repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
idegtiarov/gnocchi-rep
gnocchi/ceilometer/utils.py
1
1259
# # Copyright 2015 eNovance # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from keystoneclient.v2_0 import client as ksclient from oslo_config import cfg cfg.CONF.import_group('service_credentials', 'ceilometer.service') def get_keystone_client(): return ksclient.Client( username=cfg.CONF.service_credentials.os_username, password=cfg.CONF.service_credentials.os_password, tenant_id=cfg.CONF.service_credentials.os_tenant_id, tenant_name=cfg.CONF.service_credentials.os_tenant_name, cacert=cfg.CONF.service_credentials.os_cacert, auth_url=cfg.CONF.service_credentials.os_auth_url, region_name=cfg.CONF.service_credentials.os_region_name, insecure=cfg.CONF.service_credentials.insecure)
apache-2.0
-8,211,332,044,180,262,000
39.612903
75
0.746624
false
mshunshin/SegNetCMR
pydicom/charset.py
1
5681
# charset.py """Handle alternate character sets for character strings.""" # # Copyright (c) 2008-2012 Darcy Mason # This file is part of pydicom, released under a modified MIT license. # See the file license.txt included with this distribution, also # available at https://github.com/darcymason/pydicom # from pydicom import compat from pydicom.config import logger from pydicom.valuerep import PersonNameUnicode, text_VRs from pydicom.compat import in_py2 # Map DICOM Specific Character Set to python equivalent python_encoding = { '': 'iso8859', # default character set for DICOM 'ISO_IR 6': 'iso8859', # alias for latin_1 too 'ISO_IR 100': 'latin_1', 'ISO_IR 101': 'iso8859_2', 'ISO_IR 109': 'iso8859_3', 'ISO_IR 110': 'iso8859_4', 'ISO_IR 126': 'iso_ir_126', # Greek 'ISO_IR 127': 'iso_ir_127', # Arab 'ISO_IR 138': 'iso_ir_138', # Hebrew 'ISO_IR 144': 'iso_ir_144', # Russian 'ISO_IR 148': 'iso8859_5', # Thai 'ISO_IR 166': 'XXXXX', No idea what this maps too 'ISO 2022 IR 6': 'iso8859', # alias for latin_1 too 'ISO 2022 IR 13': 'shift_jis', 'ISO 2022 IR 87': 'iso2022_jp', 'ISO 2022 IR 100': 'latin_1', 'ISO 2022 IR 101': 'iso8859_2', 'ISO 2022 IR 109': 'iso8859_3', 'ISO 2022 IR 110': 'iso8859_4', 'ISO 2022 IR 126': 'iso_ir_126', 'ISO 2022 IR 127': 'iso_ir_127', # Arab 'ISO 2022 IR 138': 'iso_ir_138', 'ISO 2022 IR 144': 'iso_ir_144', 'ISO 2022 IR 148': 'iso8859_5', 'ISO 2022 IR 149': 'euc_kr', # needs cleanup via clean_escseq() # Japanesse 'ISO 2022 IR 159': 'XXXX', 'ISO_IR 192': 'UTF8', # from Chinese example, 2008 PS3.5 Annex J p1-4 'GB18030': 'GB18030', } default_encoding = "iso8859" def clean_escseq(element, encodings): """Remove escape sequences that Python does not remove from Korean encoding ISO 2022 IR 149 due to the G1 code element. """ if 'euc_kr' in encodings: return element.replace( "\x1b\x24\x29\x43", "").replace("\x1b\x28\x42", "") else: return element # DICOM PS3.5-2008 6.1.1 (p 18) says: # default is ISO-IR 6 G0, equiv to common chr set of ISO 8859 (PS3.5 6.1.2.1) # (0008,0005) value 1 can *replace* the default encoding... # for VRs of SH, LO, ST, LT, PN and UT (PS3.5 6.1.2.3)... # with a single-byte character encoding # if (0008,0005) is multi-valued, then value 1 (or default if blank)... # is used until code extension escape sequence is hit, # which can be at start of string, or after CR/LF, FF, or # in Person Name PN, after ^ or = # NOTE also that 7.5.3 SEQUENCE INHERITANCE states that if (0008,0005) # is not present in a sequence item then it is inherited from its parent. def convert_encodings(encodings): """Converts DICOM encodings into corresponding python encodings""" # If a list if passed, we don't want to modify the list in place so copy it encodings = encodings[:] if isinstance(encodings, compat.string_types): encodings = [encodings] elif not encodings[0]: encodings[0] = 'ISO_IR 6' try: encodings = [python_encoding[x] for x in encodings] except KeyError: # Assume that it is already the python encoding (is there a way to check this?) pass if len(encodings) == 1: encodings = [encodings[0]] * 3 elif len(encodings) == 2: encodings.append(encodings[1]) return encodings def decode(data_element, dicom_character_set): """Apply the DICOM character encoding to the data element data_element -- DataElement instance containing a value to convert dicom_character_set -- the value of Specific Character Set (0008,0005), which may be a single value, a multiple value (code extension), or may also be '' or None. If blank or None, ISO_IR 6 is used. """ if not dicom_character_set: dicom_character_set = ['ISO_IR 6'] encodings = convert_encodings(dicom_character_set) # decode the string value to unicode # PN is special case as may have 3 components with differenct chr sets if data_element.VR == "PN": # logger.warn("%s ... type: %s" %(str(data_element), type(data_element.VR))) if not in_py2: if data_element.VM == 1: data_element.value = data_element.value.decode(encodings) else: data_element.value = [val.decode(encodings) for val in data_element.value] else: if data_element.VM == 1: data_element.value = PersonNameUnicode(data_element.value, encodings) else: data_element.value = [PersonNameUnicode(value, encodings) for value in data_element.value] if data_element.VR in text_VRs: # Remove the first encoding if this is a multi-byte encoding if len(encodings) > 1: del encodings[0] # You can't re-decode unicode (string literals in py3) if data_element.VM == 1: if isinstance(data_element.value, compat.text_type): return data_element.value = clean_escseq( data_element.value.decode(encodings[0]), encodings) else: output = list() for value in data_element.value: if isinstance(value, compat.text_type): output.append(value) else: output.append(clean_escseq(value.decode(encodings[0]), encodings)) data_element.value = output
mit
4,459,642,833,566,833,000
36.375
101
0.607816
false
Krigu/python_fun
Heidi/FileParser.py
1
1629
TORCH_START_VALUE = 15 THING_START_VALUE = 20 INVISIBLE_START_VALUE = 21 FANTASTIC_START_VALUE = 3 class Story: heros = ["Heidi", "Fantastic", "Tourch", "Thing", "Invisible"] heidi = 0 fantastic = FANTASTIC_START_VALUE torch = TORCH_START_VALUE thing = THING_START_VALUE invisible = INVISIBLE_START_VALUE def act1_scene1(self): self.fantastic = 1 self.invisible = INVISIBLE_START_VALUE if self.fantastic == self.invisible: self.act1_scene2() else: self.torch = 4 print(self.fantastic) self.act1_scene2() def act1_scene2(self): self.thing = THING_START_VALUE self.fantastic = 2 self.act1_scene3() def act1_scene3(self): if self.thing <= 1: self.act1_scene4() else: self.fantastic = 4 self.thing -= 1 self.act1_scene3() def act1_scene4(self): self.invisible += self.fantastic / 2 self.torch -= 1 if self.thing <= self.torch: self.act1_scene2() else: print(self.invisible) self.act1_scene3() def act2_scene1(self): self.torch = 0 print(self.torch) self.torch = TORCH_START_VALUE self.act2_scene2() def act2_scene2(self): if self.torch % 2 == 1: print(self.fantastic) else: self.thing = self.torch / 2 self.fantastic += 1 self.torch = self.thing if self.fantastic <= 32: self.act2_scene2() Story().act1_scene1()
gpl-3.0
7,884,140,570,094,559,000
23.313433
66
0.54205
false
mahabs/nitro
nssrc/com/citrix/netscaler/nitro/resource/config/utility/techsupport_args.py
1
1326
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # class techsupport_args : """ Provides additional arguments required for fetching the techsupport resource. """ def __init__(self) : self._scope = "" @property def scope(self) : """Use this option to run showtechsupport on present node or all cluster nodes.<br/>Default value: NODE<br/>Possible values = NODE, CLUSTER. """ try : return self._scope except Exception as e: raise e @scope.setter def scope(self, scope) : """Use this option to run showtechsupport on present node or all cluster nodes.<br/>Default value: NODE<br/>Possible values = NODE, CLUSTER """ try : self._scope = scope except Exception as e: raise e class Scope: NODE = "NODE" CLUSTER = "CLUSTER"
apache-2.0
4,549,954,713,833,272,300
28.466667
142
0.706637
false
cheapjack/MemoryCraft
MemoryCloud1.py
1
1993
#!/usr/bin/python #Install the modules we need #from pyfirmata import Arduino, util, INPUT from mcpi import minecraft from mcpi import minecraftstuff from time import sleep import server import serial # Set up a connection to the Arduino/Shrimp if we need it #PORT = "/dev/tty.SLAB_USBtoUART" #ser = serial.Serial(PORT, 9600) # Connect to the server: we use the imported server.py to make it work with CloudMaker mc = minecraft.Minecraft.create(server.address) #Post a message to the minecraft chat window mc.postToChat("Ready to read Memory!") # Use the command /getpos or F3 in Minecraft client to find out where you are then use those # x, y, z coordinates to build things # translate CloudMaker coords for mcpi ones # add this to x mcx = 177 # - this from y mcy = 64 # - this from z mcz = 135 # Text Bubble 1 def MemoryCloud1(startx,starty,startz, chartwidth, chartheight, chartdepth, blocktype, blockid): # Main Bubble mc.setBlocks((startx + mcx), (starty-mcy), (startz-mcz), (startx + mcx) + chartwidth, (starty-mcy) + chartheight, (startz - mcz) + chartdepth, blocktype, blockid) # inset bottom mc.setBlocks((startx + mcx) + 1, (starty-mcy) - 1, (startz-mcz), (startx + mcx) + (chartwidth-1), (starty-mcy) -1, (startz - mcz) + chartdepth, blocktype, blockid) #inset top mc.setBlocks((startx + mcx) + 1, (starty-mcy) + (chartheight + 1), (startz-mcz), (startx + mcx) + (chartwidth-1), (starty-mcy) + (chartheight + 1), (startz - mcz) + chartdepth, blocktype, blockid) # If you want to add a bubble diagram, insert your coordinates # Then use /js blocktype("My Message", blockid) while facing the block where you want to write #MemoryCloud1(-343, 75, -15, 44, 14, 2, 35, 0) #MemoryCloud1(-343, 110, -15, 44, 14, 2, 35, 0) #MemoryCloud1(-343, 75, -15, 44, 14, 2, 0) #MemoryCloud1(-343, 100, -15, 44, 14, 2, 0) # the memory cloud funtction is (myposx, myposy, myposz, width, height, thickness, # blocktype, blockidoption) MemoryCloud1(332, 100, -1185, 44, 4, 2, 35, 0) #
mit
4,954,500,081,771,976,000
35.907407
197
0.707978
false
Bobox214/ZemkaBot
tools/kbHit.py
1
1619
import sys import termios import atexit from select import select class KBHit(object): def __init__(self): '''Creates a KBHit object that you can call to do various keyboard things. ''' # Save the terminal settings self.fd = sys.stdin.fileno() self.new_term = termios.tcgetattr(self.fd) self.old_term = termios.tcgetattr(self.fd) # New terminal setting unbuffered self.new_term[3] = (self.new_term[3] & ~termios.ICANON & ~termios.ECHO) termios.tcsetattr(self.fd, termios.TCSAFLUSH, self.new_term) # Support normal-terminal reset at exit atexit.register(self.set_normal_term) def set_normal_term(self): ''' Resets to normal terminal. On Windows this is a no-op. ''' termios.tcsetattr(self.fd, termios.TCSAFLUSH, self.old_term) def getch(self): ''' Returns a keyboard character after kbhit() has been called. Should not be called in the same program as getarrow(). ''' return sys.stdin.read(1) def getarrow(self): ''' Returns an arrow-key code after kbhit() has been called. Codes are 0 : up 1 : right 2 : down 3 : left Should not be called in the same program as getch(). ''' c = sys.stdin.read(3)[2] vals = [65, 67, 66, 68] return vals.index(ord(c.decode('utf-8'))) def kbhit(self): ''' Returns True if keyboard character was hit, False otherwise. ''' dr,dw,de = select([sys.stdin], [], [], 0) return dr != [] # Test if __name__ == "__main__": kb = KBHit() print('Hit any key, or ESC to exit') while True: if kb.kbhit(): c = kb.getch() if ord(c) == 27: # ESC break print(c) kb.set_normal_term()
mit
9,086,489,840,359,184,000
22.128571
76
0.650401
false
clay584/IOS-to-HTML
iostohtml.py
1
3208
#!/usr/bin/env python from ciscoconfparse import CiscoConfParse import re def read_in_file(filename): return CiscoConfParse(filename) def find_acls(parsed_config): acl_names = [] # Get standard ACL numbers/names standard_acls = parsed_config.find_objects('^access-list') for acl in standard_acls: try: acl_names.append(re.search(r'^access-list (\S+)', acl.text).group(1)) except: pass # Get extended ACL names acls = parsed_config.find_objects('^ip access-list') for acl in acls: try: acl_names.append(re.search(r'^ip access-list .+ (\S+)$', acl.text).group(1)) except: pass unique_acls = set(acl_names) return unique_acls def find_class_maps(parsed_config): # Get class-map names cmaps = [] class_map_ojbs = parsed_config.find_objects('^class-map') for cmap in class_map_ojbs: try: cmaps.append(re.search(r'^class-map.+ (\S+)$', cmap.text).group(1)) except: pass return set(cmaps) def find_policy_maps(parsed_config): # Get policy-map names pmaps = [] pmap_objs = parsed_config.find_objects('^policy-map') for pmap in pmap_objs: try: pmaps.append(re.search(r'^policy-map .+ (\S+)$', pmap.text).group(1)) except: pass return set(pmaps) def find_route_maps(parsed_config): # Get route-map names rmaps = [] rmap_objs = parsed_config.find_objects('^route-map') for rmap in rmap_objs: try: rmaps.append(re.search(r'^route-map (\S+).*$', rmap.text).group(1)) except: pass return set(rmaps) def find_interfaces(parsed_config): # Get interface names intfs = [] intf_objs = parsed_config.find_objects('^interface') for intf in intf_objs: try: intfs.append(re.search(r'^interface (\S+)$', intf.text).group(1)) except: pass return set(intfs) def find_pointers_to_acls(parsed_config, acls): valid_pointers = ['ip access-group'] real_pointers = [] for acl in acls: # find each line where there is a valid pointer. # Capture the pointer line text, pointer name, and the pointee name def main(): filename = 'startup-config.txt' parsed_config = read_in_file(filename) acls = find_acls(parsed_config) for acl in acls: print acl print '--------------------' cmaps = find_class_maps(parsed_config) for cmap in cmaps: print cmap print '--------------------' pmaps = find_policy_maps(parsed_config) for pmap in pmaps: print pmap print '--------------------' rmaps = find_route_maps(parsed_config) for rmap in rmaps: print rmap print '--------------------' intfs = find_interfaces(parsed_config) for intf in intfs: print intf if __name__ == '__main__': main()
gpl-2.0
6,242,614,476,191,175,000
20.972603
75
0.532107
false
axce1/PyProjects
Graphics/watermark.py
1
1104
import Image, ImageEnhance def add_watermark(image, watermark, opacity=1, wm_interval=None): assert opacity >= 0 and opacity <= 1 if opacity < 1: if watermark.mode != 'RGBA': watermark = watermark.convert('RGBA') else: watermark = watermark.copy() alpha = watermark.split()[3] alpha = ImageEnhance.Brightness(alpha).enhance(opacity) watermark.putalpha(alpha) layer = Image.new('RGBA', image.size, (0,0,0,0)) if wm_interval: for y in range(0, image.size[1], watermark.size[1]+wm_interval): for x in range(0, image.size[0], watermark.size[0]+wm_interval): layer.paste(watermark, (x, y)) else: layer.paste(watermark, (0,image.size[0])) return Image.composite(layer, image, layer) if __name__ == "__main__": import sys if len(sys.argv) < 3: print ('Usage: python watermark.py image-file watermark-image-file') sys.exit(1) img = Image.open(sys.argv[1]) wm = Image.open(sys.argv[2]) add_watermark(img, wm, 0.4, 100).save("image_wm.png")
gpl-2.0
2,413,271,779,597,631,000
33.5
76
0.601449
false
codingenesis/ansible_mysql_rds_playbook
hack/rds.py
1
44216
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: rds version_added: "1.3" short_description: create, delete, or modify an Amazon rds instance description: - Creates, deletes, or modifies rds instances. When creating an instance it can be either a new instance or a read-only replica of an existing instance. This module has a dependency on python-boto >= 2.5. The 'promote' command requires boto >= 2.18.0. Certain features such as tags rely on boto.rds2 (boto >= 2.26.0) options: command: description: - Specifies the action to take. The 'reboot' option is available starting at version 2.0 required: true choices: [ 'create', 'replicate', 'delete', 'facts', 'modify' , 'promote', 'snapshot', 'reboot', 'restore' ] instance_name: description: - Database instance identifier. Required except when using command=facts or command=delete on just a snapshot required: false default: null source_instance: description: - Name of the database to replicate. Used only when command=replicate. required: false default: null db_engine: description: - The type of database. Used only when command=create. required: false default: null choices: [ 'MySQL', 'oracle-se1', 'oracle-se', 'oracle-ee', 'sqlserver-ee', 'sqlserver-se', 'sqlserver-ex', 'sqlserver-web', 'postgres'] size: description: - Size in gigabytes of the initial storage for the DB instance. Used only when command=create or command=modify. required: false default: null instance_type: description: - The instance type of the database. Must be specified when command=create. Optional when command=replicate, command=modify or command=restore. If not specified then the replica inherits the same instance type as the source instance. required: false default: null username: description: - Master database username. Used only when command=create. required: false default: null password: description: - Password for the master database username. Used only when command=create or command=modify. required: false default: null region: description: - The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. required: true aliases: [ 'aws_region', 'ec2_region' ] db_name: description: - Name of a database to create within the instance. If not specified then no database is created. Used only when command=create. required: false default: null engine_version: description: - Version number of the database engine to use. Used only when command=create. If not specified then the current Amazon RDS default engine version is used. required: false default: null parameter_group: description: - Name of the DB parameter group to associate with this instance. If omitted then the RDS default DBParameterGroup will be used. Used only when command=create or command=modify. required: false default: null license_model: description: - The license model for this DB instance. Used only when command=create or command=restore. required: false default: null choices: [ 'license-included', 'bring-your-own-license', 'general-public-license', 'postgresql-license' ] multi_zone: description: - Specifies if this is a Multi-availability-zone deployment. Can not be used in conjunction with zone parameter. Used only when command=create or command=modify. choices: [ "yes", "no" ] required: false default: null iops: description: - Specifies the number of IOPS for the instance. Used only when command=create or command=modify. Must be an integer greater than 1000. required: false default: null security_groups: description: - Comma separated list of one or more security groups. Used only when command=create or command=modify. required: false default: null vpc_security_groups: description: - Comma separated list of one or more vpc security group ids. Also requires `subnet` to be specified. Used only when command=create or command=modify. required: false default: null port: description: - Port number that the DB instance uses for connections. Used only when command=create or command=replicate. - Prior to 2.0 it always defaults to null and the API would use 3306, it had to be set to other DB default values when not using MySql. Starting at 2.0 it auotmaticaly defaults to what is expected for each c(db_engine). required: false default: 3306 for mysql, 1521 for Oracle, 1433 for SQL Server, 5432 for PostgreSQL. upgrade: description: - Indicates that minor version upgrades should be applied automatically. Used only when command=create or command=replicate. required: false default: no choices: [ "yes", "no" ] option_group: description: - The name of the option group to use. If not specified then the default option group is used. Used only when command=create. required: false default: null maint_window: description: - "Maintenance window in format of ddd:hh24:mi-ddd:hh24:mi. (Example: Mon:22:00-Mon:23:15) If not specified then a random maintenance window is assigned. Used only when command=create or command=modify." required: false default: null backup_window: description: - Backup window in format of hh24:mi-hh24:mi. If not specified then a random backup window is assigned. Used only when command=create or command=modify. required: false default: null backup_retention: description: - "Number of days backups are retained. Set to 0 to disable backups. Default is 1 day. Valid range: 0-35. Used only when command=create or command=modify." required: false default: null zone: description: - availability zone in which to launch the instance. Used only when command=create, command=replicate or command=restore. required: false default: null aliases: ['aws_zone', 'ec2_zone'] subnet: description: - VPC subnet group. If specified then a VPC instance is created. Used only when command=create. required: false default: null snapshot: description: - Name of snapshot to take. When command=delete, if no snapshot name is provided then no snapshot is taken. If used with command=delete with no instance_name, the snapshot is deleted. Used with command=facts, command=delete or command=snapshot. required: false default: null aws_secret_key: description: - AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. required: false aliases: [ 'ec2_secret_key', 'secret_key' ] aws_access_key: description: - AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. required: false default: null aliases: [ 'ec2_access_key', 'access_key' ] wait: description: - When command=create, replicate, modify or restore then wait for the database to enter the 'available' state. When command=delete wait for the database to be terminated. required: false default: "no" choices: [ "yes", "no" ] wait_timeout: description: - how long before wait gives up, in seconds default: 300 apply_immediately: description: - Used only when command=modify. If enabled, the modifications will be applied as soon as possible rather than waiting for the next preferred maintenance window. default: no choices: [ "yes", "no" ] force_failover: description: - Used only when command=reboot. If enabled, the reboot is done using a MultiAZ failover. required: false default: "no" choices: [ "yes", "no" ] version_added: "2.0" new_instance_name: description: - Name to rename an instance to. Used only when command=modify. required: false default: null version_added: "1.5" character_set_name: description: - Associate the DB instance with a specified character set. Used with command=create. required: false default: null version_added: "1.9" publicly_accessible: description: - explicitly set whether the resource should be publicly accessible or not. Used with command=create, command=replicate. Requires boto >= 2.26.0 required: false default: null version_added: "1.9" tags: description: - tags dict to apply to a resource. Used with command=create, command=replicate, command=restore. Requires boto >= 2.26.0 required: false default: null version_added: "1.9" requirements: - "python >= 2.6" - "boto" author: - "Bruce Pennypacker (@bpennypacker)" - "Will Thames (@willthames)" ''' # FIXME: the command stuff needs a 'state' like alias to make things consistent -- MPD EXAMPLES = ''' # Basic mysql provisioning example - rds: command: create instance_name: new-database db_engine: MySQL size: 10 instance_type: db.m1.small username: mysql_admin password: 1nsecure tags: Environment: testing Application: cms # Create a read-only replica and wait for it to become available - rds: command: replicate instance_name: new-database-replica source_instance: new_database wait: yes wait_timeout: 600 # Delete an instance, but create a snapshot before doing so - rds: command: delete instance_name: new-database snapshot: new_database_snapshot # Get facts about an instance - rds: command: facts instance_name: new-database register: new_database_facts # Rename an instance and wait for the change to take effect - rds: command: modify instance_name: new-database new_instance_name: renamed-database wait: yes # Reboot an instance and wait for it to become available again - rds command: reboot instance_name: database wait: yes # Restore a Postgres db instance from a snapshot, wait for it to become available again, and # then modify it to add your security group. Also, display the new endpoint. # Note that the "publicly_accessible" option is allowed here just as it is in the AWS CLI - local_action: module: rds command: restore snapshot: mypostgres-snapshot instance_name: MyNewInstanceName region: us-west-2 zone: us-west-2b subnet: default-vpc-xx441xxx publicly_accessible: yes wait: yes wait_timeout: 600 tags: Name: pg1_test_name_tag register: rds - local_action: module: rds command: modify instance_name: MyNewInstanceName region: us-west-2 vpc_security_groups: sg-xxx945xx - debug: msg="The new db endpoint is {{ rds.instance.endpoint }}" ''' import sys import time try: import boto.rds HAS_BOTO = True except ImportError: HAS_BOTO = False try: import boto.rds2 has_rds2 = True except ImportError: has_rds2 = False DEFAULT_PORTS= { 'mysql': 3306, 'oracle': 1521, 'sqlserver': 1433, 'postgres': 5432, } class RDSException(Exception): def __init__(self, exc): if hasattr(exc, 'error_message') and exc.error_message: self.message = exc.error_message self.code = exc.error_code elif hasattr(exc, 'body') and 'Error' in exc.body: self.message = exc.body['Error']['Message'] self.code = exc.body['Error']['Code'] else: self.message = str(exc) self.code = 'Unknown Error' class RDSConnection: def __init__(self, module, region, **aws_connect_params): try: self.connection = connect_to_aws(boto.rds, region, **aws_connect_params) except boto.exception.BotoServerError, e: module.fail_json(msg=e.error_message) def get_db_instance(self, instancename): try: return RDSDBInstance(self.connection.get_all_dbinstances(instancename)[0]) except boto.exception.BotoServerError, e: return None def get_db_snapshot(self, snapshotid): try: return RDSSnapshot(self.connection.get_all_dbsnapshots(snapshot_id=snapshotid)[0]) except boto.exception.BotoServerError, e: return None def create_db_instance(self, instance_name, size, instance_class, db_engine, username, password, **params): params['engine'] = db_engine try: result = self.connection.create_dbinstance(instance_name, size, instance_class, username, password, **params) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def create_db_instance_read_replica(self, instance_name, source_instance, **params): try: result = self.connection.createdb_instance_read_replica(instance_name, source_instance, **params) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def delete_db_instance(self, instance_name, **params): try: result = self.connection.delete_dbinstance(instance_name, **params) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def delete_db_snapshot(self, snapshot): try: result = self.connection.delete_dbsnapshot(snapshot) return RDSSnapshot(result) except boto.exception.BotoServerError, e: raise RDSException(e) def modify_db_instance(self, instance_name, **params): try: result = self.connection.modify_dbinstance(instance_name, **params) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def reboot_db_instance(self, instance_name, **params): try: result = self.connection.reboot_dbinstance(instance_name) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def restore_db_instance_from_db_snapshot(self, instance_name, snapshot, instance_type, **params): try: result = self.connection.restore_dbinstance_from_dbsnapshot(snapshot, instance_name, instance_type, **params) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def create_db_snapshot(self, snapshot, instance_name, **params): try: result = self.connection.create_dbsnapshot(snapshot, instance_name) return RDSSnapshot(result) except boto.exception.BotoServerError, e: raise RDSException(e) def promote_read_replica(self, instance_name, **params): try: result = self.connection.promote_read_replica(instance_name, **params) return RDSDBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) class RDS2Connection: def __init__(self, module, region, **aws_connect_params): try: self.connection = connect_to_aws(boto.rds2, region, **aws_connect_params) except boto.exception.BotoServerError, e: module.fail_json(msg=e.error_message) def get_db_instance(self, instancename): try: dbinstances = self.connection.describe_db_instances(db_instance_identifier=instancename)['DescribeDBInstancesResponse']['DescribeDBInstancesResult']['DBInstances'] result = RDS2DBInstance(dbinstances[0]) return result except boto.rds2.exceptions.DBInstanceNotFound, e: return None except Exception, e: raise e def get_db_snapshot(self, snapshotid): try: snapshots = self.connection.describe_db_snapshots(db_snapshot_identifier=snapshotid, snapshot_type='manual')['DescribeDBSnapshotsResponse']['DescribeDBSnapshotsResult']['DBSnapshots'] result = RDS2Snapshot(snapshots[0]) return result except boto.rds2.exceptions.DBSnapshotNotFound, e: return None def create_db_instance(self, instance_name, size, instance_class, db_engine, username, password, **params): try: result = self.connection.create_db_instance(instance_name, size, instance_class, db_engine, username, password, **params)['CreateDBInstanceResponse']['CreateDBInstanceResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def create_db_instance_read_replica(self, instance_name, source_instance, **params): try: result = self.connection.create_db_instance_read_replica(instance_name, source_instance, **params)['CreateDBInstanceReadReplicaResponse']['CreateDBInstanceReadReplicaResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def delete_db_instance(self, instance_name, **params): try: result = self.connection.delete_db_instance(instance_name, **params)['DeleteDBInstanceResponse']['DeleteDBInstanceResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def delete_db_snapshot(self, snapshot): try: result = self.connection.delete_db_snapshot(snapshot)['DeleteDBSnapshotResponse']['DeleteDBSnapshotResult']['DBSnapshot'] return RDS2Snapshot(result) except boto.exception.BotoServerError, e: raise RDSException(e) def modify_db_instance(self, instance_name, **params): try: result = self.connection.modify_db_instance(instance_name, **params)['ModifyDBInstanceResponse']['ModifyDBInstanceResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def reboot_db_instance(self, instance_name, **params): try: result = self.connection.reboot_db_instance(instance_name, **params)['RebootDBInstanceResponse']['RebootDBInstanceResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def restore_db_instance_from_db_snapshot(self, instance_name, snapshot, instance_type, **params): try: result = self.connection.restore_db_instance_from_db_snapshot(instance_name, snapshot, **params)['RestoreDBInstanceFromDBSnapshotResponse']['RestoreDBInstanceFromDBSnapshotResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) def create_db_snapshot(self, snapshot, instance_name, **params): try: result = self.connection.create_db_snapshot(snapshot, instance_name, **params)['CreateDBSnapshotResponse']['CreateDBSnapshotResult']['DBSnapshot'] return RDS2Snapshot(result) except boto.exception.BotoServerError, e: raise RDSException(e) def promote_read_replica(self, instance_name, **params): try: result = self.connection.promote_read_replica(instance_name, **params)['PromoteReadReplicaResponse']['PromoteReadReplicaResult']['DBInstance'] return RDS2DBInstance(result) except boto.exception.BotoServerError, e: raise RDSException(e) class RDSDBInstance: def __init__(self, dbinstance): self.instance = dbinstance self.name = dbinstance.id self.status = dbinstance.status def get_data(self): d = { 'id' : self.name, 'create_time' : self.instance.create_time, 'status' : self.status, 'availability_zone' : self.instance.availability_zone, 'backup_retention' : self.instance.backup_retention_period, 'backup_window' : self.instance.preferred_backup_window, 'maintenance_window' : self.instance.preferred_maintenance_window, 'multi_zone' : self.instance.multi_az, 'instance_type' : self.instance.instance_class, 'username' : self.instance.master_username, 'iops' : self.instance.iops } # Endpoint exists only if the instance is available if self.status == 'available': d["endpoint"] = self.instance.endpoint[0] d["port"] = self.instance.endpoint[1] if self.instance.vpc_security_groups is not None: d["vpc_security_groups"] = ','.join(x.vpc_group for x in self.instance.vpc_security_groups) else: d["vpc_security_groups"] = None else: d["endpoint"] = None d["port"] = None d["vpc_security_groups"] = None # ReadReplicaSourceDBInstanceIdentifier may or may not exist try: d["replication_source"] = self.instance.ReadReplicaSourceDBInstanceIdentifier except Exception, e: d["replication_source"] = None return d class RDS2DBInstance: def __init__(self, dbinstance): self.instance = dbinstance if 'DBInstanceIdentifier' not in dbinstance: self.name = None else: self.name = self.instance.get('DBInstanceIdentifier') self.status = self.instance.get('DBInstanceStatus') def get_data(self): d = { 'id': self.name, 'create_time': self.instance['InstanceCreateTime'], 'status': self.status, 'availability_zone': self.instance['AvailabilityZone'], 'backup_retention': self.instance['BackupRetentionPeriod'], 'maintenance_window': self.instance['PreferredMaintenanceWindow'], 'multi_zone': self.instance['MultiAZ'], 'instance_type': self.instance['DBInstanceClass'], 'username': self.instance['MasterUsername'], 'iops': self.instance['Iops'], 'replication_source': self.instance['ReadReplicaSourceDBInstanceIdentifier'] } if self.instance["VpcSecurityGroups"] is not None: d['vpc_security_groups'] = ','.join(x['VpcSecurityGroupId'] for x in self.instance['VpcSecurityGroups']) if self.status == 'available': d['endpoint'] = self.instance["Endpoint"]["Address"] d['port'] = self.instance["Endpoint"]["Port"] else: d['endpoint'] = None d['port'] = None return d class RDSSnapshot: def __init__(self, snapshot): self.snapshot = snapshot self.name = snapshot.id self.status = snapshot.status def get_data(self): d = { 'id' : self.name, 'create_time' : self.snapshot.snapshot_create_time, 'status' : self.status, 'availability_zone' : self.snapshot.availability_zone, 'instance_id' : self.snapshot.instance_id, 'instance_created' : self.snapshot.instance_create_time, } # needs boto >= 2.21.0 if hasattr(self.snapshot, 'snapshot_type'): d["snapshot_type"] = self.snapshot.snapshot_type if hasattr(self.snapshot, 'iops'): d["iops"] = self.snapshot.iops return d class RDS2Snapshot: def __init__(self, snapshot): if 'DeleteDBSnapshotResponse' in snapshot: self.snapshot = snapshot['DeleteDBSnapshotResponse']['DeleteDBSnapshotResult']['DBSnapshot'] else: self.snapshot = snapshot self.name = self.snapshot.get('DBSnapshotIdentifier') self.status = self.snapshot.get('Status') def get_data(self): d = { 'id' : self.name, 'create_time' : self.snapshot['SnapshotCreateTime'], 'status' : self.status, 'availability_zone' : self.snapshot['AvailabilityZone'], 'instance_id' : self.snapshot['DBInstanceIdentifier'], 'instance_created' : self.snapshot['InstanceCreateTime'], 'snapshot_type' : self.snapshot['SnapshotType'], 'iops' : self.snapshot['Iops'], } return d def await_resource(conn, resource, status, module): wait_timeout = module.params.get('wait_timeout') + time.time() while wait_timeout > time.time() and resource.status != status: time.sleep(5) if wait_timeout <= time.time(): module.fail_json(msg="Timeout waiting for RDS resource %s" % resource.name) if module.params.get('command') == 'snapshot': # Temporary until all the rds2 commands have their responses parsed if resource.name is None: module.fail_json(msg="There was a problem waiting for RDS snapshot %s" % resource.snapshot) resource = conn.get_db_snapshot(resource.name) else: # Temporary until all the rds2 commands have their responses parsed if resource.name is None: module.fail_json(msg="There was a problem waiting for RDS instance %s" % resource.instance) resource = conn.get_db_instance(resource.name) if resource is None: break return resource def create_db_instance(module, conn): subnet = module.params.get('subnet') required_vars = ['instance_name', 'db_engine', 'size', 'instance_type', 'username', 'password'] valid_vars = ['backup_retention', 'backup_window', 'character_set_name', 'db_name', 'engine_version', 'instance_type', 'iops', 'license_model', 'maint_window', 'multi_zone', 'option_group', 'parameter_group','port', 'subnet', 'upgrade', 'zone'] if module.params.get('subnet'): valid_vars.append('vpc_security_groups') else: valid_vars.append('security_groups') if has_rds2: valid_vars.extend(['publicly_accessible', 'tags']) params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') result = conn.get_db_instance(instance_name) if result: changed = False else: try: result = conn.create_db_instance(instance_name, module.params.get('size'), module.params.get('instance_type'), module.params.get('db_engine'), module.params.get('username'), module.params.get('password'), **params) changed = True except RDSException, e: module.fail_json(msg="Failed to create instance: %s" % e.message) if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_instance(instance_name) module.exit_json(changed=changed, instance=resource.get_data()) def replicate_db_instance(module, conn): required_vars = ['instance_name', 'source_instance'] valid_vars = ['instance_type', 'port', 'upgrade', 'zone'] if has_rds2: valid_vars.extend(['iops', 'option_group', 'publicly_accessible', 'tags']) params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') source_instance = module.params.get('source_instance') result = conn.get_db_instance(instance_name) if result: changed = False else: try: result = conn.create_db_instance_read_replica(instance_name, source_instance, **params) changed = True except RDSException, e: module.fail_json(msg="Failed to create replica instance: %s " % e.message) if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_instance(instance_name) module.exit_json(changed=changed, instance=resource.get_data()) def delete_db_instance_or_snapshot(module, conn): required_vars = [] valid_vars = ['instance_name', 'snapshot', 'skip_final_snapshot'] params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') snapshot = module.params.get('snapshot') if not instance_name: result = conn.get_db_snapshot(snapshot) else: result = conn.get_db_instance(instance_name) if not result: module.exit_json(changed=False) if result.status == 'deleting': module.exit_json(changed=False) try: if instance_name: if snapshot: params["skip_final_snapshot"] = False if has_rds2: params["final_db_snapshot_identifier"] = snapshot else: params["final_snapshot_id"] = snapshot else: params["skip_final_snapshot"] = True result = conn.delete_db_instance(instance_name, **params) else: result = conn.delete_db_snapshot(snapshot) except RDSException, e: module.fail_json(msg="Failed to delete instance: %s" % e.message) # If we're not waiting for a delete to complete then we're all done # so just return if not module.params.get('wait'): module.exit_json(changed=True) try: resource = await_resource(conn, result, 'deleted', module) module.exit_json(changed=True) except RDSException, e: if e.code == 'DBInstanceNotFound': module.exit_json(changed=True) else: module.fail_json(msg=e.message) except Exception, e: module.fail_json(msg=str(e)) def facts_db_instance_or_snapshot(module, conn): required_vars = [] valid_vars = ['instance_name', 'snapshot'] params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') snapshot = module.params.get('snapshot') if instance_name and snapshot: module.fail_json(msg="Facts must be called with either instance_name or snapshot, not both") if instance_name: resource = conn.get_db_instance(instance_name) if not resource: module.fail_json(msg="DB instance %s does not exist" % instance_name) if snapshot: resource = conn.get_db_snapshot(snapshot) if not resource: module.fail_json(msg="DB snapshot %s does not exist" % snapshot) module.exit_json(changed=False, instance=resource.get_data()) def modify_db_instance(module, conn): required_vars = ['instance_name'] valid_vars = ['apply_immediately', 'backup_retention', 'backup_window', 'db_name', 'engine_version', 'instance_type', 'iops', 'license_model', 'maint_window', 'multi_zone', 'new_instance_name', 'option_group', 'parameter_group', 'password', 'size', 'upgrade2', 'upgrade' ] params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') new_instance_name = module.params.get('new_instance_name') try: result = conn.modify_db_instance(instance_name, **params) except RDSException, e: module.fail_json(msg=e.message) if params.get('apply_immediately'): if new_instance_name: # Wait until the new instance name is valid new_instance = None while not new_instance: new_instance = conn.get_db_instance(new_instance_name) time.sleep(5) # Found instance but it briefly flicks to available # before rebooting so let's wait until we see it rebooting # before we check whether to 'wait' result = await_resource(conn, new_instance, 'rebooting', module) if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_instance(instance_name) # guess that this changed the DB, need a way to check module.exit_json(changed=True, instance=resource.get_data()) def promote_db_instance(module, conn): required_vars = ['instance_name'] valid_vars = ['backup_retention', 'backup_window'] params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') result = conn.get_db_instance(instance_name) if not result: module.fail_json(msg="DB Instance %s does not exist" % instance_name) if result.get_data().get('replication_source'): try: result = conn.promote_read_replica(instance_name, **params) changed = True except RDSException, e: module.fail_json(msg=e.message) else: changed = False if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_instance(instance_name) module.exit_json(changed=changed, instance=resource.get_data()) def snapshot_db_instance(module, conn): required_vars = ['instance_name', 'snapshot'] valid_vars = ['tags'] params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') snapshot = module.params.get('snapshot') changed = False result = conn.get_db_snapshot(snapshot) if not result: try: result = conn.create_db_snapshot(snapshot, instance_name, **params) changed = True except RDSException, e: module.fail_json(msg=e.message) if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_snapshot(snapshot) module.exit_json(changed=changed, snapshot=resource.get_data()) def reboot_db_instance(module, conn): required_vars = ['instance_name'] valid_vars = [] if has_rds2: valid_vars.append('force_failover') params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') result = conn.get_db_instance(instance_name) changed = False try: result = conn.reboot_db_instance(instance_name, **params) changed = True except RDSException, e: module.fail_json(msg=e.message) if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_instance(instance_name) module.exit_json(changed=changed, instance=resource.get_data()) def restore_db_instance(module, conn): required_vars = ['instance_name', 'snapshot'] valid_vars = ['db_name', 'iops', 'license_model', 'multi_zone', 'option_group', 'port', 'publicly_accessible', 'subnet', 'tags', 'upgrade', 'zone'] if has_rds2: valid_vars.append('instance_type') else: required_vars.append('instance_type') params = validate_parameters(required_vars, valid_vars, module) instance_name = module.params.get('instance_name') instance_type = module.params.get('instance_type') snapshot = module.params.get('snapshot') changed = False result = conn.get_db_instance(instance_name) if not result: try: result = conn.restore_db_instance_from_db_snapshot(instance_name, snapshot, instance_type, **params) changed = True except RDSException, e: module.fail_json(msg=e.message) if module.params.get('wait'): resource = await_resource(conn, result, 'available', module) else: resource = conn.get_db_instance(instance_name) module.exit_json(changed=changed, instance=resource.get_data()) def validate_parameters(required_vars, valid_vars, module): command = module.params.get('command') for v in required_vars: if not module.params.get(v): module.fail_json(msg="Parameter %s required for %s command" % (v, command)) # map to convert rds module options to boto rds and rds2 options optional_params = { 'port': 'port', 'db_name': 'db_name', 'zone': 'availability_zone', 'maint_window': 'preferred_maintenance_window', 'backup_window': 'preferred_backup_window', 'backup_retention': 'backup_retention_period', 'multi_zone': 'multi_az', 'engine_version': 'engine_version', 'upgrade': 'auto_minor_version_upgrade', 'upgrade2': 'allow_major_version_upgrade', 'subnet': 'db_subnet_group_name', 'license_model': 'license_model', 'option_group': 'option_group_name', 'size': 'allocated_storage', 'iops': 'iops', 'new_instance_name': 'new_instance_id', 'apply_immediately': 'apply_immediately', } # map to convert rds module options to boto rds options optional_params_rds = { 'db_engine': 'engine', 'password': 'master_password', 'parameter_group': 'param_group', 'instance_type': 'instance_class', } # map to convert rds module options to boto rds2 options optional_params_rds2 = { 'tags': 'tags', 'publicly_accessible': 'publicly_accessible', 'parameter_group': 'db_parameter_group_name', 'character_set_name': 'character_set_name', 'instance_type': 'db_instance_class', 'password': 'master_user_password', 'new_instance_name': 'new_db_instance_identifier', 'force_failover': 'force_failover', } if has_rds2: optional_params.update(optional_params_rds2) sec_group = 'db_security_groups' else: optional_params.update(optional_params_rds) sec_group = 'security_groups' # Check for options only supported with rds2 for k in set(optional_params_rds2.keys()) - set(optional_params_rds.keys()): if module.params.get(k): module.fail_json(msg="Parameter %s requires boto.rds (boto >= 2.26.0)" % k) params = {} for (k, v) in optional_params.items(): if module.params.get(k) and k not in required_vars: if k in valid_vars: params[v] = module.params[k] else: module.fail_json(msg="Parameter %s is not valid for %s command" % (k, command)) if module.params.get('security_groups'): params[sec_group] = module.params.get('security_groups').split(',') vpc_groups = module.params.get('vpc_security_groups') if vpc_groups: if has_rds2: params['vpc_security_group_ids'] = vpc_groups else: groups_list = [] for x in vpc_groups: groups_list.append(boto.rds.VPCSecurityGroupMembership(vpc_group=x)) params['vpc_security_groups'] = groups_list # Convert tags dict to list of tuples that rds2 expects if 'tags' in params: params['tags'] = module.params['tags'].items() return params def main(): argument_spec = ec2_argument_spec() argument_spec.update(dict( command = dict(choices=['create', 'replicate', 'delete', 'facts', 'modify', 'promote', 'snapshot', 'reboot', 'restore'], required=True), instance_name = dict(required=False), source_instance = dict(required=False), db_engine = dict(choices=['MySQL', 'oracle-se1', 'oracle-se', 'oracle-ee', 'sqlserver-ee', 'sqlserver-se', 'sqlserver-ex', 'sqlserver-web', 'postgres'], required=False), size = dict(required=False), instance_type = dict(aliases=['type'], required=False), username = dict(required=False), password = dict(no_log=True, required=False), db_name = dict(required=False), engine_version = dict(required=False), parameter_group = dict(required=False), license_model = dict(choices=['license-included', 'bring-your-own-license', 'general-public-license', 'postgresql-license'], required=False), multi_zone = dict(type='bool', default=False), iops = dict(required=False), security_groups = dict(required=False), vpc_security_groups = dict(type='list', required=False), port = dict(required=False), upgrade = dict(type='bool', default=False), upgrade2 = dict(type='bool', default=False), option_group = dict(required=False), maint_window = dict(required=False), backup_window = dict(required=False), backup_retention = dict(required=False), zone = dict(aliases=['aws_zone', 'ec2_zone'], required=False), subnet = dict(required=False), wait = dict(type='bool', default=False), wait_timeout = dict(type='int', default=300), snapshot = dict(required=False), apply_immediately = dict(type='bool', default=False), new_instance_name = dict(required=False), tags = dict(type='dict', required=False), publicly_accessible = dict(required=False), character_set_name = dict(required=False), force_failover = dict(type='bool', required=False, default=False) ) ) module = AnsibleModule( argument_spec=argument_spec, ) if not HAS_BOTO: module.fail_json(msg='boto required for this module') invocations = { 'create': create_db_instance, 'replicate': replicate_db_instance, 'delete': delete_db_instance_or_snapshot, 'facts': facts_db_instance_or_snapshot, 'modify': modify_db_instance, 'promote': promote_db_instance, 'snapshot': snapshot_db_instance, 'reboot': reboot_db_instance, 'restore': restore_db_instance, } region, ec2_url, aws_connect_params = get_aws_connection_info(module) if not region: module.fail_json(msg="Region not specified. Unable to determine region from EC2_REGION.") # set port to per db defaults if not specified if module.params['port'] is None and module.params['db_engine'] is not None and module.params['command'] == 'create': if '-' in module.params['db_engine']: engine = module.params['db_engine'].split('-')[0] else: engine = module.params['db_engine'] module.params['port'] = DEFAULT_PORTS[engine.lower()] # connect to the rds endpoint if has_rds2: conn = RDS2Connection(module, region, **aws_connect_params) else: conn = RDSConnection(module, region, **aws_connect_params) invocations[module.params.get('command')](module, conn) # import module snippets from ansible.module_utils.basic import * from ansible.module_utils.ec2 import * main()
gpl-3.0
3,260,466,123,463,195,600
39.087035
322
0.635811
false
jnimmo/pyenvisalink
pyenvisalink/honeywell_client.py
1
10341
import logging import json import re import asyncio from pyenvisalink import EnvisalinkClient from pyenvisalink.honeywell_envisalinkdefs import * _LOGGER = logging.getLogger(__name__) class HoneywellClient(EnvisalinkClient): """Represents a honeywell alarm client.""" @asyncio.coroutine def keep_alive(self): """Send a keepalive command to reset it's watchdog timer.""" while not self._shutdown: if self._loggedin: self.send_command(evl_Commands['KeepAlive'], '') yield from asyncio.sleep(self._alarmPanel.keepalive_interval, loop=self._eventLoop) @asyncio.coroutine def periodic_zone_timer_dump(self): """Used to periodically get the zone timers to make sure our zones are updated.""" while not self._shutdown: if self._loggedin: self.dump_zone_timers() yield from asyncio.sleep(self._alarmPanel.zone_timer_interval, loop=self._eventLoop) def send_command(self, code, data): """Send a command in the proper honeywell format.""" to_send = '^' + code + ',' + data + '$' self.send_data(to_send) def dump_zone_timers(self): """Send a command to dump out the zone timers.""" self.send_command(evl_Commands['DumpZoneTimers'], '') def keypresses_to_partition(self, partitionNumber, keypresses): """Send keypresses to a particular partition.""" for char in keypresses: self.send_command(evl_Commands['PartitionKeypress'], str.format("{0},{1}", partitionNumber, char)) def arm_stay_partition(self, code, partitionNumber): """Public method to arm/stay a partition.""" self.keypresses_to_partition(partitionNumber, code + '3') def arm_away_partition(self, code, partitionNumber): """Public method to arm/away a partition.""" self.keypresses_to_partition(partitionNumber, code + '2') def arm_max_partition(self, code, partitionNumber): """Public method to arm/max a partition.""" self.keypresses_to_partition(partitionNumber, code + '4') def disarm_partition(self, code, partitionNumber): """Public method to disarm a partition.""" self.keypresses_to_partition(partitionNumber, code + '1') def panic_alarm(self, panicType): """Public method to raise a panic alarm.""" self.keypresses_to_partition(1, evl_PanicTypes[panicType]) def parseHandler(self, rawInput): """When the envisalink contacts us- parse out which command and data.""" cmd = {} parse = re.match('([%\^].+)\$', rawInput) if parse and parse.group(1): # keep first sentinel char to tell difference between tpi and # Envisalink command responses. Drop the trailing $ sentinel. inputList = parse.group(1).split(',') code = inputList[0] cmd['code'] = code cmd['data'] = ','.join(inputList[1:]) elif not self._loggedin: # assume it is login info code = rawInput cmd['code'] = code cmd['data'] = '' else: _LOGGER.error("Unrecognized data recieved from the envisalink. Ignoring.") _LOGGER.debug(str.format("Code:{0} Data:{1}", code, cmd['data'])) try: cmd['handler'] = "handle_%s" % evl_ResponseTypes[code]['handler'] cmd['callback'] = "callback_%s" % evl_ResponseTypes[code]['handler'] except KeyError: _LOGGER.warning(str.format('No handler defined in config for {0}, skipping...', code)) return cmd def handle_login(self, code, data): """When the envisalink asks us for our password- send it.""" self.send_data(self._alarmPanel.password) def handle_command_response(self, code, data): """Handle the envisalink's initial response to our commands.""" responseString = evl_TPI_Response_Codes[data] _LOGGER.debug("Envisalink response: " + responseString) if data != '00': logging.error("error sending command to envisalink. Response was: " + responseString) def handle_poll_response(self, code, data): """Handle the response to our keepalive messages.""" self.handle_command_response(code, data) def handle_keypad_update(self, code, data): """Handle the response to when the envisalink sends keypad updates our way.""" dataList = data.split(',') # make sure data is in format we expect, current TPI seems to send bad data every so ofen #TODO: Make this a regex... if len(dataList) != 5 or "%" in data: _LOGGER.error("Data format invalid from Envisalink, ignoring...") return partitionNumber = int(dataList[0]) flags = IconLED_Flags() flags.asShort = int(dataList[1], 16) beep = evl_Virtual_Keypad_How_To_Beep.get(dataList[3], 'unknown') alpha = dataList[4] _LOGGER.debug("Updating our local alarm state...") self._alarmPanel.alarm_state['partition'][partitionNumber]['status'].update({'alarm': bool(flags.alarm), 'alarm_in_memory': bool(flags.alarm_in_memory), 'armed_away': bool(flags.armed_away), 'ac_present': bool(flags.ac_present), 'armed_bypass': bool(flags.bypass), 'chime': bool(flags.chime), 'armed_zero_entry_delay': bool(flags.armed_zero_entry_delay), 'alarm_fire_zone': bool(flags.alarm_fire_zone), 'trouble': bool(flags.system_trouble), 'ready': bool(flags.ready), 'fire': bool(flags.fire), 'armed_stay': bool(flags.armed_stay), 'alpha': alpha, 'beep': beep, }) _LOGGER.debug(json.dumps(self._alarmPanel.alarm_state['partition'][partitionNumber]['status'])) def handle_zone_state_change(self, code, data): """Handle when the envisalink sends us a zone change.""" # Envisalink TPI is inconsistent at generating these bigEndianHexString = '' # every four characters inputItems = re.findall('....', data) for inputItem in inputItems: # Swap the couples of every four bytes # (little endian to big endian) swapedBytes = [] swapedBytes.insert(0, inputItem[0:2]) swapedBytes.insert(0, inputItem[2:4]) # add swapped set of four bytes to our return items, # converting from hex to int bigEndianHexString += ''.join(swapedBytes) # convert hex string to 64 bit bitstring TODO: THIS IS 128 for evl4 if self._alarmPanel.envisalink_version < 4: bitfieldString = str(bin(int(bigEndianHexString, 16))[2:].zfill(64)) else: bitfieldString = str(bin(int(bigEndianHexString, 16))[2:].zfill(128)) # reverse every 16 bits so "lowest" zone is on the left zonefieldString = '' inputItems = re.findall('.' * 16, bitfieldString) for inputItem in inputItems: zonefieldString += inputItem[::-1] for zoneNumber, zoneBit in enumerate(zonefieldString, start=1): self._alarmPanel.alarm_state['zone'][zoneNumber]['status'].update({'open': zoneBit == '1', 'fault': zoneBit == '1'}) if zoneBit == '1': self._alarmPanel.alarm_state['zone'][zoneNumber]['last_fault'] = 0 _LOGGER.debug("(zone %i) is %s", zoneNumber, "Open/Faulted" if zoneBit == '1' else "Closed/Not Faulted") def handle_partition_state_change(self, code, data): """Handle when the envisalink sends us a partition change.""" for currentIndex in range(0, 8): partitionStateCode = data[currentIndex * 2:(currentIndex * 2) + 2] partitionState = evl_Partition_Status_Codes[str(partitionStateCode)] partitionNumber = currentIndex + 1 previouslyArmed = self._alarmPanel.alarm_state['partition'][partitionNumber]['status'].get('armed', False) armed = partitionState['name'] in ('ARMED_STAY', 'ARMED_AWAY', 'ARMED_MAX') self._alarmPanel.alarm_state.update({'arm': not armed, 'disarm': armed, 'cancel': bool(partitionState['name'] == 'EXIT_ENTRY_DELAY')}) self._alarmPanel.alarm_state['partition'][partitionNumber]['status'].update({'exit_delay': bool(partitionState['name'] == 'EXIT_ENTRY_DELAY' and not previouslyArmed), 'entry_delay': bool(partitionState['name'] == 'EXIT_ENTRY_DELAY' and previouslyArmed), 'armed': armed, 'ready': bool(partitionState['name'] == 'READY' or partitionState['name'] == 'READY_BYPASS')}) if partitionState['name'] == 'NOT_READY': self._alarmPanel.alarm_state['partition'][partitionNumber]['status'].update({'ready': False}) _LOGGER.debug('Parition ' + str(partitionNumber) + ' is in state ' + partitionState['name']) _LOGGER.debug(json.dumps(self._alarmPanel.alarm_state['partition'][partitionNumber]['status'])) def handle_realtime_cid_event(self, code, data): """Handle when the envisalink sends us an alarm arm/disarm/trigger.""" eventTypeInt = int(data[0]) eventType = evl_CID_Qualifiers[eventTypeInt] cidEventInt = int(data[1:4]) cidEvent = evl_CID_Events[cidEventInt] partition = data[4:6] zoneOrUser = int(data[6:9]) _LOGGER.debug('Event Type is ' + eventType) _LOGGER.debug('CID Type is ' + cidEvent['type']) _LOGGER.debug('CID Description is ' + cidEvent['label']) _LOGGER.debug('Partition is ' + partition) _LOGGER.debug(cidEvent['type'] + ' value is ' + str(zoneOrUser)) return cidEvent
mit
-3,805,397,457,246,989,300
50.447761
198
0.582922
false
gregorymfoster/honeypot
honeypot/honeypot/www/models.py
1
9081
import random import string import logging import datetime from dateutil.relativedelta import relativedelta # An abstracted data model for fetching data from honeypot_logs class HoneypotLogTable(object): # Create model for a specific airflow database def __init__(self, table_name, sql_conn_id='airflow_db'): self.table_name = table_name self.sql_conn_id = sql_conn_id # Return data on a specific dag or task def get_rows_for_data_request(self, measure, dag, name): args = {'from': 'FROM ' + self.table_name} # Infer the grain depending if a dag is specified grain = 'dag' if dag and dag != name: grain = 'task' args['where'] = "WHERE {grain}_id = '{name}'".format(**locals()) if measure == 'io': args['select'] = '''SELECT (SUM(hdfs_reads) + SUM(hdfs_writes)) AS value, input_date AS ds''' elif measure == 'cpu': args['select'] = '''SELECT SUM(cpu_time) AS value, input_date AS ds''' elif measure == 'mappers': args['select'] = '''SELECT SUM(num_mappers) AS value, input_date AS ds''' elif measure == 'reducers': args['select'] = '''SELECT SUM(num_reducers) AS value, input_date AS ds''' args['order'] = 'ORDER BY input_date' args['group'] = 'GROUP BY input_date' query = args['select'] + '\n' query += args['from'] + '\n' query += args['where'] + '\n' query += args['group'] + '\n' query += args['order'] + ';' logging.info(query) db = self.get_sql_hook(self.sql_conn_id) data = db.get_pandas_df(query) return data def get_row_for_detail_request(self, dag, name): # Infer the grain depending if a dag is specified grain = 'dag' if dag: grain = 'task' args = {'from': 'FROM ' + self.table_name} args['where'] = "WHERE {grain}_id = '{name}'".format(**locals()) args['select'] = 'SELECT owner' args['group'] = 'GROUP BY owner' query = args['select'] + '\n' query += args['from'] + '\n' query += args['where'] + '\n' query += args['group'] + ';' logging.info(query) db = self.get_sql_hook(self.sql_conn_id) data = db.get_pandas_df(query) # logging.info(data) return data # Return summaries of all dags or tasks based on some parameters def get_rows_for_filter(self, measure, time, dag): args = {'from': 'FROM ' + self.table_name} # Create the correct date range end = str(datetime.datetime.utcnow()) start = None if time == 'year': date = (datetime.datetime.utcnow() - datetime.timedelta(years=1)) start = date.strftime("%Y-%m-%d %H:%M:%S") elif time == 'week': date = (datetime.datetime.utcnow() - datetime.timedelta(days=7)) start = date.strftime("%Y-%m-%d %H:%M:%S") elif time == 'month': date = (datetime.datetime.utcnow() - relativedelta(months=1)) start = date.strftime("%Y-%m-%d %H:%M:%S") args['where'] = """WHERE input_date BETWEEN '{start}' AND '{end}'""".format(**locals()) # adjust if user has selected a dag or not grain = 'dag' if (dag): args['where'] += (" AND dag_id = '{dag}'".format(**locals())) grain = 'task' if measure == 'io': args['select'] = """SELECT {grain}_id AS name, (AVG(hdfs_reads)+AVG(hdfs_writes)) AS value""".format(**locals()) elif measure == 'cpu': args['select'] = """SELECT {grain}_id AS name, AVG(cpu_time) AS value""".format(**locals()) elif measure == 'mappers': args['select'] = """SELECT {grain}_id AS name, AVG(num_mappers) AS value""".format(**locals()) elif measure == 'reducers': args['select'] = """SELECT {grain}_id AS name, AVG(num_reducers) AS value""".format(**locals()) args['order'] = 'ORDER BY value DESC' args['group'] = 'GROUP BY {grain}_id'.format(**locals()) query = args['select'] + '\n' query += args['from'] + '\n' query += args['where'] + '\n' query += args['group'] + '\n' query += args['order'] + ';' logging.info(query) db = self.get_sql_hook(self.sql_conn_id) data = db.get_pandas_df(query) # logging.info(data) return data # Create a local test database # Inputs allow for old table to be dropped, and new data to be generated def create_table(self, drop=False, with_test_data=False): """ Creates the honeypot_log table """ db = self.get_sql_hook(self.sql_conn_id) table = self.table_name if drop: sql = "DROP TABLE IF EXISTS {table};".format(**locals()) logging.info("Executing SQL: \n" + sql) db.run(sql) sql = """CREATE TABLE IF NOT EXISTS honeypot_logs ( log_filepath VARCHAR(255) , dag_id VARCHAR(255), task_id VARCHAR(255), job_num INT, execution_date DATETIME, duration DOUBLE, input_date DATETIME, num_mappers INT, num_reducers INT, cpu_time LONG, hdfs_reads LONG, hdfs_writes LONG, owner VARCHAR(255));""".format(**locals()) logging.info("Executing SQL: \n" + sql) db.run(sql) if with_test_data: self.create_test_data() # A helper function to create a SQL insertion string def insert_string_from_dict(self, d): return ('INSERT INTO honeypot_logs VALUES(' '\'{log_filepath}\', ' '\'{dag_id}\', ' '\'{task_id}\', ' '{job_num}, ' '\'{execution_date}\', ' '{task_duration}, ' '\'{input_date}\', ' '{mappers}, ' '{reducers}, ' '{cpu_time}, ' '{hdfs_reads}, ' '{hdfs_writes}, ' '\'{owner}\' ' ');').format(**d) # A helper function to generate a random name def random_string(self, lowerLength, upperLength): return ''.join(random.choice(string.ascii_letters) for _ in range(random.randint(lowerLength, upperLength))) # A helper function to add random data to local database for testing def create_test_data(self): """ Creates test data """ for i in range(10): print "inserting a test dag" i = str(i) batch = 100 db = self.get_sql_hook(self.sql_conn_id) # gen dates base = datetime.datetime.today() dates = [base - datetime.timedelta(days=x) for x in range(0, batch)] date_strings = [d.strftime("%Y-%m-%dT%H:%M:%SZ") for d in dates] strings = [] for date_string in date_strings: num_jobs = random.randint(1, 7) d = {} d['log_filepath'] = 'fake_filepath' + i + '_' + date_string d['dag_id'] = 'fake_dag' + i d['task_id'] = 'fake_task' + i d['execution_date'] = date_string d['task_duration'] = str(random.randint(100, 10000)) d['input_date'] = date_string d['owner'] = 'fake_owner' + i for job_num in range(num_jobs): d['job_num'] = str(job_num) d['mappers'] = str(random.randint(1, 100)) d['reducers'] = str(random.randint(1, 100)) d['cpu_time'] = str(random.randint(100, 10000)) d['hdfs_reads'] = str(random.randint(100, 100000)) d['hdfs_writes'] = str(random.randint(100, 100000)) strings.append(self.insert_string_from_dict(d)) logging.info(strings) for insertion_string in strings: logging.info("Executing SQL: \n" + insertion_string) try: db.run(insertion_string) except Exception as e: print "Failed to insert row: ", e # A helper to create the approprate hook depending on local or airflow use def get_sql_hook(self, sql_conn_id): if 'sqlite' in sql_conn_id: from airflow.hooks import SqliteHook return SqliteHook(sql_conn_id) else: from airflow.hooks import MySqlHook return MySqlHook(sql_conn_id)
apache-2.0
1,176,233,732,038,446,800
35.765182
80
0.49565
false
Banbury/cartwheel-3d
Python/GLUtilsTest.py
1
10680
from App.UtilFuncs import fancify print fancify( """Character( root = ArticulatedRigidBody( name = "pelvis", meshes = [ (path.join(meshDir, "pelvis_2_b.obj"), colourDark), (path.join(meshDir, "pelvis_2_s.obj"), colourLight) ], mass = 12.9, moi = (0.0705, 0.11, 0.13), cdps = [ SphereCDP((0,-0.075,0), 0.12) ], pos = (0, 1.035, 0.2), frictionCoeff = 0.8, restitutionCoeff = 0.35 ), arbs = [ ArticulatedRigidBody( name = "torso", meshes = [ (path.join(meshDir, "torso_2_b.obj"), colourDark), (path.join(meshDir, "torso_2_s_v2.obj"), colourLight) ], mass = 22.5, moi = (0.34, 0.21, 0.46), cdps = [ SphereCDP((0,0,0.01), 0.11) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "head", meshes = [ (path.join(meshDir, "head_b.obj"), colourDark), (path.join(meshDir, "head_s.obj"), colourLight) ], mass = 5.2, moi = (0.04, 0.02, 0.042), cdps = [ SphereCDP((0,0.04,0), 0.11) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "lUpperArm", meshes = [ (path.join(meshDir, "lUpperArm.obj"), colourDark) ], mass = 2.2, moi = (0.005, 0.02, 0.02), cdps = [ CapsuleCDP((-0.15,0,0), (0.15,0,0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "lLowerArm", meshes = [ (path.join(meshDir, "lLowerArm.obj"), colourDark) ], mass = 1.7, moi = (0.0024, 0.025, 0.025), cdps = [ CapsuleCDP((-0.15,0,0), (0.15,0,0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "rUpperArm", meshes = [ (path.join(meshDir, "rUpperArm.obj"), colourDark) ], mass = 2.2, moi = (0.005, 0.02, 0.02), cdps = [ CapsuleCDP((-0.15,0,0), (0.15,0,0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "rLowerArm", meshes = [ (path.join(meshDir, "rLowerArm.obj"), colourDark) ], mass = 1.7, moi = (0.0024, 0.025, 0.025), cdps = [ CapsuleCDP((-0.15,0,0), (0.15,0,0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "lUpperLeg", meshes = [ (path.join(meshDir, "lUpperLeg.obj"), colourDark) ], mass = 6.6, moi = (0.15, 0.022, 0.15), cdps = [ CapsuleCDP((0, 0.12, 0), (0, -0.26, 0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "lLowerLeg", meshes = [ (path.join(meshDir, "lLowerLeg.obj"), colourDark) ], mass = 3.2, moi = (0.055, 0.007, 0.055), cdps = [ CapsuleCDP((0, 0.12, 0), (0, -0.2, 0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "rUpperLeg", meshes = [ (path.join(meshDir, "rUpperLeg.obj"), colourDark) ], mass = 6.6, moi = (0.15, 0.022, 0.15), cdps = [ CapsuleCDP((0, 0.12, 0), (0, -0.26, 0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "rLowerLeg", meshes = [ (path.join(meshDir, "rLowerLeg.obj"), colourDark) ], mass = 3.2, moi = (0.055, 0.007, 0.055), cdps = [ CapsuleCDP((0, 0.12, 0), (0, -0.2, 0), 0.05) ], frictionCoeff = 0.8, restitutionCoeff = 0.35 ), ArticulatedRigidBody( name = "lFoot", meshes = [ (path.join(meshDir, "lFoot.obj"), colourDark) ], mass = 1.0, moi = (0.007, 0.008, 0.002), cdps = [ BoxCDP((-0.025, -0.033, -0.09), (0.025, 0.005, 0.055)) ], # CDP_Sphere 0.025 -0.025 -0.08 0.01 # CDP_Sphere -0.025 -0.025 -0.08 0.01 # CDP_Sphere 0.02 -0.025 0.045 0.01 # CDP_Sphere -0.02 -0.025 0.045 0.01 frictionCoeff = 0.8, restitutionCoeff = 0.35, groundCoeffs = (0.0002, 0.2) ), ArticulatedRigidBody( name = "rFoot", meshes = [ (path.join(meshDir, "rFoot.obj"), colourDark) ], mass = 1.0, moi = (0.007, 0.008, 0.002), cdps = [ BoxCDP((-0.025, -0.033, -0.09), (0.025, 0.005, 0.055)) ], # CDP_Sphere 0.025 -0.025 -0.08 0.01 # CDP_Sphere -0.025 -0.025 -0.08 0.01 # CDP_Sphere 0.02 -0.025 0.045 0.01 # CDP_Sphere -0.02 -0.025 0.045 0.01 frictionCoeff = 0.8, restitutionCoeff = 0.35, groundCoeffs = (0.0002, 0.2) ), ArticulatedRigidBody( name = "lToes", meshes = [ (path.join(meshDir, "lToes.obj"), colourDark) ], mass = 0.2, moi = (0.002, 0.002, 0.0005), cdps = [ SphereCDP((0.0, -0.005, 0.025), 0.01) ], frictionCoeff = 0.8, restitutionCoeff = 0.35, groundCoeffs = (0.0002, 0.2) ), ArticulatedRigidBody( name = "rToes", meshes = [ (path.join(meshDir, "rToes.obj"), colourDark) ], mass = 0.2, moi = (0.002, 0.002, 0.0005), cdps = [ SphereCDP((0.0, -0.005, 0.025), 0.01) ], frictionCoeff = 0.8, restitutionCoeff = 0.35, groundCoeffs = (0.0002, 0.2) ) ], joints = [ BallInSocketJoint( name = "pelvis_torso", parent = "pelvis", child = "torso", posInParent = (0, 0.17, -0.035), posInChild = (0, -0.23, -0.01), swingAxis1 = (1, 0, 0), twistAxis = ( 0, 1, 0), limits = (-0.6, 0.6, -0.6, 0.6, -0.6, 0.6) ), BallInSocketJoint( name = "torso_head", parent = "torso", child = "head", posInParent = (0, 0.1, -0.00), posInChild = (0, -0.16, -0.025), swingAxis1 = (1, 0, 0), twistAxis = ( 0, 1, 0), limits = (-0.6, 0.6, -0.6, 0.6, -0.6, 0.6) ), BallInSocketJoint( name = "lShoulder", parent = "torso", child = "lUpperArm", posInParent = (0.20, 0.07, 0.02), posInChild = (-0.17, 0, 0), swingAxis1 = (0, 0, 1), twistAxis = ( 1, 0, 0), limits = (-1.7, 1.7, -1.5, 1.5, -1.5, 1.5) ), BallInSocketJoint( name = "rShoulder", parent = "torso", child = "rUpperArm", posInParent = (-0.20, 0.07, 0.02), posInChild = (0.17, 0, 0), swingAxis1 = (0, 0, 1), twistAxis = ( 1, 0, 0), limits = (-1.7, 1.7, -1.5, 1.5, -1.5, 1.5) ), HingeJoint( name = "lElbow", parent = "lUpperArm", child = "lLowerArm", posInParent = (0.175, 0, 0.006), posInChild = (-0.215, 0, 0), axis = ( 0, 1, 0 ), limits = (-2.7, 0) ), HingeJoint( name = "rElbow", parent = "rUpperArm", child = "rLowerArm", posInParent = (-0.175, 0, 0.006), posInChild = (0.215, 0, 0), axis = ( 0, -1, 0 ), limits = (-2.7, 0) ), BallInSocketJoint( name = "lHip", parent = "pelvis", child = "lUpperLeg", posInParent = (0.1, -0.05, 0.0), posInChild = (0, 0.21, 0), swingAxis1 = (1, 0, 0), twistAxis = ( 0, 1, 0), limits = (-1.3, 1.9, -1, 1, -0.25, 1) ), BallInSocketJoint( name = "rHip", parent = "pelvis", child = "rUpperLeg", posInParent = (-0.1, -0.05, 0.0), posInChild = (0, 0.21, 0), swingAxis1 = (1, 0, 0), twistAxis = ( 0, 1, 0), limits = (-1.3, 1.9, -1, 1, -1, 0.25) ), HingeJoint( name = "lKnee", parent = "lUpperLeg", child = "lLowerLeg", posInParent = (0, -0.26, 0), posInChild = (0, 0.21, 0), axis = ( 1, 0, 0 ), limits = (0, 2.5) ), HingeJoint( name = "rKnee", parent = "rUpperLeg", child = "rLowerLeg", posInParent = (0, -0.26, 0), posInChild = (0, 0.21, 0), axis = ( 1, 0, 0 ), limits = (0, 2.5) ), UniversalJoint( name = "lAnkle", parent = "lLowerLeg", child = "lFoot", posInParent = (0, -0.25, 0.01), posInChild = (0.0, 0.02, -0.04), parentAxis = (1, 0, 0), childAxis = (0, 0, 1), limits = (-0.75, 0.75, -0.75, 0.75) ), UniversalJoint( name = "rAnkle", parent = "rLowerLeg", child = "rFoot", posInParent = (0, -0.25, 0.01), posInChild = (0.0, 0.02, -0.04), parentAxis = (1, 0, 0), childAxis = (0, 0, -1), limits = (-0.75, 0.75, -0.75, 0.75) ), HingeJoint( name = "lToeJoint", parent = "lFoot", child = "lToes", posInParent = (0, -0.02, 0.05), posInChild = (0, 0, -0.025), axis = ( 1, 0, 0 ), limits = (-0.52, 0.02) ), HingeJoint( name = "rToeJoint", parent = "rFoot", child = "rToes", posInParent = (0, -0.02, 0.05), posInChild = (0, 0, -0.025), axis = ( 1, 0, 0 ), limits = (-0.52, 0.02) ) ] )""")
apache-2.0
-380,019,581,576,461,760
34.20339
79
0.408614
false
caladrel/trueskill_kicker
league/migrations/0001_initial.py
1
3950
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.core.validators class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Match', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('score_team1', models.PositiveSmallIntegerField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)], validators=[django.core.validators.MaxValueValidator(10)])), ('score_team2', models.PositiveSmallIntegerField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)], validators=[django.core.validators.MaxValueValidator(10)])), ('timestamp', models.DateTimeField(auto_now_add=True, db_index=True)), ], options={ 'verbose_name_plural': 'matches', }, bases=(models.Model,), ), migrations.CreateModel( name='Player', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=200, db_index=True)), ('mu', models.FloatField(default=25.0)), ('sigma', models.FloatField(default=8.333333333333334)), ('rank', models.FloatField(default=0.0, db_index=True)), ('attacker_mu', models.FloatField(default=25.0)), ('attacker_sigma', models.FloatField(default=8.333333333333334)), ('attacker_rank', models.FloatField(default=0.0, db_index=True)), ('defender_mu', models.FloatField(default=25.0)), ('defender_sigma', models.FloatField(default=8.333333333333334)), ('defender_rank', models.FloatField(default=0.0, db_index=True)), ], options={ 'ordering': ['name'], }, bases=(models.Model,), ), migrations.CreateModel( name='PlayerHistory', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('mu', models.FloatField(default=25.0)), ('sigma', models.FloatField(default=8.333333333333334)), ('rank', models.FloatField(default=0.0)), ('was_attacker', models.BooleanField(default=False)), ('seperate_mu', models.FloatField(default=25.0)), ('seperate_sigma', models.FloatField(default=8.333333333333334)), ('seperate_rank', models.FloatField(default=0.0)), ('match', models.ForeignKey(to='league.Match')), ('player', models.ForeignKey(to='league.Player')), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='match', name='team1_player1', field=models.ForeignKey(related_name='+', to='league.Player'), preserve_default=True, ), migrations.AddField( model_name='match', name='team1_player2', field=models.ForeignKey(related_name='+', to='league.Player'), preserve_default=True, ), migrations.AddField( model_name='match', name='team2_player1', field=models.ForeignKey(related_name='+', to='league.Player'), preserve_default=True, ), migrations.AddField( model_name='match', name='team2_player2', field=models.ForeignKey(related_name='+', to='league.Player'), preserve_default=True, ), ]
apache-2.0
6,388,180,689,287,207,000
43.382022
225
0.533418
false
zcbenz/cefode-chromium
tools/telemetry/telemetry/core/chrome/browser_backend.py
1
7145
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import urllib2 import httplib import socket import json import re import sys from telemetry.core import util from telemetry.core import exceptions from telemetry.core import user_agent from telemetry.core import wpr_modes from telemetry.core import wpr_server from telemetry.core.chrome import extension_dict_backend from telemetry.core.chrome import tab_list_backend from telemetry.core.chrome import tracing_backend from telemetry.test import options_for_unittests class ExtensionsNotSupportedException(Exception): pass class BrowserBackend(object): """A base class for browser backends. Provides basic functionality once a remote-debugger port has been established.""" WEBPAGEREPLAY_HOST = '127.0.0.1' def __init__(self, is_content_shell, supports_extensions, options): self.browser_type = options.browser_type self.is_content_shell = is_content_shell self._supports_extensions = supports_extensions self.options = options self._browser = None self._port = None self._inspector_protocol_version = 0 self._chrome_branch_number = 0 self._webkit_base_revision = 0 self._tracing_backend = None self.webpagereplay_local_http_port = util.GetAvailableLocalPort() self.webpagereplay_local_https_port = util.GetAvailableLocalPort() self.webpagereplay_remote_http_port = self.webpagereplay_local_http_port self.webpagereplay_remote_https_port = self.webpagereplay_local_https_port if options.dont_override_profile and not options_for_unittests.AreSet(): sys.stderr.write('Warning: Not overriding profile. This can cause ' 'unexpected effects due to profile-specific settings, ' 'such as about:flags settings, cookies, and ' 'extensions.\n') self._tab_list_backend = tab_list_backend.TabListBackend(self) self._extension_dict_backend = None if supports_extensions: self._extension_dict_backend = \ extension_dict_backend.ExtensionDictBackend(self) def SetBrowser(self, browser): self._browser = browser self._tab_list_backend.Init() @property def browser(self): return self._browser @property def supports_extensions(self): """True if this browser backend supports extensions.""" return self._supports_extensions @property def tab_list_backend(self): return self._tab_list_backend @property def extension_dict_backend(self): return self._extension_dict_backend def GetBrowserStartupArgs(self): args = [] args.extend(self.options.extra_browser_args) args.append('--disable-background-networking') args.append('--metrics-recording-only') args.append('--no-first-run') if self.options.wpr_mode != wpr_modes.WPR_OFF: args.extend(wpr_server.GetChromeFlags( self.WEBPAGEREPLAY_HOST, self.webpagereplay_remote_http_port, self.webpagereplay_remote_https_port)) args.extend(user_agent.GetChromeUserAgentArgumentFromType( self.options.browser_user_agent_type)) extensions = [extension.path for extension in self.options.extensions_to_load if not extension.is_component] extension_str = ','.join(extensions) if len(extensions) > 0: args.append('--load-extension=%s' % extension_str) component_extensions = [extension.path for extension in self.options.extensions_to_load if extension.is_component] component_extension_str = ','.join(component_extensions) if len(component_extensions) > 0: args.append('--load-component-extension=%s' % component_extension_str) return args @property def wpr_mode(self): return self.options.wpr_mode def _WaitForBrowserToComeUp(self, timeout=None): def IsBrowserUp(): try: self.Request('', timeout=timeout) except (socket.error, httplib.BadStatusLine, urllib2.URLError): return False else: return True try: util.WaitFor(IsBrowserUp, timeout=30) except util.TimeoutException: raise exceptions.BrowserGoneException() def AllExtensionsLoaded(): for e in self.options.extensions_to_load: if not e.extension_id in self._extension_dict_backend: return False extension_object = self._extension_dict_backend[e.extension_id] extension_object.WaitForDocumentReadyStateToBeInteractiveOrBetter() return True if self._supports_extensions: util.WaitFor(AllExtensionsLoaded, timeout=30) def _PostBrowserStartupInitialization(self): # Detect version information. data = self.Request('version') resp = json.loads(data) if 'Protocol-Version' in resp: self._inspector_protocol_version = resp['Protocol-Version'] if 'Browser' in resp: branch_number_match = re.search('Chrome/\d+\.\d+\.(\d+)\.\d+', resp['Browser']) else: branch_number_match = re.search( 'Chrome/\d+\.\d+\.(\d+)\.\d+ (Mobile )?Safari', resp['User-Agent']) webkit_version_match = re.search('\((trunk)?\@(\d+)\)', resp['WebKit-Version']) if branch_number_match: self._chrome_branch_number = int(branch_number_match.group(1)) else: # Content Shell returns '' for Browser, for now we have to # fall-back and assume branch 1025. self._chrome_branch_number = 1025 if webkit_version_match: self._webkit_base_revision = int(webkit_version_match.group(2)) return # Detection has failed: assume 18.0.1025.168 ~= Chrome Android. self._inspector_protocol_version = 1.0 self._chrome_branch_number = 1025 self._webkit_base_revision = 106313 def Request(self, path, timeout=None): url = 'http://localhost:%i/json' % self._port if path: url += '/' + path req = urllib2.urlopen(url, timeout=timeout) return req.read() @property def chrome_branch_number(self): return self._chrome_branch_number @property def supports_tab_control(self): return self._chrome_branch_number >= 1303 @property def supports_tracing(self): return self.is_content_shell or self._chrome_branch_number >= 1385 def StartTracing(self): if self._tracing_backend is None: self._tracing_backend = tracing_backend.TracingBackend(self._port) self._tracing_backend.BeginTracing() def StopTracing(self): self._tracing_backend.EndTracing() def GetTraceResultAndReset(self): return self._tracing_backend.GetTraceResultAndReset() def GetRemotePort(self, _): return util.GetAvailableLocalPort() def Close(self): if self._tracing_backend: self._tracing_backend.Close() self._tracing_backend = None def CreateForwarder(self, *port_pairs): raise NotImplementedError() def IsBrowserRunning(self): raise NotImplementedError() def GetStandardOutput(self): raise NotImplementedError()
bsd-3-clause
-2,395,234,556,662,840,000
32.70283
80
0.684955
false
Cadasta/cadasta-platform
cadasta/xforms/tests/test_utils.py
1
3134
import pytest from django.test import TestCase from ..utils import InvalidODKGeometryError, odk_geom_to_wkt class TestODKGeomToWKT(TestCase): def setUp(self): self.geoshape = ('45.56342779158167 -122.67650283873081 0.0 0.0;' '45.56176327330353 -122.67669159919024 0.0 0.0;' '45.56151562182025 -122.67490658909082 0.0 0.0;' '45.563479432877415 -122.67494414001703 0.0 0.0;' '45.56176327330353 -122.67669159919024 0.0 0.0') self.line = ('45.56342779158167 -122.67650283873081 0.0 0.0;' '45.56176327330353 -122.67669159919024 0.0 0.0;' '45.56151562182025 -122.67490658909082 0.0 0.0;') self.simple_line = ( '45.56342779158167 -122.67650283873081 0.0 0.0;' '45.56176327330353 -122.67669159919024 0.0 0.0;' ) self.geotrace_as_poly = ( '52.9414478 -8.034659 0.0 0.0;' '52.94134675 -8.0354197 0.0 0.0;' '52.94129841 -8.03517551 0.0 0.0;' '52.94142406 -8.03487897 0.0 0.0;' '52.9414478 -8.034659 0.0 0.0;' ) self.point = '45.56342779158167 -122.67650283873081 0.0 0.0;' def test_geoshape(self): poly = ( 'POLYGON ((-122.6765028387308121 45.5634277915816668, ' '-122.6766915991902351 45.5617632733035265, -122.6749065890908241 ' '45.5615156218202486, -122.6749441400170326 45.5634794328774149, ' '-122.6765028387308121 45.5634277915816668))' ) geom = odk_geom_to_wkt(self.geoshape) assert geom == poly def test_geotrace(self): line = ( 'LINESTRING (-122.6765028387308121 45.5634277915816668, ' '-122.6766915991902351 45.5617632733035265, -122.6749065890908241 ' '45.5615156218202486)' ) geom = odk_geom_to_wkt(self.line) assert geom == line def test_geopoint(self): point = 'POINT (-122.6765028387308121 45.5634277915816668)' geom = odk_geom_to_wkt(self.point) assert geom == point def test_line_two_points(self): line = ( 'LINESTRING (-122.6765028387308121 45.5634277915816668, ' '-122.6766915991902351 45.5617632733035265)' ) geom = odk_geom_to_wkt(self.simple_line) assert geom == line def test_geotrace_as_poly(self): poly = ( 'POLYGON ((-8.0346589999999996 52.9414477999999988, ' '-8.0354197000000003 52.9413467500000010, -8.0351755100000002 ' '52.9412984100000017, -8.0348789699999994 52.9414240600000028, ' '-8.0346589999999996 52.9414477999999988))' ) geom = odk_geom_to_wkt(self.geotrace_as_poly) assert geom == poly def test_bad_geom(self): bad_geom = 'this is not a geometry' with pytest.raises(InvalidODKGeometryError) as e: odk_geom_to_wkt(bad_geom) assert str(e.value) == ( "Invalid ODK Geometry: could not convert string to float: 'is'" )
agpl-3.0
-5,008,687,416,031,206,000
36.309524
79
0.585514
false
google/struct2tensor
struct2tensor/expression_impl/slice_expression_test.py
1
7170
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for slice_expression.""" from absl.testing import absltest from struct2tensor import calculate from struct2tensor import create_expression from struct2tensor import path # For tf.Session.Run against a Prensor from struct2tensor import prensor_value # pylint: disable=unused-import from struct2tensor.expression_impl import slice_expression from struct2tensor.test import prensor_test_util import tensorflow as tf from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import @test_util.run_all_in_graph_and_eager_modes class SliceExpressionTest(tf.test.TestCase): def test_slice_end(self): root = create_expression.create_expression_from_prensor( prensor_test_util.create_big_prensor()) root_2 = slice_expression.slice_expression(root, path.Path(["doc"]), "new_doc", None, 1) result = calculate.calculate_prensors([root_2])[0] self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc" ])).node.parent_index, [0, 1]) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "keep_me" ])).node.parent_index, [0, 1]) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "keep_me"])).node.values, [False, True]) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "bar"])).node.parent_index, [0, 1, 1]) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "bar"])).node.values, [b"a", b"b", b"c"]) def test_slice_begin(self): """Test slice with only begin specified. Starts with: { foo:9, foorepeated:[9], doc:[{ bar:["a"], keep_me:False }], user:[ { friends:["a"] }] } {foo:8, foorepeated:[8,7], doc:[{ bar:["b","c"], keep_me:True },{ bar:["d"] }], user:[{ friends:["b", "c"] },{ friends:["d"] }], } {foo:7, foorepeated:[6], user:[{friends:["e"]}]} Creates new_doc by slicing doc[1:]: {foo:9, foorepeated:[9], doc:[{ bar:["a"], keep_me:False }], user:[{ friends:["a"] }]} {foo:8, foorepeated:[8,7], doc:[{ bar:["b","c"], keep_me:True },{ bar:["d"] }], new_doc[{ bar:["d"] }], user:[{ friends:["b", "c"] },{ friends:["d"]}],} {foo:7, foorepeated:[6], user:[{ friends:["e"] }]} """ root = create_expression.create_expression_from_prensor( prensor_test_util.create_big_prensor()) root_2 = slice_expression.slice_expression(root, path.Path(["doc"]), "new_doc", 1, None) result = calculate.calculate_prensors([root_2])[0] self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc" ])).node.parent_index, [1]) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "keep_me" ])).node.parent_index, []) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "keep_me"])).node.values, []) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "bar"])).node.parent_index, [0]) self.assertAllEqual( result.get_descendant_or_error(path.Path(["new_doc", "bar"])).node.values, [b"d"]) def test_slice_mask(self): root = create_expression.create_expression_from_prensor( prensor_test_util.create_big_prensor()) root_2, new_path = slice_expression._get_slice_mask(root, path.Path(["doc"]), None, 1) result = calculate.calculate_prensors([root_2])[0] self.assertAllEqual( result.get_descendant_or_error(new_path).node.parent_index, [0, 1, 1]) self.assertAllEqual( result.get_descendant_or_error(new_path).node.values, [True, True, False]) def test_slice_mask_end_negative(self): root = create_expression.create_expression_from_prensor( prensor_test_util.create_big_prensor()) root_2, new_path = slice_expression._get_slice_mask(root, path.Path(["doc"]), None, -1) result = calculate.calculate_prensors([root_2])[0] self.assertAllEqual( result.get_descendant_or_error(new_path).node.parent_index, [0, 1, 1]) self.assertAllEqual( result.get_descendant_or_error(new_path).node.values, [False, True, False]) def test_slice_mask_begin_positive(self): root = create_expression.create_expression_from_prensor( prensor_test_util.create_big_prensor()) root_2, new_path = slice_expression._get_slice_mask(root, path.Path(["doc"]), 1, None) [result] = calculate.calculate_prensors([root_2]) self.assertAllEqual( result.get_descendant_or_error(new_path).node.parent_index, [0, 1, 1]) self.assertAllEqual( result.get_descendant_or_error(new_path).node.values, [False, False, True]) def test_slice_mask_begin_negative(self): root = create_expression.create_expression_from_prensor( prensor_test_util.create_big_prensor()) root_2, new_path = slice_expression._get_slice_mask(root, path.Path(["doc"]), -1, None) result = calculate.calculate_prensors([root_2])[0] self.assertAllEqual( result.get_descendant_or_error(new_path).node.parent_index, [0, 1, 1]) self.assertAllEqual( result.get_descendant_or_error(new_path).node.values, [True, False, True]) if __name__ == "__main__": absltest.main()
apache-2.0
1,086,534,423,020,961,500
35.030151
95
0.539191
false
KazDragon/munin
conanfile.py
1
2093
from conans import ConanFile, CMake, tools class MuninConan(ConanFile): name = "munin" license = "MIT" author = "KazDragon" url = "https://github.com/KazDragon/munin" description = "A text-based gui component library build on Terminal++" topics = ("ansi-escape-codes", "text-ui") settings = "os", "compiler", "build_type", "arch" options = {"shared": [True, False], "coverage": [True, False], "sanitize" : ["off", "address"]} default_options = {"shared": False, "coverage": False, "sanitize": "off"} exports = "*.hpp", "*.in", "*.cpp", "CMakeLists.txt", "*.md", "LICENSE" requires = ("terminalpp/[>=2.0.1]@kazdragon/conan-public", "nlohmann_json/[>=3.3.0]", "boost/[>=1.69]") build_requires = ("gtest/[>=1.8.1]") generators = "cmake" def imports(self): # If Munin is built as shared, then running the tests will # rely on the shared object for terminalpp being available # in the same directory. self.copy("*.so*", dst="", src="", keep_path=False, root_package="terminalpp") def configure(self): self.options["terminalpp"].shared = self.options.shared def build(self): cmake = CMake(self) cmake.definitions["BUILD_SHARED_LIBS"] = self.options.shared cmake.definitions["MUNIN_COVERAGE"] = self.options.coverage cmake.definitions["MUNIN_SANITIZE"] = self.options.sanitize cmake.configure() cmake.build() def package(self): self.copy("*.hpp", dst="include", src="include") self.copy("*.lib", dst="lib", keep_path=False) self.copy("*.dll", dst="bin", keep_path=False) self.copy("*.so", dst="lib", keep_path=False) self.copy("*.so.*", dst="lib", keep_path=False) self.copy("*.dylib", dst="lib", keep_path=False) self.copy("*.a", dst="lib", keep_path=False) def package_info(self): if self.settings.build_type == "Debug": self.cpp_info.libs = ["munind"] else: self.cpp_info.libs = ["munin"]
mit
1,457,283,711,952,135,400
39.25
99
0.584329
false
Zanzibar82/streamondemand.test
channels/cinestreaming01.py
1
4463
# -*- coding: utf-8 -*- #------------------------------------------------------------ # streamondemand.- XBMC Plugin # Canal para cinestreaming01.com # http://blog.tvalacarta.info/plugin-xbmc/streamondemand. #------------------------------------------------------------ import urlparse,urllib2,urllib,re import os, sys from core import logger from core import config from core import scrapertools from core.item import Item from servers import servertools __channel__ = "cinestreaming01" __category__ = "F" __type__ = "generic" __title__ = "Cinestreaming01" __language__ = "IT" DEBUG = config.get_setting("debug") sito="http://www.cinestreaming01.com" def isGeneric(): return True def mainlist(item): logger.info("streamondemand.cinestreaming01 mainlist") itemlist = [] itemlist.append( Item(channel=__channel__, title="[COLOR azure]Ultimi Film Inseriti[/COLOR]", action="peliculas", url=sito, thumbnail="http://dc584.4shared.com/img/XImgcB94/s7/13feaf0b538/saquinho_de_pipoca_01")) itemlist.append( Item(channel=__channel__, title="[COLOR azure]Film Per Categoria[/COLOR]", action="categorias", url=sito, thumbnail="http://xbmc-repo-ackbarr.googlecode.com/svn/trunk/dev/skin.cirrus%20extended%20v2/extras/moviegenres/All%20Movies%20by%20Genre.png")) itemlist.append( Item(channel=__channel__, title="[COLOR yellow]Cerca...[/COLOR]", action="search", thumbnail="http://dc467.4shared.com/img/fEbJqOum/s7/13feaf0c8c0/Search")) return itemlist def categorias(item): itemlist = [] # Descarga la pagina data = scrapertools.cache_page(item.url) bloque = scrapertools.get_match(data,'<ul class="main-menu clearfix">(.*?)</ul>') # Extrae las entradas (carpetas) patron = '<li><a href="(.*?)">(.*?)</a></li>' matches = re.compile(patron,re.DOTALL).findall(bloque) scrapertools.printMatches(matches) for scrapedurl,scrapedtitle in matches: scrapedplot = "" scrapedthumbnail = "" if (DEBUG): logger.info("title=["+scrapedtitle+"], url=["+scrapedurl+"]") itemlist.append( Item(channel=__channel__, action="peliculas", title="[COLOR azure]"+scrapedtitle+"[/COLOR]" , url=sito+scrapedurl , thumbnail="http://xbmc-repo-ackbarr.googlecode.com/svn/trunk/dev/skin.cirrus%20extended%20v2/extras/moviegenres/All%20Movies%20by%20Genre.png", folder=True) ) return itemlist def search(item,texto): logger.info("[cinestreaming01.py] "+item.url+" search "+texto) item.url = "http://cinestreaming01.com/?s="+texto try: return peliculas(item) # Se captura la excepción, para no interrumpir al buscador global si un canal falla except: import sys for line in sys.exc_info(): logger.error( "%s" % line ) return [] def peliculas(item): logger.info("streamondemand.cinestreaming01 peliculas") itemlist = [] # Descarga la pagina data = scrapertools.cache_page(item.url) # Extrae las entradas (carpetas) #patron = '<div class="boxim">\s*' patron = '<div class="box " id="post-.*?">.*?<a href="(.*?)"><img class="boximg" src="http://cinestreaming01.com/wp-content/themes/Boxoffice/timthumb.php?src=(.*?)&amp;h=270&amp;w=180&amp;zc=1" alt=""/></a>\s*' patron += '<h2><a href=".*?" rel="bookmark" title=".*?">(.*?)</a></h2>' matches = re.compile(patron,re.DOTALL).findall(data) scrapertools.printMatches(matches) for scrapedurl,scrapedthumbnail,scrapedtitle in matches: #scrapedtitle=scrapertools.decodeHtmlentities(scrapedtitle.replace("Streaming e download ita ","")) if (DEBUG): logger.info("title=["+scrapedtitle+"], url=["+scrapedurl+"], thumbnail=["+scrapedthumbnail+"]") itemlist.append( Item(channel=__channel__, action="findvideos", title="[COLOR azure]"+scrapedtitle+"[/COLOR]" , url=scrapedurl , thumbnail=scrapedthumbnail , plot=scrapedplot , folder=True) ) # Extrae el paginador patronvideos = '<span class="pnext"><a href="(.*?)">Avanti</a></span>' matches = re.compile(patronvideos,re.DOTALL).findall(data) scrapertools.printMatches(matches) if len(matches)>0: scrapedurl = urlparse.urljoin(item.url,matches[0]) itemlist.append( Item(channel=__channel__, action="peliculas", title="[COLOR orange]Successivo>>[/COLOR]" , url=scrapedurl , thumbnail="http://2.bp.blogspot.com/-fE9tzwmjaeQ/UcM2apxDtjI/AAAAAAAAeeg/WKSGM2TADLM/s1600/pager+old.png", folder=True) ) return itemlist
gpl-3.0
-8,911,400,560,965,957,000
43.62
299
0.6645
false
serge-sans-paille/pythran
pythran/tests/cases/stone.py
1
5387
#pythran export whetstone(int) #runas whetstone(2*10**2) #bench whetstone(1500) """ /* * C Converted Whetstone Double Precision Benchmark * Version 1.2 22 March 1998 * * (c) Copyright 1998 Painter Engineering, Inc. * All Rights Reserved. * * Permission is granted to use, duplicate, and * publish this text and program as long as it * includes this entire comment block and limited * rights reference. * * Converted by Rich Painter, Painter Engineering, Inc. based on the * www.netlib.org benchmark/whetstoned version obtained 16 March 1998. * * A novel approach was used here to keep the look and feel of the * FORTRAN version. Altering the FORTRAN-based array indices, * starting at element 1, to start at element 0 for C, would require * numerous changes, including decrementing the variable indices by 1. * Instead, the array E1[] was declared 1 element larger in C. This * allows the FORTRAN index range to function without any literal or * variable indices changes. The array element E1[0] is simply never * used and does not alter the benchmark results. * * The major FORTRAN comment blocks were retained to minimize * differences between versions. Modules N5 and N12, like in the * FORTRAN version, have been eliminated here. * * An optional command-line argument has been provided [-c] to * offer continuous repetition of the entire benchmark. * An optional argument for setting an alternate LOOP count is also * provided. Define PRINTOUT to cause the POUT() function to print * outputs at various stages. Final timing measurements should be * made with the PRINTOUT undefined. * * Questions and comments may be directed to the author at * [email protected] */ """ from math import sin as DSIN, cos as DCOS, atan as DATAN, log as DLOG, exp as DEXP, sqrt as DSQRT def whetstone(loopstart): # The actual benchmark starts here. T = .499975; T1 = 0.50025; T2 = 2.0; # With loopcount LOOP=10, one million Whetstone instructions # will be executed in EACH MAJOR LOOP..A MAJOR LOOP IS EXECUTED # 'II' TIMES TO INCREASE WALL-CLOCK TIMING ACCURACY. LOOP = loopstart; II = 1; JJ = 1; while JJ <= II: N1 = 0; N2 = 12 * LOOP; N3 = 14 * LOOP; N4 = 345 * LOOP; N6 = 210 * LOOP; N7 = 32 * LOOP; N8 = 899 * LOOP; N9 = 616 * LOOP; N10 = 0; N11 = 93 * LOOP; # Module 1: Simple identifiers X1 = 1.0; X2 = -1.0; X3 = -1.0; X4 = -1.0; for I in range(1,N1+1): X1 = (X1 + X2 + X3 - X4) * T; X2 = (X1 + X2 - X3 + X4) * T; X3 = (X1 - X2 + X3 + X4) * T; X4 = (-X1+ X2 + X3 + X4) * T; # Module 2: Array elements E1 = [ 1.0, -1.0, -1.0, -1.0 ] for I in range(1,N2+1): E1[0] = ( E1[0] + E1[1] + E1[2] - E1[3]) * T; E1[1] = ( E1[0] + E1[1] - E1[2] + E1[3]) * T; E1[2] = ( E1[0] - E1[1] + E1[2] + E1[3]) * T; E1[3] = (-E1[0] + E1[1] + E1[2] + E1[3]) * T; # Module 3: Array as parameter for I in range(1,N3+1): PA(E1, T, T2); # Module 4: Conditional jumps J = 1; for I in range(1,N4+1): if J == 1: J = 2; else: J = 3; if J > 2: J = 0; else: J = 1; if J < 1: J = 1; else: J = 0; # Module 5: Omitted # Module 6: Integer arithmetic J = 1; K = 2; L = 3; for I in range(1,N6+1): J = J * (K-J) * (L-K); K = L * K - (L-J) * K; L = (L-K) * (K+J); E1[L-2] = J + K + L; E1[K-2] = J * K * L; # Module 7: Trigonometric functions X = 0.5; Y = 0.5; for I in range(1,N7+1): X = T * DATAN(T2*DSIN(X)*DCOS(X)/(DCOS(X+Y)+DCOS(X-Y)-1.0)); Y = T * DATAN(T2*DSIN(Y)*DCOS(Y)/(DCOS(X+Y)+DCOS(X-Y)-1.0)); # Module 8: Procedure calls X = 1.0; Y = 1.0; Z = 1.0; for I in range(1,N8+1): Z=P3(X,Y,T, T2) # Module 9: Array references J = 1; K = 2; L = 3; E1[0] = 1.0; E1[1] = 2.0; E1[2] = 3.0; for I in range(1,N9+1): P0(E1, J, K, L) # Module 10: Integer arithmetic J = 2; K = 3; for I in range(1,N10+1): J = J + K; K = J + K; J = K - J; K = K - J - J; # Module 11: Standard functions X = 0.75; for I in range(1,N11+1): X = DSQRT(DEXP(DLOG(X)/T1)); JJ+=1 KIP = (100.0*LOOP*II) return KIP def PA(E, T, T2): J = 0; while J<6: E[0] = ( E[0] + E[1] + E[2] - E[3]) * T; E[1] = ( E[0] + E[1] - E[2] + E[3]) * T; E[2] = ( E[0] - E[1] + E[2] + E[3]) * T; E[3] = (-E[0] + E[1] + E[2] + E[3]) / T2; J += 1; def P0(E1, J, K, L): E1[J-1] = E1[K-1]; E1[K-1] = E1[L-1]; E1[L-1] = E1[J-1]; def P3(X, Y, T, T2): X1 = X; Y1 = Y; X1 = T * (X1 + Y1); Y1 = T * (X1 + Y1); return (X1 + Y1) / T2;
