152
false
thelabnyc/django-oscar-wfrs
src/wellsfargo/tests/connector/test_client.py
1
2934
from urllib.parse import parse_qs from django.core.cache import cache from django.test import TestCase from wellsfargo.connector.client import WFRSGatewayAPIClient import requests_mock class WFRSGatewayAPIClientTest(TestCase): def setUp(self): super().setUp() cache.clear() @requests_mock.Mocker() def test_get_api_key(self, rmock): call_count = { "i": 0, } # Setup mock for generating a token def match_request(request): # Check auth header self.assertTrue(request.headers["Authorization"].startswith("Basic ")) # Check data in body data = parse_qs(request.body) self.assertEqual( data, { "grant_type": [ "client_credentials", ], "scope": [ " ".join( [ "PLCCA-Prequalifications", "PLCCA-Applications", "PLCCA-Payment-Calculations", "PLCCA-Transactions-Authorization", "PLCCA-Transactions-Charge", "PLCCA-Transactions-Authorization-Charge", "PLCCA-Transactions-Return", "PLCCA-Transactions-Cancel-Authorization", "PLCCA-Transactions-Void-Return", "PLCCA-Transactions-Void-Sale", "PLCCA-Transactions-Timeout-Authorization-Charge", "PLCCA-Transactions-Timeout-Return", "PLCCA-Account-Details", ] ), ], }, ) # Increment call count call_count["i"] += 1 return True # Register request mock rmock.post( "https://api-sandbox.wellsfargo.com/token", additional_matcher=match_request, json={ "access_token": "16a05f65dd41569af67dbdca7ea4da4d", "scope": "", "token_type": "Bearer", "expires_in": 79900, }, ) self.assertEqual(call_count["i"], 0) # Get a token token = WFRSGatewayAPIClient().get_api_key() self.assertEqual(token.api_key, "16a05f65dd41569af67dbdca7ea4da4d") self.assertEqual(token.is_expired, False) self.assertEqual(call_count["i"], 1) # Get token again token = WFRSGatewayAPIClient().get_api_key() self.assertEqual(token.api_key, "16a05f65dd41569af67dbdca7ea4da4d") self.assertEqual(token.is_expired, False) self.assertEqual(call_count["i"], 1)
isc
9,074,675,246,136,069,000
35.675
82
0.480913
false
ivannz/study_notes
data_study/facebook2012/base.py
1
2045
# -*- coding: UTF-8 -*- ## Base modules import scipy.sparse as sp import numpy as np from collections import deque import pandas as pd ## Read a sparese adjacency matrix from a two-column CSV file def __csr_from_csv( file_name, **kwargs ) : return __csr_from_pandas( pd.read_csv( file_name, **kwargs ) ) ## Creates a sparse matrix from a two-column source-destination dataframe def __csr_from_pandas( df, symmetrize = False ) : return __csr_from_endpoints( df.values[ :, 0 ], df.values[ :, 1 ], symmetrize = symmetrize ) def __csr_from_endpoints( u, v, symmetrize = False ) : assert( len( u ) == len( v ) ) ## Convert to a COO matrix if not symmetrize : adj = sp.coo_matrix( ( np.ones( len( u ), dtype = np.float ), ( u, v ) ) ) else : adj = sp.coo_matrix( ( np.ones( len( u ) + len( v ), dtype = np.float ), ( np.concatenate( ( u, v ) ), np.concatenate( ( v, u ) )) ) ) ## Convert to CSR and remove duplicates adj = adj.tocsr( ) ; adj.data[ : ] = 1 return adj def __sparse_bfs( A, sources, num_nodes = np.inf, max_hops = np.inf ) : sources = np.asarray( sources, np.int ) ## Initialize the hops array dist = np.full( A.shape[ 0 ], np.inf, np.float ) ## THe source is immediately reachable dist[ sources ] = 0.0 ## Setup the vertex traversal schedule. Q = deque( sources ) ## Setup the counter of visited nodes num_visited = 0 ## If the allotted number of nodes has been exceeded, break the cycle. while Q : ## Get the current vertex from the top of the FIFO queue v = Q.popleft( ) ## ... find its nerighbours (A is CSR) N = A[ v, : ].nonzero( )[ 1 ] ## ... keep those that were not visited N = N[ np.isinf( dist[ N ] ) ] ## Add the mto the queue if len( N ) > 0 : dist[ N ] = 1.0 + dist[ v ] ## Nodes farther than max_hops away from the sources are not traversed. if 1.0 + dist[ v ] < max_hops : Q.extend( N ) ## Unless the current vertex is the source, increase the number of visited nodes. if dist[ v ] > 0 : num_visited += len( N ) if num_visited >= num_nodes : break return dist
mit
3,795,678,255,961,516,000
32.52459
81
0.636186
false
adamchainz/mysqlclient-python
tests/test_MySQLdb_nonstandard.py
1
3020
import unittest import _mysql import MySQLdb from MySQLdb.constants import FIELD_TYPE from configdb import connection_factory import warnings warnings.simplefilter("ignore") class TestDBAPISet(unittest.TestCase): def test_set_equality(self): self.assertTrue(MySQLdb.STRING == MySQLdb.STRING) def test_set_inequality(self): self.assertTrue(MySQLdb.STRING != MySQLdb.NUMBER) def test_set_equality_membership(self): self.assertTrue(FIELD_TYPE.VAR_STRING == MySQLdb.STRING) def test_set_inequality_membership(self): self.assertTrue(FIELD_TYPE.DATE != MySQLdb.STRING) class TestCoreModule(unittest.TestCase): """Core _mysql module features.""" def test_NULL(self): """Should have a NULL constant.""" self.assertEqual(_mysql.NULL, 'NULL') def test_version(self): """Version information sanity.""" self.assertTrue(isinstance(_mysql.__version__, str)) self.assertTrue(isinstance(_mysql.version_info, tuple)) self.assertEqual(len(_mysql.version_info), 5) def test_client_info(self): self.assertTrue(isinstance(_mysql.get_client_info(), str)) def test_thread_safe(self): self.assertTrue(isinstance(_mysql.thread_safe(), int)) def test_escape_string(self): self.assertEqual(_mysql.escape_string(b'foo"bar'), b'foo\\"bar', "escape byte string") self.assertEqual(_mysql.escape_string(u'foo"bar'), b'foo\\"bar', "escape unicode string") class CoreAPI(unittest.TestCase): """Test _mysql interaction internals.""" def setUp(self): self.conn = connection_factory(use_unicode=True) def tearDown(self): self.conn.close() def test_thread_id(self): tid = self.conn.thread_id() self.assertTrue(isinstance(tid, int), "thread_id didn't return an int.") self.assertRaises(TypeError, self.conn.thread_id, ('evil',), "thread_id shouldn't accept arguments.") def test_affected_rows(self): self.assertEquals(self.conn.affected_rows(), 0, "Should return 0 before we do anything.") #def test_debug(self): ## FIXME Only actually tests if you lack SUPER #self.assertRaises(MySQLdb.OperationalError, #self.conn.dump_debug_info) def test_charset_name(self): self.assertTrue(isinstance(self.conn.character_set_name(), str), "Should return a string.") def test_host_info(self): self.assertTrue(isinstance(self.conn.get_host_info(), str), "Should return a string.") def test_proto_info(self): self.assertTrue(isinstance(self.conn.get_proto_info(), int), "Should return an int.") def test_server_info(self): self.assertTrue(isinstance(self.conn.get_server_info(), str), "Should return an str.")
gpl-2.0
8,151,237,055,662,304,000
31.12766
72
0.620861
false
WilJoey/ckanext-tnext
ckanext/tnext/controllers/MUser.py
1
9024
import ckan.plugins as p #from ckan.lib.base import BaseController, config import ckan.lib.base as base import ckan.lib.helpers as h import ckan.model as model import ckan.logic as logic import ckan.logic.schema as schema import ckan.new_authz as new_authz import ckan.lib.captcha as captcha import ckan.lib.navl.dictization_functions as dictization_functions from pylons import config from ckan.common import _, c, g, request c = base.c request = base.request class MUserController(base.BaseController): def index (self): LIMIT = 20 page = int(request.params.get('page', 1)) c.q = request.params.get('q', '') c.order_by = request.params.get('order_by', 'name') context = {'return_query': True, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data_dict = {'q': c.q, 'limit': LIMIT, 'offset': (page - 1) * LIMIT, 'order_by': c.order_by} try: logic.check_access('user_list', context, data_dict) except logic.NotAuthorized: base.abort(401, _('Not authorized to see this page')) users_list = logic.get_action('user_list')(context, data_dict) c.users = users_list c.page = h.Page( collection=users_list, page=page, url=h.pager_url, item_count=users_list.count(), items_per_page=LIMIT ) return base.render('muser/index.html') def new (self, data=None, errors=None, error_summary=None): #q = model.Session.query(model.User).filter(model.User.sysadmin==True) #c.sysadmins = [a.name for a in q.all()] '''GET to display a form for registering a new user. or POST the form data to actually do the user registration. ''' context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj, 'schema': self._new_form_to_db_schema(), 'save': 'save' in request.params} c.is_sysadmin = new_authz.is_sysadmin(c.user) if not c.user or not c.is_sysadmin: return base.render('user/logout_first.html') try: logic.check_access('user_create', context) except logic.NotAuthorized: base.abort(401, _('Unauthorized to create a user')) if context['save'] and not data: return self._save_new(context) c.data = data or {} c.errors = errors or {} c.error_summary = error_summary or {} #vars = {'data': data, 'errors': errors, 'error_summary': error_summary} #c.form = render(self.new_user_form, extra_vars=vars) #return render('user/new.html') return base.render('muser/new.html') def _new_form_to_db_schema(self): return schema.user_new_form_schema() def _save_new(self, context): try: data_dict = logic.clean_dict(dictization_functions.unflatten( logic.tuplize_dict(logic.parse_params(request.params)))) context['message'] = data_dict.get('log_message', '') captcha.check_recaptcha(request) user = logic.get_action('user_create')(context, data_dict) except logic.NotAuthorized: base.abort(401, _('Unauthorized to create user %s') % '') except logic.NotFound, e: base.abort(404, _('User not found')) except dictization_functions.DataError: base.abort(400, _(u'Integrity Error')) except captcha.CaptchaError: error_msg = _(u'Bad Captcha. Please try again.') h.flash_error(error_msg) return self.new(data_dict) except logic.ValidationError, e: c.errors = e.error_dict c.error_summary = e.error_summary return self.new(data_dict, c.errors, c.error_summary) # success h.flash_success(_('User "%s" is now registered.') % (data_dict['name'])) #return base.render('user/logout_first.html') return base.render('muser/new.html') def edit(self, id=None, data=None, errors=None, error_summary=None): context = {'save': 'save' in request.params, 'schema': self._edit_form_to_db_schema(), 'model': model, 'session': model.Session, 'user': c.user, 'auth_user_obj': c.userobj } if id is None: base.abort(400, _('No user specified')) if not new_authz.is_sysadmin(c.user): base.abort(401, _('User %s not authorized