repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
NejcZupec/ggrc-core
test/selenium/src/lib/page/dashboard.py
1
4647
# Copyright (C) 2016 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> from selenium.common import exceptions from lib import base from lib.constants import url from lib.constants import locator from lib import environment from lib import decorator from lib.page import widget_bar from lib.page import lhn class UserList(base.Component): locators = locator.PageHeader def __init__(self, driver): super(UserList, self).__init__(driver) self.button_my_work = base.Button(self._driver, self.locators.BUTTON_MY_WORK) self.button_admin_dashboard = base.Button( self._driver, self.locators.BUTTON_ADMIN_DASHBOARD) self.button_data_import = base.Button( self._driver, self.locators.BUTTON_DATA_IMPORT) self.button_data_export = base.Button( self._driver, self.locators.BUTTON_DATA_EXPORT) self.button_logout = base.Button( self._driver, self.locators.BUTTON_LOGOUT) self.notifications = base.Label( self._driver, self.locators.NOTIFICATIONS) self.checkbox_daily_digest = base.Checkbox( self._driver, self.locators.CHECKBOX_DAILY_DIGEST) def select_my_work(self): """ Returns: widget.DataAssets """ self.button_my_work.click() return Dashboard(self._driver) def select_admin_dashboard(self): """ Returns: admin_dashboard.AdminDashboard """ self.button_my_work.click() return AdminDashboard(self._driver) def select_import_data(self): raise NotImplementedError def select_export_data(self): raise NotImplementedError @decorator.wait_for_redirect def select_logout(self): raise NotImplementedError def check_daily_email_digest(self): """Checks the daily checkbox""" self.checkbox_daily_digest.check() def uncheck_daily_email_digest(self): """Unchecks the daily checkbox""" self.checkbox_daily_digest.uncheck() class Header(base.Component): """Header of the page""" locators = locator.PageHeader def __init__(self, driver): super(Header, self).__init__(driver) self.toggle_lhn_menu = None self.button_dashboard = None self.button_search = None self.button_my_tasks = None self.button_all_objects = None self.toggle_user_dropdown = None self._refresh_elements() def _refresh_elements(self): self.button_dashboard = base.Button(self._driver, self.locators.BUTTON_DASHBOARD) self.button_search = base.Button(self._driver, self.locators.BUTTON_SEARCH) self.button_my_tasks = base.Button(self._driver, self.locators.BUTTON_MY_TASKS) self.button_all_objects = base.Button( self._driver, self.locators.BUTTON_ALL_OBJECTS) self.toggle_user_dropdown = base.Toggle( self._driver, self.locators.TOGGLE_USER_DROPDOWN) self.toggle_lhn_menu = base.Toggle(self._driver, self.locators.TOGGLE_LHN) def open_lhn_menu(self): """Opens LHN on the Dashboard. For some reason, after creating 2 objects via LHN (and clicking 2x on the LHN button), the third time the toggle_lhn_menu signals it's not a part of the DOM anymore. For this reason we're refreshing the elements. Returns: LhnMenu """ try: self.toggle_lhn_menu.toggle() return lhn.Menu(self._driver) except exceptions.StaleElementReferenceException: self._refresh_elements() return self.open_lhn_menu() def close_lhn_menu(self): """Closes LHN on the Dashboard Returns: LhnMenu """ try: self.toggle_lhn_menu.toggle(on=False) except exceptions.WebDriverException: self._refresh_elements() self.close_lhn_menu() def click_on_logo(self): """ Returns: widget.DataAssets """ raise NotImplementedError def open_user_list(self): """ Returns: UserList """ self.toggle_user_dropdown.click() return UserList(self._driver) class Dashboard(widget_bar.Dashboard, Header): """The main dashboard page""" URL = environment.APP_URL + url.DASHBOARD def __init__(self, driver): super(Dashboard, self).__init__(driver) self.button_help = base.Button(self._driver, self.locators.BUTTON_HELP) class AdminDashboard(widget_bar.AdminDashboard, Header): """Admin dashboard page model""" URL = environment.APP_URL + url.ADMIN_DASHBOARD def __init__(self, driver): super(AdminDashboard, self).__init__(driver)
apache-2.0
-4,973,490,085,282,803,000
28.598726
78
0.655907
false
docusign/docusign-python-client
docusign_esign/models/group_brands.py
1
5695
# coding: utf-8 """ DocuSign REST API The DocuSign REST API provides you with a powerful, convenient, and simple Web services API for interacting with DocuSign. # noqa: E501 OpenAPI spec version: v2.1 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class GroupBrands(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'recipient_brand_id_default': 'str', 'sender_brand_id_default': 'str', 'brand_options': 'list[Brand]' } attribute_map = { 'recipient_brand_id_default': 'recipientBrandIdDefault', 'sender_brand_id_default': 'senderBrandIdDefault', 'brand_options': 'brandOptions' } def __init__(self, recipient_brand_id_default=None, sender_brand_id_default=None, brand_options=None): # noqa: E501 """GroupBrands - a model defined in Swagger""" # noqa: E501 self._recipient_brand_id_default = None self._sender_brand_id_default = None self._brand_options = None self.discriminator = None if recipient_brand_id_default is not None: self.recipient_brand_id_default = recipient_brand_id_default if sender_brand_id_default is not None: self.sender_brand_id_default = sender_brand_id_default if brand_options is not None: self.brand_options = brand_options @property def recipient_brand_id_default(self): """Gets the recipient_brand_id_default of this GroupBrands. # noqa: E501 The brand seen by envelope recipients when a brand is not explicitly set. # noqa: E501 :return: The recipient_brand_id_default of this GroupBrands. # noqa: E501 :rtype: str """ return self._recipient_brand_id_default @recipient_brand_id_default.setter def recipient_brand_id_default(self, recipient_brand_id_default): """Sets the recipient_brand_id_default of this GroupBrands. The brand seen by envelope recipients when a brand is not explicitly set. # noqa: E501 :param recipient_brand_id_default: The recipient_brand_id_default of this GroupBrands. # noqa: E501 :type: str """ self._recipient_brand_id_default = recipient_brand_id_default @property def sender_brand_id_default(self): """Gets the sender_brand_id_default of this GroupBrands. # noqa: E501 The brand seen by envelope senders when a brand is not explicitly set. # noqa: E501 :return: The sender_brand_id_default of this GroupBrands. # noqa: E501 :rtype: str """ return self._sender_brand_id_default @sender_brand_id_default.setter def sender_brand_id_default(self, sender_brand_id_default): """Sets the sender_brand_id_default of this GroupBrands. The brand seen by envelope senders when a brand is not explicitly set. # noqa: E501 :param sender_brand_id_default: The sender_brand_id_default of this GroupBrands. # noqa: E501 :type: str """ self._sender_brand_id_default = sender_brand_id_default @property def brand_options(self): """Gets the brand_options of this GroupBrands. # noqa: E501 The list of brands. # noqa: E501 :return: The brand_options of this GroupBrands. # noqa: E501 :rtype: list[Brand] """ return self._brand_options @brand_options.setter def brand_options(self, brand_options): """Sets the brand_options of this GroupBrands. The list of brands. # noqa: E501 :param brand_options: The brand_options of this GroupBrands. # noqa: E501 :type: list[Brand] """ self._brand_options = brand_options def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(GroupBrands, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GroupBrands): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
mit
-3,798,903,295,641,539,000
31.919075
140
0.599473
false
scheunemann/robotActionController
robotActionController/ActionRunner/groupRunner.py
1
2761
import logging from base import ActionRunner, ActionManager from collections import namedtuple from gevent.pool import Group from gevent import sleep from robotActionController.Data.storage import StorageFactory from robotActionController.Data.Model import Action class GroupRunner(ActionRunner): supportedClass = 'GroupAction' Runable = namedtuple('GroupAction', ActionRunner.Runable._fields + ('actions',)) def __init__(self, group, robot, *args, **kwargs): super(GroupRunner, self).__init__(group) self._robot = robot self._handle = None def _runInternal(self, action): manager = ActionManager.getManager(self._robot) handles = [manager.executeActionAsync(a) for a in action.actions] self._handle = Group([h for h in handles if h]) self.waitForComplete() self._output.extend([o for h in handles for o in h.output if h]) return all([h.value for h in handles if h]) @staticmethod def getRunable(action): if type(action) == dict and action.get('type', None) == GroupRunner.supportedClass: actionCopy = dict(action) actions = actionCopy['actions'] actionCopy['actions'] = [] for groupAction in actions: action = None if 'action' not in groupAction: id_ = groupAction.get('action_id', None) or groupAction.get('id', None) if id_: session = StorageFactory.getNewSession() action = ActionRunner.getRunable(session.query(Action).get(id_)) session.close() else: action = ActionRunner.getRunable(groupAction['action']) actionCopy['actions'].append(action) return GroupRunner.Runable(actionCopy['name'], actionCopy.get('id', None), actionCopy['type'], actionCopy['actions']) elif action.type == GroupRunner.supportedClass: actions = [ActionRunner.getRunable(a) for a in action.actions] return GroupRunner.Runable(action.name, action.id, action.type, actions) else: logger = logging.getLogger(GroupRunner.__name__) logger.error("Action: %s has an unknown action type: %s" % (action.name, action.type)) return None def isValid(self, group): valid = True for action in group.actions: valid = valid & ActionRunner(self._robot).isValid(action) if not valid: break def waitForComplete(self): if self._handle: self._handle.join()
mit
-2,707,494,878,154,074,600
40.208955
98
0.586382
false
ahirner/TabulaRazr-OS
deprecated/GetMuniBondData.py
1
2921
import ConfigParser import gc import glob import io import os import cStringIO import re import subprocess import string import sys import numpy as np import pandas as pd def GetConfigParm(section): dict1 = {} options = Config.options(section) for option in options: try: dict1[option] = Config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 # Main Process # Read Configuration Parameters config = ConfigParser.RawConfigParser() config.read('GetMuniBondData.cfg') OutputFileName = config.get("FileLocations","OutputFileName") OutputColumnSeparator = config.get("FileLocations","OutputColumnSeparator") InputPath = config.get("FileLocations","InputPath") # Initialize Data Frame df = pd.DataFrame(np.zeros(0 , dtype=[('file', 'a99'),('caption', 'a99'),('value', 'a99')])) for file in glob.glob(InputPath): printline = 0 linesleft = 0 blanklines = 0 intxtfilename = file + ".txt" out, err = subprocess.Popen(["pdftotext", "-layout", file, file + ".txt" ]).communicate() try: intxtfile = io.open(intxtfilename, mode='rb') except: print "Unable to extract text from " + file continue lines = intxtfile.readlines() topfound = 0 headerline = 0 for line in lines: strippedline = line.upper().strip() if topfound == 0 and string.find(line," $") > 0: headerline = 1 topfound = 1 if 1 <= headerline <= 3: caption = "HEADER " + str(headerline) value = strippedline df = df.append({'file':file, 'caption':caption, 'value':value},ignore_index=True) headerline = headerline + 1 continue if strippedline == "SOURCES AND USES OF FUNDS" \ or strippedline == "SOURCES AND USES OF FUNDS*" \ or strippedline == "ESTIMATED SOURCES AND USES OF FUNDS" \ or strippedline == "ESTIMATED SOURCES AND USES OF FUNDS*" \ or strippedline == "SOURCES AND USES OF FUNDS(1)" \ or strippedline == "ESTIMATED SOURCES AND USES OF FUNDS(1)" \ or strippedline == "PLAN OF FINANCE AND ESTIMATED SOURCES AND USES OF FUNDS": printline = 1 linesleft = 25 if printline == 1: dollar_amount_regex = re.compile("[\$]{0,1}[\s]{0,6}[0-9,]{0,15}(\.[0-9]{1,2})$") dollar_amount_match = re.search(dollar_amount_regex,strippedline) if dollar_amount_match: caption = strippedline[:dollar_amount_match.start(0)].strip() value = strippedline[dollar_amount_match.start(0):].strip() df = df.append({'file':file, 'caption':caption, 'value':value},ignore_index=True) if len(line.strip()) < 5 and linesleft < 10: blanklines = blanklines + 1 linesleft = linesleft - 1 if linesleft == 0: printline = 0 del lines gc.collect() df.to_csv(OutputFileName,OutputColumnSeparator,index=False)
agpl-3.0
1,245,297,047,318,944,500
26.637255
92
0.65457
false
ncbray/pystream
bin/translator/dataflowtransform/glsltranslator/poolimplementation.py
1
2229
# Copyright 2011 Nicholas Bray # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from language.glsl import ast as glsl from . slotstruct import SlotStruct import re invalidNameChar = re.compile('[^\w\d_]') # HACK does not ensure the first character is not a digit. def ensureValidName(name): return re.sub(invalidNameChar, '_', name) # A pool contains O objects and F fields. class PoolImplementation(object): def __init__(self, poolinfo, basename): self.poolinfo = poolinfo # HACK poolinfo.impl = self self.basename = basename self.stores = {} self.types = {} self.struct = SlotStruct(poolinfo) #self.struct.dump() #print def _getFieldRef(self, field, slotinfo): key = field, slotinfo if not key in self.stores: fieldimpl = slotinfo.getPoolInfo().impl t = fieldimpl.struct.ast name = "%s_%s_%s" % (self.basename, field.type, field.name.pyobj) name = ensureValidName(name) lcl = glsl.Local(t, name) self.stores[key] = lcl else: lcl = self.stores[key] return lcl def _deref(self, ref, index): if self.poolinfo.isSingleUnique(): return ref else: return glsl.GetSubscript(ref, index) def getType(self, index): assert self.poolinfo.typeTaken #assert False, "hack" return glsl.Load(index, 'type') def getField(self, index, field, slotinfo): assert slotinfo.isSlotInfo(), slotinfo ref = self._getFieldRef(field, slotinfo) return self._deref(ref, index) def getValue(self, index, type): assert self.struct.inlined return index def allocate(self, translator, slot, g): if self.poolinfo.isSingleUnique(): return [] else: src = translator.slotRef(translator.makeConstant(0), slot) return translator.assignmentTransfer(src, g)
apache-2.0
-7,869,629,408,877,145,000
25.855422
74
0.716016
false
Tooskich/python_core
rankings/views.py
1
2284
#-*- coding: utf-8 -*- import ujson from django.http import HttpResponse, Http404 from django.core.cache import cache from django.core.management import call_command from django.db import connection RACES_PER_VIEW = 25 def last_races(request): cursor = connection.cursor() query = "SELECT id, info, category, genre, link, location, discipline, raceId, date FROM rankings_races ORDER BY date DESC LIMIT " + \ str(RACES_PER_VIEW) + ";" cursor.execute(query) races = dictfetchall(cursor) races = ujson.dumps(races, encode_html_chars=False, ensure_ascii=False) res = HttpResponse( races, content_type="application/json" ) return res def race(request, pk): pk = str(int(pk)) cursor = connection.cursor() query = "SELECT id, info, category, genre, link, location, discipline, `table`, raceId, date FROM rankings_races WHERE id='" + \ pk + "';" cursor.execute(query) races = dictfetchall(cursor)[0] races = ujson.dumps(races, encode_html_chars=False, ensure_ascii=False) res = HttpResponse( races, content_type="application/json" ) return res def race_category(request, category): if category not in ['WC', 'EC', 'FIS']: return Http404 page = request.GET.get('page') page = 0 if page is None else (int(page) - 1) nb_races = RACES_PER_VIEW * 2 if 'FIS' in category else RACES_PER_VIEW offset = nb_races * page cursor = connection.cursor() query = "SELECT id, info, category, genre, link, location, discipline, raceId, date FROM rankings_races WHERE category='" + \ category + "' ORDER BY date DESC LIMIT " + \ str(offset) + ", " + str(nb_races) + ";" cursor.execute(query) races = dictfetchall(cursor) races = ujson.dumps(races, encode_html_chars=False, ensure_ascii=False) res = HttpResponse( races, content_type="application/json" ) return res def update(request): call_command('updateraces', verbosity=3, interactive=False) return HttpResponse('1') def dictfetchall(cursor): "Returns all rows from a cursor as a dict" desc = cursor.description return [ dict(zip([col[0] for col in desc], row)) for row in cursor.fetchall() ]
apache-2.0
-1,774,803,645,420,551,400
30.287671
138
0.648424
false
JohnDickerson/EnvyFree
driver.py
1
10238
#!/usr/bin/env python from model import Model from model import DupValues from model import DistTypes from model import ObjType import allocator import bounds from allocator import DoesNotExistException import argparse import random import time import csv import sys current_ms_time = lambda: int(round(time.time() * 1000)) def run(num_agents, num_items, prefs, dup_values): # Randomly generate some data for N agents and M items if prefs.dist_type == DistTypes.urand_int: m = Model.generate_urand_int(num_agents, num_items, dup_values) elif prefs.dist_type == DistTypes.urand_real: m = Model.generate_urand_real(num_agents, num_items, dup_values) elif prefs.dist_type == DistTypes.zipf_real: m = Model.generate_zipf_real(num_agents, num_items, 2., dup_values) elif prefs.dist_type == DistTypes.polya_urn_real: m = Model.generate_polya_urn_real(num_agents, num_items, 2, 1) elif prefs.dist_type == DistTypes.correlated_real: m = Model.generate_correlated_real(num_agents, num_items) else: raise Exception("Distribution type {0} is not recognized.".format(prefs.dist_type)) # Do our bounding at the root to check for naive infeasibility #is_possibly_feasible, bounding_s = bounds.max_contested_feasible(m) #if not is_possibly_feasible: # print "Bounded infeasible!" # sys.exit(-1) # Compute an envy-free allocation (if it exists) stats = allocator.allocate(m, prefs) return stats def main(): parser = argparse.ArgumentParser(description='Find envy-free allocations.') parser.add_argument("-f", "--filename", dest="filename", required=True, metavar="FILE", help="write comma-delimited csv output to FILE") parser.add_argument("-r", "--num_repeats", type=int, dest="num_repeats", default=10, metavar="R", help="num repeat runs per parameter setting") parser.add_argument("-n", type=int, nargs=3, dest="N", default=(5,6,1), metavar=("N-min","N-max","stepsize"), help="range(a,b,c) iterating over num agents") parser.add_argument("-m", type=int, nargs=3, dest="M", default=(5,10,1), metavar=("M-min","M-max","stepsize"), help="range(a,b,c) iterating over num items") parser.add_argument("--obj-feas", action="store_const", const=ObjType.feasibility, dest="obj_type", default=ObjType.feasibility, help="Objective function: feasibility") parser.add_argument("--obj-social", action="store_const", const=ObjType.social_welfare_max, dest="obj_type", default=ObjType.feasibility, help="Objective function: max social welfare") parser.add_argument("--dist-urand-int", action="store_const", const=DistTypes.urand_int, dest="dist_type", default=DistTypes.urand_real, help="Utility distribution integral in {0,...,10*#Items}") parser.add_argument("--dist-urand-real", action="store_const", const=DistTypes.urand_real, dest="dist_type", default=DistTypes.urand_real, help="Utility distribution u.a.r. real in U[0,1]") parser.add_argument("--dist-zipf-real", action="store_const", const=DistTypes.zipf_real, dest="dist_type", default=DistTypes.urand_real, help="Utility distribution drawn from Zipf with alpha=2.") parser.add_argument("--dist-polya-urn-real", action="store_const", const=DistTypes.polya_urn_real, dest="dist_type", default=DistTypes.urand_real, help="Utility distribution drawn from augmented Polya-Eggenberger urn model.") parser.add_argument("--dist-correlated-real", action="store_const", const=DistTypes.correlated_real, dest="dist_type", default=DistTypes.urand_real, help="Utility distribution correlated intrinsic item value.") parser.add_argument("-s", "--seed", type=long, dest="seed", default=0, help="Sets the random seed in Python") parser.add_argument("--fathom-too-much-envy", action="store_true", dest="branch_fathom_too_much_envy", default=False, help="Fathoms a path if #unallocated items is less than #envious agents at node") parser.add_argument("--branch-avg-value", action="store_true", dest="branch_avg_value", default=False, help="Branching based on average item value and max agent value") parser.add_argument("--branch-sos1-envy", action="store_true", dest="branch_sos1_envy", default=False, help="SOS1 branch to most envious agent [NOT IMPLEMENTED]") parser.add_argument("--prioritize-avg-value", action="store_true", dest="prioritize_avg_value", default=False, help="Sets CPLEX branching priority based on average item value.") parser.add_argument("--alternate-IP-model", action="store_true", dest="alternate_IP_model", default=False, help="Solves an alternate IP model.") parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Prints a bunch of stats to stdout as we solve models.") parser.add_argument("-t", "--num-threads", type=int, default=1, dest="num_threads", help="Sets the number of threads used by CPLEX.") args = parser.parse_args() if args.alternate_IP_model \ and (args.obj_type != ObjType.feasibility \ or args.branch_fathom_too_much_envy \ or args.branch_avg_value \ or args.branch_sos1_envy): print "Argument error: running the alternate IP model (--alternate-IP-model) disallows" \ " any objective other than feasibility (--obj-feas); furthermore, we haven't" \ " implemented any branching rules for the alternate IP model yet (--fathom-too-much-envy," \ " --branch-avg-value, --branch-sos1-envy)" sys.exit(-1) # If a random seed was explicitly passed in, set it if hasattr(args, "seed"): random.seed(args.seed) else: random.seed() # How to handle duplicate valuations for different items by the same agent? dup_values = DupValues.allowed # Write one row per run, or one row per N runs (aggregate)? write_all = True with open(args.filename, 'wb') as csvfile: # Write overall stats to out.csv writer = csv.writer(csvfile, delimiter=',') for num_agents in range(args.N[0], args.N[1], args.N[2]): # Phase transition plots runtime, %feas vs. #items for num_items in range(args.M[0], args.M[1], args.M[2]): # Never feasible if fewer items than agents if num_items < num_agents: continue build_s_accum = solve_s_accum = 0.0 build_s_min = solve_s_min = 10000.0 build_s_max = solve_s_max = -1.0 sol_exists_accum = 0 for _ in xrange(args.num_repeats): # Generate an instance and solve it; returns runtime of IP write+solve stats = run(num_agents, num_items, args, dup_values) sol_exists, build_s, solve_s = stats['ModelFeasible'], stats['ModelBuildTime'], stats['ModelSolveTime'] # Maintain stats on the runs sol_exists_accum += 1 if sol_exists else 0 build_s_accum += build_s solve_s_accum += solve_s if build_s < build_s_min: build_s_min = build_s if solve_s < solve_s_min: solve_s_min = solve_s if build_s > build_s_max: build_s_max = build_s if solve_s > solve_s_max: solve_s_max = solve_s # If we're recording ALL data, write details for this one run if write_all: writer.writerow([args.seed, args.num_threads, num_agents, num_items, args.alternate_IP_model, args.dist_type, args.num_repeats, args.obj_type, args.branch_fathom_too_much_envy, stats['MyTooMuchEnvyBranch'], args.branch_avg_value, stats['MyBranchOnAvgItemValue'], args.branch_sos1_envy, stats['MyBranchSOS1Envy'], args.prioritize_avg_value, sol_exists, stats['MIPNodeCount'], build_s, solve_s, stats['MIPObjVal'] ]) csvfile.flush() # Report stats over all N runs, both to stdout and to out.csv build_s_avg = build_s_accum / args.num_repeats solve_s_avg = solve_s_accum / args.num_repeats if args.verbose == True: print "Build Avg: {0:3f}, Min: {1:3f}, Max: {2:3f}".format(build_s_avg, build_s_min, build_s_max) print "Solve Avg: {0:3f}, Min: {1:3f}, Max: {2:3f}".format(solve_s_avg, solve_s_min, solve_s_max) print "N={0}, M={1}, fraction feasible: {2} / {3}".format(num_agents, num_items, sol_exists_accum, args.num_repeats) # If we're only writing aggregate data, write that now if not write_all: writer.writerow([args.seed, num_agents, num_items, args.alternate_IP_model, args.dist_type, args.num_repeats, args.obj_type, args.branch_fathom_too_much_envy, args.branch_avg_value, sol_exists_accum, build_s_avg, build_s_min, build_s_max, solve_s_avg, solve_s_min, solve_s_max, ]) csvfile.flush() if __name__ == '__main__': main()
gpl-2.0
-7,730,505,672,266,138,000
53.169312
152
0.574526
false
bhenne/MoSP
mosp_examples/random_wiggler.py
1
1499
#!/bin/env python """ Beginners' example: random movement - random movement - output to visual player, which is executed as child process - you may try the other commented monitor examples - you can choose a single or multiple monitors """ import sys sys.path.append("..") import time import random from mosp.core import Simulation, Person from mosp.geo import osm from mosp.impl import movement from mosp.monitors import * __author__ = "P. Tute" __maintainer__ = "B. Henne" __contact__ = "[email protected]" __copyright__ = "(c) 2010-2011, DCSec, Leibniz Universitaet Hannover, Germany" __license__ = "GPLv3" class RandomWiggler(Person): """Implements a simple person doing only random movement on the map. @author: P. Tute""" next_target = movement.person_next_target_random def main(): """Defines the simulation, map, monitors, persons.""" t = time.time() s = Simulation(geo=osm.OSMModel('../data/hannover2.osm'), rel_speed=40) print time.time() - t #m = s.add_monitor(EmptyMonitor, 2) #m = s.add_monitor(PipePlayerMonitor, 2) #m = s.add_monitor(RecordFilePlayerMonitor, 2) #m = s.add_monitor(RecordFilePlayerMonitor, 2, filename='exampleoutput_RecordFilePlayerMonitor') #m = s.add_monitor(ChildprocessPlayerChamplainMonitor, 2) m = s.add_monitor(SocketPlayerMonitor, 2) s.add_persons(RandomWiggler, 1000, monitor=m) s.run(until=1000, real_time=True, monitor=True) if __name__ == '__main__': main()
gpl-3.0
4,466,338,805,413,161,000
29.591837
101
0.693129
false
thinnect/serdepa
serdepa/serdepa.py
1
17372
""" serdepa.py: Binary packet serialization and deserialization library. """ from __future__ import unicode_literals from functools import reduce import struct import collections import warnings import copy import math from codecs import encode from six import add_metaclass, BytesIO from .exceptions import PacketDefinitionError, DeserializeError, SerializeError __author__ = "Raido Pahtma, Kaarel Ratas" __license__ = "MIT" def add_property(cls, attr, attr_type): if hasattr(cls, attr): raise PacketDefinitionError( "Attribute {} already exists on {}.".format(attr, cls.__name__) ) else: if isinstance(attr_type, BaseIterable) or isinstance(attr_type, ByteString): setter = None def getter(self): return getattr(self, '_%s' % attr) elif isinstance(attr_type, Length): setter = None def getter(self): return len(getattr( self, '_field_registry' )[getattr(self, '_depends')[attr]]) elif isinstance(attr_type, SuperSerdepaPacket): def setter(self, v): if isinstance(v, self._fields[attr][0]): setattr(self, '_%s' % attr, v) self._field_registry[attr] = v else: raise ValueError( "Cannot assign a value of type {} " "to field {} of type {}".format( v.__class__.__name__, attr, getattr(self, '_%s' % attr).__class__.__name__ ) ) def getter(self): return getattr(self, '_%s' % attr) else: def setter(self, v): setattr(getattr(self, '_%s' % attr), "value", v) def getter(self): return getattr(self, '_%s' % attr).value setattr(cls, attr, property(getter, setter)) class SuperSerdepaPacket(type): """ Metaclass of the SerdepaPacket object. Essentially does the following: Reads the _fields_ attribute of the class and for each 2- or 3-tuple entry sets up the properties of the class to the right names. Also checks that each (non-last) List instance has a Length field associated with it. """ def __init__(cls, what, bases=None, attrs=None): setattr(cls, "_fields", collections.OrderedDict()) setattr(cls, "_depends", dict()) if '_fields_' in attrs: for field in attrs['_fields_']: if len(field) == 2 or len(field) == 3: if len(field) == 2: default = None elif isinstance(field[1], Length): raise PacketDefinitionError( "A Length field can't have a default value: {}".format( field ) ) else: default = field[2] name, value = field[0], field[1] add_property(cls, name, value) if name in getattr(cls, "_fields"): raise PacketDefinitionError( "The field {} appears more than once in {}.".format( name, cls.__name__ ) ) getattr(cls, "_fields")[name] = [value, default] if not ( isinstance(value, (SerdepaPacket, BaseField)) or issubclass(value, (SerdepaPacket, BaseField)) ): raise PacketDefinitionError( "Invalid type {} of field {} in {}".format( value.__name__, name, cls.__name__ ) ) elif isinstance(value, Length): getattr(cls, "_depends")[name] = value._field elif isinstance(value, (List, ByteString)): if not (name in getattr(cls, "_depends").values() or field == attrs['_fields_'][-1]): raise PacketDefinitionError( "Only the last field can have an undefined length ({} of type {})".format( name, type(value) ) ) else: raise PacketDefinitionError("A field needs both a name and a type: {}".format(field)) super(SuperSerdepaPacket, cls).__init__(what, bases, attrs) @add_metaclass(SuperSerdepaPacket) class SerdepaPacket(object): """ The superclass for any packets. Defining a subclass works as such: class Packet(SerdepaPacket): _fields_ = [ ("name", type[, default]), ("name", type[, default]), ... ] Has the following public methods: .serialize() -> bytearray .deserialize(bytearray) raises ValueError on bad input and the class method .minimal_size() -> int """ def __init__(self, **kwargs): self._field_registry = collections.OrderedDict() for name, (type_, default) in self._fields.items(): if name in kwargs: if issubclass(type_, SerdepaPacket): self._field_registry[name] = copy.copy(kwargs[name]) else: self._field_registry[name] = type_(initial=copy.copy(kwargs[name])) elif default: self._field_registry[name] = type_(initial=copy.copy(default)) else: self._field_registry[name] = type_() setattr(self, '_%s' % name, self._field_registry[name]) def serialize(self): serialized = BytesIO() for name, field in self._field_registry.items(): if name in self._depends: serialized.write( field.serialize(self._field_registry[self._depends[name]].length) ) else: serialized.write(field.serialize()) ret = serialized.getvalue() serialized.close() return ret def deserialize(self, data, pos=0, final=True): for i, (name, field) in enumerate(self._field_registry.items()): if pos >= len(data): if i == len(self._field_registry) - 1 and isinstance(field, (List, ByteString)): break else: raise DeserializeError("Invalid length of data to deserialize.") try: pos = field.deserialize(data, pos, False) except AttributeError: for key, value in self._depends.items(): if name == value: pos = field.deserialize(data, pos, False, self._field_registry[key]._type.value) break else: pos = field.deserialize(data, pos, False, -1) if pos > len(data): raise DeserializeError("Invalid length of data to deserialize. {}, {}".format(pos, len(data))) if final and pos != len(data): raise DeserializeError( "After deserialization, {} bytes were left.".format(len(data)-pos+1) ) return pos def serialized_size(self): size = 0 for name, field in self._field_registry.items(): size += field.serialized_size() return size @classmethod def minimal_size(cls): size = 0 for name, (_type, default) in cls._fields.items(): size += _type.minimal_size() return size def __str__(self): return encode(self.serialize(), "hex").decode().upper() def __eq__(self, other): return str(self) == str(other) class BaseField(object): def __call__(self, **kwargs): ret = copy.copy(self) if "initial" in kwargs: ret._set_to(kwargs["initial"]) return ret # def __call__(self): # return NotImplemented # def serialize(self): return bytearray([]) def deserialize(self, value, pos, final=True): raise NotImplementedError() @classmethod def minimal_size(cls): raise NotImplementedError() class BaseIterable(BaseField, list): def __init__(self, initial=[]): super(BaseIterable, self).__init__() for value in initial: self.append(self._type(initial=copy.copy(value))) def _set_to(self, values): while len(self) > 0: self.pop() for value in values: self.append(value) def append(self, value): if isinstance(value, self._type): new_value = value else: new_value = self._type(initial=value) super(BaseIterable, self).append(new_value) def serialize(self): ret = bytearray() for i in range(self.length): ret += self[i].serialize() return ret def deserialize(self, value, pos, final=True): for i in range(self.length): self[i] = self._type() pos = self[i].deserialize(value, pos, final=final) return pos def __iter__(self): for i in range(len(self)): try: yield self[i].value except AttributeError: yield self[i] class BaseInt(BaseField): """ Base class for all integer types. Has _signed (bool) and _format (struct format string). """ _length = None _signed = None _format = "" def __init__(self, initial=0): self._value = initial def _set_to(self, value): self._value = value @property def value(self): return self._value @value.setter def value(self, value): self._value = int(value) def serialize(self): return struct.pack(self._format, self._value) def deserialize(self, value, pos, final=True): try: self._value = struct.unpack(self._format, value[pos:pos+self.serialized_size()])[0] except struct.error as e: raise DeserializeError("Invalid length of data!", e) return pos + self.serialized_size() @classmethod def serialized_size(cls): """ Returns the length of this field in bytes. If the length in bits is not directly divisible by 8, an extra byte is added. """ return int(math.ceil(cls._length/8.0)) def __getattribute__(self, attr): if attr in ["__lt__", "__le__", "__eq__", "__ne__", "__gt__", "__ge__", "__add__", "__sub__", "__mul__", "__floordiv__", "__mod__", "__divmod__", "__pow__", "__lshift__", "__rshift__", "__and__", "__xor__", "__or__", "__div__", "__truediv__", "__str__"]: return self._value.__getattribute__(attr) else: return super(BaseInt, self).__getattribute__(attr) def __int__(self): return self._value def __repr__(self): return "{} with value {}".format(self.__class__, self._value) @classmethod def minimal_size(cls): return int(math.ceil(cls._length/8.0)) class Length(BaseField): """ A value that defines another field's length. """ def __init__(self, object_type, field_name): self._type = object_type() self._field = field_name def serialized_size(self): return self._type.serialized_size() def serialize(self, length): # TODO PyCharm does not like this approach, method signatures don't match self._type.value = length return self._type.serialize() def deserialize(self, value, pos, final=True): return self._type.deserialize(value, pos, final=final) def minimal_size(self): return self.serialized_size() class List(BaseIterable): """ An array with its length defined elsewhere. """ def __init__(self, object_type, **kwargs): self._type = object_type super(List, self).__init__(**kwargs) @property def length(self): return len(self) def serialized_size(self): return self._type.serialized_size() * self.length def deserialize(self, value, pos, final=True, length=None): if length is None: raise AttributeError("Unknown length.") elif length == -1: del self[:] # clear the internal list - deserialization will overwrite anyway. for i in range(len(self), (len(value)-pos)//self._type().serialized_size()): self.append(0) return super(List, self).deserialize(value, pos, final=final) else: del self[:] # clear the internal list - deserialization will overwrite anyway. for i in range(len(self), length): self.append(0) return super(List, self).deserialize(value, pos, final=final) def minimal_size(cls): return 0 class Array(BaseIterable): """ A fixed-length array of values. """ def __init__(self, object_type, length, **kwargs): self._type = object_type self._length = length super(Array, self).__init__(**kwargs) @property def length(self): return self._length def serialized_size(self): return self._type.serialized_size() * self.length def serialize(self): dl = self.length - len(self) if dl < 0: warnings.warn(RuntimeWarning("The number of items in the Array exceeds the length of the array.")) elif dl > 0: self += [self._type() for _ in range(dl)] # TODO is this correct??? ret = super(Array, self).serialize() for i in range(dl): self.pop(-1) return ret def deserialize(self, value, pos, final=True): for i in range(len(self), self.length): self.append(self._type()) return super(Array, self).deserialize(value, pos, final=final) def minimal_size(self): return self.serialized_size() class ByteString(BaseField): """ A variable or fixed-length string of bytes. """ def __init__(self, length=None, **kwargs): if length is not None: self._data_container = Array(nx_uint8, length) else: self._data_container = List(nx_uint8) super(ByteString, self).__init__(**kwargs) def __getattr__(self, attr): if attr not in ['_data_container']: return getattr(self._data_container, attr) else: return super(ByteString, self).__getattribute__(attr) def __setattr__(self, attr, value): if attr not in ['_data_container', '_value']: setattr(self._data_container, attr, value) else: super(ByteString, self).__setattr__(attr, value) @property def _value(self): return reduce( lambda x, v: x + (v[1] << (8*v[0])), enumerate( reversed(list(self._data_container)) ), 0 ) def deserialize(self, *args, **kwargs): return self._data_container.deserialize(*args, **kwargs) def serialize(self, *args, **kwargs): return self._data_container.serialize(*args, **kwargs) def __eq__(self, other): return self._value == other def __repr__(self): return "{} with value {}".format(self.__class__, self._value) def __str__(self): return "{value:0{size}X}".format( value=self._value, size=self._data_container.serialized_size()*2, ) def __len__(self): return len(self._data_container) class nx_uint8(BaseInt): _signed = False _length = 8 _format = ">B" class nx_int8(BaseInt): _signed = True _length = 8 _format = ">b" class uint8(BaseInt): _signed = False _length = 8 _format = "<B" class int8(BaseInt): _signed = True _length = 8 _format = "<b" class nx_uint16(BaseInt): _signed = False _length = 16 _format = ">H" class nx_int16(BaseInt): _signed = True _length = 16 _format = ">h" class uint16(BaseInt): _signed = False _length = 16 _format = "<H" class int16(BaseInt): _signed = True _length = 16 _format = "<h" class nx_uint32(BaseInt): _signed = False _length = 32 _format = ">I" class nx_int32(BaseInt): _signed = True _length = 32 _format = ">i" class uint32(BaseInt): _signed = False _length = 32 _format = "<I" class int32(BaseInt): _signed = True _length = 32 _format = "<i" class nx_uint64(BaseInt): _signed = False _length = 64 _format = ">Q" class nx_int64(BaseInt): _signed = True _length = 64 _format = ">q" class uint64(BaseInt): _signed = False _length = 64 _format = "<Q" class int64(BaseInt): _signed = True _length = 64 _format = "<q"
mit
-1,633,917,069,778,689,300
28.394247
110
0.523141
false
ytisf/PyExfil
pyexfil/Comm/GQUIC/__init__.py
1
1560
import zlib import socket import struct from pyexfil.includes.prepare import PrepFile, DEFAULT_KEY GQUIC_PORT = 443 def _send_one(data, pckt_counter, dest_ip, dest_port=GQUIC_PORT, ccc=None): """ Send out one packet of data :param data: Data to send [str] :param pckt_counter: Counter of file/comm [int] :param dest_ip: IP [str] :param dest_port: Port [int] :param ccc: CRC of file [binary] :return: [True, Always!] """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) actual_data = "\x0d" # Flags - None if ccc: actual_data += ccc # CID else: actual_data += "\x43\x53\x50\x45\x54\x48\x53\x59" actual_data += "\x51\x30\x34\x33" # Version Q304 actual_data += struct.pack('B', pckt_counter) # Packet number increment actual_data += data # Payload s.sendto(actual_data, (dest_ip, dest_port)) return True def Send(file_name, CNC_ip, CNC_port=GQUIC_PORT, key=DEFAULT_KEY): """ Send a file out (can be used for any communication :param file_name: String, path to file :param CNC_ip: String, IP :param CNC_port: Int, Port :param key: String of key :return: TRUE FOREVER! VIVA LA REVOLUSION! """ this_prepObj = PrepFile( file_path = file_name, kind = 'binary', max_size = 128, enc_key = key ) crc = hex(zlib.crc32(open(file_name, 'rb').read())) _send_one(data = this_prepObj['Packets'][0], pckt_counter = 0, dest_ip = CNC_ip, dest_port = CNC_port, ccc = crc) i = 1 for pkt in this_prepObj['Packets'][1:]: _send_one(data=pkt, pckt_counter=i, dest_ip=CNC_ip, dest_port=CNC_port) i += 1 return True
mit
7,913,941,341,791,180,000
25.896552
114
0.670513
false
noironetworks/heat
heat/engine/resources/openstack/nova/server.py
1
78105
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from oslo_config import cfg from oslo_log import log as logging from oslo_utils import uuidutils import six from heat.common import exception from heat.common.i18n import _ from heat.engine import attributes from heat.engine.clients import progress from heat.engine import constraints from heat.engine import properties from heat.engine.resources.openstack.neutron import port as neutron_port from heat.engine.resources.openstack.neutron import subnet from heat.engine.resources.openstack.nova import server_network_mixin from heat.engine.resources import scheduler_hints as sh from heat.engine.resources import server_base from heat.engine import support from heat.engine import translation from heat.rpc import api as rpc_api cfg.CONF.import_opt('default_software_config_transport', 'heat.common.config') cfg.CONF.import_opt('default_user_data_format', 'heat.common.config') LOG = logging.getLogger(__name__) NOVA_MICROVERSIONS = (MICROVERSION_TAGS, MICROVERSION_STR_NETWORK, MICROVERSION_NIC_TAGS) = ('2.26', '2.37', '2.42') class Server(server_base.BaseServer, sh.SchedulerHintsMixin, server_network_mixin.ServerNetworkMixin): """A resource for managing Nova instances. A Server resource manages the running virtual machine instance within an OpenStack cloud. """ PROPERTIES = ( NAME, IMAGE, BLOCK_DEVICE_MAPPING, BLOCK_DEVICE_MAPPING_V2, FLAVOR, FLAVOR_UPDATE_POLICY, IMAGE_UPDATE_POLICY, KEY_NAME, ADMIN_USER, AVAILABILITY_ZONE, SECURITY_GROUPS, NETWORKS, SCHEDULER_HINTS, METADATA, USER_DATA_FORMAT, USER_DATA, RESERVATION_ID, CONFIG_DRIVE, DISK_CONFIG, PERSONALITY, ADMIN_PASS, SOFTWARE_CONFIG_TRANSPORT, USER_DATA_UPDATE_POLICY, TAGS, DEPLOYMENT_SWIFT_DATA ) = ( 'name', 'image', 'block_device_mapping', 'block_device_mapping_v2', 'flavor', 'flavor_update_policy', 'image_update_policy', 'key_name', 'admin_user', 'availability_zone', 'security_groups', 'networks', 'scheduler_hints', 'metadata', 'user_data_format', 'user_data', 'reservation_id', 'config_drive', 'diskConfig', 'personality', 'admin_pass', 'software_config_transport', 'user_data_update_policy', 'tags', 'deployment_swift_data' ) _BLOCK_DEVICE_MAPPING_KEYS = ( BLOCK_DEVICE_MAPPING_DEVICE_NAME, BLOCK_DEVICE_MAPPING_VOLUME_ID, BLOCK_DEVICE_MAPPING_SNAPSHOT_ID, BLOCK_DEVICE_MAPPING_VOLUME_SIZE, BLOCK_DEVICE_MAPPING_DELETE_ON_TERM, ) = ( 'device_name', 'volume_id', 'snapshot_id', 'volume_size', 'delete_on_termination', ) _BLOCK_DEVICE_MAPPING_V2_KEYS = ( BLOCK_DEVICE_MAPPING_DEVICE_NAME, BLOCK_DEVICE_MAPPING_VOLUME_ID, BLOCK_DEVICE_MAPPING_IMAGE_ID, BLOCK_DEVICE_MAPPING_IMAGE, BLOCK_DEVICE_MAPPING_SNAPSHOT_ID, BLOCK_DEVICE_MAPPING_SWAP_SIZE, BLOCK_DEVICE_MAPPING_DEVICE_TYPE, BLOCK_DEVICE_MAPPING_DISK_BUS, BLOCK_DEVICE_MAPPING_BOOT_INDEX, BLOCK_DEVICE_MAPPING_VOLUME_SIZE, BLOCK_DEVICE_MAPPING_DELETE_ON_TERM, BLOCK_DEVICE_MAPPING_EPHEMERAL_SIZE, BLOCK_DEVICE_MAPPING_EPHEMERAL_FORMAT, ) = ( 'device_name', 'volume_id', 'image_id', 'image', 'snapshot_id', 'swap_size', 'device_type', 'disk_bus', 'boot_index', 'volume_size', 'delete_on_termination', 'ephemeral_size', 'ephemeral_format' ) _NETWORK_KEYS = ( NETWORK_UUID, NETWORK_ID, NETWORK_FIXED_IP, NETWORK_PORT, NETWORK_SUBNET, NETWORK_PORT_EXTRA, NETWORK_FLOATING_IP, ALLOCATE_NETWORK, NIC_TAG, ) = ( 'uuid', 'network', 'fixed_ip', 'port', 'subnet', 'port_extra_properties', 'floating_ip', 'allocate_network', 'tag', ) _IFACE_MANAGED_KEYS = (NETWORK_PORT, NETWORK_ID, NETWORK_FIXED_IP, NETWORK_SUBNET) _SOFTWARE_CONFIG_FORMATS = ( HEAT_CFNTOOLS, RAW, SOFTWARE_CONFIG ) = ( 'HEAT_CFNTOOLS', 'RAW', 'SOFTWARE_CONFIG' ) _SOFTWARE_CONFIG_TRANSPORTS = ( POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL, ZAQAR_MESSAGE ) = ( 'POLL_SERVER_CFN', 'POLL_SERVER_HEAT', 'POLL_TEMP_URL', 'ZAQAR_MESSAGE' ) _ALLOCATE_TYPES = ( NETWORK_NONE, NETWORK_AUTO, ) = ( 'none', 'auto', ) _DEPLOYMENT_SWIFT_DATA_KEYS = ( CONTAINER, OBJECT ) = ( 'container', 'object', ) ATTRIBUTES = ( NAME_ATTR, ADDRESSES, NETWORKS_ATTR, FIRST_ADDRESS, INSTANCE_NAME, ACCESSIPV4, ACCESSIPV6, CONSOLE_URLS, TAGS_ATTR, OS_COLLECT_CONFIG ) = ( 'name', 'addresses', 'networks', 'first_address', 'instance_name', 'accessIPv4', 'accessIPv6', 'console_urls', 'tags', 'os_collect_config' ) # Image Statuses IMAGE_STATUSES = (IMAGE_ACTIVE, IMAGE_ERROR, IMAGE_DELETED) = ('active', 'error', 'deleted') properties_schema = { NAME: properties.Schema( properties.Schema.STRING, _('Server name.'), update_allowed=True ), IMAGE: properties.Schema( properties.Schema.STRING, _('The ID or name of the image to boot with.'), constraints=[ constraints.CustomConstraint('glance.image') ], update_allowed=True ), BLOCK_DEVICE_MAPPING: properties.Schema( properties.Schema.LIST, _('Block device mappings for this server.'), schema=properties.Schema( properties.Schema.MAP, schema={ BLOCK_DEVICE_MAPPING_DEVICE_NAME: properties.Schema( properties.Schema.STRING, _('A device name where the volume will be ' 'attached in the system at /dev/device_name. ' 'This value is typically vda.'), required=True ), BLOCK_DEVICE_MAPPING_VOLUME_ID: properties.Schema( properties.Schema.STRING, _('The ID of the volume to boot from. Only one ' 'of volume_id or snapshot_id should be ' 'provided.'), constraints=[ constraints.CustomConstraint('cinder.volume') ] ), BLOCK_DEVICE_MAPPING_SNAPSHOT_ID: properties.Schema( properties.Schema.STRING, _('The ID of the snapshot to create a volume ' 'from.'), constraints=[ constraints.CustomConstraint('cinder.snapshot') ] ), BLOCK_DEVICE_MAPPING_VOLUME_SIZE: properties.Schema( properties.Schema.INTEGER, _('The size of the volume, in GB. It is safe to ' 'leave this blank and have the Compute service ' 'infer the size.') ), BLOCK_DEVICE_MAPPING_DELETE_ON_TERM: properties.Schema( properties.Schema.BOOLEAN, _('Indicate whether the volume should be deleted ' 'when the server is terminated.') ), }, ) ), BLOCK_DEVICE_MAPPING_V2: properties.Schema( properties.Schema.LIST, _('Block device mappings v2 for this server.'), schema=properties.Schema( properties.Schema.MAP, schema={ BLOCK_DEVICE_MAPPING_DEVICE_NAME: properties.Schema( properties.Schema.STRING, _('A device name where the volume will be ' 'attached in the system at /dev/device_name. ' 'This value is typically vda.'), ), BLOCK_DEVICE_MAPPING_VOLUME_ID: properties.Schema( properties.Schema.STRING, _('The volume_id can be boot or non-boot device ' 'to the server.'), constraints=[ constraints.CustomConstraint('cinder.volume') ] ), BLOCK_DEVICE_MAPPING_IMAGE_ID: properties.Schema( properties.Schema.STRING, _('The ID of the image to create a volume from.'), support_status=support.SupportStatus( status=support.HIDDEN, version='9.0.0', message=_('Use property %s.') % BLOCK_DEVICE_MAPPING_IMAGE, previous_status=support.SupportStatus( status=support.DEPRECATED, version='7.0.0', previous_status=support.SupportStatus( version='5.0.0') ) ), constraints=[ constraints.CustomConstraint('glance.image') ], ), BLOCK_DEVICE_MAPPING_IMAGE: properties.Schema( properties.Schema.STRING, _('The ID or name of the image ' 'to create a volume from.'), support_status=support.SupportStatus(version='7.0.0'), constraints=[ constraints.CustomConstraint('glance.image') ], ), BLOCK_DEVICE_MAPPING_SNAPSHOT_ID: properties.Schema( properties.Schema.STRING, _('The ID of the snapshot to create a volume ' 'from.'), constraints=[ constraints.CustomConstraint('cinder.snapshot') ] ), BLOCK_DEVICE_MAPPING_SWAP_SIZE: properties.Schema( properties.Schema.INTEGER, _('The size of the swap, in MB.') ), BLOCK_DEVICE_MAPPING_EPHEMERAL_SIZE: properties.Schema( properties.Schema.INTEGER, _('The size of the local ephemeral block device, ' 'in GB.'), support_status=support.SupportStatus(version='8.0.0'), constraints=[constraints.Range(min=1)] ), BLOCK_DEVICE_MAPPING_EPHEMERAL_FORMAT: properties.Schema( properties.Schema.STRING, _('The format of the local ephemeral block device. ' 'If no format is specified, uses default value, ' 'defined in nova configuration file.'), constraints=[ constraints.AllowedValues(['ext2', 'ext3', 'ext4', 'xfs', 'ntfs']) ], support_status=support.SupportStatus(version='8.0.0') ), BLOCK_DEVICE_MAPPING_DEVICE_TYPE: properties.Schema( properties.Schema.STRING, _('Device type: at the moment we can make distinction ' 'only between disk and cdrom.'), constraints=[ constraints.AllowedValues(['cdrom', 'disk']), ], ), BLOCK_DEVICE_MAPPING_DISK_BUS: properties.Schema( properties.Schema.STRING, _('Bus of the device: hypervisor driver chooses a ' 'suitable default if omitted.'), constraints=[ constraints.AllowedValues(['ide', 'lame_bus', 'scsi', 'usb', 'virtio']), ], ), BLOCK_DEVICE_MAPPING_BOOT_INDEX: properties.Schema( properties.Schema.INTEGER, _('Integer used for ordering the boot disks. If ' 'it is not specified, value "0" will be set ' 'for bootable sources (volume, snapshot, image); ' 'value "-1" will be set for non-bootable sources.'), ), BLOCK_DEVICE_MAPPING_VOLUME_SIZE: properties.Schema( properties.Schema.INTEGER, _('Size of the block device in GB. If it is omitted, ' 'hypervisor driver calculates size.'), ), BLOCK_DEVICE_MAPPING_DELETE_ON_TERM: properties.Schema( properties.Schema.BOOLEAN, _('Indicate whether the volume should be deleted ' 'when the server is terminated.') ), }, ), support_status=support.SupportStatus(version='2015.1') ), FLAVOR: properties.Schema( properties.Schema.STRING, _('The ID or name of the flavor to boot onto.'), required=True, update_allowed=True, constraints=[ constraints.CustomConstraint('nova.flavor') ] ), FLAVOR_UPDATE_POLICY: properties.Schema( properties.Schema.STRING, _('Policy on how to apply a flavor update; either by requesting ' 'a server resize or by replacing the entire server.'), default='RESIZE', constraints=[ constraints.AllowedValues(['RESIZE', 'REPLACE']), ], update_allowed=True ), IMAGE_UPDATE_POLICY: properties.Schema( properties.Schema.STRING, _('Policy on how to apply an image-id update; either by ' 'requesting a server rebuild or by replacing ' 'the entire server.'), default='REBUILD', constraints=[ constraints.AllowedValues(['REBUILD', 'REPLACE', 'REBUILD_PRESERVE_EPHEMERAL']), ], update_allowed=True ), KEY_NAME: properties.Schema( properties.Schema.STRING, _('Name of keypair to inject into the server.'), constraints=[ constraints.CustomConstraint('nova.keypair') ] ), ADMIN_USER: properties.Schema( properties.Schema.STRING, _('Name of the administrative user to use on the server.'), support_status=support.SupportStatus( status=support.HIDDEN, version='5.0.0', message=_('The default cloud-init user set up for each image ' '(e.g. "ubuntu" for Ubuntu 12.04+, "fedora" for ' 'Fedora 19+ and "cloud-user" for CentOS/RHEL 6.5).'), previous_status=support.SupportStatus( status=support.DEPRECATED, version='2014.1', previous_status=support.SupportStatus(version='2013.2') ) ) ), AVAILABILITY_ZONE: properties.Schema( properties.Schema.STRING, _('Name of the availability zone for server placement.') ), SECURITY_GROUPS: properties.Schema( properties.Schema.LIST, _('List of security group names or IDs. Cannot be used if ' 'neutron ports are associated with this server; assign ' 'security groups to the ports instead.'), default=[] ), NETWORKS: properties.Schema( properties.Schema.LIST, _('An ordered list of nics to be added to this server, with ' 'information about connected networks, fixed ips, port etc.'), schema=properties.Schema( properties.Schema.MAP, schema={ NETWORK_UUID: properties.Schema( properties.Schema.STRING, _('ID of network to create a port on.'), support_status=support.SupportStatus( status=support.HIDDEN, version='5.0.0', previous_status=support.SupportStatus( status=support.DEPRECATED, message=_('Use property %s.') % NETWORK_ID, version='2014.1' ) ), constraints=[ constraints.CustomConstraint('neutron.network') ] ), NETWORK_ID: properties.Schema( properties.Schema.STRING, _('Name or ID of network to create a port on.'), constraints=[ constraints.CustomConstraint('neutron.network') ] ), ALLOCATE_NETWORK: properties.Schema( properties.Schema.STRING, _('The special string values of network, ' 'auto: means either a network that is already ' 'available to the project will be used, or if one ' 'does not exist, will be automatically created for ' 'the project; none: means no networking will be ' 'allocated for the created server. Supported by ' 'Nova API since version "2.37". This property can ' 'not be used with other network keys.'), support_status=support.SupportStatus(version='9.0.0'), constraints=[ constraints.AllowedValues( [NETWORK_NONE, NETWORK_AUTO]) ], update_allowed=True, ), NETWORK_FIXED_IP: properties.Schema( properties.Schema.STRING, _('Fixed IP address to specify for the port ' 'created on the requested network.'), constraints=[ constraints.CustomConstraint('ip_addr') ] ), NETWORK_PORT: properties.Schema( properties.Schema.STRING, _('ID of an existing port to associate with this ' 'server.'), constraints=[ constraints.CustomConstraint('neutron.port') ] ), NETWORK_PORT_EXTRA: properties.Schema( properties.Schema.MAP, _('Dict, which has expand properties for port. ' 'Used only if port property is not specified ' 'for creating port.'), schema=neutron_port.Port.extra_properties_schema, support_status=support.SupportStatus(version='6.0.0') ), NETWORK_SUBNET: properties.Schema( properties.Schema.STRING, _('Subnet in which to allocate the IP address for ' 'port. Used for creating port, based on derived ' 'properties. If subnet is specified, network ' 'property becomes optional.'), support_status=support.SupportStatus(version='5.0.0') ), NETWORK_FLOATING_IP: properties.Schema( properties.Schema.STRING, _('ID of the floating IP to associate.'), support_status=support.SupportStatus(version='6.0.0') ), NIC_TAG: properties.Schema( properties.Schema.STRING, _('Port tag. Heat ignores any update on this property ' 'as nova does not support it.'), support_status=support.SupportStatus(version='9.0.0') ) }, ), update_allowed=True ), SCHEDULER_HINTS: properties.Schema( properties.Schema.MAP, _('Arbitrary key-value pairs specified by the client to help ' 'boot a server.') ), METADATA: properties.Schema( properties.Schema.MAP, _('Arbitrary key/value metadata to store for this server. Both ' 'keys and values must be 255 characters or less. Non-string ' 'values will be serialized to JSON (and the serialized ' 'string must be 255 characters or less).'), update_allowed=True, default={} ), USER_DATA_FORMAT: properties.Schema( properties.Schema.STRING, _('How the user_data should be formatted for the server. For ' 'HEAT_CFNTOOLS, the user_data is bundled as part of the ' 'heat-cfntools cloud-init boot configuration data. For RAW ' 'the user_data is passed to Nova unmodified. ' 'For SOFTWARE_CONFIG user_data is bundled as part of the ' 'software config data, and metadata is derived from any ' 'associated SoftwareDeployment resources.'), default=cfg.CONF.default_user_data_format, constraints=[ constraints.AllowedValues(_SOFTWARE_CONFIG_FORMATS), ] ), SOFTWARE_CONFIG_TRANSPORT: properties.Schema( properties.Schema.STRING, _('How the server should receive the metadata required for ' 'software configuration. POLL_SERVER_CFN will allow calls to ' 'the cfn API action DescribeStackResource authenticated with ' 'the provided keypair. POLL_SERVER_HEAT will allow calls to ' 'the Heat API resource-show using the provided keystone ' 'credentials. POLL_TEMP_URL will create and populate a ' 'Swift TempURL with metadata for polling. ZAQAR_MESSAGE will ' 'create a dedicated zaqar queue and post the metadata ' 'for polling.'), default=cfg.CONF.default_software_config_transport, update_allowed=True, constraints=[ constraints.AllowedValues(_SOFTWARE_CONFIG_TRANSPORTS), ] ), USER_DATA_UPDATE_POLICY: properties.Schema( properties.Schema.STRING, _('Policy on how to apply a user_data update; either by ' 'ignoring it or by replacing the entire server.'), default='REPLACE', constraints=[ constraints.AllowedValues(['REPLACE', 'IGNORE']), ], support_status=support.SupportStatus(version='6.0.0'), update_allowed=True ), USER_DATA: properties.Schema( properties.Schema.STRING, _('User data script to be executed by cloud-init. Changes cause ' 'replacement of the resource by default, but can be ignored ' 'altogether by setting the `user_data_update_policy` property.'), default='', update_allowed=True ), RESERVATION_ID: properties.Schema( properties.Schema.STRING, _('A UUID for the set of servers being requested.') ), CONFIG_DRIVE: properties.Schema( properties.Schema.BOOLEAN, _('If True, enable config drive on the server.') ), DISK_CONFIG: properties.Schema( properties.Schema.STRING, _('Control how the disk is partitioned when the server is ' 'created.'), constraints=[ constraints.AllowedValues(['AUTO', 'MANUAL']), ] ), PERSONALITY: properties.Schema( properties.Schema.MAP, _('A map of files to create/overwrite on the server upon boot. ' 'Keys are file names and values are the file contents.'), default={} ), ADMIN_PASS: properties.Schema( properties.Schema.STRING, _('The administrator password for the server.'), update_allowed=True ), TAGS: properties.Schema( properties.Schema.LIST, _('Server tags. Supported since client version 2.26.'), support_status=support.SupportStatus(version='8.0.0'), schema=properties.Schema(properties.Schema.STRING), update_allowed=True ), DEPLOYMENT_SWIFT_DATA: properties.Schema( properties.Schema.MAP, _('Swift container and object to use for storing deployment data ' 'for the server resource. The parameter is a map value ' 'with the keys "container" and "object", and the values ' 'are the corresponding container and object names. The ' 'software_config_transport parameter must be set to ' 'POLL_TEMP_URL for swift to be used. If not specified, ' 'and software_config_transport is set to POLL_TEMP_URL, a ' 'container will be automatically created from the resource ' 'name, and the object name will be a generated uuid.'), support_status=support.SupportStatus(version='9.0.0'), default={}, update_allowed=True, schema={ CONTAINER: properties.Schema( properties.Schema.STRING, _('Name of the container.'), constraints=[ constraints.Length(min=1) ] ), OBJECT: properties.Schema( properties.Schema.STRING, _('Name of the object.'), constraints=[ constraints.Length(min=1) ] ) } ) } attributes_schema = { NAME_ATTR: attributes.Schema( _('Name of the server.'), type=attributes.Schema.STRING ), ADDRESSES: attributes.Schema( _('A dict of all network addresses with corresponding port_id and ' 'subnets. Each network will have two keys in dict, they are ' 'network name and network id. The port ID may be obtained ' 'through the following expression: ``{get_attr: [<server>, ' 'addresses, <network name_or_id>, 0, port]}``. The subnets may ' 'be obtained trough the following expression: ``{get_attr: ' '[<server>, addresses, <network name_or_id>, 0, subnets]}``. ' 'The network may be obtained through the following expression: ' '``{get_attr: [<server>, addresses, <network name_or_id>, 0, ' 'network]}``.'), type=attributes.Schema.MAP, support_status=support.SupportStatus( version='11.0.0', status=support.SUPPORTED, message=_('The attribute was extended to include subnets and ' 'network with version 11.0.0.'), previous_status=support.SupportStatus( status=support.SUPPORTED ) ) ), NETWORKS_ATTR: attributes.Schema( _('A dict of assigned network addresses of the form: ' '{"public": [ip1, ip2...], "private": [ip3, ip4], ' '"public_uuid": [ip1, ip2...], "private_uuid": [ip3, ip4]}. ' 'Each network will have two keys in dict, they are network ' 'name and network id.'), type=attributes.Schema.MAP ), FIRST_ADDRESS: attributes.Schema( _('Convenience attribute to fetch the first assigned network ' 'address, or an empty string if nothing has been assigned at ' 'this time. Result may not be predictable if the server has ' 'addresses from more than one network.'), support_status=support.SupportStatus( status=support.HIDDEN, version='5.0.0', message=_('Use the networks attribute instead of ' 'first_address. For example: "{get_attr: ' '[<server name>, networks, <network name>, 0]}"'), previous_status=support.SupportStatus( status=support.DEPRECATED, version='2014.2', previous_status=support.SupportStatus(version='2013.2') ) ) ), INSTANCE_NAME: attributes.Schema( _('AWS compatible instance name.'), type=attributes.Schema.STRING ), ACCESSIPV4: attributes.Schema( _('The manually assigned alternative public IPv4 address ' 'of the server.'), type=attributes.Schema.STRING ), ACCESSIPV6: attributes.Schema( _('The manually assigned alternative public IPv6 address ' 'of the server.'), type=attributes.Schema.STRING ), CONSOLE_URLS: attributes.Schema( _("URLs of server's consoles. " "To get a specific console type, the requested type " "can be specified as parameter to the get_attr function, " "e.g. get_attr: [ <server>, console_urls, novnc ]. " "Currently supported types are " "novnc, xvpvnc, spice-html5, rdp-html5, serial and webmks."), support_status=support.SupportStatus(version='2015.1'), type=attributes.Schema.MAP ), TAGS_ATTR: attributes.Schema( _('Tags from the server. Supported since client version 2.26.'), support_status=support.SupportStatus(version='8.0.0'), type=attributes.Schema.LIST ), OS_COLLECT_CONFIG: attributes.Schema( _('The os-collect-config configuration for the server\'s local ' 'agent to be configured to connect to Heat to retrieve ' 'deployment data.'), support_status=support.SupportStatus(version='9.0.0'), type=attributes.Schema.MAP, cache_mode=attributes.Schema.CACHE_NONE ), } default_client_name = 'nova' def translation_rules(self, props): neutron_client_plugin = self.client_plugin('neutron') glance_client_plugin = self.client_plugin('glance') rules = [ translation.TranslationRule( props, translation.TranslationRule.REPLACE, translation_path=[self.NETWORKS, self.NETWORK_ID], value_name=self.NETWORK_UUID), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, translation_path=[self.FLAVOR], client_plugin=self.client_plugin('nova'), finder='find_flavor_by_name_or_id'), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, translation_path=[self.IMAGE], client_plugin=glance_client_plugin, finder='find_image_by_name_or_id'), translation.TranslationRule( props, translation.TranslationRule.REPLACE, translation_path=[self.BLOCK_DEVICE_MAPPING_V2, self.BLOCK_DEVICE_MAPPING_IMAGE], value_name=self.BLOCK_DEVICE_MAPPING_IMAGE_ID), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, translation_path=[self.BLOCK_DEVICE_MAPPING_V2, self.BLOCK_DEVICE_MAPPING_IMAGE], client_plugin=glance_client_plugin, finder='find_image_by_name_or_id'), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, translation_path=[self.NETWORKS, self.NETWORK_ID], client_plugin=neutron_client_plugin, finder='find_resourceid_by_name_or_id', entity=neutron_client_plugin.RES_TYPE_NETWORK), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, translation_path=[self.NETWORKS, self.NETWORK_SUBNET], client_plugin=neutron_client_plugin, finder='find_resourceid_by_name_or_id', entity=neutron_client_plugin.RES_TYPE_SUBNET), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, translation_path=[self.NETWORKS, self.NETWORK_PORT], client_plugin=neutron_client_plugin, finder='find_resourceid_by_name_or_id', entity=neutron_client_plugin.RES_TYPE_PORT) ] return rules def __init__(self, name, json_snippet, stack): super(Server, self).__init__(name, json_snippet, stack) if self.user_data_software_config(): self._register_access_key() self.default_collectors = ['ec2'] def _config_drive(self): # This method is overridden by the derived CloudServer resource return self.properties[self.CONFIG_DRIVE] def user_data_raw(self): return self.properties[self.USER_DATA_FORMAT] == self.RAW def user_data_software_config(self): return self.properties[ self.USER_DATA_FORMAT] == self.SOFTWARE_CONFIG def get_software_config(self, ud_content): with self.rpc_client().ignore_error_by_name('NotFound'): sc = self.rpc_client().show_software_config( self.context, ud_content) return sc[rpc_api.SOFTWARE_CONFIG_CONFIG] return ud_content def handle_create(self): security_groups = self.properties[self.SECURITY_GROUPS] user_data_format = self.properties[self.USER_DATA_FORMAT] ud_content = self.properties[self.USER_DATA] if self.user_data_software_config() or self.user_data_raw(): if uuidutils.is_uuid_like(ud_content): # attempt to load the userdata from software config ud_content = self.get_software_config(ud_content) metadata = self.metadata_get(True) or {} if self.user_data_software_config(): self._create_transport_credentials(self.properties) self._populate_deployments_metadata(metadata, self.properties) userdata = self.client_plugin().build_userdata( metadata, ud_content, instance_user=None, user_data_format=user_data_format) availability_zone = self.properties[self.AVAILABILITY_ZONE] instance_meta = self.properties[self.METADATA] if instance_meta: instance_meta = self.client_plugin().meta_serialize( instance_meta) scheduler_hints = self._scheduler_hints( self.properties[self.SCHEDULER_HINTS]) nics = self._build_nics(self.properties[self.NETWORKS], security_groups=security_groups) block_device_mapping = self._build_block_device_mapping( self.properties[self.BLOCK_DEVICE_MAPPING]) block_device_mapping_v2 = self._build_block_device_mapping_v2( self.properties[self.BLOCK_DEVICE_MAPPING_V2]) reservation_id = self.properties[self.RESERVATION_ID] disk_config = self.properties[self.DISK_CONFIG] admin_pass = self.properties[self.ADMIN_PASS] or None personality_files = self.properties[self.PERSONALITY] key_name = self.properties[self.KEY_NAME] flavor = self.properties[self.FLAVOR] image = self.properties[self.IMAGE] server = None try: server = self.client().servers.create( name=self._server_name(), image=image, flavor=flavor, key_name=key_name, security_groups=security_groups, userdata=userdata, meta=instance_meta, scheduler_hints=scheduler_hints, nics=nics, availability_zone=availability_zone, block_device_mapping=block_device_mapping, block_device_mapping_v2=block_device_mapping_v2, reservation_id=reservation_id, config_drive=self._config_drive(), disk_config=disk_config, files=personality_files, admin_pass=admin_pass) finally: # Avoid a race condition where the thread could be canceled # before the ID is stored if server is not None: self.resource_id_set(server.id) return server.id def check_create_complete(self, server_id): check = self.client_plugin()._check_active(server_id) if check: if self.properties[self.TAGS]: self._update_server_tags(self.properties[self.TAGS]) self.store_external_ports() return check def _update_server_tags(self, tags): server = self.client().servers.get(self.resource_id) self.client().servers.set_tags(server, tags) def handle_check(self): server = self.client().servers.get(self.resource_id) status = self.client_plugin().get_status(server) checks = [{'attr': 'status', 'expected': 'ACTIVE', 'current': status}] self._verify_check_conditions(checks) def get_live_resource_data(self): try: server = self.client().servers.get(self.resource_id) server_data = server.to_dict() active = self.client_plugin()._check_active(server) if not active: # There is no difference what error raised, because update # method of resource just silently log it as warning. raise exception.Error(_('Server %s is not ' 'in ACTIVE state') % self.name) except Exception as ex: if self.client_plugin().is_not_found(ex): raise exception.EntityNotFound(entity='Resource', name=self.name) raise if self.client_plugin().is_version_supported(MICROVERSION_TAGS): tag_server = self.client().servers.get(self.resource_id) server_data['tags'] = tag_server.tag_list() return server, server_data def parse_live_resource_data(self, resource_properties, resource_data): server, server_data = resource_data result = { # there's a risk that flavor id will be int type, so cast to str self.FLAVOR: six.text_type(server_data.get(self.FLAVOR)['id']), self.IMAGE: six.text_type(server_data.get(self.IMAGE)['id']), self.NAME: server_data.get(self.NAME), self.METADATA: server_data.get(self.METADATA), self.NETWORKS: self._get_live_networks(server, resource_properties) } if 'tags' in server_data: result.update({self.TAGS: server_data['tags']}) return result def _get_live_networks(self, server, props): reality_nets = self._add_attrs_for_address(server, extend_networks=False) reality_net_ids = {} client_plugin = self.client_plugin('neutron') for net_key in reality_nets: try: net_id = client_plugin.find_resourceid_by_name_or_id( client_plugin.RES_TYPE_NETWORK, net_key) except Exception as ex: if (client_plugin.is_not_found(ex) or client_plugin.is_no_unique(ex)): net_id = None else: raise if net_id: reality_net_ids[net_id] = reality_nets.get(net_key) resource_nets = props.get(self.NETWORKS) result_nets = [] for net in resource_nets or []: net_id = self._get_network_id(net) if reality_net_ids.get(net_id): for idx, address in enumerate(reality_net_ids.get(net_id)): if address['addr'] == net[self.NETWORK_FIXED_IP]: result_nets.append(net) reality_net_ids.get(net_id).pop(idx) break for key, value in six.iteritems(reality_nets): for address in reality_nets[key]: new_net = {self.NETWORK_ID: key, self.NETWORK_FIXED_IP: address['addr']} if address['port'] not in [port['id'] for port in self._data_get_ports()]: new_net.update({self.NETWORK_PORT: address['port']}) result_nets.append(new_net) return result_nets @classmethod def _build_block_device_mapping(cls, bdm): if not bdm: return None bdm_dict = {} for mapping in bdm: mapping_parts = [] snapshot_id = mapping.get(cls.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID) if snapshot_id: mapping_parts.append(snapshot_id) mapping_parts.append('snap') else: volume_id = mapping.get(cls.BLOCK_DEVICE_MAPPING_VOLUME_ID) mapping_parts.append(volume_id) mapping_parts.append('') volume_size = mapping.get(cls.BLOCK_DEVICE_MAPPING_VOLUME_SIZE) delete = mapping.get(cls.BLOCK_DEVICE_MAPPING_DELETE_ON_TERM) if volume_size: mapping_parts.append(str(volume_size)) else: mapping_parts.append('') if delete: mapping_parts.append(str(delete)) device_name = mapping.get(cls.BLOCK_DEVICE_MAPPING_DEVICE_NAME) bdm_dict[device_name] = ':'.join(mapping_parts) return bdm_dict @classmethod def _build_block_device_mapping_v2(cls, bdm_v2): if not bdm_v2: return None bdm_v2_list = [] for mapping in bdm_v2: bmd_dict = None if mapping.get(cls.BLOCK_DEVICE_MAPPING_VOLUME_ID): bmd_dict = { 'uuid': mapping.get(cls.BLOCK_DEVICE_MAPPING_VOLUME_ID), 'source_type': 'volume', 'destination_type': 'volume', 'boot_index': 0, 'delete_on_termination': False, } elif mapping.get(cls.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID): bmd_dict = { 'uuid': mapping.get(cls.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID), 'source_type': 'snapshot', 'destination_type': 'volume', 'boot_index': 0, 'delete_on_termination': False, } elif mapping.get(cls.BLOCK_DEVICE_MAPPING_IMAGE): bmd_dict = { 'uuid': mapping.get(cls.BLOCK_DEVICE_MAPPING_IMAGE), 'source_type': 'image', 'destination_type': 'volume', 'boot_index': 0, 'delete_on_termination': False, } elif mapping.get(cls.BLOCK_DEVICE_MAPPING_SWAP_SIZE): bmd_dict = { 'source_type': 'blank', 'destination_type': 'local', 'boot_index': -1, 'delete_on_termination': True, 'guest_format': 'swap', 'volume_size': mapping.get( cls.BLOCK_DEVICE_MAPPING_SWAP_SIZE), } elif (mapping.get(cls.BLOCK_DEVICE_MAPPING_EPHEMERAL_SIZE) or mapping.get(cls.BLOCK_DEVICE_MAPPING_EPHEMERAL_FORMAT)): bmd_dict = { 'source_type': 'blank', 'destination_type': 'local', 'boot_index': -1, 'delete_on_termination': True } ephemeral_size = mapping.get( cls.BLOCK_DEVICE_MAPPING_EPHEMERAL_SIZE) if ephemeral_size: bmd_dict.update({'volume_size': ephemeral_size}) ephemeral_format = mapping.get( cls.BLOCK_DEVICE_MAPPING_EPHEMERAL_FORMAT) if ephemeral_format: bmd_dict.update({'guest_format': ephemeral_format}) # NOTE(prazumovsky): In case of server doesn't take empty value of # device name, need to escape from such situation. device_name = mapping.get(cls.BLOCK_DEVICE_MAPPING_DEVICE_NAME) if device_name: bmd_dict[cls.BLOCK_DEVICE_MAPPING_DEVICE_NAME] = device_name update_props = (cls.BLOCK_DEVICE_MAPPING_DEVICE_TYPE, cls.BLOCK_DEVICE_MAPPING_DISK_BUS, cls.BLOCK_DEVICE_MAPPING_BOOT_INDEX, cls.BLOCK_DEVICE_MAPPING_VOLUME_SIZE, cls.BLOCK_DEVICE_MAPPING_DELETE_ON_TERM) for update_prop in update_props: if mapping.get(update_prop) is not None: bmd_dict[update_prop] = mapping.get(update_prop) if bmd_dict: bdm_v2_list.append(bmd_dict) return bdm_v2_list def _get_subnets_attr(self, fixed_ips): subnets = [] try: for fixed_ip in fixed_ips: if fixed_ip.get('subnet_id'): subnets.append(self.client('neutron').show_subnet( fixed_ip['subnet_id'])['subnet']) except Exception as ex: LOG.warning("Failed to fetch resource attributes: %s", ex) return return subnets def _get_network_attr(self, network_id): try: return self.client('neutron').show_network(network_id)['network'] except Exception as ex: LOG.warning("Failed to fetch resource attributes: %s", ex) return def _add_attrs_for_address(self, server, extend_networks=True): """Adds port id, subnets and network attributes to addresses list. This method is used only for resolving attributes. :param server: The server resource :param extend_networks: When False the network is not extended, i.e the net is returned without replacing name on id. """ nets = copy.deepcopy(server.addresses) or {} ifaces = server.interface_list() ip_mac_mapping_on_port_id = dict(((iface.fixed_ips[0]['ip_address'], iface.mac_addr), iface.port_id) for iface in ifaces) for net_name in nets: for addr in nets[net_name]: addr['port'] = ip_mac_mapping_on_port_id.get( (addr['addr'], addr['OS-EXT-IPS-MAC:mac_addr'])) # _get_live_networks() uses this method to get reality_nets. # We don't need to get subnets and network in that case. Only # do the external calls if extend_networks is true, i.e called # from _resolve_attribute() if not extend_networks: continue try: port = self.client('neutron').show_port( addr['port'])['port'] except Exception as ex: addr['subnets'], addr['network'] = None, None LOG.warning("Failed to fetch resource attributes: %s", ex) continue addr['subnets'] = self._get_subnets_attr(port['fixed_ips']) addr['network'] = self._get_network_attr(port['network_id']) if extend_networks: return self._extend_networks(nets) else: return nets def _extend_networks(self, networks): """Method adds same networks with replaced name on network id. This method is used only for resolving attributes. """ nets = copy.deepcopy(networks) client_plugin = self.client_plugin('neutron') for key in list(nets.keys()): try: net_id = client_plugin.find_resourceid_by_name_or_id( client_plugin.RES_TYPE_NETWORK, key) except Exception as ex: if (client_plugin.is_not_found(ex) or client_plugin.is_no_unique(ex)): net_id = None else: raise if net_id: nets[net_id] = nets[key] return nets def _resolve_attribute(self, name): if self.resource_id is None: return if name == self.FIRST_ADDRESS: return self.client_plugin().server_to_ipaddress( self.resource_id) or '' if name == self.OS_COLLECT_CONFIG: return self.metadata_get().get('os-collect-config', {}) if name == self.NAME_ATTR: return self._server_name() try: server = self.client().servers.get(self.resource_id) except Exception as e: self.client_plugin().ignore_not_found(e) return '' if name == self.ADDRESSES: return self._add_attrs_for_address(server) if name == self.NETWORKS_ATTR: return self._extend_networks(server.networks) if name == self.INSTANCE_NAME: return getattr(server, 'OS-EXT-SRV-ATTR:instance_name', None) if name == self.ACCESSIPV4: return server.accessIPv4 if name == self.ACCESSIPV6: return server.accessIPv6 if name == self.CONSOLE_URLS: return self.client_plugin('nova').get_console_urls(server) if name == self.TAGS_ATTR: if self.client_plugin().is_version_supported(MICROVERSION_TAGS): return self.client().servers.tag_list(server) return None def add_dependencies(self, deps): super(Server, self).add_dependencies(deps) # Depend on any Subnet in this template with the same # network_id as the networks attached to this server. # It is not known which subnet a server might be assigned # to so all subnets in a network should be created before # the servers in that network. try: nets = self.properties[self.NETWORKS] except (ValueError, TypeError): # Properties errors will be caught later in validation, # where we can report them in their proper context. return if not nets: return for res in six.itervalues(self.stack): if res.has_interface('OS::Neutron::Subnet'): try: subnet_net = res.properties.get(subnet.Subnet.NETWORK) except (ValueError, TypeError): # Properties errors will be caught later in validation, # where we can report them in their proper context. continue # Be wary of the case where we do not know a subnet's # network. If that's the case, be safe and add it as a # dependency. if not subnet_net: deps += (self, res) continue for net in nets: # worry about network_id because that could be the match # assigned to the subnet as well and could have been # created by this stack. Regardless, the server should # still wait on the subnet. net_id = net.get(self.NETWORK_ID) if net_id and net_id == subnet_net: deps += (self, res) break # If we don't know a given net_id right now, it's # plausible this subnet depends on it. if not net_id: deps += (self, res) break def _update_flavor(self, after_props): flavor = after_props[self.FLAVOR] handler_args = checker_args = {'args': (flavor,)} prg_resize = progress.ServerUpdateProgress(self.resource_id, 'resize', handler_extra=handler_args, checker_extra=checker_args) prg_verify = progress.ServerUpdateProgress(self.resource_id, 'verify_resize') return prg_resize, prg_verify def _update_image(self, after_props): image_update_policy = after_props[self.IMAGE_UPDATE_POLICY] instance_meta = after_props[self.METADATA] if instance_meta is not None: instance_meta = self.client_plugin().meta_serialize( instance_meta) personality_files = after_props[self.PERSONALITY] image = after_props[self.IMAGE] preserve_ephemeral = ( image_update_policy == 'REBUILD_PRESERVE_EPHEMERAL') password = after_props[self.ADMIN_PASS] kwargs = {'password': password, 'preserve_ephemeral': preserve_ephemeral, 'meta': instance_meta, 'files': personality_files} prg = progress.ServerUpdateProgress(self.resource_id, 'rebuild', handler_extra={'args': (image,), 'kwargs': kwargs}) return prg def _update_networks(self, server, after_props): updaters = [] new_networks = after_props[self.NETWORKS] old_networks = self.properties[self.NETWORKS] security_groups = after_props[self.SECURITY_GROUPS] if not server: server = self.client().servers.get(self.resource_id) interfaces = server.interface_list() remove_ports, add_nets = self.calculate_networks( old_networks, new_networks, interfaces, security_groups) for port in remove_ports: updaters.append( progress.ServerUpdateProgress( self.resource_id, 'interface_detach', handler_extra={'args': (port,)}, checker_extra={'args': (port,)}) ) for args in add_nets: updaters.append( progress.ServerUpdateProgress( self.resource_id, 'interface_attach', handler_extra={'kwargs': args}, checker_extra={'args': (args['port_id'],)}) ) return updaters def needs_replace_with_prop_diff(self, changed_properties_set, after_props, before_props): """Needs replace based on prop_diff.""" if self.FLAVOR in changed_properties_set: flavor_update_policy = ( after_props.get(self.FLAVOR_UPDATE_POLICY) or before_props.get(self.FLAVOR_UPDATE_POLICY)) if flavor_update_policy == 'REPLACE': return True if self.IMAGE in changed_properties_set: image_update_policy = ( after_props.get(self.IMAGE_UPDATE_POLICY) or before_props.get(self.IMAGE_UPDATE_POLICY)) if image_update_policy == 'REPLACE': return True if self.USER_DATA in changed_properties_set: ud_update_policy = ( after_props.get(self.USER_DATA_UPDATE_POLICY) or before_props.get(self.USER_DATA_UPDATE_POLICY)) return ud_update_policy == 'REPLACE' def needs_replace_failed(self): if not self.resource_id: return True with self.client_plugin().ignore_not_found: server = self.client().servers.get(self.resource_id) return server.status in ('ERROR', 'DELETED', 'SOFT_DELETED') return True def handle_update(self, json_snippet, tmpl_diff, prop_diff): updaters = super(Server, self).handle_update( json_snippet, tmpl_diff, prop_diff) server = None after_props = json_snippet.properties(self.properties_schema, self.context) if self.METADATA in prop_diff: server = self.client_plugin().get_server(self.resource_id) self.client_plugin().meta_update(server, after_props[self.METADATA]) if self.TAGS in prop_diff: self._update_server_tags(after_props[self.TAGS] or []) if self.NAME in prop_diff: if not server: server = self.client_plugin().get_server(self.resource_id) self.client_plugin().rename(server, after_props[self.NAME]) if self.NETWORKS in prop_diff: updaters.extend(self._update_networks(server, after_props)) if self.FLAVOR in prop_diff: updaters.extend(self._update_flavor(after_props)) if self.IMAGE in prop_diff: updaters.append(self._update_image(after_props)) elif self.ADMIN_PASS in prop_diff: if not server: server = self.client_plugin().get_server(self.resource_id) server.change_password(after_props[self.ADMIN_PASS]) # NOTE(pas-ha) optimization is possible (starting first task # right away), but we'd rather not, as this method already might # have called several APIs return updaters def check_update_complete(self, updaters): """Push all updaters to completion in list order.""" for prg in updaters: if not prg.called: handler = getattr(self.client_plugin(), prg.handler) prg.called = handler(*prg.handler_args, **prg.handler_kwargs) return False if not prg.complete: check_complete = getattr(self.client_plugin(), prg.checker) prg.complete = check_complete(*prg.checker_args, **prg.checker_kwargs) break status = all(prg.complete for prg in updaters) if status: self.store_external_ports() return status def _validate_block_device_mapping(self): # either volume_id or snapshot_id needs to be specified, but not both # for block device mapping. bdm = self.properties[self.BLOCK_DEVICE_MAPPING] or [] bdm_v2 = self.properties[self.BLOCK_DEVICE_MAPPING_V2] or [] image = self.properties[self.IMAGE] if bdm and bdm_v2: raise exception.ResourcePropertyConflict( self.BLOCK_DEVICE_MAPPING, self.BLOCK_DEVICE_MAPPING_V2) bootable = image is not None for mapping in bdm: device_name = mapping[self.BLOCK_DEVICE_MAPPING_DEVICE_NAME] if device_name == 'vda': bootable = True volume_id = mapping.get(self.BLOCK_DEVICE_MAPPING_VOLUME_ID) snapshot_id = mapping.get(self.