repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
bmars/sisko
sisko/utils.py
1
2204
# Copyright (C) 2014 Brian Marshall # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from gi.repository import GLib, Gio # This mapping of icon names to descriptions was borrowed from Nautilus. _BASIC_CONTENT_TYPES = { 'application-x-executable': _("Program"), 'audio-x-generic': _("Audio"), 'font-x-generic': _("Font"), 'image-x-generic': _("Image"), 'package-x-generic': _("Archive"), 'text-html': _("Markup"), 'text-x-generic': _("Text"), 'text-x-script': _("Program"), 'video-x-generic': _("Video"), 'x-office-document': _("Document"), 'x-office-presentation': _("Document"), 'x-office-spreadsheet': _("Document") } def format_time(time: GLib.TimeVal): """ Return a short string representing the time. The format will differ depending on how close to the current date it is. """ dt = GLib.DateTime.new_from_timeval_local(time) now = GLib.DateTime.new_now_local() if dt.get_ymd() == now.get_ymd(): return dt.format(_("%-I:%M %P")) elif dt.get_year() == now.get_year(): return dt.format(_("%b %-d")) else: return dt.format(_("%b %-d %Y")) def get_basic_content_type(content_type: str): """ Return a short string describing the content type. """ if content_type == 'inode/directory': return _("Folder") elif content_type == 'inode/symlink': return _("Link") elif Gio.content_type_is_unknown(content_type): return _("Binary") else: return _BASIC_CONTENT_TYPES.get( Gio.content_type_get_generic_icon_name(content_type), _("Unknown"))
gpl-3.0
-8,794,476,572,636,623,000
35.733333
79
0.648367
false
mtbarta/neural-tagger
src/models/dconv3Experiments/skipconn.py
1
21980
#!/usr/bin/python # -*- coding: utf8 import tensorflow as tf import numpy as np from src.util.tf import tensorToSeq, seqToTensor, revlut import math from google.protobuf import text_format from tensorflow.python.platform import gfile import json import os from collections import defaultdict import src.models.tf_utils as tf_utils from src.models.initializers import identity_initializer, orthogonal_initializer def _xform(arr, words_vocab, chars_vocab, mxlen, maxw): """ transforms a single feature vector into a feed dict for the model. """ batch = defaultdict(list) for i in arr: xs_ch = np.zeros((mxlen, maxw), dtype=np.int) xs = np.zeros((mxlen), dtype=np.int) ys = np.zeros((mxlen), dtype=np.int) v = i length = mxlen for j in range(mxlen): if j == len(v): length = j break w = v[j] nch = min(len(w), maxw) xs[j] = words_vocab.get(w, 0) for k in range(nch): xs_ch[j,k] = chars_vocab.get(w[k], 0) batch['x'].append(xs) batch['y'].append(ys) batch['xch'].append(xs_ch) batch['id'].append(i) batch['length'].append(length) return batch class DConv(): def __init__(self, sess, name, version='1'): self.sess = sess self.name = name self.version = version def predict(self, batch, xform=True, training_phase=False, word_keep=1.0): if not isinstance(batch, dict): batch = _xform(batch, self.word_vocab, self.char_vocab, self.maxlen, self.maxw) lengths = batch["length"] feed_dict = {self.x: batch["x"], self.xch: batch["xch"], self.pkeep: 1.0, self.word_keep: 1.0, self.phase: training_phase} # We can probably conditionally add the loss here preds = [] with tf.variable_scope(self.name): if self.crf is True: probv, tranv = self.sess.run([self.probs, self.A], feed_dict=feed_dict) for pij, sl in zip(probv, lengths): unary = pij[:sl] viterbi, _ = tf.contrib.crf.viterbi_decode(unary, tranv) preds.append(viterbi) else: # Get batch (B, T) bestv = self.sess.run(self.best, feed_dict=feed_dict) # Each sentence, probv for pij, sl in zip(bestv, lengths): unary = pij[:sl] preds.append(unary) if xform: # print(preds) return [[self.y_lut[i] for i in sent] for sent in preds] else: return preds @classmethod def restore(cls, sess, indir, base, checkpoint_name=None): """ this method NEEDS to know the base name used in training for the model. while i declare a variable scope, I still grab variables by names, so we see duplication in using the base name to get the variables out. It would be great to fix this at some point to be cleaner. """ klass = cls(sess, base) basename = indir + '/' + base checkpoint_name = checkpoint_name or basename with open(basename + '.saver') as fsv: saver_def = tf.train.SaverDef() text_format.Merge(fsv.read(), saver_def) print('Loaded saver def') with gfile.FastGFile(basename + '.graph', 'r') as f: gd = tf.GraphDef() gd.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(gd, name='') print('Imported graph def') with tf.variable_scope(base): sess.run(saver_def.restore_op_name, {saver_def.filename_tensor_name: checkpoint_name}) klass.x = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'x:0') klass.xch = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'xch:0') klass.y = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'y:0') klass.pkeep = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'pkeep:0') klass.word_keep = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'word_keep:0') klass.phase = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'phase:0') klass.best = tf.get_default_graph().get_tensor_by_name('output/ArgMax:0') # X klass.probs = tf.get_default_graph().get_tensor_by_name('output/transpose:0') # X try: klass.A = tf.get_default_graph().get_tensor_by_name(base + '/'+ 'Loss/block/transitions:0') print('Found transition matrix in graph, setting crf=True') klass.crf = True except: print('Failed to get transition matrix, setting crf=False') klass.A = None klass.crf = False with open(basename + '.labels', 'r') as f: klass.labels = json.load(f) klass.word_vocab = {} if os.path.exists(basename + '-word.vocab'): with open(basename + '-word.vocab', 'r') as f: klass.word_vocab = json.load(f) with open(basename + '-char.vocab', 'r') as f: klass.char_vocab = json.load(f) with open(basename + '-params', 'r') as f: params = json.load(f) klass.maxlen = params['maxlen'] klass.maxw = params['maxw'] # self.name = params['model_name'] klass.saver = tf.train.Saver(saver_def=saver_def) klass.y_lut = revlut(klass.labels) return klass def ex2dict(self, batch, pkeep, phase, word_keep): return { self.x: batch["x"], self.xch: batch["xch"], self.y: batch["y"], self.pkeep: pkeep, self.word_keep: word_keep, self.phase: phase } def createLoss(self): with tf.name_scope("Loss"): loss = tf.constant(0.0) gold = tf.cast(self.y, tf.float32) mask = tf.sign(gold) lengths = tf.reduce_sum(mask, name="lengths", reduction_indices=1) all_total = tf.reduce_sum(lengths, name="total") #block_scores = tf.unstack(self.intermediate_probs, axis=-1) block_scores = self.intermediate_probs print("block_sore length", len(block_scores)) block_no_dropout_scores, _ = self.forward(1.0, 1.0, 1.0, reuse=True) print("block_score_no_dropout length", len(block_no_dropout_scores)) print("block_score length after anothe fwd", len(block_scores)) all_loss = [] for block, block_no_drop in zip(block_scores, block_no_dropout_scores): print(block.get_shape()) # reuse = i != 0 # with tf.variable_scope('block', reuse=reuse): if self.crf is True: print('crf=True, creating SLL') viterbi_loss = self._computeSentenceLevelLoss(self.y, mask, lengths, None, block) all_loss.append(viterbi_loss) else: print('crf=False, creating WLL') all_loss.append(self._computeWordLevelLoss(gold, mask, None, block)) l2_loss = tf.nn.l2_loss(tf.subtract(block, block_no_drop)) loss += self.drop_penalty * l2_loss loss += tf.reduce_mean(all_loss) return loss def _computeSentenceLevelLoss(self, gold, mask, lengths, model, probs): #zero_elements = tf.equal(lengths, tf.zeros_like(lengths)) #count_zeros_per_row = tf.reduce_sum(tf.to_int32(zero_elements), axis=1) #flat_sequence_lengths = tf.add(tf.reduce_sum(lengths, 1), # tf.scalar_mul(2, count_zeros_per_row)) print(probs.get_shape()) print(lengths.get_shape()) print(gold.get_shape()) ll, A = tf.contrib.crf.crf_log_likelihood(probs, gold, lengths, transition_params=self.A) # print(model.probs) #all_total = tf.reduce_sum(lengths, name="total") return tf.reduce_mean(-ll) def _computeWordLevelLoss(self, gold, mask, model, probs): nc = len(self.labels) # Cross entropy loss cross_entropy = tf.one_hot(self.y, nc, axis=-1) * tf.log( tf.clip_by_value(tf.nn.softmax(probs), 1e-10, 5.0)) cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2) cross_entropy *= mask cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1) all_loss = tf.reduce_mean(cross_entropy, name="loss") return all_loss def block(self, wembed, kernel_sz, num_filt, num_layers, reuse=False): dilation_rate = 2 initialization = 'identity' nonlinearity = 'relu' input_tensor = wembed with tf.variable_scope('iterated-block', reuse=reuse): for i in range(0, num_layers): if i == num_layers-1: dilation_rate = 1 filter_shape = [1, kernel_sz, num_filt, num_filt] w = tf_utils.initialize_weights(filter_shape, 'conv-'+ str(i) + "_w", init_type=initialization, gain=nonlinearity, divisor=self.num_classes) b = tf.get_variable('conv-'+ str(i) + "_b", initializer=tf.constant(0.0 if initialization == "identity" or initialization == "varscale" else 0.001, shape=[num_filt])) conv = tf.nn.atrous_conv2d(input_tensor, w, rate=dilation_rate**i, padding="SAME", name='conv-'+ str(i)) conv_b = tf.nn.bias_add(conv, b) nonlinearity = tf_utils.apply_nonlinearity(conv_b, "relu") input_tensor = nonlinearity + input_tensor tf.summary.histogram('conv-'+str(i), input_tensor) # input_tensor = tf.nn.relu(input_tensor, name="relu-"+str(i)) return input_tensor def params(self, labels, word_vec, char_vec, mxlen, maxw, rnntype, wsz, hsz, filtsz, num_filt=64, kernel_size=3, num_layers=4, num_iterations=3, crf=False): self.num_iterations = num_iterations self.num_layers = num_layers self.kernel_size = kernel_size self.num_filt = num_filt self.crf = crf char_dsz = char_vec.dsz nc = len(labels) self.num_classes=nc self.x = tf.placeholder(tf.int32, [None, mxlen], name="x") self.xch = tf.placeholder(tf.int32, [None, mxlen, maxw], name="xch") self.y = tf.placeholder(tf.int32, [None, mxlen], name="y") self.intermediate_probs = tf.placeholder(tf.int32, [None, mxlen, nc, num_iterations+2], name="y") self.pkeep = tf.placeholder(tf.float32, name="pkeep") self.word_keep = tf.placeholder(tf.float32, name="word_keep") self.labels = labels self.y_lut = revlut(labels) self.phase = tf.placeholder(tf.bool, name="phase") self.l2_loss = tf.constant(0.0) self.word_vocab = {} if word_vec is not None: self.word_vocab = word_vec.vocab self.char_vocab = char_vec.vocab self.char_dsz = char_dsz self.wsz = wsz self.mxlen = mxlen self.drop_penalty = 0.001 self.A = tf.get_variable("transitions", [self.num_classes, self.num_classes]) # if num_filt != nc: # raise RuntimeError('number of filters needs to be equal to number of classes!') self.filtsz = [int(filt) for filt in filtsz.split(',') ] with tf.variable_scope('output/'): W = tf.Variable(tf.truncated_normal([self.num_filt, nc], stddev = 0.1), name="W") # W = tf.get_variable('W', initializer=tf.contrib.layers.xavier_initializer(), shape=[num_filt, nc]) b = tf.Variable(tf.constant(0.0, shape=[1,nc]), name="b") intermediates = [] if word_vec is not None: with tf.name_scope("WordLUT"): self.Ww = tf.Variable(tf.constant(word_vec.weights, dtype=tf.float32), name = "W") self.we0 = tf.scatter_update(self.Ww, tf.constant(0, dtype=tf.int32, shape=[1]), tf.zeros(shape=[1, word_vec.dsz])) with tf.name_scope("CharLUT"): self.Wc = tf.Variable(tf.constant(char_vec.weights, dtype=tf.float32), name = "W") self.ce0 = tf.scatter_update(self.Wc, tf.constant(0, dtype=tf.int32, shape=[1]), tf.zeros(shape=[1, self.char_dsz])) self.input_dropout_keep_prob = self.word_keep self.middle_dropout_keep_prob = 1.00 self.hidden_dropout_keep_prob = self.pkeep self.intermediate_probs, self.probs = self.forward(self.hidden_dropout_keep_prob, self.input_dropout_keep_prob, self.middle_dropout_keep_prob, reuse=False) self.loss = self.createLoss() def forward(self, hidden_keep, input_keep, middle_keep, reuse=True): """ used to determine the actual graph. returns (intermediate_probs, probs). technically probs is the last layer of the intermediate probs. """ block_unflat_scores = [] with tf.variable_scope("forward", reuse=reuse): with tf.control_dependencies([self.we0]): wembed = tf.nn.embedding_lookup(self.Ww, self.x, name="embeddings") with tf.control_dependencies([self.ce0]): xch_seq = tensorToSeq(self.xch) cembed_seq = [] for i, xch_i in enumerate(xch_seq): cembed_seq.append(shared_char_word(self.Wc, xch_i, self.filtsz, self.char_dsz, self.wsz, None if (i == 0 and not reuse) else True)) word_char = seqToTensor(cembed_seq) input_feats = tf.concat([wembed, word_char], 2) input_feats_expanded = tf.expand_dims(input_feats, 1) input_feats_expanded_drop = tf.nn.dropout(input_feats_expanded, self.input_dropout_keep_prob) # first projection of embeddings filter_shape = [1, self.kernel_size, input_feats.get_shape()[2], self.num_filt] w = tf_utils.initialize_weights(filter_shape, "conv_start" + "_w", init_type='xavier', gain='relu') b = tf.get_variable("conv_start" + "_b", initializer=tf.constant(0.01, shape=[self.num_filt])) conv0 = tf.nn.conv2d(input_feats_expanded_drop, w, strides=[1, 1, 1, 1], padding="SAME", name="conv_start") h0 = tf_utils.apply_nonlinearity(tf.nn.bias_add(conv0, b), 'relu') initial_inputs = [h0] last_dims = self.num_filt self.share_repeats = True self.projection = False # Stacked atrous convolutions last_output = tf.concat(axis=3, values=initial_inputs) for iteration in range(self.num_iterations): hidden_outputs = [] total_output_width = self.num_filt reuse_block = (iteration != 0) block_name_suff = "" if self.share_repeats else str(block) inner_last_dims = last_dims inner_last_output = last_output with tf.variable_scope("block" + block_name_suff, reuse=reuse_block): block_output = self.block(inner_last_output, self.kernel_size, self.num_filt, self.num_layers, reuse=reuse_block) #legacy strubell logic. we only grab the last layer of the block here. always. h_concat = tf.concat(axis=3, values=[block_output]) last_output = tf.nn.dropout(h_concat, self.middle_dropout_keep_prob) last_dims = total_output_width h_concat_squeeze = tf.squeeze(h_concat, [1]) h_concat_flat = tf.reshape(h_concat_squeeze, [-1, total_output_width]) # Add dropout with tf.name_scope("hidden_dropout"): h_drop = tf.nn.dropout(h_concat_flat, self.hidden_dropout_keep_prob) def do_projection(): # Project raw outputs down with tf.name_scope("projection"): projection_width = int(total_output_width/(2*len(hidden_outputs))) w_p = tf_utils.initialize_weights([total_output_width, projection_width], "w_p", init_type="xavier") b_p = tf.get_variable("b_p", initializer=tf.constant(0.01, shape=[projection_width])) projected = tf.nn.xw_plus_b(h_drop, w_p, b_p, name="projected") projected_nonlinearity = tf_utils.apply_nonlinearity(projected, self.nonlinearity) return projected_nonlinearity, projection_width # only use projection if we wanted to, and only apply middle dropout here if projection input_to_pred, proj_width = do_projection() if self.projection else (h_drop, total_output_width) input_to_pred_drop = tf.nn.dropout(input_to_pred, self.middle_dropout_keep_prob) if self.projection else input_to_pred # Final (unnormalized) scores and predictions with tf.name_scope("output"+block_name_suff): w_o = tf_utils.initialize_weights([proj_width, self.num_classes], "w_o", init_type="xavier") b_o = tf.get_variable("b_o", initializer=tf.constant(0.01, shape=[self.num_classes])) self.l2_loss += tf.nn.l2_loss(w_o) self.l2_loss += tf.nn.l2_loss(b_o) scores = tf.nn.xw_plus_b(input_to_pred_drop, w_o, b_o, name="scores") unflat_scores = tf.reshape(scores, tf.stack([-1, self.mxlen, self.num_classes])) block_unflat_scores.append(unflat_scores) # probs = unflat_scores # best = tf.argmax(self.probs, 2) # intermediate_probs = tf.stack(block_unflat_scores, -1) return block_unflat_scores, unflat_scores def log(tensor): print(tensor) def highway_conns(inputs, wsz_all, n, reuse): for i in range(n): with tf.variable_scope("highway-%d" % i,reuse=reuse): W_p = tf.get_variable("W_p", [wsz_all, wsz_all]) b_p = tf.get_variable("B_p", [1, wsz_all], initializer=tf.constant_initializer(0.0)) proj = tf.nn.relu(tf.matmul(inputs, W_p) + b_p, "relu-proj") W_t = tf.get_variable("W_t", [wsz_all, wsz_all]) b_t = tf.get_variable("B_t", [1, wsz_all], initializer=tf.constant_initializer(-2.0)) transform = tf.nn.sigmoid(tf.matmul(inputs, W_t) + b_t, "sigmoid-transform") inputs = tf.multiply(transform, proj) + tf.multiply(inputs, 1 - transform) return inputs def skip_conns(inputs, wsz_all, n, reuse): for i in range(n): with tf.variable_scope("skip-%d" % i, reuse=reuse): W_p = tf.get_variable("W_p", [wsz_all, wsz_all]) b_p = tf.get_variable("B_p", [1, wsz_all], initializer=tf.constant_initializer(0.0)) proj = tf.nn.relu(tf.matmul(inputs, W_p) + b_p, "relu") inputs = inputs + proj return inputs def char_word_conv_embeddings(char_vec, filtsz, char_dsz, wsz, reuse): """ char_vec: filtsz: string of comma separated filter sizes. "1,2,3," """ expanded = tf.expand_dims(char_vec, -1) mots = [] for i, fsz in enumerate(filtsz): with tf.variable_scope('cmot-%s' % fsz, reuse=reuse): kernel_shape = [fsz, char_dsz, 1, wsz] # Weight tying W = tf.get_variable("W", kernel_shape) b = tf.get_variable("b", [wsz], initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(expanded, W, strides=[1,1,1,1], padding="VALID", name="conv") activation = tf.nn.relu(tf.nn.bias_add(conv, b), "activation") mot = tf.reduce_max(activation, [1], keep_dims=True) # Add back in the dropout mots.append(mot) wsz_all = wsz * len(mots) combine = tf.reshape(tf.concat(values=mots, axis=3), [-1, wsz_all]) joined = highway_conns(combine, wsz_all, 1, reuse) # joined = skip_conns(combine, wsz_all, 1, reuse) return joined def shared_char_word(Wch, xch_i, filtsz, char_dsz, wsz, reuse): with tf.variable_scope("SharedCharWord", reuse=reuse): # Zeropad the letters out to half the max filter size, to account for # wide convolution. This way we don't have to explicitly pad the # data upfront, which means our Y sequences can be assumed not to # start with zeros mxfiltsz = np.max(filtsz) halffiltsz = int(math.floor(mxfiltsz / 2)) zeropad = tf.pad(xch_i, [[0,0], [halffiltsz, halffiltsz]], "CONSTANT") cembed = tf.nn.embedding_lookup(Wch, zeropad) if len(filtsz) == 0 or filtsz[0] == 0: return tf.reduce_sum(cembed, [1]) return char_word_conv_embeddings(cembed, filtsz, char_dsz, wsz, reuse) def tensor2seq(tensor): return tf.unstack(tf.transpose(tensor, perm=[1, 0, 2])) def seq2tensor(sequence): return tf.transpose(tf.stack(sequence), perm=[1, 0, 2])
gpl-3.0
1,162,317,117,842,288,600
41.514507
182
0.553321
false
tomasdubec/openstack-cinder
cinder/wsgi.py
1
16242
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2010 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Utility methods for working with WSGI servers.""" import errno import os import socket import ssl import sys import time import eventlet import eventlet.wsgi import greenlet from oslo.config import cfg from paste import deploy import routes.middleware import webob.dec import webob.exc from cinder import exception from cinder import flags from cinder.openstack.common import log as logging from cinder import utils socket_opts = [ cfg.IntOpt('backlog', default=4096, help="Number of backlog requests to configure the socket with"), cfg.IntOpt('tcp_keepidle', default=600, help="Sets the value of TCP_KEEPIDLE in seconds for each " "server socket. Not supported on OS X."), cfg.StrOpt('ssl_ca_file', default=None, help="CA certificate file to use to verify " "connecting clients"), cfg.StrOpt('ssl_cert_file', default=None, help="Certificate file to use when starting " "the server securely"), cfg.StrOpt('ssl_key_file', default=None, help="Private key file to use when starting " "the server securely"), ] CONF = cfg.CONF CONF.register_opts(socket_opts) FLAGS = flags.FLAGS LOG = logging.getLogger(__name__) class Server(object): """Server class to manage a WSGI server, serving a WSGI application.""" default_pool_size = 1000 def __init__(self, name, app, host=None, port=None, pool_size=None, protocol=eventlet.wsgi.HttpProtocol): """Initialize, but do not start, a WSGI server. :param name: Pretty name for logging. :param app: The WSGI application to serve. :param host: IP address to serve the application. :param port: Port number to server the application. :param pool_size: Maximum number of eventlets to spawn concurrently. :returns: None """ self.name = name self.app = app self._host = host or "0.0.0.0" self._port = port or 0 self._server = None self._socket = None self._protocol = protocol self._pool = eventlet.GreenPool(pool_size or self.default_pool_size) self._logger = logging.getLogger("eventlet.wsgi.server") self._wsgi_logger = logging.WritableLogger(self._logger) def _get_socket(self, host, port, backlog): bind_addr = (host, port) # TODO(dims): eventlet's green dns/socket module does not actually # support IPv6 in getaddrinfo(). We need to get around this in the # future or monitor upstream for a fix try: info = socket.getaddrinfo(bind_addr[0], bind_addr[1], socket.AF_UNSPEC, socket.SOCK_STREAM)[0] family = info[0] bind_addr = info[-1] except Exception: family = socket.AF_INET cert_file = CONF.ssl_cert_file key_file = CONF.ssl_key_file ca_file = CONF.ssl_ca_file use_ssl = cert_file or key_file if cert_file and not os.path.exists(cert_file): raise RuntimeError(_("Unable to find cert_file : %s") % cert_file) if ca_file and not os.path.exists(ca_file): raise RuntimeError(_("Unable to find ca_file : %s") % ca_file) if key_file and not os.path.exists(key_file): raise RuntimeError(_("Unable to find key_file : %s") % key_file) if use_ssl and (not cert_file or not key_file): raise RuntimeError(_("When running server in SSL mode, you must " "specify both a cert_file and key_file " "option value in your configuration file")) def wrap_ssl(sock): ssl_kwargs = { 'server_side': True, 'certfile': cert_file, 'keyfile': key_file, 'cert_reqs': ssl.CERT_NONE, } if CONF.ssl_ca_file: ssl_kwargs['ca_certs'] = ca_file ssl_kwargs['cert_reqs'] = ssl.CERT_REQUIRED return ssl.wrap_socket(sock, **ssl_kwargs) sock = None retry_until = time.time() + 30 while not sock and time.time() < retry_until: try: sock = eventlet.listen(bind_addr, backlog=backlog, family=family) if use_ssl: sock = wrap_ssl(sock) except socket.error, err: if err.args[0] != errno.EADDRINUSE: raise eventlet.sleep(0.1) if not sock: raise RuntimeError(_("Could not bind to %(host)s:%(port)s " "after trying for 30 seconds") % {'host': host, 'port': port}) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # sockets can hang around forever without keepalive sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) # This option isn't available in the OS X version of eventlet if hasattr(socket, 'TCP_KEEPIDLE'): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, CONF.tcp_keepidle) return sock def _start(self): """Run the blocking eventlet WSGI server. :returns: None """ eventlet.wsgi.server(self._socket, self.app, protocol=self._protocol, custom_pool=self._pool, log=self._wsgi_logger) def start(self, backlog=128): """Start serving a WSGI application. :param backlog: Maximum number of queued connections. :returns: None :raises: cinder.exception.InvalidInput """ if backlog < 1: raise exception.InvalidInput( reason='The backlog must be more than 1') self._socket = self._get_socket(self._host, self._port, backlog=backlog) self._server = eventlet.spawn(self._start) (self._host, self._port) = self._socket.getsockname()[0:2] LOG.info(_("Started %(name)s on %(_host)s:%(_port)s") % self.__dict__) @property def host(self): return self._host @property def port(self): return self._port def stop(self): """Stop this server. This is not a very nice action, as currently the method by which a server is stopped is by killing its eventlet. :returns: None """ LOG.info(_("Stopping WSGI server.")) self._server.kill() def wait(self): """Block, until the server has stopped. Waits on the server's eventlet to finish, then returns. :returns: None """ try: self._server.wait() except greenlet.GreenletExit: LOG.info(_("WSGI server has stopped.")) class Request(webob.Request): pass class Application(object): """Base WSGI application wrapper. Subclasses need to implement __call__.""" @classmethod def factory(cls, global_config, **local_config): """Used for paste app factories in paste.deploy config files. Any local configuration (that is, values under the [app:APPNAME] section of the paste config) will be passed into the `__init__` method as kwargs. A hypothetical configuration would look like: [app:wadl] latest_version = 1.3 paste.app_factory = cinder.api.fancy_api:Wadl.factory which would result in a call to the `Wadl` class as import cinder.api.fancy_api fancy_api.Wadl(latest_version='1.3') You could of course re-implement the `factory` method in subclasses, but using the kwarg passing it shouldn't be necessary. """ return cls(**local_config) def __call__(self, environ, start_response): r"""Subclasses will probably want to implement __call__ like this: @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): # Any of the following objects work as responses: # Option 1: simple string res = 'message\n' # Option 2: a nicely formatted HTTP exception page res = exc.HTTPForbidden(detail='Nice try') # Option 3: a webob Response object (in case you need to play with # headers, or you want to be treated like an iterable, or or or) res = Response(); res.app_iter = open('somefile') # Option 4: any wsgi app to be run next res = self.application # Option 5: you can get a Response object for a wsgi app, too, to # play with headers etc res = req.get_response(self.application) # You can then just return your response... return res # ... or set req.response and return None. req.response = res See the end of http://pythonpaste.org/webob/modules/dec.html for more info. """ raise NotImplementedError(_('You must implement __call__')) class Middleware(Application): """Base WSGI middleware. These classes require an application to be initialized that will be called next. By default the middleware will simply call its wrapped app, or you can override __call__ to customize its behavior. """ @classmethod def factory(cls, global_config, **local_config): """Used for paste app factories in paste.deploy config files. Any local configuration (that is, values under the [filter:APPNAME] section of the paste config) will be passed into the `__init__` method as kwargs. A hypothetical configuration would look like: [filter:analytics] redis_host = 127.0.0.1 paste.filter_factory = cinder.api.analytics:Analytics.factory which would result in a call to the `Analytics` class as import cinder.api.analytics analytics.Analytics(app_from_paste, redis_host='127.0.0.1') You could of course re-implement the `factory` method in subclasses, but using the kwarg passing it shouldn't be necessary. """ def _factory(app): return cls(app, **local_config) return _factory def __init__(self, application): self.application = application def process_request(self, req): """Called on each request. If this returns None, the next application down the stack will be executed. If it returns a response then that response will be returned and execution will stop here. """ return None def process_response(self, response): """Do whatever you'd like to the response.""" return response @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): response = self.process_request(req) if response: return response response = req.get_response(self.application) return self.process_response(response) class Debug(Middleware): """Helper class for debugging a WSGI application. Can be inserted into any WSGI application chain to get information about the request and response. """ @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): print ('*' * 40) + ' REQUEST ENVIRON' for key, value in req.environ.items(): print key, '=', value print resp = req.get_response(self.application) print ('*' * 40) + ' RESPONSE HEADERS' for (key, value) in resp.headers.iteritems(): print key, '=', value print resp.app_iter = self.print_generator(resp.app_iter) return resp @staticmethod def print_generator(app_iter): """Iterator that prints the contents of a wrapper string.""" print ('*' * 40) + ' BODY' for part in app_iter: sys.stdout.write(part) sys.stdout.flush() yield part print class Router(object): """WSGI middleware that maps incoming requests to WSGI apps.""" def __init__(self, mapper): """Create a router for the given routes.Mapper. Each route in `mapper` must specify a 'controller', which is a WSGI app to call. You'll probably want to specify an 'action' as well and have your controller be an object that can route the request to the action-specific method. Examples: mapper = routes.Mapper() sc = ServerController() # Explicit mapping of one route to a controller+action mapper.connect(None, '/svrlist', controller=sc, action='list') # Actions are all implicitly defined mapper.resource('server', 'servers', controller=sc) # Pointing to an arbitrary WSGI app. You can specify the # {path_info:.*} parameter so the target app can be handed just that # section of the URL. mapper.connect(None, '/v1.0/{path_info:.*}', controller=BlogApp()) """ self.map = mapper self._router = routes.middleware.RoutesMiddleware(self._dispatch, self.map) @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): """Route the incoming request to a controller based on self.map. If no match, return a 404. """ return self._router @staticmethod @webob.dec.wsgify(RequestClass=Request) def _dispatch(req): """Dispatch the request to the appropriate controller. Called by self._router after matching the incoming request to a route and putting the information into req.environ. Either returns 404 or the routed WSGI app's response. """ match = req.environ['wsgiorg.routing_args'][1] if not match: return webob.exc.HTTPNotFound() app = match['controller'] return app class Loader(object): """Used to load WSGI applications from paste configurations.""" def __init__(self, config_path=None): """Initialize the loader, and attempt to find the config. :param config_path: Full or relative path to the paste config. :returns: None """ config_path = config_path or FLAGS.api_paste_config self.config_path = utils.find_config(config_path) def load_app(self, name): """Return the paste URLMap wrapped WSGI application. :param name: Name of the application to load. :returns: Paste URLMap object wrapping the requested application. :raises: `cinder.exception.PasteAppNotFound` """ try: return deploy.loadapp("config:%s" % self.config_path, name=name) except LookupError as err: LOG.error(err) raise exception.PasteAppNotFound(name=name, path=self.config_path)
apache-2.0
-119,044,688,652,326,480
31.945233
79
0.588536
false
nlevitt/brozzler
vagrant/vagrant-brozzler-new-site.py
1
3061
#!/usr/bin/env python ''' vagrant-brozzler-new-site.py - runs brozzler-new-site inside the vagrant vm to queue a site for your vagrant brozzler deployment. Fills in the --proxy option automatically. Some other options are passed through. This is a standalone script with no dependencies other than python, and should work with python 2.7 or python 3.2+. The only reason it's not a bash script is so we can use the argparse library. Copyright (C) 2016 Internet Archive Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import sys import os import argparse import subprocess try: from shlex import quote except: from pipes import quote def main(argv=[]): arg_parser = argparse.ArgumentParser(prog=os.path.basename(argv[0])) arg_parser.add_argument('seed', metavar='SEED', help='seed url') arg_parser.add_argument( '--time-limit', dest='time_limit', default=None, help='time limit in seconds for this site') arg_parser.add_argument( '--ignore-robots', dest='ignore_robots', action='store_true', help='ignore robots.txt for this site') arg_parser.add_argument( '--warcprox-meta', dest='warcprox_meta', help=( 'Warcprox-Meta http request header to send with each request; ' 'must be a json blob, ignored unless warcprox features are ' 'enabled')) arg_parser.add_argument( '-q', '--quiet', dest='quiet', action='store_true') arg_parser.add_argument( '-v', '--verbose', dest='verbose', action='store_true') args = arg_parser.parse_args(args=argv[1:]) options = [] if args.time_limit: options.append('--time-limit=%s' % args.time_limit) if args.ignore_robots: options.append('--ignore-robots') if args.warcprox_meta: # I think this shell escaping is correct? options.append( '--warcprox-meta=%s' % quote(args.warcprox_meta)) if args.quiet: options.append('--quiet') if args.verbose: options.append('--verbose') # cd to path with Vagrantfile so "vagrant ssh" knows what to do os.chdir(os.path.dirname(__file__)) cmd = ( 'PYTHONPATH=/home/vagrant/brozzler-ve34/lib/python3.4/site-packages ' '/home/vagrant/brozzler-ve34/bin/python ' '/home/vagrant/brozzler-ve34/bin/brozzler-new-site ' '--proxy=localhost:8000 %s %s') % ( ' '.join(options), args.seed) subprocess.call(['vagrant', 'ssh', '--', cmd]) if __name__ == '__main__': main(sys.argv)
apache-2.0
-5,619,217,285,461,164,000
34.593023
79
0.656648
false
jacor-/TuentiChallenge5
problem16/snippet.py
1
3091
""" To solve this problem we have used the software The Full Whiskas Model example in the package PuLP for python. I have no clue about linear optimization... so this package has been intinitely helpful. The code do not require much explanation and there is no much time remaining in the contest... so I wont comment anything else! """ # Import PuLP modeler functions from pulp import * # Creates a list of the Ingredients import numpy import fileinput inp = fileinput.input() num_cases = int(inp.next()); for case in range(num_cases): arboles, prediccio, lenadores = map(int,inp.next()[:-1].split(" ")[:3]) Treball_maxim = [] Work_required = [] for jj in range(lenadores): work_list = [int(i) for i in inp.next()[:-1].split(" ") if len(i) > 0] Treball_maxim.append(work_list[0]) Work_required.append(work_list[1:]) Dedicacio = [] for arbolito in range(arboles): for lenador in range(lenadores): Dedicacio.append("%d:%d"%(arbolito, lenador)) ArbolAssolible = [] for lenador in range(lenadores): ArbolAssolible.append([]) for arbol in range(arboles): ArbolAssolible[-1].append(float(Treball_maxim[lenador])/Work_required[lenador][arbol]) prob = LpProblem("My paranoia problem", LpMinimize) ingredient_vars = LpVariable.dicts("Dedicacio ",Dedicacio,lowBound=0.,upBound=1.)#,0) main_cost = [] ### El coste total tiene buena pinta... for lenador in range(lenadores): main_cost.append(lpSum([ingredient_vars["%d:%d"%(arbolito, lenador)] for arbolito in range(arboles)]) *Treball_maxim[lenador]) prob += lpSum(main_cost)#, "Total Cost of Ingredients per can" for arbolito in range(arboles): for lenador in range(lenadores): prob += lpSum([ingredient_vars["%d:%d"%(arbolito, lenador)] * ArbolAssolible[lenador][arbolito] ]) <= 1, ' garantizando que no curro por encima de mis posibilidades %d %d menor que uno' % (arbolito, lenador) for lenador in range(lenadores): prob += lpSum([ingredient_vars["%d:%d"%(arbolito, lenador)] for arbolito in range(arboles)]) <= 1 for arbol in range(arboles): prob += lpSum([ingredient_vars["%d:%d"%(arbol, lenador)]*ArbolAssolible[lenador][arbol] for lenador in range(lenadores)]) == 1, ' totalidad arbol %d cortado' % arbol for arbolito in range(arboles): for lenador in range(lenadores): prob += lpSum([ingredient_vars["%d:%d"%(arbolito, lenador)]]) >= 0, ' garantizando dedicacion %d %d positivo' % (arbolito, lenador) # The problem data is written to an .lp file prob.writeLP("WhiskasModel2.lp") # The problem is solved using PuLP's choice of Solver prob.solve() if LpStatus[prob.status] == "Infeasible": print "Test case #%d: IMPOSSIBLE" % (case+1) elif numpy.around(prediccio,2) < numpy.around(value(prob.objective),2): print "Test case #%d: %0.2f" % (case+1, value(prob.objective)-prediccio) else: print "Test case #%d: RIGHT" % (case+1)
mit
1,703,887,847,516,692,000
38.126582
219
0.650922
false
kdrone/crazyflie-python-client
build/lib.linux-i686-2.7/cfclient/ui/main.py
1
21200
#!/usr/bin/env python # -*- coding: utf-8 -*- # # || ____ _ __ # +------+ / __ )(_) /_______________ _____ ___ # | 0xBC | / __ / / __/ ___/ ___/ __ `/_ / / _ \ # +------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ # || || /_____/_/\__/\___/_/ \__,_/ /___/\___/ # # Copyright (C) 2011-2013 Bitcraze AB # # Crazyflie Nano Quadcopter Client # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ The main file for the Crazyflie control application. """ __author__ = 'Bitcraze AB' __all__ = ['MainUI'] import sys import logging logger = logging.getLogger(__name__) from PyQt4 import QtGui, uic from PyQt4.QtCore import pyqtSignal, Qt, pyqtSlot, QDir, QUrl from PyQt4.QtGui import QLabel, QActionGroup, QMessageBox, QAction, QDesktopServices from dialogs.connectiondialogue import ConnectDialogue from dialogs.inputconfigdialogue import InputConfigDialogue from dialogs.cf2config import Cf2ConfigDialog from dialogs.cf1config import Cf1ConfigDialog from cflib.crazyflie import Crazyflie from dialogs.logconfigdialogue import LogConfigDialogue from cfclient.utils.input import JoystickReader from cfclient.utils.guiconfig import GuiConfig from cfclient.utils.logconfigreader import LogConfigReader from cfclient.utils.config_manager import ConfigManager import cfclient.ui.toolboxes import cfclient.ui.tabs import cflib.crtp from cflib.crazyflie.log import Log, LogVariable, LogConfig from cfclient.ui.dialogs.bootloader import BootloaderDialog from cfclient.ui.dialogs.about import AboutDialog (main_window_class, main_windows_base_class) = (uic.loadUiType(sys.path[0] + '/cfclient/ui/main.ui')) class MyDockWidget(QtGui.QDockWidget): closed = pyqtSignal() def closeEvent(self, event): super(MyDockWidget, self).closeEvent(event) self.closed.emit() class UIState: DISCONNECTED = 0 CONNECTING = 1 CONNECTED = 2 class MainUI(QtGui.QMainWindow, main_window_class): connectionLostSignal = pyqtSignal(str, str) connectionInitiatedSignal = pyqtSignal(str) batteryUpdatedSignal = pyqtSignal(int, object, object) connectionDoneSignal = pyqtSignal(str) connectionFailedSignal = pyqtSignal(str, str) disconnectedSignal = pyqtSignal(str) linkQualitySignal = pyqtSignal(int) _input_device_error_signal = pyqtSignal(str) _input_discovery_signal = pyqtSignal(object) _log_error_signal = pyqtSignal(object, str) def __init__(self, *args): super(MainUI, self).__init__(*args) self.setupUi(self) self.cf = Crazyflie(ro_cache=sys.path[0] + "/cflib/cache", rw_cache=sys.path[1] + "/cache") cflib.crtp.init_drivers(enable_debug_driver=GuiConfig() .get("enable_debug_driver")) # Create the connection dialogue self.connectDialogue = ConnectDialogue() # Create and start the Input Reader self._statusbar_label = QLabel("Loading device and configuration.") self.statusBar().addWidget(self._statusbar_label) self.joystickReader = JoystickReader() self._active_device = "" self.configGroup = QActionGroup(self._menu_mappings, exclusive=True) self._load_input_data() self._update_input ConfigManager().conf_needs_reload.add_callback(self._reload_configs) # Connections for the Connect Dialogue self.connectDialogue.requestConnectionSignal.connect(self.cf.open_link) self.connectionDoneSignal.connect(self.connectionDone) self.cf.connection_failed.add_callback(self.connectionFailedSignal.emit) self.connectionFailedSignal.connect(self.connectionFailed) self._input_device_error_signal.connect(self.inputDeviceError) self.joystickReader.device_error.add_callback( self._input_device_error_signal.emit) self._input_discovery_signal.connect(self.device_discovery) self.joystickReader.device_discovery.add_callback( self._input_discovery_signal.emit) # Connect UI signals self.menuItemConnect.triggered.connect(self.connectButtonClicked) self.logConfigAction.triggered.connect(self.doLogConfigDialogue) self.connectButton.clicked.connect(self.connectButtonClicked) self.quickConnectButton.clicked.connect(self.quickConnect) self.menuItemQuickConnect.triggered.connect(self.quickConnect) self.menuItemConfInputDevice.triggered.connect(self.configInputDevice) self.menuItemExit.triggered.connect(self.closeAppRequest) self.batteryUpdatedSignal.connect(self.updateBatteryVoltage) self._menuitem_rescandevices.triggered.connect(self._rescan_devices) self._menuItem_openconfigfolder.triggered.connect(self._open_config_folder) self._auto_reconnect_enabled = GuiConfig().get("auto_reconnect") self.autoReconnectCheckBox.toggled.connect( self._auto_reconnect_changed) self.autoReconnectCheckBox.setChecked(GuiConfig().get("auto_reconnect")) # Do not queue data from the controller output to the Crazyflie wrapper # to avoid latency #self.joystickReader.sendControlSetpointSignal.connect( # self.cf.commander.send_setpoint, # Qt.DirectConnection) self.joystickReader.input_updated.add_callback( self.cf.commander.send_setpoint) # Connection callbacks and signal wrappers for UI protection self.cf.connected.add_callback( self.connectionDoneSignal.emit) self.connectionDoneSignal.connect(self.connectionDone) self.cf.disconnected.add_callback(self.disconnectedSignal.emit) self.disconnectedSignal.connect( lambda linkURI: self.setUIState(UIState.DISCONNECTED, linkURI)) self.cf.connection_lost.add_callback(self.connectionLostSignal.emit) self.connectionLostSignal.connect(self.connectionLost) self.cf.connection_requested.add_callback( self.connectionInitiatedSignal.emit) self.connectionInitiatedSignal.connect( lambda linkURI: self.setUIState(UIState.CONNECTING, linkURI)) self._log_error_signal.connect(self._logging_error) # Connect link quality feedback self.cf.link_quality_updated.add_callback(self.linkQualitySignal.emit) self.linkQualitySignal.connect( lambda percentage: self.linkQualityBar.setValue(percentage)) # Set UI state in disconnected buy default self.setUIState(UIState.DISCONNECTED) # Parse the log configuration files self.logConfigReader = LogConfigReader(self.cf) # Add things to helper so tabs can access it cfclient.ui.pluginhelper.cf = self.cf cfclient.ui.pluginhelper.inputDeviceReader = self.joystickReader cfclient.ui.pluginhelper.logConfigReader = self.logConfigReader self.logConfigDialogue = LogConfigDialogue(cfclient.ui.pluginhelper) self._bootloader_dialog = BootloaderDialog(cfclient.ui.pluginhelper) self._cf2config_dialog = Cf2ConfigDialog(cfclient.ui.pluginhelper) self._cf1config_dialog = Cf1ConfigDialog(cfclient.ui.pluginhelper) self.menuItemBootloader.triggered.connect(self._bootloader_dialog.show) self._about_dialog = AboutDialog(cfclient.ui.pluginhelper) self.menuItemAbout.triggered.connect(self._about_dialog.show) self._menu_cf2_config.triggered.connect(self._cf2config_dialog.show) self._menu_cf1_config.triggered.connect(self._cf1config_dialog.show) # Loading toolboxes (A bit of magic for a lot of automatic) self.toolboxes = [] self.toolboxesMenuItem.setMenu(QtGui.QMenu()) for t_class in cfclient.ui.toolboxes.toolboxes: toolbox = t_class(cfclient.ui.pluginhelper) dockToolbox = MyDockWidget(toolbox.getName()) dockToolbox.setWidget(toolbox) self.toolboxes += [dockToolbox, ] # Add menu item for the toolbox item = QtGui.QAction(toolbox.getName(), self) item.setCheckable(True) item.triggered.connect(self.toggleToolbox) self.toolboxesMenuItem.menu().addAction(item) dockToolbox.closed.connect(lambda: self.toggleToolbox(False)) # Setup some introspection item.dockToolbox = dockToolbox item.menuItem = item dockToolbox.dockToolbox = dockToolbox dockToolbox.menuItem = item # Load and connect tabs self.tabsMenuItem.setMenu(QtGui.QMenu()) tabItems = {} self.loadedTabs = [] for tabClass in cfclient.ui.tabs.available: tab = tabClass(self.tabs, cfclient.ui.pluginhelper) item = QtGui.QAction(tab.getMenuName(), self) item.setCheckable(True) item.toggled.connect(tab.toggleVisibility) self.tabsMenuItem.menu().addAction(item) tabItems[tab.getTabName()] = item self.loadedTabs.append(tab) if not tab.enabled: item.setEnabled(False) # First instantiate all tabs and then open them in the correct order try: for tName in GuiConfig().get("open_tabs").split(","): t = tabItems[tName] if (t != None and t.isEnabled()): # Toggle though menu so it's also marked as open there t.toggle() except Exception as e: logger.warning("Exception while opening tabs [%s]", e) def setUIState(self, newState, linkURI=""): self.uiState = newState if (newState == UIState.DISCONNECTED): self.setWindowTitle("HANSEI Not connected") self.menuItemConnect.setText("Connect to Crazyflie") self.connectButton.setText("Connect") self.menuItemQuickConnect.setEnabled(True) self.batteryBar.setValue(3000) self._menu_cf2_config.setEnabled(False) self.linkQualityBar.setValue(0) self.menuItemBootloader.setEnabled(True) self.logConfigAction.setEnabled(False) if (len(GuiConfig().get("link_uri")) > 0): self.quickConnectButton.setEnabled(True) if (newState == UIState.CONNECTED): s = "Connected on %s" % linkURI self.setWindowTitle(s) self.menuItemConnect.setText("Disconnect") self.connectButton.setText("Disconnect") self.logConfigAction.setEnabled(True) self._menu_cf2_config.setEnabled(True) if (newState == UIState.CONNECTING): s = "Connecting to %s ..." % linkURI self.setWindowTitle(s) self.menuItemConnect.setText("Cancel") self.connectButton.setText("Cancel") self.quickConnectButton.setEnabled(False) self.menuItemBootloader.setEnabled(False) self.menuItemQuickConnect.setEnabled(False) @pyqtSlot(bool) def toggleToolbox(self, display): menuItem = self.sender().menuItem dockToolbox = self.sender().dockToolbox if display and not dockToolbox.isVisible(): dockToolbox.widget().enable() self.addDockWidget(dockToolbox.widget().preferedDockArea(), dockToolbox) dockToolbox.show() elif not display: dockToolbox.widget().disable() self.removeDockWidget(dockToolbox) dockToolbox.hide() menuItem.setChecked(False) def _rescan_devices(self): self._statusbar_label.setText("No inputdevice connected!") self._menu_devices.clear() self._active_device = "" self.joystickReader.stop_input() for c in self._menu_mappings.actions(): c.setEnabled(False) devs = self.joystickReader.getAvailableDevices() if (len(devs) > 0): self.device_discovery(devs) def configInputDevice(self): self.inputConfig = InputConfigDialogue(self.joystickReader) self.inputConfig.show() def _auto_reconnect_changed(self, checked): self._auto_reconnect_enabled = checked GuiConfig().set("auto_reconnect", checked) logger.info("Auto reconnect enabled: %s", checked) def doLogConfigDialogue(self): self.logConfigDialogue.show() def updateBatteryVoltage(self, timestamp, data, logconf): self.batteryBar.setValue(int(data["pm.vbat"] * 1000)) def connectionDone(self, linkURI): self.setUIState(UIState.CONNECTED, linkURI) GuiConfig().set("link_uri", linkURI) lg = LogConfig("Battery", 1000) lg.add_variable("pm.vbat", "float") self.cf.log.add_config(lg) if lg.valid: lg.data_received_cb.add_callback(self.batteryUpdatedSignal.emit) lg.error_cb.add_callback(self._log_error_signal.emit) lg.start() else: logger.warning("Could not setup loggingblock!") def _logging_error(self, log_conf, msg): QMessageBox.about(self, "Log error", "Error when starting log config" " [%s]: %s" % (log_conf.name, msg)) def connectionLost(self, linkURI, msg): if not self._auto_reconnect_enabled: if (self.isActiveWindow()): warningCaption = "Communication failure" error = "Connection lost to %s: %s" % (linkURI, msg) QMessageBox.critical(self, warningCaption, error) self.setUIState(UIState.DISCONNECTED, linkURI) else: self.quickConnect() def connectionFailed(self, linkURI, error): if not self._auto_reconnect_enabled: msg = "Failed to connect on %s: %s" % (linkURI, error) warningCaption = "Communication failure" QMessageBox.critical(self, warningCaption, msg) self.setUIState(UIState.DISCONNECTED, linkURI) else: self.quickConnect() def closeEvent(self, event): self.hide() self.cf.close_link() GuiConfig().save_file() def connectButtonClicked(self): if (self.uiState == UIState.CONNECTED): self.cf.close_link() elif (self.uiState == UIState.CONNECTING): self.cf.close_link() self.setUIState(UIState.DISCONNECTED) else: self.connectDialogue.show() def inputDeviceError(self, error): self.cf.close_link() QMessageBox.critical(self, "Input device error", error) def _load_input_data(self): self.joystickReader.stop_input() # Populate combo box with available input device configurations for c in ConfigManager().get_list_of_configs(): node = QAction(c, self._menu_mappings, checkable=True, enabled=False) node.toggled.connect(self._inputconfig_selected) self.configGroup.addAction(node) self._menu_mappings.addAction(node) def _reload_configs(self, newConfigName): # remove the old actions from the group and the menu for action in self._menu_mappings.actions(): self.configGroup.removeAction(action) self._menu_mappings.clear() # reload the conf files, and populate the menu self._load_input_data() self._update_input(self._active_device, newConfigName) def _update_input(self, device="", config=""): self.joystickReader.stop_input() self._active_config = str(config) self._active_device = str(device) GuiConfig().set("input_device", self._active_device) GuiConfig().get( "device_config_mapping" )[self._active_device] = self._active_config self.joystickReader.start_input(self._active_device, self._active_config) # update the checked state of the menu items for c in self._menu_mappings.actions(): c.setEnabled(True) if c.text() == self._active_config: c.setChecked(True) for c in self._menu_devices.actions(): c.setEnabled(True) if c.text() == self._active_device: c.setChecked(True) # update label if device == "" and config == "": self._statusbar_label.setText("No input device selected") elif config == "": self._statusbar_label.setText("Using [%s] - " "No input config selected" % (self._active_device)) else: self._statusbar_label.setText("Using [%s] with config [%s]" % (self._active_device, self._active_config)) def _inputdevice_selected(self, checked): if (not checked): return self.joystickReader.stop_input() sender = self.sender() self._active_device = sender.text() device_config_mapping = GuiConfig().get("device_config_mapping") if (self._active_device in device_config_mapping.keys()): self._current_input_config = device_config_mapping[ str(self._active_device)] else: self._current_input_config = self._menu_mappings.actions()[0].text() GuiConfig().set("input_device", str(self._active_device)) for c in self._menu_mappings.actions(): if (c.text() == self._current_input_config): c.setChecked(True) self.joystickReader.start_input(str(sender.text()), self._current_input_config) self._statusbar_label.setText("Using [%s] with config [%s]" % ( self._active_device, self._current_input_config)) def _inputconfig_selected(self, checked): if (not checked): return self._update_input(self._active_device, self.sender().text()) def device_discovery(self, devs): group = QActionGroup(self._menu_devices, exclusive=True) for d in devs: node = QAction(d["name"], self._menu_devices, checkable=True) node.toggled.connect(self._inputdevice_selected) group.addAction(node) self._menu_devices.addAction(node) if (d["name"] == GuiConfig().get("input_device")): self._active_device = d["name"] if (len(self._active_device) == 0): self._active_device = self._menu_devices.actions()[0].text() device_config_mapping = GuiConfig().get("device_config_mapping") if (device_config_mapping): if (self._active_device in device_config_mapping.keys()): self._current_input_config = device_config_mapping[ str(self._active_device)] else: self._current_input_config = self._menu_mappings.actions()[0].text() else: self._current_input_config = self._menu_mappings.actions()[0].text() # Now we know what device to use and what mapping, trigger the events # to change the menus and start the input for c in self._menu_mappings.actions(): c.setEnabled(True) if (c.text() == self._current_input_config): c.setChecked(True) for c in self._menu_devices.actions(): if (c.text() == self._active_device): c.setChecked(True) def quickConnect(self): try: self.cf.open_link(GuiConfig().get("link_uri")) except KeyError: self.cf.open_link("") def _open_config_folder(self): QDesktopServices.openUrl(QUrl("file:///" + QDir.toNativeSeparators(sys.path[1]))) def closeAppRequest(self): self.close() sys.exit(0)
gpl-2.0
9,170,019,072,597,132,000
40.48728
89
0.614717
false
puttarajubr/commcare-hq
corehq/apps/builds/models.py
1
7284
from datetime import datetime from zipfile import ZipFile from corehq.apps.app_manager.const import APP_V1, APP_V2 from couchdbkit.exceptions import ResourceNotFound, BadValueError from dimagi.ext.couchdbkit import * from corehq.apps.builds.fixtures import commcare_build_config from corehq.apps.builds.jadjar import JadJar from corehq.util.quickcache import quickcache class SemanticVersionProperty(StringProperty): def validate(self, value, required=True): super(SemanticVersionProperty, self).validate(value, required) try: major, minor, _ = value.split('.') int(major) int(minor) except Exception: raise BadValueError("Build version %r does not comply with the x.y.z schema" % value) return value class CommCareBuild(Document): """ #python manage.py shell #>>> from corehq.apps.builds.models import CommCareBuild #>>> build = CommCareBuild.create_from_zip('/Users/droberts/Desktop/zip/7106.zip', '1.2.dev', 7106) """ build_number = IntegerProperty() version = SemanticVersionProperty() time = DateTimeProperty() def put_file(self, payload, path, filename=None): """ Add an attachment to the build (useful for constructing the build) payload should be a file-like object filename should be something like "Nokia/S40-generic/CommCare.jar" """ if filename: path = '/'.join([path, filename]) content_type = { 'jad': 'text/vnd.sun.j2me.app-descriptor', 'jar': 'application/java-archive', }.get(path.split('.')[-1]) self.put_attachment(payload, path, content_type) def fetch_file(self, path, filename=None): if filename: path = '/'.join([path, filename]) return self.fetch_attachment(path) def get_jadjar(self, path): """ build.get_jadjar("Nokia/S40-generic") """ try: jad = self.fetch_file(path, "CommCare.jad") except ResourceNotFound: jad = None return JadJar( jad=jad, jar=self.fetch_file(path, "CommCare.jar"), version=self.version, build_number=self.build_number ) @classmethod def create_from_zip(cls, f, version, build_number): """f should be a file-like object or a path to a zipfile""" self = cls(build_number=build_number, version=version, time=datetime.utcnow()) self.save() with ZipFile(f) as z: try: for name in z.namelist(): path = name.split('/') if path[0] == "dist" and path[-1] != "": path = '/'.join(path[1:]) self.put_file(z.read(name), path) except: self.delete() raise return self def minor_release(self): major, minor, _ = self.version.split('.') return int(major), int(minor) def major_release(self): major, _, _ = self.version.split('.') return int(major) @classmethod def get_build(cls, version, build_number=None, latest=False): """ Call as either CommCareBuild.get_build(version, build_number) or CommCareBuild.get_build(version, latest=True) """ if latest: startkey = [version] else: build_number = int(build_number) startkey = [version, build_number] self = cls.view('builds/all', startkey=startkey + [{}], endkey=startkey, descending=True, limit=1, include_docs=True, reduce=False, ).one() if not self: raise KeyError("Can't find build {label}. For instructions on how to add it, see https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/builds/README.md".format(label=BuildSpec( version=version, build_number=build_number, latest=latest ))) return self @classmethod def all_builds(cls): return cls.view('builds/all', include_docs=True, reduce=False) class BuildSpec(DocumentSchema): version = StringProperty() build_number = IntegerProperty(required=False) latest = BooleanProperty() def get_build(self): if self.latest: return CommCareBuild.get_build(self.version, latest=True) else: return CommCareBuild.get_build(self.version, self.build_number) def is_null(self): return not (self.version and (self.build_number or self.latest)) def get_label(self): if not self.is_null(): fmt = "{self.version} " fmt += "(latest)" if self.latest else "({self.build_number})" return fmt.format(self=self) else: return None def __str__(self): fmt = "{self.version}/" fmt += "latest" if self.latest else "{self.build_number}" return fmt.format(self=self) def to_string(self): return str(self) @classmethod def from_string(cls, string): version, build_number = string.split('/') if build_number == "latest": return cls(version=version, latest=True) else: build_number = int(build_number) return cls(version=version, build_number=build_number) def minor_release(self): major, minor, _ = self.version.split('.') return int(major), int(minor) def major_release(self): return self.version.split('.')[0] class BuildMenuItem(DocumentSchema): build = SchemaProperty(BuildSpec) label = StringProperty(required=False) superuser_only = BooleanProperty(default=False) def get_build(self): return self.build.get_build() def get_label(self): return self.label or self.build.get_label() class CommCareBuildConfig(Document): _ID = 'config--commcare-builds' preview = SchemaProperty(BuildSpec) defaults = SchemaListProperty(BuildSpec) application_versions = StringListProperty() menu = SchemaListProperty(BuildMenuItem) @classmethod def bootstrap(cls): config = cls.wrap(commcare_build_config) config._id = config._ID config.save() return config @classmethod def clear_local_cache(cls): cls.fetch.clear(cls) @classmethod @quickcache([], timeout=30) def fetch(cls): try: return cls.get(cls._ID) except ResourceNotFound: return cls.bootstrap() def get_default(self, application_version): i = self.application_versions.index(application_version) return self.defaults[i] def get_menu(self, application_version=None): if application_version: major = { APP_V1: '1', APP_V2: '2', }[application_version] return filter(lambda x: x.build.major_release() == major, self.menu) else: return self.menu class BuildRecord(BuildSpec): signed = BooleanProperty(default=True) datetime = DateTimeProperty(required=False)
bsd-3-clause
1,979,208,567,887,343,900
29.734177
196
0.590472
false
DouglasOrr/DeepLearnTute
dlt/data.py
1
11850
'''Individual character handwriting data loading and preprocessing. Based on https://archive.ics.uci.edu/ml/datasets/UJI+Pen+Characters+(Version+2) ''' import re import click import itertools as it import random import json import numpy as np import h5py import matplotlib.pyplot as plt def parse_uji(lines): '''Parse the UJI pen characters dataset text format. lines -- a sequence of lines, in the UJIv2 dataset format yields -- (character, strokes), where character is a unicode string, strokes is a list numpy arrays of shape (npoints, 2). ''' COMMENT = re.compile(r'//.*$') WORD = re.compile(r'WORD (.)') NUMSTROKES = re.compile(r'NUMSTROKES (\d+)') POINTS = re.compile(r'POINTS (\d+) # ((?:[-0-9]+ ?)+)') word = None numstrokes = None strokes = None for line in lines: line = COMMENT.sub('', line).strip() if line == '': continue m = WORD.match(line) if m is not None: word = m.group(1) continue if word is None: raise ValueError('Expected WORD...') m = NUMSTROKES.match(line) if m is not None: numstrokes = int(m.group(1)) strokes = [] continue if numstrokes is None: raise ValueError('Expected NUMSTROKES...') m = POINTS.match(line) if m is not None: samples = [int(t) for t in m.group(2).split(' ')] points = list(zip(samples[::2], samples[1::2])) if len(points) != int(m.group(1)): raise ValueError( "Unexpected number of points (expected %d, actual %d)" % (int(m.group(1)), len(points))) strokes.append(np.array(points, dtype=np.float32)) if len(strokes) == numstrokes: yield (word, strokes) word = numstrokes = strokes = None continue raise ValueError("Input not matched '%s'" % line) def _first(x): '''Return the first element of an array or tuple. ''' return x[0] def _dump_jsonlines(file, data): '''Dump a dataset of strokes to a file, in the simple JSONlines format. ''' for ch, strokes in data: file.write('%s\n' % json.dumps(dict( target=ch, strokes=[stroke.tolist() for stroke in strokes]))) def _rotate(angle): '''Create a 2D rotation matrix for the given angle. ''' cos = np.cos(angle) sin = np.sin(angle) return np.array([[cos, -sin], [sin, cos]], dtype=np.float32) def _scale(x, y): return np.array([[x, 0], [0, y]], dtype=np.float32) def _augmentations(strokes, stretches=[1.2], rotations=[0.2, 0.4]): '''Generate augmented versions of 'strokes', but applying some rotations & stretching. strokes -- a multidimensional list [stroke x point x 2], of stroke points for a single character yields -- a multidimensional list of the same form of `strokes` ''' sum_x = sum(sum(x for x, y in stroke) for stroke in strokes) sum_y = sum(sum(y for x, y in stroke) for stroke in strokes) n = sum(map(len, strokes)) center = np.array([sum_x, sum_y], dtype=np.float32) / n norm_strokes = [np.array(stroke) - center for stroke in strokes] scale_transforms = [_scale(x, 1) for x in ([1] + stretches + [1 / s for s in stretches])] rotate_transforms = [_rotate(a) for a in ([0] + rotations + [-r for r in rotations])] for scale in scale_transforms: for rotate in rotate_transforms: tx = np.dot(scale, rotate) yield [np.dot(trace, tx) + center for trace in norm_strokes] def _rem_lo(x): return x - np.floor(x) def _rem_hi(x): return np.ceil(x) - x def _draw_line(start, end): '''Enumerate coordinates of an antialiased line, using Xiaolin Wu's line algorithm. start -- floating point coordinate pair of line start end -- floating point coordinate of line end yields -- (x, y, strength) for an antialiased line between start and end, where x and y are integer coordinates ''' x0, y0 = start x1, y1 = end # Simplify case - only draw "shallow" lines if abs(x1 - x0) < abs(y1 - y0): yield from ((x, y, weight) for y, x, weight in _draw_line((y0, x0), (y1, x1))) return # Transform so we run low-to-high-x if x1 < x0: x0, y0, x1, y1 = x1, y1, x0, y0 # Note: we know dy <= dx, so gradient <= 1 gradient = 1.0 if x1 == x0 else (y1 - y0) / (x1 - x0) # Start of line termination xend0 = int(np.round(x0)) yend0 = y0 + gradient * (xend0 - x0) yield (xend0, int(yend0), _rem_hi(yend0) * _rem_hi(x0 + 0.5)) yield (xend0, int(yend0) + 1, _rem_lo(yend0) * _rem_hi(x0 + 0.5)) # End of line termination xend1 = int(np.round(x1)) yend1 = y1 + gradient * (xend1 - x1) yield (xend1, int(yend1), _rem_hi(yend1) * _rem_lo(x1 + 0.5)) yield (xend1, int(yend1) + 1, _rem_lo(yend1) * _rem_lo(x1 + 0.5)) # Line drawing loop y = yend0 + gradient for x in range(xend0 + 1, xend1): yield (x, int(y), _rem_hi(y)) yield (x, int(y) + 1, _rem_lo(y)) y += gradient def render(strokes, size): '''Render a sequence of strokes to a square numpy array of pixels. strokes -- a list of float[N x 2] numpy arrays, arbitrary coordinates size -- the side length of the array to render to returns -- a float[size x size] containing the image (leading index is y) ''' x_min = min(s[:, 0].min() for s in strokes) x_max = max(s[:, 0].max() for s in strokes) y_min = min(s[:, 1].min() for s in strokes) y_max = max(s[:, 1].max() for s in strokes) x_scale = (size - 3) * (1 if x_min == x_max else 1 / (x_max - x_min)) y_scale = (size - 3) * (1 if y_min == y_max else 1 / (y_max - y_min)) scale = min(x_scale, y_scale) x_off = (size - 1) / (2 * scale) - (x_min + x_max) / 2 y_off = (size - 1) / (2 * scale) - (y_min + y_max) / 2 a = np.zeros((size, size), dtype=np.float32) for stroke in strokes: coords = [(scale * (p[0] + x_off), scale * (p[1] + y_off)) for p in stroke] for start, end in zip(coords, coords[1:]): for x, y, w in _draw_line(start, end): a[x, y] = max(a[x, y], w) return np.swapaxes(a, 0, 1) class Dataset: '''An in-memory dataset of images & labels. dataset.x -- (N x D) array of np.float32, flattened images, where the y-index is major dataset.y -- (N) array of np.int labels dataset.vocab -- (L) array of characters corresponding to the human-readable labels ''' def __init__(self, x, y, vocab, width, height): self.x = x self.y = y self.vocab = vocab self.char_to_index = {ch: i for i, ch in enumerate(vocab)} self.width = width self.height = height def __repr__(self): return 'Dataset[%d images, size %s, from %d labels]' % ( len(self), self.x.shape[-1], len(self.vocab)) def __len__(self): return self.x.shape[0] def find_label(self, char): return np.where(self.y == self.char_to_index[char])[0] def show(self, indices=None, limit=64): if indices is None: indices = range(limit) xs = self.x[indices] ys = self.y[indices] dim = int(np.ceil(np.sqrt(xs.shape[0]))) plt.figure(figsize=(16, 16)) for plot_index, index, x, y in zip(it.count(1), indices, xs, ys): plt.subplot(dim, dim, plot_index) plt.imshow(x.reshape(self.height, self.width), cmap='Greys') plt.title(r"$y_{%d}$ = %s" % (index, self.vocab[y]), fontsize=14) plt.gca().set_xticks([]) plt.gca().set_yticks([]) plt.gca().grid(False) def load_hdf5(path): '''Load a Dataset object from an HDF5 file. ''' with h5py.File(path, 'r') as f: x = f['x'][...] return Dataset( x=x.reshape(x.shape[0], -1), y=f['y'][...].astype(np.int32), vocab=f['vocab'][...], height=x.shape[1], width=x.shape[2] ) @click.command('read') @click.argument('source', type=click.File('r')) @click.argument('train', type=click.File('w')) @click.argument('valid', type=click.File('w')) @click.argument('test', type=click.File('w')) @click.option('-f', '--label-filter', type=click.STRING, default='.', help='Regex to filter allowable labels.') @click.option('--nvalid', type=click.INT, default=10, help='Number of validation examples per label.') @click.option('--ntest', type=click.INT, default=10, help='Number of test examples per label.') @click.option('--seed', type=click.INT, default=42, help='Seed for random number generation.') @click.option('--augment/--no-augment', default=True, help='Should we use data augmentation (rotation & stretching).') def cli_read(source, train, valid, test, label_filter, nvalid, ntest, seed, augment): '''Generate a JSONlines dataset from UJI pen characters. ''' random.seed(seed) # Load & filter data = parse_uji(source) label_pattern = re.compile(label_filter) data = filter(lambda x: label_pattern.match(x[0]) is not None, data) # Partition data = it.groupby(sorted(data, key=_first), _first) train_data = [] valid_data = [] test_data = [] for char, examples in data: shuffled_examples = list(examples) random.shuffle(shuffled_examples) test_data += shuffled_examples[:ntest] valid_data += shuffled_examples[ntest:(ntest + nvalid)] train_data += shuffled_examples[(ntest + nvalid):] # Augment training data if augment: train_data = [(ch, ss) for ch, strokes in train_data for ss in _augmentations(strokes)] # Shuffle random.shuffle(train_data) random.shuffle(valid_data) random.shuffle(test_data) # Save _dump_jsonlines(train, train_data) _dump_jsonlines(valid, valid_data) _dump_jsonlines(test, test_data) @click.command('render') @click.argument('input', type=click.File('r')) @click.argument('output', type=click.Path(dir_okay=False)) @click.option('-n', '--size', default=16, type=click.INT) def cli_render(input, output, size): '''Render a JSONlines dataset to numpy arrays, saved in an HDF5 file. ''' chars = [] images = [] for line in input: datum = json.loads(line) chars.append(datum['target']) images.append(render( [np.array(s) for s in datum['strokes']], size)) vocab = list(sorted(set(chars))) char_to_index = {ch: y for y, ch in enumerate(vocab)} with h5py.File(output, 'a') as f: str_dt = h5py.special_dtype(vlen=str) f.require_dataset( 'vocab', (len(vocab),), dtype=str_dt )[...] = vocab f.require_dataset( 'x', shape=(len(images), size, size), dtype=np.float32 )[...] = np.array(images) f.require_dataset( 'y', shape=(len(chars),), dtype=np.int )[...] = np.array([char_to_index[ch] for ch in chars]) @click.group() def cli(): '''Base command for dataset processing. ''' pass cli.add_command(cli_read) cli.add_command(cli_render) if __name__ == '__main__': cli()
mit
-3,253,602,979,370,613,000
30.940701
79
0.556624
false
Joev-/HoNCore
honcore/lib/construct/adapters.py
1
15909
from core import Adapter, AdaptationError, Pass from lib import int_to_bin, bin_to_int, swap_bytes, StringIO from lib import FlagsContainer, HexString #=============================================================================== # exceptions #=============================================================================== class BitIntegerError(AdaptationError): __slots__ = [] class MappingError(AdaptationError): __slots__ = [] class ConstError(AdaptationError): __slots__ = [] class ValidationError(AdaptationError): __slots__ = [] class PaddingError(AdaptationError): __slots__ = [] #=============================================================================== # adapters #=============================================================================== class BitIntegerAdapter(Adapter): """ Adapter for bit-integers (converts bitstrings to integers, and vice versa). See BitField. Parameters: * subcon - the subcon to adapt * width - the size of the subcon, in bits * swapped - whether to swap byte order (little endian/big endian). default is False (big endian) * signed - whether the value is signed (two's complement). the default is False (unsigned) * bytesize - number of bits per byte, used for byte-swapping (if swapped). default is 8. """ __slots__ = ["width", "swapped", "signed", "bytesize"] def __init__(self, subcon, width, swapped = False, signed = False, bytesize = 8): Adapter.__init__(self, subcon) self.width = width self.swapped = swapped self.signed = signed self.bytesize = bytesize def _encode(self, obj, context): if obj < 0 and not self.signed: raise BitIntegerError("object is negative, but field is not signed", obj) obj2 = int_to_bin(obj, width = self.width) if self.swapped: obj2 = swap_bytes(obj2, bytesize = self.bytesize) return obj2 def _decode(self, obj, context): if self.swapped: obj = swap_bytes(obj, bytesize = self.bytesize) return bin_to_int(obj, signed = self.signed) class MappingAdapter(Adapter): """ Adapter that maps objects to other objects. See SymmetricMapping and Enum. Parameters: * subcon - the subcon to map * decoding - the decoding (parsing) mapping (a dict) * encoding - the encoding (building) mapping (a dict) * decdefault - the default return value when the object is not found in the decoding mapping. if no object is given, an exception is raised. if `Pass` is used, the unmapped object will be passed as-is * encdefault - the default return value when the object is not found in the encoding mapping. if no object is given, an exception is raised. if `Pass` is used, the unmapped object will be passed as-is """ __slots__ = ["encoding", "decoding", "encdefault", "decdefault"] def __init__(self, subcon, decoding, encoding, decdefault = NotImplemented, encdefault = NotImplemented): Adapter.__init__(self, subcon) self.decoding = decoding self.encoding = encoding self.decdefault = decdefault self.encdefault = encdefault def _encode(self, obj, context): try: return self.encoding[obj] except (KeyError, TypeError): if self.encdefault is NotImplemented: raise MappingError("no encoding mapping for %r" % (obj,)) if self.encdefault is Pass: return obj return self.encdefault def _decode(self, obj, context): try: return self.decoding[obj] except (KeyError, TypeError): if self.decdefault is NotImplemented: raise MappingError("no decoding mapping for %r" % (obj,)) if self.decdefault is Pass: return obj return self.decdefault class FlagsAdapter(Adapter): """ Adapter for flag fields. Each flag is extracted from the number, resulting in a FlagsContainer object. Not intended for direct usage. See FlagsEnum. Parameters * subcon - the subcon to extract * flags - a dictionary mapping flag-names to their value """ __slots__ = ["flags"] def __init__(self, subcon, flags): Adapter.__init__(self, subcon) self.flags = flags def _encode(self, obj, context): flags = 0 for name, value in self.flags.iteritems(): if getattr(obj, name, False): flags |= value return flags def _decode(self, obj, context): obj2 = FlagsContainer() for name, value in self.flags.iteritems(): setattr(obj2, name, bool(obj & value)) return obj2 class StringAdapter(Adapter): """ Adapter for strings. Converts a sequence of characters into a python string, and optionally handles character encoding. See String. Parameters: * subcon - the subcon to convert * encoding - the character encoding name (e.g., "utf8"), or None to return raw bytes (usually 8-bit ASCII). """ __slots__ = ["encoding"] def __init__(self, subcon, encoding = None): Adapter.__init__(self, subcon) self.encoding = encoding def _encode(self, obj, context): if self.encoding: obj = obj.encode(self.encoding) return obj def _decode(self, obj, context): obj = "".join(obj) if self.encoding: obj = obj.decode(self.encoding) return obj class PaddedStringAdapter(Adapter): r""" Adapter for padded strings. See String. Parameters: * subcon - the subcon to adapt * padchar - the padding character. default is "\x00". * paddir - the direction where padding is placed ("right", "left", or "center"). the default is "right". * trimdir - the direction where trimming will take place ("right" or "left"). the default is "right". trimming is only meaningful for building, when the given string is too long. """ __slots__ = ["padchar", "paddir", "trimdir"] def __init__(self, subcon, padchar = "\x00", paddir = "right", trimdir = "right"): if paddir not in ("right", "left", "center"): raise ValueError("paddir must be 'right', 'left' or 'center'", paddir) if trimdir not in ("right", "left"): raise ValueError("trimdir must be 'right' or 'left'", trimdir) Adapter.__init__(self, subcon) self.padchar = padchar self.paddir = paddir self.trimdir = trimdir def _decode(self, obj, context): if self.paddir == "right": obj = obj.rstrip(self.padchar) elif self.paddir == "left": obj = obj.lstrip(self.padchar) else: obj = obj.strip(self.padchar) return obj def _encode(self, obj, context): size = self._sizeof(context) if self.paddir == "right": obj = obj.ljust(size, self.padchar) elif self.paddir == "left": obj = obj.rjust(size, self.padchar) else: obj = obj.center(size, self.padchar) if len(obj) > size: if self.trimdir == "right": obj = obj[:size] else: obj = obj[-size:] return obj class LengthValueAdapter(Adapter): """ Adapter for length-value pairs. It extracts only the value from the pair, and calculates the length based on the value. See PrefixedArray and PascalString. Parameters: * subcon - the subcon returning a length-value pair """ __slots__ = [] def _encode(self, obj, context): return (len(obj), obj) def _decode(self, obj, context): return obj[1] class CStringAdapter(StringAdapter): r""" Adapter for C-style strings (strings terminated by a terminator char). Parameters: * subcon - the subcon to convert * terminators - a sequence of terminator chars. default is "\x00". * encoding - the character encoding to use (e.g., "utf8"), or None to return raw-bytes. the terminator characters are not affected by the encoding. """ __slots__ = ["terminators"] def __init__(self, subcon, terminators = "\x00", encoding = None): StringAdapter.__init__(self, subcon, encoding = encoding) self.terminators = terminators def _encode(self, obj, context): return StringAdapter._encode(self, obj, context) + self.terminators[0] def _decode(self, obj, context): return StringAdapter._decode(self, obj[:-1], context) class TunnelAdapter(Adapter): """ Adapter for tunneling (as in protocol tunneling). A tunnel is construct nested upon another (layering). For parsing, the lower layer first parses the data (note: it must return a string!), then the upper layer is called to parse that data (bottom-up). For building it works in a top-down manner; first the upper layer builds the data, then the lower layer takes it and writes it to the stream. Parameters: * subcon - the lower layer subcon * inner_subcon - the upper layer (tunneled/nested) subcon Example: # a pascal string containing compressed data (zlib encoding), so first # the string is read, decompressed, and finally re-parsed as an array # of UBInt16 TunnelAdapter( PascalString("data", encoding = "zlib"), GreedyRange(UBInt16("elements")) ) """ __slots__ = ["inner_subcon"] def __init__(self, subcon, inner_subcon): Adapter.__init__(self, subcon) self.inner_subcon = inner_subcon def _decode(self, obj, context): return self.inner_subcon._parse(StringIO(obj), context) def _encode(self, obj, context): stream = StringIO() self.inner_subcon._build(obj, stream, context) return stream.getvalue() class ExprAdapter(Adapter): """ A generic adapter that accepts 'encoder' and 'decoder' as parameters. You can use ExprAdapter instead of writing a full-blown class when only a simple expression is needed. Parameters: * subcon - the subcon to adapt * encoder - a function that takes (obj, context) and returns an encoded version of obj * decoder - a function that takes (obj, context) and returns an decoded version of obj Example: ExprAdapter(UBInt8("foo"), encoder = lambda obj, ctx: obj / 4, decoder = lambda obj, ctx: obj * 4, ) """ __slots__ = ["_encode", "_decode"] def __init__(self, subcon, encoder, decoder): Adapter.__init__(self, subcon) self._encode = encoder self._decode = decoder class HexDumpAdapter(Adapter): """ Adapter for hex-dumping strings. It returns a HexString, which is a string """ __slots__ = ["linesize"] def __init__(self, subcon, linesize = 16): Adapter.__init__(self, subcon) self.linesize = linesize def _encode(self, obj, context): return obj def _decode(self, obj, context): return HexString(obj, linesize = self.linesize) class ConstAdapter(Adapter): """ Adapter for enforcing a constant value ("magic numbers"). When decoding, the return value is checked; when building, the value is substituted in. Parameters: * subcon - the subcon to validate * value - the expected value Example: Const(Field("signature", 2), "MZ") """ __slots__ = ["value"] def __init__(self, subcon, value): Adapter.__init__(self, subcon) self.value = value def _encode(self, obj, context): if obj is None or obj == self.value: return self.value else: raise ConstError("expected %r, found %r" % (self.value, obj)) def _decode(self, obj, context): if obj != self.value: raise ConstError("expected %r, found %r" % (self.value, obj)) return obj class SlicingAdapter(Adapter): """ Adapter for slicing a list (getting a slice from that list) Parameters: * subcon - the subcon to slice * start - start index * stop - stop index (or None for up-to-end) * step - step (or None for every element) """ __slots__ = ["start", "stop", "step"] def __init__(self, subcon, start, stop = None): Adapter.__init__(self, subcon) self.start = start self.stop = stop def _encode(self, obj, context): if self.start is None: return obj return [None] * self.start + obj def _decode(self, obj, context): return obj[self.start:self.stop] class IndexingAdapter(Adapter): """ Adapter for indexing a list (getting a single item from that list) Parameters: * subcon - the subcon to index * index - the index of the list to get """ __slots__ = ["index"] def __init__(self, subcon, index): Adapter.__init__(self, subcon) if type(index) is not int: raise TypeError("index must be an integer", type(index)) self.index = index def _encode(self, obj, context): return [None] * self.index + [obj] def _decode(self, obj, context): return obj[self.index] class PaddingAdapter(Adapter): r""" Adapter for padding. Parameters: * subcon - the subcon to pad * pattern - the padding pattern (character). default is "\x00" * strict - whether or not to verify, during parsing, that the given padding matches the padding pattern. default is False (unstrict) """ __slots__ = ["pattern", "strict"] def __init__(self, subcon, pattern = "\x00", strict = False): Adapter.__init__(self, subcon) self.pattern = pattern self.strict = strict def _encode(self, obj, context): return self._sizeof(context) * self.pattern def _decode(self, obj, context): if self.strict: expected = self._sizeof(context) * self.pattern if obj != expected: raise PaddingError("expected %r, found %r" % (expected, obj)) return obj #=============================================================================== # validators #=============================================================================== class Validator(Adapter): """ Abstract class: validates a condition on the encoded/decoded object. Override _validate(obj, context) in deriving classes. Parameters: * subcon - the subcon to validate """ __slots__ = [] def _decode(self, obj, context): if not self._validate(obj, context): raise ValidationError("invalid object", obj) return obj def _encode(self, obj, context): return self._decode(obj, context) def _validate(self, obj, context): raise NotImplementedError() class OneOf(Validator): """ Validates that the value is one of the listed values Parameters: * subcon - the subcon to validate * valids - a set of valid values """ __slots__ = ["valids"] def __init__(self, subcon, valids): Validator.__init__(self, subcon) self.valids = valids def _validate(self, obj, context): return obj in self.valids class NoneOf(Validator): """ Validates that the value is none of the listed values Parameters: * subcon - the subcon to validate * invalids - a set of invalid values """ __slots__ = ["invalids"] def __init__(self, subcon, invalids): Validator.__init__(self, subcon) self.invalids = invalids def _validate(self, obj, context): return obj not in self.invalids
unlicense
-5,460,892,987,634,537,000
32.006224
80
0.587466
false
gamda/checkers
checkers/model.py
1
14118
# Copyright (c) 2015 Gamda Software, LLC # # See the file LICENSE.txt for copying permission. from enum import Enum from gameboard.gameboard import Gameboard from gameboard.gameboard import Direction from gameboard.coordinate import Coordinate class Chip: class Color(Enum): white = True black = False class Type(Enum): soldier = 0 queen = 1 def __init__(self, color): if not isinstance(color, self.Color): raise ValueError("Use Chip.Color values") self.color = color self.type = self.Type.soldier def promote(self): self.type = self.Type.queen class Model: class Gamestate(Enum): invalidMove = -1 inProgress = 0 whiteWon = 1 blackWon = 2 tie = 3 def new_game(self): self.__init__() def __init__(self): self.board = Gameboard() self.chips = {Coordinate.a1: Chip(Chip.Color.white), Coordinate.c1: Chip(Chip.Color.white), Coordinate.e1: Chip(Chip.Color.white), Coordinate.g1: Chip(Chip.Color.white), Coordinate.b2: Chip(Chip.Color.white), Coordinate.d2: Chip(Chip.Color.white), Coordinate.f2: Chip(Chip.Color.white), Coordinate.h2: Chip(Chip.Color.white), Coordinate.a3: Chip(Chip.Color.white), Coordinate.c3: Chip(Chip.Color.white), Coordinate.e3: Chip(Chip.Color.white), Coordinate.g3: Chip(Chip.Color.white), Coordinate.b6: Chip(Chip.Color.black), Coordinate.d6: Chip(Chip.Color.black), Coordinate.f6: Chip(Chip.Color.black), Coordinate.h6: Chip(Chip.Color.black), Coordinate.a7: Chip(Chip.Color.black), Coordinate.c7: Chip(Chip.Color.black), Coordinate.e7: Chip(Chip.Color.black), Coordinate.g7: Chip(Chip.Color.black), Coordinate.b8: Chip(Chip.Color.black), Coordinate.d8: Chip(Chip.Color.black), Coordinate.f8: Chip(Chip.Color.black), Coordinate.h8: Chip(Chip.Color.black)} for k in self.chips.keys(): self.board.set_content(k,self.chips[k]) self.turn = Chip.Color.white self._current_chip = None def _neighbor_in_direction(self, square, direction): neighborSquare = self.board.neighbor_in_direction(square, direction) return neighborSquare def _next_neighbor_in_direction(self, square, direction): neighbor_square = self.board.neighbor_in_direction(square, direction) if neighbor_square is not None: # check the next new_neighbor = \ self.board.neighbor_in_direction(neighbor_square, direction) if new_neighbor is not None: return new_neighbor return None def _enemy_in_neighbor(self, square, direction): neighbor = self._neighbor_in_direction(square, direction) return neighbor is not None and \ self.board.get_content(neighbor) is not None and \ self.board.get_content(neighbor).color != self.turn def _directions_for_soldier(self): white_directions = [Direction.top_left, Direction.top_right] black_directions = [Direction.btm_left, Direction.btm_right] return white_directions \ if self.turn == Chip.Color.white \ else black_directions def _soldier_available_jumps(self, square): jumps = set() for direction in self._directions_for_soldier(): if self._enemy_in_neighbor(square, direction): next_neighbor = \ self._next_neighbor_in_direction(square, direction) if next_neighbor is not None and \ self.board.get_content(next_neighbor) is None: jumps.add((square, next_neighbor)) return jumps def _soldier_available_regular_moves(self, square): moves = set() for direction in self._directions_for_soldier(): neighbor = self._neighbor_in_direction(square, direction) if neighbor is not None and \ self.board.get_content(neighbor) is None: # empty square, valid move moves.add((square, neighbor)) return moves def _soldier_can_jump(self, square): return bool(self._soldier_available_jumps(square)) def _soldier_chip_available_moves(self, square): moves = self._soldier_available_jumps(square) if len(moves) > 0: return moves, True return self._soldier_available_regular_moves(square), False def _queen_rival_found_moves(self, origin, square, direction, moves, can_jump): my_moves = moves neighbor = self._neighbor_in_direction(square, direction) if neighbor is not None: content = self.board.get_content(neighbor) if content is None and can_jump: # another empty square after a jump my_moves.add((origin, neighbor)) return my_moves, True elif content is None and not can_jump: # just found out queen can jump my_moves = set([(origin, neighbor)]) return my_moves, True return moves, can_jump # two chips in a row or out of bounds def _queen_moves_in_direction(self, square, direction): moves, can_jump = set(), False neighbor = self._neighbor_in_direction(square, direction) while neighbor is not None: content = self.board.get_content(neighbor) if content is None: # empty moves.add((square, neighbor)) elif content.color != self. turn: # rival # rival chip found old_moves = moves moves, can_jump = self._queen_rival_found_moves(square, neighbor, direction, moves, can_jump) neighbor = self._neighbor_in_direction(neighbor, direction) if moves == old_moves: break # two chips in a row or out of bounds else: break # ally chip found neighbor = self._neighbor_in_direction(neighbor, direction) return moves, can_jump def _queen_can_jump(self, square): moves, can_jump = self._queen_chip_available_moves(square) return can_jump def _queen_chip_available_moves(self, square): directions = [Direction.top_left, Direction.top_right, Direction.btm_left, Direction.btm_right] moves, can_jump = set(), False for d in directions: new_moves, new_can_jump = self._queen_moves_in_direction(square, d) if can_jump == new_can_jump: moves = moves | new_moves elif not can_jump and new_can_jump: moves = new_moves can_jump = True return moves, can_jump def _chip_can_jump(self, square): if square in self.chips: if self.chips[square].type == Chip.Type.soldier: return self._soldier_can_jump(square) else: return self._queen_can_jump(square) return False def chip_available_moves(self, square): """Return a tuple (set[available_moves], bool can_jump) Args: square (Coordinate): the square where the chip is/should be Returns: set: tuple of Coordinate values of valid moves for the chip. They have the form (Coordinate.origin, Coordinate.destination) bool: True if the chip can jump, False otherwise """ if not isinstance(square, Coordinate): raise TypeError("square variable must be from Coordinate enum") if square not in self.chips.keys() or \ self.board.get_content(square) is None: # chip is not in the game anymore return set(), False chip = self.chips[square] if chip.color != self.turn: return set(), False if chip.type == Chip.Type.soldier: return self._soldier_chip_available_moves(square) return self._queen_chip_available_moves(square) def available_moves(self): """Return a set with tuples of Coordinate values of all available moves Returns: set: tuple of Coordinate values of valid moves for the chip. They have the form (Coordinate.origin, Coordinate.destination) """ moves = set() if self._current_chip is not None: moves, can_jump = self.chip_available_moves(self._current_chip) return moves can_jump = False for coord, chip in self.chips.items(): newMoves, newcan_jump = self.chip_available_moves(coord) if can_jump == newcan_jump: moves = moves | newMoves elif not can_jump and newcan_jump: # found a jump, delete old moves moves = newMoves can_jump = True # else found regular move, but jump found previously return moves def _promote(self, square): startIndex = 0 if self.turn == Chip.Color.white else 7 promo_squares = [] for i in range(startIndex, 64, 8): promo_squares.append(Coordinate(i)) if square in promo_squares: self.chips[square].promote() def _next_turn(self): self.turn = Chip.Color.black \ if self.turn == Chip.Color.white \ else Chip.Color.white def _gamestate(self): if len(self.available_moves()) == 0: return self.Gamestate.whiteWon \ if self.turn == Chip.Color.black \ else self.Gamestate.blackWon return self.Gamestate.inProgress def _remove_chips(self, origin, destination): removed = [] direction = self._direction_of_move(origin, destination) squares_jumped = self.board.path_in_direction(origin, destination, direction) for s in squares_jumped: if self.board.get_content(s) != None: self.board.clear_square(s) del self.chips[s] removed.append(s) return removed def _direction_of_move(self, origin, destination): distance = destination - origin direction = None if distance < 0: # moved left if distance % 7 == 0: # moved top direction = Direction.top_left else: # distance % 9 == 0, moved btm direction = Direction.btm_left else: # moved right if distance % 9 == 0: direction = Direction.top_right else: direction = Direction.btm_right return direction def move(self, origin, destination): """Perform the requested move and returns a tuple (Gamestate, list) Args: origin (Coordinate): the square where the chip is currently destination (Direction): the square where the chip will end Returns: Gamestate: value from enum list: Coordinate values indicating the chip(s) removed Raises: TypeError: if origin or destination is not Coordinate """ if not isinstance(origin, Coordinate): raise TypeError("origin variable must be from Coordinate enum") if not isinstance(destination, Coordinate): raise TypeError("destination must be from Coordinate enum") if not (origin, destination) in self.available_moves(): return self.Gamestate.invalidMove, [] turnFinished = True _, jumped = self.chip_available_moves(origin) # move chip self.board.move(origin, destination) self.chips[destination] = self.chips[origin] del self.chips[origin] self._promote(destination) # remove chips if jump occured distance = destination - origin removed = [] if jumped: removed = self._remove_chips(origin, destination) if self._chip_can_jump(destination): turnFinished = False self._current_chip = destination if turnFinished: self._next_turn() self._current_chip = None self._promote(destination) return (self._gamestate(), removed) def square_contains_teammate(self, square): """Returns True if the chip belongs to the team whose turn it is Args: square (Coordinate): the square to check for an ally chip Returns: bool: True if the chip belongs to the team whose turn it is Raises: TypeError: if square is not Coordinate """ if not isinstance(square, Coordinate): raise TypeError("square variable must be from Coordinate enum") # Python's lazy evaluation makes sure this expression will never # throw KeyError because if the key is not in the dictionary, the # second expression will not be evaluated return square in self.chips.keys() and \ self.chips[square].color == self.turn
mit