bsd-3-clause
8,200,889,701,506,693,000
24.899038
97
0.484685
false
randombit/botan
src/scripts/ci_check_install.py
1
2918
#!/usr/bin/env python # coding=utf8 """ Botan CI check installation script This script is used to validate the results of `make install` (C) 2020 Jack Lloyd, René Meusel, Hannes Rantzsch Botan is released under the Simplified BSD License (see license.txt) """ import os import sys import json import re def verify_library(build_config): lib_dir = build_config['libdir'] if not os.path.isdir(lib_dir): print('Error: libdir "%s" is not a directory' % lib_dir) return False found_libs = set([]) major_version = int(build_config["version_major"]) if build_config['compiler'] == 'msvc': expected_lib_format = r'^botan\.(dll|lib)$' elif build_config['os'] == 'macos': expected_lib_format = r'^libbotan-%d\.(a|dylib)$' % (major_version) else: expected_lib_format = r'^libbotan-%d\.(a|so)$' % (major_version) lib_re = re.compile(expected_lib_format) # Unlike the include dir this may have other random libs in it for (_, _, filenames) in os.walk(lib_dir): for filename in filenames: if lib_re.match(filename) is not None: found_libs.add(filename) if len(found_libs) == 0: print("Could not find any libraries from us") return False # This should match up the count and names of libraries installed # vs the build configuration (eg static lib installed or not) return True def verify_includes(build_config): include_dir = build_config['installed_include_dir'] if not os.path.isdir(include_dir): print('Error: installed_include_dir "%s" is not a directory' % include_dir) return False expected_headers = set(build_config['public_headers'] + build_config['external_headers']) found_headers = set([]) for (_, _, filenames) in os.walk(include_dir): for filename in filenames: found_headers.add(filename) if found_headers != expected_headers: missing = expected_headers - found_headers extra = found_headers - expected_headers if len(missing) > 0: print("Missing expected headers: %s" % (" ".join(sorted(missing)))) if len(extra) > 0: print("Have unexpected headers: %s" % (" ".join(sorted(extra)))) return False return True def main(args=None): if args is None: args = sys.argv if len(args) < 2: print("Usage: %s <build_config.json>" % args[0]) return 1 with open(os.path.join(args[1])) as f: build_config = json.load(f) install_prefix = build_config['prefix'] if not os.path.isdir(install_prefix): print('Error: install_prefix "%s" is not a directory' % install_prefix) return 1 if not verify_includes(build_config): return 1 if not verify_library(build_config): return 1 return 0 if __name__ == '__main__': sys.exit(main())
bsd-2-clause
-1,211,456,448,052,397,800
27.048077
93
0.622557
false
Socialsquare/RunningCause
challenges/tasks.py
1
1414
# coding: utf8 from __future__ import absolute_import import datetime from celery import shared_task from celery.utils.log import get_task_logger from django.utils.translation import ugettext as _ from django.core.mail import send_mail from django.contrib.auth import get_user_model from django.conf import settings from django.template import loader, Context from common.helpers import send_email from .models import Challenge log = get_task_logger(__name__) def send_challenge_reminder(user_id): user = get_user_model().objects.get(id=user_id) today = datetime.date.today() filters = { 'status': Challenge.ACTIVE, 'end_date': today } ending_challenges = user.challenges_recieved.filter(**filters) email_subject = _('Challenge ends today!') email_context = { 'ending_challenges': ending_challenges } send_email([user.email], email_subject, 'challenges/emails/challenges_reminder.html', email_context) @shared_task(ignore_result=True) def send_challenge_reminders(): # Fetch runners that has challenges ending today. today = datetime.date.today() filters = { 'is_active': True, 'challenges_recieved__end_date': today } relevant_runners = get_user_model().objects.filter(**filters) for runner in relevant_runners: send_challenge_reminder(runner.id)
mit
-5,044,719,315,472,939,000
25.679245
66
0.683876
false
JTarball/tetherbox
docker/app/app/backend/apps/services/migrations/0001_initial.py
1
3463
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings import taggit.managers class Migration(migrations.Migration): dependencies = [ ('taggit', '0002_auto_20150616_2121'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Action', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('description', models.CharField(max_length=255)), ('action_id', models.IntegerField()), ], ), migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('description', models.CharField(max_length=255)), ('status', models.SmallIntegerField(default=0, choices=[(0, b'Disabled'), (1, b'Coming Soon'), (2, b'Beta'), (3, b'Enabled')])), ], ), migrations.CreateModel( name='Tether', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('enabled', models.BooleanField(default=True, help_text='Designates whether the a web trigger-action is enabled.')), ('actions', models.ManyToManyField(to='services.Action')), ('tags', taggit.managers.TaggableManager(to='taggit.Tag', through='taggit.TaggedItem', blank=True, help_text='A comma-separated list of tags.', verbose_name='Tags')), ], ), migrations.CreateModel( name='Trigger', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('description', models.CharField(max_length=255)), ('trigger_id', models.IntegerField()), ('service', models.ForeignKey(to='services.Service')), ], ), migrations.CreateModel( name='UserService', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('token', models.CharField(max_length=255)), ('service', models.ForeignKey(related_name='+', to='services.Service', to_field=b'name')), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='tether', name='trigger', field=models.ForeignKey(to='services.Trigger'), ), migrations.AddField( model_name='tether', name='user', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='action', name='service', field=models.ForeignKey(to='services.Service'), ), ]
isc
-504,606,766,729,863,940
42.2875
182
0.556743
false
david-martin/atomic-reactor
tests/test_inner.py
1
20378
""" Copyright (c) 2015 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. """ from __future__ import unicode_literals import json import os from atomic_reactor.build import InsideBuilder from atomic_reactor.util import ImageName from atomic_reactor.plugin import (PreBuildPlugin, PrePublishPlugin, PostBuildPlugin, ExitPlugin, AutoRebuildCanceledException) from atomic_reactor.plugin import PluginFailedException import atomic_reactor.plugin import logging from flexmock import flexmock import pytest from tests.constants import MOCK_SOURCE, SOURCE from tests.docker_mock import mock_docker import inspect from atomic_reactor.inner import BuildResults, BuildResultsEncoder, BuildResultsJSONDecoder from atomic_reactor.inner import DockerBuildWorkflow BUILD_RESULTS_ATTRS = ['build_logs', 'built_img_inspect', 'built_img_info', 'base_img_info', 'base_plugins_output', 'built_img_plugins_output'] def test_build_results_encoder(): results = BuildResults() expected_data = {} for attr in BUILD_RESULTS_ATTRS: setattr(results, attr, attr) expected_data[attr] = attr data = json.loads(json.dumps(results, cls=BuildResultsEncoder)) assert data == expected_data def test_build_results_decoder(): data = {} expected_results = BuildResults() for attr in BUILD_RESULTS_ATTRS: setattr(expected_results, attr, attr) data[attr] = attr results = json.loads(json.dumps(data), cls=BuildResultsJSONDecoder) for attr in set(BUILD_RESULTS_ATTRS) - set(['build_logs']): assert getattr(results, attr) == getattr(expected_results, attr) class MockDockerTasker(object): def inspect_image(self, name): return {} class X(object): pass class MockInsideBuilder(object): def __init__(self, failed=False): self.tasker = MockDockerTasker() self.base_image = ImageName(repo='Fedora', tag='22') self.image_id = 'asd' self.failed = failed @property def source(self): result = X() setattr(result, 'dockerfile_path', '/') setattr(result, 'path', '/tmp') return result def pull_base_image(self, source_registry, insecure=False): pass def build(self): result = X() setattr(result, 'logs', None) setattr(result, 'is_failed', lambda: self.failed) return result def inspect_built_image(self): return None class RaisesMixIn(object): """ Mix-in class for plugins that should raise exceptions. """ is_allowed_to_fail = False def __init__(self, tasker, workflow, *args, **kwargs): super(RaisesMixIn, self).__init__(tasker, workflow, *args, **kwargs) def run(self): raise RuntimeError class PreRaises(RaisesMixIn, PreBuildPlugin): """ This plugin must run and cause the build to abort. """ key = 'pre_raises' class PostRaises(RaisesMixIn, PostBuildPlugin): """ This plugin must run and cause the build to abort. """ key = 'post_raises' class PrePubRaises(RaisesMixIn, PrePublishPlugin): """ This plugin must run and cause the build to abort. """ key = 'prepub_raises' class WatchedMixIn(object): """ Mix-in class for plugins we want to watch. """ def __init__(self, tasker, workflow, watcher, *args, **kwargs): super(WatchedMixIn, self).__init__(tasker, workflow, *args, **kwargs) self.watcher = watcher def run(self): self.watcher.call() class PreWatched(WatchedMixIn, PreBuildPlugin): """ A PreBuild plugin we can watch. """ key = 'pre_watched' class PrePubWatched(WatchedMixIn, PrePublishPlugin): """ A PrePublish plugin we can watch. """ key = 'prepub_watched' class PostWatched(WatchedMixIn, PostBuildPlugin): """ A PostBuild plugin we can watch. """ key = 'post_watched' class ExitWatched(WatchedMixIn, ExitPlugin): """ An Exit plugin we can watch. """ key = 'exit_watched' class ExitRaises(RaisesMixIn, ExitPlugin): """ An Exit plugin that should raise an exception. """ key = 'exit_raises' class ExitCompat(WatchedMixIn, ExitPlugin): """ An Exit plugin called as a Post-build plugin. """ key = 'store_logs_to_file' class Watcher(object): def __init__(self): self.called = False def call(self): self.called = True def was_called(self): return self.called def test_workflow(): """ Test normal workflow. """ this_file = inspect.getfile(PreWatched) mock_docker() fake_builder = MockInsideBuilder() flexmock(InsideBuilder).new_instances(fake_builder) watch_pre = Watcher() watch_prepub = Watcher() watch_post = Watcher() watch_exit = Watcher() workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image', prebuild_plugins=[{'name': 'pre_watched', 'args': { 'watcher': watch_pre }}], prepublish_plugins=[{'name': 'prepub_watched', 'args': { 'watcher': watch_prepub, }}], postbuild_plugins=[{'name': 'post_watched', 'args': { 'watcher': watch_post }}], exit_plugins=[{'name': 'exit_watched', 'args': { 'watcher': watch_exit }}], plugin_files=[this_file]) workflow.build_docker_image() assert watch_pre.was_called() assert watch_prepub.was_called() assert watch_post.was_called() assert watch_exit.was_called() class FakeLogger(object): def __init__(self): self.debugs = [] self.infos = [] self.warnings = [] self.errors = [] def log(self, logs, args): logs.append(args) def debug(self, *args): self.log(self.debugs, args) def info(self, *args): self.log(self.infos, args) def warning(self, *args): self.log(self.warnings, args) def error(self, *args): self.log(self.errors, args) def test_workflow_compat(): """ Some of our plugins have changed from being run post-build to being run at exit. Let's test what happens when we try running an exit plugin as a post-build plugin. """ this_file = inspect.getfile(PreWatched) mock_docker() fake_builder = MockInsideBuilder() flexmock(InsideBuilder).new_instances(fake_builder) watch_exit = Watcher() fake_logger = FakeLogger() atomic_reactor.plugin.logger = fake_logger workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image', postbuild_plugins=[{'name': 'store_logs_to_file', 'args': { 'watcher': watch_exit }}], plugin_files=[this_file]) workflow.build_docker_image() assert watch_exit.was_called() assert len(fake_logger.errors) > 0 class Pre(PreBuildPlugin): """ This plugin does nothing. It's only used for configuration testing. """ key = 'pre' class Post(PostBuildPlugin): """ This plugin does nothing. It's only used for configuration testing. """ key = 'post' class Exit(ExitPlugin): """ This plugin does nothing. It's only used for configuration testing. """ key = 'exit' @pytest.mark.parametrize(('plugins', 'should_fail', 'should_log'), [ # No 'name' key, prebuild ({ 'prebuild_plugins': [{'args': {}}, {'name': 'pre_watched', 'args': { 'watcher': Watcher(), } }], }, True, # is fatal True, # logs error ), # No 'name' key, postbuild ({ 'postbuild_plugins': [{'args': {}}, {'name': 'post_watched', 'args': { 'watcher': Watcher(), } }], }, True, # is fatal True, # logs error ), # No 'name' key, exit ({ 'exit_plugins': [{'args': {}}, {'name': 'exit_watched', 'args': { 'watcher': Watcher(), } }], }, False, # not fatal True, # logs error ), # No 'args' key, prebuild ({'prebuild_plugins': [{'name': 'pre'}, {'name': 'pre_watched', 'args': { 'watcher': Watcher(), } }]}, False, # not fatal False, # no error logged ), # No 'args' key, postbuild ({'postbuild_plugins': [{'name': 'post'}, {'name': 'post_watched', 'args': { 'watcher': Watcher(), } }]}, False, # not fatal, False, # no error logged ), # No 'args' key, exit ({'exit_plugins': [{'name': 'exit'}, {'name': 'exit_watched', 'args': { 'watcher': Watcher(), } }]}, False, # not fatal False, # no error logged ), # No such plugin, prebuild ({'prebuild_plugins': [{'name': 'no plugin', 'args': {}}, {'name': 'pre_watched', 'args': { 'watcher': Watcher(), } }]}, True, # is fatal True, # logs error ), # No such plugin, postbuild ({'postbuild_plugins': [{'name': 'no plugin', 'args': {}}, {'name': 'post_watched', 'args': { 'watcher': Watcher(), } }]}, True, # is fatal True, # logs error ), # No such plugin, exit ({'exit_plugins': [{'name': 'no plugin', 'args': {}}, {'name': 'exit_watched', 'args': { 'watcher': Watcher(), } }]}, False, # not fatal True, # logs error ), ]) def test_plugin_errors(plugins, should_fail, should_log): """ Try bad plugin configuration. """ this_file = inspect.getfile(PreRaises) mock_docker() fake_builder = MockInsideBuilder() flexmock(InsideBuilder).new_instances(fake_builder) fake_logger = FakeLogger() atomic_reactor.plugin.logger = fake_logger workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image', plugin_files=[this_file], **plugins) # Find the 'watcher' parameter watchers = [conf.get('args', {}).get('watcher') for plugin in plugins.values() for conf in plugin] watcher = [x for x in watchers if x][0] if should_fail: with pytest.raises(PluginFailedException): workflow.build_docker_image() assert not watcher.was_called() else: workflow.build_docker_image() assert watcher.was_called() if should_log: assert len(fake_logger.errors) > 0 else: assert len(fake_logger.errors) == 0 class StopAutorebuildPlugin(PreBuildPlugin): key = 'stopstopstop' def run(self): raise AutoRebuildCanceledException(self.key, 'message') def test_autorebuild_stop_prevents_build(): """ test that a plugin that raises AutoRebuildCanceledException results in actually skipped build """ this_file = inspect.getfile(PreWatched) mock_docker() fake_builder = MockInsideBuilder() flexmock(InsideBuilder).new_instances(fake_builder) watch_prepub = Watcher() watch_post = Watcher() watch_exit = Watcher() workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image', prebuild_plugins=[{'name': 'stopstopstop', 'args': { }}], prepublish_plugins=[{'name': 'prepub_watched', 'args': { 'watcher': watch_prepub, }}], postbuild_plugins=[{'name': 'post_watched', 'args': { 'watcher': watch_post }}], exit_plugins=[{'name': 'exit_watched', 'args': { 'watcher': watch_exit }}], plugin_files=[this_file]) with pytest.raises(AutoRebuildCanceledException): workflow.build_docker_image() assert not watch_prepub.was_called() assert not watch_post.was_called() assert watch_exit.was_called() assert workflow.autorebuild_canceled == True @pytest.mark.parametrize('fail_at', ['pre', 'prepub', 'post', 'exit']) def test_workflow_plugin_error(fail_at): """ This is a test for what happens when plugins fail. When a prebuild or postbuild plugin fails, and doesn't have is_allowed_to_fail=True set, the whole build should fail. However, all the exit plugins should run. """ this_file = inspect.getfile(PreRaises) mock_docker() fake_builder = MockInsideBuilder() flexmock(InsideBuilder).new_instances(fake_builder) watch_pre = Watcher() watch_prepub = Watcher() watch_post = Watcher() watch_exit = Watcher() prebuild_plugins = [{'name': 'pre_watched', 'args': { 'watcher': watch_pre, }}] prepublish_plugins = [{'name': 'prepub_watched', 'args': { 'watcher': watch_prepub, }}] postbuild_plugins = [{'name': 'post_watched', 'args': { 'watcher': watch_post }}] exit_plugins = [{'name': 'exit_watched', 'args': { 'watcher': watch_exit }}] # Insert a failing plugin into one of the build phases if fail_at == 'pre': prebuild_plugins.insert(0, {'name': 'pre_raises', 'args': {}}) elif fail_at == 'prepub': prepublish_plugins.insert(0, {'name': 'prepub_raises', 'args': {}}) elif fail_at == 'post': postbuild_plugins.insert(0, {'name': 'post_raises', 'args': {}}) elif fail_at == 'exit': exit_plugins.insert(0, {'name': 'exit_raises', 'args': {}}) else: # Typo in the parameter list? assert False workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image', prebuild_plugins=prebuild_plugins, prepublish_plugins=prepublish_plugins, postbuild_plugins=postbuild_plugins, exit_plugins=exit_plugins, plugin_files=[this_file]) # Failures in any phase except 'exit' cause the build process to # abort. if fail_at == 'exit': workflow.build_docker_image() else: with pytest.raises(PluginFailedException): workflow.build_docker_image() # The pre-build phase should only complete if there were no # earlier plugin failures. assert watch_pre.was_called() == (fail_at != 'pre') # The prepublish phase should only complete if there were no # earlier plugin failures. assert watch_prepub.was_called() == (fail_at not in ('pre', 'prepub')) # The post-build phase should only complete if there were no # earlier plugin failures. assert watch_post.was_called() == (fail_at not in ('pre', 'prepub', 'post')) # But all exit plugins should run, even if one of them also raises # an exception. assert watch_exit.was_called() def test_workflow_docker_build_error(): """ This is a test for what happens when the docker build fails. """ this_file = inspect.getfile(PreRaises) mock_docker() fake_builder = MockInsideBuilder(failed=True) flexmock(InsideBuilder).new_instances(fake_builder) watch_prepub = Watcher() watch_post = Watcher() watch_exit = Watcher() workflow = DockerBuildWorkflow(MOCK_SOURCE, 'test-image', prepublish_plugins=[{'name': 'prepub_watched', 'args': { 'watcher': watch_prepub, }}], postbuild_plugins=[{'name': 'post_watched', 'args': { 'watcher': watch_post }}], exit_plugins=[{'name': 'exit_watched', 'args': { 'watcher': watch_exit }}], plugin_files=[this_file]) assert workflow.build_docker_image().is_failed() # No subsequent build phases should have run except 'exit' assert not watch_prepub.was_called() assert not watch_post.was_called() assert watch_exit.was_called() class ExitUsesSource(ExitWatched): key = 'uses_source' def run(self): assert os.path.exists(self.workflow.source.get_dockerfile_path()[0]) WatchedMixIn.run(self) def test_source_not_removed_for_exit_plugins(): this_file = inspect.getfile(PreRaises) mock_docker() fake_builder = MockInsideBuilder() flexmock(InsideBuilder).new_instances(fake_builder) watch_exit = Watcher() workflow = DockerBuildWorkflow(SOURCE, 'test-image', exit_plugins=[{'name': 'uses_source', 'args': { 'watcher': watch_exit, }}], plugin_files=[this_file]) workflow.build_docker_image() # Make sure that the plugin was actually run assert watch_exit.was_called()
bsd-3-clause
-4,677,298,146,013,047,000
30.159021
97
0.48464
false
migasfree/migasfree-backend
migasfree/client/models/error.py
1
4593
# -*- coding: utf-8 -*- # Copyright (c) 2015-2021 Jose Antonio Chavarría <[email protected]> # Copyright (c) 2015-2021 Alberto Gacías <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from django.db import models from django.db.models.aggregates import Count from django.utils.translation import gettext_lazy as _ from ...core.models import Project from .computer import Computer from .event import Event class DomainErrorManager(models.Manager): def get_queryset(self): return super().get_queryset().select_related( 'project', 'computer', 'computer__project', 'computer__sync_user', ) def scope(self, user): qs = self.get_queryset() if not user.is_view_all(): qs = qs.filter( project_id__in=user.get_projects(), computer_id__in=user.get_computers() ) return qs class UncheckedManager(DomainErrorManager): def get_queryset(self): return super().get_queryset().filter(checked=0) def scope(self, user): return super().scope(user).filter(checked=0) class ErrorManager(DomainErrorManager): def create(self, computer, project, description): obj = Error() obj.computer = computer obj.project = project obj.description = description obj.save() return obj class Error(Event): description = models.TextField( verbose_name=_("description"), null=True, blank=True ) checked = models.BooleanField( verbose_name=_("checked"), default=False, ) project = models.ForeignKey( Project, on_delete=models.CASCADE, verbose_name=_("project") ) objects = ErrorManager() unchecked = UncheckedManager() @staticmethod def unchecked_count(user=None): if not user: return Error.unchecked.count() return Error.unchecked.scope(user).count() @staticmethod def unchecked_by_project(user): total = Error.unchecked_count(user) projects = list(Error.unchecked.scope(user).values( 'project__name', 'project__id', 'project__platform__id', ).annotate( count=Count('id') ).order_by('project__platform__id', '-count')) platforms = list(Error.unchecked.scope(user).values( 'project__platform__id', 'project__platform__name' ).annotate( count=Count('id') ).order_by('project__platform__id', '-count')) return { 'total': total, 'inner': platforms, 'outer': projects, } @staticmethod def status_by_project(user): total = Error.objects.scope(user).count() projects = list(Error.objects.scope(user).values( 'computer__status', 'project__id', 'project__name', ).annotate( count=Count('id') ).order_by('computer__status', '-count')) status = list(Error.objects.scope(user).values( 'computer__status', ).annotate( count=Count('id') ).order_by('computer__status', '-count')) for item in status: item['status'] = item.get('computer__status') item['computer__status'] = _(dict(Computer.STATUS_CHOICES)[item.get('computer__status')]) return { 'total': total, 'inner': status, 'outer': projects, } def checked_ok(self): self.checked = True self.save() def save(self, force_insert=False, force_update=False, using=None, update_fields=None): self.description = self.description.replace("\r\n", "\n") super().save(force_insert, force_update, using, update_fields) class Meta: app_label = 'client' verbose_name = _('Error') verbose_name_plural = _('Errors')
gpl-3.0
349,263,582,367,790,340
27.515528
101
0.597691
false
stscieisenhamer/glue
glue/utils/tests/test_matplotlib.py
2
5186
from __future__ import absolute_import, division, print_function import pytest import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle from matplotlib.artist import Artist from numpy.testing import assert_allclose from matplotlib.backends.backend_agg import FigureCanvasAgg from glue.tests.helpers import requires_scipy from glue.utils.misc import DeferredMethod from ..matplotlib import (point_contour, fast_limits, all_artists, new_artists, remove_artists, view_cascade, get_extent, color2rgb, defer_draw, freeze_margins) @requires_scipy class TestPointContour(object): def test(self): data = np.array([[0, 0, 0, 0], [0, 2, 3, 0], [0, 4, 2, 0], [0, 0, 0, 0]]) xy = point_contour(2, 2, data) x = np.array([2., 2. + 1. / 3., 2., 2., 1, .5, 1, 1, 2]) y = np.array([2. / 3., 1., 2., 2., 2.5, 2., 1., 1., 2. / 3]) np.testing.assert_array_almost_equal(xy[:, 0], x) np.testing.assert_array_almost_equal(xy[:, 1], y) def test_fast_limits_nans(): x = np.zeros((10, 10)) * np.nan assert_allclose(fast_limits(x, 0, 1), [0, 1]) def test_single_value(): x = np.array([1]) assert_allclose(fast_limits(x, 5., 95.), [1, 1]) def test_artist_functions(): c1 = Circle((0, 0), radius=1) c2 = Circle((1, 0), radius=1) c3 = Circle((2, 0), radius=1) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.add_patch(c1) ax.add_patch(c2) assert all_artists(fig) == set([c1, c2]) ax.add_patch(c3) assert new_artists(fig, set([c1, c2])) == set([c3]) remove_artists([c2]) assert all_artists(fig) == set([c1, c3]) # check that it can deal with being passed the same artist twice remove_artists([c1, c1]) assert all_artists(fig) == set([c3]) def test_get_extent(): assert get_extent((slice(0, 5, 1), slice(0, 10, 2))) == (0, 10, 0, 5) assert get_extent((slice(0, 5, 1), slice(0, 10, 2)), transpose=True) == (0, 5, 0, 10) def test_view_cascade(): data = np.zeros((100, 100)) v2, view = view_cascade(data, (slice(0, 5, 1), slice(0, 5, 1))) assert v2 == ((slice(0, 100, 20), slice(0, 100, 20))) assert view == (slice(0, 5, 1), slice(0, 5, 1)) v2, view = view_cascade(data, (3, slice(0, 5, 1))) assert v2 == ((3, slice(0, 100, 20))) assert view == (3, slice(0, 5, 1)) def test_defer_draw(): @defer_draw def draw_figure(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot([1, 2, 3], [4, 5, 6]) fig.canvas.draw() return 3.5 result = draw_figure() # Make sure that the return value was passed through correctly assert result == 3.5 def test_defer_draw_exception(): # Regression test for a bug that meant that if an exception happened during # drawing, the draw method was not restored correctly # Make sure we start off with a clean draw method assert not isinstance(FigureCanvasAgg.draw, DeferredMethod) class ProblematicArtist(Artist): def draw(self, *args, **kwargs): raise ValueError('You shall not pass!') @defer_draw def draw_figure(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.add_artist(ProblematicArtist()) fig.canvas.draw() with pytest.raises(ValueError) as exc: result = draw_figure() assert exc.value.args[0] == 'You shall not pass!' # Make sure that draw is no longer a deferred method assert not isinstance(FigureCanvasAgg.draw, DeferredMethod) @pytest.mark.parametrize(('color', 'rgb'), (('red', (1, 0, 0)), ('green', (0, 0.5020, 0)), ('orange', (1., 0.6470, 0.)))) def test_color2rgb(color, rgb): assert_allclose(color2rgb(color), rgb, atol=0.001) def test_freeze_margins(): fig = plt.figure(figsize=(4, 4)) ax = fig.add_subplot(1, 1, 1) freeze_margins(ax, margins=[1, 1, 1, 1]) # Note, we don't test the following since the defaults change depending # on the Matplotlib version # bbox = ax.get_position() # np.testing.assert_allclose(bbox.x0, 0.125) # np.testing.assert_allclose(bbox.y0, 0.1) # np.testing.assert_allclose(bbox.x1, 0.9) # np.testing.assert_allclose(bbox.y1, 0.9) fig.canvas.resize_event() bbox = ax.get_position() np.testing.assert_allclose(bbox.x0, 0.25) np.testing.assert_allclose(bbox.y0, 0.25) np.testing.assert_allclose(bbox.x1, 0.75) np.testing.assert_allclose(bbox.y1, 0.75) fig.set_size_inches(8, 8) fig.canvas.resize_event() bbox = ax.get_position() np.testing.assert_allclose(bbox.x0, 0.125) np.testing.assert_allclose(bbox.y0, 0.125) np.testing.assert_allclose(bbox.x1, 0.875) np.testing.assert_allclose(bbox.y1, 0.875) ax.resizer.margins = [0, 1, 2, 4] fig.canvas.resize_event() bbox = ax.get_position() np.testing.assert_allclose(bbox.x0, 0.) np.testing.assert_allclose(bbox.y0, 0.25) np.testing.assert_allclose(bbox.x1, 0.875) np.testing.assert_allclose(bbox.y1, 0.5)
bsd-3-clause
2,965,087,516,347,311,000
28.299435
103
0.604126
false
wooey/Wooey
wooey/migrations/0018_userfile.py
1
1037
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import wooey.models.mixins class Migration(migrations.Migration): dependencies = [ ('wooey', '0017_wooeyfile_generate_checksums'), ] operations = [ migrations.CreateModel( name='UserFile', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('filename', models.TextField()), ('job', models.ForeignKey(to='wooey.WooeyJob', on_delete=models.CASCADE)), ('parameter', models.ForeignKey(blank=True, to='wooey.ScriptParameters', null=True, on_delete=models.CASCADE)), ], bases=(wooey.models.mixins.WooeyPy2Mixin, models.Model), ), migrations.AddField( model_name='userfile', name='system_file', field=models.ForeignKey(to='wooey.WooeyFile', on_delete=models.CASCADE), ), ]
bsd-3-clause
1,396,863,322,107,834,600
33.566667
127
0.594986
false
jfalkner/report_data
report_data/check.py
1
3654
from datetime import datetime from datetime import timedelta from datetime import date class SanityChecker: """Validate input from URL arguments. This helps keep code that needs to check input succinct and consistent across the various reports. The main purpose for encapsulating these methods is so that errors can optionally be thrown immediately or buffered and thrown in aggregate. The latter option is default because it is often most helpful to see the full list of issues all at once versus, for example, showing the first error, having a user fix it, then repeating the cycle for all other errors hidden by the first. """ def __init__(self): self.errors = [] self.raise_error = False def reset(self): del self.errors[:] def if_any_errors_raise_aggregate(self): if not self.errors: return error_count = len(self.errors) error_message = "" if error_count > 1: error_message += '%s values need to be corrected.' % error_count raise AssertionError('%s\n\n%s' % (error_message, ',\n'.join(self.errors))) def add_or_raise(self, error_message): """Either buffer or immediately raise a filter value error.""" if self.raise_error: raise AssertionError(error_message) else: if not isinstance(error_message, basestring): raise ValueError('Error messages must be strings.') self.errors.append(error_message) return None def if_required(self, name, value, required): if required and value is None: self.add_or_raise("Must have value for '%s'." % name) def date(self, values, name, required=False): # Check for non-null value. if name not in values: if required: return self.add_or_raise( 'Missing ISO 8601 date value for key "%s". ' 'e.g. "2013-06-01" for June 1st 2013.' % name) else: return # Check for expected ISO 8601 format. try: date_val = values[name] if type(date_val) == date: return date_val return datetime.strptime(date, '%Y-%m-%d') except ValueError: return self.add_or_raise( 'Invalid date value: "%s". Expected ISO 8601 format. ' 'e.g. "20130601" for June 1st 2013.') def date_range(self, start_date, end_date): # If no range, default to two full weeks plus days from this week. if not start_date and not end_date: now = datetime.now() start_day = datetime.now() - timedelta(days=14) while start_day.weekday() != 0: start_day -= timedelta(days=1) return (start_day, now) # Sanity check both start and end dates exist. if (start_date and not end_date): self.add_or_raise('Found a start date but no end. Must have both ' 'if you are specifying a date range.') if (not start_date and end_date): self.add_or_raise('Found a end date but no start. Must have both ' 'if you are specifying a date range.') # Sanity check that the start is before end date. if start_date and end_date: if end_date <= start_date: self.add_or_raise( 'End date "%s" must be after start date "%s".' % (start_date, end_date)) return start_date, end_date
mit
3,428,162,843,007,612,000
40.05618
78
0.574165
false
CMacKinnon101/pokemon-python-api-adapter
get_cards_from_sets.py
1
3637
#Modules import configparser from pokemontcgsdk import Set from pokemontcgsdk import Card from pymongo import MongoClient #Config Config = configparser.ConfigParser() Config.read("settings.ini") host = Config.get("db", "host") port = Config.get("db", "port") user = Config.get("db", "user") password = Config.get("db", "password") pass_colon_str = "" at_str = "" if user: pass_colon_str = ":" at_str = "@" #Build Connection String connection_string = "mongodb://{0}{1}{2}{3}{4}:{5}".format(user, pass_colon_str, password, at_str, host, port) #Get the sets from the pokemontcg api print("Getting sets from pokemontcgsdk") pokemontcgapi_sets = Set.all() print(" Found sets:") for pokemontcgapi_set in pokemontcgapi_sets: print(" -- {0}".format(pokemontcgapi_set.name)) #Connect to Mongo print("Connecting to {0}".format(connection_string)) mongo_client = MongoClient(connection_string) #Get the Database Object card_data_database = mongo_client.card_data sets_collection = card_data_database.sets cards_collection = card_data_database.cards #Get all the sets that we already have cards for print("\nGetting sets from {0}".format(host)) mongo_sets_cursor = sets_collection.find() #For each card, insert a document into mongo print("\nInserting Cards into mongo") for pokemontcgapi_set in pokemontcgapi_sets: already_have_set = False print("Checking for {0}({1})".format(pokemontcgapi_set.name, pokemontcgapi_set.code)) for mongo_set in mongo_sets_cursor: if mongo_set.get('code') == pokemontcgapi_set.code: already_have_set = True print("Skipping {0}({1})".format(mongo_set.get('name'), mongo_set.get('code'))) break if not already_have_set: print("\nInserting {0}:".format(pokemontcgapi_set.name)) print("***********************************") #Get the cards from the set cards = Card.where(setCode=pokemontcgapi_set.code).all() #Insert each card document into mongo for card in cards: print("-- {0}({1})".format(card.name, card.id)) cards_collection.insert_one({ "pokemontcgapi_id": card.id, "name": card.name, "national_pokedex_number": card.national_pokedex_number, "image_url": card.image_url, "subtype": card.subtype, "supertype": card.supertype, "ability": card.ability, "ancient_trait": card.ancient_trait, "hp": card.hp, "number": card.number, "artist": card.artist, "rarity": card.rarity, "series": card.series, "set": card.set, "set_code": card.set_code, "retreat_cost": card.retreat_cost, "text": card.text, "types": card.types, "attacks": card.attacks, "weaknesses": card.weaknesses, "resistances": card.resistances }) sets_collection.insert_one({ "code": pokemontcgapi_set.code, "name": pokemontcgapi_set.name, "series": pokemontcgapi_set.series, "total_cards": pokemontcgapi_set.total_cards, "standard_legal": pokemontcgapi_set.standard_legal, "expanded_legal": pokemontcgapi_set.expanded_legal, "release_date": pokemontcgapi_set.release_date }) print("Finished inserting {0}({1})\n\n".format(pokemontcgapi_set.name, pokemontcgapi_set.code)) print("\nClosing connection to {0}".format(host)) mongo_client.close()
mit
3,130,499,382,758,920,000
35.38
110
0.606819
false
michaldz44/pyG-Attract
golem.py
1
3778
import math import pdb class Golem(object): def __init__(self, x, y, args, attractors,golem_number): self.attractors=attractors self.args=args self.position=complex(x,y) self.velocity=complex(0,0) #self.acceleration_previous=self.attractors.get_force(self.position,self.velocity) self.acceleration_previous=0 self.final_attractor=None self.energy=self.get_energy() self.golem_number=golem_number self.state=[] def move(self): # step absv=abs(self.velocity) if absv>1: dt=self.args.dt*1/(absv) else: dt=self.args.dt acceleration_current=self.attractors.get_force(self.position,self.velocity) # let's ty to be accurate apply Beeman-Schofield algoritm # # position=\ # self.position+\ # self.velocity*dt+\ # dt*dt*(4*acceleration_current-self.acceleration_previous)/6.0 # # v_predict=\ # self.velocity+\ # dt*(3*acceleration_current-self.acceleration_previous)/2.0 # # acceleration_future=self.attractors.get_force(position,v_predict) # # self.velocity+=dt*(2*acceleration_future+5*acceleration_current-self.acceleration_previous)/6.0 # # self.acceleration_previous=acceleration_current # self.position=position # Euler-Cromer fast simplified version self.velocity+=acceleration_current*dt self.position+=self.velocity*dt if (self.energy-self.attractors.get_potencial(self.position))>0: v=math.sqrt(2*(self.energy-self.attractors.get_potencial(self.position))) else: print("drag problem - velocity anihilated",self.golem_number,abs(self.velocity)) if abs(self.velocity)>0.1: pdb.set_trace() v=0.000001 #v=-math.sqrt(-2*(self.energy-self.attractors.get_potencial(self.position))) absv=abs(self.velocity) self.velocity=v*self.velocity/absv #self.q=v/absv self.energy-=dt*self.args.mu*absv*absv # # self.state.append(( # abs(self.velocity), # self.attractors.get_potencial(self.position), # self.energy, # dt # )) #self.vpredict = self.velocity+ (3.0*self.acceleration0 - self.acceleration1)*dt/2.0 #self.acceleration2 += self.attractors.get_force(self.position,self.vpredict) #self.acceleration2 += self.position - self.args.mu*self.vpredict #self.velocity += (2.0*self.acceleration2+5.0*self.acceleration0 - self.acceleration1)*dt/6.0 #self.acceleration1 = self.acceleration0 #self.acceleration0 = self.acceleration2 def get_energy(self): #print(self.attractors.get_potencial(self.position)) return self.attractors.get_potencial(self.position)+abs(self.velocity)**2/2.0 def do_move(self): if self.final_attractor: return False self.move() self.end_check() return True def get_color(self): if self.final_attractor: return self.final_attractor["color"] def end_check(self): # if final attrator is set we are fixed (attracted) if self.attractors.min_distance(self.position) < self.args.pot_d and abs(self.velocity) < self.args.term_v: # close to the city and low velocity self.final_attractor=self.attractors.min_attractor(self.position) return True if self.energy<self.attractors.min_attractor(self.position)["esc_energy"]: self.final_attractor=self.attractors.min_attractor(self.position) return True return False
gpl-2.0
6,252,138,201,953,294,000
35.679612
153
0.618052
false
KnowledgeLinks/rdfframework
rdfframework/utilities/valuecalculator.py
1
1389
import datetime import pytz # try: # from rdfframework.utilities import iri, uri # except ImportError: # # Try Local Import # from . import iri, uri # def calculate_default_value(field): # '''calculates the default value based on the field default input''' # _calculation_string = field.get("kds_defaultVal", field.get("defaultVal")) # _return_val = None # if _calculation_string is None: # return None # if _calculation_string.startswith("item_class"): # _return_val = iri(uri(field.get("kds_classUri",field.get("classUri")))) # else: # _calc_params = _calculation_string.split('+') # _base = _calc_params[0].strip() # if len(_calc_params) > 1: # _add_value = float(_calc_params[1].strip()) # else: # _add_value = 0 # if _base == 'today': # _return_val = datetime.datetime.utcnow().replace(tzinfo = pytz.utc).date() +\ # datetime.timedelta(days=_add_value) # elif _base == 'now': # _return_val = datetime.datetime.utcnow().replace(tzinfo = pytz.utc) +\ # datetime.timedelta(days=_add_value) # elif _base == 'time': # _return_val = datetime.datetime.utcnow().replace(tzinfo = pytz.utc).time() +\ # datetime.timedelta(days=_add_value) # return _return_val
mit
-6,869,284,743,283,799,000
39.852941
91
0.572354
false
aliunsal/blog
Blogs/models.py
1
1247
from django.db import models from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes.generic import GenericForeignKey, GenericRelation class Comment(models.Model): content = models.TextField(null=False) date = models.DateTimeField(auto_now_add=True) author = models.ForeignKey(User, default=0) approved = models.BooleanField(default=False) activation_key = models.TextField(max_length=150) email = models.EmailField(null=False) content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() content_object = GenericForeignKey('content_type', 'object_id') comment = GenericRelation("Comment") def __unicode__(self): return self.content class Post(models.Model): title = models.CharField(max_length=300) content = models.TextField(null=True) date = models.DateTimeField(auto_now_add=True) picture = models.ImageField(upload_to='static/img/post_image/', null=True) author = models.ForeignKey(User) comment = GenericRelation(Comment) def __unicode__(self): return self.title class Meta: ordering = ["-id"]
gpl-2.0
1,953,466,976,391,067,100
31.842105
82
0.705694
false
botswana-harvard/edc-visit-tracking
edc_visit_tracking/form_validators/visit_form_validator.py
1
4772
from django import forms from edc_constants.constants import OTHER, ALIVE, DEAD, YES, UNKNOWN from edc_constants.constants import PARTICIPANT, NO from edc_form_validators import FormValidator from edc_form_validators.base_form_validator import REQUIRED_ERROR,\ INVALID_ERROR from ..constants import MISSED_VISIT, LOST_VISIT, UNSCHEDULED from ..visit_sequence import VisitSequence, VisitSequenceError class VisitFormValidator(FormValidator): visit_sequence_cls = VisitSequence participant_label = 'participant' def clean(self): appointment = self.cleaned_data.get('appointment') if not appointment: raise forms.ValidationError({ 'appointment': 'This field is required'}, code=REQUIRED_ERROR) visit_sequence = self.visit_sequence_cls(appointment=appointment) try: visit_sequence.enforce_sequence() except VisitSequenceError as e: raise forms.ValidationError(e, code=INVALID_ERROR) self.validate_visit_code_sequence_and_reason() self.validate_presence() self.validate_survival_status_if_alive() self.validate_reason_and_info_source() self.validate_required_fields() def validate_visit_code_sequence_and_reason(self): appointment = self.cleaned_data.get('appointment') reason = self.cleaned_data.get('reason') if appointment: if (not appointment.visit_code_sequence and reason == UNSCHEDULED): raise forms.ValidationError({ 'reason': 'Invalid. This is not an unscheduled visit'}, code=INVALID_ERROR) if (appointment.visit_code_sequence and reason != UNSCHEDULED): raise forms.ValidationError({ 'reason': 'Invalid. This is an unscheduled visit'}, code=INVALID_ERROR) def validate_reason_and_info_source(self): cleaned_data = self.cleaned_data condition = cleaned_data.get('reason') != MISSED_VISIT self.required_if_true( condition, field_required='info_source', required_msg='Provide source of information.') def validate_survival_status_if_alive(self): cleaned_data = self.cleaned_data if cleaned_data.get('survival_status') in [ALIVE, DEAD]: if not cleaned_data.get('last_alive_date'): raise forms.ValidationError( {'last_alive_date': f'Provide date {self.participant_label} last known alive.'}) def validate_presence(self): """Raise an exception if 'is_present' does not make sense relative to 'survival status', 'reason' and 'info_source'.""" cleaned_data = self.cleaned_data if cleaned_data.get('is_present') == YES: if cleaned_data.get('survival_status') in [UNKNOWN, DEAD]: raise forms.ValidationError( {'survival_status': 'Survival status cannot be \'{survival_status}\' if ' '{participant} is present.'.format( survival_status=cleaned_data.get( 'survival_status').lower(), participant=self.participant_label)}) if cleaned_data.get('reason') in [MISSED_VISIT, LOST_VISIT]: raise forms.ValidationError( {'reason': 'You indicated that the reason for the visit report is ' '{reason} but also that the {participant} is present. ' 'Please correct.'.format( participant=self.participant_label, reason=cleaned_data.get('reason'))}) elif cleaned_data.get('is_present') == NO: if cleaned_data.get('info_source') == PARTICIPANT: raise forms.ValidationError( {'info_source': 'Source of information cannot be from ' '{participant} if {participant} is not present.'.format( participant=self.participant_label)}) def validate_required_fields(self): self.required_if( MISSED_VISIT, field='reason', field_required='reason_missed') self.required_if( UNSCHEDULED, field='reason', field_required='reason_unscheduled') self.required_if( OTHER, field='info_source', field_required='info_source_other') self.required_if( OTHER, field='reason_unscheduled', field_required='reason_unscheduled_other')
gpl-2.0
4,630,544,670,171,520,000
38.438017
81
0.582775
false
pyload/pyload
src/pyload/plugins/downloaders/ZDF.py
1
2269
# -*- coding: utf-8 -*- import re import json import os from pyload.core.network.request_factory import get_url import xml.etree.ElementTree as etree import pycurl from ..base.downloader import BaseDownloader # Based on zdfm by Roland Beermann (http://github.com/enkore/zdfm/) class ZDF(BaseDownloader): __name__ = "ZDF Mediathek" __type__ = "downloader" __version__ = "0.92" __status__ = "testing" __pattern__ = r"https://(?:www\.)?zdf\.de/(?P<ID>[/\w-]+)\.html" __config__ = [ ("enabled", "bool", "Activated", True), ("use_premium", "bool", "Use premium account if available", True), ("fallback", "bool", "Fallback to free download if premium fails", True), ("chk_filesize", "bool", "Check file size", True), ("max_wait", "int", "Reconnect if waiting time is greater than minutes", 10), ] __description__ = """ZDF.de downloader plugin""" __license__ = "GPLv3" __authors__ = [] def process(self, pyfile): self.data = self.load(pyfile.url) try: api_token = re.search( r'window\.zdfsite\.player\.apiToken = "([\d\w]+)";', self.data ).group(1) self.req.http.c.setopt(pycurl.HTTPHEADER, ["Api-Auth: Bearer " + api_token]) id = re.match(self.__pattern__, pyfile.url).group("ID") filename = json.loads( self.load( "https://api.zdf.de/content/documents/zdf/" + id + ".json", get={"profile": "player-3"}, ) ) stream_list = filename["mainVideoContent"]["http://zdf.de/rels/target"][ "streams" ]["default"]["extId"] streams = json.loads( self.load( "https://api.zdf.de/tmd/2/ngplayer_2_4/vod/ptmd/mediathek/" + stream_list ) ) download_name = streams["priorityList"][0]["formitaeten"][0]["qualities"][ 0 ]["audio"]["tracks"][0]["uri"] self.pyfile.name = os.path.basename(id) + os.path.splitext(download_name)[1] self.download(download_name) except Exception as exc: self.log_error(exc)
agpl-3.0
-6,561,568,899,936,143,000
32.865672
88
0.527545
false
seleniumbase/SeleniumBase
seleniumbase/core/download_helper.py
1
2057
import os import shutil import time from seleniumbase.config import settings from seleniumbase.fixtures import constants # The "downloads_folder" is a folder for saving downloaded files. # Works for downloads initiated by Chromium and Firefox WebDriver clicks. # Browser type doesn't matter if using self.download_file(file_url) # or self.save_file_as(file_url, new_file_name) # The "downloads_folder" is cleaned out at the start of each pytest run, # but there is an option to save existing files in "archived_files". DOWNLOADS_DIR = constants.Files.DOWNLOADS_FOLDER ARCHIVE_DIR = constants.Files.ARCHIVED_DOWNLOADS_FOLDER abs_path = os.path.abspath(".") downloads_path = os.path.join(abs_path, DOWNLOADS_DIR) def get_downloads_folder(): return downloads_path def reset_downloads_folder(): """Clears the downloads folder. If settings.ARCHIVE_EXISTING_DOWNLOADS is set to True, archives it.""" if os.path.exists(downloads_path) and not os.listdir(downloads_path) == []: archived_downloads_folder = os.path.join( downloads_path, "..", ARCHIVE_DIR ) reset_downloads_folder_assistant(archived_downloads_folder) def reset_downloads_folder_assistant(archived_downloads_folder): if not os.path.exists(archived_downloads_folder): try: os.makedirs(archived_downloads_folder) except Exception: pass # Should only be reachable during multi-threaded test runs new_archived_downloads_sub_folder = "%s/downloads_%s" % ( archived_downloads_folder, int(time.time()), ) if os.path.exists(downloads_path): if not os.listdir(downloads_path) == []: try: shutil.move(downloads_path, new_archived_downloads_sub_folder) os.makedirs(downloads_path) except Exception: pass if not settings.ARCHIVE_EXISTING_DOWNLOADS: try: shutil.rmtree(new_archived_downloads_sub_folder) except OSError: pass
mit
-4,152,373,432,248,076,000
36.4
79
0.674283
false
CountZer0/PipelineConstructionSet
python/maya/site-packages/pymel-1.0.5/pymel/core/nodetypes.py
1
123778
""" Contains classes corresponding to the Maya type hierarchy, including `DependNode`, `Transform`, `Mesh`, and `Camera`. """ import sys, os, re import inspect, itertools, math import pymel.util as _util import pymel.internal.pmcmds as cmds #@UnresolvedImport import pymel.internal.factories as _factories import pymel.api as _api #@UnresolvedImport import pymel.internal.apicache as _apicache import pymel.internal.pwarnings as _warnings from pymel.internal import getLogger as _getLogger import datatypes _logger = _getLogger(__name__) # to make sure Maya is up import pymel.internal as internal import pymel.versions as versions from maya.cmds import about as _about import maya.mel as mm #from general import * import general import other from animation import listAnimatable as _listAnimatable from system import namespaceInfo as _namespaceInfo, FileReference as _FileReference _thisModule = sys.modules[__name__] #__all__ = ['Component', 'MeshEdge', 'MeshVertex', 'MeshFace', 'Attribute', 'DependNode' ] ## Mesh Components # If we're reloading, clear the pynode types out _factories.clearPyNodeTypes() class DependNode( general.PyNode ): __apicls__ = _api.MFnDependencyNode __metaclass__ = _factories.MetaMayaNodeWrapper #------------------------------- # Name Info and Manipulation #------------------------------- # def __new__(cls,name,create=False): # """ # Provides the ability to create the object when creating a class # # >>> n = pm.Transform("persp",create=True) # >>> n.__repr__() # # Result: nt.Transform(u'persp1') # """ # if create: # ntype = cls.__melnode__ # name = createNode(ntype,n=name,ss=1) # return general.PyNode.__new__(cls,name) # def __init__(self, *args, **kwargs ): # self.apicls.__init__(self, self._apiobject.object() ) @_util.universalmethod def __melobject__(self): """Special method for returning a mel-friendly representation.""" if isinstance(self, DependNode): # For instance, return the node's name... return self.name() else: # For the class itself, return the mel node name return self.__melnode__ def __repr__(self): """ :rtype: `unicode` """ return u"nt.%s(%r)" % (self.__class__.__name__, self.name()) def _updateName(self) : # test validity self.__apimobject__() self._name = self.__apimfn__().name() return self._name def name(self, update=True, stripNamespace=False) : """ :rtype: `unicode` """ if update or self._name is None: try: self._updateName() except general.MayaObjectError: _logger.warn( "object %s no longer exists" % self._name ) name = self._name if stripNamespace: name = name.rsplit(':', 1)[-1] return name def shortName(self): """ This produces the same results as `DependNode.name` and is included to simplify looping over lists of nodes that include both Dag and Depend nodes. :rtype: `unicode` """ return self.name() def longName(self): """ This produces the same results as `DependNode.name` and is included to simplify looping over lists of nodes that include both Dag and Depend nodes. :rtype: `unicode` """ return self.name() def nodeName(self, **kwargs): """ This produces the same results as `DependNode.name` and is included to simplify looping over lists of nodes that include both Dag and Depend nodes. :rtype: `unicode` """ return self.name(**kwargs) #rename = rename def rename( self, name, **kwargs ): """ :rtype: `DependNode` """ #self.setName( name ) # no undo support #check for preserveNamespace a pymel unique flag if kwargs.pop('preserveNamespace', False): name = self.namespace(root=True) + name #ensure shortname if '|' in name: name = name.split('|')[-1] return general.rename(self, name, **kwargs) def __apiobject__(self) : "get the default API object (MObject) for this node if it is valid" return self.__apimobject__() def __apimobject__(self) : "get the MObject for this node if it is valid" handle = self.__apihandle__() if _api.isValidMObjectHandle( handle ) : return handle.object() raise general.MayaNodeError( self._name ) def __apihandle__(self) : return self.__apiobjects__['MObjectHandle'] def __str__(self): return "%s" % self.name() def __unicode__(self): return u"%s" % self.name() if versions.current() >= versions.v2009: def __hash__(self): return self.__apihandle__().hashCode() def node(self): """for compatibility with Attribute class :rtype: `DependNode` """ return self #-------------------------- # Modification #-------------------------- def lock( self, **kwargs ): 'lockNode -lock 1' #kwargs['lock'] = True #kwargs.pop('l',None) #return cmds.lockNode( self, **kwargs) return self.setLocked( True ) def unlock( self, **kwargs ): 'lockNode -lock 0' #kwargs['lock'] = False #kwargs.pop('l',None) #return cmds.lockNode( self, **kwargs) return self.setLocked( False ) def cast( self, swapNode, **kwargs): """nodeCast""" return cmds.nodeCast( self, swapNode, *kwargs ) duplicate = general.duplicate #-------------------------- #xxx{ Presets #-------------------------- def savePreset(self, presetName, custom=None, attributes=[]): kwargs = {'save':True} if attributes: kwargs['attributes'] = ' '.join(attributes) if custom: kwargs['custom'] = custom return cmds.nodePreset( presetName, **kwargs) def loadPreset(self, presetName): kwargs = {'load':True} return cmds.nodePreset( presetName, **kwargs) def deletePreset(self, presetName): kwargs = {'delete':True} return cmds.nodePreset( presetName, **kwargs) def listPresets(self): kwargs = {'list':True} return cmds.nodePreset( **kwargs) #} #-------------------------- #xxx{ Info #-------------------------- type = general.nodeType def referenceFile(self): """referenceQuery -file Return the reference file to which this object belongs. None if object is not referenced :rtype: `FileReference` """ try: return _FileReference( cmds.referenceQuery( self, f=1) ) except RuntimeError: None isReadOnly = _factories.wrapApiMethod( _api.MFnDependencyNode, 'isFromReferencedFile', 'isReadOnly' ) def classification(self): 'getClassification' return general.getClassification( self.type() ) #return self.__apimfn__().classification( self.type() ) #} #-------------------------- #xxx{ Connections #-------------------------- def inputs(self, **kwargs): """listConnections -source 1 -destination 0 :rtype: `PyNode` list """ kwargs['source'] = True kwargs.pop('s', None ) kwargs['destination'] = False kwargs.pop('d', None ) return general.listConnections(self, **kwargs) def outputs(self, **kwargs): """listConnections -source 0 -destination 1 :rtype: `PyNode` list """ kwargs['source'] = False kwargs.pop('s', None ) kwargs['destination'] = True kwargs.pop('d', None ) return general.listConnections(self, **kwargs) def sources(self, **kwargs): """listConnections -source 1 -destination 0 :rtype: `PyNode` list """ kwargs['source'] = True kwargs.pop('s', None ) kwargs['destination'] = False kwargs.pop('d', None ) return general.listConnections(self, **kwargs) def destinations(self, **kwargs): """listConnections -source 0 -destination 1 :rtype: `PyNode` list """ kwargs['source'] = False kwargs.pop('s', None ) kwargs['destination'] = True kwargs.pop('d', None ) return general.listConnections(self, **kwargs) def shadingGroups(self): """list any shading groups in the future of this object - works for shading nodes, transforms, and shapes Also see listSets(type=1) - which returns which 'rendering sets' the object is a member of (and 'rendering sets' seem to consist only of shading groups), whereas this method searches the object's future for any nodes of type 'shadingEngine'. :rtype: `DependNode` list """ return self.future(type='shadingEngine') #} #-------------------------- #xxx{ Attributes #-------------------------- def __getattr__(self, attr): try : return getattr(super(general.PyNode, self), attr) except AttributeError : try: return DependNode.attr(self,attr) except general.MayaAttributeError, e: # since we're being called via __getattr__ we don't know whether the user was intending # to get a class method or a maya attribute, so we raise a more generic AttributeError raise AttributeError,"%r has no attribute or method named '%s'" % (self, attr) @_util.universalmethod def attrDefaults(obj, attr): #@NoSelf """ Access to an attribute of a node. This does not require an instance: >>> nt.Transform.attrDefaults('tx').isKeyable() True but it can use one if needed ( for example, for dynamically created attributes ) >>> nt.Transform(u'persp').attrDefaults('tx').isKeyable() Note: this is still experimental. """ if inspect.isclass(obj): self = None cls = obj # keep things familiar else: self = obj # keep things familiar cls = type(obj) attributes = cls.__apiobjects__.setdefault('MFnAttributes', {}) attrObj = attributes.get(attr, None) if not _api.isValidMObject(attrObj): def toAttrObj(apiObj): try: attrObj = apiObj.attribute(attr) if attrObj.isNull(): raise RuntimeError except RuntimeError: # just try it first, then check if it has the attribute if # we errored (as opposed to always check first if the node # has the attribute), on the assumption that this will be # "faster" for most cases, where the node actually DOES have # the attribute... if not apiObj.hasAttribute(attr): raise general.MayaAttributeError('%s.%s' % (cls.__melnode__, attr)) else: # don't know why we got this error, so just reraise raise return attrObj if self is None: if hasattr(_api, 'MNodeClass'): # Yay, we have MNodeClass, use it! nodeCls = _api.MNodeClass(cls.__melnode__) attrObj = toAttrObj(nodeCls) else: # We don't have an instance of the node, we need # to make a ghost one... with _apicache._GhostObjMaker(cls.__melnode__) as nodeObj: if nodeObj is None: # for instance, we get this if we have an abstract class... raise RuntimeError("Unable to get attribute defaults for abstract node class %s, in versions prior to 2012" % cls.__melnode__) nodeMfn = cls.__apicls__(nodeObj) attrObj = toAttrObj(nodeMfn) else: nodeMfn = self.__apimfn__() attrObj = toAttrObj(nodeMfn) attributes[attr] = attrObj return general.AttributeDefaults( attrObj ) def attr(self, attr): """ access to attribute plug of a node. returns an instance of the Attribute class for the given attribute name. :rtype: `Attribute` """ return self._attr(attr, False) # Just have this alias because it will sometimes return attributes for an # underlying shape, which we may want for DagNode.attr, but don't want for # DependNode.attr (and using the on-shape result, instead of throwing it # away and then finding it again on the shape, saves time for the DagNode # case) def _attr(self, attr, allowOtherNode): #return Attribute( '%s.%s' % (self, attr) ) try : if '.' in attr or '[' in attr: # Compound or Multi Attribute # there are a couple of different ways we can proceed: # Option 1: back out to _api.toApiObject (via general.PyNode) # return Attribute( self.__apiobject__(), self.name() + '.' + attr ) # Option 2: nameparse. # this avoids calling self.name(), which can be slow import pymel.util.nameparse as nameparse nameTokens = nameparse.getBasicPartList( 'dummy.' + attr ) result = self.__apiobject__() for token in nameTokens[1:]: # skip the first, bc it's the node, which we already have if isinstance( token, nameparse.MayaName ): if isinstance( result, _api.MPlug ): # you can't get a child plug from a multi/array plug. # if result is currently 'defaultLightList1.lightDataArray' (an array) # and we're trying to get the next plug, 'lightDirection', then we need a dummy index. # the following line will reuslt in 'defaultLightList1.lightDataArray[-1].lightDirection' if result.isArray(): result = self.__apimfn__().findPlug( unicode(token) ) else: result = result.child( self.__apimfn__().attribute( unicode(token) ) ) else: # Node result = self.__apimfn__().findPlug( unicode(token) ) # # search children for the attribute to simulate cam.focalLength --> perspShape.focalLength # except TypeError: # for i in range(fn.childCount()): # try: result = _api.MFnDagNode( fn.child(i) ).findPlug( unicode(token) ) # except TypeError: pass # else:break if isinstance( token, nameparse.NameIndex ): if token.value != -1: result = result.elementByLogicalIndex( token.value ) plug = result else: try: plug = self.__apimfn__().findPlug( attr, False ) except RuntimeError: # Don't use .findAlias, as it always returns the 'base' # attribute - ie, if the alias is to foo[0].bar, it will # just point to foo # aliases #obj = _api.MObject() #self.__apimfn__().findAlias( attr, obj ) #plug = self.__apimfn__().findPlug( obj, False ) # the following technique gets aliased attributes as well. turning dagPlugs to off saves time because we already # know the dagNode. however, certain attributes, such as rotatePivot, are detected as components, # despite the fact that findPlug finds them as MPlugs. need to look into this # TODO: test speed versus above method try: plug = _api.toApiObject(self.name() + '.' + attr, dagPlugs=False) except RuntimeError: raise if not isinstance(plug, _api.MPlug): raise RuntimeError if not (allowOtherNode or plug.node() == self.__apimobject__()): # we could have gotten an attribute on a shape object, # which we don't want raise RuntimeError return general.Attribute( self.__apiobject__(), plug ) except RuntimeError: # raise our own MayaAttributeError, which subclasses AttributeError and MayaObjectError raise general.MayaAttributeError( '%s.%s' % (self, attr) ) hasAttr = general.hasAttr @_factories.addMelDocs('setAttr') def setAttr( self, attr, *args, **kwargs): # for now, using strings is better, because there is no MPlug support return general.setAttr( "%s.%s" % (self, attr), *args, **kwargs ) @_factories.addMelDocs('setAttr') def setDynamicAttr( self, attr, *args, **kwargs): """ same as `DependNode.setAttr` with the force flag set to True. This causes the attribute to be created based on the passed input value. """ # for now, using strings is better, because there is no MPlug support kwargs['force'] = True return general.setAttr( "%s.%s" % (self, attr), *args, **kwargs ) @_factories.addMelDocs('getAttr') def getAttr( self, attr, *args, **kwargs ): # for now, using strings is better, because there is no MPlug support return general.getAttr( "%s.%s" % (self, attr), *args, **kwargs ) @_factories.addMelDocs('addAttr') def addAttr( self, attr, **kwargs): # for now, using strings is better, because there is no MPlug support assert 'longName' not in kwargs and 'ln' not in kwargs kwargs['longName'] = attr return general.addAttr( unicode(self), **kwargs ) @_factories.addMelDocs('deleteAttr') def deleteAttr( self, attr, *args, **kwargs ): # for now, using strings is better, because there is no MPlug support return general.deleteAttr( "%s.%s" % (self, attr), *args, **kwargs ) @_factories.addMelDocs('connectAttr') def connectAttr( self, attr, destination, **kwargs ): # for now, using strings is better, because there is no MPlug support return general.connectAttr( "%s.%s" % (self, attr), destination, **kwargs ) @_factories.addMelDocs('disconnectAttr') def disconnectAttr( self, attr, destination=None, **kwargs ): # for now, using strings is better, because there is no MPlug support return general.disconnectAttr( "%s.%s" % (self, attr), destination, **kwargs ) listAnimatable = _listAnimatable def listAttr( self, **kwargs): """ listAttr Modifications: - returns an empty list when the result is None - added 'alias' keyword to list attributes that have aliases :rtype: `Attribute` list """ alias = kwargs.pop('alias', False) # stringify fix res = map( lambda x: self.attr(x), _util.listForNone(cmds.listAttr(self.name(), **kwargs))) if alias: res = [ x[1] for x in self.listAliases() if x[1] in res] # aliases = dict( (x[1], x[0]) for x in general.aliasAttr(self.name()) ) # tmp = res # res = [] # for at in tmp: # try: # res.append( aliases[at], at ) # except KeyError: # pass return res def listAliases( self ): """ aliasAttr Modifications: - returns an empty list when the result is None - when queried, returns a list of (alias, `Attribute`) pairs. :rtype: (`str`, `Attribute`) list """ #tmp = _util.listForNone(cmds.aliasAttr(self.name(),query=True)) tmp = [] self.__apimfn__().getAliasList(tmp) res = [] for i in range(0,len(tmp),2): res.append((tmp[i], general.Attribute(self.node() + '.' + tmp[i+1]))) return res def attrInfo( self, **kwargs): """attributeInfo :rtype: `Attribute` list """ # stringify fix return map( lambda x: self.attr(x) , _util.listForNone(cmds.attributeInfo(self.name(), **kwargs))) #} #----------------------------------------- #xxx{ Name Info and Manipulation #----------------------------------------- # Now just wraps NameParser functions def stripNum(self): """Return the name of the node with trailing numbers stripped off. If no trailing numbers are found the name will be returned unchanged. >>> from pymel.core import * >>> SCENE.lambert1.stripNum() u'lambert' :rtype: `unicode` """ return other.NameParser(self).stripNum() def extractNum(self): """Return the trailing numbers of the node name. If no trailing numbers are found an error will be raised. >>> from pymel.core import * >>> SCENE.lambert1.extractNum() u'1' :rtype: `unicode` """ return other.NameParser(self).extractNum() def nextUniqueName(self): """Increment the trailing number of the object until a unique name is found If there is no trailing number, appends '1' to the name. :rtype: `unicode` """ return other.NameParser(self).nextUniqueName() def nextName(self): """Increment the trailing number of the object by 1 Raises an error if the name has no trailing number. >>> from pymel.core import * >>> SCENE.lambert1.nextName() DependNodeName(u'lambert2') :rtype: `unicode` """ return other.NameParser(self).nextName() def prevName(self): """Decrement the trailing number of the object by 1 Raises an error if the name has no trailing number. :rtype: `unicode` """ return other.NameParser(self).prevName() @classmethod def registerVirtualSubClass( cls, nameRequired=False ): """ Deprecated """ _factories.registerVirtualClass(cls, nameRequired) #} if versions.current() >= versions.v2011: class ContainerBase(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper pass class Entity(ContainerBase): __metaclass__ = _factories.MetaMayaNodeWrapper pass else: class Entity(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper pass class DagNode(Entity): #:group Path Info and Modification: ``*parent*``, ``*Parent*``, ``*child*``, ``*Child*`` """ """ __apicls__ = _api.MFnDagNode __metaclass__ = _factories.MetaMayaNodeWrapper # def __init__(self, *args, **kwargs ): # self.apicls.__init__(self, self.__apimdagpath__() ) _componentAttributes = {} def comp(self, compName): """ Will retrieve a Component object for this node; similar to DependNode.attr(), but for components. :rtype: `Component` """ if compName in self._componentAttributes: compClass = self._componentAttributes[compName] if isinstance(compClass, tuple): # We have something like: # 'uIsoparm' : (NurbsSurfaceIsoparm, 'u') # need to specify what 'flavor' of the basic # component we need... return compClass[0](self, {compClass[1]:general.ComponentIndex(label=compClass[1])}) else: return compClass(self) # if we do self.getShape(), and this is a shape node, we will # enter a recursive loop if compName isn't actually a comp: # since shape doesn't have 'getShape', it will call __getattr__ # for 'getShape', which in turn call comp to check if it's a comp, # which will call __getattr__, etc # ..soo... check if we have a 'getShape'! # ...also, don't use 'hasattr', as this will also call __getattr__! try: object.__getattribute__(self, 'getShape') except AttributeError: raise general.MayaComponentError( '%s.%s' % (self, compName) ) else: shape = self.getShape() if shape: return shape.comp(compName) def listComp(self, names=False): """Will return a list of all component objects for this object Is to .comp() what .listAttr() is to .attr(); will NOT check the shape node. Parameters ---------- names : bool By default, will return a list of actual usabale pymel Component objects; if you just want a list of string names which would be compatible with .comp(), set names to True """ keys = sorted(self._componentAttributes.keys()) if names: return keys compTypes = set() comps = [] # use the sorted keys, so the order matches that returned by names, # minus duplicate entries for aliases for name in keys: compType = self._componentAttributes[name] if compType not in compTypes: compTypes.add(compType) comps.append(self.comp(name)) return comps def _updateName(self, long=False) : #if _api.isValidMObjectHandle(self._apiobject) : #obj = self._apiobject.object() #dagFn = _api.MFnDagNode(obj) #dagPath = _api.MDagPath() #dagFn.getPath(dagPath) dag = self.__apimdagpath__() if dag: name = dag.partialPathName() if not name: raise general.MayaNodeError self._name = name if long : return dag.fullPathName() return self._name def name(self, update=True, long=False) : if update or long or self._name is None: try: return self._updateName(long) except general.MayaObjectError: _logger.warn( "object %s no longer exists" % self._name ) return self._name def longName(self,stripNamespace=False,levels=0): """ The full dag path to the object, including leading pipe ( | ) :rtype: `unicode` """ if stripNamespace: name = self.name(long=True) nodes = [] for x in name.split('|'): y = x.split('.') z = y[0].split(':') if levels: y[0] = ':'.join( z[min(len(z)-1,levels):] ) else: y[0] = z[-1] nodes.append( '.'.join( y ) ) stripped_name = '|'.join( nodes) return stripped_name return self.name(long=True) fullPath = longName def shortName( self ): """ The shortest unique name. :rtype: `unicode` """ return self.name(long=False) def nodeName( self, stripNamespace=False ): """ Just the name of the node, without any dag path :rtype: `unicode` """ name = self.name().rsplit('|', 1)[-1] if stripNamespace: name = name.rsplit(':', 1)[-1] return name def __apiobject__(self) : "get the MDagPath for this object if it is valid" return self.__apimdagpath__() def __apimdagpath__(self) : "get the MDagPath for this object if it is valid" try: dag = self.__apiobjects__['MDagPath'] # test for validity: if the object is not valid an error will be raised self.__apimobject__() return dag except KeyError: # class was instantiated from an MObject, but we can still retrieve the first MDagPath #assert argObj.hasFn( _api.MFn.kDagNode ) dag = _api.MDagPath() # we can't use self.__apimfn__() becaue the mfn is instantiated from an MDagPath # which we are in the process of finding out mfn = _api.MFnDagNode( self.__apimobject__() ) mfn.getPath(dag) self.__apiobjects__['MDagPath'] = dag return dag # if dag.isValid(): # #argObj = dag # if dag.fullPathName(): # argObj = dag # else: # print 'produced valid MDagPath with no name: %s(%s)' % ( argObj.apiTypeStr(), _api.MFnDependencyNode(argObj).name() ) def __apihandle__(self) : try: handle = self.__apiobjects__['MObjectHandle'] except KeyError: try: handle = _api.MObjectHandle( self.__apiobjects__['MDagPath'].node() ) except RuntimeError: raise general.MayaNodeError( self._name ) self.__apiobjects__['MObjectHandle'] = handle return handle # def __apimfn__(self): # if self._apimfn: # return self._apimfn # elif self.__apicls__: # obj = self._apiobject # if _api.isValidMDagPath(obj): # try: # self._apimfn = self.__apicls__(obj) # return self._apimfn # except KeyError: # pass # def __init__(self, *args, **kwargs): # if self._apiobject: # if isinstance(self._apiobject, _api.MObjectHandle): # dagPath = _api.MDagPath() # _api.MDagPath.getAPathTo( self._apiobject.object(), dagPath ) # self._apiobject = dagPath # # assert _api.isValidMDagPath( self._apiobject ) # def __init__(self, *args, **kwargs) : # if args : # arg = args[0] # if len(args) > 1 : # comp = args[1] # if isinstance(arg, DagNode) : # self._name = unicode(arg.name()) # self._apiobject = _api.MObjectHandle(arg.object()) # elif _api.isValidMObject(arg) or _api.isValidMObjectHandle(arg) : # objHandle = _api.MObjectHandle(arg) # obj = objHandle.object() # if _api.isValidMDagNode(obj) : # self._apiobject = objHandle # self._updateName() # else : # raise TypeError, "%r might be a dependencyNode, but not a dagNode" % arg # elif isinstance(arg, basestring) : # obj = _api.toMObject (arg) # if obj : # # creation for existing object # if _api.isValidMDagNode (obj): # self._apiobject = _api.MObjectHandle(obj) # self._updateName() # else : # raise TypeError, "%r might be a dependencyNode, but not a dagNode" % arg # else : # # creation for inexistent object # self._name = arg # else : # raise TypeError, "don't know how to make a DagNode out of a %s : %r" % (type(arg), arg) #-------------------------------- #xxx{ Path Info and Modification #-------------------------------- def root(self): """rootOf :rtype: `unicode` """ return DagNode( '|' + self.longName()[1:].split('|')[0] ) # def hasParent(self, parent ): # try: # return self.__apimfn__().hasParent( parent.__apiobject__() ) # except AttributeError: # obj = _api.toMObject(parent) # if obj: # return self.__apimfn__().hasParent( obj ) # # def hasChild(self, child ): # try: # return self.__apimfn__().hasChild( child.__apiobject__() ) # except AttributeError: # obj = _api.toMObject(child) # if obj: # return self.__apimfn__().hasChild( obj ) # # def isParentOf( self, parent ): # try: # return self.__apimfn__().isParentOf( parent.__apiobject__() ) # except AttributeError: # obj = _api.toMObject(parent) # if obj: # return self.__apimfn__().isParentOf( obj ) # # def isChildOf( self, child ): # try: # return self.__apimfn__().isChildOf( child.__apiobject__() ) # except AttributeError: # obj = _api.toMObject(child) # if obj: # return self.__apimfn__().isChildOf( obj ) def isInstanceOf(self, other): """ :rtype: `bool` """ if isinstance( other, general.PyNode ): return self.__apimobject__() == other.__apimobject__() else: try: return self.__apimobject__() == general.PyNode(other).__apimobject__() except: return False def instanceNumber(self): """ returns the instance number that this path represents in the DAG. The instance number can be used to determine which element of the world space array attributes of a DAG node to connect to get information regarding this instance. :rtype: `int` """ return self.__apimdagpath__().instanceNumber() def getInstances(self, includeSelf=True): """ :rtype: `DagNode` list >>> from pymel.core import * >>> f=newFile(f=1) #start clean >>> >>> s = polyPlane()[0] >>> instance(s) [nt.Transform(u'pPlane2')] >>> instance(s) [nt.Transform(u'pPlane3')] >>> s.getShape().getInstances() [nt.Mesh(u'pPlane1|pPlaneShape1'), nt.Mesh(u'pPlane2|pPlaneShape1'), nt.Mesh(u'pPlane3|pPlaneShape1')] >>> s.getShape().getInstances(includeSelf=False) [nt.Mesh(u'pPlane2|pPlaneShape1'), nt.Mesh(u'pPlane3|pPlaneShape1')] """ d = _api.MDagPathArray() self.__apimfn__().getAllPaths(d) thisDagPath = self.__apimdagpath__() result = [ general.PyNode( _api.MDagPath(d[i])) for i in range(d.length()) if includeSelf or not d[i] == thisDagPath ] return result def getOtherInstances(self): """ same as `DagNode.getInstances` with includeSelf=False. :rtype: `DagNode` list """ return self.getInstances(includeSelf=False) def firstParent(self): """firstParentOf :rtype: `DagNode` """ try: return DagNode( '|'.join( self.longName().split('|')[:-1] ) ) except TypeError: return DagNode( '|'.join( self.split('|')[:-1] ) ) # def numChildren(self): # """ # see also `childCount` # # :rtype: `int` # """ # return self.__apimdagpath__().childCount() # def getParent(self, **kwargs): # # TODO : print warning regarding removal of kwargs, test speed difference # parent = _api.MDagPath( self.__apiobject__() ) # try: # parent.pop() # return general.PyNode(parent) # except RuntimeError: # pass # # def getChildren(self, **kwargs): # # TODO : print warning regarding removal of kwargs # children = [] # thisDag = self.__apiobject__() # for i in range( thisDag.childCount() ): # child = _api.MDagPath( thisDag ) # child.push( thisDag.child(i) ) # children.append( general.PyNode(child) ) # return children def firstParent2(self, **kwargs): """unlike the firstParent command which determines the parent via string formatting, this command uses the listRelatives command """ kwargs['parent'] = True kwargs.pop('p',None) #if longNames: kwargs['fullPath'] = True kwargs.pop('f',None) try: res = cmds.listRelatives( self, **kwargs)[0] except TypeError: return None res = general.PyNode( res ) return res @staticmethod def _getDagParent(dag): if dag.length() <= 1: return None # Need a copy as we'll be modifying it... dag = _api.MDagPath(dag) dag.pop() return dag def getParent(self, generations=1): """ Modifications: - added optional generations flag, which gives the number of levels up that you wish to go for the parent; ie: >>> from pymel.core import * >>> select(cl=1) >>> bottom = group(n='bottom') >>> group(n='almostThere') nt.Transform(u'almostThere') >>> group(n='nextLevel') nt.Transform(u'nextLevel') >>> group(n='topLevel') nt.Transform(u'topLevel') >>> bottom.longName() u'|topLevel|nextLevel|almostThere|bottom' >>> bottom.getParent(2) nt.Transform(u'nextLevel') Negative values will traverse from the top: >>> bottom.getParent(generations=-3) nt.Transform(u'almostThere') A value of 0 will return the same node. The default value is 1. If generations is None, it will be interpreted as 'return all parents', and a list will be returned. Since the original command returned None if there is no parent, to sync with this behavior, None will be returned if generations is out of bounds (no IndexError will be thrown). :rtype: `DagNode` """ # Get the parent through the api - listRelatives doesn't handle instances correctly, # and string processing seems unreliable... res = general._getParent(self._getDagParent, self.__apimdagpath__(), generations) if generations is None: if res is None: return [] return [general.PyNode(x) for x in res] elif res is not None: return general.PyNode( res ) def getAllParents(self): """ Return a list of all parents above this. Starts from the parent immediately above, going up. :rtype: `DagNode` list """ return self.getParent(generations=None) def getChildren(self, **kwargs ): """ see also `childAtIndex` for flags, see pymel.core.general.listRelatives :rtype: `DagNode` list """ kwargs['children'] = True kwargs.pop('c',None) return general.listRelatives( self, **kwargs) def getSiblings(self, **kwargs ): """ for flags, see pymel.core.general.listRelatives :rtype: `DagNode` list """ #pass try: return [ x for x in self.getParent().getChildren(**kwargs) if x != self] except: return [] def listRelatives(self, **kwargs ): """ for flags, see pymel.core.general.listRelatives :rtype: `PyNode` list """ return general.listRelatives( self, **kwargs) def setParent( self, *args, **kwargs ): """ parent Modifications: - if parent is 'None', world=True is automatically set - if the given parent is the current parent, don't error """ result = general.parent(self, *args, **kwargs) if result: result = result[0] return result def addChild( self, child, **kwargs ): """parent (reversed) :rtype: `DagNode` """ cmds.parent( child, self, **kwargs ) if not isinstance( child, general.PyNode ): child = general.PyNode(child) return child def __or__(self, child, **kwargs): """ operator for `addChild`. Use to easily daisy-chain together parenting operations. The operation order visually mimics the resulting dag path: >>> from pymel.core import * >>> s = polySphere(name='sphere')[0] >>> c = polyCube(name='cube')[0] >>> t = polyTorus(name='torus')[0] >>> s | c | t nt.Transform(u'torus') >>> print t.fullPath() |sphere|cube|torus :rtype: `DagNode` """ return self.addChild(child,**kwargs) #} #instance = instance #-------------------------- # Shading #-------------------------- def isDisplaced(self): """Returns whether any of this object's shading groups have a displacement shader input :rtype: `bool` """ for sg in self.shadingGroups(): if len( sg.attr('displacementShader').inputs() ): return True return False def hide(self): self.visibility.set(0) def show(self): self.visibility.set(1) def isVisible(self, checkOverride=True): if not self.attr('visibility').get(): return False if (checkOverride and self.attr('overrideEnabled').get() and not self.attr('overrideVisibility').get()): return False parent = self.getParent() if not parent: return True else: return parent.isVisible(checkOverride=checkOverride) def setObjectColor( self, color=None ): """This command sets the dormant wireframe color of the specified objects to an integer representing one of the user defined colors, or, if set to None, to the default class color""" kwargs = {} if color: kwargs['userDefined'] = color cmds.color(self, **kwargs) def makeLive( self, state=True ): if not state: cmds.makeLive(none=True) else: cmds.makeLive(self) class Shape(DagNode): __metaclass__ = _factories.MetaMayaNodeWrapper def getTransform(self): pass def setParent(self, *args, **kwargs): if 'shape' not in kwargs and 's' not in kwargs: kwargs['s'] = True super(Shape, self).setParent(*args, **kwargs) #class Joint(Transform): # pass class Camera(Shape): __metaclass__ = _factories.MetaMayaNodeWrapper def applyBookmark(self, bookmark): kwargs = {} kwargs['camera'] = self kwargs['edit'] = True kwargs['setCamera'] = True cmds.cameraView( bookmark, **kwargs ) def addBookmark(self, bookmark=None): kwargs = {} kwargs['camera'] = self kwargs['addBookmark'] = True if bookmark: kwargs['name'] = bookmark cmds.cameraView( **kwargs ) def removeBookmark(self, bookmark): kwargs = {} kwargs['camera'] = self kwargs['removeBookmark'] = True kwargs['name'] = bookmark cmds.cameraView( **kwargs ) def updateBookmark(self, bookmark): kwargs = {} kwargs['camera'] = self kwargs['edit'] = True kwargs['setView'] = True cmds.cameraView( bookmark, **kwargs ) def listBookmarks(self): return self.bookmarks.inputs() @_factories.addMelDocs('dolly') def dolly(self, distance, relative=True): kwargs = {} kwargs['distance'] = distance if relative: kwargs['relative'] = True else: kwargs['absolute'] = True cmds.dolly(self, **kwargs) @_factories.addMelDocs('roll') def roll(self, degree, relative=True): kwargs = {} kwargs['degree'] = degree if relative: kwargs['relative'] = True else: kwargs['absolute'] = True cmds.roll(self, **kwargs) #TODO: the functionFactory is causing these methods to have their docs doubled-up, in both pymel.track, and pymel.Camera.track #dolly = _factories.functionFactory( cmds.dolly ) #roll = _factories.functionFactory( cmds.roll ) orbit = _factories.functionFactory( cmds.orbit ) track = _factories.functionFactory( cmds.track ) tumble = _factories.functionFactory( cmds.tumble ) class Transform(DagNode): __metaclass__ = _factories.MetaMayaNodeWrapper _componentAttributes = {'rotatePivot' : (general.Pivot, 'rotatePivot'), 'scalePivot' : (general.Pivot, 'scalePivot')} # def __getattr__(self, attr): # try : # return super(general.PyNode, self).__getattr__(attr) # except AttributeError, msg: # try: # return self.getShape().attr(attr) # except AttributeError: # pass # # # it doesn't exist on the class # try: # return self.attr(attr) # except MayaAttributeError, msg: # # try the shape # try: return self.getShape().attr(attr) # except AttributeError: pass # # since we're being called via __getattr__ we don't know whether the user was trying # # to get a class method or a maya attribute, so we raise a more generic AttributeError # raise AttributeError, msg def __getattr__(self, attr): """ Checks in the following order: 1. Functions on this node class 2. Attributes on this node class 3. Functions on this node class's shape 4. Attributes on this node class's shape """ try : #print "Transform.__getattr__(%r)" % attr # Functions through normal inheritance res = DependNode.__getattr__(self,attr) except AttributeError, e: # Functions via shape inheritance , and then, implicitly, Attributes for shape in self.getShapes(): try: return getattr(shape,attr) except AttributeError: pass raise e return res def __setattr__(self, attr, val): """ Checks in the following order: 1. Functions on this node class 2. Attributes on this node class 3. Functions on this node class's shape 4. Attributes on this node class's shape """ try : #print "Transform.__setattr__", attr, val # Functions through normal inheritance return DependNode.__setattr__(self,attr,val) except AttributeError, e: # Functions via shape inheritance , and then, implicitly, Attributes #print "Trying shape" shape = self.getShape() if shape: try: return setattr(shape,attr, val) except AttributeError: pass raise e def attr(self, attr, checkShape=True): """ when checkShape is enabled, if the attribute does not exist the transform but does on the shape, then the shape's attribute will be returned. :rtype: `Attribute` """ #print "ATTR: Transform" try : res = self._attr(attr, checkShape) except general.MayaAttributeError, e: if checkShape: try: res = self.getShape().attr(attr) except AttributeError: raise e raise e return res # def __getattr__(self, attr): # if attr.startswith('__') and attr.endswith('__'): # return super(general.PyNode, self).__getattr__(attr) # # at = Attribute( '%s.%s' % (self, attr) ) # # # if the attribute does not exist on this node try the shape node # if not at.exists(): # try: # childAttr = getattr( self.getShape(), attr) # try: # if childAttr.exists(): # return childAttr # except AttributeError: # return childAttr # except (AttributeError,TypeError): # pass # # return at # # def __setattr__(self, attr,val): # if attr.startswith('_'): # attr = attr[1:] # # at = Attribute( '%s.%s' % (self, attr) ) # # # if the attribute does not exist on this node try the shape node # if not at.exists(): # try: # childAttr = getattr( self.getShape(), attr ) # try: # if childAttr.exists(): # return childAttr.set(val) # except AttributeError: # return childAttr.set(val) # except (AttributeError,TypeError): # pass # # return at.set(val) """ def move( self, *args, **kwargs ): return move( self, *args, **kwargs ) def scale( self, *args, **kwargs ): return scale( self, *args, **kwargs ) def rotate( self, *args, **kwargs ): return rotate( self, *args, **kwargs ) def align( self, *args, **kwargs): args = (self,) + args cmds.align(self, *args, **kwargs) """ # NOTE : removed this via proxyClass # # workaround for conflict with translate method on basestring # def _getTranslate(self): # return self.__getattr__("translate") # def _setTranslate(self, val): # return self.__setattr__("translate", val) # translate = property( _getTranslate , _setTranslate ) def getShape( self, **kwargs ): """ :rtype: `DagNode` """ kwargs['shapes'] = True try: return self.getChildren( **kwargs )[0] except IndexError: pass def getShapes( self, **kwargs ): """ :rtype: `DagNode` """ kwargs['shapes'] = True return self.getChildren( **kwargs ) def ungroup( self, **kwargs ): return cmds.ungroup( self, **kwargs ) # @_factories.editflag('xform','scale') # def setScale( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # @_factories.editflag('xform','rotation') # def setRotationOld( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # # @_factories.editflag('xform','translation') # def setTranslationOld( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # # @_factories.editflag('xform','scalePivot') # def setScalePivotOld( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # # @_factories.editflag('xform','rotatePivot') # def setRotatePivotOld( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # @_factories.editflag('xform','pivots') # def setPivots( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # @_factories.editflag('xform','rotateAxis') # def setRotateAxisOld( self, val, **kwargs ): # cmds.xform( self, **kwargs ) # # @_factories.editflag('xform','shear') # def setShearingOld( self, val, **kwargs ): # cmds.xform( self, **kwargs ) @_factories.addMelDocs('xform','rotateAxis') def setMatrix( self, val, **kwargs ): """xform -scale""" kwargs['matrix'] = val cmds.xform( self, **kwargs ) # @_factories.queryflag('xform','scale') # def getScaleOld( self, **kwargs ): # return datatypes.Vector( cmds.xform( self, **kwargs ) ) def _getSpaceArg(self, space, kwargs): "for internal use only" if kwargs.pop( 'worldSpace', kwargs.pop('ws', False) ): space = 'world' elif kwargs.pop( 'objectSpace', kwargs.pop('os', False) ): space = 'object' return space def _isRelativeArg(self, kwargs ): isRelative = kwargs.pop( 'relative', kwargs.pop('r', None) ) if isRelative is None: isRelative = not kwargs.pop( 'absolute', kwargs.pop('a', True) ) return isRelative # @_factories.queryflag('xform','translation') # def getTranslationOld( self, **kwargs ): # return datatypes.Vector( cmds.xform( self, **kwargs ) ) @_factories.addApiDocs( _api.MFnTransform, 'setTranslation' ) def setTranslation(self, vector, space='object', **kwargs): if self._isRelativeArg(kwargs): return self.translateBy(vector, space, **kwargs) space = self._getSpaceArg(space, kwargs ) return self._setTranslation(vector, space=space) @_factories.addApiDocs( _api.MFnTransform, 'getTranslation' ) def getTranslation(self, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._getTranslation(space=space) @_factories.addApiDocs( _api.MFnTransform, 'translateBy' ) def translateBy(self, vector, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) curr = self._getTranslation(space) self._translateBy(vector, space) new = self._getTranslation(space) undoItem = _factories.ApiUndoItem(Transform.setTranslation, (self, new, space), (self, curr, space) ) _factories.apiUndo.append( undoItem ) @_factories.addApiDocs( _api.MFnTransform, 'setScale' ) def setScale(self, scale, **kwargs): if self._isRelativeArg(kwargs): return self.scaleBy(scale, **kwargs) return self._setScale(scale) @_factories.addApiDocs( _api.MFnTransform, 'scaleBy' ) def scaleBy(self, scale, **kwargs): curr = self.getScale() self._scaleBy(scale) new = self.getScale() undoItem = _factories.ApiUndoItem(Transform.setScale, (self, new), (self, curr) ) _factories.apiUndo.append( undoItem ) @_factories.addApiDocs( _api.MFnTransform, 'setShear' ) def setShear(self, shear, **kwargs): if self._isRelativeArg(kwargs): return self.shearBy(shear, **kwargs) return self._setShear(shear) @_factories.addApiDocs( _api.MFnTransform, 'shearBy' ) def shearBy(self, shear, **kwargs): curr = self.getShear() self._shearBy(shear) new = self.getShear() undoItem = _factories.ApiUndoItem(Transform.setShear, (self, new), (self, curr) ) _factories.apiUndo.append( undoItem ) # @_factories.queryflag('xform','rotatePivot') # def getRotatePivotOld( self, **kwargs ): # return datatypes.Vector( cmds.xform( self, **kwargs ) ) @_factories.addApiDocs( _api.MFnTransform, 'setRotatePivot' ) def setRotatePivot(self, point, space='object', balance=True, **kwargs): space = self._getSpaceArg(space, kwargs ) return self._setRotatePivot(point, space=space, balance=balance) @_factories.addApiDocs( _api.MFnTransform, 'rotatePivot' ) def getRotatePivot(self, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._getRotatePivot(space=space) @_factories.addApiDocs( _api.MFnTransform, 'setRotatePivotTranslation' ) def setRotatePivotTranslation(self, vector, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._setRotatePivotTranslation(vector, space=space) @_factories.addApiDocs( _api.MFnTransform, 'rotatePivotTranslation' ) def getRotatePivotTranslation(self, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._getRotatePivotTranslation(space=space) # @_factories.queryflag('xform','rotation') # def getRotationOld( self, **kwargs ): # return datatypes.Vector( cmds.xform( self, **kwargs ) ) @_factories.addApiDocs( _api.MFnTransform, 'setRotation' ) def setRotation(self, rotation, space='object', **kwargs): ''' Modifications: - rotation may be given as an EulerRotation, Quaternion, or iterable of 3 or 4 components (to specify an euler/quaternion, respectively) ''' # quaternions are the only method that support a space parameter if self._isRelativeArg(kwargs): return self.rotateBy(rotation, space, **kwargs) spaceIndex = datatypes.Spaces.getIndex(self._getSpaceArg(space, kwargs)) if not isinstance(rotation, (_api.MQuaternion, _api.MEulerRotation)): rotation = list(rotation) if len(rotation) == 3: # using datatypes.Angle(x) means current angle-unit should be # respected rotation = [ datatypes.Angle( x ).asRadians() for x in rotation ] rotation = _api.MEulerRotation( *rotation ) elif len(rotation) == 4: rotation = _api.MQuaternion(*rotation) else: raise ValueError("rotation given to setRotation must have either 3 or 4 elements (for euler or quaternion, respectively)") if isinstance(rotation, _api.MEulerRotation): # MFnTransform.setRotation doesn't have a (non-deprecated) override # which takes euler angles AND a transform space... this sort of # makes sense, since the "unique" information that euler angles can # potentially carry - ie, rotation > 360 degress - only really makes # sense within the "transform" space. So, only use EulerRotation if # we're using transform space... if datatypes.equivalentSpace(spaceIndex, _api.MSpace.kTransform, rotationOnly=True): self.__apimfn__().setRotation(rotation) return else: rotation = rotation.asQuaternion() self.__apimfn__().setRotation(rotation, spaceIndex ) # @_factories.addApiDocs( _api.MFnTransform, 'getRotation' ) # def getRotation(self, space='object', **kwargs): # # quaternions are the only method that support a space parameter # space = self._getSpaceArg(space, kwargs ) # quat = _api.MQuaternion() # _api.MFnTransform(self.__apimfn__()).getRotation(quat, datatypes.Spaces.getIndex(space) ) # return datatypes.EulerRotation( quat.asEulerRotation() ) @_factories.addApiDocs( _api.MFnTransform, 'getRotation', overloadIndex=1 ) def getRotation(self, space='object', quaternion=False, **kwargs): ''' Modifications: - added 'quaternion' keyword arg, to specify whether the result be returned as a Quaternion object, as opposed to the default EulerRotation object - added 'space' keyword arg, which defaults to 'object' ''' # quaternions are the only method that support a space parameter space = self._getSpaceArg(space, kwargs ) if space.lower() in ('object', 'pretransform', 'transform') and not quaternion: # In this case, we can just go straight to the EulerRotation, # without having to go through Quaternion - this means we will # get information like angles > 360 degrees euler = _api.MEulerRotation() self.