repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
tiwillia/openshift-tools
openshift/installer/vendored/openshift-ansible-3.5.5/roles/lib_openshift/library/oc_secret.py
2
52800
#!/usr/bin/env python # pylint: disable=missing-docstring # flake8: noqa: T001 # ___ ___ _ _ ___ ___ _ _____ ___ ___ # / __| __| \| | __| _ \ /_\_ _| __| \ # | (_ | _|| .` | _|| / / _ \| | | _|| |) | # \___|___|_|\_|___|_|_\/_/_\_\_|_|___|___/_ _____ # | \ / _ \ | \| |/ _ \_ _| | __| \_ _|_ _| # | |) | (_) | | .` | (_) || | | _|| |) | | | | # |___/ \___/ |_|\_|\___/ |_| |___|___/___| |_| # # Copyright 2016 Red Hat, Inc. and/or its affiliates # and other contributors as indicated by the @author tags. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- -*- -*- Begin included fragment: lib/import.py -*- -*- -*- ''' OpenShiftCLI class that wraps the oc commands in a subprocess ''' # pylint: disable=too-many-lines from __future__ import print_function import atexit import json import os import re import shutil import subprocess # pylint: disable=import-error import ruamel.yaml as yaml from ansible.module_utils.basic import AnsibleModule # -*- -*- -*- End included fragment: lib/import.py -*- -*- -*- # -*- -*- -*- Begin included fragment: doc/secret -*- -*- -*- DOCUMENTATION = ''' --- module: oc_secret short_description: Module to manage openshift secrets description: - Manage openshift secrets programmatically. options: state: description: - If present, the secret will be created if it doesn't exist or updated if different. If absent, the secret will be removed if present. If list, information about the secret will be gathered and returned as part of the Ansible call results. required: false default: present choices: ["present", "absent", "list"] aliases: [] kubeconfig: description: - The path for the kubeconfig file to use for authentication required: false default: /etc/origin/master/admin.kubeconfig aliases: [] debug: description: - Turn on debug output. required: false default: False aliases: [] name: description: - Name of the object that is being queried. required: false default: None aliases: [] namespace: description: - The namespace where the object lives. required: false default: default aliases: [] files: description: - A list of files provided for secrets required: false default: None aliases: [] delete_after: description: - Whether or not to delete the files after processing them. required: false default: false aliases: [] contents: description: - Content of the secrets required: false default: None aliases: [] force: description: - Whether or not to force the operation required: false default: false aliases: [] decode: description: - base64 decode the object required: false default: false aliases: [] author: - "Kenny Woodson <[email protected]>" extends_documentation_fragment: [] ''' EXAMPLES = ''' - name: create secret oc_secret: state: present namespace: openshift-infra name: metrics-deployer files: - name: nothing path: /dev/null register: secretout run_once: true - name: get ca from hawkular oc_secret: state: list namespace: openshift-infra name: hawkular-metrics-certificate decode: True register: hawkout run_once: true - name: Create secrets oc_secret: namespace: mynamespace name: mysecrets contents: - path: data.yml data: "{{ data_content }}" - path: auth-keys data: "{{ auth_keys_content }}" - path: configdata.yml data: "{{ configdata_content }}" - path: cert.crt data: "{{ cert_content }}" - path: key.pem data: "{{ osso_site_key_content }}" - path: ca.cert.pem data: "{{ ca_cert_content }}" register: secretout ''' # -*- -*- -*- End included fragment: doc/secret -*- -*- -*- # -*- -*- -*- Begin included fragment: ../../lib_utils/src/class/yedit.py -*- -*- -*- # noqa: E301,E302 class YeditException(Exception): ''' Exception class for Yedit ''' pass # pylint: disable=too-many-public-methods class Yedit(object): ''' Class to modify yaml files ''' re_valid_key = r"(((\[-?\d+\])|([0-9a-zA-Z%s/_-]+)).?)+$" re_key = r"(?:\[(-?\d+)\])|([0-9a-zA-Z%s/_-]+)" com_sep = set(['.', '#', '|', ':']) # pylint: disable=too-many-arguments def __init__(self, filename=None, content=None, content_type='yaml', separator='.', backup=False): self.content = content self._separator = separator self.filename = filename self.__yaml_dict = content self.content_type = content_type self.backup = backup self.load(content_type=self.content_type) if self.__yaml_dict is None: self.__yaml_dict = {} @property def separator(self): ''' getter method for yaml_dict ''' return self._separator @separator.setter def separator(self): ''' getter method for yaml_dict ''' return self._separator @property def yaml_dict(self): ''' getter method for yaml_dict ''' return self.__yaml_dict @yaml_dict.setter def yaml_dict(self, value): ''' setter method for yaml_dict ''' self.