-4,265,342,469,476,370,000
39.107955
79
0.555461
false
chiffa/PolyPharma
bioflow/molecular_network/interactome_analysis.py
1
22116
""" New analytical routines for the interactome """ import pickle from collections import namedtuple from csv import reader from csv import writer as csv_writer from multiprocessing import Pool from collections import defaultdict import traceback from pprint import pprint import os import psutil from typing import Any, Union, TypeVar, NewType, Tuple, List import numpy as np from matplotlib import pyplot as plt from scipy.stats import gumbel_r from tabulate import tabulate from bioflow.configs.main_configs import Dumps, estimated_comp_ops, NewOutputs, \ sparse_analysis_threshold, implicitely_threaded, p_val_cutoff, min_nodes_for_p_val from bioflow.sample_storage.mongodb import find_interactome_rand_samp, count_interactome_rand_samp from bioflow.configs.main_configs import output_location from bioflow.molecular_network.InteractomeInterface import InteractomeInterface from bioflow.utils.dataviz import kde_compute from bioflow.utils.log_behavior import get_logger from bioflow.utils.io_routines import get_source_bulbs_ids, get_background_bulbs_ids from bioflow.utils.general_utils.high_level_os_io import mkdir_recursive from bioflow.algorithms_bank.flow_significance_evaluation import get_neighboring_degrees, get_p_val_by_gumbel log = get_logger(__name__) def get_interactome_interface(background_up_ids=()) -> InteractomeInterface: """ Retrieves an "InteractomeInterface" object :return: """ interactome_interface_instance = InteractomeInterface(background_up_ids=background_up_ids) interactome_interface_instance.fast_load() log.debug("get_interactome state e_p_u_b_i length: %s", len(interactome_interface_instance.active_up_sample)) log.info("interactome interface loaded in %s" % interactome_interface_instance.pretty_time()) # is the case now return interactome_interface_instance def spawn_sampler(args_puck): """ Spawns a sampler initialized from the default GO_Interface. :param args_puck: combined list of sample sizes, iterations, background sets, and sparse sampling argument """ # log.info('Pool process %d started' % args_puck[-1]) background_set_arg = args_puck[3] interactome_interface_instance = get_interactome_interface(background_set_arg) sample_size_list = args_puck[0] iteration_list = args_puck[1] sparse_rounds = args_puck[2] pool_no = args_puck[-1] # TODO: switch over to PID here interactome_interface_instance.reset_thread_hex() interactome_interface_instance.randomly_sample( sample_size_list, iteration_list, sparse_rounds, pool_no=pool_no ) def spawn_sampler_pool( pool_size, sample_size_list, interaction_list_per_pool, background_set, sparse_rounds=False): """ Spawns a pool of samplers of the information flow within the GO system :param pool_size: number of processes that are performing the sample pooling and analyzing :param sample_size_list: size of the sample list :param interaction_list_per_pool: number of iterations performing the pooling of the samples in each list :param sparse_rounds: number of sparse rounds to run (or False if sampling is dense) :param background_set: set of node ids that are to be sampled from """ payload = [ (sample_size_list, interaction_list_per_pool, sparse_rounds, background_set)] payload_list = payload * pool_size payload_list = [list(item)+[i] for i, item in enumerate(payload_list)] # prepare the payload global implicitely_threaded if not implicitely_threaded: with Pool(processes=pool_size) as pool: # This is the object we are using to spawn a thread pool try: log.debug('spawning the sampler with payload %s', payload) pool.map(spawn_sampler, payload_list) # This what we spawn as a sampler # KNOWNBUG: hangs with no message upon a second start attempt in Interactome # analysis due to cholmod except Exception as e: msg = "{}\n\nOriginal {}".format(e, traceback.format_exc()) raise type(e)(msg) # log.info('Last in-pool flag exiting') pool.terminate() # log.info('Pool terminated') else: log.debug('spawning single-thread sampler with payload %s', payload) for _payload in payload_list: spawn_sampler(_payload) def local_indexed_select(bi_array, array_column, selection_span): """ Convenient small function to select a from tri_array all the elements where the column number array_column is within the selection span :param bi_array: the matrix on which we will be performing the selection :param array_column: column number on which the selection span will be applied :param selection_span: span for which we are going to keep the column. """ selector = np.logical_and( selection_span[0] < bi_array[array_column, :], bi_array[array_column, :] < selection_span[1]) if not any(selector): return np.array([[0.0, 0.0, 0.0]]) filtered_bi_array = bi_array[:, selector] return filtered_bi_array def samples_scatter_and_hist(background_curr_deg_conf, true_sample_bi_corr_array, save_path: NewOutputs = None, p_values: np.array = None): """ A general function that performs demonstration of an example of random samples of the same size as our sample and of our sample and conducts the statistical tests on wherther any of nodes or functional groups in our sample are non-random :param background_curr_deg_conf: [[current, informativity, confusion_potential], ...] - characteristics of the random samples :param true_sample_bi_corr_array: [[current, informativity, confusion_potential], ...] - characteristics of the true sample. If none, nothing happens :param save_path: where the thing will be saved :param p_values: p-value map that will be used to save things after the analysis :return: None """ fig = plt.figure() fig.set_size_inches(30, 20) # bivect: [0, :] - current; [1, :] - informativity plt.subplot(211) plt.title('current through nodes') bins = np.linspace( background_curr_deg_conf[0, :].min(), background_curr_deg_conf[0, :].max(), 100) if true_sample_bi_corr_array is not None: bins = np.linspace(min(background_curr_deg_conf[0, :].min(), true_sample_bi_corr_array[0, :].min()), max(background_curr_deg_conf[0, :].max(), true_sample_bi_corr_array[0, :].max()), 100) plt.hist(background_curr_deg_conf[0, :], bins=bins, histtype='step', log=True, color='b') if true_sample_bi_corr_array is not None: plt.hist(true_sample_bi_corr_array[0, :], bins=bins, histtype='step', log=True, color='r') plt.subplot(212) plt.scatter(background_curr_deg_conf[1, :], background_curr_deg_conf[0, :], color='b', alpha=0.1) if true_sample_bi_corr_array is not None: if p_values is not None: _filter = p_values < p_val_cutoff anti_filter = np.logical_not(_filter) plt.scatter(true_sample_bi_corr_array[1, anti_filter], true_sample_bi_corr_array[0, anti_filter], color='gray', alpha=0.25) plt.scatter(true_sample_bi_corr_array[1, _filter], true_sample_bi_corr_array[0, _filter], color='r', alpha=0.7) else: plt.scatter(true_sample_bi_corr_array[1, :], true_sample_bi_corr_array[0, :], color='r', alpha=0.5) # plt.show() plt.savefig(save_path.interactome_network_scatterplot) plt.clf() def compare_to_blank(blank_model_size: int, interactome_interface_instance: InteractomeInterface, p_val: float = 0.05, sparse_rounds: bool = False, output_destination: NewOutputs = None) -> Tuple[list, dict]: """ Recovers the statistics on the circulation nodes and shows the visual of a circulation system. There is no issue with using the same interactome interface instance, because they are forked when threads are generated and will not interfere. :param blank_model_size: the number of uniprots in the blank model :param p_val: desired p_value for the returned terms :param sparse_rounds: if set to a number, sparse computation technique would be used with the number of rounds equal the integer value of that argument :param interactome_interface_instance: :return: None if no significant nodes, the node and group characteristic dictionaries otherwise """ def get_max_for_each_degree(sample_sub_arrray): # print('debug max_array_shape:', str(sample_sub_arrray.shape)) degrees = np.unique(sample_sub_arrray[1, :]) max_array = [] for degree in degrees: filter = sample_sub_arrray[1, :] == degree max_array.append([sample_sub_arrray[0, filter].max(), degree]) m_arr = np.array(max_array) return m_arr.T if interactome_interface_instance is None or interactome_interface_instance.node_current == {}: raise Exception("tried to compare to blanc an empty interface instance") md5_hash = interactome_interface_instance.md5_hash() background_sub_array_list = [] max_sub_array_list = [] count = 0 log.info("looking to test against:" "\t size: %s \t sys_hash: %s \t sparse_rounds: %s" % (blank_model_size, md5_hash, sparse_rounds)) log.info("samples found to test against:\t %s" % count_interactome_rand_samp({'size': blank_model_size, 'sys_hash': md5_hash, 'sparse_rounds': sparse_rounds})) background_sample = find_interactome_rand_samp({'size': blank_model_size, 'sys_hash': md5_hash, 'sparse_rounds': sparse_rounds}) for i, sample in enumerate(background_sample): _, node_currents = pickle.loads(sample['currents']) dict_system = interactome_interface_instance.format_node_props(node_currents, limit=0) background_sub_array = list(dict_system.values()) if np.array(background_sub_array).T.shape[0] < 2: log.info(background_sub_array) continue background_sub_array_list.append(np.array(background_sub_array).T) # print(np.array(background_sub_array).T.shape) # pprint(background_sub_array) max_arr = get_max_for_each_degree(np.array(background_sub_array).T) max_sub_array_list.append(max_arr) count = i # This part declares the pre-operators required for the verification of a # real sample background_array = np.concatenate(tuple(background_sub_array_list), axis=1) max_array = np.concatenate(tuple(max_sub_array_list), axis=1) node_currents = interactome_interface_instance.node_current dict_system = interactome_interface_instance.format_node_props(node_currents) curr_inf_conf_tot = np.array([[int(key)] + list(val) for key, val in list(dict_system.items())]).T node_ids, query_array = (curr_inf_conf_tot[0, :], curr_inf_conf_tot[(1, 2), :]) log.info("stats on %s samples" % count) background_density = kde_compute(background_array[(1, 0), :], 50, count) base_bi_corr = background_array[(0, 1), :] r_rels = [] r_std_nodes = [] degrees = np.unique(query_array[1, :]) combined_p_vals = np.ones_like(query_array[1, :]) for degree in degrees.tolist(): _filter = query_array[1, :] == degree entry = query_array[:, _filter] background_set = background_array[:, background_array[1, :] == degree] max_current_per_run = get_neighboring_degrees(degree, max_array, min_nodes=min_nodes_for_p_val) p_vals = get_p_val_by_gumbel(entry, max_current_per_run) combined_p_vals[_filter] = p_vals samples_scatter_and_hist(background_array, query_array, save_path=output_destination, p_values=combined_p_vals) r_nodes = background_density(query_array[(1, 0), :]) # legacy - unused now r_nodes = combined_p_vals for point in query_array.T: selector = np.logical_and(base_bi_corr[1, :] > point[1]*0.9, base_bi_corr[1, :] < point[1]*1.1) r_rels.append(point[0] / np.mean(base_bi_corr[0, selector])) r_std_nodes.append((point[0] - np.mean(base_bi_corr[0, selector])) / np.std(base_bi_corr[0, selector])) r_rels = np.array(r_rels) r_std_nodes = np.array(r_std_nodes) not_random_nodes = [node_id for node_id in node_ids[r_nodes < p_val].tolist()] # basically the second element below are the nodes that contribute to the # information flow through the node that is considered as non-random log.debug('debug, not random nodes: %s', not_random_nodes) log.debug('debug bulbs_id_disp_name: %s', list(interactome_interface_instance.neo4j_id_2_display_name.items())[:10]) node_char_list = [ [int(nr_node_id), interactome_interface_instance.neo4j_id_2_display_name[nr_node_id]] + dict_system[nr_node_id] + r_nodes[node_ids == float(nr_node_id)].tolist() for nr_node_id in not_random_nodes] nodes_dict = np.hstack((node_ids[:, np.newaxis], r_nodes[:, np.newaxis], r_rels[:, np.newaxis], r_std_nodes[:, np.newaxis])) nodes_dict = dict((node[0], (node[1], node[2], node[3])) for node in nodes_dict.tolist()) nodes_dict = defaultdict(lambda: (1., 0., 0.), nodes_dict) # corresponds to the cases of super low flow - never significant # TODO: pull the groups corresponding to non-random associations. # => Will not implement, it's already done by Gephi return sorted(node_char_list, key=lambda x: x[4]), nodes_dict # TODO: [weighted inputs] add support for a dict as source_list, not only list def auto_analyze(source_list: List[List[int]], output_destinations_list: Union[List[str], None] = None, desired_depth: int = 24, processors: int = 0, background_list: Union[List[int], None] = None, skip_sampling: bool = False, p_value_cutoff: float = -1, ) -> None: """ Automatically analyzes the itneractome synergetic action of the RNA_seq results :param source_list: python list of hits for each condition :param output_destinations_list: list of names for each condition :param desired_depth: total samples we would like to compare each set of hits with :param processors: number of processes that will be loaded. as a rule of thumb, for max performance, use N-1 processors, where N is the number of physical cores on the machine, which is the default :param background_list list of physical entities that an experimental method can retrieve :param skip_sampling: if true, will skip background sampling step """ # Multiple re-spawns of threaded processing are incompatbile with scikits.sparse.cholmod if len(source_list) > 1: global implicitely_threaded implicitely_threaded = True if len(output_destinations_list) != len(source_list): log.warning('Output destination list has %d elements, whereas %d sources were supplied. ' 'Falling back to default output structure') output_destinations_list = None if output_destinations_list is None: output_destinations_list = list(range(len(source_list))) if processors == 0: processors = psutil.cpu_count() - 1 log.info("Setting processor count to default: %s" % processors) # TODO: [Better Sampling] # check MongoDb to see if we have enough samples of the needed type, adjust the sampling # noinspection PyTypeChecker if desired_depth % processors != 0: desired_depth = desired_depth // processors + 1 else: desired_depth = desired_depth // processors if p_value_cutoff < 0: p_value_cutoff = p_val_cutoff for hits_list, output_destination in zip(source_list, output_destinations_list): log.info('Auto analyzing list of interest: %s', len(hits_list)) outputs_subdirs = NewOutputs(output_destination) interactome_interface = get_interactome_interface(background_up_ids=background_list) interactome_interface.set_uniprot_source(list(hits_list)) log.debug(" e_p_u_b_i length after UP_source was set: %s", len(interactome_interface.active_up_sample)) if not skip_sampling: log.info("spawning a sampler for %s proteins @ %s compops/sec", len(interactome_interface.active_up_sample), estimated_comp_ops) # dense analysis if len(interactome_interface.active_up_sample) < sparse_analysis_threshold: if not skip_sampling: log.info('length: %s \t sampling depth: %s \t, estimated round time: %s min', len(interactome_interface.active_up_sample), 'full', len(interactome_interface.active_up_sample) ** 2 / estimated_comp_ops / 60) spawn_sampler_pool( processors, [len(interactome_interface.active_up_sample)], [desired_depth], background_set=background_list) interactome_interface.compute_current_and_potentials() nr_nodes, p_val_dict = compare_to_blank( len(interactome_interface.active_up_sample), interactome_interface, p_val=p_value_cutoff, output_destination=outputs_subdirs ) # sparse analysis else: ceiling = min(205, len(interactome_interface.active_up_sample)) sampling_depth = max((ceiling - 5) ** 2 // len(interactome_interface.active_up_sample), 5) if not skip_sampling: log.info('length: %s \t sampling depth: %s \t, estimated round time: %s min', len(interactome_interface.active_up_sample), sampling_depth, len(interactome_interface.active_up_sample) * sampling_depth / 2 / 60 / estimated_comp_ops) spawn_sampler_pool(processors, [len(interactome_interface.active_up_sample)], [desired_depth], sparse_rounds=sampling_depth, background_set=background_list) log.info('real run characteristics: sys_hash: %s, size: %s, sparse_rounds: %s' % (interactome_interface.md5_hash(), len(interactome_interface.active_up_sample), sampling_depth)) interactome_interface.compute_current_and_potentials(sparse_samples=sampling_depth) nr_nodes, p_val_dict = compare_to_blank( len(interactome_interface.active_up_sample), interactome_interface, p_val=p_value_cutoff, sparse_rounds=sampling_depth, output_destination=outputs_subdirs ) interactome_interface.export_conduction_system(p_val_dict, output_location=outputs_subdirs.Interactome_GDF_output) # # old results print-out # log.info('\t %s \t %s \t %s \t %s \t %s', 'node id', # 'display name', 'info flow', 'degree', 'p value') # # for node in nr_nodes: # log.info('\t %s \t %s \t %.3g \t %d \t %.3g', *node) with open(outputs_subdirs.interactome_network_output, 'wt') as output: writer = csv_writer(output, delimiter='\t') writer.writerow(['node id', 'display name', 'info flow', 'degree', 'p value']) for node in nr_nodes: writer.writerow(node) # using tabulate headers = ['node id', 'display name', 'info flow', 'degree', 'p value'] print(tabulate(nr_nodes, headers, tablefmt='simple', floatfmt=".3g")) if __name__ == "__main__": # pprinter = PrettyPrinter(indent=4) # background_set = MatrixGetter(True, False) # background_set.fast_load() # dumplist = undump_object(Dumps.RNA_seq_counts_compare) # MG1.randomly_sample([150], [1], chromosome_specific=15, No_add=True) # nr_nodes, nr_groups = compare_to_blanc(150, [0.5, 0.6], MG1, p_val=0.9) # MG1.export_conduction_system() # for group in nr_groups: # print group # for node in nr_nodes: # print node # source = get_source_bulbs_ids() # background_list = get_background_bulbs_ids() # auto_analyze([source], desired_depth=5, processors=6, # background_list=background_list, skip_sampling=True) local_matrix = InteractomeInterface() local_matrix.fast_load() # spawn_sampler_pool(3, [50], [3], background_set=None) spawn_sampler(([50], [3], False, None, 0)) # local_matrix.randomly_sample([195], [10], sparse_rounds=195)
bsd-3-clause
3,543,690,738,254,189,000
40.261194
128
0.614532
false
mbylstra/django-wham
wham/fields.py
1
3400
from django.db import models # the following will be required if we want to support south # ---------------------------------------------------------------- # from south.modelsinspector import add_introspection_rules # # add_introspection_rules([], [ # "^wham\.models\.WhamCharField", # "^wham\.models\.WhamTextField", # "^wham\.models\.WhamIntegerField", # "^wham\.models\.WhamFloatField", # "^wham\.models\.WhamManyToManyField", # "^wham\.models\.WhamDateField", # "^wham\.models\.WhamDateTimeField", # "^wham\.models\.WhamImageUrlField", # ]) class WhamFieldMixin(object): def __init__(self, *args, **kwargs): self.wham_result_path = kwargs.pop('wham_result_path', None) self.wham_can_lookup = kwargs.pop('wham_can_lookup', False) self.wham_url_param = kwargs.pop('wham_url_param', None) self.wham_detailed = kwargs.pop('wham_detailed', False) return super(WhamFieldMixin, self).__init__(*args, **kwargs) def get_result_path(self): result_path = self.wham_result_path if not result_path: return (self.attname,) else: return result_path def get_url_param(self): return self.wham_url_param if self.wham_url_param else self.name class WhamCharField(WhamFieldMixin, models.TextField): @property def type_repr(self): return 'char' class WhamTextField(WhamFieldMixin, models.TextField): @property def type_repr(self): return 'text' class WhamIntegerField(WhamFieldMixin, models.IntegerField): @property def type_repr(self): return 'integer' class WhamFloatField(WhamFieldMixin, models.FloatField): @property def type_repr(self): return 'float' class WhamDateField(WhamFieldMixin, models.DateField): pass class WhamDateTimeField(WhamFieldMixin, models.DateTimeField): def __init__(self, *args, **kwargs): self.wham_format = kwargs.pop('wham_format', None) return super(WhamDateTimeField, self).__init__(*args, **kwargs) class WhamManyToManyField(models.ManyToManyField): def __init__(self, *args, **kwargs): self.wham_result_path = kwargs.pop('wham_result_path', None) self.wham_endpoint = kwargs.pop('wham_endpoint', None) self.wham_results_path = kwargs.pop('wham_results_path', ()) self.wham_pk_param = kwargs.pop('wham_pk_param', None) self.wham_params = kwargs.pop('wham_params', {}) return super(WhamManyToManyField, self).__init__(*args, **kwargs) @property def type_repr(self): return 'many to many' class WhamForeignKey(models.ForeignKey): def __init__(self, *args, **kwargs): self.wham_result_path = kwargs.pop('wham_result_path', None) self.wham_endpoint = kwargs.pop('wham_endpoint', None) self.wham_results_path = kwargs.pop('wham_results_path', ()) self.wham_pk_param = kwargs.pop('wham_pk_param', None) self.wham_params = kwargs.pop('wham_params', {}) return super(WhamForeignKey, self).__init__(*args, **kwargs) def get_result_path(self): result_path = self.wham_result_path if not result_path: return (self.name,) else: return result_path @property def type_repr(self): return 'foreign key' class WhamImageUrlField(WhamTextField): pass
mit
8,305,047,103,216,442,000
29.088496
73
0.631765
false
wakiyamap/electrum-mona
electrum_mona/gui/qt/password_dialog.py
1
11128
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2013 ecdsa@github # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re import math from functools import partial from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap from PyQt5.QtWidgets import QLineEdit, QLabel, QGridLayout, QVBoxLayout, QCheckBox from electrum_mona.i18n import _ from electrum_mona.plugin import run_hook from .util import (icon_path, WindowModalDialog, OkButton, CancelButton, Buttons, PasswordLineEdit) def check_password_strength(password): ''' Check the strength of the password entered by the user and return back the same :param password: password entered by user in New Password :return: password strength Weak or Medium or Strong ''' password = password n = math.log(len(set(password))) num = re.search("[0-9]", password) is not None and re.match("^[0-9]*$", password) is None caps = password != password.upper() and password != password.lower() extra = re.match("^[a-zA-Z0-9]*$", password) is None score = len(password)*(n + caps + num + extra)/20 password_strength = {0:"Weak",1:"Medium",2:"Strong",3:"Very Strong"} return password_strength[min(3, int(score))] PW_NEW, PW_CHANGE, PW_PASSPHRASE = range(0, 3) class PasswordLayout(object): titles = [_("Enter Password"), _("Change Password"), _("Enter Passphrase")] def __init__(self, msg, kind, OK_button, wallet=None, force_disable_encrypt_cb=False): self.wallet = wallet self.pw = PasswordLineEdit() self.new_pw = PasswordLineEdit() self.conf_pw = PasswordLineEdit() self.kind = kind self.OK_button = OK_button vbox = QVBoxLayout() label = QLabel(msg + "\n") label.setWordWrap(True) grid = QGridLayout() grid.setSpacing(8) grid.setColumnMinimumWidth(0, 150) grid.setColumnMinimumWidth(1, 100) grid.setColumnStretch(1,1) if kind == PW_PASSPHRASE: vbox.addWidget(label) msgs = [_('Passphrase:'), _('Confirm Passphrase:')] else: logo_grid = QGridLayout() logo_grid.setSpacing(8) logo_grid.setColumnMinimumWidth(0, 70) logo_grid.setColumnStretch(1,1) logo = QLabel() logo.setAlignment(Qt.AlignCenter) logo_grid.addWidget(logo, 0, 0) logo_grid.addWidget(label, 0, 1, 1, 2) vbox.addLayout(logo_grid) m1 = _('New Password:') if kind == PW_CHANGE else _('Password:') msgs = [m1, _('Confirm Password:')] if wallet and wallet.has_password(): grid.addWidget(QLabel(_('Current Password:')), 0, 0) grid.addWidget(self.pw, 0, 1) lockfile = "lock.png" else: lockfile = "unlock.png" logo.setPixmap(QPixmap(icon_path(lockfile)) .scaledToWidth(36, mode=Qt.SmoothTransformation)) grid.addWidget(QLabel(msgs[0]), 1, 0) grid.addWidget(self.new_pw, 1, 1) grid.addWidget(QLabel(msgs[1]), 2, 0) grid.addWidget(self.conf_pw, 2, 1) vbox.addLayout(grid) # Password Strength Label if kind != PW_PASSPHRASE: self.pw_strength = QLabel() grid.addWidget(self.pw_strength, 3, 0, 1, 2) self.new_pw.textChanged.connect(self.pw_changed) self.encrypt_cb = QCheckBox(_('Encrypt wallet file')) self.encrypt_cb.setEnabled(False) grid.addWidget(self.encrypt_cb, 4, 0, 1, 2) if kind == PW_PASSPHRASE: self.encrypt_cb.setVisible(False) def enable_OK(): ok = self.new_pw.text() == self.conf_pw.text() OK_button.setEnabled(ok) self.encrypt_cb.setEnabled(ok and bool(self.new_pw.text()) and not force_disable_encrypt_cb) self.new_pw.textChanged.connect(enable_OK) self.conf_pw.textChanged.connect(enable_OK) self.vbox = vbox def title(self): return self.titles[self.kind] def layout(self): return self.vbox def pw_changed(self): password = self.new_pw.text() if password: colors = {"Weak":"Red", "Medium":"Blue", "Strong":"Green", "Very Strong":"Green"} strength = check_password_strength(password) label = (_("Password Strength") + ": " + "<font color=" + colors[strength] + ">" + strength + "</font>") else: label = "" self.pw_strength.setText(label) def old_password(self): if self.kind == PW_CHANGE: return self.pw.text() or None return None def new_password(self): pw = self.new_pw.text() # Empty passphrases are fine and returned empty. if pw == "" and self.kind != PW_PASSPHRASE: pw = None return pw def clear_password_fields(self): for field in [self.pw, self.new_pw, self.conf_pw]: field.clear() class PasswordLayoutForHW(object): def __init__(self, msg, wallet=None): self.wallet = wallet vbox = QVBoxLayout() label = QLabel(msg + "\n") label.setWordWrap(True) grid = QGridLayout() grid.setSpacing(8) grid.setColumnMinimumWidth(0, 150) grid.setColumnMinimumWidth(1, 100) grid.setColumnStretch(1,1) logo_grid = QGridLayout() logo_grid.setSpacing(8) logo_grid.setColumnMinimumWidth(0, 70) logo_grid.setColumnStretch(1,1) logo = QLabel() logo.setAlignment(Qt.AlignCenter) logo_grid.addWidget(logo, 0, 0) logo_grid.addWidget(label, 0, 1, 1, 2) vbox.addLayout(logo_grid) if wallet and wallet.has_storage_encryption(): lockfile = "lock.png" else: lockfile = "unlock.png" logo.setPixmap(QPixmap(icon_path(lockfile)) .scaledToWidth(36, mode=Qt.SmoothTransformation)) vbox.addLayout(grid) self.encrypt_cb = QCheckBox(_('Encrypt wallet file')) grid.addWidget(self.encrypt_cb, 1, 0, 1, 2) self.vbox = vbox def title(self): return _("Toggle Encryption") def layout(self): return self.vbox class ChangePasswordDialogBase(WindowModalDialog): def __init__(self, parent, wallet): WindowModalDialog.__init__(self, parent) is_encrypted = wallet.has_storage_encryption() OK_button = OkButton(self) self.create_password_layout(wallet, is_encrypted, OK_button) self.setWindowTitle(self.playout.title()) vbox = QVBoxLayout(self) vbox.addLayout(self.playout.layout()) vbox.addStretch(1) vbox.addLayout(Buttons(CancelButton(self), OK_button)) self.playout.encrypt_cb.setChecked(is_encrypted) def create_password_layout(self, wallet, is_encrypted, OK_button): raise NotImplementedError() class ChangePasswordDialogForSW(ChangePasswordDialogBase): def __init__(self, parent, wallet): ChangePasswordDialogBase.__init__(self, parent, wallet) if not wallet.has_password(): self.playout.encrypt_cb.setChecked(True) def create_password_layout(self, wallet, is_encrypted, OK_button): if not wallet.has_password(): msg = _('Your wallet is not protected.') msg += ' ' + _('Use this dialog to add a password to your wallet.') else: if not is_encrypted: msg = _('Your bitcoins are password protected. However, your wallet file is not encrypted.') else: msg = _('Your wallet is password protected and encrypted.') msg += ' ' + _('Use this dialog to change your password.') self.playout = PasswordLayout(msg=msg, kind=PW_CHANGE, OK_button=OK_button, wallet=wallet, force_disable_encrypt_cb=not wallet.can_have_keystore_encryption()) def run(self): try: if not self.exec_(): return False, None, None, None return True, self.playout.old_password(), self.playout.new_password(), self.playout.encrypt_cb.isChecked() finally: self.playout.clear_password_fields() class ChangePasswordDialogForHW(ChangePasswordDialogBase): def __init__(self, parent, wallet): ChangePasswordDialogBase.__init__(self, parent, wallet) def create_password_layout(self, wallet, is_encrypted, OK_button): if not is_encrypted: msg = _('Your wallet file is NOT encrypted.') else: msg = _('Your wallet file is encrypted.') msg += '\n' + _('Note: If you enable this setting, you will need your hardware device to open your wallet.') msg += '\n' + _('Use this dialog to toggle encryption.') self.playout = PasswordLayoutForHW(msg) def run(self): if not self.exec_(): return False, None return True, self.playout.encrypt_cb.isChecked() class PasswordDialog(WindowModalDialog): def __init__(self, parent=None, msg=None): msg = msg or _('Please enter your password') WindowModalDialog.__init__(self, parent, _("Enter Password")) self.pw = pw = PasswordLineEdit() vbox = QVBoxLayout() vbox.addWidget(QLabel(msg)) grid = QGridLayout() grid.setSpacing(8) grid.addWidget(QLabel(_('Password')), 1, 0) grid.addWidget(pw, 1, 1) vbox.addLayout(grid) vbox.addLayout(Buttons(CancelButton(self), OkButton(self))) self.setLayout(vbox) run_hook('password_dialog', pw, grid, 1) def run(self): try: if not self.exec_(): return return self.pw.text() finally: self.pw.clear()
mit
7,213,216,465,206,087,000
33.993711
118
0.604421
false
rhyolight/nupic.research
htmresearch/frameworks/pytorch/sparse_speech_experiment.py
1
17584
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2018, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from __future__ import print_function import os import time import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.data.sampler import WeightedRandomSampler from htmresearch.frameworks.pytorch.benchmark_utils import ( register_nonzero_counter, unregister_counter_nonzero) from htmresearch.support.expsuite import PyExperimentSuite from htmresearch.frameworks.pytorch.sparse_net import SparseNet from htmresearch.frameworks.pytorch.duty_cycle_metrics import plotDutyCycles from htmresearch.frameworks.pytorch.speech_commands_dataset import ( SpeechCommandsDataset, BackgroundNoiseDataset ) from htmresearch.frameworks.pytorch.audio_transforms import * from htmresearch.frameworks.pytorch.resnet_models import resnet9 class SparseSpeechExperiment(PyExperimentSuite): """ This experiment tests the Google Speech Commands dataset, available here: http://download.tensorflow.org/data/speech_commands_v0.01.tar Allows running multiple sparse speech experiments in parallel """ def parse_cfg(self): super(SparseSpeechExperiment, self).parse_cfg() # Change the current working directory to be relative to 'experiments.cfg' projectDir = os.path.dirname(self.options.config) projectDir = os.path.abspath(projectDir) os.chdir(projectDir) def reset(self, params, repetition): """ Called once at the beginning of each experiment. """ self.startTime = time.time() print(params) torch.manual_seed(params["seed"] + repetition) np.random.seed(params["seed"] + repetition) # Get our directories correct self.dataDir = os.path.join(params["datadir"], "speech_commands") self.resultsDir = os.path.join(params["path"], params["name"], "plots") if not os.path.exists(self.resultsDir): os.makedirs(self.resultsDir) self.use_cuda = not params["no_cuda"] and torch.cuda.is_available() if self.use_cuda: print("*********using cuda!") self.device = torch.device("cuda" if self.use_cuda else "cpu") self.loadDatasets(params) # Parse 'n' and 'k' parameters n = params["n"] k = params["k"] if isinstance(n, basestring): n = map(int, n.split("_")) if isinstance(k, basestring): k = map(int, k.split("_")) if params["model_type"] == "cnn": c1_out_channels = params["c1_out_channels"] c1_k = params["c1_k"] if isinstance(c1_out_channels, basestring): c1_out_channels = map(int, c1_out_channels.split("_")) if isinstance(c1_k, basestring): c1_k = map(int, c1_k.split("_")) sp_model = SparseNet( inputSize=params.get("c1_input_shape", (1, 32, 32)), outputSize=len(self.train_loader.dataset.classes), outChannels=c1_out_channels, c_k=c1_k, dropout=params["dropout"], n=n, k=k, boostStrength=params["boost_strength"], weightSparsity=params["weight_sparsity"], boostStrengthFactor=params["boost_strength_factor"], kInferenceFactor=params["k_inference_factor"], useBatchNorm=params["use_batch_norm"], ) print("c1OutputLength=", sp_model.cnnSdr[0].outputLength) elif params["model_type"] == "resnet9": sp_model = resnet9(num_classes=len(self.train_loader.dataset.classes), in_channels=1) elif params["model_type"] == "linear": sp_model = SparseNet( n=n, k=k, inputSize=32*32, outputSize=len(self.train_loader.dataset.classes), boostStrength=params["boost_strength"], weightSparsity=params["weight_sparsity"], boostStrengthFactor=params["boost_strength_factor"], kInferenceFactor=params["k_inference_factor"], dropout=params["dropout"], useBatchNorm=params["use_batch_norm"], ) else: raise RuntimeError("Unknown model type") if torch.cuda.device_count() > 1: print("Using", torch.cuda.device_count(), "GPUs") sp_model = torch.nn.DataParallel(sp_model) self.model = sp_model.to(self.device) self.learningRate = params["learning_rate"] self.optimizer = self.createOptimizer(params, self.model) self.lr_scheduler = self.createLearningRateScheduler(params, self.optimizer) def iterate(self, params, repetition, iteration): """ Called once for each training iteration (== epoch here). """ print("\nStarting iteration",iteration) print("Learning rate:", self.learningRate if self.lr_scheduler is None else self.lr_scheduler.get_lr()) t1 = time.time() ret = {} # Update learning rate using learning rate scheduler if configured if self.lr_scheduler is not None: # ReduceLROnPlateau lr_scheduler step should be called after validation, # all other lr_schedulers should be called before training if params["lr_scheduler"] != "ReduceLROnPlateau": self.lr_scheduler.step() self.train(params, epoch=iteration) # Run validation test if self.validation_loader is not None: validation = self.test(params, self.validation_loader) # ReduceLROnPlateau step should be called after validation if params["lr_scheduler"] == "ReduceLROnPlateau": self.lr_scheduler.step(validation["test_loss"]) ret["validation"] = validation print("Validation: error=", validation["testerror"], "entropy=", validation["entropy"], "loss=", validation["test_loss"]) ret.update({"validationerror": validation["testerror"]}) # Run test set if self.test_loader is not None: testResults = self.test(params, self.test_loader) ret["testResults"] = testResults print("Test: error=", testResults["testerror"], "entropy=", testResults["entropy"], "loss=", testResults["test_loss"]) ret.update({"testerror": testResults["testerror"]}) # Run bg noise set if self.bg_noise_loader is not None: bgResults = self.test(params, self.bg_noise_loader) ret["bgResults"] = bgResults print("BG noise error=", bgResults["testerror"]) ret.update({"bgerror": bgResults["testerror"]}) ret.update({"elapsedTime": time.time() - self.startTime}) ret.update({"learningRate": self.learningRate if self.lr_scheduler is None else self.lr_scheduler.get_lr()}) # Run noise set ret.update(self.runNoiseTests(params)) print("Noise test results: totalCorrect=", ret["totalCorrect"], "Test error=", ret["testerror"], ", entropy=", ret["entropy"]) ret.update({"elapsedTime": time.time() - self.startTime}) ret.update({"learningRate": self.learningRate if self.lr_scheduler is None else self.lr_scheduler.get_lr()}) print("Iteration time= {0:.3f} secs, " "total elapsed time= {1:.3f} mins".format( time.time() - t1,ret["elapsedTime"]/60.0)) return ret def finalize(self, params, rep): """ Save the full model once we are done. """ if params.get("saveNet", True): saveDir = os.path.join(params["path"], params["name"], "model.pt") torch.save(self.model, saveDir) def createLearningRateScheduler(self, params, optimizer): """ Creates the learning rate scheduler and attach the optimizer """ lr_scheduler = params.get("lr_scheduler", None) if lr_scheduler is None: return None if lr_scheduler == "StepLR": lr_scheduler_params = "{'step_size': 1, 'gamma':" + str(params["learning_rate_factor"]) + "}" else: lr_scheduler_params = params.get("lr_scheduler_params", None) if lr_scheduler_params is None: raise ValueError("Missing 'lr_scheduler_params' for {}".format(lr_scheduler)) # Get lr_scheduler class by name clazz = eval("torch.optim.lr_scheduler.{}".format(lr_scheduler)) # Parse scheduler parameters from config lr_scheduler_params = eval(lr_scheduler_params) return clazz(optimizer, **lr_scheduler_params) def createOptimizer(self, params, model): """ Create a new instance of the optimizer """ lr = params["learning_rate"] print("Creating optimizer with learning rate=", lr) if params["optimizer"] == "SGD": optimizer = optim.SGD(model.parameters(), lr=lr, momentum=params["momentum"], weight_decay=params["weight_decay"], ) elif params["optimizer"] == "Adam": optimizer = optim.Adam(model.parameters(), lr=lr) else: raise LookupError("Incorrect optimizer value") return optimizer def train(self, params, epoch): """ Train one epoch of this model by iterating through mini batches. An epoch ends after one pass through the training set, or if the number of mini batches exceeds the parameter "batches_in_epoch". """ self.model.train() for batch_idx, batch in enumerate(self.train_loader): data = batch["input"] if params["model_type"] in ["resnet9", "cnn"]: data = torch.unsqueeze(data, 1) target = batch["target"] data, target = data.to(self.device), target.to(self.device) self.optimizer.zero_grad() output = self.model(data) loss = F.nll_loss(output, target) loss.backward() self.optimizer.step() # Log info every log_interval mini batches if batch_idx % params["log_interval"] == 0: entropy = self.model.entropy() print( "logging: ",self.model.getLearningIterations(), " learning iterations, elapsedTime", time.time() - self.startTime, " entropy:", float(entropy)," / ", self.model.maxEntropy(), "loss:", loss.item()) if params["create_plots"]: plotDutyCycles(self.model.dutyCycle, self.resultsDir + "/figure_"+str(epoch)+"_"+str( self.model.getLearningIterations())) if batch_idx >= params["batches_in_epoch"]: break self.model.postEpoch() def test(self, params, test_loader): """ Test the model using the given loader and return test metrics """ self.model.eval() test_loss = 0 correct = 0 nonzeros = None count_nonzeros = params.get("count_nonzeros", False) if count_nonzeros: nonzeros = {} register_nonzero_counter(self.model, nonzeros) with torch.no_grad(): for batch in test_loader: data = batch["input"] if params["model_type"] in ["resnet9", "cnn"]: data = torch.unsqueeze(data, 1) target = batch["target"] data, target = data.to(self.device), target.to(self.device) output = self.model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() # count nonzeros only once if count_nonzeros: count_nonzeros = False unregister_counter_nonzero(self.model) test_loss /= len(test_loader.sampler) test_error = 100. * correct / len(test_loader.sampler) entropy = self.model.entropy() ret = {"num_correct": correct, "test_loss": test_loss, "testerror": test_error, "entropy": float(entropy)} if nonzeros is not None: ret["nonzeros"] = nonzeros return ret def runNoiseTests(self, params): """ Test the model with different noise values and return test metrics. """ ret = {} testDataDir = os.path.join(self.dataDir, "test") n_mels = 32 # Test with noise total_correct = 0 for noise in [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]: # Create noise dataset with noise transform noiseTransform = transforms.Compose([ FixAudioLength(), AddNoise(noise), ToSTFT(), ToMelSpectrogramFromSTFT(n_mels=n_mels), DeleteSTFT(), ToTensor('mel_spectrogram', 'input') ]) noiseDataset = SpeechCommandsDataset( testDataDir, noiseTransform, silence_percentage=0, ) noise_loader = DataLoader(noiseDataset, batch_size=params["batch_size"], sampler=None, shuffle=False, pin_memory=self.use_cuda, ) testResult = self.test(params, noise_loader) total_correct += testResult["num_correct"] ret[noise]= testResult ret["totalCorrect"] = total_correct ret["testerror"] = ret[0.0]["testerror"] ret["entropy"] = ret[0.0]["entropy"] if "nonzeros" in ret[0.0]: ret["nonzeros"] = ret[0.0]["nonzeros"] return ret def loadDatasets(self, params): """ The GSC dataset specifies specific files to be used as training, test, and validation. We assume the data has already been processed according to those files into separate train, test, and valid directories. For our experiment we use a subset of the data (10 categories out of 30), just like the Kaggle competition. """ n_mels = 32 trainDataDir = os.path.join(self.dataDir, "train") testDataDir = os.path.join(self.dataDir, "test") validationDataDir = os.path.join(self.dataDir, "valid") backgroundNoiseDir = os.path.join(self.dataDir, params["background_noise_dir"]) dataAugmentationTransform = transforms.Compose([ ChangeAmplitude(), ChangeSpeedAndPitchAudio(), FixAudioLength(), ToSTFT(), StretchAudioOnSTFT(), TimeshiftAudioOnSTFT(), FixSTFTDimension(), ]) featureTransform = transforms.Compose( [ ToMelSpectrogramFromSTFT(n_mels=n_mels), DeleteSTFT(), ToTensor('mel_spectrogram', 'input') ]) trainDataset = SpeechCommandsDataset( trainDataDir, transforms.Compose([ dataAugmentationTransform, # add_bg_noise, # Uncomment to allow adding BG noise # during training featureTransform ])) testFeatureTransform = transforms.Compose([ FixAudioLength(), ToMelSpectrogram(n_mels=n_mels), ToTensor('mel_spectrogram', 'input') ]) validationDataset = SpeechCommandsDataset( validationDataDir, testFeatureTransform, silence_percentage=0, ) testDataset = SpeechCommandsDataset( testDataDir, testFeatureTransform, silence_percentage=0, ) weights = trainDataset.make_weights_for_balanced_classes() sampler = WeightedRandomSampler(weights, len(weights)) # print("Number of training samples=",len(trainDataset)) # print("Number of validation samples=",len(validationDataset)) # print("Number of test samples=",len(testDataset)) self.train_loader = DataLoader(trainDataset, batch_size=params["batch_size"], sampler=sampler ) self.validation_loader = DataLoader(validationDataset, batch_size=params["batch_size"], shuffle=False ) self.test_loader = DataLoader(testDataset, batch_size=params["batch_size"], sampler=None, shuffle=False ) bg_dataset = BackgroundNoiseDataset( backgroundNoiseDir, transforms.Compose([FixAudioLength(), ToSTFT()]), ) bgNoiseTransform = transforms.Compose([ FixAudioLength(), ToSTFT(), AddBackgroundNoiseOnSTFT(bg_dataset), ToMelSpectrogramFromSTFT(n_mels=n_mels), DeleteSTFT(), ToTensor('mel_spectrogram', 'input') ]) bgNoiseDataset = SpeechCommandsDataset( testDataDir, bgNoiseTransform, silence_percentage=0, ) self.bg_noise_loader = DataLoader(bgNoiseDataset, batch_size=params["batch_size"], sampler=None, shuffle=False ) if __name__ == '__main__': suite = SparseSpeechExperiment() suite.start()
gpl-3.0
-2,359,830,727,427,281,000
33.011605
99
0.615446
false
boudewijnrempt/HyvesDesktop
3rdparty/socorro/socorro/database/schema.py
1
70902
import psycopg2 as pg import datetime as dt import threading import sets import socorro.lib.prioritize as socorro_pri import socorro.lib.psycopghelper as socorro_psy import socorro.database.postgresql as socorro_pg import socorro.lib.util as socorro_util """ Schema.py contains several utility functions and the code which describes all the database tables used by socorro. It has a test file: ../unittest/database/testSchema.py which MUST BE CHANGED IN PARALLEL to changes in schema.py. In particular, if you add, remove or rename any of the XxxTable classes in this file, you must make a parallel change to the list hardCodedSchemaClasses in the test file. """ #----------------------------------------------------------------------------------------------------------------- def mondayPairsIteratorFactory(minDate, maxDate): """ Given a pair of dates, creates iterator that returns (aMonday,theNextMonday) such that - the first returned pair defines an interval holding minDate - the last returned pair defines an interval holding maxDate if minDate or maxDate are not instances of datetime.date, raises TypeError if maxDate > minDate, raises ValueError """ if not (isinstance(minDate,dt.date) and isinstance(maxDate,dt.date)): raise TypeError("minDate and maxDate must be instances of datetime.date") if maxDate < minDate: raise ValueError("minDate must be <= maxDate") def anIterator(): oneWeek = dt.timedelta(7) aDate = minDate - dt.timedelta(minDate.weekday()) # begin on Monday before minDate while aDate <= maxDate: nextMonday = aDate + oneWeek yield (aDate, nextMonday) aDate = nextMonday return anIterator() #----------------------------------------------------------------------------------------------------------------- # For each database TableClass below, # databaseDependenciesForSetup[TableClass] = [List of TableClasses on which this TableClass depends] # NOTE: This requires that new Tables be added textually below every Table on which they depend databaseDependenciesForSetup = {} def getOrderedSetupList(whichTables = None): """ A helper function to get the correct order to create tables during setup. whichTables is a list of Tables, possibly empty, or None If not whichTables, then all the known tables are visited """ # if whichTables is None, then databaseDependenciesForSetup.keys() is used return socorro_pri.dependencyOrder(databaseDependenciesForSetup,whichTables) databaseDependenciesForPartition = {} def getOrderedPartitionList(whichTables): """ A helper function to get the needed PartionedTables for a given set of PartitionedTables """ if not whichTables: return [] order = socorro_pri.dependencyOrder(databaseDependenciesForPartition,whichTables) return order # This set caches knowledge of existing partition tables to avoid hitting database. Beware cache incoherence partitionCreationHistory = set() #----------------------------------------------------------------------------------------------------------------- def partitionWasCreated(partitionTableName): """Helper function to examine partitionCreationHistory""" return partitionTableName in partitionCreationHistory #----------------------------------------------------------------------------------------------------------------- def markPartitionCreated(partitionTableName): """Helper function to update partitionCreationHistory""" global partitionCreationHistory partitionCreationHistory.add(partitionTableName) #================================================================================================================= class PartitionControlParameterRequired(Exception): def __init__(self): super(PartitionControlParameterRequired, self).__init__("No partition control paramter was supplied") #================================================================================================================= class DatabaseObject(object): """ Base class for all objects (Tables, Constraints, Indexes) that may be individually created and used in the database Classes that inherit DatabaseObject: - Must supply appropriate creationSql parameter to the superclass constructor - May override method additionalCreationProcedure(self,aDatabaseCursor). If this is provided, it is called after creationSql is executed in method create(self,aDatabaseCursor) The cursor's connection is neither committed nor rolled back during the call to create - May override methods which do nothing in this class: = drop(self,aDatabaseCursor) = updateDefinition(self,aDatabaseCursor) = createPartitions(self,aDatabaseCursor,aPartitionDetailsIterator) Every leaf class that inherits DatabaseObject should be aware of the module-level dictionary: databaseDependenciesForSetup. If that leaf class should be created when the database is being set up, the class itself must be added as a key in the databaseDependenciesForSetup dictionary. The value associated with that key is a possibly empty iterable containing the classes on which the particular leaf class depends: Those that must already be created before the particular instance is created. This is often because the particular table has one or more foreign keys referencing tables upon which it depends. """ #----------------------------------------------------------------------------------------------------------------- def __init__(self, name=None, logger=None, creationSql=None, **kwargs): super(DatabaseObject, self).__init__() self.name = name self.creationSql = creationSql self.logger = logger #----------------------------------------------------------------------------------------------------------------- def _createSelf(self,databaseCursor): databaseCursor.execute(self.creationSql) self.additionalCreationProcedures(databaseCursor) #----------------------------------------------------------------------------------------------------------------- def create(self, databaseCursor): orderedTableList = getOrderedSetupList([self.__class__]) for tableClass in orderedTableList: tableObject = self if not self.__class__ == tableClass: tableObject = tableClass(logger = self.logger) databaseCursor.execute("savepoint creating_%s"%tableObject.name) try: tableObject._createSelf(databaseCursor) databaseCursor.execute("release savepoint creating_%s"%tableObject.name) except pg.ProgrammingError,x: databaseCursor.execute("rollback to creating_%s"%tableObject.name) databaseCursor.connection.commit() self.logger.debug("%s - in create for %s, table %s exists",threading.currentThread().getName(),self.name,tableObject.name) #----------------------------------------------------------------------------------------------------------------- def additionalCreationProcedures(self, databaseCursor): pass #----------------------------------------------------------------------------------------------------------------- def updateDefinition(self, databaseCursor): pass #----------------------------------------------------------------------------------------------------------------- def drop(self, databaseCursor): pass #----------------------------------------------------------------------------------------------------------------- def createPartitions(self, databaseCursor, iterator): pass #================================================================================================================= class Table (DatabaseObject): """ Base class for all Table objects that may be created and used in the database. Classes that inherit DatabaseObject: - Must supply appropriate creationSql parameter to the superclass constructor - May override method insert(self,rowTuple, **kwargs) to do the right thing during an insert - May provide method alterColumnDefinitions(self,aDatabaseCursor,tableName) - May provide method updateDefinition(self,aDatabaseCursor) - Must be aware of databaseDependenciesForSetup and how it is used class Table inherits method create from DatabaseObject class Table provides a reasonable implementation of method drop, overriding the empty one in DatabaseObject """ #----------------------------------------------------------------------------------------------------------------- def __init__(self, name=None, logger=None, creationSql=None, **kwargs): super(Table, self).__init__(name=name, logger=logger, creationSql=creationSql, **kwargs) #----------------------------------------------------------------------------------------------------------------- def drop(self, databaseCursor): databaseCursor.execute("drop table if exists %s cascade" % self.name) #----------------------------------------------------------------------------------------------------------------- def insert(self, rowTuple=None, **kwargs): pass #================================================================================================================= class PartitionedTable(Table): """ Base class for Tables that will be partitioned or are likely to be programmatically altered. Classes that inherit PartitionedTable - Must supply self.insertSql with 'TABLENAME' replacing the actual table name - Must supply appropriate creationSql and partitionCreationSqlTemplate to the superclass constructor - Should NOT override method insert, which does something special for PartitionedTables - May override method partitionCreationParameters(self, partitionDetails) which returns a dictionary suitable for string formatting Every leaf class that inherits PartitionedTable should be aware of the module-level dictionary: databaseDependenciesForPartition If that leaf class has a partition that depends upon some other partition, then it must be added as a key to the dictionary databaseDependenciesForPartition. The value associated with that key is an iterable containing the classes that define the partitions on which this particular leaf class depends: Those that must already be created before the particular instance is created. This is most often because the particular partition table has one or more foreign keys referencing partition tables upon which it depends. """ #----------------------------------------------------------------------------------------------------------------- partitionCreationLock = threading.RLock() def __init__ (self, name=None, logger=None, creationSql=None, partitionNameTemplate='%s', partitionCreationSqlTemplate='', weekInterval=None, **kwargs): super(PartitionedTable, self).__init__(name=name, logger=logger, creationSql=creationSql) self.partitionNameTemplate = partitionNameTemplate self.partitionCreationSqlTemplate = partitionCreationSqlTemplate self.weekInterval = weekInterval if not weekInterval: today = dt.date.today() self.weekInterval = mondayPairsIteratorFactory(today,today) self.insertSql = None #----------------------------------------------------------------------------------------------------------------- #def additionalCreationProcedures(self, databaseCursor): #self.createPartitions(databaseCursor, self.weekInterval) #----------------------------------------------------------------------------------------------------------------- def _createOwnPartition(self, databaseCursor, uniqueItems): """ Internal method that assumes all precursor partitions are already in place before creating this one. Called from createPartitions(same parameters) to avoid bottomless recursion. Creates one or more partitions for this particular table, (more if uniqueItems has more than one element) side effect: Cursor's connection has been committed() by the time we return """ self.logger.debug("%s - in createOwnPartition for %s",threading.currentThread().getName(),self.name) for x in uniqueItems: #self.logger.debug("DEBUG - item value is %s",x) partitionCreationParameters = self.partitionCreationParameters(x) partitionName = self.partitionNameTemplate % partitionCreationParameters["partitionName"] if partitionWasCreated(partitionName): #self.logger.debug("DEBUG - skipping creation of %s",partitionName) continue partitionCreationSql = self.partitionCreationSqlTemplate % partitionCreationParameters #self.logger.debug("%s - Sql for %s is %s",threading.currentThread().getName(),self.name,partitionCreationSql) aPartition = Table(name=partitionName, logger=self.logger, creationSql=partitionCreationSql) self.logger.debug("%s - savepoint createPartitions_%s",threading.currentThread().getName(), partitionName) databaseCursor.execute("savepoint createPartitions_%s" % partitionName) try: self.logger.debug("%s - creating %s", threading.currentThread().getName(), partitionName) aPartition._createSelf(databaseCursor) markPartitionCreated(partitionName) self.logger.debug("%s - successful - releasing savepoint", threading.currentThread().getName()) databaseCursor.execute("release savepoint createPartitions_%s" % partitionName) except pg.ProgrammingError, x: self.logger.debug("%s -- Rolling back and releasing savepoint: Creating %s failed in createPartitions: %s", threading.currentThread().getName(), partitionName, str(x).strip()) databaseCursor.execute("rollback to createPartitions_%s; release savepoint createPartitions_%s;" % (partitionName, partitionName)) databaseCursor.connection.commit() #----------------------------------------------------------------------------------------------------------------- def createPartitions(self, databaseCursor, iterator): """ Create this table's partition(s) and all the precursor partition(s) needed to support this one databaseCursor: as always iterator: Supplies at least one unique identifier (a date). If more than one then more than one (family of) partition(s) is created side effects: The cursor's connection will be rolled back or committed by the end of this method """ self.logger.debug("%s - in createPartitions", threading.currentThread().getName()) partitionTableClasses = getOrderedPartitionList([self.__class__]) #self.logger.debug("DEBUG - Classes are %s",partitionTableClasses) uniqueItems = [x for x in iterator] for tableClass in partitionTableClasses: tableObject = self if not self.__class__ == tableClass: tableObject = tableClass(logger = self.logger) #self.logger.debug("DEBUG - Handling %s /w/ sql %s",tableObject.name,tableObject.partitionCreationSqlTemplate) tableObject._createOwnPartition(databaseCursor,uniqueItems) #----------------------------------------------------------------------------------------------------------------- def partitionCreationParameters(self,partitioningData): """returns: a dictionary of string substitution parameters""" return {} #----------------------------------------------------------------------------------------------------------------- def updateColumnDefinitions(self, databaseCursor): childTableList = socorro_pg.childTablesForTable(self.name, databaseCursor) for aChildTableName in childTableList: databaseCursor.execute("alter table %s no inherit %s", (aTable, aChildTableName)) self.alterColumnDefinitions(databaseCursor, self.name) for aChildTableName in childTableList: self.alterColumnDefinitions(databaseCursor, aChildTableName) for aChildTableName in childTableList: databaseCursor.execute("alter table %s inherit %s", (aTable, aChildTableName)) #----------------------------------------------------------------------------------------------------------------- def insert(self, databaseCursor, row, alternateCursorFunction, **kwargs): try: uniqueIdentifier = kwargs["date_processed"] except KeyError: raise PartitionControlParameterRequired() dateRangeTuple = mondayPairsIteratorFactory(uniqueIdentifier, uniqueIdentifier).next()# create iterator and throw away partitionName = self.partitionCreationParameters(dateRangeTuple)["partitionName"] insertSql = self.insertSql.replace('TABLENAME', partitionName) try: databaseCursor.execute("savepoint %s" % partitionName) #self.logger.debug("%s - Trying to insert into %s", threading.currentThread().getName(), self.name) databaseCursor.execute(insertSql, row) databaseCursor.execute("release savepoint %s" % partitionName) except pg.ProgrammingError, x: self.logger.debug('%s - Rolling back and releasing savepoint: failed: %s', threading.currentThread().getName(), str(x).strip()) databaseCursor.execute("rollback to %s; release savepoint %s;" % (partitionName, partitionName)) databaseCursor.connection.commit() # This line added after of hours of blood, sweat, tears. Remove only per deathwish. altConnection, altCursor = alternateCursorFunction() dateIterator = mondayPairsIteratorFactory(uniqueIdentifier, uniqueIdentifier) try: self.createPartitions(altCursor,dateIterator) except pg.DatabaseError,x: self.logger.debug("%s - Failed to create partition(s) %s: %s:%s", threading.currentThread().getName(), partitionName, type(x), x) self.logger.debug("%s - trying to insert into %s for the second time", threading.currentThread().getName(), self.name) databaseCursor.execute(insertSql, row) #================================================================================================================= class BranchesTable(Table): """Define the table 'branches'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(BranchesTable, self).__init__(name="branches", logger=logger, creationSql = """ CREATE TABLE branches ( product character varying(30) NOT NULL, version character varying(16) NOT NULL, branch character varying(24) NOT NULL, PRIMARY KEY (product, version) );""") databaseDependenciesForSetup[BranchesTable] = [] #================================================================================================================= class ReportsTable(PartitionedTable): """Define the table 'reports'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(ReportsTable, self).__init__(name='reports', logger=logger, creationSql=""" CREATE TABLE reports ( id serial NOT NULL, client_crash_date timestamp with time zone, date_processed timestamp without time zone, uuid character varying(50) NOT NULL, product character varying(30), version character varying(16), build character varying(30), signature character varying(255), url character varying(255), install_age integer, last_crash integer, uptime integer, cpu_name character varying(100), cpu_info character varying(100), reason character varying(255), address character varying(20), os_name character varying(100), os_version character varying(100), email character varying(100), build_date timestamp without time zone, user_id character varying(50), started_datetime timestamp without time zone, completed_datetime timestamp without time zone, success boolean, truncated boolean, processor_notes text, user_comments character varying(1024), app_notes character varying(1024), distributor character varying(20), distributor_version character varying(20), logfile text ); --CREATE TRIGGER reports_insert_trigger -- BEFORE INSERT ON reports -- FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""", partitionCreationSqlTemplate=""" CREATE TABLE %(partitionName)s ( CONSTRAINT %(partitionName)s_date_check CHECK (TIMESTAMP without time zone '%(startDate)s' <= date_processed and date_processed < TIMESTAMP without time zone '%(endDate)s'), CONSTRAINT %(partitionName)s_unique_uuid unique (uuid), PRIMARY KEY(id) ) INHERITS (reports); CREATE INDEX %(partitionName)s_date_processed_key ON %(partitionName)s (date_processed); CREATE INDEX %(partitionName)s_uuid_key ON %(partitionName)s (uuid); CREATE INDEX %(partitionName)s_signature_key ON %(partitionName)s (signature); CREATE INDEX %(partitionName)s_url_key ON %(partitionName)s (url); CREATE INDEX %(partitionName)s_product_version_key ON %(partitionName)s (product, version); --CREATE INDEX %(partitionName)s_uuid_date_processed_key ON %(partitionName)s (uuid, date_processed); CREATE INDEX %(partitionName)s_signature_date_processed_key ON %(partitionName)s (signature, date_processed); """ ) self.insertSql = """insert into TABLENAME (uuid, client_crash_date, date_processed, product, version, build, url, install_age, last_crash, uptime, email, build_date, user_id, user_comments, app_notes, distributor, distributor_version, logfile) values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" #----------------------------------------------------------------------------------------------------------------- def additionalCreationProcedures(self, databaseCursor): pass #----------------------------------------------------------------------------------------------------------------- def partitionCreationParameters(self, uniqueIdentifier): startDate, endDate = uniqueIdentifier startDateAsString = "%4d-%02d-%02d" % startDate.timetuple()[:3] compressedStartDateAsString = startDateAsString.replace("-", "") endDateAsString = "%4d-%02d-%02d" % endDate.timetuple()[:3] return { "partitionName": "reports_%s" % compressedStartDateAsString, "startDate": startDateAsString, "endDate": endDateAsString, "compressedStartDate": compressedStartDateAsString } #----------------------------------------------------------------------------------------------------------------- def alterColumnDefinitions(self, databaseCursor, tableName): columnNameTypeDictionary = socorro_pg.columnNameTypeDictionaryForTable(tableName, databaseCursor) #if 'user_comments' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s rename column comments to user_comments""" % tableName) #if 'client_crash_date' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s rename column date to client_crash_date""" % tableName) #if 'app_notes' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s ADD COLUMN app_notes character varying(1024)""" % tableName) #if 'distributor' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s ADD COLUMN distributor character varying(20)""" % tableName) #if 'distributor_version' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s ADD COLUMN distributor_version character varying(20)""" % tableName) #if 'message' in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s rename column message to processor_notes""" % tableName) #if 'started_datetime' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s rename column starteddatetime to started_datetime""" % tableName) #if 'completed_datetime' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s rename column completeddatetime to completed_datetime""" % tableName) #----------------------------------------------------------------------------------------------------------------- def updateDefinition(self, databaseCursor): databaseCursor.execute("""DROP RULE IF EXISTS rule_reports_partition ON reports;""") self.updateColumnDefinitions(databaseCursor) indexesList = socorro_pg.indexesForTable(self.name, databaseCursor) #if 'reports_pkey' in indexesList: #databaseCursor.execute("""ALTER TABLE reports DROP CONSTRAINT reports_pkey CASCADE;""") #if 'idx_reports_date' in indexesList: #databaseCursor.execute("""DROP INDEX idx_reports_date;""") #if 'ix_reports_signature' in indexesList: #databaseCursor.execute("""DROP INDEX ix_reports_signature;""") #if 'ix_reports_url' in indexesList: #databaseCursor.execute("""DROP INDEX ix_reports_url;""") #if 'ix_reports_uuid' in indexesList: #databaseCursor.execute("""DROP INDEX ix_reports_uuid;""") #triggersList = socorro_pg.triggersForTable(self.name, databaseCursor) #if 'reports_insert_trigger' not in triggersList: #databaseCursor.execute("""CREATE TRIGGER reports_insert_trigger #BEFORE INSERT ON reports #FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""") databaseDependenciesForSetup[ReportsTable] = [] #================================================================================================================= class DumpsTable(PartitionedTable): """Define the table 'dumps'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(DumpsTable, self).__init__(name='dumps', logger=logger, creationSql=""" CREATE TABLE dumps ( report_id integer NOT NULL PRIMARY KEY, date_processed timestamp without time zone, data text ); --CREATE TRIGGER dumps_insert_trigger -- BEFORE INSERT ON dumps -- FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""", partitionCreationSqlTemplate=""" CREATE TABLE %(partitionName)s ( CONSTRAINT %(partitionName)s_date_check CHECK (TIMESTAMP without time zone '%(startDate)s' <= date_processed and date_processed < TIMESTAMP without time zone '%(endDate)s') ) INHERITS (dumps); CREATE INDEX %(partitionName)s_report_id_date_key ON %(partitionName)s (report_id, date_processed); ALTER TABLE %(partitionName)s ADD CONSTRAINT %(partitionName)s_report_id_fkey FOREIGN KEY (report_id) REFERENCES reports_%(compressedStartDate)s(id) ON DELETE CASCADE; """) self.insertSql = """insert into TABLENAME (report_id, date_processed, data) values (%s, %s, %s)""" #----------------------------------------------------------------------------------------------------------------- def alterColumnDefinitions(self, databaseCursor, tableName): columnNameTypeDictionary = socorro_pg.columnNameTypeDictionaryForTable(tableName, databaseCursor) #if 'date_processed' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s #ADD COLUMN date_processed TIMESTAMP without time zone;""" % tableName) #----------------------------------------------------------------------------------------------------------------- def updateDefinition(self, databaseCursor): self.updateColumnDefinitions(databaseCursor) indexesList = socorro_pg.indexesForTable(self.name, databaseCursor) #if 'dumps_pkey' in indexesList: #databaseCursor.execute("""ALTER TABLE dumps #DROP CONSTRAINT dumps_pkey;""") #databaseCursor.execute("""DROP RULE IF EXISTS rule_dumps_partition ON dumps;""") #triggersList = socorro_pg.triggersForTable(self.name, databaseCursor) #if 'dumps_insert_trigger' not in triggersList: #databaseCursor.execute("""CREATE TRIGGER dumps_insert_trigger #BEFORE INSERT ON dumps #FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""") #----------------------------------------------------------------------------------------------------------------- def partitionCreationParameters(self, uniqueIdentifier): startDate, endDate = uniqueIdentifier startDateAsString = "%4d-%02d-%02d" % startDate.timetuple()[:3] compressedStartDateAsString = startDateAsString.replace("-", "") endDateAsString = "%4d-%02d-%02d" % endDate.timetuple()[:3] return { "partitionName": "dumps_%s" % compressedStartDateAsString, "startDate": startDateAsString, "endDate": endDateAsString, "compressedStartDate": compressedStartDateAsString } databaseDependenciesForSetup[DumpsTable] = [] databaseDependenciesForPartition[DumpsTable] = [ReportsTable] #================================================================================================================= class ExtensionsTable(PartitionedTable): """Define the table 'extensions'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(ExtensionsTable, self).__init__(name='extensions', logger=logger, creationSql=""" CREATE TABLE extensions ( report_id integer NOT NULL, date_processed timestamp without time zone, extension_key integer NOT NULL, extension_id character varying(100) NOT NULL, extension_version character varying(16) ); --CREATE TRIGGER extensions_insert_trigger -- BEFORE INSERT ON extensions -- FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""", partitionCreationSqlTemplate=""" CREATE TABLE %(partitionName)s ( CONSTRAINT %(partitionName)s_date_check CHECK (TIMESTAMP without time zone '%(startDate)s' <= date_processed and date_processed < TIMESTAMP without time zone '%(endDate)s'), PRIMARY KEY (report_id) ) INHERITS (extensions); CREATE INDEX %(partitionName)s_report_id_date_key ON %(partitionName)s (report_id, date_processed); ALTER TABLE %(partitionName)s ADD CONSTRAINT %(partitionName)s_report_id_fkey FOREIGN KEY (report_id) REFERENCES reports_%(compressedStartDate)s(id) ON DELETE CASCADE; """) self.insertSql = """insert into TABLENAME (report_id, date_processed, extension_key, extension_id, extension_version) values (%s, %s, %s, %s, %s)""" #----------------------------------------------------------------------------------------------------------------- def alterColumnDefinitions(self, databaseCursor, tableName): columnNameTypeDictionary = socorro_pg.columnNameTypeDictionaryForTable(tableName, databaseCursor) #if 'date_processed' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s #ADD COLUMN date_processed TIMESTAMP without time zone;""" % tableName) #----------------------------------------------------------------------------------------------------------------- def updateDefinition(self, databaseCursor): self.updateColumnDefinitions(databaseCursor) indexesList = socorro_pg.indexesForTable(self.name, databaseCursor) #if 'extensions_pkey' in indexesList: #databaseCursor.execute("""ALTER TABLE extensions #DROP CONSTRAINT extensions_pkey;""") #databaseCursor.execute("""DROP RULE IF EXISTS rule_extensions_partition ON extensions;""") #triggersList = socorro_pg.triggersForTable(self.name, databaseCursor) #if 'extensions_insert_trigger' not in triggersList: #databaseCursor.execute("""CREATE TRIGGER extensions_insert_trigger #BEFORE INSERT ON extensions #FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""") #----------------------------------------------------------------------------------------------------------------- def partitionCreationParameters(self, uniqueIdentifier): startDate, endDate = uniqueIdentifier startDateAsString = "%4d-%02d-%02d" % startDate.timetuple()[:3] compressedStartDateAsString = startDateAsString.replace("-", "") endDateAsString = "%4d-%02d-%02d" % endDate.timetuple()[:3] return { "partitionName": "extensions_%s" % compressedStartDateAsString, "startDate": startDateAsString, "endDate": endDateAsString, "compressedStartDate": compressedStartDateAsString } databaseDependenciesForPartition[ExtensionsTable] = [ReportsTable] databaseDependenciesForSetup[ExtensionsTable] = [] #================================================================================================================= class FramesTable(PartitionedTable): """Define the table 'frames'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(FramesTable, self).__init__(name='frames', logger=logger, creationSql=""" CREATE TABLE frames ( report_id integer NOT NULL, date_processed timestamp without time zone, frame_num integer NOT NULL, signature varchar(255) ); --CREATE TRIGGER frames_insert_trigger -- BEFORE INSERT ON frames -- FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""", partitionCreationSqlTemplate=""" CREATE TABLE %(partitionName)s ( CONSTRAINT %(partitionName)s_date_check CHECK (TIMESTAMP without time zone '%(startDate)s' <= date_processed and date_processed < TIMESTAMP without time zone '%(endDate)s'), PRIMARY KEY (report_id, frame_num) ) INHERITS (frames); CREATE INDEX %(partitionName)s_report_id_date_key ON %(partitionName)s (report_id, date_processed); ALTER TABLE %(partitionName)s ADD CONSTRAINT %(partitionName)s_report_id_fkey FOREIGN KEY (report_id) REFERENCES reports_%(compressedStartDate)s(id) ON DELETE CASCADE; """ ) self.insertSql = """insert into TABLENAME (report_id, frame_num, date_processed, signature) values (%s, %s, %s, %s)""" #----------------------------------------------------------------------------------------------------------------- def alterColumnDefinitions(self, databaseCursor, tableName): columnNameTypeDictionary = socorro_pg.columnNameTypeDictionaryForTable(tableName, databaseCursor) #if 'date_processed' not in columnNameTypeDictionary: #databaseCursor.execute("""ALTER TABLE %s #ADD COLUMN date_processed TIMESTAMP without time zone;""" % tableName) #----------------------------------------------------------------------------------------------------------------- def updateDefinition(self, databaseCursor): self.updateColumnDefinitions(databaseCursor) indexesList = socorro_pg.indexesForTable(self.name, databaseCursor) #if 'frames_pkey' in indexesList: #databaseCursor.execute("""ALTER TABLE frames #DROP CONSTRAINT frames_pkey;""") #databaseCursor.execute("""DROP RULE IF EXISTS rule_frames_partition ON frames;""") #triggersList = socorro_pg.triggersForTable(self.name, databaseCursor) #if 'frames_insert_trigger' not in triggersList: #databaseCursor.execute("""CREATE TRIGGER frames_insert_trigger #BEFORE INSERT ON frames #FOR EACH ROW EXECUTE PROCEDURE partition_insert_trigger();""") #----------------------------------------------------------------------------------------------------------------- def partitionCreationParameters(self, uniqueIdentifier): startDate, endDate = uniqueIdentifier startDateAsString = "%4d-%02d-%02d" % startDate.timetuple()[:3] compressedStartDateAsString = startDateAsString.replace("-", "") endDateAsString = "%4d-%02d-%02d" % endDate.timetuple()[:3] return { "partitionName": "frames_%s" % compressedStartDateAsString, "startDate": startDateAsString, "endDate": endDateAsString, "compressedStartDate": compressedStartDateAsString } databaseDependenciesForPartition[FramesTable] = [ReportsTable] databaseDependenciesForSetup[FramesTable] = [] #================================================================================================================= class PriorityJobsTable(Table): """Define the table 'priorityjobs'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, name="priorityjobs", logger=None, **kwargs): super(PriorityJobsTable, self).__init__(name=name, logger=logger, creationSql = """ CREATE TABLE %s ( uuid varchar(255) NOT NULL PRIMARY KEY );""" % name) databaseDependenciesForSetup[PriorityJobsTable] = [] #================================================================================================================= class ProcessorsTable(Table): """Define the table 'processors'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(ProcessorsTable, self).__init__(name = "processors", logger=logger, creationSql = """ CREATE TABLE processors ( id serial NOT NULL PRIMARY KEY, name varchar(255) NOT NULL UNIQUE, startdatetime timestamp without time zone NOT NULL, lastseendatetime timestamp without time zone );""") def updateDefinition(self, databaseCursor): indexesList = socorro_pg.indexesForTable(self.name, databaseCursor) #if 'idx_processor_name' in indexesList: #databaseCursor.execute("""DROP INDEX idx_processor_name; #ALTER TABLE processors ADD CONSTRAINT processors_name_key UNIQUE (name);""") databaseDependenciesForSetup[ProcessorsTable] = [] #================================================================================================================= class JobsTable(Table): """Define the table 'jobs'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(JobsTable, self).__init__(name = "jobs", logger=logger, creationSql = """ CREATE TABLE jobs ( id serial NOT NULL PRIMARY KEY, pathname character varying(1024) NOT NULL, uuid varchar(50) NOT NULL UNIQUE, owner integer, priority integer DEFAULT 0, queueddatetime timestamp without time zone, starteddatetime timestamp without time zone, completeddatetime timestamp without time zone, success boolean, message text, FOREIGN KEY (owner) REFERENCES processors (id) ); CREATE INDEX jobs_owner_key ON jobs (owner); CREATE INDEX jobs_owner_starteddatetime_key ON jobs (owner, starteddatetime); CREATE INDEX jobs_owner_starteddatetime_priority_key ON jobs (owner, starteddatetime, priority DESC); CREATE INDEX jobs_completeddatetime_queueddatetime_key ON jobs (completeddatetime, queueddatetime); --CREATE INDEX jobs_priority_key ON jobs (priority); """) #----------------------------------------------------------------------------------------------------------------- def updateDefinition(self, databaseCursor): indexesList = socorro_pg.indexesForTable(self.name, databaseCursor) if 'idx_owner' in indexesList: databaseCursor.execute(""" DROP INDEX idx_owner; CREATE INDEX jobs_owner_key ON jobs (owner);""") if 'idx_queueddatetime' in indexesList: databaseCursor.execute(""" DROP INDEX idx_queueddatetime;""") if 'idx_starteddatetime' in indexesList: databaseCursor.execute(""" DROP INDEX idx_starteddatetime;""") if 'jobs_priority_queueddatetime' in indexesList: databaseCursor.execute(""" DROP INDEX jobs_priority_queueddatetime;""") if 'jobs_owner_starteddatetime' in indexesList: databaseCursor.execute(""" DROP INDEX jobs_owner_starteddatetime; CREATE INDEX jobs_owner_starteddatetime_key ON jobs (owner, starteddatetime);""") #if 'jobs_priority_key' not in indexesList: # databaseCursor.execute("""CREATE INDEX jobs_priority_key ON jobs (priority);""") if 'jobs_owner_starteddatetime_priority_key' not in indexesList: databaseCursor.execute("""CREATE INDEX jobs_owner_starteddatetime_priority_key ON jobs (owner, starteddatetime, priority DESC);""") if 'jobs_completeddatetime_queueddatetime_key' not in indexesList: databaseCursor.execute("""CREATE INDEX jobs_completeddatetime_queueddatetime_key ON jobs (completeddatetime, queueddatetime);""") if 'jobs_success_key' not in indexesList: databaseCursor.execute("""CREATE INDEX jobs_success_key ON jobs (success);""") databaseDependenciesForSetup[JobsTable] = [ProcessorsTable] #================================================================================================================= class ServerStatusTable(Table): """Define the table 'server_status'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(ServerStatusTable, self).