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID) if volume_id is not None and snapshot_id is not None: raise exception.ResourcePropertyConflict( self.BLOCK_DEVICE_MAPPING_VOLUME_ID, self.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID) if volume_id is None and snapshot_id is None: msg = _('Either volume_id or snapshot_id must be specified for' ' device mapping %s') % device_name raise exception.StackValidationFailed(message=msg) bootable_devs = [image] for mapping in bdm_v2: volume_id = mapping.get(self.BLOCK_DEVICE_MAPPING_VOLUME_ID) snapshot_id = mapping.get(self.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID) image_id = mapping.get(self.BLOCK_DEVICE_MAPPING_IMAGE) boot_index = mapping.get(self.BLOCK_DEVICE_MAPPING_BOOT_INDEX) swap_size = mapping.get(self.BLOCK_DEVICE_MAPPING_SWAP_SIZE) ephemeral = (mapping.get( self.BLOCK_DEVICE_MAPPING_EPHEMERAL_SIZE) or mapping.get( self.BLOCK_DEVICE_MAPPING_EPHEMERAL_FORMAT)) property_tuple = (volume_id, snapshot_id, image_id, swap_size, ephemeral) if property_tuple.count(None) < 4: raise exception.ResourcePropertyConflict( self.BLOCK_DEVICE_MAPPING_VOLUME_ID, self.BLOCK_DEVICE_MAPPING_SNAPSHOT_ID, self.BLOCK_DEVICE_MAPPING_IMAGE, self.BLOCK_DEVICE_MAPPING_SWAP_SIZE, self.BLOCK_DEVICE_MAPPING_EPHEMERAL_SIZE, self.BLOCK_DEVICE_MAPPING_EPHEMERAL_FORMAT ) if property_tuple.count(None) == 5: msg = _('Either volume_id, snapshot_id, image_id, swap_size, ' 'ephemeral_size or ephemeral_format must be ' 'specified.') raise exception.StackValidationFailed(message=msg) if any((volume_id is not None, snapshot_id is not None, image_id is not None)): # boot_index is not specified, set boot_index=0 when # build_block_device_mapping for volume, snapshot, image if boot_index is None or boot_index == 0: bootable = True bootable_devs.append(volume_id) bootable_devs.append(snapshot_id) bootable_devs.append(image_id) if not bootable: msg = _('Neither image nor bootable volume is specified for ' 'instance %s') % self.name raise exception.StackValidationFailed(message=msg) if bdm_v2 and len(list( dev for dev in bootable_devs if dev is not None)) != 1: msg = _('Multiple bootable sources for instance %s.') % self.name raise exception.StackValidationFailed(message=msg) def _validate_image_flavor(self, image, flavor): try: image_obj = self.client_plugin('glance').get_image(image) flavor_obj = self.client_plugin().get_flavor(flavor) except Exception as ex: # Flavor or image may not have been created in the backend # yet when they are part of the same stack/template. if (self.client_plugin().is_not_found(ex) or self.client_plugin('glance').is_not_found(ex)): return raise else: if image_obj.status.lower() != self.IMAGE_ACTIVE: msg = _('Image status is required to be %(cstatus)s not ' '%(wstatus)s.') % { 'cstatus': self.IMAGE_ACTIVE, 'wstatus': image_obj.status} raise exception.StackValidationFailed(message=msg) # validate image/flavor combination if flavor_obj.ram < image_obj.min_ram: msg = _('Image %(image)s requires %(imram)s minimum ram. ' 'Flavor %(flavor)s has only %(flram)s.') % { 'image': image, 'imram': image_obj.min_ram, 'flavor': flavor, 'flram': flavor_obj.ram} raise exception.StackValidationFailed(message=msg) # validate image/flavor disk compatibility if flavor_obj.disk < image_obj.min_disk: msg = _('Image %(image)s requires %(imsz)s GB minimum ' 'disk space. Flavor %(flavor)s has only ' '%(flsz)s GB.') % { 'image': image, 'imsz': image_obj.min_disk, 'flavor': flavor, 'flsz': flavor_obj.disk} raise exception.StackValidationFailed(message=msg) def validate(self): """Validate any of the provided params.""" super(Server, self).validate() if self.user_data_software_config(): if 'deployments' in self.t.metadata(): msg = _('deployments key not allowed in resource metadata ' 'with user_data_format of SOFTWARE_CONFIG') raise exception.StackValidationFailed(message=msg) self._validate_block_device_mapping() # make sure the image exists if specified. image = self.properties[self.IMAGE] flavor = self.properties[self.FLAVOR] if image: self._validate_image_flavor(image, flavor) networks = self.properties[self.NETWORKS] or [] for network in networks: self._validate_network(network) has_str_net = self._str_network(networks) is not None if has_str_net: if len(networks) != 1: msg = _('Property "%s" can not be specified if ' 'multiple network interfaces set for ' 'server.') % self.ALLOCATE_NETWORK raise exception.StackValidationFailed(message=msg) # Check if str_network is allowed to use if not self.client_plugin().is_version_supported( MICROVERSION_STR_NETWORK): msg = (_('Cannot use "%s" property - compute service ' 'does not support the required api ' 'microversion.') % self.ALLOCATE_NETWORK) raise exception.StackValidationFailed(message=msg) # record if any networks include explicit ports has_port = any(n[self.NETWORK_PORT] is not None for n in networks) # if 'security_groups' present for the server and explicit 'port' # in one or more entries in 'networks', raise validation error if has_port and self.properties[self.SECURITY_GROUPS]: raise exception.ResourcePropertyConflict( self.SECURITY_GROUPS, "/".join([self.NETWORKS, self.NETWORK_PORT])) # Check if nic tag is allowed to use if self._is_nic_tagged(networks=networks): if not self.client_plugin().is_version_supported( MICROVERSION_NIC_TAGS): msg = (_('Cannot use "%s" property in networks - ' 'nova does not support required ' 'api microversion.'), self.NIC_TAG) raise exception.StackValidationFailed(message=msg) # Check if tags is allowed to use if self.properties[self.TAGS]: if not self.client_plugin().is_version_supported( MICROVERSION_TAGS): msg = (_('Cannot use "%s" property - nova does not support ' 'required api microversion.') % self.TAGS) raise exception.StackValidationFailed(message=msg) # retrieve provider's absolute limits if it will be needed metadata = self.properties[self.METADATA] personality = self.properties[self.PERSONALITY] if metadata or personality: limits = self.client_plugin().absolute_limits() # verify that the number of metadata entries is not greater # than the maximum number allowed in the provider's absolute # limits if metadata: msg = _('Instance metadata must not contain greater than %s ' 'entries. This is the maximum number allowed by your ' 'service provider') % limits['maxServerMeta'] self._check_maximum(len(metadata), limits['maxServerMeta'], msg) # verify the number of personality files and the size of each # personality file against the provider's absolute limits if personality: msg = _("The personality property may not contain " "greater than %s entries.") % limits['maxPersonality'] self._check_maximum(len(personality), limits['maxPersonality'], msg) for path, contents in personality.items(): msg = (_("The contents of personality file \"%(path)s\" " "is larger than the maximum allowed personality " "file size (%(max_size)s bytes).") % {'path': path, 'max_size': limits['maxPersonalitySize']}) self._check_maximum(len(bytes(contents.encode('utf-8')) ) if contents is not None else 0, limits['maxPersonalitySize'], msg) def _delete(self): if self.user_data_software_config(): self._delete_queue() self._delete_user() self._delete_temp_url() # remove internal and external ports self._delete_internal_ports() self.data_delete('external_ports') if self.resource_id is None: return try: self.client().servers.delete(self.resource_id) except Exception as e: self.client_plugin().ignore_not_found(e) return return progress.ServerDeleteProgress(self.resource_id) def handle_snapshot_delete(self, state): if state[1] != self.FAILED and self.resource_id: image_id = self.client().servers.create_image( self.resource_id, self.physical_resource_name()) return progress.ServerDeleteProgress( self.resource_id, image_id, False) return self._delete() def handle_delete(self): return self._delete() def check_delete_complete(self, prg): if not prg: return True if not prg.image_complete: image = self.client_plugin('glance').get_image(prg.image_id) if image.status.lower() in (self.IMAGE_ERROR, self.IMAGE_DELETED): raise exception.Error(image.status) elif image.status.lower() == self.IMAGE_ACTIVE: prg.image_complete = True if not self._delete(): return True return False return self.client_plugin().check_delete_server_complete( prg.server_id) def handle_suspend(self): """Suspend a server. Note we do not wait for the SUSPENDED state, this is polled for by check_suspend_complete in a similar way to the create logic so we can take advantage of coroutines. """ if self.resource_id is None: raise exception.Error(_('Cannot suspend %s, resource_id not set') % self.name) try: server = self.client().servers.get(self.resource_id) except Exception as e: if self.client_plugin().is_not_found(e): raise exception.NotFound(_('Failed to find server %s') % self.resource_id) else: raise else: # if the server has been suspended successful, # no need to suspend again if self.client_plugin().get_status(server) != 'SUSPENDED': LOG.debug('suspending server %s', self.resource_id) server.suspend() return server.id def check_suspend_complete(self, server_id): cp = self.client_plugin() server = cp.fetch_server(server_id) if not server: return False status = cp.get_status(server) LOG.debug('%(name)s check_suspend_complete status = %(status)s', {'name': self.name, 'status': status}) if status in list(cp.deferred_server_statuses + ['ACTIVE']): return status == 'SUSPENDED' else: exc = exception.ResourceUnknownStatus( result=_('Suspend of server %s failed') % server.name, resource_status=status) raise exc def handle_resume(self): """Resume a server. Note we do not wait for the ACTIVE state, this is polled for by check_resume_complete in a similar way to the create logic so we can take advantage of coroutines. """ if self.resource_id is None: raise exception.Error(_('Cannot resume %s, resource_id not set') % self.name) try: server = self.client().servers.get(self.resource_id) except Exception as e: if self.client_plugin().is_not_found(e): raise exception.NotFound(_('Failed to find server %s') % self.resource_id) else: raise else: # if the server has been resumed successful, # no need to resume again if self.client_plugin().get_status(server) != 'ACTIVE': LOG.debug('resuming server %s', self.resource_id) server.resume() return server.id def check_resume_complete(self, server_id): return self.client_plugin()._check_active(server_id) def handle_snapshot(self): image_id = self.client().servers.create_image( self.resource_id, self.physical_resource_name()) self.data_set('snapshot_image_id', image_id) return image_id def check_snapshot_complete(self, image_id): image = self.client_plugin('glance').get_image(image_id) if image.status.lower() == self.IMAGE_ACTIVE: return True elif image.status.lower() in (self.IMAGE_ERROR, self.IMAGE_DELETED): raise exception.Error(image.status) return False def handle_delete_snapshot(self, snapshot): image_id = snapshot['resource_data'].get('snapshot_image_id') with self.client_plugin('glance').ignore_not_found: self.client('glance').images.delete(image_id) def handle_restore(self, defn, restore_data): image_id = restore_data['resource_data']['snapshot_image_id'] props = dict((k, v) for k, v in self.properties.data.items() if v is not None) for key in [self.BLOCK_DEVICE_MAPPING, self.BLOCK_DEVICE_MAPPING_V2, self.NETWORKS]: if props.get(key) is not None: props[key] = list(dict((k, v) for k, v in prop.items() if v is not None) for prop in props[key]) props[self.IMAGE] = image_id return defn.freeze(properties=props) def prepare_for_replace(self): # if the server has not been created yet, do nothing if self.resource_id is None: return self.prepare_ports_for_replace() def restore_prev_rsrc(self, convergence=False): self.restore_ports_after_rollback(convergence=convergence) def resource_mapping(): return { 'OS::Nova::Server': Server, }
apache-2.0
-5,055,696,018,264,513,000
43.102202
79
0.531682
false
icse18-FAST/FAST
tools/clean-preprocessed-input.py
1
1377
''' This file is part of an ICSE'18 submission that is currently under review. For more information visit: https://github.com/icse18-FAST/FAST. This is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this source. If not, see <http://www.gnu.org/licenses/>. ''' import os if __name__ == "__main__": for root, folders, files in os.walk("input/"): for file in files: if file[0] == ".": pass elif (file == "fault_matrix_key_tc.pickle" or file == "fault_matrix.pickle"): pass elif ("-bbox.txt" in file or "-function.txt" in file or "-line.txt" in file or "-branch.txt" in file): pass else: print "Deleting {}/{}".format(root, file) os.remove("{}/{}".format(root, file))
gpl-3.0
-6,610,629,189,178,085,000
36.216216
75
0.615105
false
atkvo/masters-bot
src/autobot/src/capture_image.py
1
2117
#!/usr/bin/env python from std_msgs.msg import String #import roslib import sys import datetime import time import numpy as np from cv_bridge import CvBridge, CvBridgeError import cv2 import rospy from autobot.msg import drive_param from sensor_msgs.msg import Image bridge = CvBridge() i = 0 bridge = CvBridge(); currentImage = 0 currentAngle = 0 currentVel = 0 time = time.time() def __init__(self): bridge = CvBridge(); def callback(temp): #print("current image updated") global currentImage try: currentImage = bridge.imgmsg_to_cv2(temp, desired_encoding="passthrough") except CvBridgeError as e: print(e) global currentAngle global currentVel global i if currentAngle > 0: filepath = "dataset2/right" + str(currentAngle) + "_" + str(i) + str(time) + ".png" elif currentAngle < 0: filepath = "dataset2/left" + str(currentAngle) + "_" + str(i) + str(time) + ".png" else: filepath = "dataset2/zero" + str(currentAngle) + "_" + str(i) + str(time) + ".png" i+=1 if currentVel > 7.0: print("picture taken") cv2.imwrite(filepath, currentImage) def takePicture(data): #define file path global currentAngle global currentVel currentAngle = data.angle currentVel = data.velocity global i if currentAngle > 0: filepath = "dataset2/right" + str(currentAngle) + "_" + str(i) + str(time) + ".png" elif currentAngle < 0: filepath = "dataset2/left" + str(currentAngle) + "_" + str(i) + str(time) + ".png" else: filepath = "dataset2/zero" + str(currentAngle) + "_" + str(i) + str(time) + ".png" i+=1 if currentVel > 7.0: print("picture taken") cv2.imwrite(filepath, currentImage) def listen(): bridge = CvBridge(); rospy.init_node('capture_image', anonymous=True) rospy.Subscriber("left/image_rect_color", Image, callback) rospy.Subscriber("drive_parameters", drive_param, takePicture) rospy.spin() if __name__ == '__main__': print("image capture initialized") print(time) listen()
mit
5,722,113,862,861,524,000
25.4625
91
0.632971
false
GoodYk/formula-editor-
FormulaShow/asciimathmll.py
1
23678
# Copyright (c) 2010-2011, Gabriele Favalessa # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import re from xml.etree.ElementTree import Element, tostring __all__ = ['parse'] Element_ = Element AtomicString_ = lambda s: s def El(tag, text=None, *children, **attrib): element = Element_(tag, **attrib) if not text is None: if isinstance(text, basestring): element.text = AtomicString_(text) else: children = (text, ) + children for child in children: element.append(child) return element number_re = re.compile('-?(\d+\.(\d+)?|\.?\d+)') def strip_parens(n): if n.tag == 'mrow': if n[0].get('_opening', False): del n[0] if n[-1].get('_closing', False): del n[-1] return n def is_enclosed_in_parens(n): return n.tag == 'mrow' and n[0].get('_opening', False) and n[-1].get('_closing', False) def binary(operator, operand_1, operand_2, swap=False): operand_1 = strip_parens(operand_1) operand_2 = strip_parens(operand_2) if not swap: operator.append(operand_1) operator.append(operand_2) else: operator.append(operand_2) operator.append(operand_1) return operator def unary(operator, operand, swap=False): operand = strip_parens(operand) if swap: operator.insert(0, operand) else: operator.append(operand) return operator def frac(num, den): return El('mfrac', strip_parens(num), strip_parens(den)) def sub(base, subscript): subscript = strip_parens(subscript) if base.tag in ('msup', 'mover'): children = base.getchildren() n = El('msubsup' if base.tag == 'msup' else 'munderover', children[0], subscript, children[1]) else: n = El('munder' if base.get('_underover', False) else 'msub', base, subscript) return n def sup(base, superscript): superscript = strip_parens(superscript) if base.tag in ('msub', 'munder'): children = base.getchildren() n = El('msubsup' if base.tag == 'msub' else 'munderover', children[0], children[1], superscript) else: n = El('mover' if base.get('_underover', False) else 'msup', base, superscript) return n def parse(s, element=Element, atomicstring=lambda s: s): """ Translates from ASCIIMathML (an easy to type and highly readable way to represent math formulas) into MathML (a w3c standard directly displayable by some web browsers). The function `parse()` generates a tree of elements: >>> import asciimathml >>> asciimathml.parse('sqrt 2') <Element math at b76fb28c> The tree can then be manipulated using the standard python library. For example we can generate its string representation: El('mtr', El('mtd', *nodes)) El('mtr', El('mtd', El('msup', *nodes))) >>> from xml.etree.ElementTree import tostring >>> tostring(asciimathml.parse('sqrt 2')) '<math><mstyle><msqrt><mn>2</mn></msqrt></mstyle></math>' """ global Element_, AtomicString_ Element_ = element AtomicString_ = atomicstring s, nodes = parse_exprs(s) remove_invisible(nodes) nodes = map(remove_private, nodes) return tostring(El('mtr', El('mtd', *nodes))) delimiters = {'{': '}', '(': ')', '[': ']'} def parse_string(s): opening = s[0] if opening in delimiters: closing = delimiters[opening] end = s.find(closing) text = s[1:end] s = s[end+1:] else: s, text = parse_m(s) return s, El('mrow', El('mtext', text)) tracing_level = 0 def trace_parser(p): """ Decorator for tracing the parser. Use it to decorate functions with signature: string -> (string, nodes) and a trace of the progress made by the parser will be printed to stderr. Currently parse_exprs(), parse_expr() and parse_m() have the right signature. """ def nodes_to_string(n): if isinstance(n, list): result = '[ ' for m in map(nodes_to_string, n): result += m result += ' ' result += ']' return result else: try: return tostring(remove_private(copy(n))) except Exception as e: return n def print_trace(*args): import sys sys.stderr.write(" " * tracing_level) for arg in args: sys.stderr.write(str(arg)) sys.stderr.write(' ') sys.stderr.write('\n') sys.stderr.flush() def wrapped(s, *args, **kwargs): global tracing_level print_trace(p.__name__, repr(s)) tracing_level += 1 s, n = p(s, *args, **kwargs) tracing_level -= 1 print_trace("-> ", repr(s), nodes_to_string(n)) return s, n return wrapped def parse_expr(s, siblings, required=False): s, n = parse_m(s, required=required) if not n is None: # Being both an _opening and a _closing element is a trait of # symmetrical delimiters (e.g. ||). # In that case, act as an opening delimiter only if there is not # already one of the same kind among the preceding siblings. if n.get('_opening', False) \ and (not n.get('_closing', False) \ or find_node_backwards(siblings, n.text) == -1): s, children = parse_exprs(s, [n], inside_parens=True) n = El('mrow', *children) if n.tag == 'mtext': s, n = parse_string(s) elif n.get('_arity', 0) == 1: s, m = parse_expr(s, [], True) n = unary(n, m, n.get('_swap', False)) elif n.get('_arity', 0) == 2: s, m1 = parse_expr(s, [], True) s, m2 = parse_expr(s, [], True) n = binary(n, m1, m2, n.get('_swap', False)) return s, n def find_node(ns, text): for i, n in enumerate(ns): if n.text == text: return i return -1 def find_node_backwards(ns, text): for i, n in enumerate(reversed(ns)): if n.text == text: return len(ns) - i return -1 def nodes_to_row(row): mrow = El('mtr') nodes = row.getchildren() while True: i = find_node(nodes, ',') if i > 0: mrow.append(El('mtd', *nodes[:i])) nodes = nodes[i+1:] else: mrow.append(El('mtd', *nodes)) break return mrow def nodes_to_matrix(nodes): mtable = El('mtable') for row in nodes[1:-1]: if row.text == ',': continue mtable.append(nodes_to_row(strip_parens(row))) return El('mrow', nodes[0], mtable, nodes[-1]) def parse_exprs(s, nodes=None, inside_parens=False): if nodes is None: nodes = [] inside_matrix = False while True: s, n = parse_expr(s, nodes) if not n is None: nodes.append(n) if n.get('_closing', False): if not inside_matrix: return s, nodes else: return s, nodes_to_matrix(nodes) if inside_parens and n.text == ',' and is_enclosed_in_parens(nodes[-2]): inside_matrix = True if len(nodes) >= 3 and nodes[-2].get('_special_binary'): transform = nodes[-2].get('_special_binary') nodes[-3:] = [transform(nodes[-3], nodes[-1])] if s == '': return '', nodes def remove_private(n): _ks = [k for k in n.keys() if k.startswith('_') or k == 'attrib'] for _k in _ks: del n.attrib[_k] for c in n.getchildren(): remove_private(c) return n def remove_invisible(ns): for i in range(len(ns)-1, 0, -1): if ns[i].get('_invisible', False): del ns[i] else: remove_invisible(ns[i].getchildren()) def copy(n): m = El(n.tag, n.text, **dict(n.items())) for c in n.getchildren(): m.append(copy(c)) return m def parse_m(s, required=False): s = s.lstrip() if s == '': return '', El('mi', u'\u25a1') if required else None m = number_re.match(s) if m: number = m.group(0) if number[0] == '-': return s[m.end():], El('mrow', El('mo', '-'), El('mn', number[1:])) else: return s[m.end():], El('mn', number) for y in symbol_names: if (s.startswith(y)): n = copy(symbols[y]) if n.get('_space', False): n = El('mrow', El('mspace', width='0.5ex'), n, El('mspace', width='0.5ex')) return s[len(y):], n return s[1:], El('mi' if s[0].isalpha() else 'mo', s[0]) symbols = {} def Symbol(input, el): symbols[input] = el Symbol(input="alpha", el=El("mi", u"\u03B1")) Symbol(input="beta", el=El("mi", u"\u03B2")) Symbol(input="chi", el=El("mi", u"\u03C7")) Symbol(input="delta", el=El("mi", u"\u03B4")) Symbol(input="Delta", el=El("mo", u"\u0394")) Symbol(input="epsi", el=El("mi", u"\u03B5")) Symbol(input="varepsilon", el=El("mi", u"\u025B")) Symbol(input="eta", el=El("mi", u"\u03B7")) Symbol(input="gamma", el=El("mi", u"\u03B3")) Symbol(input="Gamma", el=El("mo", u"\u0393")) Symbol(input="iota", el=El("mi", u"\u03B9")) Symbol(input="kappa", el=El("mi", u"\u03BA")) Symbol(input="lambda", el=El("mi", u"\u03BB")) Symbol(input="Lambda", el=El("mo", u"\u039B")) Symbol(input="mu", el=El("mi", u"\u03BC")) Symbol(input="nu", el=El("mi", u"\u03BD")) Symbol(input="omega", el=El("mi", u"\u03C9")) Symbol(input="Omega", el=El("mo", u"\u03A9")) Symbol(input="phi", el=El("mi", u"\u03C6")) Symbol(input="varphi", el=El("mi", u"\u03D5")) Symbol(input="Phi", el=El("mo", u"\u03A6")) Symbol(input="pi", el=El("mi", u"\u03C0")) Symbol(input="Pi", el=El("mo", u"\u03A0")) Symbol(input="psi", el=El("mi", u"\u03C8")) Symbol(input="Psi", el=El("mi", u"\u03A8")) Symbol(input="rho", el=El("mi", u"\u03C1")) Symbol(input="sigma", el=El("mi", u"\u03C3")) Symbol(input="Sigma", el=El("mo", u"\u03A3")) Symbol(input="tau", el=El("mi", u"\u03C4")) Symbol(input="theta", el=El("mi", u"\u03B8")) Symbol(input="vartheta", el=El("mi", u"\u03D1")) Symbol(input="Theta", el=El("mo", u"\u0398")) Symbol(input="upsilon", el=El("mi", u"\u03C5")) Symbol(input="xi", el=El("mi", u"\u03BE")) Symbol(input="Xi", el=El("mo", u"\u039E")) Symbol(input="zeta", el=El("mi", u"\u03B6")) Symbol(input="*", el=El("mo", u"\u22C5", mathsize='big')) Symbol(input="**", el=El("mo", u"\u22C6")) Symbol(input=" ", el=El('mspace', width='0.5ex')) Symbol(input="'", el=El("mo", u"'", mathsize='4ex')) Symbol(input="/", el=El("mo", u"/", _special_binary=frac)) Symbol(input="^", el=El("mo", u"^", _special_binary=sup)) Symbol(input="_", el=El("mo", u"_", _special_binary=sub)) Symbol(input="//", el=El("mo", u"/")) Symbol(input="\\\\", el=El("mo", u"\\")) Symbol(input="setminus", el=El("mo", u"\\")) Symbol(input="xx", el=El("mo", u"\u00D7")) Symbol(input="-:", el=El("mo", u"\u00F7")) Symbol(input="@", el=El("mo", u"\u2218")) Symbol(input="o+", el=El("mo", u"\u2295")) Symbol(input="ox", el=El("mo", u"\u2297")) Symbol(input="o.", el=El("mo", u"\u2299")) Symbol(input="sum", el=El("mo", u"\u2211", _underover=True, mathsize='3ex')) Symbol(input="prod", el=El("mo", u"\u220F", _underover=True)) Symbol(input="^^", el=El("mo", u"\u2227")) Symbol(input="^^^", el=El("mo", u"\u22C0", _underover=True)) Symbol(input="vv", el=El("mo", u"\u2228")) Symbol(input="vvv", el=El("mo", u"\u22C1", _underover=True)) Symbol(input="nn", el=El("mo", u"\u2229")) Symbol(input="nnn", el=El("mo", u"\u22C2", _underover=True)) Symbol(input="uu", el=El("mo", u"\u222A")) Symbol(input="uuu", el=El("mo", u"\u22C3", _underover=True)) Symbol(input="!=", el=El("mo", u"\u2260")) Symbol(input=":=", el=El("mo", u":=")) Symbol(input="lt", el=El("mo", u"<")) Symbol(input="<=", el=El("mo", u"\u2264")) Symbol(input="lt=", el=El("mo", u"\u2264")) Symbol(input=">=", el=El("mo", u"\u2265")) Symbol(input="geq", el=El("mo", u"\u2265")) Symbol(input="-<", el=El("mo", u"\u227A")) Symbol(input="-lt", el=El("mo", u"\u227A")) Symbol(input=">-", el=El("mo", u"\u227B")) Symbol(input="-<=", el=El("mo", u"\u2AAF")) Symbol(input=">-=", el=El("mo", u"\u2AB0")) Symbol(input="in", el=El("mo", u"\u2208")) Symbol(input="!in", el=El("mo", u"\u2209")) Symbol(input="sub", el=El("mo", u"\u2282")) Symbol(input="sup", el=El("mo", u"\u2283")) Symbol(input="sube", el=El("mo", u"\u2286")) Symbol(input="supe", el=El("mo", u"\u2287")) Symbol(input="-=", el=El("mo", u"\u2261")) Symbol(input="~=", el=El("mo", u"\u2245")) Symbol(input="~~", el=El("mo", u"\u2248")) Symbol(input="prop", el=El("mo", u"\u221D")) Symbol(input="algorithm", el=El("mtext", u"algorithm", _space=True)) Symbol(input="and", el=El("mtext", u"and", _space=True)) Symbol(input="annotation", el=El("mtext", u"annotation", _space=True)) Symbol(input="assert", el=El("mtext", u"assert", _space=True)) Symbol(input="block", el=El("mtext", u"block", _space=True)) Symbol(input="break", el=El("mtext", u"break", _space=True)) Symbol(input="class", el=El("mtext", u"class", _space=True)) Symbol(input="connect", el=El("mtext", u"connect", _space=True)) Symbol(input="connector", el=El("mtext", u"connector", _space=True)) Symbol(input="constant", el=El("mtext", u"constant", _space=True)) Symbol(input="constrainedby", el=El("mtext", u"constrainedby", _space=True)) Symbol(input="der", el=El("mtext", u"der", _space=True)) Symbol(input="discrete", el=El("mtext", u"discrete", _space=True)) Symbol(input="each", el=El("mtext", u"each", _space=True)) Symbol(input="else", el=El("mtext", u"else", _space=True)) Symbol(input="elseif", el=El("mtext", u"elseif", _space=True)) Symbol(input="elsewhen", el=El("mtext", u"elsewhen", _space=True)) Symbol(input="encapsulated", el=El("mtext", u"encapsulated", _space=True)) Symbol(input="end", el=El("mtext", u"end", _space=True)) Symbol(input="enumeration", el=El("mtext", u"enumeration", _space=True)) Symbol(input="equation", el=El("mtext", u"equation", _space=True)) Symbol(input="expandable", el=El("mtext", u"expandable", _space=True)) Symbol(input="extends", el=El("mtext", u"extends", _space=True)) Symbol(input="external", el=El("mtext", u"external", _space=True)) Symbol(input="false", el=El("mtext", u"false", _space=True)) Symbol(input="final", el=El("mtext", u"final", _space=True)) Symbol(input="flow", el=El("mtext", u"flow", _space=True)) Symbol(input="for", el=El("mtext", u"for", _space=True)) Symbol(input="function", el=El("mtext", u"function", _space=True)) Symbol(input="if", el=El("mtext", u"if", _space=True)) Symbol(input="import", el=El("mtext", u"import", _space=True)) Symbol(input="impure", el=El("mtext", u"impure", _space=True)) Symbol(input="in", el=El("mtext", u"in", _space=True)) Symbol(input="initial", el=El("mtext", u"initial", _space=True)) Symbol(input="inner", el=El("mtext", u"inner", _space=True)) Symbol(input="input", el=El("mtext", u"input", _space=True)) Symbol(input="loop", el=El("mtext", u"loop", _space=True)) Symbol(input="model", el=El("mtext", u"model", _space=True)) Symbol(input="operator", el=El("mtext", u"operator", _space=True)) Symbol(input="or", el=El("mtext", u"or", _space=True)) Symbol(input="outer", el=El("mtext", u"outer", _space=True)) Symbol(input="output", el=El("mtext", u"output", _space=True)) Symbol(input="package", el=El("mtext", u"package", _space=True)) Symbol(input="parameter", el=El("mtext", u"parameter", _space=True)) Symbol(input="partial", el=El("mtext", u"partial", _space=True)) Symbol(input="protected", el=El("mtext", u"protected", _space=True)) Symbol(input="public", el=El("mtext", u"public", _space=True)) Symbol(input="pure", el=El("mtext", u"pure", _space=True)) Symbol(input="record", el=El("mtext", u"record", _space=True)) Symbol(input="redeclare", el=El("mtext", u"redeclare", _space=True)) Symbol(input="replaceable", el=El("mtext", u"replaceable", _space=True)) Symbol(input="return", el=El("mtext", u"return", _space=True)) Symbol(input="stream", el=El("mtext", u"stream", _space=True)) Symbol(input="then", el=El("mtext", u"then", _space=True)) Symbol(input="true", el=El("mtext", u"true", _space=True)) Symbol(input="type", el=El("mtext", u"type", _space=True)) Symbol(input="when", el=El("mtext", u"when", _space=True)) Symbol(input="while", el=El("mtext", u"while", _space=True)) Symbol(input="within", el=El("mtext", u"within", _space=True)) # Symbol(input="and", el=El("mtext", u"and", _space=True)) # Symbol(input="or", el=El("mtext", u"or", _space=True)) Symbol(input="not", el=El("mo", u"\u00AC")) Symbol(input="=>", el=El("mo", u"\u21D2")) # Symbol(input="if", el=El("mo", u"if", _space=True)) Symbol(input="<=>", el=El("mo", u"\u21D4")) Symbol(input="AA", el=El("mo", u"\u2200")) Symbol(input="EE", el=El("mo", u"\u2203")) Symbol(input="_|_", el=El("mo", u"\u22A5")) Symbol(input="TT", el=El("mo", u"\u22A4")) Symbol(input="|--", el=El("mo", u"\u22A2")) Symbol(input="|==", el=El("mo", u"\u22A8")) Symbol(input="(", el=El("mo", "(", _opening=True)) Symbol(input=")", el=El("mo", ")", _closing=True)) Symbol(input="[", el=El("mo", "[", _opening=True)) Symbol(input="]", el=El("mo", "]", _closing=True)) Symbol(input="{", el=El("mo", "{", _opening=True)) Symbol(input="}", el=El("mo", "}", _closing=True)) Symbol(input="|", el=El("mo", u"|", _opening=True, _closing=True)) Symbol(input="||", el=El("mo", u"\u2016", _opening=True, _closing=True)) # double vertical line Symbol(input="(:", el=El("mo", u"\u2329", _opening=True)) Symbol(input=":)", el=El("mo", u"\u232A", _closing=True)) Symbol(input="<<", el=El("mo", u"\u2329", _opening=True)) Symbol(input=">>", el=El("mo", u"\u232A", _closing=True)) Symbol(input="{:", el=El("mo", u"{:", _opening=True, _invisible=True)) Symbol(input=":}", el=El("mo", u":}", _closing=True, _invisible=True)) Symbol(input="int", el=El("mo", u"\u222B", mathsize='3ex')) # Symbol(input="dx", el=El("mi", u"{:d x:}", _definition=True)) # Symbol(input="dy", el=El("mi", u"{:d y:}", _definition=True)) # Symbol(input="dz", el=El("mi", u"{:d z:}", _definition=True)) # Symbol(input="dt", el=El("mi", u"{:d t:}", _definition=True)) Symbol(input="oint", el=El("mo", u"\u222E", mathsize='4ex')) Symbol(input="del", el=El("mo", u"\u2202")) Symbol(input="grad", el=El("mo", u"\u2207")) Symbol(input="+-", el=El("mo", u"\u00B1")) Symbol(input="O/", el=El("mo", u"\u2205")) Symbol(input="oo", el=El("mo", u"\u221E")) Symbol(input="aleph", el=El("mo", u"\u2135")) Symbol(input="...", el=El("mo", u"...")) Symbol(input=":.", el=El("mo", u"\u2234")) Symbol(input="/_", el=El("mo", u"\u2220")) Symbol(input="\\ ", el=El("mo", u"\u00A0")) Symbol(input="quad", el=El("mo", u"\u00A0\u00A0")) Symbol(input="qquad", el=El("mo", u"\u00A0\u00A0\u00A0\u00A0")) Symbol(input="cdots", el=El("mo", u"\u22EF")) Symbol(input="vdots", el=El("mo", u"\u22EE")) Symbol(input="ddots", el=El("mo", u"\u22F1")) Symbol(input="diamond", el=El("mo", u"\u22C4")) Symbol(input="square", el=El("mo", u"\u25A1")) Symbol(input="|__", el=El("mo", u"\u230A")) Symbol(input="__|", el=El("mo", u"\u230B")) Symbol(input="|~", el=El("mo", u"\u2308")) Symbol(input="~|", el=El("mo", u"\u2309")) Symbol(input="CC", el=El("mo", u"\u2102")) Symbol(input="NN", el=El("mo", u"\u2115")) Symbol(input="QQ", el=El("mo", u"\u211A")) Symbol(input="RR", el=El("mo", u"\u211D")) Symbol(input="ZZ", el=El("mo", u"\u2124")) # Symbol(input="f", el=El("mi", u"f", _func=True)) # sample # Symbol(input="g", el=El("mi", u"g", _func=True)) Symbol(input="lim", el=El("mo", u"lim", _underover=True)) Symbol(input="Lim", el=El("mo", u"Lim", _underover=True)) Symbol(input="sin", el=El("mrow", El("mo", "sin"), _arity=1)) Symbol(input="sin", el=El("mrow", El("mo", "sin"), _arity=1)) Symbol(input="cos", el=El("mrow", El("mo", "cos"), _arity=1)) Symbol(input="tan", el=El("mrow", El("mo", "tan"), _arity=1)) Symbol(input="sinh", el=El("mrow", El("mo", "sinh"), _arity=1)) Symbol(input="cosh", el=El("mrow", El("mo", "cosh"), _arity=1)) Symbol(input="tanh", el=El("mrow", El("mo", "tanh"), _arity=1)) Symbol(input="cot", el=El("mrow", El("mo", "cot"), _arity=1)) Symbol(input="sec", el=El("mrow", El("mo", "sec"), _arity=1)) Symbol(input="csc", el=El("mrow", El("mo", "csc"), _arity=1)) Symbol(input="log", el=El("mrow", El("mo", "log"), _arity=1)) Symbol(input="ln", el=El("mrow", El("mo", "ln"), _arity=1)) Symbol(input="det", el=El("mrow", El("mo", "det"), _arity=1)) Symbol(input="gcd", el=El("mrow", El("mo", "gcd"), _arity=1)) Symbol(input="lcm", el=El("mrow", El("mo", "lcm"), _arity=1)) Symbol(input="dim", el=El("mo", u"dim")) Symbol(input="mod", el=El("mo", u"mod")) Symbol(input="lub", el=El("mo", u"lub")) Symbol(input="glb", el=El("mo", u"glb")) Symbol(input="min", el=El("mo", u"min", _underover=True)) Symbol(input="max", el=El("mo", u"max", _underover=True)) Symbol(input="uarr", el=El("mo", u"\u2191")) Symbol(input="darr", el=El("mo", u"\u2193")) Symbol(input="rarr", el=El("mo", u"\u2192")) Symbol(input="->", el=El("mo", u"\u2192")) Symbol(input="|->", el=El("mo", u"\u21A6")) Symbol(input="larr", el=El("mo", u"\u2190")) Symbol(input="harr", el=El("mo", u"\u2194")) Symbol(input="rArr", el=El("mo", u"\u21D2")) Symbol(input="lArr", el=El("mo", u"\u21D0")) Symbol(input="hArr", el=El("mo", u"\u21D4")) Symbol(input="hat", el=El("mover", El("mo", u"\u005E"), _arity=1, _swap=1)) Symbol(input="bar", el=El("mover", El("mo", u"\u00AF"), _arity=1, _swap=1)) Symbol(input="vec", el=El("mover", El("mo", u"\u2192"), _arity=1, _swap=1)) Symbol(input="dot", el=El("mover", El("mo", u"."), _arity=1, _swap=1)) Symbol(input="ddot",el=El("mover", El("mo", u".."), _arity=1, _swap=1)) Symbol(input="ul", el=El("munder", El("mo", u"\u0332"), _arity=1, _swap=1)) Symbol(input="sqrt", el=El("msqrt", _arity=1)) Symbol(input="root", el=El("mroot", _arity=2, _swap=True)) Symbol(input="frac", el=El("mfrac", _arity=2)) Symbol(input="stackrel", el=El("mover", _arity=2)) Symbol(input="text", el=El("mtext", _arity=1)) # {input:"mbox", tag:"mtext", output:"mbox", tex:null, ttype:TEXT}, # {input:"\"", tag:"mtext", output:"mbox", tex:null, ttype:TEXT}; symbol_names = sorted(symbols.keys(), key=lambda s: len(s), reverse=True) if __name__ == '__main__': import sys args = sys.argv[1:] if args[0] == '-m': import markdown args.pop(0) element = markdown.etree.Element elif args[0] == '-c': from xml.etree.cElementTree import Element args.pop(0) element = Element else: element = Element print """\ <?xml version="1.0"?> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="application/xhtml+xml" /> <title>ASCIIMathML preview</title> </head> <body> """ print tostring(parse(' '.join(args), element)) print """\ </body> </html> """
gpl-3.0
-8,934,841,912,234,516,000
34.875758
104
0.579948
false
omnidan/python-latex
test/test_parser.py
1
8543
from latex import LatexParser class TestLatexParser: def test_parser(self): self.parser = LatexParser(self.document) assert self.parser.getResult().getDocument() == r"""\documentclass[11pt,a4paper,oneside]{report} \usepackage{pslatex,palatino,avant,graphicx,color} \usepackage[margin=2cm]{geometry} % testtesttesttest \begin{document} \title{\color{red}Practical Typesetting} \author{\color{blue}Name} \date{\color{green}December 2005} \maketitle Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam dapibus consectetur tellus. Duis vehicula, tortorgravida sollicitudin eleifend, erat eros feugiat nisl, eget ultricies risus magna ac leo. Ut est diam, faucibustincidunt ultrices sit amet, congue sed tellus. Donec vel tellus vitae sem mattis congue. Suspendisse faucibussemper faucibus. Curabitur congue est arcu, nec sollicitudin odio blandit at. Nullam tempus vulputate aliquam.Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Duis tempus ligula eu nullapharetra eleifend. Pellentesque eget nisi gravida, faucibus justo ac, volutpat elit. Praesent egestas posuere elit,et imperdiet magna rhoncus eget. Donec porttitor enim lectus, quis egestas quam dignissim in. Donec dignissim sapienodio, nec molestie enim imperdiet ac. Praesent venenatis quis mi nec pretium. \section*{Displayed Text} \end{document}""" def test_parser_keep_empty_lines(self): self.parser = LatexParser(self.document, keep_empty_lines=True) assert self.parser.getResult().getDocument() == r""" \documentclass[11pt,a4paper,oneside]{report} \usepackage{pslatex,palatino,avant,graphicx,color} \usepackage[margin=2cm]{geometry} % testtesttesttest \begin{document} \title{\color{red}Practical Typesetting} \author{\color{blue}Name} \date{\color{green}December 2005} \maketitle Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam dapibus consectetur tellus. Duis vehicula, tortorgravida sollicitudin eleifend, erat eros feugiat nisl, eget ultricies risus magna ac leo. Ut est diam, faucibustincidunt ultrices sit amet, congue sed tellus. Donec vel tellus vitae sem mattis congue. Suspendisse faucibussemper faucibus. Curabitur congue est arcu, nec sollicitudin odio blandit at. Nullam tempus vulputate aliquam.Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Duis tempus ligula eu nullapharetra eleifend. Pellentesque eget nisi gravida, faucibus justo ac, volutpat elit. Praesent egestas posuere elit,et imperdiet magna rhoncus eget. Donec porttitor enim lectus, quis egestas quam dignissim in. Donec dignissim sapienodio, nec molestie enim imperdiet ac. Praesent venenatis quis mi nec pretium. \section*{Displayed Text} \end{document}""" def test_parser_do_not_concat_text(self): self.parser = LatexParser(self.document, do_not_concat_text=True) assert self.parser.getResult().getDocument() == r"""\documentclass[11pt,a4paper,oneside]{report} \usepackage{pslatex,palatino,avant,graphicx,color} \usepackage[margin=2cm]{geometry} % test % test % test % test \begin{document} \title{\color{red}Practical Typesetting} \author{\color{blue}Name} \date{\color{green}December 2005} \maketitle Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam dapibus consectetur tellus. Duis vehicula, tortor gravida sollicitudin eleifend, erat eros feugiat nisl, eget ultricies risus magna ac leo. Ut est diam, faucibus tincidunt ultrices sit amet, congue sed tellus. Donec vel tellus vitae sem mattis congue. Suspendisse faucibus semper faucibus. Curabitur congue est arcu, nec sollicitudin odio blandit at. Nullam tempus vulputate aliquam. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Duis tempus ligula eu nulla pharetra eleifend. Pellentesque eget nisi gravida, faucibus justo ac, volutpat elit. Praesent egestas posuere elit, et imperdiet magna rhoncus eget. Donec porttitor enim lectus, quis egestas quam dignissim in. Donec dignissim sapien odio, nec molestie enim imperdiet ac. Praesent venenatis quis mi nec pretium. \section*{Displayed Text} \end{document}""" def test_parser_do_not_concat_and_empty_lines(self): self.parser = LatexParser(self.document, keep_empty_lines=True, do_not_concat_text=True) assert self.parser.getResult().getDocument() == r""" \documentclass[11pt,a4paper,oneside]{report} \usepackage{pslatex,palatino,avant,graphicx,color} \usepackage[margin=2cm]{geometry} % test % test % test % test \begin{document} \title{\color{red}Practical Typesetting} \author{\color{blue}Name} \date{\color{green}December 2005} \maketitle Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam dapibus consectetur tellus. Duis vehicula, tortor gravida sollicitudin eleifend, erat eros feugiat nisl, eget ultricies risus magna ac leo. Ut est diam, faucibus tincidunt ultrices sit amet, congue sed tellus. Donec vel tellus vitae sem mattis congue. Suspendisse faucibus semper faucibus. Curabitur congue est arcu, nec sollicitudin odio blandit at. Nullam tempus vulputate aliquam. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Duis tempus ligula eu nulla pharetra eleifend. Pellentesque eget nisi gravida, faucibus justo ac, volutpat elit. Praesent egestas posuere elit, et imperdiet magna rhoncus eget. Donec porttitor enim lectus, quis egestas quam dignissim in. Donec dignissim sapien odio, nec molestie enim imperdiet ac. Praesent venenatis quis mi nec pretium. \section*{Displayed Text} \end{document}""" def test_parser_with_prefixes(self): self.parser = LatexParser(self.document, do_not_concat_text=True) assert self.parser.getResult().getDocument(no_prefix=False) == r"""\documentclass[11pt,a4paper,oneside]{report} \usepackage{pslatex,palatino,avant,graphicx,color} \usepackage[margin=2cm]{geometry} % test % test % test % test \begin{document} \title{\color{red}Practical Typesetting} \author{\color{blue}Name} \date{\color{green}December 2005} \maketitle Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam dapibus consectetur tellus. Duis vehicula, tortor gravida sollicitudin eleifend, erat eros feugiat nisl, eget ultricies risus magna ac leo. Ut est diam, faucibus tincidunt ultrices sit amet, congue sed tellus. Donec vel tellus vitae sem mattis congue. Suspendisse faucibus semper faucibus. Curabitur congue est arcu, nec sollicitudin odio blandit at. Nullam tempus vulputate aliquam. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Duis tempus ligula eu nulla pharetra eleifend. Pellentesque eget nisi gravida, faucibus justo ac, volutpat elit. Praesent egestas posuere elit, et imperdiet magna rhoncus eget. Donec porttitor enim lectus, quis egestas quam dignissim in. Donec dignissim sapien odio, nec molestie enim imperdiet ac. Praesent venenatis quis mi nec pretium. \section*{Displayed Text} \end{document}""" def test_parser_do_not_beautify(self): self.parser = LatexParser(self.document, keep_empty_lines=True, do_not_concat_text=True) assert self.parser.getResult().getDocument(no_prefix=False) == self.document def __init__(self): self.document = r""" \documentclass[11pt,a4paper,oneside]{report} \usepackage{pslatex,palatino,avant,graphicx,color} \usepackage[margin=2cm]{geometry} % test % test % test % test \begin{document} \title{\color{red}Practical Typesetting} \author{\color{blue}Name} \date{\color{green}December 2005} \maketitle Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam dapibus consectetur tellus. Duis vehicula, tortor gravida sollicitudin eleifend, erat eros feugiat nisl, eget ultricies risus magna ac leo. Ut est diam, faucibus tincidunt ultrices sit amet, congue sed tellus. Donec vel tellus vitae sem mattis congue. Suspendisse faucibus semper faucibus. Curabitur congue est arcu, nec sollicitudin odio blandit at. Nullam tempus vulputate aliquam. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Duis tempus ligula eu nulla pharetra eleifend. Pellentesque eget nisi gravida, faucibus justo ac, volutpat elit. Praesent egestas posuere elit, et imperdiet magna rhoncus eget. Donec porttitor enim lectus, quis egestas quam dignissim in. Donec dignissim sapien odio, nec molestie enim imperdiet ac. Praesent venenatis quis mi nec pretium. \section*{Displayed Text} \end{document}"""
bsd-3-clause
7,697,924,839,489,832,000
51.740741
867
0.784151
false
ExCiteS/geokey-checklist
geokey_checklist/models.py
1
3037
from django.conf import settings from django.db import models from .base import TYPE from .base import ITEM_TYPE from .base import EXPIRY_FACTOR from .base import PER_TYPE from .base import FREQUENCY_EXPIRED_REMINDER from .base import REMINDER_BEFORE_EXPIRATION class Checklist(models.Model): """ Stores a single checklist. """ name = models.CharField(max_length=100) project = models.ForeignKey('projects.Project') category = models.ForeignKey('categories.Category') description = models.TextField(null=True, blank=True) creator = models.ForeignKey(settings.AUTH_USER_MODEL) checklisttype = models.CharField(choices=TYPE, default=TYPE.Blank, max_length=100) numberofpeople = models.IntegerField() numberofchildren = models.IntegerField() numberoftoddlers = models.IntegerField() numberofinfants = models.IntegerField() numberofpets = models.IntegerField() latitude = models.FloatField() longitude = models.FloatField() def update(self, newdata): for key in newdata: val = newdata[key] setattr(self,key,val) self.save() class ChecklistSettings(models.Model): """ Stores settings for the checklist extension for the user. """ project = models.ForeignKey('projects.Project') reminderson = models.BooleanField(default=True) frequencyonexpiration = models.CharField(choices=FREQUENCY_EXPIRED_REMINDER, default=FREQUENCY_EXPIRED_REMINDER.one_month, max_length=100) #frequencybeforeexpiration = models.CharField(choices=REMINDER_BEFORE_EXPIRATION, default=REMINDER_BEFORE_EXPIRATION.six_months, max_length=100) lastremindercheck = models.DateTimeField(null=True) class ChecklistItem(models.Model): """ Stores a single checklist item. """ name = models.CharField(max_length=100) project = models.ForeignKey('projects.Project') category = models.ForeignKey('categories.Category') field = models.ForeignKey('categories.Field') creator = models.ForeignKey(settings.AUTH_USER_MODEL) checklistitemdescription = models.CharField(max_length=100, null=True) checklistitemurl = models.CharField(max_length=255, null=True) checklistitemtype = models.CharField(choices=ITEM_TYPE, default=ITEM_TYPE.Custom, max_length=100) quantityfactor = models.IntegerField() pertype = models.CharField(choices=PER_TYPE, default=PER_TYPE.individual, max_length=100) quantity = models.IntegerField() quantityunit = models.CharField(max_length=100, null=True) expiryfactor = models.IntegerField(null=True) expiry = models.DateTimeField(null=True) haveit = models.BooleanField(default=False) def update(self, newdata): for key in newdata: val = newdata[key] if key == "haveit": if type(val) <> 'bool': if val == "True": val = True else: val = False setattr(self,key,val) self.save()
mit
-7,941,475,644,263,964,000
37.935897
148
0.691801
false
Mercy-Nekesa/sokoapp
sokoapp/request/middleware.py
1
1024
from django.core.urlresolvers import get_callable from request.models import Request from request import settings from request.router import patterns class RequestMiddleware(object): def process_response(self, request, response): if request.method.lower() not in settings.REQUEST_VALID_METHOD_NAMES: return response if response.status_code < 400 and settings.REQUEST_ONLY_ERRORS: return response ignore = patterns(False, *settings.REQUEST_IGNORE_PATHS) if ignore.resolve(request.path[1:]): return response if request.is_ajax() and settings.REQUEST_IGNORE_AJAX: return response if request.META.get('REMOTE_ADDR') in settings.REQUEST_IGNORE_IP: return response if getattr(request, 'user', False): if request.user.username in settings.REQUEST_IGNORE_USERNAME: return response r = Request() r.from_http_request(request, response) return response
mit
-7,902,570,841,348,118,000
30.030303
77
0.665039
false
SimBil91/pyTenvis
modules/TenvisAudio.py
1
1178
import subprocess import pyaudio import os class TenvisAudio(): def __init__(self,ip): self.command=['avconv','-i','rtsp://'+ip+'/11','-ar', '16000','-vn','-f','wav', 'pipe:1'] self.FNULL = open(os.devnull, 'w') self.start_stream() def start_stream(self): self.pipe = subprocess.Popen(self.command, stdout = subprocess.PIPE, stderr=self.FNULL) def stop_stream(self): self.pipe.terminate() def play_audio(self): # read data p = pyaudio.PyAudio() self.stream = p.open( format = pyaudio.paInt16, channels = 1, rate = 16000, output = True, frames_per_buffer = 1000) data = self.pipe.stdout.read(100) # play stream while data != '': self.stream.write(data) data = self.pipe.stdout.read(100) #self.pipe.stdout.flush() if __name__ == "__main__": import sys if len(sys.argv) != 2: print "Usage: %s <ip_address>" % sys.argv[0] exit() else: domain=sys.argv[1] taudio=TenvisAudio(domain) taudio.play_audio()
mit
-1,959,038,631,366,071,000
29.230769
97
0.523769
false
magenta-aps/mox
oio_rest/tests/test_db_patching.py
1
5022
# Copyright (C) 2015-2019 Magenta ApS, https://magenta.dk. # Contact: [email protected]. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import json import tempfile import flask_testing from oio_rest import settings from oio_rest import app from oio_rest.utils import test_support class Tests(flask_testing.TestCase): def create_app(self): return app.app def get_fields(self): return settings.REAL_DB_STRUCTURE['organisationfunktion'] def test_patching_with_dict(self): orig = { "egenskaber": [ "brugervendtnoegle", "funktionsnavn", "integrationsdata" ] } self.assertEqual( self.get_fields()['attributter'], orig, ) with test_support.extend_db_struct({ "organisationfunktion": { "attributter": { "fætre": [ "hest", "høg", ], }, }, }): self.assertEqual( self.get_fields()['attributter'], { **orig, 'fætre': ['hest', 'høg'], }) self.assertEqual( self.get_fields()['attributter'], orig, ) def test_patching_with_file(self): orig = { "egenskaber": [ "brugervendtnoegle", "funktionsnavn", "integrationsdata" ] } self.assertEqual( self.get_fields()['attributter'], orig, ) with tempfile.NamedTemporaryFile('w+t') as fp: json.dump({ "organisationfunktion": { "attributter": { "fætre": [ "hest", "høg", ], }, }, }, fp) fp.flush() with test_support.extend_db_struct(fp.name): self.assertEqual( self.get_fields()['attributter'], { **orig, 'fætre': ['hest', 'høg'], }, ) self.assertEqual( self.get_fields()['attributter'], orig, ) def test_patching_order(self): with test_support.extend_db_struct({ "organisationfunktion": { "attributter": { "fætre": [ "hest", "høg", ], }, "tilstande": { "høj": [ "Nej", "Ja", ], }, }, }): self.assertEqual( list(self.get_fields()['attributter']), ['egenskaber', 'fætre'], ) self.assertEqual( list(self.get_fields()['tilstande']), ['gyldighed', 'høj'], ) with test_support.extend_db_struct({ "organisationfunktion": { "attributter": { "xyzzy": [ "dood", "daad", ], }, "tilstande": { "zzz": [ "baab", "beeb", ], }, }, }): self.assertEqual( list(self.get_fields()['attributter']), ['egenskaber', 'xyzzy'], ) self.assertEqual( list(self.get_fields()['tilstande']), ['gyldighed', 'zzz'], ) with test_support.extend_db_struct({ "organisationfunktion": { "attributter": { "aardvark": [ "laal", "lool", ], }, "tilstande": { "aabenraa": [ "aach", "heen", ], }, }, }): self.assertEqual( list(self.get_fields()['attributter']), ['egenskaber', 'aardvark'], ) self.assertEqual( list(self.get_fields()['tilstande']), ['gyldighed', 'aabenraa'], )
mpl-2.0
5,041,461,417,427,765,000
26.827778
69
0.350769
false
ma2rten/kaggle-evergreen
src/data.py
1
1582
import csv, json, re from collections import defaultdict, Counter from unidecode import unidecode from util import * def extract_domain(url): # extract domains domain = url.lower().split('/')[2] domain_parts = domain.split('.') # e.g. co.uk if domain_parts[-2] not in ['com', 'co']: return '.'.join(domain_parts[-2:]) else: return '.'.join(domain_parts[-3:]) def load_data(filename): csv_file_object = csv.reader(file(filename, 'rb'), delimiter='\t') header = csv_file_object.next() data = [] for row in csv_file_object: # make dictionary item = {} for i in range(len(header)): item[header[i]] = row[i] # url item['real_url'] = item['url'].lower() item['domain'] = extract_domain(item['url']) item['tld'] = item['domain'].split('.')[-1] # parse boilerplate boilerplate = json.loads(item['boilerplate']) for f in ['title', 'url', 'body']: item[f] = boilerplate[f] if (f in boilerplate) else u'' item[f] = unidecode(item[f]) if item[f] else '' del item['boilerplate'] # label if 'label' in item: item['label'] = item['label'] == '1' else: item['label'] = '?' data.append(item) return data def get_train(): return load('train', lambda: load_data('data/train.tsv')) def get_test(): return load('test', lambda: load_data('data/test.tsv')) def get_labels(): return np.array([item['label'] for item in get_train()])
mit
-5,455,935,004,014,464,000
22.969697
70
0.553097
false
drewcsillag/skunkweb
pylibs/pargen/Common.py
1
9798
# # Copyright (C) 2001 Andrew T. Csillag <[email protected]> # # You may distribute under the terms of either the GNU General # Public License or the SkunkWeb License, as specified in the # README file. # from CONSTANTS import * import RuleItems Set = RuleItems.Set startItem = RuleItems.Item("S'", ['S'], 0, -1, None, Set('$')) #def FIRST(symbol, ruleSet, terminals, recurSymbols = []): # """compute the set of terminals that begin strings derived from <symbol> # internal version that works with dicts""" # # if it's a terminal, duh, just return a set of self # if symbol in terminals: # return [symbol] # # # did we recursively hit ourselves, if so, just return empty # if symbol in recurSymbols: # return [] # # symbols = Set() # # productions = getProductions(ruleSet, symbol) # for rule in productions: # if not len(rule.rhs): #rhs is Epsilon # symbols.add(None) # else: # #print 'symbol is:', symbol # #print 'recursymbols is:', recurSymbols # #print 'new symbol is:', rule.rhs[0] # f = FIRST(rule.rhs[0], ruleSet, terminals, [symbol] + recurSymbols) # symbols.addList(f) # #if symbols.contains(Set(None)): # # symbols = symbols - None # # symbols.add('$') # return symbols.items() #def FIRSTBase(symbol, ruleSet, terminals, recurSymbols = []): # """compute the set of terminals that begin strings derived from <symbol> # internal version that works with dicts""" # # if it's a terminal, duh, just return a set of self # if symbol in terminals: # return [symbol] # # # did we recursively hit ourselves, if so, just return empty # if symbol in recurSymbols: # return [] # # symbols = Set() # # productions = getProductions(ruleSet, symbol) # for rule in productions: # if not len(rule.rhs): #rhs is Epsilon # symbols.add(None) # else: # #print 'symbol is:', symbol # #print 'recursymbols is:', recurSymbols # #print 'new symbol is:', rule.rhs[0] # f = FIRSTBase(rule.rhs[0], ruleSet, terminals, [symbol] + recurSymbols) # symbols.addList(f) # #if symbols.contains(Set(None)): # # symbols = symbols - None # # symbols.add('$') # return symbols.items() # #def FIRST(X, ruleSet, terminals): # symbols = [X] # firsts = Set(None) # # while 1: # #print 'symbols =', symbols, 'firsts=', firsts # oldFirsts = firsts # # #remove None from firsts # firsts = firsts - None # # #add FIRSTBase to firsts # for symbol in symbols: # firsts.addList(FIRSTBase(symbol, ruleSet, terminals)) # # if firsts == oldFirsts: # break # # if not firsts.contains(Set(None)): # break # # #find symbols Y where A -> alpha X Y Beta # #symbols = [] # for rule in ruleSet: # if X in rule.rhs: # for ind in range(len(rule.rhs)): # #print 'found rule with %s in it' % X, rule # #if there is something after X # if rule.rhs[ind] == X and (ind + 1) < len(rule.rhs): # newSymbol = rule.rhs[ind + 1] # if newSymbol not in symbols: # #print 'adding', rule.rhs[ind+1] # symbols.append(rule.rhs[ind+1]) # # #if firsts.contains(Set(None)): # # firsts = firsts - None # # firsts.add('$') # return firsts.items() # # #def FIRSTS(symbols, symbolSet, ruleSet, terminals): # if symbols: # f = FIRST(symbols[0], ruleSet, terminals) # return f # else: # return symbolSet #def FIRSTS(symbols, symbolSet, ruleSet, terminals): # firsts = Set() # ind = 0 # while ind < len(symbols): # X = symbols[ind] # ind = ind + 1 # if ind == len(symbols): # break # firsts.addList(FIRST(X, ruleSet, terminals)) # if not firsts.contains(Set(None)): # break # firsts = firsts - None # if firsts.contains(Set(None)) or not firsts.items(): #index blew out first # #firsts = firsts - None # firsts.addList(symbolSet) # # return firsts.items() def FIRST(symbols, ruleSet, terminals, recurSymbols = None): if recurSymbols is None: recurSymbols = [] if type(symbols) not in (type(()), type([])): symbols = [symbols] first = Set() addNone = 0 #print 'symbols is', symbols #from pg 189 for X in symbols: #print 'X is', X #if we're already doing X, just continue if X in recurSymbols: #print 'already in me' continue #if X is terminal, then FIRST(X) is {X} if X in terminals: #print 'X (%s) is terminal' % X first.add(X) break prods = getProductions(ruleSet, X) for rule in prods: #if X -> Epsilon then add Epsilon (None for us) to FIRST(X) if len(rule.rhs) == 0: #print 'rule "%s" .rhs is NULL' % rule addNone = 1 first.add(None) else: #if X -> Y1Y2... then add FIRST(Y1Y2Y3) to FIRST(X) #print 'rule %s, doing FIRST(%s)' % (rule, rule.rhs) first.addList(FIRST(rule.rhs, ruleSet, terminals, recurSymbols + [X])) if not first.contains(Set(None)): #print 'firsts is', first break if addNone: first.add(None) return first.items() def FIRSTS(symbols, symbolSet, ruleSet, terminals): myExtraRules = [] for X in symbolSet: myExtraRules.append( RuleItems.Rule('$BOGO$', [X], -2)) r = FIRST(symbols, ruleSet + myExtraRules, terminals) if None in r or len(r) == 0: #if len(r) == 0: r.extend(symbolSet) if None in r: r.remove(None) return r def FOLLOW(lookie, ruleSet, terminals, nonTerminals): symbols = terminals + nonTerminals fset = {} for i in symbols: fset[i] = {} fset['S']['$'] = 1 for X in symbols: firsts = [] for rule in ruleSet: if X in rule.rhs: for j in range(len(rule.rhs)): if j + 1 < len(rule.rhs) and rule.rhs[j] == X: firsts.extend(FIRST(rule.rhs[j+1], ruleSet, terminals)) for i in firsts: if i != None: fset[X][i] = 1 added = 1 while added: added = 0 for rule in ruleSet: if len(rule.rhs): B = rule.rhs[-1] A = rule.lhs id = fset[B].copy() fset[B].update(fset[A]) if fset[B] != id: added = 1 if len(rule.rhs) >= 2: for i in range(-1, -len(rule.rhs), -1): if None not in FIRST(rule.rhs[i], ruleSet, terminals): B = rule.rhs[i] A = rule.lhs id = fset[B].copy() fset[B].update(fset[A]) if fset[B] != id: added = 1 #for k in fset.keys(): # print '%s: %s' % (k, fset[k].keys()) return fset[lookie].keys() def siftTokens(ruleSet): """Sifts through <ruleSet> and returns three things: 1) the terminals 2) the non-terminals """ terminals = {'$':1} nonTerminals = {} for rule in ruleSet: nonTerminals[rule.lhs] = 1 #lhs is obviously a non-terminal for token in rule.rhs: terminals[token] = 1 #for now, we'll kill the nt's below #remove the known non-terminals from the terminals dict for token in nonTerminals.keys(): if terminals.has_key(token): del terminals[token] return terminals.keys(), nonTerminals.keys() def getProductions(ruleSet, nonTerminal): """return all rules in <ruleSet> with <nonTerminal> as the lhs""" return filter(lambda x, nt = nonTerminal: x.lhs == nt, ruleSet) def printItems(legend, items): print legend for i in range(len(items)): print 'state %d' % i for j in items[i]: print ' ', j def printStateTable(newRules, t, nt, sd, gd): #t = t + ['$'] print ' ', 'action',(' '*((len(t)-1)*6))+' goto' print ' ', for s in t: print '%5s' % repr(s), print ' ', for s in nt: print '%3s' % s, print for i in range(len(newRules)): print '%3s' % i, for s in t: if sd[i].has_key(s): if sd[i][s][0] == SHIFT: print '%5s' % ('s%d' % sd[i][s][1]), elif sd[i][s][0] == REDUCE: print '%5s' % ('r%d' % sd[i][s][1]), else: print '%5s' % 'acc', else: print '%5s' % ' ', print ' ', for s in nt: if gd[i].has_key(s): print '%3s' % gd[i][s], else: print '%3s' % ' ', print def digestRules(ruleSet): """reduces the rules in ruleset to a form that 1) is marshallable 2) is literable and 3) is only what the parser actually needs (well mostly) """ nr = [] for rule in ruleSet: nr.append({ 'funcName': rule.funcName, 'lhs': rule.lhs, 'lenrhs': len(rule.rhs), 'ruleString': str(rule) }) return nr
gpl-2.0
599,409,482,687,697,200
29.714734
84
0.508675
false
patrickmelix/Python4ChemistryTools
geometryAnalyzer.py
1
7994
import numpy as np from ase import io, Atoms def convertNames(inFile, outFile): xyz = open(outFile,'w') with open(inFile) as f: for line in f: split = line.strip().split() if len(split) < 4: xyz.write(line) continue name = split[0] split[1:] = [float(x) for x in split[1:]] if name[0].lower() == 'c': split[0] = 'C' elif name[0].lower() == 'o': split[0] = 'O' elif name[0].lower() == 'h': split[0] = 'H' elif name[0:2].lower() == 'ni': split[0] = 'Ni' elif name[0].lower() == 'n': split[0] = 'N' xyz.write(("{:10} "+"{:20.6f} "*3+"\n").format(*split)) xyz.close() def getBonds(A,B,inMol,bondList): #get all bonds A-B if not isinstance(inMol, list): mols = [ inMol ] else: mols = inMol allBonds = [] for molecule in mols: nAtoms = len(molecule) bonds = [] allIdx = [] for i in range(0,nAtoms): if molecule[i].symbol == A: allIdx.append(i) for iIdx in allIdx: try: ibonds = bondList[str(iIdx)] except: continue for bonded in ibonds: if not molecule[bonded].symbol == B: continue bonds.append([iIdx, bonded]) #delete duplicates if A=B if A == B: for bond in bonds: del bonds[bonds.index(list(reversed(bond)))] allBonds.extend(bonds) return allBonds def getAngles(A,B,C,inMol,bondList): #get all angles B-A-C if not isinstance(inMol, list): mols = [ inMol ] else: mols = inMol allAngles = [] for molecule in mols: nAtoms = len(molecule) angles = [] allIdx = [] for i in range(0,nAtoms): if molecule[i].symbol == A: allIdx.append(i) for iIdx in allIdx: try: bonds = bondList[str(iIdx)] except: continue for bonded in bonds: if not molecule[bonded].symbol == B: continue for j in bonds: if j == bonded: continue if molecule[j].symbol == C: angles.append([bonded, iIdx, j]) #delete duplicates if B=C if B == C: for angle in angles: del angles[angles.index(list(reversed(angle)))] allAngles.extend(angles) return allAngles def getDihedrals(A,B,C,D,molecule,bondList): """Make a list of all Dihedrals""" dihedralList = [] allIdx = [] nAtoms = len(molecule) for i in range(0,nAtoms): if molecule[i].symbol == A: allIdx.append(i) for idx in allIdx:#A try: ibonds = bondList[str(idx)] except: continue for j in bondList[str(idx)]: if not molecule[j].symbol == B: continue for k in bondList[str(j)]: if not molecule[k].symbol == C: continue if idx == k: continue for l in bondList[str(k)]: if not molecule[l].symbol == D: continue if (not l == k) and (not l == idx) and (not l == j): dihedralList.append([idx,j,k,l]) return dihedralList def bond(v1,v2): """ Returns the length of the vector. """ return np.linalg.norm(np.subtract(v1,v2)) def unit_vector(vector): """ Returns the unit vector of the vector. """ return vector / np.linalg.norm(vector) def angle(v1, v2): """ Angle in Degree""" v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))/np.pi*180 def dihedral(vec1,vec2,vec3): """ Dihedral in Degree""" v1_u = unit_vector(vec1) v2_u = unit_vector(vec2) v3_u = unit_vector(vec3) #get the two normal vectors standing on the planes v1v2 = np.cross(v1_u,v2_u) v2v3 = np.cross(v2_u,v3_u) #angle between them is the dihedral return angle(v1v2,v2v3) def getPBCVector(staticVec, vec, box, cut=5.0): #find new pbcVec using PBC so that pbcVec-staticVec is less then 5A away #test 6 most propable directions first pbcVec = np.subtract(vec,staticVec) for i in range(0,3): for j in [-1,1]: newVec = np.add(vec,box[i]*j) newVec = np.subtract(newVec,staticVec) if np.linalg.norm(newVec) < cut: return newVec #if not yet exited, perhaps it is one of the boxes on the edges #there are eight of them for dim in range(0,3): dims = list(range(0,3)) dims.remove(dim) for i in [-1,1]: for j in [-1,1]: translate = np.add(box[dims[0]]*i,box[dims[1]]*j) newVec = np.add(vec,translate) newVec = np.subtract(newVec,staticVec) if np.linalg.norm(newVec) < cut: return newVec #check the corner-connected boxes for i in [-1,1]: for j in [-1,1]: for k in [-1,1]: translate = np.add(box[0]*i,box[1]*j) translate = np.add(translate,box[2]*k) newVec = np.add(vec,translate) newVec = np.subtract(newVec,staticVec) if np.linalg.norm(newVec) < cut: return newVec #if there is no result yet something is wrong raise ValueError("No matching PBC point found!") def getBondValues(inMol,bondLists): if not isinstance(inMol, list): mols = [ inMol ] else: mols = inMol bonds = {} for name in bondLists: bonds[name] = [] for molecule in mols: for name, bondList in bondLists.items(): for item in bondList: bonds[name].append(molecule.get_distance(item[0],item[1],mic=True)) return bonds def getAngleValues(inMol,angleLists): if not isinstance(inMol, list): mols = [ inMol ] else: mols = inMol angles = {} for name in angleLists: angles[name] = [] for molecule in mols: for name, angleList in angleLists.items(): for item in angleList: angles[name].append(molecule.get_angle(item[0],item[1],item[2],mic=True)) return angles def getDihedralValues(inMol, dihedralLists): if not isinstance(inMol, list): mols = [ inMol ] else: mols = inMol dihedrals = {} for name in dihedralLists: dihedrals[name] = [] for molecule in mols: for name, dihedralList in dihedralLists.items(): for item in dihedralList: dihedrals[name].append(molecule.get_dihedral(item[0],item[1],item[2],item[3],mic=True)) return dihedrals def get_distance2plane(inMol,idxP1,idxP2,idxP3,idxDist): if not isinstance(inMol, list): mols = [ inMol ] else: mols = inMol dists = [] for mol in mols: molecule = mol.copy() toCenter = -1.0 * molecule[idxP1].position molecule.translate(toCenter) print(molecule[idxP1]) print(molecule[idxP2]) print(molecule[idxP3]) toXAxis = molecule[idxP2].position molecule.rotate(toXAxis,'x',rotate_cell=True) print(molecule[idxP1]) print(molecule[idxP2]) print(molecule[idxP3]) toXYPlane = molecule[idxP3].position[:] toXYPlane[0] = 0 molecule.rotate(toXYPlane,'y') print(molecule[idxP1]) print(molecule[idxP2]) print(molecule[idxP3]) print(molecule[idxDist]) dists.append(abs(molecule[idxDist].position[-1])) return dists
mit
7,997,418,269,323,740,000
30.848606
103
0.523893
false
cwm-kylin/kylin_ops
permission/models.py
1
2259
import datetime from django.db import models from asset.models import Asset, AssetGroup from usermanagers.models import User, UserGroup class PermLog(models.Model): datetime = models.DateTimeField(auto_now_add=True) action = models.CharField(max_length=100, null=True, blank=True, default='') results = models.CharField(max_length=1000, null=True, blank=True, default='') is_success = models.BooleanField(default=False) is_finish = models.BooleanField(default=False) class PermSudo(models.Model): name = models.CharField(max_length=100, unique=True) date_added = models.DateTimeField(auto_now=True) commands = models.TextField() comment = models.CharField(max_length=100, null=True, blank=True, default='') def __unicode__(self): return self.name class PermRole(models.Model): name = models.CharField(max_length=100, unique=True) comment = models.CharField(max_length=100, null=True, blank=True, default='') password = models.CharField(max_length=512) key_path = models.CharField(max_length=100) date_added = models.DateTimeField(auto_now=True) sudo = models.ManyToManyField(PermSudo, related_name='perm_role') def __unicode__(self): return self.name class PermRule(models.Model): date_added = models.DateTimeField(auto_now=True) name = models.CharField(max_length=100, unique=True) comment = models.CharField(max_length=100) asset = models.ManyToManyField(Asset, related_name='perm_rule') asset_group = models.ManyToManyField(AssetGroup, related_name='perm_rule') user = models.ManyToManyField(User, related_name='perm_rule') user_group = models.ManyToManyField(UserGroup, related_name='perm_rule') role = models.ManyToManyField(PermRole, related_name='perm_rule') def __unicode__(self): return self.name class PermPush(models.Model): asset = models.ForeignKey(Asset, related_name='perm_push') role = models.ForeignKey(PermRole, related_name='perm_push') is_public_key = models.BooleanField(default=False) is_password = models.BooleanField(default=False) success = models.BooleanField(default=False) result = models.TextField(default='') date_added = models.DateTimeField(auto_now=True)
lgpl-3.0
8,404,812,628,688,477,000
36.65
82
0.722001
false
Scienziatopazzo/machine-learning
simple_perceptron.py
1
2836
import math import random import operator import numpy as np class Perceptron: ''' Implements the Perceptron Learning Algorithm fields: int dim Dimensionality of the data List weights Array (dim+1 x 1) of the weights List data Array (N x 1) of tuples (x, y) composed of vectors x and results y=f(x) int iterations Number of iterations of PLA undergone ''' def __init__(self, dim, data = []): self.dim = dim self.reset(data) def reset(self, data, weights = [0]): ''' Reset weights and iterations and feed a data sample ''' if np.all(weights == [0]): self.weights = [0.0] * (self.dim+1) elif len(weights)!=(self.dim+1): raise ValueError('Wrong initial weights dimensionality') else: self.weights = weights for t in data: if len(t[0])!=self.dim: raise ValueError('Wrong data dimensionality') elif t[1]!=1 and t[1]!=-1: raise ValueError('Function output is not binary') self.data = data self.iterations = 0 def hypothesis(self, x): ''' Takes d-dimensional data vector x and computes h(x) using the current weights ''' x_adj = [1.0] + x #adjusted to include 1 at the start weighted_sum = sum(map(operator.mul, self.weights, x_adj)) #dot product of w and x if weighted_sum==0.0: return 0.0 else: return math.copysign(1.0, weighted_sum) #sign function def classify(self, point): ''' Takes as "point" a tuple (x, y) with x a vector and y=f(x) and classifies it, returning True if h(x)=f(x) and False if not ''' h = self.hypothesis(point[0]) return h == point[1] def train(self): ''' Trains the perceptron with the data using the PLA ''' misclass = True #iterate until there is no more misclassification while(misclass): #obtain a set of misclassified points misclass_points = [] #array of indexes of misclassified points in data for point in self.data: if not self.classify(point): misclass_points.append(self.data.index(point)) if len(misclass_points)!=0: #choose the misclassified point at random p = self.data[random.choice(misclass_points)] x_adj = [1.0] + p[0] # w <- w + yx where (x,y) is a misclassified point x_sign = [p[1]*xi for xi in x_adj] self.weights = [self.weights[i] + x_sign[i] for i in range(len(x_sign))] #increment number of iterations self.iterations += 1 else: misclass=False def f_disagreement(self, new_data): ''' When given a sufficiently big new dataset new_data with the same format of self.data, returns the disagreement fraction between the trained function g and the original f P[f(x) != g(x)] ''' g_misclass_points = 0 #counter of newdata points misclassified by g for point in new_data: if not self.classify(point): g_misclass_points += 1 #return the fraction of P return g_misclass_points / len(new_data)
mit
191,354,775,047,642,500
29.494624
87
0.674542
false
allanlei/django-saas
saas/multidb/middleware.py
1
1173
from django.utils.functional import curry from django.conf import settings from django.core.exceptions import MiddlewareNotUsed from saas.multidb.signals import db_route_read, db_route_write from saas.multidb.models import Database class ModelRoutingMiddleware(object): @classmethod def request_router_info(cls, sender, request=None, **kwargs): if request: return request.REQUEST.get('domain', 'default') def get_signal_function(self, **kwargs): return curry(self.request_router_info, **kwargs) def process_request(self, request): db_route_read.connect(self.get_signal_function(request=request), weak=False, dispatch_uid=request) db_route_write.connect(self.get_signal_function(request=request), weak=False, dispatch_uid=request) return None def process_response(self, request, response): db_route_read.disconnect(weak=False, dispatch_uid=request) db_route_write.disconnect(weak=False, dispatch_uid=request) return response class AutoLoadMiddleware(object): def __init__(self): Database.objects.all().load() raise MiddlewareNotUsed
bsd-3-clause
-4,862,116,266,822,954,000
34.545455
107
0.70844
false
seclab-ucr/INTANG
src/test/test_dns.py
1
2747
#!/usr/bin/env python import redis import socket import struct import subprocess import time TEST_ROUNDS = 50 JAIL_TIME = 95 TEST_SUCCESS = 1 TEST_FAILED = 2 TEST_SVR_NO_RESP = 3 TEST_OTHER = 4 resolvers = [ '216.146.35.35', '216.146.36.36', '208.67.222.222', '208.67.220.220', ] jail_time = {} # connect to redis redis_conn = redis.StrictRedis(host='localhost', port=6389, db=0) results = { } for resolver_ip in resolvers: results[resolver_ip] = [] def ip2int(addr): return struct.unpack("I", socket.inet_aton(addr))[0] def is_all_done(): for resolver_ip in resolvers: if len(results[resolver_ip]) < TEST_ROUNDS: return False return True def is_in_jail(resolver_ip): if resolver_ip in jail_time: if jail_time[resolver_ip] + JAIL_TIME < time.time(): del jail_time[resolver_ip] return False else: return True return False def update_statfile(): f = open('status.log', 'w') for resolver_ip in resolvers: f.write("%30s : " % (resolver_ip)) for res in results[resolver_ip]: if res == TEST_SUCCESS: # success f.write('+') elif res == TEST_SVR_NO_RESP: # svr no resp f.write('*') elif res == TEST_FAILED: # reset (may differentiate type-1 and type-2 later) f.write('-') else: # unknown f.write('?') f.write("\n") f.close() while not is_all_done(): for resolver_ip in resolvers: if is_in_jail(resolver_ip): time.sleep(0.1) continue ret = subprocess.check_output("dig +tcp @%s www.dropbox.com" % resolver_ip, shell=True) #print(ret) # sleep 2s to wait for late GFW rst time.sleep(2) #print("rst:attack1:*_%d" % ip2int(ip)) type1rst = redis_conn.keys("rst:attack1:*_%d" % ip2int(resolver_ip)) print(type1rst) #print("rst:attack2:*_%d" % ip2int(ip)) type2rst = redis_conn.keys("rst:attack2:*_%d" % ip2int(resolver_ip)) print(type2rst) if type1rst or type2rst: results[resolver_ip].append(TEST_FAILED) jail_time[resolver_ip] = time.time() elif "connection reset" in ret: pass else: results[resolver_ip].append(TEST_SUCCESS) update_statfile() time.sleep(0.1) for resolver_ip in resolvers: print("%s, %d, %d" % (resolver_ip, results[resolver_ip].count(TEST_SUCCESS), results[resolver_ip].count(TEST_FAILED)))