__yaml_dict = value @staticmethod def parse_key(key, sep='.'): '''parse the key allowing the appropriate separator''' common_separators = list(Yedit.com_sep - set([sep])) return re.findall(Yedit.re_key % ''.join(common_separators), key) @staticmethod def valid_key(key, sep='.'): '''validate the incoming key''' common_separators = list(Yedit.com_sep - set([sep])) if not re.match(Yedit.re_valid_key % ''.join(common_separators), key): return False return True @staticmethod def remove_entry(data, key, sep='.'): ''' remove data at location key ''' if key == '' and isinstance(data, dict): data.clear() return True elif key == '' and isinstance(data, list): del data[:] return True if not (key and Yedit.valid_key(key, sep)) and \ isinstance(data, (list, dict)): return None key_indexes = Yedit.parse_key(key, sep) for arr_ind, dict_key in key_indexes[:-1]: if dict_key and isinstance(data, dict): data = data.get(dict_key, None) elif (arr_ind and isinstance(data, list) and int(arr_ind) <= len(data) - 1): data = data[int(arr_ind)] else: return None # process last index for remove # expected list entry if key_indexes[-1][0]: if isinstance(data, list) and int(key_indexes[-1][0]) <= len(data) - 1: # noqa: E501 del data[int(key_indexes[-1][0])] return True # expected dict entry elif key_indexes[-1][1]: if isinstance(data, dict): del data[key_indexes[-1][1]] return True @staticmethod def add_entry(data, key, item=None, sep='.'): ''' Get an item from a dictionary with key notation a.b.c d = {'a': {'b': 'c'}}} key = a#b return c ''' if key == '': pass elif (not (key and Yedit.valid_key(key, sep)) and isinstance(data, (list, dict))): return None key_indexes = Yedit.parse_key(key, sep) for arr_ind, dict_key in key_indexes[:-1]: if dict_key: if isinstance(data, dict) and dict_key in data and data[dict_key]: # noqa: E501 data = data[dict_key] continue elif data and not isinstance(data, dict): return None data[dict_key] = {} data = data[dict_key] elif (arr_ind and isinstance(data, list) and int(arr_ind) <= len(data) - 1): data = data[int(arr_ind)] else: return None if key == '': data = item # process last index for add # expected list entry elif key_indexes[-1][0] and isinstance(data, list) and int(key_indexes[-1][0]) <= len(data) - 1: # noqa: E501 data[int(key_indexes[-1][0])] = item # expected dict entry elif key_indexes[-1][1] and isinstance(data, dict): data[key_indexes[-1][1]] = item return data @staticmethod def get_entry(data, key, sep='.'): ''' Get an item from a dictionary with key notation a.b.c d = {'a': {'b': 'c'}}} key = a.b return c ''' if key == '': pass elif (not (key and Yedit.valid_key(key, sep)) and isinstance(data, (list, dict))): return None key_indexes = Yedit.parse_key(key, sep) for arr_ind, dict_key in key_indexes: if dict_key and isinstance(data, dict): data = data.get(dict_key, None) elif (arr_ind and isinstance(data, list) and int(arr_ind) <= len(data) - 1): data = data[int(arr_ind)] else: return None return data @staticmethod def _write(filename, contents): ''' Actually write the file contents to disk. This helps with mocking. ''' tmp_filename = filename + '.yedit' with open(tmp_filename, 'w') as yfd: yfd.write(contents) os.rename(tmp_filename, filename) def write(self): ''' write to file ''' if not self.filename: raise YeditException('Please specify a filename.') if self.backup and self.file_exists(): shutil.copy(self.filename, self.filename + '.orig') # pylint: disable=no-member if hasattr(self.yaml_dict, 'fa'): self.yaml_dict.fa.set_block_style() Yedit._write(self.filename, yaml.dump(self.yaml_dict, Dumper=yaml.RoundTripDumper)) return (True, self.yaml_dict) def read(self): ''' read from file ''' # check if it exists if self.filename is None or not self.file_exists(): return None contents = None with open(self.filename) as yfd: contents = yfd.read() return contents def file_exists(self): ''' return whether file exists ''' if os.path.exists(self.filename): return True return False def load(self, content_type='yaml'): ''' return yaml file ''' contents = self.read() if not contents and not self.content: return None if self.content: if isinstance(self.content, dict): self.yaml_dict = self.content return self.yaml_dict elif isinstance(self.content, str): contents = self.content # check if it is yaml try: if content_type == 'yaml' and contents: self.yaml_dict = yaml.load(contents, yaml.RoundTripLoader) # pylint: disable=no-member if hasattr(self.yaml_dict, 'fa'): self.yaml_dict.fa.set_block_style() elif content_type == 'json' and contents: self.yaml_dict = json.loads(contents) except yaml.YAMLError as err: # Error loading yaml or json raise YeditException('Problem with loading yaml file. %s' % err) return self.yaml_dict def get(self, key): ''' get a specified key''' try: entry = Yedit.get_entry(self.yaml_dict, key, self.separator) except KeyError: entry = None return entry def pop(self, path, key_or_item): ''' remove a key, value pair from a dict or an item for a list''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError: entry = None if entry is None: return (False, self.yaml_dict) if isinstance(entry, dict): # pylint: disable=no-member,maybe-no-member if key_or_item in entry: entry.pop(key_or_item) return (True, self.yaml_dict) return (False, self.yaml_dict) elif isinstance(entry, list): # pylint: disable=no-member,maybe-no-member ind = None try: ind = entry.index(key_or_item) except