__init__(name='server_status', logger=logger, creationSql=""" CREATE TABLE server_status ( id serial NOT NULL, date_recently_completed timestamp without time zone, date_oldest_job_queued timestamp without time zone, avg_process_sec real, avg_wait_sec real, waiting_job_count integer NOT NULL, processors_count integer NOT NULL, date_created timestamp without time zone NOT NULL ); ALTER TABLE ONLY server_status ADD CONSTRAINT server_status_pkey PRIMARY KEY (id); CREATE INDEX idx_server_status_date ON server_status USING btree (date_created, id); """) databaseDependenciesForSetup[ServerStatusTable] = [] #================================================================================================================= class SignatureDimsTable(Table): """Define the table 'signaturedims'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='signaturedims', logger=logger, creationSql=""" CREATE TABLE signaturedims ( id serial NOT NULL, signature character varying(255) NOT NULL); ALTER TABLE ONLY signaturedims ADD CONSTRAINT signaturedims_pkey PRIMARY KEY (id); CREATE UNIQUE INDEX signaturedims_signature_key ON signaturedims USING btree (signature); """) databaseDependenciesForSetup[SignatureDimsTable] = [] #================================================================================================================= class ProductDimsTable(Table): """Define the table 'productdims'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='productdims', logger=logger, creationSql=""" CREATE TABLE productdims ( id serial NOT NULL, product character varying(30) NOT NULL, version character varying(16) NOT NULL, os_name character varying(100), release character varying(50) NOT NULL); ALTER TABLE ONLY productdims ADD CONSTRAINT productdims_pkey PRIMARY KEY (id); CREATE INDEX productdims_product_version_key ON productdims USING btree (product, version); CREATE UNIQUE INDEX productdims_product_version_os_name_release_key ON productdims USING btree (product, version, release, os_name); """) databaseDependenciesForSetup[ProductDimsTable] = [] #================================================================================================================= class MTBFFactsTable(Table): """Define the table 'mtbffacts'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='mtbffacts', logger=logger, creationSql=""" CREATE TABLE mtbffacts ( id serial NOT NULL, avg_seconds integer NOT NULL, report_count integer NOT NULL, unique_users integer NOT NULL, day date, productdims_id integer); CREATE INDEX mtbffacts_day_key ON mtbffacts USING btree (day); CREATE INDEX mtbffacts_product_id_key ON mtbffacts USING btree (productdims_id); ALTER TABLE ONLY mtbffacts ADD CONSTRAINT mtbffacts_pkey PRIMARY KEY (id); ALTER TABLE ONLY mtbffacts ADD CONSTRAINT mtbffacts_productdims_id_fkey FOREIGN KEY (productdims_id) REFERENCES productdims(id); """) databaseDependenciesForSetup[MTBFFactsTable] = [ProductDimsTable] #================================================================================================================= class MTBFConfigTable(Table): """Define the table 'mtbfconfig'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='mtbfconfig', logger=logger, creationSql=""" CREATE TABLE mtbfconfig ( id serial NOT NULL, productdims_id integer, start_dt date, end_dt date); ALTER TABLE ONLY mtbfconfig ADD CONSTRAINT mtbfconfig_pkey PRIMARY KEY (id); CREATE INDEX mtbfconfig_end_dt_key ON mtbfconfig USING btree (end_dt); CREATE INDEX mtbfconfig_start_dt_key ON mtbfconfig USING btree (start_dt); ALTER TABLE ONLY mtbfconfig ADD CONSTRAINT mtbfconfig_productdims_id_fkey FOREIGN KEY (productdims_id) REFERENCES productdims(id); """) databaseDependenciesForSetup[MTBFConfigTable] = [ProductDimsTable] #================================================================================================================= class TCByUrlConfigTable(Table): """Define the table 'tcbyurlconfig'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='tcbyurlconfig', logger=logger, creationSql=""" CREATE TABLE tcbyurlconfig ( id serial NOT NULL, productdims_id integer, enabled boolean); ALTER TABLE ONLY tcbyurlconfig ADD CONSTRAINT tcbyurlconfig_pkey PRIMARY KEY (id); ALTER TABLE ONLY tcbyurlconfig ADD CONSTRAINT tcbyurlconfig_productdims_id_fkey FOREIGN KEY (productdims_id) REFERENCES productdims(id); """) databaseDependenciesForSetup[TCByUrlConfigTable] = [ProductDimsTable] #================================================================================================================= class UrlDimsTable(Table): """Define the table 'urldims'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='urldims', logger=logger, creationSql=""" CREATE TABLE urldims ( id serial NOT NULL, domain character varying(255) NOT NULL, url character varying(255) NOT NULL); ALTER TABLE ONLY urldims ADD CONSTRAINT urldims_pkey PRIMARY KEY (id); CREATE UNIQUE INDEX urldims_url_domain_key ON urldims USING btree (url, domain); """) databaseDependenciesForSetup[UrlDimsTable] = [] #================================================================================================================= class TopCrashUrlFactsTable(Table): """Define the table 'topcrashurlfacts'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='topcrashurlfacts', logger=logger, creationSql=""" CREATE TABLE topcrashurlfacts ( id serial NOT NULL, count integer NOT NULL, rank integer, day date NOT NULL, productdims_id integer, urldims_id integer, signaturedims_id integer ); ALTER TABLE ONLY topcrashurlfacts ADD CONSTRAINT topcrashurlfacts_pkey PRIMARY KEY (id); CREATE INDEX topcrashurlfacts_count_key ON topcrashurlfacts USING btree (count); CREATE INDEX topcrashurlfacts_day_key ON topcrashurlfacts USING btree (day); CREATE INDEX topcrashurlfacts_productdims_key ON topcrashurlfacts USING btree (productdims_id); CREATE INDEX topcrashurlfacts_signaturedims_key ON topcrashurlfacts USING btree (signaturedims_id); CREATE INDEX topcrashurlfacts_urldims_key ON topcrashurlfacts USING btree (urldims_id); ALTER TABLE ONLY topcrashurlfacts ADD CONSTRAINT topcrashurlfacts_productdims_id_fkey FOREIGN KEY (productdims_id) REFERENCES productdims(id); ALTER TABLE ONLY topcrashurlfacts ADD CONSTRAINT topcrashurlfacts_signaturedims_id_fkey FOREIGN KEY (signaturedims_id) REFERENCES signaturedims(id); ALTER TABLE ONLY topcrashurlfacts ADD CONSTRAINT topcrashurlfacts_urldims_id_fkey FOREIGN KEY (urldims_id) REFERENCES urldims(id); """) databaseDependenciesForSetup[TopCrashUrlFactsTable] = [ProductDimsTable,SignatureDimsTable,UrlDimsTable] #================================================================================================================= class TopCrashUrlFactsReportsTable(Table): """Define the table 'topcrashurlfactsreports'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(Table, self).__init__(name='topcrashurlfactsreports', logger=logger, creationSql=""" CREATE TABLE topcrashurlfactsreports ( id serial NOT NULL, uuid character varying(50) NOT NULL, comments character varying(500), topcrashurlfacts_id integer); ALTER TABLE ONLY topcrashurlfactsreports ADD CONSTRAINT topcrashurlfactsreports_pkey PRIMARY KEY (id); CREATE INDEX topcrashurlfactsreports_topcrashurlfacts_id_key ON topcrashurlfactsreports USING btree (topcrashurlfacts_id); ALTER TABLE ONLY topcrashurlfactsreports ADD CONSTRAINT topcrashurlfactsreports_topcrashurlfacts_id_fkey FOREIGN KEY (topcrashurlfacts_id) REFERENCES topcrashurlfacts(id) ON DELETE CASCADE; """) databaseDependenciesForSetup[TopCrashUrlFactsReportsTable] = [TopCrashUrlFactsTable] #================================================================================================================= class TopCrashersTable(Table): """Define the table 'topcrashers'""" #----------------------------------------------------------------------------------------------------------------- def __init__ (self, logger, **kwargs): super(TopCrashersTable, self).__init__(name='topcrashers', logger=logger, creationSql=""" CREATE TABLE topcrashers ( id serial NOT NULL, signature character varying(255) NOT NULL, version character varying(30) NOT NULL, product character varying(30) NOT NULL, build character varying(30) NOT NULL, total integer, win integer, mac integer, linux integer, rank integer, last_rank integer, trend character varying(30), uptime real, users integer, last_updated timestamp without time zone ); ALTER TABLE ONLY topcrashers ADD CONSTRAINT topcrashers_pkey PRIMARY KEY (id); """) databaseDependenciesForSetup[TopCrashersTable] = [] #================================================================================================================= #class ParititioningTriggerScript(DatabaseObject): ##----------------------------------------------------------------------------------------------------------------- #def __init__ (self, logger): #super(ParititioningTriggerScript, self).__init__(name = "partition_insert_trigger", logger=logger, #creationSql = """ #CREATE OR REPLACE FUNCTION partition_insert_trigger() #RETURNS TRIGGER AS $$ #import socorro.database.server as ds #try: #targetTableName = ds.targetTableName(TD["table_name"], TD['new']['date_processed']) ##plpy.info(targetTableName) #planName = ds.targetTableInsertPlanName (targetTableName) ##plpy.info("using plan: %s" % planName) #values = ds.getValuesList(TD, SD, plpy) ##plpy.info(str(values)) ##plpy.info('about to execute plan') #result = plpy.execute(SD[planName], values) #return None #except KeyError: #no plan ##plpy.info("oops no plan for: %s" % planName) #SD[planName] = ds.createNewInsertQueryPlan(TD, SD, targetTableName, planName, plpy) ##plpy.info('about to execute plan for second time') #result = plpy.execute(SD[planName], values) #return None #$$ #LANGUAGE plpythonu;""") #def updateDefinition(self, databaseCursor): #databaseCursor.execute(self.creationSql) #================================================================================================================= #class ChattyParititioningTriggerScript(DatabaseObject): #----------------------------------------------------------------------------------------------------------------- #def __init__ (self, logger): #super(ChattyParititioningTriggerScript, self).__init__(name = "partition_insert_trigger", logger=logger, #creationSql = """ #CREATE OR REPLACE FUNCTION partition_insert_trigger() #RETURNS TRIGGER AS $$ #import socorro.database.server as ds #import logging #import logging.handlers #try: #targetTableName = ds.targetTableName(TD["table_name"], TD['new']['date_processed']) #planName = ds.targetTableInsertPlanName (targetTableName) #try: #logger = SD["logger"] #except KeyError: #SD["logger"] = logger = logging.getLogger(targetTableName) #logger.setLevel(logging.DEBUG) #rotatingFileLog = logging.handlers.RotatingFileHandler("/tmp/partitionTrigger.log", "a", 100000000, 10) #rotatingFileLog.setLevel(logging.DEBUG) #rotatingFileLogFormatter = logging.Formatter('%(asctime)s %(levelname)s - %(message)s') #rotatingFileLog.setFormatter(rotatingFileLogFormatter) #logger.addHandler(rotatingFileLog) #logger.debug("---------- beginning new session ----------") #SD["counter"] = 0 #values = ds.getValuesList(TD, SD, plpy) #logger.debug("%08d plan: %s", SD["counter"], planName) #SD["counter"] += 1 #result = plpy.execute(SD[planName], values) #return 'SKIP' #except KeyError: #no plan #logger.debug('creating new plan for: %s', planName) #SD[planName] = ds.createNewInsertQueryPlan(TD, SD, targetTableName, planName, plpy) #result = plpy.execute(SD[planName], values) #return 'SKIP' #$$ #LANGUAGE plpythonu;""") ##----------------------------------------------------------------------------------------------------------------- #def updateDefinition(self, databaseCursor): #databaseCursor.execute(self.creationSql) #----------------------------------------------------------------------------------------------------------------- def connectToDatabase(config, logger): databaseDSN = "host=%(databaseHost)s dbname=%(databaseName)s user=%(databaseUserName)s password=%(databasePassword)s" % config databaseConnection = pg.connect(databaseDSN) databaseCursor = databaseConnection.cursor(cursor_factory=socorro_psy.LoggingCursor) databaseCursor.setLogger(logger) return (databaseConnection, databaseCursor) #----------------------------------------------------------------------------------------------------------------- def setupDatabase(config, logger): databaseConnection, databaseCursor = connectToDatabase(config, logger) try: aList = getOrderedSetupList() for aDatabaseObjectClass in getOrderedSetupList(): aDatabaseObject = aDatabaseObjectClass(logger=logger) aDatabaseObject._createSelf(databaseCursor) databaseConnection.commit() except: databaseConnection.rollback() socorro_util.reportExceptionAndAbort(logger) #----------------------------------------------------------------------------------------------------------------- def teardownDatabase(config,logger): databaseConnection,databaseCursor = connectToDatabase(config,logger) try: for databaseObjectClass in getOrderedSetupList(): aDatabaseObject = databaseObjectClass(logger=logger) aDatabaseObject.drop(databaseCursor) databaseConnection.commit() except: databaseConnection.rollback() socorro_util.reportExceptionAndContinue(logger) #----------------------------------------------------------------------------------------------------------------- databaseObjectClassListForUpdate = [ReportsTable, DumpsTable, ExtensionsTable, FramesTable, ProcessorsTable, JobsTable, ] #----------------------------------------------------------------------------------------------------------------- def updateDatabase(config, logger): databaseConnection, databaseCursor = connectToDatabase(config, logger) try: #try: #databaseCursor.execute("CREATE LANGUAGE plpythonu") #except: #databaseConnection.rollback() for aDatabaseObjectClass in databaseObjectClassListForUpdate: aDatabaseObject = aDatabaseObjectClass(logger=logger) aDatabaseObject.updateDefinition(databaseCursor) databaseConnection.commit() except: databaseConnection.rollback() socorro_util.reportExceptionAndAbort(logger) #----------------------------------------------------------------------------------------------------------------- # list all the tables that should have weekly partitions pre-created. This is a subclass of all the PartitionedTables # since it may be that some PartitionedTables should not be pre-created. databaseObjectClassListForWeeklyPartitions = [ReportsTable, DumpsTable, FramesTable, ExtensionsTable, ] #----------------------------------------------------------------------------------------------------------------- def createPartitions(config, logger): """ Create a set of partitions for all the tables known to be efficient when they are created prior to being needed. see the list databaseObjectClassListForWeeklyParitions above """ databaseConnection, databaseCursor = connectToDatabase(config, logger) try: for aDatabaseObjectClass in databaseObjectClassListForWeeklyPartitions: weekIterator = mondayPairsIteratorFactory(config.startDate, config.endDate) aDatabaseObject = aDatabaseObjectClass(logger=logger) aDatabaseObject.createPartitions(databaseCursor, weekIterator) databaseConnection.commit() except: databaseConnection.rollback() socorro_util.reportExceptionAndAbort(logger)
gpl-2.0
-3,316,191,166,787,014,000
65.762712
236
0.498124
false
ntthuy11/CodeFights
Arcade/04_Python/01_MeetPython/mexFunction.py
1
1362
# You've just started to study impartial games, and came across an interesting theory. The theory is quite complicated, but # it can be narrowed down to the following statements: solutions to all such games can be found with the mex function. # Mex is an abbreviation of minimum excludant: for the given set s it finds the minimum non-negative integer that is not # present in s. # You don't yet know how to implement such a function efficiently, so would like to create a simplified version. For the # given set s and given an upperBound, implement a function that will find its mex if it's smaller than upperBound or # return upperBound instead. # # Example # For s = [0, 4, 2, 3, 1, 7] and upperBound = 10, # the output should be # mexFunction(s, upperBound) = 5. # 5 is the smallest non-negative integer that is not present in s, and it is smaller than upperBound. # # For s = [0, 4, 2, 3, 1, 7] and upperBound = 3, # the output should be # mexFunction(s, upperBound) = 3. # The minimum excludant for the given set is 5, but it's greater than upperBound, so the output should be 3. def mexFunction(s, upperBound): found = -1 for i in range(upperBound): if not i in s: found = i break else: found = upperBound # this line is what CodeFights asks for return found
mit
-4,172,678,401,009,438,700
45.965517
124
0.690896
false
flower-pot/xf-indicator
xf_indicator/build_status.py
1
2244
# -*- Mode: Python; coding: utf-8; indent-tabs-mode: nil; tab-width: 4 -*- ### BEGIN LICENSE # Copyright (C) 2014 Frederic Branczyk [email protected] # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### END LICENSE from gi.repository import Gtk, GObject from enum import Enum class BuildStatus(Enum): active = (1) failing = (2) not_existing = (3) unknown = (4) passing = (5) def __init__(self, number): self._value_ = number def __ge__(self, other): if self.__class__ is other.__class__: return self.value >= other.value return NotImplemented def __gt__(self, other): if self.__class__ is other.__class__: return self.value > other.value return NotImplemented def __le__(self, other): if self.__class__ is other.__class__: return self.value <= other.value return NotImplemented def __lt__(self, other): if self.__class__ is other.__class__: return self.value < other.value return NotImplemented def __eq__(self, other): if self.__class__ is other.__class__: return self.value == other.value return NotImplemented
mit
7,255,914,806,074,165,000
37.033898
79
0.666667
false
rasmusprentow/mvln
mvln/test/test_converter.py
1
1427
#converter_test.py import sys sys.path.insert(0,"..") sys.path.insert(0,"mvln") from mvln import * import unittest, os, shutil testfolder = os.getcwd()+ "/__tmptest__/src/testfolder/" testfolder_dest = os.getcwd()+"/__tmptest__/dst/testfolder/" testfolder2 = os.getcwd()+ "/__tmptest__/src/testfolder2/" testfolder2_dest = os.getcwd()+"/__tmptest__/dst/testfolder2/" class TestSequenceFunctions(unittest.TestCase): def setUp(self): try: shutil.rmtree("__tmptest__") except OSError: pass os.mkdir("__tmptest__") os.mkdir("__tmptest__/dst") os.mkdir("__tmptest__/src") os.mkdir(testfolder) os.mkdir(testfolder2) f = open(testfolder+"testfile",'w') f.write("testestest") f.close() f = open(testfolder2+"testfile",'w') f.write("testestest") f.close() self.converter = Converter( testfolder + " " + testfolder_dest + "\n" + testfolder2 + " " + testfolder2_dest + "\n") def test_getlines(self): result = self.converter.getLines() self.assertEqual(result[1], testfolder2 + " " + testfolder2_dest) def test_convert(self): result = self.converter.getFiles() self.assertIsInstance(result[1], MvLnFile) self.assertEqual(result[1].dst, testfolder2_dest) self.assertEqual(result[1].src, testfolder2) self.assertEqual(result[0].dst, testfolder_dest) self.assertEqual(result[0].src, testfolder) if __name__ == '__main__': unittest.main()
gpl-2.0
1,918,018,458,159,021,300
22.8
75
0.662228
false
ddico/odoo
addons/project_timesheet_holidays/models/hr_holidays.py
2
5160
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, _ from odoo.exceptions import ValidationError class HolidaysType(models.Model): _inherit = "hr.leave.type" def _default_project_id(self): company = self.company_id if self.company_id else self.env.company return company.leave_timesheet_project_id.id def _default_task_id(self): company = self.company_id if self.company_id else self.env.company return company.leave_timesheet_task_id.id timesheet_generate = fields.Boolean('Generate Timesheet', default=True, help="If checked, when validating a time off, timesheet will be generated in the Vacation Project of the company.") timesheet_project_id = fields.Many2one('project.project', string="Project", default=_default_project_id, domain="[('company_id', '=', company_id)]", help="The project will contain the timesheet generated when a time off is validated.") timesheet_task_id = fields.Many2one('project.task', string="Task for timesheet", default=_default_task_id, domain="[('project_id', '=', timesheet_project_id), ('company_id', '=', company_id)]") @api.onchange('timesheet_task_id') def _onchange_timesheet_generate(self): if self.timesheet_task_id or self.timesheet_project_id: self.timesheet_generate = True else: self.timesheet_generate = False @api.onchange('timesheet_project_id') def _onchange_timesheet_project(self): company = self.company_id if self.company_id else self.env.company default_task_id = company.leave_timesheet_task_id if default_task_id and default_task_id.project_id == self.timesheet_project_id: self.timesheet_task_id = default_task_id else: self.timesheet_task_id = False if self.timesheet_project_id: self.timesheet_generate = True else: self.timesheet_generate = False @api.constrains('timesheet_generate', 'timesheet_project_id', 'timesheet_task_id') def _check_timesheet_generate(self): for holiday_status in self: if holiday_status.timesheet_generate: if not holiday_status.timesheet_project_id or not holiday_status.timesheet_task_id: raise ValidationError(_("Both the internal project and task are required to " "generate a timesheet for the time off. If you don't want a timesheet, you should " "leave the internal project and task empty.")) class Holidays(models.Model): _inherit = "hr.leave" timesheet_ids = fields.One2many('account.analytic.line', 'holiday_id', string="Analytic Lines") def _validate_leave_request(self): """ Timesheet will be generated on leave validation only if a timesheet_project_id and a timesheet_task_id are set on the corresponding leave type. The generated timesheet will be attached to this project/task. """ # create the timesheet on the vacation project for holiday in self.filtered( lambda request: request.holiday_type == 'employee' and request.holiday_status_id.timesheet_project_id and request.holiday_status_id.timesheet_task_id): holiday._timesheet_create_lines() return super(Holidays, self)._validate_leave_request() def _timesheet_create_lines(self): self.ensure_one() vals_list = [] work_hours_data = self.employee_id.list_work_time_per_day( self.date_from, self.date_to, ) for index, (day_date, work_hours_count) in enumerate(work_hours_data): vals_list.append(self._timesheet_prepare_line_values(index, work_hours_data, day_date, work_hours_count)) timesheets = self.env['account.analytic.line'].sudo().create(vals_list) return timesheets def _timesheet_prepare_line_values(self, index, work_hours_data, day_date, work_hours_count): self.ensure_one() return { 'name': "%s (%s/%s)" % (self.holiday_status_id.name or '', index + 1, len(work_hours_data)), 'project_id': self.holiday_status_id.timesheet_project_id.id, 'task_id': self.holiday_status_id.timesheet_task_id.id, 'account_id': self.holiday_status_id.timesheet_project_id.analytic_account_id.id, 'unit_amount': work_hours_count, 'user_id': self.employee_id.user_id.id, 'date': day_date, 'holiday_id': self.id, 'employee_id': self.employee_id.id, 'company_id': self.holiday_status_id.timesheet_task_id.company_id.id or self.holiday_status_id.timesheet_project_id.company_id.id, } def action_refuse(self): """ Remove the timesheets linked to the refused holidays """ result = super(Holidays, self).action_refuse() timesheets = self.sudo().mapped('timesheet_ids') timesheets.write({'holiday_id': False}) timesheets.unlink() return result
agpl-3.0
7,238,839,353,363,624,000
48.142857
239
0.645736
false
rice-apps/petition-app
main.py
1
1292
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import webapp2 from controllers import main, petitions, organizations, dashboards from config import * app = webapp2.WSGIApplication([ (PETITIONS_URI, petitions.PetitionsHandler), (PETITIONS_SIGN_URI, petitions.SignHandler), (PETITIONS_UNSIGN_URI, petitions.UnsignHandler), (MY_URI, petitions.MyPageHandler), (POSITIONS_POPULATE_URI, petitions.PositionsHandler), (ORGANIZATION_URI, organizations.OrganizationsHandler), (DASHBOARD_URI, dashboards.DashboardHandler), (DASHBOARD_ADMIN_URI, dashboards.SaveAdminsHandler), (DASHBOARD_ELECTIONS_URI, dashboards.ElectionHandler), (ERROR_URI, main.ErrorHandler), ('/', main.MainHandler) ], debug=DEBUG)
mit
-3,511,202,814,960,563,700
37
74
0.75387
false
MycroftAI/adapt
adapt/expander.py
1
10830
# Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from six.moves import xrange __author__ = 'seanfitz' class SimpleGraph(object): """This class is to graph connected nodes Note: hash is a type that is hashable so independant values and tuples but not objects, classes or lists. """ def __init__(self): """init an empty set""" self.adjacency_lists = {} def add_edge(self, a, b): """Used to add edges to the graph. 'a' and 'b' are vertexes and if 'a' or 'b' doesn't exisit then the vertex is created Args: a (hash): is one vertex of the edge b (hash): is another vertext of the edge """ neighbors_of_a = self.adjacency_lists.get(a) if not neighbors_of_a: neighbors_of_a = set() self.adjacency_lists[a] = neighbors_of_a neighbors_of_a.add(b) neighbors_of_b = self.adjacency_lists.get(b) if not neighbors_of_b: neighbors_of_b = set() self.adjacency_lists[b] = neighbors_of_b neighbors_of_b.add(a) def get_neighbors_of(self, a): """This will return the neighbors of the vertex Args: a (hash): is the vertex to get the neighbors for Returns: [] : a list of neighbors_of 'a' Will return an empty set if 'a' doesn't exist or has no neightbors. """ return self.adjacency_lists.get(a, set()) def vertex_set(self): """This returns a list of vertexes included in graph Returns: [] : a list of vertexes include in graph """ return list(self.adjacency_lists) def bronk(r, p, x, graph): """This is used to fine cliques and remove them from graph Args: graph (graph): this is the graph of verticies to search for cliques p (list): this is a list of the verticies to search r (list): used by bronk for the search x (list): used by bronk for the search Yields: list : found clique of the given graph and verticies """ if len(p) == 0 and len(x) == 0: yield r return for vertex in p[:]: r_new = r[::] r_new.append(vertex) p_new = [val for val in p if val in graph.get_neighbors_of(vertex)] # p intersects N(vertex) x_new = [val for val in x if val in graph.get_neighbors_of(vertex)] # x intersects N(vertex) for result in bronk(r_new, p_new, x_new, graph): yield result p.remove(vertex) x.append(vertex) def get_cliques(vertices, graph): """get cliques Args: verticies (list) : list of the verticies to search for cliques graph (graph) : a graph used to find the cliques using verticies Yields: list: a clique from the graph """ for clique in bronk([], vertices, [], graph): yield clique def graph_key_from_tag(tag, entity_index): """Returns a key from a tag entity Args: tag (tag) : this is the tag selected to get the key from entity_index (int) : this is the index of the tagged entity Returns: str : String representing the key for the given tagged entity. """ start_token = tag.get('start_token') entity = tag.get('entities', [])[entity_index] return str(start_token) + '-' + entity.get('key') + '-' + str(entity.get('confidence')) class Lattice(object): """This manages a list of items or lists Attributes: nodes (list) : is a list of items or lists. This is used to track items and lists that are a part of the Lattice """ def __init__(self): """Creates the Lattice with an empty list""" self.nodes = [] def append(self, data): """Appends items or lists to the Lattice Args: data (item,list) : The Item or List to be added to the Lattice """ if isinstance(data, list) and len(data) > 0: self.nodes.append(data) else: self.nodes.append([data]) def traverse(self, index=0): """ This is used to produce a list of lists where each each item in that list is a diffrent combination of items from the lists within with every combination of such values. Args: index (int) : the index at witch to start the list. Note this is used only in the function as a processing Returns: list : is every combination. """ if index < len(self.nodes): for entity in self.nodes[index]: for next_result in self.traverse(index=index+1): if isinstance(entity, list): yield entity + next_result else: yield [entity] + next_result else: yield [] class BronKerboschExpander(object): """ BronKerboschExpander Given a list of tagged entities (from the existing entity tagger implementation or another), expand out valid parse results. A parse result is considered valid if it contains no overlapping spans. Since total confidence of a parse result is based on the sum of confidences of the entities, there is no sense in yielding any potential parse results that are a subset/sequence of a larger valid parse result. By comparing this concept to that of maximal cliques (https://en.wikipedia.org/wiki/Clique_problem), we can use well known solutions to the maximal clique problem like the Bron/Kerbosch algorithm (https://en.wikipedia.org/wiki/Bron%E2%80%93Kerbosch_algorithm). By considering tagged entities that do not overlap to be "neighbors", BronKerbosch will yield a set of maximal cliques that are also valid parse results. """ def __init__(self, tokenizer): self.tokenizer = tokenizer def _build_graph(self, tags): """Builds a graph from the entities included in the tags. Note this is used internally. Args: tags (list): A list of the tags to include in graph Returns: graph : this is the resulting graph of the tagged entities. """ graph = SimpleGraph() for tag_index in xrange(len(tags)): for entity_index in xrange(len(tags[tag_index].get('entities'))): a_entity_name = graph_key_from_tag(tags[tag_index], entity_index) tokens = self.tokenizer.tokenize(tags[tag_index].get('entities', [])[entity_index].get('match')) for tag in tags[tag_index + 1:]: start_token = tag.get('start_token') if start_token >= tags[tag_index].get('start_token') + len(tokens): for b_entity_index in xrange(len(tag.get('entities'))): b_entity_name = graph_key_from_tag(tag, b_entity_index) graph.add_edge(a_entity_name, b_entity_name) return graph def _sub_expand(self, tags): """This called by expand to find cliques Args: tags (list): a list of the tags used to get cliques Yields: list : list of sorted tags by start_token this is a clique """ entities = {} graph = self._build_graph(tags) # name entities for tag in tags: for entity_index in xrange(len(tag.get('entities'))): node_name = graph_key_from_tag(tag, entity_index) if not node_name in entities: entities[node_name] = [] entities[node_name] += [ tag.get('entities', [])[entity_index], tag.get('entities', [])[entity_index].get('confidence'), tag ] for clique in get_cliques(list(entities), graph): result = [] for entity_name in clique: start_token = int(entity_name.split("-")[0]) old_tag = entities[entity_name][2] tag = { 'start_token': start_token, 'entities': [entities.get(entity_name)[0]], 'confidence': entities.get(entity_name)[1] * old_tag.get('confidence', 1.0), 'end_token': old_tag.get('end_token'), 'match': old_tag.get('entities')[0].get('match'), 'key': old_tag.get('entities')[0].get('key'), 'from_context': old_tag.get('from_context', False) } result.append(tag) result = sorted(result, key=lambda e: e.get('start_token')) yield result def expand(self, tags, clique_scoring_func=None): """This is the main function to expand tags into cliques Args: tags (list): a list of tags to find the cliques. clique_scoring_func (func): a function that returns a float value for the clique Returns: list : a list of cliques """ lattice = Lattice() overlapping_spans = [] def end_token_index(): return max([t.get('end_token') for t in overlapping_spans]) for i in xrange(len(tags)): tag = tags[i] if len(overlapping_spans) > 0 and end_token_index() >= tag.get('start_token'): overlapping_spans.append(tag) elif len(overlapping_spans) > 1: cliques = list(self._sub_expand(overlapping_spans)) if clique_scoring_func: cliques = sorted(cliques, key=lambda e: -1 * clique_scoring_func(e)) lattice.append(cliques) overlapping_spans = [tag] else: lattice.append(overlapping_spans) overlapping_spans = [tag] if len(overlapping_spans) > 1: cliques = list(self._sub_expand(overlapping_spans)) if clique_scoring_func: cliques = sorted(cliques, key=lambda e: -1 * clique_scoring_func(e)) lattice.append(cliques) else: lattice.append(overlapping_spans) return lattice.traverse()
apache-2.0
3,364,695,214,877,201,400
34.048544
141
0.574515
false
eReuse/DeviceHub
ereuse_devicehub/tests/test_resources/test_events/test_device_event/test_device_event_basic.py
1
6536
from datetime import timedelta from time import sleep from assertpy import assert_that from bson import ObjectId from pydash import pick from ereuse_devicehub.exceptions import SchemaError from ereuse_devicehub.resources.hooks import TooLateToDelete, MaterializeEvents from ereuse_devicehub.tests import TestStandard from ereuse_utils.naming import Naming class TestDeviceEventBasic(TestStandard): """ Tests that take care of the creation and configuration of device events. """ def test_creation(self): """ Tests that device events have been created correctly, taking special care of: - All events have been created - @type and type - URL - prefix """ events = ('add', 'allocate', 'deallocate', 'dispose', 'free', 'locate', 'ready', 'receive', 'register', 'remove', 'repair', 'snapshot', 'test-hard-drive', 'to-dispose', 'to-repair', 'to-prepare') # all subclasses from DeviceEvent in resource type events = ['{}{}{}'.format('devices', Naming.RESOURCE_PREFIX, event) for event in events] # we prefix them events += ['accounts', 'devices', 'computer'] # We check some non-prefixed regular resources... assert_that(self.domain).contains_key(*events) # Type of snapshot should be 'devices:Snapshot' snapshot = self.domain['{}{}{}'.format('devices', Naming.RESOURCE_PREFIX, 'snapshot')] assert_that(snapshot['schema']['@type']['allowed']) \ .is_equal_to({'{}{}{}'.format('devices', Naming.TYPE_PREFIX, 'Snapshot')}) devices = self.domain['devices'] # And any other type not subclass from DeviceEvent should be without prefix assert_that(devices['schema']['@type']['allowed']).contains('Device', 'Computer', 'HardDrive') # ...and more # Checking that the url generated contains 'devices' for DeviceEvent... assert_that(snapshot['url']).is_equal_to('events/devices/snapshot') # ...but it doesn't add devices to others (it would be then 'devices/devices') assert_that(devices['url']).is_equal_to('devices') def test_delete_in_time(self): """Tests deleting an event only in time.""" # Let's set a small amount of time and try to delete the device after it self.app.config['TIME_TO_DELETE_RESOURCES'] = timedelta(seconds=1) SNAPSHOT_URL = self.DEVICE_EVENT + '/' + self.SNAPSHOT snapshot = self.post_fixture(self.SNAPSHOT, SNAPSHOT_URL, 'xps13') sleep(2) response, status = self.delete(SNAPSHOT_URL, item=snapshot['_id']) self.assert_error(response, status, TooLateToDelete) def test_groups(self): """Tests a generic event with the 'groups' field set.""" # Let's create a lot and a package, both with 2 different devices computers_id = self.get_fixtures_computers() lot = self.get_fixture(self.GROUPS, 'lot') lot['children']['devices'] = computers_id[0:2] lot = self.post_201(self.LOTS, lot) package = self.get_fixture(self.GROUPS, 'package') package['children']['devices'] = computers_id[2:4] package = self.post_201(self.PACKAGES, package) # Let's post the event READY_URL = '{}/{}'.format(self.DEVICE_EVENT, 'ready') ready = self.get_fixture(self.GROUPS, 'ready') ready['groups']['lots'] = [lot['_id']] ready['groups']['packages'] = [package['_id']] ready = self.post_201(READY_URL, ready) self._check(lot['_id'], package['_id'], computers_id, ready['_id']) # If we try to do an event with both devices and a groups ready = self.get_fixture(self.GROUPS, 'ready') ready['devices'] = computers_id response, status = self.post(READY_URL, ready) self.assert_error(response, status, SchemaError) # Now let's try with descendants # We add one new extra device to package snapshot = self.post_fixture(self.SNAPSHOT, '{}/{}'.format(self.DEVICE_EVENT, self.SNAPSHOT), 'vaio') package['children']['devices'].append(snapshot['device']) self.patch_200(self.PACKAGES, item=package['_id'], data=pick(package, 'children', '@type')) # adding package inside lot and event with only lot. The event should be done to package and its devices lot['children']['packages'] = [package['_id']] self.patch_200(self.LOTS, item=lot['_id'], data=pick(lot, 'children', '@type')) receive = self.get_fixture('receive', 'receive') receive['groups'] = {'lots': [lot['_id']]} receive['receiver'] = self.get_first('accounts')['_id'] receive = self.post_201('{}/{}'.format(self.DEVICE_EVENT, 'receive'), receive) # Preparing to check self._check(lot['_id'], package['_id'], computers_id + [snapshot['device']], receive['_id']) # Try if label does not exist package['children']['devices'].append('This label does not exist') _, status = self.patch(self.PACKAGES, item=package['_id'], data=pick(package, 'children', '@type')) self.assert422(status) def _check(self, lot_id: str, package_id: str, computers_id: list, event_id: ObjectId): """Checks that the event contains the devices and groups, and otherwise.""" event = self.get_200(self.EVENTS, item=event_id) materialized_event = pick(event, *MaterializeEvents.FIELDS) lot = self.get_200(self.LOTS, item=lot_id) package = self.get_200(self.PACKAGES, item=package_id) # Both event and groups contain each other assert_that(event['groups']).has_lots([lot_id]).has_packages([package_id]) lot = self.get_200(self.LOTS, item=lot['_id']) assert_that(lot['events']).contains(materialized_event) package = self.get_200(self.PACKAGES, item=package['_id']) assert_that(package['events']).contains(materialized_event) # Both event and devices contain each other assert_that(event).contains('devices') assert_that(event['devices']).contains_only(*computers_id) for computer_id in computers_id: computer = self.get_200(self.DEVICES, item=computer_id, embedded={'components': True}) assert_that(computer['events']).contains(materialized_event) # Let's ensure the events have been materialized for components too for component in computer['components']: assert_that(component['events']).contains(materialized_event)
agpl-3.0
338,278,350,866,452,600
52.57377
117
0.635863
false
LegionXI/pydarkstar
scrub.py
1
5707
""" Create item database. """ import logging import os import re import pydarkstar.logutils import pydarkstar.scrubbing.ffxiah import pydarkstar.itemlist import pydarkstar.options import pydarkstar.common class Options(pydarkstar.options.Options): """ Reads options from config file, then from command line. """ def __init__(self): super(Options, self).__init__(config='scrub.yaml', description=__doc__) self.verbose = False # error, info, and debug self.silent = False # error only self.stub = 'items' # output file stub self.overwrite = False # overwrite output self.backup = False # backup output self.save = False # save config self.force = False # redownload self.pkl = False # save pkl files self.threads = -1 # cpu threads during download self.stock01 = 5 # default stock for singles self.stock12 = 5 # default stock for stacks self.itemids = [] # a list of item ids self.urls = [] # a list of category urls # logging self.add_argument('--verbose', action='store_true', help='report debug, info, and error') self.add_argument('--silent', action='store_true', help='report error only') # output self.add_argument(dest='stub', nargs='?', type=str, default=self.stub, help='output file stub') self.add_argument('--overwrite', action='store_true', help='overwrite output file') self.add_argument('--backup', action='store_true', help='backup output file') self.add_argument('--save', action='store_true', help='save config file (and exit)') # scrub parameters self.add_argument('--force', action='store_true', help='start from scratch') self.add_argument('--pkl', action='store_true', help='save pkl files') self.add_argument('--threads', type=int, default=self.threads, metavar=self.threads, help='number of cpu threads to use') self.add_argument('--urls', type=str, nargs='*', action='append', default=self.urls, metavar='url', help='a list of category urls') self.add_argument('--itemids', type=int, nargs='*', action='append', default=self.itemids, metavar='itemids', help='a list of item ids') # defaults self.add_argument('--stock01', type=int, default=self.stock01, metavar=self.stock01, help='default stock for singles') self.add_argument('--stock12', type=int, default=self.stock12, metavar=self.stock12, help='default stock for stacks') self.exclude('itemids') self.exclude('urls') def parse_args(self, args=None): super(Options, self).parse_args(args) urls = [] for obj in self.urls: if isinstance(obj, list): urls.extend(obj) else: urls.append(obj) self.urls = urls if not self.urls: self.urls = None itemids = [] for obj in self.itemids: if isinstance(obj, list): itemids.extend(obj) else: itemids.append(obj) self.itemids = itemids if not self.itemids: self.itemids = None def main(): """ Main function. """ # get options opts = Options() opts.parse_args() pydarkstar.logutils.basicConfig( verbose=opts.verbose, silent=opts.silent, fname='scrub.log') logging.info('start') # log options opts.log_values(level=logging.INFO) # save options if opts.save: opts.save = False opts.dump() return # check output file name validity oname = os.path.abspath('{}.csv'.format(re.sub(r'\.csv$', '', opts.stub))) if not opts.overwrite and not opts.backup: if os.path.exists(oname): logging.error('output file already exists!\n\t%s', oname) logging.error('please use --overwrite or --backup') exit(-1) # scub data scrubber = pydarkstar.scrubbing.ffxiah.FFXIAHScrubber() scrubber.save = opts.pkl data = scrubber.scrub(force=opts.force, threads=opts.threads, urls=opts.urls, ids=opts.itemids) # create item list from data ilist = pydarkstar.itemlist.ItemList() for itemid in data: # singles try: price01, sell01 = data[itemid]['median'], True # do not sell items without a price if price01 <= 0: price01, sell01 = None, False except KeyError: price01, sell01 = None, False # stacks try: price12, sell12 = data[itemid]['stack price'], True # do not sell items without a price if price12 <= 0: price12, sell12 = None, False except KeyError: price12, sell12 = None, False # the name doesn't really matter try: name = data[itemid]['name'] except KeyError: name=None ilist.add(itemid, name=name, price01=price01, stock01=opts.stock01, sell01=sell01, buy01=True, price12=price12, stock12=opts.stock12, sell12=sell12, buy12=True) # backup file if opts.backup: pydarkstar.common.backup(oname) # overwrites if exists, but we checked already ilist.savecsv(oname) def cleanup(): logging.info('exit\n') if __name__ == '__main__': with pydarkstar.logutils.capture(): main() cleanup()
mit
-6,963,018,258,926,190,000
31.061798
117
0.574908
false
RickyCook/AliasKeepr
aliaskeepr.py
1
2237
#!/usr/bin/env python import argparse import os import re import shutil import sys from ConfigParser import SafeConfigParser PARSER = argparse.ArgumentParser(description="Import some aliases") PARSER.add_argument('profile', help="Profile to output config for") PARSER.add_argument('-c', '--config', default='~/.akrc', help="Directory where profiles are stored") PARSER.add_argument('--init-alias', default='ak', help="When using the 'init' profile, the alias " "name to insert") ALIAS_RE = re.compile('^[A-Za-z0-9 _-]+$') def profile_filename(config_dir, profile_name): return os.path.expanduser('%s/%s.ini' % (config_dir, profile_name)) def main(): args = PARSER.parse_args() if args.profile == 'init': write_init_profile(args.config, args.init_alias) profile_fn = profile_filename(args.config, args.profile) profile_commands_dir = os.path.expanduser('%s/.%s' % (args.config, args.profile)) sys.stderr.write("Using profile in '%s'\n" % profile_fn) config = SafeConfigParser() config.read(profile_fn) try: shutil.rmtree(profile_commands_dir, ignore_errors=True) except OSError: pass os.mkdir(profile_commands_dir) for alias, command in config.items('aliases'): if not ALIAS_RE.match(alias): sys.stderr.write("Alias '%s' not allowed; skipped\n" % alias) continue if '$@' not in command: command = '%s "$@"' % command command_fn = '%s/%s' % (profile_commands_dir, alias) with open(command_fn, 'w') as handle: handle.write(command) print "function '%s' { eval \"$(cat '%s')\" }" % (alias, command_fn) print print '# USAGE: eval "$("%s" "%s")"' % (__file__, args.profile) def write_init_profile(config_dir, init_alias): try: os.mkdir(os.path.expanduser(config_dir)) except OSError: pass my_abs_path = os.path.abspath(os.path.expanduser(__file__)) with open(profile_filename(config_dir, 'init'), 'w') as handle: handle.write('[aliases]\n') handle.write('{init_alias} = eval "$("{my_path}" "$@")"'.format( init_alias=init_alias, my_path=my_abs_path, )) if __name__ == '__main__': main()
mit
-4,410,401,499,480,091,600
25.630952
83
0.621815
false
blacksea3/medit
medit/blog/urls.py
1
1191
from django.conf.urls import url from . import views urlpatterns=[ url(r'^$', views.test, name='test'), url(r'^test/$', views.test, name='test'), url(r'^login/$', views.login, name='login'), url(r'^index/$', views.index, name='index'), url(r'^block-add/$', views.block_add, name='block_add'), url(r'^block-add.html/$', views.block_add, name='block_add'), url(r'^block-list.html/$', views.block_list, name='block_list'), url(r'^block-edit/$', views.block_edit, name='block_edit'), url(r'^block-edit.html/$', views.block_edit, name='block_edit'), url(r'^block-del/$', views.block_del, name='block_del'), url(r'^article-add/$', views.article_add, name='article_add'), url(r'^article-add.html/$', views.article_add, name='article_add'), url(r'^article-list.html/$', views.article_list, name='article_list'), url(r'^article-edit/$', views.article_edit, name='article_edit'), url(r'^article-edit.html/$', views.article_edit, name='article_edit'), url(r'^article-del/$', views.article_del, name='article_del'), url(r'^article-upload-file/$', views.article_upload_file, name='article_upload_file'), url(r'^ck-upload-img/$', views.ck_upload_img, name='ck_upload_img'), ]
apache-2.0
4,919,236,522,956,086,000
46.64
87
0.660789
false
michaelimfeld/notipy-server
notipyserver/backends/telegram/userregistration.py
1
1411
""" `notipyserver` - User-Notification-Framework server Provides a telegram handler function for user registration. :copyright: (c) by Michael Imfeld :license: MIT, see LICENSE for details """ import telegram from .usermanager import add_user, add_group def register(bot, update): """ Saves the telegram username and the chat_id from the given update object to a file. Args: bot (telegram.Bot): The bot instance. update (telegram.Update): The message update. """ if update.message.chat.type == "group": recipient_name = update.message.chat.title register_function = add_group name = update.message.chat.title else: if not update.message.chat.username: message = "Please setup a telegram username to use this bot." bot.sendMessage(chat_id=update.message.chat_id, text=message) return recipient_name = update.message.chat.username register_function = add_user name = update.message.chat.first_name is_new = register_function(recipient_name, update.message.chat_id) if is_new: message = """ Hi {}! Your registration was *successful* 🎉. """.format(name).strip() else: message = "Already registered!" bot.sendMessage( chat_id=update.message.chat_id, text=message, parse_mode=telegram.ParseMode.MARKDOWN)
mit
-8,052,298,776,417,543,000
27.16
73
0.653409
false
tracon/dragontail
site_specific/tracon2016/management/commands/setup_tracon2016.py
1
6630
# encoding: utf-8 from __future__ import print_function, unicode_literals from datetime import datetime, timedelta, date from django.core.files import File from django.core.management import call_command from django.core.management.base import BaseCommand from django.utils.timezone import now from wagtail.wagtailcore.models import Site from dragontail.content.models import BasicPage, TemplateSettings class Command(BaseCommand): args = '' help = 'Setup example content' def add_arguments(self, parser): parser.add_argument('hostname', type=str) def handle(self, *args, **options): Setup(hostname=options['hostname']).setup() class Setup(object): def __init__(self, hostname): self.hostname = hostname def setup(self): print('NOTE: Setting up Tracon (2016) site at {hostname}'.format(hostname=self.hostname)) self.setup_content() # self.setup_ads() # self.setup_blog() def setup_content(self): t = now() is_default_site = not Site.objects.exists() self.root_page, unused = BasicPage.objects.get_or_create( slug='index', defaults=dict( title='Tracon Tampere-talossa 3.–4. syyskuuta 2016', depth=0 ) ) self.site, unused = Site.objects.get_or_create(hostname=self.hostname, defaults=dict( is_default_site=is_default_site, root_page=self.root_page, )) self.template_settings, unused = TemplateSettings.objects.get_or_create( site=self.site, defaults=dict( base_template='tracon11_base.jade', basic_page_template='tracon11_page.jade', blog_index_template='tracon11_blog_index.jade', blog_post_template='tracon11_blog_post.jade', ) ) return ordering = 0 for page_slug, page_title, child_pages in [ ('front-page', 'Tracon Tampere-talossa 3.–4. syyskuuta 2016', []), ('blog', 'Ajankohtaista', []), # pseudo page for menu, actually taken over by blog ('tapahtuma', 'Tapahtuma', [ ('tyovoima', 'Vänkäriksi'), ('jarjestyssaannot', 'Järjestyssäännöt'), ('tapahtumapaikka', 'Tapahtumapaikka'), ]), ('ohjelma', 'Ohjelma', [ ('ohjelmanjarjestajaksi', 'Ohjelmanjärjestäjäksi'), ]), ('liput', 'Liput', []), ('yhteys', 'Ota yhteyttä!', [ ('conitea', 'Järjestäjät'), ('media', 'Tiedotusvälineille'), ('sponsorit', 'Yhteistyökumppaneille'), ]) ]: ordering += 10 parent_page, unused = Page.objects.get_or_create( site=self.site, parent=None, slug=page_slug, defaults=dict( title=page_title, body='Placeholder for {slug}'.format(slug=page_slug), public_from=t, visible_from=t, order=ordering, ) ) # v2 child_ordering = 0 for child_slug, child_title in child_pages: child_ordering += 10 child_page, unused = Page.objects.get_or_create( site=self.site, parent=parent_page, slug=child_slug, defaults=dict( title=child_title, body='Placeholder for {slug}'.format(slug=child_slug), public_from=t, visible_from=t, order=child_ordering, ) ) # v2 if child_page.order == 0: child_page.order = child_ordering child_page.save() front_page = Page.objects.get(site=self.site, slug='front-page') if not front_page.override_menu_text: front_page.override_menu_text = 'Etusivu' # v11 if not front_page.override_page_template: front_page.override_page_template = 'tracon11_front_page.jade' if not front_page.page_controller_code or front_page.page_controller_code == 'events.tracommon.views:front_page_controller': front_page.page_controller_code = 'site_specific.tracommon.views:front_page_controller' front_page.save() for path, target in [ ('admin', '/admin/'), ]: redirect, unused = Redirect.objects.get_or_create( site=self.site, path=path, defaults=dict( target=target ), ) def setup_ads(self): for banner_title, banner_url, banner_path in [ ('Säätöyhteisö B2 ry', 'http://b2.fi', 'site_specific/tracon11/static/tracon11/img/b2-saatoa2008-wh-200.png'), ]: try: Banner.objects.get(sites=self.site, url=banner_url) except Banner.DoesNotExist: with open(banner_path, 'rb') as banner_file: banner = Banner( title=banner_title, url=banner_url, image_file=File(banner_file), ) banner.save() banner.sites = [self.site,] banner.save() def setup_blog(self): """ Set up a stub of the blog.tracon.fi site required by the front page blog box. """ blog_site, unused = Site.objects.get_or_create(hostname='blog.tracon.fi', defaults=dict( name='Traconin blogi' )) blog_site_settings, unused = SiteSettings.objects.get_or_create(site=blog_site, defaults=dict( base_template='tracon11_base.jade', page_template='tracon11_page.jade', blog_index_template='tracon11_blog_index.jade', blog_post_template='tracon11_blog_post.jade', )) for category_slug, category_title in [ ('conzine', 'Conzine'), ('palaute', 'Palaute'), ('jarjestaminen', 'Traconin järjestäminen'), ]: BlogCategory.objects.get_or_create( site=blog_site, slug=category_slug, defaults=dict( title=category_title, ) )
mit
6,052,349,529,121,051,000
33.581152
132
0.521575
false
mdoucet/reflectivity_ui
test/notebooks/event_reduction.py
1
18262
import sys import time import multiprocessing import mantid.simpleapi as api import numpy as np from reflectivity_ui.interfaces.data_handling import instrument def load_data(run="REF_M_30769"): if run.startswith("/SNS"): filepath = run else: filepath = '/SNS/REF_M/IPTS-21391/nexus/' + run + '.nxs.h5' _instrument = instrument.Instrument() ws_list = _instrument.load_data(filepath) _n_counts = 0 _high_count_ws = None for _ws in ws_list: _i_counts = _ws.getNumberEvents() if _n_counts < _i_counts: _n_counts = _i_counts _high_count_ws = _ws return _high_count_ws def get_peak(center, width, max_pixel=None): peak_min = int(round(float(center) - float(width)/2.0)) peak_max = int(round(float(center) + float(width)/2.0+1.0)) if max_pixel is not None: if peak_min < 0: peak_min = 0 if peak_max >= max_pixel: peak_max = max_pixel-1 return peak_min, peak_max def get_wl_range(ws): """ Determine TOF range from the data :param workspace ws: workspace to work with """ run_object = ws.getRun() wl = run_object.getProperty('LambdaRequest').value[0] chopper_speed = run_object.getProperty('SpeedRequest1').value[0] # Cut the edges by using a width of 2.6 A wl_min = (wl - 1.3 * 60.0 / chopper_speed) wl_max = (wl + 1.3 * 60.0 / chopper_speed) return [wl_min, wl_max] def get_q_binning(q_min=0.001, q_max=0.15, q_step=-0.02): if q_step > 0: n_steps = np.int((q_max-q_min)/q_step) return q_min + np.asarray([q_step * i for i in range(n_steps)]) else: _step = 1.0+np.abs(q_step) n_steps = np.int(np.log(q_max/q_min)/np.log(_step)) return q_min * np.asarray([_step**i for i in range(n_steps)]) def quicknxs_scale(theta, peak, low_res, norm_peak, norm_low_res): """ Scaling factor to multiply by to be compatible with QuickNXS 1.0. """ quicknxs_scale = (float(norm_peak[1])-float(norm_peak[0])) * (float(norm_low_res[1])-float(norm_low_res[0])) quicknxs_scale /= (float(peak[1])-float(peak[0])) * (float(low_res[1])-float(low_res[0])) _scale = 0.005 / np.sin(theta) if theta > 0.0002 else 1.0 quicknxs_scale *= _scale return quicknxs_scale class EventReflectivity(object): """ Event based reflectivit calculation. List of items to be taken care of outside this class: - Edge points cropping - Calculate theta using SANGLE or not - Angle offset - Direct pixel overwrite - DANGLE0 overwrite Options that are left out: - rounding up pixel to assign the proper Qx """ QX_VS_QZ = 0 KZI_VS_KZF = 1 DELTA_KZ_VS_QZ = 3 INSTRUMENT_4A = 0 INSTRUMENT_4B = 1 def __init__(self, scattering_workspace, direct_workspace, signal_peak, signal_bck, norm_peak, norm_bck, specular_pixel, signal_low_res, norm_low_res, q_min=None, q_step=-0.02, q_max=None, tof_range=None, theta=1.0, sample_length=10, instrument=None): """ Pixel ranges include the min and max pixels. :param scattering_workspace: Mantid workspace containing the reflected data :param direct_workspace: Mantid workspace containing the direct beam data [if None, normalization won't be applied] :param signal_peak: pixel min and max for the specular peak :param signal_bck: pixel range of the background [if None, the background won't be subtracted] :param norm_peak: pixel range of the direct beam peak :param norm_bck: pixel range of the direct beam background [if None, the background won't be subtracted] :param specular_pixel: pixel of the specular peak :param signal_low_res: pixel range of the specular peak out of the scattering plane :param norm_low_res: pixel range of the direct beam out of the scattering plane :param q_min: value of lowest q point :param q_step: step size in Q. Enter a negative value to get a log scale :param q_min: value of largest q point :param tof_range: TOF range,or None :param theta: theta scattering angle in radians :param sample_length: sample size, for resolution calculation """ if instrument in [self.INSTRUMENT_4A, self.INSTRUMENT_4B]: self.instrument = instrument else: self.instrument = self.INSTRUMENT_4A self.signal_peak = signal_peak self.signal_bck = signal_bck self.norm_peak = norm_peak self.norm_bck = norm_bck self.signal_low_res = signal_low_res self.norm_low_res = norm_low_res self.specular_pixel = specular_pixel self.q_min = q_min self.q_max = q_max self.q_step = q_step self.tof_range = tof_range self.theta = theta self.sample_length = sample_length self._offspec_x_bins = None self._offspec_z_bins = None # Process workspaces if self.tof_range is not None: self._ws_sc = api.CropWorkspace(InputWorkspace=scattering_workspace, XMin=tof_range[0], XMax=tof_range[1], OutputWorkspace='_'+str(scattering_workspace)) self._ws_db = api.CropWorkspace(InputWorkspace=direct_workspace, XMin=tof_range[0], XMax=tof_range[1], OutputWorkspace='_'+str(direct_workspace)) else: self._ws_sc = scattering_workspace self._ws_db = direct_workspace # Extract meta data self.extract_meta_data() def extract_meta_data(self): # Set up basic data self.n_x = int(self._ws_sc.getInstrument().getNumberParameter("number-of-x-pixels")[0]) self.n_y = int(self._ws_sc.getInstrument().getNumberParameter("number-of-y-pixels")[0]) self.pixel_width = float(self._ws_sc.getInstrument().getNumberParameter("pixel-width")[0]) / 1000.0 if self.instrument == self.INSTRUMENT_4B: self.extract_meta_data_4B() else: self.extract_meta_data_4A() h = 6.626e-34 # m^2 kg s^-1 m = 1.675e-27 # kg self.constant = 1e-4 * m * self.source_detector_distance / h if self.tof_range is None: self.wl_range = get_wl_range(self._ws_sc) else: self.wl_range = [self.tof_range[0] / self.constant, self.tof_range[1] / self.constant] if self.q_min is None: self.q_min = 4.0*np.pi/self.wl_range[1] * np.sin(self.theta) if self.q_max is None: self.q_max = 4.0*np.pi/self.wl_range[0] * np.sin(self.theta) # Q binning to use self.q_bins = get_q_binning(self.q_min, self.q_max, self.q_step) def extract_meta_data_4A(self): run_object = self._ws_sc.getRun() self.det_distance = run_object['SampleDetDis'].getStatistics().mean source_sample_distance = run_object['ModeratorSamDis'].getStatistics().mean if not run_object['SampleDetDis'].units in ['m', 'meter']: self.det_distance /= 1000.0 if not run_object['ModeratorSamDis'].units in ['m', 'meter']: source_sample_distance /= 1000.0 self.source_detector_distance = source_sample_distance + self.det_distance def extract_meta_data_4B(self): self.det_distance = 1.83 source_sample_distance = 13.63 self.source_detector_distance = source_sample_distance + self.det_distance def __repr__(self): output = "sample-det: %s\n" % self.det_distance output += "pixel: %s\n" % self.pixel_width output += "WL: %s %s\n" % (self.wl_range[0], self.wl_range[1]) output += "Q: %s %s\n" % (self.q_min, self.q_max) output += "Theta = %s" % self.theta return output def specular(self, q_summing=True): # Scattering data refl, d_refl = self._reflectivity(self._ws_sc, peak_position=self.specular_pixel, peak=self.signal_peak, low_res=self.signal_low_res, theta=self.theta, q_summing=q_summing) norm, d_norm = self._reflectivity(self._ws_db, peak_position=0, peak=self.norm_peak, low_res=self.norm_low_res, theta=self.theta, q_summing=False) if False and self.norm_bck is not None: norm_bck, d_norm_bck = self._norm_bck_in_pixel() norm -= norm_bck d_norm = np.sqrt(d_norm**2 + d_norm_bck**2) db_bins = norm>0 if False and self.signal_bck is not None: refl_bck, d_refl_bck = self._signal_bck_in_pixel() refl -= refl_bck d_refl = np.sqrt(d_refl**2 + d_refl_bck**2) self.refl_bck = refl_bck[db_bins]/norm[db_bins] self.d_refl_bck = np.sqrt(d_refl_bck[db_bins]**2 / norm[db_bins]**2 + refl_bck[db_bins]**2 * d_norm[db_bins]**2 / norm[db_bins]**4) refl[db_bins] = refl[db_bins]/norm[db_bins] d_refl[db_bins] = np.sqrt(d_refl[db_bins]**2 / norm[db_bins]**2 + refl[db_bins]**2 * d_norm[db_bins]**2 / norm[db_bins]**4) self.refl = refl self.d_refl = d_refl return self.q_bins, refl, d_refl def _signal_bck_in_pixel(self, normalize_to_single_pixel=False, q_bins=None): q_bins = self.q_bins if q_bins is None else q_bins refl_bck, d_refl_bck = self._reflectivity(self._ws_sc, peak_position=0, q_bins=q_bins, peak=self.signal_bck, low_res=self.signal_low_res, theta=self.theta, q_summing=False) _pixel_area = (self.signal_bck[1]-self.signal_bck[0]+1.0) if not normalize_to_single_pixel: _pixel_area /= (self.signal_peak[1]-self.signal_peak[0]+1.0) refl_bck /= _pixel_area d_refl_bck /= _pixel_area return refl_bck, d_refl_bck def _norm_bck_in_pixel(self, q_bins=None): if q_bins is None: q_bins = self.q_bins norm_bck, d_norm_bck = self._reflectivity(self._ws_db, peak_position=0, q_bins=q_bins, peak=self.norm_bck, low_res=self.norm_low_res, theta=self.theta, q_summing=False) _pixel_area = (self.norm_bck[1]-self.norm_bck[0]+1.0) / (self.norm_peak[1]-self.norm_peak[0]+1.0) norm_bck /= _pixel_area d_norm_bck /= _pixel_area return norm_bck, d_norm_bck def slice(self, x_min=0.002, x_max=0.004, x_bins=None, z_bins=None, refl=None, d_refl=None, normalize=False): x_bins = self._offspec_x_bins if x_bins is None else x_bins z_bins = self._offspec_z_bins if z_bins is None else z_bins refl = self._offspec_refl if refl is None else refl d_refl = self._offspec_d_refl if d_refl is None else d_refl i_min = len(x_bins[x_bins<x_min]) i_max = len(x_bins[x_bins<x_max]) _spec = np.sum(refl[i_min:i_max], axis=0) _d_spec = np.sum( (d_refl[i_min:i_max])**2, axis=0) _d_spec = np.sqrt(_d_spec) if normalize: _spec /= (i_max-i_min) _d_spec /= (i_max-i_min) return z_bins, _spec, _d_spec def _reflectivity(self, ws, peak_position, peak, low_res, theta, q_bins=None, q_summing=False): """ Assumes that the input workspace is normalized by proton charge. """ charge = ws.getRun()['gd_prtn_chrg'].value _q_bins = self.q_bins if q_bins is None else q_bins refl = np.zeros(len(_q_bins)-1) _pixel_width = self.pixel_width if q_summing else 0.0 for i in range(low_res[0], int(low_res[1]+1)): for j in range(peak[0], int(peak[1]+1)): if self.instrument == self.INSTRUMENT_4A: pixel = j * self.n_y + i else: pixel = i * self.n_y + j evt_list = ws.getSpectrum(pixel) if evt_list.getNumberEvents() == 0: continue wl_list = evt_list.getTofs() / self.constant x_distance = _pixel_width * (peak_position - j) delta_theta_f = np.arctan(x_distance / self.det_distance) / 2.0 qz=4.0*np.pi/wl_list * np.sin(theta + delta_theta_f) * np.cos(delta_theta_f) _counts, _ = np.histogram(qz, bins=_q_bins) refl += _counts d_refl_sq = np.sqrt(refl) / charge refl /= charge return refl, d_refl_sq def _get_events(self, ws, peak, low_res): """ Return an array of wavelengths for a given workspace. """ wl_events = np.asarray([]) for i in range(low_res[0], int(low_res[1]+1)): for j in range(peak[0], int(peak[1]+1)): if self.instrument == self.INSTRUMENT_4A: pixel = j * self.n_y + i else: pixel = i * self.n_y + j evt_list = ws.getSpectrum(pixel) wl_list = evt_list.getTofs() / self.constant wl_events = np.concatenate((wl_events, wl_list)) return wl_events def off_specular(self, x_axis=None, x_min=-0.015, x_max=0.015, x_npts=50, z_min=None, z_max=None, z_npts=-120, bck_in_q=None): """ Compute off-specular :param x_axis: Axis selection :param x_min: Min value on x-axis :param x_max: Max value on x-axis :param x_npts: Number of points in x (negative will produce a log scale) :param z_min: Min value on z-axis (if none, default Qz will be used) :param z_max: Max value on z-axis (if none, default Qz will be used) :param z_npts: Number of points in z (negative will produce a log scale) """ # Z axis binning qz_bins = self.q_bins if z_min is not None and z_max is not None: if z_npts < 0: qz_bins = np.logspace(np.log10(z_min), np.log10(z_max), num=np.abs(z_npts)) else: qz_bins = np.linspace(z_min, z_max, num=z_npts) # X axis binning if x_npts > 0: qx_bins = np.linspace(x_min, x_max, num=x_npts) else: qx_bins = np.logspace(np.log10(x_min), np.log10(x_max), num=np.abs(x_npts)) wl_events = self._get_events(self._ws_db, self.norm_peak, self.norm_low_res) wl_dist, wl_bins = np.histogram(wl_events, bins=60) wl_middle = [(wl_bins[i+1]+wl_bins[i])/2.0 for i in range(len(wl_bins)-1)] _refl, _d_refl = self._off_specular(self._ws_sc, wl_dist, wl_middle, qx_bins, qz_bins, self.specular_pixel, self.theta, x_axis=x_axis) db_charge = self._ws_db.getRun()['gd_prtn_chrg'].value _refl *= db_charge * (wl_bins[1]-wl_bins[0]) _d_refl *= db_charge * (wl_bins[1]-wl_bins[0]) # Background if self.signal_bck: if bck_in_q is None: print("Not implemented") #refl_bck, d_refl_bck = self._signal_bck_in_pixel(normalize_to_single_pixel=True, q_bins=qz_bins) else: _, refl_bck, d_refl_bck = self.slice(bck_in_q[0], bck_in_q[1], x_bins=qx_bins, z_bins=qz_bins, refl=_refl, d_refl=_d_refl, normalize=True) _refl -= refl_bck _d_refl = np.sqrt(_d_refl**2 + d_refl_bck**2) self._offspec_x_bins = qx_bins self._offspec_z_bins = qz_bins self._offspec_refl = _refl self._offspec_d_refl = _d_refl return qx_bins, qz_bins, _refl, _d_refl def _off_specular(self, ws, wl_dist, wl_bins, x_bins, z_bins, peak_position, theta, x_axis=None): charge = ws.getRun()['gd_prtn_chrg'].value refl = np.zeros([len(x_bins)-1, len(z_bins)-1]) counts = np.zeros([len(x_bins)-1, len(z_bins)-1]) for j in range(0, self.n_x): wl_list = np.asarray([]) for i in range(self.signal_low_res[0], int(self.signal_low_res[1]+1)): if self.instrument == self.INSTRUMENT_4A: pixel = j * self.n_y + i else: pixel = i * self.n_y + j evt_list = ws.getSpectrum(pixel) wl_events = evt_list.getTofs() / self.constant wl_list = np.concatenate((wl_events, wl_list)) k = 2.0 * np.pi / wl_list wl_weights = 1.0/np.interp(wl_list, wl_bins, wl_dist, np.inf, np.inf) x_distance = float(peak_position-j) * self.pixel_width delta_theta_f = np.arctan(x_distance / self.det_distance) theta_f = theta + delta_theta_f qz = k * (np.sin(theta_f) + np.sin(theta)) qx = k * (np.cos(theta_f) - np.cos(theta)) ki_z = k * np.sin(theta) kf_z = k * np.sin(theta_f) _x = qx _z = qz if x_axis == EventReflectivity.DELTA_KZ_VS_QZ: _x = (ki_z - kf_z) elif x_axis == EventReflectivity.KZI_VS_KZF: _x = ki_z _z = kf_z histo_weigths = wl_weights * _z / wl_list _counts, _, _ = np.histogram2d(_x, _z, bins=[x_bins, z_bins], weights=histo_weigths) refl += _counts _counts, _, _ = np.histogram2d(_x, _z, bins=[x_bins, z_bins]) counts += _counts bin_size = z_bins[1] - z_bins[0] d_refl_sq = refl / np.sqrt(counts) / charge / bin_size refl /= charge * bin_size return refl, d_refl_sq
apache-2.0
-5,111,205,279,837,215,000
41.078341
143
0.544464
false
hajicj/safire
scripts/profile-training.py
1
3750
#!/usr/bin/env python """Testing script for the loader-setup-learner scenario. Runs a miniature experiment.""" import argparse import cProfile import logging import os import pstats import StringIO from gensim import corpora from safire.data.loaders import MultimodalDatasetLoader from safire.learning.models.logistic_regression import LogisticRegression from safire.learning.learners.base_sgd_learner import BaseSGDLearner def profile_run(learner, model_handle, dataset): pr = cProfile.Profile() pr.enable() learner.run(model_handle, dataset) pr.disable() s = StringIO.StringIO() sortby='tottime' ps = pstats.Stats(pr, stream = s).sort_stats(sortby) ps.print_stats(.1) return s.getvalue() def main(args): serializer = corpora.MmCorpus if args.serializer: if args.serializer == 'SvmLight': serializer = corpora.SvmLightCorpus elif args.serializer == 'Blei': serializer = corpora.BleiCorpus elif args.serializer == 'Low': serializer = corpora.LowCorpus elif serializer == 'Mm': serializer = corpora.MmCorpus logging.info('Initializing loader...') loader = MultimodalDatasetLoader(args.root, args.name, text_serializer=serializer) logging.info('Loading dataset...') dataset = loader.load(text_infix=args.text_label, img_infix=args.img_label) dataset.set_mode(1) logging.info('Setting up model...') model_handle = LogisticRegression.setup(dataset, batch_size=args.batch_size) logging.info('Setting up learner...') learner = BaseSGDLearner(n_epochs=args.n_epochs, b_size=args.batch_size, validation_frequency=args.validation_frequency) logging.info('Running learner with profiling...') profiler_results = profile_run(learner, model_handle, dataset) print profiler_results def build_argument_parser(): parser = argparse.ArgumentParser(description = __doc__, add_help=True) parser.add_argument('-r', '--root', required=True, help='The root dataset directory, passed to Loader.') parser.add_argument('-n', '--name', required=True, help='The name passed to Loader.') parser.add_argument('--text_label', default=None, help='Text corpus label.') parser.add_argument('--img_label', default=None, help='Image corpus label.') parser.add_argument('-b', '--batch_size', type=int, default=1, help='SGD batch size') parser.add_argument('-e', '--n_epochs', type=int, default=5, help='Number of SGD epochs.') parser.add_argument('-f', '--validation_frequency', type=int, default=3, help='Validation will be run once every -v batches.') parser.add_argument('--serializer', help='Use this gensim.corpora class'+ ' to load the serialized text corpora. Accepts: Mm,'+ ' Blei, SVMlight, Low; defaults to MmCorpus') parser.add_argument('-v', '--verbose', action='store_true', help='Will output INFO messages.') parser.add_argument('--debug', action='store_true', help='Will output DEBUG messages.') return parser def _set_logging(args): level = logging.WARN if args.debug: level = logging.DEBUG elif args.verbose: level = logging.INFO logging.basicConfig(format='%(levelname)s : %(message)s', level=level) #################################################### if __name__ == '__main__': parser = build_argument_parser() args = parser.parse_args() _set_logging(args) main(args)
gpl-3.0
4,754,184,727,170,040,000
30.25
80
0.623467
false
peter17/pijnu
test/timer.py
1
1850
# -*- coding: utf8 -*- from __future__ import print_function ''' Copyright 2009 Denis Derman <[email protected]> (former developer) Copyright 2011-2012 Peter Potrowl <[email protected]> (current developer) This file is part of Pijnu. Pijnu is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Pijnu is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with Pijnu. If not, see <http://www.gnu.org/licenses/>. ''' ''' Overall timer func -- just case needed ''' from time import time __all__ = ['timer'] def timer(n, f, *args, **kw_args): t0 = time() for i in range(n): f(*args, **kw_args) t = time() - t0 arg_str = ','.join(repr(arg) for arg in args) kw_arg_str = (',' + str(kw_args)[1:-1]) if kw_args else '' print("%s(%s%s) %s time(s) <--> %0.3f s" \ % (f.__name__, arg_str, kw_arg_str, n, t)) ########## test ########## if __name__ == "__main__": def sum2(x, y): return x + y timer(100000, sum2, 2, 3) from math import sqrt def mean(seq, geom=False): def sum(seq): sum = 0 for x in seq: sum += x return sum if geom: squares = (x * x for x in seq) return sqrt(sum(squares)) else: return sum(seq) / len(seq) seq = [1, 2, 3, 4, 5, 6, 7, 8, 9] timer(100000, mean, seq) timer(100000, mean, seq, geom=True)
gpl-3.0
4,233,844,960,566,852,600
26.61194
74
0.603243
false
AlexanderSk/fail2ban
fail2ban/server/jail.py
1
6789
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: t -*- # vi: set ft=python sts=4 ts=4 sw=4 noet : # This file is part of Fail2Ban. # # Fail2Ban is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Fail2Ban is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Fail2Ban; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # Author: Cyril Jaquier __author__ = "Cyril Jaquier, Lee Clemens, Yaroslav Halchenko" __copyright__ = "Copyright (c) 2004 Cyril Jaquier, 2011-2012 Lee Clemens, 2012 Yaroslav Halchenko" __license__ = "GPL" import Queue, logging from .actions import Actions # Gets the instance of the logger. logSys = logging.getLogger(__name__) class Jail: """Fail2Ban jail, which manages a filter and associated actions. The class handles the initialisation of a filter, and actions. It's role is then to act as an interface between the filter and actions, passing bans detected by the filter, for the actions to then act upon. Parameters ---------- name : str Name assigned to the jail. backend : str Backend to be used for filter. "auto" will attempt to pick the most preferred backend method. Default: "auto" db : Fail2BanDb Fail2Ban persistent database instance. Default: `None` Attributes ---------- name database filter actions idle status """ #Known backends. Each backend should have corresponding __initBackend method # yoh: stored in a list instead of a tuple since only # list had .index until 2.6 _BACKENDS = ['pyinotify', 'gamin', 'polling', 'systemd'] def __init__(self, name, backend = "auto", db=None): self.__db = db # 26 based on iptable chain name limit of 30 less len('f2b-') if len(name) >= 26: logSys.warning("Jail name %r might be too long and some commands " "might not function correctly. Please shorten" % name) self.__name = name self.__queue = Queue.Queue() self.__filter = None logSys.info("Creating new jail '%s'" % self.name) self._setBackend(backend) def __repr__(self): return "%s(%r)" % (self.__class__.__name__, self.name) def _setBackend(self, backend): backend = backend.lower() # to assure consistent matching backends = self._BACKENDS if backend != 'auto': # we have got strict specification of the backend to use if not (backend in self._BACKENDS): logSys.error("Unknown backend %s. Must be among %s or 'auto'" % (backend, backends)) raise ValueError("Unknown backend %s. Must be among %s or 'auto'" % (backend, backends)) # so explore starting from it till the 'end' backends = backends[backends.index(backend):] for b in backends: initmethod = getattr(self, '_init%s' % b.capitalize()) try: initmethod() if backend != 'auto' and b != backend: logSys.warning("Could only initiated %r backend whenever " "%r was requested" % (b, backend)) else: logSys.info("Initiated %r backend" % b) self.__actions = Actions(self) return # we are done except ImportError, e: # Log debug if auto, but error if specific logSys.log( logging.DEBUG if backend == "auto" else logging.ERROR, "Backend %r failed to initialize due to %s" % (b, e)) # log error since runtime error message isn't printed, INVALID COMMAND logSys.error( "Failed to initialize any backend for Jail %r" % self.name) raise RuntimeError( "Failed to initialize any backend for Jail %r" % self.name) def _initPolling(self): from filterpoll import FilterPoll logSys.info("Jail '%s' uses poller" % self.name) self.__filter = FilterPoll(self) def _initGamin(self): # Try to import gamin from filtergamin import FilterGamin logSys.info("Jail '%s' uses Gamin" % self.name) self.__filter = FilterGamin(self) def _initPyinotify(self): # Try to import pyinotify from filterpyinotify import FilterPyinotify logSys.info("Jail '%s' uses pyinotify" % self.name) self.__filter = FilterPyinotify(self) def _initSystemd(self): # pragma: systemd no cover # Try to import systemd from filtersystemd import FilterSystemd logSys.info("Jail '%s' uses systemd" % self.name) self.__filter = FilterSystemd(self) @property def name(self): """Name of jail. """ return self.__name @property def database(self): """The database used to store persistent data for the jail. """ return self.__db @property def filter(self): """The filter which the jail is using to monitor log files. """ return self.__filter @property def actions(self): """Actions object used to manage actions for jail. """ return self.__actions @property def idle(self): """A boolean indicating whether jail is idle. """ return self.filter.idle or self.actions.idle @idle.setter def idle(self, value): self.filter.idle = value self.actions.idle = value @property def status(self): """The status of the jail. """ return [ ("Filter", self.filter.status), ("Actions", self.actions.status), ] def putFailTicket(self, ticket): """Add a fail ticket to the jail. Used by filter to add a failure for banning. """ self.__queue.put(ticket) if self.database is not None: self.database.addBan(self, ticket) def getFailTicket(self): """Get a fail ticket from the jail. Used by actions to get a failure for banning. """ try: return self.__queue.get(False) except Queue.Empty: return False def start(self): """Start the jail, by starting filter and actions threads. Once stated, also queries the persistent database to reinstate any valid bans. """ self.filter.start() self.actions.start() # Restore any previous valid bans from the database if self.database is not None: for ticket in self.database.getBansMerged( jail=self, bantime=self.actions.getBanTime()): if not self.filter.inIgnoreIPList(ticket.getIP()): self.__queue.put(ticket) logSys.info("Jail '%s' started" % self.name) def stop(self): """Stop the jail, by stopping filter and actions threads. """ self.filter.stop() self.actions.stop() self.filter.join() self.actions.join() logSys.info("Jail '%s' stopped" % self.name) def is_alive(self): """Check jail "is_alive" by checking filter and actions threads. """ return self.filter.is_alive() or self.actions.is_alive()
gpl-2.0
600,484,904,292,077,600
28.262931
98
0.689645
false
cprov/snapcraft
snapcraft/internal/elf.py
2
26365
# -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2016-2018 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import contextlib import glob import logging import os import re import shutil import subprocess import tempfile from typing import Dict, FrozenSet, List, Set, Sequence, Tuple, Union # noqa import elftools.elf.elffile from pkg_resources import parse_version from snapcraft import file_utils from snapcraft.internal import common, errors, os_release, repo logger = logging.getLogger(__name__) class NeededLibrary: """Represents an ELF library version.""" def __init__(self, *, name: str) -> None: self.name = name self.versions = set() # type: Set[str] def add_version(self, version: str) -> None: self.versions.add(version) ElfArchitectureTuple = Tuple[str, str, str] ElfDataTuple = Tuple[ ElfArchitectureTuple, str, str, Dict[str, NeededLibrary], bool ] # noqa: E501 SonameCacheDict = Dict[Tuple[ElfArchitectureTuple, str], str] # Old pyelftools uses byte strings for section names. Some data is # also returned as bytes, which is handled below. if parse_version(elftools.__version__) >= parse_version("0.24"): _DYNAMIC = ".dynamic" # type: Union[str, bytes] _GNU_VERSION_R = ".gnu.version_r" # type: Union[str, bytes] _INTERP = ".interp" # type: Union[str, bytes] else: _DYNAMIC = b".dynamic" _GNU_VERSION_R = b".gnu.version_r" _INTERP = b".interp" class SonameCache: """A cache for sonames.""" def __getitem__(self, key): return self._soname_paths[key] def __setitem__(self, key, item): # Initial API error checks if not isinstance(key, tuple): raise EnvironmentError( "The key for SonameCache has to be a (arch, soname) tuple." ) if not isinstance(key[0], tuple) or len(key[0]) != 3: raise EnvironmentError( "The first element of the key needs to of type ElfArchitectureTuple." ) if not isinstance(key[1], str): raise EnvironmentError( "The second element of the key needs to be " "of type str representing the soname." ) self._soname_paths[key] = item def __contains__(self, key): return key in self._soname_paths def __init__(self): """Initialize a cache for sonames""" self._soname_paths = dict() # type: SonameCacheDict def reset_except_root(self, root): """Reset the cache values that aren't contained within root.""" new_soname_paths = dict() # type: SonameCacheDict for key, value in self._soname_paths.items(): if value is not None and value.startswith(root): new_soname_paths[key] = value self._soname_paths = new_soname_paths class Library: """Represents the SONAME and path to the library.""" def __init__( self, *, soname: str, path: str, root_path: str, core_base_path: str, arch: ElfArchitectureTuple, soname_cache: SonameCache ) -> None: self.soname = soname # We need to always look for the soname inside root first, # and after exhausting all options look in core_base_path. if path.startswith(root_path): self.path = path else: self.path = _crawl_for_path( soname=soname, root_path=root_path, core_base_path=core_base_path, arch=arch, soname_cache=soname_cache, ) if not self.path and path.startswith(core_base_path): self.path = path # Required for libraries on the host and the fetching mechanism if not self.path: self.path = path system_libs = _get_system_libs() if soname in system_libs: self.system_lib = True else: self.system_lib = False # self.path has the correct resulting path. if self.path.startswith(core_base_path): self.in_base_snap = True else: self.in_base_snap = False def _crawl_for_path( *, soname: str, root_path: str, core_base_path: str, arch: ElfArchitectureTuple, soname_cache: SonameCache ) -> str: # Speed things up and return what was already found once. if (arch, soname) in soname_cache: return soname_cache[arch, soname] logger.debug("Crawling to find soname {!r}".format(soname)) for path in (root_path, core_base_path): if not os.path.exists(path): continue for root, directories, files in os.walk(path): for file_name in files: if file_name == soname: file_path = os.path.join(root, file_name) if ElfFile.is_elf(file_path): # We found a match by name, anyway. Let's verify that # the architecture is the one we want. elf_file = ElfFile(path=file_path) if elf_file.arch == arch: soname_cache[arch, soname] = file_path return file_path # If not found we cache it too soname_cache[arch, soname] = None return None # Old versions of pyelftools return bytes rather than strings for # certain APIs. So we pass those values through this function to get # a consistent result. def _ensure_str(s): if isinstance(s, bytes): return s.decode("ascii") assert isinstance(s, str) return s class ElfFile: """ElfFile represents and elf file on a path and its attributes.""" @classmethod def is_elf(cls, path: str) -> bool: if not os.path.isfile(path): # ELF binaries are regular files return False with open(path, "rb") as bin_file: return bin_file.read(4) == b"\x7fELF" def __init__(self, *, path: str) -> None: """Initialize an ElfFile instance. :param str path: path to an elf_file within a snapcraft project. """ self.path = path self.dependencies = set() # type: Set[Library] elf_data = self._extract(path) self.arch = elf_data[0] self.interp = elf_data[1] self.soname = elf_data[2] self.needed = elf_data[3] self.execstack_set = elf_data[4] def _extract(self, path: str) -> ElfDataTuple: # noqa: C901 arch = None # type: ElfArchitectureTuple interp = str() soname = str() libs = dict() execstack_set = False with open(path, "rb") as fp: elf = elftools.elf.elffile.ELFFile(fp) # A set of fields to identify the architecture of the ELF file: # EI_CLASS: 32/64 bit (e.g. amd64 vs. x32) # EI_DATA: byte orer (e.g. ppc64 vs. ppc64le) # e_machine: instruction set (e.g. x86-64 vs. arm64) # # For amd64 binaries, this will evaluate to: # ('ELFCLASS64', 'ELFDATA2LSB', 'EM_X86_64') arch = ( elf.header.e_ident.EI_CLASS, elf.header.e_ident.EI_DATA, elf.header.e_machine, ) # If we are processing a detached debug info file, these # sections will be present but empty. interp_section = elf.get_section_by_name(_INTERP) if ( interp_section is not None and interp_section.header.sh_type != "SHT_NOBITS" ): interp = interp_section.data().rstrip(b"\x00").decode("ascii") dynamic_section = elf.get_section_by_name(_DYNAMIC) if ( dynamic_section is not None and dynamic_section.header.sh_type != "SHT_NOBITS" ): for tag in dynamic_section.iter_tags("DT_NEEDED"): needed = _ensure_str(tag.needed) libs[needed] = NeededLibrary(name=needed) for tag in dynamic_section.iter_tags("DT_SONAME"): soname = _ensure_str(tag.soname) verneed_section = elf.get_section_by_name(_GNU_VERSION_R) if ( verneed_section is not None and verneed_section.header.sh_type != "SHT_NOBITS" ): for library, versions in verneed_section.iter_versions(): library_name = _ensure_str(library.name) # If the ELF file only references weak symbols # from a library, it may be absent from DT_NEEDED # but still have an entry in .gnu.version_r for # symbol versions. if library_name not in libs: continue lib = libs[library_name] for version in versions: lib.add_version(_ensure_str(version.name)) for segment in elf.iter_segments(): if segment["p_type"] == "PT_GNU_STACK": # p_flags holds the bit mask for this segment. # See `man 5 elf`. mode = segment["p_flags"] if mode & elftools.elf.constants.P_FLAGS.PF_X: execstack_set = True return arch, interp, soname, libs, execstack_set def is_linker_compatible(self, *, linker_version: str) -> bool: """Determines if linker will work given the required glibc version.""" version_required = self.get_required_glibc() r = parse_version(version_required) <= parse_version(linker_version) logger.debug( "Checking if linker {!r} will work with " "GLIBC_{} required by {!r}: {!r}".format( linker_version, version_required, self.path, r ) ) return r def get_required_glibc(self) -> str: """Returns the required glibc version for this ELF file.""" with contextlib.suppress(AttributeError): return self._required_glibc # type: ignore version_required = "" for lib in self.needed.values(): for version in lib.versions: if not version.startswith("GLIBC_"): continue version = version[6:] if parse_version(version) > parse_version(version_required): version_required = version self._required_glibc = version_required return version_required def load_dependencies( self, root_path: str, core_base_path: str, soname_cache: SonameCache = None ) -> Set[str]: """Load the set of libraries that are needed to satisfy elf's runtime. This may include libraries contained within the project. The object's .dependencies attribute is set after loading. :param str root_path: the root path to search for missing dependencies. :param str core_base_path: the core base path to search for missing dependencies. :param SonameCache soname_cache: a cache of previously search dependencies. :returns: a set of string with paths to the library dependencies of elf. """ if soname_cache is None: soname_cache = SonameCache() logger.debug("Getting dependencies for {!r}".format(self.path)) ldd_out = [] # type: List[str] try: # ldd output sample: # /lib64/ld-linux-x86-64.so.2 (0x00007fb3c5298000) # libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fb3bef03000) ldd_out = common.run_output(["ldd", self.path]).split("\n") except subprocess.CalledProcessError: logger.warning( "Unable to determine library dependencies for {!r}".format(self.path) ) return set() ldd_out_split = [l.split() for l in ldd_out] libs = set() for ldd_line in ldd_out_split: if len(ldd_line) > 2: libs.add( Library( soname=ldd_line[0], path=ldd_line[2], root_path=root_path, core_base_path=core_base_path, arch=self.arch, soname_cache=soname_cache, ) ) self.dependencies = libs # Return a set useful only for fetching libraries from the host library_paths = set() # type: Set[str] for l in libs: if os.path.exists(l.path) and not l.in_base_snap and not l.system_lib: library_paths.add(l.path) return library_paths class Patcher: """Patcher holds the necessary logic to patch elf files.""" def __init__( self, *, dynamic_linker: str, root_path: str, preferred_patchelf_path=None ) -> None: """Create a Patcher instance. :param str dynamic_linker: the path to the dynamic linker to set the elf file to. :param str root_path: the base path for the snap to determine if use of $ORIGIN is possible. :param str preferred_patchelf_path: patch the necessary elf_files with this patchelf. """ self._dynamic_linker = dynamic_linker self._root_path = root_path if preferred_patchelf_path: self._patchelf_cmd = preferred_patchelf_path else: self._patchelf_cmd = file_utils.get_tool_path("patchelf") self._strip_cmd = file_utils.get_tool_path("strip") def patch(self, *, elf_file: ElfFile) -> None: """Patch elf_file with the Patcher instance configuration. If the ELF is executable, patch it to use the configured linker. If the ELF has dependencies (DT_NEEDED), set an rpath to them. :param ElfFile elf: a data object representing an elf file and its relevant attributes. :raises snapcraft.internal.errors.PatcherError: raised when the elf_file cannot be patched. """ patchelf_args = [] if elf_file.interp: patchelf_args.extend(["--set-interpreter", self._dynamic_linker]) if elf_file.dependencies: rpath = self._get_rpath(elf_file) # Due to https://github.com/NixOS/patchelf/issues/94 we need # to first clear the current rpath self._run_patchelf( patchelf_args=["--remove-rpath"], elf_file_path=elf_file.path ) # Parameters: # --force-rpath: use RPATH instead of RUNPATH. # --shrink-rpath: will remove unneeded entries, with the # side effect of preferring host libraries # so we simply do not use it. # --set-rpath: set the RPATH to the colon separated argument. patchelf_args.extend(["--force-rpath", "--set-rpath", rpath]) # no patchelf_args means there is nothing to do. if not patchelf_args: return self._run_patchelf(patchelf_args=patchelf_args, elf_file_path=elf_file.path) def _run_patchelf(self, *, patchelf_args: List[str], elf_file_path: str) -> None: try: return self._do_run_patchelf( patchelf_args=patchelf_args, elf_file_path=elf_file_path ) except errors.PatcherError as patch_error: # This is needed for patchelf to properly work with # go binaries (LP: #1736861). # We do this here instead of the go plugin for two reasons, the # first being that we do not want to blindly remove the section, # only doing it when necessary, and the second, this logic # should eventually be removed once patchelf catches up. try: logger.warning( "Failed to update {!r}. Retrying after stripping " "the .note.go.buildid from the elf file.".format(elf_file_path) ) subprocess.check_call( [ self._strip_cmd, "--remove-section", ".note.go.buildid", elf_file_path, ] ) except subprocess.CalledProcessError: logger.warning( "Could not properly strip .note.go.buildid " "from {!r}.".format(elf_file_path) ) raise patch_error return self._do_run_patchelf( patchelf_args=patchelf_args, elf_file_path=elf_file_path ) def _do_run_patchelf(self, *, patchelf_args: List[str], elf_file_path: str) -> None: # Run patchelf on a copy of the primed file and replace it # after it is successful. This allows us to break the potential # hard link created when migrating the file across the steps of # the part. with tempfile.NamedTemporaryFile() as temp_file: shutil.copy2(elf_file_path, temp_file.name) cmd = [self._patchelf_cmd] + patchelf_args + [temp_file.name] try: subprocess.check_call(cmd) # There is no need to catch FileNotFoundError as patchelf should be # bundled with snapcraft which means its lack of existence is a # "packager" error. except subprocess.CalledProcessError as call_error: patchelf_version = ( subprocess.check_output([self._patchelf_cmd, "--version"]) .decode() .strip() ) # 0.10 is the version where patching certain binaries will # work (currently known affected packages are mostly built # with go). if parse_version(patchelf_version) < parse_version("0.10"): raise errors.PatcherNewerPatchelfError( elf_file=elf_file_path, process_exception=call_error, patchelf_version=patchelf_version, ) else: raise errors.PatcherGenericError( elf_file=elf_file_path, process_exception=call_error ) # We unlink to break the potential hard link os.unlink(elf_file_path) shutil.copy2(temp_file.name, elf_file_path) def _get_existing_rpath(self, elf_file_path): output = subprocess.check_output( [self._patchelf_cmd, "--print-rpath", elf_file_path] ) return output.decode().strip().split(":") def _get_rpath(self, elf_file) -> str: origin_rpaths = list() # type: List[str] base_rpaths = set() # type: Set[str] existing_rpaths = self._get_existing_rpath(elf_file.path) for dependency in elf_file.dependencies: if dependency.path: if dependency.in_base_snap: base_rpaths.add(os.path.dirname(dependency.path)) elif dependency.path.startswith(self._root_path): rel_library_path = os.path.relpath(dependency.path, elf_file.path) rel_library_path_dir = os.path.dirname(rel_library_path) # return the dirname, with the first .. replace # with $ORIGIN origin_rpath = rel_library_path_dir.replace("..", "$ORIGIN", 1) if origin_rpath not in origin_rpaths: origin_rpaths.append(origin_rpath) if existing_rpaths: # Only keep those that mention origin and are not already in our # bundle. existing_rpaths = [ r for r in existing_rpaths if "$ORIGIN" in r and r not in origin_rpaths ] origin_rpaths = existing_rpaths + origin_rpaths origin_paths = ":".join((r for r in origin_rpaths if r)) core_base_rpaths = ":".join(base_rpaths) if origin_paths and core_base_rpaths: return "{}:{}".format(origin_paths, core_base_rpaths) elif origin_paths and not core_base_rpaths: return origin_paths else: return core_base_rpaths def determine_ld_library_path(root: str) -> List[str]: """Determine additional library paths needed for the linker loader. This is a workaround until full library searching is implemented which works by searching for ld.so.conf in specific hard coded locations within root. :param root str: the root directory to search for specific ld.so.conf entries. :returns: a list of strings of library paths where relevant libraries can be found within root. """ # If more ld.so.conf files need to be supported, add them here. ld_config_globs = {"{}/usr/lib/*/mesa*/ld.so.conf".format(root)} ld_library_paths = [] for this_glob in ld_config_globs: for ld_conf_file in glob.glob(this_glob): ld_library_paths.extend(_extract_ld_library_paths(ld_conf_file)) return [root + path for path in ld_library_paths] def _extract_ld_library_paths(ld_conf_file: str) -> List[str]: # From the ldconfig manpage, paths can be colon-, space-, tab-, newline-, # or comma-separated. path_delimiters = re.compile(r"[:\s,]") comments = re.compile(r"#.*$") paths = [] with open(ld_conf_file, "r") as f: for line in f: # Remove comments from line line = comments.sub("", line).strip() if line: paths.extend(path_delimiters.split(line)) return paths _libraries = None def _get_system_libs() -> FrozenSet[str]: global _libraries if _libraries: # type: ignore return _libraries # type: ignore lib_path = None release = os_release.OsRelease() with contextlib.suppress(errors.OsReleaseVersionIdError): lib_path = os.path.join(common.get_librariesdir(), release.version_id()) if not lib_path or not os.path.exists(lib_path): logger.debug("Only excluding libc libraries from the release") libc6_libs = [ os.path.basename(l) for l in repo.Repo.get_package_libraries("libc6") ] _libraries = frozenset(libc6_libs) else: with open(lib_path) as fn: _libraries = frozenset(fn.read().split()) return _libraries def get_elf_files(root: str, file_list: Sequence[str]) -> FrozenSet[ElfFile]: """Return a frozenset of elf files from file_list prepended with root. :param str root: the root directory from where the file_list is generated. :param file_list: a list of file in root. :returns: a frozentset of ElfFile objects. """ elf_files = set() # type: Set[ElfFile] for part_file in file_list: # Filter out object (*.o) files-- we only care about binaries. if part_file.endswith(".o"): continue # No need to crawl links-- the original should be here, too. path = os.path.join(root, part_file) # type: str if os.path.islink(path): logger.debug("Skipped link {!r} while finding dependencies".format(path)) continue # Finally, make sure this is actually an ELF file if ElfFile.is_elf(path): elf_file = ElfFile(path=path) # if we have dyn symbols we are dynamic if elf_file.needed: elf_files.add(elf_file) return frozenset(elf_files) def _get_dynamic_linker(library_list: List[str]) -> str: """Return the dynamic linker from library_list.""" regex = re.compile(r"(?P<dynamic_linker>ld-[\d.]+.so)$") for library in library_list: m = regex.search(os.path.basename(library)) if m: return library raise RuntimeError( "The format for the linker should be of the form " "<root>/ld-<X>.<Y>.so. There are no matches for the " "current libc6 package" ) def find_linker(*, root_path: str, snap_base_path: str) -> str: """Find and return the dynamic linker that would be seen at runtime. :param str root_path: the root path of a snap tree. :param str snap_base_path: absolute path to the snap once installed to setup proper rpaths. :returns: the path to the dynamic linker to use """ # We assume the current system will satisfy the GLIBC requirement, # get the current libc6 libraries (which includes the linker) libc6_libraries_list = repo.Repo.get_package_libraries("libc6") # For security reasons, we do not want to automatically pull in # libraries but expect them to be consciously brought in by stage-packages # instead. libc6_libraries_paths = [ os.path.join(root_path, l[1:]) for l in libc6_libraries_list ] dynamic_linker = _get_dynamic_linker(libc6_libraries_paths) # Get the path to the "would be" dynamic linker when this snap is # installed. Strip the root_path from the retrieved dynamic_linker # variables + the leading `/` so that os.path.join can perform the # proper join with snap_base_path. dynamic_linker_path = os.path.join( snap_base_path, dynamic_linker[len(root_path) + 1 :] ) return dynamic_linker_path
gpl-3.0