gpl-3.0
6,996,596,000,312,077,000
24.915094
122
0.539134
false
kernelci/kernelci-backend
app/models/tests/test_bisect_model.py
1
9506
# Copyright (C) Collabora Limited 2018,2019 # Author: Guillaume Tucker <[email protected]> # # Copyright (C) Linaro Limited 2014,2015,2017 # Author: Milo Casagrande <[email protected]> # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with this library; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import unittest import models.base as modb import models.bisect as modbs class TestBisectModel(unittest.TestCase): def test_bisect_base_document(self): bisect_doc = modbs.BisectDocument() self.assertIsInstance(bisect_doc, modb.BaseDocument) def test_case_bisect_document(self): bisect_doc = modbs.TestCaseBisectDocument() self.assertIsInstance(bisect_doc, modbs.BisectDocument) self.assertIsInstance(bisect_doc, modb.BaseDocument) def test_bisect_base_document_collection(self): bisect_doc = modbs.BisectDocument() self.assertEqual(bisect_doc.collection, "bisect") def test_bisect_case_document_collection(self): bisect_doc = modbs.TestCaseBisectDocument() self.assertEqual(bisect_doc.collection, "bisect") def test_bisect_base_from_json(self): bisect_doc = modbs.BisectDocument() self.assertIsNone(bisect_doc.from_json({})) self.assertIsNone(bisect_doc.from_json([])) self.assertIsNone(bisect_doc.from_json(())) self.assertIsNone(bisect_doc.from_json("")) def test_bisect_base_to_dict(self): bisect_doc = modbs.BisectDocument() expected = { "created_on": None, "job": None, "compare_to": None, "good_commit": None, "good_commit_date": None, "good_commit_url": None, "good_summary": None, "bad_commit": None, "bad_commit_date": None, "bad_commit_url": None, "bad_summary": None, "version": None, "job_id": None, "type": None, "found_summary": None, "kernel": None, "log": None, "checks": {}, "arch": None, "build_id": None, "defconfig": None, "defconfig_full": None, "compiler": None, "compiler_version": None, "build_environment": None, "git_branch": None, "git_url": None, } self.assertDictEqual(expected, bisect_doc.to_dict()) def test_bisect_base_to_dict_with_id(self): bisect_doc = modbs.BisectDocument() bisect_doc.id = "bar" expected = { "_id": "bar", "created_on": None, "job": None, "compare_to": None, "good_commit": None, "good_commit_date": None, "good_commit_url": None, "good_summary": None, "bad_commit": None, "bad_commit_date": None, "bad_commit_url": None, "bad_summary": None, "version": None, "job_id": None, "type": None, "found_summary": None, "kernel": None, "log": None, "checks": {}, "arch": None, "build_id": None, "defconfig": None, "defconfig_full": None, "compiler": None, "compiler_version": None, "build_environment": None, "git_branch": None, "git_url": None, } self.assertDictEqual(expected, bisect_doc.to_dict()) def test_bisect_case_to_dict(self): bisect_doc = modbs.TestCaseBisectDocument() bisect_doc.id = "bar" bisect_doc.board = "baz" bisect_doc.version = "1.0" bisect_doc.build_id = "build-id" bisect_doc.job_id = "job-id" bisect_doc.git_url = "https://somewhere.com/blah.git" bisect_doc.git_branch = "master" bisect_doc.kernel = "v123.456" bisect_doc.log = "https://storage.org/log.txt" bisect_doc.test_case_path = "test.case.path" bisect_doc.regression_id = "regr-id" bisect_doc.device_type = "qemu" bisect_doc.lab_name = "secret-lab" bisect_doc.plan_variant = "cunning" expected = { "_id": "bar", "created_on": None, "job": None, "compare_to": None, "good_commit": None, "good_commit_date": None, "good_commit_url": None, "good_summary": None, "bad_commit": None, "bad_commit_date": None, "bad_commit_url": None, "bad_summary": None, "version": "1.0", "build_id": "build-id", "job_id": "job-id", "type": "test", "compiler": None, "compiler_version": None, "build_environment": None, "arch": None, "defconfig": None, "defconfig_full": None, "git_url": "https://somewhere.com/blah.git", "git_branch": "master", "kernel": "v123.456", "log": "https://storage.org/log.txt", "found_summary": None, "checks": {}, "test_case_path": "test.case.path", "regression_id": "regr-id", "device_type": "qemu", "lab_name": "secret-lab", "plan_variant": "cunning", } self.assertDictEqual(expected, bisect_doc.to_dict()) def test_bisect_base_properties(self): bisect_doc = modbs.TestCaseBisectDocument() bisect_doc.id = "bar" bisect_doc.created_on = "now" bisect_doc.job = "fooz" bisect_doc.good_commit = "1" bisect_doc.good_commit_date = "now" bisect_doc.good_commit_url = "url" bisect_doc.bad_commit = "2" bisect_doc.bad_commit_date = "now" bisect_doc.bad_commit_url = "url" bisect_doc.found_summary = "1234abcd foo: bar" bisect_doc.verified = "pass" bisect_doc.kernel = "v456.789" bisect_doc.log = "https://storage.org/log.txt" self.assertEqual(bisect_doc.id, "bar") self.assertEqual(bisect_doc.created_on, "now") self.assertEqual(bisect_doc.job, "fooz") self.assertEqual(bisect_doc.good_commit, "1") self.assertEqual(bisect_doc.good_commit_date, "now") self.assertEqual(bisect_doc.good_commit_url, "url") self.assertEqual(bisect_doc.bad_commit, "2") self.assertEqual(bisect_doc.bad_commit_date, "now") self.assertEqual(bisect_doc.bad_commit_url, "url") self.assertEqual(bisect_doc.found_summary, "1234abcd foo: bar") self.assertEqual(bisect_doc.verified, "pass") self.assertEqual(bisect_doc.kernel, "v456.789") self.assertEqual(bisect_doc.log, "https://storage.org/log.txt") def test_bisect_case_properties(self): bisect_doc = modbs.TestCaseBisectDocument() bisect_doc.device_type = "devboard" self.assertEqual(bisect_doc.device_type, "devboard") def test_bisect_defconfig_to_dict(self): bisect_doc = modbs.DefconfigBisectDocument() bisect_doc.id = "bar" bisect_doc.build_id = "build-id" bisect_doc.defconfig = "defconfig-name" bisect_doc.version = "1.0" bisect_doc.job = "job" bisect_doc.job_id = "job-id" bisect_doc.defconfig_full = "defconfig-full" bisect_doc.arch = "arm" bisect_doc.found_summary = "7890cdef foo: change bar into baz" bisect_doc.kernel = "v4.56" bisect_doc.git_url = "https://somewhere.com/blah.git" bisect_doc.compiler = "randomcc" bisect_doc.compiler_version = "123.456" bisect_doc.build_environment = "build-env" expected = { "_id": "bar", "created_on": None, "job": "job", "compare_to": None, "good_commit": None, "good_commit_date": None, "good_commit_url": None, "good_summary": None, "bad_commit": None, "bad_commit_date": None, "bad_commit_url": None, "bad_summary": None, "version": "1.0", "build_id": "build-id", "defconfig": "defconfig-name", "job_id": "job-id", "defconfig_full": "defconfig-full", "compiler": "randomcc", "compiler_version": "123.456", "build_environment": "build-env", "arch": "arm", "type": "build", "git_branch": None, "found_summary": "7890cdef foo: change bar into baz", "git_url": "https://somewhere.com/blah.git", "kernel": "v4.56", "log": None, "checks": {}, } self.assertDictEqual(expected, bisect_doc.to_dict())
lgpl-2.1
3,625,843,801,229,218,300
35.144487
79
0.554387
false
kl456123/machine_learning
workspace/fully_connected_feed.py
1
9326
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trains and Evaluates the MNIST network using a feed dictionary.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=missing-docstring import argparse import os.path import time from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist # Basic model parameters as external flags. FLAGS = None def placeholder_inputs(batch_size): """Generate placeholder variables to represent the input tensors. These placeholders are used as inputs by the rest of the model building code and will be fed from the downloaded data in the .run() loop, below. Args: batch_size: The batch size will be baked into both placeholders. Returns: images_placeholder: Images placeholder. labels_placeholder: Labels placeholder. """ # Note that the shapes of the placeholders match the shapes of the full # image and label tensors, except the first dimension is now batch_size # rather than the full size of the train or test data sets. images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, mnist.IMAGE_PIXELS)) labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size)) return images_placeholder, labels_placeholder def fill_feed_dict(data_set, images_pl, labels_pl): """Fills the feed_dict for training the given step. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } Args: data_set: The set of images and labels, from input_data.read_data_sets() images_pl: The images placeholder, from placeholder_inputs(). labels_pl: The labels placeholder, from placeholder_inputs(). Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ # Create the feed_dict for the placeholders filled with the next # `batch size` examples. images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size, FLAGS.fake_data) feed_dict = { images_pl: images_feed, labels_pl: labels_feed, } return feed_dict def do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. images_placeholder: The images placeholder. labels_placeholder: The labels placeholder. data_set: The set of images and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set, images_placeholder, labels_placeholder) true_count += sess.run(eval_correct, feed_dict=feed_dict) precision = true_count / num_examples print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' % (num_examples, true_count, precision)) def run_training(): """Train MNIST for a number of steps.""" # Get the sets of images and labels for training, validation, and # test on MNIST. data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data) # Tell TensorFlow that the model will be built into the default Graph. with tf.Graph().as_default(): # Generate placeholders for the images and labels. images_placeholder, labels_placeholder = placeholder_inputs( FLAGS.batch_size) # Build a Graph that computes predictions from the inference model. # logits = mnist.inference(images_placeholder, # FLAGS.hidden1, # FLAGS.hidden2) logits = mnist.inference(images_placeholder ,[32,32,32,32,32,128]) # Add to the Graph the Ops for loss calculation. loss = mnist.loss(logits, labels_placeholder) # Add to the Graph the Ops that calculate and apply gradients. train_op = mnist.training(loss, FLAGS.learning_rate) # Add the Op to compare the logits to the labels during evaluation. eval_correct = mnist.evaluation(logits, labels_placeholder) # Build the summary Tensor based on the TF collection of Summaries. summary = tf.merge_all_summaries() # Add the variable initializer Op. init = tf.initialize_all_variables() # Create a saver for writing training checkpoints. saver = tf.train.Saver() # Create a session for running Ops on the Graph. sess = tf.Session() # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.train.SummaryWriter(FLAGS.summary_dir, sess.graph) # And then after everything is built: # Run the Op to initialize the variables. sess.run(init) # Start the training loop. for step in xrange(FLAGS.max_steps): start_time = time.time() # Fill a feed dictionary with the actual set of images and labels # for this particular training step. feed_dict = fill_feed_dict(data_sets.train, images_placeholder, labels_placeholder) # Run one step of the model. The return values are the activations # from the `train_op` (which is discarded) and the `loss` Op. To # inspect the values of your Ops or variables, you may include them # in the list passed to sess.run() and the value tensors will be # returned in the tuple from the call. _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict) duration = time.time() - start_time # Write the summaries and print an overview fairly often. if step % 100 == 0: # Print status to stdout. print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)) # Update the events file. summary_str = sess.run(summary, feed_dict=feed_dict) summary_writer.add_summary(summary_str, step) summary_writer.flush() # Save a checkpoint and evaluate the model periodically. if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_file = os.path.join(FLAGS.train_dir, 'checkpoint') saver.save(sess, checkpoint_file, global_step=step) # Evaluate against the training set. print('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_sets.train) # Evaluate against the validation set. print('Validation Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_sets.validation) # Evaluate against the test set. print('Test Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_sets.test) def main(_): run_training() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--learning_rate', type=float, default=0.01, help='Initial learning rate.' ) parser.add_argument( '--max_steps', type=int, default=20000, help='Number of steps to run trainer.' ) parser.add_argument( '--hidden1', type=int, default=128, help='Number of units in hidden layer 1.' ) parser.add_argument( '--hidden2', type=int, default=32, help='Number of units in hidden layer 2.' ) parser.add_argument( '--batch_size', type=int, default=100, help='Batch size. Must divide evenly into the dataset sizes.' ) parser.add_argument( '--train_dir', type=str, default='dataset/mnist', help='Directory to put the training data.' ) parser.add_argument( '--fake_data', default=False, help='If true, uses fake data for unit testing.', action='store_true' ) parser.add_argument( '--summary_dir', type=str, default='dataset/mnist/summary', help='Directory to put the summary data.' ) FLAGS = parser.parse_args() tf.app.run()
mit
5,444,828,281,552,272,000
32.916364
80
0.64036
false
alabarga/SocialLearning
SocialLearning/apps/learningobjects/utils/search.py
1
8616
from learningobjects.utils.google import search as search_google import sha import xml.etree.ElementTree as ET import unfurl import urllib2, urllib import json import time from urlunshort import resolve import wikipedia import re import requests class SearchEngine(object): def __init__(self, engine): self.engine = engine def clean(self,url): furl=url i=0 while resolve(url)!=None and i<5: furl=url url=resolve(url) i+=1 print i return furl """ from GoogleScraper import scrape_with_config, GoogleSearchError from GoogleScraper.database import ScraperSearch, SERP, Link class GoogleScrape(SearchEngine): def __init__(self): super(GoogleScrape, self).__init__("GoogleScrape") def search(self, query): # See in the config.cfg file for possible values config = { 'SCRAPING': { 'use_own_ip': 'True', 'keyword': query, 'search_engine': 'duckduckgo' }, 'SELENIUM': { 'sel_browser': 'chrome', }, 'GLOBAL': { 'do_caching': 'True' } } try: sqlalchemy_session = scrape_with_config(config) except GoogleSearchError as e: print(e) # let's inspect what we got links = [] for search in sqlalchemy_session.query(ScraperSearch).all(): for serp in search.serps: print(serp) for link in serp.links: links.append(link) print(link) return links """ class Delicious(SearchEngine): def __init__(self): super(Delicious, self).__init__("delicious") #Busca en google con los parametros que se pasen def search(self,query): url="http://feeds.delicious.com/v2/json/tag/"+query+"?count=100" response=urllib2.urlopen(url) resp=json.loads(response.read()) links=[] for res in resp: links.insert(0,res["u"]) return links class Google(SearchEngine): def __init__(self): super(Google, self).__init__("google") #Busca en google con los parametros que se pasen def search(self,query): links=[] for result in search_google(query): links.append(result) return links class XGoogle(SearchEngine): def __init__(self): super(XGoogle, self).__init__("xgoogle") #Busca en google con los parametros que se pasen def search(self,query): from xgoogle.search import GoogleSearch, SearchError links = [] try: gs = GoogleSearch(query) gs.results_per_page = 50 results = gs.get_results() for res in results: links.append(res.url.encode('utf8')) print res.title.encode('utf8') print res.desc.encode('utf8') print res.url.encode('utf8') except SearchError: print "Search failed!" return links """ class Google(SearchEngine): def __init__(self): super(Google, self).__init__("google") #Busca en google con los parametros que se pasen def search(self,query): links=[] SEARCH_ENGINE_ID = '009363772985848074726:jxffracj2_8' #os.environ['SEARCH_ENGINE_ID'] API_KEY = 'AIzaSyCE9D6fjIW86IN2uekwJbaS3TDfNbim-lE' #os.environ['GOOGLE_CLOUD_API_KEY'] googleApi = GoogleCustomSearch(SEARCH_ENGINE_ID, API_KEY) for result in googleApi.search(query): link=result['link'] if link not in links: links.insert(0,link) return links """ class Wikipedia(SearchEngine): def __init__(self): super(Wikipedia, self).__init__("wikipedia") def search(self,query): links = [] wikipedia.set_lang("es") ids = wikipedia.search(query) for id in ids: wiki = wikipedia.page(id) refs = wiki.references links.extend(refs) return links class DuckDuckGo(SearchEngine): def __init__(self): super(DuckDuckGo, self).__init__("duckduckgo") def search(self,query): links = [] for i in [0]: time.sleep(2) url = "https://duckduckgo.com/d.js?q=%s&l=es-es&p=1&s=%d" % (urllib.quote_plus(query), i) user_agent = {'User-agent': 'Mozilla/5.0'} res = requests.get(url, headers=user_agent) #res = urllib2.urlopen(url).read() h = re.findall('{.*?}', res.text) n = len(h) - 1 enlaces = json.loads('['+ (','.join(h[1:n])) + ']') for item in enlaces: links.append(item['c']) def related(self,url): return self.search('related:'+url) class DuckDuckGoAPI(SearchEngine): def __init__(self): super(DuckDuckGoIO, self).__init__("duckduckgo") def search(self,query): import json import urllib.request url = "http://api.duckduckgo.com/?q=%s&format=json&pretty=1" % urllib.quote(query) get_ddg = urllib.request.urlopen(url) ddg_read = get_ddg.read() ddg_read_decode = json.loads(ddg_read.decode('utf-8')) ddg_read = ddg_read_decode json_string = json.dumps(ddg_read,sort_keys=True,indent=2) print(json_string) ddg_topics = ddg_read['RelatedTopics'] for item in ddg_topics: print(item['FirstURL']) class DuckDuckGoIO(SearchEngine): def __init__(self): super(DuckDuckGoIO, self).__init__("duckduckgo") #Busca en duckduck con los parametros que se pasen def search(self,query): links=[] IMPORT_IO_USER = "7d0326db-696a-436d-8aba-f6c2e1c9e921" IMPORTIO_API_KEY = "89Gl8Ce2tiqX949GcKQTE9hCg6NW%2FkN36WpGKEA4knjhoTTRT72%2BitSWPicKFsZ4RmTwvyMbC%2BOrPtxAvy1EGw%3D%3D" url="https://api.import.io/store/data/97e350d1-d55c-4c66-bcc4-5c2bd2eb8765/_query?input/query="+urllib.quote(query)+"&_user="+IMPORT_IO_USER+"&_apikey="+IMPORTIO_API_KEY response=urllib2.urlopen(url) res=response.read() res=json.loads(res) res=res['results'] for li in res: try: link=li['url'] if link not in links: links.insert(0,link) except: continue return links def related(self,url): return self.search('related:'+url) # https://api.import.io/store/data/2297660e-b775-433d-a408-8fb6d7a808e7/_query?input/webpage/url=http%3A%2F%2Fwefollow.com%2Finterest%2F3dprinting%2F62-100&_user=7d0326db-696a-436d-8aba-f6c2e1c9e921&_apikey=89Gl8Ce2tiqX949GcKQTE9hCg6NW%2FkN36WpGKEA4knjhoTTRT72%2BitSWPicKFsZ4RmTwvyMbC%2BOrPtxAvy1EGw%3D%3D class Slideshare(SearchEngine): def __init__(self): super(Slideshare, self).__init__("slideshare") def search(self,query): ####Slideshare API keys#### ssapi_key = 'lKp4aIF5' # Your api key sssecret_key = 'x7fmnUa8' # Your secret key links=[] ts = int(time.time()) time_hash=sha.new(sssecret_key + str(ts)).hexdigest() if query!="": url="https://www.slideshare.net/api/2/search_slideshows?q="+query+"&api_key="+ssapi_key+"&hash="+time_hash+"&ts="+str(ts) elif tag!="": url="https://www.slideshare.net/api/2/get_slideshows_by_tag?tag="+tag+"&limit=10&api_key="+ssapi_key+"&hash="+time_hash+"&ts="+str(ts) else: print "error" response=urllib2.urlopen(url) res=response.read() #print res root = ET.fromstring(res) for child in root: try: link=child[5].text if link not in links: links.insert(0,link) except: pass return links class Yahoo(SearchEngine): def __init__(self): super(Yahoo, self).__init__("yahoo") def search(self,query): url='http://pipes.yahoo.com/pipes/pipe.run?_id=nHNB8TJm3BGumlGA9YS63A&_render=json&searchInput='+query res=urllib2.urlopen(url) res=res.read() res=json.loads(res) response=res["value"].values()[3]#los resultados links=[] for r in response: if r["link"] not in links: links.append(r["link"]) return links
gpl-3.0
6,216,194,071,072,516,000
29.125874
305
0.565692
false
hammerlab/immuno_research
eluted_peptide_prediction.py
1
1459
#!/usr/bin/python import pandas as pd from sklearn import ensemble from sklearn import linear_model from sklearn.cross_validation import cross_val_score import data import reduced_alphabet """ Build models off Dana-Farber Repository for Machine Learning in Immunology For details of the repository, please refer to the papers below: Zhang GL, Lin HH, Keskin DB, Reinherz EL, Brusic V. (2011) Dana-Farber repository for machine learning in immunology. J Immunol Methods. 2011; 374(1-2):18-25. 2nd Machine Learning Competition in Immunology 2012 """ ELUTED = "eluted" BINDING = "binding" NON_BINDING = "nonbinding" def get_url(base_url, group, allele): return base_url + group + "_" + allele + ".htm" def get_data(base_url='http://bio.dfci.harvard.edu/DFRMLI/datasets/', allele='HLA-A0201'): eluted = pd.read_html(get_url(base_url, ELUTED, allele), infer_types=False, header=0)[0] binding = pd.read_html(get_url(base_url, BINDING, allele), infer_types=False, header=0)[0] nonbinding = pd.read_html(get_url(base_url, BINDING, allele), infer_types=False, header=0)[0] return eluted, binding, nonbinding if __name__ == '__main__': E, B, N = get_data() model = ensemble.RandomForestClassifier(n_estimators = 50) EB = pd.concat([E, B]) print EB.count() print N.count() X, Y = data.make_ngram_dataset(EB.Peptide, N.Peptide, max_ngram=2, normalize_row=True, rebalance=True) print cross_val_score(model, X, Y, scoring='roc_auc')
gpl-2.0
-2,094,679,284,893,819,600
31.422222
159
0.718986
false
esoma/wicked
doc/source/conf.py
1
8341
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # wicked documentation build configuration file, created by # sphinx-quickstart on Sat Jan 10 16:10:24 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import wkd # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) import sphinx_rtd_theme # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'wicked' copyright = '2015, Erik Soma' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = wkd.__version__ # The full version, including alpha/beta/rc tags. release = wkd.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'wickeddoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'wicked.tex', 'wicked Documentation', 'Erik Soma', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'wicked', 'wicked Documentation', ['Erik Soma'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'wicked', 'wicked Documentation', 'Erik Soma', 'wicked', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False autoclass_content = 'both' autodoc_member_order = 'bysource'
gpl-3.0
-4,493,148,297,499,592,000
30.126866
79
0.707109
false
manuelli/director
src/python/director/cameracontrol.py
1
15095
import vtk import time import numpy as np from director import transformUtils from director.timercallback import TimerCallback from director import propertyset from collections import OrderedDict class OrbitController(TimerCallback): def __init__(self, view): TimerCallback.__init__(self) self.view = view self.orbitTime = 20.0 def tick(self): speed = 360.0 / self.orbitTime degrees = self.elapsed * speed self.view.camera().Azimuth(degrees) self.view.render() class CameraInterpolator(object): def __init__(self, view): self.view = view self.reset() def getViewCameraCopy(self): camera = vtk.vtkCamera() camera.DeepCopy(self.view.camera()) return camera def reset(self): self.interp = vtk.vtkCameraInterpolator() def addCameraAtTime(self, camera, t): self.interp.AddCamera(t, camera) def addViewCameraAtTime(self, t): self.addCameraAtTime(self.getViewCameraCopy(), t) def setViewCameraAtTime(self, t): self.interp.InterpolateCamera(t, self.view.camera()) self.view.render() class Flyer(TimerCallback): def __init__(self, view): TimerCallback.__init__(self) self.view = view self.flyTime = 0.5 self.startTime = 0.0 self.maintainViewDirection = False self.positionZoom = 0.7 def getCameraCopy(self): camera = vtk.vtkCamera() camera.DeepCopy(self.view.camera()) return camera def zoomTo(self, newFocalPoint, newPosition=None): self.interp = vtk.vtkCameraInterpolator() self.interp.AddCamera(0.0, self.getCameraCopy()) c = self.getCameraCopy() newFocalPoint = np.array(newFocalPoint) oldFocalPoint = np.array(c.GetFocalPoint()) oldPosition = np.array(c.GetPosition()) if newPosition is None: if self.maintainViewDirection: newPosition = oldPosition + (newFocalPoint - oldFocalPoint) else: newPosition = oldPosition newPosition += self.positionZoom*(newFocalPoint - newPosition) #newPosition = newFocalPoint - self.positionZoom*(newFocalPoint - newPosition) c.SetFocalPoint(newFocalPoint) c.SetPosition(newPosition) c.SetViewUp([0.0, 0.0, 1.0]) self.interp.AddCamera(1.0, c) self.startTime = time.time() self.start() def tick(self): elapsed = time.time() - self.startTime t = (elapsed / float(self.flyTime)) if self.flyTime > 0 else 1.0 self.interp.InterpolateCamera(t, self.view.camera()) self.view.render() if t >= 1.0: return False class CameraTracker(object): def __init__(self, view, targetFrame): self.view = view self.targetFrame = targetFrame self.camera = view.camera() self.actions = [] self.properties = propertyset.PropertySet() self.properties.connectPropertyChanged(self.onPropertyChanged) self.setup() def getTargetPose(self): return transformUtils.poseFromTransform(self.targetFrame.transform) def getTargetQuaternion(self): return self.getTargetPose()[1] def getTargetPosition(self): return np.array(self.targetFrame.transform.GetPosition()) def getCameraTransform(self): c = self.camera return transformUtils.getLookAtTransform(c.GetFocalPoint(), c.GetPosition(), c.GetViewUp()) def getCameraToTargetTransform(self, targetFrame): targetToWorld = transformUtils.copyFrame(targetFrame) cameraToWorld = self.getCameraTransform() cameraToTarget = transformUtils.concatenateTransforms([cameraToWorld, targetToWorld.GetLinearInverse()]) focalDistance = np.linalg.norm(np.array(self.camera.GetFocalPoint()) - np.array(self.camera.GetPosition())) return cameraToTarget, focalDistance def setCameraFocalPointToTarget(self): self.camera.SetFocalPoint(self.getTargetPosition()) self.view.render() def getProperties(): return self.properties def setup(self): pass def reset(self): pass def update(self): pass def onAction(self, actionName): pass def getMinimumUpdateRate(self): return 0 def onPropertyChanged(self, propertySet, propertyName): pass class PositionTracker(CameraTracker): def setup(self): self.actions = ['Re-center'] def onAction(self, actionName): if actionName == 'Re-center': self.setCameraFocalPointToTarget() def reset(self): self.lastTargetPosition = self.getTargetPosition() self.lastTargetQuaternion = self.getTargetQuaternion() def update(self): newTargetPosition = self.getTargetPosition() delta = newTargetPosition - self.lastTargetPosition followAxes = [True, True, True] for i in xrange(3): if not followAxes[i]: delta[i] = 0.0 self.lastTargetPosition = newTargetPosition c = self.camera oldFocalPoint = np.array(c.GetFocalPoint()) oldPosition = np.array(c.GetPosition()) c.SetFocalPoint(oldFocalPoint + delta) c.SetPosition(oldPosition + delta) self.view.render() class LookAtTracker(CameraTracker): def update(self): self.setCameraFocalPointToTarget() def reset(self): pass class OrbitTracker(PositionTracker): def setup(self): super(OrbitTracker, self).setup() self.properties.addProperty('Orbit Time (s)', 20, attributes=propertyset.PropertyAttributes(minimum=1, maximum=100, singleStep=1)) def update(self): super(OrbitTracker, self).update() orbitTime = self.properties.getProperty('Orbit Time (s)') speed = 360.0 / orbitTime degrees = self.dt * speed self.view.camera().Azimuth(degrees) self.view.render() def getMinimumUpdateRate(self): return 60 class PositionOrientationTracker(CameraTracker): def storeTargetPose(self): self.lastTargetPosition = self.getTargetPosition() self.lastTargetQuaternion = self.getTargetQuaternion() def reset(self): self.storeTargetPose() targetToWorld = transformUtils.copyFrame(self.targetFrame.transform) cameraToWorld = self.getCameraTransform() cameraToTarget = transformUtils.concatenateTransforms([cameraToWorld, targetToWorld.GetLinearInverse()]) self.boomTransform = cameraToTarget self.focalDistance = np.linalg.norm(np.array(self.camera.GetFocalPoint()) - np.array(self.camera.GetPosition())) def update(self): previousTargetFrame = transformUtils.transformFromPose(self.lastTargetPosition, self.lastTargetQuaternion) self.storeTargetPose() cameraToTarget, focalDistance = self.getCameraToTargetTransform(previousTargetFrame) targetToWorld = self.targetFrame.transform #cameraToTarget = self.boomTransform cameraToWorld = transformUtils.concatenateTransforms([cameraToTarget, targetToWorld]) c = self.camera focalPoint = cameraToWorld.TransformPoint([self.focalDistance, 0, 0]) focalPoint = targetToWorld.GetPosition() #print 'focal distance:', self.focalDistance #print 'cameraToTarget pos:', cameraToTarget.GetPosition() #print 'cameraToWorld pos:', cameraToWorld.GetPosition() #print 'targetToWorld pos:', targetToWorld.GetPosition() #print 'focal pos:', focalPoint c.SetPosition(cameraToWorld.GetPosition()) c.SetFocalPoint(focalPoint) self.view.render() class SmoothFollowTracker(CameraTracker): def getMinimumUpdateRate(self): return 30 def setup(self): self.properties.addProperty('Smooth Time (s)', 0.5, attributes=propertyset.PropertyAttributes(decimals=1, minimum=0.1, maximum=5, singleStep=0.1)) self.properties.addProperty('Distance (m)', 15, attributes=propertyset.PropertyAttributes(decimals=1, minimum=0.5, maximum=1000.0, singleStep=1)) self.properties.addProperty('Elevation (deg)', 10, attributes=propertyset.PropertyAttributes(minimum=-90, maximum=90, singleStep=2)) self.properties.addProperty('Azimuth (deg)', 0, attributes=propertyset.PropertyAttributes(minimum=-180, maximum=180, singleStep=10)) def reset(self): self.currentVelocity = np.array([0.0, 0.0, 0.0]) def update(self): if not self.targetFrame: return r = self.properties.getProperty('Distance (m)') theta = np.radians(90 - self.properties.getProperty('Elevation (deg)')) phi = np.radians(180 - self.properties.getProperty('Azimuth (deg)')) x = r * np.cos(phi) * np.sin(theta) y = r * np.sin(phi) * np.sin(theta) z = r * np.cos(theta) c = self.camera targetToWorld = self.targetFrame.transform currentPosition = np.array(c.GetPosition()) desiredPosition = np.array(targetToWorld.TransformPoint([x, y, z])) smoothTime = self.properties.getProperty('Smooth Time (s)') newPosition, self.currentVelocity = smoothDamp(currentPosition, desiredPosition, self.currentVelocity, smoothTime, maxSpeed=100, deltaTime=self.dt) trackerToWorld = transformUtils.getLookAtTransform(targetToWorld.GetPosition(), newPosition) c.SetFocalPoint(targetToWorld.GetPosition()) c.SetPosition(trackerToWorld.GetPosition()) self.view.render() class TargetFrameConverter(object): def __init__(self): self.targetFrame = None def getTargetFrame(self): return self.targetFrame @classmethod def canConvert(cls, obj): return False class CameraTrackerManager(object): def __init__(self): self.target = None self.targetFrame = None self.trackerClass = None self.camera = None self.view = None self.timer = TimerCallback() self.timer.callback = self.updateTimer self.addTrackers() self.initTracker() def updateTimer(self): tNow = time.time() dt = tNow - self.tLast if dt < self.timer.elapsed/2.0: return self.update() def setView(self, view): self.view = view self.camera = view.camera() def setTarget(self, target): ''' target should be an instance of TargetFrameConverter or any object that provides a method getTargetFrame(). ''' if target == self.target: return self.disableActiveTracker() if not target: return self.target = target self.targetFrame = target.getTargetFrame() self.callbackId = self.targetFrame.connectFrameModified(self.onTargetFrameModified) self.initTracker() def disableActiveTracker(self): if self.targetFrame: self.targetFrame.disconnectFrameModified(self.callbackId) self.target = None self.targetFrame = None self.initTracker() def update(self): tNow = time.time() dt = tNow - self.tLast self.tLast = tNow if self.activeTracker: self.activeTracker.dt = dt self.activeTracker.update() def reset(self): self.tLast = time.time() if self.activeTracker: self.activeTracker.reset() def getModeActions(self): if self.activeTracker: return self.activeTracker.actions return [] def onModeAction(self, actionName): if self.activeTracker: self.activeTracker.onAction(actionName) def getModeProperties(self): if self.activeTracker: return self.activeTracker.properties return None def onTargetFrameModified(self, frame): self.update() def initTracker(self): self.timer.stop() self.activeTracker = self.trackerClass(self.view, self.targetFrame) if (self.trackerClass and self.targetFrame) else None self.reset() self.update() if self.activeTracker: minimumUpdateRate = self.activeTracker.getMinimumUpdateRate() if minimumUpdateRate > 0: self.timer.targetFps = minimumUpdateRate self.timer.start() def addTrackers(self): self.trackers = OrderedDict([ ['Off', None], ['Position', PositionTracker], ['Position & Orientation', PositionOrientationTracker], ['Smooth Follow', SmoothFollowTracker], ['Look At', LookAtTracker], ['Orbit', OrbitTracker], ]) def setTrackerMode(self, modeName): assert modeName in self.trackers self.trackerClass = self.trackers[modeName] self.initTracker() def smoothDamp(current, target, currentVelocity, smoothTime, maxSpeed, deltaTime): ''' Based on Unity3D SmoothDamp See: http://answers.unity3d.com/answers/310645/view.html ''' smoothTime = max(0.0001, smoothTime) num = 2.0 / smoothTime; num2 = num * deltaTime; num3 = 1.0 / (1.0 + num2 + 0.48 * num2 * num2 + 0.235 * num2 * num2 * num2) num4 = current - target num5 = target num6 = maxSpeed * smoothTime num4 = np.clip(num4, -num6, num6) target = current - num4 num7 = (currentVelocity + num * num4) * deltaTime currentVelocity = (currentVelocity - num * num7) * num3 num8 = target + (num4 + num7) * num3 for i in xrange(len(current)): if (num5[i] - current[i] > 0.0 == num8[i] > num5[i]): num8[i] = num5[i] currentVelocity[i] = (num8[i] - num5[i]) / deltaTime return num8, currentVelocity class RobotModelFollower(object): def __init__(self, view, robotModel, jointController): self.view = view self.robotModel = robotModel self.jointController = jointController self.followAxes = [True, True, True] self.callbackId = None def start(self): self.callbackId = self.robotModel.connectModelChanged(self.onModelChanged) self.lastTrackPosition = np.array(self.jointController.q[:3]) def stop(self): self.robotModel.disconnectModelChanged(self.callbackId) def getCameraCopy(self): camera = vtk.vtkCamera() camera.DeepCopy(self.view.camera()) return camera def onModelChanged(self, model): newTrackPosition = np.array(self.jointController.q[:3]) delta = newTrackPosition - self.lastTrackPosition for i in xrange(3): if not self.followAxes[i]: delta[i] = 0.0 self.lastTrackPosition = newTrackPosition c = self.view.camera() oldFocalPoint = np.array(c.GetFocalPoint()) oldPosition = np.array(c.GetPosition()) c.SetFocalPoint(oldFocalPoint + delta) c.SetPosition(oldPosition + delta) self.view.render()
bsd-3-clause
-7,207,181,618,333,525,000
28.656189
155
0.645711
false
GreenVars/diary
diary/diary.py
1
7909
from __future__ import absolute_import from __future__ import print_function import atexit import os.path import codecs import sys from diary import logdb from diary import levels from diary import formats from diary import events _PY2 = sys.version_info[0] == 2 class Diary(object): """Diary is a low-dependency and easy to use logger""" def __init__(self, path, file_name="diary.txt", db_name="diary.db", event=events.Event, log_format=formats.standard, db=logdb.DiaryDB, async=True, debug_enabled=True, encoding="utf-8", also_print=True): """ Initialization takes a file path meant to make startup simple :param path: str of a path pointing to: * An empty directory where Diary will create a db and log * A text file where Diary will append * A database file where Diary will read and write * A directory with a database and txt file - looks for file_name and db_name arguments * A nonexistent path for where a db or a log will be made :param file_name: a specified name for a log text file :param db_name: a specified name for a log database file :param event: Event object to construct log info :param log_format: function to format logging info (see formats.py) :param db: database class for reading/writing database :param async: boolean if logging should occur in own thread :param debug_enabled: boolean if logger supports debugging :param encoding: str type of encoding to use for writing to log file :param also_print: boolean if a logged statement will also be printed to the console """ self.path = path self.encoding = encoding self.log_file = None self.db_file = None self.also_print = also_print if os.path.exists(path): if os.path.isdir(path): self.log_file = codecs.open(os.path.join(path, file_name), mode='a+', buffering=1, encoding=self.encoding) self.db_file = open(os.path.join(path, db_name), 'a') elif os.path.isfile(path): head, tail = os.path.split(path) _, ext = os.path.splitext(tail) if ext == '': self.log_file = codecs.open(path, mode='a+', buffering=1, encoding=self.encoding) elif tail == db_name or ext[1:] in ('db', 'sql', 'sqlite', 'sqlite3'): self.db_file = open(path, 'a') elif tail == file_name or ext[1:] in ('txt', 'text', 'log'): self.log_file = codecs.open(path, mode='a+', buffering=1, encoding=self.encoding) else: raise ValueError("Could not resolve to database or text file: {}".format( path)) else: raise ValueError("Could not handle path: {} | did not find a directory or file".format( path)) else: try: _, ext = os.path.splitext(path) if len(ext) > 1: if ext[1:] in ('db', 'sql', 'sqlite', 'sqlite3'): self.db_file = open(path, 'a') else: self.log_file = codecs.open(path, mode='a+', buffering=1, encoding=self.encoding) else: self.log_file = codecs.open(path, mode='a+', buffering=1, encoding=self.encoding) except Exception as e: raise e @atexit.register def cleanup(): """Called on system exit to ensure logs are saved.""" if self.async: self.thread.join() if self.db_file: self.db_file.close() self.logdb.close() if self.log_file: self.log_file.close() self.timer = None self.close = cleanup self.event = event self.format = log_format self.db = db self.async = async self.debug_enabled = debug_enabled self.logdb = None self.last_logged_event = None sets_db = self.db_file is not None if async: from diary.logthread import DiaryThread self.thread = DiaryThread(self, sets_db=sets_db) elif sets_db: self.set_db() def set_db(self): """ In order to keep databases thread safe set_db is called by self.thread if async is enabled. """ if self.db_file is None: raise ValueError("Cannot set a database without a database file") self.logdb = self.db(self.db_file.name) def set_timer(self, interval, func, *args, **kwargs): """Set a timer to log an event at every interval :param interval: time in milliseconds to repeat func :param func: func to execute :param args: args to pass into func :param kwargs: kwargs to pass into func """ if self.async is False: raise RuntimeError("In order to set a timer async must be enabled") from diary.RepeatedTimer import RepeatedTimer self.timer = RepeatedTimer(interval, func, args=args, kwargs=kwargs) self.timer.start() def _write(self, event): """Write an event object to the proper channel :param event: event object to log """ if self.db_file: self.logdb.log(event) if self.log_file: if event.formatter is None: to_write = self.format(event) + '\n' else: to_write = event.formatted() + '\n' if _PY2: to_write = to_write.decode(self.encoding) self.log_file.write(to_write) if self.also_print: print(to_write) self.last_logged_event = event def log(self, info, level=levels.info, **kwargs): """Log info to its relevant level (see levels.py) :param info: info for logging :param level: @level decorated function handle relevant behavior """ if isinstance(info, events.Event): event_to_log = info else: event_to_log = self.event(info, level) if _PY2 and isinstance(event_to_log.info, unicode): # short-circuiting at its best event_to_log.info = event_to_log.info.encode(self.encoding) if self.async: level(event_to_log, self.thread.add, **kwargs) else: level(event_to_log, self._write, **kwargs) def info(self, info, **kwargs): """Log general info :param info: info relevant to application processes """ if isinstance(info, events.Event): info.set_level(levels.info) self.log(info, level=levels.info, **kwargs) def warn(self, info, **kwargs): """Log info that requires a warning :param info: info relevant to a warning """ if isinstance(info, events.Event): info.set_level(levels.warn) self.log(info, level=levels.warn, **kwargs) def error(self, info, **kwargs): """Log info that may cause an error :param info: info relevant to an error """ if isinstance(info, events.Event): info.set_level(levels.error) self.log(info, level=levels.error, **kwargs) def debug(self, info, **kwargs): """Log info that may only be helpful to the developer Will only log if debugging is enabled :param info: info for the devs """ if isinstance(info, events.Event): info.set_level(levels.debug) if self.debug_enabled: self.log(info, level=levels.debug, **kwargs)
mit
-2,702,960,208,736,069,000
35.114155
122
0.561259
false
iDigBio/idigbio-python-client
examples/fetch_media/fetch_media.py
1
9969
from __future__ import print_function try: from idigbio.json_client import iDbApiJson import requests import shutil import os import sys import time import argparse import json except ImportError as e: print ("IMPORT ERROR (This exception is likely caused by a missing module): '{0}'".format(e)) raise SystemExit help_blob = """ This script will download media that are associated with the specimens returned by an iDigBio specimen record search query. The iDigBio Query Format is documented at https://github.com/idigbio/idigbio-search-api/wiki/Query-Format Notes on the --output-dir / -o parameter: If the specified output directory does not exist, it will be created. Omitting this parameter will cause a new directory to be created under the current directory, named in a timestamp-like style. ### Sample ### $ python fetch_media.py -o /tmp/idigbio_media_downloads -m 5 -q '{"genus": "acer"}' <snip> DOWNLOADING FINISHED with 5 successes and 0 failures Media downloads are in output directory: '/tmp/idigbio_media_downloads' $ ls -l /tmp/idigbio_media_downloads total 604 -rw-rw-r-- 1 dstoner dstoner 93767 Jun 6 09:19 0c9b4669-edaa-467d-b240-f3311c764c04_webview.jpg -rw-rw-r-- 1 dstoner dstoner 114132 Jun 6 09:19 1f2dbb2b-75ba-48cb-b34c-1ca003b4a38d_webview.jpg -rw-rw-r-- 1 dstoner dstoner 147900 Jun 6 09:19 56f84bfe-5095-4fbb-b9e0-08cef3fdb448_webview.jpg -rw-rw-r-- 1 dstoner dstoner 117882 Jun 6 09:19 6a0d0c92-d2be-4ae5-9fef-60453778b0f0_webview.jpg -rw-rw-r-- 1 dstoner dstoner 136202 Jun 6 09:19 b98b9704-5ac5-4b53-b74d-d2d4d7d46ddd_webview.jpg ### The media record for the first download above would be viewable in the iDigBio portal at https://www.idigbio.org/portal/mediarecords/0c9b4669-edaa-467d-b240-f3311c764c04 """ # MAX_MAX_COUNT is a safety limit to keep an erroneous query from downloading all of iDigBio's media. # Change this value if you are legitimately trying to download more than 100k media. # Also, please consider letting us know that you are doing this because we are interested # in these kinds of use cases. [email protected] MAX_MAX_COUNT = 100000 DEFAULT_MAX_COUNT = 100 SIZES = ["thumbnail", "webview", "fullsize"] DEFAULT_SIZE = "webview" DEFAULT_OUTPUT_DIR = None argparser = argparse.ArgumentParser(description=help_blob, formatter_class=argparse.RawDescriptionHelpFormatter) argparser.add_argument("-m", "--max", type=int, default=DEFAULT_MAX_COUNT, help="Maximum number of records to be returned from search query. Default: {0}, Maximum allowed value: {1}".format(DEFAULT_MAX_COUNT,MAX_MAX_COUNT)) argparser.add_argument("-s", "--size", choices=SIZES, default=DEFAULT_SIZE, help="Size of derivative to download. Default: '{0}'".format(DEFAULT_SIZE)) argparser.add_argument("-o", "--output-dir", default=DEFAULT_OUTPUT_DIR, help="Directory path for downloaded media files. Default: a new directory will be created under current directory") argparser.add_argument("-d", "--debug", default=False, action='store_true', help="enable debugging output") arg_group = argparser.add_mutually_exclusive_group(required=True) arg_group.add_argument("-q", "--query", help="query in iDigBio Query Format.") arg_group.add_argument("--query-file", help="file path containing query string in iDigBio Query Format") arg_group.add_argument("--records-uuids-file", help="file path containing list of iDigBio record uuids, one per line") arg_group.add_argument("--mediarecords-uuids-file", help="file path containing list of iDigBio mediarecord uuids, one per line") args = argparser.parse_args() MAX_RESULTS = max(0,(min(args.max, MAX_MAX_COUNT))) SIZE = args.size output_directory = args.output_dir QUERY_TYPE = 'rq' debug_flag = args.debug if debug_flag: print () print ("** DEBUGGING ENABLED **") print () print () modulenames = set(sys.modules)&set(globals()) allmodules = [sys.modules[name] for name in modulenames] print ("Loaded modules...") for each_mod in allmodules: print (each_mod) print () def read_query_file(query_filename): if os.path.isfile(query_filename): with open(query_filename, 'r') as queryfile: q = queryfile.read() return q else: print ("*** Error: query file could not be read or does not exist.") raise SystemExit def get_query_from_uuids_list_file(uuids_file): uuids_from_file = [] with open(uuids_file) as uf: for line in uf: uuids_from_file.append(line.strip()) q = '{"uuid":' q += json.dumps(uuids_from_file) q += '}' return q query = None if args.query: # use the query as supplied on the command line query = args.query if args.query_file: # use the query as supplied in a file query = read_query_file(args.query_file) if args.records_uuids_file: # generate a query from a list of record uuids query = get_query_from_uuids_list_file(args.records_uuids_file) if args.mediarecords_uuids_file: # generate a query from a list of mediarecord uuids query = get_query_from_uuids_list_file(args.mediarecords_uuids_file) QUERY_TYPE = 'mq' # Verify that the provided query string is valid JSON if query is None: print ("*** ERROR! Query source is empty or unusable.") else: try: query_json = json.loads(query) except Exception as e: print ('*** FATAL ERROR parsing query string:') print (e) print ('*** Supplied query string:') print (query) raise SystemExit # The following should work whether one has specified an existing directory name, created a new directory by name, # or left the output_directory unspecified. if output_directory is None: now_ms = str(time.time()) output_directory = time.strftime("%Y%m%d%H%M%S") + "." + str(time.time()).rsplit('.')[ len(now_ms.rsplit('.')) - 1] try: os.makedirs(output_directory) except: print ("*** ERROR! Could not create directroy for output: '{0}'".format(os.path.abspath(output_directory))) raise SystemExit else: if not os.path.exists(output_directory): try: os.makedirs(output_directory) except: print ("*** ERROR! Could not create directroy for output: '{0}'".format(os.path.abspath(output_directory))) raise SystemExit def get_media_with_naming (output_dir, media_url, uuid, size): """ Download a media file to a directory and name it based on the input parameters. 'output_dir' controls where the download is placed. 'media_url' is the url / link to the media that will be downloaded. 'uuid' is used to uniquely identify the output filename. 'SIZE' is the class of image derivative, useful in the output filename. """ try: response = requests.get(media_url, stream=True) response.raise_for_status() except (requests.exceptions.HTTPError, requests.exceptions.ConnectionError) as e: print('*** HTTP ERROR: {0}'.format(e)) return False ### iDigBio returns 200 OK and displays an SVG status image when a derivative ### is not present. Check for "Content-Type: image/svg+xml" header to notice this condition. if response.headers['Content-Type'] == 'image/svg+xml': print("*** WARNING - No media at '{0}'".format(media_url)) return False # Output filenames will be of the form: {mediarecord_uuid}_{SIZE}.jpg local_filepath = os.path.join(output_dir, uuid + '_' + SIZE + '.jpg') try: with open(local_filepath, 'wb') as out_file: shutil.copyfileobj(response.raw, out_file) return True except: return False if __name__ == '__main__': api = iDbApiJson() print () print ("Using query:") print () print (query) print () print ("OPERATING PARAMETERS...") print () print ("Maximum number of media to fetch: {:d}".format(MAX_RESULTS)) print ("Media derivative size: {0}".format(SIZE)) print ("Output directory: {0}".format(os.path.abspath(output_directory))) print ("Query Type: {0}".format(QUERY_TYPE)) print () print ("EXECUTING SEARCH QUERY...") print () if QUERY_TYPE == 'mq': results = api.search_media(mq=query, limit=MAX_RESULTS) else: results = api.search_media(rq=query, limit=MAX_RESULTS) print () if debug_flag: print ("Results JSON:") print (json.dumps(results)) print () print ("Search query produced {:d} results.".format(results['itemCount'])) print () if results['itemCount'] == 0 or MAX_RESULTS == 0: print ("Nothing to download. Exiting.") raise SystemExit if results['itemCount'] > MAX_RESULTS: print ("*** WARNING: search query produced more results than the designated maximum number of media to fetch.") print ("*** Use the -m or --max parameter to increase the maximum number of media to fetch.") print () print("BEGINNING DOWNLOADS NOW...") print () successes = 0 failures = 0 for each in results['items']: media_record_uuid = each['indexTerms']['uuid'] media_url = 'https://api.idigbio.org/v2/media/' + media_record_uuid + '?size=' + SIZE print ("Downloading: '{0}'".format(media_url)) if get_media_with_naming(output_directory, media_url, media_record_uuid, SIZE): successes += 1 else: failures += 1 print () print ("DOWNLOADING FINISHED with {0:d} successes and {1:d} failures".format(successes, failures)) print () print ("Media downloads are in output directory: '{0}'".format(os.path.abspath(output_directory)))
mit
-8,380,299,812,791,761,000
36.618868
171
0.657438
false
yousrabk/mne-python
mne/io/constants.py
1
32419
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # # License: BSD (3-clause) class Bunch(dict): """ Container object for datasets: dictionnary-like object that exposes its keys as attributes. """ def __init__(self, **kwargs): dict.__init__(self, kwargs) self.__dict__ = self class BunchConst(Bunch): """Class to prevent us from re-defining constants (DRY)""" def __setattr__(self, attr, val): if attr != '__dict__' and hasattr(self, attr): raise AttributeError('Attribute "%s" already set' % attr) super(BunchConst, self).__setattr__(attr, val) FIFF = BunchConst() # # Blocks # FIFF.FIFFB_ROOT = 999 FIFF.FIFFB_MEAS = 100 FIFF.FIFFB_MEAS_INFO = 101 FIFF.FIFFB_RAW_DATA = 102 FIFF.FIFFB_PROCESSED_DATA = 103 FIFF.FIFFB_EVOKED = 104 FIFF.FIFFB_ASPECT = 105 FIFF.FIFFB_SUBJECT = 106 FIFF.FIFFB_ISOTRAK = 107 FIFF.FIFFB_HPI_MEAS = 108 FIFF.FIFFB_HPI_RESULT = 109 FIFF.FIFFB_HPI_COIL = 110 FIFF.FIFFB_PROJECT = 111 FIFF.FIFFB_CONTINUOUS_DATA = 112 FIFF.FIFFB_VOID = 114 FIFF.FIFFB_EVENTS = 115 FIFF.FIFFB_INDEX = 116 FIFF.FIFFB_DACQ_PARS = 117 FIFF.FIFFB_REF = 118 FIFF.FIFFB_SMSH_RAW_DATA = 119 FIFF.FIFFB_SMSH_ASPECT = 120 FIFF.FIFFB_HPI_SUBSYSTEM = 121 FIFF.FIFFB_EPOCHS = 122 FIFF.FIFFB_ICA = 123 FIFF.FIFFB_SPHERE = 300 # Concentric sphere model related FIFF.FIFFB_BEM = 310 # Boundary-element method FIFF.FIFFB_BEM_SURF = 311 # Boundary-element method surfaces FIFF.FIFFB_CONDUCTOR_MODEL = 312 # One conductor model definition FIFF.FIFFB_PROJ = 313 FIFF.FIFFB_PROJ_ITEM = 314 FIFF.FIFFB_MRI = 200 FIFF.FIFFB_MRI_SET = 201 FIFF.FIFFB_MRI_SLICE = 202 FIFF.FIFFB_MRI_SCENERY = 203 # These are for writing unrelated 'slices' FIFF.FIFFB_MRI_SCENE = 204 # Which are actually 3D scenes... FIFF.FIFFB_MRI_SEG = 205 # MRI segmentation data FIFF.FIFFB_MRI_SEG_REGION = 206 # One MRI segmentation region FIFF.FIFFB_PROCESSING_HISTORY = 900 FIFF.FIFFB_PROCESSING_RECORD = 901 FIFF.FIFFB_DATA_CORRECTION = 500 FIFF.FIFFB_CHANNEL_DECOUPLER = 501 FIFF.FIFFB_SSS_INFO = 502 FIFF.FIFFB_SSS_CAL = 503 FIFF.FIFFB_SSS_ST_INFO = 504 FIFF.FIFFB_SSS_BASES = 505 FIFF.FIFFB_SMARTSHIELD = 510 # # Of general interest # FIFF.FIFF_FILE_ID = 100 FIFF.FIFF_DIR_POINTER = 101 FIFF.FIFF_BLOCK_ID = 103 FIFF.FIFF_BLOCK_START = 104 FIFF.FIFF_BLOCK_END = 105 FIFF.FIFF_FREE_LIST = 106 FIFF.FIFF_FREE_BLOCK = 107 FIFF.FIFF_NOP = 108 FIFF.FIFF_PARENT_FILE_ID = 109 FIFF.FIFF_PARENT_BLOCK_ID = 110 FIFF.FIFF_BLOCK_NAME = 111 FIFF.FIFF_BLOCK_VERSION = 112 FIFF.FIFF_CREATOR = 113 # Program that created the file (string) FIFF.FIFF_MODIFIER = 114 # Program that modified the file (string) FIFF.FIFF_REF_ROLE = 115 FIFF.FIFF_REF_FILE_ID = 116 FIFF.FIFF_REF_FILE_NUM = 117 FIFF.FIFF_REF_FILE_NAME = 118 # # Megacq saves the parameters in these tags # FIFF.FIFF_DACQ_PARS = 150 FIFF.FIFF_DACQ_STIM = 151 FIFF.FIFF_NCHAN = 200 FIFF.FIFF_SFREQ = 201 FIFF.FIFF_DATA_PACK = 202 FIFF.FIFF_CH_INFO = 203 FIFF.FIFF_MEAS_DATE = 204 FIFF.FIFF_SUBJECT = 205 FIFF.FIFF_COMMENT = 206 FIFF.FIFF_NAVE = 207 FIFF.FIFF_FIRST_SAMPLE = 208 # The first sample of an epoch FIFF.FIFF_LAST_SAMPLE = 209 # The last sample of an epoch FIFF.FIFF_ASPECT_KIND = 210 FIFF.FIFF_REF_EVENT = 211 FIFF.FIFF_EXPERIMENTER = 212 FIFF.FIFF_DIG_POINT = 213 FIFF.FIFF_CH_POS = 214 FIFF.FIFF_HPI_SLOPES = 215 FIFF.FIFF_HPI_NCOIL = 216 FIFF.FIFF_REQ_EVENT = 217 FIFF.FIFF_REQ_LIMIT = 218 FIFF.FIFF_LOWPASS = 219 FIFF.FIFF_BAD_CHS = 220 FIFF.FIFF_ARTEF_REMOVAL = 221 FIFF.FIFF_COORD_TRANS = 222 FIFF.FIFF_HIGHPASS = 223 FIFF.FIFF_CH_CALS = 22 # This will not occur in new files FIFF.FIFF_HPI_BAD_CHS = 225 # List of channels considered to be bad in hpi FIFF.FIFF_HPI_CORR_COEFF = 226 # Hpi curve fit correlations FIFF.FIFF_EVENT_COMMENT = 227 # Comment about the events used in averaging FIFF.FIFF_NO_SAMPLES = 228 # Number of samples in an epoch FIFF.FIFF_FIRST_TIME = 229 # Time scale minimum FIFF.FIFF_SUBAVE_SIZE = 230 # Size of a subaverage FIFF.FIFF_SUBAVE_FIRST = 231 # The first epoch # contained in the subaverage FIFF.FIFF_NAME = 233 # Intended to be a short name. FIFF.FIFF_DESCRIPTION = FIFF.FIFF_COMMENT # (Textual) Description of an object FIFF.FIFF_DIG_STRING = 234 # String of digitized points FIFF.FIFF_LINE_FREQ = 235 # Line frequency FIFF.FIFF_CUSTOM_REF = 236 # Whether a custom reference was applied to the data (NB: overlaps with HPI const #) # # HPI fitting program tags # FIFF.FIFF_HPI_COIL_FREQ = 236 # HPI coil excitation frequency FIFF.FIFF_HPI_COIL_MOMENTS = 240 # Estimated moment vectors for the HPI coil magnetic dipoles FIFF.FIFF_HPI_FIT_GOODNESS = 241 # Three floats indicating the goodness of fit FIFF.FIFF_HPI_FIT_ACCEPT = 242 # Bitmask indicating acceptance (see below) FIFF.FIFF_HPI_FIT_GOOD_LIMIT = 243 # Limit for the goodness-of-fit FIFF.FIFF_HPI_FIT_DIST_LIMIT = 244 # Limit for the coil distance difference FIFF.FIFF_HPI_COIL_NO = 245 # Coil number listed by HPI measurement FIFF.FIFF_HPI_COILS_USED = 246 # List of coils finally used when the transformation was computed FIFF.FIFF_HPI_DIGITIZATION_ORDER = 247 # Which Isotrak digitization point corresponds to each of the coils energized # # Pointers # FIFF.FIFFV_NEXT_SEQ = 0 FIFF.FIFFV_NEXT_NONE = -1 # # Channel types # FIFF.FIFFV_MEG_CH = 1 FIFF.FIFFV_REF_MEG_CH = 301 FIFF.FIFFV_EEG_CH = 2 FIFF.FIFFV_MCG_CH = 201 FIFF.FIFFV_STIM_CH = 3 FIFF.FIFFV_EOG_CH = 202 FIFF.FIFFV_EMG_CH = 302 FIFF.FIFFV_ECG_CH = 402 FIFF.FIFFV_MISC_CH = 502 FIFF.FIFFV_RESP_CH = 602 # Respiration monitoring FIFF.FIFFV_SEEG_CH = 702 # stereotactic EEG FIFF.FIFFV_SYST_CH = 900 # some system status information (on Triux systems only) FIFF.FIFFV_IAS_CH = 910 # Internal Active Shielding data (maybe on Triux only) FIFF.FIFFV_EXCI_CH = 920 # flux excitation channel used to be a stimulus channel # # Quaternion channels for head position monitoring # FIFF.FIFFV_QUAT_0 = 700 # Quaternion param q0 obsolete for unit quaternion FIFF.FIFFV_QUAT_1 = 701 # Quaternion param q1 rotation FIFF.FIFFV_QUAT_2 = 702 # Quaternion param q2 rotation FIFF.FIFFV_QUAT_3 = 703 # Quaternion param q3 rotation FIFF.FIFFV_QUAT_4 = 704 # Quaternion param q4 translation FIFF.FIFFV_QUAT_5 = 705 # Quaternion param q5 translation FIFF.FIFFV_QUAT_6 = 706 # Quaternion param q6 translation FIFF.FIFFV_HPI_G = 707 # Goodness-of-fit in continuous hpi FIFF.FIFFV_HPI_ERR = 708 # Estimation error in continuous hpi FIFF.FIFFV_HPI_MOV = 709 # Estimated head movement speed in continuous hpi # # Coordinate frames # FIFF.FIFFV_COORD_UNKNOWN = 0 FIFF.FIFFV_COORD_DEVICE = 1 FIFF.FIFFV_COORD_ISOTRAK = 2 FIFF.FIFFV_COORD_HPI = 3 FIFF.FIFFV_COORD_HEAD = 4 FIFF.FIFFV_COORD_MRI = 5 FIFF.FIFFV_COORD_MRI_SLICE = 6 FIFF.FIFFV_COORD_MRI_DISPLAY = 7 FIFF.FIFFV_COORD_DICOM_DEVICE = 8 FIFF.FIFFV_COORD_IMAGING_DEVICE = 9 # # Needed for raw and evoked-response data # FIFF.FIFF_DATA_BUFFER = 300 # Buffer containing measurement data FIFF.FIFF_DATA_SKIP = 301 # Data skip in buffers FIFF.FIFF_EPOCH = 302 # Buffer containing one epoch and channel FIFF.FIFF_DATA_SKIP_SAMP = 303 # Data skip in samples FIFF.FIFF_MNE_BASELINE_MIN = 304 # Time of baseline beginning FIFF.FIFF_MNE_BASELINE_MAX = 305 # Time of baseline end # # Info on subject # FIFF.FIFF_SUBJ_ID = 400 # Subject ID FIFF.FIFF_SUBJ_FIRST_NAME = 401 # First name of the subject FIFF.FIFF_SUBJ_MIDDLE_NAME = 402 # Middle name of the subject FIFF.FIFF_SUBJ_LAST_NAME = 403 # Last name of the subject FIFF.FIFF_SUBJ_BIRTH_DAY = 404 # Birthday of the subject FIFF.FIFF_SUBJ_SEX = 405 # Sex of the subject FIFF.FIFF_SUBJ_HAND = 406 # Handedness of the subject FIFF.FIFF_SUBJ_WEIGHT = 407 # Weight of the subject FIFF.FIFF_SUBJ_HEIGHT = 408 # Height of the subject FIFF.FIFF_SUBJ_COMMENT = 409 # Comment about the subject FIFF.FIFF_SUBJ_HIS_ID = 410 # ID used in the Hospital Information System FIFF.FIFF_PROJ_ID = 500 FIFF.FIFF_PROJ_NAME = 501 FIFF.FIFF_PROJ_AIM = 502 FIFF.FIFF_PROJ_PERSONS = 503 FIFF.FIFF_PROJ_COMMENT = 504 FIFF.FIFF_EVENT_CHANNELS = 600 # Event channel numbers FIFF.FIFF_EVENT_LIST = 601 # List of events (integers: <sample before after> FIFF.FIFF_EVENT_CHANNEL = 602 # Event channel FIFF.FIFF_EVENT_BITS = 603 # Event bits array # # Tags used in saving SQUID characteristics etc. # FIFF.FIFF_SQUID_BIAS = 701 FIFF.FIFF_SQUID_OFFSET = 702 FIFF.FIFF_SQUID_GATE = 703 # # Aspect values used to save charactersitic curves of SQUIDs. (mjk) # FIFF.FIFFV_ASPECT_IFII_LOW = 1100 FIFF.FIFFV_ASPECT_IFII_HIGH = 1101 FIFF.FIFFV_ASPECT_GATE = 1102 # # Values for file references # FIFF.FIFFV_ROLE_PREV_FILE = 1 FIFF.FIFFV_ROLE_NEXT_FILE = 2 # # References # FIFF.FIFF_REF_PATH = 1101 # # Different aspects of data # FIFF.FIFFV_ASPECT_AVERAGE = 100 # Normal average of epochs FIFF.FIFFV_ASPECT_STD_ERR = 101 # Std. error of mean FIFF.FIFFV_ASPECT_SINGLE = 102 # Single epoch cut out from the continuous data FIFF.FIFFV_ASPECT_SUBAVERAGE = 103 FIFF.FIFFV_ASPECT_ALTAVERAGE = 104 # Alternating subaverage FIFF.FIFFV_ASPECT_SAMPLE = 105 # A sample cut out by graph FIFF.FIFFV_ASPECT_POWER_DENSITY = 106 # Power density spectrum FIFF.FIFFV_ASPECT_DIPOLE_WAVE = 200 # Dipole amplitude curve # # BEM surface IDs # FIFF.FIFFV_BEM_SURF_ID_UNKNOWN = -1 FIFF.FIFFV_BEM_SURF_ID_BRAIN = 1 FIFF.FIFFV_BEM_SURF_ID_SKULL = 3 FIFF.FIFFV_BEM_SURF_ID_HEAD = 4 FIFF.FIFF_BEM_SURF_ID = 3101 # int surface number FIFF.FIFF_BEM_SURF_NAME = 3102 # string surface name FIFF.FIFF_BEM_SURF_NNODE = 3103 # int number of nodes on a surface FIFF.FIFF_BEM_SURF_NTRI = 3104 # int number of triangles on a surface FIFF.FIFF_BEM_SURF_NODES = 3105 # float surface nodes (nnode,3) FIFF.FIFF_BEM_SURF_TRIANGLES = 3106 # int surface triangles (ntri,3) FIFF.FIFF_BEM_SURF_NORMALS = 3107 # float surface node normal unit vectors FIFF.FIFF_BEM_POT_SOLUTION = 3110 # float ** The solution matrix FIFF.FIFF_BEM_APPROX = 3111 # int approximation method, see below FIFF.FIFF_BEM_COORD_FRAME = 3112 # The coordinate frame of the model FIFF.FIFF_BEM_SIGMA = 3113 # Conductivity of a compartment FIFF.FIFFV_BEM_APPROX_CONST = 1 # The constant potential approach FIFF.FIFFV_BEM_APPROX_LINEAR = 2 # The linear potential approach # # More of those defined in MNE # FIFF.FIFFV_MNE_SURF_UNKNOWN = -1 FIFF.FIFFV_MNE_SURF_LEFT_HEMI = 101 FIFF.FIFFV_MNE_SURF_RIGHT_HEMI = 102 FIFF.FIFFV_MNE_SURF_MEG_HELMET = 201 # Use this irrespective of the system # # These relate to the Isotrak data # FIFF.FIFFV_POINT_CARDINAL = 1 FIFF.FIFFV_POINT_HPI = 2 FIFF.FIFFV_POINT_EEG = 3 FIFF.FIFFV_POINT_ECG = FIFF.FIFFV_POINT_EEG FIFF.FIFFV_POINT_EXTRA = 4 FIFF.FIFFV_POINT_LPA = 1 FIFF.FIFFV_POINT_NASION = 2 FIFF.FIFFV_POINT_RPA = 3 # # SSP # FIFF.FIFF_PROJ_ITEM_KIND = 3411 FIFF.FIFF_PROJ_ITEM_TIME = 3412 FIFF.FIFF_PROJ_ITEM_NVEC = 3414 FIFF.FIFF_PROJ_ITEM_VECTORS = 3415 FIFF.FIFF_PROJ_ITEM_DEFINITION = 3416 FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST = 3417 # # MRIs # FIFF.FIFF_MRI_SOURCE_PATH = FIFF.FIFF_REF_PATH FIFF.FIFF_MRI_SOURCE_FORMAT = 2002 FIFF.FIFF_MRI_PIXEL_ENCODING = 2003 FIFF.FIFF_MRI_PIXEL_DATA_OFFSET = 2004 FIFF.FIFF_MRI_PIXEL_SCALE = 2005 FIFF.FIFF_MRI_PIXEL_DATA = 2006 FIFF.FIFF_MRI_PIXEL_OVERLAY_ENCODING = 2007 FIFF.FIFF_MRI_PIXEL_OVERLAY_DATA = 2008 FIFF.FIFF_MRI_BOUNDING_BOX = 2009 FIFF.FIFF_MRI_WIDTH = 2010 FIFF.FIFF_MRI_WIDTH_M = 2011 FIFF.FIFF_MRI_HEIGHT = 2012 FIFF.FIFF_MRI_HEIGHT_M = 2013 FIFF.FIFF_MRI_DEPTH = 2014 FIFF.FIFF_MRI_DEPTH_M = 2015 FIFF.FIFF_MRI_THICKNESS = 2016 FIFF.FIFF_MRI_SCENE_AIM = 2017 FIFF.FIFF_MRI_ORIG_SOURCE_PATH = 2020 FIFF.FIFF_MRI_ORIG_SOURCE_FORMAT = 2021 FIFF.FIFF_MRI_ORIG_PIXEL_ENCODING = 2022 FIFF.FIFF_MRI_ORIG_PIXEL_DATA_OFFSET = 2023 FIFF.FIFF_MRI_VOXEL_DATA = 2030 FIFF.FIFF_MRI_VOXEL_ENCODING = 2031 FIFF.FIFF_MRI_MRILAB_SETUP = 2100 FIFF.FIFF_MRI_SEG_REGION_ID = 2200 # FIFF.FIFFV_MRI_PIXEL_UNKNOWN = 0 FIFF.FIFFV_MRI_PIXEL_BYTE = 1 FIFF.FIFFV_MRI_PIXEL_WORD = 2 FIFF.FIFFV_MRI_PIXEL_SWAP_WORD = 3 FIFF.FIFFV_MRI_PIXEL_FLOAT = 4 FIFF.FIFFV_MRI_PIXEL_BYTE_INDEXED_COLOR = 5 FIFF.FIFFV_MRI_PIXEL_BYTE_RGB_COLOR = 6 FIFF.FIFFV_MRI_PIXEL_BYTE_RLE_RGB_COLOR = 7 FIFF.FIFFV_MRI_PIXEL_BIT_RLE = 8 # # These are the MNE fiff definitions # FIFF.FIFFB_MNE = 350 FIFF.FIFFB_MNE_SOURCE_SPACE = 351 FIFF.FIFFB_MNE_FORWARD_SOLUTION = 352 FIFF.FIFFB_MNE_PARENT_MRI_FILE = 353 FIFF.FIFFB_MNE_PARENT_MEAS_FILE = 354 FIFF.FIFFB_MNE_COV = 355 FIFF.FIFFB_MNE_INVERSE_SOLUTION = 356 FIFF.FIFFB_MNE_NAMED_MATRIX = 357 FIFF.FIFFB_MNE_ENV = 358 FIFF.FIFFB_MNE_BAD_CHANNELS = 359 FIFF.FIFFB_MNE_VERTEX_MAP = 360 FIFF.FIFFB_MNE_EVENTS = 361 FIFF.FIFFB_MNE_MORPH_MAP = 362 FIFF.FIFFB_MNE_SURFACE_MAP = 363 FIFF.FIFFB_MNE_SURFACE_MAP_GROUP = 364 # # CTF compensation data # FIFF.FIFFB_MNE_CTF_COMP = 370 FIFF.FIFFB_MNE_CTF_COMP_DATA = 371 FIFF.FIFFB_MNE_DERIVATIONS = 372 # # Fiff tags associated with MNE computations (3500...) # # # 3500... Bookkeeping # FIFF.FIFF_MNE_ROW_NAMES = 3502 FIFF.FIFF_MNE_COL_NAMES = 3503 FIFF.FIFF_MNE_NROW = 3504 FIFF.FIFF_MNE_NCOL = 3505 FIFF.FIFF_MNE_COORD_FRAME = 3506 # Coordinate frame employed. Defaults: # FIFFB_MNE_SOURCE_SPACE FIFFV_COORD_MRI # FIFFB_MNE_FORWARD_SOLUTION FIFFV_COORD_HEAD # FIFFB_MNE_INVERSE_SOLUTION FIFFV_COORD_HEAD FIFF.FIFF_MNE_CH_NAME_LIST = 3507 FIFF.FIFF_MNE_FILE_NAME = 3508 # This removes the collision with fiff_file.h (used to be 3501) # # 3510... 3590... Source space or surface # FIFF.FIFF_MNE_SOURCE_SPACE_POINTS = 3510 # The vertices FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS = 3511 # The vertex normals FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS = 3512 # How many vertices FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION = 3513 # Which are selected to the source space FIFF.FIFF_MNE_SOURCE_SPACE_NUSE = 3514 # How many are in use FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST = 3515 # Nearest source space vertex for all vertices FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST = 3516 # Distance to the Nearest source space vertex for all vertices FIFF.FIFF_MNE_SOURCE_SPACE_ID = 3517 # Identifier FIFF.FIFF_MNE_SOURCE_SPACE_TYPE = 3518 # Surface or volume FIFF.FIFF_MNE_SOURCE_SPACE_VERTICES = 3519 # List of vertices (zero based) FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS = 3596 # Voxel space dimensions in a volume source space FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR = 3597 # Matrix to interpolate a volume source space into a mri volume FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE = 3598 # MRI file used in the interpolation FIFF.FIFF_MNE_SOURCE_SPACE_NTRI = 3590 # Number of triangles FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES = 3591 # The triangulation FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI = 3592 # Number of triangles corresponding to the number of vertices in use FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES = 3593 # The triangulation of the used vertices in the source space FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS = 3594 # Number of neighbors for each source space point (used for volume source spaces) FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS = 3595 # Neighbors for each source space point (used for volume source spaces) FIFF.FIFF_MNE_SOURCE_SPACE_DIST = 3599 # Distances between vertices in use (along the surface) FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT = 3600 # If distance is above this limit (in the volume) it has not been calculated FIFF.FIFF_MNE_SURFACE_MAP_DATA = 3610 # Surface map data FIFF.FIFF_MNE_SURFACE_MAP_KIND = 3611 # Type of map # # 3520... Forward solution # FIFF.FIFF_MNE_FORWARD_SOLUTION = 3520 FIFF.FIFF_MNE_SOURCE_ORIENTATION = 3521 # Fixed or free FIFF.FIFF_MNE_INCLUDED_METHODS = 3522 FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD = 3523 # # 3530... Covariance matrix # FIFF.FIFF_MNE_COV_KIND = 3530 # What kind of a covariance matrix FIFF.FIFF_MNE_COV_DIM = 3531 # Matrix dimension FIFF.FIFF_MNE_COV = 3532 # Full matrix in packed representation (lower triangle) FIFF.FIFF_MNE_COV_DIAG = 3533 # Diagonal matrix FIFF.FIFF_MNE_COV_EIGENVALUES = 3534 # Eigenvalues and eigenvectors of the above FIFF.FIFF_MNE_COV_EIGENVECTORS = 3535 FIFF.FIFF_MNE_COV_NFREE = 3536 # Number of degrees of freedom FIFF.FIFF_MNE_COV_METHOD = 3537 # The estimator used FIFF.FIFF_MNE_COV_SCORE = 3538 # Negative log-likelihood # # 3540... Inverse operator # # We store the inverse operator as the eigenleads, eigenfields, # and weights # FIFF.FIFF_MNE_INVERSE_LEADS = 3540 # The eigenleads FIFF.FIFF_MNE_INVERSE_LEADS_WEIGHTED = 3546 # The eigenleads (already weighted with R^0.5) FIFF.FIFF_MNE_INVERSE_FIELDS = 3541 # The eigenfields FIFF.FIFF_MNE_INVERSE_SING = 3542 # The singular values FIFF.FIFF_MNE_PRIORS_USED = 3543 # Which kind of priors have been used for the source covariance matrix FIFF.FIFF_MNE_INVERSE_FULL = 3544 # Inverse operator as one matrix # This matrix includes the whitening operator as well # The regularization is applied FIFF.FIFF_MNE_INVERSE_SOURCE_ORIENTATIONS = 3545 # Contains the orientation of one source per row # The source orientations must be expressed in the coordinate system # given by FIFF_MNE_COORD_FRAME FIFF.FIFF_MNE_INVERSE_SOURCE_UNIT = 3547 # Are the sources given in Am or Am/m^2 ? # # 3550... Saved environment info # FIFF.FIFF_MNE_ENV_WORKING_DIR = 3550 # Working directory where the file was created FIFF.FIFF_MNE_ENV_COMMAND_LINE = 3551 # The command used to create the file FIFF.FIFF_MNE_EXTERNAL_BIG_ENDIAN = 3552 # Reference to an external binary file (big-endian) */ FIFF.FIFF_MNE_EXTERNAL_LITTLE_ENDIAN = 3553 # Reference to an external binary file (little-endian) */ # # 3560... Miscellaneous # FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE = 3560 # Is this projection item active? FIFF.FIFF_MNE_EVENT_LIST = 3561 # An event list (for STI 014) FIFF.FIFF_MNE_HEMI = 3562 # Hemisphere association for general purposes FIFF.FIFF_MNE_DATA_SKIP_NOP = 3563 # A data skip turned off in the raw data FIFF.FIFF_MNE_ORIG_CH_INFO = 3564 # Channel information before any changes FIFF.FIFF_MNE_EVENT_TRIGGER_MASK = 3565 # Mask applied to the trigger channnel values FIFF.FIFF_MNE_EVENT_COMMENTS = 3566 # Event comments merged into one long string # # 3570... Morphing maps # FIFF.FIFF_MNE_MORPH_MAP = 3570 # Mapping of closest vertices on the sphere FIFF.FIFF_MNE_MORPH_MAP_FROM = 3571 # Which subject is this map from FIFF.FIFF_MNE_MORPH_MAP_TO = 3572 # Which subject is this map to # # 3580... CTF compensation data # FIFF.FIFF_MNE_CTF_COMP_KIND = 3580 # What kind of compensation FIFF.FIFF_MNE_CTF_COMP_DATA = 3581 # The compensation data itself FIFF.FIFF_MNE_CTF_COMP_CALIBRATED = 3582 # Are the coefficients calibrated? FIFF.FIFF_MNE_DERIVATION_DATA = 3585 # Used to store information about EEG and other derivations # # 3601... values associated with ICA decomposition # FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS = 3601 # ICA interface parameters FIFF.FIFF_MNE_ICA_CHANNEL_NAMES = 3602 # ICA channel names FIFF.FIFF_MNE_ICA_WHITENER = 3603 # ICA whitener FIFF.FIFF_MNE_ICA_PCA_COMPONENTS = 3604 # PCA components FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR = 3605 # PCA explained variance FIFF.FIFF_MNE_ICA_PCA_MEAN = 3606 # PCA mean FIFF.FIFF_MNE_ICA_MATRIX = 3607 # ICA unmixing matrix FIFF.FIFF_MNE_ICA_BADS = 3608 # ICA bad sources FIFF.FIFF_MNE_ICA_MISC_PARAMS = 3609 # ICA misc params # # Maxfilter tags # FIFF.FIFF_SSS_FRAME = 263 FIFF.FIFF_SSS_JOB = 264 FIFF.FIFF_SSS_ORIGIN = 265 FIFF.FIFF_SSS_ORD_IN = 266 FIFF.FIFF_SSS_ORD_OUT = 267 FIFF.FIFF_SSS_NMAG = 268 FIFF.FIFF_SSS_COMPONENTS = 269 FIFF.FIFF_SSS_CAL_CHANS = 270 FIFF.FIFF_SSS_CAL_CORRS = 271 FIFF.FIFF_SSS_ST_CORR = 272 FIFF.FIFF_SSS_NFREE = 278 FIFF.FIFF_SSS_ST_LENGTH = 279 FIFF.FIFF_DECOUPLER_MATRIX = 800 # # Fiff values associated with MNE computations # FIFF.FIFFV_MNE_UNKNOWN_ORI = 0 FIFF.FIFFV_MNE_FIXED_ORI = 1 FIFF.FIFFV_MNE_FREE_ORI = 2 FIFF.FIFFV_MNE_MEG = 1 FIFF.FIFFV_MNE_EEG = 2 FIFF.FIFFV_MNE_MEG_EEG = 3 FIFF.FIFFV_MNE_PRIORS_NONE = 0 FIFF.FIFFV_MNE_PRIORS_DEPTH = 1 FIFF.FIFFV_MNE_PRIORS_LORETA = 2 FIFF.FIFFV_MNE_PRIORS_SULCI = 3 FIFF.FIFFV_MNE_UNKNOWN_COV = 0 FIFF.FIFFV_MNE_SENSOR_COV = 1 FIFF.FIFFV_MNE_NOISE_COV = 1 # This is what it should have been called FIFF.FIFFV_MNE_SOURCE_COV = 2 FIFF.FIFFV_MNE_FMRI_PRIOR_COV = 3 FIFF.FIFFV_MNE_SIGNAL_COV = 4 # This will be potentially employed in beamformers FIFF.FIFFV_MNE_DEPTH_PRIOR_COV = 5 # The depth weighting prior FIFF.FIFFV_MNE_ORIENT_PRIOR_COV = 6 # The orientation prior FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF = 10 # Linear projection related to EEG average reference # # Output map types # FIFF.FIFFV_MNE_MAP_UNKNOWN = -1 # Unspecified FIFF.FIFFV_MNE_MAP_SCALAR_CURRENT = 1 # Scalar current value FIFF.FIFFV_MNE_MAP_SCALAR_CURRENT_SIZE = 2 # Absolute value of the above FIFF.FIFFV_MNE_MAP_VECTOR_CURRENT = 3 # Current vector components FIFF.FIFFV_MNE_MAP_VECTOR_CURRENT_SIZE = 4 # Vector current size FIFF.FIFFV_MNE_MAP_T_STAT = 5 # Student's t statistic FIFF.FIFFV_MNE_MAP_F_STAT = 6 # F statistic FIFF.FIFFV_MNE_MAP_F_STAT_SQRT = 7 # Square root of the F statistic FIFF.FIFFV_MNE_MAP_CHI2_STAT = 8 # (Approximate) chi^2 statistic FIFF.FIFFV_MNE_MAP_CHI2_STAT_SQRT = 9 # Square root of the (approximate) chi^2 statistic FIFF.FIFFV_MNE_MAP_SCALAR_CURRENT_NOISE = 10 # Current noise approximation (scalar) FIFF.FIFFV_MNE_MAP_VECTOR_CURRENT_NOISE = 11 # Current noise approximation (vector) # # Source space types (values of FIFF_MNE_SOURCE_SPACE_TYPE) # FIFF.FIFFV_MNE_SPACE_UNKNOWN = -1 FIFF.FIFFV_MNE_SPACE_SURFACE = 1 FIFF.FIFFV_MNE_SPACE_VOLUME = 2 FIFF.FIFFV_MNE_SPACE_DISCRETE = 3 # # Covariance matrix channel classification # FIFF.FIFFV_MNE_COV_CH_UNKNOWN = -1 # No idea FIFF.FIFFV_MNE_COV_CH_MEG_MAG = 0 # Axial gradiometer or magnetometer [T] FIFF.FIFFV_MNE_COV_CH_MEG_GRAD = 1 # Planar gradiometer [T/m] FIFF.FIFFV_MNE_COV_CH_EEG = 2 # EEG [V] # # Projection item kinds # FIFF.FIFFV_PROJ_ITEM_NONE = 0 FIFF.FIFFV_PROJ_ITEM_FIELD = 1 FIFF.FIFFV_PROJ_ITEM_DIP_FIX = 2 FIFF.FIFFV_PROJ_ITEM_DIP_ROT = 3 FIFF.FIFFV_PROJ_ITEM_HOMOG_GRAD = 4 FIFF.FIFFV_PROJ_ITEM_HOMOG_FIELD = 5 # # Additional coordinate frames # FIFF.FIFFV_MNE_COORD_TUFTS_EEG = 300 # For Tufts EEG data FIFF.FIFFV_MNE_COORD_CTF_DEVICE = 1001 # CTF device coordinates FIFF.FIFFV_MNE_COORD_CTF_HEAD = 1004 # CTF head coordinates FIFF.FIFFV_MNE_COORD_DIGITIZER = FIFF.FIFFV_COORD_ISOTRAK # Original (Polhemus) digitizer coordinates FIFF.FIFFV_MNE_COORD_SURFACE_RAS = FIFF.FIFFV_COORD_MRI # The surface RAS coordinates FIFF.FIFFV_MNE_COORD_MRI_VOXEL = 2001 # The MRI voxel coordinates FIFF.FIFFV_MNE_COORD_RAS = 2002 # Surface RAS coordinates with non-zero origin FIFF.FIFFV_MNE_COORD_MNI_TAL = 2003 # MNI Talairach coordinates FIFF.FIFFV_MNE_COORD_FS_TAL_GTZ = 2004 # FreeSurfer Talairach coordinates (MNI z > 0) FIFF.FIFFV_MNE_COORD_FS_TAL_LTZ = 2005 # FreeSurfer Talairach coordinates (MNI z < 0) FIFF.FIFFV_MNE_COORD_FS_TAL = 2006 # FreeSurfer Talairach coordinates # # 4D and KIT use the same head coordinate system definition as CTF # FIFF.FIFFV_MNE_COORD_4D_HEAD = FIFF.FIFFV_MNE_COORD_CTF_HEAD FIFF.FIFFV_MNE_COORD_KIT_HEAD = FIFF.FIFFV_MNE_COORD_CTF_HEAD # # KIT system coil types # FIFF.FIFFV_COIL_KIT_GRAD = 6001 FIFF.FIFFV_COIL_KIT_REF_MAG = 6002 # # CTF coil and channel types # FIFF.FIFFV_COIL_CTF_GRAD = 5001 FIFF.FIFFV_COIL_CTF_REF_MAG = 5002 FIFF.FIFFV_COIL_CTF_REF_GRAD = 5003 FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD = 5004 # # Magnes reference sensors # FIFF.FIFFV_COIL_MAGNES_REF_MAG = 4003 FIFF.FIFFV_COIL_MAGNES_REF_GRAD = 4004 FIFF.FIFFV_COIL_MAGNES_OFFDIAG_REF_GRAD = 4005 # # BabySQUID sensors # FIFF.FIFFV_COIL_BABY_GRAD = 7001 FIFF.FIFFV_COIL_BABY_MAG = 7002 FIFF.FIFFV_COIL_BABY_REF_MAG = 7003 # # FWD Types # FIFF.FWD_COIL_UNKNOWN = 0 FIFF.FWD_COILC_UNKNOWN = 0 FIFF.FWD_COILC_EEG = 1000 FIFF.FWD_COILC_MAG = 1 FIFF.FWD_COILC_AXIAL_GRAD = 2 FIFF.FWD_COILC_PLANAR_GRAD = 3 FIFF.FWD_COILC_AXIAL_GRAD2 = 4 FIFF.FWD_COIL_ACCURACY_POINT = 0 FIFF.FWD_COIL_ACCURACY_NORMAL = 1 FIFF.FWD_COIL_ACCURACY_ACCURATE = 2 FIFF.FWD_BEM_UNKNOWN = -1 FIFF.FWD_BEM_CONSTANT_COLL = 1 FIFF.FWD_BEM_LINEAR_COLL = 2 FIFF.FWD_BEM_IP_APPROACH_LIMIT = 0.1 FIFF.FWD_BEM_LIN_FIELD_SIMPLE = 1 FIFF.FWD_BEM_LIN_FIELD_FERGUSON = 2 FIFF.FWD_BEM_LIN_FIELD_URANKAR = 3 # # Data types # FIFF.FIFFT_VOID = 0 FIFF.FIFFT_BYTE = 1 FIFF.FIFFT_SHORT = 2 FIFF.FIFFT_INT = 3 FIFF.FIFFT_FLOAT = 4 FIFF.FIFFT_DOUBLE = 5 FIFF.FIFFT_JULIAN = 6 FIFF.FIFFT_USHORT = 7 FIFF.FIFFT_UINT = 8 FIFF.FIFFT_ULONG = 9 FIFF.FIFFT_STRING = 10 FIFF.FIFFT_LONG = 11 FIFF.FIFFT_DAU_PACK13 = 13 FIFF.FIFFT_DAU_PACK14 = 14 FIFF.FIFFT_DAU_PACK16 = 16 FIFF.FIFFT_COMPLEX_FLOAT = 20 FIFF.FIFFT_COMPLEX_DOUBLE = 21 FIFF.FIFFT_OLD_PACK = 23 FIFF.FIFFT_CH_INFO_STRUCT = 30 FIFF.FIFFT_ID_STRUCT = 31 FIFF.FIFFT_DIR_ENTRY_STRUCT = 32 FIFF.FIFFT_DIG_POINT_STRUCT = 33 FIFF.FIFFT_CH_POS_STRUCT = 34 FIFF.FIFFT_COORD_TRANS_STRUCT = 35 FIFF.FIFFT_DIG_STRING_STRUCT = 36 FIFF.FIFFT_STREAM_SEGMENT_STRUCT = 37 # # Units of measurement # FIFF.FIFF_UNIT_NONE = -1 # # SI base units # FIFF.FIFF_UNIT_M = 1 FIFF.FIFF_UNIT_KG = 2 FIFF.FIFF_UNIT_SEC = 3 FIFF.FIFF_UNIT_A = 4 FIFF.FIFF_UNIT_K = 5 FIFF.FIFF_UNIT_MOL = 6 # # SI Supplementary units # FIFF.FIFF_UNIT_RAD = 7 FIFF.FIFF_UNIT_SR = 8 # # SI base candela # FIFF.FIFF_UNIT_CD = 9 # # SI derived units # FIFF.FIFF_UNIT_HZ = 101 FIFF.FIFF_UNIT_N = 102 FIFF.FIFF_UNIT_PA = 103 FIFF.FIFF_UNIT_J = 104 FIFF.FIFF_UNIT_W = 105 FIFF.FIFF_UNIT_C = 106 FIFF.FIFF_UNIT_V = 107 FIFF.FIFF_UNIT_F = 108 FIFF.FIFF_UNIT_OHM = 109 FIFF.FIFF_UNIT_MHO = 110 FIFF.FIFF_UNIT_WB = 111 FIFF.FIFF_UNIT_T = 112 FIFF.FIFF_UNIT_H = 113 FIFF.FIFF_UNIT_CEL = 114 FIFF.FIFF_UNIT_LM = 115 FIFF.FIFF_UNIT_LX = 116 # # Others we need # FIFF.FIFF_UNIT_T_M = 201 # T/m FIFF.FIFF_UNIT_AM = 202 # Am FIFF.FIFF_UNIT_AM_M2 = 203 # Am/m^2 FIFF.FIFF_UNIT_AM_M3 = 204 # Am/m^3 # # Multipliers # FIFF.FIFF_UNITM_E = 18 FIFF.FIFF_UNITM_PET = 15 FIFF.FIFF_UNITM_T = 12 FIFF.FIFF_UNITM_MEG = 6 FIFF.FIFF_UNITM_K = 3 FIFF.FIFF_UNITM_H = 2 FIFF.FIFF_UNITM_DA = 1 FIFF.FIFF_UNITM_NONE = 0 FIFF.FIFF_UNITM_D = -1 FIFF.FIFF_UNITM_C = -2 FIFF.FIFF_UNITM_M = -3 FIFF.FIFF_UNITM_MU = -6 FIFF.FIFF_UNITM_N = -9 FIFF.FIFF_UNITM_P = -12 FIFF.FIFF_UNITM_F = -15 FIFF.FIFF_UNITM_A = -18 # # Coil types # FIFF.FIFFV_COIL_NONE = 0 # The location info contains no data FIFF.FIFFV_COIL_EEG = 1 # EEG electrode position in r0 FIFF.FIFFV_COIL_NM_122 = 2 # Neuromag 122 coils FIFF.FIFFV_COIL_NM_24 = 3 # Old 24 channel system in HUT FIFF.FIFFV_COIL_NM_MCG_AXIAL = 4 # The axial devices in the HUCS MCG system FIFF.FIFFV_COIL_EEG_BIPOLAR = 5 # Bipolar EEG lead FIFF.FIFFV_COIL_DIPOLE = 200 # Time-varying dipole definition # The coil info contains dipole location (r0) and # direction (ex) FIFF.FIFFV_COIL_MCG_42 = 1000 # For testing the MCG software FIFF.FIFFV_COIL_POINT_MAGNETOMETER = 2000 # Simple point magnetometer FIFF.FIFFV_COIL_AXIAL_GRAD_5CM = 2001 # Generic axial gradiometer FIFF.FIFFV_COIL_POINT_MAGNETOMETER_X = 2002 # Simple point magnetometer, x-direction FIFF.FIFFV_COIL_POINT_MAGNETOMETER_Y = 2003 # Simple point magnetometer, y-direction FIFF.FIFFV_COIL_VV_PLANAR_W = 3011 # VV prototype wirewound planar sensor FIFF.FIFFV_COIL_VV_PLANAR_T1 = 3012 # Vectorview SQ20483N planar gradiometer FIFF.FIFFV_COIL_VV_PLANAR_T2 = 3013 # Vectorview SQ20483N-A planar gradiometer FIFF.FIFFV_COIL_VV_PLANAR_T3 = 3014 # Vectorview SQ20950N planar gradiometer FIFF.FIFFV_COIL_VV_MAG_W = 3021 # VV prototype wirewound magnetometer FIFF.FIFFV_COIL_VV_MAG_T1 = 3022 # Vectorview SQ20483N magnetometer FIFF.FIFFV_COIL_VV_MAG_T2 = 3023 # Vectorview SQ20483-A magnetometer FIFF.FIFFV_COIL_VV_MAG_T3 = 3024 # Vectorview SQ20950N magnetometer FIFF.FIFFV_COIL_MAGNES_MAG = 4001 # Magnes WH magnetometer FIFF.FIFFV_COIL_MAGNES_GRAD = 4002 # Magnes WH gradiometer FIFF.FIFFV_COIL_MAGNES_R_MAG = 4003 # Magnes WH reference magnetometer FIFF.FIFFV_COIL_MAGNES_R_GRAD_DIA = 4004 # Magnes WH reference diagonal gradioometer FIFF.FIFFV_COIL_MAGNES_R_GRAD_OFF = 4005 # Magnes WH reference off-diagonal gradiometer # MNE RealTime FIFF.FIFF_MNE_RT_COMMAND = 3700 # realtime command FIFF.FIFF_MNE_RT_CLIENT_ID = 3701 # realtime client # MNE epochs bookkeeping FIFF.FIFFB_MNE_EPOCHS_SELECTION = 3800 # the epochs selection FIFF.FIFFB_MNE_EPOCHS_DROP_LOG = 3801 # the drop log