ValueError: return (False, self.yaml_dict) entry.pop(ind) return (True, self.yaml_dict) return (False, self.yaml_dict) def delete(self, path): ''' remove path from a dict''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError: entry = None if entry is None: return (False, self.yaml_dict) result = Yedit.remove_entry(self.yaml_dict, path, self.separator) if not result: return (False, self.yaml_dict) return (True, self.yaml_dict) def exists(self, path, value): ''' check if value exists at path''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError: entry = None if isinstance(entry, list): if value in entry: return True return False elif isinstance(entry, dict): if isinstance(value, dict): rval = False for key, val in value.items(): if entry[key] != val: rval = False break else: rval = True return rval return value in entry return entry == value def append(self, path, value): '''append value to a list''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError: entry = None if entry is None: self.put(path, []) entry = Yedit.get_entry(self.yaml_dict, path, self.separator) if not isinstance(entry, list): return (False, self.yaml_dict) # pylint: disable=no-member,maybe-no-member entry.append(value) return (True, self.yaml_dict) # pylint: disable=too-many-arguments def update(self, path, value, index=None, curr_value=None): ''' put path, value into a dict ''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError: entry = None if isinstance(entry, dict): # pylint: disable=no-member,maybe-no-member if not isinstance(value, dict): raise YeditException('Cannot replace key, value entry in ' + 'dict with non-dict type. value=[%s] [%s]' % (value, type(value))) # noqa: E501 entry.update(value) return (True, self.yaml_dict) elif isinstance(entry, list): # pylint: disable=no-member,maybe-no-member ind = None if curr_value: try: ind = entry.index(curr_value) except ValueError: return (False, self.yaml_dict) elif index is not None: ind = index if ind is not None and entry[ind] != value: entry[ind] = value return (True, self.yaml_dict) # see if it exists in the list try: ind = entry.index(value) except ValueError: # doesn't exist, append it entry.append(value) return (True, self.yaml_dict) # already exists, return if ind is not None: return (False, self.yaml_dict) return (False, self.yaml_dict) def put(self, path, value): ''' put path, value into a dict ''' try: entry = Yedit.get_entry(self.yaml_dict, path, self.separator) except KeyError: entry = None if entry == value: return (False, self.yaml_dict) # deepcopy didn't work tmp_copy = yaml.load(yaml.round_trip_dump(self.yaml_dict, default_flow_style=False), yaml.RoundTripLoader) # pylint: disable=no-member if hasattr(self.yaml_dict, 'fa'): tmp_copy.fa.set_block_style() result = Yedit.add_entry(tmp_copy, path, value, self.separator) if not result: return (False, self.yaml_dict) self.yaml_dict = tmp_copy return (True, self.yaml_dict) def create(self, path, value): ''' create a yaml file ''' if not self.file_exists(): # deepcopy didn't work tmp_copy = yaml.load(yaml.round_trip_dump(self.yaml_dict, default_flow_style=False), # noqa: E501 yaml.RoundTripLoader) # pylint: disable=no-member if hasattr(self.yaml_dict, 'fa'): tmp_copy.fa.set_block_style() result = Yedit.add_entry(tmp_copy, path, value, self.separator) if result: self.yaml_dict = tmp_copy return (True, self.yaml_dict) return (False, self.yaml_dict) @staticmethod def get_curr_value(invalue, val_type): '''return the current value''' if invalue is None: return None curr_value = invalue if val_type == 'yaml': curr_value = yaml.load(invalue) elif val_type == 'json': curr_value = json.loads(invalue) return curr_value @staticmethod def parse_value(inc_value, vtype=''): '''determine value type passed''' true_bools = ['y', 'Y', 'yes', 'Yes', 'YES', 'true', 'True', 'TRUE', 'on', 'On', 'ON', ] false_bools = ['n', 'N', 'no', 'No', 'NO', 'false', 'False', 'FALSE', 'off', 'Off', 'OFF'] # It came in as a string but you didn't specify value_type as string # we will convert to bool if it matches any of the above cases if isinstance(inc_value, str) and 'bool' in vtype: if inc_value not in true_bools and inc_value not in false_bools: raise YeditException('Not a boolean type. str=[%s] vtype=[%s]' % (inc_value, vtype)) elif isinstance(inc_value, bool) and 'str' in vtype: inc_value = str(inc_value) # If vtype is not str then go ahead and attempt to yaml load it. if isinstance(inc_value, str) and 'str' not in vtype: try: inc_value = yaml.load(inc_value) except Exception: raise YeditException('Could not determine type of incoming ' + 'value. value=[%s] vtype=[%s]' % (type(inc_value), vtype)) return inc_value # pylint: disable=too-many-return-statements,too-many-branches @staticmethod def run_ansible(module): '''perform the idempotent crud operations''' yamlfile = Yedit(filename=module.params['src'], backup=module.params['backup'], separator=module.params['separator']) if module.params['src']: rval = yamlfile.load() if yamlfile.yaml_dict is None and \ module.params['state'] != 'present': return {'failed': True, 'msg': 'Error opening file [%s]. Verify that the ' + 'file exists, that it is has correct' + ' permissions, and is valid yaml.'