5,716,842,983,401,830,000
36.935252
88
0.573943
false
smoitra87/gerbil
deepnet/impute.py
1
24315
"""Computes partition function for RBM-like models using Annealed Importance Sampling.""" import numpy as np from deepnet import dbm from deepnet import util from deepnet import trainer as tr from choose_matrix_library import * import sys import numpy as np import pdb import time import itertools import matplotlib.pyplot as plt from deepnet import visualize import deepnet import scipy.io as sio def LogMeanExp(x): offset = x.max() return offset + np.log(np.exp(x-offset).mean()) def LogSumExp(x): offset = x.max() return offset + np.log(np.exp(x-offset).sum()) def Display(w, hid_state, input_state, w_var=None, x_axis=None): w = w.asarray().flatten() plt.figure(1) plt.clf() plt.hist(w, 100) visualize.display_hidden(hid_state.asarray(), 2, 'activations', prob=True) # plt.figure(3) # plt.clf() # plt.imshow(hid_state.asarray().T, cmap=plt.cm.gray, interpolation='nearest') # plt.figure(4) # plt.clf() # plt.imshow(input_state.asarray().T, cmap=plt.cm.gray, interpolation='nearest') #, state.shape[0], state.shape[1], state.shape[0], 3, title='Markov chains') # plt.tight_layout(pad=0, w_pad=0, h_pad=0) # plt.figure(5) # plt.clf() # plt.suptitle('Variance') # plt.plot(np.array(x_axis), np.array(w_var)) # plt.draw() def impute_dbm_ais(model): """Run approximate pll using AIS on a DBM """ def impute_rbm_gaussian_exact(model): """ run exact exact pll and imputation error on an rbm """ batchsize = model.batchsize input_layer = model.GetLayerByName('input_layer') hidden_layer = model.GetLayerByName('bernoulli_hidden1') bern2_hidden_layer = model.GetLayerByName('bernoulli2_hidden1') gaussian_layer = model.GetLayerByName('gaussian_hidden1') # Get input layer features dimensions = input_layer.dimensions numlabels = input_layer.numlabels data = input_layer.data # set up temp data structures for layer in model.layer: layer.foo = layer.statesize layer.bar = layer.deriv zeroslice = cm.CUDAMatrix(np.zeros([input_layer.numlabels,\ batchsize])) onesrow = cm.CUDAMatrix(np.ones([1,\ batchsize])) batchslice = cm.CUDAMatrix(np.zeros([1, batchsize])) batchzeroslice = cm.CUDAMatrix(np.zeros([1, batchsize])) batchslice2 = cm.CUDAMatrix(np.zeros([1, batchsize])) datasize_squared = cm.CUDAMatrix(np.zeros([batchsize, batchsize])) datasize_eye = cm.CUDAMatrix(np.eye(batchsize)) datasize_eye2 = cm.CUDAMatrix(np.eye(batchsize)) if hidden_layer: hidden_bias = hidden_layer.params['bias'] bedge = next(e for e in model.edge if e.node1.name == 'input_layer' \ and e.node2.name == 'bernoulli_hidden1') w = bedge.params['weight'] if bern2_hidden_layer: bern2_hidden_bias = bern2_hidden_layer.params['bias'] bedge2 = next(e for e in model.edge if e.node1.name == 'input_layer' \ and e.node2.name == 'bernoulli2_hidden1') w2 = bedge2.params['weight'] if 'bias' in input_layer.params: input_bias = input_layer.params['bias'] if gaussian_layer: gedge = next(e for e in model.edge if e.node1.name == 'input_layer' \ and e.node2.name == 'gaussian_hidden1') gw = gedge.params['weight'] input_diag = input_layer.params['diag'] diag_val = input_diag.sum() / (input_layer.dimensions * input_layer.numlabels) # RUN Imputation Error for dim_idx in range(dimensions): #------------------------------------------- # Set state of input variables input_layer.GetData() dim_offset = dim_idx * numlabels for label_idx in range(numlabels): batchslice.assign(batchzeroslice) #Assign state value label_offset = dim_idx * numlabels + label_idx input_layer.state.set_row_slice(dim_offset, dim_offset + numlabels, \ zeroslice) input_layer.state.set_row_slice(label_offset, label_offset+1, onesrow) if hidden_layer: # Add the contributions from bernoulli hidden layer cm.dot(w.T, input_layer.state, target=hidden_layer.state) hidden_layer.state.add_col_vec(hidden_bias) cm.log_1_plus_exp(hidden_layer.state) hidden_layer.state.sum(axis=0, target=batchslice) if bern2_hidden_layer: # Add the contributions from bernoulli hidden layer cm.dot(w2.T, input_layer.state, target=bern2_hidden_layer.state) bern2_hidden_layer.state.add_col_vec(bern2_hidden_bias) cm.log_1_plus_exp(bern2_hidden_layer.state) batchslice.add_sums(bern2_hidden_layer.state, axis=0) if 'bias' in input_layer.params: cm.dot(input_bias.T, input_layer.state, target=batchslice2) batchslice.add_row_vec(batchslice2) if gaussian_layer: # Add contributions from gaussian hidden layer cm.dot(gw.T, input_layer.state, target=gaussian_layer.state) cm.dot(gaussian_layer.state.T, gaussian_layer.state, target= datasize_squared) datasize_squared.mult(datasize_eye, target=datasize_eye2) datasize_eye2.sum(axis=0, target=batchslice2) # Add constants from gaussian hidden layer integration_constant = gaussian_layer.dimensions * np.log(2*np.pi) integration_constant += input_layer.dimensions * diag_val batchslice2.add(integration_constant) batchslice2.mult(0.5) batchslice.add_row_vec(batchslice2) input_layer.foo.set_row_slice(label_offset, label_offset+1, batchslice) # Apply softmax on log Z_v as energies input_layer.foo.reshape((numlabels, dimensions * batchsize)) input_layer.foo.apply_softmax() data.reshape((1, dimensions * batchsize)) # Calculate Imputation Error input_layer.batchsize_temp.reshape((1, dimensions * batchsize)) input_layer.foo.get_softmax_correct(data, target=input_layer.batchsize_temp) input_layer.batchsize_temp.reshape((dimensions, batchsize)) imperr_cpu = (dimensions - input_layer.batchsize_temp.sum(axis=0).asarray() )/ (0. + dimensions) # Calculate Pseudo ll input_layer.batchsize_temp.reshape((1, dimensions * batchsize)) input_layer.foo.get_softmax_cross_entropy(data, target=input_layer.batchsize_temp, \ tiny=input_layer.tiny) input_layer.batchsize_temp.reshape((dimensions, batchsize)) pll_cpu = - input_layer.batchsize_temp.sum(axis=0).asarray() # Undo rehapes input_layer.foo.reshape((numlabels * dimensions, batchsize)) data.reshape((dimensions, batchsize)) zeroslice.free_device_memory() onesrow.free_device_memory() batchslice.free_device_memory() return pll_cpu, imperr_cpu def impute_rbm_exact(model): """ run exact exact pll and imputation error on an rbm """ batchsize = model.batchsize input_layer = model.GetLayerByName('input_layer') hidden_layer = model.GetLayerByName('hidden1') # Get input layer features dimensions = input_layer.dimensions numlabels = input_layer.numlabels data = input_layer.data # set up temp data structures for layer in model.layer: layer.foo = layer.statesize layer.bar = layer.deriv zeroslice = cm.CUDAMatrix(np.zeros([input_layer.numlabels,\ batchsize])) onesrow = cm.CUDAMatrix(np.ones([1,\ batchsize])) batchslice = cm.CUDAMatrix(np.zeros([1, batchsize])) batchslice2 = cm.CUDAMatrix(np.zeros([1, batchsize])) hidden_bias = hidden_layer.params['bias'] input_bias = input_layer.params['bias'] edge = model.edge[0] w = edge.params['weight'] # RUN Imputation Error for dim_idx in range(dimensions): #------------------------------------------- # Set state of input variables input_layer.GetData() dim_offset = dim_idx * numlabels for label_idx in range(numlabels): #Assign state value label_offset = dim_idx * numlabels + label_idx input_layer.state.set_row_slice(dim_offset, dim_offset + numlabels, \ zeroslice) input_layer.state.set_row_slice(label_offset, label_offset+1, onesrow) cm.dot(w.T, input_layer.state, target=hidden_layer.state) hidden_layer.state.add_col_vec(hidden_bias) cm.log_1_plus_exp(hidden_layer.state) hidden_layer.state.sum(axis=0, target=batchslice) cm.dot(input_bias.T, input_layer.state, target=batchslice2) batchslice.add_row_vec(batchslice2) input_layer.foo.set_row_slice(label_offset, label_offset+1, batchslice) # Apply softmax on log Z_v as energies input_layer.foo.reshape((numlabels, dimensions * batchsize)) input_layer.foo.apply_softmax() data.reshape((1, dimensions * batchsize)) # Calculate Imputation Error input_layer.batchsize_temp.reshape((1, dimensions * batchsize)) input_layer.foo.get_softmax_correct(data, target=input_layer.batchsize_temp) input_layer.batchsize_temp.reshape((dimensions, batchsize)) imperr_cpu = (dimensions - input_layer.batchsize_temp.sum(axis=0).asarray() )/ (0. + dimensions) # Calculate Pseudo ll input_layer.batchsize_temp.reshape((1, dimensions * batchsize)) input_layer.foo.get_softmax_cross_entropy(data, target=input_layer.batchsize_temp, \ tiny=input_layer.tiny) input_layer.batchsize_temp.reshape((dimensions, batchsize)) pll_cpu = - input_layer.batchsize_temp.sum(axis=0).asarray() # Undo rehapes input_layer.foo.reshape((numlabels * dimensions, batchsize)) data.reshape((dimensions, batchsize)) zeroslice.free_device_memory() onesrow.free_device_memory() batchslice.free_device_memory() return pll_cpu, imperr_cpu def impute_mf(model, mf_steps, hidden_mf_steps, **opts): # Initialize stuff batchsize = model.batchsize input_layer = model.GetLayerByName('input_layer') hidden_layers = [] for layer in model.layer: if not layer.is_input: hidden_layers.append(layer) dimensions = input_layer.dimensions numlabels = input_layer.numlabels data = input_layer.data # set up temp data structures for layer in model.layer: layer.foo = layer.statesize input_layer.fooslice = cm.CUDAMatrix(np.zeros([input_layer.numlabels,\ batchsize])) input_layer.barslice = cm.CUDAMatrix(np.zeros([1, batchsize])) pll = cm.CUDAMatrix(np.zeros([1, batchsize])) imputation_err = cm.CUDAMatrix(np.zeros([1, batchsize])) input_layer.biasslice = cm.CUDAMatrix(np.zeros([input_layer.numlabels,\ batchsize])) input_layer.biasslice.apply_softmax() # INITIALIZE TO UNIFORM RANDOM for all layers except clamped layers for layer in model.layer: layer.state.assign(0) layer.ApplyActivation() def reshape_softmax(enter=True): if enter: input_layer.state.reshape((numlabels, dimensions * batchsize)) input_layer.foo.reshape((numlabels, dimensions * batchsize)) data.reshape((1, dimensions * batchsize)) input_layer.batchsize_temp.reshape((1, dimensions * batchsize)) else: input_layer.state.reshape((numlabels * dimensions, batchsize)) input_layer.foo.reshape((numlabels * dimensions, batchsize)) data.reshape((dimensions, batchsize)) input_layer.batchsize_temp.reshape((dimensions, batchsize)) # RUN Imputation Error for dim_idx in range(dimensions): #------------------------------------------- # Set state of input variables input_layer.GetData() offset = dim_idx * numlabels input_layer.state.set_row_slice(offset, offset + numlabels, \ input_layer.biasslice) for layer in model.layer: if not layer.is_input: layer.state.assign(0) # Run MF steps for mf_idx in range(mf_steps): for hid_mf_idx in range(hidden_mf_steps): for layer in hidden_layers: model.ComputeUp(layer, train=False, compute_input=False, step=0, maxsteps=0, use_samples=False, neg_phase=False) model.ComputeUp(input_layer, train=False, compute_input=True, step=0, maxsteps=0, use_samples=False, neg_phase=False) input_layer.state.get_row_slice(offset, offset + numlabels , \ target=input_layer.fooslice) input_layer.GetData() input_layer.state.set_row_slice(offset, offset + numlabels , \ input_layer.fooslice) # Calculate pll reshape_softmax(enter=True) input_layer.state.get_softmax_cross_entropy(data,\ target=input_layer.batchsize_temp, tiny=input_layer.tiny) reshape_softmax(enter=False) input_layer.batchsize_temp.get_row_slice(dim_idx, dim_idx + 1 , \ target=input_layer.barslice) pll.add_sums(input_layer.barslice, axis=0) # Calculate imputation error if 'blosum90' in opts: reshape_softmax(enter=True) input_layer.state.get_softmax_blosum90(data, target=input_layer.batchsize_temp) reshape_softmax(enter=False) input_layer.batchsize_temp.get_row_slice(dim_idx, dim_idx + 1 , \ target=input_layer.barslice) imputation_err.add_sums(input_layer.barslice, axis=0) else: reshape_softmax(enter=True) input_layer.state.get_softmax_correct(data, target=input_layer.batchsize_temp) reshape_softmax(enter=False) input_layer.batchsize_temp.get_row_slice(dim_idx, dim_idx + 1 , \ target=input_layer.barslice) imputation_err.add_sums(input_layer.barslice, axis=0, mult=-1.) imputation_err.add(1.) #-------------------------------------- # free device memory for newly created arrays pll_cpu = -pll.asarray() imperr_cpu = imputation_err.asarray() imperr_cpu /= (dimensions+0.) input_layer.fooslice.free_device_memory() input_layer.biasslice.free_device_memory() input_layer.barslice.free_device_memory() pll.free_device_memory() imputation_err.free_device_memory() return pll_cpu, imperr_cpu def multicol_mf(model, multicols, **opts): # Initialize stuff batchsize = model.batchsize input_layer = model.GetLayerByName('input_layer') hidden_layers = [] for layer in model.layer: if not layer.is_input: hidden_layers.append(layer) dimensions = input_layer.dimensions numlabels = input_layer.numlabels data = input_layer.data # set up temp data structures for layer in model.layer: layer.foo = layer.statesize input_layer.fooslice = cm.CUDAMatrix(np.zeros([input_layer.numlabels,\ batchsize])) input_layer.barslice = cm.CUDAMatrix(np.zeros([1, batchsize])) pll = cm.CUDAMatrix(np.zeros([1, batchsize])) imputation_err = cm.CUDAMatrix(np.zeros([1, batchsize])) input_layer.biasslice = cm.CUDAMatrix(np.zeros([input_layer.numlabels,\ batchsize])) input_layer.biasslice.apply_softmax() # Get the multicol dimensions nBlocks, nCols = multicols.shape # INITIALIZE TO UNIFORM RANDOM for all layers except clamped layers for layer in model.layer: layer.state.assign(0) layer.ApplyActivation() def reshape_softmax(enter=True): if enter: input_layer.state.reshape((numlabels, dimensions * batchsize)) input_layer.foo.reshape((numlabels, dimensions * batchsize)) data.reshape((1, dimensions * batchsize)) input_layer.batchsize_temp.reshape((1, dimensions * batchsize)) else: input_layer.state.reshape((numlabels * dimensions, batchsize)) input_layer.foo.reshape((numlabels * dimensions, batchsize)) data.reshape((dimensions, batchsize)) input_layer.batchsize_temp.reshape((dimensions, batchsize)) # RUN Imputation Error for mult_idx in range(nBlocks): #------------------------------------------- # Set state of input variables input_layer.GetData() for col_idx in range(nCols): dim_idx = multicols[mult_idx, col_idx] offset = dim_idx * numlabels input_layer.state.set_row_slice(offset, offset + numlabels, \ input_layer.biasslice) for layer in model.layer: if not layer.is_input: layer.state.assign(0) for layer in hidden_layers: model.ComputeUp(layer, train=False, compute_input=False, step=0, maxsteps=0, use_samples=False, neg_phase=False) model.ComputeUp(input_layer, train=False, compute_input=True, step=0, maxsteps=0, use_samples=False, neg_phase=False) # Calculate pll reshape_softmax(enter=True) input_layer.state.get_softmax_cross_entropy(data,\ target=input_layer.batchsize_temp, tiny=input_layer.tiny) reshape_softmax(enter=False) for col_idx in range(nCols): dim_idx = multicols[mult_idx, col_idx] input_layer.batchsize_temp.get_row_slice(dim_idx, dim_idx + 1 , \ target=input_layer.barslice) pll.add_sums(input_layer.barslice, axis=0) # Calculate imputation error if 'blosum90' in opts: reshape_softmax(enter=True) input_layer.state.get_softmax_blosum90(data, target=input_layer.batchsize_temp) reshape_softmax(enter=False) for col_idx in range(nCols): dim_idx = multicols[mult_idx, col_idx] input_layer.batchsize_temp.get_row_slice(dim_idx, dim_idx + 1 , \ target=input_layer.barslice) imputation_err.add_sums(input_layer.barslice, axis=0) else: reshape_softmax(enter=True) input_layer.state.get_softmax_correct(data, target=input_layer.batchsize_temp) reshape_softmax(enter=False) for col_idx in range(nCols): dim_idx = multicols[mult_idx, col_idx] input_layer.batchsize_temp.get_row_slice(dim_idx, dim_idx + 1 , \ target=input_layer.barslice) imputation_err.add_sums(input_layer.barslice, axis=0, mult=-1.) imputation_err.add(1.) #-------------------------------------- # free device memory for newly created arrays pll_cpu = -pll.asarray() imperr_cpu = imputation_err.asarray() imperr_cpu /= (nBlocks * nCols +0.) input_layer.fooslice.free_device_memory() input_layer.biasslice.free_device_memory() input_layer.barslice.free_device_memory() pll.free_device_memory() imputation_err.free_device_memory() return pll_cpu, imperr_cpu def Usage(): print '%s <model file> <number of Markov chains to run> [number of words (for Replicated Softmax models)]' if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser(description="Run AIS") parser.add_argument("--model_file", type=str) parser.add_argument("--train_file", type=str) parser.add_argument("--infer-method", type=str, default='exact', \ help='mf/gibbs/exact/gaussian_exact') parser.add_argument("--mf-steps", type=int, default=1) parser.add_argument("--hidden-mf-steps", type=int, default=1) parser.add_argument("--outf", type=str, help='Output File') parser.add_argument("--valid_only", action='store_true', help="only run the validation set") parser.add_argument("--blosum90", action='store_true', help="Calculate blosum90 scores") parser.add_argument("--ncols", type=int, help="Number of multiple columns") parser.add_argument("--multmode", type=str, help="Multicol mode",default='rand') args = parser.parse_args() if not args.outf : raise ValueError('Output file not defined') if not args.train_file or not args.model_file : raise ValueError('Models and data missing') board = tr.LockGPU() model_file = args.model_file train_file = args.train_file model = dbm.DBM(model_file, train_file) trainer_pb = util.ReadOperation(train_file) dataset = os.path.basename(trainer_pb.data_proto_prefix) # Fix paths dirname = os.path.split(model.t_op.data_proto_prefix)[1] model.t_op.data_proto_prefix = os.path.join('datasets/',\ dirname) model.t_op.skip_last_piece = False model.t_op.get_last_piece = True model.t_op.randomize = False model.LoadModelOnGPU() model.SetUpData() if args.valid_only: data_types = ['valid'] else: data_types = ['train', 'valid', 'test'] datagetters = { 'train' : model.GetTrainBatch, 'valid' : model.GetValidationBatch, 'test' : model.GetTestBatch } batchsizes = { 'train' : model.train_data_handler.num_batches, 'valid' : model.validation_data_handler.num_batches, 'test' : model.test_data_handler.num_batches } opts = {} cm.CUDAMatrix.init_random(seed=int(time.time())) if len(model.layer) > 2 and args.infer_method=='exact': raise ValueError('Cannot use exact Exact inference for DBMs') from collections import defaultdict pll_data = defaultdict(list) imperr_data = defaultdict(list) for data_type in data_types: num_batches = batchsizes[data_type] datagetter = datagetters[data_type] for batch_idx in range(num_batches): print("Evalutating batch {}".format(batch_idx+1)) datagetter() if args.infer_method == 'mf': if args.blosum90: pll, imperr = impute_mf(model, args.mf_steps, args.hidden_mf_steps, blosum90=True) else: pll, imperr = impute_mf(model, args.mf_steps, args.hidden_mf_steps) elif args.infer_method == 'multicol': ncols = args.ncols; multicol_file = 'datasets/{0}/multicol/{1}_{2}.mat'.format(dataset,args.multmode, ncols) multicols = sio.loadmat(multicol_file)['multicols'] multicols = np.asarray(multicols, dtype=np.int) multicols = multicols - 1; # convert from matlab indexing if args.blosum90: pll, imperr = multicol_mf(model, multicols, blosum90=True) else: pll, imperr = multicol_mf(model, multicols) elif args.infer_method == 'exact': pll, imperr = impute_rbm_exact(model) elif args.infer_method == 'gaussian_exact': pll, imperr = impute_rbm_gaussian_exact(model) else: raise ValueError("Unknown infer method") pll, imperr = pll.flatten(), imperr.flatten() pll_data[data_type].append(pll) imperr_data[data_type].append(imperr) pll_data[data_type] = np.concatenate(pll_data[data_type]) imperr_data[data_type] = np.concatenate(imperr_data[data_type]) #------------------------------------------------------------------- # Print and save the results for dtype in pll_data : pll = pll_data[dtype] imperr = imperr_data[dtype] print '%s : Pseudo-LogLikelihood %.5f, std %.5f' % (dtype, pll.mean(), pll.std()) print '%s : Imputation Error %.5f, std %.5f' % (dtype, imperr.mean(), imperr.std()) tr.FreeGPU(board) import pickle with open(args.outf,'wb') as fout: pkldata = { 'pll' : pll_data, 'imperr' : imperr_data } pickle.dump(pkldata, fout)
bsd-3-clause
1,073,403,383,934,571,500
37.904
110
0.618096
false
dls-controls/pymalcolm
tests/test_modules/test_ca/test_caactionpart.py
1
3498
import unittest from mock import Mock, patch from malcolm.core import Process from malcolm.modules.builtin.controllers import StatefulController from malcolm.modules.ca.parts import CAActionPart class caint(int): ok = True class ca_nothing(object): ok = False @patch("malcolm.modules.ca.util.catools") class TestCAActionPart(unittest.TestCase): def create_part(self, params=None): if params is None: params = dict( name="mname", description="desc", pv="pv", ) p = CAActionPart(**params) p.setup(Mock()) return p def test_init(self, catools): p = self.create_part() assert p.pv == "pv" assert p.value == 1 assert p.wait is True assert p.description == "desc" p.registrar.add_method_model.assert_called_once_with(p.caput, "mname", "desc") def test_reset(self, catools): catools.ca_nothing = ca_nothing p = self.create_part() catools.caget.reset_mock() catools.caget.return_value = [caint(4)] p.reconnect() catools.caget.assert_called_with(["pv"], throw=True) def test_caput(self, catools): p = self.create_part() catools.caput.reset_mock() p.caput() catools.caput.assert_called_once_with("pv", 1, wait=True, timeout=None) def make_camonitor_return(self, catools, values): if not isinstance(values, (list, tuple)): values = [values] def side_effect(pv, cb, **kwargs): for v in values: cb(v) return Mock() catools.camonitor.side_effect = side_effect def test_caput_status_pv_ok(self, catools): p = self.create_part( dict( name="mname", description="desc", pv="pv", status_pv="spv", good_status="All Good", ) ) self.make_camonitor_return(catools, ["Still going", "All Good"]) p.caput() def test_caput_status_pv_no_good(self, catools): p = self.create_part( dict( name="mname", description="desc", pv="pv", status_pv="spv", good_status="All Good", ) ) self.make_camonitor_return(catools, "No Good") with self.assertRaises(AssertionError) as cm: p.caput() assert str(cm.exception) == "Status No Good: while performing 'caput pv 1'" def test_caput_status_pv_message(self, catools): p = self.create_part( dict( name="mname", description="desc", pv="pv", status_pv="spv", good_status="All Good", message_pv="mpv", ) ) catools.caget.return_value = [caint(4)] c = StatefulController("mri") c.add_part(p) proc = Process("proc") proc.add_controller(c) proc.start() self.addCleanup(proc.stop) b = proc.block_view("mri") self.make_camonitor_return(catools, "No Good") catools.caget.return_value = "Bad things happened" with self.assertRaises(AssertionError) as cm: b.mname() assert ( str(cm.exception) == "Status No Good: Bad things happened: " "while performing 'caput pv 1'" )
apache-2.0
7,719,074,021,969,940,000
28.15
86
0.534305
false
rcbops/opencenter
opencenter/db/migrate_repo/versions/001_initial_data.py
1
6716
#!/usr/bin/env python # OpenCenter(TM) is Copyright 2013 by Rackspace US, Inc. ############################################################################## # # OpenCenter is licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. This # version of OpenCenter includes Rackspace trademarks and logos, and in # accordance with Section 6 of the License, the provision of commercial # support services in conjunction with a version of OpenCenter which includes # Rackspace trademarks and logos is prohibited. OpenCenter source code and # details are available at: # https://github.com/rcbops/opencenter or upon # written request. # # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 and a copy, including this # notice, is available in the LICENSE file accompanying this software. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the # specific language governing permissions and limitations # under the License. # ############################################################################## import json import os from sqlalchemy import * from migrate import * from opencenter.db.api import api_from_models adventures = [ {'name': 'Run Chef', 'dsl': 'run_chef.json', 'criteria': 'run_chef.criteria'}, {'name': 'Install Chef Server', 'dsl': 'install_chef_server.json', 'criteria': 'install_chef_server.criteria'}, {'name': 'Create Nova Cluster', 'dsl': 'create_nova_cluster.json', 'criteria': 'create_nova_cluster.criteria'}, {'name': 'Enable HA Infrastructure', 'dsl': 'enable_ha_infrastructure.json', 'criteria': 'enable_ha_infrastructure.criteria'}, {'name': 'Download Chef Cookbooks', 'dsl': 'download_cookbooks.json', 'criteria': 'download_cookbooks.criteria'}, {'name': 'Subscribe Cookbook Channel', 'dsl': 'subscribe_cookbook_channel.json', 'criteria': 'subscribe_cookbook_channel.criteria'}, {'name': 'Sleep', 'dsl': 'sleep.json', 'criteria': 'sleep.criteria'}, {'name': 'Update Server', 'dsl': 'update_server.json', 'criteria': 'update_server.criteria'}, {'name': 'Update Agent', 'dsl': 'update_agent.json', 'criteria': 'update_agent.criteria'}, {'name': 'Create Availability Zone', 'dsl': 'create_az.json', 'criteria': 'create_az.criteria'}, {'name': 'Disable Scheduling on this Host', 'dsl': 'openstack_disable_host.json', 'criteria': 'openstack_disable_host.criteria'}, {'name': 'Enable Scheduling on this Host', 'dsl': 'openstack_enable_host.json', 'criteria': 'openstack_enable_host.criteria'}, {'name': 'Evacuate Host', 'dsl': 'openstack_evacuate_host.json', 'criteria': 'openstack_evacuate_host.criteria'}, {'name': 'Upload Initial Glance Images', 'dsl': 'openstack_upload_images.json', 'criteria': 'openstack_upload_images.criteria'}, {'name': 'Install Chef Client', 'dsl': 'install_chef.json', 'criteria': 'install_chef.criteria'}, {'name': 'Uninstall Chef Client', 'dsl': 'uninstall_chef.json', 'criteria': 'uninstall_chef.criteria'}, {'name': 'Uninstall Chef Server', 'dsl': 'uninstall_chef_server.json', 'criteria': 'uninstall_chef_server.criteria'}] def upgrade(migrate_engine): meta = MetaData(bind=migrate_engine) api = api_from_models() for adventure in adventures: new_adventure = {'name': adventure['name']} json_path = os.path.join( os.path.dirname(__file__), adventure['dsl']) criteria_path = os.path.join( os.path.dirname(__file__), adventure['criteria']) new_adventure['dsl'] = json.loads(open(json_path).read()) new_adventure['criteria'] = open(criteria_path).read() api.adventure_create(new_adventure) canned_filters = [{'name': 'unprovisioned nodes', 'filter_type': 'node', 'expr': 'backend=\'unprovisioned\''}, {'name': 'chef client nodes', 'filter_type': 'node', 'expr': 'backend=\'chef-client\''}, {'name': 'chef-server', 'filter_type': 'interface', 'expr': 'facts.chef_server_uri != None and ' 'facts.chef_server_pem != None'}] for new_filter in canned_filters: api._model_create('filters', new_filter) workspace = api.node_create({'name': 'workspace'}) api._model_create('attrs', {'node_id': workspace['id'], 'key': 'json_schema_version', 'value': 1}) unprov = api.node_create({'name': 'unprovisioned'}) api._model_create('facts', {'node_id': unprov['id'], 'key': 'parent_id', 'value': workspace['id']}) support = api.node_create({'name': 'support'}) api._model_create('facts', {'node_id': support['id'], 'key': 'parent_id', 'value': workspace['id']}) # Add default fact to the default nodes node_list = [(workspace, "Workspace"), (unprov, "Available Nodes"), (support, "Service Nodes")] for node, display in node_list: api.fact_create({'node_id': node['id'], 'key': 'backends', 'value': ["container", "node"]}) api.attr_create({'node_id': node['id'], 'key': 'display_name', 'value': display}) api.attr_create({'node_id': node['id'], 'key': 'locked', 'value': True}) def downgrade(migrate_engine): meta = MetaData(bind=migrate_engine) api = api_from_models() adventure_names = [x['name'] for x in adventures] for name in adventure_names: adventure_list = api._model_query('adventures', 'name="%s"' % name) for adv in adventure_list: api._model_delete_by_id('adventures', adv['id']) node_list = ['"support"', '"unprovisioned"', '"workspace"'] for node in node_list: tmp = api.nodes_query('name = %s' % node) fact_list = api.facts_query('node_id = %s' % tmp[0]['id']) for fact in fact_list: api.fact_delete_by_id(fact['id']) api.node_delete_by_id(tmp[0]['id'])
apache-2.0
595,253,243,819,142,300
39.457831
79
0.570876
false
smn/blinky
blinky/slack/models.py
1
1402
from __future__ import unicode_literals import requests from django.db import models class SlackWebhook(models.Model): url = models.URLField() username = models.CharField(max_length=255, null=True, blank=True) icon_emoji = models.CharField(max_length=255, null=True, blank=True) channel = models.CharField(max_length=255, null=True, blank=True) apply_global = models.BooleanField(default=True) limit_worker_types = models.ManyToManyField('core.WorkerType', blank=True) is_active = models.BooleanField(default=True) @classmethod def for_worker_type(cls, worker_type): return cls.objects.filter( models.Q(apply_global=True) | models.Q(limit_worker_types=worker_type) ).filter(is_active=True).distinct() def slack_payload(self, text): payload = { 'text': text } if self.username: payload['username'] = self.username if self.icon_emoji: payload['icon_emoji'] = self.icon_emoji if self.channel: payload['channel'] = self.channel return payload def fire(self, text): response = requests.post(self.url, headers={ 'Content-Type': 'application/json', }, json=self.slack_payload(text)) response.raise_for_status() return response def __unicode__(self): return self.url
bsd-3-clause
4,312,822,045,934,085,600
31.604651
78
0.631954
false
yavalvas/yav_com
build/matplotlib/lib/matplotlib/mathtext.py
1
111273
r""" :mod:`~matplotlib.mathtext` is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib backend. For a tutorial of its usage see :ref:`mathtext-tutorial`. This document is primarily concerned with implementation details. The module uses pyparsing_ to parse the TeX expression. .. _pyparsing: http://pyparsing.wikispaces.com/ The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for those fonts. If you find TeX expressions that don't parse or render properly, please email [email protected], but please check KNOWN ISSUES below first. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os, sys from six import unichr from math import ceil try: set except NameError: from sets import Set as set import unicodedata from warnings import warn from numpy import inf, isinf import numpy as np import pyparsing from pyparsing import Combine, Group, Optional, Forward, \ Literal, OneOrMore, ZeroOrMore, ParseException, Empty, \ ParseResults, Suppress, oneOf, StringEnd, ParseFatalException, \ FollowedBy, Regex, ParserElement, QuotedString, ParseBaseException # Enable packrat parsing if (six.PY3 and [int(x) for x in pyparsing.__version__.split('.')] < [2, 0, 0]): warn("Due to a bug in pyparsing <= 2.0.0 on Python 3.x, packrat parsing " "has been disabled. Mathtext rendering will be much slower as a " "result. Install pyparsing 2.0.0 or later to improve performance.") else: ParserElement.enablePackrat() from matplotlib.afm import AFM from matplotlib.cbook import Bunch, get_realpath_and_stat, \ is_string_like, maxdict from matplotlib.ft2font import FT2Font, FT2Image, KERNING_DEFAULT, LOAD_FORCE_AUTOHINT, LOAD_NO_HINTING from matplotlib.font_manager import findfont, FontProperties from matplotlib._mathtext_data import latex_to_bakoma, \ latex_to_standard, tex2uni, latex_to_cmex, stix_virtual_fonts from matplotlib import get_data_path, rcParams import matplotlib.colors as mcolors import matplotlib._png as _png #################### ############################################################################## # FONTS def get_unicode_index(symbol): """get_unicode_index(symbol) -> integer Return the integer index (from the Unicode table) of symbol. *symbol* can be a single unicode character, a TeX command (i.e. r'\pi'), or a Type1 symbol name (i.e. 'phi'). """ # From UTF #25: U+2212 minus sign is the preferred # representation of the unary and binary minus sign rather than # the ASCII-derived U+002D hyphen-minus, because minus sign is # unambiguous and because it is rendered with a more desirable # length, usually longer than a hyphen. if symbol == '-': return 0x2212 try:# This will succeed if symbol is a single unicode char return ord(symbol) except TypeError: pass try:# Is symbol a TeX symbol (i.e. \alpha) return tex2uni[symbol.strip("\\")] except KeyError: message = """'%(symbol)s' is not a valid Unicode character or TeX/Type1 symbol"""%locals() raise ValueError(message) def unichr_safe(index): """Return the Unicode character corresponding to the index, or the replacement character if this is a narrow build of Python and the requested character is outside the BMP.""" try: return unichr(index) except ValueError: return unichr(0xFFFD) class MathtextBackend(object): """ The base class for the mathtext backend-specific code. The purpose of :class:`MathtextBackend` subclasses is to interface between mathtext and a specific matplotlib graphics backend. Subclasses need to override the following: - :meth:`render_glyph` - :meth:`render_filled_rect` - :meth:`get_results` And optionally, if you need to use a Freetype hinting style: - :meth:`get_hinting_type` """ def __init__(self): self.width = 0 self.height = 0 self.depth = 0 def set_canvas_size(self, w, h, d): 'Dimension the drawing canvas' self.width = w self.height = h self.depth = d def render_glyph(self, ox, oy, info): """ Draw a glyph described by *info* to the reference point (*ox*, *oy*). """ raise NotImplementedError() def render_filled_rect(self, x1, y1, x2, y2): """ Draw a filled black rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ raise NotImplementedError() def get_results(self, box): """ Return a backend-specific tuple to return to the backend after all processing is done. """ raise NotImplementedError() def get_hinting_type(self): """ Get the Freetype hinting type to use with this particular backend. """ return LOAD_NO_HINTING class MathtextBackendAgg(MathtextBackend): """ Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by the Agg backend. """ def __init__(self): self.ox = 0 self.oy = 0 self.image = None self.mode = 'bbox' self.bbox = [0, 0, 0, 0] MathtextBackend.__init__(self) def _update_bbox(self, x1, y1, x2, y2): self.bbox = [min(self.bbox[0], x1), min(self.bbox[1], y1), max(self.bbox[2], x2), max(self.bbox[3], y2)] def set_canvas_size(self, w, h, d): MathtextBackend.set_canvas_size(self, w, h, d) if self.mode != 'bbox': self.image = FT2Image(ceil(w), ceil(h + d)) def render_glyph(self, ox, oy, info): if self.mode == 'bbox': self._update_bbox(ox + info.metrics.xmin, oy - info.metrics.ymax, ox + info.metrics.xmax, oy - info.metrics.ymin) else: info.font.draw_glyph_to_bitmap( self.image, ox, oy - info.metrics.iceberg, info.glyph, antialiased=rcParams['text.antialiased']) def render_rect_filled(self, x1, y1, x2, y2): if self.mode == 'bbox': self._update_bbox(x1, y1, x2, y2) else: height = max(int(y2 - y1) - 1, 0) if height == 0: center = (y2 + y1) / 2.0 y = int(center - (height + 1) / 2.0) else: y = int(y1) self.image.draw_rect_filled(int(x1), y, ceil(x2), y + height) def get_results(self, box, used_characters): self.mode = 'bbox' orig_height = box.height orig_depth = box.depth ship(0, 0, box) bbox = self.bbox bbox = [bbox[0] - 1, bbox[1] - 1, bbox[2] + 1, bbox[3] + 1] self.mode = 'render' self.set_canvas_size( bbox[2] - bbox[0], (bbox[3] - bbox[1]) - orig_depth, (bbox[3] - bbox[1]) - orig_height) ship(-bbox[0], -bbox[1], box) result = (self.ox, self.oy, self.width, self.height + self.depth, self.depth, self.image, used_characters) self.image = None return result def get_hinting_type(self): from matplotlib.backends import backend_agg return backend_agg.get_hinting_flag() class MathtextBackendBitmap(MathtextBackendAgg): def get_results(self, box, used_characters): ox, oy, width, height, depth, image, characters = \ MathtextBackendAgg.get_results(self, box, used_characters) return image, depth class MathtextBackendPs(MathtextBackend): """ Store information to write a mathtext rendering to the PostScript backend. """ def __init__(self): self.pswriter = six.moves.cStringIO() self.lastfont = None def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset postscript_name = info.postscript_name fontsize = info.fontsize symbol_name = info.symbol_name if (postscript_name, fontsize) != self.lastfont: ps = """/%(postscript_name)s findfont %(fontsize)s scalefont setfont """ % locals() self.lastfont = postscript_name, fontsize self.pswriter.write(ps) ps = """%(ox)f %(oy)f moveto /%(symbol_name)s glyphshow\n """ % locals() self.pswriter.write(ps) def render_rect_filled(self, x1, y1, x2, y2): ps = "%f %f %f %f rectfill\n" % (x1, self.height - y2, x2 - x1, y2 - y1) self.pswriter.write(ps) def get_results(self, box, used_characters): ship(0, 0, box) return (self.width, self.height + self.depth, self.depth, self.pswriter, used_characters) class MathtextBackendPdf(MathtextBackend): """ Store information to write a mathtext rendering to the PDF backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): filename = info.font.fname oy = self.height - oy + info.offset self.glyphs.append( (ox, oy, filename, info.fontsize, info.num, info.symbol_name)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append((x1, self.height - y2, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects, used_characters) class MathtextBackendSvg(MathtextBackend): """ Store information to write a mathtext rendering to the SVG backend. """ def __init__(self): self.svg_glyphs = [] self.svg_rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset self.svg_glyphs.append( (info.font, info.fontsize, info.num, ox, oy, info.metrics)) def render_rect_filled(self, x1, y1, x2, y2): self.svg_rects.append( (x1, self.height - y1 + 1, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) svg_elements = Bunch(svg_glyphs = self.svg_glyphs, svg_rects = self.svg_rects) return (self.width, self.height + self.depth, self.depth, svg_elements, used_characters) class MathtextBackendPath(MathtextBackend): """ Store information to write a mathtext rendering to the text path machinery. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset thetext = info.num self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, self.height-y2 , x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class MathtextBackendCairo(MathtextBackend): """ Store information to write a mathtext rendering to the Cairo backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = oy - info.offset - self.height thetext = unichr_safe(info.num) self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, y1 - self.height, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class Fonts(object): """ An abstract base class for a system of fonts to use for mathtext. The class must be able to take symbol keys and font file names and return the character metrics. It also delegates to a backend class to do the actual drawing. """ def __init__(self, default_font_prop, mathtext_backend): """ *default_font_prop*: A :class:`~matplotlib.font_manager.FontProperties` object to use for the default non-math font, or the base font for Unicode (generic) font rendering. *mathtext_backend*: A subclass of :class:`MathTextBackend` used to delegate the actual rendering. """ self.default_font_prop = default_font_prop self.mathtext_backend = mathtext_backend self.used_characters = {} def destroy(self): """ Fix any cyclical references before the object is about to be destroyed. """ self.used_characters = None def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): """ Get the kerning distance for font between *sym1* and *sym2*. *fontX*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *fontclassX*: TODO *symX*: a symbol in raw TeX form. e.g., '1', 'x' or '\sigma' *fontsizeX*: the fontsize in points *dpi*: the current dots-per-inch """ return 0. def get_metrics(self, font, font_class, sym, fontsize, dpi): """ *font*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *font_class*: TODO *sym*: a symbol in raw TeX form. e.g., '1', 'x' or '\sigma' *fontsize*: font size in points *dpi*: current dots-per-inch Returns an object with the following attributes: - *advance*: The advance distance (in points) of the glyph. - *height*: The height of the glyph in points. - *width*: The width of the glyph in points. - *xmin*, *xmax*, *ymin*, *ymax* - the ink rectangle of the glyph - *iceberg* - the distance from the baseline to the top of the glyph. This corresponds to TeX's definition of "height". """ info = self._get_info(font, font_class, sym, fontsize, dpi) return info.metrics def set_canvas_size(self, w, h, d): """ Set the size of the buffer used to render the math expression. Only really necessary for the bitmap backends. """ self.width, self.height, self.depth = ceil(w), ceil(h), ceil(d) self.mathtext_backend.set_canvas_size(self.width, self.height, self.depth) def render_glyph(self, ox, oy, facename, font_class, sym, fontsize, dpi): """ Draw a glyph at - *ox*, *oy*: position - *facename*: One of the TeX face names - *font_class*: - *sym*: TeX symbol name or single character - *fontsize*: fontsize in points - *dpi*: The dpi to draw at. """ info = self._get_info(facename, font_class, sym, fontsize, dpi) realpath, stat_key = get_realpath_and_stat(info.font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].add(info.num) self.mathtext_backend.render_glyph(ox, oy, info) def render_rect_filled(self, x1, y1, x2, y2): """ Draw a filled rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ self.mathtext_backend.render_rect_filled(x1, y1, x2, y2) def get_xheight(self, font, fontsize, dpi): """ Get the xheight for the given *font* and *fontsize*. """ raise NotImplementedError() def get_underline_thickness(self, font, fontsize, dpi): """ Get the line thickness that matches the given font. Used as a base unit for drawing lines such as in a fraction or radical. """ raise NotImplementedError() def get_used_characters(self): """ Get the set of characters that were used in the math expression. Used by backends that need to subset fonts so they know which glyphs to include. """ return self.used_characters def get_results(self, box): """ Get the data needed by the backend to render the math expression. The return value is backend-specific. """ result = self.mathtext_backend.get_results(box, self.get_used_characters()) self.destroy() return result def get_sized_alternatives_for_symbol(self, fontname, sym): """ Override if your font provides multiple sizes of the same symbol. Should return a list of symbols matching *sym* in various sizes. The expression renderer will select the most appropriate size for a given situation from this list. """ return [(fontname, sym)] class TruetypeFonts(Fonts): """ A generic base class for all font setups that use Truetype fonts (through FT2Font). """ class CachedFont: def __init__(self, font): self.font = font self.charmap = font.get_charmap() self.glyphmap = dict( [(glyphind, ccode) for ccode, glyphind in six.iteritems(self.charmap)]) def __repr__(self): return repr(self.font) def __init__(self, default_font_prop, mathtext_backend): Fonts.__init__(self, default_font_prop, mathtext_backend) self.glyphd = {} self._fonts = {} filename = findfont(default_font_prop) default_font = self.CachedFont(FT2Font(filename)) self._fonts['default'] = default_font self._fonts['regular'] = default_font def destroy(self): self.glyphd = None Fonts.destroy(self) def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self._fonts.get(basename) if cached_font is None and os.path.exists(basename): font = FT2Font(basename) cached_font = self.CachedFont(font) self._fonts[basename] = cached_font self._fonts[font.postscript_name] = cached_font self._fonts[font.postscript_name.lower()] = cached_font return cached_font def _get_offset(self, cached_font, glyph, fontsize, dpi): if cached_font.font.postscript_name == 'Cmex10': return ((glyph.height/64.0/2.0) + (fontsize/3.0 * dpi/72.0)) return 0. def _get_info(self, fontname, font_class, sym, fontsize, dpi): key = fontname, font_class, sym, fontsize, dpi bunch = self.glyphd.get(key) if bunch is not None: return bunch cached_font, num, symbol_name, fontsize, slanted = \ self._get_glyph(fontname, font_class, sym, fontsize) font = cached_font.font font.set_size(fontsize, dpi) glyph = font.load_char( num, flags=self.mathtext_backend.get_hinting_type()) xmin, ymin, xmax, ymax = [val/64.0 for val in glyph.bbox] offset = self._get_offset(cached_font, glyph, fontsize, dpi) metrics = Bunch( advance = glyph.linearHoriAdvance/65536.0, height = glyph.height/64.0, width = glyph.width/64.0, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = glyph.horiBearingY/64.0 + offset, slanted = slanted ) result = self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.postscript_name, metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return result def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) cached_font.font.set_size(fontsize, dpi) pclt = cached_font.font.get_sfnt_table('pclt') if pclt is None: # Some fonts don't store the xHeight, so we do a poor man's xHeight metrics = self.get_metrics(font, rcParams['mathtext.default'], 'x', fontsize, dpi) return metrics.iceberg xHeight = (pclt['xHeight'] / 64.0) * (fontsize / 12.0) * (dpi / 100.0) return xHeight def get_underline_thickness(self, font, fontsize, dpi): # This function used to grab underline thickness from the font # metrics, but that information is just too un-reliable, so it # is now hardcoded. return ((0.75 / 12.0) * fontsize * dpi) / 72.0 def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return font.get_kerning(info1.num, info2.num, KERNING_DEFAULT) / 64.0 return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) class BakomaFonts(TruetypeFonts): """ Use the Bakoma TrueType fonts for rendering. Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding. """ _fontmap = { 'cal' : 'cmsy10', 'rm' : 'cmr10', 'tt' : 'cmtt10', 'it' : 'cmmi10', 'bf' : 'cmb10', 'sf' : 'cmss10', 'ex' : 'cmex10' } def __init__(self, *args, **kwargs): self._stix_fallback = StixFonts(*args, **kwargs) TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, val in six.iteritems(self._fontmap): fullpath = findfont(val) self.fontmap[key] = fullpath self.fontmap[val] = fullpath _slanted_symbols = set(r"\int \oint".split()) def _get_glyph(self, fontname, font_class, sym, fontsize): symbol_name = None if fontname in self.fontmap and sym in latex_to_bakoma: basename, num = latex_to_bakoma[sym] slanted = (basename == "cmmi10") or sym in self._slanted_symbols cached_font = self._get_font(basename) if cached_font is not None: symbol_name = cached_font.font.get_glyph_name(num) num = cached_font.glyphmap[num] elif len(sym) == 1: slanted = (fontname == "it") cached_font = self._get_font(fontname) if cached_font is not None: num = ord(sym) gid = cached_font.charmap.get(num) if gid is not None: symbol_name = cached_font.font.get_glyph_name( cached_font.charmap[num]) if symbol_name is None: return self._stix_fallback._get_glyph( fontname, font_class, sym, fontsize) return cached_font, num, symbol_name, fontsize, slanted # The Bakoma fonts contain many pre-sized alternatives for the # delimiters. The AutoSizedChar class will use these alternatives # and select the best (closest sized) glyph. _size_alternatives = { '(' : [('rm', '('), ('ex', '\xa1'), ('ex', '\xb3'), ('ex', '\xb5'), ('ex', '\xc3')], ')' : [('rm', ')'), ('ex', '\xa2'), ('ex', '\xb4'), ('ex', '\xb6'), ('ex', '\x21')], '{' : [('cal', '{'), ('ex', '\xa9'), ('ex', '\x6e'), ('ex', '\xbd'), ('ex', '\x28')], '}' : [('cal', '}'), ('ex', '\xaa'), ('ex', '\x6f'), ('ex', '\xbe'), ('ex', '\x29')], # The fourth size of '[' is mysteriously missing from the BaKoMa # font, so I've ommitted it for both '[' and ']' '[' : [('rm', '['), ('ex', '\xa3'), ('ex', '\x68'), ('ex', '\x22')], ']' : [('rm', ']'), ('ex', '\xa4'), ('ex', '\x69'), ('ex', '\x23')], r'\lfloor' : [('ex', '\xa5'), ('ex', '\x6a'), ('ex', '\xb9'), ('ex', '\x24')], r'\rfloor' : [('ex', '\xa6'), ('ex', '\x6b'), ('ex', '\xba'), ('ex', '\x25')], r'\lceil' : [('ex', '\xa7'), ('ex', '\x6c'), ('ex', '\xbb'), ('ex', '\x26')], r'\rceil' : [('ex', '\xa8'), ('ex', '\x6d'), ('ex', '\xbc'), ('ex', '\x27')], r'\langle' : [('ex', '\xad'), ('ex', '\x44'), ('ex', '\xbf'), ('ex', '\x2a')], r'\rangle' : [('ex', '\xae'), ('ex', '\x45'), ('ex', '\xc0'), ('ex', '\x2b')], r'\__sqrt__' : [('ex', '\x70'), ('ex', '\x71'), ('ex', '\x72'), ('ex', '\x73')], r'\backslash': [('ex', '\xb2'), ('ex', '\x2f'), ('ex', '\xc2'), ('ex', '\x2d')], r'/' : [('rm', '/'), ('ex', '\xb1'), ('ex', '\x2e'), ('ex', '\xcb'), ('ex', '\x2c')], r'\widehat' : [('rm', '\x5e'), ('ex', '\x62'), ('ex', '\x63'), ('ex', '\x64')], r'\widetilde': [('rm', '\x7e'), ('ex', '\x65'), ('ex', '\x66'), ('ex', '\x67')], r'<' : [('cal', 'h'), ('ex', 'D')], r'>' : [('cal', 'i'), ('ex', 'E')] } for alias, target in [('\leftparen', '('), ('\rightparent', ')'), ('\leftbrace', '{'), ('\rightbrace', '}'), ('\leftbracket', '['), ('\rightbracket', ']'), (r'\{', '{'), (r'\}', '}'), (r'\[', '['), (r'\]', ']')]: _size_alternatives[alias] = _size_alternatives[target] def get_sized_alternatives_for_symbol(self, fontname, sym): return self._size_alternatives.get(sym, [(fontname, sym)]) class UnicodeFonts(TruetypeFonts): """ An abstract base class for handling Unicode fonts. While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the only Unicode font I'm aware of with a complete set of math symbols is STIX. This class will "fallback" on the Bakoma fonts when a required symbol can not be found in the font. """ use_cmex = True def __init__(self, *args, **kwargs): # This must come first so the backend's owner is set correctly if rcParams['mathtext.fallback_to_cm']: self.cm_fallback = BakomaFonts(*args, **kwargs) else: self.cm_fallback = None TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for texfont in "cal rm tt it bf sf".split(): prop = rcParams['mathtext.' + texfont] font = findfont(prop) self.fontmap[texfont] = font prop = FontProperties('cmex10') font = findfont(prop) self.fontmap['ex'] = font _slanted_symbols = set(r"\int \oint".split()) def _map_virtual_font(self, fontname, font_class, uniindex): return fontname, uniindex def _get_glyph(self, fontname, font_class, sym, fontsize): found_symbol = False if self.use_cmex: uniindex = latex_to_cmex.get(sym) if uniindex is not None: fontname = 'ex' found_symbol = True if not found_symbol: try: uniindex = get_unicode_index(sym) found_symbol = True except ValueError: uniindex = ord('?') warn("No TeX to unicode mapping for '%s'" % sym.encode('ascii', 'backslashreplace'), MathTextWarning) fontname, uniindex = self._map_virtual_font( fontname, font_class, uniindex) new_fontname = fontname # Only characters in the "Letter" class should be italicized in 'it' # mode. Greek capital letters should be Roman. if found_symbol: if fontname == 'it': if uniindex < 0x10000: unistring = unichr(uniindex) if (not unicodedata.category(unistring)[0] == "L" or unicodedata.name(unistring).startswith("GREEK CAPITAL")): new_fontname = 'rm' slanted = (new_fontname == 'it') or sym in self._slanted_symbols found_symbol = False cached_font = self._get_font(new_fontname) if cached_font is not None: try: glyphindex = cached_font.charmap[uniindex] found_symbol = True except KeyError: pass if not found_symbol: if self.cm_fallback: warn("Substituting with a symbol from Computer Modern.", MathTextWarning) return self.cm_fallback._get_glyph( fontname, 'it', sym, fontsize) else: if fontname in ('it', 'regular') and isinstance(self, StixFonts): return self._get_glyph('rm', font_class, sym, fontsize) warn("Font '%s' does not have a glyph for '%s' [U%x]" % (new_fontname, sym.encode('ascii', 'backslashreplace'), uniindex), MathTextWarning) warn("Substituting with a dummy symbol.", MathTextWarning) fontname = 'rm' new_fontname = fontname cached_font = self._get_font(fontname) uniindex = 0xA4 # currency character, for lack of anything better glyphindex = cached_font.charmap[uniindex] slanted = False symbol_name = cached_font.font.get_glyph_name(glyphindex) return cached_font, uniindex, symbol_name, fontsize, slanted def get_sized_alternatives_for_symbol(self, fontname, sym): if self.cm_fallback: return self.cm_fallback.get_sized_alternatives_for_symbol( fontname, sym) return [(fontname, sym)] class StixFonts(UnicodeFonts): """ A font handling class for the STIX fonts. In addition to what UnicodeFonts provides, this class: - supports "virtual fonts" which are complete alpha numeric character sets with different font styles at special Unicode code points, such as "Blackboard". - handles sized alternative characters for the STIXSizeX fonts. """ _fontmap = { 'rm' : 'STIXGeneral', 'it' : 'STIXGeneral:italic', 'bf' : 'STIXGeneral:weight=bold', 'nonunirm' : 'STIXNonUnicode', 'nonuniit' : 'STIXNonUnicode:italic', 'nonunibf' : 'STIXNonUnicode:weight=bold', 0 : 'STIXGeneral', 1 : 'STIXSizeOneSym', 2 : 'STIXSizeTwoSym', 3 : 'STIXSizeThreeSym', 4 : 'STIXSizeFourSym', 5 : 'STIXSizeFiveSym' } use_cmex = False cm_fallback = False _sans = False def __init__(self, *args, **kwargs): TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, name in six.iteritems(self._fontmap): fullpath = findfont(name) self.fontmap[key] = fullpath self.fontmap[name] = fullpath def _map_virtual_font(self, fontname, font_class, uniindex): # Handle these "fonts" that are actually embedded in # other fonts. mapping = stix_virtual_fonts.get(fontname) if (self._sans and mapping is None and fontname not in ('regular', 'default')): mapping = stix_virtual_fonts['sf'] doing_sans_conversion = True else: doing_sans_conversion = False if mapping is not None: if isinstance(mapping, dict): mapping = mapping.get(font_class, 'rm') # Binary search for the source glyph lo = 0 hi = len(mapping) while lo < hi: mid = (lo+hi)//2 range = mapping[mid] if uniindex < range[0]: hi = mid elif uniindex <= range[1]: break else: lo = mid + 1 if uniindex >= range[0] and uniindex <= range[1]: uniindex = uniindex - range[0] + range[3] fontname = range[2] elif not doing_sans_conversion: # This will generate a dummy character uniindex = 0x1 fontname = rcParams['mathtext.default'] # Handle private use area glyphs if (fontname in ('it', 'rm', 'bf') and uniindex >= 0xe000 and uniindex <= 0xf8ff): fontname = 'nonuni' + fontname return fontname, uniindex _size_alternatives = {} def get_sized_alternatives_for_symbol(self, fontname, sym): fixes = {'\{': '{', '\}': '}', '\[': '[', '\]': ']'} sym = fixes.get(sym, sym) alternatives = self._size_alternatives.get(sym) if alternatives: return alternatives alternatives = [] try: uniindex = get_unicode_index(sym) except ValueError: return [(fontname, sym)] fix_ups = { ord('<'): 0x27e8, ord('>'): 0x27e9 } uniindex = fix_ups.get(uniindex, uniindex) for i in range(6): cached_font = self._get_font(i) glyphindex = cached_font.charmap.get(uniindex) if glyphindex is not None: alternatives.append((i, unichr_safe(uniindex))) # The largest size of the radical symbol in STIX has incorrect # metrics that cause it to be disconnected from the stem. if sym == r'\__sqrt__': alternatives = alternatives[:-1] self._size_alternatives[sym] = alternatives return alternatives class StixSansFonts(StixFonts): """ A font handling class for the STIX fonts (that uses sans-serif characters by default). """ _sans = True class StandardPsFonts(Fonts): """ Use the standard postscript fonts for rendering to backend_ps Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend. """ basepath = os.path.join( get_data_path(), 'fonts', 'afm' ) fontmap = { 'cal' : 'pzcmi8a', # Zapf Chancery 'rm' : 'pncr8a', # New Century Schoolbook 'tt' : 'pcrr8a', # Courier 'it' : 'pncri8a', # New Century Schoolbook Italic 'sf' : 'phvr8a', # Helvetica 'bf' : 'pncb8a', # New Century Schoolbook Bold None : 'psyr' # Symbol } def __init__(self, default_font_prop): Fonts.__init__(self, default_font_prop, MathtextBackendPs()) self.glyphd = {} self.fonts = {} filename = findfont(default_font_prop, fontext='afm', directory=self.basepath) if filename is None: filename = findfont('Helvetica', fontext='afm', directory=self.basepath) with open(filename, 'r') as fd: default_font = AFM(fd) default_font.fname = filename self.fonts['default'] = default_font self.fonts['regular'] = default_font self.pswriter = six.moves.cStringIO() def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self.fonts.get(basename) if cached_font is None: fname = os.path.join(self.basepath, basename + ".afm") with open(fname, 'r') as fd: cached_font = AFM(fd) cached_font.fname = fname self.fonts[basename] = cached_font self.fonts[cached_font.get_fontname()] = cached_font return cached_font def _get_info (self, fontname, font_class, sym, fontsize, dpi): 'load the cmfont, metrics and glyph with caching' key = fontname, sym, fontsize, dpi tup = self.glyphd.get(key) if tup is not None: return tup # Only characters in the "Letter" class should really be italicized. # This class includes greek letters, so we're ok if (fontname == 'it' and (len(sym) > 1 or not unicodedata.category(six.text_type(sym)).startswith("L"))): fontname = 'rm' found_symbol = False if sym in latex_to_standard: fontname, num = latex_to_standard[sym] glyph = chr(num) found_symbol = True elif len(sym) == 1: glyph = sym num = ord(glyph) found_symbol = True else: warn("No TeX to built-in Postscript mapping for '%s'" % sym, MathTextWarning) slanted = (fontname == 'it') font = self._get_font(fontname) if found_symbol: try: symbol_name = font.get_name_char(glyph) except KeyError: warn("No glyph in standard Postscript font '%s' for '%s'" % (font.postscript_name, sym), MathTextWarning) found_symbol = False if not found_symbol: glyph = sym = '?' num = ord(glyph) symbol_name = font.get_name_char(glyph) offset = 0 scale = 0.001 * fontsize xmin, ymin, xmax, ymax = [val * scale for val in font.get_bbox_char(glyph)] metrics = Bunch( advance = font.get_width_char(glyph) * scale, width = font.get_width_char(glyph) * scale, height = font.get_height_char(glyph) * scale, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = ymax + offset, slanted = slanted ) self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.get_fontname(), metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return self.glyphd[key] def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return (font.get_kern_dist(info1.glyph, info2.glyph) * 0.001 * fontsize1) return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_xheight() * 0.001 * fontsize def get_underline_thickness(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_underline_thickness() * 0.001 * fontsize ############################################################################## # TeX-LIKE BOX MODEL # The following is based directly on the document 'woven' from the # TeX82 source code. This information is also available in printed # form: # # Knuth, Donald E.. 1986. Computers and Typesetting, Volume B: # TeX: The Program. Addison-Wesley Professional. # # The most relevant "chapters" are: # Data structures for boxes and their friends # Shipping pages out (Ship class) # Packaging (hpack and vpack) # Data structures for math mode # Subroutines for math mode # Typesetting math formulas # # Many of the docstrings below refer to a numbered "node" in that # book, e.g., node123 # # Note that (as TeX) y increases downward, unlike many other parts of # matplotlib. # How much text shrinks when going to the next-smallest level. GROW_FACTOR # must be the inverse of SHRINK_FACTOR. SHRINK_FACTOR = 0.7 GROW_FACTOR = 1.0 / SHRINK_FACTOR # The number of different sizes of chars to use, beyond which they will not # get any smaller NUM_SIZE_LEVELS = 6 # Percentage of x-height of additional horiz. space after sub/superscripts SCRIPT_SPACE = 0.2 # Percentage of x-height that sub/superscripts drop below the baseline SUBDROP = 0.3 # Percentage of x-height that superscripts drop below the baseline SUP1 = 0.5 # Percentage of x-height that subscripts drop below the baseline SUB1 = 0.0 # Percentage of x-height that superscripts are offset relative to the subscript DELTA = 0.18 class MathTextWarning(Warning): pass class Node(object): """ A node in the TeX box model """ def __init__(self): self.size = 0 def __repr__(self): return self.__internal_repr__() def __internal_repr__(self): return self.__class__.__name__ def get_kerning(self, next): return 0.0 def shrink(self): """ Shrinks one level smaller. There are only three levels of sizes, after which things will no longer get smaller. """ self.size += 1 def grow(self): """ Grows one level larger. There is no limit to how big something can get. """ self.size -= 1 def render(self, x, y): pass class Box(Node): """ Represents any node with a physical location. """ def __init__(self, width, height, depth): Node.__init__(self) self.width = width self.height = height self.depth = depth def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR def render(self, x1, y1, x2, y2): pass class Vbox(Box): """ A box with only height (zero width). """ def __init__(self, height, depth): Box.__init__(self, 0., height, depth) class Hbox(Box): """ A box with only width (zero height and depth). """ def __init__(self, width): Box.__init__(self, width, 0., 0.) class Char(Node): """ Represents a single character. Unlike TeX, the font information and metrics are stored with each :class:`Char` to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width, height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the x-direction. The metrics must be converted to the TeX way, and the advance (if different from width) must be converted into a :class:`Kern` node when the :class:`Char` is added to its parent :class:`Hlist`. """ def __init__(self, c, state): Node.__init__(self) self.c = c self.font_output = state.font_output assert isinstance(state.font, (six.string_types, int)) self.font = state.font self.font_class = state.font_class self.fontsize = state.fontsize self.dpi = state.dpi # The real width, height and depth will be set during the # pack phase, after we know the real fontsize self._update_metrics() def __internal_repr__(self): return '`%s`' % self.c def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) if self.c == ' ': self.width = metrics.advance else: self.width = metrics.width self.height = metrics.iceberg self.depth = -(metrics.iceberg - metrics.height) def is_slanted(self): return self._metrics.slanted def get_kerning(self, next): """ Return the amount of kerning between this and the given character. Called when characters are strung together into :class:`Hlist` to create :class:`Kern` nodes. """ advance = self._metrics.advance - self.width kern = 0. if isinstance(next, Char): kern = self.font_output.get_kern( self.font, self.font_class, self.c, self.fontsize, next.font, next.font_class, next.c, next.fontsize, self.dpi) return advance + kern def render(self, x, y): """ Render the character to the canvas """ self.font_output.render_glyph( x, y, self.font, self.font_class, self.c, self.fontsize, self.dpi) def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.fontsize *= SHRINK_FACTOR self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.fontsize *= GROW_FACTOR self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR class Accent(Char): """ The font metrics need to be dealt with differently for accents, since they are already offset correctly from the baseline in TrueType fonts. """ def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) self.width = metrics.xmax - metrics.xmin self.height = metrics.ymax - metrics.ymin self.depth = 0 def shrink(self): Char.shrink(self) self._update_metrics() def grow(self): Char.grow(self) self._update_metrics() def render(self, x, y): """ Render the character to the canvas. """ self.font_output.render_glyph( x - self._metrics.xmin, y + self._metrics.ymin, self.font, self.font_class, self.c, self.fontsize, self.dpi) class List(Box): """ A list of nodes (either horizontal or vertical). """ def __init__(self, elements): Box.__init__(self, 0., 0., 0.) self.shift_amount = 0. # An arbitrary offset self.children = elements # The child nodes of this list # The following parameters are set in the vpack and hpack functions self.glue_set = 0. # The glue setting of this list self.glue_sign = 0 # 0: normal, -1: shrinking, 1: stretching self.glue_order = 0 # The order of infinity (0 - 3) for the glue def __repr__(self): return '[%s <%.02f %.02f %.02f %.02f> %s]' % ( self.__internal_repr__(), self.width, self.height, self.depth, self.shift_amount, ' '.join([repr(x) for x in self.children])) def _determine_order(self, totals): """ A helper function to determine the highest order of glue used by the members of this list. Used by vpack and hpack. """ o = 0 for i in range(len(totals) - 1, 0, -1): if totals[i] != 0.0: o = i break return o def _set_glue(self, x, sign, totals, error_type): o = self._determine_order(totals) self.glue_order = o self.glue_sign = sign if totals[o] != 0.: self.glue_set = x / totals[o] else: self.glue_sign = 0 self.glue_ratio = 0. if o == 0: if len(self.children): warn("%s %s: %r" % (error_type, self.__class__.__name__, self), MathTextWarning) def shrink(self): for child in self.children: child.shrink() Box.shrink(self) if self.size < NUM_SIZE_LEVELS: self.shift_amount *= SHRINK_FACTOR self.glue_set *= SHRINK_FACTOR def grow(self): for child in self.children: child.grow() Box.grow(self) self.shift_amount *= GROW_FACTOR self.glue_set *= GROW_FACTOR class Hlist(List): """ A horizontal list of boxes. """ def __init__(self, elements, w=0., m='additional', do_kern=True): List.__init__(self, elements) if do_kern: self.kern() self.hpack() def kern(self): """ Insert :class:`Kern` nodes between :class:`Char` nodes to set kerning. The :class:`Char` nodes themselves determine the amount of kerning they need (in :meth:`~Char.get_kerning`), and this function just creates the linked list in the correct way. """ new_children = [] num_children = len(self.children) if num_children: for i in range(num_children): elem = self.children[i] if i < num_children - 1: next = self.children[i + 1] else: next = None new_children.append(elem) kerning_distance = elem.get_kerning(next) if kerning_distance != 0.: kern = Kern(kerning_distance) new_children.append(kern) self.children = new_children # This is a failed experiment to fake cross-font kerning. # def get_kerning(self, next): # if len(self.children) >= 2 and isinstance(self.children[-2], Char): # if isinstance(next, Char): # print "CASE A" # return self.children[-2].get_kerning(next) # elif isinstance(next, Hlist) and len(next.children) and isinstance(next.children[0], Char): # print "CASE B" # result = self.children[-2].get_kerning(next.children[0]) # print result # return result # return 0.0 def hpack(self, w=0., m='additional'): """ The main duty of :meth:`hpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or if a ``\\vbox`` includes other boxes that have been shifted left. - *w*: specifies a width - *m*: is either 'exactly' or 'additional'. Thus, ``hpack(w, 'exactly')`` produces a box whose width is exactly *w*, while ``hpack(w, 'additional')`` yields a box whose width is the natural width plus *w*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. #self.shift_amount = 0. h = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Char): x += p.width h = max(h, p.height) d = max(d, p.depth) elif isinstance(p, Box): x += p.width if not isinf(p.height) and not isinf(p.depth): s = getattr(p, 'shift_amount', 0.) h = max(h, p.height - s) d = max(d, p.depth + s) elif isinstance(p, Glue): glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += p.width self.height = h self.depth = d if m == 'additional': w += x self.width = w x = w - x if x == 0.: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Vlist(List): """ A vertical list of boxes. """ def __init__(self, elements, h=0., m='additional'): List.__init__(self, elements) self.vpack() def vpack(self, h=0., m='additional', l=float(inf)): """ The main duty of :meth:`vpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. - *h*: specifies a height - *m*: is either 'exactly' or 'additional'. - *l*: a maximum height Thus, ``vpack(h, 'exactly')`` produces a box whose height is exactly *h*, while ``vpack(h, 'additional')`` yields a box whose height is the natural height plus *h*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. # self.shift_amount = 0. w = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Box): x += d + p.height d = p.depth if not isinf(p.width): s = getattr(p, 'shift_amount', 0.) w = max(w, p.width + s) elif isinstance(p, Glue): x += d d = 0. glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += d + p.width d = 0. elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in Vlist.") self.width = w if d > l: x += d - l self.depth = l else: self.depth = d if m == 'additional': h += x self.height = h x = h - x if x == 0: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Rule(Box): """ A :class:`Rule` node stands for a solid black rectangle; it has *width*, *depth*, and *height* fields just as in an :class:`Hlist`. However, if any of these dimensions is inf, the actual value will be determined by running the rule up to the boundary of the innermost enclosing box. This is called a "running dimension." The width is never running in an :class:`Hlist`; the height and depth are never running in a :class:`Vlist`. """ def __init__(self, width, height, depth, state): Box.__init__(self, width, height, depth) self.font_output = state.font_output def render(self, x, y, w, h): self.font_output.render_rect_filled(x, y, x + w, y + h) class Hrule(Rule): """ Convenience class to create a horizontal rule. """ def __init__(self, state, thickness=None): if thickness is None: thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = depth = thickness * 0.5 Rule.__init__(self, inf, height, depth, state) class Vrule(Rule): """ Convenience class to create a vertical rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) Rule.__init__(self, thickness, inf, inf, state) class Glue(Node): """ Most of the information in this object is stored in the underlying :class:`GlueSpec` class, which is shared between multiple glue objects. (This is a memory optimization which probably doesn't matter anymore, but it's easier to stick to what TeX does.) """ def __init__(self, glue_type, copy=False): Node.__init__(self) self.glue_subtype = 'normal' if is_string_like(glue_type): glue_spec = GlueSpec.factory(glue_type) elif isinstance(glue_type, GlueSpec): glue_spec = glue_type else: raise ArgumentError("glue_type must be a glue spec name or instance.") if copy: glue_spec = glue_spec.copy() self.glue_spec = glue_spec def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= SHRINK_FACTOR def grow(self): Node.grow(self) if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= GROW_FACTOR class GlueSpec(object): """ See :class:`Glue`. """ def __init__(self, width=0., stretch=0., stretch_order=0, shrink=0., shrink_order=0): self.width = width self.stretch = stretch self.stretch_order = stretch_order self.shrink = shrink self.shrink_order = shrink_order def copy(self): return GlueSpec( self.width, self.stretch, self.stretch_order, self.shrink, self.shrink_order) def factory(cls, glue_type): return cls._types[glue_type] factory = classmethod(factory) GlueSpec._types = { 'fil': GlueSpec(0., 1., 1, 0., 0), 'fill': GlueSpec(0., 1., 2, 0., 0), 'filll': GlueSpec(0., 1., 3, 0., 0), 'neg_fil': GlueSpec(0., 0., 0, 1., 1), 'neg_fill': GlueSpec(0., 0., 0, 1., 2), 'neg_filll': GlueSpec(0., 0., 0, 1., 3), 'empty': GlueSpec(0., 0., 0, 0., 0), 'ss': GlueSpec(0., 1., 1, -1., 1) } # Some convenient ways to get common kinds of glue class Fil(Glue): def __init__(self): Glue.__init__(self, 'fil') class Fill(Glue): def __init__(self): Glue.__init__(self, 'fill') class Filll(Glue): def __init__(self): Glue.__init__(self, 'filll') class NegFil(Glue): def __init__(self): Glue.__init__(self, 'neg_fil') class NegFill(Glue): def __init__(self): Glue.__init__(self, 'neg_fill') class NegFilll(Glue): def __init__(self): Glue.__init__(self, 'neg_filll') class SsGlue(Glue): def __init__(self): Glue.__init__(self, 'ss') class HCentered(Hlist): """ A convenience class to create an :class:`Hlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Hlist.__init__(self, [SsGlue()] + elements + [SsGlue()], do_kern=False) class VCentered(Hlist): """ A convenience class to create a :class:`Vlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Vlist.__init__(self, [SsGlue()] + elements + [SsGlue()]) class Kern(Node): """ A :class:`Kern` node has a width field to specify a (normally negative) amount of spacing. This spacing correction appears in horizontal lists between letters like A and V when the font designer said that it looks better to move them closer together or further apart. A kern node can also appear in a vertical list, when its *width* denotes additional spacing in the vertical direction. """ height = 0 depth = 0 def __init__(self, width): Node.__init__(self) self.width = width def __repr__(self): return "k%.02f" % self.width def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR class SubSuperCluster(Hlist): """ :class:`SubSuperCluster` is a sort of hack to get around that fact that this code do a two-pass parse like TeX. This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such that if another script follows that needs to be attached, it can be reconfigured on the fly. """ def __init__(self): self.nucleus = None self.sub = None self.super = None Hlist.__init__(self, []) class AutoHeightChar(Hlist): """ :class:`AutoHeightChar` will create a character as close to the given height and depth as possible. When using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, height, depth, state, always=False, factor=None): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() target_total = height + depth for fontname, sym in alternatives: state.font = fontname char = Char(sym, state) if char.height + char.depth >= target_total: break if factor is None: factor = target_total / (char.height + char.depth) state.fontsize *= factor char = Char(sym, state) shift = (depth - char.depth) Hlist.__init__(self, [char]) self.shift_amount = shift class AutoWidthChar(Hlist): """ :class:`AutoWidthChar` will create a character as close to the given width as possible. When using a font with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, width, state, always=False, char_class=Char): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() for fontname, sym in alternatives: state.font = fontname char = char_class(sym, state) if char.width >= width: break factor = width / char.width state.fontsize *= factor char = char_class(sym, state) Hlist.