__apimfn__().getRotation(euler) rot = datatypes.EulerRotation(euler) else: rot = self._getRotation(space=space) if not quaternion: rot = rot.asEulerRotation() if isinstance(rot, datatypes.EulerRotation): rot.setDisplayUnit( datatypes.Angle.getUIUnit() ) return rot @_factories.addApiDocs( _api.MFnTransform, 'rotateBy' ) def rotateBy(self, rotation, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) curr = self.getRotation(space) self._rotateBy(rotation, space) new = self.getRotation(space) undoItem = _factories.ApiUndoItem(Transform.setRotation, (self, new, space), (self, curr, space) ) _factories.apiUndo.append( undoItem ) # @_factories.queryflag('xform','scalePivot') # def getScalePivotOld( self, **kwargs ): # return datatypes.Vector( cmds.xform( self, **kwargs ) ) @_factories.addApiDocs( _api.MFnTransform, 'setScalePivot' ) def setScalePivot(self, point, space='object', balance=True, **kwargs): space = self._getSpaceArg(space, kwargs ) return self._setScalePivot(point, space=space, balance=balance) @_factories.addApiDocs( _api.MFnTransform, 'scalePivot' ) def getScalePivot(self, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._getScalePivot(space=space) @_factories.addApiDocs( _api.MFnTransform, 'setScalePivotTranslation' ) def setScalePivotTranslation(self, vector, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._setScalePivotTranslation(vector, space=space) @_factories.addApiDocs( _api.MFnTransform, 'scalePivotTranslation' ) def getScalePivotTranslation(self, space='object', **kwargs): space = self._getSpaceArg(space, kwargs ) return self._getScalePivotTranslation(space=space) @_factories.queryflag('xform','pivots') def getPivots( self, **kwargs ): res = cmds.xform( self, **kwargs ) return ( datatypes.Vector( res[:3] ), datatypes.Vector( res[3:] ) ) @_factories.queryflag('xform','rotateAxis') def getRotateAxis( self, **kwargs ): return datatypes.Vector( cmds.xform( self, **kwargs ) ) # @_factories.queryflag('xform','shear') # def getShearOld( self, **kwargs ): # return datatypes.Vector( cmds.xform( self, **kwargs ) ) @_factories.queryflag('xform','matrix') def getMatrix( self, **kwargs ): return datatypes.Matrix( cmds.xform( self, **kwargs ) ) #TODO: create API equivalent of `xform -boundingBoxInvisible` so we can replace this with _api. def getBoundingBox(self, invisible=False, space='object'): """xform -boundingBox and xform -boundingBoxInvisible :rtype: `BoundingBox` """ kwargs = {'query' : True } if invisible: kwargs['boundingBoxInvisible'] = True else: kwargs['boundingBox'] = True if space=='object': kwargs['objectSpace'] = True elif space=='world': kwargs['worldSpace'] = True else: raise ValueError('unknown space %r' % space) res = cmds.xform( self, **kwargs ) #return ( datatypes.Vector(res[:3]), datatypes.Vector(res[3:]) ) return datatypes.BoundingBox( res[:3], res[3:] ) def getBoundingBoxMin(self, invisible=False, space='object'): """ :rtype: `Vector` """ return self.getBoundingBox(invisible, space)[0] #return self.getBoundingBox(invisible).min() def getBoundingBoxMax(self, invisible=False, space='object'): """ :rtype: `Vector` """ return self.getBoundingBox(invisible, space)[1] #return self.getBoundingBox(invisible).max() # def centerPivots(self, **kwargs): # """xform -centerPivots""" # kwargs['centerPivots'] = True # cmds.xform( self, **kwargs ) # # def zeroTransformPivots(self, **kwargs): # """xform -zeroTransformPivots""" # kwargs['zeroTransformPivots'] = True # cmds.xform( self, **kwargs ) class Joint(Transform): __metaclass__ = _factories.MetaMayaNodeWrapper connect = _factories.functionFactory( cmds.connectJoint, rename='connect') disconnect = _factories.functionFactory( cmds.disconnectJoint, rename='disconnect') insert = _factories.functionFactory( cmds.insertJoint, rename='insert') if versions.isUnlimited(): class FluidEmitter(Transform): __metaclass__ = _factories.MetaMayaNodeWrapper fluidVoxelInfo = _factories.functionFactory( cmds.fluidVoxelInfo, rename='fluidVoxelInfo') loadFluid = _factories.functionFactory( cmds.loadFluid, rename='loadFluid') resampleFluid = _factories.functionFactory( cmds.resampleFluid, rename='resampleFluid') saveFluid = _factories.functionFactory( cmds.saveFluid, rename='saveFluid') setFluidAttr = _factories.functionFactory( cmds.setFluidAttr, rename='setFluidAttr') getFluidAttr = _factories.functionFactory( cmds.getFluidAttr, rename='getFluidAttr') class RenderLayer(DependNode): def listMembers(self, fullNames=True): if fullNames: return map( general.PyNode, _util.listForNone( cmds.editRenderLayerMembers( self, q=1, fullNames=True) ) ) else: return _util.listForNone( cmds.editRenderLayerMembers( self, q=1, fullNames=False) ) def addMembers(self, members, noRecurse=True): cmds.editRenderLayerMembers( self, members, noRecurse=noRecurse ) def removeMembers(self, members ): cmds.editRenderLayerMembers( self, members, remove=True ) def listAdjustments(self): return map( general.PyNode, _util.listForNone( cmds.editRenderLayerAdjustment( self, layer=1, q=1) ) ) def addAdjustments(self, members): return cmds.editRenderLayerAdjustment( members, layer=self ) def removeAdjustments(self, members ): return cmds.editRenderLayerAdjustment( members, layer=self, remove=True ) def setCurrent(self): cmds.editRenderLayerGlobals( currentRenderLayer=self) class DisplayLayer(DependNode): def listMembers(self, fullNames=True): if fullNames: return map( general.PyNode, _util.listForNone( cmds.editDisplayLayerMembers( self, q=1, fullNames=True) ) ) else: return _util.listForNone( cmds.editDisplayLayerMembers( self, q=1, fullNames=False) ) def addMembers(self, members, noRecurse=True): cmds.editDisplayLayerMembers( self, members, noRecurse=noRecurse ) def removeMembers(self, members ): cmds.editDisplayLayerMembers( self, members, remove=True ) def setCurrent(self): cmds.editDisplayLayerMembers( currentDisplayLayer=self) class Constraint(Transform): def setWeight( self, weight, *targetObjects ): inFunc = getattr( cmds, self.type() ) if not targetObjects: targetObjects = self.getTargetList() constraintObj = self.constraintParentInverseMatrix.inputs()[0] args = list(targetObjects) + [constraintObj] return inFunc( *args, **{'edit':True, 'weight':weight} ) def getWeight( self, *targetObjects ): inFunc = getattr( cmds, self.type() ) if not targetObjects: targetObjects = self.getTargetList() constraintObj = self.constraintParentInverseMatrix.inputs()[0] args = list(targetObjects) + [constraintObj] return inFunc( *args, **{'query':True, 'weight':True} ) class GeometryShape(Shape): def __getattr__(self, attr): #print "Mesh.__getattr__", attr try: return self.comp(attr) except general.MayaComponentError: #print "getting super", attr return super(GeometryShape,self).__getattr__(attr) class DeformableShape(GeometryShape): @classmethod def _numCVsFunc_generator(cls, formFunc, spansPlusDegreeFunc, spansFunc, name=None, doc=None): """ Intended to be used by NurbsCurve / NurbsSurface to generate functions which give the 'true' number of editable CVs, as opposed to just numSpans + degree. (The two values will differ if we have a periodic curve). Note that this will usually need to be called outside/after the class definition, as formFunc/spansFunc/etc will not be defined until then, as they are added by the metaclass. """ def _numCvs_generatedFunc(self, editableOnly=True): if editableOnly and formFunc(self) == self.Form.periodic: return spansFunc(self) else: return spansPlusDegreeFunc(self) if name: _numCvs_generatedFunc.__name__ = name if doc: _numCvs_generatedFunc.__doc__ = doc return _numCvs_generatedFunc @classmethod def _numEPsFunc_generator(cls, formFunc, spansFunc, name=None, doc=None): """ Intended to be used by NurbsCurve / NurbsSurface to generate functions which give the 'true' number of editable EPs, as opposed to just numSpans. (The two values will differ if we have a periodic curve). Note that this will usually need to be called outside/after the class definition, as formFunc/spansFunc will not be defined until then, as they are added by the metaclass. """ def _numEPs_generatedFunc(self, editableOnly=True): if editableOnly and formFunc(self) == self.Form.periodic: return spansFunc(self) else: return spansFunc(self) + 1 if name: _numEPs_generatedFunc.__name__ = name if doc: _numEPs_generatedFunc.__doc__ = doc return _numEPs_generatedFunc class ControlPoint(DeformableShape): pass class CurveShape(DeformableShape): pass class NurbsCurve(CurveShape): __metaclass__ = _factories.MetaMayaNodeWrapper _componentAttributes = {'u' : general.NurbsCurveParameter, 'cv' : general.NurbsCurveCV, 'controlVerts': general.NurbsCurveCV, 'ep' : general.NurbsCurveEP, 'editPoints' : general.NurbsCurveEP, 'knot' : general.NurbsCurveKnot, 'knots' : general.NurbsCurveKnot} # apiToMelBridge maps MFnNurbsCurve.numCVs => NurbsCurve._numCVsApi NurbsCurve.numCVs = \ NurbsCurve._numCVsFunc_generator(NurbsCurve.form, NurbsCurve._numCVsApi, NurbsCurve.numSpans, name='numCVs', doc = """ Returns the number of CVs. :Parameters: editableOnly : `bool` If editableOnly evaluates to True (default), then this will return the number of cvs that can be actually edited (and also the highest index that may be used for cv's - ie, if myCurve.numCVs(editableOnly=True) == 4 then allowable cv indices go from myCurve.cv[0] to mySurf.cv[3] If editablyOnly is False, then this will return the underlying number of cvs used to define the mathematical curve - degree + numSpans. These will only differ if the form is 'periodic', in which case the editable number will be numSpans (as the last 'degree' cv's are 'locked' to be the same as the first 'degree' cvs). In all other cases, the number of cvs will be degree + numSpans. :Examples: >>> from pymel.core import * >>> # a periodic curve >>> myCurve = curve(name='periodicCurve1', d=3, periodic=True, k=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1)] ) >>> myCurve.cv NurbsCurveCV(u'periodicCurveShape1.cv[0:7]') >>> myCurve.numCVs() 8 >>> myCurve.numCVs(editableOnly=False) 11 >>> >>> # an open curve >>> myCurve = curve(name='openCurve1', d=3, periodic=False, k=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1)] ) >>> myCurve.cv NurbsCurveCV(u'openCurveShape1.cv[0:10]') >>> myCurve.numCVs() 11 >>> myCurve.numCVs(editableOnly=False) 11 :rtype: `int` """) NurbsCurve.numEPs = \ NurbsCurve._numEPsFunc_generator(NurbsCurve.form, NurbsCurve.numSpans, name='numEPs', doc = """ Returns the number of EPs. :Examples: >>> from pymel.core import * >>> # a periodic curve >>> myCurve = curve(name='periodicCurve2', d=3, periodic=True, k=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1)] ) >>> myCurve.ep NurbsCurveEP(u'periodicCurveShape2.ep[0:7]') >>> myCurve.numEPs() 8 >>> >>> # an open curve >>> myCurve = curve(name='openCurve2', d=3, periodic=False, k=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1)] ) >>> myCurve.ep NurbsCurveEP(u'openCurveShape2.ep[0:8]') >>> myCurve.numEPs() 9 :rtype: `int` """) class SurfaceShape(ControlPoint): pass class NurbsSurface(SurfaceShape): __metaclass__ = _factories.MetaMayaNodeWrapper _componentAttributes = {'u' : (general.NurbsSurfaceRange, 'u'), 'uIsoparm' : (general.NurbsSurfaceRange, 'u'), 'v' : (general.NurbsSurfaceRange, 'v'), 'vIsoparm' : (general.NurbsSurfaceRange, 'v'), 'uv' : (general.NurbsSurfaceRange, 'uv'), 'cv' : general.NurbsSurfaceCV, 'controlVerts': general.NurbsSurfaceCV, 'ep' : general.NurbsSurfaceEP, 'editPoints' : general.NurbsSurfaceEP, 'knot' : general.NurbsSurfaceKnot, 'knots' : general.NurbsSurfaceKnot, 'sf' : general.NurbsSurfaceFace, 'faces' : general.NurbsSurfaceFace} # apiToMelBridge maps MFnNurbsCurve._numCVsInU => NurbsCurve._numCVsInUApi NurbsSurface.numCVsInU = \ NurbsSurface._numCVsFunc_generator(NurbsSurface.formInU, NurbsSurface._numCVsInUApi, NurbsSurface.numSpansInU, name='numCVsInU', doc = """ Returns the number of CVs in the U direction. :Parameters: editableOnly : `bool` If editableOnly evaluates to True (default), then this will return the number of cvs that can be actually edited (and also the highest index that may be used for u - ie, if mySurf.numCVsInU(editableOnly=True) == 4 then allowable u indices go from mySurf.cv[0][*] to mySurf.cv[3][*] If editablyOnly is False, then this will return the underlying number of cvs used to define the mathematical curve in u - degreeU + numSpansInU. These will only differ if the form in u is 'periodic', in which case the editable number will be numSpansInU (as the last 'degree' cv's are 'locked' to be the same as the first 'degree' cvs). In all other cases, the number of cvs will be degreeU + numSpansInU. :Examples: >>> from pymel.core import * >>> # a periodic surface >>> mySurf = surface(name='periodicSurf1', du=3, dv=1, fu='periodic', fv='open', ku=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), kv=(0, 1), pw=[(4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1), (0, 5.5, 0, 1), (0, 5.5, -2.5, 1), (-4, 4, 0, 1), (-4, 4, -2.5, 1), (-5.5, 0, 0, 1), (-5.5, 0, -2.5, 1), (-4, -4, 0, 1), (-4, -4, -2.5, 1), (0, -5.5, 0, 1), (0, -5.5, -2.5, 1), (4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.cv[:][0].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((7, 0), label=None)] >>> mySurf.numCVsInU() 8 >>> mySurf.numCVsInU(editableOnly=False) 11 >>> >>> # an open surface >>> mySurf = surface(name='openSurf1', du=3, dv=1, fu='open', fv='open', ku=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), kv=(0, 1), pw=((4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1), (0, 5.5, 0, 1), (0, 5.5, -2.5, 1), (-4, 4, 0, 1), (-4, 4, -2.5, 1), (-5.5, 0, 0, 1), (-5.5, 0, -2.5, 1), (-4, -4, 0, 1), (-4, -4, -2.5, 1), (0, -5.5, 0, 1), (0, -5.5, -2.5, 1), (4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1)) ) >>> sorted(mySurf.cv[:][0].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((10, 0), label=None)] >>> mySurf.numCVsInU() 11 >>> mySurf.numCVsInU(editableOnly=False) 11 :rtype: `int` """) # apiToMelBridge maps MFnNurbsCurve._numCVsInV => NurbsCurve._numCVsInVApi NurbsSurface.numCVsInV = \ NurbsSurface._numCVsFunc_generator(NurbsSurface.formInV, NurbsSurface._numCVsInVApi, NurbsSurface.numSpansInV, name='numCVsInV', doc = """ Returns the number of CVs in the V direction. :Parameters: editableOnly : `bool` If editableOnly evaluates to True (default), then this will return the number of cvs that can be actually edited (and also the highest index that may be used for v - ie, if mySurf.numCVsInV(editableOnly=True) == 4 then allowable v indices go from mySurf.cv[*][0] to mySurf.cv[*][3] If editablyOnly is False, then this will return the underlying number of cvs used to define the mathematical curve in v - degreeV + numSpansInV. These will only differ if the form in v is 'periodic', in which case the editable number will be numSpansInV (as the last 'degree' cv's are 'locked' to be the same as the first 'degree' cvs). In all other cases, the number of cvs will be degreeV + numSpansInV. :Examples: >>> from pymel.core import * >>> # a periodic surface >>> mySurf = surface(name='periodicSurf2', du=1, dv=3, fu='open', fv='periodic', ku=(0, 1), kv=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1), (0, 5.5, -2.5, 1), (-4, 4, -2.5, 1), (-5.5, 0, -2.5, 1), (-4, -4, -2.5, 1), (0, -5.5, -2.5, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.cv[0].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((0, 7), label='cv')] >>> mySurf.numCVsInV() 8 >>> mySurf.numCVsInV(editableOnly=False) 11 >>> >>> # an open surface >>> mySurf = surface(name='openSurf2', du=1, dv=3, fu='open', fv='open', ku=(0, 1), kv=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1), (0, 5.5, -2.5, 1), (-4, 4, -2.5, 1), (-5.5, 0, -2.5, 1), (-4, -4, -2.5, 1), (0, -5.5, -2.5, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.cv[0].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((0, 10), label='cv')] >>> mySurf.numCVsInV() 11 >>> mySurf.numCVsInV(editableOnly=False) 11 :rtype: `int` """) NurbsSurface.numEPsInU = \ NurbsSurface._numEPsFunc_generator(NurbsSurface.formInU, NurbsSurface.numSpansInU, name='numEPsInU', doc = """ Returns the number of EPs in the U direction. :Examples: >>> from pymel.core import * >>> # a periodic surface >>> mySurf = surface(name='periodicSurf3', du=3, dv=1, fu='periodic', fv='open', ku=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), kv=(0, 1), pw=[(4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1), (0, 5.5, 0, 1), (0, 5.5, -2.5, 1), (-4, 4, 0, 1), (-4, 4, -2.5, 1), (-5.5, 0, 0, 1), (-5.5, 0, -2.5, 1), (-4, -4, 0, 1), (-4, -4, -2.5, 1), (0, -5.5, 0, 1), (0, -5.5, -2.5, 1), (4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.ep[:][0].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((7, 0), label=None)] >>> mySurf.numEPsInU() 8 >>> >>> # an open surface >>> mySurf = surface(name='openSurf3', du=3, dv=1, fu='open', fv='open', ku=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), kv=(0, 1), pw=[(4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1), (0, 5.5, 0, 1), (0, 5.5, -2.5, 1), (-4, 4, 0, 1), (-4, 4, -2.5, 1), (-5.5, 0, 0, 1), (-5.5, 0, -2.5, 1), (-4, -4, 0, 1), (-4, -4, -2.5, 1), (0, -5.5, 0, 1), (0, -5.5, -2.5, 1), (4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.ep[:][0].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((8, 0), label=None)] >>> mySurf.numEPsInU() 9 :rtype: `int` """) NurbsSurface.numEPsInV = \ NurbsSurface._numEPsFunc_generator(NurbsSurface.formInV, NurbsSurface.numSpansInV, name='numEPsInV', doc = """ Returns the number of EPs in the V direction. :Examples: >>> from pymel.core import * >>> # a periodic surface >>> mySurf = surface(name='periodicSurf4', du=1, dv=3, fu='open', fv='periodic', ku=(0, 1), kv=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1), (0, 5.5, -2.5, 1), (-4, 4, -2.5, 1), (-5.5, 0, -2.5, 1), (-4, -4, -2.5, 1), (0, -5.5, -2.5, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.ep[0][:].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((0, 7), label=None)] >>> mySurf.numEPsInV() 8 >>> >>> # an open surface >>> mySurf = surface(name='openSurf4', du=1, dv=3, fu='open', fv='open', ku=(0, 1), kv=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), pw=[(4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (0, 5.5, 0, 1), (-4, 4, 0, 1), (-5.5, 0, 0, 1), (-4, -4, 0, 1), (0, -5.5, 0, 1), (4, -4, 0, 1), (5.5, 0, 0, 1), (4, 4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1), (0, 5.5, -2.5, 1), (-4, 4, -2.5, 1), (-5.5, 0, -2.5, 1), (-4, -4, -2.5, 1), (0, -5.5, -2.5, 1), (4, -4, -2.5, 1), (5.5, 0, -2.5, 1), (4, 4, -2.5, 1)] ) >>> sorted(mySurf.ep[0][:].indices()) # doctest: +ELLIPSIS [ComponentIndex((0, 0), ... ComponentIndex((0, 8), label=None)] >>> mySurf.numEPsInV() 9 :rtype: `int` """) class Mesh(SurfaceShape): """ The Mesh class provides wrapped access to many API methods for querying and modifying meshes. Be aware that modifying meshes using API commands outside of the context of a plugin is still somewhat uncharted territory, so proceed at our own risk. The component types can be accessed from the `Mesh` type (or it's transform) using the names you are familiar with from MEL: >>> from pymel.core import * >>> p = polySphere( name='theMoon', sa=7, sh=7 )[0] >>> p.vtx MeshVertex(u'theMoonShape.vtx[0:43]') >>> p.e MeshEdge(u'theMoonShape.e[0:90]') >>> p.f MeshFace(u'theMoonShape.f[0:48]') They are also accessible from their more descriptive alternatives: >>> p.verts MeshVertex(u'theMoonShape.vtx[0:43]') >>> p.edges MeshEdge(u'theMoonShape.e[0:90]') >>> p.faces MeshFace(u'theMoonShape.f[0:48]') As you'd expect, these components are all indexible: >>> p.vtx[0] MeshVertex(u'theMoonShape.vtx[0]') The classes themselves contain methods for getting information about the component. >>> p.vtx[0].connectedEdges() MeshEdge(u'theMoonShape.e[0,6,42,77]') This class provides support for python's extended slice notation. Typical maya ranges express a start and stop value separated by a colon. Extended slices add a step parameter and can also represent multiple ranges separated by commas. Thus, a single component object can represent any collection of indices. This includes start, stop, and step values. >>> # do every other edge between 0 and 10 >>> for edge in p.e[0:10:2]: ... print edge ... theMoonShape.e[0] theMoonShape.e[2] theMoonShape.e[4] theMoonShape.e[6] theMoonShape.e[8] theMoonShape.e[10] Negative indices can be used for getting indices relative to the end: >>> p.edges # the full range MeshEdge(u'theMoonShape.e[0:90]') >>> p.edges[5:-10] # index 5 through to 10 from the last MeshEdge(u'theMoonShape.e[5:80]') Just like with python ranges, you can leave an index out, and the logical result will follow: >>> p.edges[:-10] # from the beginning MeshEdge(u'theMoonShape.e[0:80]') >>> p.edges[20:] MeshEdge(u'theMoonShape.e[20:90]') Or maybe you want the position of every tenth vert: >>> for x in p.vtx[::10]: ... print x, x.getPosition() ... theMoonShape.vtx[0] [0.270522117615, -0.900968849659, -0.339223951101] theMoonShape.vtx[10] [-0.704405844212, -0.623489797115, 0.339223951101] theMoonShape.vtx[20] [0.974927902222, -0.222520858049, 0.0] theMoonShape.vtx[30] [-0.704405784607, 0.623489797115, -0.339224010706] theMoonShape.vtx[40] [0.270522087812, 0.900968849659, 0.339223980904] To be compatible with Maya's range notation, these slices are inclusive of the stop index. >>> # face at index 8 will be included in the sequence >>> for f in p.f[4:8]: print f ... theMoonShape.f[4] theMoonShape.f[5] theMoonShape.f[6] theMoonShape.f[7] theMoonShape.f[8] >>> from pymel.core import * >>> obj = polyTorus()[0] >>> colors = [] >>> for i, vtx in enumerate(obj.vtx): # doctest: +SKIP ... edgs=vtx.toEdges() # doctest: +SKIP ... totalLen=0 # doctest: +SKIP ... edgCnt=0 # doctest: +SKIP ... for edg in edgs: # doctest: +SKIP ... edgCnt += 1 # doctest: +SKIP ... l = edg.getLength() # doctest: +SKIP ... totalLen += l # doctest: +SKIP ... avgLen=totalLen / edgCnt # doctest: +SKIP ... #print avgLen # doctest: +SKIP ... currColor = vtx.getColor(0) # doctest: +SKIP ... color = datatypes.Color.black # doctest: +SKIP ... # only set blue if it has not been set before ... if currColor.b<=0.0: # doctest: +SKIP ... color.b = avgLen # doctest: +SKIP ... color.r = avgLen # doctest: +SKIP ... colors.append(color) # doctest: +SKIP """ __metaclass__ = _factories.MetaMayaNodeWrapper # def __init__(self, *args, **kwargs ): # SurfaceShape.__init__(self, self._apiobject ) # self.vtx = MeshEdge(self.__apimobject__() ) _componentAttributes = {'vtx' : general.MeshVertex, 'verts' : general.MeshVertex, 'e' : general.MeshEdge, 'edges' : general.MeshEdge, 'f' : general.MeshFace, 'faces' : general.MeshFace, 'map' : general.MeshUV, 'uvs' : general.MeshUV, 'vtxFace' : general.MeshVertexFace, 'faceVerts' : general.MeshVertexFace} # Unfortunately, objects that don't yet have any mesh data - ie, if you do # createNode('mesh') - can't be fed into MFnMesh (even though it is a mesh # node). This means that all the methods wrapped from MFnMesh won't be # usable in this case. While it might make sense for some methods - ie, # editing methods like collapseEdges - to fail in this situation, some # basic methods like numVertices should still be usable. Therefore, # we override some of these with the mel versions (which still work...) numVertices = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'vertex', 'numVertices' ) numEdges = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'edge', 'numEdges' ) numFaces = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'face', 'numFaces' ) numTriangles = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'triangles', 'numTriangles' ) numSelectedTriangles = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'triangleComponent', 'numSelectedTriangles' ) numSelectedFaces = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'faceComponent', 'numSelectedFaces' ) numSelectedEdges = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'edgeComponent', 'numSelectedEdges' ) numSelectedVertices = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'vertexComponent', 'numSelectedVertices' ) area = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'area' ) worldArea = _factories.makeCreateFlagMethod( cmds.polyEvaluate, 'worldArea' ) if versions.current() >= versions.v2009: @_factories.addApiDocs( _api.MFnMesh, 'currentUVSetName' ) def getCurrentUVSetName(self): return self.__apimfn__().currentUVSetName( self.instanceNumber() ) @_factories.addApiDocs( _api.MFnMesh, 'currentColorSetName' ) def getCurrentColorSetName(self): return self.__apimfn__().currentColorSetName( self.instanceNumber() ) else: @_factories.addApiDocs( _api.MFnMesh, 'currentUVSetName' ) def getCurrentUVSetName(self): return self.__apimfn__().currentUVSetName() @_factories.addApiDocs( _api.MFnMesh, 'currentColorSetName' ) def getCurrentColorSetName(self): return self.__apimfn__().currentColorSetName() @_factories.addApiDocs( _api.MFnMesh, 'numColors' ) def numColors(self, colorSet=None): mfn = self.__apimfn__() # If we have an empty mesh, we will get an MFnDagNode... if not isinstance(mfn, _api.MFnMesh): return 0 args = [] if colorSet: args.append(colorSet) return mfn.numColors(*args) # Unfortunately, objects that don't yet have any mesh data - ie, if you do # createNode('mesh') - can't be fed into MFnMesh (even though it is a mesh # node). This means that all the methods wrapped from MFnMesh won't be # usable in this case. While it might make sense for some methods - ie, # editing methods like collapseEdges - to fail in this situation, some # basic methods like numVertices should still be usable. Therefore, # we override some of these with the mel versions (which still work...) def _makeApiMethodWrapForEmptyMesh(apiMethodName, baseMethodName=None, resultName=None, defaultVal=0): if baseMethodName is None: baseMethodName = '_' + apiMethodName if resultName is None: resultName = apiMethodName baseMethod = getattr(Mesh, baseMethodName) @_factories.addApiDocs( _api.MFnMesh, apiMethodName ) def methodWrapForEmptyMesh(self, *args, **kwargs): # If we have an empty mesh, we will get an MFnDagNode... mfn = self.__apimfn__() if not isinstance(mfn, _api.MFnMesh): return defaultVal return baseMethod(self, *args, **kwargs) methodWrapForEmptyMesh.__name__ = resultName return methodWrapForEmptyMesh for _apiMethodName in '''numColorSets numFaceVertices numNormals numUVSets numUVs'''.split(): _wrappedFunc = _makeApiMethodWrapForEmptyMesh(_apiMethodName) setattr(Mesh, _wrappedFunc.__name__, _wrappedFunc) class Subdiv(SurfaceShape): __metaclass__ = _factories.MetaMayaNodeWrapper _componentAttributes = {'smp' : general.SubdVertex, 'verts' : general.SubdVertex, 'sme' : general.SubdEdge, 'edges' : general.SubdEdge, 'smf' : general.SubdFace, 'faces' : general.SubdFace, 'smm' : general.SubdUV, 'uvs' : general.SubdUV} def getTweakedVerts(self, **kwargs): return cmds.querySubdiv( action=1, **kwargs ) def getSharpenedVerts(self, **kwargs): return cmds.querySubdiv( action=2, **kwargs ) def getSharpenedEdges(self, **kwargs): return cmds.querySubdiv( action=3, **kwargs ) def getEdges(self, **kwargs): return cmds.querySubdiv( action=4, **kwargs ) def cleanTopology(self): cmds.subdCleanTopology(self) class Lattice(ControlPoint): __metaclass__ = _factories.MetaMayaNodeWrapper _componentAttributes = {'pt' : general.LatticePoint, 'points': general.LatticePoint} class Particle(DeformableShape): __apicls__ = _api.MFnParticleSystem __metaclass__ = _factories.MetaMayaNodeWrapper _componentAttributes = {'pt' : general.ParticleComponent, 'points': general.ParticleComponent} # for backwards compatibility Point = general.ParticleComponent # for backwards compatibility, keep these two, even though the api wrap # will also provide 'count' def pointCount(self): return cmds.particle( self, q=1,count=1) num = pointCount class SelectionSet( _api.MSelectionList): apicls = _api.MSelectionList __metaclass__ = _factories.MetaMayaTypeWrapper def __init__(self, objs): """ can be initialized from a list of objects, another SelectionSet, an MSelectionList, or an ObjectSet""" if isinstance(objs, _api.MSelectionList ): _api.MSelectionList.__init__(self, objs) elif isinstance(objs, ObjectSet ): _api.MSelectionList.__init__(self, objs.asSelectionSet() ) else: _api.MSelectionList.__init__(self) for obj in objs: if isinstance(obj, (DependNode, DagNode) ): self.apicls.add( self, obj.__apiobject__() ) elif isinstance(obj, general.Attribute): self.apicls.add( self, obj.__apiobject__(), True ) # elif isinstance(obj, Component): # sel.add( obj.__apiobject__(), True ) elif isinstance( obj, basestring ): self.apicls.add( self, obj ) else: raise TypeError def __melobject__(self): # If the list contains components, THEIR __melobject__ is a list - # so need to iterate through, and flatten if needed melList = [] for selItem in self: selItem = selItem.__melobject__() if _util.isIterable(selItem): melList.extend(selItem) else: melList.append(selItem) return melList def __len__(self): """:rtype: `int` """ return self.apicls.length(self) def __contains__(self, item): """:rtype: `bool` """ if isinstance(item, (DependNode, DagNode, general.Attribute) ): return self.apicls.hasItem(self, item.__apiobject__()) elif isinstance(item, general.Component): raise NotImplementedError, 'Components not yet supported' else: return self.apicls.hasItem(self, general.PyNode(item).__apiobject__()) def __repr__(self): """:rtype: `str` """ names = [] self.apicls.getSelectionStrings( self, names ) return 'nt.%s(%s)' % ( self.__class__.__name__, names ) def __getitem__(self, index): """:rtype: `PyNode` """ if index >= len(self): raise IndexError, "index out of range" plug = _api.MPlug() obj = _api.MObject() dag = _api.MDagPath() comp = _api.MObject() # Go from most specific to least - plug, dagPath, dependNode try: self.apicls.getPlug( self, index, plug ) assert not plug.isNull() except (RuntimeError, AssertionError): try: self.apicls.getDagPath( self, index, dag, comp ) except RuntimeError: try: self.apicls.getDependNode( self, index, obj ) return general.PyNode( obj ) except: pass else: if comp.isNull(): return general.PyNode( dag ) else: return general.PyNode( dag, comp ) else: return general.PyNode( plug ) def __setitem__(self, index, item): if isinstance(item, (DependNode, DagNode, general.Attribute) ): return self.apicls.replace(self, index, item.__apiobject__()) elif isinstance(item, general.Component): raise NotImplementedError, 'Components not yet supported' else: return self.apicls.replace(self, general.PyNode(item).__apiobject__()) def __and__(self, s): "operator for `SelectionSet.getIntersection`" return self.getIntersection(s) def __iand__(self, s): "operator for `SelectionSet.intersection`" return self.intersection(s) def __or__(self, s): "operator for `SelectionSet.getUnion`" return self.getUnion(s) def __ior__(self, s): "operator for `SelectionSet.union`" return self.union(s) def __lt__(self, s): "operator for `SelectionSet.isSubSet`" return self.isSubSet(s) def __gt__(self, s): "operator for `SelectionSet.isSuperSet`" return self.isSuperSet(s) def __sub__(self, s): "operator for `SelectionSet.getDifference`" return self.getDifference(s) def __isub__(self, s): "operator for `SelectionSet.difference`" return self.difference(s) def __xor__(self, s): "operator for `SelectionSet.symmetricDifference`" return self.getSymmetricDifference(s) def __ixor__(self, s): "operator for `SelectionSet.symmetricDifference`" return self.symmetricDifference(s) def add(self, item): if isinstance(item, (DependNode, DagNode, general.Attribute) ): return self.apicls.add(self, item.__apiobject__()) elif isinstance(item, general.Component): raise NotImplementedError, 'Components not yet supported' else: return self.apicls.add(self, general.PyNode(item).__apiobject__()) def pop(self, index): """:rtype: `PyNode` """ if index >= len(self): raise IndexError, "index out of range" return self.apicls.remove(self, index ) def isSubSet(self, other): """:rtype: `bool`""" if isinstance(other, ObjectSet): other = other.asSelectionSet() return set(self).issubset(other) def isSuperSet(self, other, flatten=True ): """:rtype: `bool`""" if isinstance(other, ObjectSet): other = other.asSelectionSet() return set(self).issuperset(other) def getIntersection(self, other): """:rtype: `SelectionSet`""" # diff = self-other # intersect = self-diff diff = self.getDifference(other) return self.getDifference(diff) def intersection(self, other): diff = self.getDifference(other) self.difference(diff) def getDifference(self, other): """:rtype: `SelectionSet`""" # create a new SelectionSet so that we don't modify our current one newSet = SelectionSet( self ) newSet.difference(other) return newSet def difference(self, other): if not isinstance( other, _api.MSelectionList ): other = SelectionSet( other ) self.apicls.merge( self, other, _api.MSelectionList.kRemoveFromList ) def getUnion(self, other): """:rtype: `SelectionSet`""" newSet = SelectionSet( self ) newSet.union(other) return newSet def union(self, other): if not isinstance( other, _api.MSelectionList ): other = SelectionSet( other ) self.apicls.merge( self, other, _api.MSelectionList.kMergeNormal ) def getSymmetricDifference(self, other): """ Also known as XOR :rtype: `SelectionSet` """ # create a new SelectionSet so that we don't modify our current one newSet = SelectionSet( self ) newSet.symmetricDifference(other) return newSet def symmetricDifference(self, other): if not isinstance( other, _api.MSelectionList ): other = SelectionSet( other ) # FIXME: does kXOR exist? completion says only kXORWithList exists self.apicls.merge( self, other, _api.MSelectionList.kXOR ) def asObjectSet(self): return general.sets( self ) # def intersect(self, other): # self.apicls.merge( other, _api.MSelectionList.kXORWithList ) class ObjectSet(Entity): """ The ObjectSet class and `SelectionSet` class work together. Both classes have a very similar interface, the primary difference is that the ObjectSet class represents connections to an objectSet node, while the `SelectionSet` class is a generic set, akin to pythons built-in `set`. create some sets: >>> from pymel.core import * >>> f=newFile(f=1) #start clean >>> >>> s = sets() # create an empty set >>> s.union( ls( type='camera') ) # add some cameras to it >>> s.members() # doctest: +SKIP [nt.Camera(u'sideShape'), nt.Camera(u'frontShape'), nt.Camera(u'topShape'), nt.Camera(u'perspShape')] >>> sel = s.asSelectionSet() # or as a SelectionSet >>> sel # doctest: +SKIP nt.SelectionSet([u'sideShape', u'frontShape', u'topShape', u'perspShape']) >>> sorted(sel) # as a sorted list [nt.Camera(u'frontShape'), nt.Camera(u'perspShape'), nt.Camera(u'sideShape'), nt.Camera(u'topShape')] Operations between sets result in `SelectionSet` objects: >>> t = sets() # create another set >>> t.add( 'perspShape' ) # add the persp camera shape to it >>> s.getIntersection(t) nt.SelectionSet([u'perspShape']) >>> diff = s.getDifference(t) >>> diff #doctest: +SKIP nt.SelectionSet([u'sideShape', u'frontShape', u'topShape']) >>> sorted(diff) [nt.Camera(u'frontShape'), nt.Camera(u'sideShape'), nt.Camera(u'topShape')] >>> s.isSuperSet(t) True """ # >>> u = sets( s&t ) # intersection # >>> print u.elements(), s.elements() # >>> if u < s: print "%s is a sub-set of %s" % (u, s) # # place a set inside another, take1 # # >>> # like python's built-in set, the add command expects a single element # >>> s.add( t ) # # place a set inside another, take2 # # >>> # like python's built-in set, the update command expects a set or a list # >>> t.update([u]) # # >>> # put the sets back where they were # >>> s.remove(t) # >>> t.remove(u) # # now put the **contents** of a set into another set # # >>> t.update(u) # # mixed operation between pymel.core.ObjectSet and built-in set # # >>> v = set(['polyCube3', 'pSphere3']) # >>> print s.intersection(v) # >>> print v.intersection(s) # not supported yet # >>> u.clear() # # >>> delete( s ) # >>> delete( t ) # >>> delete( u ) # # # these will return the results of the operation as python sets containing lists of pymel node classes:: # # s&t # s.intersection(t) # s|t # s.union(t) # s^t # s.symmetric_difference(t) # s-t # s.difference(t) # # the following will alter the contents of the maya set:: # # s&=t # s.intersection_update(t) # s|=t # s.update(t) # s^=t # s.symmetric_difference_update(t) # s-=t # s.difference_update(t) # # def _elements(self): # """ used internally to get a list of elements without casting to node classes""" # return sets( self, q=True) # #----------------------- # # Maya Methods # #----------------------- __metaclass__ = _factories.MetaMayaNodeWrapper #----------------------- # Python ObjectSet Methods #----------------------- @classmethod def _getApiObjs(cls, item, tryCast=True): """ Returns a tuple of api objects suitable (after unpacking) for feeding to most of the MFnSet methods (ie, remove, isMember, etc) """ if isinstance(item, DagNode): return ( item.__apimdagpath__(), _api.MObject() ) elif isinstance(item, (DependNode, general.Attribute) ): return ( item.__apiobject__(), ) elif isinstance(item, general.Component): return ( item.__apimdagpath__(), item.__apimobject__() ) elif tryCast: return cls._getApiObjs(general.PyNode(item), tryCast=False) else: raise TypeError(item) def __contains__(self, item): """:rtype: `bool` """ return self.__apimfn__().isMember(*self._getApiObjs(item)) def __getitem__(self, index): return self.asSelectionSet()[index] def __len__(self): """:rtype: `int`""" return cmds.sets(self, q=1, size=1) #def __eq__(self, s): # return s == self._elements() #def __ne__(self, s): # return s != self._elements() def __and__(self, s): "operator for `ObjectSet.getIntersection`" return self.getIntersection(s) def __iand__(self, s): "operator for `ObjectSet.intersection`" return self.intersection(s) def __or__(self, s): "operator for `ObjectSet.getUnion`" return self.getUnion(s) def __ior__(self, s): "operator for `ObjectSet.union`" return self.union(s) # def __lt__(self, s): # "operator for `ObjectSet.isSubSet`" # return self.isSubSet(s) # # def __gt__(self, s): # "operator for `ObjectSet.isSuperSet`" # return self.isSuperSet(s) def __sub__(self, s): "operator for `ObjectSet.getDifference`" return self.getDifference(s) def __isub__(self, s): "operator for `ObjectSet.difference`" return self.difference(s) def __xor__(self, s): "operator for `ObjectSet.symmetricDifference`" return self.getSymmetricDifference(s) def __ixor__(self, s): "operator for `ObjectSet.symmetricDifference`" return self.symmetricDifference(s) # # def subtract(self, set2): # return sets( self, subtract=set2 ) # # def add(self, element): # return sets( self, add=[element] ) # # def clear(self): # return sets( self, clear=True ) # # def copy(self ): # return sets( self, copy=True ) # # def difference(self, elements): # if isinstance(elements,basestring): # elements = cmds.sets( elements, q=True) # return list(set(self.elements()).difference(elements)) # # ''' # if isinstance(s, ObjectSet) or isinstance(s, str): # return sets( s, subtract=self ) # # s = sets( s ) # res = sets( s, subtract=self ) # cmds.delete(s) # return res''' # # def difference_update(self, elements ): # return sets( self, remove=elements) # # def discard( self, element ): # try: # return self.remove(element) # except TypeError: # pass # # def intersection(self, elements): # if isinstance(elements,basestring): # elements = cmds.sets( elements, q=True) # return set(self.elements()).intersection(elements) # # def intersection_update(self, elements): # self.clear() # sets( self, add=self.intersections(elements) ) # # # def remove( self, element ): # return sets( self, remove=[element]) # # def symmetric_difference(self, elements): # if isinstance(elements,basestring): # elements = cmds.sets( elements, q=True) # return set(self.elements()).symmetric_difference(elements) # # def union( self, elements ): # if isinstance(elements,basestring): # elements = cmds.sets( elements, q=True) # return set(self.elements()).union(elements) # # def update( self, set2 ): # sets( self, forceElement=set2 ) def members(self, flatten=False): """return members as a list :rtype: `list` """ return list( self.asSelectionSet(flatten) ) @_warnings.deprecated( 'Use ObjectSet.members instead', 'ObjectSet' ) def elements(self, flatten=False): """return members as a list :rtype: `list` """ return list( self.asSelectionSet(flatten) ) def flattened(self): """return a flattened list of members. equivalent to `ObjectSet.members(flatten=True)` :rtype: `list` """ return self.members(flatten=True) def resetTo(self, newContents ): """clear and set the members to the passed list/set""" self.clear() self.addMembers( newContents ) def add(self, item): return self.__apimfn__().addMember(*self._getApiObjs(item)) def remove(self, item): try: return self.__apimfn__().removeMember(*self._getApiObjs(item)) except RuntimeError: # Provide a more informative error if object is not in set if item not in self: try: itemStr = repr(item) except Exception: itemStr = 'item' raise ValueError("%s not in set %r" % (itemStr, self)) else: raise def isSubSet(self, other): """:rtype: `bool`""" return self.asSelectionSet().isSubSet(other) def isSuperSet(self, other ): """:rtype: `bool`""" return self.asSelectionSet().isSuperSet(other) def isEqual(self, other ): """ do not use __eq__ to test equality of set contents. __eq__ will only tell you if the passed object is the same node, not if this set and the passed set have the same contents. :rtype: `bool` """ return self.asSelectionSet() == SelectionSet(other) def getDifference(self, other): """:rtype: `SelectionSet`""" sel = self.asSelectionSet() sel.difference(other) return sel def difference(self, other): sel = self.getDifference(other) self.resetTo(sel) def getSymmetricDifference(self, other): """also known as XOR :rtype: `SelectionSet` """ sel = self.getSymmetricDifference() sel.difference(other) return sel def symmetricDifference(self, other): sel = self.symmetricDifference(other) self.resetTo(sel) def getIntersection(self, other): """:rtype: `SelectionSet`""" if isinstance(other, ObjectSet): return self._getIntersection(other) #elif isinstance(other, SelectionSet) or hasattr(other, '__iter__'): selSet = self.asSelectionSet() selSet.intersection(other) return selSet #raise TypeError, 'Cannot perform intersection with non-iterable type %s' % type(other) def intersection(self, other): sel = self.getIntersection(other) self.resetTo(sel) def getUnion(self, other): """:rtype: `SelectionSet`""" if isinstance(other, ObjectSet): return self._getUnion(other) selSet = self.asSelectionSet() selSet.union(other) return selSet def union(self, other): self.addMembers(other) def isRenderable(self): '''Mimics cmds.sets(self, q=True, renderable=True). Alternatively you can use isinstance(someset, pm.nt.ShadingEngine) since shadingEngine is the only renderable set in maya now ''' return bool(cmds.sets(self, q=True, r=True)) class ShadingEngine(ObjectSet): @classmethod def _getApiObjs(cls, item, tryCast=True): # Since shading groups can't contain transforms, as a convenience, # use getShape on any transforms if isinstance(item, Transform): shape = item.getShape() if shape: return cls._getApiObjs(shape) else: try: itemStr = repr(item) except Exception: itemStr = 'item' raise TypeError("%s has no shape, and %s objects cannot contain Transforms" % (itemStr, cls.__name__)) else: return super(ShadingEngine, cls)._getApiObjs(item, tryCast=tryCast) class AnimLayer(ObjectSet): __metaclass__ = _factories.MetaMayaNodeWrapper def getAttribute(self): '''Retrieve the attributes animated on this AnimLayer ''' # Unfortunately, cmds.animLayer('MyAnimLayer', q=1, attribute=1) # returns none unique attribute names, ie, # MyNode.myAttr # even if there are foo|MyNode and bar|MyNode in the scene, and there # doesn't seem to be a flag to tell it to give unique / full paths. # Therefore, query it ourselves, by gettin inputs to dagSetMembers. # Testing has shown that animLayers only use dagSetMembers, and never # dnSetMembers - if you add a non-dag node to an animLayer, it makes # a connection to dagSetMembers; and even if you manually make a connection # to dnSetMembers, those connections don't seem to show up in # animLayer(q=1, attribute=1) return self.attr('dagSetMembers').inputs(plugs=1) getAttributes = getAttribute class AnimCurve(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper def addKeys(self,time,values,tangentInType='linear',tangentOutType='linear',unit=None): if not unit: unit = _api.MTime.uiUnit() times = _api.MTimeArray() for frame in time: times.append(_api.MTime(frame,unit)) keys = _api.MDoubleArray() for value in values: keys.append(value) return self.__apimfn__().addKeys( times, keys, _factories.apiClassInfo['MFnAnimCurve']['enums']['TangentType']['values'].getIndex('kTangent'+tangentInType.capitalize()), _factories.apiClassInfo['MFnAnimCurve']['enums']['TangentType']['values'].getIndex('kTangent'+tangentOutType.capitalize())) class GeometryFilter(DependNode): pass class SkinCluster(GeometryFilter): __metaclass__ = _factories.MetaMayaNodeWrapper def getWeights(self, geometry, influenceIndex=None): if not isinstance(geometry, general.PyNode): geometry = general.PyNode(geometry) if isinstance( geometry, Transform ): try: geometry = geometry.getShape() except: raise TypeError, "%s is a transform with no shape" % geometry if isinstance(geometry, GeometryShape): components = _api.toComponentMObject( geometry.__apimdagpath__() ) elif isinstance(geometry, general.Component): components = geometry.__apiobject__() else: raise TypeError if influenceIndex is not None: weights = _api.MDoubleArray() self.__apimfn__().getWeights( geometry.__apimdagpath__(), components, influenceIndex, weights ) return iter(weights) else: weights = _api.MDoubleArray() index = _api.SafeApiPtr('uint') self.__apimfn__().getWeights( geometry.__apimdagpath__(), components, weights, index() ) index = index.get() args = [iter(weights)] * index return itertools.izip(*args) def setWeights(self, geometry, influnces, weights, normalize=True): if not isinstance(geometry, general.PyNode): geometry = general.PyNode(geometry) if isinstance( geometry, Transform ): try: geometry = geometry.getShape() except: raise TypeError, "%s is a transform with no shape" % geometry if isinstance(geometry, GeometryShape): components = _api.toComponentMObject( geometry.__apimdagpath__() ) elif isinstance(geometry, general.Component): components = geometry.__apiobject__() else: raise TypeError if not isinstance(influnces,_api.MIntArray): api_influnces = _api.MIntArray() for influnce in influnces: api_influnces.append(influnce) influnces = api_influnces if not isinstance(weights,_api.MDoubleArray): api_weights = _api.MDoubleArray() for weight in weights: api_weights.append(weight) weights = api_weights old_weights = _api.MDoubleArray() su = _api.MScriptUtil() su.createFromInt(0) index = su.asUintPtr() self.__apimfn__().getWeights( geometry.__apimdagpath__(), components, old_weights, index ) return self.__apimfn__().setWeights( geometry.__apimdagpath__(), components, influnces, weights, normalize, old_weights ) @_factories.addApiDocs( _api.MFnSkinCluster, 'influenceObjects' ) def influenceObjects(self): return self._influenceObjects()[1] def numInfluenceObjects(self): return self._influenceObjects()[0] # TODO: if nucleus/symmetryConstraint bug ever fixed: # - remove entry in apiCache.ApiCache.API_TO_MFN_OVERRIDES # - remove hard-code setting of Nucleus's parent to DependNode # - remove 2 checks in allapi.toApiObject for objects which can have an MDagPath # but can't use MFnDagNode if _apicache.NUCLEUS_MFNDAG_BUG: # nucleus has a weird bug where, even though it inherits from transform, and # can be parented in the dag, etc, you can't create an MFnTransform or # MFnDagNode for it... therefore, hardcode it's PyNode to inherit from # DependNode class Nucleus(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper if _apicache.SYMMETRY_CONSTRAINT_MFNDAG_BUG: class SymmetryConstraint(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper # TODO: if hikHandle bug ever fixed: # - remove entry in apiCache.ApiCache.API_TO_MFN_OVERRIDES # - remove hard-code setting of HikHandle's parent to Transform class HikHandle(Transform): __metaclass__ = _factories.MetaMayaNodeWrapper class JointFfd(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper class TransferAttributes(DependNode): __metaclass__ = _factories.MetaMayaNodeWrapper _factories.ApiTypeRegister.register( 'MSelectionList', SelectionSet ) def _createPyNodes(): dynModule = _util.LazyLoadModule(__name__, globals()) for mayaType, parents, children in _factories.nodeHierarchy: if mayaType == 'dependNode': # This seems like the more 'correct' way of doing it - only node types # that are currently available have PyNodes created for them - but # changing it so some PyNodes are no longer available until their # plugin is loaded may create backwards incompatibility issues... # if (mayaType == 'dependNode' # or mayaType not in _factories.mayaTypesToApiTypes): continue parentMayaType = parents[0] #print "superNodeType: ", superNodeType, type(superNodeType) if parentMayaType is None: _logger.warning("could not find parent node: %s", mayaType) continue #className = _util.capitalize(mayaType) #if className not in __all__: __all__.append( className ) if _factories.isMayaType(mayaType): _factories.addPyNode( dynModule, mayaType, parentMayaType ) sys.modules[__name__] = dynModule # Initialize Pymel classes to API types lookup #_startTime = time.time() _createPyNodes() #_logger.debug( "Initialized Pymel PyNodes types list in %.2f sec" % time.time() - _startTime ) dynModule = sys.modules[__name__] #def listToMSelection( objs ): # sel = _api.MSelectionList() # for obj in objs: # if isinstance(obj, DependNode): # sel.add( obj.__apiobject__() ) # elif isinstance(obj, Attribute): # sel.add( obj.__apiobject__(), True ) # elif isinstance(obj, Component): # pass # #sel.add( obj.__apiobject__(), True ) # else: # raise TypeError
bsd-3-clause
638,128,032,992,870,800
36.748704
531
0.560318
false
google-research/google-research
optimizing_interpretability/imagenet/utils.py
1
6411
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for training.""" import numpy as np import tensorflow as tf import tensorflow_probability as tfp def add_noise(input_image, noise, multiple_image_std, size=224): """Transformation of a single image by adding noise. If a random gaussian distribution of noisy is specified (noise='r_normal'), the standard deviation of the noise added is based upon the dynamic range of the image weighed by multiple_image_std argument. This appears to work well empirically, and is the subject of additional research. Args: input_image: A single input image, float32 tensor noise: String that specifies the distribution of noise to add as either a gaussian distribution (r_normal) or a uniform distribution (r_uniform). multiple_image_std: Weight to place on the range of input values. size: size of noise matrix (should match image size) Returns: noisy_image: The input with the addition of a noise distribution. Raises: ValueError: Raised if the string specifying the noise distribution does not correspond to the noise implementations. """ if noise == 'r_normal': image_min = tf.reduce_min(input_image) image_max = tf.reduce_max(input_image) diff = tf.reduce_mean(tf.subtract(image_max, image_min)) range_ = tf.to_float(tf.multiply(tf.constant([multiple_image_std]), diff)) noise = tf.random_normal( shape=[size, size, 3], stddev=range_, dtype=tf.float32) elif noise == 'r_uniform': percentile_ = tfp.stats.percentile(input_image, q=10.) noise = tf.random.uniform( minval=-percentile_, maxval=percentile_, shape=[size, size, 3], dtype=tf.float32) else: raise ValueError('Noise type not found:', noise) noisy_image = tf.add(input_image, noise) return noisy_image def noise_layer(images, labels, multiple_image_std=0.15, size=224, jitter_multiplier=1, noise='r_normal'): """Add noise to a subset of images in a batch. Args: images: The batch of images. labels: Labels associated with images. multiple_image_std: Weight to place on the range of input values. size: The size of the image. jitter_multiplier: number of images to add noise to. noise: String that specifies the distribution of noise to add. Returns: noisy_images: A set of images (num_images*jitter_multiplier) with injected noise. tiled_labels: Associated labels for the noisy images. """ images_noise = tf.tile( images, multiples=tf.constant([jitter_multiplier, 1, 1, 1], shape=[ 4, ])) noisy_images = tf.map_fn( lambda x: add_noise(x, noise, multiple_image_std, size), images_noise) noisy_images = tf.concat([images, noisy_images], axis=0) tiled_labels = tf.tile(labels, tf.constant([jitter_multiplier], shape=[1])) tiled_labels = tf.concat([labels, tiled_labels], axis=0) return noisy_images, tiled_labels def format_tensors(*dicts): """Formats metrics to be callable as tf.summary scalars on tpu's. Args: *dicts: A set of metric dictionaries, containing metric name + value tensor. Returns: A single formatted dictionary that holds all tensors. Raises: ValueError: if any tensor is not a scalar. """ merged_summaries = {} for d in dicts: for metric_name, value in d.items(): shape = value.shape.as_list() if not shape: merged_summaries[metric_name] = tf.expand_dims(value, axis=0) elif shape == [1]: merged_summaries[metric_name] = value else: raise ValueError( 'Metric {} has value {} that is not reconciliable'.format( metric_name, value)) return merged_summaries def host_call_fn(model_dir, **kwargs): """creates training summaries when using TPU. Args: model_dir: String indicating the output_dir to save summaries in. **kwargs: Set of metric names and tensor values for all desired summaries. Returns: Summary op to be passed to the host_call arg of the estimator function. """ gs = kwargs.pop('global_step')[0] with tf.contrib.create_file_writer(model_dir).as_default(): with tf.contrib.always_record_summaries(): for name, tensor in kwargs.items(): tf.summary.scalar(name, tensor[0], step=gs) return tf.contrib.summary.all_summary_ops() def get_lr_schedule(train_steps, num_train_images, train_batch_size): """learning rate schedule.""" steps_per_epoch = np.floor(num_train_images / train_batch_size) train_epochs = train_steps / steps_per_epoch return [ # (multiplier, epoch to start) tuples (1.0, np.floor(5 / 90 * train_epochs)), (0.1, np.floor(30 / 90 * train_epochs)), (0.01, np.floor(60 / 90 * train_epochs)), (0.001, np.floor(80 / 90 * train_epochs)) ] def learning_rate_schedule(params, current_epoch, train_batch_size, num_train_images): """Handles linear scaling rule, gradual warmup, and LR decay. Args: params: Python dict containing parameters for this run. current_epoch: `Tensor` for current epoch. train_batch_size: batch size adjusted for PIE num_train_images: total number of train images Returns: A scaled `Tensor` for current learning rate. """ scaled_lr = params['base_learning_rate'] * (train_batch_size / 256.0) lr_schedule = get_lr_schedule( train_steps=params['train_steps'], num_train_images=num_train_images, train_batch_size=train_batch_size) decay_rate = ( scaled_lr * lr_schedule[0][0] * current_epoch / lr_schedule[0][1]) for mult, start_epoch in lr_schedule: decay_rate = tf.where(current_epoch < start_epoch, decay_rate, scaled_lr * mult) return decay_rate
apache-2.0
4,932,138,354,840,355,000
33.842391
80
0.676182
false
lorddex/linux_tools
virtual_testbeds/add_hosts.py
1
2360
#!/usr/bin/python # script that adds a VM who requests an IP address using the dhcpd to local hosts file import sys import subprocess import string import time debug_file="/var/log/add_hosts.log" def debug(message): message = time.strftime("%d %b %Y %H:%M:%S") + " " + message print message fd = open(debug_file, "a") fd.write(message + "\n") fd.close() text="" for arg in sys.argv: text = text +" "+arg debug(text) action=sys.argv[1] ip=sys.argv[3] mac=sys.argv[2] hosts="/etc/hosts" # if del action is called exit from this script if action == "del": # fd=open(hosts, "r") # hosts_lines=fd.readlines() # fd.close() # fd=open(hosts, "w") # for line in hosts_lines: # if ip not in line: # fd.write(line) # debug( "Ok, %s deleted from %s file" % (name, hosts)) sys.exit(0) # add address to local hosts file #command = ["/bin/ps", "-eo", "command"] #process = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=9192) if len(sys.argv) == 5: name = sys.argv[4] debug("host name from parameters: "+name) else: command = "ps axo pid,command | grep /usr/bin/kvm" process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True) found = None for line in process.stdout.readlines(): pid=line.split(" ") pid = pid[0] fd_c = open("/proc/"+pid+"/cmdline", "r") lines=fd_c.readlines() fd_c.close() if len(lines)>0: line=lines[0] line=string.replace(line, "-", " -") line=string.replace(line, "\x00", " ") else: continue if mac in line and "add_host" not in line: found = line break if found is None: debug("Ops, no VM with %s found" % mac) sys.exit(1) parms = found.split(" -")[1:] name=False for par in parms: if par.strip().startswith("name"): name = par.strip().split(" ")[1] if name is False: debug("Ops, VM name not found") sys.exit(2) fd=open(hosts, "r") hosts_lines=fd.readlines() fd.close() already=False for line in hosts_lines: if name in line: already=line break change=False if already is not False: if ip in line: debug("Ok, VM already in hosts file") sys.exit(0) else: change=True if change is False: fd=open(hosts, "a") fd.write(ip + "\t\t" + name +"\n") else: fd=open(hosts, "w") for line in hosts_lines: if name in line: line = ip + "\t\t" + name + "\n" fd.write(line) fd.close() debug( "Ok, %s added to %s file" % (name, hosts))
mit
8,233,084,119,662,574,000
20.454545
86
0.642373
false
nioo-knaw/hydra
conf.py
1
7810
import logging import multiprocessing import re import os import tempfile import yaml import sys from collections import OrderedDict import click import urllib # Adapted from: https://github.com/pnnl/atlas/blob/master/atlas/conf.py logging.basicConfig(level=logging.INFO, datefmt="%Y-%m-%d %H:%M", format="[%(asctime)s %(levelname)s] %(message)s") host = "ftp.sra.ebi.ac.uk" project = "PRJEB14409" #project = "PRJNA319605" # http://stackoverflow.com/a/3675423 def replace_last(source_string, replace_what, replace_with): head, _sep, tail = source_string.rpartition(replace_what) if _sep == '': return tail else: return head + replace_with + tail def get_ena(project): from urllib import request samples = "" try: samples = request.urlopen("http://www.ebi.ac.uk/ena/data/warehouse/filereport?accession=%s&result=read_run&fields=fastq_ftp" % project).readlines()[1:] except urllib.error.HTTPError: print("Not a valid ENA project") for sample in samples: for fastq in sample.strip().split(b';'): dirpath = os.path.dirname(fastq).decode("utf-8") filename = os.path.basename(fastq).decode("utf-8") yield (dirpath,"",[filename]) def get_sample_files(path, remote): samples = OrderedDict() seen = set() walker = "" if remote != None: walker = get_ena(remote) else: walker = os.walk(path, followlinks=True) for dir_name, sub_dirs, files in walker: for fname in files: if ".fastq" in fname or ".fq" in fname: sample_id = fname.partition(".fastq")[0] if ".fq" in sample_id: sample_id = fname.partition(".fq")[0].replace("_","-") sample_id = sample_id.replace("_R1", "").replace("_r1", "").replace("_R2", "").replace("_r2", "") sample_id = re.sub("_1$", "", sample_id) sample_id = re.sub("_2$", "", sample_id) sample_id = sample_id.replace("_", "-").replace(" ", "-") fq_path = os.path.join(dir_name, fname) fastq_paths = [fq_path] if fq_path in seen: continue if "_R1" in fname or "_r1" in fname or "_1" in fname: fname = replace_last(fname,"_1.","_2.") r2_path = os.path.join(dir_name, fname.replace("_R1", "_R2").replace("_r1", "_r2")) if not r2_path == fq_path: seen.add(r2_path) fastq_paths.append(r2_path) if "_R2" in fname or "_r2" in fname or "_2" in fname: fname = replace_last(fname,"_2.","_1.") r1_path = os.path.join(dir_name, fname.replace("_R2", "_R1").replace("_r2", "_r1")) if not r1_path == fq_path: seen.add(r1_path) fastq_paths.insert(0, r1_path) if sample_id in samples: logging.warn("Duplicate sample %s was found after renaming; skipping..." % sample_id) continue samples[sample_id] = {'path': fastq_paths } return samples def create_metadata_template(outfile, samples): with open(outfile, "w") as f: print("#SampleID\tAlias", file=f) for sample in samples: print("%s\t%s" % (sample,sample), file=f) @click.command() @click.option('--project', prompt="Give your project a unique name", required=True, help='Give your project a nice name') @click.option('--config', default="config.yaml", show_default=True, help='File to write the configuration to') @click.option('--remote', help='Specify a ENA project to use as remote data (for example PRJEB14409') @click.option('--path', default="../data", show_default=True, help='path to data folder') @click.option('--rename', required=False, help='provide a file for renaming samples') @click.option('--forward_primer', prompt="Which forward primer did you use?", required=True, default="CCTACGGGNGGCWGCAG", help="Which forward primer did you use?") @click.option('--reverse_primer', prompt="Which reverse primer did you use?", required=True, default="GACTACHVGGGTATCTAATCC", help="Which reverse primer did you use?") @click.option('--mergepairs', prompt="Choose wich method to use for stitching paired reads (vsearch, pandaseq)", required=True, default="vsearch", type=click.Choice(['pandaseq', 'vsearch', 'none']), help="Choose wich method to use for stitching paired reads") @click.option('--classification', prompt="Choose wich classification option you want to use (sina, stampa, rdp, blast)", required=True, type=click.Choice(['sina', 'stampa', 'rdp', 'blast']), help="Choose wich classification option you want to use") @click.option('--reference_db', prompt="Choose wich reference database to use (silva, unite)", required=True, type=click.Choice(['silva', 'unite']), help="Choose wich reference database to use") @click.option('--clustering', prompt="Choose wich clustering method you want to use (usearch_smallmem, swarm)", required=True, default="usearch_smallmem", type=click.Choice(['usearch_smallmem', 'swarm']), help="Choose wich clustering method you want to use") def make_config(project,config,path,remote, rename, forward_primer, reverse_primer, mergepairs, classification, reference_db, clustering): """Write the file `config` and complete the sample names and paths for all files in `path`.""" represent_dict_order = lambda self, data: self.represent_mapping('tag:yaml.org,2002:map', data.items()) yaml.add_representer(OrderedDict, represent_dict_order) path = os.path.realpath(path) conf = OrderedDict() samples = get_sample_files(path, remote) if rename: renamed = 0 for line in open(rename): sample, newname = line.split() if sample in samples: newname = newname.replace("_","-") samples[newname] = samples.pop(sample) renamed += 1 create_metadata_template("metadata.txt", samples.keys()) logging.info("Found %d samples under %s" % (len(samples), path if remote == None else "remote project %s " % remote)) if rename: logging.info("Renamed %d samples" % renamed) conf["project"] = project conf["minsize"] = 2 conf["adapters_fasta"] = "/data/ngs/adapters/contaminant_list.txt" conf["pandaseq_overlap"] = "10" conf["pandaseq_quality"] = "25" conf["pandaseq_minlength"] = "100" conf["pandaseq_maxlength"] = "700" conf["quality_control"] = OrderedDict() conf["quality_control"]["barcode"] = OrderedDict() conf["quality_control"]["barcode"]["threshold"] = 5 conf["quality_control"]["barcode"]["length"] = 8 conf["quality_control"]["barcode"]["seperator"] = "#" conf["quality_control"]["trimming"] = OrderedDict() conf["quality_control"]["trimming"]["quality"] = 25 conf["forward_primer"] = forward_primer conf["reverse_primer"] = reverse_primer conf["mergepairs"] = mergepairs conf["vsearch_minmergelen"] = "200" conf["metadata"] = "metadata.txt" if remote != None: conf["remote"] = True else: conf["remote"] = False conf["barcode_in_header"] = False conf["its"] = False conf["its_region"] = "ITS2" conf["clustering"] = clustering conf["classification"] = classification conf["use_full_lineage"] = False conf["rdp_confidence_cutoff"] = 0.80 conf["reference_db"] = reference_db conf["convert_to_casava1.8"] = False conf["data"] = samples with open(config, "w") as f: print(yaml.dump(conf, default_flow_style=False), file=f) logging.info("Configuration file written to %s" % config) if __name__ == "__main__": make_config()
mit
9,045,070,109,480,767,000
43.628571
259
0.61831
false
jromang/retina
gui/workspace.py
1
1423
# Copyright (C) 2013-2016 Jean-Francois Romang ([email protected]) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. #TODO : inherit from 'workspaceobject' - abstract hide/show method # ou "add"/"move" pethod avec des qwidgets max_workspaces=4 workspace_objects= set() current = 0 buttons = [] def add(qwidget, workspace_id=None): workspace_objects.add(qwidget) qwidget.workspace=current if workspace_id is None else workspace_id #print("qwidget workspace:"+str(qwidget.workspace)) def switch(workspace_id): #print("switch to:"+str(workspace_id)) global current current=workspace_id for widget in workspace_objects: if widget.workspace==workspace_id: widget.show() else: widget.hide() for button in buttons: button.setChecked(False) buttons[workspace_id].setChecked(True)
gpl-3.0
-2,353,139,725,358,365,700
33.707317
71
0.735067
false
Hao-Liu/avocado
selftests/unit/test_xunit.py
1
1945
import argparse import unittest import os import sys from xml.dom import minidom import tempfile import shutil from avocado import Test from avocado.core.plugins import xunit from avocado.core import job class ParseXMLError(Exception): pass class _Stream(object): def start_file_logging(self, param1, param2): pass def stop_file_logging(self): pass def set_tests_info(self, info): pass def notify(self, event, msg): pass def add_test(self, state): pass def set_test_status(self, status, state): pass class xUnitSucceedTest(unittest.TestCase): def setUp(self): class SimpleTest(Test): def test(self): pass self.tmpfile = tempfile.mkstemp() self.tmpdir = tempfile.mkdtemp() args = argparse.Namespace() args.xunit_output = self.tmpfile[1] self.test_result = xunit.xUnitTestResult(stream=_Stream(), args=args) self.test_result.start_tests() self.test1 = SimpleTest(job=job.Job(), base_logdir=self.tmpdir) self.test1.status = 'PASS' self.test1.time_elapsed = 1.23 def tearDown(self): os.close(self.tmpfile[0]) os.remove(self.tmpfile[1]) shutil.rmtree(self.tmpdir) def testAddSuccess(self): self.test_result.start_test(self.test1) self.test_result.end_test(self.test1.get_state()) self.test_result.end_tests() self.assertTrue(self.test_result.xml) with open(self.test_result.output) as fp: xml = fp.read() try: dom = minidom.parseString(xml) except Exception, details: raise ParseXMLError("Error parsing XML: '%s'.\nXML Contents:\n%s" % (details, xml)) self.assertTrue(dom) els = dom.getElementsByTagName('testcase') self.assertEqual(len(els), 1) if __name__ == '__main__': unittest.main()
gpl-2.0
-2,193,562,886,374,426,000
23.3125
95
0.62108
false
reneetrei/agile-bayou-76491
snipts/urls.py
1
2076
from django.conf.urls import * from snipts import views urlpatterns = \ patterns('', url(r'^s/(?P<snipt_key>[^/]+)/(?P<lexer>[^\?]+)?$', views.redirect_snipt, name='redirect-snipt'), url(r'^(?P<username>[^/]+)/feed/$', views.redirect_user_feed, name='redirect-feed'), url(r'^public/tag/(?P<tag_slug>[^/]+)/feed/$', views.redirect_public_tag_feed, name='redirect-public-tag-feed'), url(r'^(?P<username>[^/]+)/tag/(?P<tag_slug>[^/]+)/feed/$', views.redirect_user_tag_feed, name='redirect-user-tag-feed'), url(r'^public/$', views.list_public, name='list-public'), url(r'^public/tag/(?P<tag_slug>[^/]+)/$', views.list_public, name='list-public-tag'), url(r'^download/(?P<snipt_key>[^/]+).*$', views.download, name='download'), url(r'^embed/(?P<snipt_key>[^/]+)/$', views.embed, name='embed'), url(r'^raw/(?P<snipt_key>[^/]+)/(?P<lexer>[^\?]+)?$', views.raw, name='raw'), url(r'^report-spam/(?P<snipt_id>[^/]+)/$', views.report_spam, name='report-spam'), url(r'^(?P<username_or_custom_slug>[^/]+)/$', views.list_user, name='list-user'), url(r'^(?P<username_or_custom_slug>[^/]+)/tag/(?P<tag_slug>[^/]+)/$', views.list_user, name='list-user-tag'), url(r'^(?P<username>[^/]+)/favorites/$', views.favorites, name='favorites'), url(r'^(?P<username>[^/]+)/blog-posts/$', views.blog_posts, name='blog-posts'), url(r'^(?P<username>[^/]+)/(?P<snipt_slug>[^/]+)/$', views.detail, name='detail'))
mit
-6,723,413,863,394,528,000
40.52
82
0.406069
false
frac/celery
celery/signals.py
1
6128
""" ============== celery.signals ============== Signals allows decoupled applications to receive notifications when certain actions occur elsewhere in the application. :copyright: (c) 2009 - 2011 by Ask Solem. :license: BSD, see LICENSE for more details. .. contents:: :local: .. _signal-basics: Basics ====== Several kinds of events trigger signals, you can connect to these signals to perform actions as they trigger. Example connecting to the :signal:`task_sent` signal: .. code-block:: python from celery.signals import task_sent def task_sent_handler(sender=None, task_id=None, task=None, args=None, kwargs=None, **kwds): print("Got signal task_sent for task id %s" % (task_id, )) task_sent.connect(task_sent_handler) Some signals also have a sender which you can filter by. For example the :signal:`task_sent` signal uses the task name as a sender, so you can connect your handler to be called only when tasks with name `"tasks.add"` has been sent by providing the `sender` argument to :class:`~celery.utils.dispatch.signal.Signal.connect`: .. code-block:: python task_sent.connect(task_sent_handler, sender="tasks.add") .. _signal-ref: Signals ======= Task Signals ------------ .. signal:: task_sent task_sent ~~~~~~~~~ Dispatched when a task has been sent to the broker. Note that this is executed in the client process, the one sending the task, not in the worker. Sender is the name of the task being sent. Provides arguments: * task_id Id of the task to be executed. * task The task being executed. * args the tasks positional arguments. * kwargs The tasks keyword arguments. * eta The time to execute the task. * taskset Id of the taskset this task is part of (if any). .. signal:: task_prerun task_prerun ~~~~~~~~~~~ Dispatched before a task is executed. Sender is the task class being executed. Provides arguments: * task_id Id of the task to be executed. * task The task being executed. * args the tasks positional arguments. * kwargs The tasks keyword arguments. .. signal:: task_postrun task_postrun ~~~~~~~~~~~~ Dispatched after a task has been executed. Sender is the task class executed. Provides arguments: * task_id Id of the task to be executed. * task The task being executed. * args The tasks positional arguments. * kwargs The tasks keyword arguments. * retval The return value of the task. .. signal:: task_failure task_failure ~~~~~~~~~~~~ Dispatched when a task fails. Sender is the task class executed. Provides arguments: * task_id Id of the task. * exception Exception instance raised. * args Positional arguments the task was called with. * kwargs Keyword arguments the task was called with. * traceback Stack trace object. * einfo The :class:`celery.datastructures.ExceptionInfo` instance. Worker Signals -------------- .. signal:: worker_init worker_init ~~~~~~~~~~~ Dispatched before the worker is started. .. signal:: worker_ready worker_ready ~~~~~~~~~~~~ Dispatched when the worker is ready to accept work. .. signal:: worker_process_init worker_process_init ~~~~~~~~~~~~~~~~~~~ Dispatched by each new pool worker process when it starts. .. signal:: worker_shutdown worker_shutdown ~~~~~~~~~~~~~~~ Dispatched when the worker is about to shut down. Celerybeat Signals ------------------ .. signal:: beat_init beat_init ~~~~~~~~~ Dispatched when celerybeat starts (either standalone or embedded). Sender is the :class:`celery.beat.Service` instance. .. signal:: beat_embedded_init beat_embedded_init ~~~~~~~~~~~~~~~~~~ Dispatched in addition to the :signal:`beat_init` signal when celerybeat is started as an embedded process. Sender is the :class:`celery.beat.Service` instance. Eventlet Signals ---------------- .. signal:: eventlet_pool_started eventlet_pool_started ~~~~~~~~~~~~~~~~~~~~~ Sent when the eventlet pool has been started. Sender is the :class:`celery.concurrency.evlet.TaskPool` instance. .. signal:: eventlet_pool_preshutdown eventlet_pool_preshutdown ~~~~~~~~~~~~~~~~~~~~~~~~~ Sent when the worker shutdown, just before the eventlet pool is requested to wait for remaining workers. Sender is the :class:`celery.concurrency.evlet.TaskPool` instance. .. signal:: eventlet_pool_postshutdown eventlet_pool_postshutdown ~~~~~~~~~~~~~~~~~~~~~~~~~~ Sent when the pool has been joined and the worker is ready to shutdown. Sender is the :class:`celery.concurrency.evlet.TaskPool` instance. .. signal:: eventlet_pool_apply eventlet_pool_apply ~~~~~~~~~~~~~~~~~~~ Sent whenever a task is applied to the pool. Sender is the :class:`celery.concurrency.evlet.TaskPool` instance. Provides arguments: * target The target function. * args Positional arguments. * kwargs Keyword arguments. """ from celery.utils.dispatch import Signal task_sent = Signal(providing_args=["task_id", "task", "args", "kwargs", "eta", "taskset"]) task_prerun = Signal(providing_args=["task_id", "task", "args", "kwargs"]) task_postrun = Signal(providing_args=["task_id", "task", "args", "kwargs", "retval"]) task_failure = Signal(providing_args=["task_id", "exception", "args", "kwargs", "traceback", "einfo"]) worker_init = Signal(providing_args=[]) worker_process_init = Signal(providing_args=[]) worker_ready = Signal(providing_args=[]) worker_shutdown = Signal(providing_args=[]) setup_logging = Signal(providing_args=["loglevel", "logfile", "format", "colorize"]) beat_init = Signal(providing_args=[]) beat_embedded_init = Signal(providing_args=[]) eventlet_pool_started = Signal(providing_args=[]) eventlet_pool_preshutdown = Signal(providing_args=[]) eventlet_pool_postshutdown = Signal(providing_args=[]) eventlet_pool_apply = Signal(providing_args=["target", "args", "kwargs"])
bsd-3-clause
-1,422,268,699,349,315,800
19.426667
75
0.6578
false
fullmetalfelix/ML-CSC-tutorial
data/descriptor_codes/charge.mbtr.py
1
2490
from __future__ import print_function from describe.descriptors import LMBTR from describe.core import System from describe.data.element_data import numbers_to_symbols import numpy as np from scipy.sparse import lil_matrix, save_npz from read_binary import * data = read_b('../binary/database-mulliken-ccsd-spd.bin') decay_factor = 0.5 mbtr = LMBTR( atom_index = 1, atomic_numbers=[1, 6, 7, 8, 9], k=[1, 2, 3], periodic=False, grid={ "k1": { "min": 0, "max": 10, "sigma": 0.1, "n": 11, }, "k2": { "min": 1/7, "max": 1.5, "sigma": 0.01, "n": 50, }, "k3": { "min": -1.0, "max": 1.0, "sigma": 0.05, "n": 50, } }, weighting={ "k2": { "function": lambda x: np.exp(-decay_factor*x), "threshold": 1e-3 }, "k3": { "function": lambda x: np.exp(-decay_factor*x), "threshold": 1e-3 }, }, flatten=True) mbtr_nfeat = mbtr.get_number_of_features() elements_list = [1, 6, 7, 8, 9] chg = np.empty(len(elements_list), dtype='object') max_chg_count = [10000]*4+[3314] for i, j in enumerate(max_chg_count): chg[i] = lil_matrix((j, mbtr_nfeat)) chg_count = np.zeros(len(elements_list), dtype='int') for atom_ind, atoms in enumerate(data): atoms_sys = System(positions=atoms.coords, numbers=atoms.Zs) elements_req = np.array(elements_list)[chg_count != max_chg_count].tolist() print('\r {}'.format(chg_count), end = '') for element in elements_req: element_ind = elements_list.index(element) if chg_count[element_ind] != max_chg_count[element_ind] and element in atoms.Zs: element_indx_atoms = np.where(atoms.Zs == element)[0] len_added = min(element_indx_atoms.shape[0], max_chg_count[element_ind]-chg_count[element_ind]) for i in range(chg_count[element_ind], chg_count[element_ind]+len_added): mbtr.atom_index = element_indx_atoms[i - chg_count[element_ind]] chg[element_ind][i] = mbtr.create(atoms_sys) chg_count[element_ind] += len_added if np.sum(chg_count) == sum(max_chg_count): break for i, j in enumerate(elements_list): save_npz('../charge.{}.input.mbtr'.format(j), chg[i].tocsr())
gpl-3.0
3,026,851,773,269,828,600
29.740741
107
0.538554
false
ideal/drummer
drummer/common.py
1
1045
# # Copyright (C) 2016 Shang Yuanchun <[email protected]> # # You may redistribute it and/or modify it under the terms of the # GNU General Public License, as published by the Free Software # Foundation; either version 3 of the License, or (at your option) # any later version. # # drummer is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with drummer. If not, write to: # The Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor # Boston, MA 02110-1301, USA. # # """Common functions for Drummer :(""" import pkg_resources def get_version(): """ Returns the version of drummer from the python egg metadata :returns: the version of drummer """ try: return pkg_resources.require("drummer")[0].version except: return "dev"
gpl-3.0
-9,059,040,297,306,448,000
26.5
67
0.712919
false
arnau-prat/My-Raspersonal-assistant
assets/brain.py
1
1572
#!/usr/bin/python # -*- coding: utf-8 -*- import cv2 import threading import time import subprocess import os import signal from datetime import datetime from modules import tracker, calendar, alarm, wolfram, music class Brain: def __init__(self): self.tracker = tracker.Tracker() self.alarm = alarm.Alarm() self.calendar = calendar.Calendar() self.wolfram = wolfram.Wolfram() self.music = music.Music() def think(self, text): if ("timer" in text) | ("alarm" in text): response = self.alarm.think(text) elif ("time" in text): response = datetime.now().strftime("It's %I:%M%p") elif ("day" in text) | ("date" in text): response = datetime.now().strftime("%A %d of %B") elif ("music" in text) | ("play" in text): response = self.music.play() elif ("take" in text) | ("photo" in text): response = "taking picture" image = cv2.imread("/home/pi/Desktop/im.jpg") image = cv2.resize(image,(800,600)) cv2.imwrite("/hoe/pi/Desktop/def.jpg",image) time.sleep(1) os.system ('mpg321 assets/camera_shutter.mp3') elif ("wake" in text) | ("up" in text): self.tracker.start() response = "I'm waking up sir" elif ("down" in text) | ("sleep" in text): self.tracker.stop() response = "I'm going to sleep now" elif "calendar" in text: response = self.calendar.think(text) else: response = self.wolfram.think(text) return response
mit
-7,316,954,540,866,034,000
25.2
62
0.583333
false
leosartaj/autosign
tests/test_removeSign.py
1
1228
#!/usr/bin/env python2 ## # autosign # https://github.com/leosartaj/autosign.git # # copyright (c) 2014 sartaj singh # licensed under the mit license. ## import unittest import os, shutil import helper from autosign.main import removeSign, isSign from autosign.exce import UnsignedError class TestremoveSign(unittest.TestCase): """ tests the removeSign function in main module """ def setUp(self): self.dire = os.path.dirname(__file__) self.signedfile = os.path.join(self.dire, 'testData/toBeSigned.py') self.signed = os.path.join(self.dire, 'testData/test_signedfile.py') shutil.copyfile(self.signedfile, self.signed) self.unsigned = os.path.join(self.dire, 'testData/test_unsignedfile.py') helper.newFile(self.unsigned) helper.readrc(self) def test_remove_from_unsigned_file(self): self.assertRaises(UnsignedError, removeSign, self.unsigned, self.options_py) def test_remove_from_signed_file(self): self.assertTrue(isSign(self.signed, self.options_py)) removeSign(self.signed, self.options_py) self.assertFalse(isSign(self.signed, self.options_py)) def tearDown(self): os.remove(self.unsigned)
mit
1,194,473,589,334,884,000
29.7
84
0.69544
false
tomadasocial/tomada-social
tomadasocial/settings.py
1
3965
""" Django settings for tomadasocial project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!qy$6$mh%b2mp$)km*!^uaf-v%givqnzzndo0b)y)qo93p973_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(BASE_DIR, '..', 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '/media/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(BASE_DIR, '..', 'static') # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates'), ) # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework_mongoengine', 'account', 'evento', 'conta', 'event', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'tomadasocial.urls' WSGI_APPLICATION = 'tomadasocial.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.dummy' } } AUTHENTICATION_BACKENDS = ( 'mongoengine.django.auth.MongoEngineBackend', ) SESSION_ENGINE = 'mongoengine.django.sessions' SESSION_SERIALIZER = 'mongoengine.django.sessions.BSONSerializer' # from mongoengine import connect # connect('records', username='recordsUserAdmin', password='password') # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ from mongoengine import connect # connect('admin', username='admin', password='senha') #connect("cc_bQWsNhAJvOH", host='mongodb://bQWsNhAJvOHi:[email protected]:31904/cc_bQWsNhAJvOHi') connect("heroku_app33947277", host='mongodb://tomadasocial:[email protected]:61681/heroku_app33947277') #connect("admin", host='mongodb://admin:[email protected]:27017/admin')
gpl-2.0
-515,293,318,295,498,900
28.819549
123
0.735183
false
zostera/django-bootstrap4
tests/test_settings.py
1
2426
from django.test import TestCase, override_settings from bootstrap4.bootstrap import get_bootstrap_setting, include_jquery, jquery_slim_url, jquery_url class SettingsTest(TestCase): def test_get_bootstrap_setting(self): self.assertIsNone(get_bootstrap_setting("SETTING_DOES_NOT_EXIST")) self.assertEqual("not none", get_bootstrap_setting("SETTING_DOES_NOT_EXIST", "not none")) # Override a setting with self.settings(BOOTSTRAP4={"SETTING_DOES_NOT_EXIST": "exists now"}): self.assertEqual(get_bootstrap_setting("SETTING_DOES_NOT_EXIST"), "exists now") def test_jquery_url(self): self.assertEqual( jquery_url(), { "url": "https://code.jquery.com/jquery-3.5.1.min.js", "integrity": "sha384-ZvpUoO/+PpLXR1lu4jmpXWu80pZlYUAfxl5NsBMWOEPSjUn/6Z/hRTt8+pR6L4N2", "crossorigin": "anonymous", }, ) @override_settings( BOOTSTRAP4={ "jquery_url": { "url": "https://example.com/jquery.js", "integrity": "we-want-a-different-jquery", "crossorigin": "anonymous", }, } ) def test_jquery_url_from_settings(self): self.assertEqual( jquery_url(), { "url": "https://example.com/jquery.js", "integrity": "we-want-a-different-jquery", "crossorigin": "anonymous", }, ) def test_jquery_slim_url(self): self.assertEqual( jquery_slim_url(), { "url": "https://code.jquery.com/jquery-3.5.1.slim.min.js", "integrity": "sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj", "crossorigin": "anonymous", }, ) def test_include_jquery(self): self.assertEqual(include_jquery(), False) with self.settings(BOOTSTRAP4={"include_jquery": False}): self.assertEqual(include_jquery(), False) with self.settings(BOOTSTRAP4={"include_jquery": True}): self.assertEqual(include_jquery(), True) with self.settings(BOOTSTRAP4={"include_jquery": "full"}): self.assertEqual(include_jquery(), "full") with self.settings(BOOTSTRAP4={"include_jquery": "slim"}): self.assertEqual(include_jquery(), "slim")
bsd-3-clause
1,537,482,120,237,771,500
38.129032
103
0.576257
false
tmaiwald/OSIM
OSIM/Optimizations/OptimizationComponents/Optimizable.py
1
1217
class Optimizable(object): def __init__(self,comp_names_list,paramname,valfrom,valto,**kwargs): self.names = comp_names_list self.paramname = paramname self.minStep = 2 #default self.vFrom = valfrom self.vTo = valto self.val = 0 for name, value in kwargs.items(): if name == 'minSteps': self.minStep = value def setValue(self, v): self.val = v def getRangeBegin(self): return self.vFrom def getRangeEnd(self): return self.vTo def getValue(self): return self.val def getOptimizableComponentNames(self): return self.names def toString(self): stri = "" for n in self.names: stri = stri+" "+n return (stri+" at %s"%(str(self.val))) def getParamName(self): return self.paramname @staticmethod def getSetableList(olist): setableList = list() for o in olist: for n in o.getOptimizableComponentNames(): """compname, paramname, paramval""" n = [n, o.getParamName(), o.getValue()] setableList.append(n) return setableList
bsd-2-clause
6,869,095,868,445,226,000
22.862745
72
0.557108
false
pymedusa/SickRage
medusa/init/logconfig.py
1
2929
# coding=utf-8 """Monkey-patch logger functions to accept enhanced format styles.""" from __future__ import unicode_literals import logging from builtins import object try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec from six import text_type class StyleAdapter(logging.LoggerAdapter): """Logger Adapter with new string format style.""" adapter_members = {attr: attr for attr in dir(logging.LoggerAdapter) if not callable(attr) and not attr.startswith('__')} adapter_members.update({'warn': 'warning', 'fatal': 'critical'}) reserved_keywords = getfullargspec(logging.Logger._log).args[1:] def __init__(self, target_logger, extra=None): """Constructor. :param target_logger: :type target_logger: logging.Logger :param extra: :type extra: dict """ super(StyleAdapter, self).__init__(target_logger, extra) def __getattr__(self, name): """Wrap to the actual logger. :param name: :type name: str :return: """ if name not in self.adapter_members: return getattr(self.logger, name) return getattr(self, self.adapter_members[name]) def __setattr__(self, key, value): """Wrap to the actual logger. :param key: :type key: str :param value: """ self.__dict__[key] = value def process(self, msg, kwargs): """Enhance default process to use BraceMessage and remove unsupported keyword args for the actual logger method. :param msg: :param kwargs: :return: """ reserved = {k: kwargs[k] for k in self.reserved_keywords if k in kwargs} kwargs = {k: kwargs[k] for k in kwargs if k not in self.reserved_keywords} return BraceMessage(msg, (), kwargs), reserved class BraceMessage(object): """Log Message wrapper that applies new string format style.""" def __init__(self, fmt, args, kwargs): """Constructor. :param fmt: :type fmt: logging.Formatter :param args: :param kwargs: """ self.fmt = fmt self.args = args self.kwargs = kwargs def __str__(self): """Represent a string. :return: :rtype: str """ result = text_type(self.fmt) return result.format(*self.args, **self.kwargs) if self.args or self.kwargs else result def initialize(): """Replace standard getLogger with our enhanced one.""" def enhanced_get_logger(name=None): """Enhanced logging.getLogger function. :param name: :return: """ return StyleAdapter(standard_logger(name)) logging.getLogger = enhanced_get_logger # Keeps the standard logging.getLogger to be used by StyleAdapter standard_logger = logging.getLogger
gpl-3.0
4,170,883,745,947,611,000
26.632075
120
0.613861
false
zagl/led-tool
ui_main.py
1
27811
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui_main.ui' # # Created: Sun Apr 3 16:50:44 2016 # by: PyQt4 UI code generator 4.11.2 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(687, 562) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.horizontalLayout = QtGui.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.main_stacked_widget = QtGui.QStackedWidget(self.centralwidget) self.main_stacked_widget.setObjectName(_fromUtf8("main_stacked_widget")) self.main_page = QtGui.QWidget() self.main_page.setMinimumSize(QtCore.QSize(669, 544)) self.main_page.setObjectName(_fromUtf8("main_page")) self.horizontalLayout_2 = QtGui.QHBoxLayout(self.main_page) self.horizontalLayout_2.setSpacing(6) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.verticalLayout_3 = QtGui.QVBoxLayout() self.verticalLayout_3.setContentsMargins(-1, -1, 0, -1) self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.led_filter = QtGui.QLineEdit(self.main_page) self.led_filter.setObjectName(_fromUtf8("led_filter")) self.verticalLayout_3.addWidget(self.led_filter) self.led_list_view = QtGui.QListView(self.main_page) self.led_list_view.setIconSize(QtCore.QSize(0, 0)) self.led_list_view.setGridSize(QtCore.QSize(0, 0)) self.led_list_view.setObjectName(_fromUtf8("led_list_view")) self.verticalLayout_3.addWidget(self.led_list_view) self.horizontalLayout_5 = QtGui.QHBoxLayout() self.horizontalLayout_5.setSpacing(0) self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) self.add_led_button = QtGui.QToolButton(self.main_page) self.add_led_button.setMinimumSize(QtCore.QSize(32, 32)) self.add_led_button.setAutoRaise(False) self.add_led_button.setObjectName(_fromUtf8("add_led_button")) self.horizontalLayout_5.addWidget(self.add_led_button) self.remove_led_button = QtGui.QToolButton(self.main_page) self.remove_led_button.setMinimumSize(QtCore.QSize(32, 32)) self.remove_led_button.setAutoRaise(False) self.remove_led_button.setObjectName(_fromUtf8("remove_led_button")) self.horizontalLayout_5.addWidget(self.remove_led_button) spacerItem = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_5.addItem(spacerItem) self.verticalLayout_3.addLayout(self.horizontalLayout_5) self.horizontalLayout_2.addLayout(self.verticalLayout_3) self.gridLayout = QtGui.QGridLayout() self.gridLayout.setSizeConstraint(QtGui.QLayout.SetDefaultConstraint) self.gridLayout.setContentsMargins(14, -1, -1, -1) self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.voltage_label = QtGui.QLabel(self.main_page) self.voltage_label.setMinimumSize(QtCore.QSize(0, 0)) self.voltage_label.setObjectName(_fromUtf8("voltage_label")) self.gridLayout.addWidget(self.voltage_label, 6, 1, 1, 1) self.label = QtGui.QLabel(self.main_page) self.label.setMinimumSize(QtCore.QSize(0, 30)) self.label.setObjectName(_fromUtf8("label")) self.gridLayout.addWidget(self.label, 2, 0, 1, 1) self.current_spinbox = QtGui.QDoubleSpinBox(self.main_page) self.current_spinbox.setMaximum(9999999.0) self.current_spinbox.setObjectName(_fromUtf8("current_spinbox")) self.gridLayout.addWidget(self.current_spinbox, 2, 1, 1, 1) self.label_8 = QtGui.QLabel(self.main_page) self.label_8.setMinimumSize(QtCore.QSize(0, 30)) self.label_8.setObjectName(_fromUtf8("label_8")) self.gridLayout.addWidget(self.label_8, 8, 0, 1, 1) self.label_10 = QtGui.QLabel(self.main_page) self.label_10.setMinimumSize(QtCore.QSize(0, 30)) self.label_10.setObjectName(_fromUtf8("label_10")) self.gridLayout.addWidget(self.label_10, 11, 0, 1, 1) self.input_power_label = QtGui.QLabel(self.main_page) self.input_power_label.setObjectName(_fromUtf8("input_power_label")) self.gridLayout.addWidget(self.input_power_label, 8, 1, 1, 1) self.voltage_group_combobox = QtGui.QComboBox(self.main_page) self.voltage_group_combobox.setMinimumSize(QtCore.QSize(0, 0)) self.voltage_group_combobox.setObjectName(_fromUtf8("voltage_group_combobox")) self.gridLayout.addWidget(self.voltage_group_combobox, 5, 1, 1, 1) self.label_9 = QtGui.QLabel(self.main_page) self.label_9.setMinimumSize(QtCore.QSize(0, 30)) self.label_9.setObjectName(_fromUtf8("label_9")) self.gridLayout.addWidget(self.label_9, 10, 0, 1, 1) self.thermal_power_label = QtGui.QLabel(self.main_page) self.thermal_power_label.setObjectName(_fromUtf8("thermal_power_label")) self.gridLayout.addWidget(self.thermal_power_label, 10, 1, 1, 1) self.label_5 = QtGui.QLabel(self.main_page) self.label_5.setMinimumSize(QtCore.QSize(0, 30)) self.label_5.setObjectName(_fromUtf8("label_5")) self.gridLayout.addWidget(self.label_5, 7, 0, 1, 1) self.label_4 = QtGui.QLabel(self.main_page) self.label_4.setMinimumSize(QtCore.QSize(0, 30)) self.label_4.setObjectName(_fromUtf8("label_4")) self.gridLayout.addWidget(self.label_4, 5, 0, 1, 1) self.radiant_flux_label = QtGui.QLabel(self.main_page) self.radiant_flux_label.setObjectName(_fromUtf8("radiant_flux_label")) self.gridLayout.addWidget(self.radiant_flux_label, 9, 1, 1, 1) self.horizontalLayout_6 = QtGui.QHBoxLayout() self.horizontalLayout_6.setObjectName(_fromUtf8("horizontalLayout_6")) self.led_header_label = QtGui.QLabel(self.main_page) self.led_header_label.setMinimumSize(QtCore.QSize(0, 32)) self.led_header_label.setObjectName(_fromUtf8("led_header_label")) self.horizontalLayout_6.addWidget(self.led_header_label) spacerItem1 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout_6.addItem(spacerItem1) self.edit_led_button = QtGui.QPushButton(self.main_page) self.edit_led_button.setMaximumSize(QtCore.QSize(75, 16777215)) self.edit_led_button.setFlat(False) self.edit_led_button.setObjectName(_fromUtf8("edit_led_button")) self.horizontalLayout_6.addWidget(self.edit_led_button) self.gridLayout.addLayout(self.horizontalLayout_6, 1, 0, 1, 2) self.label_2 = QtGui.QLabel(self.main_page) self.label_2.setMinimumSize(QtCore.QSize(0, 30)) self.label_2.setObjectName(_fromUtf8("label_2")) self.gridLayout.addWidget(self.label_2, 3, 0, 1, 1) self.luminous_flux_label = QtGui.QLabel(self.main_page) self.luminous_flux_label.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.luminous_flux_label.setObjectName(_fromUtf8("luminous_flux_label")) self.gridLayout.addWidget(self.luminous_flux_label, 7, 1, 1, 1) spacerItem2 = QtGui.QSpacerItem(20, 40, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem2, 12, 0, 1, 1) self.brightness_group_combobox = QtGui.QComboBox(self.main_page) self.brightness_group_combobox.setObjectName(_fromUtf8("brightness_group_combobox")) self.gridLayout.addWidget(self.brightness_group_combobox, 4, 1, 1, 1) self.label_7 = QtGui.QLabel(self.main_page) self.label_7.setMinimumSize(QtCore.QSize(0, 30)) self.label_7.setObjectName(_fromUtf8("label_7")) self.gridLayout.addWidget(self.label_7, 9, 0, 1, 1) self.label_3 = QtGui.QLabel(self.main_page) self.label_3.setMinimumSize(QtCore.QSize(0, 30)) self.label_3.setObjectName(_fromUtf8("label_3")) self.gridLayout.addWidget(self.label_3, 4, 0, 1, 1) self.temperature_spinbox = QtGui.QDoubleSpinBox(self.main_page) self.temperature_spinbox.setMaximum(9999999.0) self.temperature_spinbox.setObjectName(_fromUtf8("temperature_spinbox")) self.gridLayout.addWidget(self.temperature_spinbox, 3, 1, 1, 1) self.label_6 = QtGui.QLabel(self.main_page) self.label_6.setMinimumSize(QtCore.QSize(0, 30)) self.label_6.setObjectName(_fromUtf8("label_6")) self.gridLayout.addWidget(self.label_6, 6, 0, 1, 1) self.radiant_efficiency_label = QtGui.QLabel(self.main_page) self.radiant_efficiency_label.setObjectName(_fromUtf8("radiant_efficiency_label")) self.gridLayout.addWidget(self.radiant_efficiency_label, 11, 1, 1, 1) self.gridLayout.setColumnStretch(1, 1) self.horizontalLayout_2.addLayout(self.gridLayout) self.horizontalLayout_2.setStretch(1, 1) self.main_stacked_widget.addWidget(self.main_page) self.editor_page = QtGui.QWidget() self.editor_page.setObjectName(_fromUtf8("editor_page")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.editor_page) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.horizontalLayout_4 = QtGui.QHBoxLayout() self.horizontalLayout_4.setSpacing(20) self.horizontalLayout_4.setSizeConstraint(QtGui.QLayout.SetMinimumSize) self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4")) self.led_editor_navigator_list = QtGui.QListWidget(self.editor_page) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.MinimumExpanding, QtGui.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.led_editor_navigator_list.sizePolicy().hasHeightForWidth()) self.led_editor_navigator_list.setSizePolicy(sizePolicy) self.led_editor_navigator_list.setMinimumSize(QtCore.QSize(0, 0)) self.led_editor_navigator_list.setObjectName(_fromUtf8("led_editor_navigator_list")) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) item = QtGui.QListWidgetItem() self.led_editor_navigator_list.addItem(item) self.horizontalLayout_4.addWidget(self.led_editor_navigator_list) self.editor_stacked_widget = QtGui.QStackedWidget(self.editor_page) self.editor_stacked_widget.setObjectName(_fromUtf8("editor_stacked_widget")) self.parameter_page = QtGui.QWidget() self.parameter_page.setObjectName(_fromUtf8("parameter_page")) self.gridLayout_3 = QtGui.QGridLayout(self.parameter_page) self.gridLayout_3.setMargin(0) self.gridLayout_3.setVerticalSpacing(6) self.gridLayout_3.setObjectName(_fromUtf8("gridLayout_3")) self.manufacturer_combo = QtGui.QComboBox(self.parameter_page) self.manufacturer_combo.setEditable(True) self.manufacturer_combo.setObjectName(_fromUtf8("manufacturer_combo")) self.manufacturer_combo.addItem(_fromUtf8("")) self.gridLayout_3.addWidget(self.manufacturer_combo, 1, 2, 1, 1) spacerItem3 = QtGui.QSpacerItem(0, 0, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.gridLayout_3.addItem(spacerItem3, 7, 0, 1, 1) self.label_20 = QtGui.QLabel(self.parameter_page) self.label_20.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_20.setObjectName(_fromUtf8("label_20")) self.gridLayout_3.addWidget(self.label_20, 3, 0, 1, 1) self.label_18 = QtGui.QLabel(self.parameter_page) self.label_18.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_18.setObjectName(_fromUtf8("label_18")) self.gridLayout_3.addWidget(self.label_18, 1, 0, 1, 1) self.label_19 = QtGui.QLabel(self.parameter_page) self.label_19.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_19.setObjectName(_fromUtf8("label_19")) self.gridLayout_3.addWidget(self.label_19, 2, 0, 1, 1) self.label_21 = QtGui.QLabel(self.parameter_page) self.label_21.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_21.setObjectName(_fromUtf8("label_21")) self.gridLayout_3.addWidget(self.label_21, 4, 0, 1, 1) self.name_edit = QtGui.QLineEdit(self.parameter_page) self.name_edit.setObjectName(_fromUtf8("name_edit")) self.gridLayout_3.addWidget(self.name_edit, 0, 2, 1, 1) self.label_22 = QtGui.QLabel(self.parameter_page) self.label_22.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_22.setObjectName(_fromUtf8("label_22")) self.gridLayout_3.addWidget(self.label_22, 5, 0, 1, 1) self.label_23 = QtGui.QLabel(self.parameter_page) self.label_23.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_23.setObjectName(_fromUtf8("label_23")) self.gridLayout_3.addWidget(self.label_23, 6, 0, 1, 1) self.thermal_resistance_spin = QtGui.QDoubleSpinBox(self.parameter_page) self.thermal_resistance_spin.setMaximum(9999999.0) self.thermal_resistance_spin.setObjectName(_fromUtf8("thermal_resistance_spin")) self.gridLayout_3.addWidget(self.thermal_resistance_spin, 5, 2, 1, 1) self.label_17 = QtGui.QLabel(self.parameter_page) self.label_17.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.label_17.setObjectName(_fromUtf8("label_17")) self.gridLayout_3.addWidget(self.label_17, 0, 0, 1, 1) self.reference_temperature_spin = QtGui.QDoubleSpinBox(self.parameter_page) self.reference_temperature_spin.setMaximum(9999999.0) self.reference_temperature_spin.setObjectName(_fromUtf8("reference_temperature_spin")) self.gridLayout_3.addWidget(self.reference_temperature_spin, 6, 2, 1, 1) self.typical_current_spin = QtGui.QDoubleSpinBox(self.parameter_page) self.typical_current_spin.setMaximum(9999999.0) self.typical_current_spin.setObjectName(_fromUtf8("typical_current_spin")) self.gridLayout_3.addWidget(self.typical_current_spin, 4, 2, 1, 1) self.typical_voltage_spin = QtGui.QDoubleSpinBox(self.parameter_page) self.typical_voltage_spin.setMaximum(9999999.0) self.typical_voltage_spin.setObjectName(_fromUtf8("typical_voltage_spin")) self.gridLayout_3.addWidget(self.typical_voltage_spin, 3, 2, 1, 1) self.family_combo = QtGui.QComboBox(self.parameter_page) self.family_combo.setEditable(True) self.family_combo.setObjectName(_fromUtf8("family_combo")) self.family_combo.addItem(_fromUtf8("")) self.gridLayout_3.addWidget(self.family_combo, 2, 2, 1, 1) self.editor_stacked_widget.addWidget(self.parameter_page) self.brightness_group_page = QtGui.QWidget() self.brightness_group_page.setObjectName(_fromUtf8("brightness_group_page")) self.verticalLayout = QtGui.QVBoxLayout(self.brightness_group_page) self.verticalLayout.setMargin(0) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.brightness_group_table_view = QtGui.QTableView(self.brightness_group_page) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.brightness_group_table_view.sizePolicy().hasHeightForWidth()) self.brightness_group_table_view.setSizePolicy(sizePolicy) self.brightness_group_table_view.setObjectName(_fromUtf8("brightness_group_table_view")) self.verticalLayout.addWidget(self.brightness_group_table_view) self.editor_stacked_widget.addWidget(self.brightness_group_page) self.voltage_group_page = QtGui.QWidget() self.voltage_group_page.setObjectName(_fromUtf8("voltage_group_page")) self.horizontalLayout_3 = QtGui.QHBoxLayout(self.voltage_group_page) self.horizontalLayout_3.setMargin(0) self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.voltage_group_table_view = QtGui.QTableView(self.voltage_group_page) self.voltage_group_table_view.setObjectName(_fromUtf8("voltage_group_table_view")) self.voltage_group_table_view.verticalHeader().setCascadingSectionResizes(True) self.voltage_group_table_view.verticalHeader().setDefaultSectionSize(0) self.horizontalLayout_3.addWidget(self.voltage_group_table_view) self.editor_stacked_widget.addWidget(self.voltage_group_page) self.current_emission_page = QtGui.QWidget() self.current_emission_page.setObjectName(_fromUtf8("current_emission_page")) self.verticalLayout_5 = QtGui.QVBoxLayout(self.current_emission_page) self.verticalLayout_5.setMargin(0) self.verticalLayout_5.setObjectName(_fromUtf8("verticalLayout_5")) self.current_emission_table_view = QtGui.QTableView(self.current_emission_page) self.current_emission_table_view.setObjectName(_fromUtf8("current_emission_table_view")) self.verticalLayout_5.addWidget(self.current_emission_table_view) self.editor_stacked_widget.addWidget(self.current_emission_page) self.current_voltage_page = QtGui.QWidget() self.current_voltage_page.setObjectName(_fromUtf8("current_voltage_page")) self.verticalLayout_6 = QtGui.QVBoxLayout(self.current_voltage_page) self.verticalLayout_6.setMargin(0) self.verticalLayout_6.setObjectName(_fromUtf8("verticalLayout_6")) self.current_voltage_table_view = QtGui.QTableView(self.current_voltage_page) self.current_voltage_table_view.setObjectName(_fromUtf8("current_voltage_table_view")) self.verticalLayout_6.addWidget(self.current_voltage_table_view) self.editor_stacked_widget.addWidget(self.current_voltage_page) self.temperature_emission_page = QtGui.QWidget() self.temperature_emission_page.setObjectName(_fromUtf8("temperature_emission_page")) self.horizontalLayout_7 = QtGui.QHBoxLayout(self.temperature_emission_page) self.horizontalLayout_7.setMargin(0) self.horizontalLayout_7.setObjectName(_fromUtf8("horizontalLayout_7")) self.temperature_emission_table_view = QtGui.QTableView(self.temperature_emission_page) self.temperature_emission_table_view.setObjectName(_fromUtf8("temperature_emission_table_view")) self.horizontalLayout_7.addWidget(self.temperature_emission_table_view) self.editor_stacked_widget.addWidget(self.temperature_emission_page) self.temperature_voltage_page = QtGui.QWidget() self.temperature_voltage_page.setObjectName(_fromUtf8("temperature_voltage_page")) self.horizontalLayout_8 = QtGui.QHBoxLayout(self.temperature_voltage_page) self.horizontalLayout_8.setMargin(0) self.horizontalLayout_8.setObjectName(_fromUtf8("horizontalLayout_8")) self.temperature_voltage_table_view = QtGui.QTableView(self.temperature_voltage_page) self.temperature_voltage_table_view.setObjectName(_fromUtf8("temperature_voltage_table_view")) self.horizontalLayout_8.addWidget(self.temperature_voltage_table_view) self.editor_stacked_widget.addWidget(self.temperature_voltage_page) self.horizontalLayout_4.addWidget(self.editor_stacked_widget) self.horizontalLayout_4.setStretch(1, 2) self.verticalLayout_2.addLayout(self.horizontalLayout_4) self.buttonBox = QtGui.QDialogButtonBox(self.editor_page) self.buttonBox.setStandardButtons(QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok) self.buttonBox.setObjectName(_fromUtf8("buttonBox")) self.verticalLayout_2.addWidget(self.buttonBox) self.main_stacked_widget.addWidget(self.editor_page) self.horizontalLayout.addWidget(self.main_stacked_widget) MainWindow.setCentralWidget(self.centralwidget) self.voltage_label.setBuddy(self.voltage_label) self.retranslateUi(MainWindow) self.main_stacked_widget.setCurrentIndex(0) self.editor_stacked_widget.setCurrentIndex(0) QtCore.QObject.connect(self.led_editor_navigator_list, QtCore.SIGNAL(_fromUtf8("currentRowChanged(int)")), self.editor_stacked_widget.setCurrentIndex) QtCore.QMetaObject.connectSlotsByName(MainWindow) MainWindow.setTabOrder(self.name_edit, self.manufacturer_combo) MainWindow.setTabOrder(self.manufacturer_combo, self.family_combo) MainWindow.setTabOrder(self.family_combo, self.typical_voltage_spin) MainWindow.setTabOrder(self.typical_voltage_spin, self.typical_current_spin) MainWindow.setTabOrder(self.typical_current_spin, self.thermal_resistance_spin) MainWindow.setTabOrder(self.thermal_resistance_spin, self.reference_temperature_spin) MainWindow.setTabOrder(self.reference_temperature_spin, self.buttonBox) MainWindow.setTabOrder(self.buttonBox, self.led_editor_navigator_list) MainWindow.setTabOrder(self.led_editor_navigator_list, self.brightness_group_combobox) MainWindow.setTabOrder(self.brightness_group_combobox, self.voltage_group_combobox) MainWindow.setTabOrder(self.voltage_group_combobox, self.edit_led_button) MainWindow.setTabOrder(self.edit_led_button, self.led_filter) MainWindow.setTabOrder(self.led_filter, self.led_list_view) MainWindow.setTabOrder(self.led_list_view, self.add_led_button) MainWindow.setTabOrder(self.add_led_button, self.remove_led_button) MainWindow.setTabOrder(self.remove_led_button, self.temperature_spinbox) MainWindow.setTabOrder(self.temperature_spinbox, self.current_spinbox) MainWindow.setTabOrder(self.current_spinbox, self.brightness_group_table_view) MainWindow.setTabOrder(self.brightness_group_table_view, self.voltage_group_table_view) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "LED Tool", None)) self.led_filter.setPlaceholderText(_translate("MainWindow", "Filter", None)) self.add_led_button.setText(_translate("MainWindow", "+", None)) self.remove_led_button.setText(_translate("MainWindow", "−", None)) self.voltage_label.setText(_translate("MainWindow", "--- V", None)) self.label.setText(_translate("MainWindow", "Current:", None)) self.current_spinbox.setSuffix(_translate("MainWindow", " mA", None)) self.label_8.setText(_translate("MainWindow", "Input Power:", None)) self.label_10.setText(_translate("MainWindow", "Radiant Efficiency:", None)) self.input_power_label.setText(_translate("MainWindow", "--- W", None)) self.label_9.setText(_translate("MainWindow", "Thermal Power:", None)) self.thermal_power_label.setText(_translate("MainWindow", "--- W", None)) self.label_5.setText(_translate("MainWindow", "Luminous Flux:", None)) self.label_4.setText(_translate("MainWindow", "Voltage Group:", None)) self.radiant_flux_label.setText(_translate("MainWindow", "--- W", None)) self.led_header_label.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-size:12pt; font-weight:600;\">LUMILEDS LUXEON F ES</span></p></body></html>", None)) self.edit_led_button.setText(_translate("MainWindow", "Edit", None)) self.label_2.setText(_translate("MainWindow", "Temperature:", None)) self.luminous_flux_label.setText(_translate("MainWindow", "--- lm", None)) self.label_7.setText(_translate("MainWindow", "Radiant Flux:", None)) self.label_3.setText(_translate("MainWindow", "Brightness Group:", None)) self.temperature_spinbox.setSuffix(_translate("MainWindow", " °C", None)) self.label_6.setText(_translate("MainWindow", "Voltage:", None)) self.radiant_efficiency_label.setText(_translate("MainWindow", "--- %", None)) __sortingEnabled = self.led_editor_navigator_list.isSortingEnabled() self.led_editor_navigator_list.setSortingEnabled(False) item = self.led_editor_navigator_list.item(0) item.setText(_translate("MainWindow", "Parameter", None)) item = self.led_editor_navigator_list.item(1) item.setText(_translate("MainWindow", "Brightness Groups", None)) item = self.led_editor_navigator_list.item(2) item.setText(_translate("MainWindow", "Voltage Groups", None)) item = self.led_editor_navigator_list.item(3) item.setText(_translate("MainWindow", "Current vs. Emission", None)) item = self.led_editor_navigator_list.item(4) item.setText(_translate("MainWindow", "Current vs. Voltage", None)) item = self.led_editor_navigator_list.item(5) item.setText(_translate("MainWindow", "Temperature vs. Emission", None)) item = self.led_editor_navigator_list.item(6) item.setText(_translate("MainWindow", "Temperature vs. Voltage", None)) self.led_editor_navigator_list.setSortingEnabled(__sortingEnabled) self.manufacturer_combo.setItemText(0, _translate("MainWindow", "OSRAM", None)) self.label_20.setText(_translate("MainWindow", "Typical Voltage:", None)) self.label_18.setText(_translate("MainWindow", "Manufacturer:", None)) self.label_19.setText(_translate("MainWindow", "Family:", None)) self.label_21.setText(_translate("MainWindow", "Typical Current:", None)) self.name_edit.setText(_translate("MainWindow", "LA T67F", None)) self.label_22.setText(_translate("MainWindow", "Thermal Resistance:", None)) self.label_23.setText(_translate("MainWindow", "Reference Temperature:", None)) self.thermal_resistance_spin.setSuffix(_translate("MainWindow", " K/W", None)) self.label_17.setText(_translate("MainWindow", "Name:", None)) self.reference_temperature_spin.setSuffix(_translate("MainWindow", " °C", None)) self.typical_current_spin.setSuffix(_translate("MainWindow", " mA", None)) self.typical_voltage_spin.setSuffix(_translate("MainWindow", " V", None)) self.family_combo.setItemText(0, _translate("MainWindow", "TOPLED", None))