} if module.params['state'] == 'list': if module.params['content']: content = Yedit.parse_value(module.params['content'], module.params['content_type']) yamlfile.yaml_dict = content if module.params['key']: rval = yamlfile.get(module.params['key']) or {} return {'changed': False, 'result': rval, 'state': "list"} elif module.params['state'] == 'absent': if module.params['content']: content = Yedit.parse_value(module.params['content'], module.params['content_type']) yamlfile.yaml_dict = content if module.params['update']: rval = yamlfile.pop(module.params['key'], module.params['value']) else: rval = yamlfile.delete(module.params['key']) if rval[0] and module.params['src']: yamlfile.write() return {'changed': rval[0], 'result': rval[1], 'state': "absent"} elif module.params['state'] == 'present': # check if content is different than what is in the file if module.params['content']: content = Yedit.parse_value(module.params['content'], module.params['content_type']) # We had no edits to make and the contents are the same if yamlfile.yaml_dict == content and \ module.params['value'] is None: return {'changed': False, 'result': yamlfile.yaml_dict, 'state': "present"} yamlfile.yaml_dict = content # we were passed a value; parse it if module.params['value']: value = Yedit.parse_value(module.params['value'], module.params['value_type']) key = module.params['key'] if module.params['update']: # pylint: disable=line-too-long curr_value = Yedit.get_curr_value(Yedit.parse_value(module.params['curr_value']), # noqa: E501 module.params['curr_value_format']) # noqa: E501 rval = yamlfile.update(key, value, module.params['index'], curr_value) # noqa: E501 elif module.params['append']: rval = yamlfile.append(key, value) else: rval = yamlfile.put(key, value) if rval[0] and module.params['src']: yamlfile.write() return {'changed': rval[0], 'result': rval[1], 'state': "present"} # no edits to make if module.params['src']: # pylint: disable=redefined-variable-type rval = yamlfile.write() return {'changed': rval[0], 'result': rval[1], 'state': "present"} return {'failed': True, 'msg': 'Unkown state passed'} # -*- -*- -*- End included fragment: ../../lib_utils/src/class/yedit.py -*- -*- -*- # -*- -*- -*- Begin included fragment: lib/base.py -*- -*- -*- # pylint: disable=too-many-lines # noqa: E301,E302,E303,T001 class OpenShiftCLIError(Exception): '''Exception class for openshiftcli''' pass # pylint: disable=too-few-public-methods class OpenShiftCLI(object): ''' Class to wrap the command line tools ''' def __init__(self, namespace, kubeconfig='/etc/origin/master/admin.kubeconfig', verbose=False, all_namespaces=False): ''' Constructor for OpenshiftCLI ''' self.namespace = namespace self.verbose = verbose self.kubeconfig = kubeconfig self.all_namespaces = all_namespaces # Pylint allows only 5 arguments to be passed. # pylint: disable=too-many-arguments def _replace_content(self, resource, rname, content, force=False, sep='.'): ''' replace the current object with the content ''' res = self._get(resource, rname) if not res['results']: return res fname = '/tmp/%s' % rname yed = Yedit(fname, res['results'][0], separator=sep) changes = [] for key, value in content.items(): changes.append(yed.put(key, value)) if any([change[0] for change in changes]): yed.write() atexit.register(Utils.cleanup, [fname]) return self._replace(fname, force) return {'returncode': 0, 'updated': False} def _replace(self, fname, force=False): '''replace the current object with oc replace''' cmd = ['replace', '-f', fname] if force: cmd.append('--force') return self.openshift_cmd(cmd) def _create_from_content(self, rname, content): '''create a temporary file and then call oc create on it''' fname = '/tmp/%s' % rname yed = Yedit(fname, content=content) yed.write() atexit.register(Utils.cleanup, [fname]) return self._create(fname) def _create(self, fname): '''call oc create on a filename''' return self.openshift_cmd(['create', '-f', fname]) def _delete(self, resource, rname, selector=None): '''call oc delete on a resource''' cmd = ['delete', resource, rname] if selector: cmd.append('--selector=%s' % selector) return self.openshift_cmd(cmd) def _process(self, template_name, create=False, params=None, template_data=None): # noqa: E501 '''process a template template_name: the name of the template to process create: whether to send to oc create after processing params: the parameters for the template template_data: the incoming template's data; instead of a file ''' cmd = ['process'] if template_data: cmd.extend(['-f', '-']) else: cmd.append(template_name) if params: param_str = ["%s=%s" % (key, value) for key, value in params.items()] cmd.append('-v') cmd.extend(param_str) results = self.openshift_cmd(cmd, output=True, input_data=template_data) if results['returncode'] != 0 or not create: return results fname = '/tmp/%s' % template_name yed = Yedit(fname, results['results']) yed.write() atexit.register(Utils.cleanup, [fname]) return self.openshift_cmd(['create', '-f', fname]) def _get(self, resource, rname=None, selector=None): '''return a resource by name ''' cmd = ['get', resource] if selector: cmd.append('--selector=%s' % selector) elif rname: cmd.append(rname) cmd.extend(['-o', 'json']) rval = self.openshift_cmd(cmd, output=True) # Ensure results are retuned in an array if 'items' in rval: rval['results'] = rval['items'] elif not isinstance(rval['results'], list): rval['results'] = [rval['results']] return rval def _schedulable(self, node=None, selector=None, schedulable=True): ''' perform oadm manage-node scheduable ''' cmd = ['manage-node'] if node: cmd.extend(node) else: cmd.append('--selector=%s' % selector) cmd.append('--schedulable=%s' % schedulable) return self.openshift_cmd(cmd, oadm=True, output=True, output_type='raw') # noqa: E501 def _list_pods(self, node=None, selector=None, pod_selector=None): ''' perform oadm list pods node: the node in which to list pods selector: the label selector filter if provided pod_selector: the pod selector filter if provided ''' cmd = ['manage-node'] if node: cmd.extend(node) else: cmd.append('--selector=%s' % selector) if pod_selector: cmd.append('--pod-selector=%s' % pod_selector) cmd.extend(['--list-pods', '-o', 'json']) return self.openshift_cmd(cmd, oadm=True, output=True, output_type='raw') # pylint: disable=too-many-arguments def _evacuate(self, node=None, selector=None, pod_selector=None, dry_run=False, grace_period=None, force=False): ''' perform oadm manage-node evacuate ''' cmd = ['manage-node'] if node: cmd.extend(node) else: cmd.append('--selector=%s' % selector) if dry_run: cmd.append('--dry-run') if pod_selector: cmd.append('--pod-selector=%s' % pod_selector) if grace_period: cmd.append('--grace-period=%s' % int(grace_period)) if force: cmd.append('--force') cmd.append('--evacuate') return self.openshift_cmd(cmd, oadm=True, output=True, output_type='raw') def _version(self): ''' return the openshift version''' return self.openshift_cmd(['version'], output=True, output_type='raw') def _import_image(self, url=None, name=None, tag=None): ''' perform image import ''' cmd = ['import-image'] image = '{0}'.format(name) if tag: image += ':{0}'.format(tag) cmd.append(image) if url: cmd.append('--from={0}/{1}'.format(url, image)) cmd.append('-n{0}'.format(self.namespace)) cmd.append('--confirm') return self.openshift_cmd(cmd) def _run(self, cmds, input_data): ''' Actually executes the command. This makes mocking easier. ''' curr_env = os.environ.copy() curr_env.update({'KUBECONFIG': self.kubeconfig}) proc = subprocess.Popen(cmds, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=curr_env) stdout, stderr = proc.communicate(input_data) return proc.returncode, stdout, stderr # pylint: disable=too-many-arguments,too-many-branches def openshift_cmd(self, cmd, oadm=False, output=False, output_type='json', input_data=None): '''Base command for oc ''' cmds = [] if oadm: cmds = ['oadm'] else: cmds = ['oc'] if self.all_namespaces: cmds.extend(['--all-namespaces']) elif self.namespace is not None and self.namespace.lower() not in ['none', 'emtpy']: # E501 cmds.extend(['-n', self.namespace]) cmds.extend(cmd) rval = {} results = '' err = None if self.verbose: print(' '.join(cmds)) returncode, stdout, stderr = self._run(cmds, input_data) rval = {"returncode": returncode, "results": results, "cmd": ' '.join(cmds)} if returncode == 0: if output: if output_type == 'json': try: rval['results'] = json.loads(stdout) except ValueError as err: if "No JSON object could be decoded" in err.args: err = err.args elif output_type == 'raw': rval['results'] = stdout if self.verbose: print("STDOUT: {0}".format(stdout)) print("STDERR: {0}".format(stderr)) if err: rval.update({"err": err, "stderr": stderr, "stdout": stdout, "cmd": cmds}) else: rval.update({"stderr": stderr, "stdout": stdout, "results": {}}) return rval class Utils(object): ''' utilities for openshiftcli modules ''' @staticmethod def create_file(rname, data, ftype='yaml'): ''' create a file in tmp with name and contents''' path = os.path.join('/tmp', rname) with open(path, 'w') as fds: if ftype == 'yaml': fds.write(yaml.dump(data, Dumper=yaml.RoundTripDumper)) elif ftype == 'json': fds.write(json.dumps(data)) else: fds.write(data) # Register cleanup when module is done atexit.register(Utils.cleanup, [path]) return path @staticmethod def create_files_from_contents(content, content_type=None): '''Turn an array of dict: filename, content into a files array''' if not isinstance(content, list): content = [content] files = [] for item in content: path = Utils.create_file(item['path'], item['data'], ftype=content_type) files.append({'name': os.path.basename(path), 'path': path}) return files @staticmethod def cleanup(files): '''Clean up on exit ''' for sfile in files: if os.path.exists(sfile): if os.path.isdir(sfile): shutil.rmtree(sfile) elif os.path.isfile(sfile): os.remove(sfile) @staticmethod def exists(results, _name): ''' Check to see if the results include the name ''' if not results: return False if Utils.find_result(results, _name): return True return False @staticmethod