__init__(self, [char]) self.width = char.width class Ship(object): """ Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes inside of boxes, the main work of :class:`Ship` is done by two mutually recursive routines, :meth:`hlist_out` and :meth:`vlist_out`, which traverse the :class:`Hlist` nodes and :class:`Vlist` nodes inside of horizontal and vertical boxes. The global variables used in TeX to store state as it processes have become member variables here. """ def __call__(self, ox, oy, box): self.max_push = 0 # Deepest nesting of push commands so far self.cur_s = 0 self.cur_v = 0. self.cur_h = 0. self.off_h = ox self.off_v = oy + box.height self.hlist_out(box) def clamp(value): if value < -1000000000.: return -1000000000. if value > 1000000000.: return 1000000000. return value clamp = staticmethod(clamp) def hlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign base_line = self.cur_v left_edge = self.cur_h self.cur_s += 1 self.max_push = max(self.cur_s, self.max_push) clamp = self.clamp for p in box.children: if isinstance(p, Char): p.render(self.cur_h + self.off_h, self.cur_v + self.off_v) self.cur_h += p.width elif isinstance(p, Kern): self.cur_h += p.width elif isinstance(p, List): # node623 if len(p.children) == 0: self.cur_h += p.width else: edge = self.cur_h self.cur_v = base_line + p.shift_amount if isinstance(p, Hlist): self.hlist_out(p) else: # p.vpack(box.height + box.depth, 'exactly') self.vlist_out(p) self.cur_h = edge + p.width self.cur_v = base_line elif isinstance(p, Box): # node624 rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_height): rule_height = box.height if isinf(rule_depth): rule_depth = box.depth if rule_height > 0 and rule_width > 0: self.cur_v = baseline + rule_depth p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) self.cur_v = baseline self.cur_h += rule_width elif isinstance(p, Glue): # node625 glue_spec = p.glue_spec rule_width = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_width += cur_g self.cur_h += rule_width self.cur_s -= 1 def vlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign self.cur_s += 1 self.max_push = max(self.max_push, self.cur_s) left_edge = self.cur_h self.cur_v -= box.height top_edge = self.cur_v clamp = self.clamp for p in box.children: if isinstance(p, Kern): self.cur_v += p.width elif isinstance(p, List): if len(p.children) == 0: self.cur_v += p.height + p.depth else: self.cur_v += p.height self.cur_h = left_edge + p.shift_amount save_v = self.cur_v p.width = box.width if isinstance(p, Hlist): self.hlist_out(p) else: self.vlist_out(p) self.cur_v = save_v + p.depth self.cur_h = left_edge elif isinstance(p, Box): rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_width): rule_width = box.width rule_height += rule_depth if rule_height > 0 and rule_depth > 0: self.cur_v += rule_height p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) elif isinstance(p, Glue): glue_spec = p.glue_spec rule_height = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: # shrinking cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_height += cur_g self.cur_v += rule_height elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in vlist") self.cur_s -= 1 ship = Ship() ############################################################################## # PARSER def Error(msg): """ Helper class to raise parser errors. """ def raise_error(s, loc, toks): raise ParseFatalException(s, loc, msg) empty = Empty() empty.setParseAction(raise_error) return empty class Parser(object): """ This is the pyparsing-based parser for math expressions. It actually parses full strings *containing* math expressions, in that raw text may also appear outside of pairs of ``$``. The grammar is based directly on that in TeX, though it cuts a few corners. """ _binary_operators = set(''' + * \\pm \\sqcap \\rhd \\mp \\sqcup \\unlhd \\times \\vee \\unrhd \\div \\wedge \\oplus \\ast \\setminus \\ominus \\star \\wr \\otimes \\circ \\diamond \\oslash \\bullet \\bigtriangleup \\odot \\cdot \\bigtriangledown \\bigcirc \\cap \\triangleleft \\dagger \\cup \\triangleright \\ddagger \\uplus \\lhd \\amalg'''.split()) _relation_symbols = set(''' = < > : \\leq \\geq \\equiv \\models \\prec \\succ \\sim \\perp \\preceq \\succeq \\simeq \\mid \\ll \\gg \\asymp \\parallel \\subset \\supset \\approx \\bowtie \\subseteq \\supseteq \\cong \\Join \\sqsubset \\sqsupset \\neq \\smile \\sqsubseteq \\sqsupseteq \\doteq \\frown \\in \\ni \\propto \\vdash \\dashv \\dots'''.split()) _arrow_symbols = set(''' \\leftarrow \\longleftarrow \\uparrow \\Leftarrow \\Longleftarrow \\Uparrow \\rightarrow \\longrightarrow \\downarrow \\Rightarrow \\Longrightarrow \\Downarrow \\leftrightarrow \\longleftrightarrow \\updownarrow \\Leftrightarrow \\Longleftrightarrow \\Updownarrow \\mapsto \\longmapsto \\nearrow \\hookleftarrow \\hookrightarrow \\searrow \\leftharpoonup \\rightharpoonup \\swarrow \\leftharpoondown \\rightharpoondown \\nwarrow \\rightleftharpoons \\leadsto'''.split()) _spaced_symbols = _binary_operators | _relation_symbols | _arrow_symbols _punctuation_symbols = set(r', ; . ! \ldotp \cdotp'.split()) _overunder_symbols = set(r''' \sum \prod \coprod \bigcap \bigcup \bigsqcup \bigvee \bigwedge \bigodot \bigotimes \bigoplus \biguplus '''.split()) _overunder_functions = set( r"lim liminf limsup sup max min".split()) _dropsub_symbols = set(r'''\int \oint'''.split()) _fontnames = set("rm cal it tt sf bf default bb frak circled scr regular".split()) _function_names = set(""" arccos csc ker min arcsin deg lg Pr arctan det lim sec arg dim liminf sin cos exp limsup sinh cosh gcd ln sup cot hom log tan coth inf max tanh""".split()) _ambi_delim = set(""" | \\| / \\backslash \\uparrow \\downarrow \\updownarrow \\Uparrow \\Downarrow \\Updownarrow .""".split()) _left_delim = set(r"( [ \{ < \lfloor \langle \lceil".split()) _right_delim = set(r") ] \} > \rfloor \rangle \rceil".split()) def __init__(self): p = Bunch() # All forward declarations are here p.accent = Forward() p.ambi_delim = Forward() p.apostrophe = Forward() p.auto_delim = Forward() p.binom = Forward() p.bslash = Forward() p.c_over_c = Forward() p.customspace = Forward() p.end_group = Forward() p.float_literal = Forward() p.font = Forward() p.frac = Forward() p.function = Forward() p.genfrac = Forward() p.group = Forward() p.int_literal = Forward() p.latexfont = Forward() p.lbracket = Forward() p.left_delim = Forward() p.lbrace = Forward() p.main = Forward() p.math = Forward() p.math_string = Forward() p.non_math = Forward() p.operatorname = Forward() p.overline = Forward() p.placeable = Forward() p.rbrace = Forward() p.rbracket = Forward() p.required_group = Forward() p.right_delim = Forward() p.right_delim_safe = Forward() p.simple = Forward() p.simple_group = Forward() p.single_symbol = Forward() p.space = Forward() p.sqrt = Forward() p.stackrel = Forward() p.start_group = Forward() p.subsuper = Forward() p.subsuperop = Forward() p.symbol = Forward() p.symbol_name = Forward() p.token = Forward() p.unknown_symbol = Forward() # Set names on everything -- very useful for debugging for key, val in vars(p).items(): if not key.startswith('_'): val.setName(key) p.float_literal <<= Regex(r"[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)") p.int_literal <<= Regex("[-+]?[0-9]+") p.lbrace <<= Literal('{').suppress() p.rbrace <<= Literal('}').suppress() p.lbracket <<= Literal('[').suppress() p.rbracket <<= Literal(']').suppress() p.bslash <<= Literal('\\') p.space <<= oneOf(list(six.iterkeys(self._space_widths))) p.customspace <<= (Suppress(Literal(r'\hspace')) - ((p.lbrace + p.float_literal + p.rbrace) | Error(r"Expected \hspace{n}"))) unicode_range = "\U00000080-\U0001ffff" p.single_symbol <<= Regex(r"([a-zA-Z0-9 +\-*/<>=:,.;!\?&'@()\[\]|%s])|(\\[%%${}\[\]_|])" % unicode_range) p.symbol_name <<= (Combine(p.bslash + oneOf(list(six.iterkeys(tex2uni)))) + FollowedBy(Regex("[^A-Za-z]").leaveWhitespace() | StringEnd())) p.symbol <<= (p.single_symbol | p.symbol_name).leaveWhitespace() p.apostrophe <<= Regex("'+") p.c_over_c <<= Suppress(p.bslash) + oneOf(list(six.iterkeys(self._char_over_chars))) p.accent <<= Group( Suppress(p.bslash) + oneOf(list(six.iterkeys(self._accent_map)) + list(self._wide_accents)) - p.placeable ) p.function <<= Suppress(p.bslash) + oneOf(list(self._function_names)) p.start_group <<= Optional(p.latexfont) + p.lbrace p.end_group <<= p.rbrace.copy() p.simple_group <<= Group(p.lbrace + ZeroOrMore(p.token) + p.rbrace) p.required_group<<= Group(p.lbrace + OneOrMore(p.token) + p.rbrace) p.group <<= Group(p.start_group + ZeroOrMore(p.token) + p.end_group) p.font <<= Suppress(p.bslash) + oneOf(list(self._fontnames)) p.latexfont <<= Suppress(p.bslash) + oneOf(['math' + x for x in self._fontnames]) p.frac <<= Group( Suppress(Literal(r"\frac")) - ((p.required_group + p.required_group) | Error(r"Expected \frac{num}{den}")) ) p.stackrel <<= Group( Suppress(Literal(r"\stackrel")) - ((p.required_group + p.required_group) | Error(r"Expected \stackrel{num}{den}")) ) p.binom <<= Group( Suppress(Literal(r"\binom")) - ((p.required_group + p.required_group) | Error(r"Expected \binom{num}{den}")) ) p.ambi_delim <<= oneOf(list(self._ambi_delim)) p.left_delim <<= oneOf(list(self._left_delim)) p.right_delim <<= oneOf(list(self._right_delim)) p.right_delim_safe <<= oneOf(list(self._right_delim - set(['}'])) + [r'\}']) p.genfrac <<= Group( Suppress(Literal(r"\genfrac")) - (((p.lbrace + Optional(p.ambi_delim | p.left_delim, default='') + p.rbrace) + (p.lbrace + Optional(p.ambi_delim | p.right_delim_safe, default='') + p.rbrace) + (p.lbrace + p.float_literal + p.rbrace) + p.simple_group + p.required_group + p.required_group) | Error(r"Expected \genfrac{ldelim}{rdelim}{rulesize}{style}{num}{den}")) ) p.sqrt <<= Group( Suppress(Literal(r"\sqrt")) - ((Optional(p.lbracket + p.int_literal + p.rbracket, default=None) + p.required_group) | Error("Expected \sqrt{value}")) ) p.overline <<= Group( Suppress(Literal(r"\overline")) - (p.required_group | Error("Expected \overline{value}")) ) p.unknown_symbol<<= Combine(p.bslash + Regex("[A-Za-z]*")) p.operatorname <<= Group( Suppress(Literal(r"\operatorname")) - ((p.lbrace + ZeroOrMore(p.simple | p.unknown_symbol) + p.rbrace) | Error("Expected \operatorname{value}")) ) p.placeable <<= ( p.accent # Must be first | p.symbol # Must be second | p.c_over_c | p.function | p.group | p.frac | p.stackrel | p.binom | p.genfrac | p.sqrt | p.overline | p.operatorname ) p.simple <<= ( p.space | p.customspace | p.font | p.subsuper ) p.subsuperop <<= oneOf(["_", "^"]) p.subsuper <<= Group( (Optional(p.placeable) + OneOrMore(p.subsuperop - p.placeable) + Optional(p.apostrophe)) | (p.placeable + Optional(p.apostrophe)) | p.apostrophe ) p.token <<= ( p.simple | p.auto_delim | p.unknown_symbol # Must be last ) p.auto_delim <<= (Suppress(Literal(r"\left")) - ((p.left_delim | p.ambi_delim) | Error("Expected a delimiter")) + Group(ZeroOrMore(p.simple | p.auto_delim)) + Suppress(Literal(r"\right")) - ((p.right_delim | p.ambi_delim) | Error("Expected a delimiter")) ) p.math <<= OneOrMore(p.token) p.math_string <<= QuotedString('$', '\\', unquoteResults=False) p.non_math <<= Regex(r"(?:(?:\\[$])|[^$])*").leaveWhitespace() p.main <<= (p.non_math + ZeroOrMore(p.math_string + p.non_math)) + StringEnd() # Set actions for key, val in vars(p).items(): if not key.startswith('_'): if hasattr(self, key): val.setParseAction(getattr(self, key)) self._expression = p.main self._math_expression = p.math def parse(self, s, fonts_object, fontsize, dpi): """ Parse expression *s* using the given *fonts_object* for output, at the given *fontsize* and *dpi*. Returns the parse tree of :class:`Node` instances. """ self._state_stack = [self.State(fonts_object, 'default', 'rm', fontsize, dpi)] self._em_width_cache = {} try: result = self._expression.parseString(s) except ParseBaseException as err: raise ValueError("\n".join([ "", err.line, " " * (err.column - 1) + "^", six.text_type(err)])) self._state_stack = None self._em_width_cache = {} self._expression.resetCache() return result[0] # The state of the parser is maintained in a stack. Upon # entering and leaving a group { } or math/non-math, the stack # is pushed and popped accordingly. The current state always # exists in the top element of the stack. class State(object): """ Stores the state of the parser. States are pushed and popped from a stack as necessary, and the "current" state is always at the top of the stack. """ def __init__(self, font_output, font, font_class, fontsize, dpi): self.font_output = font_output self._font = font self.font_class = font_class self.fontsize = fontsize self.dpi = dpi def copy(self): return Parser.State( self.font_output, self.font, self.font_class, self.fontsize, self.dpi) def _get_font(self): return self._font def _set_font(self, name): if name in ('rm', 'it', 'bf'): self.font_class = name self._font = name font = property(_get_font, _set_font) def get_state(self): """ Get the current :class:`State` of the parser. """ return self._state_stack[-1] def pop_state(self): """ Pop a :class:`State` off of the stack. """ self._state_stack.pop() def push_state(self): """ Push a new :class:`State` onto the stack which is just a copy of the current state. """ self._state_stack.append(self.get_state().copy()) def main(self, s, loc, toks): #~ print "finish", toks return [Hlist(toks)] def math_string(self, s, loc, toks): # print "math_string", toks[0][1:-1] return self._math_expression.parseString(toks[0][1:-1]) def math(self, s, loc, toks): #~ print "math", toks hlist = Hlist(toks) self.pop_state() return [hlist] def non_math(self, s, loc, toks): #~ print "non_math", toks s = toks[0].replace(r'\$', '$') symbols = [Char(c, self.get_state()) for c in s] hlist = Hlist(symbols) # We're going into math now, so set font to 'it' self.push_state() self.get_state().font = rcParams['mathtext.default'] return [hlist] def _make_space(self, percentage): # All spaces are relative to em width state = self.get_state() key = (state.font, state.fontsize, state.dpi) width = self._em_width_cache.get(key) if width is None: metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], 'm', state.fontsize, state.dpi) width = metrics.advance self._em_width_cache[key] = width return Kern(width * percentage) _space_widths = { r'\ ' : 0.3, r'\,' : 0.4, r'\;' : 0.8, r'\quad' : 1.6, r'\qquad' : 3.2, r'\!' : -0.4, r'\/' : 0.4 } def space(self, s, loc, toks): assert(len(toks)==1) num = self._space_widths[toks[0]] box = self._make_space(num) return [box] def customspace(self, s, loc, toks): return [self._make_space(float(toks[0]))] def symbol(self, s, loc, toks): # print "symbol", toks c = toks[0] try: char = Char(c, self.get_state()) except ValueError: raise ParseFatalException(s, loc, "Unknown symbol: %s" % c) if c in self._spaced_symbols: return [Hlist( [self._make_space(0.2), char, self._make_space(0.2)] , do_kern = False)] elif c in self._punctuation_symbols: return [Hlist( [char, self._make_space(0.2)] , do_kern = False)] return [char] def unknown_symbol(self, s, loc, toks): # print "symbol", toks c = toks[0] raise ParseFatalException(s, loc, "Unknown symbol: %s" % c) _char_over_chars = { # The first 2 entires in the tuple are (font, char, sizescale) for # the two symbols under and over. The third element is the space # (in multiples of underline height) r'AA' : ( ('rm', 'A', 1.0), (None, '\circ', 0.5), 0.0), } def c_over_c(self, s, loc, toks): sym = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) under_desc, over_desc, space = \ self._char_over_chars.get(sym, (None, None, 0.0)) if under_desc is None: raise ParseFatalException("Error parsing symbol") over_state = state.copy() if over_desc[0] is not None: over_state.font = over_desc[0] over_state.fontsize *= over_desc[2] over = Accent(over_desc[1], over_state) under_state = state.copy() if under_desc[0] is not None: under_state.font = under_desc[0] under_state.fontsize *= under_desc[2] under = Char(under_desc[1], under_state) width = max(over.width, under.width) over_centered = HCentered([over]) over_centered.hpack(width, 'exactly') under_centered = HCentered([under]) under_centered.hpack(width, 'exactly') return Vlist([ over_centered, Vbox(0., thickness * space), under_centered ]) _accent_map = { r'hat' : r'\circumflexaccent', r'breve' : r'\combiningbreve', r'bar' : r'\combiningoverline', r'grave' : r'\combininggraveaccent', r'acute' : r'\combiningacuteaccent', r'ddot' : r'\combiningdiaeresis', r'tilde' : r'\combiningtilde', r'dot' : r'\combiningdotabove', r'vec' : r'\combiningrightarrowabove', r'"' : r'\combiningdiaeresis', r"`" : r'\combininggraveaccent', r"'" : r'\combiningacuteaccent', r'~' : r'\combiningtilde', r'.' : r'\combiningdotabove', r'^' : r'\circumflexaccent', r'overrightarrow' : r'\rightarrow', r'overleftarrow' : r'\leftarrow' } _wide_accents = set(r"widehat widetilde widebar".split()) def accent(self, s, loc, toks): assert(len(toks)==1) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) if len(toks[0]) != 2: raise ParseFatalException("Error parsing accent") accent, sym = toks[0] if accent in self._wide_accents: accent = AutoWidthChar( '\\' + accent, sym.width, state, char_class=Accent) else: accent = Accent(self._accent_map[accent], state) centered = HCentered([accent]) centered.hpack(sym.width, 'exactly') return Vlist([ centered, Vbox(0., thickness * 2.0), Hlist([sym]) ]) def function(self, s, loc, toks): #~ print "function", toks self.push_state() state = self.get_state() state.font = 'rm' hlist = Hlist([Char(c, state) for c in toks[0]]) self.pop_state() hlist.function_name = toks[0] return hlist def operatorname(self, s, loc, toks): self.push_state() state = self.get_state() state.font = 'rm' # Change the font of Chars, but leave Kerns alone for c in toks[0]: if isinstance(c, Char): c.font = 'rm' c._update_metrics() self.pop_state() return Hlist(toks[0]) def start_group(self, s, loc, toks): self.push_state() # Deal with LaTeX-style font tokens if len(toks): self.get_state().font = toks[0][4:] return [] def group(self, s, loc, toks): grp = Hlist(toks[0]) return [grp] required_group = simple_group = group def end_group(self, s, loc, toks): self.pop_state() return [] def font(self, s, loc, toks): assert(len(toks)==1) name = toks[0] self.get_state().font = name return [] def is_overunder(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._overunder_symbols elif isinstance(nucleus, Hlist) and hasattr(nucleus, 'function_name'): return nucleus.function_name in self._overunder_functions return False def is_dropsub(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._dropsub_symbols return False def is_slanted(self, nucleus): if isinstance(nucleus, Char): return nucleus.is_slanted() return False def subsuper(self, s, loc, toks): assert(len(toks)==1) # print 'subsuper', toks nucleus = None sub = None super = None # Pick all of the apostrophe's out napostrophes = 0 new_toks = [] for tok in toks[0]: if isinstance(tok, six.string_types) and tok not in ('^', '_'): napostrophes += len(tok) else: new_toks.append(tok) toks = new_toks if len(toks) == 0: assert napostrophes nucleus = Hbox(0.0) elif len(toks) == 1: if not napostrophes: return toks[0] # .asList() else: nucleus = toks[0] elif len(toks) == 2: op, next = toks nucleus = Hbox(0.0) if op == '_': sub = next else: super = next elif len(toks) == 3: nucleus, op, next = toks if op == '_': sub = next else: super = next elif len(toks) == 5: nucleus, op1, next1, op2, next2 = toks if op1 == op2: if op1 == '_': raise ParseFatalException("Double subscript") else: raise ParseFatalException("Double superscript") if op1 == '_': sub = next1 super = next2 else: super = next1 sub = next2 else: raise ParseFatalException( "Subscript/superscript sequence is too long. " "Use braces { } to remove ambiguity.") state = self.get_state() rule_thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) xHeight = state.font_output.get_xheight( state.font, state.fontsize, state.dpi) if napostrophes: if super is None: super = Hlist([]) for i in range(napostrophes): super.children.extend(self.symbol(s, loc, ['\prime'])) # Handle over/under symbols, such as sum or integral if self.is_overunder(nucleus): vlist = [] shift = 0. width = nucleus.width if super is not None: super.shrink() width = max(width, super.width) if sub is not None: sub.shrink() width = max(width, sub.width) if super is not None: hlist = HCentered([super]) hlist.hpack(width, 'exactly') vlist.extend([hlist, Kern(rule_thickness * 3.0)]) hlist = HCentered([nucleus]) hlist.hpack(width, 'exactly') vlist.append(hlist) if sub is not None: hlist = HCentered([sub]) hlist.hpack(width, 'exactly') vlist.extend([Kern(rule_thickness * 3.0), hlist]) shift = hlist.height vlist = Vlist(vlist) vlist.shift_amount = shift + nucleus.depth result = Hlist([vlist]) return [result] # Handle regular sub/superscripts shift_up = nucleus.height - SUBDROP * xHeight if self.is_dropsub(nucleus): shift_down = nucleus.depth + SUBDROP * xHeight else: shift_down = SUBDROP * xHeight if super is None: # node757 sub.shrink() x = Hlist([sub]) # x.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1) clr = x.height - (abs(xHeight * 4.0) / 5.0) shift_down = max(shift_down, clr) x.shift_amount = shift_down else: super.shrink() x = Hlist([super, Kern(SCRIPT_SPACE * xHeight)]) # x.width += SCRIPT_SPACE * xHeight clr = SUP1 * xHeight shift_up = max(shift_up, clr) clr = x.depth + (abs(xHeight) / 4.0) shift_up = max(shift_up, clr) if sub is None: x.shift_amount = -shift_up else: # Both sub and superscript sub.shrink() y = Hlist([sub]) # y.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1 * xHeight) clr = (2.0 * rule_thickness - ((shift_up - x.depth) - (y.height - shift_down))) if clr > 0.: shift_up += clr shift_down += clr if self.is_slanted(nucleus): x.shift_amount = DELTA * (shift_up + shift_down) x = Vlist([x, Kern((shift_up - x.depth) - (y.height - shift_down)), y]) x.shift_amount = shift_down result = Hlist([nucleus, x]) return [result] def _genfrac(self, ldelim, rdelim, rule, style, num, den): state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) rule = float(rule) num.shrink() den.shrink() cnum = HCentered([num]) cden = HCentered([den]) width = max(num.width, den.width) cnum.hpack(width, 'exactly') cden.hpack(width, 'exactly') vlist = Vlist([cnum, # numerator Vbox(0, thickness * 2.0), # space Hrule(state, rule), # rule Vbox(0, thickness * 2.0), # space cden # denominator ]) # Shift so the fraction line sits in the middle of the # equals sign metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], '=', state.fontsize, state.dpi) shift = (cden.height - ((metrics.ymax + metrics.ymin) / 2 - thickness * 3.0)) vlist.shift_amount = shift result = [Hlist([vlist, Hbox(thickness * 2.)])] if ldelim or rdelim: if ldelim == '': ldelim = '.' if rdelim == '': rdelim = '.' return self._auto_sized_delimiter(ldelim, result, rdelim) return result def genfrac(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==6) return self._genfrac(*tuple(toks[0])) def frac(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) num, den = toks[0] return self._genfrac('', '', thickness, '', num, den) def stackrel(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) num, den = toks[0] return self._genfrac('', '', 0.0, '', num, den) def binom(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) num, den = toks[0] return self._genfrac('(', ')', 0.0, '', num, den) def sqrt(self, s, loc, toks): #~ print "sqrt", toks root, body = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) # Determine the height of the body, and add a little extra to # the height so it doesn't seem cramped height = body.height - body.shift_amount + thickness * 5.0 depth = body.depth + body.shift_amount check = AutoHeightChar(r'\__sqrt__', height, depth, state, always=True) height = check.height - check.shift_amount depth = check.depth + check.shift_amount # Put a little extra space to the left and right of the body padded_body = Hlist([Hbox(thickness * 2.0), body, Hbox(thickness * 2.0)]) rightside = Vlist([Hrule(state), Fill(), padded_body]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), 'exactly', depth) # Add the root and shift it upward so it is above the tick. # The value of 0.6 is a hard-coded hack ;) if root is None: root = Box(check.width * 0.5, 0., 0.) else: root = Hlist([Char(x, state) for x in root]) root.shrink() root.shrink() root_vlist = Vlist([Hlist([root])]) root_vlist.shift_amount = -height * 0.6 hlist = Hlist([root_vlist, # Root # Negative kerning to put root over tick Kern(-check.width * 0.5), check, # Check rightside]) # Body return [hlist] def overline(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==1) body = toks[0][0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = body.height - body.shift_amount + thickness * 3.0 depth = body.depth + body.shift_amount # Place overline above body rightside = Vlist([Hrule(state), Fill(), Hlist([body])]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), 'exactly', depth) hlist = Hlist([rightside]) return [hlist] def _auto_sized_delimiter(self, front, middle, back): state = self.get_state() if len(middle): height = max([x.height for x in middle]) depth = max([x.depth for x in middle]) factor = None else: height = 0 depth = 0 factor = 1.0 parts = [] # \left. and \right. aren't supposed to produce any symbols if front != '.': parts.append(AutoHeightChar(front, height, depth, state, factor=factor)) parts.extend(middle) if back != '.': parts.append(AutoHeightChar(back, height, depth, state, factor=factor)) hlist = Hlist(parts) return hlist def auto_delim(self, s, loc, toks): #~ print "auto_delim", toks front, middle, back = toks return self._auto_sized_delimiter(front, middle.asList(), back) ### ############################################################################## # MAIN class MathTextParser(object): _parser = None _backend_mapping = { 'bitmap': MathtextBackendBitmap, 'agg' : MathtextBackendAgg, 'ps' : MathtextBackendPs, 'pdf' : MathtextBackendPdf, 'svg' : MathtextBackendSvg, 'path' : MathtextBackendPath, 'cairo' : MathtextBackendCairo, 'macosx': MathtextBackendAgg, } _font_type_mapping = { 'cm' : BakomaFonts, 'stix' : StixFonts, 'stixsans' : StixSansFonts, 'custom' : UnicodeFonts } def __init__(self, output): """ Create a MathTextParser for the given backend *output*. """ self._output = output.lower() self._cache = maxdict(50) def parse(self, s, dpi = 72, prop = None): """ Parse the given math expression *s* at the given *dpi*. If *prop* is provided, it is a :class:`~matplotlib.font_manager.FontProperties` object specifying the "default" font to use in the math expression, used for all non-math text. The results are cached, so multiple calls to :meth:`parse` with the same expression should be fast. """ # There is a bug in Python 3.x where it leaks frame references, # and therefore can't handle this caching if prop is None: prop = FontProperties() cacheKey = (s, dpi, hash(prop)) result = self._cache.get(cacheKey) if result is not None: return result if self._output == 'ps' and rcParams['ps.useafm']: font_output = StandardPsFonts(prop) else: backend = self._backend_mapping[self._output]() fontset = rcParams['mathtext.fontset'] fontset_class = self._font_type_mapping.get(fontset.lower()) if fontset_class is not None: font_output = fontset_class(prop, backend) else: raise ValueError( "mathtext.fontset must be either 'cm', 'stix', " "'stixsans', or 'custom'") fontsize = prop.get_size_in_points() # This is a class variable so we don't rebuild the parser # with each request. if self._parser is None: self.__class__._parser = Parser() box = self._parser.parse(s, font_output, fontsize, dpi) font_output.set_canvas_size(box.width, box.height, box.depth) result = font_output.get_results(box) self._cache[cacheKey] = result return result def to_mask(self, texstr, dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) x = ftimage.as_array() return x, depth def to_rgba(self, texstr, color='black', dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* Any matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ x, depth = self.to_mask(texstr, dpi=dpi, fontsize=fontsize) r, g, b = mcolors.colorConverter.to_rgb(color) RGBA = np.zeros((x.shape[0], x.shape[1], 4), dtype=np.uint8) RGBA[:,:,0] = int(255*r) RGBA[:,:,1] = int(255*g) RGBA[:,:,2] = int(255*b) RGBA[:,:,3] = x return RGBA, depth def to_png(self, filename, texstr, color='black', dpi=120, fontsize=14): """ Writes a tex expression to a PNG file. Returns the offset of the baseline from the bottom of the image in pixels. *filename* A writable filename or fileobject *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* A valid matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns the offset of the baseline from the bottom of the image in pixels. """ rgba, depth = self.to_rgba(texstr, color=color, dpi=dpi, fontsize=fontsize) numrows, numcols, tmp = rgba.shape _png.write_png(rgba.tostring(), numcols, numrows, filename) return depth def get_depth(self, texstr, dpi=120, fontsize=14): """ Returns the offset of the baseline from the bottom of the image in pixels. *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) return depth def math_to_image(s, filename_or_obj, prop=None, dpi=None, format=None): """ Given a math expression, renders it in a closely-clipped bounding box to an image file. *s* A math expression. The math portion should be enclosed in dollar signs. *filename_or_obj* A filepath or writable file-like object to write the image data to. *prop* If provided, a FontProperties() object describing the size and style of the text. *dpi* Override the output dpi, otherwise use the default associated with the output format. *format* The output format, e.g., 'svg', 'pdf', 'ps' or 'png'. If not provided, will be deduced from the filename. """ from matplotlib import figure # backend_agg supports all of the core output formats from matplotlib.backends import backend_agg if prop is None: prop = FontProperties() parser = MathTextParser('path') width, height, depth, _, _ = parser.parse(s, dpi=72, prop=prop) fig = figure.Figure(figsize=(width / 72.0, height / 72.0)) fig.text(0, depth/height, s, fontproperties=prop) backend_agg.FigureCanvasAgg(fig) fig.savefig(filename_or_obj, dpi=dpi, format=format) return depth
mit
6,743,337,852,527,449,000
34.235275
117
0.521474
false
ema/conpaas
conpaas-services/src/conpaas/core/clouds/opennebula.py
1
5532
# -*- coding: utf-8 -*- """ conpaas.core.clouds.opennebula ============================== ConPaaS core: OpenNebula IaaS code. :copyright: (C) 2010-2013 by Contrail Consortium. """ import urlparse from ConfigParser import NoOptionError from libcloud.compute.types import Provider from libcloud.compute.providers import get_driver from libcloud.compute.base import NodeImage from .base import Cloud DEFAULT_API_VERSION = '2.2' class OpenNebulaCloud(Cloud): def __init__(self, cloud_name, iaas_config): Cloud.__init__(self, cloud_name) # required parameters to describe this cloud cloud_params = ['URL', 'USER', 'PASSWORD', 'IMAGE_ID', 'INST_TYPE', 'NET_ID', 'NET_GATEWAY', 'NET_NETMASK', 'NET_NAMESERVER', 'OS_ARCH', 'OS_ROOT', 'DISK_TARGET', 'CONTEXT_TARGET'] self._check_cloud_params(iaas_config, cloud_params) def _get(param): return iaas_config.get(cloud_name, param) self.url = _get('URL') self.user = _get('USER') self.passwd = _get('PASSWORD') self.img_id = _get('IMAGE_ID') self.inst_type = _get('INST_TYPE') self.net_id = _get('NET_ID') self.net_gw = _get('NET_GATEWAY') self.net_nm = _get('NET_NETMASK') self.net_ns = _get('NET_NAMESERVER') self.os_arch = _get('OS_ARCH') self.os_root = _get('OS_ROOT') self.disk_target = _get('DISK_TARGET') self.context_target = _get('CONTEXT_TARGET') try: self.api_version = _get('OPENNEBULA_VERSION') except NoOptionError: self.api_version = DEFAULT_API_VERSION self.cpu = None self.mem = None self.logger.info('OpenNebula cloud ready. API_VERSION=%s' % self.api_version) def get_cloud_type(self): return 'opennebula' def _connect(self): """connect to opennebula cloud""" parsed = urlparse.urlparse(self.url) ONDriver = get_driver(Provider.OPENNEBULA) self.driver = ONDriver(self.user, secret=self.passwd, secure=(parsed.scheme == 'https'), host=parsed.hostname, port=parsed.port, api_version=self.api_version) self.connected = True def get_context(self): cx = Cloud.get_context(self) return cx.encode('hex') def config(self, config_params={}, context=None): if 'inst_type' in config_params: self.inst_type = config_params['inst_type'] if 'cpu' in config_params: self.cpu = config_params['cpu'] if 'mem' in config_params: self.mem = config_params['mem'] if context is not None: self._context = context def list_vms(self): return Cloud.list_vms(self, False) def list_instace_types(self): return self.inst_types def new_instances(self, count, name='conpaas', inst_type=None): '''Asks the provider for new instances. @param count: Id of the node type of this driver (optional) ''' if self.connected is False: self._connect() kwargs = {} # 'NAME' kwargs['name'] = name # 'INSTANCE_TYPE' if inst_type is None: inst_type = self.inst_type # available sizes self.logger.debug('new_instances: calling self.driver.list_sizes') sizes = self.driver.list_sizes() self.logger.debug('new_instances: self.driver.list_sizes returned %s' % sizes) # available size names size_names = [ size.name for size in sizes ] try: # index of the size we want size_idx = size_names.index(inst_type) except ValueError: # size not found raise Exception("Requested size not found. '%s' not in %s" % ( inst_type, size_names)) kwargs['size'] = sizes[size_idx] # 'CPU' if self.cpu is not None: kwargs['cpu'] = self.cpu # 'MEM' if self.mem is not None: kwargs['mem'] = self.mem # 'OS' kwargs['os_arch'] = self.os_arch kwargs['os_root'] = self.os_root # 'DISK' kwargs['image'] = NodeImage(self.img_id, '', None) kwargs['disk_target'] = self.disk_target # 'NIC': str(network.id) is how libcloud gets the network ID. Let's # create an object just like that and pass it in the 'networks' kwarg class OneNetwork(object): def __str__(self): return str(self.id) network = OneNetwork() network.id = self.net_id network.address = None kwargs['networks'] = network # 'CONTEXT' context = {} context['HOSTNAME'] = '$NAME' context['IP_PUBLIC'] = '$NIC[IP]' context['IP_GATEWAY'] = self.net_gw context['NETMASK'] = self.net_nm context['NAMESERVER'] = self.net_ns context['USERDATA'] = self.get_context() context['TARGET'] = self.context_target kwargs['context'] = context return [self._create_service_nodes(self.driver. create_node(**kwargs), False) for _ in range(count)]
bsd-3-clause
3,206,006,294,396,996,600
29.065217
79
0.535973
false
arnavd96/Cinemiezer
myvenv/lib/python3.4/site-packages/music21/demos/trecento/largestAmbitus.py
1
2001
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # Name: demos/trecento/largestAmbitus.py # Purpose: find Trecento/ars nova pieces with large ambitus # # Authors: Michael Scott Cuthbert # # Copyright: Copyright © 2012 Michael Scott Cuthbert and the music21 Project # License: LGPL or BSD, see license.txt #------------------------------------------------------------------------------- ''' On September 11, 2012, Camilla Cavicchi reported to me the finding of a new fragment in the Ferrara archives. One unknown piece has an extraordinary large range in the top voice: a 15th within a few notes. The clefs can't be read and the piece is an adaptation into Stroke notation, so it's unlikely to have an exact match in the database (also the piece is probably from the 1430s [MSC, guess, not CC], so it's not likely to be in the Trecento database anyhow). This demo uses the .analyze('ambitus') function of music21 to try to find a match for the ambitus (or at least narrow down the search for others) by finding all parts within pieces where the range is at least a 15th. ''' from music21 import corpus, converter def main(): trecentoFiles = corpus.getWork('trecento') for t in trecentoFiles: print (t) tparsed = converter.parse(t) for p in tparsed.parts: ambi = p.analyze('ambitus') distance = ambi.diatonic.generic.undirected if distance >= 15: print ("************ GOT ONE!: {0} ************".format(ambi)) elif distance >= 9: print (ambi) else: pass #------------------------------------------------------------------------------- # define presented order in documentation _DOC_ORDER = [] if __name__ == "__main__": main() #------------------------------------------------------------------------------ # eof
mit
5,355,574,308,488,821,000
37.215686
80
0.5285
false
zhengjue/mytornado
study/2/filecmp/simple2.py
1
1828
#!/usr/bin/env python import os, sys import filecmp import re import shutil holderlist=[] def compareme(dir1, dir2): dircomp=filecmp.dircmp(dir1,dir2) only_in_one=dircomp.left_only diff_in_one=dircomp.diff_files dirpath=os.path.abspath(dir1) [holderlist.append(os.path.abspath( os.path.join(dir1,x) )) for x in only_in_one] [holderlist.append(os.path.abspath( os.path.join(dir1,x) )) for x in diff_in_one] if len(dircomp.common_dirs) > 0: for item in dircomp.common_dirs: compareme(os.path.abspath(os.path.join(dir1,item)), \ os.path.abspath(os.path.join(dir2,item))) return holderlist def main(): if len(sys.argv) > 2: dir1=sys.argv[1] dir2=sys.argv[2] else: print "Usage: ", sys.argv[0], "datadir backupdir" sys.exit() source_files=compareme(dir1,dir2) dir1=os.path.abspath(dir1) if not dir2.endswith('/'): dir2=dir2+'/' dir2=os.path.abspath(dir2) destination_files=[] createdir_bool=False for item in source_files: destination_dir=re.sub(dir1, dir2, item) destination_files.append(destination_dir) if os.path.isdir(item): if not os.path.exists(destination_dir): os.makedirs(destination_dir) createdir_bool=True if createdir_bool: destination_files=[] source_files=[] source_files=compareme(dir1,dir2) for item in source_files: destination_dir=re.sub(dir1, dir2, item) destination_files.append(destination_dir) print "update item:" print source_files copy_pair=zip(source_files,destination_files) for item in copy_pair: if os.path.isfile(item[0]): shutil.copyfile(item[0], item[1]) if __name__ == '__main__': main()
gpl-3.0
5,692,140,856,921,574,000
28.015873
85
0.622538
false
cjlee112/socraticqs2
mysite/pages/migrations/0008_listplugin.py
1
1139
from django.db import models, migrations import djangocms_text_ckeditor.fields class Migration(migrations.Migration): dependencies = [ ('cms', '0012_auto_20150607_2207'), ('pages', '0007_activelearningratesplugin'), ] operations = [ migrations.CreateModel( name='ListPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='cms.CMSPlugin', on_delete=models.CASCADE)), ('title', models.CharField(max_length=70, blank=True)), ('description_header', djangocms_text_ckeditor.fields.HTMLField(blank=True)), ('list_type', models.CharField(default='list-questions', max_length=20, choices=[('list-questions', 'list-questions')])), ('list_text', djangocms_text_ckeditor.fields.HTMLField()), ('description_footer', djangocms_text_ckeditor.fields.HTMLField(blank=True)), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), ]
apache-2.0
4,625,556,113,305,008,000
39.678571
174
0.592625
false
davidam/python-examples
basics/allindices.py
1
1128
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2018 David Arroyo Menéndez # Author: David Arroyo Menéndez <[email protected]> # Maintainer: David Arroyo Menéndez <[email protected]> # This file is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # This file is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with GNU Emacs; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301 USA, #!/usr/bin/python# -*- coding: utf-8 -*- aList = [123, 'xyz', 'zara', 'abc']; print("Index for xyz : %s" % aList.index( 'xyz' )) print("Index for zara : %s" % aList.index( 'zara' )) #all_indices("foo", ["foo","bar","baz","foo"])
gpl-3.0
-5,417,548,355,546,397,000
40.666667
70
0.712
false
bslatkin/pycon2014
lib/asyncio-0.4.1/tests/test_selectors.py
1
6463
"""Tests for selectors.py.""" import unittest import unittest.mock from asyncio import selectors class FakeSelector(selectors._BaseSelectorImpl): """Trivial non-abstract subclass of BaseSelector.""" def select(self, timeout=None): raise NotImplementedError class _SelectorMappingTests(unittest.TestCase): def test_len(self): s = FakeSelector() map = selectors._SelectorMapping(s) self.assertTrue(map.__len__() == 0) f = unittest.mock.Mock() f.fileno.return_value = 10 s.register(f, selectors.EVENT_READ, None) self.assertTrue(len(map) == 1) def test_getitem(self): s = FakeSelector() map = selectors._SelectorMapping(s) f = unittest.mock.Mock() f.fileno.return_value = 10 s.register(f, selectors.EVENT_READ, None) attended = selectors.SelectorKey(f, 10, selectors.EVENT_READ, None) self.assertEqual(attended, map.__getitem__(f)) def test_getitem_key_error(self): s = FakeSelector() map = selectors._SelectorMapping(s) self.assertTrue(len(map) == 0) f = unittest.mock.Mock() f.fileno.return_value = 10 s.register(f, selectors.EVENT_READ, None) self.assertRaises(KeyError, map.__getitem__, 5) def test_iter(self): s = FakeSelector() map = selectors._SelectorMapping(s) self.assertTrue(len(map) == 0) f = unittest.mock.Mock() f.fileno.return_value = 5 s.register(f, selectors.EVENT_READ, None) counter = 0 for fileno in map.__iter__(): self.assertEqual(5, fileno) counter += 1 for idx in map: self.assertEqual(f, map[idx].fileobj) self.assertEqual(1, counter) class BaseSelectorTests(unittest.TestCase): def test_fileobj_to_fd(self): self.assertEqual(10, selectors._fileobj_to_fd(10)) f = unittest.mock.Mock() f.fileno.return_value = 10 self.assertEqual(10, selectors._fileobj_to_fd(f)) f.fileno.side_effect = AttributeError self.assertRaises(ValueError, selectors._fileobj_to_fd, f) f.fileno.return_value = -1 self.assertRaises(ValueError, selectors._fileobj_to_fd, f) def test_selector_key_repr(self): key = selectors.SelectorKey(10, 10, selectors.EVENT_READ, None) self.assertEqual( "SelectorKey(fileobj=10, fd=10, events=1, data=None)", repr(key)) def test_register(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 s = FakeSelector() key = s.register(fobj, selectors.EVENT_READ) self.assertIsInstance(key, selectors.SelectorKey) self.assertEqual(key.fd, 10) self.assertIs(key, s._fd_to_key[10]) def test_register_unknown_event(self): s = FakeSelector() self.assertRaises(ValueError, s.register, unittest.mock.Mock(), 999999) def test_register_already_registered(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 s = FakeSelector() s.register(fobj, selectors.EVENT_READ) self.assertRaises(KeyError, s.register, fobj, selectors.EVENT_READ) def test_unregister(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 s = FakeSelector() s.register(fobj, selectors.EVENT_READ) s.unregister(fobj) self.assertFalse(s._fd_to_key) def test_unregister_unknown(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 s = FakeSelector() self.assertRaises(KeyError, s.unregister, fobj) def test_modify_unknown(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 s = FakeSelector() self.assertRaises(KeyError, s.modify, fobj, 1) def test_modify(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 s = FakeSelector() key = s.register(fobj, selectors.EVENT_READ) key2 = s.modify(fobj, selectors.EVENT_WRITE) self.assertNotEqual(key.events, key2.events) self.assertEqual( selectors.SelectorKey(fobj, 10, selectors.EVENT_WRITE, None), s.get_key(fobj)) def test_modify_data(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 d1 = object() d2 = object() s = FakeSelector() key = s.register(fobj, selectors.EVENT_READ, d1) key2 = s.modify(fobj, selectors.EVENT_READ, d2) self.assertEqual(key.events, key2.events) self.assertNotEqual(key.data, key2.data) self.assertEqual( selectors.SelectorKey(fobj, 10, selectors.EVENT_READ, d2), s.get_key(fobj)) def test_modify_data_use_a_shortcut(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 d1 = object() d2 = object() s = FakeSelector() key = s.register(fobj, selectors.EVENT_READ, d1) s.unregister = unittest.mock.Mock() s.register = unittest.mock.Mock() key2 = s.modify(fobj, selectors.EVENT_READ, d2) self.assertFalse(s.unregister.called) self.assertFalse(s.register.called) def test_modify_same(self): fobj = unittest.mock.Mock() fobj.fileno.return_value = 10 data = object() s = FakeSelector() key = s.register(fobj, selectors.EVENT_READ, data) key2 = s.modify(fobj, selectors.EVENT_READ, data) self.assertIs(key, key2) def test_select(self): s = FakeSelector() self.assertRaises(NotImplementedError, s.select) def test_close(self): s = FakeSelector() s.register(1, selectors.EVENT_READ) s.close() self.assertFalse(s._fd_to_key) def test_context_manager(self): s = FakeSelector() with s as sel: sel.register(1, selectors.EVENT_READ) self.assertFalse(s._fd_to_key) def test_key_from_fd(self): s = FakeSelector() key = s.register(1, selectors.EVENT_READ) self.assertIs(key, s._key_from_fd(1)) self.assertIsNone(s._key_from_fd(10)) if hasattr(selectors.DefaultSelector, 'fileno'): def test_fileno(self): self.assertIsInstance(selectors.DefaultSelector().fileno(), int) if __name__ == '__main__': unittest.main()
apache-2.0
1,686,680,130,838,674,400
29.200935
79
0.60916
false
Macainian/BaseDjangoProject
website/apps/search_filter_sort/views/class_based/BaseBrowseView.py
1
10170
import operator import logging from functools import reduce from django.db.models import Q from django.views.generic import ListView from django.conf import settings from website.apps.search_filter_sort.utils.misc import class_strings_to_class, convert_age_to_date from website.mixins import LoginRequiredMixin logger = logging.getLogger(__name__) USER_SEARCH_LIST_DEFAULT = ["username", "first_name", "last_name", "email"] if hasattr(settings, "USER_SEARCH_LIST"): USER_SEARCH_LIST = settings.USER_SEARCH_LIST else: USER_SEARCH_LIST = USER_SEARCH_LIST_DEFAULT class BaseBrowseView(LoginRequiredMixin, ListView): template_name = None model = None should_override_pagination = False searches = [] filters = [] filter_names = [] sorts = [] default_sort_by = [] default_pagination = 25 search_by = None using_filters = None def get_context_data(self, **kwargs): context = super(BaseBrowseView, self).get_context_data(**kwargs) # check_search_fields() context["paginate_by"] = self.paginate_by context["search_by"] = self.search_by context["filters"] = self.filters context["filter_names"] = self.filter_names context["using_filters"] = self.using_filters context["default_pagination"] = self.default_pagination return context def get_queryset(self): self.searches = self.search_fields(self.model, []) if not self.should_override_pagination: try: self.paginate_by = int(self.request.GET.get("paginate_by", self.default_pagination)) except: self.paginate_by = self.default_pagination should_return_empty = self.request.GET.get("__RETURN_EMPTY__", None) if should_return_empty: return self.model.objects.none() search_bys = self.request.GET.get("search_by", None) filter_names = self.request.GET.getlist("filter_name", None) filter_values = self.request.GET.getlist("filter_value", None) sort_bys = self.request.GET.getlist("sort_by", self.default_sort_by) search_list = self.get_search_list(search_bys) filter_list = self.get_filter_list(filter_names, filter_values) sort_list = self.get_sort_list(sort_bys) # Search, filter, sort if search_list: list_of_search_bys_Q = [Q(**{key: value}) for key, value in search_list.items()] search_reduce = reduce(operator.or_, list_of_search_bys_Q) else: search_reduce = None if filter_list: list_of_filter_bys_Q = [[Q(**{key: value}) for value in array] for key, array in filter_list.items()] reduced_filters = [] for array in list_of_filter_bys_Q: reduced_filters.append(reduce(operator.or_, array)) filter_reduce = reduce(operator.and_, reduced_filters) self.using_filters = True else: filter_reduce = None self.using_filters = False if search_reduce and filter_reduce: queryset = self.model.objects.filter(search_reduce).filter(filter_reduce).distinct().order_by(*sort_list) elif search_reduce: queryset = self.model.objects.filter(search_reduce).distinct().order_by(*sort_list) elif filter_reduce: queryset = self.model.objects.filter(filter_reduce).distinct().order_by(*sort_list) else: queryset = self.model.objects.order_by(*sort_list) return queryset def get_search_list(self, search_bys): # Determine search_list search_list = {} if search_bys: self.search_by = search_bys search_terms = [] for term in search_bys.split(): search_terms.append(term) for field in self.searches: field += "__icontains" for term in search_terms: search_list[field] = term else: self.search_by = "" return search_list def get_filter_list(self, filter_names, filter_values): # Determine filter_list filter_list = {} self.define_filters() for i in range(len(filter_names)): filter_name = filter_names[i] # This is only false if there are more filter_names than filter_values. Should be equal. if i < len(filter_values): values = filter_values[i].split(",") if "__lte_age" in filter_name or "__lt_age" in filter_name: values = [convert_age_to_date(int(filter_values[i]))] filter_name = filter_name.replace("__lte_age", "__lte") filter_name = filter_name.replace("__lt_age", "__lt") elif "__lte_number" in filter_name or "__lt_number" in filter_name: filter_name = filter_name.replace("__lte_number", "__lte") filter_name = filter_name.replace("__lt_number", "__lt") if "__gte_age" in filter_name or "__gt_age" in filter_name: values = [convert_age_to_date(int(filter_values[i]) + 1)] filter_name = filter_name.replace("__gte_age", "__gte") filter_name = filter_name.replace("__gt_age", "__gt") elif "__gte_number" in filter_name or "__gt_number" in filter_name: filter_name = filter_name.replace("__gte_number", "__gte") filter_name = filter_name.replace("__gt_number", "__gt") new_values = [] for value in values: if value == "__NONE_OR_BLANK__": new_values.append("") value = None elif value == "__NONE__": value = None elif value == "__BLANK__": value = "" elif value == "__TRUE__": value = True elif value == "__FALSE__": value = False new_values.append(value) values = new_values filter_list[filter_name] = values else: break return filter_list def get_sort_list(self, sort_bys): # Determine sort_list sort_list = list(sort_bys) count = 0 for i in range(len(sort_bys)): if "-" in sort_bys[i]: base_sort = sort_bys[i].split("-")[1] else: base_sort = sort_bys[i] if base_sort not in self.sorts: sort_list.remove(sort_bys[i]) logger.debug("Sort of " + base_sort + " is not in the sorts.") count -= 1 elif "last_name" in sort_bys[i]: # Special clause for last_names/first_names sort_list.insert(count, sort_bys[i].replace("last_name", "first_name")) count += 1 elif base_sort == "birthday": # Special clause for birthday/age. Need to reverse order because it is backwards for some reason. if sort_bys[i] == "birthday": sort_list[count] = "-birthday" else: sort_list[count] = "birthday" count += 1 return sort_list def define_filters(self): self.filters = [] self.filter_names = [] def add_select_filter(self, html_name, filter_name, html_options_code): html_code = '<select class="multi-select form-control" id="' + filter_name + '-filter" name="' + filter_name + '_filter" autocomplete="off" multiple>' html_code += html_options_code + '</select>' self.filters.append( { "filter_name": filter_name, "html_name": html_name, "html_code": html_code }) self.filter_names.append(filter_name) def add_number_range_filter(self, html_name, lower_filter_name, upper_filter_name, max_width="50px", step_size="1"): html_code = \ '<input type="number" class="range-filter form-control" id="' + lower_filter_name + '-filter" ' + \ 'name="' + lower_filter_name + '" step="' + step_size + '" style="max-width: ' + max_width + '" />' + \ '<b> - </b>' + \ '<input type="number" class="range-filter form-control" id="' + upper_filter_name + '-filter" ' + \ 'name="' + upper_filter_name + '" step="' + step_size + '" style="max-width: ' + max_width + '" />' self.filters.append( { "html_name": html_name, "html_code": html_code }) self.filter_names.append(lower_filter_name) self.filter_names.append(upper_filter_name) def search_fields(self, class_object, list_of_used_classes): object_search_list = [] if class_object in list_of_used_classes: return [] else: list_of_used_classes.append(class_object) if class_object.__name__ == "User": search_list = [search_item for search_item in USER_SEARCH_LIST] else: object_dependencies = class_object.object_dependencies() for object_dependency in object_dependencies: if object_dependency[2] == "User": object_search_list += [ str(object_dependency[0] + "__{0}").format(search_item) for search_item in USER_SEARCH_LIST ] else: other_class_object = class_strings_to_class(object_dependency[1], object_dependency[2]) other_object_search_list = self.search_fields(other_class_object, list_of_used_classes) object_search_list += [str(object_dependency[0] + "__{0}").format(search_item) for search_item in other_object_search_list] search_list = class_object.basic_search_list() + class_object.special_search_list() + object_search_list return search_list
mit
-8,668,220,080,105,243,000
37.669202
158
0.550147
false
luzhijun/Optimization
cma-es/batchcompute_python_sdk/vp/testWork.py
1
1368
#!usr/bin/env python #encoding: utf-8 import os import sys import config as cfg from math import sqrt from simple_oss import SimpleOss import json TASK_ID = os.environ.get('ALI_DIKU_TASK_ID') INSTANCE_COUNT = int(os.environ.get('INSTANCE_COUNT')) INSTANCE_ID = int(os.environ.get('ALI_DIKU_INSTANCE_ID')) OSS_HOST = os.environ.get('ALI_DIKU_OSS_HOST') oss_clnt = SimpleOss(cfg.OSS_HOST, cfg.ID, cfg.KEY) def get_json(filePath,instance_count, instance_id): json_cfg=oss_clnt.download_str(cfg.BUCKET,cfg.DATA_PATH) return json.loads(json_cfg) def find_task(): is_prime = lambda x: 0 not in [ x%d for d in range(2, int(sqrt(x))+1)] s, e = get_range(cfg.DATA_START, cfg.DATA_END, INSTANCE_COUNT, INSTANCE_ID) f = open('result.txt', 'w') for num in xrange(s, e): if is_prime(num): f.write(str(num) + '\n') f.close() oss_clnt.upload(cfg.OSS_BUCKET, 'result.txt', cfg.FIND_OUTPUT_PATH%INSTANCE_ID) return 0 def count_task(): s = "" for instance_id in range(INSTANCE_COUNT): instance_result = oss_clnt.download_str(BUCKET, FIND_OUTPUT_PATH%instance_id) s+=instance_result oss_clnt.upload_str(cfg.OSS_BUCKET, s, cfg.COUNT_OUTPUT_PATH) def main(): if TASK_ID == 'Find': find_task() else: count_task() return 0 if __name__ == '__main__': sys.exit(main())
apache-2.0
-6,602,918,301,452,156,000
26.938776
85
0.647661
false
boreq/archive_chan
archive_chan/management/commands/archive_chan_update.py
1
2562
import datetime, sys from optparse import make_option from django.core.management.base import BaseCommand, CommandError from django.utils.timezone import utc from tendo import singleton from archive_chan.models import Board, Update from archive_chan.lib.scraper import BoardScraper from archive_chan.settings import AppSettings class Command(BaseCommand): args = '' help = 'Scraps threads from all active boards. This command should be run periodically to download new threads, posts and images.' option_list = BaseCommand.option_list + ( make_option( '--progress', action="store_true", dest='progress', help='Display progress.', ), ) def handle(self, *args, **options): # Prevent multiple instances. Apparently fcntl.lockf is very useful and does completely nothing. me = singleton.SingleInstance() boards = Board.objects.filter(active=True) # Show progress? if options['progress']: progress = True else: progress = False # Get new data for each board. for board in boards: # Info. processing_start = datetime.datetime.utcnow().replace(tzinfo=utc) update = Update.objects.create(board=board, start=processing_start, used_threads = AppSettings.get('SCRAPER_THREADS_NUMBER')) try: # Actual update. scraper = BoardScraper(board, progress=progress) scraper.update() # Info. update.status = Update.COMPLETED except Exception as e: sys.stderr.write('%s\n' % (e)) finally: # Info. try: if update.status != Update.COMPLETED: update.status = Update.FAILED processing_end = datetime.datetime.utcnow().replace(tzinfo=utc) processing_time = processing_end - processing_start update.end = processing_end update = scraper.stats.add_to_record(update, processing_time) except Exception as e: sys.stderr.write('%s\n' % (e)) finally: update.save() # Everything below is just info. print('%s Board: %s %s' % ( datetime.datetime.now(), board, scraper.stats.get_text(processing_time), ))
gpl-2.0
-655,112,818,715,229,200
32.272727
137
0.559329
false
maxogden/Locker
Connectors/XMPP/webservice.py
1
2723
import sys import json import logging from flask import Flask, render_template, request, redirect, url_for sys.path.append("../../Common/python") import lockerfs import client import util app = Flask(__name__) @app.route("/setupAuth") def setupAuth(): return render_template("setupAuth.html") @app.route("/save", methods=['POST']) def saveAuth(): logging.info("Saving auth") secrets = lockerfs.loadJsonFile("secrets.json") secrets["jid"] = request.form["jid"] secrets["password"] = request.form["password"] lockerfs.saveJsonFile("secrets.json", secrets) start() return json.dumps("started") def start(): logging.info("Starting") secrets = lockerfs.loadJsonFile("secrets.json") app.client = client.Client(app.info, jid=secrets["jid"], password=secrets["password"]) if app.client.connect(): app.client.process(threaded=True) app.started = True else: util.die("XMPP connection failed") @app.route("/") def index(): if app.started: return json.dumps({ "/messages" : "All messages received. Filter by: body, from, mucnick, mucroom, to, type, id, subject", "/statuses" : "All status updates received. Filter by: status, from, show, priority, type, id", "/roster" : "Current roster (at time of login)" }) else: return redirect(url_for("setupAuth")) def matches_arg(value, arg): # either a literal match or a range [lo,hi] if type(arg) is list and len(arg) is 2: (lo, hi) = arg return (lo <= value) and (value < hi) else: return (value == arg) @app.route("/messages") def messages(): messages = app.client.messages for key, value in request.args.items(): messages = [msg for msg in messages if matches_arg(msg[key], json.loads(value))] return json.dumps(messages) @app.route("/statuses") def statuses(): statuses = app.client.statuses for key, value in request.args.items(): statuses = [sts for sts in statuses if matches_arg(sts[key], json.loads(value))] return json.dumps(statuses) @app.route("/roster") def roster(): return json.dumps(app.client.fetch_roster()) def runService(info): app.info = info app.client = None app.started = False secrets = lockerfs.loadJsonFile("secrets.json") if "jid" in secrets and "password" in secrets: start() else: logging.info("No auth details available") app.debug = True app.run(port=app.info["port"], use_reloader=False) if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format='%(levelname)-8s %(message)s') runService({"port": 7474})
bsd-3-clause
-8,044,905,973,466,973,000
28.597826
118
0.632758
false
doingmathwithpython/code
chapter3/solutions/stats.py
1
1385
''' stats.py Python module with functions for calculating common statistical measures ''' from collections import Counter def mean(numbers): s = sum(numbers) N = len(numbers) mean = s/N return mean def median(numbers): # find the numnber of items N = len(numbers) # sort the list in ascending order numbers = sorted(numbers) # find the median if N % 2 == 0: # if N is even m1 = N/2 m2 = (N/2) + 1 # convert to integer, match position m1 = int(m1) - 1 m2 = int(m2) - 1 median = (numbers[m1] + numbers[m2])/2 else: m = (N+1)/2 # convert to integer, match position m = int(m) - 1 median = numbers[m] return median def mode(numbers): c = Counter(numbers) mode = c.most_common(1) return mode[0][0] def find_differences(numbers): m = mean(numbers) # find the differences from the mean diff = [] for num in numbers: diff.append(num-m) return diff def variance_sd(numbers): # find the list of differences diff = find_differences(numbers) # find the squared differences squared_diff = [] for d in diff: squared_diff.append(d**2) # find the variance sum_squared_diff = sum(squared_diff) variance = sum_squared_diff/len(numbers) return variance, variance**0.5
mit
209,777,365,508,709,760
20.640625
72
0.59278
false
jejimenez/invetronic
templated_docs_adecuated/templatetags/templated_docs_tags.py
1
2274
# --coding: utf8-- import os.path from django.db.models.fields.files import ImageFieldFile from django.utils.safestring import mark_safe from django.utils.html import escape from django import template register = template.Library() PIXEL_TO_CM = 0.00846666 class ImageNode(template.Node): def __init__(self, value): self.value = template.Variable(value) def render(self, context): try: self.value = self.value.resolve(context) if not isinstance(self.value, ImageFieldFile): raise template.VariableDoesNotExist( 'Image argument should be an ImageField') images = context.dicts[0].setdefault('ootemplate_imgs', {}) id = len(images) z_index = id + 3 # Magic width = self.value.width * PIXEL_TO_CM height = self.value.height * PIXEL_TO_CM filename = os.path.basename(self.value.name) basename = os.path.splitext(filename)[0] images[self.value.path] = self.value img_frame = '<draw:frame draw:style-name="gr%(z_index)s" ' \ 'draw:name="%(basename)s" ' \ 'draw:id="id%(id)s" ' \ 'text:anchor-type="paragraph" svg:width="%(width)fcm" ' \ 'svg:height="%(height)fcm" draw:z-index="%(z_index)s">' \ '<draw:image xlink:href="Pictures/%(filename)s" ' \ 'xlink:type="simple" xlink:show="embed" ' \ 'xlink:actuate="onLoad"/></draw:frame>' return (img_frame) % locals() except template.VariableDoesNotExist: return '' @register.tag def image(parser, token): """ Insert an image from a ImageField into a document. """ try: tag_name, value = token.split_contents() except ValueError: raise template.TemplateSyntaxError( '%r tag requires a file as an argument' % tag_name) return ImageNode(value) @register.filter def lolinebreaks(value): """ LibreOffice-flavored ``linebreaks`` filter. """ if not value: return '' paragraphs = [line for line in escape(value).splitlines()] return mark_safe('<text:line-break/>'.join(paragraphs))
mit
3,747,650,145,073,412,600
31.956522
77
0.583553
false
haxandsnax/AnkhUtils
AnkhUtils/__init__.py
1
4831
import json import os import codecs import math #--------------------------------------- # inject decorator inserts the Utils object so it can be # used directly in your Execute, Init functions etc. #--------------------------------------- def inject(util): def injectfn(fn): def wrapped(*args, **kwargs): util.SetData(fn.__globals__.get('Parent'), args, kwargs) fn.__globals__['Utils'] = util return fn(*args, **kwargs) return wrapped return injectfn #--------------------------------------- # Call this to create the initial Utils object #--------------------------------------- def setup(script, command): return UtilClass(script, command) #--------------------------------------- # Add functions to this class to expand functionality #--------------------------------------- class UtilClass: def __init__(self, scriptname, commandnames): self.ScriptName = scriptname if isinstance(commandnames, basestring): self.CommandNames = [commandnames.lower()] else: self.CommandNames = map(lambda x: x.lower(), commandnames) self.Settings = dict() self.Data = None # Called when injected into Execute, Init etc # Extracts Data object from parameter if it exists, such as in Execute def SetData(self, Parent, args, kwargs): self.Parent = Parent for arg in args: try: if 'User' in dir(arg): self.Data = arg except Exception as e: self.Log('[AnkhUtils] Unable to set data object. Error: {0}'.format(str(e))) def ProcessCommand(self): # No data, so it's not a command if self.Data is None: return if not self.Data.IsChatMessage() or self.Data.GetParamCount() == 0: return match = None command = self.Data.GetParam(0).lower() for name in self.CommandNames: if command == name: match = command break if not match: return params = [self.Data.GetParam(i) for i in range(1, self.Data.GetParamCount())] return CommandMatch(self.Data.User, match, self.CommandNames, params) # Logging with string formatting. Also keeps you from having to add # ScriptName parameter every time # Usage: Utils.Log('{0} + {0} = {1}', 2, 4) def Log(self, str, *args): if len(args) > 0: try: self.Parent.Log(self.ScriptName, str.format(*args)) except Exception as e: self.Parent.Log(self.ScriptName, '[AnkhUtils] Invalid format string or parameters for Utils.Log') else: self.Parent.Log(self.ScriptName, str) # Allows you to set the settings object directly. def SetSettings(self, data): self.Settings = json.loads(data) # Loads settings from a file. Pass __file__ from your script # to load relative to your script. Optionally override the filename def ReloadSettings(self, base, filename='settings.json'): try: with codecs.open(os.path.join(os.path.dirname(base), filename), encoding='utf-8-sig') as jsonData: self.SetSettings(jsonData.read()) return self.Settings except Exception as e: self.Log('[AnkhUtils] Error loading {0}: {1}'.format(filename, str(e))) return # Helper to get pretty formatted cooldown text from Seconds remaining def CooldownText(self, cd, seconds=True, minutes=True, hours=True): h = int(math.floor(cd/3600)) m = int(math.floor((cd%3600)/60)) s = cd % 60 hourtext = '{0} hour{1}'.format(h, '' if h == 1 else 's') if hours and h > 0 else '' minutetext = '{0} minute{1}'.format(m, '' if m == 1 else 's') if minutes and m > 0 else '' secondtext = '{0} second{1}'.format(s, '' if s == 1 else 's') if seconds and s > 0 else '' if hours and h > 0 and minutes and m > 0: minutetext = ' '+minutetext if seconds and s > 0 and ((minutes and m > 0) or (hours and h > 0)): secondtext = ' '+secondtext return '{0}{1}{2}'.format(hourtext, minutetext, secondtext) # Sends a Twitch or Discord chat message or a whisper/DM depending on where the # initiating message came from def ChatOrWhisper(self, msg, discord=True, whisper=True): if self.Data is None: self.Parent.SendTwitchMessage(msg) return whisper = whisper and self.Data.IsWhisper() if self.Data.IsFromTwitch(): self.Parent.SendTwitchWhisper(self.Data.User, msg) if whisper else self.Parent.SendTwitchMessage(msg) elif discord and self.Data.IsFromDiscord(): self.Parent.SendDiscordDM(self.Data.User, msg) if whisper else self.Parent.SendDiscordMessage(msg) # Parsed commands object for use in ProcessCommand method class CommandMatch: def __init__(self, user, matched, commandnames, params): self.CommandNames = commandnames self.MatchedCommand = matched self.Params = params self.User = user self.Target = self.Target = params[0] if len(params) > 0 else None
mit
618,498,824,165,726,100
35.598485
107
0.634651
false
hjweide/cifar-10-uncertainty
iter_funcs.py
1
2875
import lasagne import theano import theano.tensor as T from lasagne import layers from lasagne.regularization import regularize_network_params, l2 def create_iter_funcs_train(l_out, lr, mntm, wd): X = T.tensor4('X') y = T.ivector('y') X_batch = T.tensor4('X_batch') y_batch = T.ivector('y_batch') y_hat = layers.get_output(l_out, X, deterministic=False) # softmax loss train_loss = T.mean( T.nnet.categorical_crossentropy(y_hat, y)) # L2 regularization train_loss += wd * regularize_network_params(l_out, l2) train_acc = T.mean( T.eq(y_hat.argmax(axis=1), y)) all_params = layers.get_all_params(l_out, trainable=True) updates = lasagne.updates.nesterov_momentum( train_loss, all_params, lr, mntm) train_iter = theano.function( inputs=[theano.Param(X_batch), theano.Param(y_batch)], outputs=[train_loss, train_acc], updates=updates, givens={ X: X_batch, y: y_batch, }, ) return train_iter def create_iter_funcs_valid(l_out, bs=None, N=50, mc_dropout=False): X = T.tensor4('X') y = T.ivector('y') X_batch = T.tensor4('X_batch') y_batch = T.ivector('y_batch') if not mc_dropout: y_hat = layers.get_output(l_out, X, deterministic=True) else: if bs is None: raise ValueError('a fixed batch size is required for mc dropout') X_repeat = T.extra_ops.repeat(X, N, axis=0) y_sample = layers.get_output( l_out, X_repeat, deterministic=False) sizes = [X_repeat.shape[0] / X.shape[0]] * bs y_sample_split = T.as_tensor_variable( T.split(y_sample, sizes, bs, axis=0)) y_hat = T.mean(y_sample_split, axis=1) valid_loss = T.mean( T.nnet.categorical_crossentropy(y_hat, y)) valid_acc = T.mean( T.eq(y_hat.argmax(axis=1), y)) valid_iter = theano.function( inputs=[theano.Param(X_batch), theano.Param(y_batch)], outputs=[valid_loss, valid_acc], givens={ X: X_batch, y: y_batch, }, ) return valid_iter def create_iter_funcs_test(l_out, bs, N=50): X = T.tensor4('X') X_batch = T.tensor4('X_batch') X_repeat = T.extra_ops.repeat(X, N, axis=0) y_sample = layers.get_output( l_out, X_repeat, deterministic=False) # the number of splits needs to be pre-defined sizes = [X_repeat.shape[0] / X.shape[0]] * bs y_sample_split = T.as_tensor_variable( T.split(y_sample, sizes, bs, axis=0)) y_hat = T.mean(y_sample_split, axis=1) #y_var = T.var(y_sample_split, axis=1) test_iter = theano.function( inputs=[theano.Param(X_batch)], outputs=y_hat, #outputs=[y_hat, y_var], givens={ X: X_batch, }, ) return test_iter
mit
9,025,105,275,118,694,000
26.644231
77
0.582609
false
EDUlib/edx-ora2
openassessment/assessment/migrations/0023_assign_criteria_and_option_labels.py
1
14308
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): """ Default the criterion and option labels to the same value as "name". """ for criterion in orm['assessment.criterion'].objects.filter(label=""): criterion.label = criterion.name criterion.save() for option in orm['assessment.criterionoption'].objects.filter(label=""): option.label = option.name option.save() def backwards(self, orm): """ The backwards migration does nothing. """ pass models = { 'assessment.aiclassifier': { 'Meta': {'object_name': 'AIClassifier'}, 'classifier_data': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'classifier_set': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'classifiers'", 'to': "orm['assessment.AIClassifierSet']"}), 'criterion': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': "orm['assessment.Criterion']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'assessment.aiclassifierset': { 'Meta': {'ordering': "['-created_at', '-id']", 'object_name': 'AIClassifierSet'}, 'algorithm_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'rubric': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': "orm['assessment.Rubric']"}) }, 'assessment.aigradingworkflow': { 'Meta': {'object_name': 'AIGradingWorkflow'}, 'algorithm_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'assessment': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'related_name': "'+'", 'null': 'True', 'to': "orm['assessment.Assessment']"}), 'classifier_set': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'related_name': "'+'", 'null': 'True', 'to': "orm['assessment.AIClassifierSet']"}), 'completed_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'essay_text': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'rubric': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': "orm['assessment.Rubric']"}), 'scheduled_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'student_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'submission_uuid': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'uuid': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'unique': 'True', 'max_length': '36', 'blank': 'True'}) }, 'assessment.aitrainingworkflow': { 'Meta': {'object_name': 'AITrainingWorkflow'}, 'algorithm_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'classifier_set': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'related_name': "'+'", 'null': 'True', 'to': "orm['assessment.AIClassifierSet']"}), 'completed_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'scheduled_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'training_examples': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'+'", 'symmetrical': 'False', 'to': "orm['assessment.TrainingExample']"}), 'uuid': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'unique': 'True', 'max_length': '36', 'blank': 'True'}) }, 'assessment.assessment': { 'Meta': {'ordering': "['-scored_at', '-id']", 'object_name': 'Assessment'}, 'feedback': ('django.db.models.fields.TextField', [], {'default': "''", 'max_length': '10000', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'rubric': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['assessment.Rubric']"}), 'score_type': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'scored_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'scorer_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'submission_uuid': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}) }, 'assessment.assessmentfeedback': { 'Meta': {'object_name': 'AssessmentFeedback'}, 'assessments': ('django.db.models.fields.related.ManyToManyField', [], {'default': 'None', 'related_name': "'assessment_feedback'", 'symmetrical': 'False', 'to': "orm['assessment.Assessment']"}), 'feedback_text': ('django.db.models.fields.TextField', [], {'default': "''", 'max_length': '10000'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'options': ('django.db.models.fields.related.ManyToManyField', [], {'default': 'None', 'related_name': "'assessment_feedback'", 'symmetrical': 'False', 'to': "orm['assessment.AssessmentFeedbackOption']"}), 'submission_uuid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128', 'db_index': 'True'}) }, 'assessment.assessmentfeedbackoption': { 'Meta': {'object_name': 'AssessmentFeedbackOption'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'text': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, 'assessment.assessmentpart': { 'Meta': {'object_name': 'AssessmentPart'}, 'assessment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'parts'", 'to': "orm['assessment.Assessment']"}), 'criterion': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': "orm['assessment.Criterion']"}), 'feedback': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'option': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['assessment.CriterionOption']"}) }, 'assessment.criterion': { 'Meta': {'ordering': "['rubric', 'order_num']", 'object_name': 'Criterion'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'order_num': ('django.db.models.fields.PositiveIntegerField', [], {}), 'prompt': ('django.db.models.fields.TextField', [], {'max_length': '10000'}), 'rubric': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'criteria'", 'to': "orm['assessment.Rubric']"}) }, 'assessment.criterionoption': { 'Meta': {'ordering': "['criterion', 'order_num']", 'object_name': 'CriterionOption'}, 'criterion': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'options'", 'to': "orm['assessment.Criterion']"}), 'explanation': ('django.db.models.fields.TextField', [], {'max_length': '10000', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'order_num': ('django.db.models.fields.PositiveIntegerField', [], {}), 'points': ('django.db.models.fields.PositiveIntegerField', [], {}) }, 'assessment.peerworkflow': { 'Meta': {'ordering': "['created_at', 'id']", 'object_name': 'PeerWorkflow'}, 'completed_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'grading_completed_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'student_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'submission_uuid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128', 'db_index': 'True'}) }, 'assessment.peerworkflowitem': { 'Meta': {'ordering': "['started_at', 'id']", 'object_name': 'PeerWorkflowItem'}, 'assessment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['assessment.Assessment']", 'null': 'True'}), 'author': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'graded_by'", 'to': "orm['assessment.PeerWorkflow']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'scored': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'scorer': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'graded'", 'to': "orm['assessment.PeerWorkflow']"}), 'started_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'submission_uuid': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}) }, 'assessment.rubric': { 'Meta': {'object_name': 'Rubric'}, 'content_hash': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '40', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'structure_hash': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}) }, 'assessment.studenttrainingworkflow': { 'Meta': {'object_name': 'StudentTrainingWorkflow'}, 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'item_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'student_id': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'submission_uuid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128', 'db_index': 'True'}) }, 'assessment.studenttrainingworkflowitem': { 'Meta': {'ordering': "['workflow', 'order_num']", 'unique_together': "(('workflow', 'order_num'),)", 'object_name': 'StudentTrainingWorkflowItem'}, 'completed_at': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order_num': ('django.db.models.fields.PositiveIntegerField', [], {}), 'started_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'training_example': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['assessment.TrainingExample']"}), 'workflow': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'items'", 'to': "orm['assessment.StudentTrainingWorkflow']"}) }, 'assessment.trainingexample': { 'Meta': {'object_name': 'TrainingExample'}, 'content_hash': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '40', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'options_selected': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['assessment.CriterionOption']", 'symmetrical': 'False'}), 'raw_answer': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'rubric': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['assessment.Rubric']"}) } } complete_apps = ['assessment'] symmetrical = True
agpl-3.0
5,719,073,179,449,297,000
79.836158
217
0.563042
false
npapier/sbf
pak/mkdb/cityhash.py
1
3317
# SConsBuildFramework - Copyright (C) 2013, Nicolas Papier. # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation. # Author Guillaume Brocker # # http://code.google.com/p/cityhash/ import os import re import shutil import subprocess # Version components definition versionMajor = 1 versionMinor = 1 versionMaint = 0 # Package name and version definition packageName = 'cityhash' packageVersion = '{0}-{1}-{2}'.format(versionMajor, versionMinor, versionMaint) # Defines the path to the source files sourcePath = '{0}-{1}.{2}.{3}'.format(packageName, versionMajor, versionMinor, versionMaint ) # Defines the content of the SBF project file. sconsDefaultOptions = """productName = '{name}' type = 'static' version = '{version}'""".format( name=packageName, version=packageVersion) def patcher(): def _patcher(): global io global os global packageName global re global sconsDefaultOptions global shutil global sourcePath # Creates a new directory tree for the compilation. os.makedirs(packageName+'/include') os.makedirs(packageName+'/src') # Creates the SBF project options file sconsDefaultoptionsFile = open( packageName+'/default.options', 'w' ) sconsDefaultoptionsFile.write( sconsDefaultOptions ) sconsDefaultoptionsFile.close() # Copy the sconstruct file into the project shutil.copy( os.getenv('SCONS_BUILD_FRAMEWORK')+'/template/projectTemplate/sconstruct', packageName ) # Moves include and source files to the right place. shutil.move( sourcePath+'/src/city.h', packageName+'/include' ) ###Deactivated### #shutil.move( srcPath+'/citycrc.h', includePath ) shutil.move( sourcePath+'/src/city.cc', packageName+'/src/city.cpp' ) # Patches the 'city.h' file with open( packageName+'/include/city.h', 'r+' ) as city_h: city_h_lines = city_h.readlines() for (i, line) in enumerate(city_h_lines): city_h_lines[i] = re.sub('^(uint\d+)', 'extern "C" \\1', line) city_h.seek(0) city_h.writelines(city_h_lines) # Patches the city.cpp file with open( packageName+'/src/city.cpp', 'r+' ) as city_cpp: city_cpp_lines = city_cpp.readlines() for (i, line) in enumerate(city_cpp_lines): if( re.match('^#include "config.h"', line) ): city_cpp_lines[i] = '//' + line city_cpp.seek(0) city_cpp.writelines(city_cpp_lines) return lambda : _patcher() def builder(): def _builder(): global os global packageName global subprocess owd = os.getcwd() nwd = owd + '/' + packageName os.chdir(nwd) installPaths = 'installPaths={0}/{1}/local'.format(owd, packageName) subprocess.call(['scons',installPaths,'release'], shell=True) subprocess.call(['scons',installPaths,'debug'], shell=True) os.chdir(owd) return lambda : _builder() descriptor = { 'name' : packageName, 'version' : packageVersion, 'urls' : [ 'http://cityhash.googlecode.com/files/{0}-{1}.{2}.{3}.tar.gz'.format(packageName, versionMajor, versionMinor, versionMaint) ], 'include' : [ packageName+'/local/include/*.h' ], 'license' : [ sourcePath+'/COPYING' ], 'lib' : [ packageName+'/local/bin/*.lib' ], 'builds' : [ patcher(), builder() ] }
gpl-3.0
2,374,909,519,164,992,500
29.292453
139
0.669279
false
desihub/qlf
backend/framework/qlf/dashboard/bokeh/qaskypeak/main.py
1
6438
from bokeh.layouts import row, column from bokeh.models import HoverTool, ColumnDataSource, Span from bokeh.models import LinearColorMapper from bokeh.models import TapTool, OpenURL, Range1d from bokeh.models.widgets import Div from qlf_models import QLFModels from dashboard.bokeh.helper import sort_obj from dashboard.bokeh.plots.descriptors.table import Table from dashboard.bokeh.plots.descriptors.title import Title from dashboard.bokeh.plots.plot2d.main import Plot2d from dashboard.bokeh.helper import get_palette import numpy as np from bokeh.resources import CDN from bokeh.embed import file_html class Skypeak: def __init__(self, process_id, arm, spectrograph): self.selected_process_id = process_id self.selected_arm = arm self.selected_spectrograph = spectrograph def load_qa(self): cam = self.selected_arm+str(self.selected_spectrograph) mergedqa = QLFModels().get_output(self.selected_process_id, cam) check_spectra = mergedqa['TASKS']['CHECK_SPECTRA'] gen_info = mergedqa['GENERAL_INFO'] ra = gen_info['RA'] dec = gen_info['DEC'] nrg = check_spectra['PARAMS']['PEAKCOUNT_NORMAL_RANGE'] wrg = check_spectra['PARAMS']['PEAKCOUNT_WARN_RANGE'] current_exposures = [check_spectra['METRICS']['PEAKCOUNT']] program = gen_info['PROGRAM'].upper() reference_exposures = check_spectra['PARAMS']['PEAKCOUNT_' + program + '_REF'] obj_type = sort_obj(gen_info) my_palette = get_palette("RdYlBu_r") peak_tooltip = """ <div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">PEAKCOUNT: </span> <span style="font-size: 1vw; color: #515151">@peakcount_fib</span> </div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">RA: </span> <span style="font-size: 1vw; color: #515151;">@x1</span> </div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">DEC: </span> <span style="font-size: 1vw; color: #515151;">@y1</span> </div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">Obj Type: </span> <span style="font-size: 1vw; color: #515151;">@OBJ_TYPE</span> </div> </div> """ url = "http://legacysurvey.org/viewer?ra=@ra&dec=@dec&zoom=16&layer=decals-dr5" qlf_fiberid = np.arange(0, 500) peak_hover = HoverTool(tooltips=peak_tooltip) peakcount_fib = check_spectra['METRICS']['PEAKCOUNT_FIB'] source = ColumnDataSource(data={ 'x1': ra, 'y1': dec, 'peakcount_fib': peakcount_fib, 'delta_peakcount_fib': np.array(peakcount_fib)-reference_exposures, 'QLF_FIBERID': qlf_fiberid, 'OBJ_TYPE': obj_type, }) low, high = wrg mapper = LinearColorMapper(palette=my_palette, low=low, #0.98*np.min(peakcount_fib), high=high, #1.02*np.max(peakcount_fib)) nan_color='darkgrey') radius = 0.0165 radius_hover = 0.02 # centralize wedges in plots: ra_center=0.5*(max(ra)+min(ra)) dec_center=0.5*(max(dec)+min(dec)) xrange_wedge = Range1d(start=ra_center + .95, end=ra_center-.95) yrange_wedge = Range1d(start=dec_center+.82, end=dec_center-.82) # axes limit xmin, xmax = [min(gen_info['RA'][:]), max(gen_info['RA'][:])] ymin, ymax = [min(gen_info['DEC'][:]), max(gen_info['DEC'][:])] xfac, yfac = [(xmax-xmin)*0.06, (ymax-ymin)*0.06] left, right = xmin - xfac, xmax+xfac bottom, top = ymin-yfac, ymax+yfac wedge_plot = Plot2d( x_range=xrange_wedge, y_range=yrange_wedge, x_label="RA", y_label="DEC", tooltip=peak_tooltip, title="PEAKCOUNT", width=500, height=380, ).wedge( source, x='x1', y='y1', field='delta_peakcount_fib', mapper=mapper, ).plot info_col = Title().write_description('skypeak') # ================================ # histogram hist_tooltip = """ <div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">Frequency: </span> <span style="font-size: 1vw; color: #515151">@hist</span> </div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">Peakcount: </span> <span style="font-size: 1vw; color: #515151;">[@left, @right]</span> </div> </div> """ hist, edges = np.histogram(peakcount_fib, bins="sqrt") source_hist = ColumnDataSource(data={ 'hist': hist, 'histplusone': hist+1, 'bottom': [0] * len(hist), 'bottomplusone': [1]*len(hist), 'left': edges[:-1], 'right': edges[1:] }) p_hist = Plot2d( y_range=(1, 11**(int(np.log10(max(hist)))+1)), x_label='PEAKCOUNT', y_label='Frequency + 1', tooltip=hist_tooltip, title="", width=550, height=300, yscale="log", hover_mode="vline", ).quad( source_hist, top='histplusone', bottom='bottomplusone', line_width=1, ) # Prepare tables keynames = ["PEAKCOUNT" for i in range(len(current_exposures))] table = Table().single_table(keynames, current_exposures, reference_exposures, nrg, wrg) layout = column(info_col, Div(), table, Div(), column(wedge_plot, sizing_mode='scale_both'), column(p_hist, sizing_mode='scale_both'), css_classes=["display-grid"]) return file_html(layout, CDN, "SKYPEAK")
bsd-3-clause
-3,194,120,361,751,438,300
35.168539
103
0.517552
false
lmazuel/azure-sdk-for-python
azure-mgmt-network/azure/mgmt/network/v2015_06_15/models/bgp_settings.py
1
1394
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class BgpSettings(Model): """BgpSettings. :param asn: Gets or sets this BGP speaker's ASN :type asn: long :param bgp_peering_address: Gets or sets the BGP peering address and BGP identifier of this BGP speaker :type bgp_peering_address: str :param peer_weight: Gets or sets the weight added to routes learned from this BGP speaker :type peer_weight: int """ _attribute_map = { 'asn': {'key': 'asn', 'type': 'long'}, 'bgp_peering_address': {'key': 'bgpPeeringAddress', 'type': 'str'}, 'peer_weight': {'key': 'peerWeight', 'type': 'int'}, } def __init__(self, **kwargs): super(BgpSettings, self).__init__(**kwargs) self.asn = kwargs.get('asn', None) self.bgp_peering_address = kwargs.get('bgp_peering_address', None) self.peer_weight = kwargs.get('peer_weight', None)
mit
-7,371,447,792,608,689,000
35.684211
76
0.586083
false
Spoken-tutorial/spoken-website
creation/migrations/0001_initial.py
1
29727