bsd-3-clause
-6,057,507,269,390,150,000
39.52375
130
0.643573
false
anotherjesse/nova
nova/api/direct.py
1
7794
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Public HTTP interface that allows services to self-register. The general flow of a request is: - Request is parsed into WSGI bits. - Some middleware checks authentication. - Routing takes place based on the URL to find a controller. (/controller/method) - Parameters are parsed from the request and passed to a method on the controller as keyword arguments. - Optionally 'json' is decoded to provide all the parameters. - Actual work is done and a result is returned. - That result is turned into json and returned. """ import inspect import urllib import routes import webob from nova import context from nova import flags from nova import utils from nova import wsgi ROUTES = {} def register_service(path, handle): ROUTES[path] = handle class Router(wsgi.Router): def __init__(self, mapper=None): if mapper is None: mapper = routes.Mapper() self._load_registered_routes(mapper) super(Router, self).__init__(mapper=mapper) def _load_registered_routes(self, mapper): for route in ROUTES: mapper.connect('/%s/{action}' % route, controller=ServiceWrapper(ROUTES[route])) class DelegatedAuthMiddleware(wsgi.Middleware): def process_request(self, request): os_user = request.headers['X-OpenStack-User'] os_project = request.headers['X-OpenStack-Project'] context_ref = context.RequestContext(user=os_user, project=os_project) request.environ['openstack.context'] = context_ref class JsonParamsMiddleware(wsgi.Middleware): def process_request(self, request): if 'json' not in request.params: return params_json = request.params['json'] params_parsed = utils.loads(params_json) params = {} for k, v in params_parsed.iteritems(): if k in ('self', 'context'): continue if k.startswith('_'): continue params[k] = v request.environ['openstack.params'] = params class PostParamsMiddleware(wsgi.Middleware): def process_request(self, request): params_parsed = request.params params = {} for k, v in params_parsed.iteritems(): if k in ('self', 'context'): continue if k.startswith('_'): continue params[k] = v request.environ['openstack.params'] = params class Reflection(object): """Reflection methods to list available methods.""" def __init__(self): self._methods = {} self._controllers = {} def _gather_methods(self): methods = {} controllers = {} for route, handler in ROUTES.iteritems(): controllers[route] = handler.__doc__.split('\n')[0] for k in dir(handler): if k.startswith('_'): continue f = getattr(handler, k) if not callable(f): continue # bunch of ugly formatting stuff argspec = inspect.getargspec(f) args = [x for x in argspec[0] if x != 'self' and x != 'context'] defaults = argspec[3] and argspec[3] or [] args_r = list(reversed(args)) defaults_r = list(reversed(defaults)) args_out = [] while args_r: if defaults_r: args_out.append((args_r.pop(0), repr(defaults_r.pop(0)))) else: args_out.append((str(args_r.pop(0)),)) # if the method accepts keywords if argspec[2]: args_out.insert(0, ('**%s' % argspec[2],)) if f.__doc__: short_doc = f.__doc__.split('\n')[0] doc = f.__doc__ else: short_doc = doc = _('not available') methods['/%s/%s' % (route, k)] = { 'short_doc': short_doc, 'doc': doc, 'name': k, 'args': list(reversed(args_out))} self._methods = methods self._controllers = controllers def get_controllers(self, context): """List available controllers.""" if not self._controllers: self._gather_methods() return self._controllers def get_methods(self, context): """List available methods.""" if not self._methods: self._gather_methods() method_list = self._methods.keys() method_list.sort() methods = {} for k in method_list: methods[k] = self._methods[k]['short_doc'] return methods def get_method_info(self, context, method): """Get detailed information about a method.""" if not self._methods: self._gather_methods() return self._methods[method] class ServiceWrapper(wsgi.Controller): def __init__(self, service_handle): self.service_handle = service_handle @webob.dec.wsgify def __call__(self, req): arg_dict = req.environ['wsgiorg.routing_args'][1] action = arg_dict['action'] del arg_dict['action'] context = req.environ['openstack.context'] # allow middleware up the stack to override the params params = {} if 'openstack.params' in req.environ: params = req.environ['openstack.params'] # TODO(termie): do some basic normalization on methods method = getattr(self.service_handle, action) # NOTE(vish): make sure we have no unicode keys for py2.6. params = dict([(str(k), v) for (k, v) in params.iteritems()]) result = method(context, **params) if type(result) is dict or type(result) is list: return self._serialize(result, req) else: return result class Proxy(object): """Pretend a Direct API endpoint is an object.""" def __init__(self, app, prefix=None): self.app = app self.prefix = prefix def __do_request(self, path, context, **kwargs): req = webob.Request.blank(path) req.method = 'POST' req.body = urllib.urlencode({'json': utils.dumps(kwargs)}) req.environ['openstack.context'] = context resp = req.get_response(self.app) try: return utils.loads(resp.body) except Exception: return resp.body def __getattr__(self, key): if self.prefix is None: return self.__class__(self.app, prefix=key) def _wrapper(context, **kwargs): return self.__do_request('/%s/%s' % (self.prefix, key), context, **kwargs) _wrapper.func_name = key return _wrapper
apache-2.0
1,636,530,801,207,467,800
31.475
78
0.564665
false
zestyr/lbry
build/release.py
1
6531
"""Bump version and create Github release This script should be run locally, not on a build server. """ import argparse import contextlib import os import re import subprocess import sys import git import github import changelog ROOT = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def main(): bumpversion_parts = get_bumpversion_parts() parser = argparse.ArgumentParser() parser.add_argument("part", choices=bumpversion_parts, help="part of version to bump") parser.add_argument("--skip-sanity-checks", action="store_true") parser.add_argument("--skip-push", action="store_true") parser.add_argument("--dry-run", action="store_true") parser.add_argument("--confirm", action="store_true") args = parser.parse_args() if args.dry_run: print "DRY RUN. Nothing will be committed/pushed." repo = Repo('lbry', args.part, ROOT) branch = 'master' print 'Current version: {}'.format(repo.current_version) print 'New version: {}'.format(repo.new_version) if not args.confirm and not confirm(): print "Aborting" return 1 if not args.skip_sanity_checks: run_sanity_checks(repo, branch) repo.assert_new_tag_is_absent() is_rc = re.search('\drc\d+$', repo.new_version) is not None # only have a release message for real releases, not for RCs release_msg = None if is_rc else repo.get_unreleased_changelog() if release_msg is None: release_msg = '' if args.dry_run: print "rc: " + ("yes" if is_rc else "no") print "release message: \n" + (release_msg if not is_rc else " NO MESSAGE FOR RCs") return gh_token = get_gh_token() auth = github.Github(gh_token) github_repo = auth.get_repo('lbryio/lbry') if not is_rc: repo.bump_changelog() repo.bumpversion() new_tag = repo.get_new_tag() github_repo.create_git_release(new_tag, new_tag, release_msg, draft=True, prerelease=is_rc) if args.skip_push: print ( 'Skipping push; you will have to reset and delete tags if ' 'you want to run this script again.' ) else: repo.git_repo.git.push(follow_tags=True, recurse_submodules='check') class Repo(object): def __init__(self, name, part, directory): self.name = name self.part = part if not self.part: raise Exception('Part required') self.directory = directory self.git_repo = git.Repo(self.directory) self._bumped = False self.current_version = self._get_current_version() self.new_version = self._get_new_version() self._changelog = changelog.Changelog(os.path.join(self.directory, 'CHANGELOG.md')) def get_new_tag(self): return 'v' + self.new_version def get_unreleased_changelog(self): return self._changelog.get_unreleased() def bump_changelog(self): self._changelog.bump(self.new_version) with pushd(self.directory): self.git_repo.git.add(os.path.basename(self._changelog.path)) def _get_current_version(self): with pushd(self.directory): output = subprocess.check_output( ['bumpversion', '--dry-run', '--list', '--allow-dirty', self.part]) return re.search('^current_version=(.*)$', output, re.M).group(1) def _get_new_version(self): with pushd(self.directory): output = subprocess.check_output( ['bumpversion', '--dry-run', '--list', '--allow-dirty', self.part]) return re.search('^new_version=(.*)$', output, re.M).group(1) def bumpversion(self): if self._bumped: raise Exception('Cowardly refusing to bump a repo twice') with pushd(self.directory): subprocess.check_call(['bumpversion', '--allow-dirty', self.part]) self._bumped = True def assert_new_tag_is_absent(self): new_tag = self.get_new_tag() tags = self.git_repo.git.tag() if new_tag in tags.split('\n'): raise Exception('Tag {} is already present in repo {}.'.format(new_tag, self.name)) def is_behind(self, branch): self.git_repo.remotes.origin.fetch() rev_list = '{branch}...origin/{branch}'.format(branch=branch) commits_behind = self.git_repo.git.rev_list(rev_list, right_only=True, count=True) commits_behind = int(commits_behind) return commits_behind > 0 def get_bumpversion_parts(): with pushd(ROOT): output = subprocess.check_output([ 'bumpversion', '--dry-run', '--list', '--allow-dirty', 'fake-part', ]) parse_line = re.search('^parse=(.*)$', output, re.M).group(1) return tuple(re.findall('<([^>]+)>', parse_line)) def get_gh_token(): if 'GH_TOKEN' in os.environ: return os.environ['GH_TOKEN'] else: print """ Please enter your personal access token. If you don't have one See https://github.com/lbryio/lbry-app/wiki/Release-Script#generate-a-personal-access-token for instructions on how to generate one. You can also set the GH_TOKEN environment variable to avoid seeing this message in the future""" return raw_input('token: ').strip() def confirm(): try: return raw_input('Is this what you want? [y/N] ').strip().lower() == 'y' except KeyboardInterrupt: return False def run_sanity_checks(repo, branch): if repo.git_repo.is_dirty(): print 'Cowardly refusing to release a dirty repo' sys.exit(1) if repo.git_repo.active_branch.name != branch: print 'Cowardly refusing to release when not on the {} branch'.format(branch) sys.exit(1) if repo.is_behind(branch): print 'Cowardly refusing to release when behind origin' sys.exit(1) if not is_custom_bumpversion_version(): print ( 'Install LBRY\'s fork of bumpversion: ' 'pip install -U git+https://github.com/lbryio/bumpversion.git' ) sys.exit(1) def is_custom_bumpversion_version(): try: output = subprocess.check_output(['bumpversion', '-v'], stderr=subprocess.STDOUT).strip() if output == 'bumpversion 0.5.4-lbry': return True except (subprocess.CalledProcessError, OSError): pass return False @contextlib.contextmanager def pushd(new_dir): previous_dir = os.getcwd() os.chdir(new_dir) yield os.chdir(previous_dir) if __name__ == '__main__': sys.exit(main())
mit
-1,668,162,865,751,404,800
31.014706
97
0.623947
false
QualiSystems/Ansible-Shell
package/setup.py
1
1194
from setuptools import setup, find_packages import os with open(os.path.join('version.txt')) as version_file: version_from_file = version_file.read().strip() with open('requirements.txt') as f_required: required = f_required.read().splitlines() with open('test_requirements.txt') as f_tests: required_for_tests = f_tests.read().splitlines() setup( name="cloudshell-cm-ansible", author="Quali", author_email="[email protected]", description=("A repository for projects providing out of the box capabilities within CloudShell remotely " "configure vm's"), packages=find_packages(), test_suite='nose.collector', test_requires=required_for_tests, package_data={'': ['*.txt']}, install_requires=required, version=version_from_file, include_package_data=True, keywords="ansible cloudshell configuration configuration-manager", classifiers=[ "Development Status :: 4 - Beta", "Topic :: Software Development :: Libraries", "License :: OSI Approved :: Apache Software License", ], #requires=required, )
apache-2.0
-1,948,971,499,357,489,200
35.212121
114
0.636516
false
yaras/BCalc
setup.py
1
2644
from setuptools import setup, find_packages setup( name='BCalc', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.1.0', description='BCalc (Business Calculator) is a script for calculating salary and taxes for wage in Poland.', # The project's main homepage. url='https://github.com/yaras/bcalc', # Author details author='yaras', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='bcalc salary wage', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[ 'nose==1.3.7', 'coverage==4.1' ], # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. package_data={ }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' data_files=[ ('', ['config.json']) ], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'pensja=bcalc.pensja:main', 'chorobowe=bcalc.chorobowe:main' ], }, )
mit
6,277,856,458,397,335,000
33.72973
111
0.636914
false
akrherz/iem
scripts/GIS/wwa2shp.py
1
5518
"""Something to dump current warnings to a shapefile.""" import zipfile import os import shutil import subprocess from osgeo import ogr from pyiem.util import utc def main(): """Go Main Go""" utcnow = utc() os.chdir("/tmp") fp = "current_ww" for suffix in ["shp", "shx", "dbf"]: if os.path.isfile("%s.%s" % (fp, suffix)): os.remove("%s.%s" % (fp, suffix)) source = ogr.Open( "PG:host=iemdb-postgis.local dbname=postgis user=nobody " "gssencmode=disable" ) out_driver = ogr.GetDriverByName("ESRI Shapefile") out_ds = out_driver.CreateDataSource("%s.shp" % (fp,)) out_layer = out_ds.CreateLayer("polygon", None, ogr.wkbPolygon) fd = ogr.FieldDefn("ISSUED", ogr.OFTString) fd.SetWidth(12) out_layer.CreateField(fd) fd = ogr.FieldDefn("EXPIRED", ogr.OFTString) fd.SetWidth(12) out_layer.CreateField(fd) fd = ogr.FieldDefn("UPDATED", ogr.OFTString) fd.SetWidth(12) out_layer.CreateField(fd) fd = ogr.FieldDefn("INIT_ISS", ogr.OFTString) fd.SetWidth(12) out_layer.CreateField(fd) fd = ogr.FieldDefn("INIT_EXP", ogr.OFTString) fd.SetWidth(12) out_layer.CreateField(fd) fd = ogr.FieldDefn("TYPE", ogr.OFTString) fd.SetWidth(2) out_layer.CreateField(fd) fd = ogr.FieldDefn("PHENOM", ogr.OFTString) fd.SetWidth(2) out_layer.CreateField(fd) fd = ogr.FieldDefn("GTYPE", ogr.OFTString) fd.SetWidth(1) out_layer.CreateField(fd) fd = ogr.FieldDefn("SIG", ogr.OFTString) fd.SetWidth(1) out_layer.CreateField(fd) fd = ogr.FieldDefn("WFO", ogr.OFTString) fd.SetWidth(3) out_layer.CreateField(fd) fd = ogr.FieldDefn("ETN", ogr.OFTInteger) out_layer.CreateField(fd) fd = ogr.FieldDefn("STATUS", ogr.OFTString) fd.SetWidth(3) out_layer.CreateField(fd) fd = ogr.FieldDefn("NWS_UGC", ogr.OFTString) fd.SetWidth(6) out_layer.CreateField(fd) fd = ogr.FieldDefn("FL_NWSLI", ogr.OFTString) fd.SetWidth(5) out_layer.CreateField(fd) sql = """ SELECT geom, 'P' as gtype, significance, wfo, status, eventid, null as ugc, phenomena, to_char(expire at time zone 'UTC', 'YYYYMMDDHH24MI') as utcexpire, to_char(issue at time zone 'UTC', 'YYYYMMDDHH24MI') as utcissue, to_char(polygon_begin at time zone 'UTC', 'YYYYMMDDHH24MI') as utcupdated, to_char(issue at time zone 'UTC', 'YYYYMMDDHH24MI') as utc_prodissue, to_char(init_expire at time zone 'UTC', 'YYYYMMDDHH24MI') as utc_init_expire, hvtec_nwsli from sbw_%s WHERE polygon_begin <= '%s' and polygon_end > '%s' UNION SELECT u.simple_geom as geom, 'C' as gtype, significance, w.wfo, status, eventid, u.ugc, phenomena, to_char(expire at time zone 'UTC', 'YYYYMMDDHH24MI') as utcexpire, to_char(issue at time zone 'UTC', 'YYYYMMDDHH24MI') as utcissue, to_char(updated at time zone 'UTC', 'YYYYMMDDHH24MI') as utcupdated, to_char(product_issue at time zone 'UTC', 'YYYYMMDDHH24MI') as utc_prodissue, to_char(init_expire at time zone 'UTC', 'YYYYMMDDHH24MI') as utc_init_expire, hvtec_nwsli from warnings_%s w JOIN ugcs u on (u.gid = w.gid) WHERE expire > '%s' and w.gid is not null """ % ( utcnow.year, utcnow, utcnow, utcnow.year, utcnow, ) data = source.ExecuteSQL(sql) while True: feat = data.GetNextFeature() if not feat: break geom = feat.GetGeometryRef() if geom is None: continue # at 0.001 we had marine zones disappear! geom = geom.Simplify(0.0001) featDef = ogr.Feature(out_layer.GetLayerDefn()) featDef.SetGeometry(geom) featDef.SetField("GTYPE", feat.GetField("gtype")) featDef.SetField("TYPE", feat.GetField("phenomena")) featDef.SetField("PHENOM", feat.GetField("phenomena")) featDef.SetField("ISSUED", feat.GetField("utcissue")) featDef.SetField("EXPIRED", feat.GetField("utcexpire")) featDef.SetField("UPDATED", feat.GetField("utcupdated")) featDef.SetField("INIT_ISS", feat.GetField("utc_prodissue")) featDef.SetField("INIT_EXP", feat.GetField("utc_init_expire")) featDef.SetField("SIG", feat.GetField("significance")) featDef.SetField("WFO", feat.GetField("wfo")) featDef.SetField("STATUS", feat.GetField("status")) featDef.SetField("ETN", feat.GetField("eventid")) featDef.SetField("NWS_UGC", feat.GetField("ugc")) featDef.SetField("FL_NWSLI", feat.GetField("hvtec_nwsli")) out_layer.CreateFeature(featDef) feat.Destroy() source.Destroy() out_ds.Destroy() z = zipfile.ZipFile("current_ww.zip", "w", zipfile.ZIP_DEFLATED) z.write("current_ww.shp") shutil.copy( "/opt/iem/scripts/GIS/current_ww.shp.xml", "current_ww.shp.xml" ) z.write("current_ww.shp.xml") z.write("current_ww.shx") z.write("current_ww.dbf") shutil.copy("/opt/iem/data/gis/meta/4326.prj", "current_ww.prj") z.write("current_ww.prj") z.close() cmd = ( 'pqinsert -p "zip c %s ' 'gis/shape/4326/us/current_ww.zip bogus zip" current_ww.zip' ) % (utcnow.strftime("%Y%m%d%H%M"),) subprocess.call(cmd, shell=True) for suffix in ["shp", "shp.xml", "shx", "dbf", "prj", "zip"]: os.remove("current_ww.%s" % (suffix,)) if __name__ == "__main__": main()
mit
-8,800,740,664,368,985,000
30.175141
79
0.623233
false
bwillis32/inclusionRE
appreciation/models.py
1
1075
from __future__ import unicode_literals from django.db import models # Create your models here. class Property(models.Model): id = models.AutoField(primary_key = True) streetAddress = models.CharField(max_length=200) borough = models.CharField(max_length=65) state = models.CharField(max_length= 65) zip = models.PositiveSmallIntegerField() def __str__(self): return '{}'.format(self.streetAddress) class Sales(models.Model): id = models.IntegerField(default=0, primary_key=True) neighborhood = models.CharField(max_length=255) year = models.CharField(max_length=30, blank=True) type_of_home = models.PositiveSmallIntegerField(null = True) num_of_sales = models.PositiveSmallIntegerField(null = True) lowest_sale_price =models.FloatField(null = True) avg_sale_price = models.FloatField(null = True) med_sale_price = models.FloatField(null = True) high_sale_price = models.FloatField(null = True) link = models.ForeignKey('appreciation.Property', related_name='Sales') def __str__(self): return '{}'.format(self.neighborhood)
apache-2.0
-3,489,742,085,480,704,500
32.59375
73
0.733023
false
andreyto/YAP
bits/logging_helper.py
1
1032
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the MGTAXA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Some support for logging""" import logging def assert_log(cond,msg,logger): """If condition is False, log error and raise AssertionError""" if not cond: logger.error(msg) raise AssertionError(msg) def logging_config(detail="high",level=logging.DEBUG): """Some common logging configuration scenarious""" if detail == "high": logging.basicConfig(level=level, datefmt="%y-%m-%d %H:%M:%S", filemode="a", format=("%(asctime)s [%(levelname)5.5s] pid:%(process)-5s\t" + "thread:%(threadName)10.10s\t" + "%(module)20.20s.:%(funcName)-12.12s:%(lineno)-5s:\t" + "%(message)s")) else: raise ValueError("Unknown value detail={}".format(detail))
mit
1,184,815,785,125,451,000
33.4
78
0.511628
false
BryceSchroeder/delvmod
redelv/redelvlib/script_editor.py
1
11007
#!/usr/bin/env python # Copyright 2015-16 Bryce Schroeder, www.bryce.pw, [email protected] # Wiki: http://www.ferazelhosting.net/wiki/delv # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # "Cythera" and "Delver" are trademarks of either Glenn Andreas or # Ambrosia Software, Inc. import csv import gtk, pango import editors import delv.store import sys, traceback import images import delv.rdasm import urllib2 from cStringIO import StringIO class ScriptEditor(editors.Editor): name = "Scripting System Editor" default_size = 680,512 icon = images.script_path def gui_setup(self): pbox = gtk.VBox(False,0) self.set_default_size(*self.default_size) menu_items = ( ("/File/Import Text", "<control>I", self.file_import, 0, None), ("/File/Export Text", "<control>E", self.file_export, 0, None), ("/File/Revert to Saved Source", None, self.load_source, 0, None), ("/File/Revert to Disassembly", None, self.load_disassemble, 0, None), ("/File/Load from TAUCS", None, self.load_taucs, 0, None), ("/File/Assemble and Save", "<control>S", self.file_save, 0, None), ("/File/Save Source Code", "<shift><control>S", self.do_save_source, 0, None), ("/Edit/Edit in External Text Editor", "<control>G", self.edit_external, 0, None), ("/Edit/Purge Source", None, self.purge, 0, None), #("/Edit/Check Syntax", "<control>T", # self.edit_syntax, 0, None), #("/Edit/Copy", "<control>C", self.edit_copy, 0, None), #("/Edit/Paste","<control>V", self.edit_paste, 0, None), ) accel = gtk.AccelGroup() ifc = gtk.ItemFactory(gtk.MenuBar, "<main>", accel) self.add_accel_group(accel) ifc.create_items(menu_items) self.menu_bar = ifc.get_widget("<main>") pbox.pack_start(self.menu_bar, False, True, 0) self.text_buf = gtk.TextBuffer() self.text_buf.set_text(" Nothing Loaded ".center(78,';')) self.text_view = gtk.TextView() self.text_view.set_buffer(self.text_buf) self.text_view.set_wrap_mode(gtk.WRAP_CHAR) fontdesc = pango.FontDescription("monospace 10") self.text_view.modify_font(fontdesc) sw = gtk.ScrolledWindow() sw.set_policy(gtk.POLICY_AUTOMATIC,gtk.POLICY_AUTOMATIC) sw.add(self.text_view) pbox.pack_start(sw, True, True, 0) hbox = gtk.HBox(False,0) hbox.pack_start(gtk.Label("Status:"), False, True, 0) self.asm_status = gtk.Entry() self.asm_status.set_editable(False) self.asm_status.set_text("Disassembling binary... ") hbox.pack_start(self.asm_status, True, True, 0) self.auto_assemble = gtk.ToggleButton( "Auto-Assemble") self.auto_assemble.set_active(True) hbox.pack_start(self.auto_assemble, False, True, 0) self.save_source = gtk.ToggleButton( "Auto-save Source") self.save_source.set_active(True) hbox.pack_start(self.save_source, False, True, 0) pbox.pack_start(hbox, False, True, 0) self.add(pbox) self.assembler = None self.cycle_check = False def get_assembler(self): if not self.assembler: self.errorstream = StringIO() self.asm_status.set_text("Preparing assembler...") while gtk.events_pending(): gtk.main_iteration() self.assembler = delv.rdasm.Assembler( message_stream=self.errorstream, filename="<res 0x%04X>"%self.res.resid, ) # check to make sure that we can assemble this file correctly self.asm_status.set_text("Checking cycle validity... ") while gtk.events_pending(): gtk.main_iteration() if not self.cycle_check: obin = self.assembler.assemble(self.original_disassembly) if self.canonical_object.data != obin: ofs1 = ((self.canonical_object.data[0]<<8) |self.canonical_object.data[1]) ofs2 = ((ord(obin[0])<<8) |ord(obin[1])) if (ofs1 == ofs2 and obin[0:ofs1] == self.canonical_object.data[0:ofs1]): self.asm_status.set_text( "Pass with table mismatch; ready.") else: self.asm_status.set_text( "FAILED CHECK: This resource can't be reassembled.") return None else: self.asm_status.set_text("Passed validation check; ready.") self.cycle_check = True while gtk.events_pending(): gtk.main_iteration() return self.assembler def editor_setup(self): self.load() self.text_buf.connect("changed", self.textbuf_changed, None) def load_taucs(self, *argv): try: data = urllib2.urlopen( self.redelv.preferences['source_archive']%self.res.resid ).read() except urllib2.HTTPError: self.asm_status.set_text( "ERROR: Could not find canonical sources for this resource.") #message = gtk.MessageDialog(type=gtk.MESSAGE_ERROR, # buttons=gtk.BUTTONS_OK) #message.set_markup( # "Could not find canonical sources for this resource.") #message.run() return self.cycle_check = True self.asm_status.set_text( "Source successfully downloaded from the archive.") data = data[data.find('{{{')+3:data.find('}}}') ].strip().replace('\r','') self.text_buf.set_text(data) self.set_unsaved() def _loadsource(self): code = self.redelv.get_library().get_code_store() src = code.get(self.res.resid) self.cycle_check = True return src def purge(self, *argv): code = self.redelv.get_library().get_code_store() code.purge(self.res.resid) self.asm_status.set_text( "Saved source code deleted.") def do_save_source(self, *argv): code = self.redelv.get_library().get_code_store() code.save_source(self.res.resid, self.text_buf.get_text( *self.text_buf.get_bounds())) def load_source(self, *argv): src = self._loadsource() if not src: self.asm_status.set_text( "ERROR: You have no saved source for this resource.") return False else: self.cycle_check = True self.text_buf.set_text(src) return True def load(self, *argv): src = self._loadsource() if src: self.text_buf.set_text(src) self.asm_status.set_text( "Loaded your saved source for this resource.") else: self.load_disassemble(*argv) def load_disassemble(self, *argv): self.set_title("Script Editor [%04X]"%self.res.resid) self.text_buf.set_text("; DISASSEMBLING") #self.canonical_object.load_from_library( # self.redelv.get_library()) asmc = self.canonical_object.disassemble() self.original_disassembly = asmc self.text_buf.set_text(asmc) self.asm_status.set_text("Disassembly complete.") #self.canonical_object.printout(sys.stdout,0) def edit_external(self, *argv): self.text_view.set_editable(False) self.open_external_editor( self.redelv.preferences['assembly_editor_cmd'], self.external_writeout, self.external_readin, file_extension = '.rdasm') def external_writeout(self, target, cbdata): target.write(str(self.text_buf.get_text( *self.text_buf.get_bounds()))) target.flush() def external_readin(self, path, cbdata): self.asm_status.set_text("Changed in external editor.") self.text_buf.set_text(open(path,'rb').read()) self.set_unsaved() if self.auto_assemble.get_active(): self.file_save() def file_import(self,*args): #if self.unsaved and self.warn_unsaved_changes(): return path = "<undefined>" try: path = self.ask_open_path() if not path: return data = open(path,'rb').read() except Exception,e: self.error_message("Couldn't open '%s': %s"%(path, repr(e))) return self.set_unsaved() self.asm_status.set_text("Imported a file (not assembled yet.)") # set text to data here def file_export(self, *args): path = self.ask_save_path(default = "Script%04X.rdasm"%self.res.resid) if not path: return if not path.endswith(".rdasm"): path += ".rdasm" try: open(path,'rb').write("EXPORT TEST") except Exception,e: self.error_message("Couldn't open '%s': %s"%(path, repr(e))) return def edit_syntax(self, *args): #try: # av = self.assemble() #except delv.script.AssemblerError, e: # self.error_message(str(e)) # except syntax errors blah: self.asm_status.set_text("Not implemented yet. Just try it and see.") def textbuf_changed(self, *args): if self.save_source.get_active(): self.do_save_source() self.set_unsaved() def file_save(self, *args): # Assemble of course. # try: asm = self.get_assembler() if not asm: return src = str(self.text_buf.get_text(*self.text_buf.get_bounds())) self.asm_status.set_text("Assembling source of %d bytes..."%len(src)) while gtk.events_pending(): gtk.main_iteration() av = self.get_assembler().assemble(src) self.asm_status.set_text("Assembled successfully; %d bytes."%len(av)) self.res.set_data(av) self.redelv.set_unsaved() self.set_saved() self.assembler = None
gpl-3.0
-2,756,007,720,885,981,000
40.535849
79
0.568093
false
alexei-matveev/ccp1gui
interfaces/smeagolio.py
1
9939
# # This file is part of the CCP1 Graphical User Interface (ccp1gui) # # (C) 2002-2005 CCLRC Daresbury Laboratory # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # # # Read a data file output by Smeagol import os,sys if __name__ == "__main__": # Need to add the gui directory to the python path so # that all the modules can be imported gui_path = os.path.split(os.path.dirname( os.path.realpath( __file__ ) ))[0] sys.path.append(gui_path) else: from viewer.paths import gui_path # import python modules import math import unittest # import local modules import objects.field import objects.vector # import external modules import vtk # We create the VTK objects directly from fileio import FileIO class SmeagolIO(FileIO): """ Load objects from the files generated by Smeagol """ def __init__(self, filepath=None,**kw): """ Set up the structures we need """ # Initialise base class FileIO.__init__(self,filepath=filepath,**kw) # List which types of object we can read/write self.canRead = True self.canWrite = [] def _ReadFile(self,**kw): """ Read in the data from an RHO file. Format of the file is expected to be: 1: Z lattice vector - float(x) float(y) float(z) 2: Y lattice vector - float(x) float(y) float(z) 3: X lattice vector - float(x) float(y) float(z) 4: zdim ydim xdim nspin - number of mesh points in each direction plus the number of spins - if nspin=2 then we are creating 2 datasets 5:data... - list of data points as floats """ f = open( self.filepath, 'r') # Read in the first 4 lines containing the grid definition # and the dimensions & spin zline = f.readline().strip() yline = f.readline().strip() xline = f.readline().strip() dimline = f.readline().strip() # Set up the Z lattice vector zLatVec = self.__get_latvec( zline ) if not zLatVec: print "No Z Lattice Vector!" return 1 # Set up the Y lattice vector yLatVec = self.__get_latvec( yline ) if not yLatVec: print "No Z Lattice Vector!" return 1 # Set up the X lattice vector xLatVec = self.__get_latvec( xline ) if not xLatVec: print "No X Lattice Vector!" return 1 # Get the dimensions & the number of spins fields = dimline.split() if ( len( fields ) != 4 ): raise Exception,"Problem with dimension line in smeagolreader read_grid_dimensions!" xDim,yDim,zDim,nspin = fields[0:4] xDim,yDim,zDim,nspin = int(xDim), int(yDim), int(zDim), int(nspin) #Work out how many data points we've got npoints = xDim * yDim * zDim # Now loop over the spins & read in the data points. # We assume that the origin is at the centre of the grid and that the data has been written # out starting at the origin, going to the edge and then being translated back # by the unit cell vector and writing out the remaining points back to the origin # Need to allocate memory for the data #data = [] #for i in range(npoints): # data.append(0) scalars = vtk.vtkFloatArray() scalars.SetNumberOfValues( npoints ) for spin in range(nspin): #print "Reading data points from file..." for z in range(zDim): if ( z < (zDim/2) ): zt = z + (zDim/2) else: zt = z - (zDim/2) for y in range(yDim): if ( y < (yDim/2) ): yt = y + (yDim/2) else: yt = y - (yDim/2) for x in range(xDim): if ( x < (xDim/2) ): xt = x + (xDim/2) else: xt = x - (xDim/2) #if not count % 10000: # print '...', line = f.readline() if not line: print "ERROR reading Data in smeagolreader!" return None try: dat = float(line) except: print "Bad Data in smeagol reader!: %s " % line dat = float(-999999) offset = (zt * xDim * yDim) + (yt * xDim) + xt #data[offset] = dat scalars.SetValue( offset, dat ) #End of loop over z,x,y if ( nspin == 2): title = self.name + str(spin) else: title = self.name # Create the field object smgfield = self.create_vtkfield( title, scalars, zLatVec, yLatVec, xLatVec, \ zDim, yDim, xDim ) # Add the field to the list of objects if self.debug: print "smeagolreader appending field:" smgfield.list() self.fields.append( smgfield ) def __get_latvec( self, line ): """ Take a line read in from the RHO file and return the relevant lattice vector as a list of floats REM: we need to convert from Bohrs -> Angstroms so we do this here. """ bohr_2_angs = 0.529177 x,y,z = line.split() x,y,z = float(x), float(y), float(z) x,y,z = x* bohr_2_angs, y* bohr_2_angs, z* bohr_2_angs return [ x, y, z ] # def create_vtkfield( self, title, data, zLatVec, yLatVec, xLatVec, zDim, yDim, xDim ): def create_vtkfield( self, title, scalars, zLatVec, yLatVec, xLatVec, zDim, yDim, xDim ): """ Create a field object that holds the data in a vtkImageData object """ vtkdata = vtk.vtkImageData() vtkdata.SetDimensions( xDim, yDim, zDim ) # work out the spacing # asume the grid origin is always at 0.0, 0.0, 0.0 origin = [ 0.0, 0.0, 0.0 ] xlen = math.sqrt( math.pow( (origin[0] - xLatVec[0]), 2) + \ math.pow( (origin[1] - xLatVec[1]), 2) + \ math.pow( (origin[2] - xLatVec[2]), 2) ) xspacing = float( xlen/xDim ) ylen = math.sqrt( math.pow( (origin[0] - yLatVec[0]), 2) + \ math.pow( (origin[1] - yLatVec[1]), 2) + \ math.pow( (origin[2] - yLatVec[2]), 2) ) yspacing = float( ylen/yDim ) zlen = math.sqrt( math.pow( (origin[0] - zLatVec[0]), 2) + \ math.pow( (origin[1] - zLatVec[1]), 2) + \ math.pow( (origin[2] - zLatVec[2]), 2) ) zspacing = float( zlen/zDim ) vtkdata.SetSpacing( xspacing, yspacing, zspacing ) #scalars = vtk.vtkFloatArray() #npoints = zDim * yDim * xDim #scalars.SetNumberOfValues( npoints ) #for i in range( npoints ): # What on earth is the vtkIdType??? (1st arg) #scalars.SetValue( i, data[i] ) # scalars.InsertNextValue( data[i] ) vtkdata.GetPointData().SetScalars(scalars) vtkdata.SetScalarTypeToFloat() # Work out the origin (assume it's at the centre of the grid) origin = [ -xlen / 2, -ylen / 2 , -zlen / 2 ] vtkdata.SetOrigin( origin ) # Instantiate the field object field = objects.field.Field() field.title = title field.vtkdata = vtkdata # Need to add axis, dimensions & origin as these are required by the CutSlice visulaliser # NB: May need to use Vector as currently these are only lists? field.dim = [ xDim, yDim, zDim ] field.x = objects.vector.Vector( xLatVec ) #field.axis.append( field.x ) field.axis[0] = field.x field.y = objects.vector.Vector( yLatVec ) #field.axis.append( field.y ) field.axis[1] = field.y field.z = objects.vector.Vector( zLatVec ) #field.axis.append( field.z ) field.axis[2] = field.z #field.origin =objects.vector.Vector( origin ) #jmht HACK - need to think about this field.origin =objects.vector.Vector( [0.,0.,0.] ) return field ########################################################## # # # Unittesting stuff goes here # # ########################################################## class testSmeagol_IO(unittest.TestCase): """Test whether we deal with Smeagol data""" reader = SmeagolIO() def testRead(self): """ read in scalar data """ fields = self.reader.GetObjects( filepath='/c/qcg/jmht/share/codes/ccp1gui/smeagol/Benz.short.rho', otype = 'fields' ) self.assertEqual( fields[0].dim[0] , 90) def testMe(): """Return a unittest test suite with all the testcases that should be run by the main gui testing framework.""" return unittest.TestLoader().loadTestsFromTestCase(testSmeagol_IO) if ( __name__ == "__main__" ): unittest.main()
gpl-2.0
6,608,747,880,550,937,000
33.037671
98
0.542912
false
bansallab/roundup
_164_scrape.py
1
8322
import csv from urllib.request import Request, urlopen import re from datetime import date import dateutil.parser from sys import argv from bs4 import BeautifulSoup from dateutil.relativedelta import relativedelta from os import system import scrape_util default_sale, base_url, prefix = scrape_util.get_market(argv) temp_raw = scrape_util.ReportRaw(argv, prefix) report_path = 'index.php?option=com_content&view=article&id=251&Itemid=575' strip_char = ';,. \n\t' def get_sale_date(date_string): """Return the date of the sale.""" sale_date = dateutil.parser.parse(date_string, fuzzy = True) return sale_date def get_sale_day(date_string, year): """Return the date of the sale.""" date_string = date_string.replace(str(year), '') match = re.search(r'([0-9]+)', date_string) if match: sale_day = int(match.group(1)) return sale_day def is_heading(word): """Determine whether a given line is a section header that describes subsequent lines of a report. """ cattle_clue = r'(bulls?|steers?|strs?|cows?|heifers?|hfrs?|calf|calves|pairs?|cattle|weighups?|yrlgs?)' is_not_succinct = len(word) > 1 has_cattle = False has_number = False for this_word in word: if re.search(cattle_clue, this_word, re.IGNORECASE): has_cattle = True break for this_word in word: if re.search(r'[0-9]', this_word): has_number = True break return bool(is_not_succinct and has_cattle and not has_number) def is_sale(word): """Determine whether a given line describes a sale of cattle.""" is_not_succinct = len(word) > 2 has_price = False for this_word in word: if re.search(r'[0-9,]+\.[0-9]{2}', this_word): has_price = True break return bool(has_price and is_not_succinct) def is_number(string): """Test whether a string is number-ish. Ignoring units like 'cwt' and 'hd'.""" if string: string = re.sub(r'\$|[,-/]|cwt|he?a?d?|per', '', string, flags = re.IGNORECASE) try: float(string) result = True except ValueError: result = False else: result = False return result def get_sale_location(word): """Convert address strings into a list of address components.""" sale_location = ' '.join(word) sale_location = re.sub(r'\(.*?\)$', '', sale_location) match = re.search(r'(.*?),?(' + scrape_util.state + r')$', sale_location, re.IGNORECASE) if match: sale_location = [match.group(1), match.group(2)] else: sale_location = [sale_location] return sale_location def get_sale(word, consignor_info, price_key): """Convert the input into a dictionary, with keys matching the CSV column headers in the scrape_util module. """ if len(word)==2: match = re.search(r'\b([0-9]+)$', word[0]) if match: word[0:1] = [word[0].replace(match.group(1), ''), match.group(1)] number_word = [idx for idx, val in enumerate(word) if is_number(val)] name_location = consignor_info.split(',') consignor_name = name_location.pop(0) if name_location: if re.search(r'&',name_location[0]): consignor_name = consignor_name.strip() + ',' + name_location.pop(0) sale = { 'consignor_name': consignor_name.strip(strip_char).title(), } if name_location: sale_location = get_sale_location([','.join(name_location)]) sale['consignor_city'] = sale_location.pop(0).strip(strip_char).title() if sale_location: sale['consignor_state'] = sale_location.pop().strip(strip_char) cattle_string = word[number_word[0]-1] head_match = re.match(r'([0-9,]+)', cattle_string) if head_match: head_string = head_match.group(1).replace(',','') try: int(head_string) sale['cattle_head'] = head_string except ValueError: pass cattle_string = cattle_string.replace(head_match.group(),'') sale['cattle_cattle'] = cattle_string.strip(strip_char) weight_string = word[number_word[0]].strip(strip_char).replace(',', '') try: float(weight_string) sale['cattle_avg_weight'] = weight_string except ValueError: pass price_string = word[number_word[1]] match = re.search(r'([0-9,.]+)', price_string, re.IGNORECASE) if match: sale[price_key] = match.group(1).replace(',', '').strip(strip_char) sale = {k:v.strip() for k,v in sale.items() if v.strip()} return sale def write_sale(line, this_default_sale, writer): """Extract sales from a list of report lines and write them to a CSV file.""" consignor_info = '' price_key = 'cattle_price_cwt' exist_sale = [] for this_line in line: word = re.split('\s{2,}', this_line) if is_heading(word): cattle_clue = word[0] price_clue = word[-1] if re.search(r'cwt', price_clue, re.IGNORECASE): price_key = 'cattle_price_cwt' elif re.search(r'pr|hd', price_clue, re.IGNORECASE): price_key = 'cattle_price' else: if re.search(r'bred|pair', cattle_clue, re.IGNORECASE): price_key = 'cattle_price' else: price_key = 'cattle_price_cwt' elif is_sale(word): if word[0]=='': if re.match(r'[0-9]+', word[1]): word.pop(0) exist_sale.append(word) else: word.pop(0) if re.match(r',', word[0]) or re.search(r',$', consignor_info): consignor_info = consignor_info + word[0] else: consignor_info = consignor_info + ',' + word[0] exist_sale.append(word) else: for this_sale in exist_sale: sale = this_default_sale.copy() sale.update(get_sale(this_sale, consignor_info, price_key)) writer.writerow(sale) exist_sale.clear() consignor_info = word.pop(0) exist_sale.append(word) for this_sale in exist_sale: sale = this_default_sale.copy() sale.update(get_sale(this_sale, consignor_info, price_key)) writer.writerow(sale) def main(): request = Request( base_url + report_path, headers = scrape_util.url_header, ) with urlopen(request) as io: soup = BeautifulSoup(io.read(), 'lxml') report = soup.find('div', attrs={'class': 'module'}).find_all('a') # Locate existing CSV files archive = scrape_util.ArchiveFolder(argv, prefix) for this_report in report: # create temporary text file from downloaded pdf request = Request( this_report['href'].replace(' ', '%20'), headers = scrape_util.url_header, ) with urlopen(request) as io: response = io.read() with temp_raw.open('wb') as io: io.write(response) exit_value = system(scrape_util.pdftotext.format(str(temp_raw))) if exit_value != 0: print('Failure convert PDF in {}.'.format(prefix)) continue # read sale text into line list temp_txt = temp_raw.with_suffix('.txt') with temp_txt.open('r', errors = 'ignore') as io: line = list(this_line.strip('\n') for this_line in io if this_line.strip()) temp_raw.clean() sale_date = get_sale_date(line[0]) io_name = archive.new_csv(sale_date) if not io_name: break this_default_sale = default_sale.copy() this_default_sale.update({ 'sale_year': sale_date.year, 'sale_month': sale_date.month, 'sale_day': sale_date.day, }) with io_name.open('w', encoding='utf-8') as io: writer = csv.DictWriter(io, scrape_util.header, lineterminator='\n') writer.writeheader() write_sale(line, this_default_sale, writer) if __name__ == '__main__': main()
mit
-6,300,331,700,896,759,000
30.052239
107
0.56597
false
anhaidgroup/py_entitymatching
py_entitymatching/blocker/attr_equiv_blocker.py
1
25900
import logging import pandas as pd import numpy as np import pyprind import six from joblib import Parallel, delayed import py_entitymatching.catalog.catalog_manager as cm from py_entitymatching.blocker.blocker import Blocker from py_entitymatching.utils.catalog_helper import log_info, get_name_for_key, add_key_column from py_entitymatching.utils.generic_helper import rem_nan from py_entitymatching.utils.validation_helper import validate_object_type logger = logging.getLogger(__name__) class AttrEquivalenceBlocker(Blocker): """ Blocks based on the equivalence of attribute values. """ def block_tables(self, ltable, rtable, l_block_attr, r_block_attr, l_output_attrs=None, r_output_attrs=None, l_output_prefix='ltable_', r_output_prefix='rtable_', allow_missing=False, verbose=False, n_jobs=1): """Blocks two tables based on attribute equivalence. Conceptually, this will check `l_block_attr=r_block_attr` for each tuple pair from the Cartesian product of tables `ltable` and `rtable`. It outputs a Pandas dataframe object with tuple pairs that satisfy the equality condition. The dataframe will include attributes '_id', key attribute from ltable, key attributes from rtable, followed by lists `l_output_attrs` and `r_output_attrs` if they are specified. Each of these output and key attributes will be prefixed with given `l_output_prefix` and `r_output_prefix`. If `allow_missing` is set to `True` then all tuple pairs with missing value in at least one of the tuples will be included in the output dataframe. Further, this will update the following metadata in the catalog for the output table: (1) key, (2) ltable, (3) rtable, (4) fk_ltable, and (5) fk_rtable. Args: ltable (DataFrame): The left input table. rtable (DataFrame): The right input table. l_block_attr (string): The blocking attribute in left table. r_block_attr (string): The blocking attribute in right table. l_output_attrs (list): A list of attribute names from the left table to be included in the output candidate set (defaults to None). r_output_attrs (list): A list of attribute names from the right table to be included in the output candidate set (defaults to None). l_output_prefix (string): The prefix to be used for the attribute names coming from the left table in the output candidate set (defaults to 'ltable\_'). r_output_prefix (string): The prefix to be used for the attribute names coming from the right table in the output candidate set (defaults to 'rtable\_'). allow_missing (boolean): A flag to indicate whether tuple pairs with missing value in at least one of the blocking attributes should be included in the output candidate set (defaults to False). If this flag is set to True, a tuple in ltable with missing value in the blocking attribute will be matched with every tuple in rtable and vice versa. verbose (boolean): A flag to indicate whether the debug information should be logged (defaults to False). n_jobs (int): The number of parallel jobs to be used for computation (defaults to 1). If -1 all CPUs are used. If 0 or 1, no parallel computation is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used (where n_cpus is the total number of CPUs in the machine). Thus, for n_jobs = -2, all CPUs but one are used. If (n_cpus + 1 + n_jobs) is less than 1, then no parallel computation is used (i.e., equivalent to the default). Returns: A candidate set of tuple pairs that survived blocking (DataFrame). Raises: AssertionError: If `ltable` is not of type pandas DataFrame. AssertionError: If `rtable` is not of type pandas DataFrame. AssertionError: If `l_block_attr` is not of type string. AssertionError: If `r_block_attr` is not of type string. AssertionError: If `l_output_attrs` is not of type of list. AssertionError: If `r_output_attrs` is not of type of list. AssertionError: If the values in `l_output_attrs` is not of type string. AssertionError: If the values in `r_output_attrs` is not of type string. AssertionError: If `l_output_prefix` is not of type string. AssertionError: If `r_output_prefix` is not of type string. AssertionError: If `verbose` is not of type boolean. AssertionError: If `allow_missing` is not of type boolean. AssertionError: If `n_jobs` is not of type int. AssertionError: If `l_block_attr` is not in the ltable columns. AssertionError: If `r_block_attr` is not in the rtable columns. AssertionError: If `l_out_attrs` are not in the ltable. AssertionError: If `r_out_attrs` are not in the rtable. Examples: >>> import py_entitymatching as em >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ab = em.AttrEquivalenceBlocker() >>> C1 = ab.block_tables(A, B, 'zipcode', 'zipcode', l_output_attrs=['name'], r_output_attrs=['name']) # Include all possible tuple pairs with missing values >>> C2 = ab.block_tables(A, B, 'zipcode', 'zipcode', l_output_attrs=['name'], r_output_attrs=['name'], allow_missing=True) """ # validate data types of input parameters self.validate_types_params_tables(ltable, rtable, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, verbose, n_jobs) # validate data types of input blocking attributes self.validate_types_block_attrs(l_block_attr, r_block_attr) # validate data type of allow_missing self.validate_allow_missing(allow_missing) # validate input parameters self.validate_block_attrs(ltable, rtable, l_block_attr, r_block_attr) self.validate_output_attrs(ltable, rtable, l_output_attrs, r_output_attrs) # get and validate required metadata log_info(logger, 'Required metadata: ltable key, rtable key', verbose) # # get metadata l_key, r_key = cm.get_keys_for_ltable_rtable(ltable, rtable, logger, verbose) # # validate metadata cm._validate_metadata_for_table(ltable, l_key, 'ltable', logger, verbose) cm._validate_metadata_for_table(rtable, r_key, 'rtable', logger, verbose) # do blocking # # do projection of required attributes from the tables l_proj_attrs = self.get_attrs_to_project(l_key, l_block_attr, l_output_attrs) ltable_proj = ltable[l_proj_attrs] r_proj_attrs = self.get_attrs_to_project(r_key, r_block_attr, r_output_attrs) rtable_proj = rtable[r_proj_attrs] # # remove records with nans in the blocking attribute l_df = rem_nan(ltable_proj, l_block_attr) r_df = rem_nan(rtable_proj, r_block_attr) # # determine number of processes to launch parallely n_procs = self.get_num_procs(n_jobs, len(l_df) * len(r_df)) if n_procs <= 1: # single process candset = _block_tables_split(l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, allow_missing) else: # multiprocessing m, n = self.get_split_params(n_procs, len(l_df), len(r_df)) l_splits = np.array_split(l_df, m) r_splits = np.array_split(r_df, n) c_splits = Parallel(n_jobs=m * n)( delayed(_block_tables_split)(l, r, l_key, r_key, l_block_attr, r_block_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, allow_missing) for l in l_splits for r in r_splits) candset = pd.concat(c_splits, ignore_index=True) # if allow_missing flag is True, then compute # all pairs with missing value in left table, and # all pairs with missing value in right table if allow_missing: missing_pairs = self.get_pairs_with_missing_value(ltable_proj, rtable_proj, l_key, r_key, l_block_attr, r_block_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix) candset = pd.concat([candset, missing_pairs], ignore_index=True) # update catalog key = get_name_for_key(candset.columns) candset = add_key_column(candset, key) cm.set_candset_properties(candset, key, l_output_prefix + l_key, r_output_prefix + r_key, ltable, rtable) # return candidate set return candset def block_candset(self, candset, l_block_attr, r_block_attr, allow_missing=False, verbose=False, show_progress=True, n_jobs=1): """Blocks an input candidate set of tuple pairs based on attribute equivalence. Finds tuple pairs from an input candidate set of tuple pairs such that the value of attribute l_block_attr of the left tuple in a tuple pair exactly matches the value of attribute r_block_attr of the right tuple in the tuple pair. Args: candset (DataFrame): The input candidate set of tuple pairs. l_block_attr (string): The blocking attribute in left table. r_block_attr (string): The blocking attribute in right table. allow_missing (boolean): A flag to indicate whether tuple pairs with missing value in at least one of the blocking attributes should be included in the output candidate set (defaults to False). If this flag is set to True, a tuple pair with missing value in either blocking attribute will be retained in the output candidate set. verbose (boolean): A flag to indicate whether the debug information should be logged (defaults to False). show_progress (boolean): A flag to indicate whether progress should be displayed to the user (defaults to True). n_jobs (int): The number of parallel jobs to be used for computation (defaults to 1). If -1 all CPUs are used. If 0 or 1, no parallel computation is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used (where n_cpus is the total number of CPUs in the machine). Thus, for n_jobs = -2, all CPUs but one are used. If (n_cpus + 1 + n_jobs) is less than 1, then no parallel computation is used (i.e., equivalent to the default). Returns: A candidate set of tuple pairs that survived blocking (DataFrame). Raises: AssertionError: If `candset` is not of type pandas DataFrame. AssertionError: If `l_block_attr` is not of type string. AssertionError: If `r_block_attr` is not of type string. AssertionError: If `verbose` is not of type boolean. AssertionError: If `n_jobs` is not of type int. AssertionError: If `l_block_attr` is not in the ltable columns. AssertionError: If `r_block_attr` is not in the rtable columns. Examples: >>> import py_entitymatching as em >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ab = em.AttrEquivalenceBlocker() >>> C = ab.block_tables(A, B, 'zipcode', 'zipcode', l_output_attrs=['name'], r_output_attrs=['name']) >>> D1 = ab.block_candset(C, 'age', 'age', allow_missing=True) # Include all possible tuple pairs with missing values >>> D2 = ab.block_candset(C, 'age', 'age', allow_missing=True) # Execute blocking using multiple cores >>> D3 = ab.block_candset(C, 'age', 'age', n_jobs=-1) """ # validate data types of input parameters self.validate_types_params_candset(candset, verbose, show_progress, n_jobs) # validate data types of input blocking attributes self.validate_types_block_attrs(l_block_attr, r_block_attr) # get and validate metadata log_info(logger, 'Required metadata: cand.set key, fk ltable, ' 'fk rtable, ltable, rtable, ltable key, rtable key', verbose) # # get metadata key, fk_ltable, fk_rtable, ltable, rtable, l_key, r_key = cm.get_metadata_for_candset( candset, logger, verbose) # # validate metadata cm._validate_metadata_for_candset(candset, key, fk_ltable, fk_rtable, ltable, rtable, l_key, r_key, logger, verbose) # validate input parameters self.validate_block_attrs(ltable, rtable, l_block_attr, r_block_attr) # do blocking # # do projection before merge l_df = ltable[[l_key, l_block_attr]] r_df = rtable[[r_key, r_block_attr]] # # set index for convenience l_df = l_df.set_index(l_key, drop=False) r_df = r_df.set_index(r_key, drop=False) # # determine number of processes to launch parallely n_procs = self.get_num_procs(n_jobs, len(candset)) valid = [] if n_procs <= 1: # single process valid = _block_candset_split(candset, l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, fk_ltable, fk_rtable, allow_missing, show_progress) else: c_splits = np.array_split(candset, n_procs) valid_splits = Parallel(n_jobs=n_procs)( delayed(_block_candset_split)(c_splits[i], l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, fk_ltable, fk_rtable, allow_missing, show_progress and i == len( c_splits) - 1) for i in range(len(c_splits))) valid = sum(valid_splits, []) # construct output table if len(candset) > 0: out_table = candset[valid] else: out_table = pd.DataFrame(columns=candset.columns) # update the catalog cm.set_candset_properties(out_table, key, fk_ltable, fk_rtable, ltable, rtable) # return the output table return out_table def block_tuples(self, ltuple, rtuple, l_block_attr, r_block_attr, allow_missing=False): """Blocks a tuple pair based on attribute equivalence. Args: ltuple (Series): The input left tuple. rtuple (Series): The input right tuple. l_block_attr (string): The blocking attribute in left tuple. r_block_attr (string): The blocking attribute in right tuple. allow_missing (boolean): A flag to indicate whether a tuple pair with missing value in at least one of the blocking attributes should be blocked (defaults to False). If this flag is set to True, the pair will be kept if either ltuple has missing value in l_block_attr or rtuple has missing value in r_block_attr or both. Returns: A status indicating if the tuple pair is blocked, i.e., the values of l_block_attr in ltuple and r_block_attr in rtuple are different (boolean). Examples: >>> import py_entitymatching as em >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='ID') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='ID') >>> ab = em.AttrEquivalenceBlocker() >>> status = ab.block_tuples(A.loc[0], B.loc[0], 'zipcode', 'zipcode') """ l_val, r_val = ltuple[l_block_attr], rtuple[r_block_attr] if allow_missing: if pd.isnull(l_val) or pd.isnull(r_val) or l_val == r_val: return False else: return True else: if pd.notnull(l_val) and pd.notnull(r_val) and l_val == r_val: return False else: return True # ------------------------------------------------------------ # utility functions specific to attribute equivalence blocking # validate the data types of the blocking attributes def validate_types_block_attrs(self, l_block_attr, r_block_attr): validate_object_type(l_block_attr, six.string_types, error_prefix='Blocking attribute name of left table') validate_object_type(r_block_attr, six.string_types, error_prefix='Blocking attribute name of right table') # validate the blocking attributes def validate_block_attrs(self, ltable, rtable, l_block_attr, r_block_attr): if l_block_attr not in ltable.columns: raise AssertionError( 'Left block attribute is not in the left table') if r_block_attr not in rtable.columns: raise AssertionError( 'Right block attribute is not in the right table') def get_pairs_with_missing_value(self, l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix): l_df.is_copy, r_df.is_copy = False, False # to avoid setwithcopy warning l_df['ones'] = np.ones(len(l_df)) r_df['ones'] = np.ones(len(r_df)) # find ltable records with missing value in l_block_attr l_df_missing = l_df[pd.isnull(l_df[l_block_attr])] # find ltable records with no missing value in l_block_attr l_df_no_missing = l_df[pd.notnull(l_df[l_block_attr])] # find rtable records with missing value in r_block_attr r_df_missing = r_df[pd.isnull(r_df[r_block_attr])] missing_pairs_1 = pd.merge(l_df_missing, r_df, left_on='ones', right_on='ones', suffixes=('_ltable', '_rtable')) missing_pairs_2 = pd.merge(l_df_no_missing, r_df_missing, left_on='ones', right_on='ones', suffixes=('_ltable', '_rtable')) missing_pairs = pd.concat([missing_pairs_1, missing_pairs_2], ignore_index=True) retain_cols, final_cols = _output_columns(l_key, r_key, list(missing_pairs.columns), l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix) missing_pairs = missing_pairs[retain_cols] missing_pairs.columns = final_cols return missing_pairs def _block_tables_split(l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, allow_missing): # perform an inner join of the two data frames with no missing values candset = pd.merge(l_df, r_df, left_on=l_block_attr, right_on=r_block_attr, suffixes=('_ltable', '_rtable')) retain_cols, final_cols = _output_columns(l_key, r_key, list(candset.columns), l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix) candset = candset[retain_cols] candset.columns = final_cols return candset def _block_candset_split(c_df, l_df, r_df, l_key, r_key, l_block_attr, r_block_attr, fk_ltable, fk_rtable, allow_missing, show_progress): # initialize progress bar if show_progress: prog_bar = pyprind.ProgBar(len(c_df)) # initialize list to keep track of valid ids valid = [] # get the indexes for the key attributes in the candset col_names = list(c_df.columns) lkey_idx = col_names.index(fk_ltable) rkey_idx = col_names.index(fk_rtable) # create a look up table for the blocking attribute values l_dict = {} r_dict = {} # iterate the rows in candset for row in c_df.itertuples(index=False): # # update the progress bar if show_progress: prog_bar.update() # # get the value of block attributes row_lkey = row[lkey_idx] if row_lkey not in l_dict: l_dict[row_lkey] = l_df.loc[row_lkey, l_block_attr] l_val = l_dict[row_lkey] row_rkey = row[rkey_idx] if row_rkey not in r_dict: r_dict[row_rkey] = r_df.loc[row_rkey, r_block_attr] r_val = r_dict[row_rkey] if allow_missing: if pd.isnull(l_val) or pd.isnull(r_val) or l_val == r_val: valid.append(True) else: valid.append(False) else: if pd.notnull(l_val) and pd.notnull(r_val) and l_val == r_val: valid.append(True) else: valid.append(False) return valid def _output_columns(l_key, r_key, col_names, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix): # retain id columns from merge ret_cols = [_retain_names(l_key, col_names, '_ltable')] ret_cols.append(_retain_names(r_key, col_names, '_rtable')) # final columns in the output fin_cols = [_final_names(l_key, l_output_prefix)] fin_cols.append(_final_names(r_key, r_output_prefix)) # retain output attrs from merge if l_output_attrs: for at in l_output_attrs: if at != l_key: ret_cols.append(_retain_names(at, col_names, '_ltable')) fin_cols.append(_final_names(at, l_output_prefix)) if r_output_attrs: for at in r_output_attrs: if at != r_key: ret_cols.append(_retain_names(at, col_names, '_rtable')) fin_cols.append(_final_names(at, r_output_prefix)) return ret_cols, fin_cols def _retain_names(x, col_names, suffix): if x in col_names: return x else: return str(x) + suffix def _final_names(col, prefix): return prefix + str(col)
bsd-3-clause
11,388,610,606,417,046
44.359019
134
0.526641
false
USGSDenverPychron/pychron
pychron/core/helpers/archiver.py
1
5290
# =============================================================================== # Copyright 2011 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from traits.api import Range, Bool, Str, HasTraits # ============= standard library imports ======================== import os import shutil from datetime import datetime, timedelta # ============= local library imports ========================== # from logger_setup import simple_logger from pychron.core.helpers.logger_setup import simple_logger MONTH_NAMES = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'] # logger = logging.getLogger('Archiver') # logger.setLevel(logging.DEBUG) # h = logging.StreamHandler() # h.setFormatter(logging.Formatter('%(name)-40s: %(asctime)s %(levelname)-7s (%(threadName)-10s) %(message)s')) # logger.addHandler(h) logger = simple_logger('Archiver') class Archiver(HasTraits): archive_hours = Range(0, 23, 0) archive_days = Range(0, 31, 0) archive_months = Range(0, 12, 1) clean_archives = Bool(True) root = Str def info(self, msg, *args, **kw): logger.info(msg) def clean(self): self._clean() def _clean(self): """ 1. find all files older than archive_days+archive_hours - move to archive 2. remove archive directories older than archive_months """ root = self.root if not root: return archive_date = datetime.today() - timedelta(days=self.archive_days, hours=self.archive_hours) self.info('Files older than {} will be archived'.format(archive_date)) cnt = 0 for p in self._get_files(root): rp = os.path.join(root, p) result = os.stat(rp) mt = result.st_mtime creation_date = datetime.fromtimestamp(mt) if creation_date < archive_date: self._archive(root, p) cnt += 1 if cnt > 0: self.info('Archived {} files'.format(cnt)) if self.clean_archives: self._clean_archive(root) self.info('Archive cleaning complete') def _get_files(self, root): return (p for p in os.listdir(root) if not p.startswith('.') and os.path.isfile(os.path.join(root, p))) def _clean_archive(self, root): self.info('Archives older than {} months will be deleted'.format(self.archive_months)) arch = os.path.join(root, 'archive') rdate = datetime.today() - timedelta(days=self.archive_months * 30) if os.path.isdir(arch): for year_dir in self._get_files(arch): yarch = os.path.join(arch, year_dir) for month_dir in self._get_files(yarch): adate = datetime(year=int(year_dir), month=MONTH_NAMES.index(month_dir) + 1, day=1) if rdate > adate: self.info('Deleting archive {}/{}'.format(year_dir, month_dir)) shutil.rmtree(os.path.join(arch, year_dir, month_dir)) # remove empty year archives if not os.listdir(yarch): self.info('Deleting empty year archive {}'.format(year_dir)) os.rmdir(yarch) def _archive(self, root, p): # create an archive directory today = datetime.today() month_idx = today.month month = MONTH_NAMES[month_idx - 1] year = today.year arch = os.path.join(root, 'archive') if not os.path.isdir(arch): os.mkdir(arch) yarch = os.path.join(arch, str(year)) if not os.path.isdir(yarch): os.mkdir(yarch) mname = '{:02d}-{}'.format(month_idx, month) march = os.path.join(yarch, mname) if not os.path.isdir(march): os.mkdir(march) src = os.path.join(root, p) dst = os.path.join(march, p) self.info('Archiving {:15s} to ./archive/{}/{}'.format(p, year, mname)) try: shutil.move(src, dst) except Exception, e: self.warning('Archiving failed') self.warning(e) # if __name__ == '__main__': # # from pychron.core.helpers.logger_setup import logging_setup, simple_logger, new_logger # # logging_setup('video_main') # c = Archiver(archive_days=1 # ) # c.root = '/Users/ross/Sandbox/video_test' # c.clean()
apache-2.0
1,956,422,334,840,348,400
34.743243
111
0.540832
false
PFacheris/flake8-function-definition
test/test_checks.py
1
1677
import ast import os import pytest try: from flake8.engine import pep8 except ImportError: import pycodestyle as pep8 from flake8_function_definition.checker import FunctionDefinitionChecker from test.utils import extract_expected_errors def load_test_cases(): base_path = os.path.dirname(__file__) test_case_path = os.path.join(base_path, 'test_cases') test_case_files = os.listdir(test_case_path) test_cases = [] for fname in test_case_files: if not fname.endswith('.py'): continue fullpath = os.path.join(test_case_path, fname) data = open(fullpath).read() tree = ast.parse(data, fullpath) codes, messages = extract_expected_errors(data) test_cases.append((tree, fullpath, codes, messages)) return test_cases @pytest.mark.parametrize( 'tree, filename, expected_codes, expected_messages', load_test_cases() ) def test_expected_error(tree, filename, expected_codes, expected_messages): argv = [] for style in ['google']: if style in filename: argv.append('--function-definition-style=' + style) break parser = pep8.get_parser('', '') FunctionDefinitionChecker.add_options(parser) options, args = parser.parse_args(argv) FunctionDefinitionChecker.parse_options(options) checker = FunctionDefinitionChecker(tree, filename) codes = [] messages = [] for lineno, col_offset, msg, instance in checker.run(): code, message = msg.split(' ', 1) codes.append(code) messages.append(message) assert codes == expected_codes assert set(messages) >= set(expected_messages)
mit
7,102,056,583,878,051,000
26.95
75
0.664281
false
fandemonium/code
seq_util/separate_seqs_into_different_files.py
1
1224
import sys from Bio import SeqIO def seq_range(s_start, s_end): return str(s_start) + "-" + str(s_end) if s_end - s_start > 0 else str(s_end) + "-" + str(s_start) def parse_seqid(fasta): seq_d = {} for records in fasta: header = records.id.strip().split(" ") ID = header[0] seq_d[ID] = records.seq return seq_d d = {} ## read in organized blast table with percent alignment for n, lines in enumerate(open(sys.argv[1], 'rU')): if n == 0: continue else: line = lines.strip().split("\t") seq_id = line[1] identity = float(line[2]) perc_aln = float(line[-1]) type = line[-5] start = int(line[-9]) end = int(line[-8]) if identity >= 75 and perc_aln >= 80: if type not in d: d[type] = [seq_id + ":" + seq_range(start, end)] else: d[type].append(seq_id + ":" + seq_range(start, end)) seqs = SeqIO.parse(open(sys.argv[2], 'rU'), "fasta") fa = parse_seqid(seqs) #for keys in fa.keys(): # print keys for args, values in d.iteritems(): # print args # for item in values and fa.keys(): # print ">" + item + "\n" + fa[item] fileout = "%s.txt" % args fp = open(fileout, 'w') for item in values: if item in fa.keys(): fp.write(">%s\n" % (item)) fp.write("%s\n" % (fa[item]))
mit
-321,727,026,953,268,030
24.5
99
0.593954
false
ProgramFan/bentoo
bentoo/tools/svgconvert.py
1
2977
#!/usr/bin/env python # -*- coding: utf-8 -*- # ''' svgconvert - Simple tool to convert svg to pdf and png This tool converts svg to pdf and png using phantomjs. It handles mising fonts correctly, so svgs with unicode text objects are handled gracefuly. ''' import argparse import os import subprocess import xml.etree.ElementTree rasterize_js = ''' "use strict"; var page = require('webpage').create(), system = require('system'), address, output, size, pageWidth, pageHeight; address = system.args[1]; output = system.args[2]; page.viewportSize = { width: 600, height: 600 }; if (system.args.length > 3 && system.args[2].substr(-4) === ".pdf") { size = system.args[3].split('*'); page.paperSize = size.length === 2 ? { width: size[0], height: size[1], margin: '0px' } : { format: system.args[3], orientation: 'portrait', margin: '1cm' }; } else if (system.args.length > 3 && system.args[3].substr(-2) === "px") { size = system.args[3].split('*'); if (size.length === 2) { pageWidth = parseInt(size[0], 10); pageHeight = parseInt(size[1], 10); page.viewportSize = { width: pageWidth, height: pageHeight }; page.clipRect = { top: 0, left: 0, width: pageWidth, height: pageHeight }; } else { pageWidth = parseInt(system.args[3], 10); pageHeight = parseInt(pageWidth * 3/4, 10); page.viewportSize = { width: pageWidth, height: pageHeight }; } } if (system.args.length > 4) { page.zoomFactor = system.args[4]; } page.open(address, function (status) { if (status !== 'success') { console.log('Unable to load the address!'); phantom.exit(1); } else { window.setTimeout(function () { page.render(output); phantom.exit(); }, 200); } }); ''' def svgconvert(svgfile, outfile): svg = xml.etree.ElementTree.parse(svgfile) root = svg.getroot() assert root.tag == "{http://www.w3.org/2000/svg}svg" width = root.attrib["width"] height = root.attrib["height"] rasterize_fn = os.path.join("/tmp", "svgconvert-%d.js" % os.getpid()) file(rasterize_fn, "w").write(rasterize_js) try: cmd = ["phantomjs", rasterize_fn, svgfile, outfile, "%s*%s" % (width, height)] subprocess.check_call(cmd, shell=False) finally: os.remove(rasterize_fn) def main(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("svgfile", help="SVG file to convert") parser.add_argument("outfile", help="Output file") args = parser.parse_args() svgconvert(args.svgfile, args.outfile) if __name__ == "__main__": main()
mit
-1,256,241,127,294,511,400
31.358696
78
0.567014
false
tvalacarta/tvalacarta
python/main-classic/servers/canal10.py
1
1649
# -*- coding: utf-8 -*- #------------------------------------------------------------ # pelisalacarta - XBMC Plugin # Conector para canal10 # http://blog.tvalacarta.info/plugin-xbmc/pelisalacarta/ #------------------------------------------------------------ import urlparse,urllib2,urllib,re import os from core import scrapertools from core import logger from core import config from core import jsontools def get_video_url( page_url , premium = False , user="" , password="", video_password="", page_data="" ): logger.info("tvalacarta.servers.canal10 get_video_url(page_url='%s')" % page_url) video_urls = [] data = scrapertools.cache_page(page_url) iframe_url = scrapertools.find_single_match(data,'<iframe src="([^"]+)"') logger.info("iframe_url="+repr(iframe_url)) headers = [] headers.append(['User-Agent','Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.0.3) Gecko/2008092417 Firefox/3.0.3']) headers.append(['Referer',page_url]) data = scrapertools.cache_page(iframe_url, headers=headers) # Extrae las zonas de los programas patron = "src\:\s+'([^']+)',\s+type\:\s+'([^']+)'" matches = re.compile(patron,re.DOTALL).findall(data) for media_url,content_type in matches: video_urls.append( [ "("+scrapertools.get_filename_from_url(media_url)[-4:]+") [canal10]" , "http:"+media_url ] ) for video_url in video_urls: logger.info("tvalacarta.servers.canal10 %s - %s" % (video_url[0],video_url[1])) return video_urls # Encuentra vídeos del servidor en el texto pasado def find_videos(data): encontrados = set() devuelve = [] return devuelve
gpl-3.0
-6,697,105,664,156,559,000
34.826087
127
0.614078
false
natko1412/script.module.dudehere.routines
lib/dudehere/routines/scrapers/alluc_api.py
1
2538
import sys import os import re import urllib from dudehere.routines import * from dudehere.routines.scrapers import CommonScraper, ScraperResult class alluc_apiScraper(CommonScraper): def __init__(self): self._settings = {} self.service='alluc_api' self.name = 'alluc.com' self.referrer = 'https://www.alluc.com' self.base_url = 'https://www.alluc.com/api/search' self.username = ADDON.get_setting(self.service + '_username') self.password = ADDON.get_setting(self.service + '_password') self.apikey = ADDON.get_setting(self.service + '_apikey') self.max_results = 10 def search_tvshow(self, args): self.domains = args['domains'] results = [] uri = self.prepair_query('tvshow', args['showname'], args['season'], args['episode'], apikey=True) data = self.request(uri, return_json=True) results = self.process_results(data) return results def search_movie(self, args): self.domains = args['domains'] results = [] uri = self.prepair_query('movie', args['title'], args['year'], apikey=True) print uri data = self.request(uri, return_json=True) results = self.process_results(data) return results def process_results(self, data): results = [] for result in data['result']: title = self.normalize(result['title']) sourcetitle = self.normalize(result['sourcetitle']) hoster = result['hosterurls'] extension = result['extension'] size = result['sizeinternal'] extension = result['extension'] host_name = result['hostername'] hosts = result['hosterurls'] for host in hosts: if host_name in self.domains: url = "%s://%s" % (self.service, host['url']) quality = self.test_quality(title+sourcetitle+self.normalize(url)) result = ScraperResult(self.service, host_name, url, title) result.quality = quality result.size = size result.extension = extension results.append(result) return results def prepair_query(self, media, *args, **kwards): uri = "/stream/?%s" params = {"from": 0, "count": self.max_results, "getmeta":0} #if 'apikey' in kwards.keys(): #params['apikey'] = self.apikey #else: params['user'] = self.username params['password'] = self.password if media == 'tvshow': params['query'] = "%s S%sE%s" % args else: params['query'] = "%s %s" % args if 'host' in kwards.keys(): params['query'] = params['query'] + + ' host:' + kwards['host'] if 'lang' in kwards.keys(): params['query'] = params['query'] + + ' lang:' + kwards['lang'] return uri % urllib.urlencode(params)
gpl-3.0
-4,392,441,383,119,036,000
32.407895
100
0.663515
false
opendaylight/spectrometer
server/tests/test_gitapi.py
1
3107
#!/usr/bin/python # -*- coding: utf-8 -*- # @License EPL-1.0 <http://spdx.org/licenses/EPL-1.0> ############################################################################## # Copyright (c) 2016 The Linux Foundation and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Eclipse Public License v1.0 # which accompanies this distribution, and is available at # http://www.eclipse.org/legal/epl-v10.html ############################################################################## import json from flask import url_for def test_branches(client): """Test the git.branches api""" resp = client.get(url_for('git.branches', project='spectrometer', no_cache='true')) data = json.loads(resp.get_data(as_text=True)) assert data['branches'] # Validate that the master branch was returned branches = data['branches'] assert ('master' in branches) def test_commits(client): """Test the git.commits api""" resp = client.get(url_for('git.commits', project='spectrometer', no_cache='true')) data = json.loads(resp.get_data(as_text=True)) assert data['commits'] # Validate the first commit has the expected spectrometer commit hash commits = data['commits'] assert (commits[-1].get('hash') == '8b053408ae61ce7cb67372146edd7ed5a0fd6838') # Test commit data. Using the 2nd commit pushed into spectrometer repo # as the test data. commits = data['commits'] assert (commits[-2].get('author') == 'Thanh Ha') assert (commits[-2].get('author_email') == '[email protected]') assert (commits[-2].get('author_tz_offset') == 18000) assert (commits[-2].get('authored_date') == 1448849259) assert (commits[-2].get('committer') == 'Thanh Ha') assert (commits[-2].get('committer_email') == '[email protected]') assert (commits[-2].get('committer_tz_offset') == 18000) assert (commits[-2].get('committed_date') == 1448849300) assert (commits[-2].get('hash') == 'f3d7296885386ca68b074c0fe21b42c8d799f818') lines = commits[-2].get('lines') assert (lines.get('deletions') == 0) assert (lines.get('files') == 1) assert (lines.get('insertions') == 5) assert (lines.get('lines') == 5) assert (commits[-2].get('message').startswith('Add .gitreview')) def test_commits_since_ref(client): """Test the git.commits api""" resp = client.get(url_for( 'git.commits_since_ref', project='spectrometer', ref1='09e539aa4542df7839b2602e0ebe8ff1ba43c6d8', ref2='364d571daa352de261dce8d9feb599419b08c913', no_cache='true')) data = json.loads(resp.get_data(as_text=True)) assert data['commits'] # Validate the first commit is ref1 commits = data['commits'] assert (commits[0].get('hash') == '09e539aa4542df7839b2602e0ebe8ff1ba43c6d8') # Validate the last commit does not include ref2 hash and instead contains the # commit after that. commits = data['commits'] assert (commits[-1].get('hash') == 'c1a8458e66347ffd6e334fc26db9c52ab68afe85')
epl-1.0
2,675,317,610,734,996,000
38.833333
87
0.641455
false
axxiao/tuobi
axtools/connector-i2c.py
1
2524
""" The connector for i2c __author__ = "Alex Xiao <http://www.alexxiao.me/>" __date__ = "2017-04-22" __version__ = "0.5" """ import smbus class connector_i2c(): ''' The standard I2c connector implementation ''' def __init__(self,bus_num): ''' bus_num: i2c bus number, start from 0 ''' self.bus_num=bus_num self.bus=smbus.SMBus(bus_num) def send(self,addr,instr,reg=0x00,mode='string'): ''' send string command to address addr: the address in_str: the string to be sent ''' if mode=='string': for ec in instr.encode(encoding='UTF-8'): self.bus.write_byte_data(addr,reg,ec) else: self.bus.write_byte_data(addr,reg,instr) def read_bytes(self,addr,length,offset=0): return self.bus.read_i2c_block_data(addr,offset, length) def receive(self,addr): ''' Receive string from address * if no new incoming message, it will repeat the last received! ''' recv=self.bus.read_i2c_block_data(addr, 0); rtn='' for ec in recv: if ec<255: rtn+=chr(ec) return rtn class tuobi_i2c(): ''' The I2c connector implementation for tuobi ''' def __init__(self,i2c_bus_num): self.i2c_bus_num=i2c_bus_num self.i2c=connector_i2c(i2c_bus_num) self.last_ts=dict() def send(self,addr,instr,reg=0x00): ''' send string command to address addr: the address in_str: the string to be sent ''' if instr[-1]!=';': instr=instr+';' self.i2c.send(addr,instr,reg) def get(self,addr): ''' Receive the string from address return: cmd, data Note: different from standard i2c interface, it will NOT repeat the last one ''' if addr not in self.last_ts: self.last_ts[addr]=-1 recv=self.i2c.receive(addr) rtn=None,None if recv[-1]==';': cmd,data,ts=recv[:-1].split(':') if self.last_ts[addr]<int(ts): #if newly received rtn=cmd,data self.last_ts[addr]=int(ts) return rtn #t=tuobi_body(0) ##t.send(0x05,'FO;') #t.get(0x05) ##i2c=connector_i2c(0) ##address=0x05 #i2c.send(address,'SC;') #i2c.receive(address) #