def find_result(results, _name): ''' Find the specified result by name''' rval = None for result in results: if 'metadata' in result and result['metadata']['name'] == _name: rval = result break return rval @staticmethod def get_resource_file(sfile, sfile_type='yaml'): ''' return the service file ''' contents = None with open(sfile) as sfd: contents = sfd.read() if sfile_type == 'yaml': contents = yaml.load(contents, yaml.RoundTripLoader) elif sfile_type == 'json': contents = json.loads(contents) return contents @staticmethod def filter_versions(stdout): ''' filter the oc version output ''' version_dict = {} version_search = ['oc', 'openshift', 'kubernetes'] for line in stdout.strip().split('\n'): for term in version_search: if not line: continue if line.startswith(term): version_dict[term] = line.split()[-1] # horrible hack to get openshift version in Openshift 3.2 # By default "oc version in 3.2 does not return an "openshift" version if "openshift" not in version_dict: version_dict["openshift"] = version_dict["oc"] return version_dict @staticmethod def add_custom_versions(versions): ''' create custom versions strings ''' versions_dict = {} for tech, version in versions.items(): # clean up "-" from version if "-" in version: version = version.split("-")[0] if version.startswith('v'): versions_dict[tech + '_numeric'] = version[1:].split('+')[0] # "v3.3.0.33" is what we have, we want "3.3" versions_dict[tech + '_short'] = version[1:4] return versions_dict @staticmethod def openshift_installed(): ''' check if openshift is installed ''' import yum yum_base = yum.YumBase() if yum_base.rpmdb.searchNevra(name='atomic-openshift'): return True return False # Disabling too-many-branches. This is a yaml dictionary comparison function # pylint: disable=too-many-branches,too-many-return-statements,too-many-statements @staticmethod def check_def_equal(user_def, result_def, skip_keys=None, debug=False): ''' Given a user defined definition, compare it with the results given back by our query. ''' # Currently these values are autogenerated and we do not need to check them skip = ['metadata', 'status'] if skip_keys: skip.extend(skip_keys) for key, value in result_def.items(): if key in skip: continue # Both are lists if isinstance(value, list): if key not in user_def: if debug: print('User data does not have key [%s]' % key) print('User data: %s' % user_def) return False if not isinstance(user_def[key], list): if debug: print('user_def[key] is not a list key=[%s] user_def[key]=%s' % (key, user_def[key])) return False if len(user_def[key]) != len(value): if debug: print("List lengths are not equal.") print("key=[%s]: user_def[%s] != value[%s]" % (key, len(user_def[key]), len(value))) print("user_def: %s" % user_def[key]) print("value: %s" % value) return False for values in zip(user_def[key], value): if isinstance(values[0], dict) and isinstance(values[1], dict): if debug: print('sending list - list') print(type(values[0])) print(type(values[1])) result = Utils.check_def_equal(values[0], values[1], skip_keys=skip_keys, debug=debug) if not result: print('list compare returned false') return False elif value != user_def[key]: if debug: print('value should be identical') print(value) print(user_def[key]) return False # recurse on a dictionary elif isinstance(value, dict): if key not in user_def: if debug: print("user_def does not have key [%s]" % key) return False if not isinstance(user_def[key], dict): if debug: print("dict returned false: not instance of dict") return False # before passing ensure keys match api_values = set(value.keys()) - set(skip) user_values = set(user_def[key].keys()) - set(skip) if api_values != user_values: if debug: print("keys are not equal in dict") print(api_values) print(user_values) return False result = Utils.check_def_equal(user_def[key], value, skip_keys=skip_keys, debug=debug) if not result: if debug: print("dict returned false") print(result) return False # Verify each key, value pair is the same else: if key not in user_def or value != user_def[key]: if debug: print("value not equal; user_def does not have key") print(key) print(value) if key in user_def: print(user_def[key]) return False if debug: print('returning true') return True class OpenShiftCLIConfig(object): '''Generic Config''' def __init__(self, rname, namespace, kubeconfig, options): self.kubeconfig = kubeconfig self.name = rname self.namespace = namespace self._options = options @property def config_options(self): ''' return config options ''' return self._options def to_option_list(self): '''return all options as a string''' return self.stringify() def stringify(self): ''' return the options hash as cli params in a string ''' rval = [] for key, data in self.config_options.items(): if data['include'] \ and (data['value'] or isinstance(data['value'], int)): rval.append('--%s=%s' % (key.replace('_', '-'), data['value'])) return rval # -*- -*- -*- End included fragment: lib/base.py -*- -*- -*- # -*- -*- -*- Begin included fragment: lib/secret.py -*- -*- -*- # pylint: disable=too-many-instance-attributes class