# -*- coding: utf-8 -*- # Third Party Stuff from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='AdminReviewerNotification', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=255)), ('message', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='AdminReviewLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('status', models.PositiveSmallIntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='ArchivedVideo', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('version', models.PositiveSmallIntegerField(default=0)), ('video', models.CharField(max_length=255)), ('atype', models.PositiveSmallIntegerField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Collaborate', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('contact_number', models.CharField(max_length=20, null=True)), ('institution_name', models.CharField(max_length=255)), ('foss_name', models.CharField(max_length=255)), ('are_you_one', models.CharField(max_length=255)), ('howmuch_time', models.PositiveIntegerField()), ('availability_constraints', models.TextField(null=True, blank=True)), ('is_reviewer', models.BooleanField()), ('contribs_foss', models.TextField(null=True, blank=True)), ('educational_qualifications', models.TextField(null=True, blank=True)), ('prof_experience', models.CharField(max_length=255, null=True, blank=True)), ('lang_contributor', models.BooleanField()), ('lead_st', models.BooleanField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='ContributeTowards', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='ContributorLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('component', models.CharField(max_length=255)), ('status', models.PositiveSmallIntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='ContributorNotification', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=255)), ('message', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='ContributorRole', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('status', models.BooleanField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': 'Contributor Role', }, ), migrations.CreateModel( name='DomainReviewerNotification', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=255)), ('message', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='DomainReviewerRole', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('status', models.BooleanField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': 'Domain Reviewer Role', }, ), migrations.CreateModel( name='DomainReviewLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('component', models.CharField(max_length=255)), ('status', models.PositiveSmallIntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='FossAvailableForTest', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('status', models.BooleanField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='FossAvailableForWorkshop', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('status', models.BooleanField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='FossCategory', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('foss', models.CharField(unique=True, max_length=255)), ('description', models.TextField()), ('status', models.BooleanField(max_length=2)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('foss',), 'verbose_name': 'FOSS Categorie', }, ), migrations.CreateModel( name='Language', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('code', models.CharField(default=b'en', max_length=10)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('name',), }, ), migrations.CreateModel( name='Level', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('level', models.CharField(max_length=255)), ('code', models.CharField(max_length=10)), ], options={ 'verbose_name': 'Tutorial Level', }, ), migrations.CreateModel( name='NeedImprovementLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('review_state', models.PositiveSmallIntegerField()), ('component', models.CharField(max_length=50)), ('comment', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='OperatingSystem', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='PlaylistInfo', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('playlist_id', models.CharField(max_length=255)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('foss', models.ForeignKey(to='creation.FossCategory')), ('language', models.ForeignKey(to='creation.Language')), ], options={ 'verbose_name': 'Playlist Info', }, ), migrations.CreateModel( name='PlaylistItem', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('item_id', models.CharField(max_length=255)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('playlist', models.ForeignKey(to='creation.PlaylistInfo')), ], options={ 'verbose_name': 'Playlist Item', }, ), migrations.CreateModel( name='PublicReviewLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='PublishTutorialLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='QualityReviewerNotification', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=255)), ('message', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='QualityReviewerRole', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('status', models.BooleanField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('foss_category', models.ForeignKey(to='creation.FossCategory')), ('language', models.ForeignKey(to='creation.Language')), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Quality Reviewer Role', }, ), migrations.CreateModel( name='QualityReviewLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('component', models.CharField(max_length=255)), ('status', models.PositiveSmallIntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='RoleRequest', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('role_type', models.IntegerField(default=0)), ('status', models.PositiveSmallIntegerField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('approved_user', models.ForeignKey(related_name='approved_user', blank=True, to=settings.AUTH_USER_MODEL, null=True)), ('user', models.ForeignKey(related_name='user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='SuggestExample', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('topic_title', models.CharField(max_length=255)), ('example_description', models.TextField()), ('script_writer', models.BooleanField()), ('is_reviewer', models.BooleanField()), ('created', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='SuggestTopic', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('topic_title', models.CharField(max_length=255)), ('brief_description', models.TextField()), ('example_suggestion', models.BooleanField()), ('created', models.DateTimeField(auto_now_add=True)), ('difficulty_level', models.ForeignKey(to='creation.Level')), ('operating_system', models.ManyToManyField(to='creation.OperatingSystem')), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='TutorialCommonContent', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('slide', models.CharField(max_length=255)), ('slide_status', models.PositiveSmallIntegerField(default=0)), ('code', models.CharField(max_length=255)), ('code_status', models.PositiveSmallIntegerField(default=0)), ('assignment', models.CharField(max_length=255)), ('assignment_status', models.PositiveSmallIntegerField(default=0)), ('prerequisite_status', models.PositiveSmallIntegerField(default=0)), ('keyword', models.TextField()), ('keyword_status', models.PositiveSmallIntegerField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('assignment_user', models.ForeignKey(related_name='assignments', to=settings.AUTH_USER_MODEL)), ('code_user', models.ForeignKey(related_name='codes', to=settings.AUTH_USER_MODEL)), ('keyword_user', models.ForeignKey(related_name='keywords', to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Tutorial Common Content', }, ), migrations.CreateModel( name='TutorialDetail', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('tutorial', models.CharField(max_length=255)), ('order', models.IntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('foss', models.ForeignKey(to='creation.FossCategory')), ('level', models.ForeignKey(to='creation.Level')), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Tutorial Detail', }, ), migrations.CreateModel( name='TutorialMissingComponent', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('component', models.PositiveSmallIntegerField()), ('report_type', models.BooleanField(default=0)), ('remarks', models.TextField(null=True, blank=True)), ('inform_me', models.BooleanField(default=0)), ('email', models.CharField(max_length=255, null=True, blank=True)), ('reply_status', models.BooleanField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='TutorialMissingComponentReply', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('reply_message', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ('missing_component', models.ForeignKey(to='creation.TutorialMissingComponent')), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='TutorialResource', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('outline', models.TextField()), ('outline_status', models.PositiveSmallIntegerField(default=0)), ('script', models.URLField(max_length=255)), ('script_status', models.PositiveSmallIntegerField(default=0)), ('timed_script', models.URLField(max_length=255)), ('video', models.CharField(max_length=255)), ('video_id', models.CharField(default=None, max_length=255, null=True, blank=True)), ('playlist_item_id', models.CharField(default=None, max_length=255, null=True, blank=True)), ('video_thumbnail_time', models.TimeField(default='00:00:00')), ('video_status', models.PositiveSmallIntegerField(default=0)), ('status', models.PositiveSmallIntegerField(default=0)), ('version', models.PositiveSmallIntegerField(default=0)), ('hit_count', models.PositiveIntegerField(default=0)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('common_content', models.ForeignKey(to='creation.TutorialCommonContent')), ('language', models.ForeignKey(to='creation.Language')), ('outline_user', models.ForeignKey(related_name='outlines', to=settings.AUTH_USER_MODEL)), ('script_user', models.ForeignKey(related_name='scripts', to=settings.AUTH_USER_MODEL)), ('tutorial_detail', models.ForeignKey(to='creation.TutorialDetail')), ('video_user', models.ForeignKey(related_name='videos', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='tutorialmissingcomponent', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='tutorialmissingcomponent', name='user', field=models.ForeignKey(related_name='raised_user', blank=True, to=settings.AUTH_USER_MODEL, null=True), ), migrations.AddField( model_name='tutorialcommoncontent', name='prerequisite', field=models.ForeignKey(related_name='prerequisite', blank=True, to='creation.TutorialDetail', null=True), ), migrations.AddField( model_name='tutorialcommoncontent', name='prerequisite_user', field=models.ForeignKey(related_name='prerequisite', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='tutorialcommoncontent', name='slide_user', field=models.ForeignKey(related_name='slides', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='tutorialcommoncontent', name='tutorial_detail', field=models.OneToOneField(related_name='tutorial_detail', to='creation.TutorialDetail'), ), migrations.AddField( model_name='qualityreviewlog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='qualityreviewlog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='qualityreviewernotification', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='qualityreviewernotification', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='publishtutoriallog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='publishtutoriallog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='publicreviewlog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='publicreviewlog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='needimprovementlog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='needimprovementlog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='fossavailableforworkshop', name='foss', field=models.ForeignKey(to='creation.FossCategory'), ), migrations.AddField( model_name='fossavailableforworkshop', name='language', field=models.ForeignKey(to='creation.Language'), ), migrations.AddField( model_name='fossavailablefortest', name='foss', field=models.ForeignKey(to='creation.FossCategory'), ), migrations.AddField( model_name='fossavailablefortest', name='language', field=models.ForeignKey(to='creation.Language'), ), migrations.AddField( model_name='domainreviewlog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='domainreviewlog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='domainreviewerrole', name='foss_category', field=models.ForeignKey(to='creation.FossCategory'), ), migrations.AddField( model_name='domainreviewerrole', name='language', field=models.ForeignKey(to='creation.Language'), ), migrations.AddField( model_name='domainreviewerrole', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='domainreviewernotification', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='domainreviewernotification', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='contributorrole', name='foss_category', field=models.ForeignKey(to='creation.FossCategory'), ), migrations.AddField( model_name='contributorrole', name='language', field=models.ForeignKey(to='creation.Language'), ), migrations.AddField( model_name='contributorrole', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='contributornotification', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='contributornotification', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='contributorlog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='contributorlog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='collaborate', name='contribute_towards', field=models.ManyToManyField(to='creation.ContributeTowards'), ), migrations.AddField( model_name='collaborate', name='language', field=models.ForeignKey(to='creation.Language'), ), migrations.AddField( model_name='collaborate', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='archivedvideo', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='archivedvideo', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='adminreviewlog', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='adminreviewlog', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='adminreviewernotification', name='tutorial_resource', field=models.ForeignKey(to='creation.TutorialResource'), ), migrations.AddField( model_name='adminreviewernotification', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AlterUniqueTogether( name='tutorialresource', unique_together=set([('tutorial_detail', 'language')]), ), migrations.AlterUniqueTogether( name='tutorialdetail', unique_together=set([('foss', 'tutorial', 'level')]), ), migrations.AlterUniqueTogether( name='rolerequest', unique_together=set([('user', 'role_type')]), ), migrations.AlterUniqueTogether( name='qualityreviewerrole', unique_together=set([('user', 'foss_category', 'language')]), ), migrations.AlterUniqueTogether( name='playlistitem', unique_together=set([('playlist', 'item_id')]), ), migrations.AlterUniqueTogether( name='playlistinfo', unique_together=set([('foss', 'language')]), ), migrations.AlterUniqueTogether( name='fossavailableforworkshop', unique_together=set([('foss', 'language')]), ), migrations.AlterUniqueTogether( name='fossavailablefortest', unique_together=set([('foss', 'language')]), ), migrations.AlterUniqueTogether( name='domainreviewerrole', unique_together=set([('user', 'foss_category', 'language')]), ), migrations.AlterUniqueTogether( name='contributorrole', unique_together=set([('user', 'foss_category', 'language')]), ), ]
gpl-3.0
8,895,247,861,478,283,000
44.040909
135
0.552192
false
sh01/taf
setup.py
1
1102
#!/usr/bin/env python3 #Copyright 20015 Sebastian Hagen # This file is part of taf. # taf is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 # as published by the Free Software Foundation # # taf is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys from distutils.core import setup if (sys.version_info[0] <= 2): raise Exception('This program needs a python >= 3.0') setup(name='taf', version='0.1', description='TAF: Tunneled attention flags.', author='Sebastian Hagen', author_email='[email protected]', #url='http://git.memespace.net/git/??', packages=('taf',), scripts=( 'src/bin/logs2stdout.py', 'src/bin/taf_ui.py' ), package_dir={'taf':'src/taf'} )
gpl-2.0
-1,341,954,545,255,813,000
29.611111
71
0.715064
false
terhorstd/nest-simulator
pynest/examples/one_neuron_with_noise.py
1
3494
# -*- coding: utf-8 -*- # # one_neuron_with_noise.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ One neuron with noise ---------------------- This script simulates a neuron with input from the Poisson generator, and records the neuron's membrane potential. KEYWORDS: iaf_psc_alpha, Poisson generator, voltmeter """ ############################################################################### # First, we import all necessary modules needed to simulate, analyze and # plot our example. Additionally, we set the verbosity to only show warnings # and reset the kernel. # Resetting the kernel removes any nodes we may have created previously and # resets the internal clock to zero. This allows us to execute the script # several times in a Python shell without interference from previous NEST # simulations. import nest import nest.voltage_trace nest.set_verbosity("M_WARNING") nest.ResetKernel() ############################################################################### # Second, the nodes (the neuron, poisson generator (two of them), and the # voltmeter) are created using the `Create()` function. # We store the returned handles in variables for later reference. neuron = nest.Create("iaf_psc_alpha") noise = nest.Create("poisson_generator", 2) voltmeter = nest.Create("voltmeter") ############################################################################### # Third, the voltmeter and the Poisson generator are configured using # `SetStatus()`, which expects a list of node handles and a list of parameter # dictionaries. Note that we do not need to set parameters for the neuron, # since it has satisfactory defaults. # We set each Poisson generator to 8 000 Hz and 15 000 Hz, respectively. # For the voltmeter, we want to record the global id of the observed nodes and # set the `withgid` flag of the voltmeter to ``True``. # We also set its property `withtime` so it will also record the points # in time at which it samples the membrane voltage. nest.SetStatus(noise, [{"rate": 80000.0}, {"rate": 15000.0}]) nest.SetStatus(voltmeter, {"withgid": True, "withtime": True}) ############################################################################### # Fourth, the neuron is connected to the Poisson generator and to the # voltmeter. We also specify the synaptic weight and delay in this step. nest.Connect(noise, neuron, syn_spec={'weight': [[1.2, -1.0]], 'delay': 1.0}) nest.Connect(voltmeter, neuron) ############################################################################### # Now we simulate the network using `Simulate()`, which takes the # desired simulation time in milliseconds. nest.Simulate(1000.0) ############################################################################### # Finally, we plot the neuron's membrane potential as a function of # time. nest.voltage_trace.from_device(voltmeter)
gpl-2.0
-7,239,480,009,474,898,000
39.16092
79
0.643389
false
jeremiedecock/snippets
python/pyqt/pyqt5/widget_QTableView_delegate_on_edit_using_dateedit_widget.py
1
4596
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Ref: # - http://doc.qt.io/qt-5/modelview.html#3-4-delegates # - http://doc.qt.io/qt-5/model-view-programming.html#delegate-classes # - http://doc.qt.io/qt-5/qabstractitemdelegate.html#details # - http://doc.qt.io/qt-5/qitemdelegate.html#details # - http://doc.qt.io/qt-5/qstyleditemdelegate.html#details # - http://doc.qt.io/qt-5/qtwidgets-itemviews-spinboxdelegate-example.html import sys import datetime from PyQt5.QtCore import Qt, QAbstractTableModel, QVariant from PyQt5.QtWidgets import QApplication, QTableView, QStyledItemDelegate, QDateEdit DATETIME_FORMAT = '%Y-%m-%d' class MyData: def __init__(self): self._num_rows = 3 self._num_columns = 2 self._data = [[datetime.datetime.now().strftime(DATETIME_FORMAT) for j in range(self._num_columns)] for i in range(self._num_rows)] def get_num_rows(self): return self._num_rows def get_num_columns(self): return self._num_columns def get_data(self, row_index, column_index): value = self._data[row_index][column_index] print("read ({},{}): {}".format(row_index, column_index, value)) return value def set_data(self, row_index, column_index, value): print("write ({},{}): {}".format(row_index, column_index, value)) self._data[row_index][column_index] = value ############################################################################### class MyModel(QAbstractTableModel): def __init__(self, data, parent=None): super().__init__(parent) self._data = data # DON'T CALL THIS ATTRIBUTE "data", A METHOD ALREADY HAVE THIS NAME (model.data(index, role)) !!! def rowCount(self, parent): return self._data.get_num_rows() def columnCount(self, parent): return self._data.get_num_columns() def data(self, index, role): if role == Qt.DisplayRole or role == Qt.EditRole: # See https://stackoverflow.com/a/8480223 return self._data.get_data(index.row(), index.column()) return QVariant() def setData(self, index, value, role): if role == Qt.EditRole: try: self._data.set_data(index.row(), index.column(), value) # The following line are necessary e.g. to dynamically update the QSortFilterProxyModel self.dataChanged.emit(index, index, [Qt.EditRole]) except Exception as e: print(e) return False return True def flags(self, index): return Qt.ItemIsSelectable | Qt.ItemIsEditable | Qt.ItemIsEnabled ############################################################################### class MyDelegate(QStyledItemDelegate): def createEditor(self, parent, option, index): editor = QDateEdit(parent=parent) editor.setMinimumDate(datetime.datetime(year=2017, month=9, day=1)) editor.setMaximumDate(datetime.datetime(year=2020, month=9, day=1)) editor.setDisplayFormat("yyyy-MM-dd") editor.setCalendarPopup(True) # setFrame(): tell whether the line edit draws itself with a frame. # If enabled (the default) the line edit draws itself inside a frame, otherwise the line edit draws itself without any frame. editor.setFrame(False) return editor def setEditorData(self, editor, index): str_value = index.data(Qt.EditRole) # equivalent of value = index.model().data(index, Qt.EditRole) value = datetime.datetime.strptime(str_value, DATETIME_FORMAT) editor.setDate(value.date()) # value cannot be a string, it have to be a datetime... def setModelData(self, editor, model, index): editor.interpretText() value = editor.text() model.setData(index, value, Qt.EditRole) def updateEditorGeometry(self, editor, option, index): editor.setGeometry(option.rect) if __name__ == '__main__': app = QApplication(sys.argv) data = MyData() table_view = QTableView() my_model = MyModel(data) table_view.setModel(my_model) delegate = MyDelegate() table_view.setItemDelegate(delegate) table_view.show() # The mainloop of the application. The event handling starts from this point. # The exec_() method has an underscore. It is because the exec is a Python keyword. And thus, exec_() was used instead. exit_code = app.exec_() # The sys.exit() method ensures a clean exit. # The environment will be informed, how the application ended. sys.exit(exit_code)
mit
1,544,970,414,205,038,800
34.353846
139
0.625762
false
google-research/google-research
single_view_mpi/libs/geometry.py
1
23328
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- """Geometry utilities. In these functions: * Shapes are known statically. Exception: functions dealing with points lists, whose length is data-dependent. * Where possible, utility functions operate on the last one or two dimensions of their inputs, and will function irrespective of how many preceding dimensions are present. Where it makes sense, functions support broadcasting on the part of the shape preceding the fixed dimensions. This is to allow preceding dimensions to freely be used for batching or other purposes. * Camera poses are representated as 3x4 matrices (consisting of a 3x3 rotation matrix and a 3-coordinate translation vector): [[ r r r tx ] [ r r r ty ] [ r r r tz ]] The matrix maps a position in world-space into a position relative to the camera position. (Conventionally, the camera position has the Z axis pointing into the screen and the Y axis pointing down.) Functions to manipulate such matrices have names beginning "mat34_". * Camera intrinsics are represented as a tensor of last dimension 4. The four elements are fx, fy (focal length) and cx, cy (principal point). Intrinsics are independent of image-size, they are expressed as if the image runs from (0,0) to (1,1). So typically cx == cy == 0.5, and for a 90-degree field of view, fx == 0.5. * Points (whether 2D or 3D) are represented using the last axis of a tensor. A set of N 3D points would have shape [N, 3]. * Planes in 3D are represented as 4-vectors. A point x is on the plane p exactly when p.x == 0. * We use texture coordinates to represent points in an image. They go from (0,0) in the top-left corner of an image to (1,1) in the bottom right. It is convenient to work with these coordinates rather than counts of pixels, because they are resolution-independent. This file is organised in the following sections: MATRICES, PLANES, POINTS – basic 3D geometry operations. CAMERAS – intrinsics, projection, camera-relative points. IMAGES AND SAMPLING – bilinear-sampling from images. WARPS AND HOMOGRAPHIES – plane sweep, homography, flow warping, depth warping. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow as tf from tensorflow_addons import image as tfa_image from single_view_mpi.libs import utils # ========== MATRICES, PLANES, POINTS ========== def check_input_shape(name, tensor, axis, value): """Utility function for checking tensor shapes.""" shape = tensor.shape.as_list() if shape[axis] != value: raise ValueError('Input "%s": dimension %d should be %s. Shape = %s' % (name, axis, value, shape)) def check_input_m34(name, tensor): check_input_shape(name, tensor, -1, 4) check_input_shape(name, tensor, -2, 3) @utils.name_scope def broadcasting_matmul(a, b, **kwargs): (a, b) = utils.broadcast_to_match(a, b, ignore_axes=2) return tf.matmul(a, b, **kwargs) def mat34_to_mat44(matrix): """Converts 3x4 matrices to 4x4 matrices by adding filler. Considering the last two dimensions of the input tensor, where m indicates a matrix coefficient and t a matrix coefficient for translation, this function does the following: [[m, m, m, t], [[m, m, m, t], [m, m, m, t], ===> [m, m, m, t], [m, m, m, t]] [m, m, m, t], [0, 0, 0, 1]] Args: matrix: [..., 3, 4] matrix Returns: A [..., 4, 4] tensor with an extra row [0, 0, 0, 1] added to each matrix. Dimensions other than that last two are the same as for the input. Raises: ValueError: if input has incompatible shape. """ shape = matrix.shape.as_list() check_input_m34('matrix', matrix) extra_dims = shape[:-2] filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=len(extra_dims) * [1] + [1, 4]) filler = tf.tile(filler, extra_dims + [1, 1]) return tf.concat([matrix, filler], axis=-2) def mat33_to_mat44(matrix): """Converts 3x3 matrices to 4x4 by adding zero translation and filler. Considering the last two dimensions of the input tensor, where m indicates a matrix entry, this function does the following: [[m, m, m], [[m, m, m, 0], [m, m, m], ===> [m, m, m, 0], [m, m, m]] [m, m, m, 0], [0, 0, 0, 1]] Args: matrix: A [..., 3, 3] tensor. Returns: A [..., 4, 4] matrix tensor. Dimensions other than the last two are the same as for the input matrix. Raises: ValueError: if input has incompatible shape. """ shape = matrix.shape.as_list() check_input_shape('matrix', matrix, -1, 3) check_input_shape('matrix', matrix, -2, 3) extra_dims = shape[:-2] zeros = tf.zeros(extra_dims + [3, 1], dtype=matrix.dtype) return mat34_to_mat44(tf.concat([matrix, zeros], axis=-1)) @utils.name_scope def mat34_product(a, b): """Returns the product of a and b, 3x4 matrices. Args: a: [..., 3, 4] matrix b: [..., 3, 4] matrix Returns: The product ab. The product is computed as if we added an extra row [0, 0, 0, 1] to each matrix, multiplied them, and then removed the extra row. The shapes of a and b must match, either directly or via broadcasting. Raises: ValueError: if a or b are not 3x4 matrices. """ check_input_m34('a', a) check_input_m34('b', b) (a, b) = utils.broadcast_to_match(a, b, ignore_axes=2) # Split translation part off from the rest a33, a_translate = tf.split(a, [3, 1], axis=-1) b33, b_translate = tf.split(b, [3, 1], axis=-1) # Compute parts of the product ab33 = tf.matmul(a33, b33) ab_translate = a_translate + tf.matmul(a33, b_translate) # Assemble return tf.concat([ab33, ab_translate], axis=-1) @utils.name_scope def mat34_transform(m, v): """Transform a set of 3d points by a 3x4 pose matrix. Args: m: [..., 3, 4] matrix v: [..., N, 3] set of N 3d points. Returns: The transformed points mv. The transform is computed as if we added an extra coefficient with value 1.0 to each point, performed a matrix multiplication, and removed the extra coefficient again. The parts of the shape indicated by "..." must match, either directly or via broadcasting. Raises: ValueError: if inputs are the wrong shape. """ check_input_m34('m', m) check_input_shape('v', v, -1, 3) (m, v) = utils.broadcast_to_match(m, v, ignore_axes=2) rotation = m[Ellipsis, :3] # See b/116203395 for why I didn't do the next two lines together as # translation = m[..., tf.newaxis, :, 3]. translation = m[Ellipsis, 3] translation = translation[Ellipsis, tf.newaxis, :] # Now shape is [..., 1, 3]. # Points are stored as (N * 3) rather than (3 * N), so multiply in reverse # rather than transposing them. return tf.matmul(v, rotation, transpose_b=True) + translation @utils.name_scope def mat34_transform_planes(m, p): """Transform a set of 3d planes by a 3x4 pose matrix. Args: m: [..., 3, 4] matrix, from source space to target space p: [..., N, 4] set of N planes in source space. Returns: The transformed planes p' in target space. If point x is on the plane p, then point Mx is on the plane p'. The parts of the shape indicated by "..." must match either directly or via broadcasting. Raises: ValueError: if inputs are the wrong shape. """ check_input_m34('m', m) check_input_shape('p', p, -1, 4) (m, p) = utils.broadcast_to_match(m, p, ignore_axes=2) # If x is on the plane p, then p . x = 0. We want to find p' such that # p' . (M x) = 0. Writing T for transpose and i for inverse, this gives us # p'T M x = 0, so p'T = pT Mi. # Planes are stored as (N * 4) rather than (4 * N), i.e. pT rather than p, so # we can use this directly to compute p'T: return tf.matmul(p, mat34_to_mat44(mat34_pose_inverse(m))) @utils.name_scope def mat34_pose_inverse(matrix): """Invert a 3x4 matrix. Args: matrix: [..., 3, 4] matrix where [..., 3, 3] is a rotation matrix Returns: The inverse matrix, of the same shape as the input. It is computed as if we added an extra row with values [0, 0, 0, 1], inverted the matrix, and removed the row again. Raises: ValueError: if input is not a 3x4 matrix. """ check_input_m34('matrix', matrix) rest, translation = tf.split(matrix, [3, 1], axis=-1) inverse = tf.linalg.matrix_transpose(rest) inverse_translation = -tf.matmul(inverse, translation) return tf.concat([inverse, inverse_translation], axis=-1) @utils.name_scope def build_matrix(elements): """Stacks elements along two axes to make a tensor of matrices. Args: elements: [n, m] matrix of tensors, each with shape [...]. Returns: [..., n, m] tensor of matrices, resulting from concatenating the individual tensors. """ rows = [tf.stack(row_elements, axis=-1) for row_elements in elements] return tf.stack(rows, axis=-2) @utils.name_scope def pose_from_6dof(vec): """Converts vector containing 6DoF pose parameters to pose matrices. Args: vec: [..., 6] parameters in the order tx, ty, tz, rx, ry, rz. rx, ry and rz are Euler angles in radians. Rotation is first by z, then by y, then by x, and translation happens last. Each rotation is counterclockwise about its axis. Returns: rigid world-to-camera transformation matrix [..., 3, 4] corresponding to the input. Rotation angles are clamped to +/- π before conversion. """ check_input_shape('vec', vec, -1, 6) shape = vec.shape.as_list() extra_dims = shape[:-1] # Get translation as [..., 3] and rx, ry, rz each as [..., 1]. translation, rx, ry, rz = tf.split(vec, [3, 1, 1, 1], -1) rx = tf.squeeze(tf.clip_by_value(rx, -math.pi, math.pi), axis=-1) ry = tf.squeeze(tf.clip_by_value(ry, -math.pi, math.pi), axis=-1) rz = tf.squeeze(tf.clip_by_value(rz, -math.pi, math.pi), axis=-1) cos_x = tf.cos(rx) sin_x = tf.sin(rx) cos_y = tf.cos(ry) sin_y = tf.sin(ry) cos_z = tf.cos(rz) sin_z = tf.sin(rz) zero = tf.zeros(extra_dims) one = tf.ones(extra_dims) rotate_z = build_matrix([[cos_z, -sin_z, zero], [sin_z, cos_z, zero], [zero, zero, one]]) rotate_y = build_matrix([[cos_y, zero, sin_y], [zero, one, zero], [-sin_y, zero, cos_y]]) rotate_x = build_matrix([[one, zero, zero], [zero, cos_x, -sin_x], [zero, sin_x, cos_x]]) rotation = tf.matmul(tf.matmul(rotate_x, rotate_y), rotate_z) pose = tf.concat([rotation, translation[Ellipsis, tf.newaxis]], axis=-1) return pose # ========== CAMERAS ========== @utils.name_scope def intrinsics_matrix(intrinsics): """Make a matrix mapping camera space to homogeneous texture coords. Args: intrinsics: [..., 4] intrinsics. Last dimension (fx, fy, cx, cy) Returns: [..., 3, 3] matrix mapping camera space to image space. """ fx = intrinsics[Ellipsis, 0] fy = intrinsics[Ellipsis, 1] cx = intrinsics[Ellipsis, 2] cy = intrinsics[Ellipsis, 3] zero = tf.zeros_like(fx) one = tf.ones_like(fx) return build_matrix( [[fx, zero, cx], [zero, fy, cy], [zero, zero, one]]) @utils.name_scope def inverse_intrinsics_matrix(intrinsics): """Return the inverse of the intrinsics matrix.. Args: intrinsics: [..., 4] intrinsics. Last dimension (fx, fy, cx, cy) Returns: [..., 3, 3] matrix mapping homogeneous texture coords to camera space. """ fxi = 1.0 / intrinsics[Ellipsis, 0] fyi = 1.0 / intrinsics[Ellipsis, 1] cx = intrinsics[Ellipsis, 2] cy = intrinsics[Ellipsis, 3] zero = tf.zeros_like(cx) one = tf.ones_like(cx) return build_matrix( [[fxi, zero, -cx * fxi], [zero, fyi, -cy * fyi], [zero, zero, one]]) @utils.name_scope def homogenize(coords): """Convert (x, y) to (x, y, 1), or (x, y, z) to (x, y, z, 1).""" ones = tf.ones_like(coords[Ellipsis, :1]) return tf.concat([coords, ones], axis=-1) @utils.name_scope def dehomogenize(coords): """Convert (x, y, w) to (x/w, y/w) or (x, y, z, w) to (x/w, y/w, z/w).""" return tf.math.divide_no_nan(coords[Ellipsis, :-1], coords[Ellipsis, -1:]) @utils.name_scope def texture_to_camera_coordinates(coords, intrinsics): """Convert texture coordinates to x,y,1 coordinates relative to camera. Args: coords: [..., 2] texture coordinates intrinsics: [..., 4] (resolution-independent) camera intrinsics. Last dimension (fx, fy, cx, cy). Returns: [..., 3] coordinates, transformed by scaling down by image size and applying the inverse of the intrinsics. z-coordinates are all 1. Raises: ValueError: if coords is the wrong shape. """ check_input_shape('coords', coords, -1, 2) # Shift to optical center and divide by focal length. # (These are element-wise operations on the x and y coords.) focal_length, optical_center = tf.split(intrinsics, [2, 2], axis=-1) xy_coords = (coords - optical_center) / focal_length return homogenize(xy_coords) @utils.name_scope def camera_to_texture_coordinates(coords, intrinsics): """Convert (x,y,z) coordinates relative to camera to texture coordinates. Args: coords: [..., 3] coordinates intrinsics: [..., 4] camera intrinsics. Last dimension (fx, fy, cx, cy) Returns: [..., 2] coordinates, transformed by dividing by Z, applying camera intrinsics and scaling to image size. Raises: ValueError: if coords is the wrong shape. """ check_input_shape('coords', coords, -1, 3) xy_coords = tf.math.divide_no_nan(coords[Ellipsis, :2], coords[Ellipsis, 2:]) # Scale by focal length and shift optical center. # (These are element-wise operations on the x and y coords.) focal_length, optical_center = tf.split(intrinsics, [2, 2], axis=-1) xy_coords = (xy_coords * focal_length) + optical_center return xy_coords @utils.name_scope def get_camera_relative_points(indices, point, pose): """Get tensor of camera-relative 3d points in a frame. Args: indices: [B, P] Indices into point of coordinates to retrieve. point: [B, N, 3] A set of N (x,y,z) coordinates per batch item pose: [B, 3, 4] Camera pose Returns: [B, P, 3] Point coordinates corresponding to the indices. Specifically result[b, p, :] = point[b, indices[b, p], :]. """ # There is no "batched gather" so we either must loop over the batch, or # use gather_nd. Looping over the batch is simpler so we'll do that. point_shape = point.shape.as_list() # Batch size must be statically known assert (point_shape is not None and len(point_shape) and point_shape[0] is not None) batch_size = point_shape[0] coordinates = [] for item in range(batch_size): coordinates.append(tf.gather(point[item], indices[item])) extracted_points = tf.stack(coordinates) # Convert points to be camera-relative. return mat34_transform(pose, extracted_points) # ========== IMAGES AND SAMPLING ========== @utils.name_scope def pixel_center_grid(height, width): """Produce a grid of (x,y) texture-coordinate pairs of pixel centers. Args: height: (integer) height, not a tensor width: (integer) width, not a tensor Returns: A tensor of shape [height, width, 2] where each entry gives the (x,y) texture coordinates of the corresponding pixel center. For example, for pixel_center_grid(2, 3) the result is: [[[1/6, 1/4], [3/6, 1/4], [5/6, 1/4]], [[1/6, 3/4], [3/6, 3/4], [5/6, 3/4]]] """ height_float = tf.cast(height, dtype=tf.float32) width_float = tf.cast(width, dtype=tf.float32) ys = tf.linspace(0.5 / height_float, 1.0 - 0.5 / height_float, height) xs = tf.linspace(0.5 / width_float, 1.0 - 0.5 / width_float, width) xs, ys = tf.meshgrid(xs, ys) grid = tf.stack([xs, ys], axis=-1) assert grid.shape.as_list() == [height, width, 2] return grid @utils.name_scope def camera_rays(intrinsics, height, width): """A tensor of rays from the camera to the plane at z=1, one per pixel. Args: intrinsics: [..., 4] camera intrinsics height: output height in pixels width: output width in pixels Returns: [..., H, W, 3] A grid of H x W rays. Each ray is a vector (x, y, 1) in camera space. For example, for a pixel at the principal point, the corresponding ray is (0, 0, 1). """ coords = pixel_center_grid(height, width) intrinsics = intrinsics[Ellipsis, tf.newaxis, tf.newaxis, :] rays = texture_to_camera_coordinates(coords, intrinsics) return rays @utils.name_scope def clip_texture_coords_to_corner_pixels(coords, height, width): """Clip texture coordinates to the centers of the corner pixels.""" min_x = 0.5 / width min_y = 0.5 / height max_x = 1.0 - min_x max_y = 1.0 - min_y return tf.clip_by_value(coords, [min_x, min_y], [max_x, max_y]) @utils.name_scope def sample_image(image, coords, clamp=True): """Sample points from an image, using bilinear filtering. Args: image: [B0, ..., Bn-1, height, width, channels] image data coords: [B0, ..., Bn-1, ..., 2] (x,y) texture coordinates clamp: if True, coordinates are clamped to the coordinates of the corner pixels -- i.e. minimum value 0.5/width, 0.5/height and maximum value 1.0-0.5/width or 1.0-0.5/height. This is equivalent to extending the image in all directions by copying its edge pixels. If False, sampling values outside the image will return 0 values. Returns: [B0, ..., Bn-1, ..., channels] image data, in which each value is sampled with bilinear interpolation from the image at position indicated by the (x,y) texture coordinates. The image and coords parameters must have matching batch dimensions B0, ..., Bn-1. Raises: ValueError: if shapes are incompatible. """ check_input_shape('coords', coords, -1, 2) tfshape = tf.shape(image)[-3:-1] height = tf.cast(tfshape[0], dtype=tf.float32) width = tf.cast(tfshape[1], dtype=tf.float32) if clamp: coords = clip_texture_coords_to_corner_pixels(coords, height, width) # Resampler expects coordinates where (0,0) is the center of the top-left # pixel and (width-1, height-1) is the center of the bottom-right pixel. pixel_coords = coords * [width, height] - 0.5 # tfa_image.resampler only works with exactly one batch dimension, i.e. it # expects image to be [batch, height, width, channels] and pixel_coords to be # [batch, ..., 2]. So we need to reshape, perform the resampling, and then # reshape back to what we had. batch_dims = len(image.shape.as_list()) - 3 assert (image.shape.as_list()[:batch_dims] == pixel_coords.shape.as_list() [:batch_dims]) batched_image, _ = utils.flatten_batch(image, batch_dims) batched_coords, unflatten_coords = utils.flatten_batch( pixel_coords, batch_dims) resampled = tfa_image.resampler(batched_image, batched_coords) # Convert back to the right shape to return resampled = unflatten_coords(resampled) return resampled # ========== WARPS AND HOMOGRAPHIES ========== @utils.name_scope def inverse_homography(source_pose, source_intrinsics, target_pose, target_intrinsics, plane): """Compute inverse homography from source to target. This function computes a matrix H which relates the image of the plane P in the source and target cameras by matrix multiplication as follows: (source_u, source_v, source_w) = H (target_u, target_v, target_w) where (u, v, w) are the homogeneous coordinates of the point in the image-spaces of the source and target cameras. The plane P is specified as a normal vector (plane[0:3]) in the source camera-space plus an offset (plane[3]). A point p in source-camera-space is in the plane when (p_x, p_y, p_z, 1) . P == 0. Args: source_pose: [..., 3, 4] source camera pose source_intrinsics: [..., 4] last dimension (fx, fy, cx, cy) target_pose: [..., 3, 4] target camera pose target_intrinsics: [..., 4] last dimension (fx, fy, cx, cy) plane: [..., 4] The plane P. Returns: [..., 3, 3] Homography matrix H. """ target_to_source_pose = mat34_product(source_pose, mat34_pose_inverse(target_pose)) rotation, translation = tf.split(target_to_source_pose, [3, 1], axis=-1) plane_normal = plane[Ellipsis, tf.newaxis, :3] plane_offset = plane[Ellipsis, tf.newaxis, 3:] # Everything now has 2 final dimensions for matrix operations, i.e. # rotation [..., 3, 3] from target to source # translation [..., 3, 1] from target to source, in source space # plane_normal [..., 1, 3] in source space # plane_offset [..., 1, 1] in source space denominator = broadcasting_matmul(plane_normal, translation) + plane_offset numerator = broadcasting_matmul( broadcasting_matmul(-translation, plane_normal), rotation) return broadcasting_matmul( intrinsics_matrix(source_intrinsics), broadcasting_matmul(rotation + tf.divide(numerator, denominator), inverse_intrinsics_matrix(target_intrinsics))) @utils.name_scope def apply_homography(homography, coords): """Transform grid of (x,y) texture coordinates by a homography. Args: homography: [..., 3, 3] coords: [..., H, W, 2] (x,y) texture coordinates Returns: [..., H, W, 2] transformed coordinates. """ height = tf.shape(coords)[-3] coords = homogenize(utils.collapse_dim(coords, -2)) # [..., H*W, 3] # Instead of transposing the coords, transpose the homography and # swap the order of multiplication. coords = broadcasting_matmul(coords, homography, transpose_b=True) # coords is now [..., H*W, 3] return utils.split_dim(dehomogenize(coords), -2, height) @utils.name_scope def homography_warp(image, homography, height=None, width=None, clamp=True): """Warp an image according to an inverse homography. Args: image: [..., H, W, C] input image homography: [..., 3, 3] homography mapping output to input height: desired output height (or None to use input height) width: desired output width (or None to use input width) clamp: whether to clamp image coordinates (see sample_image doc) Returns: [..., height, width, C] warped image. """ (image, homography) = utils.broadcast_to_match( image, homography, ignore_axes=(3, 2)) if height is None: height = image.shape.as_list()[-3] if width is None: width = image.shape.as_list()[-2] target_coords = pixel_center_grid(height, width) source_coords = apply_homography(homography, target_coords) return sample_image(image, source_coords, clamp=clamp)
apache-2.0
6,051,238,215,533,420,000
33.343152
81
0.65869
false
mgerstner/backintime
common/logger.py
1
3763
# Back In Time # Copyright (C) 2008-2017 Oprea Dan, Bart de Koning, Richard Bailey, Germar Reitze # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import syslog import os import sys import atexit import tools import bcolors DEBUG = False APP_NAME = 'backintime' def openlog(): name = os.getenv('LOGNAME', 'unknown') syslog.openlog("%s (%s/1)" %(APP_NAME, name)) atexit.register(closelog) def changeProfile(profile_id): name = os.getenv('LOGNAME', 'unknown') syslog.openlog("%s (%s/%s)" %(APP_NAME, name, profile_id)) def closelog(): syslog.closelog() def error(msg , parent = None, traceDepth = 0): if DEBUG: msg = '%s %s' %(_debugHeader(parent, traceDepth), msg) print('%sERROR%s: %s' %(bcolors.FAIL, bcolors.ENDC, msg), file=sys.stderr) for line in tools.wrapLine(msg): syslog.syslog(syslog.LOG_ERR, 'ERROR: ' + line) def warning(msg , parent = None, traceDepth = 0): if DEBUG: msg = '%s %s' %(_debugHeader(parent, traceDepth), msg) print('%sWARNING%s: %s' %(bcolors.WARNING, bcolors.ENDC, msg), file=sys.stderr) for line in tools.wrapLine(msg): syslog.syslog(syslog.LOG_WARNING, 'WARNING: ' + line) def info(msg , parent = None, traceDepth = 0): if DEBUG: msg = '%s %s' %(_debugHeader(parent, traceDepth), msg) print('%sINFO%s: %s' %(bcolors.OKGREEN, bcolors.ENDC, msg), file=sys.stdout) for line in tools.wrapLine(msg): syslog.syslog(syslog.LOG_INFO, 'INFO: ' + line) def debug(msg, parent = None, traceDepth = 0): if DEBUG: msg = '%s %s' %(_debugHeader(parent, traceDepth), msg) print('%sDEBUG%s: %s' %(bcolors.OKBLUE, bcolors.ENDC, msg), file = sys.stdout) for line in tools.wrapLine(msg): syslog.syslog(syslog.LOG_DEBUG, 'DEBUG: %s' %line) def deprecated(parent = None): frame = sys._getframe(1) fdir, fname = os.path.split(frame.f_code.co_filename) fmodule = os.path.basename(fdir) line = frame.f_lineno if parent: fclass = '%s.' %parent.__class__.__name__ else: fclass = '' func = frame.f_code.co_name frameCaller = sys._getframe(2) fdirCaller, fnameCaller = os.path.split(frameCaller.f_code.co_filename) fmoduleCaller = os.path.basename(fdirCaller) lineCaller = frameCaller.f_lineno msg = '%s/%s:%s %s%s called from ' %(fmodule, fname, line, fclass, func) msgCaller = '%s/%s:%s' %(fmoduleCaller, fnameCaller, lineCaller) print('%sDEPRECATED%s: %s%s%s%s' %(bcolors.WARNING, bcolors.ENDC, msg, bcolors.OKBLUE, msgCaller, bcolors.ENDC), file=sys.stderr) syslog.syslog(syslog.LOG_WARNING, 'DEPRECATED: %s%s' %(msg, msgCaller)) def _debugHeader(parent, traceDepth): frame = sys._getframe(2 + traceDepth) fdir, fname = os.path.split(frame.f_code.co_filename) fmodule = os.path.basename(fdir) line = frame.f_lineno if parent: fclass = '%s.' %parent.__class__.__name__ else: fclass = '' func = frame.f_code.co_name return '[%s/%s:%s %s%s]' %(fmodule, fname, line, fclass, func)
gpl-2.0
4,494,096,716,557,691,400
36.257426
133
0.652405
false
vincentadam87/gatsby-hackathon-seizure
code/python/seizures/examples/cross_validation_test.py
1
5173
''' Created on 10 August 2014 @author: vincent ''' # Loading necessary packages import numpy as np import sys from seizures.data.DataLoader_v2 import DataLoader from seizures.evaluation.XValidation import XValidation from seizures.evaluation.performance_measures import accuracy, auc from seizures.features.FeatureExtractBase import FeatureExtractBase from seizures.features.MixFeatures import MixFeatures from seizures.features.SEFeatures import SEFeatures from seizures.features.StatsFeatures import StatsFeatures from seizures.features.PLVFeatures import PLVFeatures from seizures.features.ARFeatures import ARFeatures from seizures.features.LyapunovFeatures import LyapunovFeatures from seizures.prediction.ForestPredictor import ForestPredictor from seizures.prediction.SVMPredictor import SVMPredictor from seizures.prediction.XtraTreesPredictor import XtraTreesPredictor from seizures.Global import Global from sklearn.cross_validation import train_test_split def Xval_on_single_patient(predictor_cls, feature_extractor, patient_name="Dog_1",preprocess=True): """ Single patient cross validation Returns 2 lists of cross validation performances :param predictor_cls: :param feature_extractor :param patient_name: :return: """ # predictor_cls is a handle to an instance of PredictorBase # Instantiate the predictor predictor = predictor_cls() base_dir = Global.path_map('clips_folder') base_dir = '/nfs/data3/kaggle_seizure/clips/' loader = DataLoader(base_dir, feature_extractor) X_list,y_seizure, y_early = loader.blocks_for_Xvalidation(patient_name,preprocess=preprocess) #X_train,y_seizure, y_early = loader.training_data(patient_name) #y_train = [y_seizure,y_early] #X_list,y_list = train_test_split(X_train,y_train) # running cross validation print patient_name print "\ncross validation: seizures vs not" result_seizure = XValidation.evaluate(X_list, y_seizure, predictor, evaluation=auc) print 'cross-validation results: mean = %.3f, sd = %.3f, raw scores = %s' \ % (np.mean(result_seizure), np.std(result_seizure), result_seizure) print "\ncross validation: early_vs_not" result_early = XValidation.evaluate(X_list, y_early, predictor, evaluation=auc) print 'cross-validation results: mean = %.3f, sd = %.3f, raw scores = %s' \ % (np.mean(result_early), np.std(result_early), result_early) return result_seizure,result_early def Xval_on_patients(predictor_cls, feature_extractor, patients_list=['Dog_1'],preprocess=True): ''' Runs cross validation for given predictor class and feature instance on the given list of patients INPUT: - predictor_cls: a Predictor class (implement) - feature_extractor: an instanciation of a Features class - patients_list: a list of subject strings e.g., ['Dog_1', 'Patient_2'] ''' assert(isinstance(feature_extractor, FeatureExtractBase)) results_seizure = [] results_early = [] for patient_name in patients_list: result_seizure, result_early = Xval_on_single_patient(predictor_cls, feature_extractor, patient_name, preprocess=preprocess) results_seizure.append(result_seizure) results_early.append(result_early) avg_results_seizure = np.mean(np.array(results_seizure),axis=0) avg_results_early = np.mean(np.array(results_early),axis=0) print "\ncross validation: seizures vs not (ACROSS ALL SUBJECTS)" print 'cross-validation results: mean = %.3f, sd = %.3f, raw scores = %s' \ % (np.mean(avg_results_seizure), np.std(avg_results_seizure), avg_results_seizure) print "\ncross validation: early_vs_not (ACROSS ALL SUBJECTS)" print 'cross-validation results: mean = %.3f, sd = %.3f, raw scores = %s' \ % (np.mean(avg_results_early), np.std(avg_results_early), avg_results_early) return avg_results_seizure, avg_results_early # generate prediction for test data def main(): # code run at script launch #patient_name = sys.argv[1] # There are Dog_[1-4] and Patient_[1-8] patients_list = ["Dog_%d" % i for i in range(1, 5)] + ["Patient_%d" % i for i in range(1, 9)] patients_list = ["Dog_%d" % i for i in [1]] #["Patient_%d" % i for i in range(1, 9)]#++ #feature_extractor = MixFeatures([{'name':"ARFeatures",'args':{}}]) #feature_extractor = PLVFeatures() #feature_extractor = MixFeatures([{'name':"PLVFeatures",'args':{}},{'name':"ARFeatures",'args':{}}]) #feature_extractor = ARFeatures() feature_extractor = MixFeatures([{'name':"ARFeatures",'args':{}},{'name':"PLVFeatures",'args':{}},{'name':'SEFeatures','args':{}}]) #feature_extractor = SEFeatures() #feature_extractor = LyapunovFeatures() #feature_extractor = StatsFeatures() preprocess = True predictor = SVMPredictor #predictor = XtraTreesPredictor if preprocess==True: print 'Preprocessing ON' else: print 'Preprocessing OFF' print 'predictor: ',predictor Xval_on_patients(predictor,feature_extractor, patients_list,preprocess=preprocess) if __name__ == '__main__': main()
bsd-2-clause
6,804,000,983,729,179,000
38.792308
135
0.70462
false
mfalesni/cfme_tests
cfme/networks/subnet.py
1
7113
import attr from navmazing import NavigateToAttribute, NavigateToSibling from widgetastic.exceptions import NoSuchElementException from cfme.common import Taggable from cfme.exceptions import ItemNotFound from cfme.modeling.base import BaseCollection, BaseEntity, parent_of_type from cfme.networks.views import SubnetDetailsView, SubnetView, SubnetAddView, SubnetEditView from cfme.utils import providers, version from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to from cfme.utils.wait import wait_for @attr.s class Subnet(Taggable, BaseEntity): """Class representing subnets in sdn""" in_version = ('5.8', version.LATEST) category = 'networks' string_name = 'NetworkSubnet' quad_name = None db_types = ['NetworkSubnet'] name = attr.ib() provider_obj = attr.ib(default=None) network = attr.ib(default=None) @property def exists(self): try: navigate_to(self, 'Details') except (ItemNotFound, NoSuchElementException): return False else: return True def edit(self, new_name, gateway=None): """Edit cloud subnet Args: new_name: (str) new name of subnet gateway: (str) IP of new gateway, for example: 11.11.11.1 """ view = navigate_to(self, 'Edit') view.fill({'subnet_name': new_name, 'gateway': gateway}) view.save.click() view.flash.assert_success_message('Cloud Subnet "{}" updated'.format(new_name)) self.name = new_name def delete(self): """Deletes this subnet""" view = navigate_to(self, 'Details') view.toolbar.configuration.item_select('Delete this Cloud Subnet', handle_alert=True) view.flash.assert_success_message('The selected Cloud Subnet was deleted') @property def cloud_tenant(self): """ Return name of tenant that subnet belongs to""" view = navigate_to(self, 'Details') return view.entities.relationships.get_text_of('Cloud tenant') @property def cloud_network(self): """ Return name of network that subnet belongs to""" view = navigate_to(self, 'Details') field_name = 'Cloud Network' if self.appliance.version >= '5.9' else 'Cloud network' return view.entities.relationships.get_text_of(field_name) @property def cidr(self): """ Return subnet's CIDR""" view = navigate_to(self, 'Details') field_name = 'CIDR' if self.appliance.version >= '5.9' else 'Cidr' return view.entities.properties.get_text_of(field_name) @property def net_protocol(self): """ Return subnet's network protocol""" view = navigate_to(self, 'Details') return view.entities.properties.get_text_of('Network protocol') @property def provider(self): from cfme.networks.provider import NetworkProvider return parent_of_type(self, NetworkProvider) @property def parent_provider(self): """ Return object of parent cloud provider """ view = navigate_to(self, 'Details') field_name = 'Parent Cloud Provider' if self.appliance.version >= '5.9' else 'Parent ems cloud' provider_name = view.entities.relationships.get_text_of(field_name) return providers.get_crud_by_name(provider_name) @property def network_provider(self): """ Returns network provider """ # security group collection contains reference to provider if self.provider: return self.provider # otherwise get provider name from ui view = navigate_to(self, 'Details') try: prov_name = view.entities.relationships.get_text_of("Network Manager") collection = self.appliance.collections.network_provider return collection.instantiate(name=prov_name) except ItemNotFound: # BZ 1480577 return None @property def zone(self): view = navigate_to(self, 'Details') return view.entities.relationships.get_text_of('Zone') @attr.s class SubnetCollection(BaseCollection): """ Collection object for Subnet object Note: Network providers object are not implemented in mgmt """ ENTITY = Subnet def create(self, name, tenant, provider, network_manager, network_name, cidr, gateway=None): """Create subnet Args: name: (str) name of the subnet tenant: (str) name of the tenant to place subnet to provider: crud object of Openstack cloud provider network_manager: (str) name of network manager network_name: (str) name of the network to create subnet under cidr: (str) CIDR of subnet, for example: 192.168.12.2/24 gateway: (str) gateway of subnet, if None - appliance will set it automatically Returns: instance of cfme.newtorks.subnet.Subnet """ view = navigate_to(self, 'Add') view.fill({'network_manager': network_manager, 'network': network_name, 'subnet_name': name, 'subnet_cidr': cidr, 'gateway': gateway, 'cloud_tenant': tenant}) view.add.click() view.flash.assert_success_message('Cloud Subnet "{}" created'.format(name)) subnet = self.instantiate(name, provider, network_name) # Refresh provider's relationships to have new subnet displayed wait_for(provider.is_refreshed, func_kwargs=dict(refresh_delta=10), timeout=600) wait_for(lambda: subnet.exists, timeout=100, fail_func=subnet.browser.refresh) return subnet def all(self): if self.filters.get('parent'): view = navigate_to(self.filters.get('parent'), 'CloudSubnets') else: view = navigate_to(self, 'All') list_networks_obj = view.entities.get_all(surf_pages=True) return [self.instantiate(name=p.name) for p in list_networks_obj] @navigator.register(SubnetCollection, 'All') class All(CFMENavigateStep): VIEW = SubnetView prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn') def step(self): self.prerequisite_view.navigation.select('Networks', 'Subnets') @navigator.register(Subnet, 'Details') class OpenCloudNetworks(CFMENavigateStep): VIEW = SubnetDetailsView prerequisite = NavigateToAttribute('parent', 'All') def step(self): self.prerequisite_view.entities.get_entity(name=self.obj.name).click() @navigator.register(SubnetCollection, 'Add') class AddSubnet(CFMENavigateStep): VIEW = SubnetAddView prerequisite = NavigateToSibling('All') def step(self): self.prerequisite_view.toolbar.configuration.item_select('Add a new Cloud Subnet') @navigator.register(Subnet, 'Edit') class EditSubnet(CFMENavigateStep): VIEW = SubnetEditView prerequisite = NavigateToSibling('Details') def step(self): self.prerequisite_view.toolbar.configuration.item_select('Edit this Cloud Subnet')
gpl-2.0
3,661,567,692,700,319,000
35.476923
103
0.654014
false
DigiThinkIT/stem
test/integ/descriptor/reader.py
1
18237
""" Integration tests for stem.descriptor.reader. """ import getpass import os import signal import sys import tarfile import time import unittest import stem.descriptor.reader import test.runner from stem.util import system BASIC_LISTING = """ /tmp 123 /bin/grep 4567 /file with spaces/and \\ stuff 890 """ my_dir = os.path.dirname(__file__) DESCRIPTOR_TEST_DATA = os.path.join(my_dir, 'data') TAR_DESCRIPTORS = None def _get_processed_files_path(): return test.runner.get_runner().get_test_dir('descriptor_processed_files') def _make_processed_files_listing(contents): """ Writes the given 'processed file' listing to disk, returning the path where it is located. """ test_listing_path = _get_processed_files_path() test_listing_file = open(test_listing_path, 'w') test_listing_file.write(contents) test_listing_file.close() return test_listing_path def _get_raw_tar_descriptors(): global TAR_DESCRIPTORS if not TAR_DESCRIPTORS: test_path = os.path.join(DESCRIPTOR_TEST_DATA, 'descriptor_archive.tar') raw_descriptors = [] # TODO: revert to using the 'with' keyword for this when dropping python # 2.6 support tar_file = None try: tar_file = tarfile.open(test_path) for tar_entry in tar_file: if tar_entry.isfile(): entry = tar_file.extractfile(tar_entry) entry.readline() # strip header raw_descriptors.append(entry.read().decode('utf-8', 'replace')) entry.close() finally: if tar_file: tar_file.close() TAR_DESCRIPTORS = raw_descriptors return TAR_DESCRIPTORS class SkipListener: def __init__(self): self.results = [] # (path, exception) tuples that we've received def listener(self, path, exception): self.results.append((path, exception)) class TestDescriptorReader(unittest.TestCase): def tearDown(self): # cleans up 'processed file' listings that we made test_listing_path = _get_processed_files_path() if os.path.exists(test_listing_path): os.remove(test_listing_path) def test_load_processed_files(self): """ Basic sanity test for loading a processed files listing from disk. """ test_listing_path = _make_processed_files_listing(BASIC_LISTING) loaded_listing = stem.descriptor.reader.load_processed_files(test_listing_path) expected_listing = { '/tmp': 123, '/bin/grep': 4567, '/file with spaces/and \\ stuff': 890, } self.assertEquals(expected_listing, loaded_listing) def test_load_processed_files_missing(self): """ Tests the load_processed_files() function with a file that doesn't exist. """ self.assertRaises(IOError, stem.descriptor.reader.load_processed_files, '/non-existant/path') def test_load_processed_files_permissions(self): """ Tests the load_processed_files() function with a file that can't be read due to permissions. """ # test relies on being unable to read a file if getpass.getuser() == 'root': test.runner.skip(self, '(running as root)') return # Skip the test on windows, since you can only set the file's # read-only flag with os.chmod(). For more information see... # http://docs.python.org/library/os.html#os.chmod if system.is_windows(): test.runner.skip(self, '(chmod not functional)') test_listing_path = _make_processed_files_listing(BASIC_LISTING) os.chmod(test_listing_path, 0077) # remove read permissions self.assertRaises(IOError, stem.descriptor.reader.load_processed_files, test_listing_path) def test_save_processed_files(self): """ Basic sanity test for persisting files listings to disk. """ initial_listing = { '/tmp': 123, '/bin/grep': 4567, '/file with spaces/and \\ stuff': 890, } # saves the initial_listing to a file then reloads it test_listing_path = _get_processed_files_path() stem.descriptor.reader.save_processed_files(test_listing_path, initial_listing) loaded_listing = stem.descriptor.reader.load_processed_files(test_listing_path) self.assertEquals(initial_listing, loaded_listing) def test_save_processed_files_malformed(self): """ Tests the save_processed_files() function with malformed data. """ missing_filename = {'': 123} relative_filename = {'foobar': 123} string_timestamp = {'/tmp': '123a'} for listing in (missing_filename, relative_filename, string_timestamp): self.assertRaises(TypeError, stem.descriptor.reader.save_processed_files, '/tmp/foo', listing) # Though our attempts to save the processed files fail we'll write an empty # file. Cleaning it up. try: os.remove('/tmp/foo') except: pass def test_basic_example(self): """ Exercises something similar to the first example in the header documentation, checking that some of the contents match what we'd expect. """ # snag some of the plaintext descriptors so we can later make sure that we # iterate over them descriptor_entries = [] descriptor_path = os.path.join(DESCRIPTOR_TEST_DATA, 'example_descriptor') with open(descriptor_path) as descriptor_file: descriptor_file.readline() # strip header descriptor_entries.append(descriptor_file.read()) # running this test multiple times to flush out concurrency issues for _ in xrange(15): remaining_entries = list(descriptor_entries) with stem.descriptor.reader.DescriptorReader(descriptor_path) as reader: for descriptor in reader: descriptor_str = str(descriptor) if descriptor_str in remaining_entries: remaining_entries.remove(descriptor_str) else: # iterator is providing output that we didn't expect self.fail() # check that we've seen all of the descriptor_entries self.assertTrue(len(remaining_entries) == 0) def test_multiple_runs(self): """ Runs a DescriptorReader instance multiple times over the same content, making sure that it can be used repeatedly. """ descriptor_path = os.path.join(DESCRIPTOR_TEST_DATA, 'example_descriptor') reader = stem.descriptor.reader.DescriptorReader(descriptor_path) with reader: self.assertEquals(1, len(list(reader))) # run it a second time, this shouldn't provide any descriptors because we # have already read it with reader: self.assertEquals(0, len(list(reader))) # clear the DescriptorReader's memory of seeing the file and run it again reader.set_processed_files([]) with reader: self.assertEquals(1, len(list(reader))) def test_buffer_size(self): """ Checks that we can process sets of descriptors larger than our buffer size, that we don't exceed it, and that we can still stop midway through reading them. """ reader = stem.descriptor.reader.DescriptorReader(DESCRIPTOR_TEST_DATA, buffer_size = 2) with reader: self.assertTrue(reader.get_buffered_descriptor_count() <= 2) time.sleep(0.01) self.assertTrue(reader.get_buffered_descriptor_count() <= 2) def test_persistence_path(self): """ Check that the persistence_path argument loads and saves a a processed files listing. """ persistence_path = _get_processed_files_path() descriptor_path = os.path.join(DESCRIPTOR_TEST_DATA, 'example_descriptor') # First run where the persistence_path doesn't yet exist. This just tests # the saving functionality. reader = stem.descriptor.reader.DescriptorReader(descriptor_path, persistence_path = persistence_path) with reader: self.assertEqual(1, len(list(reader))) # check that we've saved reading example_descriptor self.assertTrue(os.path.exists(persistence_path)) with open(persistence_path) as persistence_file: persistance_file_contents = persistence_file.read() self.assertTrue(persistance_file_contents.startswith(descriptor_path)) # Try running again with a new reader but the same persistance path, if it # reads and takes the persistence_path into account then it won't read the # descriptor file. This in essence just tests its loading functionality. reader = stem.descriptor.reader.DescriptorReader(descriptor_path, persistence_path = persistence_path) with reader: self.assertEqual(0, len(list(reader))) def test_archived_paths(self): """ Checks the get_path() and get_archive_path() for a tarball. """ expected_archive_paths = ( 'descriptor_archive/0/2/02c311d3d789f3f55c0880b5c85f3c196343552c', 'descriptor_archive/1/b/1bb798cae15e21479db0bc700767eee4733e9d4a', 'descriptor_archive/1/b/1ef75fef564180d8b3f72c6f8635ff0cd855f92c', ) test_path = os.path.join(DESCRIPTOR_TEST_DATA, 'descriptor_archive.tar') with stem.descriptor.reader.DescriptorReader(test_path) as reader: for desc in reader: self.assertEqual(test_path, desc.get_path()) self.assertTrue(desc.get_archive_path() in expected_archive_paths) def test_archived_uncompressed(self): """ Checks that we can read descriptors from an uncompressed archive. """ expected_results = _get_raw_tar_descriptors() test_path = os.path.join(DESCRIPTOR_TEST_DATA, 'descriptor_archive.tar') with stem.descriptor.reader.DescriptorReader(test_path) as reader: read_descriptors = [str(desc) for desc in list(reader)] self.assertEquals(expected_results, read_descriptors) def test_archived_gzip(self): """ Checks that we can read descriptors from a gzipped archive. """ expected_results = _get_raw_tar_descriptors() test_path = os.path.join(DESCRIPTOR_TEST_DATA, 'descriptor_archive.tar.gz') with stem.descriptor.reader.DescriptorReader(test_path) as reader: read_descriptors = [str(desc) for desc in list(reader)] self.assertEquals(expected_results, read_descriptors) def test_archived_bz2(self): """ Checks that we can read descriptors from an bzipped archive. """ expected_results = _get_raw_tar_descriptors() test_path = os.path.join(DESCRIPTOR_TEST_DATA, 'descriptor_archive.tar.bz2') with stem.descriptor.reader.DescriptorReader(test_path) as reader: read_descriptors = [str(desc) for desc in list(reader)] self.assertEquals(expected_results, read_descriptors) def test_stop(self): """ Runs a DescriptorReader over the root directory, then checks that calling stop() makes it terminate in a timely fashion. """ # Skip on windows since SIGALRM is unavailable if system.is_windows(): test.runner.skip(self, '(SIGALRM unavailable)') is_test_running = True reader = stem.descriptor.reader.DescriptorReader('/usr') # Fails the test after a couple seconds if we don't finish successfully. # Depending on what we're blocked on this might not work when the test # fails, requiring that we give a manual kill to the test. def timeout_handler(signum, frame): if is_test_running: self.fail() signal.signal(signal.SIGALRM, timeout_handler) signal.alarm(2) reader.start() time.sleep(0.1) reader.stop() is_test_running = False def test_get_processed_files(self): """ Checks that get_processed_files() provides the expected results after iterating over our test data. """ expected_results = {} for root, _, files in os.walk(DESCRIPTOR_TEST_DATA): for filename in files: path = os.path.join(root, filename) last_modified = int(os.stat(path).st_mtime) expected_results[path] = last_modified reader = stem.descriptor.reader.DescriptorReader(DESCRIPTOR_TEST_DATA) with reader: list(reader) # iterates over all of the descriptors self.assertEquals(expected_results, reader.get_processed_files()) def test_skip_nondescriptor_contents(self): """ Checks that the reader properly reports when it skips both binary and plaintext non-descriptor files. """ skip_listener = SkipListener() reader = stem.descriptor.reader.DescriptorReader(DESCRIPTOR_TEST_DATA) reader.register_skip_listener(skip_listener.listener) expected_skip_files = ('riddle', 'tiny.png', 'vote', 'new_metrics_type') with reader: list(reader) # iterates over all of the descriptors # strip anything with a .swp suffix (vim tmp files) skip_listener.results = [(path, exc) for (path, exc) in skip_listener.results if not path.endswith('.swp')] if len(skip_listener.results) != len(expected_skip_files): expected_label = ',\n '.join(expected_skip_files) results_label = ',\n '.join(['%s (%s)' % (path, exc) for (path, exc) in skip_listener.results]) self.fail('Skipped files that we should have been able to parse.\n\nExpected:\n %s\n\nResult:\n %s' % (expected_label, results_label)) for skip_path, skip_exception in skip_listener.results: if not os.path.basename(skip_path) in expected_skip_files: self.fail('Unexpected non-descriptor content: %s' % skip_path) self.assertTrue(isinstance(skip_exception, stem.descriptor.reader.UnrecognizedType)) def test_skip_listener_already_read(self): """ Checks that calling set_processed_files() prior to reading makes us skip those files. This also doubles for testing that skip listeners are notified of files that we've already read. """ # path that we want the DescriptorReader to skip test_path = os.path.join(DESCRIPTOR_TEST_DATA, 'example_descriptor') initial_processed_files = {test_path: sys.maxint} skip_listener = SkipListener() reader = stem.descriptor.reader.DescriptorReader(test_path) reader.register_skip_listener(skip_listener.listener) reader.set_processed_files(initial_processed_files) self.assertEquals(initial_processed_files, reader.get_processed_files()) with reader: list(reader) # iterates over all of the descriptors self.assertEquals(1, len(skip_listener.results)) skipped_path, skip_exception = skip_listener.results[0] self.assertEqual(test_path, skipped_path) self.assertTrue(isinstance(skip_exception, stem.descriptor.reader.AlreadyRead)) self.assertEqual(sys.maxint, skip_exception.last_modified_when_read) def test_skip_listener_unrecognized_type(self): """ Listens for a file that's skipped because its file type isn't recognized. """ # types are solely based on file extensions so making something that looks # like an png image test_path = test.runner.get_runner().get_test_dir('test.png') try: test_file = open(test_path, 'w') test_file.write('test data for test_skip_listener_unrecognized_type()') test_file.close() skip_listener = SkipListener() reader = stem.descriptor.reader.DescriptorReader(test_path) reader.register_skip_listener(skip_listener.listener) with reader: list(reader) # iterates over all of the descriptors self.assertEqual(1, len(skip_listener.results)) skipped_path, skip_exception = skip_listener.results[0] self.assertEqual(test_path, skipped_path) self.assertTrue(isinstance(skip_exception, stem.descriptor.reader.UnrecognizedType)) self.assertTrue(skip_exception.mime_type in (('image/png', None), ('image/x-png', None))) finally: if os.path.exists(test_path): os.remove(test_path) def test_skip_listener_read_failure(self): """ Listens for a file that's skipped because we lack read permissions. """ # test relies on being unable to read a file if getpass.getuser() == 'root': test.runner.skip(self, '(running as root)') return elif system.is_windows(): test.runner.skip(self, '(chmod not functional)') return test_path = test.runner.get_runner().get_test_dir('secret_file') try: test_file = open(test_path, 'w') test_file.write('test data for test_skip_listener_unrecognized_type()') test_file.close() os.chmod(test_path, 0077) # remove read permissions skip_listener = SkipListener() reader = stem.descriptor.reader.DescriptorReader(test_path) reader.register_skip_listener(skip_listener.listener) with reader: list(reader) # iterates over all of the descriptors self.assertEqual(1, len(skip_listener.results)) skipped_path, skip_exception = skip_listener.results[0] self.assertEqual(test_path, skipped_path) self.assertTrue(isinstance(skip_exception, stem.descriptor.reader.ReadFailed)) self.assertTrue(isinstance(skip_exception.exception, IOError)) finally: if os.path.exists(test_path): os.remove(test_path) def test_skip_listener_file_missing(self): """ Listens for a file that's skipped because the file doesn't exist. """ test_path = '/non-existant/path' skip_listener = SkipListener() reader = stem.descriptor.reader.DescriptorReader(test_path) reader.register_skip_listener(skip_listener.listener) with reader: list(reader) # iterates over all of the descriptors self.assertEqual(1, len(skip_listener.results)) skipped_path, skip_exception = skip_listener.results[0] self.assertEqual(test_path, skipped_path) self.assertTrue(isinstance(skip_exception, stem.descriptor.reader.FileMissing)) def test_unrecognized_metrics_type(self): """ Parses a file that has a valid metrics header, but an unrecognized type. """ test_path = test.integ.descriptor.get_resource('new_metrics_type') skip_listener = SkipListener() reader = stem.descriptor.reader.DescriptorReader(test_path) reader.register_skip_listener(skip_listener.listener) with reader: list(reader) # iterates over all of the descriptors self.assertEqual(1, len(skip_listener.results)) skipped_path, skip_exception = skip_listener.results[0] self.assertEqual(test_path, skipped_path) self.assertTrue(isinstance(skip_exception, stem.descriptor.reader.UnrecognizedType)) self.assertEqual((None, None), skip_exception.mime_type)
lgpl-3.0
-611,135,739,112,700,200
31.450178
142
0.692767
false
windelbouwman/ppci-mirror
test/wasm/test_instruction.py
1
3046
""" Basic instruction tests, like nesting. """ from ppci.wasm import Module, run_wasm_in_node, has_node def dedent(code): return '\n'.join(line[4: ]for line in code.splitlines()).strip() + '\n' def test_instructions1(): """ Test canoncocal form of import and func and inline typedefs. """ # The canonical form CODE0 = dedent(""" (module (type $print (func (param i32))) (type $2 (func)) (import "js" "print_ln" (func $print (type $print))) (start $main) (func $main (type $2) i32.const 1 if i32.const 4 i32.const 3 i32.add call $print else i32.const 5 call $print end) ) """) # Test main code m0 = Module(CODE0) assert m0.to_string() == CODE0 b0 = m0.to_bytes() assert Module(b0).to_bytes() == b0 if has_node(): assert run_wasm_in_node(m0, True) == '7' # Variant 1 - no inentation, nested test for if CODE1 = dedent(""" (module (type $print (func (param i32))) (type $2 (func)) (import "js" "print_ln" (func $print (type $print))) (start $main) (func $main (type $2) (i32.const 1) if (i32.const 4) (i32.const 3) (i32.add) (call $print) else (i32.const 5) (call $print) end ) ) """) m1 = Module(CODE1) assert m1.to_string() == CODE0 assert m1.to_bytes() == b0 # Variant 2 - nesting all the way CODE2 = dedent(""" (module (type $print (func (param i32))) (type $2 (func)) (import "js" "print_ln" (func $print (type $print))) (start $main) (func $main (type $2) (if (i32.const 1) (then (i32.const 4) (i32.const 3) (i32.add) (call $print) ) (else (i32.const 5) (call $print) ) ) ) ) """) m2 = Module(CODE2) assert m2.to_string() == CODE0 assert m2.to_bytes() == b0 # Variant 3 - leave out the else clause # This is described as an "abbreviation", but it seems that we don't # have to always output an else clause in binary form either. CODE3 = dedent(""" (module (type $print (func (param i32))) (type $2 (func)) (import "js" "print_ln" (func $print (type $print))) (start $main) (func $main (type $2) (if (i32.const 1) (then (i32.const 4) (i32.const 3) (i32.add) (call $print) ) ) ) ) """) m3 = Module(CODE3) assert m3.to_string() != CODE0 assert m3.to_bytes() != b0 if has_node(): assert run_wasm_in_node(m3, True) == '7' if __name__ == '__main__': test_instructions1()
bsd-2-clause
-6,786,285,895,563,316,000
22.430769
75
0.459947
false
elena/django
django/conf/global_settings.py
6
22349
""" Default Django settings. Override these with settings in the module pointed to by the DJANGO_SETTINGS_MODULE environment variable. """ # This is defined here as a do-nothing function because we can't import # django.utils.translation -- that module depends on the settings. def gettext_noop(s): return s #################### # CORE # #################### DEBUG = False # Whether the framework should propagate raw exceptions rather than catching # them. This is useful under some testing situations and should never be used # on a live site. DEBUG_PROPAGATE_EXCEPTIONS = False # People who get code error notifications. # In the format [('Full Name', '[email protected]'), ('Full Name', '[email protected]')] ADMINS = [] # List of IP addresses, as strings, that: # * See debug comments, when DEBUG is true # * Receive x-headers INTERNAL_IPS = [] # Hosts/domain names that are valid for this site. # "*" matches anything, ".example.com" matches example.com and all subdomains ALLOWED_HOSTS = [] # Local time zone for this installation. All choices can be found here: # https://en.wikipedia.org/wiki/List_of_tz_zones_by_name (although not all # systems may support all possibilities). When USE_TZ is True, this is # interpreted as the default user time zone. TIME_ZONE = 'America/Chicago' # If you set this to True, Django will use timezone-aware datetimes. USE_TZ = False # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' # Languages we provide translations for, out of the box. LANGUAGES = [ ('af', gettext_noop('Afrikaans')), ('ar', gettext_noop('Arabic')), ('ar-dz', gettext_noop('Algerian Arabic')), ('ast', gettext_noop('Asturian')), ('az', gettext_noop('Azerbaijani')), ('bg', gettext_noop('Bulgarian')), ('be', gettext_noop('Belarusian')), ('bn', gettext_noop('Bengali')), ('br', gettext_noop('Breton')), ('bs', gettext_noop('Bosnian')), ('ca', gettext_noop('Catalan')), ('cs', gettext_noop('Czech')), ('cy', gettext_noop('Welsh')), ('da', gettext_noop('Danish')), ('de', gettext_noop('German')), ('dsb', gettext_noop('Lower Sorbian')), ('el', gettext_noop('Greek')), ('en', gettext_noop('English')), ('en-au', gettext_noop('Australian English')), ('en-gb', gettext_noop('British English')), ('eo', gettext_noop('Esperanto')), ('es', gettext_noop('Spanish')), ('es-ar', gettext_noop('Argentinian Spanish')), ('es-co', gettext_noop('Colombian Spanish')), ('es-mx', gettext_noop('Mexican Spanish')), ('es-ni', gettext_noop('Nicaraguan Spanish')), ('es-ve', gettext_noop('Venezuelan Spanish')), ('et', gettext_noop('Estonian')), ('eu', gettext_noop('Basque')), ('fa', gettext_noop('Persian')), ('fi', gettext_noop('Finnish')), ('fr', gettext_noop('French')), ('fy', gettext_noop('Frisian')), ('ga', gettext_noop('Irish')), ('gd', gettext_noop('Scottish Gaelic')), ('gl', gettext_noop('Galician')), ('he', gettext_noop('Hebrew')), ('hi', gettext_noop('Hindi')), ('hr', gettext_noop('Croatian')), ('hsb', gettext_noop('Upper Sorbian')), ('hu', gettext_noop('Hungarian')), ('hy', gettext_noop('Armenian')), ('ia', gettext_noop('Interlingua')), ('id', gettext_noop('Indonesian')), ('ig', gettext_noop('Igbo')), ('io', gettext_noop('Ido')), ('is', gettext_noop('Icelandic')), ('it', gettext_noop('Italian')), ('ja', gettext_noop('Japanese')), ('ka', gettext_noop('Georgian')), ('kab', gettext_noop('Kabyle')), ('kk', gettext_noop('Kazakh')), ('km', gettext_noop('Khmer')), ('kn', gettext_noop('Kannada')), ('ko', gettext_noop('Korean')), ('ky', gettext_noop('Kyrgyz')), ('lb', gettext_noop('Luxembourgish')), ('lt', gettext_noop('Lithuanian')), ('lv', gettext_noop('Latvian')), ('mk', gettext_noop('Macedonian')), ('ml', gettext_noop('Malayalam')), ('mn', gettext_noop('Mongolian')), ('mr', gettext_noop('Marathi')), ('my', gettext_noop('Burmese')), ('nb', gettext_noop('Norwegian Bokmål')), ('ne', gettext_noop('Nepali')), ('nl', gettext_noop('Dutch')), ('nn', gettext_noop('Norwegian Nynorsk')), ('os', gettext_noop('Ossetic')), ('pa', gettext_noop('Punjabi')), ('pl', gettext_noop('Polish')), ('pt', gettext_noop('Portuguese')), ('pt-br', gettext_noop('Brazilian Portuguese')), ('ro', gettext_noop('Romanian')), ('ru', gettext_noop('Russian')), ('sk', gettext_noop('Slovak')), ('sl', gettext_noop('Slovenian')), ('sq', gettext_noop('Albanian')), ('sr', gettext_noop('Serbian')), ('sr-latn', gettext_noop('Serbian Latin')), ('sv', gettext_noop('Swedish')), ('sw', gettext_noop('Swahili')), ('ta', gettext_noop('Tamil')), ('te', gettext_noop('Telugu')), ('tg', gettext_noop('Tajik')), ('th', gettext_noop('Thai')), ('tk', gettext_noop('Turkmen')), ('tr', gettext_noop('Turkish')), ('tt', gettext_noop('Tatar')), ('udm', gettext_noop('Udmurt')), ('uk', gettext_noop('Ukrainian')), ('ur', gettext_noop('Urdu')), ('uz', gettext_noop('Uzbek')), ('vi', gettext_noop('Vietnamese')), ('zh-hans', gettext_noop('Simplified Chinese')), ('zh-hant', gettext_noop('Traditional Chinese')), ] # Languages using BiDi (right-to-left) layout LANGUAGES_BIDI = ["he", "ar", "ar-dz", "fa", "ur"] # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True LOCALE_PATHS = [] # Settings for language cookie LANGUAGE_COOKIE_NAME = 'django_language' LANGUAGE_COOKIE_AGE = None LANGUAGE_COOKIE_DOMAIN = None LANGUAGE_COOKIE_PATH = '/' LANGUAGE_COOKIE_SECURE = False LANGUAGE_COOKIE_HTTPONLY = False LANGUAGE_COOKIE_SAMESITE = None # If you set this to True, Django will format dates, numbers and calendars # according to user current locale. USE_L10N = False # Not-necessarily-technical managers of the site. They get broken link # notifications and other various emails. MANAGERS = ADMINS # Default charset to use for all HttpResponse objects, if a MIME type isn't # manually specified. It's used to construct the Content-Type header. DEFAULT_CHARSET = 'utf-8' # Email address that error messages come from. SERVER_EMAIL = 'root@localhost' # Database connection info. If left empty, will default to the dummy backend. DATABASES = {} # Classes used to implement DB routing behavior. DATABASE_ROUTERS = [] # The email backend to use. For possible shortcuts see django.core.mail. # The default is to use the SMTP backend. # Third-party backends can be specified by providing a Python path # to a module that defines an EmailBackend class. EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # Host for sending email. EMAIL_HOST = 'localhost' # Port for sending email. EMAIL_PORT = 25 # Whether to send SMTP 'Date' header in the local time zone or in UTC. EMAIL_USE_LOCALTIME = False # Optional SMTP authentication information for EMAIL_HOST. EMAIL_HOST_USER = '' EMAIL_HOST_PASSWORD = '' EMAIL_USE_TLS = False EMAIL_USE_SSL = False EMAIL_SSL_CERTFILE = None EMAIL_SSL_KEYFILE = None EMAIL_TIMEOUT = None # List of strings representing installed apps. INSTALLED_APPS = [] TEMPLATES = [] # Default form rendering class. FORM_RENDERER = 'django.forms.renderers.DjangoTemplates' # Default email address to use for various automated correspondence from # the site managers. DEFAULT_FROM_EMAIL = 'webmaster@localhost' # Subject-line prefix for email messages send with django.core.mail.mail_admins # or ...mail_managers. Make sure to include the trailing space. EMAIL_SUBJECT_PREFIX = '[Django] ' # Whether to append trailing slashes to URLs. APPEND_SLASH = True # Whether to prepend the "www." subdomain to URLs that don't have it. PREPEND_WWW = False # Override the server-derived value of SCRIPT_NAME FORCE_SCRIPT_NAME = None # List of compiled regular expression objects representing User-Agent strings # that are not allowed to visit any page, systemwide. Use this for bad # robots/crawlers. Here are a few examples: # import re # DISALLOWED_USER_AGENTS = [ # re.compile(r'^NaverBot.*'), # re.compile(r'^EmailSiphon.*'), # re.compile(r'^SiteSucker.*'), # re.compile(r'^sohu-search'), # ] DISALLOWED_USER_AGENTS = [] ABSOLUTE_URL_OVERRIDES = {} # List of compiled regular expression objects representing URLs that need not # be reported by BrokenLinkEmailsMiddleware. Here are a few examples: # import re # IGNORABLE_404_URLS = [ # re.compile(r'^/apple-touch-icon.*\.png$'), # re.compile(r'^/favicon.ico$'), # re.compile(r'^/robots.txt$'), # re.compile(r'^/phpmyadmin/'), # re.compile(r'\.(cgi|php|pl)$'), # ] IGNORABLE_404_URLS = [] # A secret key for this particular Django installation. Used in secret-key # hashing algorithms. Set this in your settings, or Django will complain # loudly. SECRET_KEY = '' # Default file storage mechanism that holds media. DEFAULT_FILE_STORAGE = 'django.core.files.storage.FileSystemStorage' # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Example: "/var/www/example.com/static/" STATIC_ROOT = None # URL that handles the static files served from STATIC_ROOT. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = None # List of upload handler classes to be applied in order. FILE_UPLOAD_HANDLERS = [ 'django.core.files.uploadhandler.MemoryFileUploadHandler', 'django.core.files.uploadhandler.TemporaryFileUploadHandler', ] # Maximum size, in bytes, of a request before it will be streamed to the # file system instead of into memory. FILE_UPLOAD_MAX_MEMORY_SIZE = 2621440 # i.e. 2.5 MB # Maximum size in bytes of request data (excluding file uploads) that will be # read before a SuspiciousOperation (RequestDataTooBig) is raised. DATA_UPLOAD_MAX_MEMORY_SIZE = 2621440 # i.e. 2.5 MB # Maximum number of GET/POST parameters that will be read before a # SuspiciousOperation (TooManyFieldsSent) is raised. DATA_UPLOAD_MAX_NUMBER_FIELDS = 1000 # Directory in which upload streamed files will be temporarily saved. A value of # `None` will make Django use the operating system's default temporary directory # (i.e. "/tmp" on *nix systems). FILE_UPLOAD_TEMP_DIR = None # The numeric mode to set newly-uploaded files to. The value should be a mode # you'd pass directly to os.chmod; see https://docs.python.org/library/os.html#files-and-directories. FILE_UPLOAD_PERMISSIONS = 0o644 # The numeric mode to assign to newly-created directories, when uploading files. # The value should be a mode as you'd pass to os.chmod; # see https://docs.python.org/library/os.html#files-and-directories. FILE_UPLOAD_DIRECTORY_PERMISSIONS = None # Python module path where user will place custom format definition. # The directory where this setting is pointing should contain subdirectories # named as the locales, containing a formats.py file # (i.e. "myproject.locale" for myproject/locale/en/formats.py etc. use) FORMAT_MODULE_PATH = None # Default formatting for date objects. See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'N j, Y' # Default formatting for datetime objects. See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATETIME_FORMAT = 'N j, Y, P' # Default formatting for time objects. See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date TIME_FORMAT = 'P' # Default formatting for date objects when only the year and month are relevant. # See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date YEAR_MONTH_FORMAT = 'F Y' # Default formatting for date objects when only the month and day are relevant. # See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date MONTH_DAY_FORMAT = 'F j' # Default short formatting for date objects. See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date SHORT_DATE_FORMAT = 'm/d/Y' # Default short formatting for datetime objects. # See all available format strings here: # https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date SHORT_DATETIME_FORMAT = 'm/d/Y P' # Default formats to be used when parsing dates from input boxes, in order # See all available format string here: # https://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates DATE_INPUT_FORMATS = [ '%Y-%m-%d', '%m/%d/%Y', '%m/%d/%y', # '2006-10-25', '10/25/2006', '10/25/06' '%b %d %Y', '%b %d, %Y', # 'Oct 25 2006', 'Oct 25, 2006' '%d %b %Y', '%d %b, %Y', # '25 Oct 2006', '25 Oct, 2006' '%B %d %Y', '%B %d, %Y', # 'October 25 2006', 'October 25, 2006' '%d %B %Y', '%d %B, %Y', # '25 October 2006', '25 October, 2006' ] # Default formats to be used when parsing times from input boxes, in order # See all available format string here: # https://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates TIME_INPUT_FORMATS = [ '%H:%M:%S', # '14:30:59' '%H:%M:%S.%f', # '14:30:59.000200' '%H:%M', # '14:30' ] # Default formats to be used when parsing dates and times from input boxes, # in order # See all available format string here: # https://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%m/%d/%Y %H:%M:%S', # '10/25/2006 14:30:59' '%m/%d/%Y %H:%M:%S.%f', # '10/25/2006 14:30:59.000200' '%m/%d/%Y %H:%M', # '10/25/2006 14:30' '%m/%d/%y %H:%M:%S', # '10/25/06 14:30:59' '%m/%d/%y %H:%M:%S.%f', # '10/25/06 14:30:59.000200' '%m/%d/%y %H:%M', # '10/25/06 14:30' ] # First day of week, to be used on calendars # 0 means Sunday, 1 means Monday... FIRST_DAY_OF_WEEK = 0 # Decimal separator symbol DECIMAL_SEPARATOR = '.' # Boolean that sets whether to add thousand separator when formatting numbers USE_THOUSAND_SEPARATOR = False # Number of digits that will be together, when splitting them by # THOUSAND_SEPARATOR. 0 means no grouping, 3 means splitting by thousands... NUMBER_GROUPING = 0 # Thousand separator symbol THOUSAND_SEPARATOR = ',' # The tablespaces to use for each model when not specified otherwise. DEFAULT_TABLESPACE = '' DEFAULT_INDEX_TABLESPACE = '' # Default primary key field type. DEFAULT_AUTO_FIELD = 'django.db.models.AutoField' # Default X-Frame-Options header value X_FRAME_OPTIONS = 'DENY' USE_X_FORWARDED_HOST = False USE_X_FORWARDED_PORT = False # The Python dotted path to the WSGI application that Django's internal server # (runserver) will use. If `None`, the return value of # 'django.core.wsgi.get_wsgi_application' is used, thus preserving the same # behavior as previous versions of Django. Otherwise this should point to an # actual WSGI application object. WSGI_APPLICATION = None # If your Django app is behind a proxy that sets a header to specify secure # connections, AND that proxy ensures that user-submitted headers with the # same name are ignored (so that people can't spoof it), set this value to # a tuple of (header_name, header_value). For any requests that come in with # that header/value, request.is_secure() will return True. # WARNING! Only set this if you fully understand what you're doing. Otherwise, # you may be opening yourself up to a security risk. SECURE_PROXY_SSL_HEADER = None ############## # MIDDLEWARE # ############## # List of middleware to use. Order is important; in the request phase, these # middleware will be applied in the order given, and in the response # phase the middleware will be applied in reverse order. MIDDLEWARE = [] ############ # SESSIONS # ############ # Cache to store session data if using the cache session backend. SESSION_CACHE_ALIAS = 'default' # Cookie name. This can be whatever you want. SESSION_COOKIE_NAME = 'sessionid' # Age of cookie, in seconds (default: 2 weeks). SESSION_COOKIE_AGE = 60 * 60 * 24 * 7 * 2 # A string like "example.com", or None for standard domain cookie. SESSION_COOKIE_DOMAIN = None # Whether the session cookie should be secure (https:// only). SESSION_COOKIE_SECURE = False # The path of the session cookie. SESSION_COOKIE_PATH = '/' # Whether to use the HttpOnly flag. SESSION_COOKIE_HTTPONLY = True # Whether to set the flag restricting cookie leaks on cross-site requests. # This can be 'Lax', 'Strict', 'None', or False to disable the flag. SESSION_COOKIE_SAMESITE = 'Lax' # Whether to save the session data on every request. SESSION_SAVE_EVERY_REQUEST = False # Whether a user's session cookie expires when the Web browser is closed. SESSION_EXPIRE_AT_BROWSER_CLOSE = False # The module to store session data SESSION_ENGINE = 'django.contrib.sessions.backends.db' # Directory to store session files if using the file session module. If None, # the backend will use a sensible default. SESSION_FILE_PATH = None # class to serialize session data SESSION_SERIALIZER = 'django.contrib.sessions.serializers.JSONSerializer' ######### # CACHE # ######### # The cache backends to use. CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', } } CACHE_MIDDLEWARE_KEY_PREFIX = '' CACHE_MIDDLEWARE_SECONDS = 600 CACHE_MIDDLEWARE_ALIAS = 'default' ################## # AUTHENTICATION # ################## AUTH_USER_MODEL = 'auth.User' AUTHENTICATION_BACKENDS = ['django.contrib.auth.backends.ModelBackend'] LOGIN_URL = '/accounts/login/' LOGIN_REDIRECT_URL = '/accounts/profile/' LOGOUT_REDIRECT_URL = None # The number of seconds a password reset link is valid for (default: 3 days). PASSWORD_RESET_TIMEOUT = 60 * 60 * 24 * 3 # the first hasher in this list is the preferred algorithm. any # password using different algorithms will be converted automatically # upon login PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', ] AUTH_PASSWORD_VALIDATORS = [] ########### # SIGNING # ########### SIGNING_BACKEND = 'django.core.signing.TimestampSigner' ######## # CSRF # ######## # Dotted path to callable to be used as view when a request is # rejected by the CSRF middleware. CSRF_FAILURE_VIEW = 'django.views.csrf.csrf_failure' # Settings for CSRF cookie. CSRF_COOKIE_NAME = 'csrftoken' CSRF_COOKIE_AGE = 60 * 60 * 24 * 7 * 52 CSRF_COOKIE_DOMAIN = None CSRF_COOKIE_PATH = '/' CSRF_COOKIE_SECURE = False CSRF_COOKIE_HTTPONLY = False CSRF_COOKIE_SAMESITE = 'Lax' CSRF_HEADER_NAME = 'HTTP_X_CSRFTOKEN' CSRF_TRUSTED_ORIGINS = [] CSRF_USE_SESSIONS = False ############ # MESSAGES # ############ # Class to use as messages backend MESSAGE_STORAGE = 'django.contrib.messages.storage.fallback.FallbackStorage' # Default values of MESSAGE_LEVEL and MESSAGE_TAGS are defined within # django.contrib.messages to avoid imports in this settings file. ########### # LOGGING # ########### # The callable to use to configure logging LOGGING_CONFIG = 'logging.config.dictConfig' # Custom logging configuration. LOGGING = {} # Default exception reporter class used in case none has been # specifically assigned to the HttpRequest instance. DEFAULT_EXCEPTION_REPORTER = 'django.views.debug.ExceptionReporter' # Default exception reporter filter class used in case none has been # specifically assigned to the HttpRequest instance. DEFAULT_EXCEPTION_REPORTER_FILTER = 'django.views.debug.SafeExceptionReporterFilter' ########### # TESTING # ########### # The name of the class to use to run the test suite TEST_RUNNER = 'django.test.runner.DiscoverRunner' # Apps that don't need to be serialized at test database creation time # (only apps with migrations are to start with) TEST_NON_SERIALIZED_APPS = [] ############ # FIXTURES # ############ # The list of directories to search for fixtures FIXTURE_DIRS = [] ############### # STATICFILES # ############### # A list of locations of additional static files STATICFILES_DIRS = [] # The default file storage backend used during the build process STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.StaticFilesStorage' # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ] ############## # MIGRATIONS # ############## # Migration module overrides for apps, by app label. MIGRATION_MODULES = {} ################# # SYSTEM CHECKS # ################# # List of all issues generated by system checks that should be silenced. Light # issues like warnings, infos or debugs will not generate a message. Silencing # serious issues like errors and criticals does not result in hiding the # message, but Django will not stop you from e.g. running server. SILENCED_SYSTEM_CHECKS = [] ####################### # SECURITY MIDDLEWARE # ####################### SECURE_BROWSER_XSS_FILTER = False SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_HSTS_INCLUDE_SUBDOMAINS = False SECURE_HSTS_PRELOAD = False SECURE_HSTS_SECONDS = 0 SECURE_REDIRECT_EXEMPT = [] SECURE_REFERRER_POLICY = 'same-origin' SECURE_SSL_HOST = None SECURE_SSL_REDIRECT = False