to edit %s') % (str(c.user), id)) data_dict = {'id': id} try: logic.check_access('user_update', context, data_dict) except logic.NotAuthorized: base.abort(401, _('Unauthorized to edit a user.')) if (context['save']) and not data: return self._save_edit(id, context) try: old_data = logic.get_action('user_show')(context, data_dict) schema = self._db_to_edit_form_schema() if schema: old_data, errors = validate(old_data, schema) c.display_name = old_data.get('display_name') c.user_name = old_data.get('name') data = data or old_data except logic.NotAuthorized: base.abort(401, _('Unauthorized to edit user %s') % '') except logic.NotFound: base.abort(404, _('User not found')) user_obj = context.get('user_obj') errors = errors or {} vars = {'data': data, 'errors': errors, 'error_summary': error_summary} self._setup_template_variables({'model': model, 'session': model.Session, 'user': c.user or c.author}, data_dict) c.is_myself = True c.show_email_notifications = h.asbool( config.get('ckan.activity_streams_email_notifications')) c.form = base.render('muser/edit_user_form.html', extra_vars=vars) return base.render('muser/edit.html') def _save_edit(self, id, context): try: data_dict = logic.clean_dict(dictization_functions.unflatten( logic.tuplize_dict(logic.parse_params(request.params)))) context['message'] = data_dict.get('log_message', '') data_dict['id'] = id # MOAN: Do I really have to do this here? if 'activity_streams_email_notifications' not in data_dict: data_dict['activity_streams_email_notifications'] = False user = logic.get_action('user_update')(context, data_dict) h.flash_success(_('Profile updated')) user_index = h.url_for(controller='ckanext.tnext.controllers.MUser:MUserController', action='index') h.redirect_to(user_index) except logic.NotAuthorized: base.abort(401, _('Unauthorized to edit user %s') % id) except logic.NotFound, e: base.abort(404, _('User not found')) except dictization_functions.DataError: base.abort(400, _(u'Integrity Error')) except logic.ValidationError, e: errors = e.error_dict error_summary = e.error_summary return self.edit(id, data_dict, errors, error_summary) def _setup_template_variables(self, context, data_dict): c.is_sysadmin = new_authz.is_sysadmin(c.user) try: user_dict = logic.get_action('user_show')(context, data_dict) except logic.NotFound: base.abort(404, _('User not found')) except logic.NotAuthorized: base.abort(401, _('Not authorized to see this page')) c.user_dict = user_dict c.is_myself = user_dict['name'] == c.user c.about_formatted = h.render_markdown(user_dict['about']) def _db_to_edit_form_schema(self): '''This is an interface to manipulate data from the database into a format suitable for the form (optional)''' def _edit_form_to_db_schema(self): return schema.user_edit_form_schema() def delete(self, id): '''Delete user with id passed as parameter''' context = {'model': model, 'session': model.Session, 'user': c.user, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: logic.get_action('user_delete')(context, data_dict) h.flash_success(_('User deleted!')) user_index = h.url_for(controller='ckanext.tnext.controllers.MUser:MUserController', action='index') h.redirect_to(user_index) except logic.NotAuthorized: msg = _('Unauthorized to delete user with id "{user_id}".') base.abort(401, msg.format(user_id=id))
mit
-4,200,688,493,169,835,500
36.915966
112
0.566379
false
newtrino/vertigo
tests/test7.py
1
1747
#!/usr/bin/python """ This will be a test for rave's two-jet feature """ width=0.0015 length=5.3 from vertigo import RaveVertexFactory, EventFactory, RaveConstantMagneticField, \ RaveVacuumPropagator, LoopSettings, RaveTrackContainer, WeightedRaveTrack, \ ObserverManager_Instance, RaveCovariance3D, RaveEllipsoid3D, RavePoint3D c=RaveCovariance3D( width**2, 0,0,width**2,0,length**2 ) e=RaveEllipsoid3D( RavePoint3D(),c ) LoopSettings.Instance().setVerbosity(0) ravefactory=RaveVertexFactory ( RaveConstantMagneticField(0.,0.,4.), RaveVacuumPropagator(), e, "avr-primcut:3.0" ) eventfactory=EventFactory ( "bjets.170.1.txt.gz" ) event=eventfactory.next() for simvtx in event.simVertices(): print simvtx print len(event.jets()),"jets in event." print len(event.tracks()),"tracks in event." primaries=RaveTrackContainer() first=True secondaries=None for jet in event.jets(): tracks=jet.tracks() print len(tracks), "tracks in jet." if not first: # put all tracks but of "first jet" in "primaries" for track in tracks: primaries.append ( track ) else: secondaries=tracks first=False vertices=ravefactory.create ( event.tracks(), True ) print len(vertices),"vertices with all tracks" for vtx in vertices: print "Vtx Pos: (%.4f, %.4f, %.4f)" % (vtx.position().x(),vtx.position().y(),vtx.position().z() ) print len(primaries),"primary tracks." vertices=ravefactory.create ( primaries, secondaries, True ) # vertices=ravefactory.create ( primaries, True ) print len(vertices),"vertices with all tracks" for vtx in vertices: print "Vtx Pos: (%.4f, %.4f, %.4f)" % (vtx.position().x(),vtx.position().y(),vtx.position().z() ) # obs=ObserverManager_Instance().get("EventPrinter") # obs.process(event)
gpl-2.0
-6,821,613,297,838,847,000
31.351852
115
0.721809
false
rubik/poly
tests/test_poly.py
1
9508
import copy import unittest from poly import Poly, monomial def pass_to(func, convert=(True, True), star=False): def wrapper(meth): def inner(self): for value, expected in meth(self).items(): if convert[0] and not star: value = Poly(value) if convert[1]: if isinstance(expected, tuple): expected = tuple(map(Poly, expected)) else: expected = Poly(expected) val = func(*map(Poly, value)) if star else func(value) self.assertEqual(val, expected) return inner return wrapper class TestPypolFuncs(unittest.TestCase): def test_monomial(self): self.assertEqual(monomial(1, 1), Poly([(1, 1)])) self.assertEqual(monomial(-1, 0), Poly([(-1, 0)])) self.assertEqual(monomial(0, 0), Poly([])) self.assertEqual(monomial(1, 2), Poly([(1, 2)])) @pass_to(Poly.from_string, (False, True)) def test_parse(self): return { '3x - 2': [(3, 1), (-2, 0)], 'x + 1': [(1, 1), (1, 0)], '4x**2 + x - 1': [(4, 2), (1, 1), (-1, 0)], '-2x^3 + x**2 -x + 1': [(-2, 3), (1, 2), (-1, 1), (1, 0)], '- x ^ 3 + 2': [(-1, 3), (2, 0)], '4 x': [(4, 1)], '- 5 x ^ 3 + 1 - 4': [(-5, 3), (-3, 0)], '-x - x^2': [(-1, 2), (-1, 1)], 'x + x - 3x': [(-1, 1)], } class TestPypolPoly(unittest.TestCase): @pass_to(Poly.__repr__, (True, False)) def test_repr(self): return { ((1, 2), (4, 1), (-2, 0)): '+ x^2 + 4x - 2', ((-3, 4), (-1, 2)): '- 3x^4 - x^2', ((-2, 2), (3, 1)): '- 2x^2 + 3x', ((2, 0),): '+ 2', ((1, 1),): '+ x', ((-1, 10),): '- x^10', (): '0', ((-1, 0),): '- 1' } @pass_to(Poly.degree.fget, (True, False)) def test_degree(self): return { ((-3, 2), (4, 0)): 2, ((4, 3), (0, 5), (0, 7), (9, 2)): 3, ((-1, 0),): 0, ((3, 2), (4, 1)): 2, (): 0, } @pass_to(Poly.rhs.fget, (True, False)) def test_rhs(self): return { ((-3, 4), (4, 2)): 0, ((-1, 0),): -1, ((9, 0), (-3, 2), (4, 2), (-5, 1)): 9, ((2, 2), (0, 0)): 0, } @pass_to(Poly.append, star=True) def test_append(self): return { (((2, 3), (-3, 4)), ((1, 4), (2, 2))): [(-2, 4), (2, 3), (2, 2)], (((-2, 3), (1, 2), (1, 1)), ((3, 2),)): [(-2, 3), (4, 2), (1, 1)], (((3, 1),), ((-5, 1),)): [(-2, 1)], (((4, 2), (-1, 1)), ()): [(4, 2), (-1, 1)], } @pass_to(Poly.is_num, (True, False)) def test_is_num(self): return { ((-2, 0),): True, ((9, 9), (0, 4)): False, ((1, 1), (1, 0)): False, ((0, 0),): True, } @pass_to(Poly.simplify, (False, False)) def test_simplify(self): return { ((1, 2), (3, 0), (-1, 0)): [(1, 2), (2, 0)], ((-3, 2), (-4, 2), (0, 4), (-2, 1)): [(-7, 2), (-2, 1)], ((0, 2),): [], ((4, 4), (-4, 4)): [], ((2, 1), (-8, 0)): [(2, 1), (-8, 0)] } @pass_to(copy.copy) def test_copy(self): return { ((1, 4), (-1, 0)): [(1, 4), (-1, 0)], ((-1, 2), (2, 3), (4, 1)): [(2, 3), (-1, 2), (4, 1)], ((3, 2),): [(3, 2)], } @pass_to(copy.deepcopy) def test_deepcopy(self): return { ((1, 4), (-1, 0)): [(1, 4), (-1, 0)], ((-1, 2), (2, 3), (4, 1)): [(2, 3), (-1, 2), (4, 1)], ((3, 2),): [(3, 2)], } def test_getitem(self): self.assertEqual(Poly([(1, 2), (-1, 0)])[0], Poly([(1, 2)])) self.assertEqual(Poly([(-3, 0), (4, 4)])[0], Poly([(4, 4)])) self.assertEqual(Poly([(1, 1), (2, 0), (3, 2)])[1:], Poly([(1, 1), (2, 0)])) self.assertEqual(Poly([(-2, 3), (1, 2), (-1, 0)])[2:3], Poly([(-1, 0)])) @pass_to(Poly.__nonzero__, (True, False)) def test_nonzero(self): return { (): False, ((1, 0),): True, ((0, 0),): False, ((1, 1), (-3, 1), (4, 2)): True, } @pass_to(Poly.__bool__, (True, False)) def test_nonzero(self): return { (): False, ((1, 0),): True, ((0, 0),): False, ((1, 1), (-3, 1), (4, 2)): True, } @pass_to(len, (True, False)) def test_len(self): return { (): 0, ((0, 0),): 0, ((1, 0),): 1, ((1, 4), (-1, 4), (1, 1)): 1, ((3, 2), (4, 1)): 2, ((1, 4), (-1, 3), (1, 2), (-1, 1), (1, 0)): 5 } @pass_to(Poly.__eq__, (True, False), True) def test_eq(self): return { (((1, 3), (-1, 2)), ((1, 3), (2, 2), (-3, 2))): True, (((1, 3), (4, 2)), ((1, 3), (-4, 2))): False, (((1, 0),), ((1, 0),)): True, ((), ()): True, } @pass_to(Poly.__ne__, (True, False), True) def test_ne(self): return { (((1, 3), (-1, 2)), ((1, 3), (2, 2), (-3, 2))): False, (((1, 3), (4, 2)), ((1, 3), (-4, 2))): True, (((1, 0),), ((1, 0),)): False, ((), ()): False, } @pass_to(Poly.__pos__) def test_pos(self): return { (): [], ((1, 0), (-1, 1)): [(1, 0), (-1, 1)], ((3, 2), (-3, 2), (4, 1)): [(4, 1)], } @pass_to(Poly.__neg__) def test_neg(self): return { ((1, 1),): [(-1, 1)], ((2, 4), (-3, 5)): [(3, 5), (-2, 4)], ((3, 1), (1, 1)): [(-4, 1)], ((1, 1),): [(-1, 1)], } @pass_to(Poly.__add__, star=True) def test_add(self): return { (((3, 2), (4, 1)), ((1, 2), (-1, 1))): [(4, 2), (3, 1)], (((1, 2), (3, 3)), ((2, 4), (-1, 3))): [(2, 4), (2, 3), (1, 2)], (((3, 3),), ((-3, 3),)): [], (((1, 1), (-2, 4)), ((3, 1), (2, 4))): [(4, 1)], ((), ((-3, 2),)): [(-3, 2)], } @pass_to(Poly.__sub__, star=True) def test_sub(self): return { (((3, 2), (4, 1)), ((1, 2), (-1, 1))): [(2, 2), (5, 1)], (((1, 2), (3, 3)), ((2, 4), (3, 3))): [(-2, 4), (1, 2)], (((3, 3),), ((-3, 3),)): [(6, 3)], (((1, 1), (-2, 4)), ((3, 1), (2, 4))): [(-4, 4), (-2, 1)], ((), ((-3, 2),)): [(3, 2)], } @pass_to(Poly.