SecretConfig(object): ''' Handle secret options ''' # pylint: disable=too-many-arguments def __init__(self, sname, namespace, kubeconfig, secrets=None): ''' constructor for handling secret options ''' self.kubeconfig = kubeconfig self.name = sname self.namespace = namespace self.secrets = secrets self.data = {} self.create_dict() def create_dict(self): ''' return a secret as a dict ''' self.data['apiVersion'] = 'v1' self.data['kind'] = 'Secret' self.data['metadata'] = {} self.data['metadata']['name'] = self.name self.data['metadata']['namespace'] = self.namespace self.data['data'] = {} if self.secrets: for key, value in self.secrets.items(): self.data['data'][key] = value # pylint: disable=too-many-instance-attributes class Secret(Yedit): ''' Class to wrap the oc command line tools ''' secret_path = "data" kind = 'secret' def __init__(self, content): '''secret constructor''' super(Secret, self).__init__(content=content) self._secrets = None @property def secrets(self): '''secret property getter''' if self._secrets is None: self._secrets = self.get_secrets() return self._secrets @secrets.setter def secrets(self): '''secret property setter''' if self._secrets is None: self._secrets = self.get_secrets() return self._secrets def get_secrets(self): ''' returns all of the defined secrets ''' return self.get(Secret.secret_path) or {} def add_secret(self, key, value): ''' add a secret ''' if self.secrets: self.secrets[key] = value else: self.put(Secret.secret_path, {key: value}) return True def delete_secret(self, key): ''' delete secret''' try: del self.secrets[key] except KeyError as _: return False return True def find_secret(self, key): ''' find secret''' rval = None try: rval = self.secrets[key] except KeyError as _: return None return {'key': key, 'value': rval} def update_secret(self, key, value): ''' update a secret''' # pylint: disable=no-member if self.secrets.has_key(key): self.secrets[key] = value else: self.add_secret(key, value) return True # -*- -*- -*- End included fragment: lib/secret.py -*- -*- -*- # -*- -*- -*- Begin included fragment: class/oc_secret.py -*- -*- -*- # pylint: disable=wrong-import-position,wrong-import-order import base64 # pylint: disable=too-many-arguments class OCSecret(OpenShiftCLI): ''' Class to wrap the oc command line tools ''' def __init__(self, namespace, secret_name=None, decode=False, kubeconfig='/etc/origin/master/admin.kubeconfig', verbose=False): ''' Constructor for OpenshiftOC ''' super(OCSecret, self).__init__(namespace, kubeconfig) self.namespace = namespace self.name = secret_name self.kubeconfig = kubeconfig self.decode = decode self.verbose = verbose def get(self): '''return a secret by name ''' results = self._get('secrets', self.name) results['decoded'] = {} results['exists'] = False if results['returncode'] == 0 and results['results'][0]: results['exists'] = True if self.decode: if results['results'][0].has_key('data'): for sname, value in results['results'][0]['data'].items(): results['decoded'][sname] = base64.b64decode(value) if results['returncode'] != 0 and '"%s" not found' % self.name in results['stderr']: results['returncode'] = 0 return results def delete(self): '''delete a secret by name''' return self._delete('secrets', self.name) def create(self, files=None, contents=None): '''Create a secret ''' if not files: files = Utils.create_files_from_contents(contents) secrets = ["%s=%s" % (sfile['name'], sfile['path']) for sfile in files] cmd = ['secrets', 'new', self.name] cmd.extend(secrets) results = self.openshift_cmd(cmd) return results def update(self, files, force=False): '''run update secret This receives a list of file names and converts it into a secret. The secret is then written to disk and passed into the `oc replace` command. ''' secret = self.prep_secret(files) if secret['returncode'] != 0: return secret sfile_path = '/tmp/%s' % self.name with open(sfile_path, 'w') as sfd: sfd.write(json.dumps(secret['results'])) atexit.register(Utils.cleanup, [sfile_path]) return self._replace(sfile_path, force=force) def prep_secret(self, files=None, contents=None): ''' return what the secret would look like if created This is accomplished by passing -ojson. This will most likely change in the future ''' if not files: files = Utils.create_files_from_contents(contents) secrets = ["%s=%s" % (sfile['name'], sfile['path']) for sfile in files] cmd = ['-ojson', 'secrets', 'new', self.name] cmd.extend(secrets) return self.openshift_cmd(cmd, output=True) @staticmethod # pylint: disable=too-many-return-statements,too-many-branches # TODO: This function should be refactored into its individual parts. def run_ansible(params, check_mode): '''run the ansible idempotent code''' ocsecret = OCSecret(params['namespace'], params['name'], params['decode'], kubeconfig=params['kubeconfig'], verbose=params['debug']) state = params['state'] api_rval = ocsecret.get() ##### # Get ##### if state == 'list': return {'changed': False, 'results': api_rval, state: 'list'} if not params['name']: return {'failed': True, 'msg': 'Please specify a name when state is absent|present.'