bsd-3-clause
7,911,465,464,581,487,000
33.648062
101
0.687489
false
IMIO/django-fixmystreet
django_fixmystreet/fixmystreet/views/reports/subscribers.py
1
2154
from django.shortcuts import get_object_or_404 from django.http import HttpResponseRedirect from django.utils.translation import ugettext as _ from django.contrib import messages from django.db import IntegrityError from django_fixmystreet.fixmystreet.models import FMSUser from django_fixmystreet.fixmystreet.models import Report, ReportSubscription def create(request, report_id): report = get_object_or_404(Report, id=report_id) #CREATE USER CITIZEN IF NECESSARY try: user = FMSUser.objects.get(email=request.REQUEST.get('citizen_email')) except FMSUser.DoesNotExist: #Add information about the citizen connected if it does not exist user = FMSUser.objects.create(username=request.REQUEST.get('citizen_email'), email=request.REQUEST.get('citizen_email'), first_name='ANONYMOUS', last_name='ANONYMOUS', agent=False, contractor=False, manager=False, leader=False) #VERIFY THAT A SUBSCRIPTION DOES NOT ALREADY EXIST if not ReportSubscription.objects.filter(subscriber=user, report=report).exists(): subscriber = ReportSubscription(subscriber=user, report=report) subscriber.save() messages.add_message(request, messages.SUCCESS, _("You have subscribed from updates successfully")) return HttpResponseRedirect(report.get_absolute_url()) def remove(request, report_id): report = get_object_or_404(Report, id=report_id) try: user = FMSUser.objects.get(email=request.REQUEST.get('citizen_email')) except FMSUser.DoesNotExist: HttpResponseRedirect(report.get_absolute_url()) #VERIFY THAT A SUBSCRIPTION DOES NOT ALREADY EXIST try: subscription = ReportSubscription.objects.get(subscriber=user, report=report) subscription.delete() messages.add_message(request, messages.SUCCESS, _("You have unsubscribed from updates successfully")) except ReportSubscription.DoesNotExist: #Do nothing. A subscription for this user already exists... messages.add_message(request, messages.SUCCESS, _("You have unsubscribed from updates successfully")) return HttpResponseRedirect(report.get_absolute_url())
agpl-3.0
3,971,464,901,499,527,000
42.959184
235
0.749304
false
8l/beri
cheritest/trunk/tests/branch/test_raw_bltzl_lt_back.py
2
1732
#- # Copyright (c) 2011 Robert N. M. Watson # All rights reserved. # # This software was developed by SRI International and the University of # Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 # ("CTSRD"), as part of the DARPA CRASH research programme. # # @BERI_LICENSE_HEADER_START@ # # Licensed to BERI Open Systems C.I.C. (BERI) under one or more contributor # license agreements. See the NOTICE file distributed with this work for # additional information regarding copyright ownership. BERI licenses this # file to you under the BERI Hardware-Software License, Version 1.0 (the # "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at: # # http://www.beri-open-systems.org/legal/license-1-0.txt # # Unless required by applicable law or agreed to in writing, Work distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # @BERI_LICENSE_HEADER_END@ # from beritest_tools import BaseBERITestCase class test_raw_bltzl_lt_back(BaseBERITestCase): def test_before_bltzl(self): self.assertRegisterEqual(self.MIPS.a0, 1, "instruction before backward bltzl missed") def test_bltzl_branch_delay(self): self.assertRegisterEqual(self.MIPS.a1, 2, "instruction in branch-delay slot missed") def test_bltzl_skipped(self): self.assertRegisterNotEqual(self.MIPS.a2, 3, "branch didn't happen") def test_bltzl_target(self): self.assertRegisterEqual(self.MIPS.a3, 4, "instruction at branch target didn't run")
apache-2.0
7,195,551,675,817,355,000
41.243902
93
0.75
false
tharwan/CoopCPS
mpi_result_plot.py
1
2363
#!/usr/bin/env python # -*- coding: UTF-8 -*- from utilities import * from image_database import saveFiguesWithData from sys import argv, exit from numpy import load import argparse import seaborn as sns from os import path as pathtools parser = argparse.ArgumentParser(description='process data from cluster') parser.add_argument('file',help="what file to work on",nargs='*') parser.add_argument('-m','--metadata',action='store_true',help="print only metadata") parser.add_argument('-s','--save',action='store_true',help="save images to dropbox") parser.add_argument('--save_only',action='store_true',help="save images to dropbox, do not show on screen") parser.add_argument('-p','--save_path',help="override the dafault save path") args = parser.parse_args() for filename in args.file: f = load(filename) print filename meta = str(f['metadata']) meta = meta.replace(';','\n') print meta if args.metadata: exit() plt.close("all") figs = {} fig_k = plt.figure() plot_appliances_aggregate(f['appliances'],f['t']) figs['appliances']=fig_k fig_behaviour = plt.figure(figsize=(12,6)) matrix = plot_behavior(f['beh_matrix']) figs['behavior']=fig_behaviour agent_power = plt.figure() plot_agent_power(f['P_all'],f['t'][1:]) figs['agent_power']=agent_power overall_power = plt.figure() plot_power_usage(f['P_global'],f['t'][1:]) figs['overall_power']=overall_power plt.figure() plot_appl_matrix(f['appliances']) plt.figure() matrix = f['appliances'] app = downsample(matrix) time = downsample(f['t']) sns.tsplot(app,time=time, err_style="unit_traces", err_palette=sns.dark_palette("crimson", len(app)), color="k"); plt.xlabel('time') plt.ylabel('app') plt.figure() s = f['selfish'] plt.plot(s) plt.ylim([0,1]) plt.xlabel('agent') plt.ylabel('selfishness') meta = str(f['metadata']) meta_dict = {pair.split(':')[0]:pair.split(':')[1] for pair in meta.split(';')} P_max = float(meta_dict['U'])**2/float(meta_dict['Ri'])/4 p_matrix = f['P_all'] sum_P = np.mean(p_matrix,axis=1) p_equal = P_max/float(p_matrix.shape[0]) print "p_equal", p_equal, "P_max", P_max, "ptp", np.ptp(sum_P-p_equal), "gini",gini_coeff(sum_P) if args.save or args.save_only: path = args.save_path saveFiguesWithData(path, figs, str(f['metadata']),prefix=pathtools.basename(filename)[:-4]) if not(args.save_only): plt.show()
mit
3,038,978,000,681,454,000
26.16092
114
0.677529
false
skibyte/gdblib
gdblib/gdbstate.py
1
1084
# # GdbLib - A Gdb python library. # Copyright (C) 2012 Fernando Castillo # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # class GDBState(): def __init__(self): self.connected = False def setCurrentLocation(self,currentfile,currentline): self.currentfile = currentfile self.currentline = currentline def isConnected(self): return self.connected def setConnected(self, connected): self.connected = connected
lgpl-3.0
-217,622,145,809,591,870
35.133333
77
0.72417
false
robertsj/poropy
pyqtgraph/examples/GraphicsScene.py
1
1462
# -*- coding: utf-8 -*- ## Add path to library (just for examples; you do not need this) import sys, os sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg from pyqtgraph.GraphicsScene import GraphicsScene app = QtGui.QApplication([]) win = pg.GraphicsView() win.show() class Obj(QtGui.QGraphicsObject): def __init__(self): QtGui.QGraphicsObject.__init__(self) GraphicsScene.registerObject(self) def paint(self, p, *args): p.setPen(pg.mkPen(200,200,200)) p.drawRect(self.boundingRect()) def boundingRect(self): return QtCore.QRectF(0, 0, 20, 20) def mouseClickEvent(self, ev): if ev.double(): print "double click" else: print "click" ev.accept() #def mouseDragEvent(self, ev): #print "drag" #ev.accept() #self.setPos(self.pos() + ev.pos()-ev.lastPos()) vb = pg.ViewBox() win.setCentralItem(vb) obj = Obj() vb.addItem(obj) obj2 = Obj() win.addItem(obj2) def clicked(): print "button click" btn = QtGui.QPushButton("BTN") btn.clicked.connect(clicked) prox = QtGui.QGraphicsProxyWidget() prox.setWidget(btn) prox.setPos(100,0) vb.addItem(prox) g = pg.GridItem() vb.addItem(g) ## Start Qt event loop unless running in interactive mode. if sys.flags.interactive != 1: app.exec_()
mit
6,903,885,841,460,964,000
21.492308
71
0.620383
false
interpss/DeepMachineLearning
ipss.dml/py/c_graph/single_net/predict_voltage5.py
1
3237
''' Copyright (C) 2005-17 www.interpss.org Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' Use NN-model to predict the bus voltage for a set of scale-factors Starting from the predict_voltage1.py case, the following changes are made - The NN-Model Loadflow method is used - ieee14-2 case is used, where PV bus limit are set to a very large number ''' from datetime import datetime import tensorflow as tf import sys sys.path.insert(0, '../..') import lib.common_func as cf train_points = 100 # # load the IEEE-14Bus case # filename = 'testdata/ieee14-2.ieee' noBus, noBranch = cf.ipss_app.loadCase(filename, 'NNLFLoadChangeTrainCaseBuilder') print(filename, ' loaded, no of Buses, Branches:', noBus, ', ', noBranch) # define model size size = noBus * 2 #print('size: ', size) # define model variables W1 = tf.Variable(tf.zeros([size,size])) b1 = tf.Variable(tf.zeros([size])) init = tf.initialize_all_variables() # define model def nn_model(data): output = tf.matmul(data, W1) + b1 return output # define loss x = tf.placeholder(tf.float32, [None, size]) y = tf.placeholder(tf.float32) error = tf.square(nn_model(x) - y) loss = tf.reduce_sum(error) # define training optimization optimizer = tf.train.GradientDescentOptimizer(cf.learning_rate) train = optimizer.minimize(loss) # run the computation graph with tf.Session() as sess : sess.run(init) # run the training part # ===================== print('Begin training: ', datetime.now()) # retrieve training set trainSet = cf.ipss_app.getTrainSet(train_points) train_x, train_y = cf.transfer2PyArrays(trainSet) # run the training part for i in range(cf.train_steps): if (i % 1000 == 0) : print('Training step: ', i) sess.run(train, {x:train_x, y:train_y}) print('End training: ', datetime.now()) ''' print('W1: ', sess.run(W1)) print('b1: ', sess.run(b1)) ''' # run the verification part # ========================= # retrieve a test case for factor in [0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.55] : #for factor in [0.45, 1.0, 1.55] : testCase = cf.ipss_app.getTestCase(factor) test_x, test_y = cf.transfer2PyArrays(testCase) # compute model output (network voltage) model_y = sess.run(nn_model(x), {x:test_x}) #printArray(model_y, 'model_y') netVoltage = cf.transfer2JavaDblAry(model_y[0], size) print('model out mismatch: ', cf.ipss_app.getMismatchInfo(netVoltage))
apache-2.0
-7,357,071,836,146,111,000
27.162162
87
0.623417
false
curtisallen/Alarmageddon
setup.py
1
1170
from setuptools import setup setup( name = "Alarmageddon", description = "Automated testing and reporting", version = "1.0.0", author = "Tim Stewart, Scott Hellman", author_email = "[email protected], [email protected]", url = "https://github.com/PearsonEducation/Alarmageddon/tarball/1.0.0", license = "Apache2", classifiers=[ "Development Status :: 5 - Production/Stable", "Programming Language :: Python :: 2 :: Only", "License :: OSI Approved :: Apache Software License" ], packages = ['alarmageddon', "alarmageddon.publishing", "alarmageddon.validations"], install_requires = ["fabric==1.8.0", "Jinja2==2.7.2", "requests==2.0.0", "statsd==2.0.3", "colorama==0.3.2", "pycrypto==2.6.1", "pika==0.9.13", "pytest>=2.4.0", "pytest-localserver==0.3.2"], )
apache-2.0
1,686,784,770,361,715,700
40.785714
80
0.461538
false
lzw120/django
mysite/mysite/settings.py
1
5565
# Django settings for mysite project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '/Users/zewenli/git/django/mysite/mysite/books/mydata.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '19xu0m_c&amp;qbwxk@hl1n0um2nvfo&amp;=@jclatjdf!#_z)z-k5s5=' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( # 'django.middleware.common.CommonMiddleware', # 'django.contrib.sessions.middleware.SessionMiddleware', # 'django.middleware.csrf.CsrfViewMiddleware', # 'django.contrib.auth.middleware.AuthenticationMiddleware', # 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'mysite.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'mysite.wsgi.application' TEMPLATE_DIRS = ( # a better idea would be like this: # import os.path # os.path.join(os.path.dirname(__file__), 'templates').replace('\\','/'), # but never mind, sicne this is my own small django app '/Users/zewenli/git/django/mysite//mysite/templates', # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( # 'django.contrib.auth', # 'django.contrib.contenttypes', # 'django.contrib.sessions', # 'django.contrib.sites', # 'django.contrib.messages', # 'django.contrib.staticfiles', 'mysite.books', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
bsd-3-clause
-9,091,811,255,458,302,000
34.44586
140
0.679245
false
F483/btctxstore
tests/api/validate_wallet.py
2
2131
#!/usr/bin/env python # coding: utf-8 # Copyright (c) 2015 Fabian Barkhau <[email protected]> # License: MIT (see LICENSE file) from __future__ import print_function from __future__ import unicode_literals import unittest from btctxstore import exceptions from btctxstore import BtcTxStore S_HWIF = "tprv8ZgxMBicQKsPeFZuyoMy197pX8iJeTasLVYEeb68cj489fmCz7kxP8vAfJp3rWebDT3nLvDsBaz3CqnUfdhr1wbjmhUNwK5Hf7dN2Er9btD" B_HWIF = b"tprv8ZgxMBicQKsPeFZuyoMy197pX8iJeTasLVYEeb68cj489fmCz7kxP8vAfJp3rWebDT3nLvDsBaz3CqnUfdhr1wbjmhUNwK5Hf7dN2Er9btD" U_HWIF = u"tprv8ZgxMBicQKsPeFZuyoMy197pX8iJeTasLVYEeb68cj489fmCz7kxP8vAfJp3rWebDT3nLvDsBaz3CqnUfdhr1wbjmhUNwK5Hf7dN2Er9btD" class TestValidateWallet(unittest.TestCase): def setUp(self): self.testnet_api = BtcTxStore(dryrun=True, testnet=True) self.mainnet_api = BtcTxStore(dryrun=True, testnet=False) self.testnet_wallet = self.testnet_api.create_wallet() self.mainnet_wallet = self.mainnet_api.create_wallet() self.testnet_key = self.testnet_api.get_key(self.testnet_wallet) self.mainnet_key = self.mainnet_api.get_key(self.mainnet_wallet) def test_checks_networks(self): self.assertTrue(self.testnet_api.validate_wallet(self.testnet_wallet)) self.assertTrue(self.mainnet_api.validate_wallet(self.mainnet_wallet)) self.assertFalse(self.testnet_api.validate_wallet(self.mainnet_wallet)) self.assertFalse(self.mainnet_api.validate_wallet(self.testnet_wallet)) def test_doesnt_validate_keys(self): self.assertFalse(self.testnet_api.validate_wallet(self.testnet_key)) self.assertFalse(self.mainnet_api.validate_wallet(self.testnet_key)) self.assertFalse(self.testnet_api.validate_wallet(self.mainnet_key)) self.assertFalse(self.mainnet_api.validate_wallet(self.mainnet_key)) def test_correct_types(self): self.assertTrue(self.testnet_api.validate_wallet(S_HWIF)) self.assertTrue(self.testnet_api.validate_wallet(B_HWIF)) self.assertTrue(self.testnet_api.validate_wallet(U_HWIF)) if __name__ == '__main__': unittest.main()
mit
-3,874,034,809,327,010,000
43.395833
123
0.758799
false
willsirius/DualTreeRRTStartMotionPlanning
pythonVision2/userdefined.py
1
13777
import time import openravepy import sys import numpy as np from numpy import sin,cos import matplotlib.mlab as mlab import matplotlib.pyplot as plt # import random import transformationFunction as tf import kdtree import scipy.spatial as spatial import cgkit.all as cg # weight of quaternion in distance QWEIGHT = 0.1 def S2CQ(s): # return the configuration part of a state point # s = [x,v,Q,W] return s[0:3]+s[6:10] def nnNodeIndexPathSQ(s,path,startIndex): # return the nearest node index in path of state point s, index smaller than startIndex won't count minL = 1000 for i in range(startIndex,len(path)): dist = distCSQ(s,path[i]) if minL > dist: minIndex = i minL = dist return minIndex def sampleFSC(s,c): # sample force vector at state s while setting c as the goal # error is the position error with the goal # stdev = 1 # q = s[6:10] # R = Q2R(q) # zw = np.matmul(R,[0,0,1]) # zproj = zw[2] # average = 4.5325/zproj # # for the control part # R = Q2R(s[6:10]) # X = Q2R(s[0:3]) # V = np.array(s[3:6]) # O = np.array(s[10:13]) # dR = Q2R(c[3:7]) # dX = np.array(c[0:3]) # dV = np.array([0,0,0]) # dO = dV # eR = vee(0.5*(np.matmul(dR.T,R)-np.matmul(R.T,dR))) # eO = O - np.matmul(np.matmul(R.T,dR),dO) stdev = 0.6 R = Q2R(s[6:10]) X = s[0:3] V = np.array(s[3:6]) O = np.array(s[10:13]) dR = Q2R(c[3:7]) dX = np.array(c[0:3]) dV = np.array([0,0,0]) dO = dV zw = np.matmul(R,[0,0,1]) zproj = zw[2] average = 4.5325/zproj eX = dX - X eXb = np.matmul(R.T,eX) #error on X in body Frame eVb = np.matmul(R.T,dV - V) kz = 1 kx = 0.5 ky = 0.5 kv = 0.3 eXb = eXb + eVb*kv eXx = eXb[0] eXy = eXb[1] eXz = eXb[2] average = average + eXz*kz f1 = np.random.normal(average + 0.5*kx*eXx, stdev) f2 = np.random.normal(average + 0.5*ky*eXy, stdev) f3 = np.random.normal(average - 0.5*kx*eXx, stdev) f4 = np.random.normal(average - 0.5*ky*eXy, stdev) f = [f1,f2,f3,f4] return f def distCSQ(s,c,w = QWEIGHT): # return the distance between a state point and a configuration point # using quaternion # s = [x,v,Q,W] return distXQ(S2CQ(s),c,w) def sampleFS(s): # sample a fore vector # based on the current state and try to balance the copter # avf = 1.85*9.8/4 stdev = 0.5 q = s[6:10] R = Q2R(q) zw = np.matmul(R,[0,0,1]) zproj = zw[2] average = 4.5325/(0.5*zproj+0.5) f1 = abs(np.random.normal(average, stdev)) f2 = abs(np.random.normal(average, stdev)) f3 = abs(np.random.normal(average, stdev)) f4 = abs(np.random.normal(average, stdev)) f = [f1,f2,f3,f4] return f def sampleF(): # sample a fore vector stdev = 1 average = 5; f1 = abs(np.random.normal(average, stdev)) f2 = abs(np.random.normal(average, stdev)) f3 = abs(np.random.normal(average, stdev)) f4 = abs(np.random.normal(average, stdev)) f = [f1,f2,f3,f4] return f def distXQ(a,b, w = QWEIGHT): # return the distance between two configuration ax = np.array(a[0:3]) aq = np.array(a[3:7]) bx = np.array(b[0:3]) bq = np.array(b[3:7]) return np.linalg.norm(ax - bx) + w* (1 - np.abs(np.dot(aq,bq))) def nnNodeCQ(tree,node): # tree is a dictionary # node is a list # Configuratoin space # Using quaternion for orientation min = 10000 for i in tree: iToNode = distXQ(node,i) if iToNode < min: min = iToNode minIndex = i return minIndex def xyzt(start,end,t): # return a interpolation of start to end at t return list((np.array(end)-np.array(start))*t + np.array(start)) def stepXQ(start,end,n): # return a configuration sequence in the form of [X,Q] # n >=2 if n == 2: return [start,end] qs = cg.quat(start[3:7]) qe = cg.quat(end[3:7]) xyzs = start[0:3] xyze = end[0:3] nodes = [] for i in range(0,n): t = float(i)/(n-1) # print t qt = cg.slerp(t, qs, qe, shortest=True) nodes.append(list(xyzt(xyzs,xyze,t)+[qt.w,qt.x,qt.y,qt.z])) return nodes def stepNodesQ(start,end,step): # return a list of nodes start from the s to e, with a specific step # the node is in the form of [X,Q] # the returned path exclude the start l = distXQ(start,end) if l <= step: return [end] else: n = int(np.ceil(l/step)) + 1 nodes = stepXQ(start , end , n) del nodes[0] nodes.pop() nodes.append(end) return nodes def discretePath(path, step = 0.1): # input a path and a max step, return a discreterized path with maximum step newPath = [path[0]] for i in range(0,len(path)-1): NodeS = path[i] NodeE = path[i+1] seg = stepNodesQ(NodeS,NodeE,step) newPath = newPath + seg return newPath def step1NodeQ(start,end,step): # return a list of nodes start from the s to e, with a specific step l = distXQ(start,end) if l <= step: return end else: t = step/l qs = cg.quat(start[3:7]) qe = cg.quat(end[3:7]) qt = cg.slerp(t, qs, qe, shortest=True) return list(xyzt(start[0:3],end[0:3],t)+[qt.w,qt.x,qt.y,qt.z]) def getpath(tree,goal): # get the path from a RRT tree # tree is in dictionary # path , goal is list path = [goal] while 1: if tree[tuple(path[0])] == tuple(path[0]): break path = [list(tree[tuple(path[0])])]+path return path def nodesDist(x,y): return np.linalg.norm(np.asarray(x)-np.asarray(y)) def stepNodes(start,end,step): # return a list of nodes start from the s to e, with a specific step l = nodesDist(start,end) if l <= step: return [end] else: n = int(np.ceil(l/step)) delta = (np.asarray(end)-np.asarray(start))/l*step nodes = [] for i in range(0,n-1): nodes.append(list(np.asarray(start)+delta*(i+1))) nodes.append(end) return nodes def step1Node(start,end,step): # return a node steer to end from start l = nodesDist(start,end) if l <= step: return end else: return list(np.asarray(start)+(np.asarray(end)-np.asarray(start))/l*step) def plotHist(x): # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.show() def limitTo(a,lower,upper): if a <= lower: return lower if a >= upper: return upper return a # sample a anlge from # [-4.5,3.5,-2.2,2.2,0.21,1.54] def sampleCE(workspaceBound = [-4.5,4.5,-2.2,2.2,0.21,1.54]): x = np.random.uniform(workspaceBound[0],workspaceBound[1]) y = np.random.uniform(workspaceBound[2],workspaceBound[3]) z = np.random.uniform(workspaceBound[4],workspaceBound[5]) q1 = np.random.uniform(0,2*np.pi) q3 = np.random.uniform(0,2*np.pi) while 1: q2 = np.abs(np.random.normal(0,np.pi/4)) if q2 <= np.pi/2: break return [x,y,z,q1,q2,q3] def sampleCQ(workspaceBound = [-4.5,4.5,-2.2,2.2,0.21,1.54]): x = np.random.uniform(workspaceBound[0],workspaceBound[1]) y = np.random.uniform(workspaceBound[2],workspaceBound[3]) z = np.random.uniform(workspaceBound[4],workspaceBound[5]) q1 = np.random.uniform(0,2*np.pi) q3 = np.random.uniform(0,2*np.pi) # q3 = 0 #np.random.uniform(0,2*np.pi) # while 1: # q2 = np.abs(np.random.normal(0,np.pi/2)) # if q2 <= np.pi/2: # break q2 = np.random.uniform(0,0.5*np.pi) return [x,y,z] + list(tf.quaternion_from_euler(q1,q2,q3,'rzxz')) def E2Q(x): return x[0:3] + list(tf.quaternion_from_euler(x[3],x[4],x[5],'rzxz')) def Q2R(Q): # convert a quaternion to a rotation matrix # input must be a unit quaternion qw = Q[0] qx = Q[1] qy = Q[2] qz = Q[3] R = np.array([[1 - 2*qy**2 - 2*qz**2, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw], [2*qx*qy + 2*qz*qw, 1 - 2*qx**2 - 2*qz**2, 2*qy*qz - 2*qx*qw], [2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw ,1 - 2*qx**2 - 2*qy**2]]) return R def genCQ(x,y,z,q1,q2,q3): # generate a quaternion by parameters sq32 = sin(q3/2) sq1 = sin(q1) # print sq32 # print sq1 return [x,y,z,cos(q3/2),sq32*sq1*cos(q2),sq32*sq1*sin(q2),sq32*cos(q1)] def hat(v): # hat map of a vector # input an numpy array or list, output an numpy array return np.array([[0,-v[2],v[1]],[v[2],0,-v[0]],[-v[1],v[0],0]]) def vee(A): # inverse of hat map return np.array([A[2,1],A[0,2],A[1,0]]) def cross(a, b): c = np.array([[a[1]*b[2] - a[2]*b[1]], [a[2]*b[0] - a[0]*b[2]], [a[0]*b[1] - a[1]*b[0]]]) return c def updateState(s1,u,ts): # update state x1 to x2 with control input u and time step ts # s uses position vector and quaternion to represent # s = [x,v,Q,W] Q is the position,velocity, attitude quaternion ad angular velocity # the quaternion are translated to a rotation matrix for computation # then the rotatoin matrix is converted to quaternion before return # input and output are both lists # u rotation speed of each motor # a accelatation in inertial frame # x position in inertial frame # v velocity in inertial frame # Q rotation quaternion of the body in the inertial frame # W angular velocity in the body frame # M moment vector in the body fixed frame # m total mass of the drone # Rd the derivetive of rotation matrix # J inertia matrix # ctf constant to convert force to torque: f*ctf = t # MV moment vector f,mx,my,mz J = np.array([[0.04,0,0], [0,0.04,0], [0,0,0.07]]) Jinv = np.array([[ 25. , 0. , 0. ], [ 0. , 25. , 0. ], [ 0. , 0. , 14.28571429]]) m = 1.85 d = 0.2 ctf = 0.008 g = 9.8 e3 = np.array([0,0,1]) MV = np.matmul(np.array([[1,1,1,1],[0,-d,0,d],[d,0,-d,0],[-ctf,ctf,-ctf,ctf]]),np.array([u[0],u[1],u[2],u[3]])) f = MV[0] M = MV[[1,2,3]] x1 = np.array(s1[0:3]) v1 = np.array(s1[3:6]) Q1 = np.array(s1[6:10]) W1 = np.array(s1[10:13]) R1 = Q2R(Q1) R1d = np.matmul(R1,hat(W1)) a = - g*e3+(f*np.matmul(R1,e3))/m W1d = np.matmul( Jinv, M - np.cross(W1,np.matmul(J,W1))) x2 = x1 + ts*v1 v2 = v1 + ts*a R2 = R1 + ts*R1d W2 = W1 + ts*W1d R2t = np.identity(4) R2t[0:3,0:3] = R2 Q2 = tf.quaternion_from_matrix(R2t) s2 = list(x2)+list(v2)+list(Q2)+list(W2) return s2 # start = [1,2,3,1,0,0,0] # end = [3,2,5,0,1,0,0] # # stepNodesQ # for i in stepNodesQ(start,end,0.1): # print i#,distXQ(i,start),distXQ(i,end) # a = np.array([1,2,3]) # print np.dot(a,a) # print "test update state" # s2 = [0,0,0,0,0,0,1,0,0,0,0,0,0] # # s1 = [1,1,1,1,0,0,0,0.2,0.2,0.2,0.1,0.1,-0.1] # u = [0,0,0,0] # ts = 0.02 # t = range(0,100) # for tt in t: # s2 = updateState(s2,u,ts) # x1 = np.array(s2[0:3]) # v1 = np.array(s2[3:6]) # Q1 = np.array(s2[6:10]) # W1 = np.array(s2[10:13]) # E1 = tf.euler_from_quaternion(Q1) # print x1 # print v1 # print Q1 # print W1 # axarr[0, 0].plot(x, y) # axarr[0, 0].set_title('Axis [0,0]') # axarr[0, 1].scatter(x, y) # axarr[0, 1].set_title('Axis [0,1]') # axarr[1, 0].plot(x, y ** 2) # axarr[1, 0].set_title('Axis [1,0]') # axarr[1, 1].scatter(x, y ** 2) # axarr[1, 1].set_title('Axis [1,1]') # # Fine-tune figure; hide x ticks for top plots and y ticks for right plots # plt.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False) # plt.setp([a.get_yticklabels() for a in axarr[:, 1]], visible=False) # q = [1,0,0,0] # q0 = tf.random_quaternion() # r0 = Q2R(q0) # print hat([1,2,3]) # print tf.euler_from_matrix(r0) # print tf.euler_from_quaternion(q0) # print hat([1,2,3]) # print [1,2,3,4][3] # v = [1,2,3] # np.array([0,-v[2],v[1]],[v[2],0,-v[0]],[-v[1],v[0],0]) # print sampleRotation() # # print np.random.normal(0, 3.14, 1) # eM = tf.euler_matrix(0,0,1.57) # print eM # print np.random.uniform(0,3) # # print 1 # print tf.random_rotation_matrix() # print np.dot(tf.random_quaternion(),tf.random_quaternion()) # print np.matmul(tf.random_rotation_matrix(),tf.random_rotation_matrix()) # start = tf.random_quaternion(); # print start # print tuple(start) # a = {tuple(start):tuple(start)} # print a # print a[tuple(start)] # x = [sampleC()]; # KDtree = kdtree.create(x) # print x # for i in range(0,200): # # x.append(sampleC()[5]) # newnode =sampleC() # x.append(newnode) # KDtree.add(newnode) # # print x # kdtree.visualize(KDtree) # node = sampleC() # print node # a = KDtree.search_nn(node)[0].data # print a # aa = 1000 # for i in x: # # print "this is i" # # print np.asarray(i) # # print type(np.asarray(i)) # # print np.linalg.norm(np.asarray(i),np.asarray(i)) # aa = min(aa,np.linalg.norm(np.asarray(i)-np.asarray(node))) # print aa # print np.linalg.norm(np.asarray(a)-np.asarray(node)) # print nodesDist(1,3) # print nodesDist([1,2,3],[4,5,6]) # print np.power(nodesDist([[2,3,4],[2,3,4]],[[1,2,3],[1,2,3]]),2) # print np.asarray([[2,3,4],[2,3,4]]) # print np.floor(3.4) # yy = []; # yy.append([1,2,3]) # yy.append([1,2,5]) # print yy # print "" # print step1Node([30,40],[0,0.1],5) # a = {(2,3):(1,2),(1,2):(1,2),(3,4):(1,2),(5,6):(3,4),(9,8):(3,4)}; # print a # print getpath(a,[5,6]) # print "" # points = np.array([ (3, 4), (1, 2),(4, 5),(6,7),(2,5),(2,4)]) # points = [[1,2],[4,5],[5,2]] # point_tree = spatial.KDTree(points) # This finds the index of all points within distance 1 of [1.5,2.5]. # print(point_tree.query_ball_point([1.5, 2.5], 2)) # print point_tree.query([1.5, 2.5]) # print point_tree.data[point_tree.query([1.5, 2.5])[1]] # [0] # # This gives the point in the KDTree which is within 1 unit of [1.5, 2.5] # print(point_tree.data[point_tree.query_ball_point([1.5, 2.5], 1)]) # # [[1 2]] # # More than one point is within 3 units of [1.5, 1.6]. # print(point_tree.data[point_tree.query_ball_point([1.5, 1.6], 3)]) # # [[1 2] # # [3 4]] # x = [] # for i in range(0,1000): # while 1: # q1 = np.random.normal(np.pi/4,np.pi/8) # if np.abs(q1-np.pi/4) <= np.pi/4: # break # x.append(q1) # plotHist(x) # startconfig = [ 4.0,-1.5 ,0.2 ,1 ,0.0, 0.0, 0.0 ] # print E2Q(startconfig)
mit
-7,179,047,926,765,260,000
20.93949
112
0.605865
false
Sendinel/Sendinel
sendinel/notifications/forms.py
1
1461
from django.forms import CharField, ModelChoiceField, DateTimeField, Form from django.utils.translation import ugettext as _ from sendinel.backend.authhelper import format_and_validate_phonenumber from sendinel.backend.models import Sendable, \ WayOfCommunication, \ get_enabled_wocs class NotificationValidationForm(Form): phone_number = CharField(validators = [format_and_validate_phonenumber], error_messages={'required':_('Please enter a phone number')}) way_of_communication = ModelChoiceField( queryset = get_enabled_wocs(), error_messages={'required': \ _('Please choose a way of communication')}) date = DateTimeField(error_messages={ \ 'required': _('Please choose a date'), \ 'invalid': _('Please choose a date')}) class NotificationValidationFormBluetooth(Form): way_of_communication = ModelChoiceField( queryset = get_enabled_wocs(), error_messages={'required': \ _('Please choose a way of communication')}) date = DateTimeField(error_messages={ \ 'required': _('Please choose a date'), \ 'invalid': _('Please choose a date')})
mit
6,670,814,485,201,891,000
46.129032
80
0.543463
false
DanielWaterworth/AODBM
python_tests/simple_test.py
1
1871
''' Copyright (C) 2011 aodbm authors, This file is part of aodbm. aodbm is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aodbm is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import unittest, aodbm class TestSimple(unittest.TestCase): def setUp(self): self.db = aodbm.AODBM('testdb') def test_simple(self): # a simple test with one record ver = aodbm.Version(self.db, 0) self.assertRaises(KeyError, ver.__getitem__, 'hello') self.assertFalse(ver.has('test')) ver['test'] = 'hello' self.assertEqual(ver['test'], 'hello') self.assertTrue(ver.has('test')) del ver['test'] self.assertRaises(KeyError, ver.__getitem__, 'test') self.assertFalse(ver.has('test')) del ver['test'] self.assertRaises(KeyError, ver.__getitem__, 'test') self.assertFalse(ver.has('test')) def test_insert_empty(self): ver = aodbm.Version(self.db, 0) ver['hello'] = 'world' # create an empty root node del ver['hello'] ver['hello'] = 'world' self.assertTrue(ver.has('hello')) self.assertEqual(ver['hello'], 'world') tests = [TestSimple] tests = map(unittest.TestLoader().loadTestsFromTestCase, tests) tests = unittest.TestSuite(tests)
gpl-3.0
526,834,158,543,468,200
34.980769
79
0.645644
false
phenoxim/nova
nova/tests/functional/test_server_group.py
1
36573
# Copyright 2015 Ericsson AB # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import mock from oslo_config import cfg from nova import context from nova import db from nova.db.sqlalchemy import api as db_api from nova import test from nova.tests import fixtures as nova_fixtures from nova.tests.functional.api import client from nova.tests.functional import integrated_helpers from nova.tests.unit import fake_network from nova.tests.unit import policy_fixture from nova.virt import fake import nova.scheduler.utils import nova.servicegroup import nova.tests.unit.image.fake # An alternate project id PROJECT_ID_ALT = "616c6c796f7572626173656172656f73" CONF = cfg.CONF class ServerGroupTestBase(test.TestCase, integrated_helpers.InstanceHelperMixin): REQUIRES_LOCKING = True api_major_version = 'v2.1' microversion = None _enabled_filters = (CONF.filter_scheduler.enabled_filters + ['ServerGroupAntiAffinityFilter', 'ServerGroupAffinityFilter']) # Override servicegroup parameters to make the tests run faster _service_down_time = 10 _report_interval = 1 anti_affinity = {'name': 'fake-name-1', 'policies': ['anti-affinity']} affinity = {'name': 'fake-name-2', 'policies': ['affinity']} def _get_weight_classes(self): return [] def setUp(self): super(ServerGroupTestBase, self).setUp() self.flags(enabled_filters=self._enabled_filters, group='filter_scheduler') # NOTE(sbauza): Don't verify VCPUS and disks given the current nodes. self.flags(cpu_allocation_ratio=9999.0) self.flags(disk_allocation_ratio=9999.0) self.flags(weight_classes=self._get_weight_classes(), group='filter_scheduler') self.flags(service_down_time=self._service_down_time) self.flags(report_interval=self._report_interval) self.useFixture(policy_fixture.RealPolicyFixture()) self.useFixture(nova_fixtures.NeutronFixture(self)) self.useFixture(nova_fixtures.PlacementFixture()) api_fixture = self.useFixture(nova_fixtures.OSAPIFixture( api_version='v2.1')) self.api = api_fixture.api self.api.microversion = self.microversion self.admin_api = api_fixture.admin_api self.admin_api.microversion = self.microversion # the image fake backend needed for image discovery nova.tests.unit.image.fake.stub_out_image_service(self) self.start_service('conductor') self.start_service('scheduler') self.addCleanup(nova.tests.unit.image.fake.FakeImageService_reset) def _boot_a_server_to_group(self, group, expected_status='ACTIVE', flavor=None): server = self._build_minimal_create_server_request(self.api, 'some-server') if flavor: server['flavorRef'] = ('http://fake.server/%s' % flavor['id']) post = {'server': server, 'os:scheduler_hints': {'group': group['id']}} created_server = self.api.post_server(post) self.assertTrue(created_server['id']) # Wait for it to finish being created found_server = self._wait_for_state_change( self.admin_api, created_server, expected_status) return found_server class ServerGroupFakeDriver(fake.SmallFakeDriver): """A specific fake driver for our tests. Here, we only want to be RAM-bound. """ vcpus = 1000 memory_mb = 8192 local_gb = 100000 # A fake way to change the FakeDriver given we don't have a possibility yet to # modify the resources for the FakeDriver def _fake_load_compute_driver(virtapi, compute_driver=None): return ServerGroupFakeDriver(virtapi) class ServerGroupTestV21(ServerGroupTestBase): def setUp(self): super(ServerGroupTestV21, self).setUp() # TODO(sbauza): Remove that once there is a way to have a custom # FakeDriver supporting different resources. Note that we can't also # simply change the config option for choosing our custom fake driver # as the mocked method only accepts to load drivers in the nova.virt # tree. self.stub_out('nova.virt.driver.load_compute_driver', _fake_load_compute_driver) fake.set_nodes(['compute']) self.compute = self.start_service('compute', host='compute') # NOTE(gibi): start a second compute host to be able to test affinity # NOTE(sbauza): Make sure the FakeDriver returns a different nodename # for the second compute node. fake.set_nodes(['host2']) self.addCleanup(fake.restore_nodes) self.compute2 = self.start_service('compute', host='host2') fake_network.set_stub_network_methods(self) def test_get_no_groups(self): groups = self.api.get_server_groups() self.assertEqual([], groups) def test_create_and_delete_groups(self): groups = [self.anti_affinity, self.affinity] created_groups = [] for group in groups: created_group = self.api.post_server_groups(group) created_groups.append(created_group) self.assertEqual(group['name'], created_group['name']) self.assertEqual(group['policies'], created_group['policies']) self.assertEqual([], created_group['members']) self.assertEqual({}, created_group['metadata']) self.assertIn('id', created_group) group_details = self.api.get_server_group(created_group['id']) self.assertEqual(created_group, group_details) existing_groups = self.api.get_server_groups() self.assertIn(created_group, existing_groups) existing_groups = self.api.get_server_groups() self.assertEqual(len(groups), len(existing_groups)) for group in created_groups: self.api.delete_server_group(group['id']) existing_groups = self.api.get_server_groups() self.assertNotIn(group, existing_groups) def test_create_wrong_policy(self): ex = self.assertRaises(client.OpenStackApiException, self.api.post_server_groups, {'name': 'fake-name-1', 'policies': ['wrong-policy']}) self.assertEqual(400, ex.response.status_code) self.assertIn('Invalid input', ex.response.text) self.assertIn('wrong-policy', ex.response.text) def test_get_groups_all_projects(self): # This test requires APIs using two projects. # Create an API using project 'openstack1'. # This is a non-admin API. # # NOTE(sdague): this is actually very much *not* how this # fixture should be used. This actually spawns a whole # additional API server. Should be addressed in the future. api_openstack1 = self.useFixture(nova_fixtures.OSAPIFixture( api_version=self.api_major_version, project_id=PROJECT_ID_ALT)).api api_openstack1.microversion = self.microversion # Create a server group in project 'openstack' # Project 'openstack' is used by self.api group1 = self.anti_affinity openstack_group = self.api.post_server_groups(group1) # Create a server group in project 'openstack1' group2 = self.affinity openstack1_group = api_openstack1.post_server_groups(group2) # The admin should be able to get server groups in all projects. all_projects_admin = self.admin_api.get_server_groups( all_projects=True) self.assertIn(openstack_group, all_projects_admin) self.assertIn(openstack1_group, all_projects_admin) # The non-admin should only be able to get server groups # in his project. # The all_projects parameter is ignored for non-admin clients. all_projects_non_admin = api_openstack1.get_server_groups( all_projects=True) self.assertNotIn(openstack_group, all_projects_non_admin) self.assertIn(openstack1_group, all_projects_non_admin) def test_create_duplicated_policy(self): ex = self.assertRaises(client.OpenStackApiException, self.api.post_server_groups, {"name": "fake-name-1", "policies": ["affinity", "affinity"]}) self.assertEqual(400, ex.response.status_code) self.assertIn('Invalid input', ex.response.text) def test_create_multiple_policies(self): ex = self.assertRaises(client.OpenStackApiException, self.api.post_server_groups, {"name": "fake-name-1", "policies": ["anti-affinity", "affinity"]}) self.assertEqual(400, ex.response.status_code) def _boot_servers_to_group(self, group, flavor=None): servers = [] for _ in range(0, 2): server = self._boot_a_server_to_group(group, flavor=flavor) servers.append(server) return servers def test_boot_servers_with_affinity(self): created_group = self.api.post_server_groups(self.affinity) servers = self._boot_servers_to_group(created_group) members = self.api.get_server_group(created_group['id'])['members'] host = servers[0]['OS-EXT-SRV-ATTR:host'] for server in servers: self.assertIn(server['id'], members) self.assertEqual(host, server['OS-EXT-SRV-ATTR:host']) def test_boot_servers_with_affinity_overquota(self): # Tests that we check server group member quotas and cleanup created # resources when we fail with OverQuota. self.flags(server_group_members=1, group='quota') # make sure we start with 0 servers servers = self.api.get_servers(detail=False) self.assertEqual(0, len(servers)) created_group = self.api.post_server_groups(self.affinity) ex = self.assertRaises(client.OpenStackApiException, self._boot_servers_to_group, created_group) self.assertEqual(403, ex.response.status_code) # _boot_servers_to_group creates 2 instances in the group in order, not # multiple servers in a single request. Since our quota is 1, the first # server create would pass, the second should fail, and we should be # left with 1 server and it's 1 block device mapping. servers = self.api.get_servers(detail=False) self.assertEqual(1, len(servers)) ctxt = context.get_admin_context() servers = db.instance_get_all(ctxt) self.assertEqual(1, len(servers)) ctxt_mgr = db_api.get_context_manager(ctxt) with ctxt_mgr.reader.using(ctxt): bdms = db_api._block_device_mapping_get_query(ctxt).all() self.assertEqual(1, len(bdms)) self.assertEqual(servers[0]['uuid'], bdms[0]['instance_uuid']) def test_boot_servers_with_affinity_no_valid_host(self): created_group = self.api.post_server_groups(self.affinity) # Using big enough flavor to use up the resources on the host flavor = self.api.get_flavors()[2] self._boot_servers_to_group(created_group, flavor=flavor) # The third server cannot be booted as there is not enough resource # on the host where the first two server was booted failed_server = self._boot_a_server_to_group(created_group, flavor=flavor, expected_status='ERROR') self.assertEqual('No valid host was found. ' 'There are not enough hosts available.', failed_server['fault']['message']) def test_boot_servers_with_anti_affinity(self): created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group) members = self.api.get_server_group(created_group['id'])['members'] self.assertNotEqual(servers[0]['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) for server in servers: self.assertIn(server['id'], members) def test_boot_server_with_anti_affinity_no_valid_host(self): created_group = self.api.post_server_groups(self.anti_affinity) self._boot_servers_to_group(created_group) # We have 2 computes so the third server won't fit into the same group failed_server = self._boot_a_server_to_group(created_group, expected_status='ERROR') self.assertEqual('No valid host was found. ' 'There are not enough hosts available.', failed_server['fault']['message']) def _rebuild_with_group(self, group): created_group = self.api.post_server_groups(group) servers = self._boot_servers_to_group(created_group) post = {'rebuild': {'imageRef': '76fa36fc-c930-4bf3-8c8a-ea2a2420deb6'}} self.api.post_server_action(servers[1]['id'], post) rebuilt_server = self._wait_for_state_change( self.admin_api, servers[1], 'ACTIVE') self.assertEqual(post['rebuild']['imageRef'], rebuilt_server.get('image')['id']) return [servers[0], rebuilt_server] def test_rebuild_with_affinity(self): untouched_server, rebuilt_server = self._rebuild_with_group( self.affinity) self.assertEqual(untouched_server['OS-EXT-SRV-ATTR:host'], rebuilt_server['OS-EXT-SRV-ATTR:host']) def test_rebuild_with_anti_affinity(self): untouched_server, rebuilt_server = self._rebuild_with_group( self.anti_affinity) self.assertNotEqual(untouched_server['OS-EXT-SRV-ATTR:host'], rebuilt_server['OS-EXT-SRV-ATTR:host']) def _migrate_with_group_no_valid_host(self, group): created_group = self.api.post_server_groups(group) servers = self._boot_servers_to_group(created_group) post = {'migrate': {}} ex = self.assertRaises(client.OpenStackApiException, self.admin_api.post_server_action, servers[1]['id'], post) self.assertEqual(400, ex.response.status_code) self.assertIn('No valid host found for cold migrate', ex.response.text) def test_migrate_with_group_no_valid_host(self): for group in [self.affinity, self.anti_affinity]: self._migrate_with_group_no_valid_host(group) def test_migrate_with_anti_affinity(self): # Start additional host to test migration with anti-affinity fake.set_nodes(['host3']) self.start_service('compute', host='host3') created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group) post = {'migrate': {}} self.admin_api.post_server_action(servers[1]['id'], post) migrated_server = self._wait_for_state_change( self.admin_api, servers[1], 'VERIFY_RESIZE') self.assertNotEqual(servers[0]['OS-EXT-SRV-ATTR:host'], migrated_server['OS-EXT-SRV-ATTR:host']) def test_resize_to_same_host_with_anti_affinity(self): self.flags(allow_resize_to_same_host=True) created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group, flavor=self.api.get_flavors()[0]) post = {'resize': {'flavorRef': '2'}} server1_old_host = servers[1]['OS-EXT-SRV-ATTR:host'] self.admin_api.post_server_action(servers[1]['id'], post) migrated_server = self._wait_for_state_change( self.admin_api, servers[1], 'VERIFY_RESIZE') self.assertEqual(server1_old_host, migrated_server['OS-EXT-SRV-ATTR:host']) def _get_compute_service_by_host_name(self, host_name): host = None if self.compute.host == host_name: host = self.compute elif self.compute2.host == host_name: host = self.compute2 else: raise AssertionError('host = %s does not found in ' 'existing hosts %s' % (host_name, str([self.compute.host, self.compute2.host]))) return host def test_evacuate_with_anti_affinity(self): created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) # Start additional host to test evacuation fake.set_nodes(['host3']) self.start_service('compute', host='host3') post = {'evacuate': {'onSharedStorage': False}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['done']) evacuated_server = self._wait_for_state_change( self.admin_api, servers[1], 'ACTIVE') # check that the server is evacuated to another host self.assertNotEqual(evacuated_server['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) # check that anti-affinity policy is kept during evacuation self.assertNotEqual(evacuated_server['OS-EXT-SRV-ATTR:host'], servers[0]['OS-EXT-SRV-ATTR:host']) host.start() def test_evacuate_with_anti_affinity_no_valid_host(self): created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) post = {'evacuate': {'onSharedStorage': False}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['error']) server_after_failed_evac = self._wait_for_state_change( self.admin_api, servers[1], 'ERROR') # assert that after a failed evac the server active on the same host # as before self.assertEqual(server_after_failed_evac['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) host.start() def test_evacuate_with_affinity_no_valid_host(self): created_group = self.api.post_server_groups(self.affinity) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) post = {'evacuate': {'onSharedStorage': False}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['error']) server_after_failed_evac = self._wait_for_state_change( self.admin_api, servers[1], 'ERROR') # assert that after a failed evac the server active on the same host # as before self.assertEqual(server_after_failed_evac['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) host.start() def test_soft_affinity_not_supported(self): ex = self.assertRaises(client.OpenStackApiException, self.api.post_server_groups, {'name': 'fake-name-1', 'policies': ['soft-affinity']}) self.assertEqual(400, ex.response.status_code) self.assertIn('Invalid input', ex.response.text) self.assertIn('soft-affinity', ex.response.text) class ServerGroupAffinityConfTest(ServerGroupTestBase): api_major_version = 'v2.1' # Load only anti-affinity filter so affinity will be missing _enabled_filters = ['ServerGroupAntiAffinityFilter'] @mock.patch('nova.scheduler.utils._SUPPORTS_AFFINITY', None) def test_affinity_no_filter(self): created_group = self.api.post_server_groups(self.affinity) failed_server = self._boot_a_server_to_group(created_group, expected_status='ERROR') self.assertEqual('ServerGroup policy is not supported: ' 'ServerGroupAffinityFilter not configured', failed_server['fault']['message']) self.assertEqual(400, failed_server['fault']['code']) class ServerGroupAntiAffinityConfTest(ServerGroupTestBase): api_major_version = 'v2.1' # Load only affinity filter so anti-affinity will be missing _enabled_filters = ['ServerGroupAffinityFilter'] @mock.patch('nova.scheduler.utils._SUPPORTS_ANTI_AFFINITY', None) def test_anti_affinity_no_filter(self): created_group = self.api.post_server_groups(self.anti_affinity) failed_server = self._boot_a_server_to_group(created_group, expected_status='ERROR') self.assertEqual('ServerGroup policy is not supported: ' 'ServerGroupAntiAffinityFilter not configured', failed_server['fault']['message']) self.assertEqual(400, failed_server['fault']['code']) class ServerGroupSoftAffinityConfTest(ServerGroupTestBase): api_major_version = 'v2.1' microversion = '2.15' soft_affinity = {'name': 'fake-name-4', 'policies': ['soft-affinity']} def _get_weight_classes(self): # Load only soft-anti-affinity weigher so affinity will be missing return ['nova.scheduler.weights.affinity.' 'ServerGroupSoftAntiAffinityWeigher'] @mock.patch('nova.scheduler.utils._SUPPORTS_SOFT_AFFINITY', None) def test_soft_affinity_no_filter(self): created_group = self.api.post_server_groups(self.soft_affinity) failed_server = self._boot_a_server_to_group(created_group, expected_status='ERROR') self.assertEqual('ServerGroup policy is not supported: ' 'ServerGroupSoftAffinityWeigher not configured', failed_server['fault']['message']) self.assertEqual(400, failed_server['fault']['code']) class ServerGroupSoftAntiAffinityConfTest(ServerGroupTestBase): api_major_version = 'v2.1' microversion = '2.15' soft_anti_affinity = {'name': 'fake-name-3', 'policies': ['soft-anti-affinity']} def _get_weight_classes(self): # Load only soft affinity filter so anti-affinity will be missing return ['nova.scheduler.weights.affinity.' 'ServerGroupSoftAffinityWeigher'] @mock.patch('nova.scheduler.utils._SUPPORTS_SOFT_ANTI_AFFINITY', None) def test_soft_anti_affinity_no_filter(self): created_group = self.api.post_server_groups(self.soft_anti_affinity) failed_server = self._boot_a_server_to_group(created_group, expected_status='ERROR') self.assertEqual('ServerGroup policy is not supported: ' 'ServerGroupSoftAntiAffinityWeigher not configured', failed_server['fault']['message']) self.assertEqual(400, failed_server['fault']['code']) class ServerGroupTestV215(ServerGroupTestV21): api_major_version = 'v2.1' microversion = '2.15' soft_anti_affinity = {'name': 'fake-name-3', 'policies': ['soft-anti-affinity']} soft_affinity = {'name': 'fake-name-4', 'policies': ['soft-affinity']} def setUp(self): super(ServerGroupTestV215, self).setUp() soft_affinity_patcher = mock.patch( 'nova.scheduler.utils._SUPPORTS_SOFT_AFFINITY') soft_anti_affinity_patcher = mock.patch( 'nova.scheduler.utils._SUPPORTS_SOFT_ANTI_AFFINITY') self.addCleanup(soft_affinity_patcher.stop) self.addCleanup(soft_anti_affinity_patcher.stop) self.mock_soft_affinity = soft_affinity_patcher.start() self.mock_soft_anti_affinity = soft_anti_affinity_patcher.start() self.mock_soft_affinity.return_value = None self.mock_soft_anti_affinity.return_value = None def _get_weight_classes(self): return ['nova.scheduler.weights.affinity.' 'ServerGroupSoftAffinityWeigher', 'nova.scheduler.weights.affinity.' 'ServerGroupSoftAntiAffinityWeigher'] def test_evacuate_with_anti_affinity(self): created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) # Start additional host to test evacuation fake.set_nodes(['host3']) compute3 = self.start_service('compute', host='host3') post = {'evacuate': {}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['done']) evacuated_server = self._wait_for_state_change( self.admin_api, servers[1], 'ACTIVE') # check that the server is evacuated self.assertNotEqual(evacuated_server['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) # check that policy is kept self.assertNotEqual(evacuated_server['OS-EXT-SRV-ATTR:host'], servers[0]['OS-EXT-SRV-ATTR:host']) compute3.kill() host.start() def test_evacuate_with_anti_affinity_no_valid_host(self): created_group = self.api.post_server_groups(self.anti_affinity) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) post = {'evacuate': {}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['error']) server_after_failed_evac = self._wait_for_state_change( self.admin_api, servers[1], 'ERROR') # assert that after a failed evac the server active on the same host # as before self.assertEqual(server_after_failed_evac['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) host.start() def test_evacuate_with_affinity_no_valid_host(self): created_group = self.api.post_server_groups(self.affinity) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) post = {'evacuate': {}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['error']) server_after_failed_evac = self._wait_for_state_change( self.admin_api, servers[1], 'ERROR') # assert that after a failed evac the server active on the same host # as before self.assertEqual(server_after_failed_evac['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) host.start() def test_create_and_delete_groups(self): groups = [self.anti_affinity, self.affinity, self.soft_affinity, self.soft_anti_affinity] created_groups = [] for group in groups: created_group = self.api.post_server_groups(group) created_groups.append(created_group) self.assertEqual(group['name'], created_group['name']) self.assertEqual(group['policies'], created_group['policies']) self.assertEqual([], created_group['members']) self.assertEqual({}, created_group['metadata']) self.assertIn('id', created_group) group_details = self.api.get_server_group(created_group['id']) self.assertEqual(created_group, group_details) existing_groups = self.api.get_server_groups() self.assertIn(created_group, existing_groups) existing_groups = self.api.get_server_groups() self.assertEqual(len(groups), len(existing_groups)) for group in created_groups: self.api.delete_server_group(group['id']) existing_groups = self.api.get_server_groups() self.assertNotIn(group, existing_groups) def test_boot_servers_with_soft_affinity(self): created_group = self.api.post_server_groups(self.soft_affinity) servers = self._boot_servers_to_group(created_group) members = self.api.get_server_group(created_group['id'])['members'] self.assertEqual(2, len(servers)) self.assertIn(servers[0]['id'], members) self.assertIn(servers[1]['id'], members) self.assertEqual(servers[0]['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) def test_boot_servers_with_soft_affinity_no_resource_on_first_host(self): created_group = self.api.post_server_groups(self.soft_affinity) # Using big enough flavor to use up the resources on the first host flavor = self.api.get_flavors()[2] servers = self._boot_servers_to_group(created_group, flavor) # The third server cannot be booted on the first host as there # is not enough resource there, but as opposed to the affinity policy # it will be booted on the other host, which has enough resources. third_server = self._boot_a_server_to_group(created_group, flavor=flavor) members = self.api.get_server_group(created_group['id'])['members'] hosts = [] for server in servers: hosts.append(server['OS-EXT-SRV-ATTR:host']) self.assertIn(third_server['id'], members) self.assertNotIn(third_server['OS-EXT-SRV-ATTR:host'], hosts) def test_boot_servers_with_soft_anti_affinity(self): created_group = self.api.post_server_groups(self.soft_anti_affinity) servers = self._boot_servers_to_group(created_group) members = self.api.get_server_group(created_group['id'])['members'] self.assertEqual(2, len(servers)) self.assertIn(servers[0]['id'], members) self.assertIn(servers[1]['id'], members) self.assertNotEqual(servers[0]['OS-EXT-SRV-ATTR:host'], servers[1]['OS-EXT-SRV-ATTR:host']) def test_boot_servers_with_soft_anti_affinity_one_available_host(self): self.compute2.kill() created_group = self.api.post_server_groups(self.soft_anti_affinity) servers = self._boot_servers_to_group(created_group) members = self.api.get_server_group(created_group['id'])['members'] host = servers[0]['OS-EXT-SRV-ATTR:host'] for server in servers: self.assertIn(server['id'], members) self.assertEqual(host, server['OS-EXT-SRV-ATTR:host']) def test_rebuild_with_soft_affinity(self): untouched_server, rebuilt_server = self._rebuild_with_group( self.soft_affinity) self.assertEqual(untouched_server['OS-EXT-SRV-ATTR:host'], rebuilt_server['OS-EXT-SRV-ATTR:host']) def test_rebuild_with_soft_anti_affinity(self): untouched_server, rebuilt_server = self._rebuild_with_group( self.soft_anti_affinity) self.assertNotEqual(untouched_server['OS-EXT-SRV-ATTR:host'], rebuilt_server['OS-EXT-SRV-ATTR:host']) def _migrate_with_soft_affinity_policies(self, group): created_group = self.api.post_server_groups(group) servers = self._boot_servers_to_group(created_group) post = {'migrate': {}} self.admin_api.post_server_action(servers[1]['id'], post) migrated_server = self._wait_for_state_change( self.admin_api, servers[1], 'VERIFY_RESIZE') return [migrated_server['OS-EXT-SRV-ATTR:host'], servers[0]['OS-EXT-SRV-ATTR:host']] def test_migrate_with_soft_affinity(self): migrated_server, other_server = ( self._migrate_with_soft_affinity_policies(self.soft_affinity)) self.assertNotEqual(migrated_server, other_server) def test_migrate_with_soft_anti_affinity(self): migrated_server, other_server = ( self._migrate_with_soft_affinity_policies(self.soft_anti_affinity)) self.assertEqual(migrated_server, other_server) def _evacuate_with_soft_anti_affinity_policies(self, group): created_group = self.api.post_server_groups(group) servers = self._boot_servers_to_group(created_group) host = self._get_compute_service_by_host_name( servers[1]['OS-EXT-SRV-ATTR:host']) host.stop() # Need to wait service_down_time amount of seconds to ensure # nova considers the host down time.sleep(self._service_down_time) post = {'evacuate': {}} self.admin_api.post_server_action(servers[1]['id'], post) self._wait_for_migration_status(servers[1], ['done']) evacuated_server = self._wait_for_state_change( self.admin_api, servers[1], 'ACTIVE') # Note(gibi): need to get the server again as the state of the instance # goes to ACTIVE first then the host of the instance changes to the # new host later evacuated_server = self.admin_api.get_server(evacuated_server['id']) host.start() return [evacuated_server['OS-EXT-SRV-ATTR:host'], servers[0]['OS-EXT-SRV-ATTR:host']] def test_evacuate_with_soft_affinity(self): evacuated_server, other_server = ( self._evacuate_with_soft_anti_affinity_policies( self.soft_affinity)) self.assertNotEqual(evacuated_server, other_server) def test_evacuate_with_soft_anti_affinity(self): evacuated_server, other_server = ( self._evacuate_with_soft_anti_affinity_policies( self.soft_anti_affinity)) self.assertEqual(evacuated_server, other_server) def test_soft_affinity_not_supported(self): pass
apache-2.0
-3,361,309,554,332,246,000
42.179457
79
0.615727
false
indictranstech/internal-frappe
frappe/commands.py
1
22056
# Copyright (c) 2015, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals, absolute_import import sys import os import subprocess import json import click import hashlib import cProfile import StringIO import pstats import frappe import frappe.utils from frappe.utils import cint from distutils.spawn import find_executable from functools import wraps def pass_context(f): @wraps(f) def _func(ctx, *args, **kwargs): profile = ctx.obj['profile'] if profile: pr = cProfile.Profile() pr.enable() ret = f(frappe._dict(ctx.obj), *args, **kwargs) if profile: pr.disable() s = StringIO.StringIO() ps = pstats.Stats(pr, stream=s)\ .sort_stats('cumtime', 'tottime', 'ncalls') ps.print_stats() print s.getvalue() return ret return click.pass_context(_func) def get_single_site(context): if not len(context.sites) == 1: print 'please select a site' sys.exit(1) site = context.sites[0] return site @click.command('new-site') @click.argument('site') @click.option('--db-name', help='Database name') @click.option('--mariadb-root-username', default='root', help='Root username for MariaDB') @click.option('--mariadb-root-password', help='Root password for MariaDB') @click.option('--admin-password', help='Administrator password for new site', default=None) @click.option('--verbose', is_flag=True, default=False, help='Verbose') @click.option('--force', help='Force restore if site/database already exists', is_flag=True, default=False) @click.option('--source_sql', help='Initiate database with a SQL file') @click.option('--install-app', multiple=True, help='Install app after installation') def new_site(site, mariadb_root_username=None, mariadb_root_password=None, admin_password=None, verbose=False, install_apps=None, source_sql=None, force=None, install_app=None, db_name=None): "Install a new site" if not db_name: db_name = hashlib.sha1(site).hexdigest()[:10] frappe.init(site=site) _new_site(db_name, site, mariadb_root_username=mariadb_root_username, mariadb_root_password=mariadb_root_password, admin_password=admin_password, verbose=verbose, install_apps=install_app, source_sql=source_sql, force=force) if len(frappe.utils.get_sites()) == 1: use(site) def _new_site(db_name, site, mariadb_root_username=None, mariadb_root_password=None, admin_password=None, verbose=False, install_apps=None, source_sql=None,force=False, reinstall=False): "Install a new Frappe site" from frappe.installer import install_db, make_site_dirs from frappe.installer import install_app as _install_app import frappe.utils.scheduler frappe.init(site=site) try: # enable scheduler post install? enable_scheduler = _is_scheduler_enabled() except: enable_scheduler = False install_db(root_login=mariadb_root_username, root_password=mariadb_root_password, db_name=db_name, admin_password=admin_password, verbose=verbose, source_sql=source_sql,force=force, reinstall=reinstall) make_site_dirs() _install_app("frappe", verbose=verbose, set_as_patched=not source_sql) if frappe.conf.get("install_apps"): for app in frappe.conf.install_apps: _install_app(app, verbose=verbose, set_as_patched=not source_sql) if install_apps: for app in install_apps: _install_app(app, verbose=verbose, set_as_patched=not source_sql) frappe.utils.scheduler.toggle_scheduler(enable_scheduler) scheduler_status = "disabled" if frappe.utils.scheduler.is_scheduler_disabled() else "enabled" print "*** Scheduler is", scheduler_status, "***" frappe.destroy() def _is_scheduler_enabled(): enable_scheduler = False try: frappe.connect() enable_scheduler = cint(frappe.db.get_default("enable_scheduler")) except: pass finally: frappe.db.close() return enable_scheduler @click.command('restore') @click.argument('sql-file-path') @click.option('--mariadb-root-username', default='root', help='Root username for MariaDB') @click.option('--mariadb-root-password', help='Root password for MariaDB') @click.option('--db-name', help='Database name for site in case it is a new one') @click.option('--admin-password', help='Administrator password for new site') @click.option('--install-app', multiple=True, help='Install app after installation') @pass_context def restore(context, sql_file_path, mariadb_root_username=None, mariadb_root_password=None, db_name=None, verbose=None, install_app=None, admin_password=None, force=None): "Restore site database from an sql file" site = get_single_site(context) frappe.init(site=site) if not db_name: db_name = frappe.conf.db_name _new_site(db_name, site, mariadb_root_username=mariadb_root_username, mariadb_root_password=mariadb_root_password, admin_password=admin_password, verbose=context.verbose, install_apps=install_app, source_sql=sql_file_path, force=context.force) @click.command('reinstall') @pass_context def reinstall(context): "Reinstall site ie. wipe all data and start over" site = get_single_site(context) try: frappe.init(site=site) frappe.connect() frappe.clear_cache() installed = frappe.get_installed_apps() frappe.clear_cache() except Exception, e: installed = [] finally: if frappe.db: frappe.db.close() frappe.destroy() frappe.init(site=site) _new_site(frappe.conf.db_name, site, verbose=context.verbose, force=True, reinstall=True, install_apps=installed) @click.command('install-app') @click.argument('app') @pass_context def install_app(context, app): "Install a new app to site" from frappe.installer import install_app as _install_app for site in context.sites: frappe.init(site=site) frappe.connect() try: _install_app(app, verbose=context.verbose) finally: frappe.destroy() @click.command('add-system-manager') @click.argument('email') @click.option('--first-name') @click.option('--last-name') @pass_context def add_system_manager(context, email, first_name, last_name): "Add a new system manager to a site" import frappe.utils.user for site in context.sites: frappe.connect(site=site) try: frappe.utils.user.add_system_manager(email, first_name, last_name) frappe.db.commit() finally: frappe.destroy() @click.command('migrate') @click.option('--rebuild-website', help="Rebuild webpages after migration") @pass_context def migrate(context, rebuild_website=False): "Run patches, sync schema and rebuild files/translations" import frappe.modules.patch_handler import frappe.model.sync from frappe.utils.fixtures import sync_fixtures import frappe.translate from frappe.desk.notifications import clear_notifications verbose = context.verbose for site in context.sites: print 'Migrating', site frappe.init(site=site) frappe.connect() try: prepare_for_update() # run patches frappe.modules.patch_handler.run_all() # sync frappe.model.sync.sync_all(verbose=context.verbose) frappe.translate.clear_cache() sync_fixtures() clear_notifications() if rebuild_website: build_website() finally: frappe.destroy() def prepare_for_update(): from frappe.sessions import clear_global_cache clear_global_cache() @click.command('run-patch') @click.argument('module') @click.pass_context def run_patch(context, module): "Run a particular patch" import frappe.modules.patch_handler for site in context.sites: frappe.init(site=site) try: frappe.connect() frappe.modules.patch_handler.run_single(module, force=context.force) finally: frappe.destroy() @click.command('reload-doc') @click.argument('module') @click.argument('doctype') @click.argument('docname') @pass_context def reload_doc(context, module, doctype, docname): "Reload schema for a DocType" for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.reload_doc(module, doctype, docname, force=context.force) frappe.db.commit() finally: frappe.destroy() @click.command('build') @click.option('--make-copy', is_flag=True, default=False, help='Copy the files instead of symlinking') @click.option('--verbose', is_flag=True, default=False, help='Verbose') def build(make_copy=False, verbose=False): "Minify + concatenate JS and CSS files, build translations" import frappe.build import frappe frappe.init('') frappe.build.bundle(False, make_copy=make_copy, verbose=verbose) @click.command('watch') def watch(): "Watch and concatenate JS and CSS files as and when they change" import frappe.build frappe.init('') frappe.build.watch(True) @click.command('clear-cache') @pass_context def clear_cache(context): "Clear cache, doctype cache and defaults" import frappe.sessions import frappe.website.render from frappe.desk.notifications import clear_notifications for site in context.sites: try: frappe.connect(site) frappe.clear_cache() clear_notifications() frappe.website.render.clear_cache() finally: frappe.destroy() @click.command('clear-website-cache') @pass_context def clear_website_cache(context): "Clear website cache" import frappe.website.render for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.website.render.clear_cache() finally: frappe.destroy() @click.command('destroy-all-sessions') @pass_context def destroy_all_sessions(context): "Clear sessions of all users (logs them out)" import frappe.sessions for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.sessions.clear_all_sessions() frappe.db.commit() finally: frappe.destroy() @click.command('sync-www') @pass_context def sync_www(context): "Sync files from static pages from www directory to Web Pages" from frappe.website import statics for site in context.sites: try: frappe.init(site=site) frappe.connect() statics.sync_statics(rebuild=context.force) frappe.db.commit() finally: frappe.destroy() @click.command('build-website') @pass_context def build_website(context): "Sync statics and clear cache" from frappe.website import render, statics for site in context.sites: try: frappe.init(site=site) frappe.connect() render.clear_cache() statics.sync(verbose=context.verbose).start(True) frappe.db.commit() finally: frappe.destroy() @click.command('setup-docs') @click.argument('app') @click.argument('docs-app') @click.argument('path') @pass_context def setup_docs(context,app, docs_app, path): "Setup docs in target folder of target app" from frappe.utils.setup_docs import setup_docs for site in context.sites: try: frappe.init(site=site) frappe.connect() setup_docs(app, docs_app, path) finally: frappe.destroy() @click.command('build-docs') @click.argument('app') @pass_context def build_docs(context, app): "Build docs from /src to /www folder in app" from frappe.utils.autodoc import build frappe.destroy() for site in context.sites: try: frappe.init(site=site) build(app) finally: frappe.destroy() @click.command('reset-perms') @pass_context def reset_perms(context): "Reset permissions for all doctypes" from frappe.permissions import reset_perms for site in context.sites: try: frappe.init(site=site) frappe.connect() for d in frappe.db.sql_list("""select name from `tabDocType` where ifnull(istable, 0)=0 and ifnull(custom, 0)=0"""): frappe.clear_cache(doctype=d) reset_perms(d) finally: frappe.destroy() @click.command('execute') @click.argument('method') @pass_context def execute(context, method): "execute a function" for site in context.sites: try: frappe.init(site=site) frappe.connect() print frappe.local.site ret = frappe.get_attr(method)() if frappe.db: frappe.db.commit() finally: frappe.destroy() if ret: print ret @click.command('celery') @click.argument('args') def celery(args): "Run a celery command" python = sys.executable os.execv(python, [python, "-m", "frappe.celery_app"] + args.split()) @click.command('trigger-scheduler-event') @click.argument('event') @pass_context def trigger_scheduler_event(context, event): "Trigger a scheduler event" import frappe.utils.scheduler for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.utils.scheduler.trigger(site, event, now=context.force) finally: frappe.destroy() @click.command('enable-scheduler') @pass_context def enable_scheduler(context): "Enable scheduler" import frappe.utils.scheduler for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.utils.scheduler.enable_scheduler() frappe.db.commit() print "Enabled for", site finally: frappe.destroy() @click.command('disable-scheduler') @pass_context def disable_scheduler(context): "Disable scheduler" import frappe.utils.scheduler for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.utils.scheduler.disable_scheduler() frappe.db.commit() print "Disabled for", site finally: frappe.destroy() @click.command('export-doc') @click.argument('doctype') @click.argument('docname') @pass_context def export_doc(context, doctype, docname): "Export a single document to csv" import frappe.modules for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.modules.export_doc(doctype, docname) finally: frappe.destroy() @click.command('export-json') @click.argument('doctype') @click.argument('name') @click.argument('path') @pass_context def export_json(context, doctype, name, path): "Export doclist as json to the given path, use '-' as name for Singles." from frappe.core.page.data_import_tool import data_import_tool for site in context.sites: try: frappe.init(site=site) frappe.connect() data_import_tool.export_json(doctype, name, path) finally: frappe.destroy() @click.command('export-csv') @click.argument('doctype') @click.argument('path') @pass_context def export_csv(context, doctype, path): "Dump DocType as csv" from frappe.core.page.data_import_tool import data_import_tool for site in context.sites: try: frappe.init(site=site) frappe.connect() data_import_tool.export_csv(doctype, path) finally: frappe.destroy() @click.command('export-fixtures') @pass_context def export_fixtures(context): "export fixtures" from frappe.utils.fixtures import export_fixtures for site in context.sites: try: frappe.init(site=site) frappe.connect() export_fixtures() finally: frappe.destroy() @click.command('import-doc') @click.argument('path') @pass_context def import_doc(context, path, force=False): "Import (insert/update) doclist. If the argument is a directory, all files ending with .json are imported" from frappe.core.page.data_import_tool import data_import_tool for site in context.sites: try: frappe.init(site=site) frappe.connect() data_import_tool.import_doc(path, overwrite=context.force) finally: frappe.destroy() # translation @click.command('build-message-files') @pass_context def build_message_files(context): "Build message files for translation" import frappe.translate for site in context.sites: try: frappe.init(site=site) frappe.connect() frappe.translate.rebuild_all_translation_files() finally: frappe.destroy() @click.command('get-untranslated') @click.argument('lang') @click.argument('untranslated_file') @click.option('--all', default=False, is_flag=True, help='Get all message strings') @pass_context def get_untranslated(context, lang, untranslated_file, all=None): "Get untranslated strings for language" import frappe.translate site = get_single_site(context) try: frappe.init(site=site) frappe.connect() frappe.translate.get_untranslated(lang, untranslated_file, get_all=all) finally: frappe.destroy() @click.command('update-translations') @click.argument('lang') @click.argument('untranslated_file') @click.argument('translated-file') @pass_context def update_translations(context, lang, untranslated_file, translated_file): "Update translated strings" import frappe.translate site = get_single_site(context) try: frappe.init(site=site) frappe.connect() frappe.translate.update_translations(lang, untranslated_file, translated_file) finally: frappe.destroy() @click.command('set-admin-password') @click.argument('admin-password') @pass_context def set_admin_password(context, admin_password): "Set Administrator password for a site" import getpass for site in context.sites: try: frappe.init(site=site) while not admin_password: admin_password = getpass.getpass("Administrator's password for {0}: ".format(site)) frappe.connect() frappe.db.sql("""update __Auth set `password`=password(%s) where user='Administrator'""", (admin_password,)) frappe.db.commit() admin_password = None finally: frappe.destroy() @click.command('mysql') @pass_context def mysql(context): "Start Mariadb console for a site" site = get_single_site(context) frappe.init(site=site) msq = find_executable('mysql') os.execv(msq, [msq, '-u', frappe.conf.db_name, '-p'+frappe.conf.db_password, frappe.conf.db_name, '-h', frappe.conf.db_host or "localhost", "-A"]) @click.command('console') @pass_context def console(context): "Start ipython console for a site" site = get_single_site(context) frappe.init(site=site) frappe.connect() import IPython IPython.embed() @click.command('run-tests') @click.option('--app') @click.option('--doctype') @click.option('--test', multiple=True) @click.option('--driver') @click.option('--module') @pass_context def run_tests(context, app=None, module=None, doctype=None, test=(), driver=None): "Run tests" import frappe.test_runner from frappe.utils import sel tests = test site = get_single_site(context) # sel.start(verbose, driver) try: frappe.init(site=site) ret = frappe.test_runner.main(app, module, doctype, context.verbose, tests=tests, force=context.force) if len(ret.failures) == 0 and len(ret.errors) == 0: ret = 0 finally: pass # sel.close() sys.exit(ret) @click.command('serve') @click.option('--port', default=8000) @click.option('--profile', is_flag=True, default=False) @pass_context def serve(context, port=None, profile=False, sites_path='.', site=None): "Start development web server" if not context.sites: site = None else: site = context.sites[0] import frappe.app frappe.app.serve(port=port, profile=profile, site=site, sites_path='.') @click.command('request') @click.argument('args') @pass_context def request(context, args): "Run a request as an admin" import frappe.handler import frappe.api for site in context.sites: try: frappe.init(site=site) frappe.connect() if "?" in args: frappe.local.form_dict = frappe._dict([a.split("=") for a in args.split("?")[-1].split("&")]) else: frappe.local.form_dict = frappe._dict() if args.startswith("/api/method"): frappe.local.form_dict.cmd = args.split("?")[0].split("/")[-1] frappe.handler.execute_cmd(frappe.form_dict.cmd) print frappe.response finally: frappe.destroy() @click.command('doctor') def doctor(): "Get untranslated strings for lang." from frappe.utils.doctor import doctor as _doctor frappe.init('') return _doctor() @click.command('purge-all-tasks') def purge_all_tasks(): "Purge any pending periodic tasks of 'all' event. Doesn't purge hourly, daily and weekly" from frappe.utils.doctor import purge_pending_tasks count = purge_pending_tasks() print "Purged {} tasks".format(count) @click.command('dump-queue-status') def dump_queue_status(): "Dump detailed diagnostic infomation for task queues in JSON format" from frappe.utils.doctor import dump_queue_status as _dump_queue_status print json.dumps(_dump_queue_status(), indent=1) @click.command('make-app') @click.argument('destination') @click.argument('app_name') def make_app(destination, app_name): from frappe.utils.boilerplate import make_boilerplate make_boilerplate(destination, app_name) @click.command('use') @click.argument('site') def _use(site, sites_path='.'): use(site, sites_path=sites_path) def use(site, sites_path='.'): with open(os.path.join(sites_path, "currentsite.txt"), "w") as sitefile: sitefile.write(site) @click.command('backup') @click.option('--with-files', default=False, is_flag=True, help="Take backup with files") @pass_context def backup(context, with_files=False, backup_path_db=None, backup_path_files=None, quiet=False): "Backup" from frappe.utils.backups import scheduled_backup verbose = context.verbose for site in context.sites: frappe.init(site=site) frappe.connect() odb = scheduled_backup(ignore_files=not with_files, backup_path_db=backup_path_db, backup_path_files=backup_path_files, force=True) if verbose: from frappe.utils import now print "database backup taken -", odb.backup_path_db, "- on", now() if with_files: print "files backup taken -", odb.backup_path_files, "- on", now() frappe.destroy() @click.command('remove-from-installed-apps') @click.argument('app') @pass_context def remove_from_installed_apps(context, app): from frappe.installer import remove_from_installed_apps for site in context.sites: try: frappe.init(site=site) frappe.connect() remove_from_installed_apps(app) finally: frappe.destroy() # commands = [ # new_site, # restore, # install_app, # run_patch, # migrate, # add_system_manager, # celery # ] commands = [ new_site, restore, reinstall, install_app, add_system_manager, migrate, run_patch, reload_doc, build, watch, clear_cache, clear_website_cache, destroy_all_sessions, sync_www, build_website, setup_docs, build_docs, reset_perms, execute, celery, trigger_scheduler_event, enable_scheduler, disable_scheduler, export_doc, export_json, export_csv, export_fixtures, import_doc, build_message_files, get_untranslated, update_translations, set_admin_password, mysql, run_tests, serve, request, doctor, purge_all_tasks, dump_queue_status, console, make_app, _use, backup, remove_from_installed_apps, ]
mit
7,184,798,285,555,891,000
26.501247
245
0.7286
false
Septima/qgis-qlrbrowser
src/QlrBrowser/mysettings/qgissettingmanager/types/integer.py
1
3535
#----------------------------------------------------------- # # QGIS setting manager is a python module to easily manage read/write # settings and set/get corresponding widgets. # # Copyright : (C) 2013 Denis Rouzaud # Email : [email protected] # #----------------------------------------------------------- # # licensed under the terms of GNU GPL 2 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this progsram; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # #--------------------------------------------------------------------- # for combobox, the value corresponds to the index of the combobox from PyQt5.QtWidgets import QLineEdit, QSpinBox, QSlider, QComboBox from qgis.core import QgsProject from ..setting import Setting from ..setting_widget import SettingWidget class Integer(Setting): def __init__(self, name, scope, default_value, options={}): Setting.__init__(self, name, scope, default_value, int, QgsProject.instance().readNumEntry, QgsProject.instance().writeEntry, options) def check(self, value): if type(value) != int and type(value) != float: raise NameError("Setting %s must be an integer." % self.name) def config_widget(self, widget): if type(widget) == QLineEdit: return LineEditIntegerWidget(self, widget, self.options) elif type(widget) in (QSpinBox, QSlider): return SpinBoxIntegerWidget(self, widget, self.options) elif type(widget) == QComboBox: return ComboBoxIntegerWidget(self, widget, self.options) else: print(type(widget)) raise NameError("SettingManager does not handle %s widgets for integers for the moment (setting: %s)" % (type(widget), self.name)) class LineEditIntegerWidget(SettingWidget): def __init__(self, setting, widget, options): signal = widget.textChanged SettingWidget.__init__(self, setting, widget, options, signal) def set_widget_value(self, value): self.widget.setText('{}'.format(value)) def widget_value(self): try: value = int(self.widget.text()) except ValueError: value = None return value class SpinBoxIntegerWidget(SettingWidget): def __init__(self, setting, widget, options): signal = widget.valueChanged SettingWidget.__init__(self, setting, widget, options, signal) def set_widget_value(self, value): self.widget.setValue(value) def widget_value(self): return self.widget.value() class ComboBoxIntegerWidget(SettingWidget): def __init__(self, setting, widget, options): signal = widget.currentIndexChanged SettingWidget.__init__(self, setting, widget, options, signal) def set_widget_value(self, value): self.widget.setCurrentIndex(value) def widget_value(self): return self.widget.currentIndex()