gpl-3.0
8,376,805,521,591,974,000
64.893365
190
0.706405
false
syucream/mrubook
conf.py
1
9757
# -*- coding: utf-8 -*- # # mrubook documentation build configuration file, created by # sphinx-quickstart on Sat Dec 3 14:17:42 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'mrubook' copyright = u'2016, Ryo Okubo' author = u'Ryo Okubo' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.0' # The full version, including alpha/beta/rc tags. release = u'1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'mrubook v1.0' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'mrubookdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'mrubook.tex', u'mrubook Documentation', u'Ryo Okubo', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, itleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mrubook', u'mrubook Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'mrubook', u'mrubook Documentation', author, 'mrubook', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False
mit
-4,150,921,000,730,676,000
27.866864
80
0.691196
false
ukch/refugeedata
refugeedata/distribution/decorators.py
1
2228
import datetime import functools from pyratemp import TemplateSyntaxError, TemplateRenderError from django.contrib.auth import PermissionDenied from django.shortcuts import get_object_or_404, redirect, render from refugeedata.models import Distribution, Template from .forms import DistributionHashForm def standard_distribution_access(func): @functools.wraps(func) def wrapper(request, *args, **kwargs): dist = get_object_or_404( Distribution, id=kwargs.pop('distribution_id')) if not request.user.is_superuser: if dist.date != datetime.date.today(): raise PermissionDenied() if not request.user.has_perm("distribution", obj=dist): if request.method == "POST": form = DistributionHashForm(dist, request.POST) if form.is_valid(): request.session["distribution_hash"] = \ form.cleaned_data["password"] return redirect(request.path) else: form = DistributionHashForm(dist) return render(request, "distribution/login.html", { "distribution": dist, "form": form, }) kwargs['distribution'] = dist return func(request, *args, **kwargs) return wrapper def handle_template_errors(func): @functools.wraps(func) def wrapper(request, distribution_id, *args, **kwargs): distribution = get_object_or_404(Distribution, id=distribution_id) try: return func(request, distribution, *args, **kwargs) except (TemplateSyntaxError, TemplateRenderError) as e: if hasattr(e, "filename"): template_id = e.filename else: template_id = kwargs.get("template_id") if template_id: template = Template.objects.filter(id=template_id).first() return render(request, "distribution/template_syntax_error.html", { "distribution": distribution, "template": template, "exception": e, }, status=400) return wrapper
mit
-3,910,878,151,373,112,300
35.52459
79
0.584829
false
mvo5/snapcraft
tests/unit/sources/test_mercurial.py
1
9010
# -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2015-2018 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os import shutil import subprocess from unittest import mock from testtools.matchers import Equals from snapcraft.internal import sources from tests import unit from tests.subprocess_utils import call, call_with_output # LP: #1733584 class TestMercurial(unit.sources.SourceTestCase): # type: ignore def setUp(self): super().setUp() patcher = mock.patch("snapcraft.sources.Mercurial._get_source_details") self.mock_get_source_details = patcher.start() self.mock_get_source_details.return_value = "" self.addCleanup(patcher.stop) def test_pull(self): hg = sources.Mercurial("hg://my-source", "source_dir") hg.pull() self.mock_run.assert_called_once_with( ["hg", "clone", "hg://my-source", "source_dir"] ) def test_pull_branch(self): hg = sources.Mercurial( "hg://my-source", "source_dir", source_branch="my-branch" ) hg.pull() self.mock_run.assert_called_once_with( ["hg", "clone", "-u", "my-branch", "hg://my-source", "source_dir"] ) def test_pull_tag(self): hg = sources.Mercurial("hg://my-source", "source_dir", source_tag="tag") hg.pull() self.mock_run.assert_called_once_with( ["hg", "clone", "-u", "tag", "hg://my-source", "source_dir"] ) def test_pull_commit(self): hg = sources.Mercurial("hg://my-source", "source_dir", source_commit="2") hg.pull() self.mock_run.assert_called_once_with( ["hg", "clone", "-u", "2", "hg://my-source", "source_dir"] ) def test_pull_existing(self): self.mock_path_exists.return_value = True hg = sources.Mercurial("hg://my-source", "source_dir") hg.pull() self.mock_run.assert_called_once_with(["hg", "pull", "hg://my-source"]) def test_pull_existing_with_tag(self): self.mock_path_exists.return_value = True hg = sources.Mercurial("hg://my-source", "source_dir", source_tag="tag") hg.pull() self.mock_run.assert_called_once_with( ["hg", "pull", "-r", "tag", "hg://my-source"] ) def test_pull_existing_with_commit(self): self.mock_path_exists.return_value = True hg = sources.Mercurial("hg://my-source", "source_dir", source_commit="2") hg.pull() self.mock_run.assert_called_once_with( ["hg", "pull", "-r", "2", "hg://my-source"] ) def test_pull_existing_with_branch(self): self.mock_path_exists.return_value = True hg = sources.Mercurial( "hg://my-source", "source_dir", source_branch="my-branch" ) hg.pull() self.mock_run.assert_called_once_with( ["hg", "pull", "-b", "my-branch", "hg://my-source"] ) def test_init_with_source_branch_and_tag_raises_exception(self): raised = self.assertRaises( sources.errors.SnapcraftSourceIncompatibleOptionsError, sources.Mercurial, "hg://mysource", "source_dir", source_tag="tag", source_branch="branch", ) self.assertThat(raised.source_type, Equals("mercurial")) self.assertThat(raised.options, Equals(["source-tag", "source-branch"])) def test_init_with_source_commit_and_tag_raises_exception(self): raised = self.assertRaises( sources.errors.SnapcraftSourceIncompatibleOptionsError, sources.Mercurial, "hg://mysource", "source_dir", source_commit="2", source_tag="tag", ) self.assertThat(raised.source_type, Equals("mercurial")) self.assertThat(raised.options, Equals(["source-tag", "source-commit"])) def test_init_with_source_commit_and_branch_raises_exception(self): raised = self.assertRaises( sources.errors.SnapcraftSourceIncompatibleOptionsError, sources.Mercurial, "hg://mysource", "source_dir", source_commit="2", source_branch="branch", ) self.assertThat(raised.source_type, Equals("mercurial")) self.assertThat(raised.options, Equals(["source-branch", "source-commit"])) def test_init_with_source_depth_raises_exception(self): raised = self.assertRaises( sources.errors.SnapcraftSourceInvalidOptionError, sources.Mercurial, "hg://mysource", "source_dir", source_depth=2, ) self.assertThat(raised.source_type, Equals("mercurial")) self.assertThat(raised.option, Equals("source-depth")) def test_source_checksum_raises_exception(self): raised = self.assertRaises( sources.errors.SnapcraftSourceInvalidOptionError, sources.Mercurial, "hg://mysource", "source_dir", source_checksum="md5/d9210476aac5f367b14e513bdefdee08", ) self.assertThat(raised.source_type, Equals("mercurial")) self.assertThat(raised.option, Equals("source-checksum")) def test_has_source_handler_entry(self): self.assertTrue(sources._source_handler["mercurial"] is sources.Mercurial) def test_pull_failure(self): self.mock_run.side_effect = subprocess.CalledProcessError(1, []) hg = sources.Mercurial("hg://my-source", "source_dir") raised = self.assertRaises(sources.errors.SnapcraftPullError, hg.pull) self.assertThat(raised.command, Equals("hg clone hg://my-source source_dir")) self.assertThat(raised.exit_code, Equals(1)) class MercurialBaseTestCase(unit.TestCase): def rm_dir(self, dir): if os.path.exists(dir): shutil.rmtree(dir) def clean_dir(self, dir): self.rm_dir(dir) os.mkdir(dir) self.addCleanup(self.rm_dir, dir) def clone_repo(self, repo, tree): self.clean_dir(tree) call(["hg", "clone", repo, tree]) os.chdir(tree) def add_file(self, filename, body, message): with open(filename, "w") as fp: fp.write(body) call(["hg", "add", filename]) call(["hg", "commit", "-am", message]) def check_file_contents(self, path, expected): body = None with open(path) as fp: body = fp.read() self.assertThat(body, Equals(expected)) class MercurialDetailsTestCase(MercurialBaseTestCase): def setUp(self): super().setUp() self.working_tree = "hg-test" self.source_dir = "hg-checkout" self.clean_dir(self.working_tree) self.clean_dir(self.source_dir) os.chdir(self.working_tree) call(["hg", "init"]) with open("testing", "w") as fp: fp.write("testing") call(["hg", "add", "testing"]) call(["hg", "commit", "-m", "testing", "-u", "Test User <[email protected]>"]) call(["hg", "tag", "-u", "test", "test-tag"]) self.expected_commit = call_with_output(["hg", "id"]).split()[0] self.expected_branch = call_with_output(["hg", "branch"]) self.expected_tag = "test-tag" os.chdir("..") self.hg = sources.Mercurial(self.working_tree, self.source_dir, silent=True) self.hg.pull() self.source_details = self.hg._get_source_details() def test_hg_details_commit(self): self.assertThat( self.source_details["source-commit"], Equals(self.expected_commit) ) def test_hg_details_branch(self): self.clean_dir(self.source_dir) self.hg = sources.Mercurial( self.working_tree, self.source_dir, silent=True, source_branch="default" ) self.hg.pull() self.source_details = self.hg._get_source_details() self.assertThat( self.source_details["source-branch"], Equals(self.expected_branch) ) def test_hg_details_tag(self): self.clean_dir(self.source_dir) self.hg = sources.Mercurial( self.working_tree, self.source_dir, silent=True, source_tag="test-tag" ) self.hg.pull() self.source_details = self.hg._get_source_details() self.assertThat(self.source_details["source-tag"], Equals(self.expected_tag))
gpl-3.0
7,427,885,006,021,944,000
32.87218
85
0.602442
false
Distrotech/reportlab
src/reportlab/platypus/flowables.py
1
72939
#Copyright ReportLab Europe Ltd. 2000-2012 #see license.txt for license details #history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/platypus/flowables.py __version__=''' $Id$ ''' __doc__=""" A flowable is a "floating element" in a document whose exact position is determined by the other elements that precede it, such as a paragraph, a diagram interspersed between paragraphs, a section header, etcetera. Examples of non-flowables include page numbering annotations, headers, footers, fixed diagrams or logos, among others. Flowables are defined here as objects which know how to determine their size and which can draw themselves onto a page with respect to a relative "origin" position determined at a higher level. The object's draw() method should assume that (0,0) corresponds to the bottom left corner of the enclosing rectangle that will contain the object. The attributes vAlign and hAlign may be used by 'packers' as hints as to how the object should be placed. Some Flowables also know how to "split themselves". For example a long paragraph might split itself between one page and the next. Packers should set the canv attribute during wrap, split & draw operations to allow the flowable to work out sizes etc in the proper context. The "text" of a document usually consists mainly of a sequence of flowables which flow into a document from top to bottom (with column and page breaks controlled by higher level components). """ import os from copy import deepcopy, copy from reportlab.lib.colors import red, gray, lightgrey from reportlab.lib.rl_accel import fp_str from reportlab.lib.enums import TA_LEFT, TA_CENTER, TA_RIGHT, TA_JUSTIFY from reportlab.lib.styles import _baseFontName from reportlab.lib.utils import strTypes from reportlab.pdfbase import pdfutils from reportlab.pdfbase.pdfmetrics import stringWidth from reportlab.rl_config import _FUZZ, overlapAttachedSpace, ignoreContainerActions, listWrapOnFakeWidth import collections __all__=('TraceInfo','Flowable','XBox','Preformatted','Image','Spacer','PageBreak','SlowPageBreak', 'CondPageBreak','KeepTogether','Macro','CallerMacro','ParagraphAndImage', 'FailOnWrap','HRFlowable','PTOContainer','KeepInFrame','UseUpSpace', 'ListFlowable','ListItem','DDIndenter','LIIndenter', 'DocAssign', 'DocExec', 'DocAssert', 'DocPara', 'DocIf', 'DocWhile', 'PageBreakIfNotEmpty', ) class TraceInfo: "Holder for info about where an object originated" def __init__(self): self.srcFile = '(unknown)' self.startLineNo = -1 self.startLinePos = -1 self.endLineNo = -1 self.endLinePos = -1 ############################################################# # Flowable Objects - a base class and a few examples. # One is just a box to get some metrics. We also have # a paragraph, an image and a special 'page break' # object which fills the space. ############################################################# class Flowable: """Abstract base class for things to be drawn. Key concepts: 1. It knows its size 2. It draws in its own coordinate system (this requires the base API to provide a translate() function. """ _fixedWidth = 0 #assume wrap results depend on arguments? _fixedHeight = 0 def __init__(self): self.width = 0 self.height = 0 self.wrapped = 0 #these are hints to packers/frames as to how the floable should be positioned self.hAlign = 'LEFT' #CENTER/CENTRE or RIGHT self.vAlign = 'BOTTOM' #MIDDLE or TOP #optional holder for trace info self._traceInfo = None self._showBoundary = None #many flowables handle text and must be processed in the #absence of a canvas. tagging them with their encoding #helps us to get conversions right. Use Python codec names. self.encoding = None def _drawOn(self,canv): '''ensure canv is set on and then draw''' self.canv = canv self.draw()#this is the bit you overload del self.canv def _hAlignAdjust(self,x,sW=0): if sW and hasattr(self,'hAlign'): a = self.hAlign if a in ('CENTER','CENTRE', TA_CENTER): x += 0.5*sW elif a in ('RIGHT',TA_RIGHT): x += sW elif a not in ('LEFT',TA_LEFT): raise ValueError("Bad hAlign value "+str(a)) return x def drawOn(self, canvas, x, y, _sW=0): "Tell it to draw itself on the canvas. Do not override" x = self._hAlignAdjust(x,_sW) canvas.saveState() canvas.translate(x, y) self._drawOn(canvas) if hasattr(self, '_showBoundary') and self._showBoundary: #diagnostic tool support canvas.setStrokeColor(gray) canvas.rect(0,0,self.width, self.height) canvas.restoreState() def wrapOn(self, canv, aW, aH): '''intended for use by packers allows setting the canvas on during the actual wrap''' self.canv = canv w, h = self.wrap(aW,aH) del self.canv return w, h def wrap(self, availWidth, availHeight): """This will be called by the enclosing frame before objects are asked their size, drawn or whatever. It returns the size actually used.""" return (self.width, self.height) def minWidth(self): """This should return the minimum required width""" return getattr(self,'_minWidth',self.width) def splitOn(self, canv, aW, aH): '''intended for use by packers allows setting the canvas on during the actual split''' self.canv = canv S = self.split(aW,aH) del self.canv return S def split(self, availWidth, availheight): """This will be called by more sophisticated frames when wrap fails. Stupid flowables should return []. Clever flowables should split themselves and return a list of flowables. If they decide that nothing useful can be fitted in the available space (e.g. if you have a table and not enough space for the first row), also return []""" return [] def getKeepWithNext(self): """returns boolean determining whether the next flowable should stay with this one""" if hasattr(self,'keepWithNext'): return self.keepWithNext elif hasattr(self,'style') and hasattr(self.style,'keepWithNext'): return self.style.keepWithNext else: return 0 def getSpaceAfter(self): """returns how much space should follow this item if another item follows on the same page.""" if hasattr(self,'spaceAfter'): return self.spaceAfter elif hasattr(self,'style') and hasattr(self.style,'spaceAfter'): return self.style.spaceAfter else: return 0 def getSpaceBefore(self): """returns how much space should precede this item if another item precedess on the same page.""" if hasattr(self,'spaceBefore'): return self.spaceBefore elif hasattr(self,'style') and hasattr(self.style,'spaceBefore'): return self.style.spaceBefore else: return 0 def isIndexing(self): """Hook for IndexingFlowables - things which have cross references""" return 0 def identity(self, maxLen=None): ''' This method should attempt to return a string that can be used to identify a particular flowable uniquely. The result can then be used for debugging and or error printouts ''' if hasattr(self, 'getPlainText'): r = self.getPlainText(identify=1) elif hasattr(self, 'text'): r = str(self.text) else: r = '...' if r and maxLen: r = r[:maxLen] return "<%s at %s%s>%s" % (self.__class__.__name__, hex(id(self)), self._frameName(), r) def _doctemplateAttr(self,a): return getattr(getattr(getattr(self,'canv',None),'_doctemplate',None),a,None) def _frameName(self): f = getattr(self,'_frame',None) if not f: f = self._doctemplateAttr('frame') if f and f.id: return ' frame=%s' % f.id return '' class XBox(Flowable): """Example flowable - a box with an x through it and a caption. This has a known size, so does not need to respond to wrap().""" def __init__(self, width, height, text = 'A Box'): Flowable.__init__(self) self.width = width self.height = height self.text = text def __repr__(self): return "XBox(w=%s, h=%s, t=%s)" % (self.width, self.height, self.text) def draw(self): self.canv.rect(0, 0, self.width, self.height) self.canv.line(0, 0, self.width, self.height) self.canv.line(0, self.height, self.width, 0) #centre the text self.canv.setFont(_baseFontName,12) self.canv.drawCentredString(0.5*self.width, 0.5*self.height, self.text) def _trimEmptyLines(lines): #don't want the first or last to be empty while len(lines) and lines[0].strip() == '': lines = lines[1:] while len(lines) and lines[-1].strip() == '': lines = lines[:-1] return lines def _dedenter(text,dedent=0): ''' tidy up text - carefully, it is probably code. If people want to indent code within a source script, you can supply an arg to dedent and it will chop off that many character, otherwise it leaves left edge intact. ''' lines = text.split('\n') if dedent>0: templines = _trimEmptyLines(lines) lines = [] for line in templines: line = line[dedent:].rstrip() lines.append(line) else: lines = _trimEmptyLines(lines) return lines SPLIT_CHARS = "[{( ,.;:/\\-" def splitLines(lines, maximum_length, split_characters, new_line_characters): if split_characters is None: split_characters = SPLIT_CHARS if new_line_characters is None: new_line_characters = "" # Return a table of lines lines_splitted = [] for line in lines: if len(line) > maximum_length: splitLine(line, lines_splitted, maximum_length, \ split_characters, new_line_characters) else: lines_splitted.append(line) return lines_splitted def splitLine(line_to_split, lines_splitted, maximum_length, \ split_characters, new_line_characters): # Used to implement the characters added #at the beginning of each new line created first_line = True # Check if the text can be splitted while line_to_split and len(line_to_split)>0: # Index of the character where we can split split_index = 0 # Check if the line length still exceeds the maximum length if len(line_to_split) <= maximum_length: # Return the remaining of the line split_index = len(line_to_split) else: # Iterate for each character of the line for line_index in range(maximum_length): # Check if the character is in the list # of allowed characters to split on if line_to_split[line_index] in split_characters: split_index = line_index + 1 # If the end of the line was reached # with no character to split on if split_index==0: split_index = line_index + 1 if first_line: lines_splitted.append(line_to_split[0:split_index]) first_line = False maximum_length -= len(new_line_characters) else: lines_splitted.append(new_line_characters + \ line_to_split[0:split_index]) # Remaining text to split line_to_split = line_to_split[split_index:] class Preformatted(Flowable): """This is like the HTML <PRE> tag. It attempts to display text exactly as you typed it in a fixed width "typewriter" font. By default the line breaks are exactly where you put them, and it will not be wrapped. You can optionally define a maximum line length and the code will be wrapped; and extra characters to be inserted at the beginning of each wrapped line (e.g. '> '). """ def __init__(self, text, style, bulletText = None, dedent=0, maxLineLength=None, splitChars=None, newLineChars=""): """text is the text to display. If dedent is set then common leading space will be chopped off the front (for example if the entire text is indented 6 spaces or more then each line will have 6 spaces removed from the front). """ self.style = style self.bulletText = bulletText self.lines = _dedenter(text,dedent) if text and maxLineLength: self.lines = splitLines( self.lines, maxLineLength, splitChars, newLineChars ) def __repr__(self): bT = self.bulletText H = "Preformatted(" if bT is not None: H = "Preformatted(bulletText=%s," % repr(bT) return "%s'''\\ \n%s''')" % (H, '\n'.join(self.lines)) def wrap(self, availWidth, availHeight): self.width = availWidth self.height = self.style.leading*len(self.lines) return (self.width, self.height) def minWidth(self): style = self.style fontSize = style.fontSize fontName = style.fontName return max([stringWidth(line,fontName,fontSize) for line in self.lines]) def split(self, availWidth, availHeight): #returns two Preformatted objects #not sure why they can be called with a negative height if availHeight < self.style.leading: return [] linesThatFit = int(availHeight * 1.0 / self.style.leading) text1 = '\n'.join(self.lines[0:linesThatFit]) text2 = '\n'.join(self.lines[linesThatFit:]) style = self.style if style.firstLineIndent != 0: style = deepcopy(style) style.firstLineIndent = 0 return [Preformatted(text1, self.style), Preformatted(text2, style)] def draw(self): #call another method for historical reasons. Besides, I #suspect I will be playing with alternate drawing routines #so not doing it here makes it easier to switch. cur_x = self.style.leftIndent cur_y = self.height - self.style.fontSize self.canv.addLiteral('%PreformattedPara') if self.style.textColor: self.canv.setFillColor(self.style.textColor) tx = self.canv.beginText(cur_x, cur_y) #set up the font etc. tx.setFont( self.style.fontName, self.style.fontSize, self.style.leading) for text in self.lines: tx.textLine(text) self.canv.drawText(tx) class Image(Flowable): """an image (digital picture). Formats supported by PIL/Java 1.4 (the Python/Java Imaging Library are supported. Images as flowables may be aligned horizontally in the frame with the hAlign parameter - accepted values are 'CENTER', 'LEFT' or 'RIGHT' with 'CENTER' being the default. We allow for two kinds of lazyness to allow for many images in a document which could lead to file handle starvation. lazy=1 don't open image until required. lazy=2 open image when required then shut it. """ _fixedWidth = 1 _fixedHeight = 1 def __init__(self, filename, width=None, height=None, kind='direct', mask="auto", lazy=1, hAlign='CENTER'): """If size to draw at not specified, get it from the image.""" self.hAlign = hAlign self._mask = mask fp = hasattr(filename,'read') if fp: self._file = filename self.filename = repr(filename) else: self._file = self.filename = filename if not fp and os.path.splitext(filename)[1] in ['.jpg', '.JPG', '.jpeg', '.JPEG']: # if it is a JPEG, will be inlined within the file - # but we still need to know its size now from reportlab.lib.utils import open_for_read f = open_for_read(filename, 'b') try: try: info = pdfutils.readJPEGInfo(f) except: #couldn't read as a JPEG, try like normal self._setup(width,height,kind,lazy) return finally: f.close() self.imageWidth = info[0] self.imageHeight = info[1] self._img = None self._setup(width,height,kind,0) elif fp: self._setup(width,height,kind,0) else: self._setup(width,height,kind,lazy) def _setup(self,width,height,kind,lazy): self._lazy = lazy self._width = width self._height = height self._kind = kind if lazy<=0: self._setup_inner() def _setup_inner(self): width = self._width height = self._height kind = self._kind img = self._img if img: self.imageWidth, self.imageHeight = img.getSize() if self._lazy>=2: del self._img if kind in ['direct','absolute']: self.drawWidth = width or self.imageWidth self.drawHeight = height or self.imageHeight elif kind in ['percentage','%']: self.drawWidth = self.imageWidth*width*0.01 self.drawHeight = self.imageHeight*height*0.01 elif kind in ['bound','proportional']: factor = min(float(width)/self.imageWidth,float(height)/self.imageHeight) self.drawWidth = self.imageWidth*factor self.drawHeight = self.imageHeight*factor def _restrictSize(self,aW,aH): if self.drawWidth>aW+_FUZZ or self.drawHeight>aH+_FUZZ: self._oldDrawSize = self.drawWidth, self.drawHeight factor = min(float(aW)/self.drawWidth,float(aH)/self.drawHeight) self.drawWidth *= factor self.drawHeight *= factor return self.drawWidth, self.drawHeight def _unRestrictSize(self): dwh = getattr(self,'_oldDrawSize',None) if dwh: self.drawWidth, self.drawHeight = dwh def __getattr__(self,a): if a=='_img': from reportlab.lib.utils import ImageReader #this may raise an error self._img = ImageReader(self._file) if not isinstance(self._file,strTypes): self._file = None if self._lazy>=2: self._lazy = 1 #here we're assuming we cannot read again return self._img elif a in ('drawWidth','drawHeight','imageWidth','imageHeight'): self._setup_inner() return self.__dict__[a] raise AttributeError("<Image @ 0x%x>.%s" % (id(self),a)) def wrap(self, availWidth, availHeight): #the caller may decide it does not fit. return self.drawWidth, self.drawHeight def draw(self): lazy = self._lazy if lazy>=2: self._lazy = 1 self.canv.drawImage( self._img or self.filename, getattr(self,'_offs_x',0), getattr(self,'_offs_y',0), self.drawWidth, self.drawHeight, mask=self._mask, ) if lazy>=2: self._img = self._file = None self._lazy = lazy def identity(self,maxLen=None): r = Flowable.identity(self,maxLen) if r[-4:]=='>...' and isinstance(self.filename,str): r = "%s filename=%s>" % (r[:-4],self.filename) return r class NullDraw(Flowable): def draw(self): pass class Spacer(NullDraw): """A spacer just takes up space and doesn't draw anything - it guarantees a gap between objects.""" _fixedWidth = 1 _fixedHeight = 1 def __init__(self, width, height, isGlue=False): self.width = width if isGlue: self.height = 1e-4 self.spacebefore = height self.height = height def __repr__(self): return "%s(%s, %s)" % (self.__class__.__name__,self.width, self.height) class UseUpSpace(NullDraw): def __init__(self): pass def __repr__(self): return "%s()" % self.__class__.__name__ def wrap(self, availWidth, availHeight): self.width = availWidth self.height = availHeight return (availWidth,availHeight-1e-8) #step back a point class PageBreak(UseUpSpace): """Move on to the next page in the document. This works by consuming all remaining space in the frame!""" def __init__(self,nextTemplate=None): self.nextTemplate = nextTemplate class SlowPageBreak(PageBreak): pass class PageBreakIfNotEmpty(PageBreak): pass class CondPageBreak(Spacer): """use up a frame if not enough vertical space effectively CondFrameBreak""" def __init__(self, height): self.height = height def __repr__(self): return "CondPageBreak(%s)" %(self.height,) def wrap(self, availWidth, availHeight): if availHeight<self.height: f = self._doctemplateAttr('frame') if not f: return availWidth, availHeight from reportlab.platypus.doctemplate import FrameBreak f.add_generated_content(FrameBreak) return 0, 0 def identity(self,maxLen=None): return repr(self).replace(')',',frame=%s)'%self._frameName()) def _listWrapOn(F,availWidth,canv,mergeSpace=1,obj=None,dims=None,fakeWidth=None): '''return max width, required height for a list of flowables F''' doct = getattr(canv,'_doctemplate',None) cframe = getattr(doct,'frame',None) if fakeWidth is None: fakeWidth = listWrapOnFakeWidth if cframe: from reportlab.platypus.doctemplate import _addGeneratedContent, Indenter doct_frame = cframe cframe = doct.frame = deepcopy(doct_frame) cframe._generated_content = None del cframe._generated_content try: W = 0 H = 0 pS = 0 atTop = 1 F = F[:] while F: f = F.pop(0) if hasattr(f,'frameAction'): from reportlab.platypus.doctemplate import Indenter if isinstance(f,Indenter): availWidth -= f.left+f.right continue w,h = f.wrapOn(canv,availWidth,0xfffffff) if dims is not None: dims.append((w,h)) if cframe: _addGeneratedContent(F,cframe) if w<=_FUZZ or h<=_FUZZ: continue W = max(W,min(w,availWidth) if fakeWidth else w) H += h if not atTop: h = f.getSpaceBefore() if mergeSpace: if getattr(f,'_SPACETRANSFER',False): h = pS h = max(h-pS,0) H += h else: if obj is not None: obj._spaceBefore = f.getSpaceBefore() atTop = 0 s = f.getSpaceAfter() if getattr(f,'_SPACETRANSFER',False): s = pS pS = s H += pS if obj is not None: obj._spaceAfter = pS return W, H-pS finally: if cframe: doct.frame = doct_frame def _flowableSublist(V): "if it isn't a list or tuple, wrap it in a list" if not isinstance(V,(list,tuple)): V = V is not None and [V] or [] from reportlab.platypus.doctemplate import LCActionFlowable assert not [x for x in V if isinstance(x,LCActionFlowable)],'LCActionFlowables not allowed in sublists' return V class _ContainerSpace: #Abstract some common container like behaviour def getSpaceBefore(self): for c in self._content: if not hasattr(c,'frameAction'): return c.getSpaceBefore() return 0 def getSpaceAfter(self,content=None): #this needs 2.4 #for c in reversed(content or self._content): reverseContent = (content or self._content)[:] reverseContent.reverse() for c in reverseContent: if not hasattr(c,'frameAction'): return c.getSpaceAfter() return 0 class KeepTogether(_ContainerSpace,Flowable): def __init__(self,flowables,maxHeight=None): self._content = _flowableSublist(flowables) self._maxHeight = maxHeight def __repr__(self): f = self._content L = list(map(repr,f)) L = "\n"+"\n".join(L) L = L.replace("\n", "\n ") return "%s(%s,maxHeight=%s)" % (self.__class__.__name__,L,self._maxHeight) def wrap(self, aW, aH): dims = [] W,H = _listWrapOn(self._content,aW,self.canv,dims=dims) self._H = H self._H0 = dims and dims[0][1] or 0 self._wrapInfo = aW,aH return W, 0xffffff # force a split def split(self, aW, aH): if getattr(self,'_wrapInfo',None)!=(aW,aH): self.wrap(aW,aH) S = self._content[:] atTop = getattr(self,'_frame',None) if atTop: atTop = getattr(atTop,'_atTop',None) C0 = self._H>aH and (not self._maxHeight or aH>self._maxHeight) C1 = (self._H0>aH) or C0 and atTop if C0 or C1: if C0: from reportlab.platypus.doctemplate import FrameBreak A = FrameBreak else: from reportlab.platypus.doctemplate import NullActionFlowable A = NullActionFlowable S.insert(0,A()) return S def identity(self, maxLen=None): msg = "<%s at %s%s> containing :%s" % (self.__class__.__name__,hex(id(self)),self._frameName(),"\n".join([f.identity() for f in self._content])) if maxLen: return msg[0:maxLen] else: return msg class Macro(Flowable): """This is not actually drawn (i.e. it has zero height) but is executed when it would fit in the frame. Allows direct access to the canvas through the object 'canvas'""" def __init__(self, command): self.command = command def __repr__(self): return "Macro(%s)" % repr(self.command) def wrap(self, availWidth, availHeight): return (0,0) def draw(self): exec(self.command, globals(), {'canvas':self.canv}) def _nullCallable(*args,**kwds): pass class CallerMacro(Flowable): ''' like Macro, but with callable command(s) drawCallable(self) wrapCallable(self,aW,aH) ''' def __init__(self, drawCallable=None, wrapCallable=None): self._drawCallable = drawCallable or _nullCallable self._wrapCallable = wrapCallable or _nullCallable def __repr__(self): return "CallerMacro(%r,%r)" % (self._drawCallable,self._wrapCallable) def wrap(self, aW, aH): self._wrapCallable(self,aW,aH) return (0,0) def draw(self): self._drawCallable(self) class ParagraphAndImage(Flowable): '''combine a Paragraph and an Image''' def __init__(self,P,I,xpad=3,ypad=3,side='right'): self.P = P self.I = I self.xpad = xpad self.ypad = ypad self._side = side def getSpaceBefore(self): return max(self.P.getSpaceBefore(),self.I.getSpaceBefore()) def getSpaceAfter(self): return max(self.P.getSpaceAfter(),self.I.getSpaceAfter()) def wrap(self,availWidth,availHeight): wI, hI = self.I.wrap(availWidth,availHeight) self.wI = wI self.hI = hI # work out widths array for breaking self.width = availWidth P = self.P style = P.style xpad = self.xpad ypad = self.ypad leading = style.leading leftIndent = style.leftIndent later_widths = availWidth - leftIndent - style.rightIndent intermediate_widths = later_widths - xpad - wI first_line_width = intermediate_widths - style.firstLineIndent P.width = 0 nIW = int((hI+ypad)/(leading*1.0)) P.blPara = P.breakLines([first_line_width] + nIW*[intermediate_widths]+[later_widths]) if self._side=='left': self._offsets = [wI+xpad]*(1+nIW)+[0] P.height = len(P.blPara.lines)*leading self.height = max(hI,P.height) return (self.width, self.height) def split(self,availWidth, availHeight): P, wI, hI, ypad = self.P, self.wI, self.hI, self.ypad if hI+ypad>availHeight or len(P.frags)<=0: return [] S = P.split(availWidth,availHeight) if not S: return S P = self.P = S[0] del S[0] style = P.style P.height = len(self.P.blPara.lines)*style.leading self.height = max(hI,P.height) return [self]+S def draw(self): canv = self.canv if self._side=='left': self.I.drawOn(canv,0,self.height-self.hI) self.P._offsets = self._offsets try: self.P.drawOn(canv,0,0) finally: del self.P._offsets else: self.I.drawOn(canv,self.width-self.wI-self.xpad,self.height-self.hI) self.P.drawOn(canv,0,0) class FailOnWrap(NullDraw): def wrap(self, availWidth, availHeight): raise ValueError("FailOnWrap flowable wrapped and failing as ordered!") class FailOnDraw(Flowable): def wrap(self, availWidth, availHeight): return 0,0 def draw(self): raise ValueError("FailOnDraw flowable drawn, and failing as ordered!") class HRFlowable(Flowable): '''Like the hr tag''' def __init__(self, width="80%", thickness=1, lineCap='round', color=lightgrey, spaceBefore=1, spaceAfter=1, hAlign='CENTER', vAlign='BOTTOM', dash=None): Flowable.__init__(self) self.width = width self.lineWidth = thickness self.lineCap=lineCap self.spaceBefore = spaceBefore self.spaceAfter = spaceAfter self.color = color self.hAlign = hAlign self.vAlign = vAlign self.dash = dash def __repr__(self): return "HRFlowable(width=%s, height=%s)" % (self.width, self.height) def wrap(self, availWidth, availHeight): w = self.width if type(w) is type(''): w = w.strip() if w.endswith('%'): w = availWidth*float(w[:-1])*0.01 else: w = float(w) w = min(w,availWidth) self._width = w return w, self.lineWidth def draw(self): canv = self.canv canv.saveState() canv.setLineWidth(self.lineWidth) canv.setLineCap({'butt':0,'round':1, 'square': 2}[self.lineCap.lower()]) canv.setStrokeColor(self.color) if self.dash: canv.setDash(self.dash) canv.line(0, 0, self._width, self.height) canv.restoreState() class _PTOInfo: def __init__(self,trailer,header): self.trailer = _flowableSublist(trailer) self.header = _flowableSublist(header) def cdeepcopy(obj): if hasattr(obj,'deepcopy'): return obj.deepcopy() else: return deepcopy(obj) class _Container(_ContainerSpace): #Abstract some common container like behaviour def drawOn(self, canv, x, y, _sW=0, scale=1.0, content=None, aW=None): '''we simulate being added to a frame''' from reportlab.platypus.doctemplate import ActionFlowable, Indenter x0 = x y0 = y pS = 0 if aW is None: aW = self.width aW *= scale if content is None: content = self._content x = self._hAlignAdjust(x,_sW*scale) y += self.height*scale yt = y frame = getattr(self,'_frame',None) for c in content: if not ignoreContainerActions and isinstance(c,ActionFlowable): c.apply(self.canv._doctemplate) continue if isinstance(c,Indenter): x += c.left*scale aW -= (c.left+c.right)*scale continue w, h = c.wrapOn(canv,aW,0xfffffff) if (w<_FUZZ or h<_FUZZ) and not getattr(c,'_ZEROSIZE',None): continue if yt!=y: s = c.getSpaceBefore() if not getattr(c,'_SPACETRANSFER',False): h += max(s-pS,0) y -= h fbg = getattr(frame,'_frameBGs',None) s = c.getSpaceAfter() if getattr(c,'_SPACETRANSFER',False): s = pS pS = s if fbg: fbgl, fbgr, fbgc = fbg[-1] fbw = scale*(frame._width-fbgl-fbgr) fbh = y + h + pS fby = max(y0,y-pS) fbh = max(0,fbh-fby) if abs(fbw)>_FUZZ and abs(fbh)>_FUZZ: canv.saveState() canv.setFillColor(fbgc) canv.rect(x0+scale*(fbgl-frame._leftPadding)-0.1,fby-0.1,fbw+0.2,fbh+0.2,stroke=0,fill=1) canv.restoreState() c._frame = frame c.drawOn(canv,x,y,_sW=aW-w) if c is not content[-1] and not getattr(c,'_SPACETRANSFER',None): y -= pS del c._frame def copyContent(self,content=None): C = [].append for c in (content or self._content): C(cdeepcopy(c)) self._content = C.__self__ class PTOContainer(_Container,Flowable): '''PTOContainer(contentList,trailerList,headerList) A container for flowables decorated with trailer & header lists. If the split operation would be called then the trailer and header lists are injected before and after the split. This allows specialist "please turn over" and "continued from previous" like behaviours.''' def __init__(self,content,trailer=None,header=None): I = _PTOInfo(trailer,header) self._content = C = [] for _ in _flowableSublist(content): if isinstance(_,PTOContainer): C.extend(_._content) else: C.append(_) if not hasattr(_,'_ptoinfo'): _._ptoinfo = I def wrap(self,availWidth,availHeight): self.width, self.height = _listWrapOn(self._content,availWidth,self.canv) return self.width,self.height def split(self, availWidth, availHeight): from reportlab.platypus.doctemplate import Indenter if availHeight<0: return [] canv = self.canv C = self._content x = i = H = pS = hx = 0 n = len(C) I2W = {} dLeft = dRight = 0 for x in xrange(n): c = C[x] I = c._ptoinfo if I not in I2W.keys(): T = I.trailer Hdr = I.header tW, tH = _listWrapOn(T, availWidth, self.canv) if len(T): #trailer may have no content tSB = T[0].getSpaceBefore() else: tSB = 0 I2W[I] = T,tW,tH,tSB else: T,tW,tH,tSB = I2W[I] _, h = c.wrapOn(canv,availWidth,0xfffffff) if isinstance(c,Indenter): dw = c.left+c.right dLeft += c.left dRight += c.right availWidth -= dw pS = 0 hx = 0 else: if x: hx = max(c.getSpaceBefore()-pS,0) h += hx pS = c.getSpaceAfter() H += h+pS tHS = tH+max(tSB,pS) if H+tHS>=availHeight-_FUZZ: break i += 1 #first retract last thing we tried H -= (h+pS) #attempt a sub split on the last one we have aH = (availHeight-H-tHS-hx)*0.99999 if aH>=0.05*availHeight: SS = c.splitOn(canv,availWidth,aH) else: SS = [] if abs(dLeft)+abs(dRight)>1e-8: R1I = [Indenter(-dLeft,-dRight)] R2I = [Indenter(dLeft,dRight)] else: R1I = R2I = [] if not SS: j = i while i>1 and C[i-1].getKeepWithNext(): i -= 1 C[i].keepWithNext = 0 if i==1 and C[0].getKeepWithNext(): #robin's black sheep i = j C[0].keepWithNext = 0 F = [UseUpSpace()] if len(SS)>1: R1 = C[:i]+SS[:1]+R1I+T+F R2 = Hdr+R2I+SS[1:]+C[i+1:] elif not i: return [] else: R1 = C[:i]+R1I+T+F R2 = Hdr+R2I+C[i:] T = R1 + [PTOContainer(R2,[copy(x) for x in I.trailer],[copy(x) for x in I.header])] return T #utility functions used by KeepInFrame def _hmodel(s0,s1,h0,h1): # calculate the parameters in the model # h = a/s**2 + b/s a11 = 1./s0**2 a12 = 1./s0 a21 = 1./s1**2 a22 = 1./s1 det = a11*a22-a12*a21 b11 = a22/det b12 = -a12/det b21 = -a21/det b22 = a11/det a = b11*h0+b12*h1 b = b21*h0+b22*h1 return a,b def _qsolve(h,ab): '''solve the model v = a/s**2 + b/s for an s which gives us v==h''' a,b = ab if abs(a)<=_FUZZ: return b/h t = 0.5*b/a from math import sqrt f = -h/a r = t*t-f if r<0: return None r = sqrt(r) if t>=0: s1 = -t - r else: s1 = -t + r s2 = f/s1 return max(1./s1, 1./s2) class KeepInFrame(_Container,Flowable): def __init__(self, maxWidth, maxHeight, content=[], mergeSpace=1, mode='shrink', name='',hAlign='LEFT',vAlign='BOTTOM', fakeWidth=None): '''mode describes the action to take when overflowing error raise an error in the normal way continue ignore ie just draw it and report maxWidth, maxHeight shrink shrinkToFit truncate fit as much as possible set fakeWidth to False to make _listWrapOn do the 'right' thing ''' self.name = name self.maxWidth = maxWidth self.maxHeight = maxHeight self.mode = mode assert mode in ('error','overflow','shrink','truncate'), '%s invalid mode value %s' % (self.identity(),mode) assert maxHeight>=0, '%s invalid maxHeight value %s' % (self.identity(),maxHeight) if mergeSpace is None: mergeSpace = overlapAttachedSpace self.mergespace = mergeSpace self._content = content or [] self.vAlign = vAlign self.hAlign = hAlign self.fakeWidth = fakeWidth def _getAvailableWidth(self): return self.maxWidth - self._leftExtraIndent - self._rightExtraIndent def identity(self, maxLen=None): return "<%s at %s%s%s> size=%sx%s" % (self.__class__.__name__, hex(id(self)), self._frameName(), getattr(self,'name','') and (' name="%s"'% getattr(self,'name','')) or '', getattr(self,'maxWidth','') and (' maxWidth=%s'%fp_str(getattr(self,'maxWidth',0))) or '', getattr(self,'maxHeight','')and (' maxHeight=%s' % fp_str(getattr(self,'maxHeight')))or '') def wrap(self,availWidth,availHeight): from reportlab.platypus.doctemplate import LayoutError mode = self.mode maxWidth = float(min(self.maxWidth or availWidth,availWidth)) maxHeight = float(min(self.maxHeight or availHeight,availHeight)) fakeWidth = self.fakeWidth W, H = _listWrapOn(self._content,maxWidth,self.canv, fakeWidth=fakeWidth) if (mode=='error' and (W>maxWidth+_FUZZ or H>maxHeight+_FUZZ)): ident = 'content %sx%s too large for %s' % (W,H,self.identity(30)) #leave to keep apart from the raise raise LayoutError(ident) elif W<=maxWidth+_FUZZ and H<=maxHeight+_FUZZ: self.width = W-_FUZZ #we take what we get self.height = H-_FUZZ elif mode in ('overflow','truncate'): #we lie self.width = min(maxWidth,W)-_FUZZ self.height = min(maxHeight,H)-_FUZZ else: def func(x): x = float(x) W, H = _listWrapOn(self._content,x*maxWidth,self.canv, fakeWidth=fakeWidth) W /= x H /= x return W, H W0 = W H0 = H s0 = 1 if W>maxWidth+_FUZZ: #squeeze out the excess width and or Height s1 = W/maxWidth #linear model W, H = func(s1) if H<=maxHeight+_FUZZ: self.width = W-_FUZZ self.height = H-_FUZZ self._scale = s1 return W,H s0 = s1 H0 = H W0 = W s1 = H/maxHeight W, H = func(s1) self.width = W-_FUZZ self.height = H-_FUZZ self._scale = s1 if H<min(0.95*maxHeight,maxHeight-10) or H>=maxHeight+_FUZZ: #the standard case W should be OK, H is short we want #to find the smallest s with H<=maxHeight H1 = H for f in 0, 0.01, 0.05, 0.10, 0.15: #apply the quadratic model s = _qsolve(maxHeight*(1-f),_hmodel(s0,s1,H0,H1)) W, H = func(s) if H<=maxHeight+_FUZZ and W<=maxWidth+_FUZZ: self.width = W-_FUZZ self.height = H-_FUZZ self._scale = s break return self.width, self.height def drawOn(self, canv, x, y, _sW=0): scale = getattr(self,'_scale',1.0) truncate = self.mode=='truncate' ss = scale!=1.0 or truncate if ss: canv.saveState() if truncate: p = canv.beginPath() p.rect(x, y, self.width,self.height) canv.clipPath(p,stroke=0) else: canv.translate(x,y) x=y=0 canv.scale(1.0/scale, 1.0/scale) _Container.drawOn(self, canv, x, y, _sW=_sW, scale=scale) if ss: canv.restoreState() class ImageAndFlowables(_Container,Flowable): '''combine a list of flowables and an Image''' def __init__(self,I,F,imageLeftPadding=0,imageRightPadding=3,imageTopPadding=0,imageBottomPadding=3, imageSide='right', imageHref=None): self._content = _flowableSublist(F) self._I = I self._irpad = imageRightPadding self._ilpad = imageLeftPadding self._ibpad = imageBottomPadding self._itpad = imageTopPadding self._side = imageSide self.imageHref = imageHref def deepcopy(self): c = copy(self) #shallow self._reset() c.copyContent() #partially deep? return c def getSpaceAfter(self): if hasattr(self,'_C1'): C = self._C1 elif hasattr(self,'_C0'): C = self._C0 else: C = self._content return _Container.getSpaceAfter(self,C) def getSpaceBefore(self): return max(self._I.getSpaceBefore(),_Container.getSpaceBefore(self)) def _reset(self): for a in ('_wrapArgs','_C0','_C1'): try: delattr(self,a) except: pass def wrap(self,availWidth,availHeight): canv = self.canv I = self._I if hasattr(self,'_wrapArgs'): if self._wrapArgs==(availWidth,availHeight) and getattr(I,'_oldDrawSize',None) is None: return self.width,self.height self._reset() I._unRestrictSize() self._wrapArgs = availWidth, availHeight I.wrap(availWidth,availHeight) wI, hI = I._restrictSize(availWidth,availHeight) self._wI = wI self._hI = hI ilpad = self._ilpad irpad = self._irpad ibpad = self._ibpad itpad = self._itpad self._iW = iW = availWidth - irpad - wI - ilpad aH = itpad + hI + ibpad if iW>_FUZZ: W,H0,self._C0,self._C1 = self._findSplit(canv,iW,aH) else: W = availWidth H0 = 0 if W>iW+_FUZZ: self._C0 = [] self._C1 = self._content aH = self._aH = max(aH,H0) self.width = availWidth if not self._C1: self.height = aH else: W1,H1 = _listWrapOn(self._C1,availWidth,canv) self.height = aH+H1 return self.width, self.height def split(self,availWidth, availHeight): if hasattr(self,'_wrapArgs'): I = self._I if self._wrapArgs!=(availWidth,availHeight) or getattr(I,'_oldDrawSize',None) is not None: self._reset() I._unRestrictSize() W,H=self.wrap(availWidth,availHeight) if self._aH>availHeight: return [] C1 = self._C1 if C1: S = C1[0].split(availWidth,availHeight-self._aH) if not S: _C1 = [] else: _C1 = [S[0]] C1 = S[1:]+C1[1:] else: _C1 = [] return [ImageAndFlowables( self._I, self._C0+_C1, imageLeftPadding=self._ilpad, imageRightPadding=self._irpad, imageTopPadding=self._itpad, imageBottomPadding=self._ibpad, imageSide=self._side, imageHref=self.imageHref) ]+C1 def drawOn(self, canv, x, y, _sW=0): if self._side=='left': Ix = x + self._ilpad Fx = Ix+ self._irpad + self._wI else: Ix = x + self.width-self._wI-self._irpad Fx = x self._I.drawOn(canv,Ix,y+self.height-self._itpad-self._hI) if self.imageHref: canv.linkURL(self.imageHref, (Ix, y+self.height-self._itpad-self._hI, Ix + self._wI, y+self.height), relative=1) if self._C0: _Container.drawOn(self, canv, Fx, y, content=self._C0, aW=self._iW) if self._C1: aW, aH = self._wrapArgs _Container.drawOn(self, canv, x, y-self._aH,content=self._C1, aW=aW) def _findSplit(self,canv,availWidth,availHeight,mergeSpace=1,obj=None): '''return max width, required height for a list of flowables F''' W = 0 H = 0 pS = sB = 0 atTop = 1 F = self._content for i,f in enumerate(F): w,h = f.wrapOn(canv,availWidth,0xfffffff) if w<=_FUZZ or h<=_FUZZ: continue W = max(W,w) if not atTop: s = f.getSpaceBefore() if mergeSpace: s = max(s-pS,0) H += s else: if obj is not None: obj._spaceBefore = f.getSpaceBefore() atTop = 0 if H>=availHeight or w>availWidth: return W, availHeight, F[:i],F[i:] H += h if H>availHeight: from reportlab.platypus.paragraph import Paragraph aH = availHeight-(H-h) if isinstance(f,(Paragraph,Preformatted)): leading = f.style.leading nH = leading*int(aH/float(leading))+_FUZZ if nH<aH: nH += leading availHeight += nH-aH aH = nH S = cdeepcopy(f).splitOn(canv,availWidth,aH) if not S: return W, availHeight, F[:i],F[i:] else: return W,availHeight,F[:i]+S[:1],S[1:]+F[i+1:] pS = f.getSpaceAfter() H += pS if obj is not None: obj._spaceAfter = pS return W, H-pS, F, [] class AnchorFlowable(Spacer): '''create a bookmark in the pdf''' _ZEROSIZE=1 _SPACETRANSFER = True def __init__(self,name): Spacer.__init__(self,0,0) self._name = name def __repr__(self): return "%s(%s)" % (self.__class__.__name__,self._name) def wrap(self,aW,aH): return 0,0 def draw(self): self.canv.bookmarkHorizontal(self._name,0,0) class FrameBG(AnchorFlowable): """Start or stop coloring the frame background left & right are distances from the edge of the frame to start stop colouring. """ _ZEROSIZE=1 def __init__(self, color=None, left=0, right=0, start=True): Spacer.__init__(self,0,0) self.start = start if start: from reportlab.platypus.doctemplate import _evalMeasurement self.left = _evalMeasurement(left) self.right = _evalMeasurement(right) self.color = color def __repr__(self): return "%s(%s)" % (self.__class__.__name__,', '.join(['%s=%r' % (i,getattr(self,i,None)) for i in 'start color left right'.split()])) def draw(self): frame = getattr(self,'_frame',None) if frame is None: return if self.start: w = getattr(frame,'_lineWidth',0) frame._frameBGs.append((self.left,self.right,self.color)) elif frame._frameBGs: frame._frameBGs.pop() class FrameSplitter(NullDraw): '''When encountered this flowable should either switch directly to nextTemplate if remaining space in the current frame is less than gap+required or it should temporarily modify the current template to have the frames from nextTemplate that are listed in nextFrames and switch to the first of those frames. ''' _ZEROSIZE=1 def __init__(self,nextTemplate,nextFrames=[],gap=10,required=72): self.nextTemplate=nextTemplate self.nextFrames=nextFrames or [] self.gap=gap self.required=required def wrap(self,aW,aH): frame = self._frame from reportlab.platypus.doctemplate import NextPageTemplate,CurrentFrameFlowable,LayoutError G=[NextPageTemplate(self.nextTemplate)] if aH<self.gap+self.required-_FUZZ: #we are going straight to the nextTemplate with no attempt to modify the frames G.append(PageBreak()) else: #we are going to modify the incoming templates templates = self._doctemplateAttr('pageTemplates') if templates is None: raise LayoutError('%s called in non-doctemplate environment'%self.identity()) T=[t for t in templates if t.id==self.nextTemplate] if not T: raise LayoutError('%s.nextTemplate=%s not found' % (self.identity(),self.nextTemplate)) T=T[0] F=[f for f in T.frames if f.id in self.nextFrames] N=[f.id for f in F] N=[f for f in self.nextFrames if f not in N] if N: raise LayoutError('%s frames=%r not found in pageTemplate(%s)\n%r has frames %r' % (self.identity(),N,T.id,T,[f.id for f in T.frames])) T=self._doctemplateAttr('pageTemplate') def unwrap(canv,doc,T=T,onPage=T.onPage,oldFrames=T.frames): T.frames=oldFrames T.onPage=onPage onPage(canv,doc) T.onPage=unwrap h=aH-self.gap for i,f in enumerate(F): f=copy(f) f.height=h f._reset() F[i]=f T.frames=F G.append(CurrentFrameFlowable(F[0].id)) frame.add_generated_content(*G) return 0,0 from reportlab.lib.sequencer import _type2formatter _bulletNames = dict( bulletchar=u'\u2022', #usually a small circle circle=u'\u25cf', #circle as high as the font square=u'\u25a0', disc=u'\u25cf', diamond=u'\u25c6', rarrowhead=u'\u27a4', ) def _bulletFormat(value,type='1',format=None): if type=='bullet': s = _bulletNames.get(value,value) else: s = _type2formatter[type](int(value)) if format: if isinstance(format,str): s = format % s elif isinstance(format, collections.Callable): s = format(s) else: raise ValueError('unexpected BulletDrawer format %r' % format) return s class BulletDrawer: def __init__(self, value='0', bulletAlign='left', bulletType='1', bulletColor='black', bulletFontName='Helvetica', bulletFontSize=12, bulletOffsetY=0, bulletDedent=0, bulletDir='ltr', bulletFormat=None, ): self.value = value self._bulletAlign = bulletAlign self._bulletType = bulletType self._bulletColor = bulletColor self._bulletFontName = bulletFontName self._bulletFontSize = bulletFontSize self._bulletOffsetY = bulletOffsetY self._bulletDedent = bulletDedent self._bulletDir = bulletDir self._bulletFormat = bulletFormat def drawOn(self,indenter,canv,x,y,_sW=0): value = self.value if not value: return canv.saveState() canv.translate(x, y) y = indenter.height-self._bulletFontSize+self._bulletOffsetY if self._bulletDir=='rtl': x = indenter.width - indenter._rightIndent + self._bulletDedent else: x = indenter._leftIndent - self._bulletDedent canv.setFont(self._bulletFontName,self._bulletFontSize) canv.setFillColor(self._bulletColor) bulletAlign = self._bulletAlign value = _bulletFormat(value,self._bulletType,self._bulletFormat) if bulletAlign=='left': canv.drawString(x,y,value) elif bulletAlign=='right': canv.drawRightString(x,y,value) elif bulletAlign in ('center','centre'): canv.drawCentredString(x,y,value) elif bulletAlign.startswith('numeric') or bulletAlign.startswith('decimal'): pc = bulletAlign[7:].strip() or '.' canv.drawAlignedString(x,y,value,pc) else: raise ValueError('Invalid bulletAlign: %r' % bulletAlign) canv.restoreState() def _computeBulletWidth(b,value): value = _bulletFormat(value,b._bulletType,b._bulletFormat) return stringWidth(value,b._bulletFontName,b._bulletFontSize) class DDIndenter(Flowable): _IndenterAttrs = '_flowable _leftIndent _rightIndent width height'.split() def __init__(self,flowable,leftIndent=0,rightIndent=0): self._flowable = flowable self._leftIndent = leftIndent self._rightIndent = rightIndent self.width = None self.height = None def split(self, aW, aH): S = self._flowable.split(aW-self._leftIndent-self._rightIndent, aH) return [ DDIndenter(s, leftIndent=self._leftIndent, rightIndent=self._rightIndent, ) for s in S ] def drawOn(self, canv, x, y, _sW=0): self._flowable.drawOn(canv,x+self._leftIndent,y,max(0,_sW-self._leftIndent-self._rightIndent)) def wrap(self, aW, aH): w,h = self._flowable.wrap(aW-self._leftIndent-self._rightIndent, aH) self.width = w+self._leftIndent+self._rightIndent self.height = h return self.width,h def __getattr__(self,a): if a in self._IndenterAttrs: try: return self.__dict__[a] except KeyError: if a not in ('spaceBefore','spaceAfter'): raise return getattr(self._flowable,a) def __setattr__(self,a,v): if a in self._IndenterAttrs: self.__dict__[a] = v else: setattr(self._flowable,a,v) def __delattr__(self,a): if a in self._IndenterAttrs: del self.__dict__[a] else: delattr(self._flowable,a) def identity(self,maxLen=None): return '%s containing %s' % (self.__class__.__name__,self._flowable.identity(maxLen)) class LIIndenter(DDIndenter): _IndenterAttrs = '_flowable _bullet _leftIndent _rightIndent width height spaceBefore spaceAfter'.split() def __init__(self,flowable,leftIndent=0,rightIndent=0,bullet=None, spaceBefore=None, spaceAfter=None): self._flowable = flowable self._bullet = bullet self._leftIndent = leftIndent self._rightIndent = rightIndent self.width = None self.height = None if spaceBefore is not None: self.spaceBefore = spaceBefore if spaceAfter is not None: self.spaceAfter = spaceAfter def split(self, aW, aH): S = self._flowable.split(aW-self._leftIndent-self._rightIndent, aH) return [ LIIndenter(s, leftIndent=self._leftIndent, rightIndent=self._rightIndent, bullet = (s is S[0] and self._bullet or None), ) for s in S ] def drawOn(self, canv, x, y, _sW=0): if self._bullet: self._bullet.drawOn(self,canv,x,y,0) self._flowable.drawOn(canv,x+self._leftIndent,y,max(0,_sW-self._leftIndent-self._rightIndent)) from reportlab.lib.styles import ListStyle class ListItem: def __init__(self, flowables, #the initial flowables style=None, #leftIndent=18, #rightIndent=0, #spaceBefore=None, #spaceAfter=None, #bulletType='1', #bulletColor='black', #bulletFontName='Helvetica', #bulletFontSize=12, #bulletOffsetY=0, #bulletDedent='auto', #bulletDir='ltr', #bulletFormat=None, **kwds ): if not isinstance(flowables,(list,tuple)): flowables = (flowables,) self._flowables = flowables params = self._params = {} if style: if not isinstance(style,ListStyle): raise ValueError('%s style argument (%r) not a ListStyle' % (self.__class__.__name__,style)) self._style = style for k in ListStyle.defaults: if k in kwds: v = kwds.get(k) elif style: v = getattr(style,k) else: continue params[k] = v for k in ('value', 'spaceBefore','spaceAfter'): v = kwds.get(k,getattr(style,k,None)) if v is not None: params[k] = v class _LIParams: def __init__(self,flowable,params,value,first): self.flowable = flowable self.params = params self.value = value self.first= first class ListFlowable(_Container,Flowable): def __init__(self, flowables, #the initial flowables start=1, style=None, #leftIndent=18, #rightIndent=0, #spaceBefore=None, #spaceAfter=None, #bulletType='1', #bulletColor='black', #bulletFontName='Helvetica', #bulletFontSize=12, #bulletOffsetY=0, #bulletDedent='auto', #bulletDir='ltr', #bulletFormat=None, **kwds ): self._flowables = flowables if style: if not isinstance(style,ListStyle): raise ValueError('%s style argument not a ListStyle' % self.__class__.__name__) self.style = style for k,v in ListStyle.defaults.items(): setattr(self,'_'+k,kwds.get(k,getattr(style,k,v))) if start is None: start = getattr(self,'_start',None) if start is None: if getattr(self,'_bulletType','1')=='bullet': start = 'bulletchar' else: start = '1' self._start = start for k in ('spaceBefore','spaceAfter'): v = kwds.get(k,getattr(style,k,None)) if v is not None: setattr(self,k,v) self._content = self._getContent() del self._flowables self._dims = None def wrap(self,aW,aH): if self._dims!=aW: self.width, self.height = _listWrapOn(self._content,aW,self.canv) self._dims = aW return self.width,self.height def split(self,aW,aH): return self._content def _flowablesIter(self): for f in self._flowables: if isinstance(f,(list,tuple)): if f: for i, z in enumerate(f): yield i==0 and not isinstance(z,LIIndenter), z elif isinstance(f,ListItem): params = f._params if not params: #meerkat simples just a list like object for i, z in enumerate(f._flowables): if isinstance(z,LIIndenter): raise ValueError('LIIndenter not allowed in ListItem') yield i==0, z else: params = params.copy() value = params.pop('value',None) spaceBefore = params.pop('spaceBefore',None) spaceAfter = params.pop('spaceAfter',None) n = len(f._flowables) - 1 for i, z in enumerate(f._flowables): P = params.copy() if not i and spaceBefore is not None: P['spaceBefore'] = spaceBefore if i==n and spaceAfter is not None: P['spaceAfter'] = spaceAfter if i: value=None yield 0, _LIParams(z,P,value,i==0) else: yield not isinstance(f,LIIndenter), f def _makeLIIndenter(self,flowable, bullet, params=None): if params: leftIndent = params.get('leftIndent',self._leftIndent) rightIndent = params.get('rightIndent',self._rightIndent) spaceBefore = params.get('spaceBefore',None) spaceAfter = params.get('spaceAfter',None) return LIIndenter(flowable,leftIndent,rightIndent,bullet,spaceBefore=spaceBefore,spaceAfter=spaceAfter) else: return LIIndenter(flowable,self._leftIndent,self._rightIndent,bullet) def _makeBullet(self,value,params=None): if params is None: def getp(a): return getattr(self,'_'+a) else: style = getattr(params,'style',None) def getp(a): if a in params: return params[a] if style and a in style.__dict__: return getattr(self,a) return getattr(self,'_'+a) return BulletDrawer( value=value, bulletAlign=getp('bulletAlign'), bulletType=getp('bulletType'), bulletColor=getp('bulletColor'), bulletFontName=getp('bulletFontName'), bulletFontSize=getp('bulletFontSize'), bulletOffsetY=getp('bulletOffsetY'), bulletDedent=getp('calcBulletDedent'), bulletDir=getp('bulletDir'), bulletFormat=getp('bulletFormat'), ) def _getContent(self): value = self._start bt = self._bulletType inc = int(bt in '1aAiI') if inc: value = int(value) bd = self._bulletDedent if bd=='auto': align = self._bulletAlign dir = self._bulletDir if dir=='ltr' and align=='left': bd = self._leftIndent elif align=='right': bd = self._rightIndent else: #we need to work out the maximum width of any of the labels tvalue = value maxW = 0 for d,f in self._flowablesIter(): if d: maxW = max(maxW,_computeBulletWidth(self,tvalue)) if inc: tvalue += inc elif isinstance(f,LIIndenter): b = f._bullet if b: if b.bulletType==bt: maxW = max(maxW,_computeBulletWidth(b,b.value)) tvalue = int(b.value) else: maxW = max(maxW,_computeBulletWidth(self,tvalue)) if inc: tvalue += inc if dir=='ltr': if align=='right': bd = self._leftIndent - maxW else: bd = self._leftIndent - maxW*0.5 elif align=='left': bd = self._rightIndent - maxW else: bd = self._rightIndent - maxW*0.5 self._calcBulletDedent = bd S = [] aS = S.append i=0 for d,f in self._flowablesIter(): fparams = {} if not i: i += 1 spaceBefore = getattr(self,'spaceBefore',None) if spaceBefore is not None: fparams['spaceBefore'] = spaceBefore if d: aS(self._makeLIIndenter(f,bullet=self._makeBullet(value),params=fparams)) if inc: value += inc elif isinstance(f,LIIndenter): b = f._bullet if b: if b.bulletType!=bt: raise ValueError('Included LIIndenter bulletType=%s != OrderedList bulletType=%s' % (b.bulletType,bt)) value = int(b.value) else: f._bullet = self._makeBullet(value,params=getattr(f,'params',None)) if fparams: f.__dict__['spaceBefore'] = max(f.__dict__.get('spaceBefore',0),spaceBefore) aS(f) if inc: value += inc elif isinstance(f,_LIParams): fparams.update(f.params) z = self._makeLIIndenter(f.flowable,bullet=None,params=fparams) if f.first: if f.value is not None: value = f.value if inc: value = int(value) z._bullet = self._makeBullet(value,f.params) if inc: value += inc aS(z) else: aS(self._makeLIIndenter(f,bullet=None,params=fparams)) spaceAfter = getattr(self,'spaceAfter',None) if spaceAfter is not None: f=S[-1] f.__dict__['spaceAfter'] = max(f.__dict__.get('spaceAfter',0),spaceAfter) return S class TopPadder(Flowable): '''wrap a single flowable so that its first bit will be padded to fill out the space so that it appears at the bottom of its frame''' def __init__(self,f): self.__dict__['_TopPadder__f'] = f def wrap(self,aW,aH): w,h = self.__f.wrap(aW,aH) self.__dict__['_TopPadder__dh'] = aH-h return w,h def split(self,aW,aH): S = self.__f.split(aW,aH) if len(S)>1: S[0] = TopPadder(S[0]) return S def drawOn(self, canvas, x, y, _sW=0): self.__f.drawOn(canvas,x,y-max(0,self.__dh-1e-8),_sW) def __setattr__(self,a,v): setattr(self.__f,a,v) def __getattr__(self,a): return getattr(self.__f,a) def __delattr__(self,a): delattr(self.__f,a) class DocAssign(NullDraw): '''At wrap time this flowable evaluates var=expr in the doctemplate namespace''' _ZEROSIZE=1 def __init__(self,var,expr,life='forever'): Flowable.__init__(self) self.args = var,expr,life def funcWrap(self,aW,aH): NS=self._doctemplateAttr('_nameSpace') NS.update(dict(availableWidth=aW,availableHeight=aH)) try: return self.func() finally: for k in 'availableWidth','availableHeight': try: del NS[k] except: pass def func(self): return self._doctemplateAttr('d'+self.__class__.__name__[1:])(*self.args) def wrap(self,aW,aH): self.funcWrap(aW,aH) return 0,0 class DocExec(DocAssign): '''at wrap time exec stmt in doc._nameSpace''' def __init__(self,stmt,lifetime='forever'): Flowable.__init__(self) self.args=stmt,lifetime class DocPara(DocAssign): '''at wrap time create a paragraph with the value of expr as text if format is specified it should use %(__expr__)s for string interpolation of the expression expr (if any). It may also use %(name)s interpolations for other variables in the namespace. suitable defaults will be used if style and klass are None ''' def __init__(self,expr,format=None,style=None,klass=None,escape=True): Flowable.__init__(self) self.expr=expr self.format=format self.style=style self.klass=klass self.escape=escape def func(self): expr = self.expr if expr: if not isinstance(expr,str): expr = str(expr) return self._doctemplateAttr('docEval')(expr) def add_content(self,*args): self._doctemplateAttr('frame').add_generated_content(*args) def get_value(self,aW,aH): value = self.funcWrap(aW,aH) if self.format: NS=self._doctemplateAttr('_nameSpace').copy() NS.update(dict(availableWidth=aW,availableHeight=aH)) NS['__expr__'] = value value = self.format % NS else: value = str(value) return value def wrap(self,aW,aH): value = self.get_value(aW,aH) P = self.klass if not P: from reportlab.platypus.paragraph import Paragraph as P style = self.style if not style: from reportlab.lib.styles import getSampleStyleSheet style=getSampleStyleSheet()['Code'] if self.escape: from xml.sax.saxutils import escape value=escape(value) self.add_content(P(value,style=style)) return 0,0 class DocAssert(DocPara): def __init__(self,cond,format=None): Flowable.__init__(self) self.expr=cond self.format=format def funcWrap(self,aW,aH): self._cond = DocPara.funcWrap(self,aW,aH) return self._cond def wrap(self,aW,aH): value = self.get_value(aW,aH) if not bool(self._cond): raise AssertionError(value) return 0,0 class DocIf(DocPara): def __init__(self,cond,thenBlock,elseBlock=[]): Flowable.__init__(self) self.expr = cond self.blocks = elseBlock or [],thenBlock def checkBlock(self,block): if not isinstance(block,(list,tuple)): block = (block,) return block def wrap(self,aW,aH): self.add_content(*self.checkBlock(self.blocks[int(bool(self.funcWrap(aW,aH)))])) return 0,0 class DocWhile(DocIf): def __init__(self,cond,whileBlock): Flowable.__init__(self) self.expr = cond self.block = self.checkBlock(whileBlock) def wrap(self,aW,aH): if bool(self.funcWrap(aW,aH)): self.add_content(*(list(self.block)+[self])) return 0,0 class SetTopFlowables(NullDraw): _ZEROZSIZE = 1 def __init__(self,F,show=False): self._F = F self._show = show def wrap(self,aW,aH): doc = getattr(getattr(self,'canv',None),'_doctemplate',None) if doc: doc._topFlowables=self._F if self._show and self._F: doc.frame._generated_content = self._F return 0,0
bsd-3-clause
4,462,128,863,631,193,600
35.542585
152
0.5512
false
blendit/crowd
GUI_crowd_MapPanel.py
1
6603
import bpy from bpy.types import Menu, Panel from bpy.props import * import os import sys import subprocess import ast script_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(script_dir) # Get system's python path proc = subprocess.Popen('python3 -c "import sys; print(sys.path)"', stdout=subprocess.PIPE, shell=True) out, err = proc.communicate() paths = ast.literal_eval(out.decode("utf-8")) sys.path += (paths) import blendit.SimulationData as Sim import pickle as pic def initSceneProperties(scn): bpy.types.Scene.PosX = FloatProperty( name="X", description="position of the origin") scn['PosX'] = 0 bpy.types.Scene.PosY = FloatProperty( name="Y", description="position of the origin") scn['PosY'] = 0 bpy.types.Scene.MinX = FloatProperty( name="Min", description="Bound of the map") scn['MinX'] = -float("inf") bpy.types.Scene.MaxX = FloatProperty( name="Max", description="Bound of the map") scn['MaxX'] = float("inf") bpy.types.Scene.MinY = FloatProperty( name="Max", description="Bound of the map") scn['MinY'] = -float("inf") bpy.types.Scene.MaxY = FloatProperty( name="Max", description="Bound of the map") scn['MaxY'] = float("inf") bpy.types.Scene.GridP = FloatProperty( name="P", description="Grid precision", subtype='PERCENTAGE', default=100, min=0, max=100) scn['GridP'] = 100 bpy.types.Scene.SelectString = StringProperty( name="Input", description="Enter an input file", subtype='FILE_PATH') scn['SelectString'] = "filename.py" bpy.types.Scene.SaveString = StringProperty( name="Output", description="Enter an output file", subtype='FILE_PATH') scn['SaveString'] = "filename.py" return initSceneProperties(bpy.context.scene) # # # class MapButtonsPanel(Panel): # bl_category = 'Map' # bl_space_type = 'VIEW_3D' # bl_region_type = 'TOOLS' # # def draw(self, context): # layout = self.layout # scn = context.scene class InputFile_Tools(Panel): bl_label = "Input File" bl_category = "Map" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" def draw(self, context): layout = self.layout scn = context.scene layout.prop(scn, 'SelectString') layout.operator("env.select") layout.prop(scn, 'SaveString') layout.operator("env.save") class MapOrigin_Tools(Panel): bl_label = "Map Origin" bl_category = "Map" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" # COMPAT_ENGINES = {'BLENDER_RENDER'} def draw(self, context): layout = self.layout scn = context.scene layout.label(text="Origin Position:") row = layout.row(align=True) row.alignment = 'EXPAND' row.prop(scn, 'PosX') row.prop(scn, 'PosY') layout.operator("env.origin") layout.operator("env.set") class MapSize_Tools(Panel): bl_label = "Map Bounds" bl_category = "Map" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" def draw(self, context): layout = self.layout scn = context.scene layout.label(text="X bounds:") row = layout.row(align=True) row.alignment = 'EXPAND' row.prop(scn, 'MinX', text="Min") row.prop(scn, 'MaxX', text="Max") layout.label(text="Y bounds:") row = layout.row(align=True) row.alignment = 'EXPAND' row.prop(scn, 'MinY', text="Min") row.prop(scn, 'MaxY', text="Max") layout.operator("env.size") class GridSize_Tools (Panel): bl_label = "Grid Size" bl_category = "Map" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" def draw(self, context): layout = self.layout scn = context.scene layout.prop(scn, 'GridP') layout.operator("env.grid") class Generate_Tools (Panel): bl_label = "Generate Map" bl_category = "Map" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" def draw(self, context): layout = self.layout scn = context.scene layout.operator("env.generate") class MapSelectButton(bpy.types.Operator): bl_idname = "env.select" bl_label = "Set input as configuration" def execute(self, context): scn = bpy.context.scene view = bpy.context.space_data ic = open(SelectString, "rb") Sim.graph = pic.load(ic) ic.close() return{'FINISHED'} class MapSaveButton(bpy.types.Operator): bl_idname = "env.save" bl_label = "Save configuration" def execute(self, context): scn = bpy.context.scene view = bpy.context.space_data oc = open(SaveString, "wb") pic.dump(Sim.graph, oc) oc.close() return{'FINISHED'} class MapOriginCursorButton(bpy.types.Operator): bl_idname = "env.origin" bl_label = "From cursor" def execute(self, context): scn = bpy.context.scene view = bpy.context.space_data Pcursor = view.cursor_location bpy.context.scene.PosX = Pcursor[0] bpy.context.scene.PosY = Pcursor[1] scn.cursor_location = (scn.PosX, scn.PosY, 0) return{'FINISHED'} class MapOriginButton(bpy.types.Operator): bl_idname = "env.set" bl_label = "Set map origin" def execute(self, context): scn = bpy.context.scene view = bpy.context.space_data Sim.OriginX = PosX Sim.OriginY = PosY return{'FINISHED'} class MapSizeButton(bpy.types.Operator): bl_idname = "env.size" bl_label = "Set map size" def execute(self, context): scn = bpy.context.scene Sim.MinX = MinX Sim.MaxX = MaxX Sim.MinY = MinY Sim.MaxY = MaxY return{'FINISHED'} class MapGridButton(bpy.types.Operator): bl_idname = "env.grid" bl_label = "Set Grid size" def execute(self, context): scn = bpy.context.scene coefficient = 5 - (GridP / 20) Sim.Grid = Sim.MinGrid * (10 ** coefficient) return{'FINISHED'} class MapGenerationButton(bpy.types.Operator): bl_idname = "env.generate" bl_label = "Generate" def execute(self, context): scn = bpy.context.scene Sim.renew_graph() return{'FINISHED'} bpy.utils.register_module(__name__)
gpl-3.0
137,303,051,667,729,950
25.625
103
0.593518
false
stefantkeller/VECSELsetup
exp/eval/light_light.py
1
8684
#! /usr/bin/python2.7 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import errorvalues as ev # github.com/stefantkeller/errorvalues from VECSELsetup.eval.varycolor import varycolor from VECSELsetup.eval.gen_functions import load, extract, plotinstructions_write, plotinstructions_read, lut_from_calibfolder, lut_interp_from_calibfolder, thermal_resistance def main(): # before running this script: # run eval_spectrum.py to provide the .._eval.csv files required for the spectra # run calibration.py (with appropriate calib measurements) # and don't forget temperature_heatsink (this is not necessary for this script here, but it provides interesting insights for the measurement at hand) logfile = '../24_LL_ev/20150211_sample21-1-d6/spot333um.csv' calib_folder = '../24_LL_ev/20150204_calib_333um_s21-1-d6' #------------------------------------ # calibration emis_lut = lut_from_calibfolder(calib_folder,identifiers=['Laser'],ignore_error=False) # emission has constant value solely due to BS, no ND in front of detector etc. pump_lut, refl_lut = lut_interp_from_calibfolder(calib_folder,identifiers=['Pump','Refl']) #------------------------------------ # load measurement current_set, current, pump, refl, laser, spectra, meantemp = extract(logfile, identifiers=['Current','Pump','Refl','Laser','Spectra', 'Temperature']) Temperatures = sorted(current_set.keys()) # set temperatures (round numbers like 15.0 or 22.5 etc) T_out = dict((T,meantemp[T].round(1)) for T in Temperatures) # real temperatures for display in plot, including +-uncertainty #------------------------------------ # calculate using calibration absorbed, reflected, emitted, pumped, dissipated = {}, {}, {}, {}, {} for T in Temperatures: reflected[T] = refl_lut(refl[T]) pumped[T] = pump_lut(pump[T]) absorbed[T] = pumped[T] - reflected[T] emitted[T] = emis_lut(laser[T]) dissipated[T] = absorbed[T] - emitted[T] # #------------------------------------ # invoke instructions for plot and fit # plotting the data can be tricky to reproduce, store the plot properties in a text file and read from there! # (easy to repeat the plot at a later time) # open the instruction file in a text editor, edit the instructions and run this module again; it will use the new instructions instrfile = logfile[:-4]+'_instr.csv' plotinstructions_write(instrfile,Temperatures,calib_folder) #------------------------------------ # retrieve instructions instr = plotinstructions_read(instrfile) # #------------------------------------ # translate instructions str2lst = lambda s: map(float,s[1:-1].split(',')) textx = float(instr['textx']) # x coordinate for text; same for first two subplots (absorbed-emitted and absorbed-reflectivity) fontsize = float(instr['fontsize']) title = instr['title'] xlim = str2lst(instr['xlim']) # range of x-axis; same for first two subplots ylim1 = str2lst(instr['ylim1']) # range of y-axis of first (aborbed-emitted) plot ylim2 = str2lst(instr['ylim2']) # range of second y-axis (absorbed-reflectivity) xlim3 = str2lst(instr['xlim3']) # third x-axis; (dissipated-wavelength) ylim3 = str2lst(instr['ylim3']) # 3rd y-axis plot_temps_for_3 = str2lst(instr['plot_temps_for_3']) # which ones to plot? you may have measured a heat sink temperature without lasing output, whose data will confuse the reader, so you don't plot it. textx3 = float(instr['textx3']) # x-coordinate of text in 3rd plot texty3 = str2lst(instr['texty3']) # 3rd y-coordinate llow0 = {} lhigh0 = {} texty1 = {} for T in Temperatures: llow0[T] = sum(absorbed[T].v()<float(instr['llow0[{0}]'.format(T)])) # index indicating start of lasing activity lhigh0[T] = sum(absorbed[T].v()<float(instr['lhigh0[{0}]'.format(T)])) # index corresponding to where linear segment stops texty1[T] = float(instr['texty1[{0}]'.format(T)]) # # #------------------------------------ #------------------------------------ # plot cols = varycolor(3*len(Temperatures)) plt.subplot(3,1,1) cnt = 0 # color counter q0,m0 = {},{} # for linreg for T in Temperatures: # linreg q0[T],m0[T] = ev.linreg(absorbed[T].v()[llow0[T]:lhigh0[T]], emitted[T].v()[llow0[T]:lhigh0[T]], emitted[T].e()[llow0[T]:lhigh0[T]], overwrite_zeroerrors=True) emax,emaxi = ev.max(emitted[T],True) amax = absorbed[T][emaxi] print 'Max emission at ({}) degC at ({}) W absorbed power: ({}) W'.format(T_out[T],amax,emax) # plot plt.errorbar(absorbed[T].v(),emitted[T].v(), xerr=absorbed[T].e(),yerr=emitted[T].e(), c=cols[cnt],linestyle=' ') plt.plot(absorbed[T].v(),m0[T].v()*absorbed[T].v()+q0[T].v(),c=cols[cnt+1]) plt.text(textx,texty1[T], '${0}$$^\circ$C: ${1}$ %'.format(T_out[T],m0[T].round(3)*100), color=cols[cnt],fontsize=fontsize) cnt+=3 plt.title(title) plt.xlabel('Absorbed power (W)') plt.ylabel('Emited power (W)') plt.xlim(xlim) plt.ylim(ylim1) plt.grid('on') #plt.show() #------------------------------------ plt.subplot(3,1,2) cnt = 0 # reset color counter q1,m1 = {},{} for T in Temperatures: relref = reflected[T]/pumped[T]*100 # plot plt.errorbar(absorbed[T].v(),relref.v(), xerr=absorbed[T].e(),yerr=relref.e(), c=cols[cnt],linestyle=' ') cnt+=3 plt.title(title) plt.xlabel('Absorbed power (W)') plt.ylabel('Reflectivity (%)') plt.xlim(xlim) plt.ylim(ylim2) plt.grid('on') #plt.show() #------------------------------------ # plot dissipation and spectra plt.subplot(3,1,3) cnt = 0 # reset q3,m3 = {},{} for T in Temperatures: if T in plot_temps_for_3: # lambda_short #plt.errorbar(dissipated[T].v(),spectra[T][0].v(), # xerr=dissipated[T].e(),yerr=spectra[T][0].e(), # c=cols[cnt],linestyle=' ') # lambda_long # lin reg for range that lases (>threshold, <roll over), hence instr from subplot 1 q3[T],m3[T] = ev.linreg(dissipated[T].v()[llow0[T]:lhigh0[T]], spectra[T][1].v()[llow0[T]:lhigh0[T]], spectra[T][1].e()[llow0[T]:lhigh0[T]], overwrite_zeroerrors=True) # show only a part, not to confuse reader #plt.errorbar(dissipated[T].v()[llow0[T]:lhigh0[T]],spectra[T][1].v()[llow0[T]:lhigh0[T]], # xerr=dissipated[T].e()[llow0[T]:lhigh0[T]],yerr=spectra[T][1].e()[llow0[T]:lhigh0[T]], # c=cols[cnt],linestyle=' ') # show the whole range plt.errorbar(dissipated[T].v(),spectra[T][1].v(), xerr=dissipated[T].e(),yerr=spectra[T][1].e(), c=cols[cnt],linestyle=' ') cnt += 3 plt.title(title) plt.xlim(xlim3) plt.ylim(ylim3) plt.xlim() plt.xlabel('Dissipated power (W)') plt.ylabel('Wavelength (nm)') plt.grid('on') cnt = 0 # reset wavelength = ev.errvallist([q3[T] for T in plot_temps_for_3]) # wavelength offsets slopes = ev.errvallist([m3[T] for T in plot_temps_for_3]) # slopes T_active = ev.errvallist([T_out[T] for T in plot_temps_for_3]) dldD, dldT, l0 = thermal_resistance(T_active,wavelength,slopes) #, R_th R_th = dldD/dldT for T in Temperatures: if T in plot_temps_for_3: plt.plot(dissipated[T].v(),l0.v() + dldT.v()*T_out[T].v() + dldD.v()*dissipated[T].v(),c=cols[cnt+1]) cnt+=3 plt.text(textx3,texty3[0], '$\lambda=$'+'$({})$'.format(dldT.round(3))+'$T_{hs}+$'+'$({})$'.format(dldD.round(3))+'$D+$'+'${}$'.format(l0.round(3)), color='k') R_th = R_th.round(2) therm_imp = 'Thermal impedance: $({0})$ K/W'.format(R_th) plt.text(textx3,texty3[1], therm_imp,color='k') print therm_imp for T in Temperatures: print meantemp[T] plt.show() if __name__ == "__main__": main()
mit
7,744,530,179,776,189,000
37.767857
206
0.551474
false
metamx/Diamond
src/collectors/rabbitmq/rabbitmq.py
1
5518
# coding=utf-8 """ Collects data from RabbitMQ through the admin interface #### Notes ** With added support for breaking down queue metrics by vhost, we have attempted to keep results generated by existing configurations from changing. This means that the old behaviour of clobbering queue metrics when a single queue name exists in multiple vhosts still exists if the configuration is not updated. If no vhosts block is defined it will also keep the metric path as it was historically with no vhost name in it. old path => systems.myServer.rabbitmq.queues.myQueue.* new path => systems.myServer.rabbitmq.myVhost.queues.myQueue.* ** If a [vhosts] section exists but is empty, then no queues will be polled. ** To poll all vhosts and all queues, add the following. ** [vhosts] ** * = * ** #### Dependencies * pyrabbit """ import diamond.collector try: from numbers import Number Number # workaround for pyflakes issue #13 import pyrabbit.api except ImportError: Number = None class RabbitMQCollector(diamond.collector.Collector): def get_default_config_help(self): config_help = super(RabbitMQCollector, self).get_default_config_help() config_help.update({ 'host': 'Hostname and port to collect from', 'user': 'Username', 'password': 'Password', 'queues': 'Queues to publish. Leave empty to publish all.', 'vhosts': 'A list of vhosts and queues for which we want to collect' }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(RabbitMQCollector, self).get_default_config() config.update({ 'path': 'rabbitmq', 'host': 'localhost:55672', 'user': 'guest', 'password': 'guest' }) return config def collect(self): if Number is None: self.log.error('Unable to import either Number or pyrabbit.api') return {} try: client = pyrabbit.api.Client(self.config['host'], self.config['user'], self.config['password']) legacy = False if 'vhosts' not in self.config: legacy = True if 'queues' in self.config: self.config['vhosts'] = {"*": self.config['queues']} else: self.config['vhosts'] = {"*": ""} # Legacy configurations, those that don't include the [vhosts] # section require special care so that we do not break metric # gathering for people that were using this collector before the # update to support vhosts. if not legacy: vhost_names = client.get_vhost_names() if "*" in self.config['vhosts']: for vhost in vhost_names: # Copy the glob queue list to each vhost not # specifically defined in the configuration. if vhost not in self.config['vhosts']: self.config['vhosts'][vhost] = self.config[ 'vhosts']['*'] del self.config['vhosts']["*"] # Iterate all vhosts in our vhosts configuration. For legacy this # is "*" to force a single run. for vhost in self.config['vhosts']: queues = self.config['vhosts'][vhost] # Allow the use of a asterix to glob the queues, but replace # with a empty string to match how legacy config was. if queues == "*": queues = "" allowed_queues = queues.split() # When we fetch queues, we do not want to define a vhost if # legacy. if legacy: vhost = None for queue in client.get_queues(vhost): # If queues are defined and it doesn't match, then skip. if (queue['name'] not in allowed_queues and len(allowed_queues) > 0): continue for key in queue: prefix = "queues" if not legacy: prefix = "vhosts.%s.%s" % (vhost, "queues") name = '{0}.{1}'.format(prefix, queue['name']) self._publish_metrics(name, [], key, queue) overview = client.get_overview() for key in overview: self._publish_metrics('', [], key, overview) except Exception, e: self.log.error('An error occurred collecting from RabbitMQ, %s', e) return {} def _publish_metrics(self, name, prev_keys, key, data): """Recursively publish keys""" value = data[key] keys = prev_keys + [key] if isinstance(value, dict): for new_key in value: self._publish_metrics(name, keys, new_key, value) elif isinstance(value, Number): joined_keys = '.'.join(keys) if name: publish_key = '{0}.{1}'.format(name, joined_keys) else: publish_key = joined_keys self.publish(publish_key, value)
mit
3,951,124,300,809,999,000
35.065359
80
0.531171
false
jenisys/behave
examples/async_step/features/environment.py
2
1530
# -*- coding: UTF-8 -*- from behave.tag_matcher import ActiveTagMatcher, setup_active_tag_values from behave.api.runtime_constraint import require_min_python_version from behave import python_feature # ----------------------------------------------------------------------------- # REQUIRE: python >= 3.4 # ----------------------------------------------------------------------------- require_min_python_version("3.4") # ----------------------------------------------------------------------------- # SUPPORT: Active-tags # ----------------------------------------------------------------------------- # -- MATCHES ANY TAGS: @use.with_{category}={value} # NOTE: active_tag_value_provider provides category values for active tags. active_tag_value_provider = python_feature.ACTIVE_TAG_VALUE_PROVIDER.copy() active_tag_matcher = ActiveTagMatcher(active_tag_value_provider) # ----------------------------------------------------------------------------- # HOOKS: # ----------------------------------------------------------------------------- def before_all(ctx): # -- SETUP ACTIVE-TAG MATCHER (with userdata): setup_active_tag_values(active_tag_value_provider, ctx.config.userdata) def before_feature(ctx, feature): if active_tag_matcher.should_exclude_with(feature.tags): feature.skip(reason=active_tag_matcher.exclude_reason) def before_scenario(ctx, scenario): if active_tag_matcher.should_exclude_with(scenario.effective_tags): scenario.skip(reason=active_tag_matcher.exclude_reason)
bsd-2-clause
-7,307,714,831,485,707,000
38.230769
79
0.515033
false
EDUlib/edx-platform
common/lib/xmodule/xmodule/modulestore/exceptions.py
1
3789
""" Exceptions thrown by KeyStore objects """ class ItemNotFoundError(Exception): pass class ItemWriteConflictError(Exception): pass class MultipleCourseBlocksFound(Exception): """ Raise this exception when Iterating over the course blocks return multiple course blocks. """ pass # lint-amnesty, pylint: disable=unnecessary-pass class MultipleLibraryBlocksFound(Exception): """ Raise this exception when Iterating over the library blocks return multiple library blocks. """ pass # lint-amnesty, pylint: disable=unnecessary-pass class InsufficientSpecificationError(Exception): pass class OverSpecificationError(Exception): pass class InvalidLocationError(Exception): pass class NoPathToItem(Exception): pass class ReferentialIntegrityError(Exception): """ An incorrect pointer to an object exists. For example, 2 parents point to the same child, an xblock points to a nonexistent child (which probably raises ItemNotFoundError instead depending on context). """ pass # lint-amnesty, pylint: disable=unnecessary-pass class DuplicateItemError(Exception): """ Attempted to create an item which already exists. """ def __init__(self, element_id, store=None, collection=None): super().__init__() self.element_id = element_id self.store = store self.collection = collection def __str__(self, *args, **kwargs): """ Print info about what's duplicated """ return "{store}[{collection}] already has {element_id} ({exception})".format( store=self.store, collection=self.collection, element_id=self.element_id, exception=Exception.__str__(self, *args, **kwargs), ) class VersionConflictError(Exception): """ The caller asked for either draft or published head and gave a version which conflicted with it. """ def __init__(self, requestedLocation, currentHeadVersionGuid): super().__init__('Requested {}, but current head is {}'.format( requestedLocation, currentHeadVersionGuid )) class DuplicateCourseError(Exception): """ An attempt to create a course whose id duplicates an existing course's """ def __init__(self, course_id, existing_entry): """ existing_entry will have the who, when, and other properties of the existing entry """ super().__init__( f'Cannot create course {course_id}, which duplicates {existing_entry}' ) self.course_id = course_id self.existing_entry = existing_entry class InvalidBranchSetting(Exception): """ Raised when the process' branch setting did not match the required setting for the attempted operation on a store. """ def __init__(self, expected_setting, actual_setting): super().__init__(f"Invalid branch: expected {expected_setting} but got {actual_setting}") # lint-amnesty, pylint: disable=line-too-long, super-with-arguments self.expected_setting = expected_setting self.actual_setting = actual_setting class InvalidProctoringProvider(Exception): """ Error with selected proctoring provider raised when the provided is unknown. """ def __init__(self, proctoring_provider, available_providers): super().__init__() self.proctoring_provider = proctoring_provider self.available_providers = available_providers def __str__(self, *args, **kwargs): """ Print details about error """ return f"The selected proctoring provider, {self.proctoring_provider}, is not a valid provider. " \ f"Please select from one of {self.available_providers}."