mit
5,864,206,459,583,922,000
26.445652
88
0.516244
false
jreinhardt/manual-labour
src/manuallabour/exporters/html.py
1
3684
# Manual labour - a library for step-by-step instructions # Copyright (C) 2014 Johannes Reinhardt <[email protected]> # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # USA """ This module defines exporters for export of schedules to HTML and other classes related to this task. """ from manuallabour.exporters.common import ScheduleExporterBase, MarkupBase from jinja2 import Environment, FileSystemLoader from os.path import join, exists from shutil import rmtree,copytree from os import remove # pylint: disable=W0622 from codecs import open class HTMLMarkup(MarkupBase): """ Markup for HTML export """ def __init__(self,store): MarkupBase.__init__(self) self.store = store def _handle_obj(self,obj,text): if obj["images"]: url = self.store.get_blob_url(obj["images"][0]["blob_id"]) return "<a href='%s'>%s</a>" % (url,text or obj["name"]) else: return text or obj["name"] def part(self,obj,text): return self._handle_obj(obj,text) def tool(self,obj,text): return self._handle_obj(obj,text) def result(self,obj,text): return self._handle_obj(obj,text) def image(self,res,text): return "<img src='%s' alt='%s'>" % (res["url"],res["alt"]) def file(self,res,text): return "<a href='%s'>%s</a>" % (res["url"],text or res["filename"]) class SinglePageHTMLExporter(ScheduleExporterBase): """ Exporter to export schedules into a single HTML page. """ def __init__(self,layout_path): ScheduleExporterBase.__init__(self) self.layout_path = layout_path self.env = Environment(loader=FileSystemLoader(layout_path)) def export(self,schedule,store,path,**kwargs): ScheduleExporterBase.export(self,schedule,store,path,**kwargs) #clean up output dir if exists(join(path)): rmtree(join(path)) #copy over stuff copytree(self.layout_path,path) remove(join(path,'template.html')) with open(join(path,'out.html'),'w','utf8') as fid: fid.write(self.render(schedule,store,**kwargs)) def render(self,schedule,store,**kwargs): ScheduleExporterBase.render(self,schedule,store,**kwargs) #prepare stuff for rendering markup = HTMLMarkup(store) bom = schedule.collect_bom(store) sourcefiles = schedule.collect_sourcefiles(store) parts = [ref.dereference(store) for ref in bom["parts"].values()] tools = [ref.dereference(store) for ref in bom["tools"].values()] steps = [] for step in schedule.steps: steps.append(step.markup(store,markup)) template = self.env.get_template('template.html') #pylint: disable=E1103 return template.render( doc = kwargs, schedule = schedule, sourcefiles = sourcefiles, parts = parts, tools = tools, steps = steps )
lgpl-2.1
7,247,617,497,565,202,000
35.117647
76
0.649566
false
kozak127/gherkins
app/oauth.py
1
2315
from rauth import OAuth2Service from flask import current_app, url_for, request, redirect class OAuthSignIn(object): providers = None def __init__(self, provider_name): self.provider_name = provider_name credentials = current_app.config['OAUTH_CREDENTIALS'][provider_name] self.consumer_id = credentials['id'] self.consumer_secret = credentials['secret'] def authorize(self): pass def callback(self): pass def get_callback_url(self): return url_for('oauth_callback', provider=self.provider_name, _external=True) @classmethod def get_provider(self, provider_name): if self.providers is None: self.providers = {} for provider_class in self.__subclasses__(): provider = provider_class() self.providers[provider.provider_name] = provider return self.providers[provider_name] class FacebookSignIn(OAuthSignIn): def __init__(self): super(FacebookSignIn, self).__init__('facebook') self.service = OAuth2Service( name='facebook', client_id=self.consumer_id, client_secret=self.consumer_secret, authorize_url='https://graph.facebook.com/oauth/authorize', access_token_url='https://graph.facebook.com/oauth/access_token', base_url='https://graph.facebook.com/' ) def authorize(self): return redirect(self.service.get_authorize_url( scope='email', response_type='code', redirect_uri=self.get_callback_url()) ) def callback(self): if 'code' not in request.args: return None, None, None oauth_session = self.service.get_auth_session( data={'code': request.args['code'], 'grant_type': 'authorization_code', 'redirect_uri': self.get_callback_url()} ) me = oauth_session.get('me').json() return ( 'facebook$' + me['id'], me.get('email').split('@')[0], # Facebook does not provide # username, so the email's user # is used instead me.get('email') )
mit
-1,819,415,229,331,384,800
33.044118
77
0.558963
false
juanchopanza/pyhistuples
pyhistuples/pyhistoplots.py
1
3940
'''Helper functions for plotting histograms, sequences, and ntuple columns Copyright (c) 2010 Juan Palacios [email protected] Subject to the Lesser GNU Public License - see < http://www.gnu.org/licenses/lgpl.html> ''' # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. __author__ = 'Juan Palacios <[email protected]>' __version__ = '1.3' __all__ = ('histo_plot','sequence_histo_plot','ntuple_plot', 'ntuple_column_histo', 'default_stats') from matplotlib import pyplot from pyhistuples.pyhistogram.histostats import poissonSigma default_stats = ('entries','mean', 'sigma', 'integral') def histo_plot(histogram, errorfunction = poissonSigma, stats = default_stats, show = True, **kwargs) : ''' Plot the contents of a histogram.Histogram ''' axis = histogram.axis bins = histogram.filledBins() x = [bin.centre for bin in bins] w = [bin.height for bin in bins] e = None if errorfunction : e = [errorfunction(bin) for bin in bins] else : e = [0 for bin in bins] stat_text = None if stats : stat_text = 'Statistics' for stat in stats : stat_text += '\n%(st)s %(#)g' % { 'st' : stat, '#' : histogram.__getattribute__(stat)() } return sequence_histo_plot(x, weights=w, errors = e, bins=axis.nbins, range = axis.range, xlabel=axis.label, stats = stat_text, show = show, **kwargs) def sequence_histo_plot(x, weights=None, errors = None, bins=100, range = None, xlabel='', stats = None, show = True, histtype = 'step', **kwargs) : ''' Plot the contents of a sequence ''' fig = pyplot.figure() ax = fig.add_subplot(1,1,1) if errors == None : ax.hist(x, weights = weights, bins=bins, range = range, histtype=histtype, **kwargs) else : ax.errorbar(x, weights, errors, fmt = 'o', **kwargs) ax.set_xlim(range[0], range[1]) ax.set_ylabel('Entries') ax.set_xlabel(xlabel) if stats : ax.text(0.975, 0.975, stats, horizontalalignment='right', verticalalignment='top', multialignment = 'left', transform = ax.transAxes, bbox=dict(edgecolor = 'black', facecolor='none', alpha=1.)) if show : fig.show() return fig def ntuple_plot(ntuple, tag, cut=None, **kwargs) : ''' Plot the contents of an ntuple.Ntuple column ''' column_histo = ntuple_column_histo(ntuple, tag, cut) return histo_plot(column_histo, **kwargs) def ntuple_column_histo(ntuple, tag, cut=None, bins=100) : ''' Create and return a histogram.Histogram object constructed from the contents of an ntuple.NTuple column. ''' from pyhistuples.pyhistogram.histogram import Histogram, Axis col = ntuple.column(tag,cut) min_range = min(col) max_range = max(col) width = (max_range-min_range)/bins max_range += width/2. max_range -= width/2. histo = Histogram(axis=Axis(bins, min_range, max_range, label=tag)) for x in col : histo.fill(x) return histo
gpl-3.0
-8,844,344,140,079,734,000
34.178571
148
0.601523
false
googleapis/python-compute
google/cloud/compute_v1/services/disks/transports/base.py
1
10910
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import packaging.version import pkg_resources from requests import __version__ as requests_version import google.auth # type: ignore import google.api_core # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.cloud.compute_v1.types import compute try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution("google-cloud-compute",).version, grpc_version=None, rest_version=requests_version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() try: # google.auth.__version__ was added in 1.26.0 _GOOGLE_AUTH_VERSION = google.auth.__version__ except AttributeError: try: # try pkg_resources if it is available _GOOGLE_AUTH_VERSION = pkg_resources.get_distribution("google-auth").version except pkg_resources.DistributionNotFound: # pragma: NO COVER _GOOGLE_AUTH_VERSION = None class DisksTransport(abc.ABC): """Abstract transport class for Disks.""" AUTH_SCOPES = ( "https://www.googleapis.com/auth/compute", "https://www.googleapis.com/auth/cloud-platform", ) DEFAULT_HOST: str = "compute.googleapis.com" def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host scopes_kwargs = self._get_scopes_kwargs(self._host, scopes) # Save the scopes. self._scopes = scopes or self.AUTH_SCOPES # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs( "'credentials_file' and 'credentials' are mutually exclusive" ) if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default( **scopes_kwargs, quota_project_id=quota_project_id ) # Save the credentials. self._credentials = credentials # TODO(busunkim): This method is in the base transport # to avoid duplicating code across the transport classes. These functions # should be deleted once the minimum required versions of google-auth is increased. # TODO: Remove this function once google-auth >= 1.25.0 is required @classmethod def _get_scopes_kwargs( cls, host: str, scopes: Optional[Sequence[str]] ) -> Dict[str, Optional[Sequence[str]]]: """Returns scopes kwargs to pass to google-auth methods depending on the google-auth version""" scopes_kwargs = {} if _GOOGLE_AUTH_VERSION and ( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0") ): scopes_kwargs = {"scopes": scopes, "default_scopes": cls.AUTH_SCOPES} else: scopes_kwargs = {"scopes": scopes or cls.AUTH_SCOPES} return scopes_kwargs def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.add_resource_policies: gapic_v1.method.wrap_method( self.add_resource_policies, default_timeout=None, client_info=client_info, ), self.aggregated_list: gapic_v1.method.wrap_method( self.aggregated_list, default_timeout=None, client_info=client_info, ), self.create_snapshot: gapic_v1.method.wrap_method( self.create_snapshot, default_timeout=None, client_info=client_info, ), self.delete: gapic_v1.method.wrap_method( self.delete, default_timeout=None, client_info=client_info, ), self.get: gapic_v1.method.wrap_method( self.get, default_timeout=None, client_info=client_info, ), self.get_iam_policy: gapic_v1.method.wrap_method( self.get_iam_policy, default_timeout=None, client_info=client_info, ), self.insert: gapic_v1.method.wrap_method( self.insert, default_timeout=None, client_info=client_info, ), self.list: gapic_v1.method.wrap_method( self.list, default_timeout=None, client_info=client_info, ), self.remove_resource_policies: gapic_v1.method.wrap_method( self.remove_resource_policies, default_timeout=None, client_info=client_info, ), self.resize: gapic_v1.method.wrap_method( self.resize, default_timeout=None, client_info=client_info, ), self.set_iam_policy: gapic_v1.method.wrap_method( self.set_iam_policy, default_timeout=None, client_info=client_info, ), self.set_labels: gapic_v1.method.wrap_method( self.set_labels, default_timeout=None, client_info=client_info, ), self.test_iam_permissions: gapic_v1.method.wrap_method( self.test_iam_permissions, default_timeout=None, client_info=client_info, ), } @property def add_resource_policies( self, ) -> Callable[ [compute.AddResourcePoliciesDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def aggregated_list( self, ) -> Callable[ [compute.AggregatedListDisksRequest], Union[compute.DiskAggregatedList, Awaitable[compute.DiskAggregatedList]], ]: raise NotImplementedError() @property def create_snapshot( self, ) -> Callable[ [compute.CreateSnapshotDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def delete( self, ) -> Callable[ [compute.DeleteDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def get( self, ) -> Callable[ [compute.GetDiskRequest], Union[compute.Disk, Awaitable[compute.Disk]] ]: raise NotImplementedError() @property def get_iam_policy( self, ) -> Callable[ [compute.GetIamPolicyDiskRequest], Union[compute.Policy, Awaitable[compute.Policy]], ]: raise NotImplementedError() @property def insert( self, ) -> Callable[ [compute.InsertDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def list( self, ) -> Callable[ [compute.ListDisksRequest], Union[compute.DiskList, Awaitable[compute.DiskList]] ]: raise NotImplementedError() @property def remove_resource_policies( self, ) -> Callable[ [compute.RemoveResourcePoliciesDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def resize( self, ) -> Callable[ [compute.ResizeDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def set_iam_policy( self, ) -> Callable[ [compute.SetIamPolicyDiskRequest], Union[compute.Policy, Awaitable[compute.Policy]], ]: raise NotImplementedError() @property def set_labels( self, ) -> Callable[ [compute.SetLabelsDiskRequest], Union[compute.Operation, Awaitable[compute.Operation]], ]: raise NotImplementedError() @property def test_iam_permissions( self, ) -> Callable[ [compute.TestIamPermissionsDiskRequest], Union[ compute.TestPermissionsResponse, Awaitable[compute.TestPermissionsResponse] ], ]: raise NotImplementedError() __all__ = ("DisksTransport",)
apache-2.0
2,032,316,623,487,839,000
33.745223
103
0.620623
false
radiocosmology/alpenhorn
tests/test_db.py
1
1655
""" test_db ------- Tests for `alpenhorn.db` module. """ import peewee as pw import pytest import alpenhorn.db as db import test_import as ti # try: # from unittest.mock import patch, call # except ImportError: # from mock import patch, call class FailingSqliteDatabase(pw.SqliteDatabase): def execute_sql(self, sql, *args, **kwargs): self.fail ^= True if self.fail: self.fail_count += 1 raise pw.OperationalError("Fail every other time") else: return super(FailingSqliteDatabase, self).execute_sql(sql, *args, **kwargs) def close(self): if not self.fail: return super(FailingSqliteDatabase, self).close() @pytest.fixture def fixtures(tmpdir): db._connect() # the database connection will fail to execute a statement every other time db.database_proxy.obj.__class__ = type( "FailingRetryableDatabase", (db.RetryOperationalError, FailingSqliteDatabase), {}, ) db.database_proxy.obj.fail_count = 0 db.database_proxy.obj.fail = False yield ti.load_fixtures(tmpdir) assert db.database_proxy.obj.fail_count > 0 db.database_proxy.close() def test_schema(fixtures): setup_fail_count = db.database_proxy.obj.fail_count ti.test_schema(fixtures) # we have had more failures during test_import assert db.database_proxy.obj.fail_count > setup_fail_count def test_model(fixtures): setup_fail_count = db.database_proxy.obj.fail_count ti.test_import(fixtures) # we have had more failures during test_import assert db.database_proxy.obj.fail_count > setup_fail_count
mit
-1,769,590,961,203,917,000
24.859375
87
0.672508
false
pgierz/semic
netcdf_interface/echam6_calculate_air_density.py
1
1919
#!/usr/bin/env python """ Calculates the density of air baed upon the Ideal Gas Law and the Magnus Equation """ import argparse import numpy as np from scipy.io import netcdf import math import os def calculate_density(pressure, temperature, relative_humidity): Rl = 287.058 # R for luft (dry air), [J/kg/K] Rd = 461.523 # R for dampf (water vapour), [J/kg/K] def Magnus(temperature): # See http://dx.doi.org/10.1175/1520-0450(1996)035%3C0601:IMFAOS%3E2.0.CO;2 temperature_celsius = temperature - 273.15 # if not (-40.0 < temperature_celsius) and not (temperature_celsius < 50.0): # print("WARNING: The Magnus Equation may deliver incorrect results for the temperature used: %s" % str(temperature_celsius)) return 6.1094 * math.e**((17.625 * temperature_celsius)/(temperature_celsius + 243.04)) saturation_pressure = Magnus(temperature) Rf = (Rl) / (1.0 - relative_humidity * (saturation_pressure/pressure) * (1 - (Rl/Rd))) rho = pressure / (Rf * temperature) return rho def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument("ifile") parser.add_argument("ofile") return parser.parse_args() if __name__ == "__main__": args = parse_arguments() fin = netcdf.netcdf_file(args.ifile, "r") os.system("cp "+args.ifile+" "+args.ofile) fout = netcdf.netcdf_file(args.ofile, "a") rho_file = fout.createVariable("rhoa", "f", fin.variables["temp2"].dimensions) pressure = fin.variables["aps"].data.squeeze() temperature = fin.variables["temp2"].data.squeeze() relative_humidity = fin.variables["rhumidity"].data[:, -1, :, :].squeeze() # PG: Get the relative humidity of the BOTTOM layer (last). This might need to change!! rho = calculate_density(pressure, temperature, relative_humidity) rho_file[:] = rho fout.sync() fout.close()
mit
2,043,884,311,162,926,800
40.717391
137
0.655029
false
linvictor88/vse-lbaas-driver
quantum/manager.py
1
7441
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 Nicira Networks, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # @author: Somik Behera, Nicira Networks, Inc. from oslo.config import cfg from quantum.common.exceptions import ClassNotFound from quantum.openstack.common import importutils from quantum.openstack.common import lockutils from quantum.openstack.common import log as logging from quantum.openstack.common import periodic_task from quantum.plugins.common import constants LOG = logging.getLogger(__name__) class Manager(periodic_task.PeriodicTasks): # Set RPC API version to 1.0 by default. RPC_API_VERSION = '1.0' def __init__(self, host=None): if not host: host = cfg.CONF.host self.host = host super(Manager, self).__init__() def periodic_tasks(self, context, raise_on_error=False): self.run_periodic_tasks(context, raise_on_error=raise_on_error) def init_host(self): """Handle initialization if this is a standalone service. Child classes should override this method. """ pass def after_start(self): """Handler post initialization stuff. Child classes can override this method. """ pass def validate_post_plugin_load(): """Checks if the configuration variables are valid. If the configuration is invalid then the method will return an error message. If all is OK then it will return None. """ if ('dhcp_agents_per_network' in cfg.CONF and cfg.CONF.dhcp_agents_per_network <= 0): msg = _("dhcp_agents_per_network must be >= 1. '%s' " "is invalid.") % cfg.CONF.dhcp_agents_per_network return msg def validate_pre_plugin_load(): """Checks if the configuration variables are valid. If the configuration is invalid then the method will return an error message. If all is OK then it will return None. """ if cfg.CONF.core_plugin is None: msg = _('Quantum core_plugin not configured!') return msg class QuantumManager(object): """Quantum's Manager class. Quantum's Manager class is responsible for parsing a config file and instantiating the correct plugin that concretely implement quantum_plugin_base class. The caller should make sure that QuantumManager is a singleton. """ _instance = None def __init__(self, options=None, config_file=None): # If no options have been provided, create an empty dict if not options: options = {} msg = validate_pre_plugin_load() if msg: LOG.critical(msg) raise Exception(msg) # NOTE(jkoelker) Testing for the subclass with the __subclasshook__ # breaks tach monitoring. It has been removed # intentianally to allow v2 plugins to be monitored # for performance metrics. plugin_provider = cfg.CONF.core_plugin LOG.debug(_("Plugin location: %s"), plugin_provider) # If the plugin can't be found let them know gracefully try: LOG.info(_("Loading Plugin: %s"), plugin_provider) plugin_klass = importutils.import_class(plugin_provider) except ClassNotFound: LOG.exception(_("Error loading plugin")) raise Exception(_("Plugin not found. You can install a " "plugin with: pip install <plugin-name>\n" "Example: pip install quantum-sample-plugin")) self.plugin = plugin_klass() msg = validate_post_plugin_load() if msg: LOG.critical(msg) raise Exception(msg) # core plugin as a part of plugin collection simplifies # checking extensions # TODO(enikanorov): make core plugin the same as # the rest of service plugins self.service_plugins = {constants.CORE: self.plugin} self._load_service_plugins() def _load_services_from_core_plugin(self): """Puts core plugin in service_plugins for supported services.""" LOG.debug(_("Loading services supported by the core plugin")) # supported service types are derived from supported extensions if not hasattr(self.plugin, "supported_extension_aliases"): return for ext_alias in self.plugin.supported_extension_aliases: if ext_alias in constants.EXT_TO_SERVICE_MAPPING: service_type = constants.EXT_TO_SERVICE_MAPPING[ext_alias] self.service_plugins[service_type] = self.plugin LOG.info(_("Service %s is supported by the core plugin"), service_type) def _load_service_plugins(self): """Loads service plugins. Starts from the core plugin and checks if it supports advanced services then loads classes provided in configuration. """ # load services from the core plugin first self._load_services_from_core_plugin() plugin_providers = cfg.CONF.service_plugins LOG.debug(_("Loading service plugins: %s"), plugin_providers) for provider in plugin_providers: if provider == '': continue try: LOG.info(_("Loading Plugin: %s"), provider) plugin_class = importutils.import_class(provider) except ClassNotFound: LOG.exception(_("Error loading plugin")) raise Exception(_("Plugin not found.")) plugin_inst = plugin_class() # only one implementation of svc_type allowed # specifying more than one plugin # for the same type is a fatal exception if plugin_inst.get_plugin_type() in self.service_plugins: raise Exception(_("Multiple plugins for service " "%s were configured"), plugin_inst.get_plugin_type()) self.service_plugins[plugin_inst.get_plugin_type()] = plugin_inst LOG.debug(_("Successfully loaded %(type)s plugin. " "Description: %(desc)s"), {"type": plugin_inst.get_plugin_type(), "desc": plugin_inst.get_plugin_description()}) @classmethod @lockutils.synchronized("qmlock", "qml-") def _create_instance(cls): if cls._instance is None: cls._instance = cls() @classmethod def get_instance(cls): # double checked locking if cls._instance is None: cls._create_instance() return cls._instance @classmethod def get_plugin(cls): return cls.get_instance().plugin @classmethod def get_service_plugins(cls): return cls.get_instance().service_plugins
apache-2.0
4,690,132,415,027,411,000
35.297561
78
0.622228
false
TD22057/T-Home
python/tHome/broker/connect.py
1
1264
#=========================================================================== # # Broker connection # #=========================================================================== from . import config import paho.mqtt.client as mqtt #=========================================================================== class Client( mqtt.Client ): """Logging client """ def __init__( self, log=None ): mqtt.Client.__init__( self ) self._logger = log # Restore callbacks overwritten by stupid mqtt library self.on_log = Client.on_log def on_log( self, userData, level, buf ): if self._logger: self._logger.log( level, buf ) #=========================================================================== def connect( configDir, log, client=None ): cfg = config.parse( configDir ) if client is None: client = Client( log ) if cfg.user: client.username_pw_set( cfg.user, cfg.password ) if cfg.ca_certs: client.tls_set( cfg.ca_certs, cfg.certFile, cfg.keyFile ) log.info( "Connecting to broker at %s:%d" % ( cfg.host, cfg.port ) ) client.connect( cfg.host, cfg.port, cfg.keepAlive ) return client #===========================================================================
bsd-2-clause
-1,453,303,299,164,701,700
27.727273
76
0.432753
false
notconfusing/ddc_graph
ddc_graph.py
1
8813
# In[165]: import xml.etree.ElementTree as ET from collections import defaultdict import networkx as nx import matplotlib.pyplot as plt import pyddc import operator import math get_ipython().magic(u'pylab inline') # Out[165]: # Populating the interactive namespace from numpy and matplotlib # # We will be looking to populate a networkX DiGraph. # In[2]: G = nx.DiGraph() # In[3]: ET.register_namespace('marc', 'http://www.loc.gov/MARC21/slim') tree = ET.parse('CLASS_23eng_marc_webdewey_20131020.xml') root = tree.getroot() # We're going to need these helper functions. # In[6]: def valid_record(record): #is there a control field 008 whose byte 8 should be a valid = False for field in record: if field.tag == '{http://www.loc.gov/MARC21/slim}controlfield' and field.attrib['tag'] == '008': if field.text[8] == 'a': valid = True return valid def get_subfields(field, letters): ret_subfields = {letter: None for letter in letters} for subfield in field: if subfield.attrib['code'] in letters: ddc = pyddc.classification(subfield.text) if ddc.is_sane() and ddc.len() >= 3: ret_subfields[subfield.attrib['code']] = ddc return ret_subfields def make_nodes(start_letter, end_letter): k_nodes = list() #do we have a range? if start_letter and end_letter: try: k = pyddc.classification_range(start_letter, end_letter) k_nodes = k.ids() except AssertionError: #if the range is too large (more than ten) just take the first one k_nodes = [start_letter.id] except ValueError: #not sure what to do with letters. raise ValueError #we might just have one elif start_letter and not end_letter: k_nodes = [start_letter.id] return k_nodes def make_relationship(a_ddcs, b_ddcs, reltype): try: m_nodes = make_nodes(a_ddcs['a'], a_ddcs['c']) #maybe there's a better way to detect if we should be checking for e and f if b_ddcs.keys()[0] == 'e': n_nodes = make_nodes(b_ddcs['e'], b_ddcs['f']) else: n_nodes = make_nodes(b_ddcs['a'], b_ddcs['c']) except KeyError: print 'addc', a_ddcs, print 'bddc', b_ddcs #put all the connections in our graph for m_node in m_nodes: for n_node in n_nodes: G.add_node(m_node) G.add_node(n_node) G.add_edge(m_node, n_node, rel=reltype) # In[7]: valid_records = filter(lambda record: valid_record(record), root) # In[10]: get_ipython().magic(u'pinfo valid_records') # Interesting so every one of these records has a 153 field. I think that means that is it's canonical ddc. # We have possibilites. # # 1. Does 153 have 'e' or 'f'? # 1. make_edge(reltionship = hiearchy, 153'ac', 153'ef') # 2. Is there a 253_0? # 1. make_edge(relationship = hiearchy, 253'ac', 153'ac') # 3. Is there a 253_2? # # _there may be multiple $a fields_ # 1. make_edges(relationship = related, [253'a'], 153'ac') # In[11]: cases = defaultdict(int) for record in valid_records: #our is out internal important bits of the record r = {num : None for num in ['153_base','153', '253_0', '253_2']} for field in record: if field.tag == '{http://www.loc.gov/MARC21/slim}datafield': num = field.attrib['tag'] ind1 = field.attrib['ind1'] if num =='153': r[num+'_base'] = get_subfields(field, ['a','c']) r[num] = get_subfields(field, ['e','f']) if num == '253': if ind1 == '0': r[num +'_'+ ind1] = get_subfields(field, ['a','c']) if ind1 == '2': r[num +'_'+ ind1] = get_subfields(field, ['a','c']) #we are expecting a gaurantee at this point that we have a 153 with a and maybe c if r['153']['e']: cases[1] += 1 make_relationship(r['153_base'], r['153'], reltype = 'hier') if r['253_0']: cases[2] += 1 make_relationship(r['153_base'], r['253_0'], reltype = 'hier') if r['253_2']: cases[3] += 1 make_relationship(r['153_base'], r['253_2'], reltype = 'related') print cases # Out[11]: # defaultdict(<type 'int'>, {1: 45480, 2: 5959, 3: 5918}) # # Ok so now we have __r__ as our main data # make_nodes takes a start and end like 'a' and 'c' or 'e' and 'f' and even if the end is None returns the list of range beteween or just the list of length one of ids # In[12]: filter(lambda node: len(node) == 3 and node[1:3] == '00', G.nodes()) # Out[12]: # ['600', '800', '200', '400', '700', '900', '300', '500'] # Oddly I can't see why there should be no elements dhat have '000' or '100' as their parent # In[14]: nx.shortest_path(G,'075','005') # Out[14]: # ['075', '616.8', '002', '368.6', '006', '005'] # In[31]: G['075'] # Out[31]: # {'028': {'rel': 'hier'}, # '070': {'rel': 'related'}, # '071': {'rel': 'hier'}, # '072': {'rel': 'hier'}, # '073': {'rel': 'hier'}, # '074': {'rel': 'hier'}, # '075': {'rel': 'hier'}, # '076': {'rel': 'hier'}, # '077': {'rel': 'hier'}, # '078': {'rel': 'hier'}, # '079': {'rel': 'hier'}, # '093': {'rel': 'hier'}, # '094': {'rel': 'hier'}, # '095': {'rel': 'hier'}, # '096': {'rel': 'hier'}, # '097': {'rel': 'hier'}, # '098': {'rel': 'hier'}, # '099': {'rel': 'hier'}, # '280': {'rel': 'hier'}, # '324.24': {'rel': 'hier'}, # '324.25': {'rel': 'hier'}, # '324.26': {'rel': 'hier'}, # '324.27': {'rel': 'hier'}, # '324.28': {'rel': 'hier'}, # '324.29': {'rel': 'hier'}, # '328.4': {'rel': 'hier'}, # '328.5': {'rel': 'hier'}, # '328.6': {'rel': 'hier'}, # '328.7': {'rel': 'hier'}, # '328.8': {'rel': 'hier'}, # '328.9': {'rel': 'hier'}, # '616.1': {'rel': 'hier'}, # '616.2': {'rel': 'hier'}, # '616.3': {'rel': 'hier'}, # '616.4': {'rel': 'hier'}, # '616.5': {'rel': 'hier'}, # '616.6': {'rel': 'hier'}, # '616.7': {'rel': 'hier'}, # '616.8': {'rel': 'hier'}, # '616.9': {'rel': 'hier'}, # '617': {'rel': 'hier'}, # '618.1': {'rel': 'hier'}, # '618.2': {'rel': 'hier'}, # '618.3': {'rel': 'hier'}, # '618.4': {'rel': 'hier'}, # '618.5': {'rel': 'hier'}, # '618.6': {'rel': 'hier'}, # '618.7': {'rel': 'hier'}, # '618.8': {'rel': 'hier'}, # '790.132': {'rel': 'related'}} # In[90]: def neighbors_n(G, root, n): E = nx.DiGraph() def n_tree(tree, n_remain): neighbors_dict = G[tree] for neighbor, relations in neighbors_dict.iteritems(): E.add_edge(tree, neighbor, rel=relations['rel']) #you can use this map if you want to retain functional purity #map(lambda neigh_rel: E.add_edge(tree, neigh_rel[0], rel=neigh_rel[1]['rel']), neighbors_dict.iteritems() ) neighbors = list(neighbors_dict.iterkeys()) n_forest(neighbors, n_remain= (n_remain - 1)) def n_forest(forest, n_remain): if n_remain <= 0: return else: map(lambda tree: n_tree(tree, n_remain=n_remain), forest) n_forest( [root] , n) return E # In[107]: nx.degree(E, '075') # Out[107]: # 51 # In[182]: def draw_n_hops(G, root, n): E = neighbors_n(G, root, n) edge_rels = map(lambda edge_tup: edge_tup[2]['rel'], E.edges(data=True) ) edge_colors = map(lambda edge: 'grey' if edge == 'hier' else 'green', edge_rels) max_node_size = max( map(lambda node: nx.degree(E, node), E.nodes())) node_lognorms = map(lambda node: (math.log(nx.degree(E, node)) / math.log(max_node_size) ) , E.nodes() ) node_sizes = map(lambda norm: norm * 1500, node_lognorms) node_colors= node_lognorms pos=nx.graphviz_layout(E,prog="twopi",root=root) plt.figure(1,figsize=(20,20)) nx.draw(E, pos=pos, node_size=node_sizes, node_color=node_colors, edge_color=edge_colors) # In[185]: draw_n_hops(G, '075', 2) # Out[185]: # image file: # In[13]: subgraphs = nx.connected_component_subgraphs(UG) UG_big = subgraphs[0] # In[21]: mains = filter(lambda node: len(node) == 3 and node[1:3] == '00', UG_big.nodes()) # In[18]: for main in mains: UG_big.add_edge('start',main, rel='hier') # In[7]: any(map(lambda n: n==4, map(lambda d: len(d), deplist))) # Out[7]: # False
mit
6,523,096,059,266,003,000
25.229167
167
0.52275
false
zz1217/exchange_rate_scraper
exchange_rate_scraper/pipelines.py
1
7332
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from datetime import datetime from exchange_rate_scraper import settings from scrapy.exceptions import DropItem from twisted.enterprise import adbapi import MySQLdb import MySQLdb.cursors class ExchangeRateScraperPipeline(object): def process_item(self, item, spider): return item class MySQLStoreReutersPipeline(object): def __init__(self, dbpool): self.dbpool = dbpool @classmethod def from_settings(cls, settings): dbargs = dict( host=settings['MYSQL']['HOST'], port=settings['MYSQL']['PORT'], db=settings['MYSQL']['DBNAME'], user=settings['MYSQL']['USER'], passwd=settings['MYSQL']['PWD'], charset='utf8', cursorclass=MySQLdb.cursors.DictCursor, use_unicode=True ) dbpool = adbapi.ConnectionPool('MySQLdb', **dbargs) return cls(dbpool) def process_item(self, item, spider): # 忽略比目标开始时间早的数据 date_fmt = '%Y-%m-%d' if datetime.strptime(item['date'], date_fmt) < datetime.strptime(spider.meta[0]['from_date'], date_fmt): raise DropItem("Date too old %s" % item) d = self.dbpool.runInteraction(self._do_upinsert, item, spider) d.addErrback(self._handle_error, item, spider) d.addBoth(lambda _: item) return d def _do_upinsert(self, conn, item, spider): #print '\n=============\n' #print """ # UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' # """% (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) #print '\n=============\n' # 奇怪,用逗号就不行。。。 conn.execute( #""" #UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' #""", (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) """ UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' """% (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) ) def _handle_error(self, failue, item, spider): log.err(failue) class MySQLStoreOandaPipeline(object): def __init__(self, dbpool): self.dbpool = dbpool @classmethod def from_settings(cls, settings): dbargs = dict( host=settings['MYSQL']['HOST'], port=settings['MYSQL']['PORT'], db=settings['MYSQL']['DBNAME'], user=settings['MYSQL']['USER'], passwd=settings['MYSQL']['PWD'], charset='utf8', cursorclass=MySQLdb.cursors.DictCursor, use_unicode=True ) dbpool = adbapi.ConnectionPool('MySQLdb', **dbargs) return cls(dbpool) def process_item(self, item, spider): # 忽略比目标开始时间早的数据 # date_fmt = '%Y-%m-%d' # if datetime.strptime(item['date'], date_fmt) < datetime.strptime(spider.meta[0]['from_date'], date_fmt): # raise DropItem("Date too old %s" % item) d = self.dbpool.runInteraction(self._do_upinsert, item, spider) d.addErrback(self._handle_error, item, spider) d.addBoth(lambda _: item) return d def _do_upinsert(self, conn, item, spider): #print '\n=============\n' #print """ # UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' # """% (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) #print '\n=============\n' print '\n=============111111111\n' # 奇怪,用逗号就不行。。。 conn.execute( #""" #UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' #""", (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) """ UPDATE oanda SET value=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' """% (item['value'], item['from_currency'], item['to_currency'], item['date']) ) def _handle_error(self, failue, item, spider): log.err(failue) class MySQLStoreXePipeline(object): def __init__(self, dbpool): self.dbpool = dbpool @classmethod def from_settings(cls, settings): dbargs = dict( host=settings['MYSQL']['HOST'], port=settings['MYSQL']['PORT'], db=settings['MYSQL']['DBNAME'], user=settings['MYSQL']['USER'], passwd=settings['MYSQL']['PWD'], charset='utf8', cursorclass=MySQLdb.cursors.DictCursor, use_unicode=True ) dbpool = adbapi.ConnectionPool('MySQLdb', **dbargs) return cls(dbpool) def process_item(self, item, spider): # 忽略比目标开始时间早的数据 # date_fmt = '%Y-%m-%d' # if datetime.strptime(item['date'], date_fmt) < datetime.strptime(spider.meta[0]['date'], date_fmt): # raise DropItem("Date too old %s" % item) d = self.dbpool.runInteraction(self._do_upinsert, item, spider) d.addErrback(self._handle_error, item, spider) d.addBoth(lambda _: item) return d def _do_upinsert(self, conn, item, spider): #print '\n=============\n' #print """ # UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' # """% (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) #print '\n=============\n' print '\n=============111111111\n' # 奇怪,用逗号就不行。。。 conn.execute( #""" #UPDATE reuters SET high=%s, low=%s, open=%s, close=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' #""", (item['high_rate'], item['low_rate'], item['open_rate'], item['close_rate'], item['from_currency'], item['to_currency'], item['date']) """ UPDATE xe SET from_to_value=%s, to_from_value=%s WHERE from_currency = '%s' AND to_currency = '%s' AND date = '%s' """% (item['from_to_value'], item['to_from_value'], item['from_currency'], item['to_currency'], item['date']) ) def _handle_error(self, failue, item, spider): log.err(failue)
mit
8,735,536,536,062,566,000
38.9
152
0.546784
false
shareactorIO/pipeline
cli/pio/pio.py
1
73821
#-*- coding: utf-8 -*- __version__ = "0.38" ''' Requirements python3, kops, ssh-keygen, awscli, packaging, appdirs, gcloud, azure-cli, helm, kubectl, kubernetes.tar.gz # References: https://github.com/kubernetes-incubator/client-python/blob/master/kubernetes/README.md # https://github.com/kubernetes/kops/blob/master/docs/aws.md ''' import warnings import requests import fire import tarfile import os import sys import kubernetes.client as kubeclient from kubernetes.client.rest import ApiException import kubernetes.config as kubeconfig import pick import yaml import json import dill as pickle from git import Repo from pprint import pprint import subprocess class PioCli(object): _kube_deploy_registry = {'jupyter': (['jupyterhub.ml/jupyterhub-deploy.yaml'], []), 'spark': (['apachespark.ml/master-deploy.yaml'], ['spark-worker', 'metastore']), 'spark-worker': (['apachespark.ml/worker-deploy.yaml'], []), 'metastore': (['metastore.ml/metastore-deploy.yaml'], ['mysql']), 'hdfs': (['hdfs.ml/namenode-deploy.yaml'], []), 'redis': (['keyvalue.ml/redis-master-deploy.yaml'], []), 'presto': (['presto.ml/master-deploy.yaml', 'presto.ml/worker-deploy.yaml'], ['metastore']), 'presto-ui': (['presto.ml/ui-deploy.yaml'], ['presto']), 'airflow': (['scheduler.ml/airflow-deploy.yaml'], ['mysql', 'redis']), 'mysql': (['sql.ml/mysql-master-deploy.yaml'], []), 'www': (['web.ml/home-deploy.yaml'], []), 'zeppelin': (['zeppelin.ml/zeppelin-deploy.yaml'], []), 'zookeeper': (['zookeeper.ml/zookeeper-deploy.yaml'], []), 'elasticsearch': (['elasticsearch.ml/elasticsearch-2-3-0-deploy.yaml'], []), 'kibana': (['kibana.ml/kibana-4-5-0-deploy.yaml'], ['elasticsearch'], []), 'kafka': (['stream.ml/kafka-0.10-deploy.yaml'], ['zookeeper']), 'cassandra': (['cassandra.ml/cassandra-deploy.yaml'], []), 'prediction-jvm': (['prediction.ml/jvm-deploy.yaml'], []), 'prediction-python3': (['prediction.ml/python3-deploy.yaml'], []), 'prediction-tensorflow': (['prediction.ml/tensorflow-deploy.yaml'], []), 'turbine': (['dashboard.ml/turbine-deploy.yaml'], []), 'hystrix': (['dashboard.ml/hystrix-deploy.yaml'], []), 'weave-scope-app': (['dashboard.ml/weavescope/scope-1.3.0.yaml'], []), 'kubernetes-dashboard': (['dashboard.ml/kubernetes-dashboard/v1.6.0.yaml'], []), 'heapster': (['metrics.ml/monitoring-standalone/v1.3.0.yaml'], []), 'route53-mapper': (['dashboard.ml/route53-mapper/v1.3.0.yml'], []), 'kubernetes-logging': (['dashboard.ml/logging-elasticsearch/v1.5.0.yaml'], []), } _kube_svc_registry = {'jupyter': (['jupyterhub.ml/jupyterhub-svc.yaml'], []), 'spark': (['apachespark.ml/master-svc.yaml'], ['spark-worker', 'metastore']), 'spark-worker': (['apachespark.ml/worker-svc.yaml'], []), 'metastore': (['metastore.ml/metastore-svc.yaml'], ['mysql']), 'hdfs': (['hdfs.ml/namenode-svc.yaml'], []), 'redis': (['keyvalue.ml/redis-master-svc.yaml'], []), 'presto': (['presto.ml/presto-master-svc.yaml', 'presto.ml/presto-worker-svc.yaml'], ['metastore']), 'presto-ui': (['presto.ml/presto-ui-svc.yaml'], ['presto']), 'airflow': (['scheduler.ml/airflow-svc.yaml'], ['mysql', 'redis']), 'mysql': (['sql.ml/mysql-master-svc.yaml'], []), 'www': (['web.ml/home-svc.yaml'], []), 'zeppelin': (['zeppelin.ml/zeppelin-svc.yaml'], []), 'zookeeper': (['zookeeper.ml/zookeeper-svc.yaml'], []), 'kafka': (['stream.ml/kafka-0.10-svc.yaml'], ['zookeeper']), 'cassandra': (['cassandra.ml/cassandra-svc.yaml'], []), 'prediction-jvm': (['prediction.ml/jvm-svc.yaml'], []), 'prediction-python3': (['prediction.ml/python3-svc.yaml'], []), 'prediction-tensorflow': (['prediction.ml/tensorflow-svc.yaml'], []), 'turbine': (['dashboard.ml/turbine-svc.yaml'], []), 'hystrix': (['dashboard.ml/hystrix-svc.yaml'], []), } <<<<<<< HEAD class PioCli(object): kube_deploy_registry = {'jupyter': (['jupyterhub.ml/jupyterhub-deploy.yaml'], []), 'spark': (['apachespark.ml/master-deploy.yaml'], ['spark-worker', 'metastore']), 'spark-worker': (['apachespark.ml/worker-deploy.yaml'], []), 'metastore': (['metastore.ml/metastore-deploy.yaml'], ['mysql']), 'hdfs': (['hdfs.ml/namenode-deploy.yaml'], []), 'redis': (['keyvalue.ml/redis-master-deploy.yaml'], []), 'presto': (['presto.ml/presto-master-deploy.yaml', 'presto.ml/presto-worker-deploy.yaml'], ['metastore']), 'presto-ui': (['presto.ml/presto-ui-deploy.yaml'], ['presto']), 'airflow': (['scheduler.ml/airflow-deploy.yaml'], ['mysql', 'redis']), 'mysql': (['sql.ml/mysql-master-deploy.yaml'], []), 'www': (['web.ml/home-deploy.yaml'], []), 'zeppelin': (['zeppelin.ml/zeppelin-deploy.yaml'], []), 'zookeeper': (['zookeeper.ml/zookeeper-deploy.yaml'], []), 'kafka': (['stream.ml/kafka-0.10-rc.yaml'], ['zookeeper']), 'cassandra': (['cassandra.ml/cassandra-rc.yaml'], []), 'prediction-jvm': (['prediction.ml/jvm-deploy.yaml'], []), 'prediction-python3': (['prediction.ml/python3-deploy.yaml'], []), 'prediction-tensorflow': (['prediction.ml/tensorflow-deploy.yaml'], []), 'turbine': (['dashboard.ml/turbine-deploy.yaml'], []), 'hystrix': (['dashboard.ml/hystrix-deploy.yaml'], []), 'weavescope': (['dashboard.ml/weavescope.yaml'], []), #'dashboard': (['dashboard.ml/kubernetes/kubernetes-dashboard.yaml'], []), #'heapster': (['https://raw.githubusercontent.com/kubernetes/kops/master/addons/monitoring-standalone/v1.3.0.yaml']), []), #'route53': (['https://raw.githubusercontent.com/kubernetes/kops/master/addons/route53-mapper/v1.3.0.yml']), []), } kube_svc_registry = {'jupyter': (['jupyterhub.ml/jupyterhub-svc.yaml'], []), 'spark': (['apachespark.ml/master-svc.yaml'], ['spark-worker', 'metastore']), 'spark-worker': (['apachespark.ml/worker-svc.yaml'], []), 'metastore': (['metastore.ml/metastore-svc.yaml'], ['mysql']), 'hdfs': (['hdfs.ml/namenode-svc.yaml'], []), 'redis': (['keyvalue.ml/redis-master-svc.yaml'], []), 'presto': (['presto.ml/presto-master-svc.yaml', 'presto.ml/presto-worker-svc.yaml'], ['metastore']), 'presto-ui': (['presto.ml/presto-ui-svc.yaml'], ['presto']), 'airflow': (['scheduler.ml/airflow-svc.yaml'], ['mysql', 'redis']), 'mysql': (['sql.ml/mysql-master-svc.yaml'], []), 'www': (['web.ml/home-svc.yaml'], []), 'zeppelin': (['zeppelin.ml/zeppelin-svc.yaml'], []), 'zookeeper': (['zookeeper.ml/zookeeper-svc.yaml'], []), 'kafka': (['stream.ml/kafka-0.10-svc.yaml'], ['zookeeper']), 'cassandra': (['cassandra.ml/cassandra-svc.yaml'], []), 'prediction-jvm': (['prediction.ml/jvm-svc.yaml'], []), 'prediction-python3': (['prediction.ml/python3-svc.yaml'], []), 'prediction-tensorflow': (['prediction.ml/tensorflow-svc.yaml'], []), } ======= >>>>>>> fluxcapacitor/master def _get_default_pio_api_version(self): return 'v1' <<<<<<< HEAD def config_get(self, config_key): print(self.config_get_all()[config_key]) print("\n") return self.config_get_all()[config_key] def config_set(self, config_key, config_value): self.config_merge_dict({config_key: config_value}) def config_merge_dict(self, ======= def _get_default_pio_git_home(self): return 'https://github.com/fluxcapacitor/pipeline/' def _get_default_pio_git_version(self): return 'v1.2.0' def get_config_value(self, config_key): print("") pprint(self._get_full_config()) print("") return self._get_full_config()[config_key] def set_config_value(self, config_key, config_value): print("config_key: '%s'" % config_key) self._merge_config_dict({config_key: config_value}) print("config_value: '%s'" % self._get_full_config()[config_key]) self._merge_config_dict({config_key: config_value}) print("") pprint(self._get_full_config()) print("") def _merge_config_dict(self, >>>>>>> fluxcapacitor/master config_dict): pio_api_version = self._get_full_config()['pio_api_version'] config_file_base_path = os.path.expanduser("~/.pio/") expanded_config_file_base_path = os.path.expandvars(config_file_base_path) expanded_config_file_base_path = os.path.expanduser(expanded_config_file_base_path) expanded_config_file_base_path = os.path.abspath(expanded_config_file_base_path) expanded_config_file_path = os.path.join(expanded_config_file_base_path, 'config') <<<<<<< HEAD pprint("Merging dict '%s' with existing config '%s'..." % (config_dict, expanded_config_file_path)) existing_config_dict = self.config_get_all() ======= print("") pprint("Merging dict '%s' with existing config '%s'." % (config_dict, expanded_config_file_path)) existing_config_dict = self._get_full_config() >>>>>>> fluxcapacitor/master # >= Python3.5 # {**existing_config_dict, **config_dict} existing_config_dict.update(config_dict) new_config_yaml = yaml.dump(existing_config_dict, default_flow_style=False, explicit_start=True) with open(expanded_config_file_path, 'w') as fh: fh.write(new_config_yaml) print(new_config_yaml) <<<<<<< HEAD print("...Done!") print("\n") ======= print("") >>>>>>> fluxcapacitor/master def _get_full_config(self): config_file_base_path = os.path.expanduser("~/.pio/") <<<<<<< HEAD expanded_config_file_base_path = os.path.expandvars(config_file_base_path) expanded_config_file_base_path = os.path.expanduser(expanded_config_file_base_path) expanded_config_file_base_path = os.path.abspath(expanded_config_file_base_path) expanded_config_file_path = os.path.join(expanded_config_file_base_path, 'config') # >= Python3.5 # os.makedirs(expanded_config_file_base_path, exist_ok=True) if not os.path.exists(expanded_config_file_path): if not os.path.exists(expanded_config_file_base_path): os.makedirs(expanded_config_file_base_path) pio_api_version = self.pio_api_version() initial_config_dict = {'pio_api_version': pio_api_version} initial_config_yaml = yaml.dump(initial_config_dict, default_flow_style=False, explicit_start=True) print("Creating config '%s'..." % expanded_config_file_path) with open(expanded_config_file_path, 'w') as fh: ======= config_file_base_path = os.path.expandvars(config_file_base_path) config_file_base_path = os.path.expanduser(config_file_base_path) config_file_base_path = os.path.abspath(config_file_base_path) config_file_filename = os.path.join(config_file_base_path, 'config') if not os.path.exists(config_file_filename): if not os.path.exists(config_file_base_path): os.makedirs(config_file_base_path) initial_config_dict = {'pio_api_version': self._get_default_pio_api_version(), 'pio_git_home': self._get_default_pio_git_home(), 'pio_git_version': self._get_default_pio_git_version()} initial_config_yaml = yaml.dump(initial_config_dict, default_flow_style=False, explicit_start=True) print("") print("Default config created at '%s'. Override with 'pio init-pio'" % config_file_filename) print("") with open(config_file_filename, 'w') as fh: >>>>>>> fluxcapacitor/master fh.write(initial_config_yaml) pprint(initial_config_dict) # Update the YAML <<<<<<< HEAD with open(expanded_config_file_path, 'r') as fh: ======= with open(config_file_filename, 'r') as fh: >>>>>>> fluxcapacitor/master existing_config_dict = yaml.load(fh) return existing_config_dict print("\n") <<<<<<< HEAD def config_view(self): pprint(self.config_get_all()) print("\n") def cluster_top(self): subprocess.call("kubectl top node", shell=True) print("\n") print("Note: Heapster must be deployed for this command ^^ to work.\n") print("\n") def app_top(self, app_name): with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: if (app_name in pod.metadata.name): subprocess.call("kubectl top %s" % app_name, shell=True) print("\n") print("Note: Heapster must be deployed for this command ^^ to work.\n") print("\n") def cluster_init(self, pio_home, pio_runtime_version, kube_cluster_context, kube_namespace='default'): ======= def config(self): pprint(self._get_full_config()) print("") def proxy(self, app_name, local_port=None, app_port=None): self.tunnel(app_name, local_port, app_port) def tunnel(self, app_name, local_port=None, app_port=None): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return pod = self._get_pod_by_app_name(app_name) if not pod: print("") print("App '%s' is not running." % app_name) print("") return if not app_port: svc = self._get_svc_by_app_name(app_name) if not svc: print("") print("App '%s' proxy port cannot be found." % app_name) print("") return app_port = svc.spec.ports[0].target_port if not local_port: print("") print("Proxying local port '<randomly-chosen>' to app '%s' port '%s' using pod '%s'." % (app_port, app_name, pod.metadata.name)) print("") print("Use 'http://127.0.0.1:<randomly-chosen>' to access app '%s' on port '%s'." % (app_name, app_port)) print("") print("If you break out of this terminal, your proxy session will end.") print("") subprocess.call('kubectl port-forward %s :%s' % (pod.metadata.name, app_port), shell=True) print("") else: print("") print("Proxying local port '%s' to app '%s' port '%s' using pod '%s'." % (local_port, app_port, app_name, pod.metadata.name)) print("") print("Use 'http://127.0.0.1:%s' to access app '%s' on port '%s'." % (local_port, app_name, app_port)) print("") print("If you break out of this terminal, your proxy session will end.") print("") subprocess.call('kubectl port-forward %s %s:%s' % (pod.metadata.name, local_port, app_port), shell=True) print("") # TODO: Start an airflow job def flow(self, flow_name): print("") print("Submit airflow coming soon!") # TODO: Submit a spark job def submit(self, replicas): print("Submit spark job coming soon!") def top(self, app_name=None): self.system(app_name) def system(self, app_name=None): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured 'pio init-cluster'.") print("") return if (app_name): print("") print("Retrieving system resources used by app '%s'." % app_name) print("") self._get_app_resources(app_name) print("") print("Retrieving system resources for cluster.") print("") self._get_cluster_resources() else: print("") print("Retrieving only system resources for cluster. Use '--app-name' for app-level, as well.") print("") self._get_cluster_resources() print("") def _get_cluster_resources(self): subprocess.call("kubectl top node", shell=True) print("") print("If you see an error above, you need to start Heapster with 'pio start heapster'.") print("") >>>>>>> fluxcapacitor/master <<<<<<< HEAD if 'http:' in pio_home or 'https:' in pio_home: pio_home = os.path.expandvars(pio_home) pio_home = os.path.expanduser(pio_home) pio_home = os.path.abspath(pio_home) config_dict = {'pio_home': pio_home, 'pio_runtime_version': pio_runtime_version, 'kube_cluster_context': kube_cluster_context, 'kube_namespace': kube_namespace} self.config_merge_dict(config_dict) print("\n") pprint(self.config_get_all()) print("\n") ======= def _get_app_resources(self, app_name): pio_api_version = self._get_full_config()['pio_api_version'] >>>>>>> fluxcapacitor/master try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured 'pio init-cluster'.") print("") return <<<<<<< HEAD def model_init(self, ======= kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: if (app_name in pod.metadata.name): subprocess.call("kubectl top pod %s" % pod.metadata.name, shell=True) print("") def join(self, federation): print("") print("Federation joining coming soon!") print("") def up(self, provider='aws', ssh_public_key='~/.ssh/id_rsa.pub', initial_worker_count='1', # min_worker_count='1', # max_worker_count='1', worker_zones='us-west-2a,us-west-2b', worker_type='r2.2xlarge', master_zones='us-west-2c', master_type='t2.medium', # dns_zone='', # vpc='', kubernetes_version='1.6.2', kubernetes_image='kope.io/k8s-1.5-debian-jessie-amd64-hvm-ebs-2017-01-09'): try: kops_cluster_name = self._get_full_config()['kops_cluster_name'] kops_state_store = self._get_full_config()['kops_state_store'] if not kops_ssh_public_key: subprocess.call("ssh-keygen -t rsa", shell=True) ssh_public_key = '~/.ssh/id_rsa.pub' subprocess.call("aws configure", shell=True) subprocess.call("aws s3 mb %s" % kops_state_store, shell=True) subprocess.call("kops create cluster --ssh-public-key %s --node-count %s --zones %s --master-zones %s --node-size %s --master-size %s --kubernetes-version %s --image %s --state %s --name %s" % (ssh_public_key, initial_worker_count, worker_zones, master_zones, worker_type, master_type, kubernetes_version, kubernetes_image, kops_state_store, kops_cluster_name), shell=True) subprocess.call("kops update --state %s cluster %s --yes" % (kops_state_store, kops_cluster_name), shell=True) subprocess.call("kubectl config set-cluster %s --insecure-skip-tls-verify=true" % kops_cluster_name) print("") print("Cluster is being created. This may take a few mins.") print("") print("Once the cluster is up, run 'kubectl cluster-info' for the Kubernetes-dashboard url.") print("Username is 'admin'.") print("Password can be retrieved with 'kops get secrets kube --type secret -oplaintext --state %s'" % kops_state_store) except: print("") print("Kops needs to be configured with 'pio init-kops'.") print("") return def init_kops(self, kops_cluster_name, kops_state_store): config_dict = {'kops_cluster_name': kops_cluster_name, 'kops_state_store': kops_state_store} self._merge_config_dict(config_dict) print("") pprint(self._get_full_config()) print("") def instancegroups(self): try: kops_cluster_name = self._get_full_config()['kops_cluster_name'] kops_state_store = self._get_full_config()['kops_state_store'] subprocess.call("kops --state %s --name %s get instancegroups" % (kops_state_store, kops_cluster_name), shell=True) print("") except: print("") print("Kops needs to be configured with 'pio init-kops'.") print("") return def clusters(self): try: kops_cluster_name = self._get_full_config()['kops_cluster_name'] kops_state_store = self._get_full_config()['kops_state_store'] subprocess.call("kops --state %s --name %s get clusters" % (kops_state_store, kops_cluster_name), shell=True) print("") except: print("") print("Kops needs to be configured with 'pio init-kops'.") print("") return def federations(self): try: kops_cluster_name = self._get_full_config()['kops_cluster_name'] kops_state_store = self._get_full_config()['kops_state_store'] subprocess.call("kops --state %s --name %s get federations" % (kops_state_store, kops_cluster_name), shell=True) print("") except: print("") print("Kops needs to be configured with 'pio init-kops'.") print("") return def secrets(self): try: kops_cluster_name = self._get_full_config()['kops_cluster_name'] kops_state_store = self._get_full_config()['kops_state_store'] subprocess.call("kops --state %s --name %s get secrets" % (kops_state_store, kops_cluster_name), shell=True) print("") except: print("") print("Kops needs to be configured with 'pio init-kops'.") print("") return def init_pio(self, pio_api_version, pio_git_home, pio_git_version): config_dict = {'pio_api_version': pio_api_version, 'pio_git_home': pio_git_home, 'pio_git_version': pio_git_version} self._merge_config_dict(config_dict) print("") pprint(self._get_full_config()) print("") def init_cluster(self, kube_cluster_context, kube_namespace): pio_api_version = self._get_full_config()['pio_api_version'] config_dict = {'kube_cluster_context': kube_cluster_context, 'kube_namespace': kube_namespace} self._merge_config_dict(config_dict) print("") pprint(self._get_full_config()) print("") def init_model(self, >>>>>>> fluxcapacitor/master model_server_url, model_type, model_namespace, model_name, model_input_mime_type='application/json', model_output_mime_type='application/json'): pio_api_version = self._get_full_config()['pio_api_version'] config_dict = {"model_server_url": model_server_url, "model_type": model_type, "model_namespace": model_namespace, "model_name": model_name, "model_input_mime_type": model_input_mime_type, "model_output_mime_type": model_output_mime_type, } <<<<<<< HEAD self.config_merge_dict(config_dict) print("\n") pprint(self.config_get_all()) print("\n") def model_deploy(self, model_version, model_path, request_timeout=600): ======= self._merge_config_dict(config_dict) print("") pprint(self._get_full_config()) print("") # TODO: from_git=True/False (include git_commit_hash, use python git API? Perform immutable deployment??) # from_docker=True/False (include image name, version) # canary=True/False def deploy(self, model_version, model_path, request_timeout=600): >>>>>>> fluxcapacitor/master pio_api_version = self._get_full_config()['pio_api_version'] try: <<<<<<< HEAD model_server_url = self.config_get_all()['model_server_url'] model_type = self.config_get_all()['model_type'] model_namespace = self.config_get_all()['model_namespace'] model_name = self.config_get_all()['model_name'] ======= model_server_url = self._get_full_config()['model_server_url'] model_type = self._get_full_config()['model_type'] model_namespace = self._get_full_config()['model_namespace'] model_name = self._get_full_config()['model_name'] >>>>>>> fluxcapacitor/master except: print("") print("Model needs to be configured with 'pio init-model'.") print("") return <<<<<<< HEAD # pprint(self.config_get_all()) ======= >>>>>>> fluxcapacitor/master model_path = os.path.expandvars(model_path) model_path = os.path.expanduser(model_path) model_path = os.path.abspath(model_path) print('model_version: %s' % model_version) print('model_path: %s' % model_path) print('request_timeout: %s' % request_timeout) if (os.path.isdir(model_path)): compressed_model_bundle_filename = 'bundle-%s-%s-%s-%s.tar.gz' % (model_type, model_namespace, model_name, model_version) <<<<<<< HEAD print("Compressing '%s' into '%s'..." % (model_path, compressed_model_bundle_filename)) print("") with tarfile.open(compressed_model_bundle_filename, 'w:gz') as tar: tar.add(model_path, arcname='.') print("...Done!") model_file = compressed_model_bundle_filename upload_key = 'bundle' ======= print("") print("Compressing model bundle '%s' to '%s'." % (model_path, compressed_model_bundle_filename)) print("") with tarfile.open(compressed_model_bundle_filename, 'w:gz') as tar: tar.add(model_path, arcname='.') model_file = compressed_model_bundle_filename upload_key = 'file' >>>>>>> fluxcapacitor/master upload_value = compressed_model_bundle_filename else: model_file = model_path upload_key = 'file' upload_value = os.path.split(model_path) <<<<<<< HEAD with open(model_file, 'rb') as fh: files = [(upload_key, (upload_value, fh))] full_model_server_url = "%s/%s/model/deploy/%s/%s/%s/%s" % (model_server_url, pio_api_version, model_type, model_namespace, model_name, model_version) print("Deploying model bundle '%s' to '%s'..." % (model_file, full_model_server_url)) print("") headers = {'Accept': 'application/json'} response = requests.post(url=full_model_server_url, headers=headers, files=files, timeout=request_timeout) pprint(response.text) print("...Done!") if (os.path.isdir(model_path)): print("Removing model bundle '%s'..." % model_file) os.remove(model_file) print("...Done!") print("\n") def model_predict(self, model_version, model_input_file_path, request_timeout=30): ======= full_model_url = "%s/%s/model/deploy/%s/%s/%s/%s" % (model_server_url, pio_api_version, model_type, model_namespace, model_name, model_version) with open(model_file, 'rb') as fh: files = [(upload_key, (upload_value, fh))] print("") print("Deploying model '%s' to '%s'." % (model_file, full_model_url)) print("") headers = {'Accept': 'application/json'} try: response = requests.post(url=full_model_url, headers=headers, files=files, timeout=request_timeout) if response.text: pprint(response.text) else: print("") print("Success!") print("") print("Predict with 'pio predict' or POST to '%s'" % full_model_url.replace('/deploy/','/predict/')) print("") except IOError as e: print("Error while deploying model. Timeout errors are usually OK.\nError: '%s'" % str(e)) print("") print("Wait a bit, then try to predict with 'pio predict' or POST to '%s'" % full_model_url) print("") if (os.path.isdir(model_path)): print("") print("Cleaning up compressed model bundle '%s'..." % model_file) print("") os.remove(model_file) def predict(self, model_version, model_input_filename, request_timeout=30): >>>>>>> fluxcapacitor/master pio_api_version = self._get_full_config()['pio_api_version'] try: <<<<<<< HEAD model_server_url = self.config_get_all()['model_server_url'] model_type = self.config_get_all()['model_type'] model_namespace = self.config_get_all()['model_namespace'] model_name = self.config_get_all()['model_name'] model_input_mime_type = self.config_get_all()['model_input_mime_type'] model_output_mime_type = self.config_get_all()['model_output_mime_type'] ======= model_server_url = self._get_full_config()['model_server_url'] model_type = self._get_full_config()['model_type'] model_namespace = self._get_full_config()['model_namespace'] model_name = self._get_full_config()['model_name'] model_input_mime_type = self._get_full_config()['model_input_mime_type'] model_output_mime_type = self._get_full_config()['model_output_mime_type'] >>>>>>> fluxcapacitor/master except: print("") print("Model needs to be configured with 'pio model-init'.") print("") return <<<<<<< HEAD # pprint(self.config_get_all()) ======= >>>>>>> fluxcapacitor/master print('model_version: %s' % model_version) print('model_input_filename: %s' % model_input_filename) print('request_timeout: %s' % request_timeout) <<<<<<< HEAD full_model_server_url = "%s/%s/model/predict/%s/%s/%s/%s" % (model_server_url, pio_api_version, model_type, model_namespace, model_name, model_version) print("Predicting file '%s' with model '%s/%s/%s' at '%s'..." % (model_input_file_path, model_type, model_namespace, model_name, full_model_server_url)) ======= full_model_url = "%s/%s/model/predict/%s/%s/%s/%s" % (model_server_url, pio_api_version, model_type, model_namespace, model_name, model_version) print("") print("Predicting file '%s' with model '%s/%s/%s/%s' at '%s'..." % (model_input_filename, model_type, model_namespace, model_name, model_version, full_model_url)) >>>>>>> fluxcapacitor/master print("") with open(model_input_filename, 'rb') as fh: model_input_binary = fh.read() headers = {'Content-type': model_input_mime_type, 'Accept': model_output_mime_type} response = requests.post(url=full_model_url, headers=headers, data=model_input_binary, timeout=request_timeout) pprint(response.text) <<<<<<< HEAD print("...Done!") print("\n") def cluster_view(self): pio_api_version = self.config_get_all()['pio_api_version'] try: kube_cluster_context = self.config_get_all()['kube_cluster_context'] kube_namespace = self.config_get_all()['kube_namespace'] except: print("Cluster needs to be initialized.") return print("\n") print("Config") print("******") pprint(self.config_get_all()) kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() print("\n") print("Apps") print("****") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) for deploy in response.items: print("%s (%s of %s replicas available)" % (deploy.metadata.name, deploy.status.ready_replicas, deploy.status.replicas)) print("\n") print("Internal DNS (Public DNS)") print("*************************") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_service(namespace=kube_namespace, watch=False, pretty=True) for svc in response.items: ingress = 'Not public' if svc.status.load_balancer.ingress and len(svc.status.load_balancer.ingress) > 0: if (svc.status.load_balancer.ingress[0].hostname): ingress = svc.status.load_balancer.ingress[0].hostname if (svc.status.load_balancer.ingress[0].ip): ingress = svc.status.load_balancer.ingress[0].ip print("%s (%s)" % (svc.metadata.name, ingress)) print("\n") print("Pods") print("****") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: print("%s (%s)" % (pod.metadata.name, pod.status.phase)) print("\n") def apps_available(self): pio_api_version = self.config_get_all()['pio_api_version'] ======= print("") def cluster(self): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() self.apps() print("DNS Internal (Public)") print("**************************") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_service(namespace=kube_namespace, watch=False, pretty=True) for svc in response.items: ingress = 'Not public' if svc.status.load_balancer.ingress and len(svc.status.load_balancer.ingress) > 0: if (svc.status.load_balancer.ingress[0].hostname): ingress = svc.status.load_balancer.ingress[0].hostname if (svc.status.load_balancer.ingress[0].ip): ingress = svc.status.load_balancer.ingress[0].ip print("%s (%s)" % (svc.metadata.name, ingress)) print("") print("Running Pods") print("************") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: print("%s (%s)" % (pod.metadata.name, pod.status.phase)) print("") print("Nodes") print("*****") self._get_all_nodes() print("") print("Config") print("******") pprint(self._get_full_config()) print("") def _get_pod_by_app_name(self, app_name): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() found = False with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: if app_name in pod.metadata.name: found = True break if found: return pod else: return None def _get_svc_by_app_name(self, app_name): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() found = False with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_service(namespace=kube_namespace, watch=False, pretty=True) for svc in response.items: if app_name in svc.metadata.name: found = True break if found: return svc else: return None def _get_all_available_apps(self): pio_api_version = self._get_full_config()['pio_api_version'] available_apps = PioCli._kube_deploy_registry.keys() for app in available_apps: print(app) def nodes(self): pio_api_version = self._get_full_config()['pio_api_version'] >>>>>>> fluxcapacitor/master try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return <<<<<<< HEAD # pprint(self.config_get_all()) ======= print("") print("Nodes") print("*****") self._get_all_nodes() print("") def _get_all_nodes(self): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return >>>>>>> fluxcapacitor/master kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") <<<<<<< HEAD response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) for deploy in response.items: print("%s (%s of %s replicas available)" % (deploy.metadata.name, deploy.status.ready_replicas, deploy.status.replicas)) print("\n") def apps_deployed(self): pio_api_version = self.config_get_all()['pio_api_version'] try: kube_cluster_context = self.config_get_all()['kube_cluster_context'] kube_namespace = self.config_get_all()['kube_namespace'] except: print("Cluster needs to be initialized.") return # pprint(self.config_get_all()) kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() print("\nApps") print("****") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) for deploy in response.items: print("%s (%s of %s replicas available)" % (deploy.metadata.name, deploy.status.ready_replicas, deploy.status.replicas)) print("\n") def app_shell(self, app_name): pio_api_version = self.config_get_all()['pio_api_version'] try: kube_cluster_context = self.config_get_all()['kube_cluster_context'] kube_namespace = self.config_get_all()['kube_namespace'] except: print("Cluster needs to be initialized.") return pprint(self.config_get_all()) ======= response = kubeclient_v1.list_node(watch=False, pretty=True) for node in response.items: print("%s (%s)" % (node.metadata.labels['kubernetes.io/hostname'], node.metadata.labels['kubernetes.io/role'])) def apps(self): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return print("") print("All Available Apps") print("******************") self._get_all_available_apps() kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() print("") print("Started Apps") print("************") with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) for deploy in response.items: print("%s (%s of %s replicas are running)" % (deploy.metadata.name, deploy.status.ready_replicas, deploy.status.replicas)) print("") def shell(self, app_name): self.connect(app_name) def connect(self, app_name): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return >>>>>>> fluxcapacitor/master kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") <<<<<<< HEAD ======= response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: if app_name in pod.metadata.name: break print("") print("Connecting to '%s'" % pod.metadata.name) print("") subprocess.call("kubectl exec -it %s bash" % pod.metadata.name, shell=True) print("") >>>>>>> fluxcapacitor/master response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: if app_name in pod.metadata.name: break print("Shelling into '%s' (%s)" % (pod.metadata.name, pod.status.phase)) subprocess.call("kubectl exec -it %s bash" % pod.metadata.name, shell=True) print("\n") <<<<<<< HEAD def app_logs(self, app_name): pio_api_version = self.config_get_all()['pio_api_version'] try: kube_cluster_context = self.config_get_all()['kube_cluster_context'] kube_namespace = self.config_get_all()['kube_namespace'] except: print("Cluster needs to be initialized.") return # pprint(self.config_get_all()) kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) for pod in response.items: if app_name in pod.metadata.name: break print("Tailing logs on '%s' (%s)" % (pod.metadata.name, pod.status.phase)) subprocess.call("kubectl logs -f %s" % pod.metadata.name, shell=True) print("\n") def app_scale(self, app_name, replicas): pio_api_version = self.config_get_all()['pio_api_version'] try: kube_namespace = self.config_get_all()['kube_namespace'] except: print("Cluster needs to be initialized.") return # pprint(self.config_get_all()) kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) for deploy in response.items: if app_name in deploy.metadata.name: break print("Scaling '%s' to %s replicas..." % (deploy.metadata.name, replicas)) subprocess.call("kubectl scale deploy %s --replicas=%s" % (deploy.metadata.name, replicas), shell=True) print("\n") def get_config_yamls(self, app_name): return [] def get_secret_yamls(self, app_name): return [] def get_deploy_yamls(self, app_name): (deploy_yamls, dependencies) = PioCli.kube_deploy_registry[app_name] if len(dependencies) > 0: for dependency in dependencies: deploy_yamls = deploy_yamls + self.get_deploy_yamls(dependency) return deploy_yamls def get_svc_yamls(self, app_name): (svc_yamls, dependencies) = PioCli.kube_svc_registry[app_name] if len(dependencies) > 0: for dependency in dependencies: svc_yamls = svc_yamls + self.get_svc_yamls(dependency) return svc_yamls def app_deploy(self, app_name): ======= def logs(self, app_name): >>>>>>> fluxcapacitor/master pio_api_version = self._get_full_config()['pio_api_version'] <<<<<<< HEAD try: kube_namespace = self.config_get_all()['kube_namespace'] pio_home = self.config_get_all()['pio_home'] if 'http:' in pio_home or 'https:' in pio_home: pio_home = os.path.expandvars(pio_home) pio_home = os.path.expanduser(pio_home) pio_home = os.path.abspath(pio_home) ======= try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] >>>>>>> fluxcapacitor/master except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return <<<<<<< HEAD # pprint(self.config_get_all()) print("Deploying app... '%s'" % app_name) kubeconfig.load_kube_config() config_yaml_filenames = [] secret_yaml_filenames = [] deploy_yaml_filenames = [] svc_yaml_filenames = [] config_yaml_filenames = config_yaml_filenames + self.get_config_yamls(app_name) secret_yaml_filenames = secret_yaml_filenames + self.get_secret_yamls(app_name) deploy_yaml_filenames = deploy_yaml_filenames + self.get_deploy_yamls(app_name) svc_yaml_filenames = svc_yaml_filenames + self.get_svc_yamls(app_name) kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() #for config_yaml_filename in config_yaml_filenames: # TODO # return #for secret_yaml_filename in secret_yaml_filenames: # TODO # return print(deploy_yaml_filenames) print(svc_yaml_filenames) for deploy_yaml_filename in deploy_yaml_filenames: try: # TODO: handle http: or https: if 'http:' in pio_home or 'https:' in pio_home: # TODO: handle http: or https: pass else: with open(os.path.join(pio_home, deploy_yaml_filename)) as fh: deploy_yaml = yaml.load(fh) with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.create_namespaced_deployment(body=deploy_yaml, namespace=kube_namespace, pretty=True) pprint(response) except ApiException as e: print("Deployment not created for '%s':\n%s\n" % (deploy_yaml_filename, str(e))) for svc_yaml_filename in svc_yaml_filenames: try: # TODO: handle http: or https: if 'http:' in pio_home or 'https:' in pio_home: # TODO: handle http: or https: pass else: with open(os.path.join(pio_home, svc_yaml_filename)) as fh: svc_yaml = yaml.load(fh) response = kubeclient_v1.create_namespaced_service(body=svc_yaml, namespace=kube_namespace, pretty=True) pprint(response) except ApiException as e: print("Service not created for '%s':\n%s\n" % (svc_yaml_filename, str(e))) ======= kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_namespaced_pod(namespace=kube_namespace, watch=False, pretty=True) found = False for pod in response.items: if app_name in pod.metadata.name: found = True break if found: print("") print("Tailing logs on '%s'." % pod.metadata.name) print("") subprocess.call("kubectl logs -f %s" % pod.metadata.name, shell=True) print("") else: print("") print("App '%s' is not running." % app_name) print("") def scale(self, app_name, replicas): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) found = False for deploy in response.items: if app_name in deploy.metadata.name: found = True break if found: print("") print("Scaling app '%s' to '%s' replicas." % (deploy.metadata.name, replicas)) print("") subprocess.call("kubectl scale deploy %s --replicas=%s" % (deploy.metadata.name, replicas), shell=True) print("") print("Check status with 'pio cluster'.") print("") else: print("") print("App '%s' is not running." % app_name) print("") def volumes(self): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return print("") print("Volumes") print("*******") self._get_all_volumes() print("") print("Volume Claims") print("*************") self._get_all_volume_claims() print("") def _get_all_volumes(self): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_persistent_volume(watch=False, pretty=True) for claim in response.items: print("%s" % (claim.metadata.name)) print("") def _get_all_volume_claims(self): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.list_persistent_volume_claim_for_all_namespaces(watch=False, pretty=True) for claim in response.items: print("%s" % (claim.metadata.name)) print("") >>>>>>> fluxcapacitor/master self.cluster_view() <<<<<<< HEAD print("\n") def app_undeploy(self, app_name): pio_api_version = self.config_get_all()['pio_api_version'] try: kube_namespace = self.config_get_all()['kube_namespace'] except: print("Cluster needs to be initialized.") return # pprint(self.config_get_all()) kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) for deploy in response.items: if app_name in deploy.metadata.name: break print("Deleting '%s'" % deploy.metadata.name) subprocess.call("kubectl delete deploy %s" % deploy.metadata.name, shell=True) self.cluster_view() print("\n") print("Note: There may be a delay in status change above ^^.") print("\n") # def git_init(self, # git_repo_base_path, # git_revision='HEAD'): # expanded_git_repo_base_path = os.path.expandvars(git_repo_base_path) # expanded_git_repo_base_path = os.path.expanduser(expanded_git_repo_base_path) # expanded_git_repo_base_path = os.path.abspath(expanded_git_repo_base_path) # pio_api_version = self.config_get_all()['pio_api_version'] # print("git_repo_base_path: '%s'" % git_repo_base_path) # print("expanded_git_repo_base_path: '%s'" % expanded_git_repo_base_path) # print("git_revision: '%s'" % git_revision) # git_repo = Repo(expanded_git_repo_base_path, search_parent_directories=True) # config_dict = {'git_repo_base_path': git_repo.working_tree_dir , 'git_revision': git_revision} # self.config_merge_dict(config_dict) # pprint(self.config_get_all()) # print("\n") # def git_view(self): # pio_api_version = self.config_get_all()['pio_api_version'] # try: # git_repo_base_path = self.config_get_all()['git_repo_base_path'] # expanded_git_repo_base_path = os.path.expandvars(git_repo_base_path) # expanded_git_repo_base_path = os.path.expanduser(expanded_git_repo_base_path) # expanded_git_repo_base_path = os.path.abspath(expanded_git_repo_base_path) # git_revision = self.config_get_all()['git_revision'] # except: # print("Git needs to be initialized.") # return # pprint(self.config_get_all()) ======= def _get_config_yamls(self, app_name): return [] def _get_secret_yamls(self, app_name): return [] def _get_deploy_yamls(self, app_name): try: (deploy_yamls, dependencies) = PioCli._kube_deploy_registry[app_name] except: dependencies = [] deploy_yamls = [] if len(dependencies) > 0: for dependency in dependencies: deploy_yamls = deploy_yamls + self._get_deploy_yamls(dependency) return deploy_yamls def _get_svc_yamls(self, app_name): try: (svc_yamls, dependencies) = PioCli._kube_svc_registry[app_name] except: dependencies = [] svc_yamls = [] if len(dependencies) > 0: for dependency in dependencies: svc_yamls = svc_yamls + self._get_svc_yamls(dependency) return svc_yamls def start(self, app_name): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] pio_git_home = self._get_full_config()['pio_git_home'] if 'http:' in pio_git_home or 'https:' in pio_git_home: pass else: pio_git_home = os.path.expandvars(pio_git_home) pio_git_home = os.path.expanduser(pio_git_home) pio_git_home = os.path.abspath(pio_git_home) pio_git_version = self._get_full_config()['pio_git_version'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return config_yaml_filenames = [] secret_yaml_filenames = [] deploy_yaml_filenames = [] svc_yaml_filenames = [] config_yaml_filenames = config_yaml_filenames + self._get_config_yamls(app_name) secret_yaml_filenames = secret_yaml_filenames + self._get_secret_yamls(app_name) deploy_yaml_filenames = deploy_yaml_filenames + self._get_deploy_yamls(app_name) svc_yaml_filenames = svc_yaml_filenames + self._get_svc_yamls(app_name) kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() #for config_yaml_filename in config_yaml_filenames: # TODO # return #for secret_yaml_filename in secret_yaml_filenames: # TODO # return print("") print("Starting app '%s'." % app_name) print("") print("Ignore any 'Already Exists' errors. These are OK.") print("") for deploy_yaml_filename in deploy_yaml_filenames: try: if 'http:' in deploy_yaml_filename or 'https:' in deploy_yaml_filename: deploy_yaml_filename = deploy_yaml_filename.replace('github.com', 'raw.githubusercontent.com') subprocess.call("kubectl create -f %s" % deploy_yaml_filename, shell=True) else: if 'http:' in pio_git_home or 'https:' in pio_git_home: pio_git_home = pio_git_home.replace('github.com', 'raw.githubusercontent.com') subprocess.call("kubectl create -f %s/%s/%s" % (pio_git_home.rstrip('/'), pio_git_version, deploy_yaml_filename), shell=True) else: with open(os.path.join(pio_git_home, deploy_yaml_filename)) as fh: deploy_yaml = yaml.load(fh) with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.create_namespaced_deployment(body=deploy_yaml, namespace=kube_namespace, pretty=True) pprint(response) except ApiException as e: print("") print("App '%s' did not start properly.\n%s" % (deploy_yaml_filename, str(e))) print("") for svc_yaml_filename in svc_yaml_filenames: try: if 'http:' in svc_yaml_filename or 'https:' in svc_yaml_filename: svc_yaml_filename = svc_yaml_filename.replace('github.com', 'raw.githubusercontent.com') subprocess.call("kubectl create -f %s" % svc_yaml_filename, shell=True) else: if 'http:' in pio_git_home or 'https:' in pio_git_home: pio_git_home = pio_git_home.replace('github.com', 'raw.githubusercontent.com') subprocess.call("kubectl create -f %s/%s/%s" % (pio_git_home.rstrip('/'), pio_git_version, svc_yaml_filename), shell=True) else: with open(os.path.join(pio_git_home, svc_yaml_filename)) as fh: svc_yaml = yaml.load(fh) with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1.create_namespaced_service(body=svc_yaml, namespace=kube_namespace, pretty=True) pprint(response) except ApiException as e: print("") print("App '%s' did not start properly.\n%s" % (svc_yaml_filename, str(e))) print("") print("") print("Check status with 'pio cluster'.") print("") def stop(self, app_name): pio_api_version = self._get_full_config()['pio_api_version'] try: kube_cluster_context = self._get_full_config()['kube_cluster_context'] kube_namespace = self._get_full_config()['kube_namespace'] except: print("") print("Cluster needs to be configured with 'pio init-cluster'.") print("") return kubeconfig.load_kube_config() kubeclient_v1 = kubeclient.CoreV1Api() kubeclient_v1_beta1 = kubeclient.ExtensionsV1beta1Api() with warnings.catch_warnings(): warnings.simplefilter("ignore") response = kubeclient_v1_beta1.list_namespaced_deployment(namespace=kube_namespace, watch=False, pretty=True) found = False for deploy in response.items: if app_name in deploy.metadata.name: found = True break if found: print("") print("Stopping app '%s'." % deploy.metadata.name) subprocess.call("kubectl delete deploy %s" % deploy.metadata.name, shell=True) print("") print("Check status with 'pio cluster'.") print("") else: print("") print("App '%s' is not running." % app_name) print("") # def git_init(self, # git_repo_base_path, # git_revision='HEAD'): # expanded_git_repo_base_path = os.path.expandvars(git_repo_base_path) # expanded_git_repo_base_path = os.path.expanduser(expanded_git_repo_base_path) # expanded_git_repo_base_path = os.path.abspath(expanded_git_repo_base_path) # pio_api_version = self._get_full_config()['pio_api_version'] # print("git_repo_base_path: '%s'" % git_repo_base_path) # print("expanded_git_repo_base_path: '%s'" % expanded_git_repo_base_path) # print("git_revision: '%s'" % git_revision) # git_repo = Repo(expanded_git_repo_base_path, search_parent_directories=True) # config_dict = {'git_repo_base_path': git_repo.working_tree_dir , 'git_revision': git_revision} # self._merge_config_dict(config_dict) # pprint(self._get_full_config()) # print("") # def git(self): # pio_api_version = self._get_full_config()['pio_api_version'] # try: # git_repo_base_path = self._get_full_config()['git_repo_base_path'] # expanded_git_repo_base_path = os.path.expandvars(git_repo_base_path) # expanded_git_repo_base_path = os.path.expanduser(expanded_git_repo_base_path) # expanded_git_repo_base_path = os.path.abspath(expanded_git_repo_base_path) # git_revision = self._get_full_config()['git_revision'] # except: # print("Git needs to be configured with 'pio git-init'.") # return # pprint(self._get_full_config()) >>>>>>> fluxcapacitor/master # git_repo = Repo(expanded_git_repo_base_path, search_parent_directories=False) # ch = git_repo.commit(git_revision) # print("Git repo base path: '%s'" % git_repo_base_path) # print("Git revision: '%s'" % git_revision) # print("Git commit message: '%s'" % ch.message) # print("Git commit hash: '%s'" % ch.hexsha) <<<<<<< HEAD # print("\n") ======= # print("") >>>>>>> fluxcapacitor/master def main(): fire.Fire(PioCli) if __name__ == '__main__': main()