__mul__, star=True) def test_mul(self): return { (((1, 1), (-1, 0)), ((1, 1), (-1, 0))): [(1, 2), (-2, 1), (1, 0)], (((1, 0),), ((2, 3), (-1, 4))): [(-1, 4), (2, 3)], (((-1, 1),), ((2, 3), (-1, 4))): [(1, 5), (-2, 4)] } @pass_to(divmod, star=True) def test_divmod(self): return { (((3, 3), (-2, 2), (4, 1), (-3, 0)), ((1, 2), (3, 1), (3, 0))): ([(3, 1), (-11, 0)], [(28, 1), (30, 0)]), (((1, 3), (-2, 2), (1, 1), (-5, 0)), ((-1, 1), (1, 0))): ([(-1, 2), (1, 1)], [(-5, 0)]), (((1, 2), (8, 1), (-54, 0)), ((1, 1), (11, 0))): ([(1, 1), (-3, 0)], [(-21, 0)]), (((6, 0),), ((2, 0),)): ([(3, 0)], []), (((4, 2), (-2, 1), (2, 0)), ((2, 0),)): ([(2, 2), (-1, 1), (1, 0)], []), ((), ()): ([], []), } def test_divmod_value_error(self): self.assertRaises(ValueError, divmod, Poly([(1, 2), (-3, 1)]), Poly([(3, 3), (4, 0)])) @pass_to(Poly.__div__, star=True) def test_div(self): return { (((3, 3), (-2, 2), (4, 1), (-3, 0)), ((1, 2), (3, 1), (3, 0))): [(3, 1), (-11, 0)], (((1, 3), (-2, 2), (1, 1), (-5, 0)), ((-1, 1), (1, 0))): [(-1, 2), (1, 1)], (((1, 2), (8, 1), (-54, 0)), ((1, 1), (11, 0))): [(1, 1), (-3, 0)], (((6, 0),), ((2, 0),)): [(3, 0)], (((4, 2), (-2, 1), (2, 0)), ((2, 0),)): [(2, 2), (-1, 1), (1, 0)], ((), ()): [], } @pass_to(Poly.__mod__, star=True) def test_mod(self): return { (((3, 3), (-2, 2), (4, 1), (-3, 0)), ((1, 2), (3, 1), (3, 0))): [(28, 1), (30, 0)], (((1, 3), (-2, 2), (1, 1), (-5, 0)), ((-1, 1), (1, 0))): [(-5, 0)], (((1, 2), (8, 1), (-54, 0)), ((1, 1), (11, 0))): [(-21, 0)], (((6, 0),), ((2, 0),)): [], (((4, 2), (-2, 1), (2, 0)), ((2, 0),)): [], ((), ()): [], } def test_pow(self): self.assertRaises(TypeError, lambda: Poly([(2, 2), (-1, 1)]) ** -1) self.assertRaises(TypeError, lambda: Poly([]) ** 0) self.assertEqual(Poly([(1, 3), (2, 1)]) ** 1, Poly([(1, 3), (2, 1)])) self.assertEqual(Poly([(1, 1), (-1, 0)]) ** 2, Poly([(1, 2), (-2, 1), (1, 0)])) self.assertEqual(Poly([(1, 3), (-1, 2)]) ** 0, Poly([(1, 0)])) self.assertEqual(Poly([(1, 1)]) ** 3, Poly([(1, 3)])) self.assertEqual(Poly([(1, 4)]) ** 3, Poly([(1, 12)])) if __name__ == '__main__': unittest.main()
mit
8,370,560,494,488,886,000
32.361404
78
0.30101
false
sandialabs/BioCompoundML
bcml/PubChemUtils/pubchempy_utils.py
1
14579
from __future__ import print_function try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict from collections import Callable, defaultdict from six.moves import xrange try: # For Python 3.0 and later import urllib.request as urllib2 except ImportError: # Fall back to Python 2's urllib2 import urllib2 import os try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse from bs4 import BeautifulSoup from time import sleep _base = 'pubchem.ncbi.nlm.nih.gov' _pug_rest = '"http://pubchem.ncbi.nlm.nih.gov/pug_rest"' _dir = os.path.dirname(__file__) _fp_file = os.path.abspath(os.path.join(_dir, 'fingerprints.txt')) ''' This module extends the common functionality of the PubChemPy package ''' class CompoundDict(OrderedDict): ''' The compound dictionary is ordred and contains various levels of dictionaries underneath, this is the reason for the complicated structure ''' def __init__(self, default_factory=defaultdict, *a, **kw): if (default_factory is not None and not isinstance(default_factory, Callable)): raise TypeError('First argument must be callable') OrderedDict.__init__(self, *a, **kw) self.default_factory = default_factory def __getitem__(self, key): try: return OrderedDict.__getitem__(self, key) except KeyError: return self.__missing__(key) def __missing__(self, key): if self.default_factory is None: raise KeyError(key) self[key] = value = self.default_factory() return value def __reduce__(self): if self.default_factory is None: args = tuple() else: args = self.default_factory return type(self), args, None, None, self.items() def copy(self): return self.__copy__() def __copy__(self): return type(self)(self.default_factory, self) def __deepcopy__(self, memo): import copy return type(self)(self.default_factory, copy.deepcopy(tuple(self.items()))) def __repr__(self): return 'CompoundDict(%s, %s)' % (self.default_factory, OrderedDict.__repr__(self)) def verbose_print(verbose, line): if verbose: print(line) def _url_factory(uri): ''' Handle the pubchem RESTful interface by passing a url directly ''' uri = 'http://' + _base + uri response = urllib2.urlopen(uri) value = response.read().strip() return value def convert_cactvs(cactvs): ''' This internal function converts 2D fingerprints to a string of 0/1s The fingerprint is defined here: ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt The way that this function works is: 1) Pass cactvs 2) Strip the 2 trailing bytes 3) Strip the 2 leading bytes 4) Convert the letters to base64 binary (6-bits) 5) Report bits 32 through (881+32-11), which are the 881 informative bits. ''' b64 = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6, "H": 7, "I": 8, "J": 9, "K": 10, "L": 11, "M": 12, "N": 13, "O": 14, "P": 15, "Q": 16, "R": 17, "S": 18, "T": 19, "U": 20, "V": 21, "W": 22, "X": 23, "Y": 24, "Z": 25, "a": 26, "b": 27, "c": 28, "d": 29, "e": 30, "f": 31, "g": 32, "h": 33, "i": 34, "j": 35, "k": 36, "l": 37, "m": 38, "n": 39, "o": 40, "p": 41, "q": 42, "r": 43, "s": 44, "t": 45, "u": 46, "v": 47, "w": 48, "x": 49, "y": 50, "z": 51, "0": 52, "1": 53, "2": 54, "3": 55, "4": 56, "5": 57, "6": 58, "7": 59, "8": 60, "9": 61, "+": 62, "/": 63} c = cactvs[:-2].strip() binstring = (''.join([str(bin(b64[x]))[2:].zfill(6) for x in c.decode('utf-8')])) return binstring[32:-11] def _parse_fingerprint(): ''' Read the NCBI fingerprint spec file and assign features to each fingerprint ''' fp_features = {} with open(_fp_file) as fp: for line in fp: (pos, feature) = line.strip().split('\t') fp_features[int(pos)] = feature return fp_features def get_binhash(cactvs): ''' Convert CACTVS into a dictionary of fingerprint features ''' fingerprint = _parse_fingerprint() binstring = convert_cactvs(cactvs) binhash = {} for count, val in enumerate(binstring): binhash[fingerprint[count]] = val return binhash def cactvs_uri(ids): ''' This function retreives the CACTVS uri from PubChem, which is a base64 encoded string, specifying the 881 bits, corresponding to the fingerprint ''' _id = str(ids) uri = '/rest/pug/compound/cid/' + _id + '/property/Fingerprint2D/TXT' return uri def smiles_uri(ids): _id = str(ids) uri = '/rest/pug/compound/smiles/' + _id + '/cids/TXT' return uri def get_smiles(_id): ''' This function retreives the CID for a SMILES from PubChem ''' uri = smiles_uri(_id) cid = _url_factory(uri) return cid def stream_sdf(ids): ''' This function allows bulk streaming of SDF into a data structure ''' concatenated_ids = ','.join(ids) uri = sdf_uri(concatenated_ids) sdf_stream = _url_factory(uri).decode().strip('$$$$') sdfs = ["".join((data.lstrip(), '$$$$')) for data in sdf_stream.split('$$$$') if data is not ""] return sdfs def sdf_uri(ids): ''' This function retreives the SDF URI from PubChem ''' _id = str(ids) uri = '/rest/pug/compound/cid/' + _id + '/record/SDF' return uri def stream_xml(_id): ''' This function allows streaming of pubchem XML into a data structure ''' uri = xml_uri(_id) xml = _url_factory(uri) return xml def xml_uri(_id): ''' This function retreives the XML URI from PubChem ''' _id = str(_id) uri = '/rest/pug_view/data/compound/' + _id + '/XML/' return uri def extract_pubchem_xml_features(xml): ''' Extracts primary PubChem Chemical and Physical data. If multiple values are reported for a given descriptor, the first is given, since, by convention, these are the highest quality. ''' xml_glob = BeautifulSoup(xml, "lxml") values = {} def _return_value_list(text, key): '''Special function for returning list of values''' return [y.get_text() for y in text.find_next_siblings(key)] xml_globs = xml_glob.find_all('section') properties = '' match_text = 'Chemical and Physical Properties' for xml_glob in xml_globs: try: if xml_glob.find('tocheading').get_text() == match_text: properties = xml_glob except: pass try: for x in properties.find_all('name'): value = None name = x.get_text() if name not in values: if x.find_next_sibling('numvalue'): value = x.find_next_sibling('numvalue').get_text() if x.find_next_sibling('stringvalue'): value = x.find_next_sibling('stringvalue').get_text() if x.find_next_siblings('stringvaluelist'): value = _return_value_list(x, 'stringvaluelist') if x.find_next_siblings('numvaluelist'): value = _return_value_list(x, 'stringvaluelist') if value: values[name] = value except: pass return values class Collect(object): """Initialize variables for Collect class""" def __init__(self, compounds, fingerprint=False, xml=False, sdf=False, proxy=False, user=False, id_name='PubChem', chunks=False, try_count=3, verbose=False, predictors=False, weights=False, smiles=False): self.id_name = id_name self.compounds = compounds self.pubchem_ids = [x[id_name] for x in compounds] self.compound = CompoundDict() self.proxy = proxy self.chunks = chunks self.verbose = verbose self.smiles = smiles if proxy: self.set_proxy() if smiles is not False: id_list = [] for count, _id in enumerate(self.pubchem_ids): cid = get_smiles(_id) id_list.append(cid) self.compounds[count][id_name] = cid self.pubchem_ids = id_list if predictors is not False: for count, _id in enumerate(self.pubchem_ids): self.compound[_id]['predictor'] = predictors[count] if weights is not False: for count, _id in enumerate(self.pubchem_ids): self.compound[_id]['weight'] = weights[count] self.user = user if user: self.add_user() self.verbose = verbose self.fingerprint = fingerprint if fingerprint: self.add_fingerprint(fingerprint=True) self.sdf = sdf if sdf: self.add_sdf() self.xml = xml if xml: self.add_xml() def set_proxy(self, proxy=False): """This function sets the proxy for the urllib2 library""" if self.proxy: proxy = self.proxy if proxy is not False: verbose_print(self.verbose, "Initializing proxy") result = urlparse(proxy) assert result.scheme, "Proxy must be a web address" proxy_support = urllib2.ProxyHandler({ 'http': proxy, 'https': proxy }) opener = urllib2.build_opener(proxy_support) urllib2.install_opener(opener) def add_user(self, user=False): """This function allows user features to be passed through the Collect Class""" if self.user: user = self.user if user is True: verbose_print(self.verbose, "Adding user provided features") for count, _id in enumerate(self.pubchem_ids): self.compound[_id]['userhash'] = self.compounds[count]['userhash'] def add_fingerprint(self, fingerprint=False, chunks=False): """This function collects fingerprint data from NCBI, currently PubChemPy collects only ASN.1 data, which is difficult to parse into a binary hash of fingerprint values. It also doesn't