agpl-3.0
3,610,771,503,910,648,300
29.071429
166
0.663236
false
stormi/tsunami
src/primaires/scripting/parser/nombre.py
1
3620
# -*-coding:Utf-8 -* # Copyright (c) 2010 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant la classe Nombre, détaillée plus bas.""" from fractions import Fraction from .expression import Expression from .delimiteurs import DELIMITEURS class Nombre(Expression): """Expression Nombre. Notez qu'un nombre peut être : un entier un flottant une fraction Tous ces nombres sont de toute façon convertis en fraction. """ nom = "nombre" def __init__(self): """Constructeur de l'expression.""" Expression.__init__(self) self.nombre = None def __repr__(self): return "nombre({})".format(self.nombre) def __str__(self): return "|blc|" + str(self.nombre) + "|ff|" @classmethod def parsable(cls, chaine): """Retourne True si la chaîne est parsable, False sinon.""" chaine = chaine.lstrip() fins = [chaine.index(delimiteur) for delimiteur in DELIMITEURS \ if delimiteur in chaine] fin = fins and min(fins) or None chaine = chaine[:fin] try: nombre = Fraction(chaine) except ValueError: nombre = None return nombre is not None @classmethod def parser(cls, chaine): """Parse la chaîne. Retourne l'objet créé et la partie non interprétée de la chaîne. """ objet = Nombre() chaine = chaine.lstrip() fins = [chaine.index(delimiteur) for delimiteur in DELIMITEURS \ if delimiteur in chaine] if fins: fin = min(fins) else: fin = None chaine_interpreter = chaine[:fin] objet.nombre = Fraction(chaine_interpreter) return objet, chaine[len(chaine_interpreter):] def get_valeur(self, evt): """Retourne le nombre sous la forme d'un objet Fraction.""" return self.nombre @property def code_python(self): """Retourne le code Python associé.""" return repr(self.nombre)
bsd-3-clause
-257,016,107,874,898,900
33.692308
79
0.660754
false
all-of-us/raw-data-repository
rdr_service/lib_fhir/fhirclient_3_0_0/models/relatedperson_tests.py
1
7168
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 3.0.0.11832 on 2017-03-22. # 2017, SMART Health IT. import io import json import os import unittest from . import relatedperson from .fhirdate import FHIRDate class RelatedPersonTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("RelatedPerson", js["resourceType"]) return relatedperson.RelatedPerson(js) def testRelatedPerson1(self): inst = self.instantiate_from("relatedperson-example-f001-sarah.json") self.assertIsNotNone(inst, "Must have instantiated a RelatedPerson instance") self.implRelatedPerson1(inst) js = inst.as_json() self.assertEqual("RelatedPerson", js["resourceType"]) inst2 = relatedperson.RelatedPerson(js) self.implRelatedPerson1(inst2) def implRelatedPerson1(self, inst): self.assertEqual(inst.gender, "female") self.assertEqual(inst.id, "f001") self.assertEqual(inst.identifier[0].system, "urn:oid:2.16.840.1.113883.2.4.6.3") self.assertEqual(inst.identifier[0].type.text, "BSN") self.assertEqual(inst.identifier[0].use, "official") self.assertEqual(inst.name[0].family, "Abels") self.assertEqual(inst.name[0].given[0], "Sarah") self.assertEqual(inst.name[0].use, "usual") self.assertEqual(inst.relationship.coding[0].code, "SIGOTHR") self.assertEqual(inst.relationship.coding[0].system, "http://hl7.org/fhir/v3/RoleCode") self.assertEqual(inst.telecom[0].system, "phone") self.assertEqual(inst.telecom[0].use, "mobile") self.assertEqual(inst.telecom[0].value, "0690383372") self.assertEqual(inst.telecom[1].system, "email") self.assertEqual(inst.telecom[1].use, "home") self.assertEqual(inst.telecom[1].value, "[email protected]") self.assertEqual(inst.text.status, "generated") def testRelatedPerson2(self): inst = self.instantiate_from("relatedperson-example-f002-ariadne.json") self.assertIsNotNone(inst, "Must have instantiated a RelatedPerson instance") self.implRelatedPerson2(inst) js = inst.as_json() self.assertEqual("RelatedPerson", js["resourceType"]) inst2 = relatedperson.RelatedPerson(js) self.implRelatedPerson2(inst2) def implRelatedPerson2(self, inst): self.assertEqual(inst.birthDate.date, FHIRDate("1963").date) self.assertEqual(inst.birthDate.as_json(), "1963") self.assertEqual(inst.gender, "female") self.assertEqual(inst.id, "f002") self.assertEqual(inst.name[0].text, "Ariadne Bor-Jansma") self.assertEqual(inst.name[0].use, "usual") self.assertEqual(inst.period.start.date, FHIRDate("1975").date) self.assertEqual(inst.period.start.as_json(), "1975") self.assertEqual(inst.photo[0].contentType, "image/jpeg") self.assertEqual(inst.relationship.coding[0].code, "SIGOTHR") self.assertEqual(inst.relationship.coding[0].system, "http://hl7.org/fhir/v3/RoleCode") self.assertEqual(inst.telecom[0].system, "phone") self.assertEqual(inst.telecom[0].use, "home") self.assertEqual(inst.telecom[0].value, "+31201234567") self.assertEqual(inst.text.status, "generated") def testRelatedPerson3(self): inst = self.instantiate_from("relatedperson-example-peter.json") self.assertIsNotNone(inst, "Must have instantiated a RelatedPerson instance") self.implRelatedPerson3(inst) js = inst.as_json() self.assertEqual("RelatedPerson", js["resourceType"]) inst2 = relatedperson.RelatedPerson(js) self.implRelatedPerson3(inst2) def implRelatedPerson3(self, inst): self.assertEqual(inst.address[0].city, "PleasantVille") self.assertEqual(inst.address[0].line[0], "534 Erewhon St") self.assertEqual(inst.address[0].postalCode, "3999") self.assertEqual(inst.address[0].state, "Vic") self.assertEqual(inst.address[0].use, "home") self.assertEqual(inst.gender, "male") self.assertEqual(inst.id, "peter") self.assertEqual(inst.name[0].family, "Chalmers") self.assertEqual(inst.name[0].given[0], "Peter") self.assertEqual(inst.name[0].given[1], "James") self.assertEqual(inst.name[0].use, "official") self.assertEqual(inst.period.start.date, FHIRDate("2012-03-11").date) self.assertEqual(inst.period.start.as_json(), "2012-03-11") self.assertEqual(inst.photo[0].contentType, "image/jpeg") self.assertEqual(inst.photo[0].url, "Binary/f012") self.assertEqual(inst.relationship.coding[0].code, "C") self.assertEqual(inst.relationship.coding[0].system, "http://hl7.org/fhir/v2/0131") self.assertEqual(inst.telecom[0].system, "phone") self.assertEqual(inst.telecom[0].use, "work") self.assertEqual(inst.telecom[0].value, "(03) 5555 6473") self.assertEqual(inst.text.status, "generated") def testRelatedPerson4(self): inst = self.instantiate_from("relatedperson-example.json") self.assertIsNotNone(inst, "Must have instantiated a RelatedPerson instance") self.implRelatedPerson4(inst) js = inst.as_json() self.assertEqual("RelatedPerson", js["resourceType"]) inst2 = relatedperson.RelatedPerson(js) self.implRelatedPerson4(inst2) def implRelatedPerson4(self, inst): self.assertTrue(inst.active) self.assertEqual(inst.address[0].city, "Paris") self.assertEqual(inst.address[0].country, "FRA") self.assertEqual(inst.address[0].line[0], "43, Place du Marché Sainte Catherine") self.assertEqual(inst.address[0].postalCode, "75004") self.assertEqual(inst.gender, "female") self.assertEqual(inst.id, "benedicte") self.assertEqual(inst.identifier[0].system, "urn:oid:1.2.250.1.61") self.assertEqual(inst.identifier[0].type.text, "INSEE") self.assertEqual(inst.identifier[0].use, "usual") self.assertEqual(inst.identifier[0].value, "272117510400399") self.assertEqual(inst.name[0].family, "du Marché") self.assertEqual(inst.name[0].given[0], "Bénédicte") self.assertEqual(inst.photo[0].contentType, "image/jpeg") self.assertEqual(inst.photo[0].url, "Binary/f016") self.assertEqual(inst.relationship.coding[0].code, "N") self.assertEqual(inst.relationship.coding[0].system, "http://hl7.org/fhir/v2/0131") self.assertEqual(inst.relationship.coding[1].code, "WIFE") self.assertEqual(inst.relationship.coding[1].system, "http://hl7.org/fhir/v3/RoleCode") self.assertEqual(inst.telecom[0].system, "phone") self.assertEqual(inst.telecom[0].value, "+33 (237) 998327") self.assertEqual(inst.text.status, "generated")
bsd-3-clause
8,045,643,496,570,569,000
47.734694
95
0.664294
false
peterayeni/django-smsgateway
smsgateway/south_migrations/0006_auto__add_field_queuedsms_using.py
1
2515
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'QueuedSMS.using' db.add_column('smsgateway_queuedsms', 'using', self.gf('django.db.models.fields.CharField')(default='', max_length=100, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'QueuedSMS.using' db.delete_column('smsgateway_queuedsms', 'using') models = { 'smsgateway.queuedsms': { 'Meta': {'ordering': "('priority', 'created')", 'object_name': 'QueuedSMS'}, 'content': ('django.db.models.fields.TextField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'priority': ('django.db.models.fields.CharField', [], {'default': "'2'", 'max_length': '1'}), 'reliable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'signature': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'to': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'using': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}) }, 'smsgateway.sms': { 'Meta': {'ordering': "('sent',)", 'object_name': 'SMS'}, 'backend': ('django.db.models.fields.CharField', [], {'default': "'unknown'", 'max_length': '32', 'db_index': 'True'}), 'content': ('django.db.models.fields.TextField', [], {}), 'direction': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'gateway': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'gateway_ref': ('django.db.models.fields.CharField', [], {'max_length': '32', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'operator': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'sender': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'sent': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'to': ('django.db.models.fields.CharField', [], {'max_length': '32'}) } } complete_apps = ['smsgateway']
bsd-3-clause
799,461,428,937,790,200
51.395833
160
0.561829
false
Zokol/The-Great-Dalmuti
dalmut.py
1
8497
import random """ THE GREAT DALMUTI Heikki "Zokol" Juva 2015 - [email protected] """ ## Exception raised when all players have skipped the round class SkipException(Exception): pass class RestartRound(Exception): pass class Card: def __init__(self, value): self.value = value def __repr__(self): return "Card: " + str(self.value) def __str__(self): return str(self.value) class Player: def __init__(self, name): self.name = name self.hand = [] self.position = "TBD" self.stats = {"Dalmut": [], "Trader": [], "Slave": []} def __str__(self): card_list = [] for card in self.hand: card_list.append(card.__str__()) return str(self.name) + " " + self.position + " : " + ", ".join(card_list) def sort_hand(self): self.hand.sort(key=lambda card: card.value, reverse=True) def receive_card(self, card): self.hand.append(card) self.sort_hand() def take_card(self, id): return self.hand.pop(id) def take_highest_card(self): self.sort_hand() return self.take_card(0) def take_lowest_card(self): self.sort_hand() return self.take_card(len(self.hand)-1) def count_cards(self, order): return len([card for card in self.hand if card.value == order]) # Return those cards that player has many and those that are as low number as possible def take_best_cards(self, limit, count): self.sort_hand() best = [-1, -1] # First is the card order, second is the 'point-value' if limit > self.hand[0].value: highest_card = self.hand[0].value + 1 else: highest_card = limit #print(higest_card) #print(self.count_cards(higest_card)) for i in reversed(range(highest_card)): if count == -1: points = self.count_cards(i) * i if best[1] < points: best[0] = i best[1] = points elif self.count_cards(i) == count: best[0] = i break if best[0] == -1: raise SkipException # No cards -> skip picked_cards = [card for card in self.hand if card.value == best[0]] if count != -1: picked_cards = picked_cards[:count] self.hand = [card for card in self.hand if card not in picked_cards] self.sort_hand() return picked_cards def play_hand(self, table): if len(table) > 0: count = len(table[-1]) limit = table[-1][0].value else: count = -1 limit = 99 return self.take_best_cards(limit, count) def empty_hand(self): self.hand = [] class Stack: def __init__(self, largest_number): self.stack = [] for value in range(1, largest_number + 1): for i in range(value): self.stack.append(Card(value)) def __str__(self): card_list = [] for card in self.stack: card_list.append(card.__str__()) return ", ".join(card_list) def __len__(self): return len(self.stack) def shuffle(self): random.shuffle(self.stack) def lift_top_card(self): return self.stack.pop(0) def add(self, card): self.stack.append(card) class Game: def __init__(self, number_of_players, number_of_games, number_of_rounds): self.table = [] self.players = [] for p in range(number_of_players): self.players.append(Player("Player " + str(p))) self.reset_stack() # Determine initial position for players # Each player lifts one card from stack # Lowest card holder is the Great Dalmut # Highest card holder is the slave # Everyone in between are traders self.initial_pos() print("Intial position for players determined") self.print_players() # Main loop #starting_player = self.players[0] for i in range(number_of_games): self.reset_stack() self.play_game(self.players, number_of_rounds) #self.order_players(starting_player) print("Game over") print("RESULTS:") self.print_stats() def reset_stack(self): self.empty_players_hands() # Create stack self.stack = Stack(12) # Create stack with the highest number being 12 print("Number of cards:", len(self.stack)) print("Stack") print(self.stack) print("-----------------------") print("") # Shuffle stack print("Stack shuffled") self.stack.shuffle() print(self.stack) print("-----------------------") print("") def play_game(self, playing_order, number_of_rounds): print("-----------------------") print("") print("Cards dealt") self.deal_cards() self.print_players() print("-----------------------") print("") round_i = 0 while round_i < number_of_rounds: round_i += 1 print("Play round", round_i) #print(playing_order) playing_order = self.play_round(playing_order) #print(playing_order) playing_order[0].stats["Dalmut"].append(round_i) for player in playing_order[1: -1]: player.stats["Trader"].append(round_i) playing_order[-1].stats["Slave"].append(round_i) print("Players card count:", self.count_player_cards(playing_order)) self.empty_table() self.deal_cards() print("Players card count:", self.count_player_cards(playing_order)) #if not new_order[0].hand: return new_order #XXX ???? self.table = [] self.print_players() self.print_stats() def print_players(self): for p in self.players: print(p) def print_stats(self): for p in self.players: print (p.name, "Dalmut:", len(p.stats["Dalmut"]), "Trader:", len(p.stats["Trader"]), "Slave:", len(p.stats["Slave"])) def print_table(self): top_cards = self.table[-1] print(str(len(top_cards)), "x", top_cards[0], "on the table") def initial_pos(self): for player in self.players: if len(self.stack) > 0: player.receive_card(self.stack.lift_top_card()) else: print("Too small stack to deal, not enough cards for everyone") self.players.sort(key = lambda player: player.hand[0].value) for player in self.players: player.position = "Trader" player.stats["Trader"].append(0) self.players[0].position = "Dalmut" self.players[-1].position = "Slave" self.players[0].stats["Dalmut"].append(0) self.players[-1].stats["Slave"].append(0) def deal_cards(self): print("Number of cards in stack:", len(self.stack)) card_id = 0 while card_id < len(self.stack): for player in self.players: player.receive_card(self.stack.lift_top_card()) card_id += 1 def count_player_cards(self, players): total = 0 for player in players: total += len(player.hand) return total def empty_players_hands(self): for player in self.players: player.empty_hand() def empty_table(self): card_count = 0 for cards in self.table: for card in cards: card_count += len(cards) self.stack.add(cards.pop(cards.index(card))) print("Number of cards on table", card_count) self.table = [] def play_round(self, players): #starting_index = self.players.index(starting_player) #transposed_players = self.players[starting_index:] + self.players[:starting_index] new_order = [] skip_counter = 0 new_dalmut = False while True: try: for player in players: if skip_counter == len(players) - 1: #return player ## Every other player skipped, transpose player-list to let current player to start the next round starting_index = self.players.index(player) transposed_players = self.players[starting_index:] + self.players[:starting_index] players = transposed_players skip_counter = 0 self.empty_table() raise RestartRound try: #print(player) ## If someone runs out of cards, here we determine who gets which position for the next game """ print("Hand empty:", not player.hand) print("Player finished:", player in new_order) print("Is new dalmut found:", new_dalmut) """ if player in new_order: pass elif not player.hand and not new_dalmut: #print("New Dalmut found!!") new_order.append(player) # First player runs out of cards new_dalmut = True elif not player.hand and new_dalmut and len(players) - 1 > len(new_order): new_order.append(player) # Player runs out of cards, who is not the first and not the last elif not player.hand and len(players) - 1 == len(new_order): # Last player runs out of cards new_order.append(player) #print("NEW ORDER:", new_order) return new_order else: self.table.append(player.play_hand(self.table)) ## Let the next playr to play the hand and place it on the table self.print_table() #skip_counter = 0 except SkipException: print("Skip") skip_counter += 1 except RestartRound: print("Restarting round with new order") pass if __name__ == '__main__': game = Game(10, 3, 900)
mit
-4,180,557,527,489,499,000
26.237179
120
0.645993
false
hpd/MitsubaForMaya
plug-ins/mitsuba/volumes/volume.py
1
2498
import sys import maya.OpenMaya as OpenMaya import maya.OpenMayaMPx as OpenMayaMPx kPluginNodeName = "MitsubaVolume" kPluginNodeClassify = "shader/volume" kPluginNodeId = OpenMaya.MTypeId(0x87033) class volume(OpenMayaMPx.MPxNode): def __init__(self): OpenMayaMPx.MPxNode.__init__(self) mSourcefile = OpenMaya.MObject() mGridDims = OpenMaya.MObject() mOutColor = OpenMaya.MObject() def compute(self, plug, block): if plug == volume.mOutColor: resultColor = OpenMaya.MFloatVector(0.0,0.0,0.0) outColorHandle = block.outputValue( volume.mOutColor ) outColorHandle.setMFloatVector(resultColor) outColorHandle.setClean() else: return OpenMaya.kUnknownParameter def nodeCreator(): return volume() def nodeInitializer(): nAttr = OpenMaya.MFnNumericAttribute() try: volume.mSourcefile = nAttr.createColor("sourceFile", "sf") nAttr.setKeyable(1) nAttr.setStorable(1) nAttr.setReadable(1) nAttr.setWritable(1) #nAttr.setDefault(50,50,50) volume.mGridDims = nAttr.create("gridDimensions", "gd", OpenMaya.MFnNumericData.k3Float) nAttr.setKeyable(1) nAttr.setStorable(1) nAttr.setReadable(1) nAttr.setWritable(1) volume.mOutColor = nAttr.createColor("outColor", "oc") nAttr.setKeyable(1) nAttr.setStorable(1) nAttr.setReadable(1) nAttr.setWritable(1) except: sys.stderr.write("Failed to create attributes\n") raise try: volume.addAttribute(volume.mSourcefile) volume.addAttribute(volume.mGridDims) volume.addAttribute(volume.mOutColor) except: sys.stderr.write("Failed to add attributes\n") raise # initialize the script plug-in def initializePlugin(mobject): mplugin = OpenMayaMPx.MFnPlugin(mobject) try: mplugin.registerNode( kPluginNodeName, kPluginNodeId, nodeCreator, nodeInitializer, OpenMayaMPx.MPxNode.kDependNode, kPluginNodeClassify ) except: sys.stderr.write( "Failed to register node: %s" % kPluginNodeName ) raise # uninitialize the script plug-in def uninitializePlugin(mobject): mplugin = OpenMayaMPx.MFnPlugin(mobject) try: mplugin.deregisterNode( kPluginNodeId ) except: sys.stderr.write( "Failed to deregister node: %s" % kPluginNodeName ) raise
mit
-3,909,570,042,202,730,500
29.463415
96
0.658927
false
awwong1/CMPUT404LAB9_W2016
iguana/iguana/urls.py
1
1469
"""iguana URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin from rest_framework import routers from rest_framework.authtoken import views as authtoken_views from quickstart import views as quickstart_views from client import views as client_views router = routers.DefaultRouter() router.register(r'users', quickstart_views.UserViewSet) router.register(r'groups', quickstart_views.GroupViewSet) # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^api/', include(router.urls)), url(r'^api/auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^api-token-auth/', authtoken_views.obtain_auth_token), url(r'^o/', include('oauth2_provider.urls', namespace='oauth2_provider')), url(r'^', client_views.example_view, name="index") ]
mit
7,628,134,095,978,440,000
38.702703
83
0.724983
false
dborzov/practicin
67-binary-heap/solution.py
1
1403
class Heap: def __init__(self): self.bh = [] def pop(self): if len(self.bh)==0: raise StandardError('No more elements in the heap') if len(self.bh)==1: return self.bh.pop() return_value, self.bh[0] = self.bh[0], self.bh[-1] self.bh = self.bh[:len(self.bh)-1] cur = 0 while True: left, right = cur*2+1, cur*2+2 get_value = lambda x:self.bh[x] if x<len(self.bh) else None top_element = max([left, right], key=get_value) print "Stack:", self.bh print "Left:{}, right:{}, top element:{}".format(left, right, top_element) if (get_value(top_element) is None) or (self.bh[top_element] < self.bh[cur]): return return_value self.bh[cur], self.bh[top_element] = self.bh[top_element], self.bh[cur] cur = top_element def bubble_up(self,cur): while cur!=0: parent=(cur-1)//2 if self.bh[parent]>self.bh[cur]: return self.bh[parent], self.bh[cur] = self.bh[cur], self.bh[parent] cur=parent def add(self, new_value): self.bh.append(new_value) self.bubble_up(len(self.bh)-1) print 'We added {}, and now stack is {}'.format(new_value, self.bh) new_one = Heap() new_one.add(3) new_one.add(2) new_one.add(12) new_one.add(9) print 'Pop: ', new_one.pop() print 'Pop: ', new_one.pop() print 'Pop: ', new_one.pop()
mit
-2,426,201,212,558,269,400
30.177778
85
0.570207
false
NeCTAR-RC/cinder
cinder/tests/test_netapp_nfs.py
1
47792
# Copyright (c) 2012 NetApp, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Unit tests for the NetApp-specific NFS driver module.""" from lxml import etree import mock import mox from mox import IgnoreArg from mox import IsA import os from cinder import context from cinder import exception from cinder.image import image_utils from cinder.openstack.common import log as logging from cinder import test from cinder.volume import configuration as conf from cinder.volume.drivers.netapp import api from cinder.volume.drivers.netapp import nfs as netapp_nfs from cinder.volume.drivers.netapp import utils from oslo.config import cfg CONF = cfg.CONF LOG = logging.getLogger(__name__) def create_configuration(): configuration = mox.MockObject(conf.Configuration) configuration.append_config_values(mox.IgnoreArg()) configuration.nfs_mount_point_base = '/mnt/test' configuration.nfs_mount_options = None return configuration class FakeVolume(object): def __init__(self, size=0): self.size = size self.id = hash(self) self.name = None def __getitem__(self, key): return self.__dict__[key] def __setitem__(self, key, val): self.__dict__[key] = val class FakeSnapshot(object): def __init__(self, volume_size=0): self.volume_name = None self.name = None self.volume_id = None self.volume_size = volume_size self.user_id = None self.status = None def __getitem__(self, key): return self.__dict__[key] class FakeResponse(object): def __init__(self, status): """Initialize FakeResponse. :param status: Either 'failed' or 'passed' """ self.Status = status if status == 'failed': self.Reason = 'Sample error' class NetappDirectCmodeNfsDriverTestCase(test.TestCase): """Test direct NetApp C Mode driver.""" def setUp(self): super(NetappDirectCmodeNfsDriverTestCase, self).setUp() self._custom_setup() def test_create_snapshot(self): """Test snapshot can be created and deleted.""" mox = self.mox drv = self._driver mox.StubOutWithMock(drv, '_clone_volume') drv._clone_volume(IgnoreArg(), IgnoreArg(), IgnoreArg()) mox.ReplayAll() drv.create_snapshot(FakeSnapshot()) mox.VerifyAll() def test_create_volume_from_snapshot(self): """Tests volume creation from snapshot.""" drv = self._driver mox = self.mox volume = FakeVolume(1) snapshot = FakeSnapshot(1) location = '127.0.0.1:/nfs' expected_result = {'provider_location': location} mox.StubOutWithMock(drv, '_clone_volume') mox.StubOutWithMock(drv, '_get_volume_location') mox.StubOutWithMock(drv, 'local_path') mox.StubOutWithMock(drv, '_discover_file_till_timeout') mox.StubOutWithMock(drv, '_set_rw_permissions_for_all') drv._clone_volume(IgnoreArg(), IgnoreArg(), IgnoreArg()) drv._get_volume_location(IgnoreArg()).AndReturn(location) drv.local_path(IgnoreArg()).AndReturn('/mnt') drv._discover_file_till_timeout(IgnoreArg()).AndReturn(True) drv._set_rw_permissions_for_all(IgnoreArg()) mox.ReplayAll() loc = drv.create_volume_from_snapshot(volume, snapshot) self.assertEqual(loc, expected_result) mox.VerifyAll() def _prepare_delete_snapshot_mock(self, snapshot_exists): drv = self._driver mox = self.mox mox.StubOutWithMock(drv, '_get_provider_location') mox.StubOutWithMock(drv, '_volume_not_present') mox.StubOutWithMock(drv, '_post_prov_deprov_in_ssc') if snapshot_exists: mox.StubOutWithMock(drv, '_execute') mox.StubOutWithMock(drv, '_get_volume_path') drv._get_provider_location(IgnoreArg()) drv._get_provider_location(IgnoreArg()) drv._volume_not_present(IgnoreArg(), IgnoreArg())\ .AndReturn(not snapshot_exists) if snapshot_exists: drv._get_volume_path(IgnoreArg(), IgnoreArg()) drv._execute('rm', None, run_as_root=True) drv._post_prov_deprov_in_ssc(IgnoreArg()) mox.ReplayAll() return mox def test_delete_existing_snapshot(self): drv = self._driver mox = self._prepare_delete_snapshot_mock(True) drv.delete_snapshot(FakeSnapshot()) mox.VerifyAll() def test_delete_missing_snapshot(self): drv = self._driver mox = self._prepare_delete_snapshot_mock(False) drv.delete_snapshot(FakeSnapshot()) mox.VerifyAll() def _custom_setup(self): kwargs = {} kwargs['netapp_mode'] = 'proxy' kwargs['configuration'] = create_configuration() self._driver = netapp_nfs.NetAppDirectCmodeNfsDriver(**kwargs) def test_check_for_setup_error(self): mox = self.mox drv = self._driver required_flags = [ 'netapp_transport_type', 'netapp_login', 'netapp_password', 'netapp_server_hostname', 'netapp_server_port'] # set required flags for flag in required_flags: setattr(drv.configuration, flag, None) # check exception raises when flags are not set self.assertRaises(exception.CinderException, drv.check_for_setup_error) # set required flags for flag in required_flags: setattr(drv.configuration, flag, 'val') setattr(drv, 'ssc_enabled', False) mox.StubOutWithMock(netapp_nfs.NetAppDirectNfsDriver, '_check_flags') netapp_nfs.NetAppDirectNfsDriver._check_flags() mox.ReplayAll() drv.check_for_setup_error() mox.VerifyAll() # restore initial FLAGS for flag in required_flags: delattr(drv.configuration, flag) def test_do_setup(self): mox = self.mox drv = self._driver mox.StubOutWithMock(netapp_nfs.NetAppNFSDriver, 'do_setup') mox.StubOutWithMock(drv, '_get_client') mox.StubOutWithMock(drv, '_do_custom_setup') netapp_nfs.NetAppNFSDriver.do_setup(IgnoreArg()) drv._get_client() drv._do_custom_setup(IgnoreArg()) mox.ReplayAll() drv.do_setup(IsA(context.RequestContext)) mox.VerifyAll() def _prepare_clone_mock(self, status): drv = self._driver mox = self.mox volume = FakeVolume() setattr(volume, 'provider_location', '127.0.0.1:/nfs') mox.StubOutWithMock(drv, '_get_host_ip') mox.StubOutWithMock(drv, '_get_export_path') mox.StubOutWithMock(drv, '_get_if_info_by_ip') mox.StubOutWithMock(drv, '_get_vol_by_junc_vserver') mox.StubOutWithMock(drv, '_clone_file') mox.StubOutWithMock(drv, '_post_prov_deprov_in_ssc') drv._get_host_ip(IgnoreArg()).AndReturn('127.0.0.1') drv._get_export_path(IgnoreArg()).AndReturn('/nfs') drv._get_if_info_by_ip('127.0.0.1').AndReturn( self._prepare_info_by_ip_response()) drv._get_vol_by_junc_vserver('openstack', '/nfs').AndReturn('nfsvol') drv._clone_file('nfsvol', 'volume_name', 'clone_name', 'openstack') drv._post_prov_deprov_in_ssc(IgnoreArg()) return mox def _prepare_info_by_ip_response(self): res = """<attributes-list> <net-interface-info> <address>127.0.0.1</address> <administrative-status>up</administrative-status> <current-node>fas3170rre-cmode-01</current-node> <current-port>e1b-1165</current-port> <data-protocols> <data-protocol>nfs</data-protocol> </data-protocols> <dns-domain-name>none</dns-domain-name> <failover-group/> <failover-policy>disabled</failover-policy> <firewall-policy>data</firewall-policy> <home-node>fas3170rre-cmode-01</home-node> <home-port>e1b-1165</home-port> <interface-name>nfs_data1</interface-name> <is-auto-revert>false</is-auto-revert> <is-home>true</is-home> <netmask>255.255.255.0</netmask> <netmask-length>24</netmask-length> <operational-status>up</operational-status> <role>data</role> <routing-group-name>c10.63.165.0/24</routing-group-name> <use-failover-group>disabled</use-failover-group> <vserver>openstack</vserver> </net-interface-info></attributes-list>""" response_el = etree.XML(res) return api.NaElement(response_el).get_children() def test_clone_volume(self): drv = self._driver mox = self._prepare_clone_mock('pass') mox.ReplayAll() volume_name = 'volume_name' clone_name = 'clone_name' volume_id = volume_name + str(hash(volume_name)) share = 'ip:/share' drv._clone_volume(volume_name, clone_name, volume_id, share) mox.VerifyAll() def test_register_img_in_cache_noshare(self): volume = {'id': '1', 'name': 'testvol'} volume['provider_location'] = '10.61.170.1:/share/path' drv = self._driver mox = self.mox mox.StubOutWithMock(drv, '_do_clone_rel_img_cache') drv._do_clone_rel_img_cache('testvol', 'img-cache-12345', '10.61.170.1:/share/path', 'img-cache-12345') mox.ReplayAll() drv._register_image_in_cache(volume, '12345') mox.VerifyAll() def test_register_img_in_cache_with_share(self): volume = {'id': '1', 'name': 'testvol'} volume['provider_location'] = '10.61.170.1:/share/path' drv = self._driver mox = self.mox mox.StubOutWithMock(drv, '_do_clone_rel_img_cache') drv._do_clone_rel_img_cache('testvol', 'img-cache-12345', '10.61.170.1:/share/path', 'img-cache-12345') mox.ReplayAll() drv._register_image_in_cache(volume, '12345') mox.VerifyAll() def test_find_image_in_cache_no_shares(self): drv = self._driver drv._mounted_shares = [] result = drv._find_image_in_cache('image_id') if not result: pass else: self.fail('Return result is unexpected') def test_find_image_in_cache_shares(self): drv = self._driver mox = self.mox drv._mounted_shares = ['testshare'] mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(os.path, 'exists') drv._get_mount_point_for_share('testshare').AndReturn('/mnt') os.path.exists('/mnt/img-cache-id').AndReturn(True) mox.ReplayAll() result = drv._find_image_in_cache('id') (share, file_name) = result[0] mox.VerifyAll() drv._mounted_shares.remove('testshare') if (share == 'testshare' and file_name == 'img-cache-id'): pass else: LOG.warn(_("Share %(share)s and file name %(file_name)s") % {'share': share, 'file_name': file_name}) self.fail('Return result is unexpected') def test_find_old_cache_files_notexists(self): drv = self._driver mox = self.mox cmd = ['find', '/mnt', '-maxdepth', '1', '-name', 'img-cache*', '-amin', '+720'] setattr(drv.configuration, 'expiry_thres_minutes', 720) mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(drv, '_execute') drv._get_mount_point_for_share(IgnoreArg()).AndReturn('/mnt') drv._execute(*cmd, run_as_root=True).AndReturn((None, '')) mox.ReplayAll() res = drv._find_old_cache_files('share') mox.VerifyAll() if len(res) == 0: pass else: self.fail('No files expected but got return values.') def test_find_old_cache_files_exists(self): drv = self._driver mox = self.mox cmd = ['find', '/mnt', '-maxdepth', '1', '-name', 'img-cache*', '-amin', '+720'] setattr(drv.configuration, 'expiry_thres_minutes', '720') files = '/mnt/img-id1\n/mnt/img-id2\n' r_files = ['img-id1', 'img-id2'] mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(drv, '_execute') mox.StubOutWithMock(drv, '_shortlist_del_eligible_files') drv._get_mount_point_for_share('share').AndReturn('/mnt') drv._execute(*cmd, run_as_root=True).AndReturn((files, None)) drv._shortlist_del_eligible_files( IgnoreArg(), r_files).AndReturn(r_files) mox.ReplayAll() res = drv._find_old_cache_files('share') mox.VerifyAll() if len(res) == len(r_files): for f in res: r_files.remove(f) else: self.fail('Returned files not same as expected.') def test_delete_files_till_bytes_free_success(self): drv = self._driver mox = self.mox files = [('img-cache-1', 230), ('img-cache-2', 380)] mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(drv, '_delete_file') drv._get_mount_point_for_share(IgnoreArg()).AndReturn('/mnt') drv._delete_file('/mnt/img-cache-2').AndReturn(True) drv._delete_file('/mnt/img-cache-1').AndReturn(True) mox.ReplayAll() drv._delete_files_till_bytes_free(files, 'share', bytes_to_free=1024) mox.VerifyAll() def test_clean_image_cache_exec(self): drv = self._driver mox = self.mox drv.configuration.thres_avl_size_perc_start = 20 drv.configuration.thres_avl_size_perc_stop = 50 drv._mounted_shares = ['testshare'] mox.StubOutWithMock(drv, '_find_old_cache_files') mox.StubOutWithMock(drv, '_delete_files_till_bytes_free') mox.StubOutWithMock(drv, '_get_capacity_info') drv._get_capacity_info('testshare').AndReturn((100, 19, 81)) drv._find_old_cache_files('testshare').AndReturn(['f1', 'f2']) drv._delete_files_till_bytes_free( ['f1', 'f2'], 'testshare', bytes_to_free=31) mox.ReplayAll() drv._clean_image_cache() mox.VerifyAll() drv._mounted_shares.remove('testshare') if not drv.cleaning: pass else: self.fail('Clean image cache failed.') def test_clean_image_cache_noexec(self): drv = self._driver mox = self.mox drv.configuration.thres_avl_size_perc_start = 20 drv.configuration.thres_avl_size_perc_stop = 50 drv._mounted_shares = ['testshare'] mox.StubOutWithMock(drv, '_get_capacity_info') drv._get_capacity_info('testshare').AndReturn((100, 30, 70)) mox.ReplayAll() drv._clean_image_cache() mox.VerifyAll() drv._mounted_shares.remove('testshare') if not drv.cleaning: pass else: self.fail('Clean image cache failed.') def test_clone_image_fromcache(self): drv = self._driver mox = self.mox volume = {'name': 'vol', 'size': '20'} mox.StubOutWithMock(drv, '_find_image_in_cache') mox.StubOutWithMock(drv, '_do_clone_rel_img_cache') mox.StubOutWithMock(drv, '_post_clone_image') mox.StubOutWithMock(drv, '_is_share_vol_compatible') drv._find_image_in_cache(IgnoreArg()).AndReturn( [('share', 'file_name')]) drv._is_share_vol_compatible(IgnoreArg(), IgnoreArg()).AndReturn(True) drv._do_clone_rel_img_cache('file_name', 'vol', 'share', 'file_name') drv._post_clone_image(volume) mox.ReplayAll() drv.clone_image(volume, ('image_location', None), 'image_id', {}) mox.VerifyAll() def get_img_info(self, format): class img_info(object): def __init__(self, fmt): self.file_format = fmt return img_info(format) def test_clone_image_cloneableshare_nospace(self): drv = self._driver mox = self.mox volume = {'name': 'vol', 'size': '20'} mox.StubOutWithMock(drv, '_find_image_in_cache') mox.StubOutWithMock(drv, '_is_cloneable_share') mox.StubOutWithMock(drv, '_is_share_vol_compatible') drv._find_image_in_cache(IgnoreArg()).AndReturn([]) drv._is_cloneable_share(IgnoreArg()).AndReturn('127.0.0.1:/share') drv._is_share_vol_compatible(IgnoreArg(), IgnoreArg()).AndReturn(False) mox.ReplayAll() (prop, cloned) = drv. clone_image( volume, ('nfs://127.0.0.1:/share/img-id', None), 'image_id', {}) mox.VerifyAll() if not cloned and not prop['provider_location']: pass else: self.fail('Expected not cloned, got cloned.') def test_clone_image_cloneableshare_raw(self): drv = self._driver mox = self.mox volume = {'name': 'vol', 'size': '20'} mox.StubOutWithMock(drv, '_find_image_in_cache') mox.StubOutWithMock(drv, '_is_cloneable_share') mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(image_utils, 'qemu_img_info') mox.StubOutWithMock(drv, '_clone_volume') mox.StubOutWithMock(drv, '_discover_file_till_timeout') mox.StubOutWithMock(drv, '_set_rw_permissions_for_all') mox.StubOutWithMock(drv, '_resize_image_file') mox.StubOutWithMock(drv, '_is_share_vol_compatible') drv._find_image_in_cache(IgnoreArg()).AndReturn([]) drv._is_cloneable_share(IgnoreArg()).AndReturn('127.0.0.1:/share') drv._is_share_vol_compatible(IgnoreArg(), IgnoreArg()).AndReturn(True) drv._get_mount_point_for_share(IgnoreArg()).AndReturn('/mnt') image_utils.qemu_img_info('/mnt/img-id').AndReturn( self.get_img_info('raw')) drv._clone_volume( 'img-id', 'vol', share='127.0.0.1:/share', volume_id=None) drv._get_mount_point_for_share(IgnoreArg()).AndReturn('/mnt') drv._discover_file_till_timeout(IgnoreArg()).AndReturn(True) drv._set_rw_permissions_for_all('/mnt/vol') drv._resize_image_file({'name': 'vol'}, IgnoreArg()) mox.ReplayAll() drv. clone_image( volume, ('nfs://127.0.0.1:/share/img-id', None), 'image_id', {}) mox.VerifyAll() def test_clone_image_cloneableshare_notraw(self): drv = self._driver mox = self.mox volume = {'name': 'vol', 'size': '20'} mox.StubOutWithMock(drv, '_find_image_in_cache') mox.StubOutWithMock(drv, '_is_cloneable_share') mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(image_utils, 'qemu_img_info') mox.StubOutWithMock(drv, '_clone_volume') mox.StubOutWithMock(drv, '_discover_file_till_timeout') mox.StubOutWithMock(drv, '_set_rw_permissions_for_all') mox.StubOutWithMock(drv, '_resize_image_file') mox.StubOutWithMock(image_utils, 'convert_image') mox.StubOutWithMock(drv, '_register_image_in_cache') mox.StubOutWithMock(drv, '_is_share_vol_compatible') drv._find_image_in_cache(IgnoreArg()).AndReturn([]) drv._is_cloneable_share('nfs://127.0.0.1/share/img-id').AndReturn( '127.0.0.1:/share') drv._is_share_vol_compatible(IgnoreArg(), IgnoreArg()).AndReturn(True) drv._get_mount_point_for_share('127.0.0.1:/share').AndReturn('/mnt') image_utils.qemu_img_info('/mnt/img-id').AndReturn( self.get_img_info('notraw')) image_utils.convert_image(IgnoreArg(), IgnoreArg(), 'raw') image_utils.qemu_img_info('/mnt/vol').AndReturn( self.get_img_info('raw')) drv._register_image_in_cache(IgnoreArg(), IgnoreArg()) drv._get_mount_point_for_share('127.0.0.1:/share').AndReturn('/mnt') drv._discover_file_till_timeout(IgnoreArg()).AndReturn(True) drv._set_rw_permissions_for_all('/mnt/vol') drv._resize_image_file({'name': 'vol'}, IgnoreArg()) mox.ReplayAll() drv. clone_image( volume, ('nfs://127.0.0.1/share/img-id', None), 'image_id', {}) mox.VerifyAll() def test_clone_image_file_not_discovered(self): drv = self._driver mox = self.mox volume = {'name': 'vol', 'size': '20'} mox.StubOutWithMock(drv, '_find_image_in_cache') mox.StubOutWithMock(drv, '_is_cloneable_share') mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(image_utils, 'qemu_img_info') mox.StubOutWithMock(drv, '_clone_volume') mox.StubOutWithMock(drv, '_discover_file_till_timeout') mox.StubOutWithMock(image_utils, 'convert_image') mox.StubOutWithMock(drv, '_register_image_in_cache') mox.StubOutWithMock(drv, '_is_share_vol_compatible') mox.StubOutWithMock(drv, 'local_path') mox.StubOutWithMock(os.path, 'exists') mox.StubOutWithMock(drv, '_delete_file') drv._find_image_in_cache(IgnoreArg()).AndReturn([]) drv._is_cloneable_share('nfs://127.0.0.1/share/img-id').AndReturn( '127.0.0.1:/share') drv._is_share_vol_compatible(IgnoreArg(), IgnoreArg()).AndReturn(True) drv._get_mount_point_for_share('127.0.0.1:/share').AndReturn('/mnt') image_utils.qemu_img_info('/mnt/img-id').AndReturn( self.get_img_info('notraw')) image_utils.convert_image(IgnoreArg(), IgnoreArg(), 'raw') image_utils.qemu_img_info('/mnt/vol').AndReturn( self.get_img_info('raw')) drv._register_image_in_cache(IgnoreArg(), IgnoreArg()) drv.local_path(IgnoreArg()).AndReturn('/mnt/vol') drv._discover_file_till_timeout(IgnoreArg()).AndReturn(False) drv.local_path(IgnoreArg()).AndReturn('/mnt/vol') os.path.exists('/mnt/vol').AndReturn(True) drv._delete_file('/mnt/vol') mox.ReplayAll() vol_dict, result = drv. clone_image( volume, ('nfs://127.0.0.1/share/img-id', None), 'image_id', {}) mox.VerifyAll() self.assertFalse(result) self.assertFalse(vol_dict['bootable']) self.assertIsNone(vol_dict['provider_location']) def test_clone_image_resizefails(self): drv = self._driver mox = self.mox volume = {'name': 'vol', 'size': '20'} mox.StubOutWithMock(drv, '_find_image_in_cache') mox.StubOutWithMock(drv, '_is_cloneable_share') mox.StubOutWithMock(drv, '_get_mount_point_for_share') mox.StubOutWithMock(image_utils, 'qemu_img_info') mox.StubOutWithMock(drv, '_clone_volume') mox.StubOutWithMock(drv, '_discover_file_till_timeout') mox.StubOutWithMock(drv, '_set_rw_permissions_for_all') mox.StubOutWithMock(drv, '_resize_image_file') mox.StubOutWithMock(image_utils, 'convert_image') mox.StubOutWithMock(drv, '_register_image_in_cache') mox.StubOutWithMock(drv, '_is_share_vol_compatible') mox.StubOutWithMock(drv, 'local_path') mox.StubOutWithMock(os.path, 'exists') mox.StubOutWithMock(drv, '_delete_file') drv._find_image_in_cache(IgnoreArg()).AndReturn([]) drv._is_cloneable_share('nfs://127.0.0.1/share/img-id').AndReturn( '127.0.0.1:/share') drv._is_share_vol_compatible(IgnoreArg(), IgnoreArg()).AndReturn(True) drv._get_mount_point_for_share('127.0.0.1:/share').AndReturn('/mnt') image_utils.qemu_img_info('/mnt/img-id').AndReturn( self.get_img_info('notraw')) image_utils.convert_image(IgnoreArg(), IgnoreArg(), 'raw') image_utils.qemu_img_info('/mnt/vol').AndReturn( self.get_img_info('raw')) drv._register_image_in_cache(IgnoreArg(), IgnoreArg()) drv.local_path(IgnoreArg()).AndReturn('/mnt/vol') drv._discover_file_till_timeout(IgnoreArg()).AndReturn(True) drv._set_rw_permissions_for_all('/mnt/vol') drv._resize_image_file( IgnoreArg(), IgnoreArg()).AndRaise(exception.InvalidResults()) drv.local_path(IgnoreArg()).AndReturn('/mnt/vol') os.path.exists('/mnt/vol').AndReturn(True) drv._delete_file('/mnt/vol') mox.ReplayAll() vol_dict, result = drv. clone_image( volume, ('nfs://127.0.0.1/share/img-id', None), 'image_id', {}) mox.VerifyAll() self.assertFalse(result) self.assertFalse(vol_dict['bootable']) self.assertIsNone(vol_dict['provider_location']) def test_is_cloneable_share_badformats(self): drv = self._driver strgs = ['10.61.666.22:/share/img', 'nfs://10.61.666.22:/share/img', 'nfs://10.61.666.22//share/img', 'nfs://com.netapp.com:/share/img', 'nfs://com.netapp.com//share/img', 'com.netapp.com://share/im\g', 'http://com.netapp.com://share/img', 'nfs://com.netapp.com:/share/img', 'nfs://com.netapp.com:8080//share/img' 'nfs://com.netapp.com//img', 'nfs://[ae::sr::ty::po]/img'] for strg in strgs: res = drv._is_cloneable_share(strg) if res: msg = 'Invalid format matched for url %s.' % strg self.fail(msg) def test_is_cloneable_share_goodformat1(self): drv = self._driver mox = self.mox strg = 'nfs://10.61.222.333/share/img' mox.StubOutWithMock(drv, '_check_share_in_use') drv._check_share_in_use(IgnoreArg(), IgnoreArg()).AndReturn('share') mox.ReplayAll() drv._is_cloneable_share(strg) mox.VerifyAll() def test_is_cloneable_share_goodformat2(self): drv = self._driver mox = self.mox strg = 'nfs://10.61.222.333:8080/share/img' mox.StubOutWithMock(drv, '_check_share_in_use') drv._check_share_in_use(IgnoreArg(), IgnoreArg()).AndReturn('share') mox.ReplayAll() drv._is_cloneable_share(strg) mox.VerifyAll() def test_is_cloneable_share_goodformat3(self): drv = self._driver mox = self.mox strg = 'nfs://com.netapp:8080/share/img' mox.StubOutWithMock(drv, '_check_share_in_use') drv._check_share_in_use(IgnoreArg(), IgnoreArg()).AndReturn('share') mox.ReplayAll() drv._is_cloneable_share(strg) mox.VerifyAll() def test_is_cloneable_share_goodformat4(self): drv = self._driver mox = self.mox strg = 'nfs://netapp.com/share/img' mox.StubOutWithMock(drv, '_check_share_in_use') drv._check_share_in_use(IgnoreArg(), IgnoreArg()).AndReturn('share') mox.ReplayAll() drv._is_cloneable_share(strg) mox.VerifyAll() def test_is_cloneable_share_goodformat5(self): drv = self._driver mox = self.mox strg = 'nfs://netapp.com/img' mox.StubOutWithMock(drv, '_check_share_in_use') drv._check_share_in_use(IgnoreArg(), IgnoreArg()).AndReturn('share') mox.ReplayAll() drv._is_cloneable_share(strg) mox.VerifyAll() def test_check_share_in_use_no_conn(self): drv = self._driver share = drv._check_share_in_use(None, '/dir') if share: self.fail('Unexpected share detected.') def test_check_share_in_use_invalid_conn(self): drv = self._driver share = drv._check_share_in_use(':8989', '/dir') if share: self.fail('Unexpected share detected.') def test_check_share_in_use_incorrect_host(self): drv = self._driver mox = self.mox mox.StubOutWithMock(utils, 'resolve_hostname') utils.resolve_hostname(IgnoreArg()).AndRaise(Exception()) mox.ReplayAll() share = drv._check_share_in_use('incorrect:8989', '/dir') mox.VerifyAll() if share: self.fail('Unexpected share detected.') def test_check_share_in_use_success(self): drv = self._driver mox = self.mox drv._mounted_shares = ['127.0.0.1:/dir/share'] mox.StubOutWithMock(utils, 'resolve_hostname') mox.StubOutWithMock(drv, '_share_match_for_ip') utils.resolve_hostname(IgnoreArg()).AndReturn('10.22.33.44') drv._share_match_for_ip( '10.22.33.44', ['127.0.0.1:/dir/share']).AndReturn('share') mox.ReplayAll() share = drv._check_share_in_use('127.0.0.1:8989', '/dir/share') mox.VerifyAll() if not share: self.fail('Expected share not detected') def test_construct_image_url_loc(self): drv = self._driver img_loc = (None, [{'metadata': {'share_location': 'nfs://host/path', 'mount_point': '/opt/stack/data/glance', 'type': 'nfs'}, 'url': 'file:///opt/stack/data/glance/image-id'}]) location = drv._construct_image_nfs_url(img_loc) if location != "nfs://host/path/image-id": self.fail("Unexpected direct url.") def test_construct_image_url_direct(self): drv = self._driver img_loc = ("nfs://host/path/image-id", None) location = drv._construct_image_nfs_url(img_loc) if location != "nfs://host/path/image-id": self.fail("Unexpected direct url.") class NetappDirectCmodeNfsDriverOnlyTestCase(test.TestCase): """Test direct NetApp C Mode driver only and not inherit.""" def setUp(self): super(NetappDirectCmodeNfsDriverOnlyTestCase, self).setUp() self._custom_setup() def _custom_setup(self): kwargs = {} kwargs['netapp_mode'] = 'proxy' kwargs['configuration'] = create_configuration() self._driver = netapp_nfs.NetAppDirectCmodeNfsDriver(**kwargs) self._driver.ssc_enabled = True self._driver.configuration.netapp_copyoffload_tool_path = 'cof_path' @mock.patch.object(netapp_nfs, 'get_volume_extra_specs') def test_create_volume(self, mock_volume_extra_specs): drv = self._driver drv.ssc_enabled = False extra_specs = {} mock_volume_extra_specs.return_value = extra_specs fake_share = 'localhost:myshare' fake_qos_policy = 'qos_policy_1' with mock.patch.object(drv, '_ensure_shares_mounted'): with mock.patch.object(drv, '_find_shares', return_value=['localhost:myshare']): with mock.patch.object(drv, '_do_create_volume'): volume_info = self._driver.create_volume(FakeVolume(1)) self.assertEqual(volume_info.get('provider_location'), fake_share) @mock.patch.object(netapp_nfs, 'get_volume_extra_specs') def test_create_volume_with_qos_policy(self, mock_volume_extra_specs): drv = self._driver drv.ssc_enabled = False extra_specs = {'netapp:qos_policy_group': 'qos_policy_1'} fake_volume = FakeVolume(1) fake_share = 'localhost:myshare' fake_qos_policy = 'qos_policy_1' mock_volume_extra_specs.return_value = extra_specs with mock.patch.object(drv, '_ensure_shares_mounted'): with mock.patch.object(drv, '_find_shares', return_value=['localhost:myshare']): with mock.patch.object(drv, '_do_create_volume'): with mock.patch.object(drv, '_set_qos_policy_group_on_volume' ) as mock_set_qos: volume_info = self._driver.create_volume(fake_volume) self.assertEqual(volume_info.get('provider_location'), 'localhost:myshare') mock_set_qos.assert_called_once_with(fake_volume, fake_share, fake_qos_policy) def test_copy_img_to_vol_copyoffload_success(self): drv = self._driver context = object() volume = {'id': 'vol_id', 'name': 'name'} image_service = object() image_id = 'image_id' drv._client = mock.Mock() drv._client.get_api_version = mock.Mock(return_value=(1, 20)) drv._try_copyoffload = mock.Mock() drv._get_provider_location = mock.Mock(return_value='share') drv._get_vol_for_share = mock.Mock(return_value='vol') drv._update_stale_vols = mock.Mock() drv.copy_image_to_volume(context, volume, image_service, image_id) drv._try_copyoffload.assert_called_once_with(context, volume, image_service, image_id) drv._update_stale_vols.assert_called_once_with('vol') def test_copy_img_to_vol_copyoffload_failure(self): drv = self._driver context = object() volume = {'id': 'vol_id', 'name': 'name'} image_service = object() image_id = 'image_id' drv._client = mock.Mock() drv._client.get_api_version = mock.Mock(return_value=(1, 20)) drv._try_copyoffload = mock.Mock(side_effect=Exception()) netapp_nfs.NetAppNFSDriver.copy_image_to_volume = mock.Mock() drv._get_provider_location = mock.Mock(return_value='share') drv._get_vol_for_share = mock.Mock(return_value='vol') drv._update_stale_vols = mock.Mock() drv.copy_image_to_volume(context, volume, image_service, image_id) drv._try_copyoffload.assert_called_once_with(context, volume, image_service, image_id) netapp_nfs.NetAppNFSDriver.copy_image_to_volume.\ assert_called_once_with(context, volume, image_service, image_id) drv._update_stale_vols.assert_called_once_with('vol') def test_copy_img_to_vol_copyoffload_nonexistent_binary_path(self): drv = self._driver context = object() volume = {'id': 'vol_id', 'name': 'name'} image_service = mock.Mock() image_service.get_location.return_value = (mock.Mock(), mock.Mock()) image_service.show.return_value = {'size': 0} image_id = 'image_id' drv._client = mock.Mock() drv._client.get_api_version = mock.Mock(return_value=(1, 20)) drv._find_image_in_cache = mock.Mock(return_value=[]) drv._construct_image_nfs_url = mock.Mock(return_value="") drv._check_get_nfs_path_segs = mock.Mock(return_value=("test:test", "dr")) drv._get_ip_verify_on_cluster = mock.Mock(return_value="192.1268.1.1") drv._get_mount_point_for_share = mock.Mock(return_value='mnt_point') drv._get_host_ip = mock.Mock() drv._get_provider_location = mock.Mock() drv._get_export_path = mock.Mock(return_value="dr") drv._check_share_can_hold_size = mock.Mock() # Raise error as if the copyoffload file can not be found drv._clone_file_dst_exists = mock.Mock(side_effect=OSError()) # Verify the orignal error is propagated self.assertRaises(OSError, drv._try_copyoffload, context, volume, image_service, image_id) def test_copyoffload_frm_cache_success(self): drv = self._driver context = object() volume = {'id': 'vol_id', 'name': 'name'} image_service = object() image_id = 'image_id' drv._find_image_in_cache = mock.Mock(return_value=[('share', 'img')]) drv._copy_from_cache = mock.Mock(return_value=True) drv._try_copyoffload(context, volume, image_service, image_id) drv._copy_from_cache.assert_called_once_with(volume, image_id, [('share', 'img')]) def test_copyoffload_frm_img_service_success(self): drv = self._driver context = object() volume = {'id': 'vol_id', 'name': 'name'} image_service = object() image_id = 'image_id' drv._client = mock.Mock() drv._client.get_api_version = mock.Mock(return_value=(1, 20)) drv._find_image_in_cache = mock.Mock(return_value=[]) drv._copy_from_img_service = mock.Mock() drv._try_copyoffload(context, volume, image_service, image_id) drv._copy_from_img_service.assert_called_once_with(context, volume, image_service, image_id) def test_cache_copyoffload_workflow_success(self): drv = self._driver volume = {'id': 'vol_id', 'name': 'name', 'size': 1} image_id = 'image_id' cache_result = [('ip1:/openstack', 'img-cache-imgid')] drv._get_ip_verify_on_cluster = mock.Mock(return_value='ip1') drv._get_host_ip = mock.Mock(return_value='ip2') drv._get_export_path = mock.Mock(return_value='/exp_path') drv._execute = mock.Mock() drv._register_image_in_cache = mock.Mock() drv._get_provider_location = mock.Mock(return_value='/share') drv._post_clone_image = mock.Mock() copied = drv._copy_from_cache(volume, image_id, cache_result) self.assertTrue(copied) drv._get_ip_verify_on_cluster.assert_any_call('ip1') drv._get_export_path.assert_called_with('vol_id') drv._execute.assert_called_once_with('cof_path', 'ip1', 'ip1', '/openstack/img-cache-imgid', '/exp_path/name', run_as_root=False, check_exit_code=0) drv._post_clone_image.assert_called_with(volume) drv._get_provider_location.assert_called_with('vol_id') @mock.patch.object(image_utils, 'qemu_img_info') def test_img_service_raw_copyoffload_workflow_success(self, mock_qemu_img_info): drv = self._driver volume = {'id': 'vol_id', 'name': 'name', 'size': 1} image_id = 'image_id' context = object() image_service = mock.Mock() image_service.get_location.return_value = ('nfs://ip1/openstack/img', None) image_service.show.return_value = {'size': 1, 'disk_format': 'raw'} drv._check_get_nfs_path_segs = mock.Mock(return_value= ('ip1', '/openstack')) drv._get_ip_verify_on_cluster = mock.Mock(return_value='ip1') drv._get_host_ip = mock.Mock(return_value='ip2') drv._get_export_path = mock.Mock(return_value='/exp_path') drv._get_provider_location = mock.Mock(return_value='share') drv._execute = mock.Mock() drv._get_mount_point_for_share = mock.Mock(return_value='mnt_point') drv._discover_file_till_timeout = mock.Mock(return_value=True) img_inf = mock.Mock() img_inf.file_format = 'raw' mock_qemu_img_info.return_value = img_inf drv._check_share_can_hold_size = mock.Mock() drv._move_nfs_file = mock.Mock(return_value=True) drv._delete_file = mock.Mock() drv._clone_file_dst_exists = mock.Mock() drv._post_clone_image = mock.Mock() drv._copy_from_img_service(context, volume, image_service, image_id) drv._get_ip_verify_on_cluster.assert_any_call('ip1') drv._get_export_path.assert_called_with('vol_id') drv._check_share_can_hold_size.assert_called_with('share', 1) assert drv._execute.call_count == 1 drv._post_clone_image.assert_called_with(volume) @mock.patch.object(image_utils, 'convert_image') @mock.patch.object(image_utils, 'qemu_img_info') @mock.patch('os.path.exists') def test_img_service_qcow2_copyoffload_workflow_success(self, mock_exists, mock_qemu_img_info, mock_cvrt_image): drv = self._driver volume = {'id': 'vol_id', 'name': 'name', 'size': 1} image_id = 'image_id' context = object() image_service = mock.Mock() image_service.get_location.return_value = ('nfs://ip1/openstack/img', None) image_service.show.return_value = {'size': 1, 'disk_format': 'qcow2'} drv._check_get_nfs_path_segs = mock.Mock(return_value= ('ip1', '/openstack')) drv._get_ip_verify_on_cluster = mock.Mock(return_value='ip1') drv._get_host_ip = mock.Mock(return_value='ip2') drv._get_export_path = mock.Mock(return_value='/exp_path') drv._get_provider_location = mock.Mock(return_value='share') drv._execute = mock.Mock() drv._get_mount_point_for_share = mock.Mock(return_value='mnt_point') img_inf = mock.Mock() img_inf.file_format = 'raw' mock_qemu_img_info.return_value = img_inf drv._check_share_can_hold_size = mock.Mock() drv._move_nfs_file = mock.Mock(return_value=True) drv._delete_file = mock.Mock() drv._clone_file_dst_exists = mock.Mock() drv._post_clone_image = mock.Mock() drv._copy_from_img_service(context, volume, image_service, image_id) drv._get_ip_verify_on_cluster.assert_any_call('ip1') drv._get_export_path.assert_called_with('vol_id') drv._check_share_can_hold_size.assert_called_with('share', 1) assert mock_cvrt_image.call_count == 1 assert drv._execute.call_count == 1 assert drv._delete_file.call_count == 2 drv._clone_file_dst_exists.call_count == 1 drv._post_clone_image.assert_called_with(volume) class NetappDirect7modeNfsDriverTestCase(NetappDirectCmodeNfsDriverTestCase): """Test direct NetApp C Mode driver.""" def _custom_setup(self): self._driver = netapp_nfs.NetAppDirect7modeNfsDriver( configuration=create_configuration()) def _prepare_delete_snapshot_mock(self, snapshot_exists): drv = self._driver mox = self.mox mox.StubOutWithMock(drv, '_get_provider_location') mox.StubOutWithMock(drv, '_volume_not_present') if snapshot_exists: mox.StubOutWithMock(drv, '_execute') mox.StubOutWithMock(drv, '_get_volume_path') drv._get_provider_location(IgnoreArg()) drv._volume_not_present(IgnoreArg(), IgnoreArg())\ .AndReturn(not snapshot_exists) if snapshot_exists: drv._get_volume_path(IgnoreArg(), IgnoreArg()) drv._execute('rm', None, run_as_root=True) mox.ReplayAll() return mox def test_check_for_setup_error_version(self): drv = self._driver drv._client = api.NaServer("127.0.0.1") # check exception raises when version not found self.assertRaises(exception.VolumeBackendAPIException, drv.check_for_setup_error) drv._client.set_api_version(1, 8) # check exception raises when not supported version self.assertRaises(exception.VolumeBackendAPIException, drv.check_for_setup_error) def test_check_for_setup_error(self): mox = self.mox drv = self._driver drv._client = api.NaServer("127.0.0.1") drv._client.set_api_version(1, 9) required_flags = [ 'netapp_transport_type', 'netapp_login', 'netapp_password', 'netapp_server_hostname', 'netapp_server_port'] # set required flags for flag in required_flags: setattr(drv.configuration, flag, None) # check exception raises when flags are not set self.assertRaises(exception.CinderException, drv.check_for_setup_error) # set required flags for flag in required_flags: setattr(drv.configuration, flag, 'val') mox.ReplayAll() drv.check_for_setup_error() mox.VerifyAll() # restore initial FLAGS for flag in required_flags: delattr(drv.configuration, flag) def test_do_setup(self): mox = self.mox drv = self._driver mox.StubOutWithMock(netapp_nfs.NetAppNFSDriver, 'do_setup') mox.StubOutWithMock(drv, '_get_client') mox.StubOutWithMock(drv, '_do_custom_setup') netapp_nfs.NetAppNFSDriver.do_setup(IgnoreArg()) drv._get_client() drv._do_custom_setup(IgnoreArg()) mox.ReplayAll() drv.do_setup(IsA(context.RequestContext)) mox.VerifyAll() def _prepare_clone_mock(self, status): drv = self._driver mox = self.mox volume = FakeVolume() setattr(volume, 'provider_location', '127.0.0.1:/nfs') mox.StubOutWithMock(drv, '_get_export_ip_path') mox.StubOutWithMock(drv, '_get_actual_path_for_export') mox.StubOutWithMock(drv, '_start_clone') mox.StubOutWithMock(drv, '_wait_for_clone_finish') if status == 'fail': mox.StubOutWithMock(drv, '_clear_clone') drv._get_export_ip_path( IgnoreArg(), IgnoreArg()).AndReturn(('127.0.0.1', '/nfs')) drv._get_actual_path_for_export(IgnoreArg()).AndReturn('/vol/vol1/nfs') drv._start_clone(IgnoreArg(), IgnoreArg()).AndReturn(('1', '2')) if status == 'fail': drv._wait_for_clone_finish('1', '2').AndRaise( api.NaApiError('error', 'error')) drv._clear_clone('1') else: drv._wait_for_clone_finish('1', '2') return mox def test_clone_volume_clear(self): drv = self._driver mox = self._prepare_clone_mock('fail') mox.ReplayAll() volume_name = 'volume_name' clone_name = 'clone_name' volume_id = volume_name + str(hash(volume_name)) try: drv._clone_volume(volume_name, clone_name, volume_id) except Exception as e: if isinstance(e, api.NaApiError): pass else: raise mox.VerifyAll()
apache-2.0
4,882,235,889,434,253,000
38.926483
79
0.579951
false
sajuptpm/neutron-ipam
neutron/tests/unit/bigswitch/test_capabilities.py
1
2608
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2014 Big Switch Networks, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # @author Kevin Benton from contextlib import nested import mock from neutron.tests.unit.bigswitch import test_router_db PLUGIN = 'neutron.plugins.bigswitch.plugin' SERVERMANAGER = PLUGIN + '.servermanager' SERVERPOOL = SERVERMANAGER + '.ServerPool' SERVERRESTCALL = SERVERMANAGER + '.ServerProxy.rest_call' class CapabilitiesTests(test_router_db.RouterDBTestCase): def test_floating_ip_capability(self): with nested( mock.patch(SERVERRESTCALL, return_value=(200, None, '["floatingip"]', None)), mock.patch(SERVERPOOL + '.rest_create_floatingip', return_value=(200, None, None, None)), mock.patch(SERVERPOOL + '.rest_delete_floatingip', return_value=(200, None, None, None)) ) as (mock_rest, mock_create, mock_delete): with self.floatingip_with_assoc() as fip: pass mock_create.assert_has_calls( [mock.call(fip['floatingip']['tenant_id'], fip['floatingip'])] ) mock_delete.assert_has_calls( [mock.call(fip['floatingip']['tenant_id'], fip['floatingip']['id'])] ) def test_floating_ip_capability_neg(self): with nested( mock.patch(SERVERRESTCALL, return_value=(200, None, '[""]', None)), mock.patch(SERVERPOOL + '.rest_update_network', return_value=(200, None, None, None)) ) as (mock_rest, mock_netupdate): with self.floatingip_with_assoc() as fip: pass updates = [call[0][2]['floatingips'] for call in mock_netupdate.call_args_list] all_floats = [f['floating_ip_address'] for floats in updates for f in floats] self.assertIn(fip['floatingip']['floating_ip_address'], all_floats)
apache-2.0
-2,216,588,186,026,200,800
39.123077
79
0.61273
false
fastavro/fastavro
fastavro/_write_py.py
1
22640
# cython: auto_cpdef=True """Python code for writing AVRO files""" # This code is a modified version of the code at # http://svn.apache.org/viewvc/avro/trunk/lang/py/src/avro/ which is under # Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0) import json from io import BytesIO from os import urandom, SEEK_SET import bz2 import lzma import zlib from .const import NAMED_TYPES from .io.binary_encoder import BinaryEncoder from .io.json_encoder import AvroJSONEncoder from .validation import _validate from .read import HEADER_SCHEMA, SYNC_SIZE, MAGIC, reader from .logical_writers import LOGICAL_WRITERS from .schema import extract_record_type, extract_logical_type, parse_schema from ._write_common import _is_appendable def write_null(encoder, datum, schema, named_schemas, fname): """null is written as zero bytes""" encoder.write_null() def write_boolean(encoder, datum, schema, named_schemas, fname): """A boolean is written as a single byte whose value is either 0 (false) or 1 (true).""" encoder.write_boolean(datum) def write_int(encoder, datum, schema, named_schemas, fname): """int and long values are written using variable-length, zig-zag coding.""" encoder.write_int(datum) def write_long(encoder, datum, schema, named_schemas, fname): """int and long values are written using variable-length, zig-zag coding.""" encoder.write_long(datum) def write_float(encoder, datum, schema, named_schemas, fname): """A float is written as 4 bytes. The float is converted into a 32-bit integer using a method equivalent to Java's floatToIntBits and then encoded in little-endian format.""" encoder.write_float(datum) def write_double(encoder, datum, schema, named_schemas, fname): """A double is written as 8 bytes. The double is converted into a 64-bit integer using a method equivalent to Java's doubleToLongBits and then encoded in little-endian format.""" encoder.write_double(datum) def write_bytes(encoder, datum, schema, named_schemas, fname): """Bytes are encoded as a long followed by that many bytes of data.""" encoder.write_bytes(datum) def write_utf8(encoder, datum, schema, named_schemas, fname): """A string is encoded as a long followed by that many bytes of UTF-8 encoded character data.""" encoder.write_utf8(datum) def write_crc32(encoder, datum): """A 4-byte, big-endian CRC32 checksum""" encoder.write_crc32(datum) def write_fixed(encoder, datum, schema, named_schemas, fname): """Fixed instances are encoded using the number of bytes declared in the schema.""" if len(datum) != schema["size"]: raise ValueError( f"data of length {len(datum)} does not match schema size: {schema}" ) encoder.write_fixed(datum) def write_enum(encoder, datum, schema, named_schemas, fname): """An enum is encoded by a int, representing the zero-based position of the symbol in the schema.""" index = schema["symbols"].index(datum) encoder.write_enum(index) def write_array(encoder, datum, schema, named_schemas, fname): """Arrays are encoded as a series of blocks. Each block consists of a long count value, followed by that many array items. A block with count zero indicates the end of the array. Each item is encoded per the array's item schema. If a block's count is negative, then the count is followed immediately by a long block size, indicating the number of bytes in the block. The actual count in this case is the absolute value of the count written.""" encoder.write_array_start() if len(datum) > 0: encoder.write_item_count(len(datum)) dtype = schema["items"] for item in datum: write_data(encoder, item, dtype, named_schemas, fname) encoder.end_item() encoder.write_array_end() def write_map(encoder, datum, schema, named_schemas, fname): """Maps are encoded as a series of blocks. Each block consists of a long count value, followed by that many key/value pairs. A block with count zero indicates the end of the map. Each item is encoded per the map's value schema. If a block's count is negative, then the count is followed immediately by a long block size, indicating the number of bytes in the block. The actual count in this case is the absolute value of the count written.""" encoder.write_map_start() if len(datum) > 0: encoder.write_item_count(len(datum)) vtype = schema["values"] for key, val in datum.items(): encoder.write_utf8(key) write_data(encoder, val, vtype, named_schemas, fname) encoder.write_map_end() def write_union(encoder, datum, schema, named_schemas, fname): """A union is encoded by first writing a long value indicating the zero-based position within the union of the schema of its value. The value is then encoded per the indicated schema within the union.""" best_match_index = -1 if isinstance(datum, tuple): (name, datum) = datum for index, candidate in enumerate(schema): extracted_type = extract_record_type(candidate) if extracted_type in NAMED_TYPES: schema_name = candidate["name"] else: schema_name = extracted_type if name == schema_name: best_match_index = index break if best_match_index == -1: field = f"on field {fname}" if fname else "" msg = ( f"provided union type name {name} not found in schema " + f"{schema} {field}" ) raise ValueError(msg) index = best_match_index else: pytype = type(datum) most_fields = -1 # All of Python's floating point values are doubles, so to # avoid loss of precision, we should always prefer 'double' # if we are forced to choose between float and double. # # If 'double' comes before 'float' in the union, then we'll immediately # choose it, and don't need to worry. But if 'float' comes before # 'double', we don't want to pick it. # # So, if we ever see 'float', we skim through the rest of the options, # just to see if 'double' is a possibility, because we'd prefer it. could_be_float = False for index, candidate in enumerate(schema): if could_be_float: if extract_record_type(candidate) == "double": best_match_index = index break else: # Nothing except "double" is even worth considering. continue if _validate(datum, candidate, named_schemas, raise_errors=False): record_type = extract_record_type(candidate) if record_type == "record": logical_type = extract_logical_type(candidate) if logical_type: prepare = LOGICAL_WRITERS.get(logical_type) if prepare: datum = prepare(datum, candidate) candidate_fields = set(f["name"] for f in candidate["fields"]) datum_fields = set(datum) fields = len(candidate_fields.intersection(datum_fields)) if fields > most_fields: best_match_index = index most_fields = fields elif record_type == "float": best_match_index = index # Continue in the loop, because it's possible that there's # another candidate which has record type 'double' could_be_float = True else: best_match_index = index break if best_match_index == -1: field = f"on field {fname}" if fname else "" raise ValueError( f"{repr(datum)} (type {pytype}) do not match {schema} {field}" ) index = best_match_index # write data # TODO: There should be a way to give just the index encoder.write_index(index, schema[index]) write_data(encoder, datum, schema[index], named_schemas, fname) def write_record(encoder, datum, schema, named_schemas, fname): """A record is encoded by encoding the values of its fields in the order that they are declared. In other words, a record is encoded as just the concatenation of the encodings of its fields. Field values are encoded per their schema.""" for field in schema["fields"]: name = field["name"] if name not in datum and "default" not in field and "null" not in field["type"]: raise ValueError(f"no value and no default for {name}") write_data( encoder, datum.get(name, field.get("default")), field["type"], named_schemas, name, ) WRITERS = { "null": write_null, "boolean": write_boolean, "string": write_utf8, "int": write_int, "long": write_long, "float": write_float, "double": write_double, "bytes": write_bytes, "fixed": write_fixed, "enum": write_enum, "array": write_array, "map": write_map, "union": write_union, "error_union": write_union, "record": write_record, "error": write_record, } def write_data(encoder, datum, schema, named_schemas, fname): """Write a datum of data to output stream. Paramaters ---------- encoder: encoder Type of encoder (e.g. binary or json) datum: object Data to write schema: dict Schemda to use named_schemas: dict Mapping of fullname to schema definition """ record_type = extract_record_type(schema) logical_type = extract_logical_type(schema) fn = WRITERS.get(record_type) if fn: if logical_type: prepare = LOGICAL_WRITERS.get(logical_type) if prepare: datum = prepare(datum, schema) try: return fn(encoder, datum, schema, named_schemas, fname) except TypeError as ex: if fname: raise TypeError(f"{ex} on field {fname}") raise else: return write_data(encoder, datum, named_schemas[record_type], named_schemas, "") def write_header(encoder, metadata, sync_marker): header = { "magic": MAGIC, "meta": {key: value.encode() for key, value in metadata.items()}, "sync": sync_marker, } write_data(encoder, header, HEADER_SCHEMA, {}, "") def null_write_block(encoder, block_bytes, compression_level): """Write block in "null" codec.""" encoder.write_long(len(block_bytes)) encoder._fo.write(block_bytes) def deflate_write_block(encoder, block_bytes, compression_level): """Write block in "deflate" codec.""" # The first two characters and last character are zlib # wrappers around deflate data. if compression_level is not None: data = zlib.compress(block_bytes, compression_level)[2:-1] else: data = zlib.compress(block_bytes)[2:-1] encoder.write_long(len(data)) encoder._fo.write(data) def bzip2_write_block(encoder, block_bytes, compression_level): """Write block in "bzip2" codec.""" data = bz2.compress(block_bytes) encoder.write_long(len(data)) encoder._fo.write(data) def xz_write_block(encoder, block_bytes, compression_level): """Write block in "xz" codec.""" data = lzma.compress(block_bytes) encoder.write_long(len(data)) encoder._fo.write(data) BLOCK_WRITERS = { "null": null_write_block, "deflate": deflate_write_block, "bzip2": bzip2_write_block, "xz": xz_write_block, } def _missing_codec_lib(codec, library): def missing(encoder, block_bytes, compression_level): raise ValueError( f"{codec} codec is supported but you need to install {library}" ) return missing def snappy_write_block(encoder, block_bytes, compression_level): """Write block in "snappy" codec.""" data = snappy.compress(block_bytes) encoder.write_long(len(data) + 4) # for CRC encoder._fo.write(data) encoder.write_crc32(block_bytes) try: import snappy except ImportError: BLOCK_WRITERS["snappy"] = _missing_codec_lib("snappy", "python-snappy") else: BLOCK_WRITERS["snappy"] = snappy_write_block def zstandard_write_block(encoder, block_bytes, compression_level): """Write block in "zstandard" codec.""" data = zstd.ZstdCompressor().compress(block_bytes) encoder.write_long(len(data)) encoder._fo.write(data) try: import zstandard as zstd except ImportError: BLOCK_WRITERS["zstandard"] = _missing_codec_lib("zstandard", "zstandard") else: BLOCK_WRITERS["zstandard"] = zstandard_write_block def lz4_write_block(encoder, block_bytes, compression_level): """Write block in "lz4" codec.""" data = lz4.block.compress(block_bytes) encoder.write_long(len(data)) encoder._fo.write(data) try: import lz4.block except ImportError: BLOCK_WRITERS["lz4"] = _missing_codec_lib("lz4", "lz4") else: BLOCK_WRITERS["lz4"] = lz4_write_block class GenericWriter: def __init__(self, schema, metadata=None, validator=None): self._named_schemas = {} self.schema = parse_schema(schema, self._named_schemas) self.validate_fn = _validate if validator is True else validator self.metadata = metadata or {} if isinstance(schema, dict): schema = { key: value for key, value in schema.items() if key not in ("__fastavro_parsed", "__named_schemas") } elif isinstance(schema, list): schemas = [] for s in schema: if isinstance(s, dict): schemas.append( { key: value for key, value in s.items() if key not in ( "__fastavro_parsed", "__named_schemas", ) } ) else: schemas.append(s) schema = schemas self.metadata["avro.schema"] = json.dumps(schema) class Writer(GenericWriter): def __init__( self, fo, schema, codec="null", sync_interval=1000 * SYNC_SIZE, metadata=None, validator=None, sync_marker=None, compression_level=None, ): GenericWriter.__init__(self, schema, metadata, validator) self.metadata["avro.codec"] = codec if isinstance(fo, BinaryEncoder): self.encoder = fo else: self.encoder = BinaryEncoder(fo) self.io = BinaryEncoder(BytesIO()) self.block_count = 0 self.sync_interval = sync_interval self.compression_level = compression_level if _is_appendable(self.encoder._fo): # Seed to the beginning to read the header self.encoder._fo.seek(0) avro_reader = reader(self.encoder._fo) header = avro_reader._header file_writer_schema = parse_schema(avro_reader.writer_schema) if self.schema != file_writer_schema: raise ValueError( f"Provided schema {self.schema} does not match " + f"file writer_schema {file_writer_schema}" ) codec = avro_reader.metadata.get("avro.codec", "null") self.sync_marker = header["sync"] # Seek to the end of the file self.encoder._fo.seek(0, 2) self.block_writer = BLOCK_WRITERS[codec] else: self.sync_marker = sync_marker or urandom(SYNC_SIZE) try: self.block_writer = BLOCK_WRITERS[codec] except KeyError: raise ValueError(f"unrecognized codec: {codec}") write_header(self.encoder, self.metadata, self.sync_marker) def dump(self): self.encoder.write_long(self.block_count) self.block_writer(self.encoder, self.io._fo.getvalue(), self.compression_level) self.encoder._fo.write(self.sync_marker) self.io._fo.truncate(0) self.io._fo.seek(0, SEEK_SET) self.block_count = 0 def write(self, record): if self.validate_fn: self.validate_fn(record, self.schema, self._named_schemas) write_data(self.io, record, self.schema, self._named_schemas, "") self.block_count += 1 if self.io._fo.tell() >= self.sync_interval: self.dump() def write_block(self, block): # Clear existing block if there are any records pending if self.io._fo.tell() or self.block_count > 0: self.dump() self.encoder.write_long(block.num_records) self.block_writer(self.encoder, block.bytes_.getvalue(), self.compression_level) self.encoder._fo.write(self.sync_marker) def flush(self): if self.io._fo.tell() or self.block_count > 0: self.dump() self.encoder._fo.flush() class JSONWriter(GenericWriter): def __init__( self, fo, schema, codec="null", sync_interval=1000 * SYNC_SIZE, metadata=None, validator=None, sync_marker=None, codec_compression_level=None, ): GenericWriter.__init__(self, schema, metadata, validator) self.encoder = fo self.encoder.configure(self.schema, self._named_schemas) def write(self, record): if self.validate_fn: self.validate_fn(record, self.schema, self._named_schemas) write_data(self.encoder, record, self.schema, self._named_schemas, "") def flush(self): self.encoder.flush() def writer( fo, schema, records, codec="null", sync_interval=1000 * SYNC_SIZE, metadata=None, validator=None, sync_marker=None, codec_compression_level=None, ): """Write records to fo (stream) according to schema Parameters ---------- fo: file-like Output stream schema: dict Writer schema records: iterable Records to write. This is commonly a list of the dictionary representation of the records, but it can be any iterable codec: string, optional Compression codec, can be 'null', 'deflate' or 'snappy' (if installed) sync_interval: int, optional Size of sync interval metadata: dict, optional Header metadata validator: None, True or a function Validator function. If None (the default) - no validation. If True then then fastavro.validation.validate will be used. If it's a function, it should have the same signature as fastavro.writer.validate and raise an exeption on error. sync_marker: bytes, optional A byte string used as the avro sync marker. If not provided, a random byte string will be used. codec_compression_level: int, optional Compression level to use with the specified codec (if the codec supports it) Example:: from fastavro import writer, parse_schema schema = { 'doc': 'A weather reading.', 'name': 'Weather', 'namespace': 'test', 'type': 'record', 'fields': [ {'name': 'station', 'type': 'string'}, {'name': 'time', 'type': 'long'}, {'name': 'temp', 'type': 'int'}, ], } parsed_schema = parse_schema(schema) records = [ {u'station': u'011990-99999', u'temp': 0, u'time': 1433269388}, {u'station': u'011990-99999', u'temp': 22, u'time': 1433270389}, {u'station': u'011990-99999', u'temp': -11, u'time': 1433273379}, {u'station': u'012650-99999', u'temp': 111, u'time': 1433275478}, ] with open('weather.avro', 'wb') as out: writer(out, parsed_schema, records) The `fo` argument is a file-like object so another common example usage would use an `io.BytesIO` object like so:: from io import BytesIO from fastavro import writer fo = BytesIO() writer(fo, schema, records) Given an existing avro file, it's possible to append to it by re-opening the file in `a+b` mode. If the file is only opened in `ab` mode, we aren't able to read some of the existing header information and an error will be raised. For example:: # Write initial records with open('weather.avro', 'wb') as out: writer(out, parsed_schema, records) # Write some more records with open('weather.avro', 'a+b') as out: writer(out, parsed_schema, more_records) """ # Sanity check that records is not a single dictionary (as that is a common # mistake and the exception that gets raised is not helpful) if isinstance(records, dict): raise ValueError('"records" argument should be an iterable, not dict') if isinstance(fo, AvroJSONEncoder): writer_class = JSONWriter else: # Assume a binary IO if an encoder isn't given writer_class = Writer fo = BinaryEncoder(fo) output = writer_class( fo, schema, codec, sync_interval, metadata, validator, sync_marker, codec_compression_level, ) for record in records: output.write(record) output.flush() def schemaless_writer(fo, schema, record): """Write a single record without the schema or header information Parameters ---------- fo: file-like Output file schema: dict Schema record: dict Record to write Example:: parsed_schema = fastavro.parse_schema(schema) with open('file', 'rb') as fp: fastavro.schemaless_writer(fp, parsed_schema, record) Note: The ``schemaless_writer`` can only write a single record. """ named_schemas = {} schema = parse_schema(schema, named_schemas) encoder = BinaryEncoder(fo) write_data(encoder, record, schema, named_schemas, "") encoder.flush()
mit
5,944,205,814,396,213,000
31.906977
88
0.60371
false
songmonit/CTTMSONLINE_V8
openerp/release.py
1
2596
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-TODAY OpenERP S.A. <http://www.openerp.com> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## RELEASE_LEVELS = [ALPHA, BETA, RELEASE_CANDIDATE, FINAL] = ['alpha', 'beta', 'candidate', 'final'] RELEASE_LEVELS_DISPLAY = {ALPHA: ALPHA, BETA: BETA, RELEASE_CANDIDATE: 'rc', FINAL: ''} # version_info format: (MAJOR, MINOR, MICRO, RELEASE_LEVEL, SERIAL) # inspired by Python's own sys.version_info, in order to be # properly comparable using normal operarors, for example: # (6,1,0,'beta',0) < (6,1,0,'candidate',1) < (6,1,0,'candidate',2) # (6,1,0,'candidate',2) < (6,1,0,'final',0) < (6,1,2,'final',0) version_info = (2, 8, 0, BETA, 0) version = '.'.join(map(str, version_info[:2])) + RELEASE_LEVELS_DISPLAY[version_info[3]] + str(version_info[4] or '') series = serie = major_version = '.'.join(map(str, version_info[:2])) product_name = 'CTTMS' description = 'CTTMS Server' long_desc = '''CTTMS is a complete ERP and CRM. The main features are accounting (analytic and financial), stock management, sales and purchases management, tasks automation, marketing campaigns, help desk, POS, etc. Technical features include a distributed server, flexible workflows, an object database, a dynamic GUI, customizable reports, and XML-RPC interfaces. ''' classifiers = """Development Status :: 5 - Production/Stable License :: OSI Approved :: GNU Affero General Public License v3 Programming Language :: Python """ url = 'https://www.cttms.com' author = 'OpenERP S.A.' author_email = '[email protected]' license = 'AGPL-3' nt_service_name = "CTTMS-server-" + series # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
7,346,447,488,891,795,000
45.357143
117
0.645223
false
orcmkit/ORCmKit
Python27/ORCSim/LiquidReceiver.py
1
4981
from __future__ import division from CoolProp.CoolProp import PropsSI import pylab from ACHPTools import Write2CSV from matplotlib.pyplot import plot, show, figure, semilogy, xlim, ylim, title, xlabel, ylabel, legend from math import pi,exp,log,sqrt,tan,cos,sin from scipy.optimize import brentq from scipy.constants import g import numpy as np from PHEX_ASME2015 import PHEHXClass from LineSet import LineSetClass class LiquidReceiverClass(): "Create Refrigerant buffer tank class" def __init__(self,**kwargs): #Load up the parameters passed in # using the dictionary self.__dict__.update(kwargs) self.Condenser=PHEHXClass() def Update(self,**kwargs): #Update the parameters passed in # using the dictionary self.__dict__.update(kwargs) def OutputList(self): """ Return a list of parameters for this component for further output It is a list of tuples, and each tuple is formed of items with indices: [0] Description of value [1] Units of value [2] The value itself """ return [ ('Liquid Receiver Total Volume','m3',self.Volume_tank), ('Liquid Receiver Total Charge','Kg',self.Charge_Tank), ('Inlet Temperature','K',self.Tin), ('Outlet Temperature','K',self.Tout), ('Inlet Pressure','kPa',self.pin), ('Inlet Density', 'kg/m3',self.rho_in), ('Outlet Pressure','kPa',self.pout) ] def Calculate(self): """ The liquid receiver acts as a damper in the cycle, absorbing the the mass flow rate fluctuations. More concretely, a different explanation can be given. When the liquid receiver gets subcooled or saturated liquid at its top, it can be assumed to be in thermodynamic equilibrium at each time, because liquid and vapor have the same pressure when they enter it (indeed, if the reservoir isn't full, the vapor contained in it must be saturated, as it is in presence of liquid). In the inferior part of the tank, the mix of saturated and subcooled liquid (already present) allows the working fluid to exit it in a subcooled liquid state. The saturation pressure and temperature then reign then in the superior part of the reservoir. Thus, with this component, the charge fluctuations are litteraly absorbed, put to an equilibrium value, and the subcooling becomes null (this fact can't be stated in the presence of non-condensable gases). level = (h_v_sat - h)/(h_v_sat - h_l_sat)*(rho/rho_l_sat) """ # Density [kg/m^3] self.rho_in=PropsSI('D','T',self.Tin, 'P', self.pin*1000+100, self.Ref) #Static pressure (rho*g*h) between inlet and outlet of the tank" self.pout=self.pin #+ (self.rho_in*g*self.h_ports)/1000 # print 'LiquidReceiver.pout', self.pout self.Tout = self.Tin #no temperature gradient is observed in the reservoir. self.hin = PropsSI('H','T',self.Tin,'P',self.pin*1000+100,self.Ref) #J/kg """ "Calculations" "x_ex_tank=0" "due to the presence of non condensable gas (air, due to leakage) in the working fluid, "the liquid at the exit of the tank is not saturated..." #h_su_tank=h_ex_cd #V_ex_tank = m_dot/rho_ex_tank "Check V_dot_su_pump at the beginning of the file!!" """ self.hout = PropsSI('H','T',self.Tout, 'P', self.pout*1000+100, self.Ref) #J/kg #print 'LiquidReceiver.hout', self.hout self.sout = PropsSI('S','T',self.Tout, 'P', self.pout*1000+100, self.Ref) #J/kg #Calculate saturated values #Charge of the tank [kg] """ The tank is characterized by an internal diameter and heigth (ID,h) and by the maximum level of refrigerant inside """ self.Volume_tank = pi*self.ID**2/4.0*self.h_receiver self.Charge_Tank = self.Volume_tank * self.rho_in #self.Volume_ref = self.Charge_Tank/self.LiquidReceiver.rho_in if __name__=='__main__': pin_list=[527.374817] Tin_list=[15.48] zip(pin_list,Tin_list) for pin,Tin in zip(pin_list,Tin_list): kwds={ 'Ref':'R134A', 'pin':pin, 'Tin':Tin+273.15, 'ID':0.3, 'h_receiver': 1, 'h_ports':0.5 } LiquidReceiver=LiquidReceiverClass(**kwds) LiquidReceiver.Calculate() print 'Charge [kg]',LiquidReceiver.Charge_Tank print 'pin [kPa]', LiquidReceiver.pin print 'pout [kPa]',LiquidReceiver.pout print 'Receiver Volume [cm3]', LiquidReceiver.Volume_tank*1e6
mit
3,989,023,316,795,235,300
37.323077
116
0.598474
false
jar3k/django-model-options
model_options/mixins.py
1
1737
from django.contrib.contenttypes.fields import GenericRelation from django.core.cache import cache from django.db import models, IntegrityError, transaction from .utils import detect_type from .models import Option class OptionsMixin(models.Model): options = GenericRelation(Option) class Meta: abstract = True def delete_option(self, key): self.options.get(key=key).delete() def get_option(self, key, default=None): try: option = self.options.get(key=key) return detect_type(option.value) except Option.DoesNotExist: return default def has_option(self, key): return bool(self.options.filter(key=key).exists()) def set_option(self, key, value=True): try: with transaction.atomic(): self.options.create(key=key, value=value) except IntegrityError: option = self.options.get(key=key) option.value = value option.save() class CachedOptionsMixin(object): @property def cache_key_prefix(self): return "{}-{}".format(self._meta.app_label, self._meta.model_name) def delete_option(self, key): cache.delete(self._get_cache_key(key)) def get_option(self, key, default=None): option = self._get_option(key) return detect_type(option) if option else default def has_option(self, key): return bool(self._get_option(key)) def set_option(self, key, value=True): cache.set(self._get_cache_key(key), value) def _get_cache_key(self, key): return "{}-{}".format(self.cache_key_prefix, key) def _get_option(self, key): return cache.get(self._get_cache_key(key))
mit
-4,955,214,051,976,959,000
27.016129
74
0.633851
false
ericholscher/djangoembed
oembed/views.py
1
4618
import re from django.contrib.sites.models import Site from django.core.urlresolvers import reverse, get_resolver from django.http import HttpResponse, HttpResponseBadRequest, Http404 from django.template import defaultfilters from django.utils import simplejson from django.utils.encoding import smart_str import oembed from oembed.consumer import OEmbedConsumer from oembed.exceptions import OEmbedMissingEndpoint from oembed.providers import DjangoProvider, HTTPProvider resolver = get_resolver(None) def json(request, *args, **kwargs): """ The oembed endpoint, or the url to which requests for metadata are passed. Third parties will want to access this view with URLs for your site's content and be returned OEmbed metadata. """ # coerce to dictionary params = dict(request.GET.items()) callback = params.pop('callback', None) url = params.pop('url', None) if not url: return HttpResponseBadRequest('Required parameter missing: URL') try: provider = oembed.site.provider_for_url(url) if not provider.provides: raise OEmbedMissingEndpoint() except OEmbedMissingEndpoint: raise Http404('No provider found for %s' % url) query = dict([(smart_str(k), smart_str(v)) for k, v in params.items() if v]) try: resource = oembed.site.embed(url, **query) except OEmbedException, e: raise Http404('Error embedding %s: %s' % (url, str(e))) response = HttpResponse(mimetype='application/json') json = resource.json if callback: response.write('%s(%s)' % (defaultfilters.force_escape(callback), json)) else: response.write(json) return response def consume_json(request): """ Extract and return oembed content for given urls. Required GET params: urls - list of urls to consume Optional GET params: width - maxwidth attribute for oembed content height - maxheight attribute for oembed content template_dir - template_dir to use when rendering oembed Returns: list of dictionaries with oembed metadata and renderings, json encoded """ client = OEmbedConsumer() urls = request.GET.getlist('urls') width = request.GET.get('width') height = request.GET.get('height') template_dir = request.GET.get('template_dir') output = {} for url in urls: try: provider = oembed.site.provider_for_url(url) except OEmbedMissingEndpoint: oembeds = None rendered = None else: oembeds = url rendered = client.parse_text(url, width, height, template_dir=template_dir) output[url] = { 'oembeds': oembeds, 'rendered': rendered, } return HttpResponse(simplejson.dumps(output), mimetype='application/json') def oembed_schema(request): """ A site profile detailing valid endpoints for a given domain. Allows for better auto-discovery of embeddable content. OEmbed-able content lives at a URL that maps to a provider. """ current_domain = Site.objects.get_current().domain url_schemes = [] # a list of dictionaries for all the urls we can match endpoint = reverse('oembed_json') # the public endpoint for our oembeds providers = oembed.site.get_providers() for provider in providers: # first make sure this provider class is exposed at the public endpoint if not provider.provides: continue match = None if isinstance(provider, DjangoProvider): # django providers define their regex_list by using urlreversing url_pattern = resolver.reverse_dict.get(provider._meta.named_view) # this regex replacement is set to be non-greedy, which results # in things like /news/*/*/*/*/ -- this is more explicit if url_pattern: regex = re.sub(r'%\(.+?\)s', '*', url_pattern[0][0][0]) match = 'http://%s/%s' % (current_domain, regex) elif isinstance(provider, HTTPProvider): match = provider.url_scheme else: match = provider.regex if match: url_schemes.append({ 'type': provider.resource_type, 'matches': match, 'endpoint': endpoint }) url_schemes.sort(key=lambda item: item['matches']) response = HttpResponse(mimetype='application/json') response.write(simplejson.dumps(url_schemes)) return response
mit
-8,876,648,113,996,773,000
31.293706
87
0.64097
false
schreiberx/sweet
benchmarks_sphere/report_konwihr_rexi_nl/compare_wt_dt_vs_accuracy_galewsky_new_rexi/rexi_benchmarks.py
1
8037