apache-2.0
5,127,850,523,423,164,000
38.903243
385
0.52565
false
ktmrmshk/Dresp
dresp/imgen.py
1
1692
from PIL import Image, ImageDraw, ImageFont import os def imgen(size, fmt='jpg', outdir='./'): outfile='{}x{}.{}'.format(size[0], size[1], fmt) img = Image.new('RGB', size, (210,210,210)) d=ImageDraw.Draw(img) d.text((0,0), outfile, (0,0,0)) img.save(os.path.join(outdir,outfile)) def imgen_echo(txt, fmt='jpg', outdir='./', fileprefix='tmp123'): outfile='{}.{}'.format(fileprefix, fmt) #load font fontpath='{}/static/CourierNew.ttf'.format(os.path.dirname(os.path.abspath(__file__))) font = ImageFont.truetype(fontpath, 18) img = Image.new('RGB', (3200,1600), (210,210,210)) d=ImageDraw.Draw(img) d.multiline_text((0,0), txt, (0,0,0), font=font) img.save(os.path.join(outdir,outfile)) import json if __name__ == '__main__': imgen((20, 10), 'png') raw='''{"Host": "localhost:5000", "Connection": "keep-alive", "Pragma": "akamai-x-cache-on, akamai-x-cache-remote-on, akamai-x-check-cacheable, akamai-x-get-cache-key, akamai-x-get-ssl-client-session-id, akamai-x-get-true-cache-key, akamai-x-get-request-id", "Cache-Control": "no-cache", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "en-US,en;q=0.9,ja;q=0.8", "X-Im-Piez": "on", "X-Akamai-Ro-Piez": "on", "X-Akamai-A2-Disable": "on", "Show-Akamai-Debug-4Fbgbadszg": "true", "X-Akamai-Device-Characteristics": "abc123"}''' imgen_echo(json.dumps(json.loads(raw),indent=2), 'png')
apache-2.0
-2,803,733,037,499,778,000
53.580645
810
0.648345
false
Yobretaw/ChromeCacheExtractor
src/manager.py
1
2438
import sys import os import urllib import uuid import hashlib from Util import * from addr import * from index import * from block import * from entrystore import * from dump_cache import * class CacheManager(object): def __init__(self, fromDir=None, toDir=None): self.fromDir = fromDir self.toDir = toDir self.indexFile = None; self.blockFiles = [None] * 4; # data_0, data_1, data_2, data_3 self.separateFiles = {} self.entries = [] if fromDir: self.indexFile = Index(pathToIndex=os.path.join(fromDir, "index")) self.blockFiles[0] = Block(pathToBlock=os.path.join(fromDir, "data_0")) self.blockFiles[1] = Block(pathToBlock=os.path.join(fromDir, "data_1")) self.blockFiles[2] = Block(pathToBlock=os.path.join(fromDir, "data_2")) self.blockFiles[3] = Block(pathToBlock=os.path.join(fromDir, "data_3")) separate_files = [name for name in os.listdir(fromDir) if os.path.isfile(os.path.join(fromDir, name)) and name[0] == 'f'] for fname in separate_files: with open(os.path.join(fromDir, fname), 'rb') as tmp: self.separateFiles[fname] = tmp.read() def processEntries(self): assert (self.indexFile.table) for addr in self.indexFile.table: entry = EntryStore(self.fetchBytesForEntry(addr), self) self.entries.append(entry) if entry.next_addr: self.indexFile.table.append(CacheAddr(entry.next_addr)) def outputToFiles(self): dumper = CacheDumper(self.toDir) dumper.init() for entry in self.entries: if len(entry.response_header) <= 1: continue url = entry.key.encode('utf-8') ext = getExt(entry.key, entry.headerMap) dumper.insert(url, '\n'.join(entry.response_header), isHeader=True) if len(entry.data) > 1: dumper.insert(url, entry.data[1], ext=ext) def fetchBytesForEntry(self, addr): block_file = addr.block_file block_number = addr.block_number num_blocks = addr.contiguous_blocks + 1 entries = self.blockFiles[block_file].getEntry(block_number, num_blocks) return b"".join(entries) def insertAddrToIndex(self, addr): self.indexFile.table.append(CacheAddr(addr))
mit
-5,627,600,396,760,570,000
32.39726
93
0.604184
false
li-xirong/jingwei
instance_based/getknn.py
1
5471
import os, sys, time from basic.constant import ROOT_PATH from basic.common import checkToSkip, printStatus, writeRankingResults from basic.util import readImageSet from util.simpleknn.bigfile import BigFile from util.simpleknn import simpleknn as imagesearch DEFAULT_K=1500 DEFAULT_DISTANCE = 'l2' DEFAULT_UU = 1 DEFAULT_BLOCK_SIZE = 1000 INFO = __file__ def unique_user_constraint(knn, im2user, k): res = [] userSet = set() removed = 0 for name,score in knn: userid = im2user[name] if userid in userSet: removed += 1 continue userSet.add(userid) res.append((name,score)) if len(res) == k: break return removed, res def process(options, trainCollection, testCollection, feature): rootpath = options.rootpath k = options.k distance = options.distance blocksize = options.blocksize uniqueUser = options.uu numjobs = options.numjobs job = options.job overwrite = options.overwrite testset = options.testset if not testset: testset = testCollection searchMethod = distance + 'knn' if uniqueUser: searchMethod += ",uu" tagfile = os.path.join(rootpath, trainCollection, 'TextData', 'id.userid.lemmtags.txt') im2user = {} for line in open(tagfile): im,userid,tags = line.split('\t') im2user[im] = userid resultdir = os.path.join(rootpath, testCollection, "SimilarityIndex", testset, trainCollection, "%s,%s,%d" % (feature,searchMethod,k)) feat_dir = os.path.join(rootpath, trainCollection, 'FeatureData', feature) id_file = os.path.join(feat_dir, 'id.txt') shape_file = os.path.join(feat_dir, 'shape.txt') nr_of_images, feat_dim = map(int, open(shape_file).readline().split()) nr_of_images = len(open(id_file).readline().strip().split()) searcher = imagesearch.load_model(os.path.join(feat_dir, 'feature.bin'), feat_dim, nr_of_images, id_file) searcher.set_distance(distance) workingSet = readImageSet(testCollection, testset, rootpath=rootpath) workingSet = [workingSet[i] for i in range(len(workingSet)) if (i%numjobs+1) == job] printStatus(INFO, "working on %d-%d, %d test images -> %s" % (numjobs,job,len(workingSet),resultdir)) test_feat_dir = os.path.join(rootpath, testCollection, 'FeatureData', feature) test_feat_file = BigFile(test_feat_dir) read_time = 0 knn_time = 0 start = 0 done = 0 filtered = 0 while start < len(workingSet): end = min(len(workingSet), start + blocksize) printStatus(INFO, 'processing images from %d to %d' % (start, end-1)) s_time = time.time() renamed,vectors = test_feat_file.read(workingSet[start:end]) read_time += time.time() - s_time nr_images = len(renamed) s_time = time.time() for i in range(nr_images): resultfile = os.path.join(resultdir, renamed[i][-2:], '%s.txt' % renamed[i]) if checkToSkip(resultfile, overwrite): continue knn = searcher.search_knn(vectors[i], max_hits=max(3000,k*3)) if uniqueUser: removed, newknn = unique_user_constraint(knn, im2user, k) filtered += removed knn = newknn else: knn = knn[:k] assert(len(knn) >= k) writeRankingResults(knn, resultfile) done += 1 printStatus(INFO, 'job %d-%d: %d done, filtered neighbors %d' % (numjobs, job, done, filtered)) start = end printStatus(INFO, 'job %d-%d: %d done, filtered neighbors %d' % (numjobs, job, done, filtered)) def main(argv=None): if argv is None: argv = sys.argv[1:] from optparse import OptionParser parser = OptionParser(usage="""usage: %prog [options] trainCollection testCollection feature""") parser.add_option("--overwrite", default=0, type="int", help="overwrite existing file (default=0)") parser.add_option("--uu", default=DEFAULT_UU, type="int", help="unique user constraint (default=%d)" % DEFAULT_UU) parser.add_option("--testset", default=None, type="string", help="process a specified subset of $testCollection") parser.add_option("--k", default=DEFAULT_K, type="int", help="number of neighbors (%d)" % DEFAULT_K) parser.add_option("--distance", default=DEFAULT_DISTANCE, type="string", help="visual distance, can be l1 or l2 (default: %s)" % DEFAULT_DISTANCE) parser.add_option("--rootpath", default=ROOT_PATH, type="string", help="(default: %s)" % ROOT_PATH) parser.add_option("--numjobs", default=1, type="int", help="number of jobs (default: 1)") parser.add_option("--job", default=1, type="int", help="current job (default: 1)") parser.add_option("--blocksize", default=DEFAULT_BLOCK_SIZE, type="int", help="nr of feature vectors loaded per time (default: %d)" % DEFAULT_BLOCK_SIZE) (options, args) = parser.parse_args(argv) if len(args) < 3: parser.print_help() return 1 assert(options.job>=1 and options.numjobs >= options.job) return process(options, args[0], args[1], args[2]) if __name__ == "__main__": sys.exit(main())
mit
-5,852,272,726,734,158,000
36.801418
157
0.606288
false
katajakasa/utuputki2-client
utuclient/player.py
1
3016
# -*- coding: utf-8 -*- from gi.repository import GObject as gobject, Gst as gst, Gtk as gtk, GdkX11, GstVideo import platform import logging log = logging.getLogger(__name__) class Player(object): VIDEO = 0 IMAGE = 1 def __init__(self, window, url, cb_finish, cb_error, mode=VIDEO): self.window = window self.mode = mode self.url = url self.cb_finish = cb_finish self.cb_error = cb_error # The play binary pipeline self.pipeline = gst.ElementFactory.make("playbin", "player") self.pipeline.set_property("uri", url) # Sink if platform.system() == "Windows": self.sink = gst.ElementFactory.make('d3dvideosink', 'sink') else: self.sink = gst.ElementFactory.make('ximagesink', 'sink') self.sink.set_property('force-aspect-ratio', True) self.pipeline.set_property('video-sink', self.sink) # Handle image stuff if mode == Player.IMAGE: self.freeze = gst.ElementFactory.make("imagefreeze", "freeze") self.pipeline.add(self.freeze) else: self.freeze = None # Add signal handler self.bus = self.pipeline.get_bus() self.bus.connect('message::eos', self.handle_eos) self.bus.connect('message::error', self.handle_error) self.bus.add_signal_watch() # Find the correct window handle and set it as base drawing area for the video sink if platform.system() == "Windows": self.sink.set_window_handle(self.window.get_hwnd()) else: self.sink.set_window_handle(self.window.get_xid()) # Start self.pipeline.set_state(gst.State.PLAYING) def handle_error(self, bus, msg): error = msg.parse_error()[1] log.warn(u"Caught error %s", error) self.cb_error(error) def handle_eos(self, bus, msg): log.info(u"End of stream") self.cb_finish() def play(self): self.pipeline.set_state(gst.State.PLAYING) def stop(self): self.pipeline.set_state(gst.State.NULL) def pause(self): self.pipeline.set_state(gst.State.PAUSED) def is_stopped(self): return self.pipeline.get_state(gst.CLOCK_TIME_NONE)[1] == gst.State.NULL def is_playing(self): return self.pipeline.get_state(gst.CLOCK_TIME_NONE)[1] == gst.State.PLAYING def is_paused(self): return self.pipeline.get_state(gst.CLOCK_TIME_NONE)[1] == gst.State.PAUSED def close(self): self.stop() self.bus.remove_signal_watch() def status(self): if self.is_stopped(): return 0 if self.is_playing(): return 1 if self.is_paused(): return 2 return None def seek(self, seconds): self.pipeline.seek_simple(gst.Format.TIME, gst.SeekFlags.FLUSH | gst.SeekFlags.KEY_UNIT, seconds * gst.SECOND)
mit
-3,054,547,162,323,551,000
29.77551
91
0.587865
false
bartsidee/bartsidee-boxee
repo/hulu/hulu.py
1
6855
from default import * from library import * import tools sys.path.append(os.path.join(CWD, 'external')) from BeautifulSoup import BeautifulSoup from urllib import quote_plus try: import simplejson as json except: import json import math class Module(BARTSIDEE_MODULE): def __init__(self, app): self.app = app BARTSIDEE_MODULE.__init__(self, app) self.url_base = 'http://www.hulu.com' self.name = "Hulu" #Name of the channel self.type = ['search', 'genre'] #Choose between 'search', 'list', 'genre' self.episode = True #True if the list has episodes self.genre = ['Comedy', 'Drama', 'Reality and Game Shows','Animation and Cartoons', 'Anime', 'International', 'Kids', 'Family', 'Action and Adventure', 'Food', 'Science Fiction', 'News and Information', 'Classics', 'Latino', 'Horror and Suspense', 'Documentaries', 'Korean Drama', 'Health and Wellness', 'Lifestyle', 'Sports', 'Music', 'Arts and Culture', 'Videogames', 'Gay and Lesbian'] self.filter = [] #Array to add a genres to the genre section [type genre must be enabled] self.content_type = 'video/x-flv' #Mime type of the content to be played self.country = 'US' #2 character country id code self.free = "1" self.pageSize = 16 self.access_token = re.compile('w.API_DONUT = \'(.*?)\';', re.DOTALL + re.IGNORECASE).search(str(tools.urlopen(self.app, self.url_base))).group(1) def Search(self, search): url = self.url_base + '/browse/search?alphabet=All&family_friendly=0&closed_captioned=0&has_free=1&has_huluplus=0&has_hd=0&channel=All&subchannel=&network=All&display=Shows%20with%20full%20episodes%20only&decade=All&type=tv&view_as_thumbnail=false&block_num=0&keyword=' + quote_plus(search) data = tools.urlopen(self.app, url) data = re.compile('"show_list", "(.*?)"\)', re.DOTALL + re.IGNORECASE).search(str(data)).group(1) data = data.replace('\\u003c','<').replace('\\u003e','>').replace('\\','').replace('\\n','').replace('\\t','') soup = BeautifulSoup(data, convertEntities=BeautifulSoup.HTML_ENTITIES, smartQuotesTo="xml") streamlist = list() for info in soup.findAll('a', {'onclick':True}): stream = CreateList() stream.name = info.contents[0] stream.id = info['href'] streamlist.append(stream) return streamlist def Episode(self, stream_name, stream_id, page, totalpage): data = tools.urlopen(self.app, stream_id, {'cache':3600}) if not data: return [] soup = BeautifulSoup(data, convertEntities="xml", smartQuotesTo="xml") show_id = re.compile('show\/(.*?)\?region\=', re.DOTALL + re.IGNORECASE).search(str(data)).group(1) url = self.url_base + "/mozart/v1.h2o/shows/episodes?free_only="+self.free+"&include_seasons=true&order=asc&shorter_cache=true&show_id="+show_id+"&sort=premiere_date&video_type%5B%5D=episode&video_type%5B%5D=game&items_per_page=" + str(self.pageSize) + "&position=" + str(self.pageSize * (page - 1)) + "&_user_pgid=1&_content_pgid=67&_device_id=1&access_token=" + self.access_token data = tools.urlopen(self.app, url) json_data = json.loads(data) if totalpage == "": if int(json_data['total_count']) > self.pageSize: totalpage = int(math.ceil(int(json_data['total_count']) / self.pageSize)) else: totalpage = 1 episodelist = list() for item in json_data['data']: episode = CreateEpisode() episode.name = stream_name episode.id = self.url_base + '/watch/'+str(item['video']['id']) episode.description = 'Episode: ' + str(item['video']['episode_number']) + ' - ' + str(item['video']['title']) episode.thumbnails = 'http://ib1.huluim.com/video/'+str(item['video']['content_id'])+'?size=220x124' episode.date = 'Season: ' + str(item['video']['season_number']) episode.page = page episode.totalpage = totalpage episodelist.append(episode) return episodelist def Genre(self, genre, filter, page, totalpage): url = self.url_base + '/mozart/v1.h2o/shows?asset_scope=tv&genre='+genre.replace(" ", "+")+'&order=desc&sort=view_count_week&video_type=tv&items_per_page=' + str(self.pageSize) + '&position='+ str(self.pageSize * (page - 1)) + '&_user_pgid=1&_content_pgid=67&_device_id=1&free_only='+self.free + '&access_token=' + self.access_token data = tools.urlopen(self.app, url, {'cache':3600}) if data == "": mc.ShowDialogNotification("No genre found for " + str(genre)) return [] json_data = json.loads(data) if totalpage == "": if int(json_data['total_count']) > self.pageSize: totalpage = int(math.ceil(int(json_data['total_count']) / self.pageSize)) else: totalpage = 1 genrelist = list() for item in json_data['data']: genreitem = CreateEpisode() genreitem.episode = "True" genreitem.name = '[UPPERCASE]'+ item['show']['name'] +'[/UPPERCASE] ' + item['show']['description'] genreitem.id = self.url_base + '/' +str(item['show']['canonical_name']) genreitem.page = page genreitem.totalpage = totalpage genrelist.append(genreitem) return genrelist def Play(self, stream_name, stream_id, subtitle): path = self.tinyurl(stream_id) play = CreatePlay() play.path = quote_plus(path) play.domain = 'bartsidee.nl' play.jsactions = quote_plus('http://boxee.bartsidee.nl/js/hulu.js') return play def tinyurl(self, params): url = "http://tinyurl.com/api-create.php?url=" + str(params) return tools.urlopen(self.app, url) def getGenres(self): url = self.url_base + "/mozart/v1.h2o/shows/genres?sort=view_count_week&type=tv&items_per_page=32&position=0&_user_pgid=1&_content_pgid=67&_device_id=1&access_token=" + self.access_token data = tools.urlopen(self.app, url, {'cache':36000}) json_data = json.loads(data) genres = [] for item in json_data['data']: genres.append(item["genre"]["name"]) return genres
gpl-3.0
6,666,448,503,530,564,000
49.036496
405
0.566302
false
praekeltfoundation/docker-ci-deploy
docker_ci_deploy/tests/test_main.py
1
31671
# -*- coding: utf-8 -*- import re import sys from subprocess import CalledProcessError from testtools import ExpectedException from testtools.assertions import assert_that from testtools.matchers import Equals, MatchesRegex, MatchesStructure from docker_ci_deploy.__main__ import ( cmd, DockerCiDeployRunner, join_image_tag, main, RegistryTagger, generate_tags, generate_semver_versions, VersionTagger, split_image_tag) class TestSplitImageTagFunc(object): def test_split(self): """ Given an image tag with registry, name and tag components, split_image_tag should return the registry and name as the image and the tag part as the tag. """ image_and_tag = split_image_tag( 'registry.example.com:5000/user/name:tag') assert_that(image_and_tag, Equals( ('registry.example.com:5000/user/name', 'tag'))) def test_no_tag(self): """ Given an image tag with only registry and name components, split_image_tag should return the image name unchanged and None for the tag. """ image_and_tag = split_image_tag('registry.example.com:5000/user/name') assert_that(image_and_tag, Equals( ('registry.example.com:5000/user/name', None))) def test_no_registry(self): """ Given an image tag with only name and tag components, split_image_tag should return the user and name part for the name and the tag part for the tag. """ image_and_tag = split_image_tag('user/name:tag') assert_that(image_and_tag, Equals(('user/name', 'tag'))) def test_no_registry_or_tag(self): """ Given an image tag with only name components, split_image_tag should return the image name unchanged and None for the tag. """ image_and_tag = split_image_tag('user/name') assert_that(image_and_tag, Equals(('user/name', None))) def test_tag_unparsable(self): """ Given a malformed image tag, split_image_tag should throw an error. """ image_tag = 'this:is:invalid/user:test/name:tag/' with ExpectedException( ValueError, r"Unable to parse image tag '%s'" % (image_tag,)): split_image_tag(image_tag) class TestJoinImageTagFunc(object): def test_image_and_tag(self): """ When an image and tag are provided, the two should be joined using a ':' character. """ image_tag = join_image_tag('bar', 'foo') assert_that(image_tag, Equals('bar:foo')) def test_tag_is_none(self): """ When the provided tag is None, the image should be returned. """ image_tag = join_image_tag('bar', None) assert_that(image_tag, Equals('bar')) def test_tag_is_empty(self): """ When the provided tag is empty, the image should be returned. """ image_tag = join_image_tag('bar', '') assert_that(image_tag, Equals('bar')) class TestRegistryTagger(object): def test_image_without_registry(self): """ When an image without a registry is provided, the registry should be prepended to the image with a '/' character. """ image = RegistryTagger('registry:5000').generate_tag('bar') assert_that(image, Equals('registry:5000/bar')) def test_image_with_registry(self): """ When an image is provided that already specifies a registry, that registry should be replaced with the given registry. """ image = RegistryTagger('registry2:5000').generate_tag( 'registry:5000/bar') assert_that(image, Equals('registry2:5000/bar')) def test_image_might_have_registry(self): """ When an image is provided that looks like it *may* already specify a registry, the registry should just be prepended to the image name and returned, provided that the resulting image name is valid. """ image = RegistryTagger('registry:5000').generate_tag( 'praekeltorg/alpine-python') assert_that(image, Equals('registry:5000/praekeltorg/alpine-python')) def test_image_unparsable(self): """ Given a malformed image name, replace_image_registry should throw an error. """ image = 'foo:5000:port/name' with ExpectedException( ValueError, r"Unable to parse image name '%s'" % (image,)): RegistryTagger('registry:5000').generate_tag(image) class TestGenerateSemverVersionsFunc(object): def test_standard_version(self): """ When a standard 3-part semantic version is passed, 3 version strings should be returned with decreasing levels of precision. """ versions = generate_semver_versions('5.4.1') assert_that(versions, Equals(['5.4.1', '5.4', '5'])) def test_extended_version(self): """ When a version is passed with extra information separated by '-', version strings should be returned with decreasing levels of precision. """ versions = generate_semver_versions('5.5.0-alpha') assert_that(versions, Equals(['5.5.0-alpha', '5.5.0', '5.5', '5'])) def test_one_version_part(self): """ When a version with a single part is passed, that version should be returned in a list. """ versions = generate_semver_versions('foo') assert_that(versions, Equals(['foo'])) def test_precision_less_than_version(self): """ When precision is less than the precision of the version, semantic versions should be generated up to the specified precision. """ versions = generate_semver_versions('3.5.3', precision=2) assert_that(versions, Equals(['3.5.3', '3.5'])) def test_precision_equal_to_version(self): """ When precision is equal to the precision of the version, the generated versions should be just the version itself. """ versions = generate_semver_versions('3.5.3', precision=3) assert_that(versions, Equals(['3.5.3'])) def test_precision_greater_than_version(self): """ When precision is greater than the precision of the version, an error should be raised. """ with ExpectedException( ValueError, r'The minimum precision \(4\) is greater than the precision ' r"of version '3\.5\.3' \(3\)"): generate_semver_versions('3.5.3', precision=4) def test_does_not_generate_zero(self): """ When a version is passed with a major version of 0, the version '0' should not be returned in the list of versions. """ versions = generate_semver_versions('0.6.11') assert_that(versions, Equals(['0.6.11', '0.6'])) def test_zero_true(self): """ When a version is passed with a major version of 0, and the zero parameter is True, the version '0' should be returned in the list of versions. """ versions = generate_semver_versions('0.6.11', zero=True) assert_that(versions, Equals(['0.6.11', '0.6', '0'])) def test_does_generate_zero_if_only_zero(self): """ When the version '0' is passed, that version should be returned in a list. """ versions = generate_semver_versions('0') assert_that(versions, Equals(['0'])) class TestVersionTagger(object): def test_tag_without_version(self): """ When a tag does not start with the version, the version should be prepended to the tag with a '-' character. """ tagger = VersionTagger(['1.2.3']) tags = tagger.generate_tags('foo') assert_that(tags, Equals(['1.2.3-foo'])) def test_tag_with_version(self): """ When a tag starts with one of the versions, then the version and '-' separator should be removed from the tag and the remaining tag processed. """ tagger = VersionTagger(['1.2.3', '1.2', '1']) tags = tagger.generate_tags('1.2-foo') assert_that(tags, Equals(['1.2.3-foo', '1.2-foo', '1-foo'])) def test_tag_is_version(self): """ When a tag is equal to one of the versions, the versions should be returned. """ tagger = VersionTagger(['1.2.3', '1.2', '1']) tags = tagger.generate_tags('1') assert_that(tags, Equals(['1.2.3', '1.2', '1'])) def test_tag_is_none(self): """ When a tag is None, the versions should be returned. """ tagger = VersionTagger(['1.2.3']) tags = tagger.generate_tags(None) assert_that(tags, Equals(['1.2.3'])) def test_tag_is_latest(self): """ When the tag is 'latest', the versions should be returned. """ tagger = VersionTagger(['1.2.3']) tags = tagger.generate_tags('latest') assert_that(tags, Equals(['1.2.3'])) def test_latest(self): """ When latest is True and a tag is provided, the versioned and unversioned tags should be returned. """ tagger = VersionTagger(['1.2.3'], latest=True) tags = tagger.generate_tags('foo') assert_that(tags, Equals(['1.2.3-foo', 'foo'])) def test_latest_tag_with_version(self): """ When latest is True and the tag already has the version prefixed, the tag and 'latest' tag should be returned. """ tagger = VersionTagger(['1.2.3'], latest=True) tags = tagger.generate_tags('1.2.3-foo') assert_that(tags, Equals(['1.2.3-foo', 'foo'])) def test_latest_tag_is_version(self): """ When latest is True and the tag is the version, the version and 'latest' tag should be returned. """ tagger = VersionTagger(['1.2.3'], latest=True) tags = tagger.generate_tags('1.2.3') assert_that(tags, Equals(['1.2.3', 'latest'])) def test_latest_tag_is_none(self): """ When latest is True and the tag is None, the version and 'latest' tag should be returned. """ tagger = VersionTagger(['1.2.3'], latest=True) tags = tagger.generate_tags(None) assert_that(tags, Equals(['1.2.3', 'latest'])) def test_latest_tag_is_latest(self): """ When latest is True and the tag is 'latest', the version and 'latest' tag should be returned. """ tagger = VersionTagger(['1.2.3'], latest=True) tags = tagger.generate_tags('latest') assert_that(tags, Equals(['1.2.3', 'latest'])) def assert_output_lines(capfd, stdout_lines, stderr_lines=[]): out, err = capfd.readouterr() if sys.version_info < (3,): # FIXME: I'm not entirely sure how to determine the correct encoding # here and not sure whether the right answer comes from Python itself # or pytest. For now, UTF-8 seems like a safe bet. out = out.encode('utf-8') err = err.encode('utf-8') out_lines = out.split('\n') assert_that(out_lines.pop(), Equals('')) assert_that(out_lines, Equals(stdout_lines)) err_lines = err.split('\n') assert_that(err_lines.pop(), Equals('')) assert_that(err_lines, Equals(stderr_lines)) class TestCmdFunc(object): def test_stdout(self, capfd): """ When a command writes to stdout, that output should be captured and written to Python's stdout. """ cmd(['echo', 'Hello, World!']) assert_output_lines( capfd, stdout_lines=['Hello, World!'], stderr_lines=[]) def test_stderr(self, capfd): """ When a command writes to stderr, that output should be captured and written to Python's stderr. """ # Have to do something a bit more complicated to echo to stderr cmd(['awk', 'BEGIN { print "Hello, World!" > "/dev/stderr" }']) assert_output_lines( capfd, stdout_lines=[], stderr_lines=['Hello, World!']) def test_stdout_unicode(self, capfd): """ When a command writes Unicode to a standard stream, that output should be captured and encoded correctly. """ cmd(['echo', 'á, é, í, ó, ú, ü, ñ, ¿, ¡']) assert_output_lines(capfd, ['á, é, í, ó, ú, ü, ñ, ¿, ¡']) def test_error(self, capfd): """ When a command exits with a non-zero return code, an error should be raised with the correct information about the result of the command. The stdout or stderr output should still be captured. """ args = ['awk', 'BEGIN { print "errored"; exit 1 }'] with ExpectedException(CalledProcessError, MatchesStructure( cmd=Equals(args), returncode=Equals(1), output=Equals(b'errored\n'))): cmd(args) assert_output_lines(capfd, ['errored'], []) class TestGenerateTagsFunc(object): def test_no_tags(self): """ When no parameters are provided, and an image name without a tag is passed, a list should be returned with the given image name unchanged. """ tags = generate_tags('test-image') assert_that(tags, Equals(['test-image'])) def test_no_tags_existing_tag(self): """ When no parameters are provided, and an image tag with a tag is passed, a list should be returned with the given image tag unchanged. """ tags = generate_tags('test-image:abc') assert_that(tags, Equals(['test-image:abc'])) def test_tags(self): """ When the tags parameter is provided, and an image name without a tag is passed, a list of image tags should be returned with the tags appended. """ tags = generate_tags('test-image', tags=['abc', 'def']) assert_that(tags, Equals(['test-image:abc', 'test-image:def'])) def test_tag_existing_tag(self): """ When the tags parameter is provided, and an image tag with a tag is passed, a list of image tags should be returned with the tag replaced by the new tags. """ tags = generate_tags('test-image:abc', tags=['def', 'ghi']) assert_that(tags, Equals(['test-image:def', 'test-image:ghi'])) # FIXME?: The following 2 tests describe a weird, unintuitive edge case :-( # Passing `--tag latest` with `--version <version>` but *not* # `--version-latest` doesn't actually get you the tag 'latest' but rather # effectively removes any existing tag. def test_version_new_tag_is_latest(self, capfd): """ When a version is provided as well as a new tag, and the new tag is 'latest', then the image should be tagged with the new version only. """ version_tagger = VersionTagger(['1.2.3']) tags = generate_tags( 'test-image:abc', tags=['latest'], version_tagger=version_tagger) assert_that(tags, Equals(['test-image:1.2.3'])) def test_version_new_tag_is_latest_with_version(self, capfd): """ When a version is provided as well as a new tag, and the new tag is 'latest' plus the version, then the image should be tagged with the new version only. """ version_tagger = VersionTagger(['1.2.3']) tags = generate_tags('test-image:abc', tags=['1.2.3-latest'], version_tagger=version_tagger) assert_that(tags, Equals(['test-image:1.2.3'])) class TestDockerCiDeployRunner(object): def test_tag(self, capfd): """ When ``tag`` is called, the Docker CLI should be called with the 'tag' command and the source and target tags. """ runner = DockerCiDeployRunner(executable='echo') runner.docker_tag('foo', 'bar') assert_output_lines(capfd, ['tag foo bar']) def test_tag_verbose(self, capfd): """ When ``tag`` is called, and verbose is True, a message should be logged. """ runner = DockerCiDeployRunner(executable='echo', verbose=True) runner.docker_tag('foo', 'bar') assert_output_lines( capfd, ['Tagging "foo" as "bar"...', 'tag foo bar']) def test_tag_dry_run(self, capfd): """ When ``tag`` is called, and dry_run is True, the Docker command should be printed but not executed. """ runner = DockerCiDeployRunner(dry_run=True) runner.docker_tag('foo', 'bar') assert_output_lines(capfd, ['docker tag foo bar']) def test_tag_same_tag(self, capfd): """ When ``tag`` is called, and the output tag is the same as the input tag, the command should not be executed. """ runner = DockerCiDeployRunner(executable='echo') runner.docker_tag('bar', 'bar') assert_output_lines(capfd, [], []) def test_tag_same_tag_verbose(self, capfd): """ When ``tag`` is called, and the output tag is the same as the input tag, and verbose is True, a message should be logged that explains that no tagging will be done. """ runner = DockerCiDeployRunner(executable='echo', verbose=True) runner.docker_tag('bar', 'bar') assert_output_lines(capfd, ['Not tagging "bar" as itself']) def test_push(self, capfd): """ When ``push`` is called, the Docker CLI should be called with the 'push' command and the image tag. """ runner = DockerCiDeployRunner(executable='echo') runner.docker_push('foo') assert_output_lines(capfd, ['push foo']) def test_push_verbose(self, capfd): """ When ``push`` is called, and verbose is True, a message should be logged. """ runner = DockerCiDeployRunner(executable='echo', verbose=True) runner.docker_push('foo') assert_output_lines(capfd, ['Pushing tag "foo"...', 'push foo']) def test_push_dry_run(self, capfd): """ When ``push`` is called, and dry_run is True, the Docker command should be printed but not executed. """ runner = DockerCiDeployRunner(dry_run=True) runner.docker_push('foo') assert_output_lines(capfd, ['docker push foo']) class TestMainFunc(object): def test_args(self, capfd): """ When the main function is given a set of common arguments, the script should be run as expected. """ main([ '--registry', 'registry.example.com:5000', '--executable', 'echo', 'test-image:abc' ]) assert_output_lines(capfd, [ 'tag test-image:abc registry.example.com:5000/test-image:abc', 'push registry.example.com:5000/test-image:abc' ]) def test_version(self, capfd): """ When the --version flag is used, the version is added to the image tag. """ main([ '--executable', 'echo', '--version', '1.2.3', 'test-image:abc' ]) assert_output_lines(capfd, [ 'tag test-image:abc test-image:1.2.3-abc', 'push test-image:1.2.3-abc' ]) def test_semver_precision(self, capfd): """ When the --semver-precision option is used, the semver versions are generated with the correct precision. """ main([ '--executable', 'echo', '--version', '1.2.3', '--version-semver', '--semver-precision', '2', 'test-image:abc' ]) assert_output_lines(capfd, [ 'tag test-image:abc test-image:1.2.3-abc', 'tag test-image:abc test-image:1.2-abc', 'push test-image:1.2.3-abc', 'push test-image:1.2-abc', ]) def test_semver_precision_default(self, capfd): """ When the --version-semver flag is used, but the --semver-precision option is not, the semver precision should default to 1. """ main([ '--executable', 'echo', '--version', '1.2.3', '--version-semver', 'test-image:abc' ]) assert_output_lines(capfd, [ 'tag test-image:abc test-image:1.2.3-abc', 'tag test-image:abc test-image:1.2-abc', 'tag test-image:abc test-image:1-abc', 'push test-image:1.2.3-abc', 'push test-image:1.2-abc', 'push test-image:1-abc', ]) def test_image_required(self, capfd): """ When the main function is given no image argument, it should exit with a return code of 2 and inform the user of the missing argument. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--tag', 'abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) # More useful error message added to argparse in Python 3 if sys.version_info >= (3,): # Use re.DOTALL so that '.*' also matches newlines assert_that(err, MatchesRegex( r'.*error: the following arguments are required: image$', re.DOTALL )) else: assert_that( err, MatchesRegex(r'.*error: too few arguments$', re.DOTALL)) def test_version_latest_requires_version(self, capfd): """ When the main function is given the `--version-latest` option but no `--version` option, it should exit with a return code of 2 and inform the user of the missing option. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--version-latest', 'test-image:abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: the --version-latest option requires --version$', re.DOTALL )) def test_version_latest_requires_non_empty_version(self, capfd): """ When the main function is given the `--version-latest` option and an empty `--version` option, it should exit with a return code of 2 and inform the user of the missing option. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--version-latest', '--version', '', 'test-image:abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: the --version-latest option requires --version$', re.DOTALL )) def test_version_semver_requires_version(self, capfd): """ When the main function is given the `--version-semver` option but no `--version` option, it should exit with a return code of 2 and inform the user of the missing option. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--version-semver', 'test-image:abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: the --version-semver option requires --version$', re.DOTALL )) def test_version_semver_requires_non_empty_version(self, capfd): """ When the main function is given the `--version-semver` option and an empty `--version` option, it should exit with a return code of 2 and inform the user of the missing option. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--version-semver', '--version', '', 'test-image:abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: the --version-semver option requires --version$', re.DOTALL )) def test_semver_precision_requires_version_semver(self, capfd): """ When the main function is given the `--semver-precision` option but no `--version-semver` option, it should exit with a return code of 2 and inform the user of the missing option. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--semver-precision', '2', 'test-image:abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: the --semver-precision option requires ' r'--version-semver$', re.DOTALL )) def test_semver_zero_requires_version_semver(self, capfd): """ When the main function is given the `--semver-zero` option but no `--version-semver` option, it should exit with a return code of 2 and inform the user of the missing option. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--semver-zero', 'test-image:abc']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: the --semver-zero option requires --version-semver$', re.DOTALL )) def test_many_tags(self, capfd): """ When the main function is given multiple tag arguments in different ways, the tags should be correctly passed through to the runner. """ main([ '--tag', 'abc', 'def', '-t', 'ghi', '--executable', 'echo', 'test-image:xyz' ]) assert_output_lines(capfd, [ 'tag test-image:xyz test-image:abc', 'tag test-image:xyz test-image:def', 'tag test-image:xyz test-image:ghi', 'push test-image:abc', 'push test-image:def', 'push test-image:ghi' ]) def test_tag_requires_arguments(self, capfd): """ When the main function is given the `--tag` option without any arguments, an error should be raised. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--tag', '--', 'test-image']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: argument -t/--tag: expected at least one argument$', re.DOTALL )) def test_version_semver_requires_argument(self, capfd): """ When the main function is given the `--version-semver` option without an argument, an error should be raised. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main([ '--version', '1.2.3', '--version-semver', '--semver-precision', '--', 'test-image', ]) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: argument -P/--semver-precision: expected one argument$', re.DOTALL )) def test_registry_requires_argument(self, capfd): """ When the main function is given the `--registry` option without an argument, an error should be raised. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--registry', '--', 'test-image']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: argument -r/--registry: expected one argument$', re.DOTALL )) def test_executable_requires_argument(self, capfd): """ When the main function is given the `--executable` option without an argument, an error should be raised. """ with ExpectedException(SystemExit, MatchesStructure(code=Equals(2))): main(['--executable', '--', 'test-image']) out, err = capfd.readouterr() assert_that(out, Equals('')) assert_that(err, MatchesRegex( r'.*error: argument --executable: expected one argument$', re.DOTALL )) def test_deprecated_tag_version(self, capfd): """ When the main function is given the `--tag-version` option, the option should be used as the `--version` option and a deprecation warning should be printed. """ main([ '--executable', 'echo', '--tag-version', '1.2.3', 'test-image', ]) assert_output_lines(capfd, [ 'tag test-image test-image:1.2.3', 'push test-image:1.2.3', ], [ ('DEPRECATED: the --tag-version option is deprecated and will be ' 'removed in the next release. Please use --version instead') ]) def test_deprecated_tag_latest(self, capfd): """ When the main function is given the `--tag-latest` option, the option should be used as the `--version-latest` option and a deprecation warning should be printed. """ main([ '--executable', 'echo', '--version', '1.2.3', '--tag-latest', 'test-image', ]) assert_output_lines(capfd, [ 'tag test-image test-image:1.2.3', 'tag test-image test-image:latest', 'push test-image:1.2.3', 'push test-image:latest', ], [ ('DEPRECATED: the --tag-latest option is deprecated and will be ' 'removed in the next release. Please use --version-latest ' 'instead') ]) def test_deprecated_tag_semver(self, capfd): """ When the main function is given the `--tag-semver` option, the option should be used as the `--version-semver` option and a deprecation warning should be printed. """ main([ '--executable', 'echo', '--version', '1.2.3', '--tag-semver', 'test-image', ]) assert_output_lines(capfd, [ 'tag test-image test-image:1.2.3', 'tag test-image test-image:1.2', 'tag test-image test-image:1', 'push test-image:1.2.3', 'push test-image:1.2', 'push test-image:1', ], [ ('DEPRECATED: the --tag-semver option is deprecated and will be ' 'removed in the next release. Please use --version-semver ' 'instead') ]) def test_version_take_precedence_over_deprecated_tag_version(self, capfd): """ When the main function is given the `--version` and `--tag-version` options, the `--version` value takes precedence over the `--tag-version` value. """ main([ '--executable', 'echo', '--version', '1.2.3', '--tag-version', '4.5.6', 'test-image', ]) assert_output_lines(capfd, [ 'tag test-image test-image:1.2.3', 'push test-image:1.2.3', ], [ ('DEPRECATED: the --tag-version option is deprecated and will be ' 'removed in the next release. Please use --version instead') ])
mit
2,012,976,566,543,691,300
35.216247
79
0.57549
false
cmacmackin/isoft
plotting/layers.py
1
1656
# # layers.py # This file is part of ISOFT. # # Copyright 2018 Chris MacMackin <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # import numpy as np import numpy.ma as ma def compute_layers(shelf, vertical_resolution=300): """Computes the internal layers or age field for an ice shelf from the Taylor coefficients. """ xc = shelf.grid zc = np.linspace(np.min(shelf.b), np.max(shelf.s), vertical_resolution) xx, zz = np.meshgrid(xc, zc) shelf_domain = np.logical_or(np.greater(zz, shelf.s), np.less(zz, shelf.b)) x = ma.array(xx, mask=shelf_domain, copy=False) z = ma.array(zz, mask=shelf_domain, copy=False) kappa = shelf.kappa # This isn't really the most efficient way to calculate the Taylor # series, but array broadcasting was giving me a headache. k = np.zeros_like(z) for i in range(1, 1+kappa.shape[0]): k += kappa[i-1] * (shelf.s - z)**i return x, z, k
gpl-3.0
8,813,709,389,383,055,000
35
79
0.689614
false
OCA/account-analytic
analytic_tag_dimension_enhanced/models/analytic.py
1
6808
# Copyright 2019 Ecosoft Co., Ltd (http://ecosoft.co.th/) # License AGPL-3.0 or later (https://www.gnu.org/licenses/agpl.html) from odoo import models, api, fields, _ from odoo.exceptions import ValidationError class AccountAnalyticDimension(models.Model): _inherit = 'account.analytic.dimension' ref_model_id = fields.Many2one( comodel_name='ir.model', string='Ref Model', help="Select model if you want to use it to create analytic tags, " "each tag will have reference to the data record in that model.\n" "For example, if you select Department (hr.department) then click " "Create Tags button, tags will be created from each department " " and also has resource_ref to the department record", ) filtered_field_ids = fields.Many2many( comodel_name='ir.model.fields', string='Filtered by fields', domain="[('model_id', '=', ref_model_id)," "('ttype', '=', 'many2one')]", help="Filtered listing tags by fields of this model, based on value " "of selected analytic tags in working document", ) required = fields.Boolean( string='Required', default=False, help="If required, this dimension needed to be " "selected in working document", ) by_sequence = fields.Boolean( default=False, help="If checked, this dimemsion's tags will be available " "only when previous dimension's tags is selected", ) sequence = fields.Integer( help="This field works with By Sequence", ) @api.constrains('by_sequence', 'sequence') def _check_sequence(self): seq_list = self.search([('by_sequence', '=', True)]).mapped('sequence') if len(seq_list) != len(set(seq_list)): raise ValidationError(_('Duplicated dimension sequences')) def create_analytic_tags(self): """Helper function to create tags based on ref_model_id""" self.ensure_one() if not self.ref_model_id: return Tag = self.env['account.analytic.tag'] model = self.ref_model_id.model TagModel = self.env[model] # Delete orphan tags self.analytic_tag_ids.filtered(lambda l: not l.resource_ref or l.resource_ref._name != model).unlink() tag_res_ids = [x.resource_ref.id for x in self.analytic_tag_ids] recs = TagModel.search([('id', 'not in', tag_res_ids)]) for rec in recs: Tag.create({'name': rec.display_name, 'analytic_dimension_id': self.id, 'resource_ref': '%s,%s' % (model, rec.id)}) class AnalyticDimensionLine(models.AbstractModel): _inherit = 'analytic.dimension.line' domain_tag_ids = fields.Many2many( comodel_name='account.analytic.tag', compute='_compute_analytic_tags_domain', help="Helper field, the filtered tags_ids when record is saved", ) @api.depends(lambda self: (self._analytic_tag_field_name,) if self._analytic_tag_field_name else ()) def _compute_analytic_tags_domain(self): res = {} for rec in self: tag_ids = [] res = rec._dynamic_domain_analytic_tags() if res['domain'][self._analytic_tag_field_name]: tag_ids = res['domain'][self._analytic_tag_field_name][0][2] rec.domain_tag_ids = tag_ids return res def _dynamic_domain_analytic_tags(self): """ - For dimension without by_sequence, always show - For dimension with by_sequence, only show tags by sequence - Option to filter next dimension based on selected_tags """ Dimension = self.env['account.analytic.dimension'] Tag = self.env['account.analytic.tag'] # If no dimension with by_sequence, nothing to filter, exist count = Dimension.search_count([('by_sequence', '=', True)]) if count == 0: return {'domain': {self._analytic_tag_field_name: []}} # Find non by_sequence tags, to show always tags = Tag.search(['|', ('analytic_dimension_id', '=', False), ('analytic_dimension_id.by_sequence', '=', False)]) # Find next dimension by_sequence selected_tags = self[self._analytic_tag_field_name] sequences = selected_tags.mapped('analytic_dimension_id').\ filtered('by_sequence').mapped('sequence') cur_sequence = sequences and max(sequences) or -1 next_dimension = Dimension.search( [('by_sequence', '=', True), ('sequence', '>', cur_sequence)], order='sequence', limit=1) next_tag_ids = [] if next_dimension and next_dimension.filtered_field_ids: # Filetered by previously selected_tags next_tag_list = [] for field in next_dimension.filtered_field_ids: matched_tags = selected_tags.filtered( lambda l: l.resource_ref and l.resource_ref._name == field.relation) tag_resources = matched_tags.mapped('resource_ref') res_ids = tag_resources and tag_resources.ids or [] tag_ids = next_dimension.analytic_tag_ids.filtered( lambda l: l.resource_ref[field.name].id in res_ids).ids next_tag_list.append(set(tag_ids)) # "&" to all in next_tag_list next_tag_ids = list(set.intersection(*map(set, next_tag_list))) else: next_tag_ids = next_dimension.analytic_tag_ids.ids # Tags from non by_sequence dimension and next dimension tag_ids = tags.ids + next_tag_ids # tag_ids = tags.ids + next_tag_ids domain = [('id', 'in', tag_ids)] return {'domain': {self._analytic_tag_field_name: domain}} class AccountAnalyticTag(models.Model): _inherit = 'account.analytic.tag' resource_ref = fields.Reference( selection=lambda self: [(model.model, model.name) for model in self.env['ir.model'].search([])], string='Record', ) def _check_analytic_dimension(self): super()._check_analytic_dimension() # Test all required dimension is selected Dimension = self.env['account.analytic.dimension'] req_dimensions = Dimension.search([('required', '=', True)]) tags_dimension = self.filtered('analytic_dimension_id.required') dimensions = tags_dimension.mapped('analytic_dimension_id') missing = req_dimensions - dimensions if missing: raise ValidationError( _("Following dimension(s) not selected: " "%s") % ', '.join(missing.mapped('name')))
agpl-3.0
-2,963,247,440,782,647,300
42.641026
79
0.594301
false
digwanderlust/pants
src/python/pants/backend/jvm/tasks/scalastyle.py
1
6152
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import re from pants.backend.jvm.tasks.jvm_tool_task_mixin import JvmToolTaskMixin from pants.backend.jvm.tasks.nailgun_task import NailgunTask from pants.base.cache_manager import VersionedTargetSet from pants.base.exceptions import TaskError from pants.base.target import Target from pants.process.xargs import Xargs from pants.util.dirutil import touch # TODO: Move somewhere more general? class FileExcluder(object): def __init__(self, excludes_path, log): self.excludes = set() if excludes_path: if not os.path.exists(excludes_path): raise TaskError('Excludes file does not exist: {0}'.format(excludes_path)) with open(excludes_path) as fh: for line in fh.readlines(): pattern = line.strip() if pattern and not pattern.startswith('#'): self.excludes.add(re.compile(pattern)) log.debug('Exclude pattern: {pattern}'.format(pattern=pattern)) else: log.debug('No excludes file specified. All scala sources will be checked.') def should_include(self, source_filename): for exclude in self.excludes: if exclude.match(source_filename): return False return True class Scalastyle(NailgunTask): """Checks scala source files to ensure they're stylish. Scalastyle only checks scala sources in non-synthetic targets. """ class UnspecifiedConfig(TaskError): def __init__(self): super(Scalastyle.UnspecifiedConfig, self).__init__( 'Path to scalastyle config file must be specified.') class MissingConfig(TaskError): def __init__(self, path): super(Scalastyle.MissingConfig, self).__init__( 'Scalastyle config file does not exist: {0}.'.format(path)) _SCALA_SOURCE_EXTENSION = '.scala' _MAIN = 'org.scalastyle.Main' @classmethod def register_options(cls, register): super(Scalastyle, cls).register_options(register) register('--skip', action='store_true', help='Skip scalastyle.') register('--config', advanced=True, help='Path to scalastyle config file.') register('--excludes', advanced=True, help='Path to optional scalastyle excludes file. Each line is a regex. (Blank lines ' 'and lines starting with \'#\' are ignored.) A file is skipped if its path ' '(relative to the repo root) matches any of these regexes.') register('--jvm-options', action='append', metavar='<option>...', advanced=True, help='Run scalastyle with these extra jvm options.') cls.register_jvm_tool(register, 'scalastyle') @classmethod def get_non_synthetic_scala_targets(cls, targets): return filter( lambda target: isinstance(target, Target) and target.has_sources(cls._SCALA_SOURCE_EXTENSION) and (not target.is_synthetic), targets) @classmethod def get_non_excluded_scala_sources(cls, scalastyle_excluder, scala_targets): # Get all the sources from the targets with the path relative to build root. scala_sources = list() for target in scala_targets: scala_sources.extend(target.sources_relative_to_buildroot()) # make sure only the sources with the .scala extension stay. scala_sources = filter( lambda filename: filename.endswith(cls._SCALA_SOURCE_EXTENSION), scala_sources) # filter out all sources matching exclude patterns, if specified in config. scala_sources = filter(scalastyle_excluder.should_include, scala_sources) return scala_sources def __init__(self, *args, **kwargs): super(Scalastyle, self).__init__(*args, **kwargs) self._results_dir = os.path.join(self.workdir, 'results') def _create_result_file(self, target): result_file = os.path.join(self._results_dir, target.id) touch(result_file) return result_file @property def cache_target_dirs(self): return True def execute(self): if self.get_options().skip: self.context.log.info('Skipping scalastyle.') return # Don't even try and validate options if we're irrelevant. targets = self.get_non_synthetic_scala_targets(self.context.targets()) if not targets: return with self.invalidated(targets) as invalidation_check: invalid_targets = [vt.target for vt in invalidation_check.invalid_vts] scalastyle_config = self.validate_scalastyle_config() scalastyle_excluder = self.create_file_excluder() self.context.log.debug('Non synthetic scala targets to be checked:') for target in invalid_targets: self.context.log.debug(' {address_spec}'.format(address_spec=target.address.spec)) scala_sources = self.get_non_excluded_scala_sources(scalastyle_excluder, invalid_targets) self.context.log.debug('Non excluded scala sources to be checked:') for source in scala_sources: self.context.log.debug(' {source}'.format(source=source)) if scala_sources: def call(srcs): cp = self.tool_classpath('scalastyle') return self.runjava(classpath=cp, main=self._MAIN, jvm_options=self.get_options().jvm_options, args=['-c', scalastyle_config] + srcs) result = Xargs(call).execute(scala_sources) if result != 0: raise TaskError('java {entry} ... exited non-zero ({exit_code})'.format( entry=Scalastyle._MAIN, exit_code=result)) def validate_scalastyle_config(self): scalastyle_config = self.get_options().config if not scalastyle_config: raise Scalastyle.UnspecifiedConfig() if not os.path.exists(scalastyle_config): raise Scalastyle.MissingConfig(scalastyle_config) return scalastyle_config def create_file_excluder(self): return FileExcluder(self.get_options().excludes, self.context.log)
apache-2.0
5,968,127,118,785,450,000
36.975309
98
0.677503
false
wernwa/lwfa-las-cli-log
PV_CONN.py
1
1648
import sys sys.path.insert(0, './') import epics import time #from epics_device import PowerSupply #from physics_device import Magnet #import json import thread class PV_CONN(epics.PV): def __init__(self, *args, **kwargs): super(PV_CONN, self).__init__(*args, **kwargs) self.conn=False self.connection_callbacks.append(self.onConnectionChange) def onConnectionChange(self, pvname=None, conn= None, **kws): #sys.stdout.write('PV connection status changed: %s %s\n' % (pvname, repr(conn))) #sys.stdout.flush() self.conn=conn if conn==False: #print 'connection lost' thread.start_new_thread(self.reconnect,()) def reconnect(self): try: self.wait_for_connection() #self.connect() except Exception as e: print 'Err: ',e def get(self, *args, **kwargs): if self.conn==True: return super(PV_CONN, self).get(*args, **kwargs) else: return None # increase the values only stepwise 0.1 # def put(self, new_v, *args, **kwargs): # v = self.value # diff = new_v-v # if diff<0: step=-0.1 # elif diff>0: step=0.1 # else: return 0 # # #print 'curr value',v # #print 'new value',new_v # #print 'diff',diff # # while abs(diff)>=0.1: # v+=step # ret = super(PV_CONN, self).put(v,*args, **kwargs) # diff = v-new_v # time.sleep(0.05) # #print v # # if diff==0: return ret # # return super(PV_CONN, self).put(new_v,*args, **kwargs)
gpl-3.0
6,725,211,146,869,991,000
24.75
90
0.546117
false
MilkywayPwns/infprj2
infprj2/mainmenu.py
1
2308
# Main menu python file import pygame import translate import database import options import packetevent # Import button lib import button def update(game): pass def init(game): pass def loadgame(game): game.players.clear() res = database.execute_query("SELECT * FROM savegames ORDER BY id DESC") game.load(res[0]["id"]) def draw(game): bg = pygame.image.load("assets/img/bg.png") game.screen.blit(bg,(0,0)) # button variables btn_width = game.width / 5; btn_height = game.height / 10; btn_x_off = (game.width / 2) - (btn_width / 2) btn_y_off = lambda idx: (game.height / 10) * (idx + 1) + (idx * 10) # scr, x offset, y offset, width, height, text, fontsize, backcolor, frontcolor, callback button.draw(game, btn_x_off, btn_y_off(0), int(btn_width), int(btn_height), "Start", 20, (25,25,25), (255,255,255), lambda x: game.set_state(2)) button.draw(game, btn_x_off, btn_y_off(1), int(btn_width), int(btn_height), translate.translate("LOAD"), 20, (25,25,25), (255,255,255), lambda x: loadgame(x)) # button.draw(game, btn_x_off, btn_y_off(2), int(btn_width), int(btn_height), "Multiplayer", 20, (25,25,25), (255,255,255), lambda x: game.set_state(6)) button.draw(game, btn_x_off, btn_y_off(2), int(btn_width), int(btn_height), "Multiplayer", 20, (25,25,25), (255,255,255), lambda x: packetevent.connect(x, "178.62.226.124", 61022)) button.draw(game, btn_x_off, btn_y_off(3), int(btn_width), int(btn_height), translate.translate("OPTIONS"), 20, (25,25,25), (255,255,255), lambda x: game.set_state(1)) button.draw(game, btn_x_off, btn_y_off(4), int(btn_width), int(btn_height), translate.translate("INSTRUCTIONS"), 20, (25,25,25), (255,255,255), lambda x: game.set_state(7)) button.draw(game, btn_x_off, btn_y_off(5), int(btn_width), int(btn_height), "Leaderboard", 20, (25,25,25), (255,255,255), lambda x: game.set_state(5)) button.draw(game, btn_x_off, btn_y_off(6), int(btn_width), int(btn_height), translate.translate("QUIT"), 20, (25,25,25), (255,255,255), lambda x: game.exit()) # button.draw(game, btn_x_off, btn_y_off(7), int(btn_width), int(btn_height), "Afsluiten", 20, (25,25,25), (255,255,255), game.exit())
mit
8,542,439,063,819,060,000
53.97619
193
0.623917
false
zhujzhuo/openstack-trove
trove/tests/unittests/cluster/test_cluster_controller.py
1
14001
# Copyright 2014 eBay Software Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import jsonschema from mock import MagicMock from mock import Mock from mock import patch from testtools import TestCase from testtools.matchers import Is, Equals from trove.cluster import models from trove.cluster.models import Cluster from trove.cluster.service import ClusterController from trove.cluster import views import trove.common.cfg as cfg from trove.common import exception from trove.common.strategies.cluster import strategy from trove.common import utils from trove.datastore import models as datastore_models class TestClusterController(TestCase): def setUp(self): super(TestClusterController, self).setUp() self.controller = ClusterController() self.cluster = { "cluster": { "name": "products", "datastore": { "type": "mongodb", "version": "2.4.10" }, "instances": [ { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, } ] } } self.add_shard = { "add_shard": {} } def test_get_schema_create(self): schema = self.controller.get_schema('create', self.cluster) self.assertIsNotNone(schema) self.assertTrue('cluster' in schema['properties']) self.assertTrue('cluster') def test_get_schema_action_add_shard(self): schema = self.controller.get_schema('add_shard', self.add_shard) self.assertIsNotNone(schema) self.assertTrue('add_shard' in schema['properties']) def test_validate_create(self): body = self.cluster schema = self.controller.get_schema('create', body) validator = jsonschema.Draft4Validator(schema) self.assertTrue(validator.is_valid(body)) def test_validate_add_shard(self): body = self.add_shard schema = self.controller.get_schema('add_shard', body) validator = jsonschema.Draft4Validator(schema) self.assertTrue(validator.is_valid(body)) def test_validate_create_blankname(self): body = self.cluster body['cluster']['name'] = " " schema = self.controller.get_schema('create', body) validator = jsonschema.Draft4Validator(schema) self.assertFalse(validator.is_valid(body)) errors = sorted(validator.iter_errors(body), key=lambda e: e.path) self.assertThat(len(errors), Is(1)) self.assertThat(errors[0].message, Equals("' ' does not match '^.*[0-9a-zA-Z]+.*$'")) def test_validate_create_blank_datastore(self): body = self.cluster body['cluster']['datastore']['type'] = "" schema = self.controller.get_schema('create', body) validator = jsonschema.Draft4Validator(schema) self.assertFalse(validator.is_valid(body)) errors = sorted(validator.iter_errors(body), key=lambda e: e.path) error_messages = [error.message for error in errors] error_paths = [error.path.pop() for error in errors] self.assertThat(len(errors), Is(2)) self.assertIn("'' is too short", error_messages) self.assertIn("'' does not match '^.*[0-9a-zA-Z]+.*$'", error_messages) self.assertIn("type", error_paths) @patch.object(Cluster, 'create') @patch.object(datastore_models, 'get_datastore_version') def test_create_clusters_disabled(self, mock_get_datastore_version, mock_cluster_create): body = self.cluster tenant_id = Mock() context = Mock() req = Mock() req.environ = MagicMock() req.environ.get = Mock(return_value=context) datastore_version = Mock() datastore_version.manager = 'mysql' mock_get_datastore_version.return_value = (Mock(), datastore_version) self.assertRaises(exception.ClusterDatastoreNotSupported, self.controller.create, req, body, tenant_id) @patch.object(Cluster, 'create') @patch.object(utils, 'get_id_from_href') @patch.object(datastore_models, 'get_datastore_version') def test_create_clusters(self, mock_get_datastore_version, mock_id_from_href, mock_cluster_create): body = self.cluster tenant_id = Mock() context = Mock() req = Mock() req.environ = Mock() req.environ.__getitem__ = Mock(return_value=context) datastore_version = Mock() datastore_version.manager = 'mongodb' datastore = Mock() mock_get_datastore_version.return_value = (datastore, datastore_version) instances = [{'volume_size': 1, 'flavor_id': '1234'}, {'volume_size': 1, 'flavor_id': '1234'}, {'volume_size': 1, 'flavor_id': '1234'}, {'volume_size': 1, 'flavor_id': '1234'}, {'volume_size': 1, 'flavor_id': '1234'}] mock_id_from_href.return_value = '1234' mock_cluster = Mock() mock_cluster.instances = [] mock_cluster.instances_without_server = [] mock_cluster.datastore_version.manager = 'mongodb' mock_cluster_create.return_value = mock_cluster self.controller.create(req, body, tenant_id) mock_cluster_create.assert_called_with(context, 'products', datastore, datastore_version, instances) @patch.object(Cluster, 'load') def test_show_cluster(self, mock_cluster_load): tenant_id = Mock() id = Mock() context = Mock() req = Mock() req.environ = Mock() req.environ.__getitem__ = Mock(return_value=context) mock_cluster = Mock() mock_cluster.instances = [] mock_cluster.instances_without_server = [] mock_cluster.datastore_version.manager = 'mongodb' mock_cluster_load.return_value = mock_cluster self.controller.show(req, tenant_id, id) mock_cluster_load.assert_called_with(context, id) @patch.object(Cluster, 'load') @patch.object(Cluster, 'load_instance') def test_show_cluster_instance(self, mock_cluster_load_instance, mock_cluster_load): tenant_id = Mock() cluster_id = Mock() instance_id = Mock() context = Mock() req = Mock() req.environ = Mock() req.environ.__getitem__ = Mock(return_value=context) cluster = Mock() mock_cluster_load.return_value = cluster cluster.id = cluster_id self.controller.show_instance(req, tenant_id, cluster_id, instance_id) mock_cluster_load_instance.assert_called_with(context, cluster.id, instance_id) @patch.object(Cluster, 'load') def test_delete_cluster(self, mock_cluster_load): tenant_id = Mock() cluster_id = Mock() req = MagicMock() cluster = Mock() mock_cluster_load.return_value = cluster self.controller.delete(req, tenant_id, cluster_id) cluster.delete.assert_called class TestClusterControllerWithStrategy(TestCase): def setUp(self): super(TestClusterControllerWithStrategy, self).setUp() self.controller = ClusterController() self.cluster = { "cluster": { "name": "products", "datastore": { "type": "mongodb", "version": "2.4.10" }, "instances": [ { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, }, { "flavorRef": "7", "volume": { "size": 1 }, } ] } } def tearDown(self): super(TestClusterControllerWithStrategy, self).tearDown() cfg.CONF.clear_override('cluster_support', group='mongodb') cfg.CONF.clear_override('api_strategy', group='mongodb') @patch.object(datastore_models, 'get_datastore_version') @patch.object(models.Cluster, 'create') def test_create_clusters_disabled(self, mock_cluster_create, mock_get_datastore_version): cfg.CONF.set_override('cluster_support', False, group='mongodb') body = self.cluster tenant_id = Mock() context = Mock() req = Mock() req.environ = MagicMock() req.environ.get = Mock(return_value=context) datastore_version = Mock() datastore_version.manager = 'mongodb' mock_get_datastore_version.return_value = (Mock(), datastore_version) self.assertRaises(exception.TroveError, self.controller.create, req, body, tenant_id) @patch.object(views.ClusterView, 'data', return_value={}) @patch.object(datastore_models, 'get_datastore_version') @patch.object(models.Cluster, 'create') def test_create_clusters_enabled(self, mock_cluster_create, mock_get_datastore_version, mock_cluster_view_data): cfg.CONF.set_override('cluster_support', True, group='mongodb') body = self.cluster tenant_id = Mock() context = Mock() req = Mock() req.environ = MagicMock() req.environ.get = Mock(return_value=context) datastore_version = Mock() datastore_version.manager = 'mongodb' mock_get_datastore_version.return_value = (Mock(), datastore_version) mock_cluster = Mock() mock_cluster.datastore_version.manager = 'mongodb' mock_cluster_create.return_value = mock_cluster self.controller.create(req, body, tenant_id) @patch.object(models.Cluster, 'load') def test_controller_action_no_strategy(self, mock_cluster_load): body = {'do_stuff2': {}} tenant_id = Mock() context = Mock() id = Mock() req = Mock() req.environ = MagicMock() req.environ.get = Mock(return_value=context) cluster = Mock() cluster.datastore_version.manager = 'mongodb' mock_cluster_load.return_value = cluster self.assertRaises(exception.TroveError, self.controller.action, req, body, tenant_id, id) @patch.object(strategy, 'load_api_strategy') @patch.object(models.Cluster, 'load') def test_controller_action_found(self, mock_cluster_load, mock_cluster_api_strategy): body = {'do_stuff': {}} tenant_id = Mock() context = Mock() id = Mock() req = Mock() req.environ = MagicMock() req.environ.get = Mock(return_value=context) cluster = Mock() cluster.datastore_version.manager = 'mongodb' mock_cluster_load.return_value = cluster strat = Mock() do_stuff_func = Mock() strat.cluster_controller_actions = \ {'do_stuff': do_stuff_func} mock_cluster_api_strategy.return_value = strat self.controller.action(req, body, tenant_id, id) self.assertEqual(1, do_stuff_func.call_count)
apache-2.0
4,534,978,132,679,366,700
35.178295
79
0.512892
false
kubeflow/kfp-tekton-backend
components/aws/sagemaker/workteam/src/workteam.py
1
2275
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from common import _utils def create_parser(): parser = argparse.ArgumentParser(description='SageMaker Hyperparameter Tuning Job') _utils.add_default_client_arguments(parser) parser.add_argument('--team_name', type=str, required=True, help='The name of your work team.') parser.add_argument('--description', type=str, required=True, help='A description of the work team.') parser.add_argument('--user_pool', type=str, required=False, help='An identifier for a user pool. The user pool must be in the same region as the service that you are calling.', default='') parser.add_argument('--user_groups', type=str, required=False, help='A list of identifiers for user groups separated by commas.', default='') parser.add_argument('--client_id', type=str, required=False, help='An identifier for an application client. You must create the app client ID using Amazon Cognito.', default='') parser.add_argument('--sns_topic', type=str, required=False, help='The ARN for the SNS topic to which notifications should be published.', default='') parser.add_argument('--tags', type=_utils.yaml_or_json_str, required=False, help='An array of key-value pairs, to categorize AWS resources.', default={}) return parser def main(argv=None): parser = create_parser() args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) client = _utils.get_sagemaker_client(args.region, args.endpoint_url) logging.info('Submitting a create workteam request to SageMaker...') workteam_arn = _utils.create_workteam(client, vars(args)) logging.info('Workteam created.') with open('/tmp/workteam_arn.txt', 'w') as f: f.write(workteam_arn) if __name__== "__main__": main()
apache-2.0
-4,135,020,320,136,825,300
46.395833
191
0.736703
false
spaceninja/mltshp
models/conversation.py
1
2988
from lib.flyingcow import Model, Property from datetime import datetime from tornado.options import options import comment import sharedfile class Conversation(Model): user_id = Property() sharedfile_id= Property() muted = Property(default=0) created_at = Property() updated_at = Property() def save(self, *args, **kwargs): if options.readonly: self.add_error('_', 'Site is read-only.') return False self._set_dates() return super(Conversation, self).save(*args, **kwargs) def _set_dates(self): """ Sets the created_at and updated_at fields. This should be something a subclass of Property that takes care of this during the save cycle. """ if self.id is None or self.created_at is None: self.created_at = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") self.updated_at = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") def mute(self): self.muted = 1 self.save() def sharedfile(self): """ Associates sharedfile. """ return sharedfile.Sharedfile.get("id=%s", self.sharedfile_id) def relevant_comments(self): """ Returns comments to display for the user's conversation. Returns all comments that aren't deleted. """ return comment.Comment.where('sharedfile_id = %s and deleted = 0', self.sharedfile_id) @classmethod def for_user(self, user_id, type='all', page=1, per_page=10): limit_start = (page-1) * per_page filtering_by = "" if type == 'myfiles': filtering_by = "AND sharedfile.user_id = conversation.user_id" elif type == 'mycomments': filtering_by = "AND sharedfile.user_id != conversation.user_id" select = """ SELECT conversation.* from conversation, sharedfile WHERE conversation.user_id = %s AND conversation.muted = 0 AND sharedfile.id = conversation.sharedfile_id %s ORDER BY sharedfile.activity_at desc limit %s, %s """ % (user_id, filtering_by, limit_start, per_page) conversations = self.object_query(select) return conversations @classmethod def for_user_count(self, user_id, type='all'): filtering_by = '' if type == 'myfiles': filtering_by = "AND sharedfile.user_id = conversation.user_id" elif type == 'mycomments': filtering_by = "AND sharedfile.user_id != conversation.user_id" select = """ SELECT count(conversation.id) as count from conversation, sharedfile WHERE conversation.user_id = %s AND sharedfile.id = conversation.sharedfile_id AND conversation.muted = 0 %s """ % (user_id, filtering_by) result = self.query(select) return result[0]['count']
mpl-2.0
5,072,496,939,587,368,000
34.152941
94
0.583668
false
n-west/gnuradio
gr-uhd/apps/uhd_app.py
1
15414