allows bulk collection of the fingerprints. This function allows these""" if self.fingerprint: fingerprint = self.fingerprint if self.chunks: chunks = self.chunks if fingerprint is True: ids = self.pubchem_ids verbose_print(self.verbose, "Getting fingerprints from NCBI") fps = [] percent = 0. length = float(len(self.pubchem_ids)) if length > 100 and chunks is False: chunks = 100. if chunks is not False: for chunk_id in [ids[i:i + chunks] for i in xrange(0, len(ids), chunks)]: '''This loop allows the ids to be chunked into size chunks. This is important for really long lists, which may create problems in trying to query huge numbers of ids''' percent = percent + float(chunks) / length #print_string = '{:2.1%} out of {}'.format(percent, length) #verbose_print(self.verbose, print_string) concatenated_ids = ','.join(chunk_id) uri = cactvs_uri(concatenated_ids) fps.extend(_url_factory(uri).splitlines()) else: concatenated_ids = ','.join(ids) verbose_print(self.verbose, 'Collecting all fingerprints') uri = cactvs_uri(concatenated_ids) fps = _url_factory(uri).splitlines() for i, cactvs in enumerate(fps): self.compound[ids[i]]['binhash'] = get_binhash(cactvs) def add_sdf(self, sdf=False, chunks=False): """This function collects NCBI sdfs and stores them for use in cheminformatic tools""" if self.sdf: sdf = self.sdf if self.chunks: chunks = self.chunks if sdf is True: percent = 0. length = float(len(self.pubchem_ids)) ids = self.pubchem_ids if length > 100 and chunks is False: chunks = 100 if chunks is not False: for chunk_id in [ids[i:i + chunks] for i in xrange(0, len(ids), chunks)]: '''This loop allows the ids to be chunked into size chunks. This is important for really long lists, which may create problems in trying to query huge numbers of ids''' percent = percent + chunks / length #print_string = '{:2.1%} out of {}'.format(percent, length) #verbose_print(self.verbose, print_string) concatenated_ids = chunk_id sdfs = stream_sdf(concatenated_ids) for i, sdf in enumerate(sdfs): self.compound[chunk_id[i]]['sdf'] = sdf else: sdfs = stream_sdf(ids) for i, sdf in enumerate(sdfs): self.compound[ids[i]]['sdf'] = sdf def add_xml(self, xml=False, try_count=3): """This function collects NCBI XML and stores them for later parsing""" if self.xml: xml = self.xml if xml is True: percent = 0. length = float(len(self.pubchem_ids)) ids = self.pubchem_ids verbose_print(self.verbose, 'Collecting all XMLs') for count, _id in enumerate(ids): percent = float(count) / float(length) #print_string = '{:2.1%} out of {}'.format(percent, length) #verbose_print(self.verbose, print_string) val = False count = 0 while (val is False) and (count < try_count): try: xml_stream = stream_xml(_id) self.compound[_id]['xml'] = extract_pubchem_xml_features(xml_stream) val = True except: sleep(5) count = count + 1
bsd-3-clause
4,310,988,585,706,478,600
34.13012
92
0.554016
false
novafloss/django-chartjs
demo/demoproject/tests.py
1
5181
"""Unit tests for chartjs api.""" import json from django.test import TestCase from django.urls import reverse from chartjs.util import NULL, value_or_null from demoproject.models import Meter class LineChartJSTestCase(TestCase): def test_line_chartjs(self): resp = self.client.get(reverse("line_chart")) self.assertContains(resp, "Chart.min.js") def test_list_chartjs_json(self): resp = self.client.get(reverse("line_chart_json")) try: data = json.loads(resp.content.decode("utf-8")) except ValueError: self.fail("%r is not valid json" % self.resp.content) self.assertIn("datasets", data) self.assertNotIn("series", data) class ColorTestCase(TestCase): def test_colorview(self): resp = self.client.get(reverse("colors")) self.assertContains(resp, "100px") class HighChartJSTestCase(TestCase): def test_column_chartjs_json(self): resp = self.client.get(reverse("column_highchart_json")) try: data = json.loads(resp.content.decode("utf-8")) except ValueError: self.fail("%r is not valid json" % self.resp.content) self.assertIn("title", data) self.assertIn("text", data["title"]) self.assertEqual(data["title"]["text"], "Column Highchart test") self.assertIn("credits", data) credits = data["credits"] self.assertEqual(credits["enabled"], False) def test_list_chartjs_json(self): resp = self.client.get(reverse("line_highchart_json")) try: data = json.loads(resp.content.decode("utf-8")) except ValueError: self.fail("%r is not valid json" % self.resp.content) self.assertIn("series", data) self.assertNotIn("datasets", data) self.assertIn("credits", data) credits = data["credits"] self.assertEqual(credits["enabled"], True) self.assertEqual(credits["href"], "http://example.com") self.assertEqual(credits["text"], "Novapost Team") def test_pie_chartjs_json(self): resp = self.client.get(reverse("pie_highchart_json")) try: json.loads(resp.content.decode("utf-8")) except ValueError: self.fail("%r is not valid json" % self.resp.content) def test_donut_chartjs_json(self): resp = self.client.get(reverse("donut_highchart_json")) try: json.loads(resp.content.decode("utf-8")) except ValueError: self.fail("%r is not valid json" % self.resp.content) class DiscontinuousDataTestCase(TestCase): def setUp(self): self.start_date = "2019-05-26" self.end_date = "2019-06-04" # water meter readings Meter.objects.create(date="2019-05-26", name="water", reading=10) Meter.objects.create(date="2019-05-27", name="water", reading=12) Meter.objects.create(date="2019-05-28", name="water", reading=13) Meter.objects.create(date="2019-05-29", name="water", reading=15) Meter.objects.create(date="2019-06-01", name="water", reading=16) Meter.objects.create(date="2019-06-02", name="water", reading=18) Meter.objects.create(date="2019-06-03", name="water", reading=20) Meter.objects.create(date="2019-06-04", name="water", reading=21) # gas meter readings Meter.objects.create(date="2019-05-28", name="gas", reading=15) Meter.objects.create(date="2019-05-29", name="gas", reading=13) Meter.objects.create(date="2019-05-30", name="gas", reading=12) Meter.objects.create(date="2019-05-31", name="gas", reading=14) Meter.objects.create(date="2019-06-01", name="gas", reading=16) Meter.objects.create(date="2019-06-02", name="gas", reading=17) def test_generator_fills_end_values_with_null(self): queryset = Meter.objects.filter(name="gas") actual_data = [] for item in value_or_null( self.start_date, self.end_date, queryset, "date", "reading" ): actual_data.append(item) expected_data = [NULL, NULL, 15, 13, 12, 14, 16, 17, NULL, NULL] self.assertEqual(actual_data, expected_data) def test_generator_fills_middle_values_with_null(self): queryset = Meter.objects.filter(name="water") actual_data = [] for item in value_or_null( self.start_date, self.end_date, queryset, "date", "reading" ): actual_data.append(item) expected_data = [10, 12, 13, 15, NULL, NULL, 16, 18, 20, 21] self.assertEqual(actual_data, expected_data) class ChartOptionsTestCase(TestCase): def test_line_chart_with_options_json(self): resp = self.client.get(reverse("line_chart_with_options")) try: data = json.loads(resp.content.decode("utf-8")) except ValueError: self.fail("%r is not valid json" % self.resp.content) self.assertIn("data", data) self.assertIn("datasets", data["data"]) self.assertIn("labels", data["data"]) self.assertIn("options", data) self.assertIn("title", data["options"])
bsd-3-clause
4,093,138,191,086,040,600
38.549618
73
0.619958
false
averaart/fq_delta
fq_delta/fq_delta.py
1
10373
__author__ = 'averaart' """This module offers a means to store multiple versions of the same fastq file, by only storing the differences between them and recreating the processed file based on the original file and the differences.""" # Batteries included import os import sys from subprocess import Popen, PIPE import hashlib import zipfile try: import zlib compression = zipfile.ZIP_DEFLATED except ImportError: compression = zipfile.ZIP_STORED # 3rd party imports import diff_match_patch as dmp_module class InputError(Exception): pass class ChecksumError(Exception): pass # global variables dmp = dmp_module.diff_match_patch() dmp.Diff_Timeout = 0.0005 # default is 1 dmp.Match_Distance = 1000 # default is 1000 dmp.Match_MaxBits = 0 # default is 32, 0 is advised for python def _open(name): """Opens a file, or streams an unquiping archive.""" if name[-3:] == '.qp': return Popen('unquip -c ' + name, shell=True, stdout=PIPE).stdout else: try: return open(name, 'r') except IOError: print "Couldn't find the file..." def create_delta(original_file=sys.stdin, processed_file=sys.stdin, delta_filename='', output_processed=False): """This function creates a delta file based on an original file and a processed file. Either files could come from standard in.""" if isinstance(processed_file, str): processed_file = _open(processed_file) if delta_filename == '': delta_filename = processed_file.name delta_file = DeltaFile('w', delta_filename, original_file) for line in processed_file: delta_file.write(line) if output_processed: print line, delta_file.close() def rebuild_fastq(delta_filename, original_file=sys.stdin, out=sys.stdout, to_stdout=False): """Recreates the processed file from the original and delta files.""" # Convert file names to files, and open quip-files while we're at it. if isinstance(original_file, str): original_file = _open(original_file) processed_file = DeltaFile('r', delta_filename, original_file) if isinstance(out, str): out = open(out, 'w') if out == sys.stdout: to_stdout = False for line in processed_file: out.write(line + '\n') if to_stdout: sys.stdout.write(line + '\n') class DeltaFile(): def __init__(self, mode, delta_filename, original_file=sys.stdin, processed_file=sys.stdin, reuse=False): self.leftover = list() self.mode = mode self.reuse = reuse # Open an existing deltafile to read the processed file if self.mode == 'r': self.delta_filename = delta_filename self.buffer = list() # Convert file names to files, and open quip-files while we're at it. if isinstance(original_file, str): self.original_file = _open(original_file) else: self.original_file = original_file self.md5 = hashlib.md5() # Extract the checksum and delta files. # If there is no checksum file in the zipfile, bail out. # ("I'm not touching that with a 10 foot pole!") zf = zipfile.ZipFile(delta_filename) namelist = zf.namelist() if 'md5_checksum' not in namelist: raise ChecksumError('No checksum found.') else: namelist.pop(namelist.index("md5_checksum")) self.checksum = zf.open('md5_checksum', "r").read() # For the delta file, first assume the filename is the same as the archive's name # minus ".zip". If that fails, find the first file that contains the word "delta". # Else just extract the first file you can find. Ugly, I know... :D self.filename = self.delta_filename.rpartition('.')