#! /usr/bin/env python3 import os import sys import math from itertools import product # REXI from mule_local.rexi.REXICoefficients import * from mule_local.rexi.pcirexi.BeanREXI import BeanREXI from mule_local.rexi.pcirexi.LRREXI import LRREXI from mule_local.rexi.trexi.TREXI import * from mule_local.rexi.cirexi.CIREXI import * from mule_local.rexi.elrexi.ELREXI import * from mule_local.rexi.brexi.BREXI import * # EFloat efloat_mode = "float" def get_rexi_benchmarks(jg): # Accumulator of all REXI methods # rexi_method['rexi_method'] = 'file' # Choose REXI method which is typically 'file' for all file-based ones # rexi_method['rexi_files_coefficients'] = None # List with approximations for different 'phi' functions rexi_methods = [] # # CI REXI # if True: # REXI stuff def fun_params_ci_N(ci_max_real, ci_max_imag): if ci_max_imag >= 7: return 128 else: return 32 params_ci_max_imag = [30.0] params_ci_max_real = [10.0] # # Scale the CI circle radius relative to this time step size # We do this simply to get a consistent time stepping method # Otherwise, CI would not behave consistently # Yes, that's ugly, but simply how it goes :-) # params_ci_max_imag_scaling_relative_to_timestep_size = 480 # params_ci_max_imag_scaling_relative_to_timestep_size = None params_ci_min_imag = 5.0 rexi_method = {} # Choose REXI method which is typically 'file' for all file-based ones rexi_method['rexi_method'] = 'file' # List with approximations for different 'phi' functions rexi_method['rexi_files_coefficients'] = None for ci_max_imag, ci_max_real in product(params_ci_max_imag, params_ci_max_real): if params_ci_max_imag_scaling_relative_to_timestep_size != None: ci_max_imag *= (jg.runtime.timestep_size / params_ci_max_imag_scaling_relative_to_timestep_size) # "phi0" cirexi = CIREXI(efloat_mode=efloat_mode) coeffs_phi0 = cirexi.setup( function_name="phi0", N=fun_params_ci_N(ci_max_real, ci_max_imag), lambda_include_imag=ci_max_imag, lambda_max_real=ci_max_real ).toFloat() # "phi1" cirexi = CIREXI(efloat_mode=efloat_mode) coeffs_phi1 = cirexi.setup( function_name="phi1", N=fun_params_ci_N(ci_max_real, ci_max_imag), lambda_include_imag=ci_max_imag, lambda_max_real=ci_max_real ).toFloat() # "phi2" cirexi = CIREXI(efloat_mode=efloat_mode) coeffs_phi2 = cirexi.setup( function_name="phi2", N=fun_params_ci_N(ci_max_real, ci_max_imag), lambda_include_imag=ci_max_imag, lambda_max_real=ci_max_real ).toFloat() rexi_method['rexi_files_coefficients'] = [coeffs_phi0, coeffs_phi1, coeffs_phi2] # Add to list of REXI methods rexi_methods.append(rexi_method) # # EL-REXI # if True: max_imags = [30.0] rexi_method = {} # Choose REXI method which is typically 'file' for all file-based ones rexi_method['rexi_method'] = 'file' # List with approximations for different 'phi' functions rexi_method['rexi_files_coefficients'] = None for max_imag in max_imags: # "phi0" elrexi = ELREXI(efloat_mode=efloat_mode) coeffs_phi0 = elrexi.setup( function_name="phi0", N=max(64, int(75 * max_imag / 30)), lambda_max_real=10.5, lambda_max_imag=max_imag + 2.5 ).toFloat() # "phi1" elrexi = ELREXI(efloat_mode=efloat_mode) coeffs_phi1 = elrexi.setup( function_name="phi1", N=max(64, int(75 * max_imag / 30)), lambda_max_real=10.5, lambda_max_imag=max_imag + 2.5 ).toFloat() # "phi2" elrexi = ELREXI(efloat_mode=efloat_mode) coeffs_phi2 = elrexi.setup( function_name="phi2", N=max(64, int(75 * max_imag / 30)), lambda_max_real=10.5, lambda_max_imag=max_imag + 2.5 ).toFloat() rexi_method['rexi_files_coefficients'] = [coeffs_phi0, coeffs_phi1, coeffs_phi2] # Add to list of REXI methods rexi_methods.append(rexi_method) # # LR-REXI (Rectangle contour with Gauss-Legendre Quadrature) # if True: max_imags = [30.0] rexi_method = {} # Choose REXI method which is typically 'file' for all file-based ones rexi_method['rexi_method'] = 'file' # List with approximations for different 'phi' functions rexi_method['rexi_files_coefficients'] = None for max_imag in max_imags: # "phi0" lrrexi = LRREXI(efloat_mode=efloat_mode) coeffs_phi0 = lrrexi.setup( function_name="phi0", width=23, height=2 * max_imag + 20, center=-1, N=128).toFloat() # "phi1" lrrexi = LRREXI(efloat_mode=efloat_mode) coeffs_phi1 = lrrexi.setup( function_name="phi1", width=23, height=2 * max_imag + 20, center=-1, N=128).toFloat() # "phi2" lrrexi = LRREXI(efloat_mode=efloat_mode) coeffs_phi2 = lrrexi.setup( function_name="phi2", width=23, height=2 * max_imag + 20, center=-1, N=128).toFloat() rexi_method['rexi_files_coefficients'] = [coeffs_phi0, coeffs_phi1, coeffs_phi2] # Add to list of REXI methods rexi_methods.append(rexi_method) # # Bean-REXI # if True: max_imags = [30.0] rexi_method = {} # Choose REXI method which is typically 'file' for all file-based ones rexi_method['rexi_method'] = 'file' # List with approximations for different 'phi' functions rexi_method['rexi_files_coefficients'] = None for max_imag in max_imags: # "phi0" beanrexi = BeanREXI(efloat_mode=efloat_mode) coeffs_phi0 = beanrexi.setup( function_name="phi0", horizontal_radius=16, vertical_radius=max_imag / 30 * 35, center=-2, N=max(64, int(75 * max_imag / 30))).toFloat() # "phi1" beanrexi = BeanREXI(efloat_mode=efloat_mode) coeffs_phi1 = beanrexi.setup( function_name="phi1", horizontal_radius=16, vertical_radius=max_imag / 30 * 35, center=-2, N=max(64, int(75 * max_imag / 30))).toFloat() # "phi2" beanrexi = BeanREXI(efloat_mode=efloat_mode) coeffs_phi2 = beanrexi.setup( function_name="phi2", horizontal_radius=16, vertical_radius=max_imag / 30 * 35, center=-2, N=max(64, int(75 * max_imag / 30))).toFloat() rexi_method['rexi_files_coefficients'] = [coeffs_phi0, coeffs_phi1, coeffs_phi2] # Add to list of REXI methods rexi_methods.append(rexi_method) return rexi_methods if __name__ == "__main__": pass
mit
-5,738,522,908,586,182,000
32.348548
126
0.520717
false
apdjustino/DRCOG_Urbansim
src/opus_gui/results_manager/run/indicator_framework/visualizer/visualizers/mapnik_animated_map.py
1
7430
# Opus/UrbanSim urban simulation software. # Copyright (C) 2010-2011 University of California, Berkeley, 2005-2009 University of Washington # See opus_core/LICENSE import os from opus_core.logger import logger from opus_core.store.attribute_cache import AttributeCache from opus_core.simulation_state import SimulationState from opus_core.session_configuration import SessionConfiguration from opus_gui.results_manager.run.indicator_framework.visualizer.visualizers.mapnik_map import MapnikMap class MapnikAnimation(MapnikMap): def get_file_extension(self): return 'gif' def visualize(self, indicators_to_visualize, computed_indicators): """Create a map for the given indicator, save it to the cache directory's 'indicators' sub-directory.""" #TODO: eliminate this example indicator stuff example_indicator = computed_indicators[indicators_to_visualize[0]] source_data = example_indicator.source_data dataset_to_attribute_map = {} package_order = source_data.get_package_order() self._create_input_stores(years = source_data.years) for name, computed_indicator in computed_indicators.items(): if name not in indicators_to_visualize: continue if computed_indicator.source_data != source_data: raise Exception('result templates in indicator batch must all be the same.') dataset_name = computed_indicator.indicator.dataset_name if dataset_name not in dataset_to_attribute_map: dataset_to_attribute_map[dataset_name] = [] dataset_to_attribute_map[dataset_name].append(name) viz_metadata = [] for dataset_name, indicator_names in dataset_to_attribute_map.items(): attributes = [(name,computed_indicators[name].get_computed_dataset_column_name()) for name in indicator_names] for year in source_data.years: SessionConfiguration( new_instance = True, package_order = package_order, in_storage = AttributeCache()) SimulationState().set_cache_directory(source_data.cache_directory) SimulationState().set_current_time(year) dataset = SessionConfiguration().get_dataset_from_pool(dataset_name) dataset.load_dataset() if dataset.get_coordinate_system() is not None: dataset.compute_variables(names = dataset.get_coordinate_system()) for indicator_name, computed_name in attributes: indicator = computed_indicators[indicator_name] table_data = self.input_stores[year].load_table( table_name = dataset_name, column_names = [computed_name]) if computed_name in table_data: table_name = self.get_name( dataset_name = dataset_name, years = [year], attribute_names = [indicator_name]) if self.scale: min_value, max_value = self.scale else: min_value, max_value = (None, None) file_path = os.path.join(self.storage_location, 'anim_' + table_name + '.' + MapnikMap.get_file_extension(self)) dataset.add_attribute(name = str(computed_name), data = table_data[computed_name]) dataset.plot_map( name = str(computed_name), min_value = min_value, max_value = max_value, file = str(file_path), my_title = str(indicator_name), color_list = self.color_list, range_list = self.range_list, label_list = self.label_list, is_animation = True, year = year, resolution = self.resolution, page_dims = self.page_dims, map_lower_left = self.map_lower_left, map_upper_right = self.map_upper_right, legend_lower_left = self.legend_lower_left, legend_upper_right = self.legend_upper_right #filter = where(table_data[computed_name] != -1) #filter = 'urbansim.gridcell.is_fully_in_water' ) #metadata = ([indicator_name], table_name, [year]) #viz_metadata.append(metadata) else: logger.log_warning('There is no computed indicator %s'%computed_name) for indicator_name, computed_name in attributes: self.create_animation( dataset_name = dataset_name, year_list = source_data.years, indicator_name = str(indicator_name), viz_metadata = viz_metadata ) visualization_representations = [] for indicator_names, table_name, years in viz_metadata: visualization_representations.append( self._get_visualization_metadata( computed_indicators = computed_indicators, indicators_to_visualize = indicator_names, table_name = table_name, years = years) ) return visualization_representations # precondition: year_list must always have at least one element # this function is called by the visualize function def create_animation(self, dataset_name, year_list, indicator_name, viz_metadata): map_file_list = [] for year in year_list: map_file_list.append(os.path.join(self.storage_location,'anim_'+dataset_name+'_map_'+str(year)+'_'+indicator_name+'.'+MapnikMap.get_file_extension(self))) table_name = dataset_name+'_animated_map_'+str(min(year_list))+'_'+indicator_name animation_file_name = str(os.path.join(self.storage_location,table_name+'.'+self.get_file_extension())) os.system('convert -delay 100 %s -loop 0 %s' % (' '.join(map_file_list), animation_file_name)) # delete intermediate png files for i in range(map_file_list.__len__()): os.remove(map_file_list[i]) metadata = ([indicator_name], table_name, [min(year_list)]) viz_metadata.append(metadata) if __name__ == '__main__': try: import mapnik except: logger.log_warning('could not import mapnik')
agpl-3.0
8,432,913,646,352,047,000
46.025316
166
0.517766
false
won0089/oppia
core/domain/skins_services.py
1
3513
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides services for HTML skins for the reader view.""" __author__ = 'Sean Lip' import copy import inspect from extensions.skins import skin_classes class Registry(object): """Registry of all skins.""" # Dict mapping skin ids to their classes. _skins_dict = {} @classmethod def _refresh_registry(cls): cls._skins_dict.clear() # Add new skin classes to the registry. for name, clazz in inspect.getmembers(skin_classes, inspect.isclass): if name.endswith('_test') or name == 'BaseSkin': continue ancestor_names = [ base_class.__name__ for base_class in inspect.getmro(clazz)] if 'BaseSkin' not in ancestor_names: continue cls._skins_dict[clazz.skin_id] = clazz @classmethod def get_skin_by_id(cls, skin_id): """Get a skin class instance by id.""" if not cls._skins_dict: cls._refresh_registry() return cls._skins_dict[skin_id] @classmethod def get_all_skin_ids(cls): """Get a list of all skin ids.""" if not cls._skins_dict: cls._refresh_registry() return cls._skins_dict.keys() @classmethod def get_all_skin_classes(cls): """Get a dict mapping skin ids to skin classes.""" if not cls._skins_dict: cls._refresh_registry() return copy.deepcopy(cls._skins_dict) @classmethod def get_all_specs(cls): """Get a dict mapping skin ids to their gadget panels properties.""" if not cls._skins_dict: cls._refresh_registry() specs_dict = {} classes_dict = cls.get_all_skin_classes() for skin_id in classes_dict: specs_dict[skin_id] = classes_dict[skin_id].panels_properties return specs_dict @classmethod def get_skin_templates(cls, skin_ids): """Returns the concatanated HTML for the given skins. Raises an error if any of the skins is not found. """ cls._refresh_registry() return '\n'.join([ cls._skins_dict[skin_id].get_html() for skin_id in skin_ids]) @classmethod def get_skin_js_url(cls, skin_id): """Returns the URL to the directive JS code for a given skin. Refreshes once if the skin id is not found; subsequently, throws an error. """ if skin_id not in cls._skins_dict: cls._refresh_registry() return cls._skins_dict[skin_id].get_js_url() @classmethod def get_skin_tag(cls, skin_id): """Returns an HTML tag corresponding to the given skin. Refreshes once if the skin id is not found; subsequently, throws an error. """ if skin_id not in cls._skins_dict: cls._refresh_registry() return cls._skins_dict[skin_id].get_tag()
apache-2.0
-8,853,533,049,173,117,000
30.648649
77
0.619129
false
georgebv/coastlib
coastlib/stats/extreme.py
1
165750
# coastlib, a coastal engineering Python library # Copyright (C), 2019 Georgii Bocharov # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import pickle import corner import emcee import matplotlib.pyplot as plt import matplotlib.ticker import mpmath import numpy as np import pandas as pd import scipy.stats import statsmodels.api as sm import coastlib.math.derivatives import coastlib.stats.distributions # Helper function used to handle quantiles of empty arrays def empty_quantile(array, *args, **kwargs): if len(array) > 0: return np.nanquantile(array, *args, **kwargs) else: return np.nan class EVA: """ Initializes the EVA class instance by taking a <dataframe> with values in <column> to analyze. Extracts extreme values. Provides assistance in threshold value selection for the POT method. Estimates parameters of distributions for given data using Maximum Likelihood Estimate (MLE) or estimates posterior distributions of parameters of distributions using Markov chain Monte Carlo (MCMC). For given return periods gives estimates of return values and associated confidence intervals. Generates various statistical plots such as return value plot and QQ/PP plots. Provides multiple goodness-of-fit (GOF) statistics and tests. Parameters ---------- dataframe : pd.DataFrame or pd.Series Pandas Dataframe or Series object containing data to be analyzed. Must have index array of type pd.DatetimeIndex. column : str or int, optional Name or index of column in <dataframe> with data to be analyzed. By default is <None> and takes first (0'th index) column from <dataframe>. block_size : float, optional Block size in days. Used to determine number of blocks in data (default=365.2425, one Gregorian year). Block size is used to estimate probabilities (return periods for observed data) for all methods and to extract extreme events in the 'Block Maxima' method. By default, it is one Gregorian year and results in return periods having units of years, i.e. a 100-<block_size> event by default is a 100-year return period event. Weekly would be <block_size=7> and monthly would be <block_size=365.2425/12>. gap_length : float, optional Gap length in hours. Gaps larger than <gap_length> are excluded when calculating total number of blocks of <block_size> in <dataframe>. Set to None to calculate number of blocks as "(last_date - first_date) / block_size". Default is 24 hours. It is also used in Block Maxima extreme value extraction method to get boundaries of blocks. Public Attributes ----------------- self.__init__() self.dataframe : pd.DataFrame self.column : str self.block_size : float self.gap_length : float self.number_of_blocks : float self.dataframe_declustered : np.ndarray self.get_extremes() self.extremes_method : str self.extremes_type : str self.threshold : float self.block_boundaries : np.ndarray self.extremes : pd.DataFrame self.extremes_rate : float self.plotting_position : str self.fit() self.distribution_name : str self.fit_method : str self.fit_parameters : tuple self.scipy_fit_options : dict self.sampler : emcee.EnsembleSampler self.mcmc_chain : np.ndarray self.fixed_parameters : np.ndarray self.generate_results() self.results : pd.DataFrame Private Attributes ------------------ self.__init__() self.__status : dict Public Methods -------------- self.to_pickle self.read_pickle self.get_extremes self.plot_extremes self.plot_mean_residual_life self.plot_parameter_stability self.test_extremes self.fit self.plot_trace self.plot_corner self.plot_posterior self.return_value self.confidence_interval self.generate_results self.plot_summary self.pdf self.cdf self.ppf self.isf self.plot_qq self.goodness_of_fit Private Methods --------------- self.__init__ self.__get_blocks self.__update self.__repr__ self.__get_return_period self.__run_mcmc self._kernel_fit_parameters self.__monte_carlo self.__delta self.__get_property """ def __init__(self, dataframe, column=None, block_size=365.2425, gap_length=24): """ Initializes the EVA class instance by taking a <dataframe> with values in <column> to analyze. Calculates number of blocks with <block_size>, accounting for gaps if <gap_length> is given. Parameters ---------- dataframe : pd.DataFrame or pd.Series Pandas Dataframe or Series object containing data to be analyzed. Must have index array of type pd.DatetimeIndex. column : str or int, optional Name or index of column in <dataframe> with data to be analyzed. By default is <None> and takes first (0'th index) column from <dataframe>. block_size : float, optional Block size in days. Used to determine number of blocks in data (default=365.2425, one Gregorian year). Block size is used to estimate probabilities (return periods for observed data) for all methods and to extract extreme events in the 'Block Maxima' method. By default, it is one Gregorian year and results in return periods having units of years, i.e. a 100-<block_size> event by default is a 100-year return period event. Weekly would be <block_size=7> and monthly would be <block_size=365.2425/12>. gap_length : float, optional Gap length in hours. Gaps larger than <gap_length> are excluded when calculating total number of blocks of <block_size> in <dataframe>. Set to None to calculate number of blocks as "(last_date - first_date) / block_size". Default is 24 hours. It is also used in Block Maxima extreme value extraction method to get boundaries of blocks. """ # Ensure passed <dataframe> is a pd.Dataframe object or can be converted to one if isinstance(dataframe, pd.DataFrame): self.dataframe = dataframe elif isinstance(dataframe, pd.Series): self.dataframe = dataframe.to_frame() else: raise TypeError(f'<dataframe> must be {pd.DataFrame} or {pd.Series}, {type(dataframe)} was passed') # Ensure <dataframe> index is pd.DatetimeIndex object if not isinstance(dataframe.index, pd.DatetimeIndex): raise TypeError(f'<dataframe> index must be {pd.DatetimeIndex}, {type(dataframe.index)} was passed') self.dataframe.sort_index(ascending=True, inplace=True) # Ensure passed <column> represents a column within <dataframe> if column is not None: if isinstance(column, int): if column < len(self.dataframe.columns): self.column = self.dataframe.columns[column] else: raise ValueError(f'<column> with index {column} is not valid for ' f'dataframe with {len(self.dataframe.columns)} columns') elif isinstance(column, str): if column in self.dataframe.columns: self.column = column else: raise ValueError(f'Column {column} is not valid for given dataframe.\n' f'Valid columns are {self.dataframe.columns}') else: raise TypeError(f'Column must be {str} or {int}, {type(column)} was passed.') else: self.column = self.dataframe.columns[0] # Ensure no nans are present in the <dataframe> <column> nancount = np.sum(np.isnan(self.dataframe[self.column].values)) if nancount > 0: raise ValueError(f'<dataframe> contains {nancount} NaN values in column {self.column}.' f'\nNaN values must be removed or filled before performing analysis.') # Ensure values in <dataframe> <column> are real numbers if not np.all(np.isreal(self.dataframe[self.column].values)): raise ValueError(f'Values in <dataframe> <column> must be real numbers,' f' {self.dataframe[self.column].values.dtype} was passed') # Calculate number of blocks of <block_size> in <dataframe> self.block_size = block_size self.gap_length = gap_length self.number_of_blocks = self.__get_blocks(gap_length=self.gap_length) # Separate data into clusters using gap_length and plot each cluster independently # This way distant clusters are not connected on the plot if self.gap_length is not None: cluster_values = [[self.dataframe[self.column].values.copy()[0]]] cluster_indexes = [[self.dataframe.index.values.copy()[0]]] for index, value in zip(self.dataframe.index, self.dataframe[self.column].values): # New cluster encountered if index - cluster_indexes[-1][-1] > np.timedelta64(pd.Timedelta(hours=self.gap_length)): cluster_values.append([value]) cluster_indexes.append([index]) # Continuing within current cluster else: cluster_values[-1].append(value) cluster_indexes[-1].append(index) cluster_indexes = np.array(cluster_indexes) cluster_values = np.array(cluster_values) self.dataframe_declustered = np.array([cluster_indexes, cluster_values]) else: self.dataframe_declustered = None # Initialize internal status # Internal status is used to delete calculation results when earlier methods are called # e.g. removes fit data and results when extreme events are exctracted. This prevents conflicts and errors self.__status = dict( extremes=False, fit=False, results=False ) # Extremes extraction self.extremes_method = None self.extremes_type = None self.threshold = None self.block_boundaries = None self.extremes = None self.extremes_rate = None self.plotting_position = None # Extremes fit self.distribution_name = None self.fit_method = None self.fit_parameters = None self.scipy_fit_options = None self.sampler = None self.mcmc_chain = None self.fixed_parameters = None # Results self.results = None def __get_blocks(self, gap_length): """ Calculates number of blocks of size <self.block_size> in <self.dataframe> <self.column>. Parameters ---------- gap_length : float, optional Gap length in hours. Gaps larger than <gap_length> are excluded when calculating total number of blocks of <block_size> in <dataframe>. Set to None to calculate number of blocks as "(last_date - first_date) / block_size". Default is 24 hours. It is also used in Block Maxima extreme value extraction method to get boundaries of blocks. Returns ------- n : float Number of blocks. """ # Calculate number of blocks with gaps accounted for if gap_length is not None: timedelta = np.timedelta64(pd.Timedelta(hours=gap_length)) # Eliminate gaps in data by shifting all values upstream of the gap downstream by <total_shift> new_index = self.dataframe.index.values.copy() for i in np.arange(1, len(new_index)): shift = new_index[i] - new_index[i-1] if shift > timedelta: # Add 1/10 of gap_length to avoid duplicate dates new_index[i:] -= shift - np.timedelta64(pd.Timedelta(hours=gap_length/10)) series_range = np.float64(new_index[-1] - new_index[0]) # Calculate number of blocks with gaps not accounted for else: series_range = np.float64((self.dataframe.index[-1] - self.dataframe.index[0]).value) return series_range / 1e9 / 60 / 60 / 24 / self.block_size def __update(self): """ Updates internal state of the EVA class instance object. This method is used to delete calculation results when earlier methods are called. For example, removes all data related to fit and results when extreme events are extracted. """ if not self.__status['extremes']: self.extremes_method = None self.extremes_type = None self.threshold = None self.block_boundaries = None self.extremes = None self.extremes_rate = None self.plotting_position = None if not self.__status['fit']: self.distribution_name = None self.fit_method = None self.fit_parameters = None self.scipy_fit_options = None self.sampler = None self.mcmc_chain = None self.fixed_parameters = None if not self.__status['results']: self.results = None def __repr__(self): """ Generates a string with a summary of the EVA class instance object state. """ series_range = (self.dataframe.index[-1] - self.dataframe.index[0]).value / 1e9 / 60 / 60 / 24 summary = str( f'{" "*35}Extreme Value Analysis Summary\n' f'{"="*100}\n' f'Analyzed parameter{self.column:>29}{" "*6}Series length{series_range:29.2f} days\n' f'Gap length{self.gap_length:31.2f} hours{" "*6}' f'Adjusted series length{self.number_of_blocks*self.block_size:20.2f} days\n' f'Block size{self.block_size:32.2f} days{" "*6}Number of blocks{self.number_of_blocks:31.2f}\n' f'{"="*100}\n' ) if self.__status['extremes']: summary += str( f'Number of extreme events{len(self.extremes):23}{" "*6}Extraction method{self.extremes_method:>30}\n' f'Extreme event rate{self.extremes_rate:16.2f} events/block{" "*6}' f'Plotting position{self.plotting_position:>30}\n' f'Threshold{self.threshold:38.2f}{" "*6}Extreme values type{self.extremes_type:>28}\n' f'{"="*100}\n' ) else: summary += str( f'Number of extreme events{"N/A":>23}{" " * 6}Extraction method{"N/A":>30}\n' f'Extreme event rate{"N/A":>16} events/block{" " * 6}' f'Plotting position{"N/A":>30}\n' f'Threshold{"N/A":>38}{" "*6}Extreme values type{"N/A":>28}\n' f'{"=" * 100}\n' ) if self.__status['fit']: if self.fit_method == 'MCMC': fit_parameters = self._kernel_fit_parameters( burn_in=int(self.mcmc_chain.shape[1] / 2), kernel_steps=100 ) summary += str( f'Distribution{self.distribution_name:>35}{" " * 6}Fit method{"Markov chain Monte Carlo":>37}\n' f'MCMC fit parameters (approximate){str(np.round(fit_parameters, 3)):>14}\n' f'{"=" * 100}' ) elif self.fit_method == 'MLE': summary += str( f'Distribution{self.distribution_name:>35}{" " * 6}Fit method{"Maximum Likelihood Estimate":>37}\n' f'MLE fit parameters{str(np.round(self.fit_parameters, 3)):>29}\n' f'{"=" * 100}' ) else: summary += str( f'Distribution{"N/A":>35}{" " * 6}Fit method{"N/A":>37}\n' f'Fit parameters{"N/A":>33}\n' f'{"=" * 100}' ) return summary def to_pickle(self, path): """ Exports EVA object to a .pyc file. Preserves all data and internal states. Can be used to save work, share analysis results, and to review work of others. Parameters ---------- path : str Path to pickle file: e.g. <path:\to\pickle.pyc>. """ with open(path, 'wb') as f: pickle.dump(self, f) @staticmethod def read_pickle(path): """ Reads a .pyc file with EVA object. Loads all data and internal states. Can be used to save work, share analysis results, and to review work of others. Parameters ---------- path : str Path to pickle file: e.g. <path:\to\pickle.pyc>. Returns ------- file : EVA class instance object Saved EVA object with all data and internal state preserved. """ with open(path, 'rb') as f: file = pickle.load(f) return file def get_extremes(self, method='BM', plotting_position='Weibull', extremes_type='high', **kwargs): """ Extracts extreme values from <self.dataframe> <self.column> using the BM (Block Maxima) or the POT (Peaks Over Threshold) methods. If method is POT, also declusters extreme values using the runs method (aka minimum distance between independent events). Parameters ---------- method : str, optional Peak extraction method. 'POT' for Peaks Over Threshold and 'BM' for Block Maxima (default='BM'). plotting_position : str, optional Plotting position (default='Weibull'). Has no effect on return value inference, affects only some goodness of fit statistics and locations of observed extremes on the return values plot. extremes_type : str, optional Specifies type of extremes extracted: 'high' yields max values, 'low' yields min values (defaul='high'). Use 'high' for extreme high values, use 'low' for extreme low values. kwargs for method='POT' threshold : float Threshold for extreme value extraction. Only values above (below, if <extremes_type='low'>) this threshold are extracted. r : float, optional Minimum distance in hours between events for them to be considered independent. Used to decluster extreme values using the runs method (default=24). adjust_threshold : bool, optional If True, sets threshold equal to smallest/largest exceedance. This way Generalized Pareto Distribution location parameter is strictly 0. Eliminates instabilities associated with estimating location (default=True). Returns ------- Creates a <self.extremes> dataframe with extreme values and return periods determined using the given plotting position as p=(rank-alpha)/(N+1-alpha-beta) and T=1/(1-p). """ # Update internal status self.__status = dict( extremes=False, fit=False, results=False ) self.__update() if extremes_type not in ['high', 'low']: raise ValueError(f'<extremes_type> must be high or low, {extremes_type} was passed') self.extremes_type = extremes_type # Block Maxima method if method == 'BM': assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' # Set threshold to 0 for compatibility between BM and POT formulas self.extremes_method = 'Block Maxima' self.threshold = 0 # Generate new index with gaps eliminated if self.gap_length is not None: gap_delta = np.timedelta64(pd.Timedelta(hours=self.gap_length)) # Eliminate gaps in data by shifting all values upstream of the gap downstream by <total_shift> new_index = self.dataframe.index.values.copy() for i in np.arange(1, len(new_index)): shift = new_index[i] - new_index[i-1] if shift > gap_delta: # Add 1/10 of gap_length to avoid duplicate dates new_index[i:] -= shift - np.timedelta64(pd.Timedelta(hours=self.gap_length/10)) else: new_index = self.dataframe.index.values.copy() # Create local reindexed dataframe with <new_index> and <id> column to get original datetime later local_dataframe = pd.DataFrame( data=self.dataframe[self.column].values.copy(), columns=[self.column], index=new_index ) local_dataframe['id'] = np.arange(len(local_dataframe)) # Find boundaries of blocks of <self.block_size> block_delta = np.timedelta64(pd.Timedelta(days=self.block_size)) block_boundaries = [(new_index[0], new_index[0] + block_delta)] self.block_boundaries = [self.dataframe.index.values.copy()[0]] while block_boundaries[-1][-1] < local_dataframe.index.values[-1]: block_boundaries.append( (block_boundaries[-1][-1], block_boundaries[-1][-1] + block_delta) ) self.block_boundaries.append( self.dataframe.index.values.copy()[ local_dataframe.truncate(before=block_boundaries[-1][0])['id'].values[0] ] ) self.block_boundaries.append(self.block_boundaries[-1] + block_delta) self.block_boundaries = np.array(self.block_boundaries) block_boundaries = np.array(block_boundaries) # Update number_of_blocks self.number_of_blocks = len(self.block_boundaries) - 1 # Find extreme values within each block and associated datetime indexes from original dataframe extreme_values, extreme_indexes = [], [] for i, block_boundary in enumerate(block_boundaries): if i == len(block_boundaries) - 1: local_data = local_dataframe[local_dataframe.index >= block_boundary[0]] else: local_data = local_dataframe[ (local_dataframe.index >= block_boundary[0]) & (local_dataframe.index < block_boundary[1]) ] if len(local_data) != 0: if self.extremes_type == 'high': extreme_values.append(local_data[self.column].values.copy().max()) else: extreme_values.append(local_data[self.column].values.copy().min()) local_index = self.dataframe.index.values.copy()[ local_data[local_data[self.column].values == extreme_values[-1]]['id'] ] if np.isscalar(local_index): extreme_indexes.append(local_index) else: extreme_indexes.append(local_index[0]) self.extremes = pd.DataFrame(data=extreme_values, columns=[self.column], index=extreme_indexes) # Peaks Over Threshold method elif method == 'POT': self.threshold = kwargs.pop('threshold') r = kwargs.pop('r', 24) adjust_threshold = kwargs.pop('adjust_threshold', True) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' self.extremes_method = 'Peaks Over Threshold' # Make sure correct number of blocks is used (overrides previously created BM values) if isinstance(self.number_of_blocks, int): self.number_of_blocks = self.__get_blocks(gap_length=self.gap_length) # Extract raw extremes if self.extremes_type == 'high': self.extremes = self.dataframe[self.dataframe[self.column] > self.threshold][self.column].to_frame() else: self.extremes = self.dataframe[self.dataframe[self.column] < self.threshold][self.column].to_frame() # Decluster raw extremes using runs method if r is not None: r = np.timedelta64(pd.Timedelta(hours=r)) last_cluster_index = self.extremes.index.values.copy()[0] peak_cluster_values = [self.extremes[self.column].values.copy()[0]] peak_cluster_indexes = [self.extremes.index.values.copy()[0]] for index, value in zip(self.extremes.index, self.extremes[self.column].values): # New cluster encountered if index - last_cluster_index > r: peak_cluster_values.append(value) peak_cluster_indexes.append(index) # Continuing within current cluster else: # Update cluster peak if self.extremes_type == 'high': if value > peak_cluster_values[-1]: peak_cluster_values[-1] = value peak_cluster_indexes[-1] = index else: if value < peak_cluster_values[-1]: peak_cluster_values[-1] = value peak_cluster_indexes[-1] = index # Index of previous cluster - lags behind <index> by 1 last_cluster_index = index self.extremes = pd.DataFrame( data=peak_cluster_values, index=peak_cluster_indexes, columns=[self.column] ) # Update threshold to smallest/largest extreme value in order to fix the GPD location parameter at 0. # GPD is very unstable with non-zero location. if adjust_threshold: if self.extremes_type == 'high': self.threshold = self.extremes[self.column].values.min() else: self.threshold = self.extremes[self.column].values.max() else: raise ValueError(f'Method {method} not recognized') self.extremes.index.name = self.dataframe.index.name # Calculate rate of extreme events (events/block) self.extremes_rate = len(self.extremes) / self.number_of_blocks # Assign ranks to data with duplicate values having average of ranks they would have individually self.plotting_position = plotting_position self.extremes['Return Period'] = self.__get_return_period(plotting_position=self.plotting_position) # Update internal status self.__status = dict( extremes=True, fit=False, results=False ) self.__update() def __get_return_period(self, plotting_position, return_cdf=False): """ Assigns return periods to extracted extreme events and updates the <self.extremes> index. Parameters ---------- plotting_position : str Plotting position. Has no effect on return value inference, affects only some goodness of fit statistics and locations of observed extremes on the return values plot. return_cdf : bool, optional If True, returns cdf of extracted extremes (default=False). """ # Assign ranks to data with duplicate values having average of ranks they would have individually if self.extremes_type == 'high': ranks = scipy.stats.rankdata(self.extremes[self.column].values, method='average') else: ranks = len(self.extremes) + 1 - scipy.stats.rankdata(self.extremes[self.column].values, method='average') # Calculate return periods using a specified plotting position # https://matplotlib.org/mpl-probscale/tutorial/closer_look_at_plot_pos.html plotting_positions = { 'ECDF': (0, 1), 'Hazen': (0.5, 0.5), 'Weibull': (0, 0), 'Laplace': (-1, -1), 'Tukey': (1 / 3, 1 / 3), 'Blom': (3 / 8, 3 / 8), 'Median': (0.3175, 0.3175), 'Cunnane': (0.4, 0.4), 'Gringorten': (0.44, 0.44), 'Gumbel': (1, 1) } if plotting_position not in plotting_positions: raise ValueError(f'Plotting position {plotting_position} not recognized') alpha, beta = plotting_positions[plotting_position][0], plotting_positions[plotting_position][1] cdf = (ranks - alpha) / (len(self.extremes) + 1 - alpha - beta) if return_cdf: return cdf # Survival function - aka upper tail probability or probability of exceedance sf = 1 - cdf return 1 / sf / self.extremes_rate def plot_extremes(self): """ Plots extracted extreme values on top of <self.dataframe> <self.column> observed time series. Shows boundaries of blocks for the Block Maxima method and threshold level for the Peaks Over Threshold method. Returns ------- tuple(fig, ax) """ # Make sure extreme values have been extracted if not self.__status['extremes']: raise RuntimeError('Extreme values have not been extracted. Run self.get_extremes() first') with plt.style.context('bmh'): fig, ax = plt.subplots(figsize=(12, 8)) points = ax.scatter( self.extremes.index, self.extremes[self.column], edgecolors='white', marker='s', facecolors='k', s=40, lw=1, zorder=15 ) if self.gap_length is None: ax.plot( self.dataframe.index, self.dataframe[self.column], color='#3182bd', lw=.5, alpha=.8, zorder=5 ) else: for x, y in zip(self.dataframe_declustered[0], self.dataframe_declustered[1]): ax.plot(x, y, color='#3182bd', lw=.5, alpha=.8, zorder=5) if self.extremes_method == 'Block Maxima': for _block in self.block_boundaries: ax.axvline(_block, color='k', ls='--', lw=1, zorder=10) elif self.extremes_method == 'Peaks Over Threshold': ax.axhline(self.threshold, color='k', ls='--', lw=1, zorder=10) ax.set_title(f'Extreme Values Time Series, {self.extremes_method}') if len(self.dataframe.index.name) > 0: ax.set_xlabel(f'{self.dataframe.index.name}') else: ax.set_xlabel('Date') ax.set_ylabel(f'{self.column}') annot = ax.annotate( '', xy=(self.extremes.index[0], self.extremes[self.column].values[0]), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25), zorder=30 ) point = ax.scatter( self.extremes.index[0], self.extremes[self.column].values[0], edgecolors='white', marker='s', facecolors='orangered', s=80, lw=1, zorder=20 ) point.set_visible(False) annot.set_visible(False) def update_annot(ind): n = ind['ind'][0] pos = points.get_offsets()[n] annot.xy = pos point.set_offsets(pos) text = str( f'Date : {self.extremes.index[n]}\n' f'Value : {self.extremes[self.column].values[n]:.2f}\n' f'Return period : {self.extremes["Return Period"].values[n]:.2f}\n' f'Plotting position : {self.plotting_position}' ) annot.set_text(text) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = points.contains(event) if cont: update_annot(ind) annot.set_visible(True) point.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) point.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', hover) fig.tight_layout() return fig, ax def plot_mean_residual_life(self, thresholds=None, r=24, alpha=.95, extremes_type='high', adjust_threshold=True, limit=10, plot=True): """ Plots means of residuals against thresholds. Threshold should be chosen as the smallest threshold in a region where the mean residuals' plot is approximately linear. Generalized Pareto Distribution is asymptotically valid in this region. Parameters ---------- thresholds : array_like, optional Array with threshold values for which the plot is generated. Default .95 quantile to max for 'high' and min to .05 quantile for 'low', 100 values. r : float, optional POT method only: minimum distance in hours between events for them to be considered independent. Used to decluster extreme values using the runs method (default=24). alpha : float, optional Confidence interval (default=.95). If None, doesn't plot or return confidence limits. extremes_type : str, optional Specifies type of extremes extracted: 'high' yields max values, 'low' yields min values (defaul='high'). Use 'high' for extreme high values, use 'low' for extreme low values. adjust_threshold : bool, optional If True, sets threshold equal to smallest/largest exceedance. This way Generalized Pareto Distribution location parameter is strictly 0. Eliminates instabilities associated with estimating location (default=True). limit : int, optional Minimum number of exceedances (peaks) for which calculations are performed (default=10). plot : bool, optional Generates plot if True, returns data if False (default=True). Returns ------- if plot=True (default) : tuple(fig, ax) if plot=False : tuple(thresholds, residuals, confidence_low, confidence_top) """ if thresholds is None: if extremes_type == 'high': thresholds = np.linspace( np.quantile(self.dataframe[self.column].values, .95), self.dataframe[self.column].values.max(), 100 ) else: thresholds = np.linspace( self.dataframe[self.column].values.min(), np.quantile(self.dataframe[self.column].values, .05), 100 ) if np.isscalar(thresholds): raise ValueError('Thresholds must be an array. A scalar was provided') thresholds = np.sort(thresholds) if extremes_type == 'high': thresholds = thresholds[thresholds < self.dataframe[self.column].values.max()] else: thresholds = thresholds[thresholds > self.dataframe[self.column].values.min()] # Find mean residuals and 95% confidence interval for each threshold residuals, confidence = [], [] true_thresholds = [] for u in thresholds: self.get_extremes( method='POT', threshold=u, r=r, adjust_threshold=adjust_threshold, extremes_type=extremes_type ) true_thresholds.append(self.threshold) exceedances = self.extremes[self.column].values - self.threshold # Flip exceedances around 0 if extremes_type == 'low': exceedances *= -1 if len(exceedances) > limit: residuals.append(exceedances.mean()) # Ubiased estimator of sample variance of mean s^2/n confidence.append( scipy.stats.norm.interval( alpha=alpha, loc=exceedances.mean(), scale=exceedances.std(ddof=1)/np.sqrt(len(exceedances)) ) ) else: residuals.append(np.nan) confidence.append((np.nan, np.nan)) residuals = np.array(residuals) confidence = np.array(confidence) # Remove non-unique values if adjust_threshold: thresholds, mask = np.unique(true_thresholds, return_index=True) residuals = residuals[mask] confidence = confidence[mask] # Update internal status self.__status = dict( extremes=False, fit=False, results=False ) self.__update() # Generate mean residual life plot if plot: with plt.style.context('bmh'): fig, ax = plt.subplots(figsize=(12, 8)) ax.set_title('Mean Residual Life Plot') ax.plot(thresholds, residuals, color='k', zorder=10, label='Mean residual life', lw=2) ax.plot(thresholds, confidence.T[0], ls='--', color='k', lw=0.5, zorder=10) ax.plot(thresholds, confidence.T[1], ls='--', color='k', lw=0.5, zorder=10) ax.fill_between( thresholds, confidence.T[0], confidence.T[1], alpha=.1, color='k', label=f'{alpha*100:.0f}% confidence interval', zorder=5 ) ax.legend() ax.set_xlabel('Threshold') ax.set_ylabel('Mean Residual') fig.tight_layout() return fig, ax else: return thresholds, residuals, confidence.T[0], confidence.T[1] def plot_parameter_stability(self, thresholds=None, r=24, alpha=.95, extremes_type='high', adjust_threshold=True, limit=10, plot=True, dx='1e-10', precision=100): """ Plots shape and modified scale paramters of the Generalized Pareto Distribution (GPD) against thresholds. GPD is asymptotically valid in a region where these parameters are approximately linear. Parameters ---------- thresholds : array_like, optional Array with threshold values for which the plot is generated. Default .95 quantile to max for 'high' and min to .05 quantile for 'low', 100 values. r : float, optional Minimum distance in hours between events for them to be considered independent. Used to decluster extreme values using the runs method (default=24). alpha : float, optional Confidence interval (default=.95). If None, doesn't plot or return confidence limits. extremes_type : str, optional Specifies type of extremes extracted: 'high' yields max values, 'low' yields min values (defaul='high'). Use 'high' for extreme high values, use 'low' for extreme low values. adjust_threshold : bool, optional If True, sets threshold equal to smallest/largest exceedance. This way Generalized Pareto Distribution location parameter is strictly 0. Eliminates instabilities associated with estimating location (default=True). limit : int, optional Minimum number of exceedances (peaks) for which calculations are performed (default=10). plot : bool, optional Generates plot if True, returns data if False (default=True). dx : str, optional String representing a float, which represents spacing at which partial derivatives are estimated (default='1e-10'). precision : int, optional Precision of floating point calculations (see mpmath library documentation) (default=100). Derivative estimated with low <precision> value may have a significant error due to rounding and under-/overflow. Returns ------- if plot=True (default) : tuple(fig, ax) if plot=False : if alpha is None : tuple(thresholds, shapes, modified_scales) if alpha is passed : tuple(thresholds, shapes, modified_scales, shapes_confidence, scales_confidence) """ if thresholds is None: if extremes_type == 'high': thresholds = np.linspace( np.quantile(self.dataframe[self.column].values, .95), self.dataframe[self.column].values.max(), 100 ) else: thresholds = np.linspace( self.dataframe[self.column].values.min(), np.quantile(self.dataframe[self.column].values, .05), 100 ) if np.isscalar(thresholds): raise ValueError('Thresholds must be an array. A scalar was provided') thresholds = np.sort(thresholds) if extremes_type == 'high': thresholds = thresholds[thresholds < self.dataframe[self.column].values.max()] else: thresholds = thresholds[thresholds > self.dataframe[self.column].values.min()] shapes, modified_scales = [], [] shapes_confidence, scales_confidence = [], [] true_thresholds = [] for u in thresholds: self.get_extremes( method='POT', threshold=u, r=r, adjust_threshold=adjust_threshold, extremes_type=extremes_type ) true_thresholds.append(self.threshold) exceedances = self.extremes[self.column].values - self.threshold # Flip exceedances around 0 if extremes_type == 'low': exceedances *= -1 if len(exceedances) > limit: shape, loc, scale = scipy.stats.genpareto.fit(exceedances, floc=0) shapes.append(shape) # Define modified scale function (used as scalar function for delta method) if extremes_type == 'high': def mod_scale_function(*theta): return theta[1] - theta[0] * true_thresholds[-1] else: def mod_scale_function(*theta): return theta[1] + theta[0] * true_thresholds[-1] modified_scales.append(mod_scale_function(shape, scale)) if alpha is not None: with mpmath.workdps(precision): # Define modified log_likehood function def log_likelihood(*theta): return mpmath.fsum( [ mpmath.log( coastlib.stats.distributions.genpareto.pdf( x=_x, shape=theta[0], loc=0, scale=theta[1] ) ) for _x in exceedances ] ) # Calculate delta (gradient) of scalar_function if extremes_type == 'high': delta_scalar = np.array( [ [-true_thresholds[-1]], [1] ] ) else: delta_scalar = np.array( [ [true_thresholds[-1]], [1] ] ) # Calculate observed information matrix (negative hessian of log_likelihood) observed_information = -coastlib.math.derivatives.hessian( func=log_likelihood, n=2, coordinates=[shape, scale], dx=dx, precision=precision ).astype(np.float64) covariance = np.linalg.inv(observed_information) # Estimate modified scale parameter confidence interval using delta method variance = np.dot( np.dot(delta_scalar.T, covariance), delta_scalar ).flatten()[0] scales_confidence.append( scipy.stats.norm.interval( alpha=alpha, loc=modified_scales[-1], scale=np.sqrt(variance) ) ) # Estimate shape parameter confidence interval directly from covariance matrix shapes_confidence.append( scipy.stats.norm.interval( alpha=alpha, loc=shape, scale=np.sqrt(covariance[0][0]) ) ) # Number of exceedances below the limit else: shapes.append(np.nan) modified_scales.append(np.nan) if alpha is not None: shapes_confidence.append((np.nan, np.nan)) scales_confidence.append((np.nan, np.nan)) # Convert results to np.ndarray objects shapes = np.array(shapes) modified_scales = np.array(modified_scales) if alpha is not None: shapes_confidence = np.array(shapes_confidence) scales_confidence = np.array(scales_confidence) # Remove non-unique values if adjust_threshold: thresholds, mask = np.unique(true_thresholds, return_index=True) shapes = shapes[mask] modified_scales = modified_scales[mask] if alpha is not None: shapes_confidence = shapes_confidence[mask] scales_confidence = scales_confidence[mask] # Update internal status self.__status = dict( extremes=False, fit=False, results=False ) self.__update() if plot: with plt.style.context('bmh'): fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex='all') ax1.set_title('Parameter Stability Plot') ax1.plot(thresholds, shapes, color='k', zorder=10, label='Shape parameter') ax2.plot(thresholds, modified_scales, color='k', zorder=10, label='Modified scale parameter', lw=2) if alpha is not None: ax1.plot(thresholds, shapes_confidence.T[0], ls='--', color='k', lw=0.5) ax1.plot(thresholds, shapes_confidence.T[1], ls='--', color='k', lw=0.5) ax2.plot(thresholds, scales_confidence.T[0], ls='--', color='k', lw=0.5) ax2.plot(thresholds, scales_confidence.T[1], ls='--', color='k', lw=0.5) ax1.fill_between( thresholds, shapes_confidence.T[0], shapes_confidence.T[1], alpha=.1, color='k', label=f'{alpha*100:.0f}% confidence interval' ) ax2.fill_between( thresholds, scales_confidence.T[0], scales_confidence.T[1], alpha=.1, color='k', label=f'{alpha*100:.0f}% confidence interval' ) ax2.set_xlabel('Threshold') ax1.set_ylabel('Shape parameter') ax2.set_ylabel('Modified scale parameter') ax1.legend() ax2.legend() fig.tight_layout() return fig, (ax1, ax2) else: if alpha is None: return thresholds, shapes, modified_scales else: return thresholds, shapes, modified_scales, shapes_confidence, scales_confidence def test_extremes(self, method, **kwargs): """ Provides multiple methods to test independece of extracted extreme values. Parameters ---------- method : str Method for testing extreme values' independence. Accepted methods: 'autocorrelation' - generates an autocorrelation plot http://www.statsmodels.org/stable/generated/ statsmodels.tsa.stattools.acf.html#statsmodels.tsa.stattools.acf 'lag plot' - generates a lag plot for a given lag 'runs test' - return runs test statistic https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test kwargs for autocorrelation: plot : bool, optional Generates plot if True, returns data if False (default=True). nlags : int, optional Number of lags to return autocorrelation for (default for all possible lags). alpha : float, optional Confidence interval (default=.95). If None, doesn't plot or return confidence limits. unbiased : bool, optional If True, then denominators for autocovariance are n-k, otherwise n (default=False) for lag plot: plot : bool, optional Generates plot if True, returns data if False (default=True). lag : int, optional Lag value (default=1). for runs test: alpha : float, optional Significance level (default=0.05). Returns ------- for autocorrelation: if plot=True : tuple(fig, ax) if plot=False : tuple(lags, acorr, ci_low, ci_top) for lag plot: if plot=True : tuple(fig, ax) if plot=False : tuple(x, y) for runs test: str(test summary) """ if not self.__status['extremes']: raise RuntimeError('Extreme values have not been extracted. Nothing to test') if method == 'autocorrelation': plot = kwargs.pop('plot', True) nlags = kwargs.pop('nlags', len(self.extremes) - 1) alpha = kwargs.pop('alpha', .95) unbiased = kwargs.pop('unbiased', False) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' acorr, ci = sm.tsa.stattools.acf( x=self.extremes[self.column].values, alpha=1-alpha, nlags=nlags, unbiased=unbiased ) ci_low, ci_top = ci.T[0] - acorr, ci.T[1] - acorr if plot: with plt.style.context('bmh'): fig, ax = plt.subplots(figsize=(12, 8)) ax.vlines(np.arange(nlags+1), [0], acorr, lw=1, color='k', zorder=15) points = ax.scatter( np.arange(nlags+1), acorr, marker='o', s=40, lw=1, facecolor='k', edgecolors='white', zorder=20, label='Autocorrelation value' ) ax.plot(np.arange(nlags+1)[1:], ci_low[1:], color='k', lw=.5, ls='--', zorder=15) ax.plot(np.arange(nlags+1)[1:], ci_top[1:], color='k', lw=.5, ls='--', zorder=15) ax.fill_between( np.arange(nlags+1)[1:], ci_low[1:], ci_top[1:], color='k', alpha=.1, zorder=5, label=f'{alpha*100:.0f}% confidence interval' ) ax.axhline(0, color='k', lw=1, ls='--', zorder=10) ax.legend() ax.set_title('Autocorrelation plot') ax.set_xlabel('Lag') ax.set_ylabel('Correlation coefficient') annot = ax.annotate( '', xy=(0, 0), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25), zorder=30 ) point = ax.scatter( 0, 0, edgecolors='white', marker='o', facecolors='orangered', s=80, lw=1, zorder=25 ) point.set_visible(False) annot.set_visible(False) def update_annot(ind): n = ind['ind'][0] pos = points.get_offsets()[n] annot.xy = pos point.set_offsets(pos) text = str( f'Lag : {np.arange(nlags+1)[n]:d}\n' f'Correlation : {acorr[n]:.2f}' ) annot.set_text(text) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = points.contains(event) if cont: update_annot(ind) annot.set_visible(True) point.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) point.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', hover) fig.tight_layout() return fig, ax else: return np.arange(nlags+1), acorr, ci_low, ci_top elif method == 'lag plot': plot = kwargs.pop('plot', True) lag = kwargs.pop('lag', 1) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' if lag == 0: x = self.extremes[self.column].values else: x = self.extremes[self.column].values[:-lag] y = self.extremes[self.column].values[lag:] if plot: with plt.style.context('bmh'): fig, ax = plt.subplots(figsize=(12, 8)) points = ax.scatter( x, y, marker='o', facecolor='k', s=40, edgecolors='white', lw=1, zorder=5 ) ax.set_xlabel(f'{self.column} i') ax.set_ylabel(f'{self.column} i+{lag}') ax.set_title('Extreme Values Lag Plot') annotation = ax.annotate( "", xy=(0, 0), xytext=(10, 10), textcoords="offset points", bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25), zorder=30 ) point = ax.scatter( np.nanmean(x), np.nanmean(y), edgecolors='white', marker='o', facecolors='orangered', s=80, lw=1, zorder=20 ) point.set_visible(False) annotation.set_visible(False) def update_annotation(ind): pos = points.get_offsets()[ind['ind'][0]] annotation.xy = pos point.set_offsets(pos) text = "{}".format(" ".join( [ f'{self.extremes.index[n]} : {ind["ind"][0]}\n' f'{self.extremes.index[n+lag]} : {ind["ind"][0]+lag}' for n in ind['ind'] ])) annotation.set_text(text) def hover(event): vis = annotation.get_visible() if event.inaxes == ax: cont, ind = points.contains(event) if cont: update_annotation(ind) annotation.set_visible(True) point.set_visible(True) fig.canvas.draw_idle() else: if vis: annotation.set_visible(False) point.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', hover) fig.tight_layout() return fig, ax else: return x, y elif method == 'runs test': alpha = kwargs.pop('alpha', .05) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' # Calculate number of runs of shifted series s = self.extremes[self.column].values - np.quantile(self.extremes[self.column].values, .5) n_plus = np.sum(s > 0) n_minus = np.sum(s < 0) n_runs = 1 for i in range(1, len(s)): # Change of sign if s[i] * s[i-1] < 0: n_runs += 1 mean = 2 * n_plus * n_minus / len(s) + 1 variance = (mean - 1) * (mean - 2) / (len(s) - 1) test_statistic = (n_runs-mean)/np.sqrt(variance) return str( f'Ho : data is random\n' f'Ha : data is not random\n\n' f'Test statistic : N = {test_statistic:.2f}\n' f'Significanse level : alpha = {alpha}\n' f'Critical value : Nalpha = {scipy.stats.norm.ppf(1 - alpha / 2):.2f}\n' f'Reject Ho if |N| > Nalpha' ) else: raise ValueError(f'Method {method} not recognized. Try: autocorrelation') def fit(self, distribution_name, fit_method='MLE', **kwargs): """ Depending on fit method, either creates a tuple with maximum likelihood estimate (MLE) or an array with samples drawn from posterior distribution of parameters (MCMC). Parameters ---------- distribution_name : str Scipy distribution name (see https://docs.scipy.org/doc/scipy/reference/stats.html). fit_method : str, optional Fit method - MLE (Maximum Likelihood Estimate, scipy) or Markov chain Monte Carlo (MCMC, emcee) (default='MLE'). kwargs: for MLE: scipy_fit_options : dict, optional Special scipy fit options like <fc>, <loc>, or <floc>. For GPD scipy_fit_options=dict(floc=0) by default (fixed location parameter at 0). This parameter is carried over to further calculations, such as confidence interval. for MCMC: nsamples : int, optional Number of samples each walker draws (default=1000). Larger values result in longer processing time, but can lead to better convergence. nwalkers : int, optional Number of walkers (default=200). Each walker explores the parameter space. Larger values result in longer processing time, but more parameter space is explored (higher chance to escape local maxima). log_prior : callable, optional Function taking one parameter - list with fit parameters (theta). Returns sum of log-probabilities (logpdf) for each parameter within theta. By default is uniform for each parameter. read http://dfm.io/emcee/current/user/line/ Default functions are defined only for 3-parameter GEV and 3- and 2-parameter (loc=0) GPD. log_likelihood : callable, optional Function taking one parameter - list with fit parameters (theta). Returns log-likelihood (sum of logpdf) for given parameters. By default is sum(logpdf) of scipy distribution with <distribution_name>. read http://dfm.io/emcee/current/user/line/ Default functions are defined only for 3-parameter GEV and 3- and 2-parameter (loc=0) GPD. starting_bubble : float, optional Radius of bubble from <starting_position> within which starting parameters for each walker are set (default=1e-2). starting_position : array_like, optional Array with starting parameters for each walker (default=None). If None, then zeroes are chosen as starting parameter. fixed_parameters : array_like, optional An array with tuples with index of parameter being fixed "i" and parameter value "v" [(i, v),...] for each parameter being fixed (default [(1,0)] for GPD, None for other). Works only with custom distributions. Must be sorted in ascending order by "i". """ # Make sure extreme values have been extracted if not self.__status['extremes']: raise RuntimeError('Extreme values have not been extracted. Nothing to fit') # Update internal status self.__status = dict( extremes=True, fit=False, results=False ) self.__update() if fit_method == 'MLE': if distribution_name == 'genpareto': self.scipy_fit_options = kwargs.pop('scipy_fit_options', dict(floc=0)) else: self.scipy_fit_options = kwargs.pop('scipy_fit_options', {}) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' # Create local distribution object distribution_object = getattr(scipy.stats, distribution_name) exceedances = self.extremes[self.column].values - self.threshold # Flip exceedances around 0 if self.extremes_type == 'low': exceedances *= -1 self.fit_parameters = distribution_object.fit(exceedances, **self.scipy_fit_options) elif fit_method == 'MCMC': self.mcmc_chain = self.__run_mcmc(distribution_name, **kwargs) else: raise ValueError(f'Fit method {fit_method} not recognized') # On successful fit assign the fit_ variables self.fit_method = fit_method self.distribution_name = distribution_name # Update internal status self.__status = dict( extremes=True, fit=True, results=False ) self.__update() def __run_mcmc(self, distribution_name, nsamples=1000, nwalkers=200, **kwargs): """ Runs emcee Ensemble Sampler to sample posteriot probability of fit parameters given observed data. Returns sampler chain with <nsamples> for each parameter for each <nwalkers>. See http://dfm.io/emcee/current/ Parameters ---------- distribution_name : str Scipy distribution name (see https://docs.scipy.org/doc/scipy/reference/stats.html). nsamples : int, optional Number of samples each walker draws (default=1000). Larger values result in longer processing time, but can lead to better convergence. nwalkers : int, optional Number of walkers (default=200). Each walker explores the parameter space. Larger values result in longer processing time, but more parameter space is explored (higher chance to escape local maxima). kwargs log_prior : callable, optional Function taking one parameter - list with fit parameters (theta). Returns sum of log-probabilities (logpdf) for each parameter within theta. By default is uniform for each parameter. read http://dfm.io/emcee/current/user/line/ Default functions are defined only for 3-parameter GEV and 3- and 2-parameter (loc=0) GPD. log_likelihood : callable, optional Function taking one parameter - list with fit parameters (theta). Returns log-likelihood (sum of logpdf) for given parameters. By default is sum(logpdf) of scipy distribution with <distribution_name>. read http://dfm.io/emcee/current/user/line/ Default functions are defined only for 3-parameter GEV and 3- and 2-parameter (loc=0) GPD. starting_bubble : float, optional Radius of bubble from <starting_position> within which starting parameters for each walker are set (default=1e-2). starting_position : array_like, optional Array with starting parameters for each walker (default=None). If None, then zeroes are chosen as starting parameter. fixed_parameters : array_like, optional An array with tuples with index of parameter being fixed "i" and parameter value "v" [(i, v),...] for each parameter being fixed (default [(1,0)] for GPD, None for other). Works only with custom distributions. Must be sorted in ascending order by "i". Returns ------- Generates an np.ndarray in self.mcmc_chain Ensemble Sampler chain with <nsamples> for each parameter for each <nwalkers>. """ log_prior = kwargs.pop('log_prior', None) log_likelihood = kwargs.pop('log_likelihood', None) starting_bubble = kwargs.pop('starting_bubble', 1e-2) starting_position = kwargs.pop('starting_position', None) if distribution_name == 'genpareto': self.fixed_parameters = kwargs.pop('fixed_parameters', [(1, 0)]) else: self.fixed_parameters = kwargs.pop('fixed_parameters', None) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' if self.fixed_parameters == [(1, 0)] and distribution_name == 'genpareto': pass else: if self.fixed_parameters is not None: if (log_prior is None) or (log_likelihood is None) or (starting_position is None): raise ValueError( '<fixed_parameter> only works with custom prior and likelihood functions.\n' 'Starting position should be provided for the fixed_parameters case' ) distribution_object = getattr(scipy.stats, distribution_name) exceedances = self.extremes[self.column].values - self.threshold # Flip exceedances around 0 if self.extremes_type == 'low': exceedances *= -1 # Define log_prior probability function (uniform by default) if log_prior is None: if distribution_name == 'genpareto': # https://en.wikipedia.org/wiki/Generalized_Pareto_distribution if self.fixed_parameters == [(1, 0)]: def log_prior(theta): shape, scale = theta if scale <= 0: return -np.inf return 0 else: def log_prior(theta): shape, loc, scale = theta # Parameter constraint if scale <= 0: return -np.inf # Support constraint if shape >= 0: condition = np.all(exceedances >= loc) else: condition = np.all(exceedances >= loc) and np.all(exceedances <= loc - scale / shape) if condition: return 0 else: return -np.inf elif distribution_name == 'genextreme': # https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution def log_prior(theta): shape, loc, scale = theta # Parameter constraint if scale <= 0: return -np.inf # Support constraint (scipy shape has inverted sign) shape *= -1 if shape > 0: condition = np.all(exceedances >= loc - scale / shape) elif shape == 0: condition = True else: condition = np.all(exceedances <= loc - scale / shape) if condition: return 0 else: return -np.inf else: raise NotImplementedError( f'Log-prior function is not implemented for {distribution_name} parameters.\n' f'Define manually and pass to <log_prior=>.' ) # Define log_likelihood function if log_likelihood is None: if distribution_name == 'genpareto': # https://en.wikipedia.org/wiki/Generalized_Pareto_distribution if self.fixed_parameters == [(1, 0)]: def log_likelihood(theta): shape, scale = theta if scale <= 0: return -np.inf return np.sum(distribution_object.logpdf(exceedances, shape, 0, scale)) else: def log_likelihood(theta): shape, loc, scale = theta # Parameter constraint if scale <= 0: return -np.inf # Support constraint if shape >= 0: condition = np.all(exceedances >= loc) else: condition = np.all(exceedances >= loc) and np.all(exceedances <= loc - scale / shape) if condition: return np.sum(distribution_object.logpdf(exceedances, *theta)) else: return -np.inf elif distribution_name == 'genextreme': # https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution def log_likelihood(theta): shape, loc, scale = theta # Parameter constraint if scale <= 0: return -np.inf # Support constraint (scipy shape has inverted sign) shape *= -1 if shape > 0: condition = np.all(exceedances >= loc - scale / shape) elif shape == 0: condition = True else: condition = np.all(exceedances <= loc - scale / shape) if condition: return np.sum(distribution_object.logpdf(exceedances, *theta)) else: return -np.inf else: raise NotImplementedError( f'Log-likelihood function is not implemented for {distribution_name} parameters.\n' f'Define manually and pass to <log_likelihood=>.' ) # Define log_posterior probability function (not exact - excludes marginal evidence probability) def log_posterior(theta): return log_likelihood(theta) + log_prior(theta) # Set MCMC walkers' starting positions to 0 # (setting to MLE makes algorithm unstable due to being stuck in local maxima) if starting_position is None: if distribution_name == 'genpareto' and self.fixed_parameters == [(1, 0)]: theta_0 = np.array([0, 0]) elif distribution_name in ['genextreme', 'genpareto']: theta_0 = np.array([0, 0, 0]) else: theta_0 = distribution_object.fit(exceedances) starting_position = [[0] * len(theta_0) for _ in range(nwalkers)] # Randomize starting positions to force walkers explore the parameter space starting_position = [ np.array(sp) + starting_bubble * np.random.randn(len(starting_position[0])) for sp in starting_position ] if len(starting_position) != nwalkers: raise ValueError(f'Number of starting positions {len(starting_position)} ' f'must be equal to number of walkers {nwalkers}') ndim = len(starting_position[0]) # Setup the Ensemble Sampler and draw samples from posterior distribution for specified number of walkers self.__sampler = emcee.EnsembleSampler(nwalkers, ndim, log_posterior) self.__sampler.run_mcmc(starting_position, nsamples) # Fill in fixed parameter values sampler_chain = self._EVA__sampler.chain.copy() if self.fixed_parameters is not None: fp = np.transpose(self.fixed_parameters) ndim = sampler_chain.shape[-1] + len(self.fixed_parameters) mcmc_chain = np.array( [ [ [np.nan] * ndim for _ in range(sampler_chain.shape[1]) ] for _ in range(sampler_chain.shape[0]) ] ) for i in range(mcmc_chain.shape[0]): for j in range(mcmc_chain.shape[1]): counter = 0 for k in range(mcmc_chain.shape[2]): if k in fp[0]: mcmc_chain[i][j][k] = fp[1][fp[0] == k][0] else: mcmc_chain[i][j][k] = sampler_chain[i][j][counter] counter += 1 sampler_chain = np.array(mcmc_chain) return sampler_chain def _kernel_fit_parameters(self, burn_in, kernel_steps=1000): """ Estimate mode of each parameter as peaks of gaussian kernel. Parameters ---------- burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Returns ------- np.ndarray Modes of parameters. """ if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method first') if self.fit_method != 'MCMC': raise ValueError('Fit method must be MCMC') # Load samples ndim = self.mcmc_chain.shape[-1] samples = self.mcmc_chain[:, burn_in:, :].reshape((-1, ndim)) # Estimate mode of each parameter as peaks of gaussian kernel. parameters = [] for i, p in enumerate(samples.T): if self.fixed_parameters is None or (i not in np.transpose(self.fixed_parameters)[0]): p_filtered = p[~np.isnan(p)] kernel = scipy.stats.gaussian_kde(p_filtered) support = np.linspace( np.quantile(p_filtered, .1), np.quantile(p_filtered, .9), kernel_steps ) density = kernel.evaluate(support) parameters.append(support[density.argmax()]) else: parameters.append(p[0]) return np.array(parameters) def plot_trace(self, burn_in, true_theta=None, labels=None): """ Plots traces for each parameter. Each trace plot shows all samples for each walker after first <burn_in> samples are discarded. This method is used to verify fit stability and to determine the optimal <burn_in> value. Parameters ---------- burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. true_theta : array_like, optional Array with true (known) values of parameters (default=None). If given, are shown on trace plots. labels : array_like, optional List of labels for each parameter (e.g. shape, loc, scale) (default - index). Returns ------- tuple(fig, axes) """ # Make sure self.mcmc_chain exists if self.mcmc_chain is None: raise RuntimeError('No mcmc_chain attribute found.') if labels is None: labels = [f'Parameter {i+1}' for i in range(self.__sampler.chain.shape[-1])] # Generate trace plot ndim = self.__sampler.chain.shape[-1] with plt.style.context('bmh'): fig, axes = plt.subplots(ndim, 1, figsize=(12, 8), sharex='all') if ndim == 1: axes.set_title('MCMC Trace Plot') axes.set_xlabel('Sample number') else: axes[0].set_title('MCMC Trace Plot') axes[-1].set_xlabel('Sample number') for i in range(ndim): for swalker in self.__sampler.chain: if ndim == 1: axes.plot( np.arange(len(swalker.T[i]))[burn_in:], swalker.T[i][burn_in:], color='k', lw=0.1, zorder=5 ) axes.set_ylabel(labels[i]) else: axes[i].plot( np.arange(len(swalker.T[i]))[burn_in:], swalker.T[i][burn_in:], color='k', lw=0.1, zorder=5 ) axes[i].set_ylabel(labels[i]) if true_theta is not None: if ndim == 1: axes.axhline(true_theta[i], color='orangered', lw=2, zorder=10) else: axes[i].axhline(true_theta[i], color='orangered', lw=2, zorder=10) fig.tight_layout() return fig, axes def plot_corner(self, burn_in, bins=100, labels=None, figsize=(12, 12), **kwargs): """ Generate corner plot showing the projections of a data set in a multi-dimensional space. See https://corner.readthedocs.io/en/latest/api.html#corner.corner Parameters ---------- burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. bins : int, optional See https://corner.readthedocs.io/en/latest/api.html#corner.corner (default=50). labels : array_like, optional List of labels for each parameter (e.g. shape, loc, scale) (default - index). figsize : tuple, optional Figure size (default=(12, 12)). kwargs Corner plot keywords. See https://corner.readthedocs.io/en/latest/api.html#corner.corner Returns ------- tuple(fig, ax) """ # Make sure self.mcmc_chain exists if self.mcmc_chain is None: raise RuntimeError('mcmc_chain attribute not found') # Generate labels ndim = self.__sampler.chain.shape[-1] if labels is None: labels = np.array([f'Parameter {i + 1}' for i in range(ndim)]) samples = self.__sampler.chain[:, burn_in:, :].reshape((-1, ndim)).copy() # Generate corner plot fig, ax = plt.subplots(ndim, ndim, figsize=figsize) fig = corner.corner(samples, bins=bins, labels=labels, fig=fig, **kwargs) return fig, ax def plot_posterior(self, rp, burn_in, alpha=.95, plot=True, kernel_steps=1000, bins=100): """ Returns posterior distribution of return value for a specific return period. Can be used to explore the posterior distribution p(rv|self.extremes). Parameters ---------- rp : float Return period (1/rp represents probability of exceedance over self.block_size). burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. alpha : float, optional Shows confidence bounds for given interval alpha (default=.95). Doesn't show if None. plot : bool, optional If True, plots histogram of return value (default=True). If False, return data kernel_steps : int, optional Number of bins (kernel support points) used to plot kernel density (default=1000). bins : int, optional Number of bins in historgram (default=100). Only when plot=True. Returns ------- Distribution of return value for a given return period if plot = True : tuple(fig, ax) if plot = Fale : np.ndarray """ # Make sure self.mcmc_chain exists if self.mcmc_chain is None: raise RuntimeError('No mcmc_chain attribute found.') if not np.isscalar(rp): raise ValueError('rp must be scalar') distribution_object = getattr(scipy.stats, self.distribution_name) # Calculate return value for each fit parameters sample ndim = self.mcmc_chain.shape[-1] samples = self.mcmc_chain[:, burn_in:, :].reshape((-1, ndim)) if self.extremes_type == 'high': return_values = np.array( [ self.threshold + distribution_object.isf( 1 / rp / self.extremes_rate, *theta ) for theta in samples ] ) else: return_values = np.array( [ self.threshold - distribution_object.isf( 1 / rp / self.extremes_rate, *theta ) for theta in samples ] ) # Set up gaussian kernel support = np.linspace(return_values.min(), return_values.max(), kernel_steps) kernel = scipy.stats.gaussian_kde(return_values) density = kernel.evaluate(support) if plot: with plt.style.context('bmh'): fig, ax = plt.subplots(figsize=(12, 8)) ax.hist( return_values, bins=bins, density=True, color='k', rwidth=.9, alpha=0.2, zorder=5 ) ax.hist( return_values, bins=bins, density=True, color='k', rwidth=.9, edgecolor='k', facecolor='None', lw=.5, ls='--', zorder=10 ) ax.plot( support, density, color='k', lw=2, zorder=15 ) if alpha is not None: ax.axvline(np.nanquantile(return_values, (1 - alpha) / 2), lw=1, color='k', ls='--') ax.axvline(np.nanquantile(return_values, (1 + alpha) / 2), lw=1, color='k', ls='--') if self.extremes_type == 'high': ax.set_xlim(right=np.nanquantile(return_values, .999)) else: ax.set_xlim(left=np.nanquantile(return_values, .001)) ax.set_title(f'{rp}-year Return Period Posterior Distribution') ax.set_xlabel('Return value') ax.set_ylabel('Probability density') fig.tight_layout() return fig, ax else: return return_values def return_value(self, rp, **kwargs): """ Calculates return values for given return periods. Parameters ---------- rp : float or array_like Return periods (1/rp represents probability of exceedance over self.block_size). kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- float or array of floats Return values for given return periods. """ return self.isf(1 / rp / self.extremes_rate, **kwargs) def confidence_interval(self, rp, alpha=.95, **kwargs): """ Estimates confidence intervals for given return periods. Parameters ---------- rp : float or array_like, optional Return periods (1/rp represents probability of exceedance over self.block_size). alpha : float, optional Confidence interval bounds (default=.95). kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. if fit is MLE method : str, optional Confidence interval estimation method (default='Monte Carlo'). Supported methods: 'Monte Carlo' - performs many random simulations to estimate return value distribution 'Delta' - delta method (assumption of asymptotic normality, fast but inaccurate) Implemented only for specific distributions 'Profile Likelihood' - not yet implemented if method is Monte Carlo k : int, optional Numeber of Monte Carlo simulations (default=1e4). Larger values result in slower simulation. sampling_method : str, optional Sampling method (default='constant'): 'constant' - number of extremes in each sample is constant and equal to len(self.extremes) 'poisson' - number of extremes is Poisson-distributed 'jacknife' - aka drop-one-out, works only when <source=data> source : str, optional Specifies where new data is sampled from (default='data'): 'data' - samples with replacement directly from extracted extreme values 'parametric' - samples from distribution with previously estimated (MLE) parameters assume_normality : bool, optional If True, assumes return values are normally distributed. If False, estimates quantiles directly (default=False). if method is Delta dx : str, optional String representing a float, which represents spacing at which partial derivatives are estimated (default='1e-10' for GPD and GEV, '1e-6' for others). precision : int, optional Precision of floating point calculations (see mpmath library documentation) (default=100). Derivative estimated with low <precision> value may have a significant error due to rounding and under-/overflow. Returns ------- tuple of np.ndarray objects Tuple with arrays with confidence intervals (lower, upper). """ # Make sure fit method was executed and fit data was generated if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method before generating confidence intervals') if self.fit_method == 'MLE': method = kwargs.pop('method', 'Monte Carlo') if method == 'Monte Carlo': return self.__monte_carlo(rp=rp, alpha=alpha, **kwargs) elif method == 'Delta': return self.__delta(rp=rp, alpha=alpha, **kwargs) elif method in ['Profile Likelihood']: # TODO - implement Profile Likelihood mehtod raise NotImplementedError(f'Method {method} not implemented') else: raise ValueError(f'Method {method} not recognized') elif self.fit_method == 'MCMC': burn_in = kwargs.pop('burn_in') alpha = kwargs.pop('alpha', .95) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' distribution_object = getattr(scipy.stats, self.distribution_name) # Calculate return values for each fit parameters sample ndim = self.mcmc_chain.shape[-1] samples = self.mcmc_chain[:, burn_in:, :].reshape((-1, ndim)) if self.extremes_type == 'high': return_values = np.array( [ self.threshold + distribution_object.isf( 1 / rp / self.extremes_rate, *theta ) for theta in samples ] ) else: return_values = np.array( [ self.threshold - distribution_object.isf( 1 / rp / self.extremes_rate, *theta ) for theta in samples ] ) # Calculate quantiles for lower and upper confidence bounds for each return period if np.isscalar(rp): return ( np.nanquantile(a=return_values.flatten(), q=(1 - alpha) / 2), np.nanquantile(a=return_values.flatten(), q=(1 + alpha) / 2) ) else: return np.array( [ [np.nanquantile(a=row, q=(1 - alpha) / 2) for row in return_values.T], [np.nanquantile(a=row, q=(1 + alpha) / 2) for row in return_values.T] ] ) else: raise RuntimeError(f'Unknown fit_method {self.fit_method} encountered') def __monte_carlo(self, rp, alpha=.95, **kwargs): """ Runs the Monte Carlo confidence interval estimation method. Parameters ---------- rp : float or array_like Return periods (1/rp represents probability of exceedance over self.block_size). alpha : float, optional Confidence interval bounds (default=.95). kwargs k : int, optional Numeber of Monte Carlo simulations (default=1e4). Larger values result in slower simulation. sampling_method : str, optional Sampling method (default='constant'): 'constant' - number of extremes in each sample is constant and equal to len(self.extremes) 'poisson' - number of extremes is Poisson-distributed 'jacknife' - aka drop-one-out, works only when <source=data> source : str, optional Specifies where new data is sampled from (default='data'): 'data' - samples with replacement directly from extracted extreme values 'parametric' - samples from distribution with previously estimated (MLE) parameters assume_normality : bool, optional If True, assumes return values are normally distributed. If False, estimates quantiles directly (default=False). Returns ------- tuple of np.ndarray objects Tuple with arrays with confidence intervals (lower, upper). """ k = kwargs.pop('k', 1e4) sampling_method = kwargs.pop('sampling_method', 'constant') source = kwargs.pop('source', 'data') assume_normality = kwargs.pop('assume_normality', False) # TODO - implement a discard rule (discard bad samples) # discard_rule = kwargs.pop('discard_rule', None) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' distribution_object = getattr(scipy.stats, self.distribution_name) exceedances = self.extremes[self.column].values - self.threshold if self.extremes_type == 'low': exceedances *= -1 # Sample from data case if source == 'data': if sampling_method == 'constant': sample_size = len(self.extremes) return_values = [] while len(return_values) < k: sample = np.random.choice(a=exceedances, size=sample_size, replace=True) sample_fit_parameters = distribution_object.fit(sample, **self.scipy_fit_options) if self.extremes_type == 'high': return_values.append( self.threshold + distribution_object.isf( 1 / rp / self.extremes_rate, *sample_fit_parameters ) ) else: return_values.append( self.threshold - distribution_object.isf( 1 / rp / self.extremes_rate, *sample_fit_parameters ) ) elif sampling_method == 'poisson': return_values = [] while len(return_values) < k: sample_size = scipy.stats.poisson.rvs(mu=len(self.extremes), loc=0, size=1) sample_rate = sample_size / self.number_of_blocks sample = np.random.choice(a=exceedances, size=sample_size, replace=True) sample_fit_parameters = distribution_object.fit(sample, **self.scipy_fit_options) if self.extremes_type == 'high': return_values.append( self.threshold + distribution_object.isf( 1 / rp / sample_rate, *sample_fit_parameters ) ) else: return_values.append( self.threshold - distribution_object.isf( 1 / rp / sample_rate, *sample_fit_parameters ) ) elif sampling_method == 'jacknife': sample_rate = (len(self.extremes) - 1) / self.number_of_blocks return_values = [] for i in range(len(self.extremes)): sample = np.delete(arr=exceedances, obj=i) sample_fit_parameters = distribution_object.fit(sample, **self.scipy_fit_options) if self.extremes_type == 'high': return_values.append( self.threshold + distribution_object.isf( 1 / rp / sample_rate, *sample_fit_parameters ) ) else: return_values.append( self.threshold - distribution_object.isf( 1 / rp / sample_rate, *sample_fit_parameters ) ) else: raise ValueError(f'for <source=data> the sampling method must be <constant>, <poisson>, or <jacknife>,' f' <{sampling_method}> was passed') # Sample from distribution (parametric) case elif source == 'parametric': if sampling_method == 'constant': sample_size = len(self.extremes) return_values = [] while len(return_values) < k: sample = distribution_object.rvs(*self.fit_parameters, size=sample_size) sample_fit_parameters = distribution_object.fit(sample, **self.scipy_fit_options) if self.extremes_type == 'high': return_values.append( self.threshold + distribution_object.isf( 1 / rp / self.extremes_rate, *sample_fit_parameters ) ) else: return_values.append( self.threshold - distribution_object.isf( 1 / rp / self.extremes_rate, *sample_fit_parameters ) ) elif sampling_method == 'poisson': return_values = [] while len(return_values) < k: sample_size = scipy.stats.poisson.rvs(mu=len(self.extremes), loc=0, size=1) sample_rate = sample_size / self.number_of_blocks sample = distribution_object.rvs(*self.fit_parameters, size=sample_size) sample_fit_parameters = distribution_object.fit(sample, **self.scipy_fit_options) if self.extremes_type == 'high': return_values.append( self.threshold + distribution_object.isf( 1 / rp / sample_rate, *sample_fit_parameters ) ) else: return_values.append( self.threshold - distribution_object.isf( 1 / rp / sample_rate, *sample_fit_parameters ) ) else: raise ValueError(f'for <source=parametric> the sampling method must be <constant> or <poisson>,' f' <{sampling_method}> was passed') else: raise ValueError(f'source must be either <data> or <parametric>, <{source}> was passed') # Estimate confidence bounds for sampled return values return_values = np.array(return_values) if np.isscalar(rp): if assume_normality: return scipy.stats.norm.interval( alpha=alpha, loc=np.nanmean(return_values), scale=np.nanstd(return_values, ddof=1) ) else: return ( np.nanquantile(a=return_values.flatten(), q=(1 - alpha) / 2), np.nanquantile(a=return_values.flatten(), q=(1 + alpha) / 2) ) else: if assume_normality: locations = np.array([np.nanmean(row) for row in return_values.T]) scales = np.array([np.nanstd(row, ddof=1) for row in return_values.T]) return np.transpose( [ scipy.stats.norm.interval(alpha=alpha, loc=loc, scale=scale) for loc, scale in zip(locations, scales) ] ) else: return np.array( [ [np.nanquantile(a=row, q=(1 - alpha) / 2) for row in return_values.T], [np.nanquantile(a=row, q=(1 + alpha) / 2) for row in return_values.T] ] ) def __delta(self, rp, alpha=.95, **kwargs): """ Estimates confidence intervals using the delta method. Assumes asymptotic normality. Parameters ---------- rp : float or array_like Return periods (1/rp represents probability of exceedance over self.block_size). alpha : float, optional Confidence interval bounds (default=.95). kwargs dx : str, optional String representing a float, which represents spacing at which partial derivatives are estimated (default='1e-10'). precision : int, optional Precision of floating point calculations (see mpmath library documentation) (default=100). Derivative estimated with low <precision> value may have a significant error due to rounding and under-/overflow. Returns ------- tuple of np.ndarray objects Tuple with arrays with confidence intervals (lower, upper). """ dx = kwargs.pop('dx', '1e-10') precision = kwargs.pop('precision', 100) assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' # Make sure fit method was executed and fit data was generated if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method before generating confidence intervals') # Check if a custom distribution with mpmath backend is defined if self.distribution_name in coastlib.stats.distributions.distributions: distribution_object = getattr(coastlib.stats.distributions, self.distribution_name) else: raise ValueError(f'Delta method is not implemented for {self.distribution_name} distribution') # Account for custom fit parameters (custom genextreme has negative shape in scipy) if self.distribution_name == 'genextreme': fit_parameters = self.fit_parameters * np.array([-1, 1, 1]) elif self.distribution_name in ['genpareto']: fit_parameters = self.fit_parameters else: raise ValueError(f'Delta method is not implemented for {self.distribution_name} distribution') exceedances = self.extremes[self.column].values - self.threshold # Flip exceedances around 0 if self.extremes_type == 'low': exceedances *= -1 # Generalized Pareto Distribution if self.distribution_name == 'genpareto': if self.scipy_fit_options != dict(floc=0): raise ValueError( f'Delta method for genpareto is implemented only for the case of ' f'fixed location parameter {dict(floc=0)}, ' f'{self.scipy_fit_options} does not satisfy this criteria' ) with mpmath.workdps(precision): # Define modified log_likehood function (only shape and scale, location is fixed) def log_likelihood(*theta): return mpmath.fsum( [ mpmath.log( coastlib.stats.distributions.genpareto.pdf( x=x, shape=theta[0], loc=fit_parameters[1], scale=theta[1] ) ) for x in exceedances ] ) # Calculate covariance matrix of shape and scale observed_information = -coastlib.math.derivatives.hessian( func=log_likelihood, n=2, dx=dx, precision=precision, coordinates=(fit_parameters[0], fit_parameters[2]) ).astype(np.float64) covariance = np.linalg.inv(observed_information) # Modify covariance matrix to include uncertainty in threshold exceedance probability modified_covariance = np.zeros((3, 3)) modified_covariance[1:, 1:] = covariance # Probability of exceeding threshold for all observations eta_0 = len(self.extremes) / len(self.dataframe) # Number of observations per year ny = len(self.dataframe) / self.number_of_blocks modified_covariance[0][0] = eta_0 * (1 - eta_0) / len(self.dataframe) if np.isscalar(rp): # Define scalar function as a function which takes arbitrary fit parameters and returns return values def scalar_function(eta, *theta): q = 1 / (rp * ny * eta) if q <= 0 or q >= 1: return np.nan if self.extremes_type == 'high': return self.threshold + distribution_object.isf( q=q, shape=theta[0], loc=fit_parameters[1], scale=theta[1] ) else: return self.threshold - distribution_object.isf( q=q, shape=theta[0], loc=fit_parameters[1], scale=theta[1] ) delta_scalar = coastlib.math.derivatives.gradient( func=scalar_function, n=3, dx=dx, precision=precision, coordinates=(eta_0, fit_parameters[0], fit_parameters[2]) ) loc = np.float64( scalar_function(eta_0, fit_parameters[0], fit_parameters[2]) ) variance = np.dot( np.dot(delta_scalar.T, modified_covariance), delta_scalar ).flatten().astype(np.float64)[0] return scipy.stats.norm.interval(alpha=alpha, loc=loc, scale=np.sqrt(variance)) else: locs, variances = [], [] for _rp in rp: # Define scalar function as a function which takes arbitrary fit parameters # and returns return values def scalar_function(eta, *theta): q = 1 / (_rp * ny * eta) if q <= 0 or q >= 1: return np.nan if self.extremes_type == 'high': return self.threshold + distribution_object.isf( q=q, shape=theta[0], loc=fit_parameters[1], scale=theta[1] ) else: return self.threshold - distribution_object.isf( q=q, shape=theta[0], loc=fit_parameters[1], scale=theta[1] ) delta_scalar = coastlib.math.derivatives.gradient( func=scalar_function, n=3, dx=dx, precision=precision, coordinates=(eta_0, fit_parameters[0], fit_parameters[2]), ) locs.append( np.float64( scalar_function(eta_0, fit_parameters[0], fit_parameters[2]) ) ) variances.append( np.dot( np.dot(delta_scalar.T, modified_covariance), delta_scalar ).flatten().astype(np.float64)[0] ) return np.array( [ scipy.stats.norm.interval(alpha=alpha, loc=loc, scale=np.sqrt(variance)) for loc, variance in zip(locs, variances) ] ).T # Generalized Extreme Distribtuion elif self.distribution_name == 'genextreme': if self.scipy_fit_options != {}: raise ValueError( f'Delta method for genextreme is implemented only for the case of ' f'unbound parameters {dict()}, ' f'{self.scipy_fit_options} does not satisfy this criteria' ) # Calculate observed information matrix (negative hessian of log_likelihood) observed_information = distribution_object.observed_information( exceedances, *fit_parameters, dx=dx, precision=precision ).astype(np.float64) if np.isscalar(rp): # Define scalar function as a function which takes arbitrary fit parameters and returns return values def scalar_function(*theta): q = 1 / rp / self.extremes_rate if q <= 0 or q >= 1: return np.nan if self.extremes_type == 'high': return self.threshold + distribution_object.isf(q, *theta) else: return self.threshold - distribution_object.isf(q, *theta) # Calculate delta (gradient) of scalar_function delta_scalar = coastlib.math.derivatives.gradient( func=scalar_function, n=len(fit_parameters), coordinates=fit_parameters, dx=dx, precision=precision ).astype(np.float64) # Calculate location and scale (gaussian mean and sigma) loc = np.float64(scalar_function(*fit_parameters)) variance = np.dot( np.dot(delta_scalar.T, np.linalg.inv(observed_information)), delta_scalar ).flatten()[0] return scipy.stats.norm.interval(alpha=alpha, loc=loc, scale=np.sqrt(variance)) else: locs, variances = [], [] for _rp in rp: # Define scalar function as a function which takes arbitrary fit parameters # and returns return values def scalar_function(*theta): q = 1 / _rp / self.extremes_rate if q <= 0 or q >= 1: return np.nan if self.extremes_type == 'high': return self.threshold + distribution_object.isf(q, *theta) else: return self.threshold - distribution_object.isf(q, *theta) # Calculate delta (gradient) of scalar_function delta_scalar = coastlib.math.derivatives.gradient( func=scalar_function, n=len(fit_parameters), coordinates=fit_parameters, dx=dx, precision=precision ).astype(np.float64) # Calculate location and scale (gaussian mean and sigma) locs.append(np.float64(scalar_function(*fit_parameters))) variances.append( np.dot( np.dot(delta_scalar.T, np.linalg.inv(observed_information)), delta_scalar ).flatten()[0] ) return np.array( [ scipy.stats.norm.interval(alpha=alpha, loc=loc, scale=np.sqrt(variance)) for loc, variance in zip(locs, variances) ] ).T def generate_results(self, rp=None, alpha=.95, **kwargs): """ Generates a self.results dataframe with return values and, optionally, confidence intervals. Used to generate data for output and reporting purpose (run the self.restuls.to_excel()) and to produce a probability plot (summary). Parameters ---------- rp : float or array_like, optional Return periods (1/rp represents probability of exceedance over self.block_size). By default is an array of return periods equally spaced on a log-scale from 0.001 to 1000. alpha : float, optional Confidence interval bounds (default=.95). Doesn't estimate confidence intervals if None. kwargs if fit is MCMC: rv_kwargs : dict burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. ci_kwargs : dict burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. if fit is MLE ci_kwargs method : str, optional Confidence interval estimation method (default='Monte Carlo'). Supported methods: 'Monte Carlo' - performs many random simulations to estimate return value distribution 'Delta' - delta method (assumption of asymptotic normality, fast but inaccurate) Implemented only for specific distributions 'Profile Likelihood' - not yet implemented if method is Monte Carlo k : int, optional Numeber of Monte Carlo simulations (default=1e4). Larger values result in slower simulation. sampling_method : str, optional Sampling method (default='constant'): 'constant' - number of extremes in each sample is constant and equal to number of extracted extreme values 'poisson' - number of extremes is Poisson-distributed 'jacknife' - aka drop-one-out, works only when <source=data> source : str, optional Specifies where new data is sampled from (default='data'): 'data' - samples with replacement directly from extracted extreme values 'parametric' - samples from distribution with previously estimated (MLE) parameters assume_normality : bool, optional If True, assumes return values are normally distributed. If False, estimates quantiles directly (default=False). if method is Delta dx : str, optional String representing a float, which represents spacing at which partial derivatives are estimated (default='1e-10' for GPD and GEV, '1e-6' for others). precision : int, optional Precision of floating point calculations (see mpmath library documentation) (default=100). Derivative estimated with low <precision> value may have a significant error due to rounding and under-/overflow. Returns ------- Creates a <self.results> dataframe with return values and, optionally, confidence intervals for each given return period. """ # Make sure fit method was executed and fit data was generated if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method first') if rp is None: rp = np.unique( np.append( np.logspace(-3, 3, 200), [1/12, 7/365.2425, 1, 2, 5, 10, 25, 50, 100, 200, 250, 500, 1000] ) ) # Update internal status self.