#!/usr/bin/env python # # Copyright 2015-2016 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # """ USRP Helper Module: Common tasks for uhd-based apps. """ from __future__ import print_function import sys import time import argparse from gnuradio import eng_arg from gnuradio import uhd from gnuradio import gr from gnuradio import gru COMMAND_DELAY = .2 # Seconds COMPACT_TPL = "{mb_id} ({mb_serial}), {db_subdev} ({subdev}, {ant}{db_serial})" LONG_TPL = """{prefix} Motherboard: {mb_id} ({mb_serial}) {prefix} Daughterboard: {db_subdev}{db_serial} {prefix} Subdev: {subdev} {prefix} Antenna: {ant} """ class UHDApp(object): " Base class for simple UHD-based applications " def __init__(self, prefix=None, args=None): self.prefix = prefix self.args = args self.verbose = args.verbose or 0 if self.args.sync == 'auto' and len(self.args.channels) > 1: self.args.sync = 'pps' self.antenna = None self.gain_range = None self.samp_rate = None self.has_lo_sensor = None self.async_msgq = None self.async_src = None self.async_rcv = None self.tr = None self.gain = None self.freq = None self.channels = None self.cpu_format = None def vprint(self, *args): """ Print 'string' with 'prefix' prepended if self.verbose is True """ if self.verbose: print("[{prefix}]".format(prefix=self.prefix), *args) def get_usrp_info_string(self, compact=False, tx_or_rx='rx', chan=0, mboard=0, ): """ Return a nice textual description of the USRP we're using. """ assert tx_or_rx == 'rx' or tx_or_rx == 'tx' try: info_pp = {} if self.prefix is None: info_pp['prefix'] = "" else: info_pp['prefix'] = "[{prefix}] ".format(prefix=self.prefix) usrp_info = self.usrp.get_usrp_info(chan) info_pp['mb_id'] = usrp_info['mboard_id'] info_pp['mb_serial'] = usrp_info['mboard_serial'] if info_pp['mb_serial'] == "": info_pp['mb_serial'] = "no serial" info_pp['db_subdev'] = usrp_info["{xx}_subdev_name".format(xx=tx_or_rx)] info_pp['db_serial'] = ", " + usrp_info["{xx}_serial".format(xx=tx_or_rx)] if info_pp['db_serial'] == "": info_pp['db_serial'] = "no serial" info_pp['subdev'] = self.usrp.get_subdev_spec(mboard) info_pp['ant'] = self.usrp.get_antenna(chan) if info_pp['mb_id'] in ("B200", "B210", "E310"): # In this case, this is meaningless info_pp['db_serial'] = "" tpl = LONG_TPL if compact: tpl = COMPACT_TPL return tpl.format(**info_pp) except: return "Can't establish USRP info." def normalize_antenna_sel(self, args): """ Make sure the --antenna option matches the --channels option. """ if args.antenna is None: return None antennas = [x.strip() for x in args.antenna.split(",")] if len(antennas) != 1 and len(antennas) != len(args.channels): raise ValueError("Invalid antenna setting for {n} channels: {a}".format( n=len(self.channels), a=args.antenna, )) if len(antennas) == 1: antennas = [antennas[0],] * len(args.channels) return antennas def normalize_subdev_sel(self, spec): """ """ if spec is None: return None specs = [x.strip() for x in spec.split(",")] if len(specs) == 1: return spec elif len(specs) != self.usrp.get_num_mboards(): raise ValueError("Invalid subdev setting for {n} mboards: {a}".format( n=len(self.usrp.get_num_mboards()), a=spec )) return specs def async_callback(self, msg): """ Call this when USRP async metadata needs printing. """ metadata = self.async_src.msg_to_async_metadata_t(msg) print("[{prefix}] Channel: {chan} Time: {t} Event: {e}".format( prefix=self.prefix, chan=metadata.channel, t=metadata.time_spec.get_real_secs(), e=metadata.event_code, )) def setup_usrp(self, ctor, args, cpu_format='fc32'): """ Instantiate a USRP object; takes care of all kinds of corner cases and settings. Pop it and some args onto the class that calls this. """ self.channels = args.channels self.cpu_format = cpu_format # Create a UHD device object: self.usrp = ctor( device_addr=args.args, stream_args=uhd.stream_args( cpu_format, args.otw_format, args=args.stream_args, channels=self.channels, ) ) # Set the subdevice spec: args.spec = self.normalize_subdev_sel(args.spec) if args.spec: for mb_idx in xrange(self.usrp.get_num_mboards()): if isinstance(args.spec, list): self.usrp.set_subdev_spec(args.spec[mb_idx], mb_idx) else: self.usrp.set_subdev_spec(args.spec, mb_idx) # Set the clock and/or time source: if args.clock_source is not None: for mb_idx in xrange(self.usrp.get_num_mboards()): self.usrp.set_clock_source(args.clock_source, mb_idx) if args.time_source is not None: for mb_idx in xrange(self.usrp.get_num_mboards()): self.usrp.set_time_source(args.time_source, mb_idx) # Sampling rate: self.usrp.set_samp_rate(args.samp_rate) self.samp_rate = self.usrp.get_samp_rate() self.vprint("Using sampling rate: {rate}".format(rate=self.samp_rate)) # Set the antenna: self.antenna = self.normalize_antenna_sel(args) if self.antenna is not None: for i, chan in enumerate(self.channels): if not self.antenna[i] in self.usrp.get_antennas(i): self.vprint("[ERROR] {} is not a valid antenna name for this USRP device!".format(self.antenna[i])) exit(1) self.usrp.set_antenna(self.antenna[i], i) self.vprint("[{prefix}] Channel {chan}: Using antenna {ant}.".format( prefix=self.prefix, chan=chan, ant=self.usrp.get_antenna(i) )) self.antenna = self.usrp.get_antenna(0) # Set receive daughterboard gain: self.set_gain(args.gain) self.gain_range = self.usrp.get_gain_range(0) # Set frequency (tune request takes lo_offset): if hasattr(args, 'lo_offset') and args.lo_offset is not None: treq = uhd.tune_request(args.freq, args.lo_offset) else: treq = uhd.tune_request(args.freq) self.has_lo_sensor = 'lo_locked' in self.usrp.get_sensor_names() # Make sure tuning is synched: command_time_set = False if len(self.channels) > 1: if args.sync == 'pps': self.usrp.set_time_unknown_pps(uhd.time_spec()) cmd_time = self.usrp.get_time_now() + uhd.time_spec(COMMAND_DELAY) try: for mb_idx in xrange(self.usrp.get_num_mboards()): self.usrp.set_command_time(cmd_time, mb_idx) command_time_set = True except RuntimeError: sys.stderr.write('[{prefix}] [WARNING] Failed to set command times.\n'.format(prefix=self.prefix)) for i, chan in enumerate(self.channels): self.tr = self.usrp.set_center_freq(treq, i) if self.tr == None: sys.stderr.write('[{prefix}] [ERROR] Failed to set center frequency on channel {chan}\n'.format( prefix=self.prefix, chan=chan )) exit(1) if command_time_set: for mb_idx in xrange(self.usrp.get_num_mboards()): self.usrp.clear_command_time(mb_idx) self.vprint("Syncing channels...".format(prefix=self.prefix)) time.sleep(COMMAND_DELAY) self.freq = self.usrp.get_center_freq(0) if args.show_async_msg: self.async_msgq = gr.msg_queue(0) self.async_src = uhd.amsg_source("", self.async_msgq) self.async_rcv = gru.msgq_runner(self.async_msgq, self.async_callback) def set_gain(self, gain): """ Safe gain-setter. Catches some special cases: - If gain is None, set to mid-point in dB. - If the USRP is multi-channel, set it on all channels. """ if gain is None: if self.args.verbose: self.vprint("Defaulting to mid-point gains:".format(prefix=self.prefix)) for i, chan in enumerate(self.channels): self.usrp.set_normalized_gain(.5, i) if self.args.verbose: self.vprint("Channel {chan} gain: {g} dB".format( prefix=self.prefix, chan=chan, g=self.usrp.get_gain(i) )) else: self.vprint("Setting gain to {g} dB.".format(g=gain)) for chan in range( len( self.channels ) ): self.usrp.set_gain(gain, chan) self.gain = self.usrp.get_gain(0) def set_freq(self, freq, skip_sync=False): """ Safely tune all channels to freq. """ self.vprint("Tuning all channels to {freq} MHz.".format(freq=freq/1e6)) # Set frequency (tune request takes lo_offset): if hasattr(self.args, 'lo_offset') and self.args.lo_offset is not None: treq = uhd.tune_request(freq, self.args.lo_offset) else: treq = uhd.tune_request(freq) # Make sure tuning is synched: command_time_set = False if len(self.channels) > 1 and not skip_sync: cmd_time = self.usrp.get_time_now() + uhd.time_spec(COMMAND_DELAY) try: for mb_idx in xrange(self.usrp.get_num_mboards()): self.usrp.set_command_time(cmd_time, mb_idx) command_time_set = True except RuntimeError: sys.stderr.write('[{prefix}] [WARNING] Failed to set command times.\n'.format(prefix=self.prefix)) for i, chan in enumerate(self.channels ): self.tr = self.usrp.set_center_freq(treq, i) if self.tr == None: sys.stderr.write('[{prefix}] [ERROR] Failed to set center frequency on channel {chan}\n'.format( prefix=self.prefix, chan=chan )) exit(1) if command_time_set: for mb_idx in xrange(self.usrp.get_num_mboards()): self.usrp.clear_command_time(mb_idx) self.vprint("Syncing channels...".format(prefix=self.prefix)) time.sleep(COMMAND_DELAY) self.freq = self.usrp.get_center_freq(0) self.vprint("First channel has freq: {freq} MHz.".format(freq=self.freq/1e6)) @staticmethod def setup_argparser( parser=None, description='USRP App', allow_mimo=True, tx_or_rx="", skip_freq=False, ): """ Create or amend an argument parser with typical USRP options. """ def cslist(string): """ For ArgParser: Turn a comma separated list into an actual list. """ try: return [int(x.strip()) for x in string.split(",")] except: raise argparse.ArgumentTypeError("Not a comma-separated list: {string}".format(string=string)) if parser is None: parser = argparse.ArgumentParser( description=description, ) tx_or_rx = tx_or_rx.strip() + " " group = parser.add_argument_group('USRP Arguments') group.add_argument("-a", "--args", default="", help="UHD device address args") group.add_argument("--spec", help="Subdevice(s) of UHD device where appropriate. Use a comma-separated list to set different boards to different specs.") group.add_argument("-A", "--antenna", help="Select {xx}antenna(s) where appropriate".format(xx=tx_or_rx)) group.add_argument("-s", "--samp-rate", type=eng_arg.eng_float, default=1e6, help="Sample rate") group.add_argument("-g", "--gain", type=eng_arg.eng_float, default=None, help="Gain (default is midpoint)") group.add_argument("--gain-type", choices=('db', 'normalized'), default='db', help="Gain Type (applies to -g)") if not skip_freq: group.add_argument("-f", "--freq", type=eng_arg.eng_float, default=None, required=True, help="Set carrier frequency to FREQ", metavar="FREQ") group.add_argument("--lo-offset", type=eng_arg.eng_float, default=0.0, help="Set daughterboard LO offset to OFFSET [default=hw default]") if allow_mimo: group.add_argument("-c", "--channels", default=[0,], type=cslist, help="Select {xx} Channels".format(xx=tx_or_rx)) group.add_argument("--otw-format", choices=['sc16', 'sc12', 'sc8'], default='sc16', help="Choose over-the-wire data format") group.add_argument("--stream-args", default="", help="Set additional stream arguments") group.add_argument("-m", "--amplitude", type=eng_arg.eng_float, default=0.15, help="Set output amplitude to AMPL (0.0-1.0)", metavar="AMPL") group.add_argument("-v", "--verbose", action="count", help="Use verbose console output") group.add_argument("--show-async-msg", action="store_true", help="Show asynchronous message notifications from UHD") group.add_argument("--sync", choices=('default', 'pps', 'auto'), default='auto', help="Set to 'pps' to sync devices to PPS") group.add_argument("--clock-source", help="Set the clock source; typically 'internal', 'external' or 'gpsdo'") group.add_argument("--time-source", help="Set the time source") return parser
gpl-3.0
-5,175,482,330,298,451,000
42.91453
161
0.557675
false
Sumith1896/sympy
sympy/solvers/pde.py
1
35549
""" This module contains pdsolve() and different helper functions that it uses. It is heavily inspired by the ode module and hence the basic infrastructure remains the same. **Functions in this module** These are the user functions in this module: - pdsolve() - Solves PDE's - classify_pde() - Classifies PDEs into possible hints for dsolve(). - pde_separate() - Separate variables in partial differential equation either by additive or multiplicative separation approach. These are the helper functions in this module: - pde_separate_add() - Helper function for searching additive separable solutions. - pde_separate_mul() - Helper function for searching multiplicative separable solutions. **Currently implemented solver methods** The following methods are implemented for solving partial differential equations. See the docstrings of the various pde_hint() functions for more information on each (run help(pde)): - 1st order linear homogeneous partial differential equations with constant coefficients. - 1st order linear general partial differential equations with constant coefficients. - 1st order linear partial differential equations with variable coefficients. """ from __future__ import print_function, division from sympy.simplify import simplify from sympy.core import Add, C, S from sympy.core.compatibility import (reduce, combinations_with_replacement, is_sequence, range) from sympy.core.function import Function, expand, AppliedUndef, Subs from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, symbols from sympy.functions import exp from sympy.utilities.iterables import has_dups from sympy.solvers.deutils import _preprocess, ode_order, _desolve from sympy.solvers.solvers import solve from sympy.simplify.simplify import collect import operator allhints = ( "1st_linear_constant_coeff_homogeneous", "1st_linear_constant_coeff", "1st_linear_constant_coeff_Integral", "1st_linear_variable_coeff" ) def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs): """ Solves any (supported) kind of partial differential equation. **Usage** pdsolve(eq, f(x,y), hint) -> Solve partial differential equation eq for function f(x,y), using method hint. **Details** ``eq`` can be any supported partial differential equation (see the pde docstring for supported methods). This can either be an Equality, or an expression, which is assumed to be equal to 0. ``f(x,y)`` is a function of two variables whose derivatives in that variable make up the partial differential equation. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want pdsolve to use. Use classify_pde(eq, f(x,y)) to get all of the possible hints for a PDE. The default hint, 'default', will use whatever hint is returned first by classify_pde(). See Hints below for more options that you can use for hint. ``solvefun`` is the convention used for arbitrary functions returned by the PDE solver. If not set by the user, it is set by default to be F. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to pdsolve(): "default": This uses whatever hint is returned first by classify_pde(). This is the default argument to pdsolve(). "all": To make pdsolve apply all relevant classification hints, use pdsolve(PDE, func, hint="all"). This will return a dictionary of hint:solution terms. If a hint causes pdsolve to raise the NotImplementedError, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - order: The order of the PDE. See also ode_order() in deutils.py - default: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by classify_pde(). "all_Integral": This is the same as "all", except if a hint also has a corresponding "_Integral" hint, it only returns the "_Integral" hint. This is useful if "all" causes pdsolve() to hang because of a difficult or impossible integral. This meta-hint will also be much faster than "all", because integrate() is an expensive routine. See also the classify_pde() docstring for more info on hints, and the pde docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x, y # x and y are the independent variables >>> f = Function("f")(x, y) # f is a function of x and y >>> # fx will be the partial derivative of f with respect to x >>> fx = Derivative(f, x) >>> # fy will be the partial derivative of f with respect to y >>> fy = Derivative(f, y) - See test_pde.py for many tests, which serves also as a set of examples for how to use pdsolve(). - pdsolve always returns an Equality class (except for the case when the hint is "all" or "all_Integral"). Note that it is not possible to get an explicit solution for f(x, y) as in the case of ODE's - Do help(pde.pde_hintname) to get help more information on a specific hint Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, diff, Eq >>> from sympy.abc import x, y >>> f = Function('f') >>> u = f(x, y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u))) >>> pdsolve(eq) Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13)) """ given_hint = hint # hint given by the user. if not solvefun: solvefun = Function('F') # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, type='pde', **kwargs) eq = hints.pop('eq', False) all_ = hints.pop('all', False) if all_: # TODO : 'best' hint should be implemented when adequate # number of hints are added. pdedict = {} failed_hints = {} gethints = classify_pde(eq, dict=True) pdedict.update({'order': gethints['order'], 'default': gethints['default']}) for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint]['func'], hints[hint]['order'], hints[hint][hint], solvefun) except NotImplementedError as detail: failed_hints[hint] = detail else: pdedict[hint] = rv pdedict.update(failed_hints) return pdedict else: return _helper_simplify(eq, hints['hint'], hints['func'], hints['order'], hints[hints['hint']], solvefun) def _helper_simplify(eq, hint, func, order, match, solvefun): """Helper function of pdsolve that calls the respective pde functions to solve for the partial differential equations. This minimises the computation in calling _desolve multiple times. """ if hint.endswith("_Integral"): solvefunc = globals()[ "pde_" + hint[:-len("_Integral")]] else: solvefunc = globals()["pde_" + hint] return _handle_Integral(solvefunc(eq, func, order, match, solvefun), func, order, hint) def _handle_Integral(expr, func, order, hint): r""" Converts a solution with integrals in it into an actual solution. Simplifies the integral mainly using doit() """ if hint.endswith("_Integral"): return expr elif hint == "1st_linear_constant_coeff": return simplify(expr.doit()) else: return expr def classify_pde(eq, func=None, dict=False, **kwargs): """ Returns a tuple of possible pdsolve() classifications for a PDE. The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, classifications near the beginning of the list will produce better solutions faster than those near the end, though there are always exceptions. To make pdsolve use a different classification, use pdsolve(PDE, func, hint=<classification>). See also the pdsolve() docstring for different meta-hints you can use. If ``dict`` is true, classify_pde() will return a dictionary of hint:match expression terms. This is intended for internal use by pdsolve(). Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by doing help(pde.pde_hintname), where hintname is the name of the hint without "_Integral". See sympy.pde.allhints or the sympy.pde docstring for a list of all supported hints that can be returned from classify_pde. Examples ======== >>> from sympy.solvers.pde import classify_pde >>> from sympy import Function, diff, Eq >>> from sympy.abc import x, y >>> f = Function('f') >>> u = f(x, y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u))) >>> classify_pde(eq) ('1st_linear_constant_coeff_homogeneous',) """ prep = kwargs.pop('prep', True) if func and len(func.args) != 2: raise NotImplementedError("Right now only partial " "differential equations of two variables are supported") if prep or func is None: prep, func_ = _preprocess(eq, func) if func is None: func = func_ if isinstance(eq, Equality): if eq.rhs != 0: return classify_pde(eq.lhs - eq.rhs, func) eq = eq.lhs f = func.func x = func.args[0] y = func.args[1] fx = f(x,y).diff(x) fy = f(x,y).diff(y) # TODO : For now pde.py uses support offered by the ode_order function # to find the order with respect to a multi-variable function. An # improvement could be to classify the order of the PDE on the basis of # individual variables. order = ode_order(eq, f(x,y)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {'order': order} if not order: if dict: matching_hints["default"] = None return matching_hints else: return () eq = expand(eq) a = Wild('a', exclude = [f(x,y)]) b = Wild('b', exclude = [f(x,y), fx, fy, x, y]) c = Wild('c', exclude = [f(x,y), fx, fy, x, y]) d = Wild('d', exclude = [f(x,y), fx, fy, x, y]) e = Wild('e', exclude = [f(x,y), fx, fy]) n = Wild('n', exclude = [x, y]) # Try removing the smallest power of f(x,y) # from the highest partial derivatives of f(x,y) reduced_eq = None if eq.is_Add: var = set(combinations_with_replacement((x,y), order)) dummyvar = var.copy() power = None for i in var: coeff = eq.coeff(f(x,y).diff(*i)) if coeff != 1: match = coeff.match(a*f(x,y)**n) if match and match[a]: power = match[n] dummyvar.remove(i) break dummyvar.remove(i) for i in dummyvar: coeff = eq.coeff(f(x,y).diff(*i)) if coeff != 1: match = coeff.match(a*f(x,y)**n) if match and match[a] and match[n] < power: power = match[n] if power: den = f(x,y)**power reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: reduced_eq = collect(reduced_eq, f(x, y)) r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) if r: if not r[e]: ## Linear first-order homogeneous partial-differential ## equation with constant coefficients r.update({'b': b, 'c': c, 'd': d}) matching_hints["1st_linear_constant_coeff_homogeneous"] = r else: if r[b]**2 + r[c]**2 != 0: ## Linear first-order general partial-differential ## equation with constant coefficients r.update({'b': b, 'c': c, 'd': d, 'e': e}) matching_hints["1st_linear_constant_coeff"] = r matching_hints[ "1st_linear_constant_coeff_Integral"] = r else: b = Wild('b', exclude=[f(x, y), fx, fy]) c = Wild('c', exclude=[f(x, y), fx, fy]) d = Wild('d', exclude=[f(x, y), fx, fy]) r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e) if r: r.update({'b': b, 'c': c, 'd': d, 'e': e}) matching_hints["1st_linear_variable_coeff"] = r # Order keys based on allhints. retlist = [] for i in allhints: if i in matching_hints: retlist.append(i) if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for pdsolve(). Use an ordered dict in Py 3. matching_hints["default"] = None matching_hints["ordered_hints"] = tuple(retlist) for i in allhints: if i in matching_hints: matching_hints["default"] = i break return matching_hints else: return tuple(retlist) def checkpdesol(pde, sol, func=None, solve_for_func=True): """ Checks if the given solution satisfies the partial differential equation. pde is the partial differential equation which can be given in the form of an equation or an expression. sol is the solution for which the pde is to be checked. This can also be given in an equation or an expression form. If the function is not provided, the helper function _preprocess from deutils is used to identify the function. If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution. The following methods are currently being implemented to check if the solution satisfies the PDE: 1. Directly substitute the solution in the PDE and check. If the solution hasn't been solved for f, then it will solve for f provided solve_for_func hasn't been set to False. If the solution satisfies the PDE, then a tuple (True, 0) is returned. Otherwise a tuple (False, expr) where expr is the value obtained after substituting the solution in the PDE. However if a known solution returns False, it may be due to the inability of doit() to simplify it to zero. Examples ======== >>> from sympy import Function, symbols, diff >>> from sympy.solvers.pde import checkpdesol, pdsolve >>> x, y = symbols('x y') >>> f = Function('f') >>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y) >>> sol = pdsolve(eq) >>> assert checkpdesol(eq, sol)[0] >>> eq = x*f(x,y) + f(x,y).diff(x) >>> checkpdesol(eq, sol) (False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), (_xi_1,), (4*x - 3*y,)))*exp(-6*x/25 - 8*y/25)) """ # Converting the pde into an equation if not isinstance(pde, Equality): pde = Eq(pde, 0) # If no function is given, try finding the function present. if func is None: try: _, func = _preprocess(pde.lhs) except ValueError: funcs = [s.atoms(AppliedUndef) for s in ( sol if is_sequence(sol, set) else [sol])] funcs = set().union(funcs) if len(funcs) != 1: raise ValueError( 'must pass func arg to checkpdesol for this case.') func = funcs.pop() # If the given solution is in the form of a list or a set # then return a list or set of tuples. if is_sequence(sol, set): return type(sol)(map(lambda i: checkpdesol(pde, i, solve_for_func=solve_for_func), sol)) # Convert solution into an equation if not isinstance(sol, Equality): sol = Eq(func, sol) # Try solving for the function if solve_for_func and not (sol.lhs == func and not sol.rhs.has(func)) and not \ (sol.rhs == func and not sol.lhs.has(func)): try: solved = solve(sol, func) if not solved: raise NotImplementedError except NotImplementedError: pass else: if len(solved) == 1: result = checkpdesol(pde, Eq(func, solved[0]), order=order, solve_for_func=False) else: result = checkpdesol(pde, [Eq(func, t) for t in solved], order=order, solve_for_func=False) # The first method includes direct substitution of the solution in # the PDE and simplifying. pde = pde.lhs - pde.rhs if sol.lhs == func: s = pde.subs(func, sol.rhs).doit() elif sol.rhs == func: s = pde.subs(func, sol.lhs).doit() if s: ss = simplify(s) if ss: return False, ss else: return True, 0 else: return True, 0 def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun): r""" Solves a first order linear homogeneous partial differential equation with constant coefficients. The general form of this partial differential equation is .. math:: a \frac{df(x,y)}{dx} + b \frac{df(x,y)}{dy} + c f(x,y) = 0 where `a`, `b` and `c` are constants. The general solution is of the form:: >>> from sympy.solvers import pdsolve >>> from sympy.abc import x, y, a, b, c >>> from sympy import Function, pprint >>> f = Function('f') >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a*ux + b*uy + c*u >>> pprint(genform) d d a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) dx dy >>> pprint(pdsolve(genform)) -c*(a*x + b*y) --------------- 2 2 a + b f(x, y) = F(-a*y + b*x)*e Examples ======== >>> from sympy.solvers.pde import ( ... pde_1st_linear_constant_coeff_homogeneous) >>> from sympy import pdsolve >>> from sympy import Function, diff, pprint >>> from sympy.abc import x,y >>> f = Function('f') >>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)) Eq(f(x, y), F(x - y)*exp(-x/2 - y/2)) >>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))) x y - - - - 2 2 f(x, y) = F(x - y)*e References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ # TODO : For now homogeneous first order linear PDE's having # two variables are implemented. Once there is support for # solving systems of ODE's, this can be extended to n variables. f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y)) def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun): r""" Solves a first order linear partial differential equation with constant coefficients. The general form of this partial differential equation is .. math:: a \frac{df(x,y)}{dx} + b \frac{df(x,y)}{dy} + c f(x,y) = G(x,y) where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary function in `x` and `y`. The general solution of the PDE is:: >>> from sympy.solvers import pdsolve >>> from sympy.abc import x, y, a, b, c >>> from sympy import Function, pprint >>> f = Function('f') >>> G = Function('G') >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a*u + b*ux + c*uy - G(x,y) >>> pprint(genform) d d a*f(x, y) + b*--(f(x, y)) + c*--(f(x, y)) - G(x, y) dx dy >>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral')) // b*x + c*y \ || / | || | | || | a*xi | || | ------- | || | 2 2 | || | /b*xi + c*eta -b*eta + c*xi\ b + c | || | G|------------, -------------|*e d(xi)| || | | 2 2 2 2 | | || | \ b + c b + c / | || | | || / | || | f(x, y) = ||F(eta) + -------------------------------------------------------|* || 2 2 | \\ b + c / <BLANKLINE> \| || || || || || || || || -a*xi || -------|| 2 2|| b + c || e || || /|eta=-b*y + c*x, xi=b*x + c*y Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, diff, pprint, exp >>> from sympy.abc import x,y >>> f = Function('f') >>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y) >>> pdsolve(eq) Eq(f(x, y), (F(4*x + 2*y) + exp(x/2 + 4*y)/15)*exp(x/2 - y)) References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ # TODO : For now homogeneous first order linear PDE's having # two variables are implemented. Once there is support for # solving systems of ODE's, this can be extended to n variables. xi, eta = symbols("xi eta") f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] e = -match[match['e']] expterm = exp(-S(d)/(b**2 + c**2)*xi) functerm = solvefun(eta) solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y) # Integral should remain as it is in terms of xi, # doit() should be done in _handle_Integral. genterm = (1/S(b**2 + c**2))*C.Integral( (1/expterm*e).subs(solvedict), (xi, b*x + c*y)) return Eq(f(x,y), Subs(expterm*(functerm + genterm), (eta, xi), (c*x - b*y, b*x + c*y))) def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun): r""" Solves a first order linear partial differential equation with variable coefficients. The general form of this partial differential equation is .. math:: a(x, y) \frac{df(x, y)}{dx} + a(x, y) \frac{df(x, y)}{dy} + c(x, y) f(x, y) - G(x, y) where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary functions in `x` and `y`. This PDE is converted into an ODE by making the following transformation. 1] `\xi` as `x` 2] `\eta` as the constant in the solution to the differential equation `\frac{dy}{dx} = -\frac{b}{a}` Making the following substitutions reduces it to the linear ODE .. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - d(\xi, \eta) = 0 which can be solved using dsolve. The general form of this PDE is:: >>> from sympy.solvers.pde import pdsolve >>> from sympy.abc import x, y >>> from sympy import Function, pprint >>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']] >>> u = f(x,y) >>> ux = u.diff(x) >>> uy = u.diff(y) >>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y) >>> pprint(genform) d d -G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y)) dx dy Examples ======== >>> from sympy.solvers.pde import pdsolve >>> from sympy import Function, diff, pprint, exp >>> from sympy.abc import x,y >>> f = Function('f') >>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2 >>> pdsolve(eq) Eq(f(x, y), F(x*y)*exp(y**2/2) + 1) References ========== - Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp.7 """ from sympy.integrals.integrals import integrate from sympy.solvers.ode import dsolve xi, eta = symbols("xi eta") f = func.func x = func.args[0] y = func.args[1] b = match[match['b']] c = match[match['c']] d = match[match['d']] e = -match[match['e']] if not d: # To deal with cases like b*ux = e or c*uy = e if not (b and c): if c: try: tsol = integrate(e/c, y) except NotImplementedError: raise NotImplementedError("Unable to find a solution" " due to inability of integrate") else: return Eq(f(x,y), solvefun(x) + tsol) if b: try: tsol = integrate(e/b, x) except NotImplementedError: raise NotImplementedError("Unable to find a solution" " due to inability of integrate") else: return Eq(f(x,y), solvefun(y) + tsol) if not c: # To deal with cases when c is 0, a simpler method is used. # The PDE reduces to b*(u.diff(x)) + d*u = e, which is a linear ODE in x plode = f(x).diff(x)*b + d*f(x) - e sol = dsolve(plode, f(x)) syms = sol.free_symbols - plode.free_symbols - set([x, y]) rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y) return Eq(f(x, y), rhs) if not b: # To deal with cases when b is 0, a simpler method is used. # The PDE reduces to c*(u.diff(y)) + d*u = e, which is a linear ODE in y plode = f(y).diff(y)*c + d*f(y) - e sol = dsolve(plode, f(y)) syms = sol.free_symbols - plode.free_symbols - set([x, y]) rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x) return Eq(f(x, y), rhs) dummy = Function('d') h = (c/b).subs(y, dummy(x)) sol = dsolve(dummy(x).diff(x) - h, dummy(x)) if isinstance(sol, list): sol = sol[0] solsym = sol.free_symbols - h.free_symbols - set([x, y]) if len(solsym) == 1: solsym = solsym.pop() etat = (solve(sol, solsym)[0]).subs(dummy(x), y) ysub = solve(eta - etat, y)[0] deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub) final = (dsolve(deq, f(x), hint='1st_linear')).rhs if isinstance(final, list): final = final[0] finsyms = final.free_symbols - deq.free_symbols - set([x, y]) rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat) return Eq(f(x, y), rhs) else: raise NotImplementedError("Cannot solve the partial differential equation due" " to inability of constantsimp") def _simplify_variable_coeff(sol, syms, func, funcarg): r""" Helper function to replace constants by functions in 1st_linear_variable_coeff """ eta = Symbol("eta") if len(syms) == 1: sym = syms.pop() final = sol.subs(sym, func(funcarg)) else: fname = func.__name__ for key, sym in enumerate(syms): tempfun = Function(fname + str(key)) final = sol.subs(sym, func(funcarg)) return simplify(final.subs(eta, funcarg)) def pde_separate(eq, fun, sep, strategy='mul'): """Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the equation than the others. :param eq: Partial differential equation :param fun: Original function F(x, y, z) :param sep: List of separated functions [X(x), u(y, z)] :param strategy: Separation strategy. You can choose between additive separation ('add') and multiplicative separation ('mul') which is default. Examples ======== >>> from sympy import E, Eq, Function, pde_separate, Derivative as D >>> from sympy.abc import x, t >>> u, X, T = map(Function, 'uXT') >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add') [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] >>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2)) >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul') [Derivative(X(x), x, x)/X(x), Derivative(T(t), t, t)/T(t)] See Also ======== pde_separate_add, pde_separate_mul """ do_add = False if strategy == 'add': do_add = True elif strategy == 'mul': do_add = False else: assert ValueError('Unknown strategy: %s' % strategy) if isinstance(eq, Equality): if eq.rhs != 0: return pde_separate(Eq(eq.lhs - eq.rhs), fun, sep, strategy) if eq.rhs != 0: raise ValueError("Value should be 0") # Handle arguments orig_args = list(fun.args) subs_args = [] for s in sep: for j in range(0, len(s.args)): subs_args.append(s.args[j]) if do_add: functions = reduce(operator.add, sep) else: functions = reduce(operator.mul, sep) # Check whether variables match if len(subs_args) != len(orig_args): raise ValueError("Variable counts do not match") # Check for duplicate arguments like [X(x), u(x, y)] if has_dups(subs_args): raise ValueError("Duplicate substitution arguments detected") # Check whether the variables match if set(orig_args) != set(subs_args): raise ValueError("Arguments do not match") # Substitute original function with separated... result = eq.lhs.subs(fun, functions).doit() # Divide by terms when doing multiplicative separation if not do_add: eq = 0 for i in result.args: eq += i/functions result = eq svar = subs_args[0] dvar = subs_args[1:] return _separate(result, svar, dvar) def pde_separate_add(eq, fun, sep): """ Helper function for searching additive separable solutions. Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different arguments: `w(x, y, z) = X(x) + y(y, z)` Examples ======== >>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D >>> from sympy.abc import x, t >>> u, X, T = map(Function, 'uXT') >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t)) >>> pde_separate_add(eq, u(x, t), [X(x), T(t)]) [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)] """ return pde_separate(eq, fun, sep, strategy='add') def pde_separate_mul(eq, fun, sep): """ Helper function for searching multiplicative separable solutions. Consider an equation of two independent variables x, y and a dependent variable w, we look for the product of two functions depending on different arguments: `w(x, y, z) = X(x)*u(y, z)` Examples ======== >>> from sympy import Function, Eq, pde_separate_mul, Derivative as D >>> from sympy.abc import x, y >>> u, X, Y = map(Function, 'uXY') >>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2)) >>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)]) [Derivative(X(x), x, x)/X(x), Derivative(Y(y), y, y)/Y(y)] """ return pde_separate(eq, fun, sep, strategy='mul') def _separate(eq, dep, others): """Separate expression into two parts based on dependencies of variables.""" # FIRST PASS # Extract derivatives depending our separable variable... terms = set() for term in eq.args: if term.is_Mul: for i in term.args: if i.is_Derivative and not i.has(*others): terms.add(term) continue elif term.is_Derivative and not term.has(*others): terms.add(term) # Find the factor that we need to divide by div = set() for term in terms: ext, sep = term.expand().as_independent(dep) # Failed? if sep.has(*others): return None div.add(ext) # FIXME: Find lcm() of all the divisors and divide with it, instead of # current hack :( # https://github.com/sympy/sympy/issues/4597 if len(div) > 0: final = 0 for term in eq.args: eqn = 0 for i in div: eqn += term / i final += simplify(eqn) eq = final # SECOND PASS - separate the derivatives div = set() lhs = rhs = 0 for term in eq.args: # Check, whether we have already term with independent variable... if not term.has(*others): lhs += term continue # ...otherwise, try to separate temp, sep = term.expand().as_independent(dep) # Failed? if sep.has(*others): return None # Extract the divisors div.add(sep) rhs -= term.expand() # Do the division fulldiv = reduce(operator.add, div) lhs = simplify(lhs/fulldiv).expand() rhs = simplify(rhs/fulldiv).expand() # ...and check whether we were successful :) if lhs.has(*others) or rhs.has(dep): return None return [lhs, rhs]
bsd-3-clause
-8,731,429,320,929,213,000
34.62024
133
0.541703
false
jupyterhub/oauthenticator
oauthenticator/globus.py
1
10431
""" Custom Authenticator to use Globus OAuth2 with JupyterHub """ import base64 import os import pickle import urllib from jupyterhub.auth import LocalAuthenticator from tornado.httpclient import HTTPRequest from tornado.web import HTTPError from traitlets import Bool from traitlets import default from traitlets import List from traitlets import Unicode from .oauth2 import OAuthenticator from .oauth2 import OAuthLogoutHandler class GlobusLogoutHandler(OAuthLogoutHandler): """ Handle custom logout URLs and token revocation. If a custom logout url is specified, the 'logout' button will log the user out of that identity provider in addition to clearing the session with Jupyterhub, otherwise only the Jupyterhub session is cleared. """ async def get(self): # Ensure self.handle_logout() is called before self.default_handle_logout() # If default_handle_logout() is called first, the user session is popped and # it's not longer possible to call get_auth_state() to revoke tokens. # See https://github.com/jupyterhub/jupyterhub/blob/master/jupyterhub/handlers/login.py # noqa await self.handle_logout() await self.default_handle_logout() if self.authenticator.logout_redirect_url: # super().get() will attempt to render a logout page. Make sure we # return after the redirect to avoid exceptions. self.redirect(self.authenticator.logout_redirect_url) return await super().get() async def handle_logout(self): """Overridden method for custom logout functionality. Should be called by Jupyterhub on logout just before destroying the users session to log them out.""" await super().handle_logout() if self.current_user and self.authenticator.revoke_tokens_on_logout: await self.clear_tokens(self.current_user) async def clear_tokens(self, user): """Revoke and clear user tokens from the database""" state = await user.get_auth_state() if state: await self.authenticator.revoke_service_tokens(state.get('tokens')) self.log.info( 'Logout: Revoked tokens for user "{}" services: {}'.format( user.name, ','.join(state['tokens'].keys()) ) ) state['tokens'] = {} await user.save_auth_state(state) class GlobusOAuthenticator(OAuthenticator): """The Globus OAuthenticator handles both authorization and passing transfer tokens to the spawner.""" login_service = 'Globus' logout_handler = GlobusLogoutHandler @default("userdata_url") def _userdata_url_default(self): return "https://auth.globus.org/v2/oauth2/userinfo" @default("authorize_url") def _authorize_url_default(self): return "https://auth.globus.org/v2/oauth2/authorize" @default("revocation_url") def _revocation_url_default(self): return "https://auth.globus.org/v2/oauth2/token/revoke" revocation_url = Unicode(help="Globus URL to revoke live tokens.").tag(config=True) @default("token_url") def _token_url_default(self): return "https://auth.globus.org/v2/oauth2/token" identity_provider = Unicode( help="""Restrict which institution a user can use to login (GlobusID, University of Hogwarts, etc.). This should be set in the app at developers.globus.org, but this acts as an additional check to prevent unnecessary account creation.""" ).tag(config=True) def _identity_provider_default(self): return os.getenv('IDENTITY_PROVIDER', '') exclude_tokens = List( help="""Exclude tokens from being passed into user environments when they start notebooks, Terminals, etc.""" ).tag(config=True) def _exclude_tokens_default(self): return ['auth.globus.org'] def _scope_default(self): return [ 'openid', 'profile', 'urn:globus:auth:scope:transfer.api.globus.org:all', ] globus_local_endpoint = Unicode( help="""If Jupyterhub is also a Globus endpoint, its endpoint id can be specified here.""" ).tag(config=True) def _globus_local_endpoint_default(self): return os.getenv('GLOBUS_LOCAL_ENDPOINT', '') revoke_tokens_on_logout = Bool( help="""Revoke tokens so they cannot be used again. Single-user servers MUST be restarted after logout in order to get a fresh working set of tokens.""" ).tag(config=True) def _revoke_tokens_on_logout_default(self): return False async def pre_spawn_start(self, user, spawner): """Add tokens to the spawner whenever the spawner starts a notebook. This will allow users to create a transfer client: globus-sdk-python.readthedocs.io/en/stable/tutorial/#tutorial-step4 """ spawner.environment['GLOBUS_LOCAL_ENDPOINT'] = self.globus_local_endpoint state = await user.get_auth_state() if state: globus_data = base64.b64encode(pickle.dumps(state)) spawner.environment['GLOBUS_DATA'] = globus_data.decode('utf-8') async def authenticate(self, handler, data=None): """ Authenticate with globus.org. Usernames (and therefore Jupyterhub accounts) will correspond to a Globus User ID, so [email protected] will have the 'foouser' account in Jupyterhub. """ # Complete login and exchange the code for tokens. params = dict( redirect_uri=self.get_callback_url(handler), code=handler.get_argument("code"), grant_type='authorization_code', ) req = HTTPRequest( self.token_url, method="POST", headers=self.get_client_credential_headers(), body=urllib.parse.urlencode(params), ) token_json = await self.fetch(req) # Fetch user info at Globus's oauth2/userinfo/ HTTP endpoint to get the username user_headers = self.get_default_headers() user_headers['Authorization'] = 'Bearer {}'.format(token_json['access_token']) req = HTTPRequest(self.userdata_url, method='GET', headers=user_headers) user_resp = await self.fetch(req) username = self.get_username(user_resp) # Each token should have these attributes. Resource server is optional, # and likely won't be present. token_attrs = [ 'expires_in', 'resource_server', 'scope', 'token_type', 'refresh_token', 'access_token', ] # The Auth Token is a bit special, it comes back at the top level with the # id token. The id token has some useful information in it, but nothing that # can't be retrieved with an Auth token. # Repackage the Auth token into a dict that looks like the other tokens auth_token_dict = { attr_name: token_json.get(attr_name) for attr_name in token_attrs } # Make sure only the essentials make it into tokens. Other items, such as 'state' are # not needed after authentication and can be discarded. other_tokens = [ {attr_name: token_dict.get(attr_name) for attr_name in token_attrs} for token_dict in token_json['other_tokens'] ] tokens = other_tokens + [auth_token_dict] # historically, tokens have been organized by resource server for convenience. # If multiple scopes are requested from the same resource server, they will be # combined into a single token from Globus Auth. by_resource_server = { token_dict['resource_server']: token_dict for token_dict in tokens if token_dict['resource_server'] not in self.exclude_tokens } return { 'name': username, 'auth_state': { 'client_id': self.client_id, 'tokens': by_resource_server, }, } def get_username(self, user_data): # It's possible for identity provider domains to be namespaced # https://docs.globus.org/api/auth/specification/#identity_provider_namespaces # noqa username, domain = user_data.get('preferred_username').split('@', 1) if self.identity_provider and domain != self.identity_provider: raise HTTPError( 403, 'This site is restricted to {} accounts. Please link your {}' ' account at {}.'.format( self.identity_provider, self.identity_provider, 'globus.org/app/account', ), ) return username def get_default_headers(self): return {"Accept": "application/json", "User-Agent": "JupyterHub"} def get_client_credential_headers(self): headers = self.get_default_headers() b64key = base64.b64encode( bytes("{}:{}".format(self.client_id, self.client_secret), "utf8") ) headers["Authorization"] = "Basic {}".format(b64key.decode("utf8")) return headers async def revoke_service_tokens(self, services): """Revoke live Globus access and refresh tokens. Revoking inert or non-existent tokens does nothing. Services are defined by dicts returned by tokens.by_resource_server, for example: services = { 'transfer.api.globus.org': {'access_token': 'token'}, ... <Additional services>... } """ access_tokens = [ token_dict.get('access_token') for token_dict in services.values() ] refresh_tokens = [ token_dict.get('refresh_token') for token_dict in services.values() ] all_tokens = [tok for tok in access_tokens + refresh_tokens if tok is not None] for token in all_tokens: req = HTTPRequest( self.revocation_url, method="POST", headers=self.get_client_credential_headers(), body=urllib.parse.urlencode({'token': token}), ) await self.fetch(req) class LocalGlobusOAuthenticator(LocalAuthenticator, GlobusOAuthenticator): """A version that mixes in local system user creation""" pass
bsd-3-clause
4,859,216,885,162,764,000
38.214286
103
0.627936
false
aisthesis/opttrack
opttrack/lib/quoteextractor.py
1
2198
""" .. Copyright (c) 2016 Marshall Farrier license http://opensource.org/licenses/MIT Extract specific quotes from a comprehensive DataFrame Example entry: { 'Underlying': 'NFLX', 'Strike': 100.0, 'Expiry': datetime.datetime(2016, 3, 18, 23, 0, tzinfo=<bson.tz_util.FixedOffset object at 0x10c4860b8>), 'Opt_Type': 'put', 'Opt_Symbol': 'NFLX160318P00100000', 'Last': 10.25, 'Bid': 9.7, 'Ask': 10.05, 'Vol': 260, 'Open_Int': 23567, 'Quote_Time': datetime.datetime(2016, 2, 22, 16, 0, tzinfo=<DstTzInfo 'US/Eastern' EST-1 day, 19:00:00 STD>) } """ from . import constants class QuoteExtractor(object): def __init__(self, logger, underlying, opts, tznyse): self.logger = logger self.tznyse = tznyse self.underlying = underlying self.opts = opts def get(self, specs): return self._extract_all(specs) def _extract_all(self, specs): entries = [] self.logger.info('getting {} quote(s) for {}'.format(len(specs), self.underlying)) for spec in specs: try: entry = self._extract_one(spec) except KeyError: continue else: entries.append(entry) return entries def _extract_one(self, spec): entry = spec.copy() selection = (spec['Strike'], spec['Expiry'].astimezone(self.tznyse).replace(tzinfo=None, hour=0, minute=0, second=0), spec['Opt_Type'],) try: entry['Opt_Symbol'] = self.opts.data.loc[selection, :].index[0] opt = self.opts.data.loc[selection, :].iloc[0] except KeyError as e: self.logger.exception('option not found for {} with {}' .format(self.opts.data.iloc[0, :].loc['Underlying'], selection)) raise entry['Quote_Time'] = self.tznyse.localize(opt['Quote_Time'].to_datetime()) entry['Underlying'] = opt['Underlying'] for key in constants.INT_COLS: entry[key] = int(opt[key]) for key in constants.FLOAT_COLS: entry[key] = float(opt[key]) self.logger.debug(entry) return entry
mit
-8,155,537,419,479,421,000
31.80597
112
0.575523
false
CIRCL/bgpranking-redis-api
example/export/day_ips/consumer.py
1
1090
#!/usr/bin/python # -*- coding: utf-8 -*- import redis import bgpranking import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare the information to dump.') parser.add_argument('-f', '--full', action="store_true", default=False, help='Do a full dump (asn, block, ip, sources).') args = parser.parse_args() r = redis.Redis(unix_socket_path='./redis_export.sock') date = r.get('date') weights = bgpranking.get_all_weights(date) while True: asn_b = r.spop('asn_b') if asn_b is None: break asn, block = asn_b.split("_") ip_descs = bgpranking.get_ips_descs(asn, block, date) if len(ip_descs.get(block)) != 0: p = r.pipeline(False) for ip, sources in ip_descs.get(block).iteritems(): p.zincrby('ips', ip, sum([float(weights[s]) for s in sources])) if args.full: p.hmset(ip, {'asn': asn, 'block':block, 'sources': '|'.join(sources)}) p.execute()
bsd-2-clause
404,525,801,695,069,440
31.058824
84
0.547706
false
ndexbio/ndex-enrich
network_gene_analyzer.py
1
4628
__author__ = 'dexter' import requests from bson.json_util import dumps class NetworkGeneAnalyzer: def __init__(self, network_id, ndex): self.ndex = ndex self.network = self.ndex.get_complete_network(network_id) self.identifiers = [] self.node_map = self.network.get("nodes") self.base_term_map = self.network.get("baseTerms") self.function_term_map = self.network.get("functionTerms") self.scrubbed_terms = [] def get_genes(self): self.get_network_identifiers() self.get_genes_for_identifiers() scrub_list = [] for scrub_item in self.scrubbed_terms: scrub_list.append(scrub_item.get('symbol')) return scrub_list def get_genes_for_identifiers(self): #print "TODO" IDMAP_URL = 'http://ec2-52-34-209-69.us-west-2.compute.amazonaws.com:3000/idmapping' payload = {'ids':self.identifiers} headers = {'Content-Type': 'application/json', 'Accept': 'application/json', 'Cache-Control': 'no-cache', } r = requests.post(IDMAP_URL, data=dumps(payload), headers=headers) result_dictionary = r.json() print dumps(result_dictionary) #scrubbed_terms = [] if(result_dictionary['matched'] is not None and len(result_dictionary['matched']) > 0): dedup_list = [] #=========================================================== # if the term we entered is already a gene symbol or a gene # id the response JSON will identify it in the inType field # # de-dup the list #=========================================================== for term_match in result_dictionary['matched']: add_this_term = {'symbol': '', 'geneid':''} if(term_match['inType'] == 'Symbol'): if(term_match['matches']['GeneID'] not in dedup_list): add_this_term['symbol'] = term_match['in'] add_this_term['geneid'] = term_match['matches']['GeneID'] dedup_list.append(term_match['matches']['GeneID']) self.scrubbed_terms.append(add_this_term) elif(term_match['inType'] == 'GeneID'): if(term_match['in'] not in dedup_list): add_this_term['symbol'] = term_match['matches']['Symbol'] add_this_term['geneid'] = term_match['in'] dedup_list.append(term_match['in']) self.scrubbed_terms.append(add_this_term) else: if(term_match['matches']['GeneID'] not in dedup_list): add_this_term['symbol'] = term_match['matches']['Symbol'] add_this_term['geneid'] = term_match['matches']['GeneID'] dedup_list.append(term_match['matches']['GeneID']) self.scrubbed_terms.append(add_this_term) #print dumps(self.scrubbed_terms) def get_network_identifiers(self): for node in self.node_map.values(): # get ids from represents represents_id = node.get('represents') if represents_id: self.get_identifiers_from_term_id(represents_id) # check aliases, take the first that resolves to a gen alias_ids = node.get('aliases') for alias_id in alias_ids: self.get_identifiers_from_term_id(alias_id) # finally, add the name name = node.get("name") if name: self.identifiers.append(name) def get_identifiers_from_term_id(self, term_id): if self.identifier_from_base_term_id(term_id): return True elif self.get_identifiers_from_function_term_id(term_id): return True else: return False def get_identifiers_from_function_term_id(self, function_term_id): # if it is a function term, process all genes mentioned function_term = self.function_term_map.get(function_term_id) if function_term: for parameter in function_term.get('parameters'): self.get_identifiers_from_term_id(parameter) return True else: return False def identifier_from_base_term_id(self, base_term_id): base_term = self.base_term_map.get(base_term_id) if base_term: self.identifiers.append(base_term.name) return False
bsd-2-clause
-3,326,323,250,897,176,000
38.896552
95
0.536949
false
lukasdragon/PythonScripts
vote.py
1
1741
# -*- coding: utf-8 -*- #!/usr/bin/python #===============================# #CODE PROPERTY OF LUKAS G. OLSON# #https://github.com/lukasdragon # #===============================# #Color variables! COKBLUE = '\033[94m'; COKGREEN = '\033[92m'; CWARNING = '\033[93m'; CFAIL = '\033[91m'; CRESET ='\033[0m'; CBOLD = '\033[01m'; CREVERSE = '\033[07m'; COTHER = '\033[33m'; #Helper methods #header print "{0}{1}=================".format(COTHER, CBOLD); print "Voting Calculator"; print "================={0}".format(CRESET); Canadian = True if raw_input(COKGREEN + "Are you Canadian? [Yes|No]: " + CRESET).lower() == 'yes' else False if Canadian: #Age Age = raw_input("{0}How old are you?: {1}".format(COKGREEN,CRESET)); Fetus = 0; Baby = 4; Child = 17; Adult = 130; Vampire = 130; #parse try: Age = int(Age); except: print CFAIL + "ERROR! INCORRECT VALUE"; #Check Age if Age <= Fetus: print CBOLD + "You are aren't born yet! Come back later!"; elif Age <= Baby: print CBOLD + "Get away from me baby! You shouldn't even be able to read this!"; elif Age <= Child: print CBOLD + "You are a child! You cannot vote! Come back when you become a human!"; elif Age <= Adult: if raw_input(COKGREEN + "Are you a registered voter? [Yes|No]: " + CRESET).lower() == 'yes': print CBOLD + "Congratulations! You are an adult and are able to vote!"; else: print CFAIL + CBOLD + "YOU NEED TO REGISTER TO VOTE! GO DO THAT ASAP!!!!"; else: print CBOLD + CWARNING + "GET AWAY FROM ME SATAN!"; else: print CFAIL + "GET OUT OF HERE YOU FILTHY FOREIGNER!" print CRESET;
unlicense
-6,972,836,603,200,723,000
23.180556
108
0.552556
false
crashfrog/Dispatch
spades_careful_assembler.py
1
4808
#!/usr/bin/env python import subprocess import tempfile import shutil import os import re import fasta_statter """ Assembly Dispatch bindings for SPAdes Single-Cell assembler (Bankevitch et al, J Comput Biol, 2012), a de Brujin graph assembler for paired-end single-cell sequencing. Trying something new here - using file-like object to try to parse SPAdes output as it runs. Also SPAdes has a Python script wrapper, so this one is a little different - we actually import the SPAdes module and invoke its main method with an arg vector. Jan 6 2014: No, we don't. That was stupid from the get-go. """ class SpadesParser(object): "File-like object to parse IO streams and invoke a function in response to a regex match." def __init__(self, function, regex, buffer): self.func = function self.re = re.compile(regex, re.MULTILINE) self.buffer = buffer self.passthrough = False def write(self, s): "Capture a text stream, look for regex matches; if found call func with the match" if 'Error' in s: self.passthrough=True r = self.re.search(s) if r and not self.passthrough: self.func(r.groups()[0]) if self.passthrough: self.func(s) return self.buffer.write(s) def fileno(self): return 0 def flush(self): pass def close(self): pass description = "SPAdes, a de Brujin graph assembler with advanced error correction and handling of paired-end data." core_load = 1 #number of cores this assembler will max out #spades_exec = '/home/justin.payne/SPAdes-2.5.0-Linux/bin/' #spades_exec = '/home/justin.payne/SPAdes-3.0.0-Linux/bin/' spades_exec = '' supports = ('MiSeq', 'IonTorrent') def assemble(path, accession, fasta_file_name=None, callback=lambda s: None, update_callback=lambda d: None, debug=True, **kwargs): import sys if not fasta_file_name: fasta_file_name = "{}.spades.fasta".format(accession) kwargs['temp_dir'] = tempfile.mkdtemp() d = {'assembly_version':'SPAdes v. 3.0.0', 'average_coverage':'', 'num_contigs':'', 'n50':'', 'num_bases':'', 'fasta_file':fasta_file_name, 'lib_insert_length':'Not determined', 'matched':'-' } try: #import the spades python wrapper #sys.path.append(spades_exec) #import spades #get version #d['assembly_version'] = "SPAdes v. {}".format(spades.spades_version.replace("\n", "")) #assemble #print "version:", d['assembly_version'] callback("running SPAdes in {temp_dir}...".format(**kwargs)) def status_callback(r): callback("running: " + r) if not debug: sys.stdout = SpadesParser(status_callback, r"^ *=+ ([A-Za-z0-9;:., ]+)", open(os.devnull, 'w')) #argv = "--disable-gzip-output --careful -t 8 -m 64 -1 {reads1} -2 {reads2} -o {temp_dir}".format(**kwargs).split(" ") #if debug: # callback("spades {}".format(" ".join(argv))) #spades.main(argv) if 'reads2' in kwargs and kwargs['reads2']: subprocess.check_call("{spades_exec}spades -t 8 -m 64 -1 {reads1} -2 {reads2} -o {temp_dir} --careful".format(spades_exec=spades_exec, **kwargs), shell=True) else: subprocess.check_call("{spades_exec}spades --iontorrent -t 8 -m 64 -s {reads1} -o {temp_dir} --careful".format(spades_exec=spades_exec, **kwargs), shell=True) update_callback({"k_value":'21, 33, 55, 77, 99, 127'}) callback("Copying {temp_dir}/contigs.fasta...".format(**kwargs)) shutil.copyfile("{temp_dir}/contigs.fasta".format(**kwargs), "{}/{}".format(path, fasta_file_name)) shutil.copyfile("{temp_dir}/spades.log".format(**kwargs), "{}/spades.log".format(path)) d.update(fasta_statter.stat_velvet(os.path.join(path, fasta_file_name), 33)) # except subprocess.CalledProcessError as e: # raise ValueError(str(type(e)) + str(e) + str(e.output)) except Exception as e: if debug: import traceback traceback.print_exc(sys.stdout) raise e raise ValueError("SPAdes assembly failure.") finally: callback("Cleaning up {temp_dir}...".format(**kwargs)) shutil.rmtree(kwargs['temp_dir']) sys.stdout = sys.__stdout__ return d if __name__ == "__main__": import sys import datetime def cb(s): print "[{}]".format(datetime.datetime.today().ctime()), s def ucb(d): for (key, value) in d.items(): print key, ":", value print assemble(path='/home/justin.payne/', reads1='/shared/gn2/CFSANgenomes/CFSAN001656/CFSAN001656_01/CFSAN001656_S8_L001_R1_001.fastq', reads2='/shared/gn2/CFSANgenomes/CFSAN001656/CFSAN001656_01/CFSAN001656_S8_L001_R2_001.fastq', accession='CFSAN001656_01', callback=cb, update_callback=ucb, debug=True) print assemble(path='/home/justin.payne', reads1='/shared/gn2/CFSANgenomes/CFSAN006329/CFSAN006329_01/CFSAN006329.reads.fastq', accession='CFSAN006329_01', callback=cb, debug=True, update_callback=ucb)
unlicense
-3,152,752,227,748,538,000
29.436709
161
0.677829
false
LeBarbouze/tunacell
tunacell/base/cell.py
1
15188
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ This module defines how cells are stored as tunacell's objects """ from __future__ import print_function import numpy as np import warnings import treelib as tlib from tunacell.base.observable import Observable, FunctionalObservable from tunacell.base.datatools import (Coordinates, compute_rates, extrapolate_endpoints, derivative, logderivative, ExtrapolationError) class CellError(Exception): pass class CellChildsError(CellError): pass class CellParentError(CellError): pass class CellDivisionError(CellError): pass class Cell(tlib.Node): """General class to handle cell data structure. Inherits from treelib.Node class to facilitate tree building. Parameters ---------- identifier : str cell identifier container : :class:`Container` instance container to which cell belongs Attributes ---------- container : :class:`Container` instance container to chich cell belongs childs : list of :class:`Cell` instances daughter cells of current cell parent : :class:`Cell` instance mother cell of current cell birth_time : float (default None) time of cell birth (needs to be computed) division_time : float (default None) time of cell division (needs to be computed) Methods ------- set_division_events() computes birth/division times when possible build(obs) builds timeseries, uses one of the following methods depending on obs build_timelapse(obs) builds and stores timeseries associated to obs, in 'dynamics' mode build_cyclized(obs) builds and stores cell-cycle value associated to obs, not in 'dynamics' mode """ def __init__(self, identifier=None, container=None): tlib.Node.__init__(self, identifier=identifier) self._childs = [] self._parent = None self._birth_time = None self._division_time = None self._sdata = {} # dictionary to contain computed data self._protected_against_build = set() # set of obs not to re-build self.container = container # point to Container instance # cells are built from a specific container instance # container can be a given field of view, a channel, a microcolony, ... return # We add few definitions to be able to chain between Cell instances @property def childs(self): "Get list of child instances." return self._childs @childs.setter def childs(self, value): if value is None: self._childs = [] elif isinstance(value, list): for item in value: self.childs = item elif isinstance(value, Cell): self._childs.append(value) else: raise CellChildsError @property def parent(self): "Get parent instance." return self._parent @parent.setter def parent(self, pcell): if pcell is None: self._parent = None elif isinstance(pcell, Cell): self._parent = pcell else: raise CellParentError @property def birth_time(self): "Get cell cycle start time. See below for Setter." return self._birth_time @birth_time.setter def birth_time(self, value): "Set cell cycle start time. See above for Getter." self._birth_time = value @property def division_time(self): "Get cell cycle end time. See below for Setter." return self._division_time @division_time.setter def division_time(self, value): "Set cell cycle end time. See above for Getter." if self.birth_time is not None: if value < self.birth_time: raise CellDivisionError self._division_time = value def set_division_event(self): "method to call when parent is identified" previous_frame = None if (self.parent is not None) and (self.parent.data is not None): previous_frame = self.parent.data['time'][-1] first_frame = None if self.data is not None: first_frame = self.data['time'][0] if previous_frame is not None and first_frame is not None: div_time = (previous_frame + first_frame)/2. # halfway self.birth_time = div_time self.parent.division_time = div_time return def __repr__(self): cid = str(self.identifier) if self.parent: pid = str(self.parent.identifier) else: pid = '-' if self.childs: ch = ','.join(['{}'.format(c.identifier) for c in self.childs]) else: ch = '-' return cid+';p:'+pid+';ch:'+ch def info(self): dic = {} dic['a. Identifier'] = '{}'.format(self.identifier) pid = 'None' if self.parent: pid = '{}'.format(self.parent.identifier) dic['b. Parent id'] = pid chids = 'None' if self.childs: chids = ', '.join(['{}'.format(ch.identifier) for ch in self.childs]) dic['c. Childs'] = chids dic['d. Birth time'] = '{}'.format(self.birth_time) dic['e. Division time'] = '{}'.format(self.division_time) if self.data is not None: dic['f. N_frames'] = '{}'.format(len(self.data)) return dic def protect_against_build(self, obs): """Protect current cell against building obs array/value""" self._protected_against_build.add(obs) return def build(self, obs): """Builds timeseries""" if obs in self._protected_against_build: return if isinstance(obs, FunctionalObservable): # first build every single Observable for item in obs.observables: self.build(item) arrays = [self._sdata[item.label] for item in obs.observables] self._sdata[obs.label] = obs.f(*arrays) elif isinstance(obs, Observable): if obs.mode == 'dynamics': self.build_timelapse(obs) else: self.compute_cyclized(obs) else: raise TypeError('obs must be of type Observable or FunctionalObservable') def build_timelapse(self, obs): """Builds timeseries corresponding to observable of mode 'dynamics'. Result is an array of same length as time array, stored in a dictionary _sdata, which keys are obs.label. When using sliding windows, estimate in a given cell actualize data in its parent cell, if and only if it has not been actualized before (check disjoint time intervals). Parameters ---------- obs : Observable instance mode must be 'dynamics' Note ----- Some observables carry the 'local_fit' option True. In this case, local fits over shifting time-windows are performed. If one would keep only a given cell's data, then the constraints on shifting time-window would let some 'empty' times, at which no evaluation can be performed. This is solved by getting data from the cell's parent cell's data. This operation computes time-window fiited data in the cell's parent cycle. Two precautions must then be taken: 1. a given cell's data must be used only once for evaluating parent cell's data, 2. when data has been used from one daughter cell, concatenate the current cell's evaluated data to it. .. warning:: For some computations, the time interval between consecutive acquisitions is needed. If it's defined in the container or the experiment metadata, this parameter will be imported; otherwise if there are at least 2 consecutive values, it will be inferred from data (at the risk of making mistakes if there are too many missing values) """ label = str(obs.label) raw = obs.raw coords = Coordinates(self.data['time'], self.data[raw]) if self.parent is not None and len(self.parent.data) > 0: anteriors = Coordinates(self.parent.data['time'], self.parent.data[raw]) else: anteriors = Coordinates(np.array([], dtype=float), np.array([], dtype=float)) # if empty, return empty array of appropriate type if len(self.data) == 0: # there is no data, but it has some dtype return Coordinates(np.array([], dtype=float), np.array([], dtype=float)) dt = self.container.period if dt is None: # automatically finds dt if len(self.data) > 1: arr = self.data['time'] time_increments = arr[1:] - arr[:-1] dt = np.round(np.amin(np.abs(time_increments)), decimals=2) # case : no local fit, use data, or finite differences if not obs.local_fit: if obs.differentiate: if obs.scale == 'linear': new = derivative(coords) elif obs.scale == 'log': new = logderivative(coords) else: new = coords self._sdata[label] = new.y # case : local estimates using compute_rates else: r, f, ar, af, xx, yy = compute_rates(coords.x, coords.y, x_break=self.birth_time, anterior_x=anteriors.x, anterior_y=anteriors.y, scale=obs.scale, time_window=obs.time_window, dt=dt, join_points=obs.join_points) if obs.differentiate: to_cell = r to_parent = ar if len(ar) != len(anteriors.x): print('This is awkward') else: to_cell = f to_parent = af self._sdata[label] = to_cell if self.parent is not None and (not np.all(np.isnan(to_parent))): if label not in self.parent._sdata.keys(): self.parent._sdata[label] = to_parent else: existing = self.parent._sdata[label] # if existing is nan, try to put addedum values self.parent._sdata[label] = np.where(np.isnan(existing), to_parent, existing) return def compute_cyclized(self, obs): """Computes observable when mode is different from 'dynamics'. Parameters ---------- obs : Observable instance mode must be different from 'dynamics' Raises ------ ValueError when Observable mode is 'dynamics' Note ---- To compute a cell-cycle observable (e.g. birth growth rate), it is necessary to know the value of the timelapse counterpart (e.g. growth rate here). The timelapse observable may work by joining values at divisions, and hence a single call to Cell.build_timelapse() will result in a different result array than when it has beenalso called in a daughter cell (potentially affecting values toward the end of current cell cycle). Hence, in that circumstances when continuity is used to join timeseries at divisions, enhancing results with fitting over sliding windows, it is the user's task to compute first the timelapse observable over the entire lineage, and only then, evaluate cell-cycle values. This is why the function below tries first to read an already present array from timelapse counterpart, and only if it fails will it compute it using only this current cell data. """ scale = obs.scale npts = obs.join_points label = obs.label if obs.mode == 'dynamics': raise ValueError('Called build_cyclized for dynamics mode') # associate timelapse counterpart cobs = obs.as_timelapse() clabel = cobs.label time = self.data['time'] # if it has been computed already, the clabel key exists in sdata try: array = self._sdata[clabel] # otherwise compute the timelapse counterpart except KeyError: self.build_timelapse(cobs) array = self._sdata[clabel] # get value try: if obs.mode == 'birth': value = extrapolate_endpoints(time, array, self.birth_time, scale=scale, join_points=npts) elif obs.mode == 'division': value = extrapolate_endpoints(time, array, self.division_time, scale=scale, join_points=npts) elif 'net-increase' in obs.mode: dval = extrapolate_endpoints(time, array, self.division_time, scale=scale, join_points=npts) bval = extrapolate_endpoints(time, array, self.birth_time, scale=scale, join_points=npts) if obs.mode == 'net-increase-additive': value = dval - bval elif obs.mode == 'net-increase-multiplicative': value = dval/bval elif obs.mode == 'average': value = np.nanmean(array) elif obs.mode == 'rate': if len(array) < 2: value = np.nan # not enough values to estimate rate if obs.scale == 'log': array = np.log(array) value, intercept = np.polyfit(time, array, 1) except ExtrapolationError as err: # msg = '{}'.format(err) # warnings.warn(msg) value = np.nan # missing information self._sdata[label] = value return def _disjoint_time_sets(ts1, ts2): if len(ts1) == 0 or len(ts2) == 0: return True min1, min2 = map(np.nanmin, [ts1, ts2]) max1, max2 = map(np.nanmax, [ts1, ts2]) return max1 < min2 or max2 < min1 def filiate_from_bpointer(cells): """Build in place parent/childs attributes in a set of filiated cells Parameters ---------- cells : list of Cell instances """ for cell in cells: childs = [] for cc in cells: if cc.bpointer == cell.identifier: childs.append(cc) cc.parent = cell cc.set_division_event() cell.childs = childs
mit
1,801,948,970,167,984,400
36.046341
97
0.55906
false
vjousse/viserlalune
blogebook/templatetags/blog_epub.py
1
1532
from django import template from ebooklib import epub register = template.Library() def posts_epub_link(posts): book = epub.EpubBook() # add metadata book.set_title('Articles de Vincent Jousse') book.set_language('fr') book.add_author('Vincent Jousse') for post in posts: print post.title c1 = epub.EpubHtml(title=post.title, file_name='%s.xhtml' % post.slug, lang='fr') c1.content=u'<html><head></head><body><h1>Introduction</h1><p>Voici une belle introduction.</p></body></html>' book.add_item(c1) # add navigation files book.add_item(epub.EpubNcx()) book.add_item(epub.EpubNav()) # define css style style = ''' @namespace epub "http://www.idpf.org/2007/ops"; body { font-family: Cambria, Liberation Serif, Bitstream Vera Serif, Georgia, Times, Times New Roman, serif; } h2 { text-align: left; text-transform: uppercase; font-weight: 200; } ol { list-style-type: none; } ol > li:first-child { margin-top: 0.3em; } nav[epub|type~='toc'] > ol > li > ol { list-style-type:square; } nav[epub|type~='toc'] > ol > li > ol > li { margin-top: 0.3em; } ''' # add css file nav_css = epub.EpubItem(uid="style_nav", file_name="style/nav.css", media_type="text/css", content=style) book.add_item(nav_css) # create spine book.spine = ['nav', c1 ] # create epub file epub.write_epub('test.epub', book, {}) return "/test.epub" register.simple_tag(posts_epub_link)
mit
8,783,613,191,321,780,000
19.426667
118
0.619452
false
springload/madewithwagtail
core/migrations/0006_wagtail_1_6_upgrade.py
1
1067
# -*- coding: utf-8 -*- from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0005_auto_20161004_1431'), ] operations = [ migrations.AlterField( model_name='submitformfield', name='choices', field=models.TextField(help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices', blank=True), ), migrations.AlterField( model_name='submitformpage', name='to_address', field=models.CharField(help_text='Optional - form submissions will be emailed to these addresses. Separate multiple addresses by comma.', max_length=255, verbose_name='to address', blank=True), ), migrations.AlterField( model_name='wagtailcompanypage', name='company_url', field=models.URLField(help_text=b'The URL of your site, something like "https://www.springload.co.nz"', null=True, blank=True), ), ]
mit
5,708,785,225,295,185,000
35.793103
205
0.626054
false
fablab-ka/labtags
blot-gateway/tagscanner.py
1
2414
import threading, time, traceback from bluepy import btle from tag import Tag from messages import DiscoverTagMessage, GWStartupMessage, GWShutdownMessage from utils import ANSI_RED, ANSI_OFF class TagScanner: def __init__(self): #btle.Debugging = True self.timeout = 4 self.hci = 0 self.scanner = btle.Scanner(self.hci) def scan(self): result = [] devices = self.scanner.scan(self.timeout) self.scanner.clear() for d in devices: if not d.connectable: print(ANSI_RED + "[TagScanner] Device not connectable", d.addr + ANSI_OFF ) continue #print(ANSI_RED + "[TagScanner] Tag found '%s' '%s' '%s'" % (d.addr, d.addrType, d.rssi) + ANSI_OFF) #print(ANSI_RED + "[TagScanner] " + str(d.getScanData()) + ANSI_OFF) name = d.getValueText(9) result.append(Tag(d.addr, d.addrType, name, d.rssi,-1)) return result class ScanLoopThread(threading.Thread): def __init__(self, messageQueue, tagCache): threading.Thread.__init__(self) self.messageQueue = messageQueue self.tagCache = tagCache self.scanner = TagScanner() self.rediscoverTimeout = 5 def pruneTagCache(self): now = time.time() for tag in self.tagCache.getData(): if (now - tag.discovered) > self.rediscoverTimeout: self.tagCache.remove(tag) def discoverTags(self): tags = self.scanner.scan() for tag in tags: if not self.tagCache.hasTagByMac(tag.mac): print(ANSI_RED + "[ScanThread] discovered Tag '" + str(tag.mac) + "' name: '" + str(tag.name) + "'" + ANSI_OFF) self.tagCache.append(tag) self.messageQueue.put(DiscoverTagMessage(tag)) def run(self): print(ANSI_RED + "[ScanThread] scan loop start" + ANSI_OFF) #self.messageQueue.put(GWStartupMessage()) #todo while True: try: self.pruneTagCache() self.discoverTags() except: print(ANSI_RED + "[ScanThread] " + str(traceback.format_exc()) + ANSI_OFF) time.sleep(0.1) #self.messageQueue.put(GWShutdownMessage()) #todo print(ANSI_RED + "[ScanThread] scan loop shutdown" + ANSI_OFF) #Ralf: Diese Meldung kommt imo nie ! #todo
mit
-2,211,310,556,143,237,000
30.763158
127
0.584093
false
AEDA-Solutions/matweb
backend/Models/Curso/PedidoEditar.py
1
1688
from Framework.Pedido import Pedido from Framework.ErroNoHTTP import ErroNoHTTP class PedidoEditar(Pedido): def __init__(self,variaveis_do_ambiente): super(PedidoEditar, self).__init__(variaveis_do_ambiente) try: self.id = self.corpo['id'] self.nome = self.corpo['nome'] self.codigo = self.corpo['codigo'] self.id_grau = self.corpo['id_grau'] self.id_campus = self.corpo['id_campus'] self.permanencia_minima = self.corpo['permanencia_minima'] self.permanencia_maxima = self.corpo['permanencia_maxima'] self.creditos_formatura = self.corpo['creditos_formatura'] self.creditos_optativos_conexa = self.corpo['creditos_optativos_conexa'] self.creditos_optativos_concentracao = self.corpo['creditos_optativos_concentracao'] self.creditos_livres_maximo = self.corpo['creditos_livres_maximo'] self.mec = self.corpo['mec'] except: raise ErroNoHTTP(400) def getId(self): return self.id def getNome(self): return self.nome def getCodigo(self): return self.codigo def getId_grau(self): return self.id_grau def getId_campus(self): return self.id_campus def getPermanencia_minima(self): return self.permanencia_minima def getPermanencia_maxima(self): return self.permanencia_maxima def getCreditos_formatura(self): return self.creditos_formatura def getCreditos_optativos_conexa(self) return self.creditos_optativos_conexa def getCreditos_optativos_concentracao(self) return self.creditos_optativos_concentracao def getCreditos_livres_maximo(self) return self.creditos_livres_maximo def getMec(self) return self.mec
mit
2,563,948,748,711,751,700
23.114286
87
0.709716
false
gautam1858/tensorflow
tensorflow/python/kernel_tests/tensor_array_ops_test.py
1
62058