[0] try: zf.extract(self.filename) except KeyError: delta_names = [s for s in namelist if "delta" in s] if len(delta_names) > 0: self.filename = delta_names[0] else: self.filename = namelist[0] zf.extract(self.filename) self.deltas = open(self.filename, "r") # Write a new deltafile from the processed data. elif self.mode == 'w': # Raise an Exception if both "files" turn out to be sys.stdin. if original_file == sys.stdin and processed_file == sys.stdin: raise InputError("Only one of the inputfiles can be STDIN.") # Convert file names to files, and open quip-files while we're at it. if isinstance(original_file, str): self.original_file = _open(original_file) else: self.original_file = original_file if isinstance(processed_file, str): self.processed_file = _open(processed_file) else: self.processed_file = processed_file self.md5 = hashlib.md5() if delta_filename == '': self.delta_filename = processed_file.name else: self.delta_filename = delta_filename # Remove .zip if entered as delta_filename argument. # It'll be added when the file is zipped. if self.delta_filename[-4:] == '.zip': self.delta_filename = self.delta_filename[:-4] self.delta_file = open(self.delta_filename, 'a') else: raise Exception('Illegal mode: ' + str(mode)) def __iter__(self): return self def reset(self): self.deltas.seek(0) self.original_file.seek(0) self.leftover = list() self.md5 = hashlib.md5() def next(self): self.check_reading() if self.original_file.closed or self.deltas.closed: raise IOError("Trying to iterate over closed files...") while len(self.buffer) <= 0: while len(self.buffer) < 4: delta = '' t1 = '' t2 = '' t1 = self.original_file.readline() delta = self.deltas.readline().strip() if delta == '': # End of File # Check the checksum... if not self.md5.digest() == self.checksum: self.close() raise ChecksumError("Checksum did not match!") if self.reuse: self.reset() else: # Clean up the uncompressed delta file self.deltas.close() os.remove(self.filename) # Kill the iterator raise StopIteration diff = dmp.diff_fromDelta(t1.strip(), delta.strip()) t2 = dmp.diff_text2(diff) self.buffer.append(t2) # Check if the read was removed. If so, clear the buffer so the next four lines are read. if self.buffer == ['', '', '', '']: self.buffer = list() nextline = self.buffer.pop(0) self.md5.update(nextline) return nextline def readline(self): self.check_reading() return self.next() def readlines(self): self.check_reading() return [line for line in self] def writelines(self, lines, output_processed=False, close_file=False): lines = self.leftover + lines while len(lines) >= 4: id1 = self.original_file.readline().strip() id2 = lines.pop(0).strip() seq1 = self.original_file.readline().strip() seq2 = lines.pop(0).strip() com1 = self.original_file.readline().strip() com2 = lines.pop(0).strip() qua1 = self.original_file.readline().strip() qua2 = lines.pop(0).strip() if id2 == '': break self.md5.update(id2) self.md5.update(seq2) self.md5.update(com2) self.md5.update(qua2) while id1.partition('\t')[0] != id2.partition('\t')[0]: self.delta_file.write('-' + str(len(id1.strip())) + '\n') self.delta_file.write('-' + str(len(seq1.strip())) + '\n') self.delta_file.write('-' + str(len(com1.strip())) + '\n') self.delta_file.write('-' + str(len(qua1.strip())) + '\n') id1 = self.original_file.readline().strip() seq1 = self.original_file.readline().strip() com1 = self.original_file.readline().strip() qua1 = self.original_file.readline().strip() if id1 == '': break for (t1, t2) in ((id1, id2), (seq1, seq2), (com1, com2), (qua1, qua2)): diff = dmp.diff_main(t1.strip(), t2.strip()) delta = dmp.diff_toDelta(diff) + '\n' self.delta_file.write(delta) if output_processed: print t2 self.leftover = lines if close_file: self.close() def write(self, string, output_processed=False, close_file=False): lines = string.strip().split('\n') self.writelines(lines, output_processed, close_file) def close(self): if self.mode is 'r': if not self.deltas.closed: self.deltas.close() try: os.remove(self.filename) except OSError: pass else: self.delta_file.close() # Copy the delta file to a compressed archive, and remove the delta file self.zf = zipfile.ZipFile(self.delta_filename + '.zip', mode='w') try: self.zf.write(self.delta_filename, self.delta_filename.rpartition('/')[2], compress_type=compression) self.zf.writestr('md5_checksum', self.md5.digest(), compress_type=compression) os.remove(self.delta_filename) finally: self.zf.close() def check_reading(self): if self.mode is not 'r': raise IOError('File not open for reading')
bsd-3-clause
63,940,633,616,006,200
33.347682
120
0.550757
false
ChinaQuants/blaze
blaze/expr/core.py
1
10471
from __future__ import absolute_import, division, print_function import numbers import toolz import inspect from toolz import unique, concat, compose, partial import toolz from pprint import pprint from ..compatibility import StringIO, _strtypes, builtins from ..dispatch import dispatch __all__ = ['Node', 'path', 'common_subexpression', 'eval_str'] base = (numbers.Number,) + _strtypes def isidentical(a, b): """ Strict equality testing Different from x == y -> Eq(x, y) >>> isidentical(1, 1) True >>> from blaze.expr import symbol >>> x = symbol('x', 'int') >>> isidentical(x, 1) False >>> isidentical(x + 1, x + 1) True >>> isidentical(x + 1, x + 2) False >>> isidentical((x, x + 1), (x, x + 1)) True >>> isidentical((x, x + 1), (x, x + 2)) False """ if isinstance(a, base) and isinstance(b, base): return a == b if type(a) != type(b): return False if isinstance(a, Node): return all(map(isidentical, a._args, b._args)) if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): return len(a) == len(b) and all(map(isidentical, a, b)) return a == b class Node(object): """ Node in a tree This serves as the base class for ``Expr``. This class holds all of the tree traversal functions that are independent of tabular or array computation. This is everything that we can do independent of the problem domain. Note that datashape is not imported. See Also -------- blaze.expr.expressions.Expr """ __slots__ = () __inputs__ = '_child', def __init__(self, *args, **kwargs): assert frozenset(kwargs).issubset(self.__slots__) for slot, arg in zip(self.__slots__[1:], args): setattr(self, slot, arg) for key, value in kwargs.items(): setattr(self, key, value) @property def _args(self): return tuple(getattr(self, slot) for slot in self.__slots__[1:]) @property def _inputs(self): return tuple(getattr(self, i) for i in self.__inputs__) def _leaves(self): """ Leaves of an expression tree All nodes without inputs. Leaves are returned in order, left to right. >>> from blaze.expr import symbol, join, by >>> t = symbol('t', 'var * {id: int32, name: string}') >>> t._leaves() [t] >>> by(t.name, count=t.id.nunique())._leaves() [t] >>> v = symbol('v', 'var * {id: int32, city: string}') >>> join(t, v)._leaves() [t, v] """ if not self._inputs: return [self] else: return list(unique(concat(i._leaves() for i in self._inputs if isinstance(i, Node)))) isidentical = isidentical def __hash__(self): try: return self._hash except AttributeError: self._hash = hash((type(self), self._args)) return self._hash def __str__(self): rep = ["%s=%s" % (slot, _str(arg)) for slot, arg in zip(self.__slots__[1:], self._args)] return "%s(%s)" % (type(self).__name__, ', '.join(rep)) def __repr__(self): return str(self) def _traverse(self): """ Traverse over tree, yielding all subtrees and leaves """ yield self traversals = (arg._traverse() if isinstance(arg, Node) else [arg] for arg in self._args) for trav in traversals: for item in trav: yield item def _subs(self, d): """ Substitute terms in the tree >>> from blaze.expr import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = t.amount + 3 >>> expr._subs({3: 4, 'amount': 'id'}).isidentical(t.id + 4) True """ return subs(self, d) def _resources(self): return toolz.merge([arg._resources() for arg in self._args if isinstance(arg, Node)]) def _subterms(self): return subterms(self) def __contains__(self, other): return other in set(self._subterms()) def __getstate__(self): return self._args def __setstate__(self, state): self.__init__(*state) def __eq__(self, other): ident = self.isidentical(other) if ident is True: return ident try: return self._eq(other) except AttributeError: # e.g., we can't compare whole tables to other things (yet?) pass return False def __ne__(self, other): return self._ne(other) def __lt__(self, other): return self._lt(other) def __le__(self, other): return self._le(other) def __gt__(self, other): return self._gt(other) def __ge__(self, other): return self._ge(other) def __add__(self, other): return self._add(other) def __radd__(self, other): return self._radd(other) def __mul__(self, other): return self._mul(other) def __rmul__(self, other): return self._rmul(other) def __div__(self, other): return self._div(other) def __rdiv__(self, other): return self._rdiv(other) __truediv__ = __div__ __rtruediv__ = __rdiv__ def __floordiv__(self, other): return self._floordiv(other) def __rfloordiv__(self, other): return self._rfloordiv(other) def __sub__(self, other): return self._sub(other) def __rsub__(self, other): return self._rsub(other) def __pow__(self, other): return self._pow(other) def __rpow__(self, other): return self._rpow(other) def __mod__(self, other): return self._mod(other) def __rmod__(self, other): return self._rmod(other) def __or__(self, other): return self._or(other) def __ror__(self, other): return self._ror(other) def __and__(self, other): return self._and(other) def __rand__(self, other): return self._rand(other) def __neg__(self): return self._neg() def __invert__(self): return self._invert() def __abs__(self): from .math import abs return abs(self) def get_callable_name(o): """Welcome to str inception. Leave your kittens at home. """ # special case partial objects if isinstance(o, partial): return 'partial(%s, %s)' % (get_callable_name(o.func), ', '.join(map(str, o.args))) try: # python 3 makes builtins look nice return o.__qualname__ except AttributeError: try: # show the module of the object, if we can return '%s.%s' % (inspect.getmodule(o).