__status = dict( extremes=True, fit=True, results=False ) self.__update() if np.isscalar(rp): rp = np.array([rp]) else: rp = np.array(rp) if self.fit_method == 'MLE': rv_kwargs = kwargs.pop('rv_kwargs', {}) ci_kwargs = kwargs.pop('ci_kwargs', {}) else: rv_kwargs = kwargs.pop('rv_kwargs') ci_kwargs = kwargs.pop('ci_kwargs') assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' return_values = self.return_value(rp, **rv_kwargs) self.results = pd.DataFrame( data=return_values, index=rp, columns=['Return Value'] ) self.results.index.name = 'Return Period' if alpha is not None: ci_lower, ci_upper = self.confidence_interval(rp=rp, alpha=alpha, **ci_kwargs) if np.isscalar(ci_lower): ci_lower, ci_upper = np.array([ci_lower]), np.array([ci_upper]) else: ci_lower, ci_upper = np.array(ci_lower), np.array(ci_upper) self.results[f'{alpha*100:.0f}% CI Lower'] = ci_lower self.results[f'{alpha*100:.0f}% CI Upper'] = ci_upper # Remove bad values from the results if self.extremes_type == 'high': mask = self.results['Return Value'].values >= self.extremes[self.column].values.min() else: mask = self.results['Return Value'].values <= self.extremes[self.column].values.max() self.results = self.results[mask] # Update internal status self.__status = dict( extremes=True, fit=True, results=True ) self.__update() def pdf(self, x, **kwargs): """ Estimates probability density at value <x> using the fitted distribution. Parameters ---------- x : float or iterable Values at which the probability density is estimated. kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- Depending on x, either estimate or array of estimates of probability densities at <x>. """ if self.extremes_type == 'high': return self.___get_property(x=x-self.threshold, prop='pdf', **kwargs) else: return self.___get_property(x=self.threshold-x, prop='pdf', **kwargs) def cdf(self, x, **kwargs): """ Estimates cumulative probability at value <x> using the fitted distribution. Parameters ---------- x : float or iterable Values at which the cumulative probability density is estimated. kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- Depending on x, either estimate or array of estimates of cumulative probability at <x>. """ if self.extremes_type == 'high': return self.___get_property(x=x-self.threshold, prop='cdf', **kwargs) else: return self.___get_property(x=self.threshold-x, prop='cdf', **kwargs) def ppf(self, q, **kwargs): """ Estimates ppf (inverse cdf or quantile function) at value <x> using the fitted distribution. Parameters ---------- q : float or iterable Quantiles at which the ppf is estimated. kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- Depending on x, either estimate or array of estimates of ppf at <x>. """ if self.extremes_type == 'high': return self.threshold + self.___get_property(x=q, prop='ppf', **kwargs) else: return self.threshold - self.___get_property(x=q, prop='ppf', **kwargs) def isf(self, q, **kwargs): """ Estimates isf (inverse survival or upper quantile function) at value <x> using the fitted distribution. Parameters ---------- q : float or iterable Quantiles at which the isf is estimated. kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- Depending on x, either estimate or array of estimates of isf at <x>. """ if self.extremes_type == 'high': return self.threshold + self.___get_property(x=q, prop='isf', **kwargs) else: return self.threshold - self.___get_property(x=q, prop='isf', **kwargs) def ___get_property(self, x, prop, **kwargs): """ Estimates property (pdf, cdf, ppf, etc.) at value <x> using the fitted distribution parameters. Parameters ---------- x : float or iterable Value at which the property is estimated. prop : str Scipy property to be estimated (pdf, ppf, isf, cdf, rvs, etc.). kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- Depending on x, either estimate or array of estimates of property at <x> """ # Make sure fit method was executed and fit data was generated if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method first') distribution_object = getattr(scipy.stats, self.distribution_name) property_function = getattr(distribution_object, prop) if not np.isscalar(x): x = np.array(x) if self.fit_method == 'MLE': assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' return property_function(x, *self.fit_parameters) elif self.fit_method == 'MCMC': burn_in = kwargs.pop('burn_in') estimate_method = kwargs.pop('estimate_method', 'parameter mode') if estimate_method not in ['parameter mode', 'value mode', 'value quantile']: raise ValueError(f'Estimate method <{estimate_method}> not recognized') if estimate_method in ['parameter mode', 'value mode']: kernel_steps = kwargs.pop('kernel_steps', 1000) else: kernel_steps = None if estimate_method == 'value quantile': quantile = kwargs.pop('quantile', .5) else: quantile = None assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' # Estimate mode of each parameter as peaks of gaussian kernel. # Use estimated parameters to calculate property function if estimate_method == 'parameter mode': parameters = self._kernel_fit_parameters(burn_in=burn_in, kernel_steps=kernel_steps) return property_function(x, *parameters) # Load samples ndim = self.mcmc_chain.shape[-1] samples = self.mcmc_chain[:, burn_in:, :].reshape((-1, ndim)) property_samples = np.array([property_function(x, *_theta) for _theta in samples]) # Estimate property function as mode of distribution of property value # for all samples in self.mcmc_chain as peaks of gaussian kernel. if estimate_method == 'value mode': if np.isscalar(x): if np.all(np.isnan(property_samples)): return np.nan else: ps_filtered = property_samples[~np.isnan(property_samples)] if np.all(ps_filtered == ps_filtered[0]): return np.nan else: kernel = scipy.stats.gaussian_kde(ps_filtered) support = np.linspace(ps_filtered.min(), ps_filtered.max(), kernel_steps) density = kernel.evaluate(support) return support[density.argmax()] else: estimates = [] for ps in property_samples.T: if np.all(np.isnan(ps)): estimates.append(np.nan) else: ps_filtered = ps[~np.isnan(ps)] if np.all(ps_filtered == ps_filtered[0]): estimates.append(np.nan) else: kernel = scipy.stats.gaussian_kde(ps_filtered) support = np.linspace(ps_filtered.min(), ps_filtered.max(), kernel_steps) density = kernel.evaluate(support) estimates.append(support[density.argmax()]) return np.array(estimates) # Estimate property function as quantile of distribution of property value # for all samples in self.mcmc_chain. elif estimate_method == 'value quantile': if np.isscalar(quantile): if quantile <= 0 or quantile > 1: raise ValueError(f'Quantile must be in range (0,1], quantile={quantile} was passed') else: raise ValueError(f'Quantile must be scalar, {type(quantile)} was passed') if np.isscalar(x): return np.nanquantile(a=property_samples, q=quantile) else: return np.array( [ np.nanquantile(a=row, q=quantile) for row in property_samples.T ] ) else: raise RuntimeError(f'Unknown fit_method {self.fit_method} encountered') def plot_summary(self, support=None, bins=10, plotting_position='Weibull', **kwargs): """ Plots projected return values, pdf, and cdf values against observed. Parameters ---------- support : array_like, optional Values used to estimate pdf and cdf. By default is 100 linearly spaced min to max extreme values. bins : int, optional Number of bins used to plot cdf and pdf histograms (default=10). plotting_position : str, optional Plotting position (default='Weibull'). Has no effect on return value inference, affects only some goodness of fit statistics and locations of observed extremes on the return values plot. kwargs if fit is MCMC: rv_kwargs : dict burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- tuple(fig, ax1, ax2, ax3) Figure, return value, pdf, cdf axes. """ # Make sure fit method was executed and fit data was generated if not self.__status['results']: raise UnboundLocalError('No data found. Generate results by runing self.generate_results() method first') if support is None: support = np.linspace( self.extremes[self.column].values.min(), self.extremes[self.column].values.max(), 100 ) if self.fit_method == 'MCMC': rv_kwargs = kwargs.pop('rv_kwargs') else: rv_kwargs = {} assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' return_period = self.__get_return_period(plotting_position=plotting_position) with plt.style.context('bmh'): # Setup canvas fig = plt.figure(figsize=(12, 8)) ax1 = plt.subplot2grid((2, 2), (0, 0), colspan=2) ax2 = plt.subplot2grid((2, 2), (1, 0)) ax3 = plt.subplot2grid((2, 2), (1, 1)) # Plot return values ax1.set_title('Return Value Plot') ax1.set_ylabel(f'{self.column}') ax1.set_xlabel(f'Return period') ax1.plot( self.results.index, self.results['Return Value'].values, color='k', lw=2, zorder=15, label='Central estimate' ) if len(self.results.columns) == 3: ax1.plot( self.results.index, self.results[self.results.columns[1]].values, ls='--', color='k', lw=.5, zorder=10 ) ax1.plot( self.results.index, self.results[self.results.columns[2]].values, ls='--', color='k', lw=.5, zorder=10 ) ax1.fill_between( self.results.index, self.results[self.results.columns[1]], self.results[self.results.columns[2]], alpha=.1, color='k', label=f'{self.results.columns[1].split("%")[0]}% confidence interval', zorder=5 ) points = ax1.scatter( return_period, self.extremes[self.column].values, edgecolors='white', marker='o', facecolors='k', s=40, lw=1, zorder=15, label=f'Observed extreme event\n{plotting_position} plotting position' ) ax1.semilogx() ax1.grid(b=True, which='minor', axis='x') ax1.xaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%.0f')) ax1.legend() annot = ax1.annotate( "", xy=(self.extremes['Return Period'].values.mean(), self.extremes[self.column].values.mean()), xytext=(10, 10), textcoords="offset points", bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25), zorder=30 ) point = ax1.scatter( self.extremes['Return Period'].values.mean(), self.extremes[self.column].values.mean(), edgecolors='white', marker='o', facecolors='orangered', s=80, lw=1, zorder=20 ) point.set_visible(False) annot.set_visible(False) def update_annot(ind): n = ind['ind'][0] pos = points.get_offsets()[n] annot.xy = pos point.set_offsets(pos) text = str( f'Date : {self.extremes.index[n]}\n' f'Value : {self.extremes[self.column].values[n]:.2f}\n' f'Return Period : {return_period[n]:.2f}' ) annot.set_text(text) def hover(event): vis = annot.get_visible() if event.inaxes == ax1: cont, ind = points.contains(event) if cont: update_annot(ind) annot.set_visible(True) point.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) point.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', hover) # Plot PDF ax2.set_ylabel('Probability density') ax2.set_xlabel(f'{self.column}') ax2.hist( self.extremes[self.column].values, bins=bins, density=True, color='k', rwidth=.9, alpha=0.2, zorder=5 ) ax2.hist( self.extremes[self.column].values, bins=bins, density=True, color='k', rwidth=.9, edgecolor='k', facecolor='None', lw=1, ls='--', zorder=10 ) ax2.plot( support, self.pdf(support, **rv_kwargs), color='k', lw=2, zorder=15 ) ax2.scatter( self.extremes[self.column].values, [0] * len(self.extremes), edgecolors='white', marker='o', facecolors='k', s=40, lw=1, zorder=20 ) ax2.set_ylim(0) # Plot CDF ax3.set_ylabel('Cumulative probability') ax3.set_xlabel(f'{self.column}') if self.extremes_type == 'high': ax3.hist( self.extremes[self.column], bins=bins, density=True, cumulative=True, color='k', rwidth=.9, alpha=0.2, zorder=5 ) ax3.hist( self.extremes[self.column], bins=bins, density=True, cumulative=True, color='k', rwidth=.9, edgecolor='k', facecolor='None', lw=1, ls='--', zorder=10 ) else: _, boundaries = np.histogram(self.extremes[self.column].values, bins) centers = np.array([(boundaries[i] + boundaries[i - 1]) / 2 for i in range(1, len(boundaries))]) densities = [] for i, c in enumerate(centers): mask = self.extremes[self.column].values >= boundaries[i] densities.append(np.sum(mask) / len(self.extremes)) ax3.bar( centers, densities, width=.9*(boundaries[1]-boundaries[0]), color='k', alpha=0.2, zorder=5 ) ax3.bar( centers, densities, width=.9*(boundaries[1]-boundaries[0]), color='k', edgecolor='k', facecolor='None', lw=1, ls='--', zorder=10 ) ax3.plot( support, self.cdf(support, **rv_kwargs), color='k', lw=2, zorder=15 ) ax3.scatter( self.extremes[self.column].values, [0] * len(self.extremes), edgecolors='white', marker='o', facecolors='k', s=40, lw=1, zorder=20 ) ax3.set_ylim(0) fig.tight_layout() return fig, ax1, ax2, ax3 def plot_qq(self, k, plot=True, plotting_position='Weibull', quantiles=True, **kwargs): """ Plots theoretical quantiles (probabilites) agains observed quantiles (probabilites). Parameters ---------- k : int Number of estimated (non-fixed) parameters in the distribution. plot : bool, optional Generates plot if True, returns data if False (default=True). plotting_position : str, optional Plotting position (default='Weibull'). Has no effect on return value inference, affects only some goodness of fit statistics and locations of observed extremes on the return values plot. quantiles : bool, optional If True, produces a quantile plot (Q-Q, ppf) (default=True). If False, produces a probability plot (P-P, cdf). kwargs if fit is MCMC: rv_kwargs : dict burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. estimate_method : str, optional 'parameter mode' (default) - calculates value for parameters estimated as mode (histogram peak, through gaussian kernel) 'value mode' - calculates values for each sample and then determines value estimate as mode (histogram peak, through gaussian kernel) 'value quantile' - calculates values for each sample and then determines value estimate as quantile of the value distribution kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). Only for 'parameter mode' and 'value mode' methods. quantile : float, optional Quantile for 'value quantile' method (default=.5, aka median). Must be in the range (0, 1]. Returns ------- if plot=True (default) : tuple(fig, ax) if plot=False : tuple((theoretical, observed), (r, p)) """ # Make sure fit method was executed and fit data was generated if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method first') if self.fit_method == 'MLE': rv_kwargs = kwargs.pop('rv_kwargs', {}) else: rv_kwargs = kwargs.pop('rv_kwargs') assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' ecdf = self.__get_return_period(plotting_position=plotting_position, return_cdf=True) return_periods = self.__get_return_period(plotting_position=plotting_position) # Estimate theoretical values based on returned quantiles if quantiles: theoretical = self.ppf(ecdf, **rv_kwargs) else: theoretical = self.cdf(self.extremes[self.column].values, **rv_kwargs) theoretical[np.isinf(theoretical)] = np.nan mask = ~np.isnan(theoretical) if quantiles: r, p = scipy.stats.pearsonr(self.extremes[self.column].values[mask], theoretical[mask]) else: r, p = scipy.stats.pearsonr(ecdf, theoretical[mask]) r = np.sqrt( 1 - (1 - r ** 2) * (len(theoretical[mask]) - 1) / (len(theoretical[mask]) - (k + 1)) ) if plot: with plt.style.context('bmh'): # Quantile plot if quantiles: fig, ax = plt.subplots(figsize=(12, 8)) points = ax.scatter( theoretical, self.extremes[self.column].values, edgecolors='white', marker='o', facecolors='k', s=40, lw=1, zorder=10 ) lims = ax.get_xlim(), ax.get_ylim() dlims = (-1e9, 1e9) ax.plot(dlims, dlims, ls='--', lw=1, zorder=5, color='k') ax.set_xlim(np.min(lims), np.max(lims)) ax.set_ylim(np.min(lims), np.max(lims)) ax.set_title(r'Quantile Plot') plt.xlabel(r'Theoretical quantiles') plt.ylabel(rf'Observed quantiles, {plotting_position} plotting position') ax.text( .05, .9, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, s=f'$\\bar{{R}}^2$={r**2:>.2f}\np={p:>.3f}', fontsize=14, bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25) ) annot = ax.annotate( '', xy=(theoretical[0], self.extremes[self.column].values[0]), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25), zorder=30 ) point = ax.scatter( theoretical[0]+self.threshold, self.extremes[self.column].values[0], edgecolors='white', marker='o', facecolors='orangered', s=80, lw=1, zorder=20 ) point.set_visible(False) annot.set_visible(False) def update_annot(ind): n = ind['ind'][0] pos = points.get_offsets()[n] annot.xy = pos point.set_offsets(pos) text = str( f'Date : {self.extremes.index[n]}\n' f'Value : {self.extremes[self.column].values[n]:.2f}\n' f'Return Period : {return_periods[n]:.2f}' ) annot.set_text(text) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = points.contains(event) if cont: update_annot(ind) annot.set_visible(True) point.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) point.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', hover) fig.tight_layout() return fig, ax # Probability plot else: fig, ax = plt.subplots(figsize=(12, 8)) points = ax.scatter( theoretical, ecdf, edgecolors='white', marker='o', facecolors='k', s=40, lw=1, zorder=10 ) lims = ax.get_xlim(), ax.get_ylim() dlims = (-1e9, 1e9) ax.plot(dlims, dlims, ls='--', lw=1, zorder=5, color='k') ax.set_xlim(np.min(lims), np.max(lims)) ax.set_ylim(np.min(lims), np.max(lims)) ax.set_title(r'Probability Plot') plt.xlabel(r'Theoretical probabilities') plt.ylabel(rf'Observed probabilities, {plotting_position} plotting position') ax.text( .05, .9, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes, s=f'$\\bar{{R}}^2$={r**2:>.2f}\np={p:>.3f}', fontsize=14, bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25) ) annot = ax.annotate( '', xy=(theoretical[0], self.extremes[self.column].values[0]), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', edgecolor='k', lw=1, zorder=25), zorder=30 ) point = ax.scatter( theoretical[0], self.extremes[self.column].values[0], edgecolors='white', marker='o', facecolors='orangered', s=80, lw=1, zorder=20 ) point.set_visible(False) annot.set_visible(False) def update_annot(ind): n = ind['ind'][0] pos = points.get_offsets()[n] annot.xy = pos point.set_offsets(pos) text = str( f'Date : {self.extremes.index[n]}\n' f'Value : {self.extremes[self.column].values[n]:.2f}\n' f'Return Period : {return_periods[n]:.2f}' ) annot.set_text(text) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = points.contains(event) if cont: update_annot(ind) annot.set_visible(True) point.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) point.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', hover) fig.tight_layout() return fig, ax else: if quantiles: return ( (theoretical, self.extremes[self.column].values), (r, p) ) else: return ( (theoretical, ecdf), (r, p) ) def goodness_of_fit(self, method, **kwargs): """ Calculates various goodness-of-fit statistics for selected model. Parameters ---------- method : str Goodness of fit statistic method. Supported methods: 'AIC' - Akaike information criterion Lower value corresponds to a better fit. see https://en.wikipedia.org/wiki/Akaike_information_criterion 'log-likelihood' - log-likelihood Higher value corresponds to a better fit. 'KS' - Kolmogorov Smirnot test Null hypothesis - both samples come from the same distribution. If p<0.05 => reject Null hypothesis with p-level of confidence. see https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html 'chi-square' - Chi-Square test Null hypothesis - both samples come from the same distribution. Calculates theoretical counts for given quantile ranges and compares to theoretical. If p<0.05 => reject Null hypothesis with p-level of confidence. see https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html kwargs if fit is MCMC burn_in : int Number of samples to discard. Samples, before the series converges, should be discarded. kernel_steps : int, optional Number of bins (kernel support points) to determine mode (default=1000). for AIC order : int, optional Order of AIC (1 for regular, 2 for small samples) (default=2). k : int Number of parameters estimated by the model (fixed parameters don't count) fot KS mode : str, optional See scipy docs (default='approx'). alternative : str, optional See scipy docs (default='two-sided'). for chi-square chi_quantiles : int, optional Number of equal slices (quantiles) into which observed data is split to calculate the stitistic(default=4). k : int Number of parameters estimated by the model (fixed parameters don't count) Returns ------- if method = 'log-likelihood' : float, log-likelihood if method = 'AIC' : float, AIC statistic if method = 'KS' : tuple(statistic, p-value) if method = 'chi-square' : tuple(statistic, p-value) """ # Make sure fit method was executed and fit data was generated if not self.__status['fit']: raise ValueError('No fit information found. Run self.fit() method first') if self.fit_method == 'MLE': fit_parameters = self.fit_parameters elif self.fit_method == 'MCMC': burn_in = kwargs.pop('burn_in') kernel_steps = kwargs.pop('kernel_steps', 1000) fit_parameters = self._kernel_fit_parameters(burn_in=burn_in, kernel_steps=kernel_steps) else: raise RuntimeError(f'Unexpected fit_method {self.fit_method}') distribution_object = getattr(scipy.stats, self.distribution_name) exceedances = self.extremes[self.column].values - self.threshold # Flip exceedances around 0 if self.extremes_type == 'low': exceedances *= -1 log_likelihood = np.sum( distribution_object.logpdf(exceedances, *fit_parameters) ) if method == 'log-likelihood': assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' return log_likelihood elif method == 'AIC': order = kwargs.pop('order', 2) k = kwargs.pop('k') assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' aic = 2 * k - 2 * log_likelihood if order == 1: return aic elif order == 2: return aic + (2 * k ** 2 + 2 * k) / (len(self.extremes) - k - 1) else: raise ValueError(f'order must be 1 or 2, {order} was passed') elif method == 'KS': mode = kwargs.pop('mode', 'approx') alternative = kwargs.pop('alternative', 'two-sided') assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' exceedances = self.extremes[self.column].values - self.threshold if self.extremes_type == 'low': exceedances *= -1 ks, p = scipy.stats.kstest( rvs=exceedances, cdf=distribution_object.cdf, args=fit_parameters, alternative=alternative, mode=mode ) return ks, p elif method == 'chi-square': chi_quantiles = kwargs.pop('chi_quantiles', 4) k = kwargs.pop('k') assert len(kwargs) == 0, f'unrecognized arguments passed in: {", ".join(kwargs.keys())}' chi_quantile_ranges = [1 / chi_quantiles * (i + 1) for i in np.arange(-1, chi_quantiles)] observed_counts, expected_counts = [], [] for i in range(chi_quantiles): bot = np.nanquantile( self.extremes[self.column].values, chi_quantile_ranges[i] ) top = np.nanquantile( self.extremes[self.column].values, chi_quantile_ranges[i + 1] ) if i + 1 == chi_quantiles: observed_counts.append( len( self.extremes[ (self.extremes[self.column] >= bot) & (self.extremes[self.column] <= top) ] ) ) else: observed_counts.append( len( self.extremes[ (self.extremes[self.column] >= bot) & (self.extremes[self.column] < top) ] ) ) expected_counts.append( len(self.extremes) * (self.cdf(top) - self.cdf(bot)) ) if min(observed_counts) <= 5 or min(expected_counts) <= 5: raise ValueError(f'Too few observations in observed counts {min(observed_counts)} ' f'or expected counts {min(expected_counts):.0f}, reduce chi_quantiles') cs, p = scipy.stats.chisquare(f_obs=observed_counts, f_exp=expected_counts, ddof=k) return cs, p else: raise ValueError(f'Method {method} not recognized') if __name__ == "__main__": # Load data and initialize EVA import os df = pd.read_csv( os.path.join(os.getcwd(), r'test data\Battery_residuals.csv'), index_col=0, parse_dates=True ) self = EVA(dataframe=df, column='Residuals (ft)', block_size=365.25, gap_length=24) # Set up test parameters etype = 'high' extremes_method = 'POT' _method = 'MCMC' mle_ci = 'Delta' if extremes_method == 'POT': _distribution = 'genpareto' elif extremes_method == 'BM': _distribution = 'genextreme' else: raise RuntimeError # Run a series of methods to assist in finding optimal threshold if extremes_method == 'POT': if etype == 'high': self.plot_mean_residual_life( thresholds=np.arange(2, 8, .01), r=24*7, alpha=.95, adjust_threshold=True, limit=10, extremes_type='high' ) self.plot_parameter_stability( thresholds=np.arange(3, 8, .05), r=24*7, alpha=.95, adjust_threshold=True, limit=10, extremes_type='high' ) elif etype == 'low': self.plot_mean_residual_life( thresholds=np.arange(-8, -2, .01), r=24*7, alpha=.95, adjust_threshold=True, limit=10, extremes_type='low' ) self.plot_parameter_stability( thresholds=np.arange(-8, -2.5, .05), r=24*7, alpha=.95, adjust_threshold=True, limit=20, extremes_type='low' ) # Extract extreme values if extremes_method == 'BM': self.get_extremes(method='BM', plotting_position='Weibull', extremes_type=etype) elif extremes_method == 'POT': if etype == 'high': self.get_extremes(method='POT', threshold=3, r=24*7, plotting_position='Weibull', extremes_type='high') elif etype == 'low': self.get_extremes(method='POT', threshold=-2.8, r=24*7, plotting_position='Weibull', extremes_type='low') self.plot_extremes() # Test independence of POT extremes if extremes_method == 'POT': self.test_extremes(method='autocorrelation') self.test_extremes(method='lag plot', lag=1) print(self.test_extremes(method='runs test', alpha=0.05)) # Fit distribution if _method == 'MLE': if _distribution == 'genpareto': # Shape (f0) and location (floc) are both 0 => equivalent to exponential distribution (expon with floc=0) self.fit(distribution_name=_distribution, fit_method='MLE', scipy_fit_options=dict(floc=0)) elif _distribution == 'genextreme': self.fit(distribution_name=_distribution, fit_method='MLE') elif _method == 'MCMC': self.fit( distribution_name=_distribution, fit_method='MCMC', nsamples=1000, nwalkers=200, starting_bubble=.01 ) # Trace plot if _distribution == 'genpareto': fig_trace, axes_trace = self.plot_trace(burn_in=200, labels=[r'$\xi$', r'$\sigma$']) elif _distribution == 'genextreme': fig_trace, axes_trace = self.plot_trace(burn_in=200, labels=[r'$\xi$', r'$\mu$', r'$\sigma$']) if _distribution == 'genpareto': fig_corner = self.plot_corner(burn_in=200, bins=50, labels=[r'$\xi$', r'$\sigma$'], smooth=1) elif _distribution == 'genextreme': fig_corner = self.plot_corner(burn_in=200, bins=50, labels=[r'$\xi$', r'$\mu$', r'$\sigma$'], smooth=1) # Test quality of fit if _method == 'MLE': print(self.goodness_of_fit(method='AIC', k=1)) self.plot_qq(k=2, plotting_position='Weibull', quantiles=True) self.plot_qq(k=2, plotting_position='Weibull', quantiles=False) else: _burn_in = 200 print(self.goodness_of_fit(method='AIC', k=2, burn_in=_burn_in, kernel_steps=100)) self.plot_qq( k=2, plotting_position='Weibull', quantiles=True, rv_kwargs=dict(burn_in=_burn_in, estimate_method='parameter mode', kernel_steps=100) ) self.plot_qq( k=2, plotting_position='Weibull', quantiles=False, rv_kwargs=dict(burn_in=_burn_in, estimate_method='parameter mode', kernel_steps=100) ) # Generate results if _method == 'MCMC': _burn_in = 200 self.generate_results( alpha=.95, rv_kwargs=dict(burn_in=_burn_in, estimate_method='parameter mode', kernel_steps=100), ci_kwargs=dict(burn_in=_burn_in) ) elif _method == 'MLE': if mle_ci == 'Monte Carlo': self.generate_results( alpha=.95, ci_kwargs=dict( method='Monte Carlo', k=100, source='data', sampling_method='constant', assume_normality=False ) ) elif mle_ci == 'Delta': self.generate_results(alpha=.95, ci_kwargs=dict(method='Delta', dx='1e-10', precision=100)) # Plot extremes return plot if _method == 'MCMC': _burn_in = 200 self.plot_summary( bins=10, plotting_position='Gringorten', rv_kwargs=dict(burn_in=200, estimate_method='parameter mode', kernel_steps=100) ) elif _method == 'MLE': self.plot_summary(bins=10, plotting_position='Gringorten')
gpl-3.0
-9,124,196,757,702,102,000
45.572071
120
0.527463
false
harikishen/addons-server
src/olympia/editors/tests/test_sql_model.py
1
10512
# -*- coding: utf-8 -*- """Tests for SQL Model. Currently these tests are coupled tighly with MySQL """ from datetime import datetime from django.db import connection, models from django.db.models import Q import pytest from olympia.amo.tests import BaseTestCase from olympia.editors.sql_model import RawSQLModel def execute_all(statements): with connection.cursor() as cursor: for sql in statements: if not sql.strip(): continue cursor.execute(sql, []) class Summary(RawSQLModel): category = models.CharField(max_length=255) total = models.IntegerField() latest_product_date = models.DateTimeField() def base_query(self): return { 'select': { 'category': 'c.name', 'total': 'count(*)', 'latest_product_date': 'max(p.created)' }, 'from': [ 'sql_model_test_product p', 'join sql_model_test_product_cat x on x.product_id=p.id', 'join sql_model_test_cat c on x.cat_id=c.id'], 'where': [], 'group_by': 'category' } class ProductDetail(RawSQLModel): product = models.CharField(max_length=255) category = models.CharField(max_length=255) def base_query(self): return { 'select': { 'product': 'p.name', 'category': 'c.name' }, 'from': [ 'sql_model_test_product p', 'join sql_model_test_product_cat x on x.product_id=p.id', 'join sql_model_test_cat c on x.cat_id=c.id'], 'where': [] } class TestSQLModel(BaseTestCase): @pytest.fixture(autouse=True) def setup(self, request): sql = """ create table if not exists sql_model_test_product ( id int(11) not null auto_increment primary key, name varchar(255) not null, created datetime not null ); create table if not exists sql_model_test_cat ( id int(11) not null auto_increment primary key, name varchar(255) not null ); create table if not exists sql_model_test_product_cat ( id int(11) not null auto_increment primary key, cat_id int(11) not null references sql_model_test_cat (id), product_id int(11) not null references sql_model_test_product (id) ); insert into sql_model_test_product (id, name, created) values (1, 'defilbrilator', UTC_TIMESTAMP()); insert into sql_model_test_cat (id, name) values (1, 'safety'); insert into sql_model_test_product_cat (product_id, cat_id) values (1, 1); insert into sql_model_test_product (id, name, created) values (2, 'life jacket', UTC_TIMESTAMP()); insert into sql_model_test_product_cat (product_id, cat_id) values (2, 1); insert into sql_model_test_product (id, name, created) values (3, 'snake skin jacket',UTC_TIMESTAMP()); insert into sql_model_test_cat (id, name) values (2, 'apparel'); insert into sql_model_test_product_cat (product_id, cat_id) values (3, 2); """.split(';') def teardown(): try: sql = """ drop table if exists sql_model_test_product_cat; drop table if exists sql_model_test_cat; drop table if exists sql_model_test_product; """.split(';') execute_all(sql) except: pass # No failing here. teardown() execute_all(sql) request.addfinalizer(teardown) def test_all(self): assert sorted([s.category for s in Summary.objects.all()]) == ( ['apparel', 'safety']) def test_count(self): assert Summary.objects.all().count() == 2 def test_one(self): c = Summary.objects.all().order_by('category')[0] assert c.category == 'apparel' def test_get_by_index(self): qs = Summary.objects.all().order_by('category') assert qs[0].category == 'apparel' assert qs[1].category == 'safety' def test_get(self): c = Summary.objects.all().having('total =', 1).get() assert c.category == 'apparel' def test_get_no_object(self): with self.assertRaises(Summary.DoesNotExist): Summary.objects.all().having('total =', 999).get() def test_get_many(self): with self.assertRaises(Summary.MultipleObjectsReturned): Summary.objects.all().get() def test_slice1(self): qs = Summary.objects.all()[0:1] assert [c.category for c in qs] == ['apparel'] def test_slice2(self): qs = Summary.objects.all()[1:2] assert [c.category for c in qs] == ['safety'] def test_slice3(self): qs = Summary.objects.all()[:2] assert sorted([c.category for c in qs]) == ['apparel', 'safety'] def test_slice4(self): qs = Summary.objects.all()[0:] assert sorted([c.category for c in qs]) == ['apparel', 'safety'] def test_slice5(self): assert ['defilbrilator'] == [ c.product for c in ProductDetail.objects.all().order_by('product')[0:1]] assert ['life jacket'] == [ c.product for c in ProductDetail.objects.all().order_by('product')[1:2]] assert ['snake skin jacket'] == [ c.product for c in ProductDetail.objects.all().order_by('product')[2:3]] def test_negative_slices_not_supported(self): with self.assertRaises(IndexError): Summary.objects.all()[:-1] def test_order_by(self): c = Summary.objects.all().order_by('category')[0] assert c.category == 'apparel' c = Summary.objects.all().order_by('-category')[0] assert c.category == 'safety' def test_order_by_alias(self): c = ProductDetail.objects.all().order_by('product')[0] assert c.product == 'defilbrilator' c = ProductDetail.objects.all().order_by('-product')[0] assert c.product == 'snake skin jacket' def test_order_by_injection(self): with self.assertRaises(ValueError): Summary.objects.order_by('category; drop table foo;')[0] def test_filter(self): c = Summary.objects.all().filter(category='apparel')[0] assert c.category == 'apparel' def test_filter_raw_equals(self): c = Summary.objects.all().filter_raw('category =', 'apparel')[0] assert c.category == 'apparel' def test_filter_raw_in(self): qs = Summary.objects.all().filter_raw('category IN', ['apparel', 'safety']) assert [c.category for c in qs] == ['apparel', 'safety'] def test_filter_raw_non_ascii(self): uni = 'フォクすけといっしょ'.decode('utf8') qs = (Summary.objects.all().filter_raw('category =', uni) .filter_raw(Q('category =', uni) | Q('category !=', uni))) assert [c.category for c in qs] == [] def test_combining_filters_with_or(self): qs = (ProductDetail.objects.all() .filter(Q(product='life jacket') | Q(product='defilbrilator'))) assert sorted([r.product for r in qs]) == [ 'defilbrilator', 'life jacket'] def test_combining_raw_filters_with_or(self): qs = (ProductDetail.objects.all() .filter_raw(Q('product =', 'life jacket') | Q('product =', 'defilbrilator'))) assert sorted([r.product for r in qs]) == [ 'defilbrilator', 'life jacket'] def test_nested_raw_filters_with_or(self): qs = (ProductDetail.objects.all() .filter_raw(Q('category =', 'apparel', 'product =', 'defilbrilator') | Q('product =', 'life jacket'))) assert sorted([r.product for r in qs]) == ['life jacket'] def test_crazy_nesting(self): qs = (ProductDetail.objects.all() .filter_raw(Q('category =', 'apparel', 'product =', 'defilbrilator', Q('product =', 'life jacket') | Q('product =', 'snake skin jacket'), 'category =', 'safety'))) # print qs.as_sql() assert sorted([r.product for r in qs]) == ['life jacket'] def test_having_gte(self): c = Summary.objects.all().having('total >=', 2)[0] assert c.category == 'safety' def test_invalid_raw_filter_spec(self): with self.assertRaises(ValueError): Summary.objects.all().filter_raw( """category = 'apparel'; drop table foo; select * from foo where category = 'apparel'""", 'apparel')[0] def test_filter_field_injection(self): f = ("c.name = 'apparel'; drop table foo; " "select * from sql_model_test_cat where c.name = 'apparel'") with self.assertRaises(ValueError): c = Summary.objects.all().filter(**{f: 'apparel'})[0] assert c.category == 'apparel' def test_filter_value_injection(self): v = ("'apparel'; drop table foo; " "select * from sql_model_test_cat where c.name") query = Summary.objects.all().filter(**{'c.name': v}) try: query[0] except IndexError: pass # NOTE: this reaches into MySQLdb's cursor :( executed = query._cursor.cursor._executed assert "c.name = '\\'apparel\\'; drop table foo;" in executed, ( 'Expected query to be escaped: %s' % executed) def check_type(self, val, types): assert isinstance(val, types), ( 'Unexpected type: %s for %s' % (type(val), val)) def test_types(self): row = Summary.objects.all().order_by('category')[0] self.check_type(row.category, unicode) self.check_type(row.total, (int, long)) self.check_type(row.latest_product_date, datetime) def test_values(self): row = Summary.objects.all().order_by('category')[0] assert row.category == 'apparel' assert row.total == 1 assert row.latest_product_date.timetuple()[0:3] == ( datetime.utcnow().timetuple()[0:3])
bsd-3-clause
-8,566,747,079,214,111,000
35.430556
78
0.551754
false
takmid/inasafe
safe_qgis/impact_functions_doc_base.py
1
9760
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'impact_functions_doc_base.ui' # # Created: Fri Sep 14 14:43:14 2012 # by: PyQt4 UI code generator 4.9.1 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s class Ui_ImpactFunctionsDocBase(object): def setupUi(self, ImpactFunctionsDocBase): ImpactFunctionsDocBase.setObjectName(_fromUtf8("ImpactFunctionsDocBase")) ImpactFunctionsDocBase.resize(821, 733) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8(":/plugins/inasafe/icon.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) ImpactFunctionsDocBase.setWindowIcon(icon) self.gridLayout = QtGui.QGridLayout(ImpactFunctionsDocBase) self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.myButtonBox = QtGui.QDialogButtonBox(ImpactFunctionsDocBase) self.myButtonBox.setLayoutDirection(QtCore.Qt.LeftToRight) self.myButtonBox.setAutoFillBackground(False) self.myButtonBox.setOrientation(QtCore.Qt.Horizontal) self.myButtonBox.setStandardButtons(QtGui.QDialogButtonBox.Close|QtGui.QDialogButtonBox.Help|QtGui.QDialogButtonBox.Reset) self.myButtonBox.setCenterButtons(False) self.myButtonBox.setObjectName(_fromUtf8("myButtonBox")) self.gridLayout.addWidget(self.myButtonBox, 1, 1, 1, 1) self.gridLayoutMain = QtGui.QGridLayout() self.gridLayoutMain.setHorizontalSpacing(0) self.gridLayoutMain.setObjectName(_fromUtf8("gridLayoutMain")) self.label_title = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_title.sizePolicy().hasHeightForWidth()) self.label_title.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_title.setFont(font) self.label_title.setObjectName(_fromUtf8("label_title")) self.gridLayoutMain.addWidget(self.label_title, 1, 0, 1, 1) self.label_id = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_id.sizePolicy().hasHeightForWidth()) self.label_id.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_id.setFont(font) self.label_id.setObjectName(_fromUtf8("label_id")) self.gridLayoutMain.addWidget(self.label_id, 1, 1, 1, 1) self.label_subcategory = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_subcategory.sizePolicy().hasHeightForWidth()) self.label_subcategory.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_subcategory.setFont(font) self.label_subcategory.setObjectName(_fromUtf8("label_subcategory")) self.gridLayoutMain.addWidget(self.label_subcategory, 1, 3, 1, 1) self.label_category = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_category.sizePolicy().hasHeightForWidth()) self.label_category.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_category.setFont(font) self.label_category.setObjectName(_fromUtf8("label_category")) self.gridLayoutMain.addWidget(self.label_category, 1, 2, 1, 1) self.label_layertype = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_layertype.sizePolicy().hasHeightForWidth()) self.label_layertype.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_layertype.setFont(font) self.label_layertype.setObjectName(_fromUtf8("label_layertype")) self.gridLayoutMain.addWidget(self.label_layertype, 1, 4, 1, 1) self.comboBox_id = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_id.setSizeAdjustPolicy(QtGui.QComboBox.AdjustToMinimumContentsLength) self.comboBox_id.setObjectName(_fromUtf8("comboBox_id")) self.gridLayoutMain.addWidget(self.comboBox_id, 3, 1, 1, 1) self.comboBox_title = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_title.setSizeAdjustPolicy(QtGui.QComboBox.AdjustToMinimumContentsLength) self.comboBox_title.setMinimumContentsLength(0) self.comboBox_title.setObjectName(_fromUtf8("comboBox_title")) self.gridLayoutMain.addWidget(self.comboBox_title, 3, 0, 1, 1) self.comboBox_category = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_category.setObjectName(_fromUtf8("comboBox_category")) self.gridLayoutMain.addWidget(self.comboBox_category, 3, 2, 1, 1) self.label_unit = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_unit.sizePolicy().hasHeightForWidth()) self.label_unit.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_unit.setFont(font) self.label_unit.setObjectName(_fromUtf8("label_unit")) self.gridLayoutMain.addWidget(self.label_unit, 1, 6, 1, 1) self.label_datatype = QtGui.QLabel(ImpactFunctionsDocBase) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_datatype.sizePolicy().hasHeightForWidth()) self.label_datatype.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_datatype.setFont(font) self.label_datatype.setObjectName(_fromUtf8("label_datatype")) self.gridLayoutMain.addWidget(self.label_datatype, 1, 5, 1, 1) self.comboBox_subcategory = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_subcategory.setObjectName(_fromUtf8("comboBox_subcategory")) self.gridLayoutMain.addWidget(self.comboBox_subcategory, 3, 3, 1, 1) self.comboBox_layertype = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_layertype.setObjectName(_fromUtf8("comboBox_layertype")) self.gridLayoutMain.addWidget(self.comboBox_layertype, 3, 4, 1, 1) self.comboBox_datatype = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_datatype.setObjectName(_fromUtf8("comboBox_datatype")) self.gridLayoutMain.addWidget(self.comboBox_datatype, 3, 5, 1, 1) self.comboBox_unit = QtGui.QComboBox(ImpactFunctionsDocBase) self.comboBox_unit.setObjectName(_fromUtf8("comboBox_unit")) self.gridLayoutMain.addWidget(self.comboBox_unit, 3, 6, 1, 1) self.webView = QtWebKit.QWebView(ImpactFunctionsDocBase) self.webView.setUrl(QtCore.QUrl(_fromUtf8("about:blank"))) self.webView.setObjectName(_fromUtf8("webView")) self.gridLayoutMain.addWidget(self.webView, 4, 0, 1, 7) self.gridLayout.addLayout(self.gridLayoutMain, 0, 1, 1, 1) self.retranslateUi(ImpactFunctionsDocBase) QtCore.QObject.connect(self.myButtonBox, QtCore.SIGNAL(_fromUtf8("rejected()")), ImpactFunctionsDocBase.reject) QtCore.QMetaObject.connectSlotsByName(ImpactFunctionsDocBase) def retranslateUi(self, ImpactFunctionsDocBase): ImpactFunctionsDocBase.setWindowTitle(QtGui.QApplication.translate("ImpactFunctionsDocBase", "InaSAFE Impact Functions", None, QtGui.QApplication.UnicodeUTF8)) self.label_title.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "Title", None, QtGui.QApplication.UnicodeUTF8)) self.label_id.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "ID", None, QtGui.QApplication.UnicodeUTF8)) self.label_subcategory.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "Subcategory", None, QtGui.QApplication.UnicodeUTF8)) self.label_category.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "Category", None, QtGui.QApplication.UnicodeUTF8)) self.label_layertype.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "Layer Type", None, QtGui.QApplication.UnicodeUTF8)) self.label_unit.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "Unit", None, QtGui.QApplication.UnicodeUTF8)) self.label_datatype.setText(QtGui.QApplication.translate("ImpactFunctionsDocBase", "Data Type", None, QtGui.QApplication.UnicodeUTF8)) from PyQt4 import QtWebKit import resources_rc
gpl-3.0
9,172,954,171,871,963,000
57.795181
167
0.727254
false
jeffmkw/DAT210x-Lab
Module6/test.py
1
2927
import pandas as pd # https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.names # # TODO: Load up the mushroom dataset into dataframe 'X' # Verify you did it properly. # Indices shouldn't be doubled. # Header information is on the dataset's website at the UCI ML Repo # Check NA Encoding # na_values = '!" # # .. your code here .. # INFO: An easy way to show which rows have nans in them # print X[pd.isnull(X).any(axis=1)] X = pd.read_csv('Datasets/agaricus-lepiota.data', names=['classes', 'cap-shape', 'cap-surface', 'cap-color', 'bruises?', 'odor', 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color', 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring', 'stalk-surface-below-ring', 'stalk-color-above-ring', 'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number', 'ring-type', 'spore-print-color', 'population', 'habitat'], na_values='?') # # TODO: Go ahead and drop any row with a nan # # .. your code here .. # print(X.shape) # (8123, 22) # print(X.dtypes) # print(X[pd.isnull(X).any(axis=1)])# there is a hell lot of missing value print(X.columns) X.dropna(axis=0, how='any', inplace=True) # print(X[pd.isnull(X).any(axis=1)]) # awesome. no missing value any more # # TODO: Copy the labels out of the dset into variable 'y' then Remove # them from X. Encode the labels, using the .map() trick we showed # you in Module 5 -- canadian:0, kama:1, and rosa:2 # # .. your code here .. y = X.classes X.drop('classes', axis=1, inplace=True) # print(set(y)) # {'p', 'e'} y = y.map({'p': 1, 'e': 0}) # print(y) # # TODO: Encode the entire dataset using dummies # # .. your code here .. X = pd.get_dummies(X) # print(X) # # TODO: Split your data into test / train sets # Your test size can be 30% with random_state 7 # Use variable names: X_train, X_test, y_train, y_test # # .. your code here .. from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=7) # # TODO: Create an DT classifier. No need to set any parameters # # .. your code from sklearn import tree model = tree.DecisionTreeClassifier() # # TODO: train the classifier on the training data / labels: # TODO: score the classifier on the testing data / labels: # # .. your code here .. model.fit(X_train, y_train) score = model.score(X_test, y_test) print ("High-Dimensionality Score: ", round((score*100), 3)) # # TODO: Use the code on the courses SciKit-Learn page to output a .DOT file # Then render the .DOT to .PNGs. Ensure you have graphviz installed. # If not, `brew install graphviz`. # # .. your code here .. tree.export_graphviz(model.tree_, out_file = 'tree.dot', feature_names = X.columns) from subprocess import call call(['dot', '-T', 'png', 'tree.dot', '-o', 'tree.png'])
mit
-1,792,554,009,541,030,100
29.821053
113
0.65152
false
robertnishihara/ray
python/ray/tune/examples/ax_example.py
1
2352
"""This test checks that AxSearch is functional. It also checks that it is usable with a separate scheduler. """ import numpy as np import time import ray from ray import tune from ray.tune.schedulers import AsyncHyperBandScheduler from ray.tune.suggest.ax import AxSearch def hartmann6(x): alpha = np.array([1.0, 1.2, 3.0, 3.2]) A = np.array([ [10, 3, 17, 3.5, 1.7, 8], [0.05, 10, 17, 0.1, 8, 14], [3, 3.5, 1.7, 10, 17, 8], [17, 8, 0.05, 10, 0.1, 14], ]) P = 10**(-4) * np.array([ [1312, 1696, 5569, 124, 8283, 5886], [2329, 4135, 8307, 3736, 1004, 9991], [2348, 1451, 3522, 2883, 3047, 6650], [4047, 8828, 8732, 5743, 1091, 381], ]) y = 0.0 for j, alpha_j in enumerate(alpha): t = 0 for k in range(6): t += A[j, k] * ((x[k] - P[j, k])**2) y -= alpha_j * np.exp(-t) return y def easy_objective(config): for i in range(config["iterations"]): x = np.array([config.get("x{}".format(i + 1)) for i in range(6)]) tune.report( timesteps_total=i, hartmann6=hartmann6(x), l2norm=np.sqrt((x**2).sum())) time.sleep(0.02) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--smoke-test", action="store_true", help="Finish quickly for testing") args, _ = parser.parse_known_args() ray.init() tune_kwargs = { "num_samples": 10 if args.smoke_test else 50, "config": { "iterations": 100, "x1": tune.uniform(0.0, 1.0), "x2": tune.uniform(0.0, 1.0), "x3": tune.uniform(0.0, 1.0), "x4": tune.uniform(0.0, 1.0), "x5": tune.uniform(0.0, 1.0), "x6": tune.uniform(0.0, 1.0), }, "stop": { "timesteps_total": 100 } } algo = AxSearch( max_concurrent=4, metric="hartmann6", mode="min", parameter_constraints=["x1 + x2 <= 2.0"], # Optional. outcome_constraints=["l2norm <= 1.25"], # Optional. ) scheduler = AsyncHyperBandScheduler(metric="hartmann6", mode="min") tune.run( easy_objective, name="ax", search_alg=algo, scheduler=scheduler, **tune_kwargs)
apache-2.0
-7,999,556,598,531,771,000
26.670588
79
0.517857
false
wesm/ibis
ibis/expr/datatypes.py
1
19843
# Copyright 2014 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from collections import namedtuple, OrderedDict import six import ibis.common as com import ibis.util as util class Schema(object): """ Holds table schema information """ def __init__(self, names, types): if not isinstance(names, list): names = list(names) self.names = names self.types = [validate_type(x) for x in types] self._name_locs = dict((v, i) for i, v in enumerate(self.names)) if len(self._name_locs) < len(self.names): raise com.IntegrityError('Duplicate column names') def __repr__(self): space = 2 + max(map(len, self.names)) return "ibis.Schema {{{0}\n}}".format( util.indent( ''.join( '\n{0}{1}'.format(name.ljust(space), str(tipo)) for name, tipo in zip(self.names, self.types) ), 2 ) ) def __len__(self): return len(self.names) def __iter__(self): return iter(self.names) def __contains__(self, name): return name in self._name_locs def __getitem__(self, name): return self.types[self._name_locs[name]] def delete(self, names_to_delete): for name in names_to_delete: if name not in self: raise KeyError(name) new_names, new_types = [], [] for name, type_ in zip(self.names, self.types): if name in names_to_delete: continue new_names.append(name) new_types.append(type_) return Schema(new_names, new_types) @classmethod def from_tuples(cls, values): if not isinstance(values, (list, tuple)): values = list(values) if len(values): names, types = zip(*values) else: names, types = [], [] return Schema(names, types) @classmethod def from_dict(cls, values): names = list(values.keys()) types = values.values() return Schema(names, types) def equals(self, other, cache=None): return self.names == other.names and self.types == other.types def __eq__(self, other): return self.equals(other) def get_type(self, name): return self.types[self._name_locs[name]] def append(self, schema): names = self.names + schema.names types = self.types + schema.types return Schema(names, types) def items(self): return zip(self.names, self.types) class HasSchema(object): """ Base class representing a structured dataset with a well-defined schema. Base implementation is for tables that do not reference a particular concrete dataset or database table. """ def __init__(self, schema, name=None): assert isinstance(schema, Schema) self._schema = schema self._name = name def __repr__(self): return self._repr() def _repr(self): return "%s(%s)" % (type(self).__name__, repr(self.schema)) @property def schema(self): return self._schema def get_schema(self): return self._schema def has_schema(self): return True @property def name(self): return self._name def equals(self, other, cache=None): if type(self) != type(other): return False return self.schema.equals(other.schema, cache=cache) def root_tables(self): return [self] class DataType(object): def __init__(self, nullable=True): self.nullable = nullable def __call__(self, nullable=True): return self._factory(nullable=nullable) def _factory(self, nullable=True): return type(self)(nullable=nullable) def __eq__(self, other): return self.equals(other) def __ne__(self, other): return not (self == other) def __hash__(self): return hash(type(self)) def __repr__(self): name = self.name.lower() if not self.nullable: name = '{0}[non-nullable]'.format(name) return name @property def name(self): return type(self).__name__ def equals(self, other, cache=None): if isinstance(other, six.string_types): other = validate_type(other) return (isinstance(other, type(self)) and self.nullable == other.nullable) def can_implicit_cast(self, other): return self.equals(other) def scalar_type(self): import ibis.expr.types as ir return getattr(ir, '{0}Scalar'.format(type(self).__name__)) def array_type(self): import ibis.expr.types as ir return getattr(ir, '{0}Column'.format(type(self).__name__)) class Any(DataType): pass class Primitive(DataType): pass class Null(DataType): pass class Variadic(DataType): pass class Boolean(Primitive): pass Bounds = namedtuple('Bounds', ('upper', 'lower')) class Integer(Primitive): @property def bounds(self): exp = self._nbytes * 8 - 1 lower = -1 << exp return Bounds(lower=lower, upper=~lower) def can_implicit_cast(self, other): return ( isinstance(other, Integer) and (type(self) is Integer or other._nbytes <= self._nbytes) ) class String(Variadic): pass class Date(Primitive): pass class Timestamp(Primitive): pass class SignedInteger(Integer): pass class Floating(Primitive): def can_implicit_cast(self, other): if isinstance(other, Integer): return True elif isinstance(other, Floating): # return other._nbytes <= self._nbytes return True else: return False class Int8(Integer): _nbytes = 1 class Int16(Integer): _nbytes = 2 class Int32(Integer): _nbytes = 4 class Int64(Integer): _nbytes = 8 class Float(Floating): _nbytes = 4 class Double(Floating): _nbytes = 8 def parametric(cls): type_name = cls.__name__ array_type_name = '{0}Column'.format(type_name) scalar_type_name = '{0}Scalar'.format(type_name) def array_type(self): def constructor(op, name=None): import ibis.expr.types as ir return getattr(ir, array_type_name)(op, self, name=name) return constructor def scalar_type(self): def constructor(op, name=None): import ibis.expr.types as ir return getattr(ir, scalar_type_name)(op, self, name=name) return constructor cls.array_type = array_type cls.scalar_type = scalar_type return cls @parametric class Decimal(DataType): # Decimal types are parametric, we store the parameters in this object def __init__(self, precision, scale, nullable=True): super(Decimal, self).__init__(nullable=nullable) self.precision = precision self.scale = scale def __repr__(self): return '{0}(precision={1:d}, scale={2:d})'.format( self.name, self.precision, self.scale, ) def __str__(self): return '{0}({1:d}, {2:d})'.format( self.name.lower(), self.precision, self.scale, ) def __hash__(self): return hash((self.precision, self.scale)) def __ne__(self, other): return not self.__eq__(other) def __eq__(self, other): return ( isinstance(other, Decimal) and self.precision == other.precision and self.scale == other.scale ) @classmethod def can_implicit_cast(cls, other): return isinstance(other, (Floating, Decimal)) @parametric class Category(DataType): def __init__(self, cardinality=None, nullable=True): super(Category, self).__init__(nullable=nullable) self.cardinality = cardinality def __repr__(self): if self.cardinality is not None: cardinality = self.cardinality else: cardinality = 'unknown' return 'category(K={0})'.format(cardinality) def __hash__(self): return hash(self.cardinality) def __eq__(self, other): if not isinstance(other, Category): return False return self.cardinality == other.cardinality def to_integer_type(self): cardinality = self.cardinality if cardinality is None: return int64 elif cardinality < int8.bounds.upper: return int8 elif cardinality < int16.bounds.upper: return int16 elif cardinality < int32.bounds.upper: return int32 else: return int64 @parametric class Struct(DataType): def __init__(self, names, types, nullable=True): super(Struct, self).__init__(nullable=nullable) self.names = names self.types = types def __repr__(self): return '{0}({1})'.format( self.name, list(zip(self.names, self.types)) ) def __str__(self): return '{0}<{1}>'.format( self.name.lower(), ', '.join( '{0}: {1}'.format(n, t) for n, t in zip(self.names, self.types) ) ) def __eq__(self, other): return (isinstance(other, type(self)) and self.names == other.names and self.types == other.types) @classmethod def from_tuples(self, pairs): return Struct(*map(list, zip(*pairs))) @parametric class Array(Variadic): def __init__(self, value_type, nullable=True): super(Array, self).__init__(nullable=nullable) self.value_type = value_type def __repr__(self): return '{0}({1})'.format(self.name, repr(self.value_type)) def __str__(self): return '{0}<{1}>'.format(self.name.lower(), self.value_type) def __eq__(self, other): return ( isinstance(other, type(self)) and self.value_type == other.value_type ) @parametric class Enum(DataType): def __init__(self, rep_type, value_type, nullable=True): super(Enum, self).__init__(nullable=nullable) self.rep_type = rep_type self.value_type = value_type @parametric class Map(DataType): def __init__(self, key_type, value_type, nullable=True): super(Map, self).__init__(nullable=nullable) self.key_type = key_type self.value_type = value_type def __repr__(self): return '{0}({1}, {2})'.format( self.name, repr(self.key_type), repr(self.value_type), ) def __str__(self): return '{0}<{1}, {2}>'.format( self.name.lower(), self.key_type, self.value_type, ) def __eq__(self, other): return ( isinstance(other, type(self)) and self.key_type == other.key_type and self.value_type == other.value_type ) # --------------------------------------------------------------------- any = Any() null = Null() boolean = Boolean() int_ = Integer() int8 = Int8() int16 = Int16() int32 = Int32() int64 = Int64() float = Float() double = Double() string = String() date = Date() timestamp = Timestamp() _primitive_types = { 'any': any, 'null': null, 'boolean': boolean, 'int8': int8, 'int16': int16, 'int32': int32, 'int64': int64, 'float': float, 'double': double, 'string': string, 'date': date, 'timestamp': timestamp } class Tokens(object): """Class to hold tokens for lexing """ __slots__ = () ANY = 0 NULL = 1 PRIMITIVE = 2 DECIMAL = 3 VARCHAR = 4 CHAR = 5 ARRAY = 6 MAP = 7 STRUCT = 8 INTEGER = 9 FIELD = 10 COMMA = 11 COLON = 12 LPAREN = 13 RPAREN = 14 LBRACKET = 15 RBRACKET = 16 @staticmethod def name(value): return _token_names[value] _token_names = dict( (getattr(Tokens, n), n) for n in dir(Tokens) if n.isalpha() and n.isupper() ) Token = namedtuple('Token', ('type', 'value')) _TYPE_RULES = OrderedDict( [ # any, null ('(?P<ANY>any)', lambda token: Token(Tokens.ANY, any)), ('(?P<NULL>null)', lambda token: Token(Tokens.NULL, null)), ] + [ # primitive types ( '(?P<{}>{})'.format(token.upper(), token), lambda token, value=value: Token(Tokens.PRIMITIVE, value) ) for token, value in _primitive_types.items() if token != 'any' and token != 'null' ] + [ # decimal + complex types ( '(?P<{}>{})'.format(token.upper(), token), lambda token, toktype=toktype: Token(toktype, token) ) for token, toktype in zip( ('decimal', 'varchar', 'char', 'array', 'map', 'struct'), ( Tokens.DECIMAL, Tokens.VARCHAR, Tokens.CHAR, Tokens.ARRAY, Tokens.MAP, Tokens.STRUCT ), ) ] + [ # numbers, for decimal spec (r'(?P<INTEGER>\d+)', lambda token: Token(Tokens.INTEGER, int(token))), # struct fields ( r'(?P<FIELD>[a-zA-Z_][a-zA-Z_0-9]*)', lambda token: Token(Tokens.FIELD, token) ), ('(?P<COMMA>,)', lambda token: Token(Tokens.COMMA, token)), ('(?P<COLON>:)', lambda token: Token(Tokens.COLON, token)), (r'(?P<LPAREN>\()', lambda token: Token(Tokens.LPAREN, token)), (r'(?P<RPAREN>\))', lambda token: Token(Tokens.RPAREN, token)), ('(?P<LBRACKET><)', lambda token: Token(Tokens.LBRACKET, token)), ('(?P<RBRACKET>>)', lambda token: Token(Tokens.RBRACKET, token)), (r'(?P<WHITESPACE>\s+)', None), ] ) _TYPE_KEYS = tuple(_TYPE_RULES.keys()) _TYPE_PATTERN = re.compile('|'.join(_TYPE_KEYS), flags=re.IGNORECASE) def _generate_tokens(pat, text): """Generate a sequence of tokens from `text` that match `pat` Parameters ---------- pat : compiled regex The pattern to use for tokenization text : str The text to tokenize """ rules = _TYPE_RULES keys = _TYPE_KEYS groupindex = pat.groupindex for m in iter(pat.scanner(text).match, None): func = rules[keys[groupindex[m.lastgroup] - 1]] if func is not None: assert callable(func), 'func must be callable' yield func(m.group(m.lastgroup)) class TypeParser(object): """A type parser for complex types. Parameters ---------- text : str The text to parse Notes ----- Adapted from David Beazley's and Brian Jones's Python Cookbook """ def __init__(self, text): self.text = text self.tokens = _generate_tokens(_TYPE_PATTERN, text) self.tok = None self.nexttok = None def _advance(self): self.tok, self.nexttok = self.nexttok, next(self.tokens, None) def _accept(self, toktype): if self.nexttok is not None and self.nexttok.type == toktype: self._advance() return True return False def _expect(self, toktype): if not self._accept(toktype): raise SyntaxError('Expected {0} after {1!r} in {2!r}'.format( Tokens.name(toktype), self.tok.value, self.text, )) def parse(self): self._advance() # any and null types cannot be nested if self._accept(Tokens.ANY) or self._accept(Tokens.NULL): return self.tok.value t = self.type() if self.nexttok is None: return t else: # additional junk was passed at the end, throw an error additional_tokens = [] while self.nexttok is not None: additional_tokens.append(self.nexttok.value) self._advance() raise SyntaxError( 'Found additional tokens {0}'.format(additional_tokens) ) def type(self): """ type : primitive | decimal | array | map | struct primitive : "any" | "null" | "boolean" | "int8" | "int16" | "int32" | "int64" | "float" | "double" | "string" | "timestamp" decimal : "decimal" | "decimal" "(" integer "," integer ")" integer : [0-9]+ array : "array" "<" type ">" map : "map" "<" type "," type ">" struct : "struct" "<" field ":" type ("," field ":" type)* ">" field : [a-zA-Z_][a-zA-Z_0-9]* """ if self._accept(Tokens.PRIMITIVE): return self.tok.value elif self._accept(Tokens.DECIMAL): if self._accept(Tokens.LPAREN): self._expect(Tokens.INTEGER) precision = self.tok.value self._expect(Tokens.COMMA) self._expect(Tokens.INTEGER) scale = self.tok.value self._expect(Tokens.RPAREN) else: precision = 9 scale = 0 return Decimal(precision, scale) elif self._accept(Tokens.VARCHAR) or self._accept(Tokens.CHAR): # VARCHAR, VARCHAR(n), CHAR, and CHAR(n) all parse as STRING if self._accept(Tokens.LPAREN): self._expect(Tokens.INTEGER) self._expect(Tokens.RPAREN) return string return string elif self._accept(Tokens.ARRAY): self._expect(Tokens.LBRACKET) value_type = self.type() self._expect(Tokens.RBRACKET) return Array(value_type) elif self._accept(Tokens.MAP): self._expect(Tokens.LBRACKET) self._expect(Tokens.PRIMITIVE) key_type = self.tok.value self._expect(Tokens.COMMA) value_type = self.type() self._expect(Tokens.RBRACKET) return Map(key_type, value_type) elif self._accept(Tokens.STRUCT): self._expect(Tokens.LBRACKET) self._expect(Tokens.FIELD) names = [self.tok.value] self._expect(Tokens.COLON) types = [self.type()] while self._accept(Tokens.COMMA): self._expect(Tokens.FIELD) names.append(self.tok.value) self._expect(Tokens.COLON) types.append(self.type()) self._expect(Tokens.RBRACKET) return Struct(names, types) else: raise SyntaxError('Type cannot be parsed: {0}'.format(self.text)) def validate_type(t): if isinstance(t, DataType): return t return TypeParser(t).parse() def array_type(t): # compatibility return validate_type(t).array_type() def scalar_type(t): # compatibility return validate_type(t).scalar_type()
apache-2.0
-6,465,158,278,819,873,000
23.407134
79
0.545835
false
Mariaanisimova/pythonintask
IVTp/2014/Shcherbakov_R_A/task_09_22.py
1
1636
# Задача 9. Вариант 22. # Создайте игру, в которой компьютер выбирает какое-либо слово, а игрок должен # его отгадать. Компьютер сообщает игроку, сколько букв в слове, и дает пять попыток # узнать, есть ли какая-либо буква в слове, причем программа может отвечать только # "Да" и "Нет". Вслед за тем игрок должен попробовать отгадать слово. # Щербаков Р.А. # 22.05.2016 import random words="Сессия","Питон","Автомат","РГСУ","Расписание" rand=random.randint(0,4) massiv=list(words[rand].lower()) print("Ты попал на поле чудес, только тут мы не говорим где находится буква которую \ угадаешь.\nТема: Учеба\nБукв: "+str(len(massiv))) popitka=5 inp="" text="Угадали" while popitka!=0: if input("У тебя "+str(popitka)+" попыток\nВведите букву: ") in massiv: print("Да") else: print("Нет") popitka-=1 while inp.lower()!=words[rand].lower(): inp=input("Введите слово: ") if(inp.lower()=="я слабак"): inp=words[rand] text="Слабак" elif(inp.lower()==words[rand].lower()): text="Угадали" else: print("Попытайтесь еще раз\nНаберите 'Я слабак' для выхода") input("\nВы "+text)
apache-2.0
3,770,639,365,246,442,000
31.571429
85
0.67807
false
dsonbill/DMPHive
xmlrsa.py
1
3988
import rsa import base64 import math import xml.etree.ElementTree as ET # Utility functions def bytes_to_int(byte_data): return int.from_bytes(byte_data, 'big') def bytes_from_int(integer): byte_length = math.ceil(integer.bit_length() / 8) return integer.to_bytes(byte_length, 'big') class RSA(): def __init__(self, key_size=None): if key_size is not None: self.public_key, self.private_key = rsa.newkeys(key_size) self.public_key_xml, self.private_key_xml = self.get_keys_xml_string(self.private_key) self.initialized = True def sign(self, message, hash): if self.initialized: return rsa.sign(message, self.private_key, hash) def verify(self, message, signature): if self.initialized: return rsa.verify(message, signature, self.public_key) def load_keys_xml(self, filename_private_key): # Build public and private key object rsa_xml = ET.parse(filename_private_key).getroot() modulus_xml = rsa_xml.find('Modulus') exponent_xml = rsa_xml.find('Exponent') d_xml = rsa_xml.find('D') p_xml = rsa_xml.find('P') q_xml = rsa_xml.find('Q') modulus_int = bytes_to_int(base64.standard_b64decode(modulus_xml.text)) modulus_bytes = base64.standard_b64decode(modulus_xml.text) modulus_bytes_tested = bytes_from_int(bytes_to_int(modulus_bytes)) if modulus_bytes != modulus_bytes_tested: raise Exception('A modulus mismatch was encountered with xmlrsa. Please check your rsa key modulus!') exponent_int = bytes_to_int(base64.standard_b64decode(exponent_xml.text)) d_int = bytes_to_int(base64.standard_b64decode(d_xml.text)) p_int = bytes_to_int(base64.standard_b64decode(p_xml.text)) q_int = bytes_to_int(base64.standard_b64decode(q_xml.text)) # Set key objects self.public_key = rsa.PublicKey(modulus_int, exponent_int) self.private_key = rsa.PrivateKey(modulus_int, exponent_int, d_int, p_int, q_int) # Set key xml strings self.public_key_xml, self.private_key_xml = self.get_keys_xml_string(self.private_key) # Set initialized flag self.initialized = True def save_keys_xml(self, filename_private_key): if self.initialized: with open(filename_private_key, 'w') as file: file.write(self.private_key_xml) @staticmethod def get_keys_xml_string(private_key): rsa_key_value_xml = ET.Element('RSAKeyValue') modulus_xml = ET.SubElement(rsa_key_value_xml, 'Modulus') exponent_xml = ET.SubElement(rsa_key_value_xml, 'Exponent') modulus_xml.text = base64.standard_b64encode(bytes_from_int(private_key.n)).decode('utf-8') exponent_xml.text = base64.standard_b64encode(bytes_from_int(private_key.e)).decode('utf-8') pubkey = ET.tostring(rsa_key_value_xml).decode('utf-8') d_xml = ET.SubElement(rsa_key_value_xml, 'D') p_xml = ET.SubElement(rsa_key_value_xml, 'P') q_xml = ET.SubElement(rsa_key_value_xml, 'Q') dp_xml = ET.SubElement(rsa_key_value_xml, 'DP') dq_xml = ET.SubElement(rsa_key_value_xml, 'DQ') inverseq_xml = ET.SubElement(rsa_key_value_xml, 'InverseQ') d_xml.text = base64.standard_b64encode(bytes_from_int(private_key.d)).decode('utf-8') p_xml.text = base64.standard_b64encode(bytes_from_int(private_key.p)).decode('utf-8') q_xml.text = base64.standard_b64encode(bytes_from_int(private_key.q)).decode('utf-8') dp_xml.text = base64.standard_b64encode(bytes_from_int(private_key.exp1)).decode('utf-8') dq_xml.text = base64.standard_b64encode(bytes_from_int(private_key.exp2)).decode('utf-8') inverseq_xml.text = base64.standard_b64encode(bytes_from_int(private_key.coef)).decode('utf-8') privkey = ET.tostring(rsa_key_value_xml).decode('utf-8') return pubkey, privkey
cc0-1.0
-5,861,631,085,719,822,000
40.978947
113
0.650201
false
mice-software/maus
bin/scifi/GenerateMomentumCorrections.py
1
2173
#!/usr/bin/env python """ Generate an MC data file and calculate the required Pattern Recognition momentum corrections required for the track reconstruction. This will simulate MICE spills through the entirety of MICE using Geant4, then digitize and reconstruct tracker hits to space points. Finally a reducer is used to analysis the MC truth and reconstructed tracks in order to calculate the required corrections. """ import os import MAUS # MAUS libraries # pylint: disable = C0103 config_file = os.path.join(os.getenv("MAUS_ROOT_DIR"), "bin/scifi/Conf_PR_Momentum_Corrections.py") def run(): """ Run the macro """ # This input generates empty spills, to be filled by the beam maker later on my_input = MAUS.InputPySpillGenerator() # Create an empty array of mappers, then populate it # with the functionality you want to use. my_map = MAUS.MapPyGroup() # GEANT4 my_map.append(MAUS.MapPyBeamMaker()) # beam construction my_map.append(MAUS.MapCppSimulation()) # geant4 simulation # Pre detector set up # my_map.append(MAUS.MapPyMCReconSetup()) # geant4 simulation my_map.append(MAUS.MapCppMCReconSetup()) # geant4 simulation # SciFi my_map.append(MAUS.MapCppTrackerMCDigitization()) # SciFi electronics model my_map.append(MAUS.MapCppTrackerClusterRecon()) # SciFi channel clustering my_map.append(MAUS.MapCppTrackerSpacePointRecon()) # SciFi spacepoint recon my_map.append(MAUS.MapCppTrackerPatternRecognition()) # SciFi track finding # my_map.append(MAUS.MapCppTrackerTrackFit()) # SciFi track fit # Momentum Corrections Reducer my_reduce = MAUS.ReduceCppSciFiMomentumCorrections() # Then construct a MAUS output component - filename comes from datacards my_output = MAUS.OutputCppRoot() # can specify datacards here or by using appropriate command line calls datacards = open(config_file, 'r') # The Go() drives all the components you pass in, then check the file # (default simulation.out) for output MAUS.Go(my_input, my_map, my_reduce, my_output, datacards) if __name__ == '__main__': run()
gpl-3.0
8,634,506,744,995,396,000
34.622951
80
0.716521
false
AhmedFat7y/configure-c--projects-for-ssi
main.py
1
7785
import xml.etree.ElementTree as ET from os.path import isfile, join, abspath, dirname, lexists from os import listdir from sys import argv import argparse import pdb, getopt class ProjectConfigurator: #SSI_PLUGIN_SOURCE_DIRECTORY = "build\\%s" def __init__(self, argv): self.XML_TAG_SUFFIX = "%s" self.INPUT_FILE = "" self.SSI_PLUGIN_NAME = "" self.SSI_DIR_PREFIX = "%s" self.SSI_CURRENT_PLUGIN_PREFIX = '%s' self.SSI_INCLUDE_DIRECTORY = 'core\\include\\;' self.SSI_LIB_DIRECTORY = 'libs\\Win32\\vc10\\;' self.SSI_BIN_DIRECTORY = 'bin\\Win32\\vc10\\' self.SSI_PLUGINS_DIRECTORY = 'plugins\\' self.SSI_PLUGINS_INCLUDE_DIRECTORY = 'plugins\\%s\\include\\;' self.SSI_PLUGIN_SOURCE_DIRECTORY = "source\\%s" self.SSI_PLUGIN_INCLUDE_DIRECTORY = "include\\%s" self.parseCommandLineOptions() self.initializeRelativePaths() def parseCommandLineOptions(self): parser = argparse.ArgumentParser(description='Configure c++ project for ssi framework.') parser.add_argument('iFile', metavar='input-file', help='The project file to be edited.') parser.add_argument('-p', '--inlculde-plugins', nargs="*", dest="included_plugins", help='Name of plugins to add their include folders to the current project') parser.add_argument('-l', '--additional-deps', nargs="*", dest="additional_dependencies", help='Additional dependencies (ex: xsens.lib)') parser.add_argument('-d', '--additional-libs-dirs', nargs="*", dest="additional_libs_directries", help='Starting with a plugin name specify the folder to additiona libraries directories (ex: xsens\\build\\bin\\)') args = parser.parse_args() self.INPUT_FILE = args.iFile #pdb._trace() def editItemGroup(self, rootnode): maincppfile_name = (self.SSI_CURRENT_PLUGIN_PREFIX % self.SSI_PLUGIN_SOURCE_DIRECTORY) % (self.SSI_PLUGIN_NAME + ".cpp") exportcppfile_name = (self.SSI_CURRENT_PLUGIN_PREFIX % self.SSI_PLUGIN_SOURCE_DIRECTORY) % ("Export" + self.SSI_PLUGIN_NAME + ".cpp") mainheaderfile_name = (self.SSI_CURRENT_PLUGIN_PREFIX % self.SSI_PLUGIN_INCLUDE_DIRECTORY) % (self.SSI_PLUGIN_NAME + ".h") ssiheaderfile_name = (self.SSI_CURRENT_PLUGIN_PREFIX % self.SSI_PLUGIN_INCLUDE_DIRECTORY) % ("ssi" + self.SSI_PLUGIN_NAME.lower() + ".h") """ cppfilesGroup = createNewElement(rootnode, "ItemGroup") findChild(cppfilesGroup, "ClCompile").set("Include", maincppfile_name) findChild(cppfilesGroup, "ClCompile").set("Include", exportcppfile_name) headerfilesGroup = createNewElement(rootnode, "ItemGroup") findChild(headerfilesGroup, "ClCompile").set("Include", mainheaderfile_name) findChild(headerfilesGroup, "ClCompile").set("Include", ssiheaderfile_name) """ files_names = (maincppfile_name, exportcppfile_name, mainheaderfile_name, ssiheaderfile_name) for file_name in files_names: if not lexists(file_name): with open(file_name, 'w') as outfile: outfile.write("") outfile.flush() pass def writetree(self, tree, inputfile): treecontent = ET.tostring(tree.getroot()).replace("ns0:", "").replace(":ns0", "") with open(inputfile , 'w') as out_file: out_file.write(treecontent) out_file.flush() #tree.write(INPUT_FILE + ".xml") pass def createNewElement(self, parentnode, newelement_name): newelement = ET.SubElement(parentnode, self.XML_TAG_SUFFIX % newelement_name) return newelement pass def findChild(self, parentnode, childnode_name): if parentnode.find(self.XML_TAG_SUFFIX % childnode_name) is None: self.createNewElement(parentnode, childnode_name) return parentnode.find(self.XML_TAG_SUFFIX % childnode_name) pass def editDebugProperties(self, properties_node): #pdb.set_trace() self.findChild(properties_node, "TargetName").text = "ssi$(ProjectName)d" self.findChild(properties_node, "OutDir").text = self.SSI_DIR_PREFIX % self.SSI_BIN_DIRECTORY pass def editReleaseProperties(self, properties_node): self.findChild(properties_node, "TargetName").text = "ssi$(ProjectName)" self.findChild(properties_node, "OutDir").text = self.SSI_DIR_PREFIX % self.SSI_BIN_DIRECTORY pass def editReleaseLink(self, link_node): self.findChild(link_node, "AdditionalLibraryDirectories").text = (self.SSI_DIR_PREFIX % self.SSI_LIB_DIRECTORY) + (self.SSI_DIR_PREFIX % self.SSI_BIN_DIRECTORY) + ";" self.findChild(link_node, "AdditionalDependencies").text = "" self.findChild(link_node, "OutputFile").text = "$(TargetPath)" pass def editReleaseClCompile(self, clcompile_node): self.findChild(clcompile_node, "AdditionalIncludeDirectories").text = (self.SSI_DIR_PREFIX % self.SSI_INCLUDE_DIRECTORY) + (self.SSI_CURRENT_PLUGIN_PREFIX % (self.SSI_PLUGIN_INCLUDE_DIRECTORY % "")) pass def editDebugClCompile(self, clcompile_node): self.findChild(clcompile_node, "AdditionalIncludeDirectories").text = (self.SSI_DIR_PREFIX % self.SSI_INCLUDE_DIRECTORY) + (self.SSI_CURRENT_PLUGIN_PREFIX % (self.SSI_PLUGIN_INCLUDE_DIRECTORY % "")) pass def editDebugLink(self, link_node): self.findChild(link_node, "AdditionalLibraryDirectories").text = (self.SSI_DIR_PREFIX % self.SSI_LIB_DIRECTORY) + (self.SSI_DIR_PREFIX % self.SSI_BIN_DIRECTORY) + ";" self.findChild(link_node, "AdditionalDependencies").text = "" self.findChild(link_node, "OutputFile").text = "$(TargetPath)" pass def initializeRelativePaths(self): current_dir = abspath('') new_dir = self.SSI_DIR_PREFIX current_plugin_dir = self.SSI_CURRENT_PLUGIN_PREFIX dir_files = listdir(current_dir) while current_dir[-3:] != "ssi": current_dir = dirname(current_dir) new_dir = '..\\' + new_dir if not (dir_files.count("include") == 1 and dir_files.count("source") == 1 and dir_files.count("build") == 1): current_plugin_dir = '..\\' + current_plugin_dir dir_files = listdir(current_dir) print "- ", dir_files self.SSI_DIR_PREFIX = new_dir self.SSI_CURRENT_PLUGIN_PREFIX = current_plugin_dir print "- ", self.INPUT_FILE, "- ", self.INPUT_FILE.rfind(".vcxproj") self.SSI_PLUGIN_NAME = self.INPUT_FILE[0:self.INPUT_FILE.rfind(".vcxproj")] def start(self): tree = ET.parse(self.INPUT_FILE) root = tree.getroot() roottag = root.tag self.XML_TAG_SUFFIX = roottag[roottag.find("{") : roottag.find("}") + 1] + self.XML_TAG_SUFFIX for child in root: if child.tag == self.XML_TAG_SUFFIX % "PropertyGroup" and not child.attrib.has_key("Label") and child.attrib.has_key("Condition"): if child.attrib["Condition"] == "'$(Configuration)|$(Platform)'=='Debug|Win32'": self.editDebugProperties(child) elif child.attrib["Condition"] == "'$(Configuration)|$(Platform)'=='Release|Win32'": self.editReleaseProperties(child) else: pass elif child.tag == self.XML_TAG_SUFFIX % "ItemDefinitionGroup" and child.attrib.has_key("Condition"): compile_child = child.find(self.XML_TAG_SUFFIX % "ClCompile") link_child = child.find(self.XML_TAG_SUFFIX % "Link") if child.attrib["Condition"] == "'$(Configuration)|$(Platform)'=='Release|Win32'": self.editReleaseClCompile(compile_child) self.editReleaseLink(link_child) else: self.editReleaseClCompile(compile_child) self.editDebugLink(link_child) else: pass self.editItemGroup(root) #print '- ', ET.tostringlist(root) self.writetree(tree, self.INPUT_FILE) if __name__ == "__main__": instance = ProjectConfigurator(argv) instance.start()
gpl-2.0
-5,115,269,590,821,743,000
48.278481
202
0.669878
false
Savvysherpa/provenance
provenance/migrations/env.py
1
2032
from __future__ import with_statement from alembic import context from sqlalchemy import engine_from_config, pool from provenance import models # this is the Alembic Config object, which provides # access to the values within the .ini file in use. config = context.config # add your model's MetaData object here # for 'autogenerate' support # from myapp import mymodel # target_metadata = mymodel.Base.metadata target_metadata = models.Base.metadata # other values from the config, defined by the needs of env.py, # can be acquired: # my_important_option = config.get_main_option("my_important_option") # ... etc. def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=target_metadata, literal_binds=True) with context.begin_transaction(): context.run_migrations() def run_migrations_online(): connectable = config.attributes.get('connection', None) if connectable is None: # only create Engine if we don't have a Connection # from the outside connectable = engine_from_config( config.get_section(config.config_ini_section), prefix='sqlalchemy.', poolclass=pool.NullPool) # when connectable is already a Connection object, calling # connect() gives us a *branched connection*. with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata ) with context.begin_transaction(): context.run_migrations() if context.is_offline_mode(): run_migrations_offline() else: run_migrations_online()
mit
-6,248,009,298,735,235,000
28.449275
69
0.692913
false
novapost/python-pussycache
setup.py
1
2924
# -*- coding: utf-8 -*- """Python packaging.""" from os.path import abspath, dirname, join from setuptools import setup def read_relative_file(filename): """Returns contents of the given file, which path is supposed relative to this module.""" with open(join(dirname(abspath(__file__)), filename)) as f: return f.read() def packages(project_name): """Return list of packages distributed by project based on its name. >>> packages('foo') ['foo'] >>> packages('foo.bar') ['foo', 'foo.bar'] >>> packages('foo.bar.baz') ['foo', 'foo.bar', 'foo.bar.baz'] >>> packages('FooBar') ['foobar'] Implements "Use a single name" convention described in :pep:`423`. """ name = str(project_name).lower() if '.' in name: # Using namespace packages. parts = name.split('.') return ['.'.join(parts[0:i]) for i in range(1, len(parts) + 1)] else: # One root package or module. return [name] def namespace_packages(project_name): """Return list of namespace packages distributed in this project, based on project name. >>> namespace_packages('foo') [] >>> namespace_packages('foo.bar') ['foo'] >>> namespace_packages('foo.bar.baz') ['foo', 'foo.bar'] >>> namespace_packages('Foo.BaR.BAZ') == namespace_packages('foo.bar.baz') True Implements "Use a single name" convention described in :pep:`423`. """ package_list = packages(project_name) package_list.pop() # Ignore last element. # Remaining packages are supposed to be namespace packages. return package_list NAME = 'pussycache' version = read_relative_file('VERSION').strip() readme = read_relative_file('README.md') requirements = [] dependency_links = [] entry_points = { } if __name__ == '__main__': # ``import setup`` doesn't trigger setup(). setup(name=NAME, version=version, description="""Cache Backend system for python objects""", long_description=readme, classifiers=['Development Status :: 4 - Beta', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 2.6', 'Framework :: Django', ], keywords='cache', author='Novapost Team', author_email='[email protected]', url='https://github.com/novapost/%s' % NAME, license='BSD', packages=packages(NAME), namespace_packages=namespace_packages(NAME), include_package_data=True, zip_safe=False, install_requires=requirements, dependency_links=dependency_links, entry_points=entry_points, test_suite='nose.collector', setup_requires=['nose'], tests_require=['redis', 'django'])
mit
-3,581,475,447,714,496,500
29.778947
78
0.588577
false
jokey2k/pyClanSphere
pyClanSphere/plugins/bulletin_board/database.py
1
3321
# -*- coding: utf-8 -*- """ pyClanSphere.plugins.bulletin_board.database ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Our needed tables are declared here (now) :copyright: (c) 2009 - 2010 by the pyClanSphere Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from datetime import datetime from pyClanSphere.database import db, metadata # Mapping these out from db module to increases readability further down for var in ['Table', 'Column', 'String', 'Integer', 'Boolean', 'DateTime', 'ForeignKey', 'Text']: globals()[var] = getattr(db,var) board_categories = Table('board_categories', metadata, Column('category_id', Integer, primary_key=True), Column('name', String(50)), Column('ordering', Integer) ) board_forums = Table('board_forums', metadata, Column('forum_id', Integer, primary_key=True), Column('category_id', ForeignKey('board_categories.category_id')), Column('name', String(50)), Column('description', String(255)), Column('ordering', Integer), Column('allow_anonymous', Boolean), Column('is_public', Boolean), Column('is_public', Boolean), Column('topiccount', Integer), Column('postcount', Integer), Column('modification_date', DateTime), Column('lasttopic_id', Integer, ForeignKey('board_topics.topic_id', name="forum_lasttopic", use_alter=True)), Column('lastpost_id', Integer, ForeignKey('board_posts.post_id', name="forum_lastpost", use_alter=True)) ) board_topics = Table('board_topics', metadata, Column('topic_id', Integer, primary_key=True), Column('forum_id', ForeignKey('board_forums.forum_id')), Column('name', String(255)), Column('date', DateTime, default=datetime.utcnow()), Column('author_id', ForeignKey('users.user_id')), Column('author_str', String(40)), Column('is_sticky', Boolean), Column('is_locked', Boolean), Column('is_global', Boolean), Column('is_solved', Boolean), Column('is_external', Boolean), Column('lastpost_id', Integer, ForeignKey('board_posts.post_id', name="topic_lastpost", use_alter=True)), Column('postcount', Integer), Column('modification_date', DateTime) ) board_posts = Table('board_posts', metadata, Column('post_id', Integer, primary_key=True), Column('topic_id', ForeignKey('board_topics.topic_id')), Column('text', Text), Column('author_id', ForeignKey('users.user_id')), Column('author_str', String(40)), Column('date', DateTime, default=datetime.utcnow()), Column('ip', String(40)), ) board_global_lastread = Table('board_global_lastread', metadata, Column('user_id', ForeignKey('users.user_id'), primary_key=True), Column('date', DateTime, default=datetime.utcnow()) ) board_local_lastread = Table('board_local_lastread', metadata, Column('user_id', ForeignKey('users.user_id'), primary_key=True), Column('topic_id', ForeignKey('board_topics.topic_id'), primary_key=True), Column('date', DateTime, default=datetime.utcnow()) ) def init_database(app): """ This is for inserting our new table""" engine = app.database_engine metadata.create_all(engine) __all__ = ['board_categories', 'board_forums', 'board_topics', 'board_posts', 'board_local_lastread', 'board_global_lastread']
bsd-3-clause
-5,117,481,362,407,669,000
37.616279
113
0.662752
false
wrohdewald/Gpxity
gpxity/accounts.py
1
12247
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2019 Wolfgang Rohdewald <[email protected]> # See LICENSE for details. # The source in this file is inspired by and partially identical with paramiko.config """Configuration file for accounts in Backends.""" import os import re import copy import tempfile from gpxpy.geo import Location __all__ = ['Fences', 'Account', 'DirectoryAccount', 'MemoryAccount'] class Fences: # pylint: disable=too-few-public-methods """ Defines circles. Args: config_str: The string from the accounts file Attributes: center (GPXTrackPoint): The center radius (meter): The radius in meters """ def __init__(self, config_str: str): """init.""" self.string = config_str or 'None' self.circles = list() if config_str is not None: for fence in config_str.split(' '): parts = fence.split('/') if len(parts) != 3: raise ValueError('fence needs 3 parts: {}'.format(fence)) try: parts = [x.strip() for x in parts] center = Location(float(parts[0]), float(parts[1])) radius = float(parts[2]) except Exception: raise ValueError('Fence definition is wrong: {}'.format(fence)) circle = (center, radius) self.circles.append(circle) def outside(self, point) ->bool: """Determine if point is outside of all fences. Returns: True or False. """ return all(point.distance_2d(x[0]) > x[1] for x in self.circles) def __str__(self): # noqa return self.string def __repr__(self): # noqa return 'Fences({})'.format(str(self)) def __bool__(self): """True if we actually fence. Returns: Result """ return bool(self.circles) class Accounts: """Representation of config information as stored in the format used by Gpxity. Queries can be made via `lookup`. The keyword :literal:`Account` only allows one name. Keywords are case insensitive, arguments are not. Example for an entry in the accounts file: :: Account wp Backend WPTrackserver Username wordpress_username Url localhost Mysql wordpress_7@wordpress_7 Password xxxx Fences 53.7505,10.7445/750 """ # pylint: disable=too-few-public-methods __SETTINGS_REGEX = re.compile(r'(\w+)(?:\s*=\s*|\s+)(.+)') __account_files = dict() @classmethod def __parse(cls, path): """Parse an accounts file.""" if path not in cls.__account_files: if not os.path.exists(path): return cls.__account_files[path] = cls.__parse_accounts(path) @classmethod def __parse_accounts(cls, filename): """Parse all accounts from filename. Returns: dict with all accounts.filename """ result = dict() with open(filename) as file_obj: for _ in cls.__yield_accounts(file_obj): result[_['name']] = _ return result @staticmethod def __strip_whitespace(file_obj): """Filter out comments, strip lines.""" for line in file_obj: line = line.strip() if line and not line.startswith('#'): yield line @classmethod def __yield_matches(cls, file_obj): """Yield usable lines.""" for line in cls.__strip_whitespace(file_obj): match = re.match(cls.__SETTINGS_REGEX, line) if not match: raise Exception('Unparsable line {}'.format(line)) yield match @classmethod def __yield_accounts(cls, file_obj): """Generate all accounts.""" account = {'name': 'global'} for match in cls.__yield_matches(file_obj): key = match.group(1).lower() value = match.group(2) if key == 'account': if account is not None: yield account account = {'name': value.lower()} continue if value.startswith('"') and value.endswith('"'): value = value[1:-1] if key not in account: account[key] = value if account is not None: yield account @classmethod def lookup(cls, filename: str, wanted_account: str): """ Build an :class:`~gpxity.accounts.Account`. Args: filename: The name of the accounts file wanted_account: The name to look for in the accounts file Returns: dict """ cls.__parse(filename) return copy.deepcopy(cls.__account_files[filename][wanted_account.lower()]) class Account: """As parsed from the accounts file. Attributes can be referenced as account.xxxx where xxx is an arbitrary value in the account definition from the accounts file. Args: name: The name of the account. Must exist in the accounts file. filename: Name of the accounts file. Default is Account.path kwargs: Additional parameters added to the account. They have precedence. If both name and file are None, only :literal:`**kwargs` are used. Attributes: path: Default value for the accounts file name: The name of the account config: A dict with all config values backend: The name of the backend class fences: The backend will never write points within fences. You can define any number of fences separated by spaces. Every fence is a circle. It has the form Lat/Long/meter. Lat and Long are the center position in decimal degrees, meter is the radius. """ path = '~/.config/Gpxity/accounts' def __init__(self, name=None, filename=None, **kwargs): """Create an Account.""" if name is None: self.config = dict() for key, value in kwargs.items(): self.config[key.lower()] = value self.name = self.url or '.' if not self.backend: self.config['backend'] = 'Directory' self._resolve_fences() return self.name = name path = os.path.expanduser(filename or Account.path) lookup_name = name.split(':')[0] self.config = Accounts.lookup(path, lookup_name) if not self.backend: raise Exception('Account({}, {}, {}) defines no Backend'.format(name, filename, kwargs)) for key, value in kwargs.items(): self.config[key.lower()] = value self._resolve_fences() def _resolve_fences(self): """create self.fences as a Fences instance.""" if 'fences' in self.config: _ = Fences(self.config['fences']) del self.config['fences'] self.fences = _ else: self.fences = Fences(None) def __getattr__(self, key): """Only called if key is not an existing attribute. Returns: The value or None """ try: config = object.__getattribute__(self, 'config') except AttributeError: return None return config.get(key.lower()) def __repr__(self): """For debugging output. Returns: the str """ result = 'Account({}): backend={}'.format(self.account, self.backend) if 'url' in self.config: result += ' url={}'.format(self.url) if 'username' in self.config: result += ' username={}'.format(self.username) return result + ')' def __str__(self): """The account in a parseable form. Returns: The string """ return self.name + ':' class DirectoryAccount(Account): """This will not use an acocunts file but the optional file :literal:`.config`. Args: url: The name of the directory. If it does not exist, create it. "" will translate into ".". A trailing "/" will raise an Exception. None will create a temporary directory. kwargs: Additional parameters added to the account. They have precedence. Attributes: path: Default value for the accounts file name: The name of the account config: A dict with all config values backend: The name of the backend class is_temporary: True for temporary directories. fences: The backend will never write points within fences. You can define any number of fences separated by spaces. Every fence is a circle. It has the form Lat/Long/meter. Lat and Long are the center position in decimal degrees, meter is the radius. prefix (str): Class attribute, may be changed. The default prefix for temporary directories. Default value is :literal:`gpxity.` """ path = None prefix = 'gpxity.' def __init__(self, url=None, **kwargs): # pylint: disable=super-init-not-called """Create an Account.""" self.is_temporary = url is None if self.is_temporary: url = tempfile.mkdtemp(prefix=self.__class__.prefix) if url == '': url = '.' if url == '/': raise Exception('Directory / is not allowed') if url.endswith('/') and url != '/': raise Exception('DirectoryAccount: url {} must not end with /'.format(url)) self.config = dict() if not os.path.exists(url): os.makedirs(url) path_parts = os.path.abspath(url).split('/') # TODO: should use os.path.separator for _ in range(1, len(path_parts) + 1): parts = path_parts[:_] dirname = os.path.join(*parts) config_name = '/' + os.path.join(dirname, '.gpxity_config') if os.path.exists(config_name): self.config.update(Accounts.lookup(config_name, 'global')) self.config['backend'] = 'Directory' self.config['url'] = url for key, value in kwargs.items(): self.config[key.lower()] = value self.name = url self._resolve_fences() def __repr__(self): """For debugging output. Returns: the str """ return 'DirectoryAccount({})'.format(self.name) def __str__(self): """The account in a parseable form. Returns: The string """ if self.name == '.': return '' if self.name == '/': return '/' return self.name + '/' class MemoryAccount(Account): """This will only use kwargs for configuration. Args: kwargs: Additional parameters added to the account. They have precedence. Attributes: name: The name of the account config: A dict with all config values backend: The name of the backend class is_temporary: True for temporary directories. fences: The backend will never write points within fences. You can define any number of fences separated by spaces. Every fence is a circle. It has the form Lat/Long/meter. Lat and Long are the center position in decimal degrees, meter is the radius. prefix (str): Class attribute, may be changed. The default prefix for temporary directories. Default value is :literal:`gpxity.` """ # pylint: disable=too-few-public-methods counter = 0 def __init__(self, name=None, **kwargs): # pylint: disable=super-init-not-called """Create an Account.""" self.config = dict() self.config['backend'] = 'Memory' for key, value in kwargs.items(): self.config[key.lower()] = value if name is None: name = 'in_memory_{}'.format(MemoryAccount.counter) MemoryAccount.counter += 1 self.name = name self._resolve_fences() def __repr__(self): """For debugging output. Returns: the str """ return 'MemoryAccount({})'.format(self.name) + ':'