gpl-2.0
-6,054,332,582,927,886,000
34
142
0.645545
false
DINA-Web/datasets
collections-data/transformations/prepare_geography.py
1
4838
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import argparse import numpy import pandas """ Script for preparing geography data. Writes output to geography.csv. Run from commandline, like this: prepare_geography.py treedef_filename basetree_filename [--sweden filename] """ def append_country_geography(frame, country_frame, country): country_id = frame.ID[frame.Name==country].values[0] country_frame.ID = ( country_frame.ID.astype(int) + max(frame.ID.astype('int'))) country_frame.ParentID = ( country_frame.ID.astype(int).fillna(0) + max(frame.ID.astype(int))) country_frame.loc[country_frame.Name==country, 'ID'] = country_id frame = pandas.concat([frame, country_frame]) frame.drop_duplicates(subset='ID', inplace=True) return frame if __name__ == '__main__': help_text = 'Transform geography data import to Specify' parser = argparse.ArgumentParser(description=help_text) parser.add_argument( dest='treedefitems', type=argparse.FileType('r'), help='path to file with tree definition items') parser.add_argument( dest='basetree', type=argparse.FileType('r'), help='path to file with the base tree') parser.add_argument( '--denmark', dest='denmark', type=argparse.FileType('r'), metavar='filename', help='path to file with geography for Denmark') parser.add_argument( '--finland', dest='finland', type=argparse.FileType('r'), metavar='filename', help='path to file with geography for Finland') parser.add_argument( '--norway', dest='norway', type=argparse.FileType('r'), metavar='filename', help='path to file with geography for Norway') parser.add_argument( '--sweden', dest='sweden', type=argparse.FileType('r'), metavar='filename', help='path to file with geography for Sweden') arguments = parser.parse_args() rank_names = { 'L0 earth' : 'Earth', 'L1 continent': 'Continent', 'L2 region': 'Region', 'L3 area': 'Area', 'L4 country': 'Country', 'L5 province': 'State', 'L6 district': 'County'} output_columns = [ 'geography_sourceid', 'parent_sourceid', 'name', 'geographytreedefitem_sourceid'] treedefitems = pandas.read_csv(arguments.treedefitems, dtype='unicode') basetree = pandas.read_csv(arguments.basetree, dtype='unicode') # Add root node root_id = min(basetree.ID.astype(int) - 1) basetree.loc[basetree.ParentID.isnull(), 'ParentID'] = root_id number_to_add = 1 - root_id basetree.ID = basetree.ID.astype(int) + number_to_add basetree.ParentID = basetree.ParentID.astype(int) + number_to_add basetree = basetree.append({ 'ID': root_id + number_to_add, 'ParentID': numpy.nan, 'Name': 'Earth', 'Category': 'L0 earth'}, ignore_index=True) basetree = basetree[['ID', 'ParentID', 'Name', 'Category']] if arguments.denmark: geo_den = pandas.read_csv(arguments.denmark, dtype='unicode') geo_den = geo_den[['ID', 'ParentID', 'Name', 'Category']] basetree = append_country_geography(basetree, geo_den, 'Denmark') if arguments.finland: geo_fin = pandas.read_csv(arguments.finland, dtype='unicode') geo_fin = geo_fin[['ID', 'ParentID', 'Name', 'Category']] basetree = append_country_geography(basetree, geo_fin, 'Finland') if arguments.norway: geo_nor = pandas.read_csv(arguments.norway, dtype='unicode') geo_nor = geo_nor[['ID', 'ParentID', 'Name', 'Category']] basetree = append_country_geography(basetree, geo_nor, 'Norway') if arguments.sweden: geo_swe = pandas.read_csv(arguments.sweden, dtype='unicode') geo_swe = geo_swe[['ID', 'ParentID', 'Name', 'Category']] basetree = append_country_geography(basetree, geo_swe, 'Sweden') basetree['Category'] = basetree['Category'].replace(rank_names) treedefitems_merge = treedefitems[[ 'geographytreedefitem_sourceid', 'name']].rename(columns={'name': 'Category'}) geography = basetree.merge( treedefitems_merge, how='inner', on='Category') geography.rename(columns={ 'Name': 'name', 'ID': 'geography_sourceid', 'ParentID': 'parent_sourceid'}, inplace=True) geography.geography_sourceid = geography.geography_sourceid.astype(int) geography.sort_values(by='geography_sourceid', inplace=True) geography.parent_sourceid = ( geography.parent_sourceid.dropna().astype(int).astype(str)) geography[output_columns].to_csv('geography.csv', index=False, float='%g')
cc0-1.0
-5,945,689,383,502,212,000
31.039735
79
0.622778
false
jeKnowledge/horarios-inforestudante
TimetableMaker.py
1
8893
from itertools import combinations # Recebe dicionario de aulas de estrutura: # { CLASS_ID:{ # T:{ # CLASS_T1, # CLASS_T... # }, # TP:{ # CLASS_TP... # }, # ... # }, ... # } # Devolve array de todas as combinacoes de turmas possiveis # Refere-se aos elementos no dicionario por tuples: (aula, tipo, turma) # IGNORA SOBREPOSICOES def possibleCombinations(dictionary): # Combinacoes de turmas validos (todos os tipos presentes) # Para cada aula, i.e., e necessario fazer combinacao de turmas combTurmasValidas = [] aulas = [] # List de todas as aulas por numero #Fazer combinacoes dentro de cada aula for aula in dictionary: turmas = [] # List de de todas as turmas nesta aula (disciplina), como tuple tipos = [] # Tipos de aula (T/TP/PL) for tipo in dictionary[aula]: tipos.append(tipo) for turma in dictionary[aula][tipo]: turmas.append((aula, tipo, turma)) combTurmas = combinations(turmas, len(tipos)) # Todas as combinacoes possiveis, incluindo (TP,TP,TP,TP) for comb in combTurmas: tiposNaComb = [] # Quais os tipos de aula nesta combinacao; deverao ser todos for turma in comb: tipo = turma[1] # Cada turma é representada por uma tuple (aula, tipo, turma); turma[1] devolve tipo if tipo not in tiposNaComb: tiposNaComb.append(tipo) #Se a combinacao nao possuir todos os tipos de aula nao e valida if set(tiposNaComb) != set(tipos): continue combTurmasValidas.append(comb) aulas.append(aula) # Fazer combinacoes de aulas, tendo em conta combinacoes "legais" de turmas # Pelo mesmo processo que para as aulas: # Fazer todas as combinacoes possiveis e remover as que nao incluirem todas as aulas combAulas = combinations(combTurmasValidas, len(aulas)) combAulasValidas = [] # Todas as combinacoes de turmas for comb in combAulas: aulasInComb = [] # List de aulas incluidas nesta combinacao; deverao ser todas for turmaComb in comb: # Combinacao de turmas para uma aula; tira-se o id da aula pelo primeiro elemento if turmaComb[0][0] not in aulasInComb: aulasInComb.append(turmaComb[0][0]) # comb[0] == (aula, tipo, turma); tuple[0] == aula # Se esta combinacao de turmas possuir nao todas as aulas, nao e valida if set(aulasInComb) != set(aulas): continue # Verificar se a combinação nao existe ja sob outra ordem existe = False for combValida in combAulasValidas: if set(combValida) == set(comb): existe = True break if existe: continue combAulasValidas.append(comb) return combAulasValidas # Recebe input: # Dicionario: # { CLASS_ID:{ # T:{ # [T1_obj, T1_obj, T1_obj,...], # CLASS_T... # }, # TP:{ # CLASS_TP... # }, # ... # }, ... # Combinacoes validas de aulas: # ( ( ((aula1, tipo1, turma1), (aula1, tipo2, turma1)), ((aula2, tipo1, turma1), (aula2, tipo2, turma1)) ), ... ) # Verifica se ha sobreposicao de aulas e se houver, remove-as # Devolve lista de combinacoes sem sobreposicoes def removeOverlaps(dictionary, validCombinations): noOverlaps = [] # Resultado a devolver for comb in validCombinations: turmas = [] # turmas com "coordenadas", sob a forma (horaInicio, horaFim, (aula, tipo, turma)) # Criar tuples de horas e colocar na array for aulaComb in comb: for turma in aulaComb: aulas = dictionary[turma[0]][turma[1]][turma[2]] # Tirar objetos Aula do dicionario (multiplos!) for aula in aulas: # Criar tuple com horas inicio/fim, dia e turma (disciplina/tipo/turma) ref = (aula.horaInicio, aula.horaFim, aula.dia, (turma[0], turma[1], turma[2])) turmas.append(ref) # Criar pares todosPares = combinations(turmas, 2) pares = [] # Retirar pares de mesmas aulas for par in todosPares: # Verificar se turmas diferentes turmaA = par[0][3] turmaB = par[1][3] if turmaA[0] != turmaB[0] or turmaA[1] != turmaB[1] or turmaA[2] != turmaB[2]: pares.append(par) # Verificar sobreposicao em cada par combSemSobreposicoes = True for par in pares: a = par[0] b = par[1] # Dias diferentes? if a[2] != b[2]: continue cedo = min(a[0], b[0]) tarde = max(a[1], b[1]) delta = tarde - cedo # Aulas sobrepoem-se if a[1]-a[0]+b[1]-b[0] > delta: combSemSobreposicoes = False break if combSemSobreposicoes: noOverlaps.append(comb) return noOverlaps from openpyxl import Workbook from openpyxl.styles import Color, PatternFill, Style, Fill, Font from random import randint # Recebe input: # Dicionario: # { CLASS_ID:{ # T:{ # [T1_obj, T1_obj, T1_obj,...], # CLASS_T... # }, # TP:{ # CLASS_TP... # }, # ... # }, ... # Combinacoes de aulas: # ( ( ((aula1, tipo1, turma1), (aula1, tipo2, turma1)), ((aula2, tipo1, turma1), (aula2, tipo2, turma1)) ), ... ) # Grava um ficheiro xlsm (output.xlsm) # Devolve workbook do openpyxl def outputExcel(dictionary, combinations): if len(combinations) == 0: print("No combinations!") return wb = Workbook() wb.remove_sheet(wb.active) # Apagar folha default combinationNumber = 0 for comb in combinations: ws = wb.create_sheet(str(combinationNumber)) # Criar uma nova folha com um id para referencia # Labels de dia ws['B1'] = "Segunda" ws['C1'] = "Terça" ws['D1'] = "Quarta" ws['E1'] = "Quinta" ws['F1'] = "Sexta" ws['G1'] = "Sabado" ws['H1'] = "Domingo" # Labels de hora (30/30 minutos, das 8 as 22) i = 2 for n in range(80,220,5): ws['A'+str(i)] = str(int(n/10)) + "h" + str(int(((n/10)%1)*60)) + "m" i += 1 # Desenhar aulas for disciplina in comb: for coord in disciplina: aulaObjList = dictionary[coord[0]][coord[1]][coord[2]] for aulaObj in aulaObjList: # Tirar meia hora ao fim, para que nao haja merge sobreposto cellRange = diaParaLetra(aulaObj.dia) + horaParaNumero(aulaObj.horaInicio) + ":"\ + diaParaLetra(aulaObj.dia) + horaParaNumero(aulaObj.horaFim - 0.5) ws.merge_cells(cellRange) # Add label ws[diaParaLetra(aulaObj.dia) + horaParaNumero(aulaObj.horaInicio)] = aulaObj.aulaNome +\ "," + aulaObj.turma combinationNumber += 1 # Para referencia wb.save('output.xlsx') return wb # ______ Helper functions para output: _________ def diaParaLetra(dia): if dia == 0: return "B" if dia == 1: return "C" if dia == 2: return "D" if dia == 3: return "E" if dia == 4: return "F" if dia == 5: return "G" if dia == 6: return "H" def horaParaNumero(hora): delta = hora - 8 return str(int(delta/0.5) + 2) # _____________________________________________ # XLSXtoHTMLdemo # Program to convert the data from an XLSX file to HTML. # Uses the openpyxl library. # Author: Vasudev Ram - http://www.dancingbison.com # Altered by Miguel Murça for the purposes of this program import openpyxl from openpyxl import load_workbook def convertExcelToWeb(workbook): worksheets = workbook._sheets for worksheet in worksheets: html_data = """ <html> <head> <title> Horario </title> <head> <body> <table> """ ws_range = worksheet.iter_rows('A1:I30') for row in ws_range: html_data += "<tr>" for cell in row: if cell.value is None: html_data += "<td>" + ' ' + "<td>" else: html_data += "<td>" + str(cell.value) + "<td>" html_data += "<tr>" html_data += "</table>\n</body>\n</html>" with open(worksheet.title + ".html", "w") as html_fil: html_fil.write(html_data) # EOF
mit
-8,867,499,705,870,523,000
29.337884
117
0.540279
false
pinballwizard/phone
sms/migrations/false/0005_subscriber.py
1
1070
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-05-24 04:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sms', '0004_smssended_delivered'), ] operations = [ migrations.CreateModel( name='Subscriber', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mobile', models.CharField(max_length=11, unique=True, verbose_name='Номер телефона')), ('account', models.CharField(max_length=12, verbose_name='Лицевой счет')), ('blocked', models.BooleanField(verbose_name='Заблокирован')), ('ban_date', models.DateField(verbose_name='Дата блокировки')), ], options={ 'verbose_name': 'Абонент', 'verbose_name_plural': 'Абоненты', }, ), ]
lgpl-3.0
-2,315,646,766,958,779,400
33.655172
114
0.566169
false
EndPointCorp/lg_ros_nodes
lg_volume_control/test/test_volume_control.py
1
3071
#!/usr/bin/env python3 PKG = 'lg_volume_control' NAME = 'test_volume_control' import unittest import os from lg_volume_control import VolumeControlMaster from std_msgs.msg import UInt8, Int8 from lg_common.helpers import write_log_to_file class MockPub: def __init__(self): self.data = [] def publish(self, msg): self.data.append(msg) class TestVolumeControl(unittest.TestCase): def setUp(self): self.mock_pub = MockPub() # setting scale to 1 to make tests easier to read self.volume_controller = VolumeControlMaster(self.mock_pub, scale=1) def test_initial_volume(self): """ Volume is initially clamped between default/2 and default """ self.assertEqual(len(self.mock_pub.data), 1) write_log_to_file("%s" % self.mock_pub.data[0]) self.assertGreaterEqual(self.mock_pub.data[0], self.volume_controller.default_volume / 2) self.assertLessEqual(self.mock_pub.data[0], self.volume_controller.default_volume) def test_max_volume(self): """ Grab the initial data from self.data[0] and then add just enough to be 100 and then check that the new volume is 100, then add more than 100 and check that the volume returned does not exceed 100 """ current_volume = self.mock_pub.data[0] # calculate the ammount needed to increment the current volume increment = 100 - current_volume # craft a message and call the handle_volume callback increment_message = Int8() increment_message.data = increment self.volume_controller.handle_change_volume(increment_message) # check that we are at 100 volume now self.assertEqual(self.mock_pub.data[-1], 100) # increment another 1 volume increment_message.data = 1 self.volume_controller.handle_change_volume(increment_message) # check that we are _still_ 100 (we should never go above 100 volume) self.assertEqual(self.mock_pub.data[-1], 100) def test_min_volume(self): """ similar to test_max_volume, but checking that we don't go below 0 """ current_volume = self.mock_pub.data[0] # calculate the ammount needed to increment the current volume increment = 0 - current_volume # craft a message and call the handle_volume callback increment_message = Int8() increment_message.data = increment self.volume_controller.handle_change_volume(increment_message) # check that we are at 0 volume now self.assertEqual(self.mock_pub.data[-1], 0) # decrement another 1 volume increment_message.data = -1 self.volume_controller.handle_change_volume(increment_message) # check that we are _still_ 0 (we should never go below 0 volume) self.assertEqual(self.mock_pub.data[-1], 0) if __name__ == '__main__': import rostest rostest.rosrun(PKG, NAME, TestVolumeControl) # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
apache-2.0
-1,981,711,366,369,654,300
33.122222
97
0.659069
false
googlecodelabs/nest-tensorflow
codelab/classify.py
1
3339
#!/usr/bin/python # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import urllib2 import os.path import numpy as np import tensorflow as tf from node_lookup import NodeLookup from errors import error_result snapshot_file = 'tmp/tmp.jpg' model_dir = 'tmp/imagenet' num_top_predictions = 5 def classify_remote_image(image_url): # Attempt to Download try: image = download_image(image_url) except IOError: return error_result("Camera's Snapshot URL could not be downloaded") # Attempt to Classify try: results = run_inference_on_image(image) except: return error_result("Could not classify the image") return { "image_url": image_url, "results": results } def create_graph(): with tf.gfile.FastGFile(os.path.join( model_dir, 'classify_image_graph_def.pb' ), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def run_inference_on_image(image): """Runs inference on an image. Args: image: Image file name. Returns: Nothing """ if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = tf.gfile.FastGFile(image, 'rb').read() # Creates graph from saved GraphDef. create_graph() with tf.Session() as sess: # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = NodeLookup() top_k = predictions.argsort()[-num_top_predictions:][::-1] results = {} for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] results[human_string] = float(score) return results def download_image(url): # Downloads the image from the specified URL to the filesystem response = urllib2.urlopen(url) body = response.read() if body == '': raise IOError('The Snapshot URL did not contain any HTTP body when fetched') with open(snapshot_file, 'w') as f: f.write(body) return snapshot_file
apache-2.0
8,367,322,700,183,847,000
30.5
84
0.649596
false
mikejthomas/biote100_pset2
mode.py
1
2238
#Python Problem 3 #mode.py #Introduction to Bioinformatics Assignment 2 #Purpose:Calculating the mode of a dataset #Your Name: Michael Thomas #Date: 10/12/15 #will contain all the data of a list including some unwanted carriage return symbols tempList = [] #will contain the data as floats after it is stripped and the header is removed myData = [] #will store the header header = "" #this will store the value of the mode mode = 0 #TASK1 #We have the file data.txt read all the values of this file in the list tempList #open data.txt and save to a tempList text_file = open('data.txt' , 'r') tempList = text_file.readlines() text_file.close() print tempList #TASK2 #We don't want the header to be in the list Pop it and save it into the header variable #pop out header (position 0 in list tempList) and save to header. header = tempList.pop(0).strip() print header #TASK3 #for every member of tempList, clean it up from carriage return, convert it into a float and add it to the list myData #Using list comprehension, we delete all '\r\n' from each line in tempList myData = [line.rstrip('\r\n') for line in tempList] #Simialr to the list comprehension above, we convert all items to floats myData = [float(i) for i in myData] print myData #print type(myData[1]) #TASK4 #Sort the list myData myData.sort() print myData #TASK5 #using the list of floats myData Find the MODE of the data #The mode of a dataset is the number that occurs most frequently. #i.e. in the list [2,2,3,3,3,4] the mode is 3 #create dictionary myDic myDic = {} #using exceptions, we can incriment the key if a repeat #value is found, except if the value is unique #this will create a counter that will contain #len(myData) keys and their corresponding values #that each key repeats in myData for i in myData: try: myDic[i] += 1 except: myDic[i] = 1 print myDic #calculate the maximum values in the dictionary #this will represent the value of the mode maxval = max(myDic.values()) #for loop to print the key for the #corresponding value of maxval which will #be the mode for the dataset for key, value in myDic.items(): if value == maxval: mode = key #print results print "\n" print "The mode of the:", header, " dataset is: ", mode print "\n"
mit
-4,476,699,867,430,466,000
28.447368
118
0.743074
false
ddragon15/Overlooked-OvercookedFangame-WIP-
items.py
1
4159
import pygame from pygame.locals import * import math import random import magic class All(): DebugBool = False DebugV = [0,0] isHold = False isOccupied = False processable = True def Draw(self): playerrot = pygame.transform.rotate(self.image ,self.rot) playerpos1 = (self.pos[0]-32, self.pos[1]-32) magic.mapScreen.blit(playerrot, playerpos1) # pygame.draw.rect(magic.mapScreen, (50,50,131), pygame.Rect((x,y),(64,64))) def checkCollision(self, pos): boxrect = pygame.Rect((pos[0],pos[1]),(20,20)) myRect = pygame.Rect((self.pos[0]-16,self.pos[1]-16),(34,34)) # self.DebugV = myRect # self.DebugBool = True boxrect.topleft = [pos[0],pos[1]] if myRect.colliderect(boxrect): return True else: return False def Debug(self): if self.DebugBool: pygame.draw.rect(magic.mapScreen, (50,250,131), self.DebugV) # self.DebugV[0] = self.pos[0]-8 # self.DebugV[1] = self.y-8 # self.DebugBool = True def setPos(self, pos): self.pos = [pos[0]+8,pos[1]+8] class Onion(All): tag = "onion" def __init__(self, x, y): self.skin = "resources/images/onion.png" self.image = pygame.image.load(self.skin) # w,h = self.image.get_size() # self.image = pygame.transform.scale(self.image, (int(w),int(h))) self.rect = self.image.get_rect() self.rect.topleft = [x,y] self.pos = [x+32,y+32] self.rot = 0 #random.randint(0, 360)*1 def Update(self): All.Draw(self) All.Debug(self) def changeSkin(self): if self.skin is not "resource/image/onionS.png": self.skin = "resources/images/onionS.png" self.image = pygame.image.load(self.skin) class Tomato(All): tag = "tomato" def __init__(self, x, y): self.skin = "resources/images/tomato.png" self.image = pygame.image.load(self.skin) # w,h = self.image.get_size() # self.image = pygame.transform.scale(self.image, (int(w),int(h))) self.rect = self.image.get_rect() self.rect.topleft = [x,y] self.pos = [x+32,y+32] self.rot = 0 #random.randint(0, 360)*1 def Update(self): All.Draw(self) All.Debug(self) def changeSkin(self): if self.skin is not "resource/image/tomatoS.png": self.skin = "resources/images/tomatoS.png" self.image = pygame.image.load(self.skin) class Lettuce(All): tag = "lettuce" def __init__(self, x, y): self.skin = "resources/images/lettuce.png" self.image = pygame.image.load(self.skin) # w,h = self.image.get_size() # self.image = pygame.transform.scale(self.image, (int(w),int(h))) self.rect = self.image.get_rect() self.rect.topleft = [x,y] self.pos = [x+32,y+32] self.rot = 0 #random.randint(0, 360)*1 def Update(self): All.Draw(self) All.Debug(self) def changeSkin(self): if self.skin is not "resource/image/lettuceS.png": self.skin = "resources/images/lettuceS.png" self.image = pygame.image.load(self.skin) class Plate(All): processable = False # TODO make states for different Foods def __init__(self, x, y): self.skin = "resources/images/plate.png" self.image = pygame.image.load(self.skin) self.rect = self.image.get_rect() self.rect.topleft = [x,y] self.pos = [x+32,y+32] self.rot = 0 def Update(self): All.Draw(self) All.Debug(self) # TODO Plate states # If an item sits ontop of the Plate # Loop through Combinations out of all incedience onto the plate plus the new one # Take the first one all incredience work on # Consume the item (delete it) # Change Skin # TODO Make a map out of all recipies (maybe in another File) # Which items are needet? # Can it be processed by something? # Which state is the plate in? Choose Skin for swap and return it
gpl-3.0
3,271,743,681,788,671,000
29.580882
89
0.582592
false
TaskEvolution/Task-Coach-Evolution
taskcoach/taskcoachlib/gui/splash.py
1
1689
''' Task Coach - Your friendly task manager Copyright (C) 2004-2013 Task Coach developers <[email protected]> Task Coach is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Task Coach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import wx from taskcoachlib import i18n try: import icons except ImportError: # pragma: no cover print "ERROR: couldn't import icons.py." print 'You need to generate the icons file.' print 'Run "make prepare" in the Task Coach root folder.' import sys sys.exit(1) class SplashScreen(wx.SplashScreen): def __init__(self): splash = icons.catalog['splash'] if i18n.currentLanguageIsRightToLeft(): # RTL languages cause the bitmap to be mirrored too, but because # the splash image is not internationalized, we have to mirror it # (back). Unfortunately using SetLayoutDirection() on the # SplashWindow doesn't work. bitmap = wx.BitmapFromImage(splash.getImage().Mirror()) else: bitmap = splash.getBitmap() super(SplashScreen, self).__init__(bitmap, wx.SPLASH_CENTRE_ON_SCREEN|wx.SPLASH_TIMEOUT, 4000, None, -1)
gpl-3.0
-2,813,246,547,384,950,300
37.386364
77
0.704559
false
Trax-air/swagger-stub
setup.py
1
1752
#!/usr/bin/env python # -*- coding: utf-8 -*- try: from setuptools import setup except ImportError: from distutils.core import setup def parse_requirements(filename): """ load requirements from a pip requirements file """ lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = parse_requirements('requirements.txt') test_requirements = parse_requirements('requirements_dev.txt') setup( name='swagger_stub', version='0.2.1', description="Generate a stub from a swagger file", long_description=readme + '\n\n' + history, author="Cyprien Guillemot", author_email='[email protected]', url='https://github.com/Trax-air/swagger-stub', packages=[ 'swagger_stub', ], package_dir={'swagger_stub': 'swagger_stub'}, include_package_data=True, setup_requires=['pytest-runner'], install_requires=requirements, license="MIT", zip_safe=False, keywords='swagger, stub, API, REST, swagger-stub', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], test_suite='tests', tests_require=test_requirements )
mit
6,996,824,572,063,562,000
30.854545
75
0.642694
false
caneruguz/osf.io
api/base/settings/defaults.py
1
8833
""" Django settings for api project. Generated by 'django-admin startproject' using Django 1.8. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ import os from urlparse import urlparse from website import settings as osf_settings BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ DATABASES = { 'default': { 'CONN_MAX_AGE': 0, 'ENGINE': 'osf.db.backends.postgresql', # django.db.backends.postgresql 'NAME': os.environ.get('OSF_DB_NAME', 'osf'), 'USER': os.environ.get('OSF_DB_USER', 'postgres'), 'PASSWORD': os.environ.get('OSF_DB_PASSWORD', ''), 'HOST': os.environ.get('OSF_DB_HOST', '127.0.0.1'), 'PORT': os.environ.get('OSF_DB_PORT', '5432'), 'ATOMIC_REQUESTS': True, } } DATABASE_ROUTERS = ['osf.db.router.PostgreSQLFailoverRouter', ] CELERY_IMPORTS = [ 'osf.management.commands.migratedata', 'osf.management.commands.migraterelations', 'osf.management.commands.verify', ] PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', ] AUTH_USER_MODEL = 'osf.OSFUser' # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = osf_settings.SECRET_KEY AUTHENTICATION_BACKENDS = ( 'api.base.authentication.backends.ODMBackend', ) # SECURITY WARNING: don't run with debug turned on in production! DEV_MODE = osf_settings.DEV_MODE DEBUG = osf_settings.DEBUG_MODE DEBUG_PROPAGATE_EXCEPTIONS = True # session: SESSION_COOKIE_NAME = 'api' SESSION_COOKIE_SECURE = osf_settings.SECURE_MODE SESSION_COOKIE_HTTPONLY = osf_settings.SESSION_COOKIE_HTTPONLY # csrf: CSRF_COOKIE_NAME = 'api-csrf' CSRF_COOKIE_SECURE = osf_settings.SECURE_MODE CSRF_COOKIE_HTTPONLY = osf_settings.SECURE_MODE ALLOWED_HOSTS = [ '.osf.io' ] # Application definition INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.staticfiles', 'django.contrib.admin', # 3rd party 'rest_framework', 'rest_framework_swagger', 'corsheaders', 'raven.contrib.django.raven_compat', 'django_extensions', # OSF 'osf', # Addons 'addons.osfstorage', 'addons.bitbucket', 'addons.box', 'addons.dataverse', 'addons.dropbox', 'addons.figshare', 'addons.forward', 'addons.github', 'addons.googledrive', 'addons.mendeley', 'addons.owncloud', 'addons.s3', 'addons.twofactor', 'addons.wiki', 'addons.zotero', ) # local development using https if osf_settings.SECURE_MODE and DEBUG: INSTALLED_APPS += ('sslserver',) # TODO: Are there more granular ways to configure reporting specifically related to the API? RAVEN_CONFIG = { 'tags': {'App': 'api'}, 'dsn': osf_settings.SENTRY_DSN, 'release': osf_settings.VERSION, } BULK_SETTINGS = { 'DEFAULT_BULK_LIMIT': 100 } MAX_PAGE_SIZE = 100 REST_FRAMEWORK = { 'PAGE_SIZE': 10, # Order is important here because of a bug in rest_framework_swagger. For now, # rest_framework.renderers.JSONRenderer needs to be first, at least until # https://github.com/marcgibbons/django-rest-swagger/issues/271 is resolved. 'DEFAULT_RENDERER_CLASSES': ( 'api.base.renderers.JSONAPIRenderer', 'api.base.renderers.JSONRendererWithESISupport', 'api.base.renderers.BrowsableAPIRendererNoForms', ), 'DEFAULT_PARSER_CLASSES': ( 'api.base.parsers.JSONAPIParser', 'api.base.parsers.JSONAPIParserForRegularJSON', 'rest_framework.parsers.FormParser', 'rest_framework.parsers.MultiPartParser' ), 'EXCEPTION_HANDLER': 'api.base.exceptions.json_api_exception_handler', 'DEFAULT_CONTENT_NEGOTIATION_CLASS': 'api.base.content_negotiation.JSONAPIContentNegotiation', 'DEFAULT_VERSIONING_CLASS': 'api.base.versioning.BaseVersioning', 'DEFAULT_VERSION': '2.0', 'ALLOWED_VERSIONS': ( '2.0', '2.1', '2.2', '2.3', '2.4', '2.5', '2.6', ), 'DEFAULT_FILTER_BACKENDS': ('api.base.filters.ODMOrderingFilter',), 'DEFAULT_PAGINATION_CLASS': 'api.base.pagination.JSONAPIPagination', 'ORDERING_PARAM': 'sort', 'DEFAULT_AUTHENTICATION_CLASSES': ( # Custom auth classes 'api.base.authentication.drf.OSFBasicAuthentication', 'api.base.authentication.drf.OSFSessionAuthentication', 'api.base.authentication.drf.OSFCASAuthentication' ), 'DEFAULT_THROTTLE_CLASSES': ( 'rest_framework.throttling.UserRateThrottle', 'api.base.throttling.NonCookieAuthThrottle', ), 'DEFAULT_THROTTLE_RATES': { 'user': '10000/day', 'non-cookie-auth': '100/hour', 'add-contributor': '10/second', 'create-guid': '1000/hour', 'root-anon-throttle': '1000/hour', 'test-user': '2/hour', 'test-anon': '1/hour', } } # Settings related to CORS Headers addon: allow API to receive authenticated requests from OSF # CORS plugin only matches based on "netloc" part of URL, so as workaround we add that to the list CORS_ORIGIN_ALLOW_ALL = False CORS_ORIGIN_WHITELIST = (urlparse(osf_settings.DOMAIN).netloc, osf_settings.DOMAIN, ) # This needs to remain True to allow cross origin requests that are in CORS_ORIGIN_WHITELIST to # use cookies. CORS_ALLOW_CREDENTIALS = True # Set dynamically on app init ORIGINS_WHITELIST = () MIDDLEWARE_CLASSES = ( 'api.base.middleware.DjangoGlobalMiddleware', 'api.base.middleware.CeleryTaskMiddleware', 'api.base.middleware.PostcommitTaskMiddleware', # A profiling middleware. ONLY FOR DEV USE # Uncomment and add "prof" to url params to recieve a profile for that url # 'api.base.middleware.ProfileMiddleware', # 'django.contrib.sessions.middleware.SessionMiddleware', 'api.base.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', # 'django.contrib.auth.middleware.AuthenticationMiddleware', # 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', # 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True }] ROOT_URLCONF = 'api.base.urls' WSGI_APPLICATION = 'api.base.wsgi.application' LANGUAGE_CODE = 'en-us' # Disabled to make a test work (TestNodeLog.test_formatted_date) # TODO Try to understand what's happening to cause the test to break when that line is active. # TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'static/vendor') API_BASE = 'v2/' STATIC_URL = '/static/' STATICFILES_DIRS = ( ('rest_framework_swagger/css', os.path.join(BASE_DIR, 'static/css')), ('rest_framework_swagger/images', os.path.join(BASE_DIR, 'static/images')), ) # TODO: Revisit methods for excluding private routes from swagger docs SWAGGER_SETTINGS = { 'api_path': '/', 'info': { 'description': """ Welcome to the fine documentation for the Open Science Framework's API! Please click on the <strong>GET /v2/</strong> link below to get started. For the most recent docs, please check out our <a href="/v2/">Browsable API</a>. """, 'title': 'OSF APIv2 Documentation', }, 'doc_expansion': 'list', 'exclude_namespaces': ['applications', 'tokens', 'test'], } NODE_CATEGORY_MAP = osf_settings.NODE_CATEGORY_MAP DEBUG_TRANSACTIONS = DEBUG JWT_SECRET = 'osf_api_cas_login_jwt_secret_32b' JWE_SECRET = 'osf_api_cas_login_jwe_secret_32b' ENABLE_VARNISH = osf_settings.ENABLE_VARNISH ENABLE_ESI = osf_settings.ENABLE_ESI VARNISH_SERVERS = osf_settings.VARNISH_SERVERS ESI_MEDIA_TYPES = osf_settings.ESI_MEDIA_TYPES ADDONS_FOLDER_CONFIGURABLE = ['box', 'dropbox', 's3', 'googledrive', 'figshare', 'owncloud'] ADDONS_OAUTH = ADDONS_FOLDER_CONFIGURABLE + ['dataverse', 'github', 'bitbucket', 'mendeley', 'zotero', 'forward'] BYPASS_THROTTLE_TOKEN = 'test-token' OSF_SHELL_USER_IMPORTS = None # Settings for use in the admin OSF_URL = 'https://osf.io'
apache-2.0
4,021,562,499,466,621,400
29.458621
113
0.681535
false
mozilla/stoneridge
wpr/httparchive.py
1
25649
#!/usr/bin/env python # Copyright 2010 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """View and edit HTTP Archives. To list all URLs in an archive: $ ./httparchive.py ls archive.wpr To view the content of all URLs from example.com: $ ./httparchive.py cat --host example.com archive.wpr To view the content of a particular URL: $ ./httparchive.py cat --host www.example.com --path /foo archive.wpr To view the content of all URLs: $ ./httparchive.py cat archive.wpr To edit a particular URL: $ ./httparchive.py edit --host www.example.com --path /foo archive.wpr """ import difflib import email.utils import httplib import httpzlib import json import logging import optparse import os import persistentmixin import StringIO import subprocess import sys import tempfile import urlparse import platformsettings class HttpArchiveException(Exception): """Base class for all exceptions in httparchive.""" pass class HttpArchive(dict, persistentmixin.PersistentMixin): """Dict with ArchivedHttpRequest keys and ArchivedHttpResponse values. PersistentMixin adds CreateNew(filename), Load(filename), and Persist(). Attributes: server_rtt: dict of {hostname, server rtt in milliseconds} """ def __init__(self): self.server_rtt = {} def get_server_rtt(self, server): """Retrieves the round trip time (rtt) to the server Args: server: the hostname of the server Returns: round trip time to the server in seconds, or 0 if unavailable """ if server not in self.server_rtt: platform_settings = platformsettings.get_platform_settings() self.server_rtt[server] = platform_settings.ping(server) return self.server_rtt[server] def get(self, request, default=None): """Return the archived response for a given request. Does extra checking for handling some HTTP request headers. Args: request: instance of ArchivedHttpRequest default: default value to return if request is not found Returns: Instance of ArchivedHttpResponse or default if no matching response is found """ if request in self: return self[request] return self.get_conditional_response(request, default) def get_conditional_response(self, request, default): """Get the response based on the conditional HTTP request headers. Args: request: an ArchivedHttpRequest representing the original request. default: default ArchivedHttpResponse original request with matched headers removed. Returns: an ArchivedHttpResponse with a status of 200, 302 (not modified), or 412 (precondition failed) """ response = default if request.is_conditional(): stripped_request = request.create_request_without_conditions() if stripped_request in self: response = self[stripped_request] if response.status == 200: status = self.get_conditional_status(request, response) if status != 200: response = create_response(status) return response def get_conditional_status(self, request, response): status = 200 last_modified = email.utils.parsedate( response.get_header_case_insensitive('last-modified')) response_etag = response.get_header_case_insensitive('etag') is_get_or_head = request.command.upper() in ('GET', 'HEAD') match_value = request.headers.get('if-match', None) if match_value: if self.is_etag_match(match_value, response_etag): status = 200 else: status = 412 # precondition failed none_match_value = request.headers.get('if-none-match', None) if none_match_value: if self.is_etag_match(none_match_value, response_etag): status = 304 elif is_get_or_head: status = 200 else: status = 412 if is_get_or_head and last_modified: for header in ('if-modified-since', 'if-unmodified-since'): date = email.utils.parsedate(request.headers.get(header, None)) if date: if ((header == 'if-modified-since' and last_modified > date) or (header == 'if-unmodified-since' and last_modified < date)): if status != 412: status = 200 else: status = 304 # not modified return status def is_etag_match(self, request_etag, response_etag): """Determines whether the entity tags of the request/response matches. Args: request_etag: the value string of the "if-(none)-match:" portion of the request header response_etag: the etag value of the response Returns: True on match, False otherwise """ response_etag = response_etag.strip('" ') for etag in request_etag.split(','): etag = etag.strip('" ') if etag in ('*', response_etag): return True return False def get_requests(self, command=None, host=None, path=None, use_query=True): """Return a list of requests that match the given args.""" return [r for r in self if r.matches(command, host, path, use_query=use_query)] def ls(self, command=None, host=None, path=None): """List all URLs that match given params.""" return ''.join(sorted( '%s\n' % r for r in self.get_requests(command, host, path))) def cat(self, command=None, host=None, path=None): """Print the contents of all URLs that match given params.""" out = StringIO.StringIO() for request in self.get_requests(command, host, path): print >>out, str(request) print >>out, 'Untrimmed request headers:' for k in request.headers: print >>out, ' %s: %s' % (k, request.headers[k]) if request.request_body: print >>out, request.request_body print >>out, '---- Response Info', '-' * 51 response = self[request] chunk_lengths = [len(x) for x in response.response_data] print >>out, ('Status: %s\n' 'Reason: %s\n' 'Headers delay: %s\n' 'Response headers:') % ( response.status, response.reason, response.delays['headers']) for k, v in response.headers: print >>out, ' %s: %s' % (k, v) print >>out, ('Chunk count: %s\n' 'Chunk lengths: %s\n' 'Chunk delays: %s') % ( len(chunk_lengths), chunk_lengths, response.delays['data']) body = response.get_data_as_text() print >>out, '---- Response Data', '-' * 51 if body: print >>out, body else: print >>out, '[binary data]' print >>out, '=' * 70 return out.getvalue() def edit(self, command=None, host=None, path=None): """Edits the single request which matches given params.""" editor = os.getenv('EDITOR') if not editor: print 'You must set the EDITOR environmental variable.' return matching_requests = self.get_requests(command, host, path) if not matching_requests: print 'Failed to find any requests matching given command, host, path.' return if len(matching_requests) > 1: print 'Found multiple matching requests. Please refine.' print self.ls(command, host, path) response = self[matching_requests[0]] tmp_file = tempfile.NamedTemporaryFile(delete=False) tmp_file.write(response.get_response_as_text()) tmp_file.close() subprocess.check_call([editor, tmp_file.name]) response.set_response_from_text(''.join(open(tmp_file.name).readlines())) os.remove(tmp_file.name) def _format_request_lines(self, req): """Format request to make diffs easier to read. Args: req: an ArchivedHttpRequest Returns: Example: ['GET www.example.com/path\n', 'Header-Key: header value\n', ...] """ parts = ['%s %s%s\n' % (req.command, req.host, req.path)] if req.request_body: parts.append('%s\n' % req.request_body) for k, v in req.trimmed_headers: k = '-'.join(x.capitalize() for x in k.split('-')) parts.append('%s: %s\n' % (k, v)) return parts def find_closest_request(self, request, use_path=False): """Find the closest matching request in the archive to the given request. Args: request: an ArchivedHttpRequest use_path: If True, closest matching request's path component must match. (Note: this refers to the 'path' component within the URL, not the query string component.) If use_path=False, candidate will NOT match in example below e.g. request = GET www.test.com/path?aaa candidate = GET www.test.com/diffpath?aaa Returns: If a close match is found, return the instance of ArchivedHttpRequest. Otherwise, return None. """ best_match = None request_lines = self._format_request_lines(request) matcher = difflib.SequenceMatcher(b=''.join(request_lines)) path = None if use_path: path = request.path for candidate in self.get_requests(request.command, request.host, path, use_query=not use_path): candidate_lines = self._format_request_lines(candidate) matcher.set_seq1(''.join(candidate_lines)) best_match = max(best_match, (matcher.ratio(), candidate)) if best_match: return best_match[1] return None def diff(self, request): """Diff the given request to the closest matching request in the archive. Args: request: an ArchivedHttpRequest Returns: If a close match is found, return a textual diff between the requests. Otherwise, return None. """ request_lines = self._format_request_lines(request) closest_request = self.find_closest_request(request) if closest_request: closest_request_lines = self._format_request_lines(closest_request) return ''.join(difflib.ndiff(closest_request_lines, request_lines)) return None class ArchivedHttpRequest(object): """Record all the state that goes into a request. ArchivedHttpRequest instances are considered immutable so they can serve as keys for HttpArchive instances. (The immutability is not enforced.) Upon creation, the headers are "trimmed" (i.e. edited or dropped) and saved to self.trimmed_headers to allow requests to match in a wider variety of playback situations (e.g. using different user agents). For unpickling, 'trimmed_headers' is recreated from 'headers'. That allows for changes to the trim function and can help with debugging. """ CONDITIONAL_HEADERS = [ 'if-none-match', 'if-match', 'if-modified-since', 'if-unmodified-since'] def __init__(self, command, host, path, request_body, headers, is_ssl=False): """Initialize an ArchivedHttpRequest. Args: command: a string (e.g. 'GET' or 'POST'). host: a host name (e.g. 'www.google.com'). path: a request path (e.g. '/search?q=dogs'). request_body: a request body string for a POST or None. headers: {key: value, ...} where key and value are strings. is_ssl: a boolean which is True iff request is make via SSL. """ self.command = command self.host = host self.path = path self.request_body = request_body self.headers = headers self.is_ssl = is_ssl self.trimmed_headers = self._TrimHeaders(headers) def __str__(self): scheme = 'https' if self.is_ssl else 'http' return '%s %s://%s%s %s' % ( self.command, scheme, self.host, self.path, self.trimmed_headers) def __repr__(self): return repr((self.command, self.host, self.path, self.request_body, self.trimmed_headers, self.is_ssl)) def __hash__(self): """Return a integer hash to use for hashed collections including dict.""" return hash(repr(self)) def __eq__(self, other): """Define the __eq__ method to match the hash behavior.""" return repr(self) == repr(other) def __setstate__(self, state): """Influence how to unpickle. "headers" are the original request headers. "trimmed_headers" are the trimmed headers used for matching requests during replay. Args: state: a dictionary for __dict__ """ if 'full_headers' in state: # Fix older version of archive. state['headers'] = state['full_headers'] del state['full_headers'] if 'headers' not in state: raise HttpArchiveException( 'Archived HTTP request is missing "headers". The HTTP archive is' ' likely from a previous version and must be re-recorded.') state['trimmed_headers'] = self._TrimHeaders(dict(state['headers'])) if 'is_ssl' not in state: state['is_ssl'] = False self.__dict__.update(state) def __getstate__(self): """Influence how to pickle. Returns: a dict to use for pickling """ state = self.__dict__.copy() del state['trimmed_headers'] return state def matches(self, command=None, host=None, path_with_query=None, use_query=True): """Returns true iff the request matches all parameters. Args: command: a string (e.g. 'GET' or 'POST'). host: a host name (e.g. 'www.google.com'). path_with_query: a request path with query string (e.g. '/search?q=dogs') use_query: If use_query is True, request matching uses both the hierarchical path and query string component. If use_query is False, request matching only uses the hierarchical path e.g. req1 = GET www.test.com/index?aaaa req2 = GET www.test.com/index?bbbb If use_query is True, req1.matches(req2) evaluates to False If use_query is False, req1.matches(req2) evaluates to True Returns: True iff the request matches all parameters """ path_match = path_with_query == self.path if not use_query: self_path = urlparse.urlparse('http://%s%s' % ( self.host or '', self.path or '')).path other_path = urlparse.urlparse('http://%s%s' % ( host or '', path_with_query or '')).path path_match = self_path == other_path return ((command is None or command == self.command) and (host is None or host == self.host) and (path_with_query is None or path_match)) @classmethod def _TrimHeaders(cls, headers): """Removes headers that are known to cause problems during replay. These headers are removed for the following reasons: - accept: Causes problems with www.bing.com. During record, CSS is fetched with *. During replay, it's text/css. - accept-charset, accept-language, referer: vary between clients. - connection, method, scheme, url, version: Cause problems with spdy. - cookie: Extremely sensitive to request/response order. - keep-alive: Not supported by Web Page Replay. - user-agent: Changes with every Chrome version. - proxy-connection: Sent for proxy requests. Another variant to consider is dropping only the value from the header. However, this is particularly bad for the cookie header, because the presence of the cookie depends on the responses we've seen when the request is made. Args: headers: {header_key: header_value, ...} Returns: [(header_key, header_value), ...] # (with undesirable headers removed) """ # TODO(tonyg): Strip sdch from the request headers because we can't # guarantee that the dictionary will be recorded, so replay may not work. if 'accept-encoding' in headers: headers['accept-encoding'] = headers['accept-encoding'].replace( 'sdch', '') # A little clean-up if headers['accept-encoding'].endswith(','): headers['accept-encoding'] = headers['accept-encoding'][:-1] undesirable_keys = [ 'accept', 'accept-charset', 'accept-language', 'connection', 'cookie', 'keep-alive', 'method', 'referer', 'scheme', 'url', 'version', 'user-agent', 'proxy-connection'] return sorted([(k, v) for k, v in headers.items() if k.lower() not in undesirable_keys]) def is_conditional(self): """Return list of headers that match conditional headers.""" for header in self.CONDITIONAL_HEADERS: if header in self.headers: return True return False def create_request_without_conditions(self): stripped_headers = dict((k, v) for k, v in self.headers.iteritems() if k.lower() not in self.CONDITIONAL_HEADERS) return ArchivedHttpRequest( self.command, self.host, self.path, self.request_body, stripped_headers, self.is_ssl) class ArchivedHttpResponse(object): """All the data needed to recreate all HTTP response.""" # CHUNK_EDIT_SEPARATOR is used to edit and view text content. # It is not sent in responses. It is added by get_data_as_text() # and removed by set_data(). CHUNK_EDIT_SEPARATOR = '[WEB_PAGE_REPLAY_CHUNK_BOUNDARY]' # DELAY_EDIT_SEPARATOR is used to edit and view server delays. DELAY_EDIT_SEPARATOR = ('\n[WEB_PAGE_REPLAY_EDIT_ARCHIVE --- ' 'Delays are above. Response content is below.]\n') def __init__(self, version, status, reason, headers, response_data, delays=None): """Initialize an ArchivedHttpResponse. Args: version: HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1 (same as httplib). status: Status code returned by server (e.g. 200). reason: Reason phrase returned by server (e.g. "OK"). headers: list of (header, value) tuples. response_data: list of content chunks. Concatenating the chunks gives the complete contents (i.e. the chunks do not have any lengths or delimiters). Do not include the final, zero-length chunk that marks the end. delays: dict of (ms) delays before "headers" and "data". For example, {'headers': 50, 'data': [0, 10, 10]} """ self.version = version self.status = status self.reason = reason self.headers = headers self.response_data = response_data self.delays = delays self.fix_delays() def fix_delays(self): """Initialize delays, or check the number of data delays.""" expected_num_delays = len(self.response_data) if not self.delays: self.delays = { 'headers': 0, 'data': [0] * expected_num_delays } else: num_delays = len(self.delays['data']) if num_delays != expected_num_delays: raise HttpArchiveException( 'Server delay length mismatch: %d (expected %d): %s', num_delays, expected_num_delays, self.delays['data']) def __repr__(self): return repr((self.version, self.status, self.reason, sorted(self.headers), self.response_data)) def __hash__(self): """Return a integer hash to use for hashed collections including dict.""" return hash(repr(self)) def __eq__(self, other): """Define the __eq__ method to match the hash behavior.""" return repr(self) == repr(other) def __setstate__(self, state): """Influence how to unpickle. Args: state: a dictionary for __dict__ """ if 'server_delays' in state: state['delays'] = { 'headers': 0, 'data': state['server_delays'] } del state['server_delays'] elif 'delays' not in state: state['delays'] = None self.__dict__.update(state) self.fix_delays() def get_header(self, key, default=None): for k, v in self.headers: if key == k: return v return default def get_header_case_insensitive(self, key): for k, v in self.headers: if key.lower() == k.lower(): return v return None def set_header(self, key, value): for i, (k, v) in enumerate(self.headers): if key == k: self.headers[i] = (key, value) return self.headers.append((key, value)) def remove_header(self, key): for i, (k, v) in enumerate(self.headers): if key == k: self.headers.pop(i) return def is_gzip(self): return self.get_header('content-encoding') == 'gzip' def is_compressed(self): return self.get_header('content-encoding') in ('gzip', 'deflate') def is_chunked(self): return self.get_header('transfer-encoding') == 'chunked' def get_data_as_text(self): """Return content as a single string. Uncompresses and concatenates chunks with CHUNK_EDIT_SEPARATOR. """ content_type = self.get_header('content-type') if (not content_type or not (content_type.startswith('text/') or content_type == 'application/x-javascript')): return None if self.is_compressed(): uncompressed_chunks = httpzlib.uncompress_chunks( self.response_data, self.is_gzip()) else: uncompressed_chunks = self.response_data return self.CHUNK_EDIT_SEPARATOR.join(uncompressed_chunks) def get_delays_as_text(self): """Return delays as editable text.""" return json.dumps(self.delays, indent=2) def get_response_as_text(self): """Returns response content as a single string. Server delays are separated on a per-chunk basis. Delays are in seconds. Response content begins after DELAY_EDIT_SEPARATOR """ data = self.get_data_as_text() if data is None: logging.warning('Data can not be represented as text.') data = '' delays = self.get_delays_as_text() return self.DELAY_EDIT_SEPARATOR.join((delays, data)) def set_data(self, text): """Inverse of get_data_as_text(). Split on CHUNK_EDIT_SEPARATOR and compress if needed. """ text_chunks = text.split(self.CHUNK_EDIT_SEPARATOR) if self.is_compressed(): self.response_data = httpzlib.compress_chunks(text_chunks, self.is_gzip()) else: self.response_data = text_chunks if not self.is_chunked(): content_length = sum(len(c) for c in self.response_data) self.set_header('content-length', str(content_length)) def set_delays(self, delays_text): """Inverse of get_delays_as_text(). Args: delays_text: JSON encoded text such as the following: { headers: 80, data: [6, 55, 0] } Times are in milliseconds. Each data delay corresponds with one response_data value. """ try: self.delays = json.loads(delays_text) except (ValueError, KeyError) as e: logging.critical('Unable to parse delays %s: %s', delays_text, e) self.fix_delays() def set_response_from_text(self, text): """Inverse of get_response_as_text(). Modifies the state of the archive according to the textual representation. """ try: delays, data = text.split(self.DELAY_EDIT_SEPARATOR) except ValueError: logging.critical( 'Error parsing text representation. Skipping edits.') return self.set_delays(delays) self.set_data(data) def create_response(status, reason=None, headers=None, body=None): """Convenience method for creating simple ArchivedHttpResponse objects.""" if reason is None: reason = httplib.responses.get(status, 'Unknown') if headers is None: headers = [('content-type', 'text/plain')] if body is None: body = "%s %s" % (status, reason) return ArchivedHttpResponse(11, status, reason, headers, [body]) def main(): class PlainHelpFormatter(optparse.IndentedHelpFormatter): def format_description(self, description): if description: return description + '\n' else: return '' option_parser = optparse.OptionParser( usage='%prog [ls|cat|edit] [options] replay_file', formatter=PlainHelpFormatter(), description=__doc__, epilog='http://code.google.com/p/web-page-replay/') option_parser.add_option('-c', '--command', default=None, action='store', type='string', help='Only show URLs matching this command.') option_parser.add_option('-o', '--host', default=None, action='store', type='string', help='Only show URLs matching this host.') option_parser.add_option('-p', '--path', default=None, action='store', type='string', help='Only show URLs matching this path.') options, args = option_parser.parse_args() if len(args) != 2: print 'args: %s' % args option_parser.error('Must specify a command and replay_file') command = args[0] replay_file = args[1] if not os.path.exists(replay_file): option_parser.error('Replay file "%s" does not exist' % replay_file) http_archive = HttpArchive.Load(replay_file) if command == 'ls': print http_archive.ls(options.command, options.host, options.path) elif command == 'cat': print http_archive.cat(options.command, options.host, options.path) elif command == 'edit': http_archive.edit(options.command, options.host, options.path) http_archive.Persist(replay_file) else: option_parser.error('Unknown command "%s"' % command) return 0 if __name__ == '__main__': sys.exit(main())
mpl-2.0
3,875,306,886,947,456,500
33.707713
80
0.644859
false
CLVsol/odoo_addons
clv_medicament_list/item/__init__.py
1
1436
# -*- encoding: utf-8 -*- ################################################################################ # # # Copyright (C) 2013-Today Carlos Eduardo Vercelino - CLVsol # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU Affero General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU Affero General Public License for more details. # # # # You should have received a copy of the GNU Affero General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # ################################################################################ import clv_medicament_list_item
agpl-3.0
-4,137,553,413,951,315,500
70.8
80
0.410864
false
georgistanev/django-dash
src/dash/contrib/plugins/rss_feed/dash_plugins.py
1
1179
__author__ = 'Artur Barseghyan <[email protected]>' __copyright__ = 'Copyright (c) 2013 Artur Barseghyan' __license__ = 'GPL 2.0/LGPL 2.1' __all__ = ('BaseReadRSSFeedPlugin',) from django.utils.translation import ugettext_lazy as _ from dash.base import BaseDashboardPlugin from dash.factory import plugin_factory from dash.contrib.plugins.rss_feed.forms import ReadRSSFeedForm # ******************************************************************************** # ********************************* Base Read RSS feed plugin ******************** # ******************************************************************************** class BaseReadRSSFeedPlugin(BaseDashboardPlugin): """ Base Read RSS feed into HTML plugin. """ name = _("Read RSS feed") form = ReadRSSFeedForm group = _("Internet") # ******************************************************************************** # ********** Generating and registering the plugins using factory **************** # ******************************************************************************** sizes = ( (2, 3), (3, 3), ) plugin_factory(BaseReadRSSFeedPlugin, 'read_rss_feed', sizes)
gpl-2.0
3,955,246,857,589,229,600
35.84375
82
0.46056
false
cleobulo/site-mapp2
crawl/linkanalyzer.py
1
4873
#!/usr/bin/python # -*- coding: utf-8 -*- #author Cleóbulo Bezerra < [email protected] > #file Defines a set of proceeds to verify the authenticity of the urls from re import match, split, sub, search from Queue import Queue from urlparse import urljoin, urlparse def init(): """ Initializes the global variables required for build a links parser. The goal of this parser should be to verify that a URL is authentic. 1 - Verify the url syntax and classify them as relative or absolute; 2 - If possible, authenticate these URLs considered valid; 3 - Filter URLs, that is, maintain only those that lead to html pages. """ #Reserved Characters global GEN_DELIMS global SUB_DELIMS global RESERVED GEN_DELIMS = r"[/:\?#\[\]@]" SUB_DELIMS = r"[!\$&\+\*,;`\(\)]" RESERVED = GEN_DELIMS + "|" + SUB_DELIMS #Unreserved Characters global UNRESERVED UNRESERVED = r"[\w\.-_~]" #PATH (sub) components global PCHAR global SEGMENT global SEGMENT_NZ global SEGMENT_NZ_NC PCHAR = r"(" + UNRESERVED + "|" + SUB_DELIMS + "|:|@)" SEGMENT = PCHAR + "*" SEGMENT_NZ = PCHAR + "+" SEGMENT_NZ_NC = r"(" + UNRESERVED + "|" + SUB_DELIMS + "|@)+" global PATH_ABEMPTY global PATH_ABSOLUTE global PATH_NOSCHEME global PATH_ROOTLESS PATH_ABEMPTY = r"(/" + SEGMENT + ")*" PATH_ABSOLUTE = r"/(" + SEGMENT_NZ + "(/" + SEGMENT + ")*)" PATH_NOSCHEME = SEGMENT_NZ_NC + "(/" + SEGMENT + ")*" PATH_ROOTLESS = SEGMENT_NZ + "(/" + SEGMENT + ")*" #The three main components of the syntactic structure of a URL. global SCHEME global HOST global PATH SCHEME = r"http(s)?:" HOST = r"//(" + UNRESERVED + "|" + SUB_DELIMS + ")*" PATH = r"(" + PATH_ABEMPTY + "|" + PATH_ABSOLUTE + "|" + PATH_NOSCHEME + "|" + PATH_ROOTLESS + "|)" class _Token: """ This class represents each component of a URL syntax. """ def __init__(self, token): self.__token = token @property def token(self): return self.__token class _UrlSyntaxTree: """ Represents a URL Syntax Tree for URL analysis. The goal is try to correct or authenticate the URLs collected on the Web by some program or an user input. """ def __init__(self): self.__leftchild = None self.__middlechild = None self.__rightchild = None def __urlsplit(self, url): return split('([^\?#:/]+:|//[^\?#/]*)', url) def build_absolute_url(self, url): urlcomp = self.__urlsplit(url) queuecomp = Queue() for comp in urlcomp: if comp != '': queuecomp.put(_Token(comp)) while not queuecomp.empty(): currcomp = queuecomp.get() if match(SCHEME, currcomp.token): self.__leftchild = currcomp elif match(HOST, currcomp.token): self.__middlechild = currcomp elif match(PATH, currcomp.token): self.build_relative_url(currcomp.token) def get_absolute_url(self): if self.__leftchild != None and self.__middlechild != None and self.__rightchild != None: return self.__leftchild.token + self.__middlechild.token + self.__rightchild.token elif self.__leftchild != None and self.__middlechild != None: return self.__leftchild.token + sub('(/|)$', '/', self.__middlechild.token) else: return None def build_relative_url(self, path): urlcomp = _Token(path) if match(PATH, urlcomp.token): self.__rightchild = urlcomp def get_relative_url(self): if self.get_absolute_url() == None and self.__rightchild != None: return self.__rightchild.token else: return None class LinkAnalyzer: """ Represents an object for URL analysis. This object seeks to perform the syntax analysis and the filtering of these URLs. """ def __init__(self): init() def urleval(self, curl, furl = '/'): self.__urltree = _UrlSyntaxTree() url = curl if furl == '/' else furl if match(SCHEME + HOST, url): self.__urltree.build_absolute_url(url) return self.__urltree.get_absolute_url() elif match(PATH, url): self.__urltree.build_relative_url(url) return urljoin(curl, self.__urltree.get_relative_url()) return None def urlfilter(self, url): if search('^http(s)?://[^\?#/]+$', url): return True elif search('(/[^\?#\.:/]*)$', url): return True elif search('(\.html|\.htm|\.php|\.asp|\.jsp)$', url): return True else: return False
mit
4,591,837,217,795,273,000
27.828402
103
0.562192
false
nojhan/weboob-devel
modules/cuisineaz/pages.py
1
4451
# -*- coding: utf-8 -*- # Copyright(C) 2013 Julien Veyssier # # This file is part of weboob. # # weboob is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # weboob is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with weboob. If not, see <http://www.gnu.org/licenses/>. from weboob.capabilities.recipe import Recipe, Comment from weboob.capabilities.base import NotAvailable from weboob.browser.pages import HTMLPage, pagination from weboob.browser.elements import ItemElement, method, ListElement from weboob.browser.filters.standard import CleanText, Regexp, Env, Time from weboob.browser.filters.html import XPath, CleanHTML import re import datetime class CuisineazDuration(Time): klass = datetime.timedelta _regexp = re.compile(r'((?P<hh>\d+) h)?((?P<mm>\d+) min)?(?P<ss>\d+)?') kwargs = {'hours': 'hh', 'minutes': 'mm', 'seconds': 'ss'} class ResultsPage(HTMLPage): """ Page which contains results as a list of recipies """ @pagination @method class iter_recipes(ListElement): item_xpath = '//div[@id="divRecette"]' def next_page(self): next = CleanText('//li[@class="next"]/span/a/@href', default=None)(self) if next: return next class item(ItemElement): klass = Recipe def condition(self): return Regexp(CleanText('./div[has-class("searchTitle")]/h2/a/@href'), '/recettes/(.*).aspx', default=None)(self.el) obj_id = Regexp(CleanText('./div[has-class("searchTitle")]/h2/a/@href'), '/recettes/(.*).aspx') obj_title = CleanText('./div[has-class("searchTitle")]/h2/a') obj_thumbnail_url = CleanText('./div[has-class("searchImg")]/span/img[@data-src!=""]/@data-src|./div[has-class("searchImg")]/div/span/img[@src!=""]/@src', default=None) obj_short_description = CleanText('./div[has-class("searchIngredients")]') class RecipePage(HTMLPage): """ Page which contains a recipe """ @method class get_recipe(ItemElement): klass = Recipe obj_id = Env('_id') obj_title = CleanText('//div[@id="ficheRecette"]/h1') obj_picture_url = CleanText('//img[@id="shareimg" and @src!=""]/@src', default=None) obj_thumbnail_url = CleanText('//img[@id="shareimg" and @src!=""]/@src', default=None) def obj_preparation_time(self): _prep = CuisineazDuration(CleanText('//span[@id="ctl00_ContentPlaceHolder_LblRecetteTempsPrepa"]'))(self) return int(_prep.total_seconds() / 60) def obj_cooking_time(self): _cook = CuisineazDuration(CleanText('//span[@id="ctl00_ContentPlaceHolder_LblRecetteTempsCuisson"]'))(self) return int(_cook.total_seconds() / 60) def obj_nb_person(self): nb_pers = CleanText('//span[@id="ctl00_ContentPlaceHolder_LblRecetteNombre"]')(self) return [nb_pers] if nb_pers else NotAvailable def obj_ingredients(self): ingredients = [] for el in XPath('//div[@id="ingredients"]/ul/li')(self): ingredients.append(CleanText('.')(el)) return ingredients obj_instructions = CleanHTML('//div[@id="preparation"]/span[@class="instructions"]') @method class get_comments(ListElement): item_xpath = '//div[@class="comment pb15 row"]' class item(ItemElement): klass = Comment obj_author = CleanText('./div[has-class("comment-left")]/div/div/div[@class="fs18 txtcaz mb5 first-letter"]') obj_text = CleanText('./div[has-class("comment-right")]/div/p') obj_id = CleanText('./@id') def obj_rate(self): return len(XPath('./div[has-class("comment-right")]/div/div/div/span/span[@class="icon icon-star"]')(self))
agpl-3.0
3,232,280,561,110,571,500
36.720339
166
0.611773
false
jhseu/tensorflow
tensorflow/python/debug/lib/source_utils.py
1
13967
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and functions that help to inspect Python source w.r.t. TF graphs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import re import zipfile import absl import numpy as np from tensorflow.python.debug.lib import profiling _TENSORFLOW_BASEDIR = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname( os.path.normpath(os.path.abspath(__file__)))))) _ABSL_BASEDIR = os.path.dirname(absl.__file__) UNCOMPILED_SOURCE_SUFFIXES = (".py") COMPILED_SOURCE_SUFFIXES = (".pyc", ".pyo") def _norm_abs_path(file_path): return os.path.normpath(os.path.abspath(file_path)) def is_extension_uncompiled_python_source(file_path): _, extension = os.path.splitext(file_path) return extension.lower() in UNCOMPILED_SOURCE_SUFFIXES def is_extension_compiled_python_source(file_path): _, extension = os.path.splitext(file_path) return extension.lower() in COMPILED_SOURCE_SUFFIXES def _convert_watch_key_to_tensor_name(watch_key): return watch_key[:watch_key.rfind(":")] def guess_is_tensorflow_py_library(py_file_path): """Guess whether a Python source file is a part of the tensorflow library. Special cases: 1) Returns False for unit-test files in the library (*_test.py), 2) Returns False for files under python/debug/examples. Args: py_file_path: full path of the Python source file in question. Returns: (`bool`) Whether the file is a part of the tensorflow library. Raises: ValueError: if the extension name of py_file_path does not indicate a Python source file (compiled or uncomplied). """ if (not is_extension_uncompiled_python_source(py_file_path) and not is_extension_compiled_python_source(py_file_path)): raise ValueError( "Input file path (%s) is not a Python source file." % py_file_path) py_file_path = _norm_abs_path(py_file_path) return ((py_file_path.startswith(_TENSORFLOW_BASEDIR) or py_file_path.startswith(_ABSL_BASEDIR)) and not py_file_path.endswith("_test.py") and (os.path.normpath("tensorflow/python/debug/examples") not in os.path.normpath(py_file_path))) def load_source(source_file_path): """Load the content of a Python source code file. This function covers the following case: 1. source_file_path points to an existing Python (.py) file on the file system. 2. source_file_path is a path within a .par file (i.e., a zip-compressed, self-contained Python executable). Args: source_file_path: Path to the Python source file to read. Returns: A length-2 tuple: - Lines of the source file, as a `list` of `str`s. - The width of the string needed to show the line number in the file. This is calculated based on the number of lines in the source file. Raises: IOError: if loading is unsuccessful. """ if os.path.isfile(source_file_path): with open(source_file_path, "rb") as f: source_text = f.read().decode("utf-8") source_lines = source_text.split("\n") else: # One possible reason why the file doesn't exist is that it's a path # inside a .par file. Try that possibility. source_lines = _try_load_par_source(source_file_path) if source_lines is None: raise IOError( "Source path neither exists nor can be loaded as a .par file: %s" % source_file_path) line_num_width = int(np.ceil(np.log10(len(source_lines)))) + 3 return source_lines, line_num_width def _try_load_par_source(source_file_path): """Try loading the source code inside a .par file. A .par file is a zip-compressed, self-contained Python executable. It contains the content of individual Python source files that can be read only through extracting from the zip file. Args: source_file_path: The full path to the file inside the .par file. This path should include the path to the .par file itself, followed by the intra-par path, e.g., "/tmp/my_executable.par/org-tensorflow/tensorflow/python/foo/bar.py". Returns: If successful, lines of the source file as a `list` of `str`s. Else, `None`. """ prefix_path = source_file_path while True: prefix_path, basename = os.path.split(prefix_path) if not basename: break suffix_path = os.path.normpath( os.path.relpath(source_file_path, start=prefix_path)) if prefix_path.endswith(".par") and os.path.isfile(prefix_path): with zipfile.ZipFile(prefix_path) as z: norm_names = [os.path.normpath(name) for name in z.namelist()] if suffix_path in norm_names: with z.open(z.namelist()[norm_names.index(suffix_path)]) as zf: source_text = zf.read().decode("utf-8") return source_text.split("\n") def annotate_source(dump, source_file_path, do_dumped_tensors=False, file_stack_top=False, min_line=None, max_line=None): """Annotate a Python source file with a list of ops created at each line. (The annotation doesn't change the source file itself.) Args: dump: (`DebugDumpDir`) A `DebugDumpDir` object of which the Python graph has been loaded. source_file_path: (`str`) Path to the source file being annotated. do_dumped_tensors: (`str`) Whether dumped Tensors, instead of ops are to be used to annotate the source file. file_stack_top: (`bool`) Whether only the top stack trace in the specified source file is to be annotated. min_line: (`None` or `int`) The 1-based line to start annotate the source file from (inclusive). max_line: (`None` or `int`) The 1-based line number to end the annotation at (exclusive). Returns: A `dict` mapping 1-based line number to a list of op name(s) created at that line, or tensor names if `do_dumped_tensors` is True. Raises: ValueError: If the dump object does not have a Python graph set. """ py_graph = dump.python_graph if not py_graph: raise ValueError("Cannot perform source annotation due to a lack of set " "Python graph in the dump object") source_file_path = _norm_abs_path(source_file_path) line_to_op_names = {} for op in py_graph.get_operations(): for file_path, line_number, _, _ in reversed(dump.node_traceback(op.name)): if (min_line is not None and line_number < min_line or max_line is not None and line_number >= max_line): continue if _norm_abs_path(file_path) != source_file_path: continue if do_dumped_tensors: watch_keys = dump.debug_watch_keys(op.name) # Convert watch keys to unique Tensor names. items_to_append = list( set(map(_convert_watch_key_to_tensor_name, watch_keys))) else: items_to_append = [op.name] if line_number in line_to_op_names: line_to_op_names[line_number].extend(items_to_append) else: line_to_op_names[line_number] = items_to_append if file_stack_top: break return line_to_op_names def list_source_files_against_dump(dump, path_regex_whitelist=None, node_name_regex_whitelist=None): """Generate a list of source files with information regarding ops and tensors. Args: dump: (`DebugDumpDir`) A `DebugDumpDir` object of which the Python graph has been loaded. path_regex_whitelist: A regular-expression filter for source file path. node_name_regex_whitelist: A regular-expression filter for node names. Returns: A list of tuples regarding the Python source files involved in constructing the ops and tensors contained in `dump`. Each tuple is: (source_file_path, is_tf_library, num_nodes, num_tensors, num_dumps, first_line) is_tf_library: (`bool`) A guess of whether the file belongs to the TensorFlow Python library. num_nodes: How many nodes were created by lines of this source file. These include nodes with dumps and those without. num_tensors: How many Tensors were created by lines of this source file. These include Tensors with dumps and those without. num_dumps: How many debug Tensor dumps were from nodes (and Tensors) that were created by this source file. first_line: The first line number (1-based) that created any nodes or Tensors in this source file. The list is sorted by ascending order of source_file_path. Raises: ValueError: If the dump object does not have a Python graph set. """ py_graph = dump.python_graph if not py_graph: raise ValueError("Cannot generate source list due to a lack of set " "Python graph in the dump object") path_to_node_names = collections.defaultdict(set) path_to_tensor_names = collections.defaultdict(set) path_to_first_line = {} tensor_name_to_num_dumps = {} path_regex = (re.compile(path_regex_whitelist) if path_regex_whitelist else None) node_name_regex = (re.compile(node_name_regex_whitelist) if node_name_regex_whitelist else None) to_skip_file_paths = set() for op in py_graph.get_operations(): if node_name_regex and not node_name_regex.match(op.name): continue for file_path, line_number, _, _ in dump.node_traceback(op.name): file_path = _norm_abs_path(file_path) if (file_path in to_skip_file_paths or path_regex and not path_regex.match(file_path) or not os.path.isfile(file_path)): to_skip_file_paths.add(file_path) continue path_to_node_names[file_path].add(op.name) if file_path in path_to_first_line: if path_to_first_line[file_path] > line_number: path_to_first_line[file_path] = line_number else: path_to_first_line[file_path] = line_number for output_tensor in op.outputs: tensor_name = output_tensor.name path_to_tensor_names[file_path].add(tensor_name) watch_keys = dump.debug_watch_keys(op.name) for watch_key in watch_keys: node_name, output_slot, debug_op = watch_key.split(":") tensor_name = "%s:%s" % (node_name, output_slot) if tensor_name not in tensor_name_to_num_dumps: tensor_name_to_num_dumps[tensor_name] = len( dump.get_tensors(node_name, int(output_slot), debug_op)) path_to_num_dumps = {} for path in path_to_tensor_names: path_to_num_dumps[path] = sum( tensor_name_to_num_dumps.get(tensor_name, 0) for tensor_name in path_to_tensor_names[path]) output = [] for file_path in path_to_node_names: output.append(( file_path, guess_is_tensorflow_py_library(file_path), len(path_to_node_names.get(file_path, {})), len(path_to_tensor_names.get(file_path, {})), path_to_num_dumps.get(file_path, 0), path_to_first_line[file_path])) return sorted(output, key=lambda x: x[0]) def annotate_source_against_profile(profile_data, source_file_path, node_name_filter=None, op_type_filter=None, min_line=None, max_line=None): """Annotate a Python source file with profiling information at each line. (The annotation doesn't change the source file itself.) Args: profile_data: (`list` of `ProfileDatum`) A list of `ProfileDatum`. source_file_path: (`str`) Path to the source file being annotated. node_name_filter: Regular expression to filter by node name. op_type_filter: Regular expression to filter by op type. min_line: (`None` or `int`) The 1-based line to start annotate the source file from (inclusive). max_line: (`None` or `int`) The 1-based line number to end the annotation at (exclusive). Returns: A `dict` mapping 1-based line number to a the namedtuple `profiling.LineOrFuncProfileSummary`. """ source_file_path = _norm_abs_path(source_file_path) node_name_regex = re.compile(node_name_filter) if node_name_filter else None op_type_regex = re.compile(op_type_filter) if op_type_filter else None line_to_profile_summary = {} for profile_datum in profile_data: if not profile_datum.file_path: continue if _norm_abs_path(profile_datum.file_path) != source_file_path: continue if (min_line is not None and profile_datum.line_number < min_line or max_line is not None and profile_datum.line_number >= max_line): continue if (node_name_regex and not node_name_regex.match(profile_datum.node_exec_stats.node_name)): continue if op_type_regex and not op_type_regex.match(profile_datum.op_type): continue if profile_datum.line_number not in line_to_profile_summary: line_to_profile_summary[profile_datum.line_number] = ( profiling.AggregateProfile(profile_datum)) else: line_to_profile_summary[profile_datum.line_number].add(profile_datum) return line_to_profile_summary
apache-2.0
5,331,100,872,048,130,000
35.467363
80
0.658695
false
markreidvfx/pyaaf_old
docs/parse_aaf_header.py
1
2348
import pickle def parse_aaf_header(header_path, dest_path=None): if not dest_path: dest_path = 'docs.pkl' f = open(header_path, 'r') header = f.read() f.close() comments = "" interface = {} current = None for line in header.splitlines(): if line.count("//"): if line.count("// Interface"): current = line.replace("// Interface",'').strip() current = current.replace('IEnumAAF','AxIter.').replace("IAAF",'Ax') if current: if not interface.has_key(current): interface[current] = "" interface[current] += line interface[current] += '\n' doc_dict = {} for item, value in sorted(interface.items()): for i in value.split("//***********************************************************"): lines = i.splitlines() method = None try: line2 = lines[2] if line2.count("("): method = line2.replace("//",'').replace("(",'').replace(")","").strip() except: pass if method: if not doc_dict.has_key(item): doc_dict[item] = {} doc = "" for l in lines[3:]: doc_line = """ ///""" if l.count(doc_line): doc += l.replace(doc_line,'') + '\n' doc_dict[item][method] = doc #"\n".join(lines[3:]) for key,value in sorted(doc_dict.items()): print key for method,docs in value.items(): print key,'::',method print docs pickle.dump(doc_dict,open(dest_path, 'w'),pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": from optparse import OptionParser parser = OptionParser() (options, args) = parser.parse_args() header_path = args[0] dest_path = None if len(args) > 1: dest_path = args[1] parse_aaf_header(header_path,dest_path)
mit
-8,351,774,476,693,415,000
25.681818
94
0.405877
false
facebook/mcrouter
mcrouter/test/test_latency_injection_route.py
1
1957
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from datetime import datetime from mcrouter.test.MCProcess import Memcached from mcrouter.test.McrouterTestCase import McrouterTestCase class TestLatencyInjectionRoute(McrouterTestCase): config_latency_before = './mcrouter/test/test_latency_injection_before.json' config_latency_after = './mcrouter/test/test_latency_injection_before.json' config_latency_total = './mcrouter/test/test_latency_injection_before.json' def setUp(self) -> None: self.mc = self.add_server(Memcached()) self.mcrouter_latency_before =\ self.add_mcrouter(self.config_latency_before) self.mcrouter_latency_after =\ self.add_mcrouter(self.config_latency_after) self.mcrouter_latency_total =\ self.add_mcrouter(self.config_latency_total) def test_latency_before(self) -> None: self.mc.set("key1", "value1") t_start = datetime.now() self.assertEqual("value1", self.mcrouter_latency_before.get("key1")) t_end = datetime.now() duration = t_end - t_start self.assertGreaterEqual(duration.total_seconds(), 2) def test_latency_after(self) -> None: self.mc.set("key2", "value2") t_start = datetime.now() self.assertTrue("value2", self.mcrouter_latency_after.get("key2")) t_end = datetime.now() duration = t_end - t_start self.assertGreaterEqual(duration.total_seconds(), 1) def test_latency_total(self) -> None: self.mc.set("key3", "value3") t_start = datetime.now() self.assertTrue("value3", self.mcrouter_latency_total.get("key3")) t_end = datetime.now() duration = t_end - t_start self.assertGreaterEqual(duration.total_seconds(), 1)
mit
7,733,254,879,666,440,000
33.946429
80
0.663771
false
gooddata/openstack-nova
nova/conf/vnc.py
1
9039
# Copyright (c) 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_config import types vnc_group = cfg.OptGroup( 'vnc', title='VNC options', help=""" Virtual Network Computer (VNC) can be used to provide remote desktop console access to instances for tenants and/or administrators.""") ALL_OPTS = [ cfg.BoolOpt( 'enabled', default=True, deprecated_group='DEFAULT', deprecated_name='vnc_enabled', help=""" Enable VNC related features. Guests will get created with graphical devices to support this. Clients (for example Horizon) can then establish a VNC connection to the guest. """), cfg.StrOpt( 'keymap', deprecated_group='DEFAULT', deprecated_name='vnc_keymap', deprecated_for_removal=True, deprecated_since='18.0.0', deprecated_reason=""" Configuring this option forces QEMU to do keymap conversions. These conversions are lossy and can result in significant issues for users of non en-US keyboards. You should instead use a VNC client that supports Extended Key Event messages, such as noVNC 1.0.0. Refer to bug #1682020 for more information.""", help=""" Keymap for VNC. The keyboard mapping (keymap) determines which keyboard layout a VNC session should use by default. Possible values: * A keyboard layout which is supported by the underlying hypervisor on this node. This is usually an 'IETF language tag' (for example 'en-us'). If you use QEMU as hypervisor, you should find the list of supported keyboard layouts at ``/usr/share/qemu/keymaps``. """), cfg.HostAddressOpt( 'server_listen', default='127.0.0.1', deprecated_opts=[ cfg.DeprecatedOpt('vncserver_listen', group='DEFAULT'), cfg.DeprecatedOpt('vncserver_listen', group='vnc'), ], help=""" The IP address or hostname on which an instance should listen to for incoming VNC connection requests on this node. """), cfg.HostAddressOpt( 'server_proxyclient_address', default='127.0.0.1', deprecated_opts=[ cfg.DeprecatedOpt('vncserver_proxyclient_address', group='DEFAULT'), cfg.DeprecatedOpt('vncserver_proxyclient_address', group='vnc'), ], help=""" Private, internal IP address or hostname of VNC console proxy. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. This option sets the private address to which proxy clients, such as ``nova-xvpvncproxy``, should connect to. """), cfg.URIOpt( 'novncproxy_base_url', default='http://127.0.0.1:6080/vnc_auto.html', deprecated_group='DEFAULT', help=""" Public address of noVNC VNC console proxy. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. noVNC provides VNC support through a websocket-based client. This option sets the public base URL to which client systems will connect. noVNC clients can use this address to connect to the noVNC instance and, by extension, the VNC sessions. If using noVNC >= 1.0.0, you should use ``vnc_lite.html`` instead of ``vnc_auto.html``. Related options: * novncproxy_host * novncproxy_port """), cfg.HostAddressOpt( 'xvpvncproxy_host', default='0.0.0.0', deprecated_group='DEFAULT', help=""" IP address or hostname that the XVP VNC console proxy should bind to. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. Xen provides the Xenserver VNC Proxy, or XVP, as an alternative to the websocket-based noVNC proxy used by Libvirt. In contrast to noVNC, XVP clients are Java-based. This option sets the private address to which the XVP VNC console proxy service should bind to. Related options: * xvpvncproxy_port * xvpvncproxy_base_url """), cfg.PortOpt( 'xvpvncproxy_port', default=6081, deprecated_group='DEFAULT', help=""" Port that the XVP VNC console proxy should bind to. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. Xen provides the Xenserver VNC Proxy, or XVP, as an alternative to the websocket-based noVNC proxy used by Libvirt. In contrast to noVNC, XVP clients are Java-based. This option sets the private port to which the XVP VNC console proxy service should bind to. Related options: * xvpvncproxy_host * xvpvncproxy_base_url """), cfg.URIOpt( 'xvpvncproxy_base_url', default='http://127.0.0.1:6081/console', deprecated_group='DEFAULT', help=""" Public URL address of XVP VNC console proxy. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. Xen provides the Xenserver VNC Proxy, or XVP, as an alternative to the websocket-based noVNC proxy used by Libvirt. In contrast to noVNC, XVP clients are Java-based. This option sets the public base URL to which client systems will connect. XVP clients can use this address to connect to the XVP instance and, by extension, the VNC sessions. Related options: * xvpvncproxy_host * xvpvncproxy_port """), ] CLI_OPTS = [ cfg.StrOpt( 'novncproxy_host', default='0.0.0.0', deprecated_group='DEFAULT', help=""" IP address that the noVNC console proxy should bind to. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. noVNC provides VNC support through a websocket-based client. This option sets the private address to which the noVNC console proxy service should bind to. Related options: * novncproxy_port * novncproxy_base_url """), cfg.PortOpt( 'novncproxy_port', default=6080, deprecated_group='DEFAULT', help=""" Port that the noVNC console proxy should bind to. The VNC proxy is an OpenStack component that enables compute service users to access their instances through VNC clients. noVNC provides VNC support through a websocket-based client. This option sets the private port to which the noVNC console proxy service should bind to. Related options: * novncproxy_host * novncproxy_base_url """), cfg.ListOpt( 'auth_schemes', item_type=types.String(choices=( ('none', 'Allow connection without authentication'), ('vencrypt', 'Use VeNCrypt authentication scheme'), )), default=['none'], help=""" The authentication schemes to use with the compute node. Control what RFB authentication schemes are permitted for connections between the proxy and the compute host. If multiple schemes are enabled, the first matching scheme will be used, thus the strongest schemes should be listed first. Related options: * ``[vnc]vencrypt_client_key``, ``[vnc]vencrypt_client_cert``: must also be set """), cfg.StrOpt( 'vencrypt_client_key', help="""The path to the client certificate PEM file (for x509) The fully qualified path to a PEM file containing the private key which the VNC proxy server presents to the compute node during VNC authentication. Related options: * ``vnc.auth_schemes``: must include ``vencrypt`` * ``vnc.vencrypt_client_cert``: must also be set """), cfg.StrOpt( 'vencrypt_client_cert', help="""The path to the client key file (for x509) The fully qualified path to a PEM file containing the x509 certificate which the VNC proxy server presents to the compute node during VNC authentication. Realted options: * ``vnc.auth_schemes``: must include ``vencrypt`` * ``vnc.vencrypt_client_key``: must also be set """), cfg.StrOpt( 'vencrypt_ca_certs', help="""The path to the CA certificate PEM file The fully qualified path to a PEM file containing one or more x509 certificates for the certificate authorities used by the compute node VNC server. Related options: * ``vnc.auth_schemes``: must include ``vencrypt`` """), ] ALL_OPTS.extend(CLI_OPTS) def register_opts(conf): conf.register_group(vnc_group) conf.register_opts(ALL_OPTS, group=vnc_group) def register_cli_opts(conf): conf.register_cli_opts(CLI_OPTS, group=vnc_group) def list_opts(): return {vnc_group: ALL_OPTS}
apache-2.0
-2,166,768,096,561,270,300
29.640678
79
0.708043
false