__name__, o.__name__) except AttributeError: try: # __self__ tells us the class the method is bound to return '%s.%s' % (o.__self__.__name__, o.__name__) except AttributeError: # exhausted all avenues of printing callables so just print the # name of the object return o.__name__ def _str(s): """ Wrap single quotes around strings """ if isinstance(s, str): return "'%s'" % s elif callable(s): return get_callable_name(s) elif isinstance(s, Node): return str(s) elif isinstance(s, (list, tuple)): body = ", ".join(_str(x) for x in s) return "({0})".format(body if len(s) > 1 else (body + ",")) else: stream = StringIO() pprint(s, stream=stream) return stream.getvalue().rstrip() @dispatch(Node) def subterms(expr): return concat([[expr], concat(map(subterms, expr._inputs))]) @dispatch(object) def subterms(x): yield x def subs(o, d): """ Substitute values within data structure >>> subs(1, {1: 2}) 2 >>> subs([1, 2, 3], {2: 'Hello'}) [1, 'Hello', 3] """ d = dict((k, v) for k, v in d.items() if k is not v) if not d: return o try: if o in d: d = d.copy() o = d.pop(o) except TypeError: pass return _subs(o, d) @dispatch((tuple, list), dict) def _subs(o, d): return type(o)([subs(arg, d) for arg in o]) @dispatch(Node, dict) def _subs(o, d): """ >>> from blaze.expr import symbol >>> t = symbol('t', 'var * {name: string, balance: int}') >>> subs(t, {'balance': 'amount'}).fields ['name', 'amount'] """ newargs = [subs(arg, d) for arg in o._args] return type(o)(*newargs) @dispatch(object, dict) def _subs(o, d): """ Private dispatched version of ``subs`` >>> subs('Hello', {}) 'Hello' """ return o def path(a, b): """ A path of nodes from a to b >>> from blaze.expr import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = t.amount.sum() >>> list(path(expr, t)) [sum(t.amount), t.amount, t] """ while not a.isidentical(b): yield a if not a._inputs: break for child in a._inputs: if any(b.isidentical(node) for node in child._traverse()): a = child break yield a def common_subexpression(*exprs): """ Common sub expression between subexpressions Examples -------- >>> from blaze.expr import symbol, common_subexpression >>> t = symbol('t', 'var * {x: int, y: int}') >>> common_subexpression(t.x, t.y) t """ sets = [set(subterms(t)) for t in exprs] return builtins.max(set.intersection(*sets), key=compose(len, str)) def eval_str(expr): """ String suitable for evaluation >>> from blaze.expr import symbol, eval_str >>> x = symbol('x', 'real') >>> eval_str(2*x + 1) '(2 * x) + 1' >>> from datetime import date >>> eval_str(date(2000, 1, 20)) 'datetime.date(2000, 1, 20)' """ from datetime import date, datetime if isinstance(expr, (date, datetime)): return repr(expr) return repr(expr) if isinstance(expr, _strtypes) else str(expr) def parenthesize(s): """ >>> parenthesize('1') '1' >>> parenthesize('1 + 2') '(1 + 2)' """ if ' ' in s: return '(%s)' % s else: return s
bsd-3-clause
5,760,293,578,376,260,000
23.464953
79
0.530895
false
rs2/pandas
pandas/conftest.py
1
33159
""" This file is very long and growing, but it was decided to not split it yet, as it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989 Instead of splitting it was decided to define sections here: - Configuration / Settings - Autouse fixtures - Common arguments - Missing values & co. - Classes - Indices - Series' - DataFrames - Operators & Operations - Data sets/files - Time zones - Dtypes - Misc """ from collections import abc from datetime import date, time, timedelta, timezone from decimal import Decimal import operator import os from dateutil.tz import tzlocal, tzutc import hypothesis from hypothesis import strategies as st import numpy as np import pytest from pytz import FixedOffset, utc import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame import pandas._testing as tm from pandas.core import ops from pandas.core.indexes.api import Index, MultiIndex # ---------------------------------------------------------------- # Configuration / Settings # ---------------------------------------------------------------- # pytest def pytest_configure(config): # Register marks to avoid warnings in pandas.test() # sync with setup.cfg config.addinivalue_line("markers", "single: mark a test as single cpu only") config.addinivalue_line("markers", "slow: mark a test as slow") config.addinivalue_line("markers", "network: mark a test as network") config.addinivalue_line( "markers", "db: tests requiring a database (mysql or postgres)" ) config.addinivalue_line("markers", "high_memory: mark a test as a high-memory only") config.addinivalue_line("markers", "clipboard: mark a pd.read_clipboard test") config.addinivalue_line( "markers", "arm_slow: mark a test as slow for arm64 architecture" ) def pytest_addoption(parser): parser.addoption("--skip-slow", action="store_true", help="skip slow tests") parser.addoption("--skip-network", action="store_true", help="skip network tests") parser.addoption("--skip-db", action="store_true", help="skip db tests") parser.addoption( "--run-high-memory", action="store_true", help="run high memory tests" ) parser.addoption("--only-slow", action="store_true", help="run only slow tests") parser.addoption( "--strict-data-files", action="store_true", help="Fail if a test is skipped for missing data file.", ) def pytest_runtest_setup(item): if "slow" in item.keywords and item.config.getoption("--skip-slow"): pytest.skip("skipping due to --skip-slow") if "slow" not in item.keywords and item.config.getoption("--only-slow"): pytest.skip("skipping due to --only-slow") if "network" in item.keywords and item.config.getoption("--skip-network"): pytest.skip("skipping due to --skip-network") if "db" in item.keywords and item.config.getoption("--skip-db"): pytest.skip("skipping due to --skip-db") if "high_memory" in item.keywords and not item.config.getoption( "--run-high-memory" ): pytest.skip("skipping high memory test since --run-high-memory was not set") # Hypothesis hypothesis.settings.register_profile( "ci", # Hypothesis timing checks are tuned for scalars by default, so we bump # them from 200ms to 500ms per test case as the global default. If this # is too short for a specific test, (a) try to make it faster, and (b) # if it really is slow add `@settings(deadline=...)` with a working value, # or `deadline=None` to entirely disable timeouts for that test. deadline=500, suppress_health_check=(hypothesis.HealthCheck.too_slow,), ) hypothesis.settings.load_profile("ci") # Registering these strategies makes them globally available via st.from_type, # which is use for offsets in tests/tseries/offsets/test_offsets_properties.py for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans()) ) for name in "YearBegin YearEnd BYearBegin BYearEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds( cls, n=st.integers(-5, 5), normalize=st.booleans(), month=st.integers(min_value=1, max_value=12), ), ) for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds( cls, n=st.integers(-24, 24), normalize=st.booleans(), startingMonth=st.integers(min_value=1, max_value=12), ), ) # ---------------------------------------------------------------- # Autouse fixtures # ---------------------------------------------------------------- @pytest.fixture(autouse=True) def configure_tests(): """ Configure settings for all tests and test modules. """ pd.set_option("chained_assignment", "raise") @pytest.fixture(autouse=True) def add_imports(doctest_namespace): """ Make `np` and `pd` names available for doctests. """ doctest_namespace["np"] = np doctest_namespace["pd"] = pd # ---------------------------------------------------------------- # Common arguments # ---------------------------------------------------------------- @pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis {repr(x)}") def axis(request): """ Fixture for returning the axis numbers of a DataFrame. """ return request.param axis_frame = axis @pytest.fixture(params=[0, "index"], ids=lambda x: f"axis {repr(x)}") def axis_series(request): """ Fixture for returning the axis numbers of a Series. """ return request.param @pytest.fixture(params=[True, False, None]) def observed(request): """ Pass in the observed keyword to groupby for [True, False] This indicates whether categoricals should return values for values which are not in the grouper [False / None], or only values which appear in the grouper [True]. [None] is supported for future compatibility if we decide to change the default (and would need to warn if this parameter is not passed). """ return request.param @pytest.fixture(params=[True, False, None]) def ordered(request): """ Boolean 'ordered' parameter for Categorical. """ return request.param @pytest.fixture(params=["first", "last", False]) def keep(request): """ Valid values for the 'keep' parameter used in .duplicated or .drop_duplicates """ return request.param @pytest.fixture(params=["left", "right", "both", "neither"]) def closed(request): """ Fixture for trying all interval closed parameters. """ return request.param @pytest.fixture(params=["left", "right", "both", "neither"]) def other_closed(request): """ Secondary closed fixture to allow parametrizing over all pairs of closed. """ return request.param @pytest.fixture(params=[None, "gzip", "bz2", "zip", "xz"]) def compression(request): """ Fixture for trying common compression types in compression tests. """ return request.param @pytest.fixture(params=["gzip", "bz2", "zip", "xz"]) def compression_only(request): """ Fixture for trying common compression types in compression tests excluding uncompressed case. """ return request.param @pytest.fixture(params=[True, False]) def writable(request): """ Fixture that an array is writable. """ return request.param @pytest.fixture(params=["inner", "outer", "left", "right"]) def join_type(request): """ Fixture for trying all types of join operations. """ return request.param @pytest.fixture(params=["nlargest", "nsmallest"]) def nselect_method(request): """ Fixture for trying all nselect methods. """ return request.param # ---------------------------------------------------------------- # Missing values & co. # ---------------------------------------------------------------- @pytest.fixture(params=[None, np.nan, pd.NaT, float("nan"), pd.NA], ids=str) def nulls_fixture(request): """ Fixture for each null type in pandas. """ return request.param nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture @pytest.fixture(params=[None, np.nan, pd.NaT]) def unique_nulls_fixture(request): """ Fixture for each null type in pandas, each null type exactly once. """ return request.param # Generate cartesian product of unique_nulls_fixture: unique_nulls_fixture2 = unique_nulls_fixture # ---------------------------------------------------------------- # Classes # ---------------------------------------------------------------- @pytest.fixture(params=[pd.Index, pd.Series], ids=["index", "series"]) def index_or_series(request): """ Fixture to parametrize over Index and Series, made necessary by a mypy bug, giving an error: List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]" See GH#29725 """ return request.param # Generate cartesian product of index_or_series fixture: index_or_series2 = index_or_series @pytest.fixture def dict_subclass(): """ Fixture for a dictionary subclass. """ class TestSubDict(dict): def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) return TestSubDict @pytest.fixture def non_dict_mapping_subclass(): """ Fixture for a non-mapping dictionary subclass. """ class TestNonDictMapping(abc.Mapping): def __init__(self, underlying_dict): self._data = underlying_dict def __getitem__(self, key): return self._data.