gpl-2.0
-6,233,281,037,619,963,000
30.16285
100
0.570344
false
mahim97/zulip
zerver/tests/test_outgoing_webhook_interfaces.py
8
4682
# -*- coding: utf-8 -*- from typing import Any import mock import json from requests.models import Response from zerver.lib.outgoing_webhook import GenericOutgoingWebhookService, \ SlackOutgoingWebhookService from zerver.lib.test_classes import ZulipTestCase from zerver.models import Service class TestGenericOutgoingWebhookService(ZulipTestCase): def setUp(self) -> None: self.event = { u'command': '@**test**', u'message': { 'content': 'test_content', } } self.handler = GenericOutgoingWebhookService(service_name='test-service', base_url='http://example.domain.com', token='abcdef', user_profile=None) def test_process_event(self) -> None: rest_operation, request_data = self.handler.process_event(self.event) request_data = json.loads(request_data) self.assertEqual(request_data['data'], "@**test**") self.assertEqual(request_data['token'], "abcdef") self.assertEqual(rest_operation['base_url'], "http://example.domain.com") self.assertEqual(rest_operation['method'], "POST") self.assertEqual(request_data['message'], self.event['message']) def test_process_success(self) -> None: response = mock.Mock(spec=Response) response.text = json.dumps({"response_not_required": True}) success_response = self.handler.process_success(response, self.event) self.assertEqual(success_response, None) response.text = json.dumps({"response_string": 'test_content'}) success_response = self.handler.process_success(response, self.event) self.assertEqual(success_response, 'test_content') response.text = json.dumps({}) success_response = self.handler.process_success(response, self.event) self.assertEqual(success_response, None) mock_service = Service() class TestSlackOutgoingWebhookService(ZulipTestCase): def setUp(self) -> None: self.event = { u'command': '@**test**', u'user_profile_id': 12, u'service_name': 'test-service', u'trigger': 'mention', u'message': { 'content': 'test_content', 'type': 'stream', 'sender_realm_str': 'zulip', 'sender_email': '[email protected]', 'stream_id': '123', 'display_recipient': 'integrations', 'timestamp': 123456, 'sender_id': 21, 'sender_full_name': 'Sample User', } } self.handler = SlackOutgoingWebhookService(base_url='http://example.domain.com', token="abcdef", user_profile=None, service_name='test-service') @mock.patch('zerver.lib.outgoing_webhook.get_service_profile', return_value=mock_service) def test_process_event(self, mock_get_service_profile: mock.Mock) -> None: rest_operation, request_data = self.handler.process_event(self.event) self.assertEqual(rest_operation['base_url'], 'http://example.domain.com') self.assertEqual(rest_operation['method'], 'POST') self.assertEqual(request_data[0][1], "abcdef") # token self.assertEqual(request_data[1][1], "zulip") # team_id self.assertEqual(request_data[2][1], "zulip.com") # team_domain self.assertEqual(request_data[3][1], "123") # channel_id self.assertEqual(request_data[4][1], "integrations") # channel_name self.assertEqual(request_data[5][1], 123456) # timestamp self.assertEqual(request_data[6][1], 21) # user_id self.assertEqual(request_data[7][1], "Sample User") # user_name self.assertEqual(request_data[8][1], "@**test**") # text self.assertEqual(request_data[9][1], "mention") # trigger_word self.assertEqual(request_data[10][1], mock_service.id) # service_id def test_process_success(self) -> None: response = mock.Mock(spec=Response) response.text = json.dumps({"response_not_required": True}) success_response = self.handler.process_success(response, self.event) self.assertEqual(success_response, None) response.text = json.dumps({"text": 'test_content'}) success_response = self.handler.process_success(response, self.event) self.assertEqual(success_response, 'test_content')
apache-2.0
5,945,918,141,294,065,000
44.456311
93
0.590773
false
franek/weboob
weboob/capabilities/gauge.py
1
3325
# -*- coding: utf-8 -*- # Copyright(C) 2010-2012 Romain Bignon, Florent Fourcot # # This file is part of weboob. # # weboob is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # weboob is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with weboob. If not, see <http://www.gnu.org/licenses/>. from .base import IBaseCap, CapBaseObject, StringField, FloatField, DateField, Field, UserError __all__ = ['Gauge', 'GaugeSensor', 'GaugeMeasure', 'ICapGauge', 'SensorNotFound'] class SensorNotFound(UserError): """ Not found a sensor """ class Gauge(CapBaseObject): """ Gauge class. """ name = StringField('Name of gauge') city = StringField('City of the gauge') object = StringField('What is evaluate') # For example, name of a river sensors = Field('List of sensors on the gauge', list) class GaugeMeasure(CapBaseObject): """ Measure of a gauge sensor. """ level = FloatField('Level of measure') date = DateField('Date of measure') alarm = StringField('Alarm level') def __init__(self): CapBaseObject.__init__(self, None) def __repr__(self): if self.level: return "<GaugeMeasure level=%f alarm=%s>" % (self.level, self.alarm) else: return "<GaugeMeasure NotAvailable>" class GaugeSensor(CapBaseObject): """ GaugeSensor class. """ name = StringField('Name of the sensor') unit = StringField('Unit of values') forecast = StringField('Forecast') lastvalue = Field('Last value', GaugeMeasure) history = Field('Value history', list) # lastvalue not included gaugeid = StringField('Id of the gauge') def __repr__(self): return "<GaugeSensor id=%s name=%s>" % (self.id, self.name) class ICapGauge(IBaseCap): def iter_gauges(self, pattern=None): """ Iter gauges. :param pattern: if specified, used to search gauges. :type pattern: str :rtype: iter[:class:`Gauge`] """ raise NotImplementedError() def iter_sensors(self, id, pattern=None): """ Iter instrument of a gauge. :param: ID of the gauge :param pattern: if specified, used to search sensors. :type pattern: str :rtype: iter[:class:`GaugeSensor`] """ raise NotImplementedError() def iter_gauge_history(self, id): """ Get history of a gauge sensor. :param id: ID of the gauge sensor :type id: str :rtype: iter[:class:`GaugeMeasure`] """ raise NotImplementedError() def get_last_measure(self, id): """ Get last measures of a censor. :param id: ID of the censor. :type id: str :rtype: :class:`GaugeMeasure` """ raise NotImplementedError()
agpl-3.0
1,626,210,802,505,838,600
27.663793
95
0.623459
false
Centurion89/ModLogin
modules/Square.py
1
2724
import requests import json from lxml import html from BaseModule import BaseModule class Square(BaseModule): def login(self, username, password, useragent): useragent = BaseModule().define_user_agent(useragent) headers = {'user-agent': useragent} session = requests.Session() login_page = session.get( 'https://www.squareup.com/login', headers=headers) login_page_html = html.fromstring(login_page.content) # Load up CSRF token from cookies csrf_token = session.cookies["_js_csrf"] # Set POST payload payload = {'email': username, 'password': password} headers = { 'User-Agent': useragent, 'Host': 'api.squareup.com', 'Content-Type': 'application/json', 'Origin': 'https://squareup.com', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.8', 'Referer': 'https://squareup.com/login', 'X-Csrf-Token': csrf_token } login_attempt = session.post( 'https://api.squareup.com/mp/login', data=json.dumps(payload), headers=headers, cookies=session.cookies, allow_redirects=False ) auth_results = login_attempt.json() # If API returns 200 and JSON key with "trusted_devices", login was # successful if (login_attempt.status_code == 200 and 'trusted_device' in auth_results): return { 'module': self.__class__.__name__, 'auth_result': 'SUCCESS', 'display_name': '', 'display_handle': '' } # If JSON value contains error message, login failed elif login_attempt.status_code == 401 or 'error' in auth_results: return { 'module': self.__class__.__name__, 'auth_result': 'FAILED', 'display_name': '', 'display_handle': '' } else: # If none of the above occur, must be unknown issue # Output a copy of the HTML that was returned for debugging debug_filename = str(self.__class__.__name__) + \ "_" + username + "_debug.html" with open("./debug/" + debug_filename, "a+") as f: f.write(json.dumps(auth_results)) return { 'module': self.__class__.__name__, 'auth_result': 'ERROR', 'display_name': '', 'display_handle': '' } square = Square()
mit
6,636,884,052,703,252,000
35.810811
75
0.517254
false
discos/basie
src/configobj/configobj.py
1
87684
# configobj.py # A config file reader/writer that supports nested sections in config files. # Copyright (C) 2005-2014: # (name) : (email) # Michael Foord: fuzzyman AT voidspace DOT org DOT uk # Nicola Larosa: nico AT tekNico DOT net # Rob Dennis: rdennis AT gmail DOT com # Eli Courtwright: eli AT courtwright DOT org # This software is licensed under the terms of the BSD license. # http://opensource.org/licenses/BSD-3-Clause # ConfigObj 5 - main repository for documentation and issue tracking: # https://github.com/DiffSK/configobj import os import re import sys import collections from codecs import BOM_UTF8, BOM_UTF16, BOM_UTF16_BE, BOM_UTF16_LE # imported lazily to avoid startup performance hit if it isn't used compiler = None # A dictionary mapping BOM to # the encoding to decode with, and what to set the # encoding attribute to. BOMS = { BOM_UTF8: ('utf_8', None), BOM_UTF16_BE: ('utf16_be', 'utf_16'), BOM_UTF16_LE: ('utf16_le', 'utf_16'), BOM_UTF16: ('utf_16', 'utf_16'), } # All legal variants of the BOM codecs. # TODO: the list of aliases is not meant to be exhaustive, is there a # better way ? BOM_LIST = { 'utf_16': 'utf_16', 'u16': 'utf_16', 'utf16': 'utf_16', 'utf-16': 'utf_16', 'utf16_be': 'utf16_be', 'utf_16_be': 'utf16_be', 'utf-16be': 'utf16_be', 'utf16_le': 'utf16_le', 'utf_16_le': 'utf16_le', 'utf-16le': 'utf16_le', 'utf_8': 'utf_8', 'u8': 'utf_8', 'utf': 'utf_8', 'utf8': 'utf_8', 'utf-8': 'utf_8', } # Map of encodings to the BOM to write. BOM_SET = { 'utf_8': BOM_UTF8, 'utf_16': BOM_UTF16, 'utf16_be': BOM_UTF16_BE, 'utf16_le': BOM_UTF16_LE, None: BOM_UTF8 } def match_utf8(encoding): return BOM_LIST.get(encoding.lower()) == 'utf_8' # Quote strings used for writing values squot = "'%s'" dquot = '"%s"' noquot = "%s" wspace_plus = ' \r\n\v\t\'"' tsquot = '"""%s"""' tdquot = "'''%s'''" # Sentinel for use in getattr calls to replace hasattr MISSING = object() __all__ = ( 'DEFAULT_INDENT_TYPE', 'DEFAULT_INTERPOLATION', 'ConfigObjError', 'NestingError', 'ParseError', 'DuplicateError', 'ConfigspecError', 'ConfigObj', 'SimpleVal', 'InterpolationError', 'InterpolationLoopError', 'MissingInterpolationOption', 'RepeatSectionError', 'ReloadError', 'UnreprError', 'UnknownType', 'flatten_errors', 'get_extra_values' ) DEFAULT_INTERPOLATION = 'configparser' DEFAULT_INDENT_TYPE = ' ' MAX_INTERPOL_DEPTH = 10 OPTION_DEFAULTS = { 'interpolation': True, 'raise_errors': False, 'list_values': True, 'create_empty': False, 'file_error': False, 'configspec': None, 'stringify': True, # option may be set to one of ('', ' ', '\t') 'indent_type': None, 'encoding': None, 'default_encoding': None, 'unrepr': False, 'write_empty_values': False, } # this could be replaced if six is used for compatibility, or there are no # more assertions about items being a string def getObj(s): global compiler if compiler is None: import compiler s = "a=" + s p = compiler.parse(s) return p.getChildren()[1].getChildren()[0].getChildren()[1] class UnknownType(Exception): pass class Builder(object): def build(self, o): if m is None: raise UnknownType(o.__class__.__name__) return m(o) def build_List(self, o): return list(map(self.build, o.getChildren())) def build_Const(self, o): return o.value def build_Dict(self, o): d = {} i = iter(map(self.build, o.getChildren())) for el in i: d[el] = next(i) return d def build_Tuple(self, o): return tuple(self.build_List(o)) def build_Name(self, o): if o.name == 'None': return None if o.name == 'True': return True if o.name == 'False': return False # An undefined Name raise UnknownType('Undefined Name') def build_Add(self, o): real, imag = list(map(self.build_Const, o.getChildren())) try: real = float(real) except TypeError: raise UnknownType('Add') if not isinstance(imag, complex) or imag.real != 0.0: raise UnknownType('Add') return real+imag def build_Getattr(self, o): parent = self.build(o.expr) return getattr(parent, o.attrname) def build_UnarySub(self, o): return -self.build_Const(o.getChildren()[0]) def build_UnaryAdd(self, o): return self.build_Const(o.getChildren()[0]) _builder = Builder() def unrepr(s): if not s: return s # this is supposed to be safe import ast return ast.literal_eval(s) class ConfigObjError(SyntaxError): """ This is the base class for all errors that ConfigObj raises. It is a subclass of SyntaxError. """ def __init__(self, message='', line_number=None, line=''): self.line = line self.line_number = line_number SyntaxError.__init__(self, message) class NestingError(ConfigObjError): """ This error indicates a level of nesting that doesn't match. """ class ParseError(ConfigObjError): """ This error indicates that a line is badly written. It is neither a valid ``key = value`` line, nor a valid section marker line. """ class ReloadError(IOError): """ A 'reload' operation failed. This exception is a subclass of ``IOError``. """ def __init__(self): IOError.__init__(self, 'reload failed, filename is not set.') class DuplicateError(ConfigObjError): """ The keyword or section specified already exists. """ class ConfigspecError(ConfigObjError): """ An error occured whilst parsing a configspec. """ class InterpolationError(ConfigObjError): """Base class for the two interpolation errors.""" class InterpolationLoopError(InterpolationError): """Maximum interpolation depth exceeded in string interpolation.""" def __init__(self, option): InterpolationError.__init__( self, 'interpolation loop detected in value "%s".' % option) class RepeatSectionError(ConfigObjError): """ This error indicates additional sections in a section with a ``__many__`` (repeated) section. """ class MissingInterpolationOption(InterpolationError): """A value specified for interpolation was missing.""" def __init__(self, option): msg = 'missing option "%s" in interpolation.' % option InterpolationError.__init__(self, msg) class UnreprError(ConfigObjError): """An error parsing in unrepr mode.""" class InterpolationEngine(object): """ A helper class to help perform string interpolation. This class is an abstract base class; its descendants perform the actual work. """ # compiled regexp to use in self.interpolate() _KEYCRE = re.compile(r"%\(([^)]*)\)s") _cookie = '%' def __init__(self, section): # the Section instance that "owns" this engine self.section = section def interpolate(self, key, value): # short-cut if not self._cookie in value: return value def recursive_interpolate(key, value, section, backtrail): """The function that does the actual work. ``value``: the string we're trying to interpolate. ``section``: the section in which that string was found ``backtrail``: a dict to keep track of where we've been, to detect and prevent infinite recursion loops This is similar to a depth-first-search algorithm. """ # Have we been here already? if (key, section.name) in backtrail: # Yes - infinite loop detected raise InterpolationLoopError(key) # Place a marker on our backtrail so we won't come back here again backtrail[(key, section.name)] = 1 # Now start the actual work match = self._KEYCRE.search(value) while match: # The actual parsing of the match is implementation-dependent, # so delegate to our helper function k, v, s = self._parse_match(match) if k is None: # That's the signal that no further interpolation is needed replacement = v else: # Further interpolation may be needed to obtain final value replacement = recursive_interpolate(k, v, s, backtrail) # Replace the matched string with its final value start, end = match.span() value = ''.join((value[:start], replacement, value[end:])) new_search_start = start + len(replacement) # Pick up the next interpolation key, if any, for next time # through the while loop match = self._KEYCRE.search(value, new_search_start) # Now safe to come back here again; remove marker from backtrail del backtrail[(key, section.name)] return value # Back in interpolate(), all we have to do is kick off the recursive # function with appropriate starting values value = recursive_interpolate(key, value, self.section, {}) return value def _fetch(self, key): """Helper function to fetch values from owning section. Returns a 2-tuple: the value, and the section where it was found. """ # switch off interpolation before we try and fetch anything ! save_interp = self.section.main.interpolation self.section.main.interpolation = False # Start at section that "owns" this InterpolationEngine current_section = self.section while True: # try the current section first val = current_section.get(key) if val is not None and not isinstance(val, Section): break # try "DEFAULT" next val = current_section.get('DEFAULT', {}).get(key) if val is not None and not isinstance(val, Section): break # move up to parent and try again # top-level's parent is itself if current_section.parent is current_section: # reached top level, time to give up break current_section = current_section.parent # restore interpolation to previous value before returning self.section.main.interpolation = save_interp if val is None: raise MissingInterpolationOption(key) return val, current_section def _parse_match(self, match): """Implementation-dependent helper function. Will be passed a match object corresponding to the interpolation key we just found (e.g., "%(foo)s" or "$foo"). Should look up that key in the appropriate config file section (using the ``_fetch()`` helper function) and return a 3-tuple: (key, value, section) ``key`` is the name of the key we're looking for ``value`` is the value found for that key ``section`` is a reference to the section where it was found ``key`` and ``section`` should be None if no further interpolation should be performed on the resulting value (e.g., if we interpolated "$$" and returned "$"). """ raise NotImplementedError() class ConfigParserInterpolation(InterpolationEngine): """Behaves like ConfigParser.""" _cookie = '%' _KEYCRE = re.compile(r"%\(([^)]*)\)s") def _parse_match(self, match): key = match.group(1) value, section = self._fetch(key) return key, value, section class TemplateInterpolation(InterpolationEngine): """Behaves like string.Template.""" _cookie = '$' _delimiter = '$' _KEYCRE = re.compile(r""" \$(?: (?P<escaped>\$) | # Two $ signs (?P<named>[_a-z][_a-z0-9]*) | # $name format {(?P<braced>[^}]*)} # ${name} format ) """, re.IGNORECASE | re.VERBOSE) def _parse_match(self, match): # Valid name (in or out of braces): fetch value from section key = match.group('named') or match.group('braced') if key is not None: value, section = self._fetch(key) return key, value, section # Escaped delimiter (e.g., $$): return single delimiter if match.group('escaped') is not None: # Return None for key and section to indicate it's time to stop return None, self._delimiter, None # Anything else: ignore completely, just return it unchanged return None, match.group(), None interpolation_engines = { 'configparser': ConfigParserInterpolation, 'template': TemplateInterpolation, } def __newobj__(cls, *args): # Hack for pickle return cls.__new__(cls, *args) class Section(dict): """ A dictionary-like object that represents a section in a config file. It does string interpolation if the 'interpolation' attribute of the 'main' object is set to True. Interpolation is tried first from this object, then from the 'DEFAULT' section of this object, next from the parent and its 'DEFAULT' section, and so on until the main object is reached. A Section will behave like an ordered dictionary - following the order of the ``scalars`` and ``sections`` attributes. You can use this to change the order of members. Iteration follows the order: scalars, then sections. """ def __setstate__(self, state): dict.update(self, state[0]) self.__dict__.update(state[1]) def __reduce__(self): state = (dict(self), self.__dict__) return (__newobj__, (self.__class__,), state) def __init__(self, parent, depth, main, indict=None, name=None): """ * parent is the section above * depth is the depth level of this section * main is the main ConfigObj * indict is a dictionary to initialise the section with """ if indict is None: indict = {} dict.__init__(self) # used for nesting level *and* interpolation self.parent = parent # used for the interpolation attribute self.main = main # level of nesting depth of this Section self.depth = depth # purely for information self.name = name # self._initialise() # we do this explicitly so that __setitem__ is used properly # (rather than just passing to ``dict.__init__``) for entry, value in indict.items(): self[entry] = value def _initialise(self): # the sequence of scalar values in this Section self.scalars = [] # the sequence of sections in this Section self.sections = [] # for comments :-) self.comments = {} self.inline_comments = {} # the configspec self.configspec = None # for defaults self.defaults = [] self.default_values = {} self.extra_values = [] self._created = False def _interpolate(self, key, value): try: # do we already have an interpolation engine? engine = self._interpolation_engine except AttributeError: # not yet: first time running _interpolate(), so pick the engine name = self.main.interpolation if name == True: # note that "if name:" would be incorrect here # backwards-compatibility: interpolation=True means use default name = DEFAULT_INTERPOLATION name = name.lower() # so that "Template", "template", etc. all work class_ = interpolation_engines.get(name, None) if class_ is None: # invalid value for self.main.interpolation self.main.interpolation = False return value else: # save reference to engine so we don't have to do this again engine = self._interpolation_engine = class_(self) # let the engine do the actual work return engine.interpolate(key, value) def __getitem__(self, key): """Fetch the item and do string interpolation.""" val = dict.__getitem__(self, key) if self.main.interpolation: if isinstance(val, str): return self._interpolate(key, val) if isinstance(val, list): def _check(entry): if isinstance(entry, str): return self._interpolate(key, entry) return entry new = [_check(entry) for entry in val] if new != val: return new return val def __setitem__(self, key, value, unrepr=False): """ Correctly set a value. Making dictionary values Section instances. (We have to special case 'Section' instances - which are also dicts) Keys must be strings. Values need only be strings (or lists of strings) if ``main.stringify`` is set. ``unrepr`` must be set when setting a value to a dictionary, without creating a new sub-section. """ if not isinstance(key, str): raise ValueError('The key "%s" is not a string.' % key) # add the comment if key not in self.comments: self.comments[key] = [] self.inline_comments[key] = '' # remove the entry from defaults if key in self.defaults: self.defaults.remove(key) # if isinstance(value, Section): if key not in self: self.sections.append(key) dict.__setitem__(self, key, value) elif isinstance(value, collections.Mapping) and not unrepr: # First create the new depth level, # then create the section if key not in self: self.sections.append(key) new_depth = self.depth + 1 dict.__setitem__( self, key, Section( self, new_depth, self.main, indict=value, name=key)) else: if key not in self: self.scalars.append(key) if not self.main.stringify: if isinstance(value, str): pass elif isinstance(value, (list, tuple)): for entry in value: if not isinstance(entry, str): raise TypeError('Value is not a string "%s".' % entry) else: raise TypeError('Value is not a string "%s".' % value) dict.__setitem__(self, key, value) def __delitem__(self, key): """Remove items from the sequence when deleting.""" dict. __delitem__(self, key) if key in self.scalars: self.scalars.remove(key) else: self.sections.remove(key) del self.comments[key] del self.inline_comments[key] def get(self, key, default=None): """A version of ``get`` that doesn't bypass string interpolation.""" try: return self[key] except KeyError: return default def update(self, indict): """ A version of update that uses our ``__setitem__``. """ for entry in indict: self[entry] = indict[entry] def pop(self, key, default=MISSING): """ 'D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised' """ try: val = self[key] except KeyError: if default is MISSING: raise val = default else: del self[key] return val def popitem(self): """Pops the first (key,val)""" sequence = (self.scalars + self.sections) if not sequence: raise KeyError(": 'popitem(): dictionary is empty'") key = sequence[0] val = self[key] del self[key] return key, val def clear(self): """ A version of clear that also affects scalars/sections Also clears comments and configspec. Leaves other attributes alone : depth/main/parent are not affected """ dict.clear(self) self.scalars = [] self.sections = [] self.comments = {} self.inline_comments = {} self.configspec = None self.defaults = [] self.extra_values = [] def setdefault(self, key, default=None): """A version of setdefault that sets sequence if appropriate.""" try: return self[key] except KeyError: self[key] = default return self[key] def items(self): """D.items() -> list of D's (key, value) pairs, as 2-tuples""" return list(zip((self.scalars + self.sections), list(self.values()))) def keys(self): """D.keys() -> list of D's keys""" return (self.scalars + self.sections) def values(self): """D.values() -> list of D's values""" return [self[key] for key in (self.scalars + self.sections)] def iteritems(self): """D.iteritems() -> an iterator over the (key, value) items of D""" return iter(list(self.items())) def iterkeys(self): """D.iterkeys() -> an iterator over the keys of D""" return iter((self.scalars + self.sections)) __iter__ = iterkeys def itervalues(self): """D.itervalues() -> an iterator over the values of D""" return iter(list(self.values())) def __repr__(self): """x.__repr__() <==> repr(x)""" def _getval(key): try: return self[key] except MissingInterpolationOption: return dict.__getitem__(self, key) return '{%s}' % ', '.join([('%s: %s' % (repr(key), repr(_getval(key)))) for key in (self.scalars + self.sections)]) __str__ = __repr__ __str__.__doc__ = "x.__str__() <==> str(x)" # Extra methods - not in a normal dictionary def dict(self): """ Return a deepcopy of self as a dictionary. All members that are ``Section`` instances are recursively turned to ordinary dictionaries - by calling their ``dict`` method. >>> n = a.dict() >>> n == a 1 >>> n is a 0 """ newdict = {} for entry in self: this_entry = self[entry] if isinstance(this_entry, Section): this_entry = this_entry.dict() elif isinstance(this_entry, list): # create a copy rather than a reference this_entry = list(this_entry) elif isinstance(this_entry, tuple): # create a copy rather than a reference this_entry = tuple(this_entry) newdict[entry] = this_entry return newdict def merge(self, indict): """ A recursive update - useful for merging config files. >>> a = '''[section1] ... option1 = True ... [[subsection]] ... more_options = False ... # end of file'''.splitlines() >>> b = '''# File is user.ini ... [section1] ... option1 = False ... # end of file'''.splitlines() >>> c1 = ConfigObj(b) >>> c2 = ConfigObj(a) >>> c2.merge(c1) >>> c2 ConfigObj({'section1': {'option1': 'False', 'subsection': {'more_options': 'False'}}}) """ for key, val in list(indict.items()): if (key in self and isinstance(self[key], collections.Mapping) and isinstance(val, collections.Mapping)): self[key].merge(val) else: self[key] = val def rename(self, oldkey, newkey): """ Change a keyname to another, without changing position in sequence. Implemented so that transformations can be made on keys, as well as on values. (used by encode and decode) Also renames comments. """ if oldkey in self.scalars: the_list = self.scalars elif oldkey in self.sections: the_list = self.sections else: raise KeyError('Key "%s" not found.' % oldkey) pos = the_list.index(oldkey) # val = self[oldkey] dict.__delitem__(self, oldkey) dict.__setitem__(self, newkey, val) the_list.remove(oldkey) the_list.insert(pos, newkey) comm = self.comments[oldkey] inline_comment = self.inline_comments[oldkey] del self.comments[oldkey] del self.inline_comments[oldkey] self.comments[newkey] = comm self.inline_comments[newkey] = inline_comment def walk(self, function, raise_errors=True, call_on_sections=False, **keywargs): """ Walk every member and call a function on the keyword and value. Return a dictionary of the return values If the function raises an exception, raise the errror unless ``raise_errors=False``, in which case set the return value to ``False``. Any unrecognised keyword arguments you pass to walk, will be pased on to the function you pass in. Note: if ``call_on_sections`` is ``True`` then - on encountering a subsection, *first* the function is called for the *whole* subsection, and then recurses into it's members. This means your function must be able to handle strings, dictionaries and lists. This allows you to change the key of subsections as well as for ordinary members. The return value when called on the whole subsection has to be discarded. See the encode and decode methods for examples, including functions. .. admonition:: caution You can use ``walk`` to transform the names of members of a section but you mustn't add or delete members. >>> config = '''[XXXXsection] ... XXXXkey = XXXXvalue'''.splitlines() >>> cfg = ConfigObj(config) >>> cfg ConfigObj({'XXXXsection': {'XXXXkey': 'XXXXvalue'}}) >>> def transform(section, key): ... val = section[key] ... newkey = key.replace('XXXX', 'CLIENT1') ... section.rename(key, newkey) ... if isinstance(val, (tuple, list, dict)): ... pass ... else: ... val = val.replace('XXXX', 'CLIENT1') ... section[newkey] = val >>> cfg.walk(transform, call_on_sections=True) {'CLIENT1section': {'CLIENT1key': None}} >>> cfg ConfigObj({'CLIENT1section': {'CLIENT1key': 'CLIENT1value'}}) """ out = {} # scalars first for i in range(len(self.scalars)): entry = self.scalars[i] try: val = function(self, entry, **keywargs) # bound again in case name has changed entry = self.scalars[i] out[entry] = val except Exception: if raise_errors: raise else: entry = self.scalars[i] out[entry] = False # then sections for i in range(len(self.sections)): entry = self.sections[i] if call_on_sections: try: function(self, entry, **keywargs) except Exception: if raise_errors: raise else: entry = self.sections[i] out[entry] = False # bound again in case name has changed entry = self.sections[i] # previous result is discarded out[entry] = self[entry].walk( function, raise_errors=raise_errors, call_on_sections=call_on_sections, **keywargs) return out def as_bool(self, key): """ Accepts a key as input. The corresponding value must be a string or the objects (``True`` or 1) or (``False`` or 0). We allow 0 and 1 to retain compatibility with Python 2.2. If the string is one of ``True``, ``On``, ``Yes``, or ``1`` it returns ``True``. If the string is one of ``False``, ``Off``, ``No``, or ``0`` it returns ``False``. ``as_bool`` is not case sensitive. Any other input will raise a ``ValueError``. >>> a = ConfigObj() >>> a['a'] = 'fish' >>> a.as_bool('a') Traceback (most recent call last): ValueError: Value "fish" is neither True nor False >>> a['b'] = 'True' >>> a.as_bool('b') 1 >>> a['b'] = 'off' >>> a.as_bool('b') 0 """ val = self[key] if val == True: return True elif val == False: return False else: try: if not isinstance(val, str): # TODO: Why do we raise a KeyError here? raise KeyError() else: return self.main._bools[val.lower()] except KeyError: raise ValueError('Value "%s" is neither True nor False' % val) def as_int(self, key): """ A convenience method which coerces the specified value to an integer. If the value is an invalid literal for ``int``, a ``ValueError`` will be raised. >>> a = ConfigObj() >>> a['a'] = 'fish' >>> a.as_int('a') Traceback (most recent call last): ValueError: invalid literal for int() with base 10: 'fish' >>> a['b'] = '1' >>> a.as_int('b') 1 >>> a['b'] = '3.2' >>> a.as_int('b') Traceback (most recent call last): ValueError: invalid literal for int() with base 10: '3.2' """ return int(self[key]) def as_float(self, key): """ A convenience method which coerces the specified value to a float. If the value is an invalid literal for ``float``, a ``ValueError`` will be raised. >>> a = ConfigObj() >>> a['a'] = 'fish' >>> a.as_float('a') #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ValueError: invalid literal for float(): fish >>> a['b'] = '1' >>> a.as_float('b') 1.0 >>> a['b'] = '3.2' >>> a.as_float('b') #doctest: +ELLIPSIS 3.2... """ return float(self[key]) def as_list(self, key): """ A convenience method which fetches the specified value, guaranteeing that it is a list. >>> a = ConfigObj() >>> a['a'] = 1 >>> a.as_list('a') [1] >>> a['a'] = (1,) >>> a.as_list('a') [1] >>> a['a'] = [1] >>> a.as_list('a') [1] """ result = self[key] if isinstance(result, (tuple, list)): return list(result) return [result] def restore_default(self, key): """ Restore (and return) default value for the specified key. This method will only work for a ConfigObj that was created with a configspec and has been validated. If there is no default value for this key, ``KeyError`` is raised. """ default = self.default_values[key] dict.__setitem__(self, key, default) if key not in self.defaults: self.defaults.append(key) return default def restore_defaults(self): """ Recursively restore default values to all members that have them. This method will only work for a ConfigObj that was created with a configspec and has been validated. It doesn't delete or modify entries without default values. """ for key in self.default_values: self.restore_default(key) for section in self.sections: self[section].restore_defaults() class ConfigObj(Section): """An object to read, create, and write config files.""" _keyword = re.compile(r'''^ # line start (\s*) # indentation ( # keyword (?:".*?")| # double quotes (?:'.*?')| # single quotes (?:[^'"=].*?) # no quotes ) \s*=\s* # divider (.*) # value (including list values and comments) $ # line end ''', re.VERBOSE) _sectionmarker = re.compile(r'''^ (\s*) # 1: indentation ((?:\[\s*)+) # 2: section marker open ( # 3: section name open (?:"\s*\S.*?\s*")| # at least one non-space with double quotes (?:'\s*\S.*?\s*')| # at least one non-space with single quotes (?:[^'"\s].*?) # at least one non-space unquoted ) # section name close ((?:\s*\])+) # 4: section marker close \s*(\#.*)? # 5: optional comment $''', re.VERBOSE) # this regexp pulls list values out as a single string # or single values and comments # FIXME: this regex adds a '' to the end of comma terminated lists # workaround in ``_handle_value`` _valueexp = re.compile(r'''^ (?: (?: ( (?: (?: (?:".*?")| # double quotes (?:'.*?')| # single quotes (?:[^'",\#][^,\#]*?) # unquoted ) \s*,\s* # comma )* # match all list items ending in a comma (if any) ) ( (?:".*?")| # double quotes (?:'.*?')| # single quotes (?:[^'",\#\s][^,]*?)| # unquoted (?:(?<!,)) # Empty value )? # last item in a list - or string value )| (,) # alternatively a single comma - empty list ) \s*(\#.*)? # optional comment $''', re.VERBOSE) # use findall to get the members of a list value _listvalueexp = re.compile(r''' ( (?:".*?")| # double quotes (?:'.*?')| # single quotes (?:[^'",\#]?.*?) # unquoted ) \s*,\s* # comma ''', re.VERBOSE) # this regexp is used for the value # when lists are switched off _nolistvalue = re.compile(r'''^ ( (?:".*?")| # double quotes (?:'.*?')| # single quotes (?:[^'"\#].*?)| # unquoted (?:) # Empty value ) \s*(\#.*)? # optional comment $''', re.VERBOSE) # regexes for finding triple quoted values on one line _single_line_single = re.compile(r"^'''(.*?)'''\s*(#.*)?$") _single_line_double = re.compile(r'^"""(.*?)"""\s*(#.*)?$') _multi_line_single = re.compile(r"^(.*?)'''\s*(#.*)?$") _multi_line_double = re.compile(r'^(.*?)"""\s*(#.*)?$') _triple_quote = { "'''": (_single_line_single, _multi_line_single), '"""': (_single_line_double, _multi_line_double), } # Used by the ``istrue`` Section method _bools = { 'yes': True, 'no': False, 'on': True, 'off': False, '1': True, '0': False, 'true': True, 'false': False, } def __init__(self, infile=None, options=None, configspec=None, encoding=None, interpolation=True, raise_errors=False, list_values=True, create_empty=False, file_error=False, stringify=True, indent_type=None, default_encoding=None, unrepr=False, write_empty_values=False, _inspec=False): """ Parse a config file or create a config file object. ``ConfigObj(infile=None, configspec=None, encoding=None, interpolation=True, raise_errors=False, list_values=True, create_empty=False, file_error=False, stringify=True, indent_type=None, default_encoding=None, unrepr=False, write_empty_values=False, _inspec=False)`` """ self._inspec = _inspec # init the superclass Section.__init__(self, self, 0, self) infile = infile or [] _options = {'configspec': configspec, 'encoding': encoding, 'interpolation': interpolation, 'raise_errors': raise_errors, 'list_values': list_values, 'create_empty': create_empty, 'file_error': file_error, 'stringify': stringify, 'indent_type': indent_type, 'default_encoding': default_encoding, 'unrepr': unrepr, 'write_empty_values': write_empty_values} if options is None: options = _options else: import warnings warnings.warn('Passing in an options dictionary to ConfigObj() is ' 'deprecated. Use **options instead.', DeprecationWarning) # TODO: check the values too. for entry in options: if entry not in OPTION_DEFAULTS: raise TypeError('Unrecognised option "%s".' % entry) for entry, value in list(OPTION_DEFAULTS.items()): if entry not in options: options[entry] = value keyword_value = _options[entry] if value != keyword_value: options[entry] = keyword_value # XXXX this ignores an explicit list_values = True in combination # with _inspec. The user should *never* do that anyway, but still... if _inspec: options['list_values'] = False self._initialise(options) configspec = options['configspec'] self._original_configspec = configspec self._load(infile, configspec) def _load(self, infile, configspec): if isinstance(infile, str): self.filename = infile if os.path.isfile(infile): with open(infile, 'rb') as h: content = h.readlines() or [] elif self.file_error: # raise an error if the file doesn't exist raise IOError('Config file not found: "%s".' % self.filename) else: # file doesn't already exist if self.create_empty: # this is a good test that the filename specified # isn't impossible - like on a non-existent device with open(infile, 'w') as h: h.write('') content = [] elif isinstance(infile, (list, tuple)): content = list(infile) elif isinstance(infile, dict): # initialise self # the Section class handles creating subsections if isinstance(infile, ConfigObj): # get a copy of our ConfigObj def set_section(in_section, this_section): for entry in in_section.scalars: this_section[entry] = in_section[entry] for section in in_section.sections: this_section[section] = {} set_section(in_section[section], this_section[section]) set_section(infile, self) else: for entry in infile: self[entry] = infile[entry] del self._errors if configspec is not None: self._handle_configspec(configspec) else: self.configspec = None return elif getattr(infile, 'read', MISSING) is not MISSING: # This supports file like objects content = infile.read() or [] # needs splitting into lines - but needs doing *after* decoding # in case it's not an 8 bit encoding else: raise TypeError('infile must be a filename, file like object, or list of lines.') if content: # don't do it for the empty ConfigObj content = self._handle_bom(content) # infile is now *always* a list # # Set the newlines attribute (first line ending it finds) # and strip trailing '\n' or '\r' from lines for line in content: if (not line) or (line[-1] not in ('\r', '\n')): continue for end in ('\r\n', '\n', '\r'): if line.endswith(end): self.newlines = end break break assert all(isinstance(line, str) for line in content), repr(content) content = [line.rstrip('\r\n') for line in content] self._parse(content) # if we had any errors, now is the time to raise them if self._errors: info = "at line %s." % self._errors[0].line_number if len(self._errors) > 1: msg = "Parsing failed with several errors.\nFirst error %s" % info error = ConfigObjError(msg) else: error = self._errors[0] # set the errors attribute; it's a list of tuples: # (error_type, message, line_number) error.errors = self._errors # set the config attribute error.config = self raise error # delete private attributes del self._errors if configspec is None: self.configspec = None else: self._handle_configspec(configspec) def _initialise(self, options=None): if options is None: options = OPTION_DEFAULTS # initialise a few variables self.filename = None self._errors = [] self.raise_errors = options['raise_errors'] self.interpolation = options['interpolation'] self.list_values = options['list_values'] self.create_empty = options['create_empty'] self.file_error = options['file_error'] self.stringify = options['stringify'] self.indent_type = options['indent_type'] self.encoding = options['encoding'] self.default_encoding = options['default_encoding'] self.BOM = False self.newlines = None self.write_empty_values = options['write_empty_values'] self.unrepr = options['unrepr'] self.initial_comment = [] self.final_comment = [] self.configspec = None if self._inspec: self.list_values = False # Clear section attributes as well Section._initialise(self) def __repr__(self): def _getval(key): try: return self[key] except MissingInterpolationOption: return dict.__getitem__(self, key) return ('%s({%s})' % (self.__class__.__name__, ', '.join([('%s: %s' % (repr(key), repr(_getval(key)))) for key in (self.scalars + self.sections)]))) def _handle_bom(self, infile): """ Handle any BOM, and decode if necessary. If an encoding is specified, that *must* be used - but the BOM should still be removed (and the BOM attribute set). (If the encoding is wrongly specified, then a BOM for an alternative encoding won't be discovered or removed.) If an encoding is not specified, UTF8 or UTF16 BOM will be detected and removed. The BOM attribute will be set. UTF16 will be decoded to unicode. NOTE: This method must not be called with an empty ``infile``. Specifying the *wrong* encoding is likely to cause a ``UnicodeDecodeError``. ``infile`` must always be returned as a list of lines, but may be passed in as a single string. """ if ((self.encoding is not None) and (self.encoding.lower() not in BOM_LIST)): # No need to check for a BOM # the encoding specified doesn't have one # just decode return self._decode(infile, self.encoding) if isinstance(infile, (list, tuple)): line = infile[0] else: line = infile if isinstance(line, str): # it's already decoded and there's no need to do anything # else, just use the _decode utility method to handle # listifying appropriately return self._decode(infile, self.encoding) if self.encoding is not None: # encoding explicitly supplied # And it could have an associated BOM # TODO: if encoding is just UTF16 - we ought to check for both # TODO: big endian and little endian versions. enc = BOM_LIST[self.encoding.lower()] if enc == 'utf_16': # For UTF16 we try big endian and little endian for BOM, (encoding, final_encoding) in list(BOMS.items()): if not final_encoding: # skip UTF8 continue if infile.startswith(BOM): ### BOM discovered ##self.BOM = True # Don't need to remove BOM return self._decode(infile, encoding) # If we get this far, will *probably* raise a DecodeError # As it doesn't appear to start with a BOM return self._decode(infile, self.encoding) # Must be UTF8 BOM = BOM_SET[enc] if not line.startswith(BOM): return self._decode(infile, self.encoding) newline = line[len(BOM):] # BOM removed if isinstance(infile, (list, tuple)): infile[0] = newline else: infile = newline self.BOM = True return self._decode(infile, self.encoding) # No encoding specified - so we need to check for UTF8/UTF16 for BOM, (encoding, final_encoding) in list(BOMS.items()): if not isinstance(line, bytes) or not line.startswith(BOM): # didn't specify a BOM, or it's not a bytestring continue else: # BOM discovered self.encoding = final_encoding if not final_encoding: self.BOM = True # UTF8 # remove BOM newline = line[len(BOM):] if isinstance(infile, (list, tuple)): infile[0] = newline else: infile = newline # UTF-8 if isinstance(infile, str): return infile.splitlines(True) elif isinstance(infile, bytes): return infile.decode('utf-8').splitlines(True) else: return self._decode(infile, 'utf-8') # UTF16 - have to decode return self._decode(infile, encoding) # No BOM discovered and no encoding specified, default to UTF-8 if isinstance(infile, bytes): return infile.decode('utf-8').splitlines(True) else: return self._decode(infile, 'utf-8') def _a_to_u(self, aString): """Decode ASCII strings to unicode if a self.encoding is specified.""" if isinstance(aString, bytes) and self.encoding: return aString.decode(self.encoding) else: return aString def _decode(self, infile, encoding): """ Decode infile to unicode. Using the specified encoding. if is a string, it also needs converting to a list. """ if isinstance(infile, str): return infile.splitlines(True) if isinstance(infile, bytes): # NOTE: Could raise a ``UnicodeDecodeError`` if encoding: return infile.decode(encoding).splitlines(True) else: return infile.splitlines(True) if encoding: for i, line in enumerate(infile): if isinstance(line, bytes): # NOTE: The isinstance test here handles mixed lists of unicode/string # NOTE: But the decode will break on any non-string values # NOTE: Or could raise a ``UnicodeDecodeError`` infile[i] = line.decode(encoding) return infile def _decode_element(self, line): """Decode element to unicode if necessary.""" if isinstance(line, bytes) and self.default_encoding: return line.decode(self.default_encoding) else: return line # TODO: this may need to be modified def _str(self, value): """ Used by ``stringify`` within validate, to turn non-string values into strings. """ if not isinstance(value, str): # intentially 'str' because it's just whatever the "normal" # string type is for the python version we're dealing with return str(value) else: return value def _parse(self, infile): """Actually parse the config file.""" temp_list_values = self.list_values if self.unrepr: self.list_values = False comment_list = [] done_start = False this_section = self maxline = len(infile) - 1 cur_index = -1 reset_comment = False while cur_index < maxline: if reset_comment: comment_list = [] cur_index += 1 line = infile[cur_index] sline = line.strip() # do we have anything on the line ? if not sline or sline.startswith('#'): reset_comment = False comment_list.append(line) continue if not done_start: # preserve initial comment self.initial_comment = comment_list comment_list = [] done_start = True reset_comment = True # first we check if it's a section marker mat = self._sectionmarker.match(line) if mat is not None: # is a section line (indent, sect_open, sect_name, sect_close, comment) = mat.groups() if indent and (self.indent_type is None): self.indent_type = indent cur_depth = sect_open.count('[') if cur_depth != sect_close.count(']'): self._handle_error("Cannot compute the section depth", NestingError, infile, cur_index) continue if cur_depth < this_section.depth: # the new section is dropping back to a previous level try: parent = self._match_depth(this_section, cur_depth).parent except SyntaxError: self._handle_error("Cannot compute nesting level", NestingError, infile, cur_index) continue elif cur_depth == this_section.depth: # the new section is a sibling of the current section parent = this_section.parent elif cur_depth == this_section.depth + 1: # the new section is a child the current section parent = this_section else: self._handle_error("Section too nested", NestingError, infile, cur_index) continue sect_name = self._unquote(sect_name) if sect_name in parent: self._handle_error('Duplicate section name', DuplicateError, infile, cur_index) continue # create the new section this_section = Section( parent, cur_depth, self, name=sect_name) parent[sect_name] = this_section parent.inline_comments[sect_name] = comment parent.comments[sect_name] = comment_list continue # # it's not a section marker, # so it should be a valid ``key = value`` line mat = self._keyword.match(line) if mat is None: self._handle_error( 'Invalid line ({0!r}) (matched as neither section nor keyword)'.format(line), ParseError, infile, cur_index) else: # is a keyword value # value will include any inline comment (indent, key, value) = mat.groups() if indent and (self.indent_type is None): self.indent_type = indent # check for a multiline value if value[:3] in ['"""', "'''"]: try: value, comment, cur_index = self._multiline( value, infile, cur_index, maxline) except SyntaxError: self._handle_error( 'Parse error in multiline value', ParseError, infile, cur_index) continue else: if self.unrepr: comment = '' try: value = unrepr(value) except Exception as e: if type(e) == UnknownType: msg = 'Unknown name or type in value' else: msg = 'Parse error from unrepr-ing multiline value' self._handle_error(msg, UnreprError, infile, cur_index) continue else: if self.unrepr: comment = '' try: value = unrepr(value) except Exception as e: if isinstance(e, UnknownType): msg = 'Unknown name or type in value' else: msg = 'Parse error from unrepr-ing value' self._handle_error(msg, UnreprError, infile, cur_index) continue else: # extract comment and lists try: (value, comment) = self._handle_value(value) except SyntaxError: self._handle_error( 'Parse error in value', ParseError, infile, cur_index) continue # key = self._unquote(key) if key in this_section: self._handle_error( 'Duplicate keyword name', DuplicateError, infile, cur_index) continue # add the key. # we set unrepr because if we have got this far we will never # be creating a new section this_section.__setitem__(key, value, unrepr=True) this_section.inline_comments[key] = comment this_section.comments[key] = comment_list continue # if self.indent_type is None: # no indentation used, set the type accordingly self.indent_type = '' # preserve the final comment if not self and not self.initial_comment: self.initial_comment = comment_list elif not reset_comment: self.final_comment = comment_list self.list_values = temp_list_values def _match_depth(self, sect, depth): """ Given a section and a depth level, walk back through the sections parents to see if the depth level matches a previous section. Return a reference to the right section, or raise a SyntaxError. """ while depth < sect.depth: if sect is sect.parent: # we've reached the top level already raise SyntaxError() sect = sect.parent if sect.depth == depth: return sect # shouldn't get here raise SyntaxError() def _handle_error(self, text, ErrorClass, infile, cur_index): """ Handle an error according to the error settings. Either raise the error or store it. The error will have occured at ``cur_index`` """ line = infile[cur_index] cur_index += 1 message = '{0} at line {1}.'.format(text, cur_index) error = ErrorClass(message, cur_index, line) if self.raise_errors: # raise the error - parsing stops here raise error # store the error # reraise when parsing has finished self._errors.append(error) def _unquote(self, value): """Return an unquoted version of a value""" if not value: # should only happen during parsing of lists raise SyntaxError if (value[0] == value[-1]) and (value[0] in ('"', "'")): value = value[1:-1] return value def _quote(self, value, multiline=True): """ Return a safely quoted version of a value. Raise a ConfigObjError if the value cannot be safely quoted. If multiline is ``True`` (default) then use triple quotes if necessary. * Don't quote values that don't need it. * Recursively quote members of a list and return a comma joined list. * Multiline is ``False`` for lists. * Obey list syntax for empty and single member lists. If ``list_values=False`` then the value is only quoted if it contains a ``\\n`` (is multiline) or '#'. If ``write_empty_values`` is set, and the value is an empty string, it won't be quoted. """ if multiline and self.write_empty_values and value == '': # Only if multiline is set, so that it is used for values not # keys, and not values that are part of a list return '' if multiline and isinstance(value, (list, tuple)): if not value: return ',' elif len(value) == 1: return self._quote(value[0], multiline=False) + ',' return ', '.join([self._quote(val, multiline=False) for val in value]) if not isinstance(value, str): if self.stringify: # intentially 'str' because it's just whatever the "normal" # string type is for the python version we're dealing with value = str(value) else: raise TypeError('Value "%s" is not a string.' % value) if not value: return '""' no_lists_no_quotes = not self.list_values and '\n' not in value and '#' not in value need_triple = multiline and ((("'" in value) and ('"' in value)) or ('\n' in value )) hash_triple_quote = multiline and not need_triple and ("'" in value) and ('"' in value) and ('#' in value) check_for_single = (no_lists_no_quotes or not need_triple) and not hash_triple_quote if check_for_single: if not self.list_values: # we don't quote if ``list_values=False`` quot = noquot # for normal values either single or double quotes will do elif '\n' in value: # will only happen if multiline is off - e.g. '\n' in key raise ConfigObjError('Value "%s" cannot be safely quoted.' % value) elif ((value[0] not in wspace_plus) and (value[-1] not in wspace_plus) and (',' not in value)): quot = noquot else: quot = self._get_single_quote(value) else: # if value has '\n' or "'" *and* '"', it will need triple quotes quot = self._get_triple_quote(value) if quot == noquot and '#' in value and self.list_values: quot = self._get_single_quote(value) return quot % value def _get_single_quote(self, value): if ("'" in value) and ('"' in value): raise ConfigObjError('Value "%s" cannot be safely quoted.' % value) elif '"' in value: quot = squot else: quot = dquot return quot def _get_triple_quote(self, value): if (value.find('"""') != -1) and (value.find("'''") != -1): raise ConfigObjError('Value "%s" cannot be safely quoted.' % value) if value.find('"""') == -1: quot = tdquot else: quot = tsquot return quot def _handle_value(self, value): """ Given a value string, unquote, remove comment, handle lists. (including empty and single member lists) """ if self._inspec: # Parsing a configspec so don't handle comments return (value, '') # do we look for lists in values ? if not self.list_values: mat = self._nolistvalue.match(value) if mat is None: raise SyntaxError() # NOTE: we don't unquote here return mat.groups() # mat = self._valueexp.match(value) if mat is None: # the value is badly constructed, probably badly quoted, # or an invalid list raise SyntaxError() (list_values, single, empty_list, comment) = mat.groups() if (list_values == '') and (single is None): # change this if you want to accept empty values raise SyntaxError() # NOTE: note there is no error handling from here if the regex # is wrong: then incorrect values will slip through if empty_list is not None: # the single comma - meaning an empty list return ([], comment) if single is not None: # handle empty values if list_values and not single: # FIXME: the '' is a workaround because our regex now matches # '' at the end of a list if it has a trailing comma single = None else: single = single or '""' single = self._unquote(single) if list_values == '': # not a list value return (single, comment) the_list = self._listvalueexp.findall(list_values) the_list = [self._unquote(val) for val in the_list] if single is not None: the_list += [single] return (the_list, comment) def _multiline(self, value, infile, cur_index, maxline): """Extract the value, where we are in a multiline situation.""" quot = value[:3] newvalue = value[3:] single_line = self._triple_quote[quot][0] multi_line = self._triple_quote[quot][1] mat = single_line.match(value) if mat is not None: retval = list(mat.groups()) retval.append(cur_index) return retval elif newvalue.find(quot) != -1: # somehow the triple quote is missing raise SyntaxError() # while cur_index < maxline: cur_index += 1 newvalue += '\n' line = infile[cur_index] if line.find(quot) == -1: newvalue += line else: # end of multiline, process it break else: # we've got to the end of the config, oops... raise SyntaxError() mat = multi_line.match(line) if mat is None: # a badly formed line raise SyntaxError() (value, comment) = mat.groups() return (newvalue + value, comment, cur_index) def _handle_configspec(self, configspec): """Parse the configspec.""" # FIXME: Should we check that the configspec was created with the # correct settings ? (i.e. ``list_values=False``) if not isinstance(configspec, ConfigObj): try: configspec = ConfigObj(configspec, raise_errors=True, file_error=True, _inspec=True) except ConfigObjError as e: # FIXME: Should these errors have a reference # to the already parsed ConfigObj ? raise ConfigspecError('Parsing configspec failed: %s' % e) except IOError as e: raise IOError('Reading configspec failed: %s' % e) self.configspec = configspec def _set_configspec(self, section, copy): """ Called by validate. Handles setting the configspec on subsections including sections to be validated by __many__ """ configspec = section.configspec many = configspec.get('__many__') if isinstance(many, dict): for entry in section.sections: if entry not in configspec: section[entry].configspec = many for entry in configspec.sections: if entry == '__many__': continue if entry not in section: section[entry] = {} section[entry]._created = True if copy: # copy comments section.comments[entry] = configspec.comments.get(entry, []) section.inline_comments[entry] = configspec.inline_comments.get(entry, '') # Could be a scalar when we expect a section if isinstance(section[entry], Section): section[entry].configspec = configspec[entry] def _write_line(self, indent_string, entry, this_entry, comment): """Write an individual line, for the write method""" # NOTE: the calls to self._quote here handles non-StringType values. if not self.unrepr: val = self._decode_element(self._quote(this_entry)) else: val = repr(this_entry) return '%s%s%s%s%s' % (indent_string, self._decode_element(self._quote(entry, multiline=False)), self._a_to_u(' = '), val, self._decode_element(comment)) def _write_marker(self, indent_string, depth, entry, comment): """Write a section marker line""" return '%s%s%s%s%s' % (indent_string, self._a_to_u('[' * depth), self._quote(self._decode_element(entry), multiline=False), self._a_to_u(']' * depth), self._decode_element(comment)) def _handle_comment(self, comment): """Deal with a comment.""" if not comment: return '' start = self.indent_type if not comment.startswith('#'): start += self._a_to_u(' # ') return (start + comment) # Public methods def write(self, outfile=None, section=None): """ Write the current ConfigObj as a file tekNico: FIXME: use StringIO instead of real files >>> filename = a.filename >>> a.filename = 'test.ini' >>> a.write() >>> a.filename = filename >>> a == ConfigObj('test.ini', raise_errors=True) 1 >>> import os >>> os.remove('test.ini') """ if self.indent_type is None: # this can be true if initialised from a dictionary self.indent_type = DEFAULT_INDENT_TYPE out = [] cs = self._a_to_u('#') csp = self._a_to_u('# ') if section is None: int_val = self.interpolation self.interpolation = False section = self for line in self.initial_comment: line = self._decode_element(line) stripped_line = line.strip() if stripped_line and not stripped_line.startswith(cs): line = csp + line out.append(line) indent_string = self.indent_type * section.depth for entry in (section.scalars + section.sections): if entry in section.defaults: # don't write out default values continue for comment_line in section.comments[entry]: comment_line = self._decode_element(comment_line.lstrip()) if comment_line and not comment_line.startswith(cs): comment_line = csp + comment_line out.append(indent_string + comment_line) this_entry = section[entry] comment = self._handle_comment(section.inline_comments[entry]) if isinstance(this_entry, Section): # a section out.append(self._write_marker( indent_string, this_entry.depth, entry, comment)) out.extend(self.write(section=this_entry)) else: out.append(self._write_line( indent_string, entry, this_entry, comment)) if section is self: for line in self.final_comment: line = self._decode_element(line) stripped_line = line.strip() if stripped_line and not stripped_line.startswith(cs): line = csp + line out.append(line) self.interpolation = int_val if section is not self: return out if (self.filename is None) and (outfile is None): # output a list of lines # might need to encode # NOTE: This will *screw* UTF16, each line will start with the BOM if self.encoding: out = [l.encode(self.encoding) for l in out] if (self.BOM and ((self.encoding is None) or (BOM_LIST.get(self.encoding.lower()) == 'utf_8'))): # Add the UTF8 BOM if not out: out.append('') out[0] = BOM_UTF8 + out[0] return out # Turn the list to a string, joined with correct newlines newline = self.newlines or os.linesep if (getattr(outfile, 'mode', None) is not None and outfile.mode == 'w' and sys.platform == 'win32' and newline == '\r\n'): # Windows specific hack to avoid writing '\r\r\n' newline = '\n' output = self._a_to_u(newline).join(out) if not output.endswith(newline): output += newline if isinstance(output, bytes): output_bytes = output else: output_bytes = output.encode(self.encoding or self.default_encoding or 'ascii') if self.BOM and ((self.encoding is None) or match_utf8(self.encoding)): # Add the UTF8 BOM output_bytes = BOM_UTF8 + output_bytes if outfile is not None: outfile.write(output_bytes) else: with open(self.filename, 'wb') as h: h.write(output_bytes) def validate(self, validator, preserve_errors=False, copy=False, section=None): """ Test the ConfigObj against a configspec. It uses the ``validator`` object from *validate.py*. To run ``validate`` on the current ConfigObj, call: :: test = config.validate(validator) (Normally having previously passed in the configspec when the ConfigObj was created - you can dynamically assign a dictionary of checks to the ``configspec`` attribute of a section though). It returns ``True`` if everything passes, or a dictionary of pass/fails (True/False). If every member of a subsection passes, it will just have the value ``True``. (It also returns ``False`` if all members fail). In addition, it converts the values from strings to their native types if their checks pass (and ``stringify`` is set). If ``preserve_errors`` is ``True`` (``False`` is default) then instead of a marking a fail with a ``False``, it will preserve the actual exception object. This can contain info about the reason for failure. For example the ``VdtValueTooSmallError`` indicates that the value supplied was too small. If a value (or section) is missing it will still be marked as ``False``. You must have the validate module to use ``preserve_errors=True``. You can then use the ``flatten_errors`` function to turn your nested results dictionary into a flattened list of failures - useful for displaying meaningful error messages. """ if section is None: if self.configspec is None: raise ValueError('No configspec supplied.') if preserve_errors: # We do this once to remove a top level dependency on the validate module # Which makes importing configobj faster from .validate import VdtMissingValue self._vdtMissingValue = VdtMissingValue section = self if copy: section.initial_comment = section.configspec.initial_comment section.final_comment = section.configspec.final_comment section.encoding = section.configspec.encoding section.BOM = section.configspec.BOM section.newlines = section.configspec.newlines section.indent_type = section.configspec.indent_type # # section.default_values.clear() #?? configspec = section.configspec self._set_configspec(section, copy) def validate_entry(entry, spec, val, missing, ret_true, ret_false): section.default_values.pop(entry, None) try: section.default_values[entry] = validator.get_default_value(configspec[entry]) except (KeyError, AttributeError, validator.baseErrorClass): # No default, bad default or validator has no 'get_default_value' # (e.g. SimpleVal) pass try: check = validator.check(spec, val, missing=missing ) except validator.baseErrorClass as e: if not preserve_errors or isinstance(e, self._vdtMissingValue): out[entry] = False else: # preserve the error out[entry] = e ret_false = False ret_true = False else: ret_false = False out[entry] = True if self.stringify or missing: # if we are doing type conversion # or the value is a supplied default if not self.stringify: if isinstance(check, (list, tuple)): # preserve lists check = [self._str(item) for item in check] elif missing and check is None: # convert the None from a default to a '' check = '' else: check = self._str(check) if (check != val) or missing: section[entry] = check if not copy and missing and entry not in section.defaults: section.defaults.append(entry) return ret_true, ret_false # out = {} ret_true = True ret_false = True unvalidated = [k for k in section.scalars if k not in configspec] incorrect_sections = [k for k in configspec.sections if k in section.scalars] incorrect_scalars = [k for k in configspec.scalars if k in section.sections] for entry in configspec.scalars: if entry in ('__many__', '___many___'): # reserved names continue if (not entry in section.scalars) or (entry in section.defaults): # missing entries # or entries from defaults missing = True val = None if copy and entry not in section.scalars: # copy comments section.comments[entry] = ( configspec.comments.get(entry, [])) section.inline_comments[entry] = ( configspec.inline_comments.get(entry, '')) # else: missing = False val = section[entry] ret_true, ret_false = validate_entry(entry, configspec[entry], val, missing, ret_true, ret_false) many = None if '__many__' in configspec.scalars: many = configspec['__many__'] elif '___many___' in configspec.scalars: many = configspec['___many___'] if many is not None: for entry in unvalidated: val = section[entry] ret_true, ret_false = validate_entry(entry, many, val, False, ret_true, ret_false) unvalidated = [] for entry in incorrect_scalars: ret_true = False if not preserve_errors: out[entry] = False else: ret_false = False msg = 'Value %r was provided as a section' % entry out[entry] = validator.baseErrorClass(msg) for entry in incorrect_sections: ret_true = False if not preserve_errors: out[entry] = False else: ret_false = False msg = 'Section %r was provided as a single value' % entry out[entry] = validator.baseErrorClass(msg) # Missing sections will have been created as empty ones when the # configspec was read. for entry in section.sections: # FIXME: this means DEFAULT is not copied in copy mode if section is self and entry == 'DEFAULT': continue if section[entry].configspec is None: unvalidated.append(entry) continue if copy: section.comments[entry] = configspec.comments.get(entry, []) section.inline_comments[entry] = configspec.inline_comments.get(entry, '') check = self.validate(validator, preserve_errors=preserve_errors, copy=copy, section=section[entry]) out[entry] = check if check == False: ret_true = False elif check == True: ret_false = False else: ret_true = False section.extra_values = unvalidated if preserve_errors and not section._created: # If the section wasn't created (i.e. it wasn't missing) # then we can't return False, we need to preserve errors ret_false = False # if ret_false and preserve_errors and out: # If we are preserving errors, but all # the failures are from missing sections / values # then we can return False. Otherwise there is a # real failure that we need to preserve. ret_false = not any(out.values()) if ret_true: return True elif ret_false: return False return out def reset(self): """Clear ConfigObj instance and restore to 'freshly created' state.""" self.clear() self._initialise() # FIXME: Should be done by '_initialise', but ConfigObj constructor (and reload) # requires an empty dictionary self.configspec = None # Just to be sure ;-) self._original_configspec = None def reload(self): """ Reload a ConfigObj from file. This method raises a ``ReloadError`` if the ConfigObj doesn't have a filename attribute pointing to a file. """ if not isinstance(self.filename, str): raise ReloadError() filename = self.filename current_options = {} for entry in OPTION_DEFAULTS: if entry == 'configspec': continue current_options[entry] = getattr(self, entry) configspec = self._original_configspec current_options['configspec'] = configspec self.clear() self._initialise(current_options) self._load(filename, configspec) class SimpleVal(object): """ A simple validator. Can be used to check that all members expected are present. To use it, provide a configspec with all your members in (the value given will be ignored). Pass an instance of ``SimpleVal`` to the ``validate`` method of your ``ConfigObj``. ``validate`` will return ``True`` if all members are present, or a dictionary with True/False meaning present/missing. (Whole missing sections will be replaced with ``False``) """ def __init__(self): self.baseErrorClass = ConfigObjError def check(self, check, member, missing=False): """A dummy check method, always returns the value unchanged.""" if missing: raise self.baseErrorClass() return member def flatten_errors(cfg, res, levels=None, results=None): """ An example function that will turn a nested dictionary of results (as returned by ``ConfigObj.validate``) into a flat list. ``cfg`` is the ConfigObj instance being checked, ``res`` is the results dictionary returned by ``validate``. (This is a recursive function, so you shouldn't use the ``levels`` or ``results`` arguments - they are used by the function.) Returns a list of keys that failed. Each member of the list is a tuple:: ([list of sections...], key, result) If ``validate`` was called with ``preserve_errors=False`` (the default) then ``result`` will always be ``False``. *list of sections* is a flattened list of sections that the key was found in. If the section was missing (or a section was expected and a scalar provided - or vice-versa) then key will be ``None``. If the value (or section) was missing then ``result`` will be ``False``. If ``validate`` was called with ``preserve_errors=True`` and a value was present, but failed the check, then ``result`` will be the exception object returned. You can use this as a string that describes the failure. For example *The value "3" is of the wrong type*. """ if levels is None: # first time called levels = [] results = [] if res == True: return sorted(results) if res == False or isinstance(res, Exception): results.append((levels[:], None, res)) if levels: levels.pop() return sorted(results) for (key, val) in list(res.items()): if val == True: continue if isinstance(cfg.get(key), collections.Mapping): # Go down one level levels.append(key) flatten_errors(cfg[key], val, levels, results) continue results.append((levels[:], key, val)) # # Go up one level if levels: levels.pop() # return sorted(results) def get_extra_values(conf, _prepend=()): """ Find all the values and sections not in the configspec from a validated ConfigObj. ``get_extra_values`` returns a list of tuples where each tuple represents either an extra section, or an extra value. The tuples contain two values, a tuple representing the section the value is in and the name of the extra values. For extra values in the top level section the first member will be an empty tuple. For values in the 'foo' section the first member will be ``('foo',)``. For members in the 'bar' subsection of the 'foo' section the first member will be ``('foo', 'bar')``. NOTE: If you call ``get_extra_values`` on a ConfigObj instance that hasn't been validated it will return an empty list. """ out = [] out.extend([(_prepend, name) for name in conf.extra_values]) for name in conf.sections: if name not in conf.extra_values: out.extend(get_extra_values(conf[name], _prepend + (name,))) return out """*A programming language is a medium of expression.* - Paul Graham"""
bsd-3-clause
-3,679,440,947,610,029,600
34.399273
114
0.527565
false
gjost/django-linkpile
runtests.py
1
1091
import sys try: from django.conf import settings settings.configure( DEBUG=True, USE_TZ=True, DATABASES={ "default": { "ENGINE": "django.db.backends.sqlite3", } }, ROOT_URLCONF="linkpile.urls", INSTALLED_APPS=[ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sites", "linkpile", ], SITE_ID=1, NOSE_ARGS=['-s'], ) try: import django setup = django.setup except AttributeError: pass else: setup() from django_nose import NoseTestSuiteRunner except ImportError: raise ImportError("To fix this error, run: pip install -r requirements-test.txt") def run_tests(*test_args): if not test_args: test_args = ['tests'] # Run tests test_runner = NoseTestSuiteRunner(verbosity=1) failures = test_runner.run_tests(test_args) if failures: sys.exit(failures) if __name__ == '__main__': run_tests(*sys.argv[1:])
bsd-3-clause
8,139,445,616,342,015,000
20
85
0.549954
false
procool/mygw
web/apps/cabinet/views.py
1
2966
import logging import datetime from sqlalchemy import func, and_, or_, not_ from flask import url_for, session from misc.mixins import myTemplateView, JSONView from utils.arp_list import get_mac_by_ip from models.all_models import InetEther, ARPCache from models.session import session from utils.server.http_client import HTTPClient from libs.pfctl import PFCtl class checkIPMixin(object): def check_for_ip(self): self.request.remote_ether = session.query(ARPCache).filter(ARPCache.ip==self.request.remote_addr).first() if self.request.remote_ether is None: logging.error('IP: %s not found in cached arp list!' % self.request.remote_addr) self.request.remote_ether = get_mac_by_ip(self.request.remote_addr) else: self.request.remote_ether = self.request.remote_ether.mac if self.request.remote_ether is None or self.request.remote_addr is None: return None addr = session.query(InetEther).filter(InetEther.mac==self.request.remote_ether).first() if addr is None: logging.error('XXX4.1') addr = InetEther() addr.mac = self.request.remote_ether if addr.ip != self.request.remote_addr or not addr.is_active: logging.error('XXX4.2') addr.ip = self.request.remote_addr addr.is_active = True addr.lastupdate = func.now() session.add(addr) addrs = session.query(InetEther).filter(not_(InetEther.mac==self.request.remote_ether)) addrs = addrs.filter(InetEther.ip==self.request.remote_addr) addrs.update({"is_active": False}) return addr class cabinetView(checkIPMixin, myTemplateView): template='cabinet/cabinet-ajax.tpl' def get_context_data(self, **kwargs): addr = self.check_for_ip() context = super(cabinetView, self).get_context_data(**kwargs) context['addr_obj'] = addr if addr is None: context['access_type'] = 'UNDEFINED' elif addr.access_type == 'tor': context['access_type'] = 'TOR' else: context['access_type'] = 'DIRECT' return context class setIPView(checkIPMixin, JSONView): __ctlsrv = HTTPClient(port=6999) def get_context_data(self, **kwargs): context = super(setIPView, self).get_context_data(**kwargs) addr = self.check_for_ip() if addr is None: return context addr.access_type = self.__type session.add(addr) session.commit() r = self.__ctlsrv.call_handler('ip/%s/access' % self.request.remote_addr) context['result'] = r return context def dispatch(self, request, access_type, *args, **kwargs): if access_type in PFCtl.ip_proxy_types: self.__type = access_type else: self.__type = None return super(setIPView, self).dispatch(self, request, *args, **kwargs)
bsd-2-clause
-5,029,251,846,019,144,000
34.73494
113
0.633176
false
rdegges/django-twilio
setup.py
1
3277
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from os.path import abspath, dirname, join, normpath from setuptools import find_packages, setup import sys INSTALL_PYTHON_REQUIRES = [] # We are intending to keep up to date with the supported Django versions. # For the official support, please visit: # https://docs.djangoproject.com/en/3.0/faq/install/#what-python-version-can-i-use-with-django and you may change the version in the URL to suit your needs, and we will try to update that here too as we upgrade with django. if sys.version_info[1] == 5: # py3.5 can run 1.11 < 2.2 django_python_version_install = 'Django>=2.2,<3.0', INSTALL_PYTHON_REQUIRES.append(django_python_version_install) elif sys.version_info[1] == 6: # py3.6 can run 1.11 < 3.1 (likely will be <4.0) django_python_version_install = 'Django>=2.2,<3.2', INSTALL_PYTHON_REQUIRES.append(django_python_version_install) elif sys.version_info[1] == 7: # py3.7 is 1.11.17 < 3.1 (likely will be <4.0) django_python_version_install = 'Django>=2.2,<3.2' INSTALL_PYTHON_REQUIRES.append(django_python_version_install) elif sys.version_info[1] == 8: # py3.8 is 2.2.8 < 3.1 (likely will be <4.0) django_python_version_install = 'Django>=2.2.8,<3.2' INSTALL_PYTHON_REQUIRES.append(django_python_version_install) setup( # Basic package information: name='django-twilio', version='0.13.1.post0', packages=find_packages(), # Packaging options: zip_safe=False, include_package_data=True, # Package dependencies: install_requires=[ 'setuptools>=36.2', 'twilio>=6.3.0,<7', 'django-phonenumber-field>=0.6', 'phonenumbers>=8.10.22', ] + INSTALL_PYTHON_REQUIRES, # Metadata for PyPI: author='Randall Degges', author_email='[email protected]', maintainer="Jason Held", maintainer_email="[email protected]", license='UNLICENSE', url='https://github.com/rdegges/django-twilio', keywords='twilio telephony call phone voip sms django django-twilio', description='Build Twilio functionality into your Django apps.', long_description=open( normpath(join(dirname(abspath(__file__)), 'README.rst')) ).read(), project_urls={ "Documentation": "https://django-twilio.readthedocs.io/en/latest/", "Code": "https://github.com/rdegges/django-twilio", "Tracker": "https://github.com/rdegges/django-twilio/issues", }, classifiers=[ 'Framework :: Django', 'Framework :: Django :: 2.2', 'Framework :: Django :: 3.0', 'Intended Audience :: Developers', 'License :: Public Domain', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Internet :: WWW/HTTP', ] )
unlicense
6,593,338,256,977,965,000
37.552941
223
0.646628
false
sclc/NAEF
exp_scripts/worker_exp_160531.py
1
13711
""" Experiment Diary 2016-05-31 """ import sys import math import matplotlib.pyplot as plt from scipy import io import numpy as np from scipy.sparse.linalg import * sys.path.append("../src/") from worker import Worker from native_conjugate_gradient import NativeConjugateGradient from native_conjugate_gradient import NativeBlockConjugateGradient from gerschgorin_circle_theorem import GerschgorinCircleTheoremEigenvalueEstimator from chebyshev_polynomial import ChebyshevPolynomial from chebyshev_basis_cacg import CBCG from legendre_basis_cacg import LBCG from legendre_basis_cacg import BLBCG from chebyshev_basis_cacg import BCBCG from presenter import Presenter from power_iteration import PowerIteration class WorkerIterativeLinearSystemSolverCG_Exp_160531(Worker): """ Description: Experiment A Numerical Method: Naive Conjugate Gradient tol: max_iteration: matrix: Reference: 1. """ def __init__(self, mat_path): """ """ #print ("WorkerIterativeLinearSystemSolver works good") Worker.__init__(self) self._hist_list = [] if mat_path == "": """ Need to generatre matrix """ print("calling self._matrix_generation") #self._mat = self._matrix_generation() else: self._mat_coo = io.mmread(mat_path) self._mat = self._mat_coo.tocsr() self._mat_info = io.mminfo(mat_path) print("Done reading matrix {}, Row:{}, Col:{}".format( mat_path, self._mat.shape[0], self._mat.shape[1])) print("mminfo:{}".format(self._mat_info)) if self._mat.getformat() == "csr": print("Yeah, it is CSR") def _matrix_generator(self): """ generation of matrix """ print("_matrix_generator") def _setup_testbed(self, block_size): """ this can considered as a basic experiment input descripting """ self._SB = np.random.random( ( self._mat.shape[0],1) ) self._BB = np.random.random( ( self._mat.shape[0],block_size) ) #np.savetxt("/home/scl/tmp/rhs.csv",self._B, delimiter=",") #self._B = np.ones( ( self._mat.shape[0],6) ) self._SX = np.ones ( (self._mat.shape[1],1) ) self._BX = np.ones ( (self._mat.shape[1],block_size) ) #self._X = np.zeros ( (self._mat.shape[1],1) ) def _setup_numerical_algorithm(self,tol, maxiter, step_val): """ After a linear solver or other numerical methods loaded we need to setup the basic prarm for the algorithm """ self._tol = tol self._maxiter = maxiter self._step_val = step_val def conduct_experiments(self, block_size, tol, maxiter, step_val): """ function to condution the experiment """ print("to conduct the experient") self._setup_testbed(block_size) self._setup_numerical_algorithm(tol,maxiter,step_val) #print ("before:{}".format(np.inner(self._X[:,0], self._X[:,0]))) #self._bcbcg_exp() #self._db_presenter_a() #self._db_power_iteration() #self._db_lbcg_exp() #self._db_blbcg_exp() #self. _numpy_lstsq_test() #self._db_cbcg_lstsq() #self._db_bcbcg_lstsq() #self._lbcg_least_square_exp() self._blbcg_least_square_exp() print("Experiments done") def _bcbcg_exp(self): bcbcg_solver_obj = BCBCG() step_val_a = 3 step_val_b = 5 self._final_X_a, self._final_R_a, self._residual_hist_a = \ bcbcg_solver_obj.bcbcg_solver(self._mat, self._B, self._X, step_val_a, self._tol, self._maxiter,0) self._final_X_b, self._final_R_b, self._residual_hist_b = \ bcbcg_solver_obj.bcbcg_solver(self._mat, self._B, self._X, step_val_b, self._tol, self._maxiter,0) def _db_presenter_a(self): plot_worker = Presenter() residual_list = [self._residual_hist_a] residual_list.append(self._residual_hist_b) legend_list = ["bcbcg_s3", "bcbcg_s5"] color_list = ["r", "k"] # latex style notation #plot_worker.instant_plot_y_log10(residual_list, "crystm01 $x_1$") #plot_worker.instant_plot_y_log10(residual_list, "crystm01", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) plot_worker.instant_plot_y(residual_list, "crystm01", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def legendre_poly_exp_a(self, order_lo, order_hi): """ """ x= np.linspace(-1.1,1.1,41) order_controller = np.zeros(order_hi+1) y_list = [] plot_worker = Presenter() legend_list = [] color_list = [] for order_idx in range(order_lo, order_hi+1): order_controller[order_idx] = 1 legp = np.polynomial.legendre.Legendre( order_controller ) legcoef = np.polynomial.legendre.leg2poly(legp.coef ) poly = np.polynomial.Polynomial(legcoef) y_list.append( poly(x) ) print(order_idx, " ", poly(x)) legend_list.append( "order_"+str(order_idx) ) color_list.append("k") order_controller[order_idx] = 0 plot_worker.instant_plot_unified_x_axis(x, y_list, "Legendre Poly" , "x", "y", legend_list, color_list) def _db_lbcg_exp (self): """ """ lbcg_solver_obj = LBCG() self._final_x_a, self._final_r_a, self._residual_hist_a = \ lbcg_solver_obj.lbcg_solver(self._mat, self._B, self._X, 8, self._tol, self._maxiter) self._final_x_b, self._final_r_b, self._residual_hist_b = \ lbcg_solver_obj.lbcg_solver(self._mat, self._B, self._X, 16, self._tol, self._maxiter) cbcg_solver_obj = CBCG() self._final_x_c, self._final_r_c, self._residual_hist_c = \ cbcg_solver_obj.cbcg_solver(self._mat, self._B, self._X, 16, self._tol, self._maxiter) plot_worker = Presenter() residual_list = [self._residual_hist_a, self._residual_hist_b, self._residual_hist_c] legend_list = ["lbcg_s8","lbcg_s16", "cbcg_s16"] color_list = ["r","k", "b"] #plot_worker.instant_plot_y_log10(residual_list, "crystm01", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) plot_worker.instant_plot_y_log10(residual_list, "wathen100", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def _db_blbcg_exp(self): """ """ lbcg_solver_obj = LBCG() self._final_x_a, self._final_r_a, self._residual_hist_a = \ lbcg_solver_obj.lbcg_solver(self._mat, self._SB, self._SX, 8, self._tol, self._maxiter) blbcg_solver_obj = BLBCG() self._final_x_b, self._final_r_b, self._residual_hist_b = \ blbcg_solver_obj.blbcg_solver(self._mat, self._BB, self._BX, 8, self._tol, self._maxiter, 0) bcbcg_solver_obj = BCBCG() self._final_x_c, self._final_r_c, self._residual_hist_c = \ bcbcg_solver_obj.bcbcg_solver(self._mat, self._BB, self._BX, 8, self._tol, self._maxiter, 0) plot_worker = Presenter() residual_list = [self._residual_hist_a, self._residual_hist_b, self._residual_hist_c] legend_list = ["lbcg_s8","blbcg_s8b10", "bcbcg_s8b10"] color_list = ["r","k", "b"] plot_worker.instant_plot_y_log10(residual_list, "bodyy6", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def _numpy_lstsq_test (self): """ """ self._small_mat = np.random.random( ( 5,5) ) self._small_rhs = np.random.random( ( 5,3) ) self._lstsq_res = np.linalg.lstsq(self._small_mat, self._small_rhs) print (self._small_mat) print("") print(self._small_rhs) print("") print(self._lstsq_res) print("") print(np.matmul(self._small_mat, self._lstsq_res[0])) #print(type(self._small_mat), "", type(self._lstsq_res)) def _db_cbcg_lstsq (self): cbcg_solver_obj = CBCG() self._final_x_a, self._final_r_a, self._residual_hist_a = \ cbcg_solver_obj.cbcg_solver_least_square(self._mat, self._SB, self._SX, self._step_val, self._tol, self._maxiter) self._final_x_b, self._final_r_b, self._residual_hist_b = \ cbcg_solver_obj.cbcg_solver_least_square(self._mat, self._SB, self._SX, self._step_val, self._tol, self._maxiter) plot_worker = Presenter() residual_list = [self._residual_hist_a, self._residual_hist_b] legend_list = ["cbcg_s2_lstsq","blbcg_s2"] color_list = ["r","k"] plot_worker.instant_plot_y_log10(residual_list, "bodyy6", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def _db_bcbcg_lstsq (self): """ """ bcbcg_solver_obj = BCBCG() self._final_X_a, self._final_R_a, self._residual_hist_a = \ bcbcg_solver_obj.bcbcg_solver_least_square(self._mat, self._BB, self._BX, self._step_val, self._tol, self._maxiter,0) self._final_X_b, self._final_R_b, self._residual_hist_b = \ bcbcg_solver_obj.bcbcg_solver(self._mat, self._BB, self._BX, self._step_val, self._tol, self._maxiter,0) plot_worker = Presenter() residual_list = [self._residual_hist_a, self._residual_hist_b] legend_list = ["bcbcg_s20b4_lstsq","bcbcg_s20b4"] color_list = ["r","k"] plot_worker.instant_plot_y_log10(residual_list, "crystm02", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def _lbcg_least_square_exp (self): """ """ lbcg_solver_obj = LBCG() self._final_x_a, self._final_r_a, self._residual_hist_a = \ lbcg_solver_obj.lbcg_solver_least_square(self._mat, self._SB, self._SX, 8, self._tol, self._maxiter) self._final_x_b, self._final_r_b, self._residual_hist_b = \ lbcg_solver_obj.lbcg_solver_least_square(self._mat, self._SB, self._SX, 18, self._tol, self._maxiter) cbcg_solver_obj = CBCG() self._final_x_c, self._final_r_c, self._residual_hist_c = \ cbcg_solver_obj.cbcg_solver_least_square(self._mat, self._SB, self._SX, 8, self._tol, self._maxiter) self._final_x_d, self._final_r_d, self._residual_hist_d = \ cbcg_solver_obj.cbcg_solver_least_square(self._mat, self._SB, self._SX, 18, self._tol, self._maxiter) plot_worker = Presenter() residual_list = [self._residual_hist_a, self._residual_hist_b, self._residual_hist_c, self._residual_hist_d ] legend_list = ["lbcg_lstsq_s8","lbcg_lstsq_s18" ,"cbcg_lstsq_s8", "cbcg_lstsq_s18" ] color_list = ["r","k", "b","y"] #plot_worker.instant_plot_y_log10(residual_list, "crystm01", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) #plot_worker.instant_plot_y_log10(residual_list, "wathen100", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) plot_worker.instant_plot_y_log10(residual_list, "bodyy06", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def _blbcg_least_square_exp(self): """ """ blbcg_solver_obj = BLBCG() self._final_x_a, self._final_r_a, self._residual_hist_a = \ blbcg_solver_obj.blbcg_solver_least_square(self._mat, self._BB, self._BX, self._step_val, self._tol, self._maxiter, 0) bcbcg_solver_obj = BCBCG() self._final_x_b, self._final_r_b, self._residual_hist_b = \ bcbcg_solver_obj.bcbcg_solver_least_square(self._mat, self._BB, self._BX, self._step_val, self._tol, self._maxiter, 0) plot_worker = Presenter() residual_list = [self._residual_hist_a, self._residual_hist_b] legend_list = ["blbcg_s64b4_lstsq","bcbcg_s64b4_lstsq"] color_list = ["r","k"] #plot_worker.instant_plot_y_log10(residual_list, "crystm01", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) plot_worker.instant_plot_y_log10(residual_list, "bodyy6", "#iteration", "$\\frac{||x_1||}{||b_1||}$", legend_list, color_list) def main (): # main function for today's experiments #bad #mat_path = "/home/scl/MStore/vanbody/vanbody.mtx" #mat_path = "/home/scl/MStore/olafu/olafu.mtx" #mat_path = "/home/scl/MStore/raefsky4/raefsky4.mtx" #mat_path = "/home/scl/MStore/smt/smt.mtx" #mat_path = "/home/scl/MStore/bcsstk36/bcsstk36.mtx" #mat_path = "/home/scl/MStore/pdb1HYS/pdb1HYS.mtx" #mat_path = "/home/scl/MStore/ship_001/ship_001.mtx" # not so good #mat_path = "/home/scl/MStore/Dubcova1/Dubcova1.mtx" #mat_path = "/home/scl/MStore/bcsstk17/bcsstk17.mtx" #mat_path = "/home/scl/MStore/wathen100/wathen100.mtx" #mat_path = "/home/scl/MStore/nasa2146/nasa2146.mtx" #mat_path = "/home/scl/MStore/crystm01/crystm01.mtx" #mat_path = "/home/scl/MStore/ex13/ex13.mtx" #mat_path = "/home/scl/MStore/LFAT5/LFAT5.mtx" #good mat_path = "/home/scl/MStore/bodyy6/bodyy6.mtx" #mat_path = "/home/scl/MStore/crystm02/crystm02.mtx" block_size = 4 tol = 1e-12 maxiter = 800 step_val =64 linear_system_solver_worker_test = WorkerIterativeLinearSystemSolverCG_Exp_160531(mat_path) linear_system_solver_worker_test.conduct_experiments(block_size,tol,maxiter, step_val) #linear_system_solver_worker_test.chebyshev_poly_exp_a(0,6) #linear_system_solver_worker_test.legendre_poly_exp_a(0,6) #linear_system_solver_worker_test.debug_NativeConjugateGradient() if __name__ == "__main__": """ call main funtion for testing """ main()
gpl-3.0
3,732,410,133,351,646,000
44.703333
138
0.594924
false
xjchensz/LSFS
LSFS/LSFS_TEST.py
1
1803
#!usr/bin/python # -*- coding:utf-8 -*- import pandas as pd import numpy as np import scipy as sp import os import random import time import sys def append_module_path(): import sys paths = [ \ "../gen_data", "../evaluate", "../read_data" ] for path in paths: if path not in sys.path: sys.path.append(path) append_module_path() import gen_data import evaluate import read_data def test_H(): """ expected array([[ 0.66666667, -0.33333333, -0.33333333], [-0.33333333, 0.66666667, -0.33333333], [-0.33333333, -0.33333333, 0.66666667]]) """ return compute_H(3) def test_norm_2_1(): """ expected 4.2426406871192857 """ W = np.array([[1,1],[2,2]]) return norm_2_1(W) def test_Q(): """ (np.sqrt(2) + np.sqrt(8)) / [np.sqrt(2), np.sqrt(8)] expected [[ 3. , 0. ], [ 0. , 1.5]] """ W = np.array([[1,1],[2,2]]) return compute_Q(W) def print_W(W): with open("W.txt", "a+") as f: for w in W: print(w, file=f) print("\n========================\n", file=f) def run_accuracy(fun, XL_train,YL_train,XU_train,YU_train, sel_num=5, output_file_name="feature_order"): XL, YL, XU, YU = XL_train.copy(), YL_train.copy(), XU_train.copy(), YU_train.copy() if fun.__name__.lower() == "lsfs": YL = read_data.label_n1_to_nc(YL) YU = read_data.label_n1_to_nc(YU) feature_order, time_dual = fun(XL, YL, XU, output_file_name=output_file_name) X,Y = evaluate.select_data(XL_train, YL_train, XU_train, YU_train,\ feature_order, sel_num=sel_num) a = evaluate.run_acc(X,Y) print("accuracy", ":", a) return feature_order, time_dual, a
gpl-3.0
-6,408,282,040,506,266,000
21
104
0.533555
false