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.tensor_array_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as session_lib from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import gen_data_flow_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import tensor_array_grad from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test def _make_converter(tf_dtype): def _converter(x): if tf_dtype == dtypes.string: # In Python3, np.str is unicode, while we always want bytes return np.asarray(x).astype("|S") x = np.asarray(x).astype(tf_dtype.as_numpy_dtype) if tf_dtype.is_complex: # Add a non-zero imaginary component to x. x -= 1j * x return x return _converter def _make_ta(size, name, dtype=dtypes.float32, infer_shape=False): return tensor_array_ops.TensorArray( dtype=dtype, tensor_array_name=name, size=size, infer_shape=infer_shape) @test_util.run_all_in_graph_and_eager_modes @test_util.with_control_flow_v2 class TensorArrayTest(test.TestCase): @classmethod def setUpClass(cls): super(TensorArrayTest, cls).setUpClass() cls._workers, _ = test.create_local_cluster(num_workers=3, num_ps=0) @classmethod def tearDownClass(cls): super(TensorArrayTest, cls).tearDownClass() session_lib.Session.reset(cls._workers[0].target) @test_util.run_in_graph_and_eager_modes def testTensorArrayWriteRead(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, infer_shape=False) w0 = ta.write(0, [[4.0, 5.0]]) w1 = w0.write(1, [[1.0]]) w2 = w1.write(2, -3.0) r0 = w2.read(0) r1 = w2.read(1) r2 = w2.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual([[4.0, 5.0]], d0) self.assertAllEqual([[1.0]], d1) self.assertAllEqual(-3.0, d2) def _testTensorArrayWritePack(self, tf_dtype): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=tf_dtype, tensor_array_name="foo", size=3) convert = _make_converter(tf_dtype) w0 = ta.write(0, convert([[4.0, 5.0]])) w1 = w0.write(1, convert([[6.0, 7.0]])) w2 = w1.write(2, convert([[8.0, 9.0]])) c0 = w2.stack() c0 = self.evaluate(c0) self.assertAllEqual( convert([[[4.0, 5.0]], [[6.0, 7.0]], [[8.0, 9.0]]]), c0) def _testTensorArrayWritePackMaybeLegacy(self): self._testTensorArrayWritePack(dtypes.float32) self._testTensorArrayWritePack(dtypes.float64) self._testTensorArrayWritePack(dtypes.int32) self._testTensorArrayWritePack(dtypes.int64) self._testTensorArrayWritePack(dtypes.complex64) self._testTensorArrayWritePack(dtypes.complex128) self._testTensorArrayWritePack(dtypes.string) def testTensorArrayWritePack(self): self._testTensorArrayWritePackMaybeLegacy() def testEmptyTensorArrayPack(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) empty_element = np.zeros((0, 1), dtype=np.float32) w0 = ta.write(0, empty_element) w1 = w0.write(1, empty_element) w2 = w1.write(2, empty_element) c0 = w2.stack() c0 = self.evaluate(c0) self.assertAllEqual([3, 0, 1], c0.shape) def _testTensorArrayWriteConcat(self, tf_dtype): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=tf_dtype, tensor_array_name="foo", size=3, infer_shape=False) convert = _make_converter(tf_dtype) w0 = ta.write(0, convert([[4.0, 5.0], [104.0, 105.0], [204.0, 205.0]])) w1 = w0.write(1, convert([[6.0, 7.0], [106.0, 107.0]])) w2 = w1.write(2, convert([[8.0, 9.0]])) c0 = w2.concat() c0 = self.evaluate(c0) self.assertAllEqual( convert([[4.0, 5.0], [104.0, 105.0], [204.0, 205.0], [6.0, 7.0], [106.0, 107.0], [8.0, 9.0]]), c0) @test_util.run_deprecated_v1 def testTensorArrayWriteConcat(self): self._testTensorArrayWriteConcat(dtypes.float32) self._testTensorArrayWriteConcat(dtypes.float64) self._testTensorArrayWriteConcat(dtypes.int32) self._testTensorArrayWriteConcat(dtypes.int64) self._testTensorArrayWriteConcat(dtypes.complex64) self._testTensorArrayWriteConcat(dtypes.complex128) self._testTensorArrayWriteConcat(dtypes.string) def _testTensorArrayReadOrPackNotAllValuesAvailableFillsZeros(self): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, element_shape=tensor_shape.TensorShape([1, 2])) self.assertAllEqual([[0.0, 0.0]], self.evaluate(ta.read(0))) self.assertAllEqual([[[0.0, 0.0]], [[4.0, 5.0]], [[0.0, 0.0]]], self.evaluate(ta.write(1, [[4.0, 5.0]]).stack())) self.assertAllEqual([[0.0, 0.0], [4.0, 5.0], [0.0, 0.0]], self.evaluate(ta.write(1, [[4.0, 5.0]]).concat())) @test_util.disable_control_flow_v2("b/122324791") @test_util.run_v1_only("b/122324791") def testTensorArrayReadOrPackNotAllValuesAvailableFillsZeros(self): self._testTensorArrayReadOrPackNotAllValuesAvailableFillsZeros() def _testTensorArrayReadOrPackNotAllValuesAvailableInferShapeFillsZeros(self): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) self.assertAllEqual( [[0.0, 0.0]], self.evaluate(ta.write(1, [[4.0, 5.0]]).read(0))) self.assertAllEqual([[[0.0, 0.0]], [[4.0, 5.0]], [[0.0, 0.0]]], self.evaluate(ta.write(1, [[4.0, 5.0]]).stack())) self.assertAllEqual([[0.0, 0.0], [4.0, 5.0], [0.0, 0.0]], self.evaluate(ta.write(1, [[4.0, 5.0]]).concat())) @test_util.disable_control_flow_v2("b/122324791") @test_util.run_v1_only("b/122324791") def testTensorArrayReadOrPackNotAllValuesAvailableInferShapeFillsZeros(self): self._testTensorArrayReadOrPackNotAllValuesAvailableInferShapeFillsZeros() def _testTensorArrayUnpackRead(self, tf_dtype): with self.cached_session(use_gpu=True): convert = _make_converter(tf_dtype) ta = _make_ta(3, "foo", dtype=tf_dtype) # Unpack a vector into scalars w0 = ta.unstack(convert([1.0, 2.0, 3.0])) r0 = w0.read(0) r1 = w0.read(1) r2 = w0.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual(convert(1.0), d0) self.assertAllEqual(convert(2.0), d1) self.assertAllEqual(convert(3.0), d2) # Unpack a matrix into vectors w1 = ta.unstack(convert([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])) r0 = w1.read(0) r1 = w1.read(1) r2 = w1.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual(convert([1.0, 1.1]), d0) self.assertAllEqual(convert([2.0, 2.1]), d1) self.assertAllEqual(convert([3.0, 3.1]), d2) # Try unpacking an empty matrix, which should not cause an error. w2 = ta.unstack(convert([[], [], []])) r0 = w2.read(0) r1 = w2.read(1) r2 = w2.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual(convert([]), d0) self.assertAllEqual(convert([]), d1) self.assertAllEqual(convert([]), d2) def _testTensorArrayUnpackReadMaybeLegacy(self): self._testTensorArrayUnpackRead(dtypes.float32) self._testTensorArrayUnpackRead(dtypes.float64) self._testTensorArrayUnpackRead(dtypes.int32) self._testTensorArrayUnpackRead(dtypes.int64) self._testTensorArrayUnpackRead(dtypes.complex64) self._testTensorArrayUnpackRead(dtypes.complex128) self._testTensorArrayUnpackRead(dtypes.string) def testTensorArrayUnpackRead(self): self._testTensorArrayUnpackReadMaybeLegacy() def _testTensorArraySplitRead(self, tf_dtype): with self.cached_session(use_gpu=True): convert = _make_converter(tf_dtype) # Split an empty vector ta = _make_ta(3, "foo", dtype=tf_dtype) lengths = constant_op.constant([0, 0, 0]) w0 = ta.split(convert([]), lengths=lengths) r0 = w0.read(0) r1 = w0.read(1) r2 = w0.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual(convert([]), d0) self.assertAllEqual(convert([]), d1) self.assertAllEqual(convert([]), d2) # Split a vector lengths = constant_op.constant([2, 0, 1]) w0 = ta.split(convert([1.0, 2.0, 3.0]), lengths=lengths) r0 = w0.read(0) r1 = w0.read(1) r2 = w0.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual(convert([1.0, 2.0]), d0) self.assertAllEqual(convert([]), d1) self.assertAllEqual(convert([3.0]), d2) # Split a matrix lengths = constant_op.constant([2, 0, 1]) w0 = ta.split( convert([[1.0, 101.0], [2.0, 201.0], [3.0, 301.0]]), lengths=lengths) r0 = w0.read(0) r1 = w0.read(1) r2 = w0.read(2) d0, d1, d2 = self.evaluate([r0, r1, r2]) self.assertAllEqual(convert([[1.0, 101.0], [2.0, 201.0]]), d0) self.assertAllEqual(convert([]).reshape(0, 2), d1) self.assertAllEqual(convert([[3.0, 301.0]]), d2) @test_util.run_deprecated_v1 def testTensorArraySplitRead(self): self._testTensorArraySplitRead(dtypes.float32) self._testTensorArraySplitRead(dtypes.float64) self._testTensorArraySplitRead(dtypes.int32) self._testTensorArraySplitRead(dtypes.int64) self._testTensorArraySplitRead(dtypes.complex64) self._testTensorArraySplitRead(dtypes.complex128) self._testTensorArraySplitRead(dtypes.string) @test_util.disable_control_flow_v2("v2 does not support TensorArray.grad.") @test_util.run_v1_only("v2 does not support TensorArray.grad.") def testSkipEagerTensorGradArrayWriteRead(self): with self.session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, infer_shape=False) g_ta = ta.grad("grad") w0 = ta.write(0, [[4.0, 5.0]]) w1 = w0.write(1, [[1.0]]) w2 = w1.write(2, -3.0) g_w0 = g_ta.write(0, [[5.0, 6.0]]) g_w1 = g_w0.write(1, [[2.0]]) g_w2 = g_w1.write(2, -2.0) r0 = w2.read(0) r1 = w2.read(1) r2 = w2.read(2) g_r0 = g_w2.read(0) g_r1 = g_w2.read(1) g_r2 = g_w2.read(2) d0, d1, d2, g_d0, g_d1, g_d2 = session.run([r0, r1, r2, g_r0, g_r1, g_r2]) self.assertAllEqual([[4.0, 5.0]], d0) self.assertAllEqual([[1.0]], d1) self.assertAllEqual(-3.0, d2) self.assertAllEqual([[5.0, 6.0]], g_d0) self.assertAllEqual([[2.0]], g_d1) self.assertAllEqual(-2.0, g_d2) @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradGrad(self): if not control_flow_util.ENABLE_CONTROL_FLOW_V2: self.skipTest("Legacy TensorArray does not support double derivatives.") with self.test_session(use_gpu=True) as session: x = constant_op.constant(4.0) ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=1, infer_shape=False) w0 = ta.write(0, x) r0 = w0.read(0) y = r0 * r0 g1 = gradients_impl.gradients(ys=[y], xs=[x]) g2 = gradients_impl.gradients(ys=[g1], xs=[x]) self.assertAllEqual([2.0], session.run(g2)) @test_util.disable_control_flow_v2("v2 does not support TensorArray.grad.") @test_util.run_v1_only("v2 does not support TensorArray.grad.") def testSkipEagerTensorGradArrayDynamicWriteRead(self): with self.session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=0, dynamic_size=True, infer_shape=False) w0 = ta.write(0, [[4.0, 5.0]]) w1 = w0.write(1, [[1.0]]) w2 = w1.write(2, -3.0) g_ta = w2.grad("grad") # Get gradient array here so we know the shape s = w2.size() g_s = g_ta.size() g_w0 = g_ta.write(0, [[5.0, 6.0]]) g_w1 = g_w0.write(1, [[2.0]]) g_w2 = g_w1.write(2, -2.0) r0 = w2.read(0) r1 = w2.read(1) r2 = w2.read(2) g_r0 = g_w2.read(0) g_r1 = g_w2.read(1) g_r2 = g_w2.read(2) d0, d1, d2, g_d0, g_d1, g_d2, vs, g_vs = session.run( [r0, r1, r2, g_r0, g_r1, g_r2, s, g_s]) self.assertAllEqual([[4.0, 5.0]], d0) self.assertAllEqual([[1.0]], d1) self.assertAllEqual(-3.0, d2) self.assertAllEqual([[5.0, 6.0]], g_d0) self.assertAllEqual([[2.0]], g_d1) self.assertAllEqual(-2.0, g_d2) self.assertAllEqual(3, vs) self.assertAllEqual(3, g_vs) @test_util.disable_control_flow_v2("v2 does not support TensorArray.grad.") @test_util.run_v1_only("v2 does not support TensorArray.grad.") def testSkipEagerTensorGradAccessTwiceReceiveSameObject(self): with self.session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) g_ta_0 = ta.grad("grad") g_ta_1 = ta.grad("grad") with ops.control_dependencies([g_ta_0.write(0, [[4.0, 5.0]]).flow]): # Write with one gradient handle, read with another copy of it r1_0 = g_ta_1.read(0) t_g_ta_0, t_g_ta_1, d_r1_0 = session.run( [g_ta_0.handle.op, g_ta_1.handle.op, r1_0]) self.assertAllEqual(t_g_ta_0, t_g_ta_1) self.assertAllEqual([[4.0, 5.0]], d_r1_0) def testTensorArrayWriteWrongIndexOrDataTypeFails(self): with self.session(use_gpu=True): ta = _make_ta(3, "foo", dtype=dtypes.float32) # Test writing the wrong datatype if (control_flow_util.ENABLE_CONTROL_FLOW_V2 and not context.executing_eagerly()): error_msg = ("Invalid data types; op elements string but list elements " "float") else: error_msg = ( "TensorArray dtype is (float|float32) but Op is trying to write " "dtype string") with self.assertRaisesOpError(error_msg): self.evaluate(ta.write(0, "wrong_type_scalar").flow) if (control_flow_util.ENABLE_CONTROL_FLOW_V2 and not context.executing_eagerly()): error_msg = "Trying to modify element -1 in a list with 3 elements." else: error_msg = "index -1" with self.assertRaisesOpError(error_msg): self.evaluate(ta.write(-1, 3.0).flow) if (control_flow_util.ENABLE_CONTROL_FLOW_V2 and not context.executing_eagerly()): error_msg = "Trying to modify element 3 in a list with 3 elements" else: error_msg = ("Tried to write to index 3 but array is not " "resizeable and size is: 3") # Test reading from too large an index with self.assertRaisesOpError(error_msg): self.evaluate(ta.write(3, 3.0).flow) def testTensorArrayReadWrongIndexOrDataTypeFails(self): with self.session(use_gpu=True): ta = _make_ta(3, "foo", dtype=dtypes.float32) w0 = ta.write(0, [[4.0, 5.0]]) # Test reading wrong datatype (only possible when constructing graphs). if (not context.executing_eagerly() and not control_flow_util.ENABLE_CONTROL_FLOW_V2): r0_bad = gen_data_flow_ops.tensor_array_read_v3( handle=w0.handle, index=0, dtype=dtypes.float64, flow_in=w0.flow) with self.assertRaisesOpError( "TensorArray dtype is float but Op requested dtype double."): self.evaluate(r0_bad) if (control_flow_util.ENABLE_CONTROL_FLOW_V2 and not context.executing_eagerly()): error_msg = "Trying to access element -1 in a list with 3 elements." else: error_msg = "index -1" # Test reading from a negative index, which is not allowed with self.assertRaisesOpError(error_msg): self.evaluate(ta.read(-1)) if (control_flow_util.ENABLE_CONTROL_FLOW_V2 and not context.executing_eagerly()): error_msg = "Trying to access element 3 in a list with 3 elements." else: error_msg = "Tried to read from index 3 but array size is: 3" # Test reading from too large an index with self.assertRaisesOpError(error_msg): self.evaluate(ta.read(3)) @test_util.disable_control_flow_v2("v2 allows multiple writes.") @test_util.run_v1_only("v2 allows multiple writes.") def testSkipEagerTensorArrayWriteMultipleFails(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) with self.assertRaisesOpError( "Could not write to TensorArray index 2 because " "it has already been written to."): self.evaluate(ta.write(2, 3.0).write(2, 3.0).flow) def testTensorArrayConcatIncompatibleShapesFails(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, infer_shape=False) w1 = ta.write(0, 3.0) w2 = w1.write(1, 4.0) w3 = w2.write(2, [3.0]) with self.assertRaisesOpError( "Concat saw a scalar shape at index 0 but requires at least vectors"): self.evaluate(w3.concat()) ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, infer_shape=False) w1 = ta.write(0, [3.0]) w2 = w1.write(1, [4.0]) w3 = w2.write(2, [[3.0]]) # The exact error messages differ between eager execution and graph # construction as the former bubbles up the error from array_op.concat. with self.assertRaisesOpError("shape"): self.evaluate(w3.concat()) def testTensorArraySplitIncompatibleShapesFails(self): with self.session(use_gpu=True): in_eager_mode = context.executing_eagerly() ta = _make_ta(3, "foo") with self.assertRaisesOpError( r"Expected lengths to be a vector, received shape: \[\]"): if in_eager_mode: self.evaluate(ta.split([1.0, 2.0, 3.0], 1)) else: lengths = array_ops.placeholder(dtypes.int64) ta.split([1.0, 2.0, 3.0], lengths).flow.eval(feed_dict={lengths: 1}) error_msg = ("Unused values in tensor. Length of tensor: 3 Values used: 1" if control_flow_util.ENABLE_CONTROL_FLOW_V2 and not in_eager_mode else r"Expected sum of lengths to be equal to values.shape\[0\], " r"but sum of lengths is 1 and value's shape is: \[3\]") with self.assertRaisesOpError(error_msg): self.evaluate(ta.split([1.0, 2.0, 3.0], [1]).flow) ta = _make_ta(1, "baz") if control_flow_util.ENABLE_CONTROL_FLOW_V2 and not in_eager_mode: with self.assertRaisesRegexp( ValueError, "Shape must be at least rank 1 but is rank 0"): self.evaluate(ta.split(1.0, [1]).flow) else: with self.assertRaisesOpError( r"Expected value to be at least a vector, but received shape: \[\]" ): self.evaluate(ta.split(1.0, [1]).flow) if not control_flow_util.ENABLE_CONTROL_FLOW_V2 or in_eager_mode: ta = _make_ta(2, "buz") with self.assertRaisesOpError( r"TensorArray's size is not equal to the size of lengths " r"\(2 vs. 1\), and the TensorArray is not marked as " r"dynamically resizeable"): self.evaluate(ta.split([1.0], [1]).flow) def _testTensorArrayWriteGradientAddMultipleAdds(self, dtype): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtype, tensor_array_name="foo", size=3, infer_shape=False) ta_grad = ta.grad("grad") c = lambda x: np.asarray(x, dtype=dtype.as_numpy_dtype) w0 = ta.write(2, c(3.0)) w1 = w0.write(2, c(4.0)) w0_grad = ta_grad.write(2, c(3.0)) w1_grad = w0_grad.write(2, c(4.0)) w2_grad = w1_grad.write(2, c(5.0)) # Assert that aggregation works correctly self.assertAllEqual(c(12.00), w2_grad.read(2).eval()) # Assert that if multiple_writes_aggregate is not enabled, # multiple writes raise an exception. with self.assertRaisesOpError( r"TensorArray foo_.*: Could not write to TensorArray index 2 because " r"it has already been written to."): w1.flow.eval() # Using differing shapes causes an exception wb0_grad = ta_grad.write(1, c(1.0)) wb1_grad = wb0_grad.write(1, c([1.0])) with self.assertRaisesOpError( r"Could not aggregate to TensorArray index 1 because the " r"existing shape is \[\] but the new input shape is \[1\]"): wb1_grad.flow.eval() @test_util.disable_control_flow_v2("v2 does not support TensorArray.grad.") @test_util.run_v1_only("v2 does not support TensorArray.grad.") def testSkipEagerTensorArrayWriteGradientAddMultipleAdds(self): for dtype in (dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128): self._testTensorArrayWriteGradientAddMultipleAdds(dtype) @test_util.disable_control_flow_v2("Low level legacy TA op test.") @test_util.run_v1_only("Low level legacy TA op test.") def testSkipEagerTensorArrayGradWithShapeKnownElementShape(self): with self.session(use_gpu=True) as sess: ta = tensor_array_ops.TensorArray( size=3, dtype=dtypes.float32, element_shape=tensor_shape.TensorShape([2, 3])) handle, flow = data_flow_ops.tensor_array_grad_with_shape( handle=ta.handle, flow_in=ta.flow, shape_to_prepend=tensor_shape.TensorShape([4, 5]), source="source") ta_grad = tensor_array_ops.TensorArray( dtypes.float32, handle=handle, flow=flow) value = array_ops.placeholder(dtypes.float32) ta_grad = ta_grad.write(0, value) read_value = ta_grad.read(0) # Make sure shape inference worked. self.assertAllEqual([None, None, 2, 3], read_value.shape.as_list()) # Writing with wrong shape should not work. with self.assertRaisesRegexp(errors.InvalidArgumentError, "Could not write to TensorArray"): fed_value = np.random.random([2, 3]) sess.run(read_value, feed_dict={value: fed_value}) # Writing with correct shape should work. fed_value = np.random.random([4, 5, 2, 3]) self.assertAllClose(fed_value, sess.run(read_value, feed_dict={value: fed_value})) @test_util.disable_control_flow_v2("Low level legacy TA op test.") @test_util.run_v1_only("Low level legacy TA op test.") def testSkipEagerTensorArrayGradWithShapeUnknownElementShape(self): with self.session(use_gpu=True) as sess: ta = tensor_array_ops.TensorArray( size=3, dtype=dtypes.float32, element_shape=None) # Note that element_shape is unknown handle, flow = data_flow_ops.tensor_array_grad_with_shape( handle=ta.handle, flow_in=ta.flow, shape_to_prepend=tensor_shape.TensorShape([4, 5]), source="source") ta_grad = tensor_array_ops.TensorArray( dtypes.float32, handle=handle, flow=flow) value = array_ops.placeholder(dtypes.float32) ta_grad = ta_grad.write(0, value) read_value = ta_grad.read(0) # Make sure shape inference worked. self.assertIsNone(read_value.shape.ndims) # Write with some shape and check read value. fed_value = np.random.random([4, 5, 7]) self.assertAllClose(fed_value, sess.run(read_value, feed_dict={value: fed_value})) def testMultiTensorArray(self): with self.session(use_gpu=True): h1 = tensor_array_ops.TensorArray( size=1, dtype=dtypes.float32, tensor_array_name="foo") w1 = h1.write(0, 4.0) r1 = w1.read(0) h2 = tensor_array_ops.TensorArray( size=1, dtype=dtypes.float32, tensor_array_name="bar") w2 = h2.write(0, 5.0) r2 = w2.read(0) r = r1 + r2 val = self.evaluate(r) self.assertAllClose(9.0, val) def _testTensorArrayGradientWriteReadType(self, dtype): with self.cached_session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.as_dtype(dtype), tensor_array_name="foo", size=3, infer_shape=False) c = lambda x: np.array(x, dtype=dtype) value_0 = constant_op.constant(c([[4.0, 5.0]])) value_1 = constant_op.constant(c(3.0)) w0 = ta.write(0, value_0) w1 = w0.write(1, value_1) r0 = w1.read(0) r1 = w1.read(1) r0_2 = w1.read(0) # Test individual components' gradients grad_just_r0 = gradients_impl.gradients( ys=[r0], xs=[value_0], grad_ys=[c([[2.0, 3.0]])]) grad_just_r0_vals = session.run(grad_just_r0) self.assertAllEqual(c([[2.0, 3.0]]), grad_just_r0_vals[0]) grad_r0_r0_2 = gradients_impl.gradients( ys=[r0, r0_2], xs=[value_0], grad_ys=[c([[2.0, 3.0]]), c([[1.0, -1.0]])]) grad_r0_r0_2_vals = session.run(grad_r0_r0_2) self.assertAllEqual(c([[3.0, 2.0]]), grad_r0_r0_2_vals[0]) grad_just_r1 = gradients_impl.gradients( ys=[r1], xs=[value_1], grad_ys=[c(-2.0)]) grad_just_r1_vals = session.run(grad_just_r1) self.assertAllEqual(c(-2.0), grad_just_r1_vals[0]) # Test combined gradients grad = gradients_impl.gradients( ys=[r0, r0_2, r1], xs=[value_0, value_1], grad_ys=[c([[2.0, 3.0]]), c([[1.0, -1.0]]), c(-2.0)]) grad_vals = session.run(grad) self.assertEqual(len(grad_vals), 2) self.assertAllEqual(c([[3.0, 2.0]]), grad_vals[0]) self.assertAllEqual(c(-2.0), grad_vals[1]) @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradientWriteRead(self): for dtype in (np.float32, np.float64, np.complex64, np.complex128): self._testTensorArrayGradientWriteReadType(dtype) def _testTensorArrayGradientWritePackConcatAndRead(self): with self.cached_session(use_gpu=True) as sess: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=2, clear_after_read=False) value_0 = constant_op.constant([-1.0, 1.0]) value_1 = constant_op.constant([-10.0, 10.0]) w0 = ta.write(0, value_0) w1 = w0.write(1, value_1) p0 = w1.stack() r0 = w1.read(0) s0 = w1.concat() # Test gradient accumulation between read(0), pack(), and concat() with ops.control_dependencies([p0, r0, s0]): grad_r = gradients_impl.gradients( ys=[p0, r0, s0], xs=[value_0, value_1], grad_ys=[ [[2.0, 3.0], [4.0, 5.0]], # pack gradient [-0.5, 1.5], # read(0) gradient [20.0, 30.0, 40.0, 50.0] ]) # concat gradient grad_vals = self.evaluate(grad_r) # 2 + 2 entries self.assertAllClose([2.0 - 0.5 + 20.0, 3.0 + 1.5 + 30.0], grad_vals[0]) self.assertAllEqual([4.0 + 40.0, 5.0 + 50.0], grad_vals[1]) @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradientWritePackConcatAndRead(self): self._testTensorArrayGradientWritePackConcatAndRead() @test_util.disable_control_flow_v2("v2 does not support clear_after_read.") @test_util.run_v1_only("v2 does not support clear_after_read.") def testTensorArrayReadTwice(self): with self.session(use_gpu=True): value = constant_op.constant([[1.0, -1.0], [10.0, -10.0]]) ta_readonce = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=2) w_readonce = ta_readonce.unstack(value) r0_readonce = w_readonce.read(0) with self.assertRaisesOpError( r"Could not read index 0 twice because it was cleared after a " r"previous read \(perhaps try setting clear_after_read = false\?\)"): with ops.control_dependencies([r0_readonce]): self.evaluate(w_readonce.read(0)) ta_readtwice = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=2, clear_after_read=False) w_readtwice = ta_readtwice.unstack(value) r0_readtwice = w_readtwice.read(0) with ops.control_dependencies([r0_readtwice]): r1_readtwice = w_readtwice.read(0) self.assertAllEqual([1.0, -1.0], self.evaluate(r1_readtwice)) def _testTensorArrayGradientUnpackRead(self): with self.cached_session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=2, clear_after_read=False) value = constant_op.constant([[1.0, -1.0], [10.0, -10.0]]) w = ta.unstack(value) r0 = w.read(0) r0_1 = w.read(0) r1 = w.read(1) # Test combined gradients + aggregation of read(0) grad = gradients_impl.gradients( ys=[r0, r0_1, r1], xs=[value], grad_ys=[[2.0, 3.0], [-1.5, 1.5], [4.0, 5.0]]) grad_vals = session.run(grad) self.assertEqual(len(grad_vals), 1) self.assertAllEqual([[2.0 - 1.5, 3.0 + 1.5], [4.0, 5.0]], grad_vals[0]) @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradientUnpackRead(self): self._testTensorArrayGradientUnpackRead() @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradientSplitConcat(self): with self.session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=2, infer_shape=False) value = constant_op.constant( [[1.0, -1.0], [10.0, -10.0], [100.0, -100.0]]) w = ta.split(value, [2, 1]) r = w.concat() # Test combined gradients grad = gradients_impl.gradients( ys=[r], xs=[value], grad_ys=[[[2.0, -2.0], [20.0, -20.0], [200.0, -200.0]]]) grad_vals = session.run(grad) self.assertEqual(len(grad_vals), 1) self.assertAllEqual([[2.0, -2.0], [20.0, -20.0], [200.0, -200.0]], grad_vals[0]) def _testTensorArrayGradientDynamicUnpackRead(self): with self.cached_session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=0, dynamic_size=True) value = constant_op.constant([[1.0, -1.0], [10.0, -10.0]]) w = ta.unstack(value) r0 = w.read(0) r1 = w.read(1) # Test combined gradients + aggregation of read(0) grad = gradients_impl.gradients( ys=[r0, r1], xs=[value], grad_ys=[[2.0, 3.0], [4.0, 5.0]]) grad_vals = session.run(grad) self.assertEqual(len(grad_vals), 1) self.assertAllEqual([[2.0, 3.0], [4.0, 5.0]], grad_vals[0]) @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradientDynamicUnpackRead(self): self._testTensorArrayGradientDynamicUnpackRead() def testCloseTensorArray(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) self.evaluate(ta.close()) def testSizeTensorArray(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) s = ta.size() self.assertAllEqual(3, self.evaluate(s)) def testWriteCloseTensorArray(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, infer_shape=False) w0 = ta.write(0, [[4.0, 5.0]]) w1 = w0.write(1, [3.0]) self.evaluate(w1.close()) # Expected to run without problems def _testWhileLoopWritePackGradients(self, dynamic_size, dtype): np_dtype = dtype.as_numpy_dtype with self.cached_session(use_gpu=True): def func(v0, state0, var): ta = tensor_array_ops.TensorArray( dtype=dtype, tensor_array_name="foo", size=0 if dynamic_size else 3, dynamic_size=dynamic_size) time_0 = array_ops.identity(0) def body(time, ta_t, state): sliced = array_ops.slice( v0, begin=array_ops.stack([time, 0]), size=[1, -1]) sliced = array_ops.squeeze(sliced) out = sliced + var + state state += sliced ta_t = ta_t.write(time, out) return (time + 1, ta_t, state) (unused_0, h_final, unused_2) = control_flow_ops.while_loop( cond=lambda time, unused_1, unused_2: time < 3, body=body, loop_vars=(time_0, ta, state0), shape_invariants=(time_0.get_shape(), tensor_shape.unknown_shape(), tensor_shape.unknown_shape()), parallel_iterations=3) vout = h_final.stack() return vout v0 = array_ops.identity(np.arange(3 * 5, dtype=np_dtype).reshape(3, 5)) state0 = array_ops.identity(np.array([1] * 5, dtype=np_dtype)) init_val = np.arange(100, 105, dtype=np_dtype) var = variable_scope.get_variable( "var", shape=init_val.shape, dtype=np_dtype, initializer=init_ops.constant_initializer(init_val)) vout = func(v0, state0, var) grad_val = -np.arange(3 * 5, dtype=np_dtype).reshape(3, 5) if context.executing_eagerly(): grad_fn = backprop.gradients_function(func) v0_grad, state0_grad, var_grad = grad_fn(v0, state0, var, dy=grad_val) else: v0_grad = gradients_impl.gradients([vout], [v0], [grad_val])[0] state0_grad = gradients_impl.gradients([vout], [state0], [grad_val])[0] var_grad = gradients_impl.gradients([vout], [var], [grad_val])[0] self.evaluate(variables.global_variables_initializer()) state0_t, var_t, v0_t, vout_t, v0_grad_t, var_grad_t, state0_grad_t = ( self.evaluate( ([state0, var, v0, vout, v0_grad, var_grad, state0_grad]))) just_v0_grad_t = self.evaluate(v0_grad) # state = [ state0 | state0 + v0[0] | state0 + v0[0] + v0[1] ] # vout = [ v0[0] + var + state[0] | # v0[1] + var + state[1] | # v0[2] + var + state[2] ] # = [ v0[0] + var + state0 | # v0[1] + var + state0 + v0[0] | # v0[2] + var + state0 + v0[0] + v0[1] ] # # d(vout[0])/d(v0) = [1 | 0 | 0 ] # d(vout[1])/d(v0) = [1 | 1 | 0 ] # d(vout[2])/d(v0) = [1 | 1 | 1 ] # d(vout)/d(var) = [1 | 1 | 1] # d(vout)/d(state0) = [ 1 | 1 | 1 ] state_per_time = np.array( [state0_t, state0_t + v0_t[0, :], state0_t + v0_t[0, :] + v0_t[1, :]]) # Compare forward prop self.assertAllClose(v0_t + var_t + state_per_time, vout_t) # Compare backward prop expected_v0_grad_t = np.array([ grad_val[0, :] + grad_val[1, :] + grad_val[2, :], grad_val[1, :] + grad_val[2, :], grad_val[2, :] ]) self.assertAllEqual(expected_v0_grad_t, v0_grad_t) self.assertAllEqual(expected_v0_grad_t, just_v0_grad_t) self.assertAllClose(grad_val.sum(axis=0), var_grad_t) self.assertAllClose(grad_val.sum(axis=0), state0_grad_t) def testWhileLoopWritePackGradients(self): self._testWhileLoopWritePackGradients( dynamic_size=False, dtype=dtypes.float32) # TODO(ebrevdo): re-enable when While supports non-float32 gradients. # self._testWhileLoopWritePackGradients( # dynamic_size=False, dtype=tf.int64) @test_util.run_v1_only("b/117943489") def testSkipEagerWhileLoopDynamicWritePackGradients(self): self._testWhileLoopWritePackGradients( dynamic_size=True, dtype=dtypes.float32) def testGradSerialTwoLoops(self): with self.session(use_gpu=True): def loop(x): num_steps = 100 acc = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=num_steps, clear_after_read=False, element_shape=tensor_shape.scalar()) i = constant_op.constant(0, name="i") c = lambda i, acc: i < 5 def b(i, acc): x1 = control_flow_ops.cond( math_ops.equal(i, 0), lambda: x, lambda: math_ops.multiply(acc.read(i - 1), 2.0)) return i + 1, acc.write(i, x1) i1, acc1 = control_flow_ops.while_loop(c, b, [i, acc]) z = constant_op.constant(0.0) def fn(i, acc): return i + 1, acc.write(i, z) _, acc2 = control_flow_ops.while_loop(lambda i, acc: i < num_steps, fn, [i1, acc1]) r = acc2.stack() return r x = constant_op.constant(2.0, name="x") if context.executing_eagerly(): grad = backprop.gradients_function(loop)(x)[0] else: grad = gradients_impl.gradients(loop(x), [x])[0] self.assertAllClose(31.0, self.evaluate(grad)) @test_util.run_deprecated_v1 def testSkipEagerSumOfTwoReadVariablesWithoutRepeatGrad(self): with self.session(use_gpu=True) as session: a = array_ops.identity( np.arange( 3 * 5, dtype=np.float32).reshape(3, 5) + 1) b = array_ops.identity( np.arange( 3 * 5, dtype=np.float32).reshape(3, 5) + 1 + 3 * 5) ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=2) ta = ta.write(0, a, name="write_a") ta = ta.write(1, b, name="write_b") c = ( ta.read( 0, name="read_a_0") + # a + b ta.read( 1, name="read_b_0")) g0 = -(np.arange(3 * 5, dtype=np.float32).reshape(3, 5) + 1) grad_a = gradients_impl.gradients([c], [a], [g0])[0] # d(a+b)/da = 1 grad_b = gradients_impl.gradients([c], [b], [g0])[0] # d(a+b)/db = 1 # Test gradients calculated individually grad_a_t, = session.run([grad_a]) self.assertAllEqual(grad_a_t, g0) grad_b_t, = session.run([grad_b]) self.assertAllEqual(grad_b_t, g0) # Test gradients calculated jointly joint_grad_a_t, joint_grad_b_t = session.run([grad_a, grad_b]) self.assertAllEqual(joint_grad_a_t, g0) self.assertAllEqual(joint_grad_b_t, g0) def _grad_source_for_name(self, name): return tensor_array_grad._GetGradSource(constant_op.constant(0, name=name)) @test_util.run_deprecated_v1 def testSkipEagerGetGradSource_Invalid(self): with self.assertRaises(ValueError): self._grad_source_for_name("") with self.assertRaises(ValueError): self._grad_source_for_name("foo") with self.assertRaises(ValueError): self._grad_source_for_name("foo/bar") @test_util.run_deprecated_v1 def testSkipEagerGetGradSource_NoEnclosingScope(self): self.assertEqual("gradients:0", self._grad_source_for_name("gradients")) self.assertEqual("gradients_0:0", self._grad_source_for_name("gradients_0")) self.assertEqual("gradients", self._grad_source_for_name("gradients/foo")) self.assertEqual("gradients_0", self._grad_source_for_name("gradients_0/foo")) self.assertEqual("gradients", self._grad_source_for_name("gradients/foo/bar")) self.assertEqual("gradients_0", self._grad_source_for_name("gradients_0/foo/bar")) @test_util.run_deprecated_v1 def testSkipEagerGetGradSource_EnclosingScope(self): self.assertEqual("foo/gradients:0", self._grad_source_for_name("foo/gradients")) self.assertEqual("foo/gradients_0:0", self._grad_source_for_name("foo/gradients_0")) self.assertEqual("foo/gradients", self._grad_source_for_name("foo/gradients/bar")) self.assertEqual("foo/gradients_0", self._grad_source_for_name("foo/gradients_0/bar")) self.assertEqual("foo/bar/gradients", self._grad_source_for_name("foo/bar/gradients/baz")) self.assertEqual("foo/bar/gradients_0", self._grad_source_for_name("foo/bar/gradients_0/baz")) @test_util.run_deprecated_v1 def testSkipEagerGetGradSource_NestedUsesInnermost(self): self.assertEqual( "foo/gradients/bar/gradients_0", self._grad_source_for_name("foo/gradients/bar/gradients_0/baz")) @test_util.run_deprecated_v1 def testSkipEagerWriteShape(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) c0 = constant_op.constant([4.0, 5.0]) w0 = ta.write(0, c0) r0 = w0.read(0) self.assertAllEqual(c0.get_shape(), r0.get_shape()) ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) c1 = constant_op.constant([6.0, 7.0]) w1 = w0.write(1, c1) r0 = w1.read(0) r1 = w1.read(1) self.assertAllEqual(c0.get_shape(), r0.get_shape()) self.assertAllEqual(c1.get_shape(), r1.get_shape()) ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3) c2 = constant_op.constant([4.0, 5.0, 6.0]) with self.assertRaises(ValueError): w0.write(0, c2) @test_util.run_deprecated_v1 def testSkipEagerPartlyUnknownShape(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=6) c0 = array_ops.placeholder(dtypes.float32, [None, None, None, 3]) w0 = ta.write(0, c0) r0 = w0.read(0) self.assertAllEqual([None, None, None, 3], r0.get_shape().as_list()) c1 = array_ops.placeholder(dtypes.float32, [None, None, None, 3]) w1 = w0.write(1, c1) r1 = w1.read(0) self.assertAllEqual([None, None, None, 3], r1.get_shape().as_list()) # Writing less specific shape (doesn't change type.) c2 = array_ops.placeholder(dtypes.float32, [None, None, None, None]) w2 = w1.write(2, c2) r2 = w2.read(0) self.assertAllEqual([None, None, None, 3], r2.get_shape().as_list()) # Writing more specific shape in one dimension and less specific in # another. c3 = array_ops.placeholder(dtypes.float32, [None, None, 2, None]) w3 = w2.write(3, c3) r3 = w3.read(0) self.assertAllEqual([None, None, 2, 3], r3.get_shape().as_list()) # Writing partly defined shape using TensorArray.scatter. c4 = array_ops.placeholder(dtypes.float32, [2, None, 4, 2, 3]) w4 = w3.scatter([4, 5], c4) r4 = w4.read(0) self.assertAllEqual([None, 4, 2, 3], r4.get_shape().as_list()) # Writing fully defined shape using TensorArray.split. c5 = array_ops.placeholder(dtypes.float32, [10, 4, 2, 3]) w5 = w4.split(c5, constant_op.constant([5, 5])) r5 = w5.read(0) self.assertAllEqual([5, 4, 2, 3], r5.get_shape().as_list()) def _testUnpackShape(self): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=0, dynamic_size=True, infer_shape=True) value = constant_op.constant( [[1.0, -1.0], [10.0, -10.0], [100.0, -100.0]]) w0 = ta.unstack(value) r0 = w0.read(0) self.assertAllEqual((2,), r0.get_shape()) c1 = constant_op.constant([4.0, 5.0]) w1 = w0.write(3, c1) if not control_flow_util.ENABLE_CONTROL_FLOW_V2: # TensorArray v2 does not support clear_after_read. with self.assertRaisesOpError( r"Could not read index 0 twice because it was cleared after a " r"previous read \(perhaps try setting clear_after_read = false\?\)" ): with ops.control_dependencies([r0]): self.evaluate(w1.read(0)) r1 = w1.read(1) self.assertAllEqual(c1.get_shape(), r1.shape) c2 = constant_op.constant([4.0, 5.0, 6.0]) with self.assertRaises(ValueError): w1.write(4, c2) @test_util.run_v1_only("b/117943489") def testUnpackShape(self): self._testUnpackShape() @test_util.run_deprecated_v1 def testSplitShape(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=0, dynamic_size=True, infer_shape=True) value = constant_op.constant([[1.0, -1.0], [2.0, -2.0], [3.0, -3.0]]) w0 = ta.split(value, [1, 1, 1]) r0 = w0.read(0) self.assertAllEqual((1, 2), r0.get_shape()) ta1 = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo1", size=0, dynamic_size=True, infer_shape=True) w0 = ta1.split(value, [1, 2]) r0 = w0.read(0) if context.executing_eagerly(): self.assertEqual((1, 2), r0.get_shape()) self.assertEqual((2, 2), w0.read(1).get_shape()) else: self.assertEqual(r0.get_shape().ndims, None) if not control_flow_util.ENABLE_CONTROL_FLOW_V2: self.assertEqual( tensor_shape.TensorShape( ta1.handle.op.get_attr("element_shape")).ndims, None) @test_util.run_deprecated_v1 def testSkipEagerWriteUnknownShape(self): with self.session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=3, infer_shape=True) c0 = array_ops.placeholder(dtypes.float32) w0 = ta.write(0, c0) r0 = w0.read(0) self.assertAllEqual(r0.get_shape(), tensor_shape.unknown_shape()) def _testGradientWhenNotAllComponentsRead(self): with self.cached_session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=2) x = constant_op.constant([2.0, 3.0]) w = ta.unstack(x) r0 = w.read(0) # calculate (dr0/dx0, dr0/dx1). since r0 = x0, gradients are (1, 0). grad_r0 = gradients_impl.gradients(ys=[r0], xs=[x], grad_ys=[1.0]) grad_r0_vals = session.run(grad_r0)[0] self.assertAllEqual(grad_r0_vals, [1.0, 0.0]) # TODO(srbs): Figure out how to enable this. This is probably failing # because we are trying to stack a TensorList with invalid tensors. # That is because we do not receive gradients for all list indices. # Figure out how TensorArray handles this. def disabletestGradientWhenNotAllComponentsRead(self): self._testGradientWhenNotAllComponentsRead() def _testTensorArrayUnpackDynamic(self): with self.cached_session(use_gpu=True) as sess: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=3, dynamic_size=True) x = constant_op.constant([1.0, 2.0, 3.0]) w0 = ta.unstack(x) w1 = w0.write(3, 4.0) r = w1.stack() self.assertAllEqual(np.array([1.0, 2.0, 3.0, 4.0]), self.evaluate(r)) grad = gradients_impl.gradients(ys=[r], xs=[x]) self.assertAllEqual(np.array([1.0, 1.0, 1.0]), self.evaluate(grad)[0]) @test_util.run_v1_only("b/117943489") def testSkipEagerTensorArrayUnpackDynamic(self): self._testTensorArrayUnpackDynamic() @test_util.run_v1_only("b/117943489") def testSkipEagerTensorArraySplitDynamic(self): with self.session(use_gpu=True) as sess: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=3, dynamic_size=True) x = constant_op.constant([1.0, 2.0, 3.0]) w0 = ta.split(x, [1, 1, 1]) w1 = w0.write(3, [4.0]) r = w1.concat() self.assertAllEqual(np.array([1.0, 2.0, 3.0, 4.0]), self.evaluate(r)) grad = gradients_impl.gradients(ys=[r], xs=[x]) self.assertAllEqual(np.array([1.0, 1.0, 1.0]), self.evaluate(grad)[0]) def _testTensorArrayEvalEmpty(self): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=0, dynamic_size=False, infer_shape=False) v2_msg = ("Tried to stack elements of a empty list with non-fully-defined" " element_shape") v1_msg = ( "TensorArray has size zero, but element shape <unknown> is not " "fully defined. Currently only static shapes are supported when " "packing zero-size TensorArrays.") with self.assertRaisesOpError( v2_msg if control_flow_util.ENABLE_CONTROL_FLOW_V2 else v1_msg): ta.stack().eval() @test_util.run_v1_only("b/120545219") def testSkipEagerTensorArrayEvalEmpty(self): self._testTensorArrayEvalEmpty() # this test is ill-defined for Eager mode --- unpacking an empty tensor # gives an empty list / there is not equivalent of "mark_used" in Eager def _testTensorArrayEvalEmptyWithDefault(self): with self.cached_session(use_gpu=True): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=0, dynamic_size=False, infer_shape=True) self.assertEqual(0, ta.size().eval()) # Don't actually perform the pack. This stores the static shape. if control_flow_util.ENABLE_CONTROL_FLOW_V2: ta = ta.unstack(array_ops.zeros([0, 3, 5])) else: ta.unstack(array_ops.zeros([0, 3, 5])).mark_used() packed = ta.stack() concatenated = ta.concat() self.assertAllEqual([0, 3, 5], self.evaluate(packed).shape) # Concatenating zero tensors along their first dimension gives a # first dimension of zero self.assertAllEqual([0, 5], self.evaluate(concatenated).shape) @test_util.run_v1_only("b/117943489") def testSkipEagerTensorArrayEvalEmptyWithDefault(self): self._testTensorArrayEvalEmptyWithDefault() @test_util.run_v1_only("b/117943489") def testSkipEagerTensorArrayScatterReadAndGradients(self): with self.session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=0, dynamic_size=True) indices = constant_op.constant([1, 8]) value = constant_op.constant([[1.0, -1.0], [10.0, -10.0]]) w = ta.scatter(indices, value) r0 = w.read(1) r1 = w.read(8) # Test combined gradients + aggregation of read(0) grad = gradients_impl.gradients( ys=[r0, r1], xs=[value], grad_ys=[[2.0, 3.0], [4.0, 5.0]]) read_vals, grad_vals = session.run([[r0, r1], grad]) self.assertEqual(len(read_vals), 2) self.assertEqual(len(grad_vals), 1) self.assertAllEqual([1.0, -1.0], read_vals[0]) self.assertAllEqual([10.0, -10.0], read_vals[1]) self.assertAllEqual([[2.0, 3.0], [4.0, 5.0]], grad_vals[0]) @test_util.run_v1_only("b/118890905") def testTensorArrayWriteGatherAndGradients(self): with self.session(use_gpu=True) as session: ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, tensor_array_name="foo", size=0, dynamic_size=True) def func(values): indices = constant_op.constant([1, 8]) w = ta.unstack(values) g = w.gather(indices) return g values = constant_op.constant([[1.0 * x, -1.0 * x] for x in range(10)]) g = func(values) grad_ys = [[[2.0, 3.0], [4.0, 5.0]]] # Test combined gradients + aggregation of read(0) if context.executing_eagerly(): g_vals = [g] grad_vals = backprop.gradients_function(func)( values, dy=constant_op.constant(grad_ys[0], dtype=dtypes.float32)) else: grad = gradients_impl.gradients(ys=[g], xs=[values], grad_ys=grad_ys) g_vals, grad_vals = session.run([[g], grad]) # Gradients for 8 of the 10 unread components are zero. expected_grad = np.zeros((10, 2)) expected_grad[1] = [2.0, 3.0] expected_grad[8] = [4.0, 5.0] self.assertEqual(len(g_vals), 1) self.assertEqual(len(grad_vals), 1) self.assertAllEqual([[1.0, -1.0], [8.0, -8.0]], g_vals[0]) self.assertAllEqual(expected_grad, grad_vals[0]) @test_util.disable_control_flow_v2("colocate_with not supported in v2.") @test_util.run_v1_only("b/120545219") def testSkipEagerTensorArrayGetsDeviceFromFirstWrite(self): with ops.device("/job:worker/task:0/cpu:0"): # this initial device will be ignored. ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=2) with ops.device("/job:worker/task:1/cpu:0"): # the first write sets the op's device. ta = ta.write(0, 1.0) with ops.device("/job:worker/task:2/cpu:0"): # subsequent writes do not modify the op's device. ta = ta.write(1, 1.0) # The gradient TA will sit on the same device as the forward TA. ta_grad = ta.grad("grad") flows = [ta.flow, ta_grad.flow] # Similar tests for unpack and split with ops.device("/job:worker/task:0/cpu:0"): ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=3) with ops.device("/job:worker/task:1/cpu:0"): ta = ta.unstack([1.0, 2.0]) with ops.device("/job:worker/task:2/cpu:0"): ta = ta.write(2, 3.0) flows.append(ta.flow) with ops.device("/job:worker/task:0/cpu:0"): ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=2) with ops.device("/job:worker/task:1/cpu:0"): ta = ta.split([1.0, 2.0], [1, 1]) flows.append(ta.flow) session = session_lib.Session(self._workers[0].target) run_options = config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() session.run(flows, options=run_options, run_metadata=run_metadata) self.assertTrue(run_metadata.HasField("step_stats")) dev_stats = {d.device: d.node_stats for d in run_metadata.step_stats.dev_stats} for d in dev_stats: if "/task:1/" in d: self.assertTrue( [s for s in dev_stats[d] if "/TensorArray" in s.node_name]) else: self.assertFalse( [s for s in dev_stats[d] if "/TensorArray" in s.node_name]) @test_util.disable_control_flow_v2("colocate_with not supported in v2.") @test_util.run_v1_only("b/120545219") def testSkipEagerTensorArrayGetsDeviceFromFirstWriteInWhileLoop(self): with ops.device("/job:worker/task:0/cpu:0"): ta = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=2) def _body(i, ta_i): with ops.device("/job:worker/task:1/cpu:0"): return i + 1, ta_i.write(i, constant_op.constant(0.0)) _, ta_out = control_flow_ops.while_loop( lambda i, ta: i < 2, _body, loop_vars=[0, ta]) session = session_lib.Session(self._workers[0].target) run_options = config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() session.run(ta_out.flow, options=run_options, run_metadata=run_metadata) self.assertTrue(run_metadata.HasField("step_stats")) dev_stats = {d.device: d.node_stats for d in run_metadata.step_stats.dev_stats} for d in dev_stats: if "/task:1/" in d: self.assertTrue( [s for s in dev_stats[d] if "TensorArray" == s.node_name]) else: self.assertFalse( [s for s in dev_stats[d] if "TensorArray" == s.node_name]) @test_util.disable_control_flow_v2("colocate_with not supported in v2.") @test_util.run_v1_only("b/120545219") def testSkipEagerTensorArrayDisabledColocateWithFirstWriteCall(self): with ops.device("/job:worker/task:0/cpu:0"): ta = tensor_array_ops.TensorArray( dtype=dtypes.float32, size=2, colocate_with_first_write_call=False) def _body(i, ta_i): with ops.device("/job:worker/task:1/cpu:0"): return i + 1, ta_i.write(i, constant_op.constant(0.0)) _, ta_out = control_flow_ops.while_loop( lambda i, ta: i < 2, _body, loop_vars=[0, ta]) session = session_lib.Session(self._workers[0].target) run_options = config_pb2.RunOptions( trace_level=config_pb2.RunOptions.FULL_TRACE) run_metadata = config_pb2.RunMetadata() session.run(ta_out.flow, options=run_options, run_metadata=run_metadata) self.assertTrue(run_metadata.HasField("step_stats")) dev_stats = {d.device: list(d.node_stats) for d in run_metadata.step_stats.dev_stats} for d in dev_stats: if "/task:0/" in d and "CPU" in d: # Skip any GPU node stats self.assertTrue( [s for s in dev_stats[d] if "TensorArray" == s.node_name]) else: self.assertFalse( [s for s in dev_stats[d] if "TensorArray" == s.node_name]) def testTensorArrayIdentity(self): with self.session(use_gpu=True): ta0 = tensor_array_ops.TensorArray(dtype=dtypes.float32, size=2, infer_shape=False) ta1 = tensor_array_ops.TensorArray(dtype=dtypes.int32, size=4, infer_shape=True) ta0 = ta0.write(0, 0.) ta1 = ta1.write(0, 1) v0 = variable_scope.get_variable( "v0", shape=(), initializer=init_ops.zeros_initializer()) v1 = variable_scope.get_variable( "v1", shape=(), initializer=init_ops.zeros_initializer()) with ops.control_dependencies([v0.assign_add(1)]): ta0 = ta0.identity() with ops.control_dependencies([v1.assign_add(1)]): ta1 = ta1.identity() read0 = ta0.read(0) read1 = ta1.read(0) size0 = ta0.size() size1 = ta1.size() # Tests correct properties on new TensorArrays. self.assertEqual(dtypes.float32, ta0.dtype) self.assertEqual(dtypes.int32, ta1.dtype) if context.executing_eagerly(): self.assertEqual(tensor_shape.scalar(), read0.get_shape()) else: self.assertEqual(tensor_shape.unknown_shape(), read0.get_shape()) self.assertEqual(tensor_shape.scalar(), read1.get_shape()) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) read0_v, read1_v, size0_v, size1_v = self.evaluate((read0, read1, size0, size1)) # Tests that the control dependencies was added and executed. self.assertEqual(1, self.evaluate(v0)) self.assertEqual(1, self.evaluate(v1)) # Tests correct TensorArray. self.assertEqual(read0_v, 0) self.assertEqual(read1_v, 1) self.assertEqual(size0_v, 2) self.assertEqual(size1_v, 4) @test_util.run_deprecated_v1 def testSkipEagerTensorArrayGradYsInCorrectScope(self): n_time = 1 n_dim = 1 x = constant_op.constant([[1.42]]) dy = constant_op.constant([[2.42]]) ta = tensor_array_ops.TensorArray( dtypes.float32, size=n_time, element_shape=[n_dim]) for t in range(n_time): ta = ta.write(index=t, value=x[t]) y = ta.stack() # dy is outside of the gradients name scope; tf.gradients must # wrap it in the correct name scope. dx, = gradients_impl.gradients(ys=[y], xs=[x], grad_ys=[dy]) with self.cached_session(use_gpu=True) as sess: vdx, vdy = self.evaluate([dx, dy]) self.assertAllClose(vdx, vdy) def testSkipEagerTensorArrayInt64GPU(self): if not test.is_gpu_available(): return with self.session(use_gpu=True, force_gpu=True) as sess: value = array_ops.placeholder(dtypes.int64) ta = tensor_array_ops.TensorArray(dtype=dtypes.int64, size=2) ta = ta.scatter([0, 1], value) r0 = ta.read(0) r1 = ta.read(1) v0, v1 = sess.run([r0, r1], feed_dict={value: [-3, 100]}) self.assertAllEqual(v0, -3) self.assertAllEqual(v1, 100) if __name__ == "__main__": test.main()
apache-2.0
-7,141,327,032,126,883,000
37.213054
80
0.616407
false
Mihai925/EduCoding
LandingPage/migrations/0001_initial.py
1
1234
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Feature', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=100, verbose_name=b'Title')), ('description', models.TextField(verbose_name=b'Description')), ('glyphicon', models.CharField(max_length=100, verbose_name=b'Glyphicon')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='LandingPage', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('description', models.TextField(verbose_name=b'Description')), ('features', models.ManyToManyField(related_name='Features', to='LandingPage.Feature')), ], options={ }, bases=(models.Model,), ), ]
mit
7,593,169,094,580,280,000
33.277778
114
0.546191
false
EricssonResearch/calvin-base
calvin/actorstore/systemactors/sensor/Accelerometer.py
1
1566
# -*- coding: utf-8 -*- # Copyright (c) 2015 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from calvin.actor.actor import Actor, manage, condition, stateguard, calvinsys class Accelerometer(Actor): """ Measure the acceleration. Takes the period of measurements, in microseconds, as input. Outputs: acceleration : Acceleration as a dict with the x,y, and z directions. """ @manage(['level', 'period']) def init(self, period): self.period = period self.level = calvinsys.open(self, "io.accelerometer", period=self.period) @stateguard(lambda self: calvinsys.can_read(self.level)) @condition([], ['acceleration']) def read_measurement(self): level = calvinsys.read(self.level) return (level,) action_priority = (read_measurement,) requires = ['io.accelerometer'] test_kwargs = {'period': 10} test_calvinsys = {'io.accelerometer': {'read': [10, 12, 0, 5]}} test_set = [ { 'outports': {'acceleration': [10, 12, 0, 5]} } ]
apache-2.0
3,497,507,540,760,737,300
31.625
90
0.666667
false
SylvainTakerkart/vobi_one
examples/scripts_ui_reproducibility/script1_lm_tbin1_sbin2_estimatedtaufh02_alldata_script.py
1
5108
# Author: Flavien Garcia <[email protected]> # Sylvain Takerkart <[email protected]> # License: BSD Style. """ Description ----------- This script processes the oidata functions on some selected raw files. The process is decomposed in 2 steps : 1. Model construction from a parameter file 2. Application of the model on all trials This script needs to have already import files Notes ----- 1. Copy the script in a temporary directory of your choice and cd into this directory 2. Change parameters directly in the script itself 3. Write on a shell : brainvisa --noMainWindow --shell. 4. Write : %run script1_linear_model.py """ ############################## SECTION TO CHANGE ############################### DATABASE = '/riou/work/crise/takerkart/vodev_0.3_scripts_gui/' # Database protocol='protocol_sc' # Protocol name subject='subject_sc_tbin1_sbin2_alldata' # Subject name session_date='080313' # Sesion date analysis_name='_estimatedtaufh02_script' # Analysis name # Linear model parameters definition param=( 110.0, # Sampling frequency 0.999, # Trial duration 4.75, # Tau for dye bleaching '(2.22,10,40,41,50)', # Frequencies with heartbeat frequency in first '(1,1,1,1,1)', # Orders' frequencies 10, # L = Number of main components used '(0.02,0.,0.03,0.45,0.06,0.,0.,0.)', # Alphas min '(0.12,0.,0.3,0.6,0.15,0.,0.,0.)') # Alphas max # corners of the region on the image to define a rectangle # the figure plots the results averaged on all pixels of this rectangle corner0=(62,125) # Top left-hand corner for parameters estimation corner1=(100,150) # Bottom right_hand corner for parameters estimation format='.nii' ################################################################################ ########################## DO NOT TOUCH THIS SECTION ########################### # Imports import os import numpy as np import oidata.oitrial_processes as oitrial_processes # Trial-level processing functions import oidata.oisession_preprocesses as oisession_preprocesses # Session-level processing functions print('CONDITIONS FILE RECOVERY') info_file_list=[] # Path initialization try: # Verify if a conditions file already exists # Conditions file path creation path_cond=os.path.join(DATABASE\ ,protocol\ ,subject\ ,'session_'+session_date \ ,'oitrials_analysis/conditions.txt') # Conditions file path recovery raw_name,experiences,trials,conditions,selected=np.loadtxt(path_cond\ ,delimiter='\t'\ ,unpack=True\ ,dtype=str) # Recovery of files informations for name in raw_name: # For each trial session=name[1:7] # Session recovery exp=name[9:11] # Experiment recovery trial=name[13:17] # Trial recovery condition=name[19:22] # Conditions recovery path=os.path.join(os.path.split(path_cond)[0]\ ,'exp'+exp,'trial'+trial,'raw',name) # Path creation info_file={'session':session\ ,'exp':exp,'trial':trial\ ,'condition':condition,'path':path} # Put them on info_file info_file_list.append(info_file) # Add info file except: # If not, data import is needed raise ImportError('This script needs to have already import files') print('MODEL CONSTRUCTION') # Linear Model construction info_model_files=oisession_preprocesses.construct_model_process( database=DATABASE, # Database path protocol=protocol, # Protocol name subject=subject, # Subject name session='session_'+session_date, # Session param=param, # Paramaters pathX=os.path.join(DATABASE,protocol,subject,'session_'+session_date\ ,'oisession_analysis','glm_based'+analysis_name,'glm.txt'), # GLM matrix path pathParam=os.path.join(DATABASE,protocol,subject,'session_'+session_date\ ,'oisession_analysis','glm_based'+analysis_name,'param.npz'), # Parameters file path analysis='glm_based'+analysis_name, mode=True, script=True) print('APPLICATION OF THE MODEL') current_img=0 # Index of current image for name in raw_name: # For each trial # Linear Model application oitrial_processes.estimate_model_process( info_file_list[current_img]['path'], # Raw data path glm=info_model_files['path_def'], # GLM matrix path analysis='glm_based'+analysis_name, format=format, data_graph=os.path.join(os.path.split(os.path.split(info_file_list[current_img]['path'])[0])[0],'glm_based'+analysis_name,name[:-4]+'.png'), corner0=corner0, corner1=corner1, mode=True, script=True) current_img+=1 print('\tProcessed trials:'+str(current_img)+'/'+str(len(raw_name))) print('Script was successfully executed')
gpl-3.0
7,174,634,605,701,501,000
39.539683
148
0.618637
false
peterjanes/dosage
dosagelib/plugins/v.py
1
3147
# -*- coding: utf-8 -*- # Copyright (C) 2004-2008 Tristan Seligmann and Jonathan Jacobs # Copyright (C) 2012-2014 Bastian Kleineidam # Copyright (C) 2015-2020 Tobias Gruetzmacher # Copyright (C) 2019-2020 Daniel Ring from __future__ import absolute_import, division, print_function from re import compile from ..scraper import _BasicScraper, _ParserScraper from ..helpers import bounceStarter, indirectStarter, xpath_class from ..util import tagre class Vexxarr(_ParserScraper): baseUrl = 'http://www.vexxarr.com/' url = baseUrl + 'Index.php' stripUrl = baseUrl + 'archive.php?seldate=%s' firstStripUrl = stripUrl % '010105' imageSearch = '//p/img' prevSearch = '//a[./img[contains(@src, "previous")]]' nextSearch = '//a[./img[contains(@src, "next")]]' starter = bounceStarter def namer(self, imageUrl, pageUrl): page = pageUrl.rsplit('=', 1)[-1] return '20%s-%s-%s' % (page[4:6], page[0:2], page[2:4]) class VGCats(_BasicScraper): url = 'http://www.vgcats.com/comics/' stripUrl = url + '?strip_id=%s' firstStripUrl = stripUrl % '0' imageSearch = compile(tagre("img", "src", r'(images/\d{6}\.[^"]+)')) prevSearch = compile(tagre("a", "href", r'(\?strip_id=\d+)') + tagre("img", "src", r"back\.gif")) help = 'Index format: n (unpadded)' class VGCatsAdventure(VGCats): name = 'VGCats/Adventure' url = 'http://www.vgcats.com/ffxi/' stripUrl = url + '?strip_id=%s' class VGCatsSuper(VGCats): name = 'VGCats/Super' url = 'http://www.vgcats.com/super/' stripUrl = url + '?strip_id=%s' class VickiFox(_ParserScraper): url = 'http://www.vickifox.com/comic/strip' stripUrl = url + '?id=%s' firstStripUrl = stripUrl % '001' imageSearch = '//img[contains(@src, "comic/")]' prevSearch = '//button[@id="btnPrev"]/@value' def getPrevUrl(self, url, data): return self.stripUrl % self.getPage(url).xpath(self.prevSearch)[0] class VictimsOfTheSystem(_BasicScraper): url = 'http://www.votscomic.com/' stripUrl = url + '?id=%s.jpg' firstStripUrl = stripUrl % '070103-002452' imageSearch = compile(tagre("img", "src", r'(comicpro/strips/[^"]+)')) prevSearch = compile(tagre("a", "href", r'(\?id=\d+-\d+\.jpg)') + "Previous") help = 'Index format: nnn-nnn' class ViiviJaWagner(_ParserScraper): url = 'http://www.hs.fi/viivijawagner/' imageSearch = '//meta[@property="og:image"]/@content' prevSearch = '//a[%s]' % xpath_class('prev') latestSearch = '//div[%s]//a' % xpath_class('cartoon-content') starter = indirectStarter lang = 'fi' def namer(self, image_url, page_url): return page_url.rsplit('-', 1)[1].split('.')[0] class VirmirWorld(_ParserScraper): url = 'http://world.virmir.com/' stripUrl = url + 'comic.php?story=%s&page=%s' firstStripUrl = stripUrl % ('1', '1') imageSearch = '//div[@class="comic"]//img' prevSearch = '//a[contains(@class, "prev")]' def getIndexStripUrl(self, index): index = index.split('-') return self.stripUrl % (index[0], index[1])
mit
-6,427,210,326,709,256,000
32.478723
74
0.616142
false
robwarm/gpaw-symm
doc/install/Linux/Niflheim/el6-x3455-tm-gfortran-openmpi-1.6.3-openblaso-0.2.8.1-sl-hdf5-1.8.10.py
1
1993
nodetype = 'x3455' scalapack = True compiler = 'gcc' libraries =[ 'gfortran', 'scalapack', 'mpiblacs', 'mpiblacsCinit', 'openblaso', 'hdf5', 'xc', 'mpi', 'mpi_f77', ] library_dirs =[ '/home/opt/el6/' + nodetype + '/openmpi-1.6.3-' + nodetype + '-tm-gfortran-1/lib', '/home/opt/el6/' + nodetype + '/blacs-1.1-' + nodetype + '-tm-gfortran-openmpi-1.6.3-1/lib', '/home/opt/el6/' + nodetype + '/scalapack-2.0.2-' + nodetype + '-tm-gfortran-openmpi-1.6.3-acml-4.4.0-1/lib', '/home/opt/el6/common/openblas-0.2.8-1/lib64', '/home/opt/el6/' + nodetype + '/hdf5-1.8.10-' + nodetype + '-tm-gfortran-openmpi-1.6.3-1/lib', '/home/opt/el6/' + nodetype + '/libxc-2.2.0-' + nodetype + '-gfortran-1/lib', ] include_dirs +=[ '/home/opt/el6/' + nodetype + '/openmpi-1.6.3-' + nodetype + '-tm-gfortran-1/include', '/home/opt/el6/' + nodetype + '/hdf5-1.8.10-' + nodetype + '-tm-gfortran-openmpi-1.6.3-1/include', '/home/opt/el6/' + nodetype + '/libxc-2.2.0-' + nodetype + '-gfortran-1/include', ] extra_link_args =[ '-Wl,-rpath=/home/opt/el6/' + nodetype + '/openmpi-1.6.3-' + nodetype + '-tm-gfortran-1/lib' ',-rpath=/home/opt/el6/' + nodetype + '/blacs-1.1-' + nodetype + '-tm-gfortran-openmpi-1.6.3-1/lib' ',-rpath=/home/opt/el6/' + nodetype + '/scalapack-2.0.2-' + nodetype + '-tm-gfortran-openmpi-1.6.3-acml-4.4.0-1/lib' ',-rpath=/home/opt/el6/common/openblas-0.2.8-1/lib64' ',-rpath=/home/opt/el6/' + nodetype + '/hdf5-1.8.10-' + nodetype + '-tm-gfortran-openmpi-1.6.3-1/lib' ',-rpath=/home/opt/el6/' + nodetype + '/libxc-2.2.0-' + nodetype + '-gfortran-1/lib' ] extra_compile_args =['-O3', '-std=c99', '-fPIC', '-Wall'] define_macros += [('GPAW_NO_UNDERSCORE_CBLACS', '1')] define_macros += [('GPAW_NO_UNDERSCORE_CSCALAPACK', '1')] mpicompiler = '/home/opt/el6/' + nodetype + '/openmpi-1.6.3-' + nodetype + '-tm-gfortran-1/bin/mpicc' mpilinker = mpicompiler platform_id = nodetype hdf5 = True
gpl-3.0
-1,347,084,126,252,147,700
46.452381
120
0.594581
false
partofthething/home-assistant
homeassistant/components/spaceapi/__init__.py
1
10380
"""Support for the SpaceAPI.""" import voluptuous as vol from homeassistant.components.http import HomeAssistantView from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_ICON, ATTR_LOCATION, ATTR_NAME, ATTR_STATE, ATTR_UNIT_OF_MEASUREMENT, CONF_ADDRESS, CONF_EMAIL, CONF_ENTITY_ID, CONF_SENSORS, CONF_STATE, CONF_URL, ) import homeassistant.core as ha import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util ATTR_ADDRESS = "address" ATTR_SPACEFED = "spacefed" ATTR_CAM = "cam" ATTR_STREAM = "stream" ATTR_FEEDS = "feeds" ATTR_CACHE = "cache" ATTR_PROJECTS = "projects" ATTR_RADIO_SHOW = "radio_show" ATTR_LAT = "lat" ATTR_LON = "lon" ATTR_API = "api" ATTR_CLOSE = "close" ATTR_CONTACT = "contact" ATTR_ISSUE_REPORT_CHANNELS = "issue_report_channels" ATTR_LASTCHANGE = "lastchange" ATTR_LOGO = "logo" ATTR_OPEN = "open" ATTR_SENSORS = "sensors" ATTR_SPACE = "space" ATTR_UNIT = "unit" ATTR_URL = "url" ATTR_VALUE = "value" ATTR_SENSOR_LOCATION = "location" CONF_CONTACT = "contact" CONF_HUMIDITY = "humidity" CONF_ICON_CLOSED = "icon_closed" CONF_ICON_OPEN = "icon_open" CONF_ICONS = "icons" CONF_IRC = "irc" CONF_ISSUE_REPORT_CHANNELS = "issue_report_channels" CONF_LOCATION = "location" CONF_SPACEFED = "spacefed" CONF_SPACENET = "spacenet" CONF_SPACESAML = "spacesaml" CONF_SPACEPHONE = "spacephone" CONF_CAM = "cam" CONF_STREAM = "stream" CONF_M4 = "m4" CONF_MJPEG = "mjpeg" CONF_USTREAM = "ustream" CONF_FEEDS = "feeds" CONF_FEED_BLOG = "blog" CONF_FEED_WIKI = "wiki" CONF_FEED_CALENDAR = "calendar" CONF_FEED_FLICKER = "flicker" CONF_FEED_TYPE = "type" CONF_FEED_URL = "url" CONF_CACHE = "cache" CONF_CACHE_SCHEDULE = "schedule" CONF_PROJECTS = "projects" CONF_RADIO_SHOW = "radio_show" CONF_RADIO_SHOW_NAME = "name" CONF_RADIO_SHOW_URL = "url" CONF_RADIO_SHOW_TYPE = "type" CONF_RADIO_SHOW_START = "start" CONF_RADIO_SHOW_END = "end" CONF_LOGO = "logo" CONF_PHONE = "phone" CONF_SIP = "sip" CONF_KEYMASTERS = "keymasters" CONF_KEYMASTER_NAME = "name" CONF_KEYMASTER_IRC_NICK = "irc_nick" CONF_KEYMASTER_PHONE = "phone" CONF_KEYMASTER_EMAIL = "email" CONF_KEYMASTER_TWITTER = "twitter" CONF_TWITTER = "twitter" CONF_FACEBOOK = "facebook" CONF_IDENTICA = "identica" CONF_FOURSQUARE = "foursquare" CONF_ML = "ml" CONF_JABBER = "jabber" CONF_ISSUE_MAIL = "issue_mail" CONF_SPACE = "space" CONF_TEMPERATURE = "temperature" DATA_SPACEAPI = "data_spaceapi" DOMAIN = "spaceapi" ISSUE_REPORT_CHANNELS = [CONF_EMAIL, CONF_ISSUE_MAIL, CONF_ML, CONF_TWITTER] SENSOR_TYPES = [CONF_HUMIDITY, CONF_TEMPERATURE] SPACEAPI_VERSION = "0.13" URL_API_SPACEAPI = "/api/spaceapi" LOCATION_SCHEMA = vol.Schema({vol.Optional(CONF_ADDRESS): cv.string}) SPACEFED_SCHEMA = vol.Schema( { vol.Optional(CONF_SPACENET): cv.boolean, vol.Optional(CONF_SPACESAML): cv.boolean, vol.Optional(CONF_SPACEPHONE): cv.boolean, } ) STREAM_SCHEMA = vol.Schema( { vol.Optional(CONF_M4): cv.url, vol.Optional(CONF_MJPEG): cv.url, vol.Optional(CONF_USTREAM): cv.url, } ) FEED_SCHEMA = vol.Schema( {vol.Optional(CONF_FEED_TYPE): cv.string, vol.Required(CONF_FEED_URL): cv.url} ) FEEDS_SCHEMA = vol.Schema( { vol.Optional(CONF_FEED_BLOG): FEED_SCHEMA, vol.Optional(CONF_FEED_WIKI): FEED_SCHEMA, vol.Optional(CONF_FEED_CALENDAR): FEED_SCHEMA, vol.Optional(CONF_FEED_FLICKER): FEED_SCHEMA, } ) CACHE_SCHEMA = vol.Schema( { vol.Required(CONF_CACHE_SCHEDULE): cv.matches_regex( r"(m.02|m.05|m.10|m.15|m.30|h.01|h.02|h.04|h.08|h.12|d.01)" ) } ) RADIO_SHOW_SCHEMA = vol.Schema( { vol.Required(CONF_RADIO_SHOW_NAME): cv.string, vol.Required(CONF_RADIO_SHOW_URL): cv.url, vol.Required(CONF_RADIO_SHOW_TYPE): cv.matches_regex(r"(mp3|ogg)"), vol.Required(CONF_RADIO_SHOW_START): cv.string, vol.Required(CONF_RADIO_SHOW_END): cv.string, } ) KEYMASTER_SCHEMA = vol.Schema( { vol.Optional(CONF_KEYMASTER_NAME): cv.string, vol.Optional(CONF_KEYMASTER_IRC_NICK): cv.string, vol.Optional(CONF_KEYMASTER_PHONE): cv.string, vol.Optional(CONF_KEYMASTER_EMAIL): cv.string, vol.Optional(CONF_KEYMASTER_TWITTER): cv.string, } ) CONTACT_SCHEMA = vol.Schema( { vol.Optional(CONF_EMAIL): cv.string, vol.Optional(CONF_IRC): cv.string, vol.Optional(CONF_ML): cv.string, vol.Optional(CONF_PHONE): cv.string, vol.Optional(CONF_TWITTER): cv.string, vol.Optional(CONF_SIP): cv.string, vol.Optional(CONF_FACEBOOK): cv.string, vol.Optional(CONF_IDENTICA): cv.string, vol.Optional(CONF_FOURSQUARE): cv.string, vol.Optional(CONF_JABBER): cv.string, vol.Optional(CONF_ISSUE_MAIL): cv.string, vol.Optional(CONF_KEYMASTERS): vol.All( cv.ensure_list, [KEYMASTER_SCHEMA], vol.Length(min=1) ), }, required=False, ) STATE_SCHEMA = vol.Schema( { vol.Required(CONF_ENTITY_ID): cv.entity_id, vol.Inclusive(CONF_ICON_CLOSED, CONF_ICONS): cv.url, vol.Inclusive(CONF_ICON_OPEN, CONF_ICONS): cv.url, }, required=False, ) SENSOR_SCHEMA = vol.Schema( {vol.In(SENSOR_TYPES): [cv.entity_id], cv.string: [cv.entity_id]} ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_CONTACT): CONTACT_SCHEMA, vol.Required(CONF_ISSUE_REPORT_CHANNELS): vol.All( cv.ensure_list, [vol.In(ISSUE_REPORT_CHANNELS)] ), vol.Optional(CONF_LOCATION): LOCATION_SCHEMA, vol.Required(CONF_LOGO): cv.url, vol.Required(CONF_SPACE): cv.string, vol.Required(CONF_STATE): STATE_SCHEMA, vol.Required(CONF_URL): cv.string, vol.Optional(CONF_SENSORS): SENSOR_SCHEMA, vol.Optional(CONF_SPACEFED): SPACEFED_SCHEMA, vol.Optional(CONF_CAM): vol.All( cv.ensure_list, [cv.url], vol.Length(min=1) ), vol.Optional(CONF_STREAM): STREAM_SCHEMA, vol.Optional(CONF_FEEDS): FEEDS_SCHEMA, vol.Optional(CONF_CACHE): CACHE_SCHEMA, vol.Optional(CONF_PROJECTS): vol.All(cv.ensure_list, [cv.url]), vol.Optional(CONF_RADIO_SHOW): vol.All( cv.ensure_list, [RADIO_SHOW_SCHEMA] ), } ) }, extra=vol.ALLOW_EXTRA, ) def setup(hass, config): """Register the SpaceAPI with the HTTP interface.""" hass.data[DATA_SPACEAPI] = config[DOMAIN] hass.http.register_view(APISpaceApiView) return True class APISpaceApiView(HomeAssistantView): """View to provide details according to the SpaceAPI.""" url = URL_API_SPACEAPI name = "api:spaceapi" @staticmethod def get_sensor_data(hass, spaceapi, sensor): """Get data from a sensor.""" sensor_state = hass.states.get(sensor) if not sensor_state: return None sensor_data = {ATTR_NAME: sensor_state.name, ATTR_VALUE: sensor_state.state} if ATTR_SENSOR_LOCATION in sensor_state.attributes: sensor_data[ATTR_LOCATION] = sensor_state.attributes[ATTR_SENSOR_LOCATION] else: sensor_data[ATTR_LOCATION] = spaceapi[CONF_SPACE] # Some sensors don't have a unit of measurement if ATTR_UNIT_OF_MEASUREMENT in sensor_state.attributes: sensor_data[ATTR_UNIT] = sensor_state.attributes[ATTR_UNIT_OF_MEASUREMENT] return sensor_data @ha.callback def get(self, request): """Get SpaceAPI data.""" hass = request.app["hass"] spaceapi = dict(hass.data[DATA_SPACEAPI]) is_sensors = spaceapi.get("sensors") location = {ATTR_LAT: hass.config.latitude, ATTR_LON: hass.config.longitude} try: location[ATTR_ADDRESS] = spaceapi[ATTR_LOCATION][CONF_ADDRESS] except KeyError: pass except TypeError: pass state_entity = spaceapi["state"][ATTR_ENTITY_ID] space_state = hass.states.get(state_entity) if space_state is not None: state = { ATTR_OPEN: space_state.state != "off", ATTR_LASTCHANGE: dt_util.as_timestamp(space_state.last_updated), } else: state = {ATTR_OPEN: "null", ATTR_LASTCHANGE: 0} try: state[ATTR_ICON] = { ATTR_OPEN: spaceapi["state"][CONF_ICON_OPEN], ATTR_CLOSE: spaceapi["state"][CONF_ICON_CLOSED], } except KeyError: pass data = { ATTR_API: SPACEAPI_VERSION, ATTR_CONTACT: spaceapi[CONF_CONTACT], ATTR_ISSUE_REPORT_CHANNELS: spaceapi[CONF_ISSUE_REPORT_CHANNELS], ATTR_LOCATION: location, ATTR_LOGO: spaceapi[CONF_LOGO], ATTR_SPACE: spaceapi[CONF_SPACE], ATTR_STATE: state, ATTR_URL: spaceapi[CONF_URL], } try: data[ATTR_CAM] = spaceapi[CONF_CAM] except KeyError: pass try: data[ATTR_SPACEFED] = spaceapi[CONF_SPACEFED] except KeyError: pass try: data[ATTR_STREAM] = spaceapi[CONF_STREAM] except KeyError: pass try: data[ATTR_FEEDS] = spaceapi[CONF_FEEDS] except KeyError: pass try: data[ATTR_CACHE] = spaceapi[CONF_CACHE] except KeyError: pass try: data[ATTR_PROJECTS] = spaceapi[CONF_PROJECTS] except KeyError: pass try: data[ATTR_RADIO_SHOW] = spaceapi[CONF_RADIO_SHOW] except KeyError: pass if is_sensors is not None: sensors = {} for sensor_type in is_sensors: sensors[sensor_type] = [] for sensor in spaceapi["sensors"][sensor_type]: sensor_data = self.get_sensor_data(hass, spaceapi, sensor) sensors[sensor_type].append(sensor_data) data[ATTR_SENSORS] = sensors return self.json(data)
mit
-2,758,130,002,359,127,000
28.405099
86
0.607803
false
emillynge/python-remoteexecution
remoteexecution/ClientSide.py
1
16737
from __future__ import (absolute_import, print_function, unicode_literals, division) __author__ = 'emil' from .ServerSide import (Manager) from .Utils import (InvalidUserInput, DummyLogger, RemoteExecutionLogger, WrappedProxy, Commandline) from .Environments import (communication_environment, execution_environment, EnvironmentFactory) from Pyro4 import errors as pyro_errors from time import sleep import Pyro4 from collections import namedtuple from subprocess import Popen import abc HPC_Time = namedtuple("HPC_Time", ['h', 'm', 's']) HPC_Time.__new__.__defaults__ = (0, 0, 0) HPC_resources = namedtuple("HPC_resources", ['nodes', 'ppn', 'gpus', 'pvmem', 'vmem']) HPC_resources.__new__.__defaults__ = (1, 1, 0, None, None) ClassInfo = namedtuple('ClassInfo', ['module', 'class_name']) class Client(object): def __init__(self, logger=None): self.logger = logger or RemoteExecutionLogger(logger_name='Client') InvalidUserInput.isinstance('logger', RemoteExecutionLogger, self.logger) self.remote_commandline = communication_environment().client2manager_side_cli self.remote_commandline.logger = self.logger.duplicate(logger_name='CLI/Client') self.manager_proxy = None self.start() def start(self): if not self.isup_manager(): self.start_manager() else: self.get_proxy() if not self.manager_proxy.is_alive(): self.logger.error('could not start manager') raise Exception("Could not start manager") comm_env = communication_environment() host, port = comm_env.client2manager_tunnel() self.logger.info("Successfully connected to Manager on {0}".format(port)) def instance_generator(self, object_descriptor=None, rel_dir=".", **requested_resources): script_generator = execution_environment().script_generator script_generator.logger = self.logger.duplicate(logger_name='Script') assert isinstance(script_generator, (HPCScriptGenerator, SimpleScriptGenerator)) script_generator.execution_settings(rel_dir=rel_dir, **requested_resources) instance = RemoteInstance(self.manager_proxy, self, logger=self.logger, object_descriptor=object_descriptor, script_generator=script_generator) return instance def get_proxy(self): comm_env = communication_environment() host, port = comm_env.client2manager_tunnel() self.manager_proxy = WrappedProxy('remote_execution.manager', host, port, logger=self.logger.duplicate(append_name='Manager')) def isup_manager(self): self.remote_commandline('-i -f mylog -s isup manager') EnvironmentFactory.set_settings(manager_ip=self.remote_commandline.get('ip')[0]) return self.remote_commandline.get('return')[0] def start_manager(self): self.remote_commandline('-i -f mylog -s start manager') self.get_proxy() @staticmethod def get_manager(self): raise Manager() def stop_manager(self): self.manager_proxy.shutdown() try: while True: self.manager_proxy.is_alive() sleep(1) except pyro_errors.CommunicationError: pass self.manager_proxy.release_socket() del self.manager_proxy def restart_manager(self): self.stop_manager() sleep(3) for _ in range(5): try: self.start_manager() e = None break except Commandline.CommandLineException as e: if 'Errno 98' in e.message: sleep(5) else: raise e if e: raise e self.logger.info("Manager restarted") class BaseScriptGenerator(object): __metaclass__ = abc.ABCMeta def __init__(self, base_dir): self.req_resources = dict() self.base_dir = base_dir self.rel_dir = '.' self.logger = DummyLogger() self._lines = list() def execution_settings(self, rel_dir='.', **requested_resources): """ called by user or parent :param rel_dir: where to execute script relative to basedir set in assemble :param requested_resources: key_value pairs that describes the needed ressources for execution :return: None """ self.rel_dir = rel_dir self.req_resources = requested_resources self.check_ressources(**requested_resources) @abc.abstractmethod def check_ressources(self, **requested_resources): """ input check on requested ressources to be implemented by subclassing. should raise InvalidInputError if invalid ressources are requested :param requested_resources: :return: None """ @property def work_dir(self): return self.base_dir + '/' + self.rel_dir def generate_submit_script(self, execute_commands, log_file, sub_id): """ generate a script that sets up execution on the server side """ self._lines = list() self._write_lines(execute_commands, log_file, sub_id) return self.get_script() @abc.abstractmethod def _write_lines(self, execute_command, log_file, sub_id): """ Dummy method, must be overridden by subclassing. writes lines for the submission script """ pass def get_script(self): if not self._lines: raise Exception('No script generated yet') return '\n'.join(self._lines) class SimpleScriptGenerator(BaseScriptGenerator): def _write_lines(self, execute_command, log_file, sub_id): #self._lines.append('#!/bin/sh') #self._lines.append('cd ' + self.work_dir) self._lines.append(execute_command) def check_ressources(self, **requested_resources): pass class HPCScriptGenerator(BaseScriptGenerator): """ Subclass that writes a execution script tailored to the DTU HPC qsub system. """ def __init__(self, base_modules, base_dir, manager): self.base_modules = base_modules self.manager = manager self.mod2script = {'cuda': """if [ -n "$PBS_GPUFILE" ] ; then export CUDA_DEVICE=`cat $PBS_GPUFILE | rev | cut -d"-" -f1 | rev | tr -cd [:digit:]` ; fi"""} super(HPCScriptGenerator, self).__init__(base_dir) def check_ressources(self, wc=HPC_Time(), hw_ressources=HPC_resources(), add_modules=None, username=None): assert isinstance(wc, HPC_Time) assert isinstance(hw_ressources, HPC_resources) if not self.manager.env_call('execution', 'path_exists', self.work_dir): raise InvalidUserInput("Work directory {0} doesn't exist.".format(self.work_dir)) try: if hw_ressources.nodes < 1 or hw_ressources.ppn < 1: raise InvalidUserInput('A job must have at least 1 node and 1 processor', argname='resources', found=hw_ressources) if not any(wc): raise InvalidUserInput('No wall clock time assigned to job', argname='wallclock', found=wc) self.check_modules() InvalidUserInput.compare(argname='username', expect=None, found=username, equal=False) except InvalidUserInput as e: self.logger.error('Invalid parameters passed to Qsub', exc_info=True) raise e @property def modules(self): for item in self.req_resources['add_modules'].iteritems(): yield item for module_name, version in self.base_modules.iteritems(): if module_name in self.req_resources['add_modules']: continue yield (module_name, version) raise StopIteration() def check_modules(self): avail_modules = self.manager.env_call('execution', 'available_modules') for (module, version) in self.modules: if module not in avail_modules: raise InvalidUserInput("Required module {0} is not available".format(module)) if version and version not in avail_modules[module]: raise InvalidUserInput("Required module version {0} is not available for module {1}".format(version, module)) self.logger.debug("module {0}, version {1} is available".format(module, version if version else "default")) def _write_lines(self, execute_commands, log_file, sub_id): self._lines.append('#!/bin/sh') # noinspection PyTypeChecker self.write_resources(self.req_resources['hw_ressources']) # noinspection PyTypeChecker self.write_wallclock(self.req_resources['wc']) self.write_name('Remote execution {0}'.format(sub_id)) self.write_mail(self.req_resources['username'] + '@student.dtu.dk') self.append_pbs_pragma('e', log_file + ".e") self.append_pbs_pragma('o', log_file + ".o") for module_name, version in self.req_resources['modules'].iteritems(): self._lines.append('module load ' + module_name) if version: self._lines[-1] += '/' + version if module_name in self.mod2script: self._lines.append(self.mod2script[module_name]) self._lines.append("export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:{0}/lib".format(self.base_dir)) self._lines.append('cd {0}'.format(self.work_dir)) if isinstance(execute_commands, list): self._lines.append('\n'.join(execute_commands)) else: self._lines.append(execute_commands) @staticmethod def make_pbs_pragma(flag, line): return "#PBS -" + flag.strip(' ') + ' ' + line def append_pbs_pragma(self, flag, line): self._lines.append(self.make_pbs_pragma(flag, line)) def write_name(self, name): self.append_pbs_pragma('N ', name) def write_mail(self, mail_address): self.append_pbs_pragma('M', mail_address) self.append_pbs_pragma('m', 'a') def write_resources(self, resources): assert isinstance(resources, HPC_resources) self.append_pbs_pragma('l', 'nodes={1}:ppn={0}'.format(resources.ppn, resources.nodes)) if resources.gpus: self.append_pbs_pragma('l', 'gpus={0}'.format(resources.gpus)) if resources.pvmem: self.append_pbs_pragma('l', 'pvmem={0}'.format(resources.pvmem)) if resources.vmem: self.append_pbs_pragma('l', 'vmem={0}'.format(resources.vmem)) def write_wallclock(self, wallclock): assert isinstance(wallclock, HPC_Time) self.append_pbs_pragma("l", "walltime={0}:{1}:{2}".format(wallclock.h, wallclock.m, wallclock.s)) class RemoteInstance(object): def __init__(self, manager_proxy, client, script_generator, logger=DummyLogger(), object_descriptor=None): assert isinstance(client, Client) self.args = tuple() self.kwargs = dict() self.obj_descriptor = object_descriptor self.manager_proxy = manager_proxy self.client = client self.script_generator = script_generator (self.sub_id, self.logfile) = self.manager_proxy.sub_id_request() self.logger = logger.duplicate(logger_name='Instance {0}'.format(self.sub_id)) self.logger.info("sub_id {0} received".format(self.sub_id)) self.remote_obj = None self.executor_local_host = None self.executor_local_port = None self.proxy_info = None self.orphan = False self.submitted = False self.execution_controller = None self.stage_submission() def __call__(self, *args, **kwargs): self.args = args self.kwargs = kwargs return self def stage_submission(self): kwargs = {'manager_ip': communication_environment().manager_host, 'sub_id': self.sub_id} ex_env = execution_environment() exe = "{1} -f {0}.log -L DEBUG start executor ".format(self.logfile, ex_env.executor_command_line_prefix) exe += "manager_ip={manager_ip} sub_id={sub_id}".format(**kwargs) script = self.script_generator.generate_submit_script(exe, self.logfile, self.sub_id) self.manager_proxy.sub_stage(self.sub_id, script) def make_tunnel(self): if self.proxy_info: comm_env = communication_environment() self.executor_local_host, self.executor_local_port = comm_env.client2executor_tunnel( self.proxy_info['host'], self.proxy_info['port']) else: raise Exception('Cannot make tunnel without a ready executor. Have you submitted?') def get_execution_controller(self): if self.manager_proxy.in_state(self.sub_id, 'ready') and not self.execution_controller: self.proxy_info = self.manager_proxy.get_proxy_info(self.sub_id) self.make_tunnel() self._get_execution_controller() def _get_execution_controller(self): self.execution_controller = WrappedProxy('remote_execution.executor.controller', self.executor_local_host, self.executor_local_port, logger=self.logger.duplicate(append_name='Exec')) def make_obj(self, obj_descriptor): if not all([self.manager_proxy.in_state(self.sub_id, 'ready'), self.execution_controller]): raise Exception('Execution controller not ready') prototype_set = False if isinstance(obj_descriptor, ClassInfo): self.execution_controller.set_prototype(cls=obj_descriptor.class_name, module=obj_descriptor.module) prototype_set = True elif hasattr(obj_descriptor, '__name__') and hasattr(obj_descriptor, '__module__'): self.execution_controller.set_prototype(cls=obj_descriptor.__name__, module=obj_descriptor.__module__) prototype_set = True if prototype_set: obj_info = self.execution_controller.register_new_object(*self.args, **self.kwargs) return self._get_obj(obj_info) else: raise InvalidUserInput('Descriptor matches no valid ways of setting the prototype', argname='obj_descriptor', found=obj_descriptor) def _get_obj(self, obj_info): return WrappedProxy(obj_info['object_id'], self.executor_local_host, self.executor_local_port, logger=self.logger.duplicate(append_name='RemoteObj')) def wait_for_state(self, target_state, iter_limit=100): state, t = self.manager_proxy.sub_stat(self.sub_id) i = 0 while not self.manager_proxy.has_reached_state(self.sub_id, target_state): # raise KeyboardInterrupt() if t > 0: self.client.logger.debug( 'Waiting for remote object to get to {2}.\n\t Current state: {0}\n\t Seconds left: {1}'.format( state, t, target_state)) sleep(min([t, 30])) i = 0 elif i > iter_limit: raise Exception('iter limit reached. no progression.') i += 1 state, t = self.manager_proxy.sub_stat(self.sub_id) return state def submit(self, no_wait=False): self.manager_proxy.sub_start(self.sub_id) self.submitted = True if not no_wait: self.wait_for_state('ready') def __enter__(self): try: self.submit() self.get_execution_controller() return self.make_obj(self.obj_descriptor) except Exception: self.close() raise # noinspection PyBroadException def close(self): if not self.orphan and self.submitted: try: self.manager_proxy.sub_shut(self.sub_id) except Exception as e: self.logger.warning('Error during sub shut: {0}'.format(e.message)) ex_env = execution_environment() Popen(ex_env.client_command_line_prefix.split(' ') + ['-r', 'stop', 'executor', 'sub_id={0}'.format(self.sub_id)]) # noinspection PyUnusedLocal def __exit__(self, exc_type, exc_val, exc_tb): self.close() def __del__(self): self.__exit__(1, 2, 3)
gpl-3.0
26,321,684,994,956,988
40.12285
119
0.602378
false