__getitem__(key) def __iter__(self): return self._data.__iter__() def __len__(self): return self._data.__len__() return TestNonDictMapping # ---------------------------------------------------------------- # Indices # ---------------------------------------------------------------- @pytest.fixture def multiindex_year_month_day_dataframe_random_data(): """ DataFrame with 3 level MultiIndex (year, month, day) covering first 100 business days from 2000-01-01 with random data """ tdf = tm.makeTimeDataFrame(100) ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels]) ymd.index.set_names(["year", "month", "day"], inplace=True) return ymd def _create_multiindex(): """ MultiIndex used to test the general functionality of this object """ # See Also: tests.multi.conftest.idx major_axis = Index(["foo", "bar", "baz", "qux"]) minor_axis = Index(["one", "two"]) major_codes = np.array([0, 0, 1, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index_names = ["first", "second"] mi = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes], names=index_names, verify_integrity=False, ) return mi def _create_mi_with_dt64tz_level(): """ MultiIndex with a level that is a tzaware DatetimeIndex. """ # GH#8367 round trip with pickle return MultiIndex.from_product( [[1, 2], ["a", "b"], pd.date_range("20130101", periods=3, tz="US/Eastern")], names=["one", "two", "three"], ) indices_dict = { "unicode": tm.makeUnicodeIndex(100), "string": tm.makeStringIndex(100), "datetime": tm.makeDateIndex(100), "datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"), "period": tm.makePeriodIndex(100), "timedelta": tm.makeTimedeltaIndex(100), "int": tm.makeIntIndex(100), "uint": tm.makeUIntIndex(100), "range": tm.makeRangeIndex(100), "float": tm.makeFloatIndex(100), "bool": tm.makeBoolIndex(10), "categorical": tm.makeCategoricalIndex(100), "interval": tm.makeIntervalIndex(100), "empty": Index([]), "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])), "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(), "multi": _create_multiindex(), "repeats": Index([0, 0, 1, 1, 2, 2]), } @pytest.fixture(params=indices_dict.keys()) def index(request): """ Fixture for many "simple" kinds of indices. These indices are unlikely to cover corner cases, e.g. - no names - no NaTs/NaNs - no values near implementation bounds - ... """ # copy to avoid mutation, e.g. setting .name return indices_dict[request.param].copy() # Needed to generate cartesian product of indices index_fixture2 = index @pytest.fixture(params=indices_dict.keys()) def index_with_missing(request): """ Fixture for indices with missing values """ if request.param in ["int", "uint", "range", "empty", "repeats"]: pytest.xfail("missing values not supported") # GH 35538. Use deep copy to avoid illusive bug on np-dev # Azure pipeline that writes into indices_dict despite copy ind = indices_dict[request.param].copy(deep=True) vals = ind.values if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]: # For setting missing values in the top level of MultiIndex vals = ind.tolist() vals[0] = tuple([None]) + vals[0][1:] vals[-1] = tuple([None]) + vals[-1][1:] return MultiIndex.from_tuples(vals) else: vals[0] = None vals[-1] = None return type(ind)(vals) # ---------------------------------------------------------------- # Series' # ---------------------------------------------------------------- @pytest.fixture def empty_series(): return pd.Series([], index=[], dtype=np.float64) @pytest.fixture def string_series(): """ Fixture for Series of floats with Index of unique strings """ s = tm.makeStringSeries() s.name = "series" return s @pytest.fixture def object_series(): """ Fixture for Series of dtype object with Index of unique strings """ s = tm.makeObjectSeries() s.name = "objects" return s @pytest.fixture def datetime_series(): """ Fixture for Series of floats with DatetimeIndex """ s = tm.makeTimeSeries() s.name = "ts" return s def _create_series(index): """ Helper for the _series dict """ size = len(index) data = np.random.randn(size) return pd.Series(data, index=index, name="a") _series = { f"series-with-{index_id}-index": _create_series(index) for index_id, index in indices_dict.items() } @pytest.fixture def series_with_simple_index(index): """ Fixture for tests on series with changing types of indices. """ return _create_series(index) _narrow_dtypes = [ np.float16, np.float32, np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32, ] _narrow_series = { f"{dtype.__name__}-series": tm.makeFloatSeries(name="a").astype(dtype) for dtype in _narrow_dtypes } @pytest.fixture(params=_narrow_series.keys()) def narrow_series(request): """ Fixture for Series with low precision data types """ # copy to avoid mutation, e.g. setting .name return _narrow_series[request.param].copy() _index_or_series_objs = {**indices_dict, **_series, **_narrow_series} @pytest.fixture(params=_index_or_series_objs.keys()) def index_or_series_obj(request): """ Fixture for tests on indexes, series and series with a narrow dtype copy to avoid mutation, e.g. setting .name """ return _index_or_series_objs[request.param].copy(deep=True) # ---------------------------------------------------------------- # DataFrames # ---------------------------------------------------------------- @pytest.fixture def empty_frame(): return DataFrame() @pytest.fixture def int_frame(): """ Fixture for DataFrame of ints with index of unique strings Columns are ['A', 'B', 'C', 'D'] A B C D vpBeWjM651 1 0 1 0 5JyxmrP1En -1 0 0 0 qEDaoD49U2 -1 1 0 0 m66TkTfsFe 0 0 0 0 EHPaNzEUFm -1 0 -1 0 fpRJCevQhi 2 0 0 0 OlQvnmfi3Q 0 0 -2 0 ... .. .. .. .. uB1FPlz4uP 0 0 0 1 EcSe6yNzCU 0 0 -1 0 L50VudaiI8 -1 1 -2 0 y3bpw4nwIp 0 -1 0 0 H0RdLLwrCT 1 1 0 0 rY82K0vMwm 0 0 0 0 1OPIUjnkjk 2 0 0 0 [30 rows x 4 columns] """ return DataFrame(tm.getSeriesData()).astype("int64") @pytest.fixture def datetime_frame(): """ Fixture for DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D'] A B C D 2000-01-03 -1.122153 0.468535 0.122226 1.693711 2000-01-04 0.189378 0.486100 0.007864 -1.216052 2000-01-05 0.041401 -0.835752 -0.035279 -0.414357 2000-01-06 0.430050 0.894352 0.090719 0.036939 2000-01-07 -0.620982 -0.668211 -0.706153 1.466335 2000-01-10 -0.752633 0.328434 -0.815325 0.699674 2000-01-11 -2.236969 0.615737 -0.829076 -1.196106 ... ... ... ... ... 2000-02-03 1.642618 -0.579288 0.046005 1.385249 2000-02-04 -0.544873 -1.160962 -0.284071 -1.418351 2000-02-07 -2.656149 -0.601387 1.410148 0.444150 2000-02-08 -1.201881 -1.289040 0.772992 -1.445300 2000-02-09 1.377373 0.398619 1.008453 -0.928207 2000-02-10 0.473194 -0.636677 0.984058 0.511519 2000-02-11 -0.965556 0.408313 -1.312844 -0.381948 [30 rows x 4 columns] """ return DataFrame(tm.getTimeSeriesData()) @pytest.fixture def float_frame(): """ Fixture for DataFrame of floats with index of unique strings Columns are ['A', 'B', 'C', 'D']. A B C D P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465 qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901 tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433 wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651 M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938 QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053 r78Jwns6dn -0.653707 0.883127 0.682199 0.206159 ... ... ... ... ... IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316 lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999 qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121 yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962 65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987 eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871 xSucinXxuV -1.263557 0.252799 -0.552247 0.400426 [30 rows x 4 columns] """ return DataFrame(tm.getSeriesData()) # ---------------------------------------------------------------- # Operators & Operations # ---------------------------------------------------------------- _all_arithmetic_operators = [ "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__floordiv__", "__rfloordiv__", "__truediv__", "__rtruediv__", "__pow__", "__rpow__", "__mod__", "__rmod__", ] @pytest.fixture(params=_all_arithmetic_operators) def all_arithmetic_operators(request): """ Fixture for dunder names for common arithmetic operations. """ return request.param @pytest.fixture( params=[ operator.add, ops.radd, operator.sub, ops.rsub, operator.mul, ops.rmul, operator.truediv, ops.rtruediv, operator.floordiv, ops.rfloordiv, operator.mod, ops.rmod, operator.pow, ops.rpow, ] ) def all_arithmetic_functions(request): """ Fixture for operator and roperator arithmetic functions. Notes ----- This includes divmod and rdivmod, whereas all_arithmetic_operators does not. """ return request.param _all_numeric_reductions = [ "sum", "max", "min", "mean", "prod", "std", "var", "median", "kurt", "skew", ] @pytest.fixture(params=_all_numeric_reductions) def all_numeric_reductions(request): """ Fixture for numeric reduction names. """ return request.param _all_boolean_reductions = ["all", "any"] @pytest.fixture(params=_all_boolean_reductions) def all_boolean_reductions(request): """ Fixture for boolean reduction names. """ return request.param _all_reductions = _all_numeric_reductions + _all_boolean_reductions @pytest.fixture(params=_all_reductions) def all_reductions(request): """ Fixture for all (boolean + numeric) reduction names. """ return request.param @pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"]) def all_compare_operators(request): """ Fixture for dunder names for common compare operations * >= * > * == * != * < * <= """ return request.param @pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"]) def compare_operators_no_eq_ne(request): """ Fixture for dunder names for compare operations except == and != * >= * > * < * <= """ return request.param @pytest.fixture( params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"] ) def all_logical_operators(request): """ Fixture for dunder names for common logical operations * | * & * ^ """ return request.param # ---------------------------------------------------------------- # Data sets/files # ---------------------------------------------------------------- @pytest.fixture def strict_data_files(pytestconfig): """ Returns the configuration for the test setting `--strict-data-files`. """ return pytestconfig.getoption("--strict-data-files") @pytest.fixture def datapath(strict_data_files): """ Get the path to a data file. Parameters ---------- path : str Path to the file, relative to ``pandas/tests/`` Returns ------- path including ``pandas/tests``. Raises ------ ValueError If the path doesn't exist and the --strict-data-files option is set. """ BASE_PATH = os.path.join(os.path.dirname(__file__), "tests") def deco(*args): path = os.path.join(BASE_PATH, *args) if not os.path.exists(path): if strict_data_files: raise ValueError( f"Could not find file {path} and --strict-data-files is set." ) else: pytest.skip(f"Could not find {path}.") return path return deco @pytest.fixture def iris(datapath): """ The iris dataset as a DataFrame. """ return pd.read_csv(datapath("io", "data", "csv", "iris.csv")) # ---------------------------------------------------------------- # Time zones # ---------------------------------------------------------------- TIMEZONES = [ None, "UTC", "US/Eastern", "Asia/Tokyo", "dateutil/US/Pacific", "dateutil/Asia/Singapore", tzutc(), tzlocal(), FixedOffset(300), FixedOffset(0), FixedOffset(-300), timezone.utc, timezone(timedelta(hours=1)), timezone(timedelta(hours=-1), name="foo"), ] TIMEZONE_IDS = [repr(i) for i in TIMEZONES] @td.parametrize_fixture_doc(str(TIMEZONE_IDS)) @pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS) def tz_naive_fixture(request): """ Fixture for trying timezones including default (None): {0} """ return request.param @td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:])) @pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:]) def tz_aware_fixture(request): """ Fixture for trying explicit timezones: {0} """ return request.param # Generate cartesian product of tz_aware_fixture: tz_aware_fixture2 = tz_aware_fixture @pytest.fixture(scope="module") def datetime_tz_utc(): """ Yields the UTC timezone object from the datetime module. """ return timezone.utc @pytest.fixture(params=["utc", "dateutil/UTC", utc, tzutc(), timezone.utc]) def utc_fixture(request): """ Fixture to provide variants of UTC timezone strings and tzinfo objects. """ return request.param # ---------------------------------------------------------------- # Dtypes # ---------------------------------------------------------------- @pytest.fixture(params=tm.STRING_DTYPES) def string_dtype(request): """ Parametrized fixture for string dtypes. * str * 'str' * 'U' """ return request.param @pytest.fixture(params=tm.BYTES_DTYPES) def bytes_dtype(request): """ Parametrized fixture for bytes dtypes. * bytes * 'bytes' """ return request.param @pytest.fixture(params=tm.OBJECT_DTYPES) def object_dtype(request): """ Parametrized fixture for object dtypes. * object * 'object' """ return request.param @pytest.fixture(params=tm.DATETIME64_DTYPES) def datetime64_dtype(request): """ Parametrized fixture for datetime64 dtypes. * 'datetime64[ns]' * 'M8[ns]' """ return request.param @pytest.fixture(params=tm.TIMEDELTA64_DTYPES) def timedelta64_dtype(request): """ Parametrized fixture for timedelta64 dtypes. * 'timedelta64[ns]' * 'm8[ns]' """ return request.param @pytest.fixture(params=tm.FLOAT_DTYPES) def float_dtype(request): """ Parameterized fixture for float dtypes. * float * 'float32' * 'float64' """ return request.param @pytest.fixture(params=tm.COMPLEX_DTYPES) def complex_dtype(request): """ Parameterized fixture for complex dtypes. * complex * 'complex64' * 'complex128' """ return request.param @pytest.fixture(params=tm.SIGNED_INT_DTYPES) def sint_dtype(request): """ Parameterized fixture for signed integer dtypes. * int * 'int8' * 'int16' * 'int32' * 'int64' """ return request.param @pytest.fixture(params=tm.UNSIGNED_INT_DTYPES) def uint_dtype(request): """ Parameterized fixture for unsigned integer dtypes. * 'uint8' * 'uint16' * 'uint32' * 'uint64' """ return request.param @pytest.fixture(params=tm.ALL_INT_DTYPES) def any_int_dtype(request): """ Parameterized fixture for any integer dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' """ return request.param @pytest.fixture(params=tm.ALL_EA_INT_DTYPES) def any_nullable_int_dtype(request): """ Parameterized fixture for any nullable integer dtype. * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' """ return request.param @pytest.fixture(params=tm.SIGNED_EA_INT_DTYPES) def any_signed_nullable_int_dtype(request): """ Parameterized fixture for any signed nullable integer dtype. * 'Int8' * 'Int16' * 'Int32' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_REAL_DTYPES) def any_real_dtype(request): """ Parameterized fixture for any (purely) real numeric dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' """ return request.param @pytest.fixture(params=tm.ALL_NUMPY_DTYPES) def any_numpy_dtype(request): """ Parameterized fixture for all numpy dtypes. * bool * 'bool' * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' * complex * 'complex64' * 'complex128' * str * 'str' * 'U' * bytes * 'bytes' * 'datetime64[ns]' * 'M8[ns]' * 'timedelta64[ns]' * 'm8[ns]' * object * 'object' """ return request.param # categoricals are handled separately _any_skipna_inferred_dtype = [ ("string", ["a", np.nan, "c"]), ("string", ["a", pd.NA, "c"]), ("bytes", [b"a", np.nan, b"c"]), ("empty", [np.nan, np.nan, np.nan]), ("empty", []), ("mixed-integer", ["a", np.nan, 2]), ("mixed", ["a", np.nan, 2.0]), ("floating", [1.0, np.nan, 2.0]), ("integer", [1, np.nan, 2]), ("mixed-integer-float", [1, np.nan, 2.0]), ("decimal", [Decimal(1), np.nan, Decimal(2)]), ("boolean", [True, np.nan, False]), ("boolean", [True, pd.NA, False]), ("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]), ("datetime", [pd.Timestamp("20130101"), np.nan, pd.Timestamp("20180101")]), ("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]), # The following two dtypes are commented out due to GH 23554 # ('complex', [1 + 1j, np.nan, 2 + 2j]), # ('timedelta64', [np.timedelta64(1, 'D'), # np.nan, np.timedelta64(2, 'D')]), ("timedelta", [timedelta(1), np.nan, timedelta(2)]), ("time", [time(1), np.nan, time(2)]), ("period", [pd.Period(2013), pd.NaT, pd.Period(2018)]), ("interval", [pd.Interval(0, 1), np.nan, pd.Interval(0, 2)]), ] ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id @pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids) def any_skipna_inferred_dtype(request): """ Fixture for all inferred dtypes from _libs.lib.infer_dtype The covered (inferred) types are: * 'string' * 'empty' * 'bytes' * 'mixed' * 'mixed-integer' * 'mixed-integer-float' * 'floating' * 'integer' * 'decimal' * 'boolean' * 'datetime64' * 'datetime' * 'date' * 'timedelta' * 'time' * 'period' * 'interval' Returns ------- inferred_dtype : str The string for the inferred dtype from _libs.lib.infer_dtype values : np.ndarray An array of object dtype that will be inferred to have `inferred_dtype` Examples -------- >>> import pandas._libs.lib as lib >>> >>> def test_something(any_skipna_inferred_dtype): ... inferred_dtype, values = any_skipna_inferred_dtype ... # will pass ... assert lib.infer_dtype(values, skipna=True) == inferred_dtype """ inferred_dtype, values = request.param values = np.array(values, dtype=object) # object dtype to avoid casting # correctness of inference tested in tests/dtypes/test_inference.py return inferred_dtype, values # ---------------------------------------------------------------- # Misc # ---------------------------------------------------------------- @pytest.fixture def ip(): """ Get an instance of IPython.InteractiveShell. Will raise a skip if IPython is not installed. """ pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.interactiveshell import InteractiveShell # GH#35711 make sure sqlite history file handle is not leaked from traitlets.config import Config # noqa: F401 isort:skip c = Config() c.HistoryManager.hist_file = ":memory:" return InteractiveShell(config=c) @pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"]) def spmatrix(request): """ Yields scipy sparse matrix classes. """ from scipy import sparse return getattr(sparse, request.param + "_matrix") @pytest.fixture(params=list(tm.cython_table)) def cython_table_items(request): """ Yields a tuple of a function and its corresponding name. Correspond to the list of aggregator "Cython functions" used on selected table items. """ return request.param @pytest.fixture( params=[ getattr(pd.offsets, o) for o in pd.offsets.__all__ if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) ] ) def tick_classes(request): """ Fixture for Tick based datetime offsets available for a time series. """ return request.param @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Simple fixture for testing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param @pytest.fixture() def fsspectest(): pytest.importorskip("fsspec") from fsspec import register_implementation from fsspec.implementations.memory import MemoryFileSystem from fsspec.registry import _registry as registry class TestMemoryFS(MemoryFileSystem): protocol = "testmem" test = [None] def __init__(self, **kwargs): self.test[0] = kwargs.pop("test", None) super().__init__(**kwargs) register_implementation("testmem", TestMemoryFS, clobber=True) yield TestMemoryFS() registry.pop("testmem", None) TestMemoryFS.test[0] = None TestMemoryFS.store.clear()
bsd-3-clause
-5,213,168,821,077,794,000
24.645012
88
0.588407
false