} ######## # Delete ######## if state == 'absent': if not Utils.exists(api_rval['results'], params['name']): return {'changed': False, 'state': 'absent'} if check_mode: return {'changed': True, 'msg': 'Would have performed a delete.'} api_rval = ocsecret.delete() return {'changed': True, 'results': api_rval, 'state': 'absent'} if state == 'present': if params['files']: files = params['files'] elif params['contents']: files = Utils.create_files_from_contents(params['contents']) else: return {'failed': True, 'msg': 'Either specify files or contents.'} ######## # Create ######## if not Utils.exists(api_rval['results'], params['name']): if check_mode: return {'changed': True, 'msg': 'Would have performed a create.'} api_rval = ocsecret.create(params['files'], params['contents']) # Remove files if files and params['delete_after']: Utils.cleanup([ftmp['path'] for ftmp in files]) if api_rval['returncode'] != 0: return {'failed': True, 'msg': api_rval} return {'changed': True, 'results': api_rval, 'state': 'present'} ######## # Update ######## secret = ocsecret.prep_secret(params['files'], params['contents']) if secret['returncode'] != 0: return {'failed': True, 'msg': secret} if Utils.check_def_equal(secret['results'], api_rval['results'][0]): # Remove files if files and params['delete_after']: Utils.cleanup([ftmp['path'] for ftmp in files]) return {'changed': False, 'results': secret['results'], 'state': 'present'} if check_mode: return {'changed': True, 'msg': 'Would have performed an update.'} api_rval = ocsecret.update(files, force=params['force']) # Remove files if secret and params['delete_after']: Utils.cleanup([ftmp['path'] for ftmp in files]) if api_rval['returncode'] != 0: return {'failed': True, 'msg': api_rval} return {'changed': True, 'results': api_rval, 'state': 'present'} return {'failed': True, 'changed': False, 'msg': 'Unknown state passed. %s' % state, 'state': 'unknown'} # -*- -*- -*- End included fragment: class/oc_secret.py -*- -*- -*- # -*- -*- -*- Begin included fragment: ansible/oc_secret.py -*- -*- -*- def main(): ''' ansible oc module for managing OpenShift Secrets ''' module = AnsibleModule( argument_spec=dict( kubeconfig=dict(default='/etc/origin/master/admin.kubeconfig', type='str'), state=dict(default='present', type='str', choices=['present', 'absent', 'list']), debug=dict(default=False, type='bool'), namespace=dict(default='default', type='str'), name=dict(default=None, type='str'), files=dict(default=None, type='list'), delete_after=dict(default=False, type='bool'), contents=dict(default=None, type='list'), force=dict(default=False, type='bool'), decode=dict(default=False, type='bool'), ), mutually_exclusive=[["contents", "files"]], supports_check_mode=True, ) rval = OCSecret.run_ansible(module.params, module.check_mode) if 'failed' in rval: module.fail_json(**rval) module.exit_json(**rval) if __name__ == '__main__': main() # -*- -*- -*- End included fragment: ansible/oc_secret.py -*- -*- -*-
apache-2.0
-5,882,913,405,720,118,000
31.734036
244
0.520909
false
Onager/plaso
tests/output/tln.py
1
8070
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the TLN output class.""" import io import os import unittest from dfvfs.lib import definitions as dfvfs_definitions from dfvfs.path import factory as path_spec_factory from plaso.lib import definitions from plaso.output import tln from tests.containers import test_lib as containers_test_lib from tests.output import test_lib class TLNFieldFormattingHelperTest(test_lib.OutputModuleTestCase): """Test the TLN output module field formatting helper.""" # pylint: disable=protected-access _OS_PATH_SPEC = path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_OS, location='{0:s}{1:s}'.format( os.path.sep, os.path.join('cases', 'image.dd'))) _TEST_EVENTS = [ {'data_type': 'test:event', 'display_name': 'OS: /var/log/syslog.1', 'hostname': 'ubuntu', 'inode': 12345678, 'pathspec': path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_TSK, inode=15, location='/var/log/syslog.1', parent=_OS_PATH_SPEC), 'text': ( 'Reporter <CRON> PID: |8442| (pam_unix(cron:session): session\n ' 'closed for user root)'), 'timestamp': '2012-06-27 18:17:01', 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN, 'username': 'root'}] def testFormatDescription(self): """Tests the _FormatDescription function.""" output_mediator = self._CreateOutputMediator() formatters_directory_path = self._GetTestFilePath(['formatters']) output_mediator.ReadMessageFormattersFromDirectory( formatters_directory_path) formatting_helper = tln.TLNFieldFormattingHelper(output_mediator) event, event_data, event_data_stream = ( containers_test_lib.CreateEventFromValues(self._TEST_EVENTS[0])) description_string = formatting_helper._FormatDescription( event, event_data, event_data_stream) expected_description_string = ( '2012-06-27T18:17:01+00:00; ' 'Unknown Time; ' 'Reporter <CRON> PID: |8442| (pam_unix(cron:session): session closed ' 'for user root)') self.assertEqual(description_string, expected_description_string) def testFormatNotes(self): """Tests the _FormatNotes function.""" output_mediator = self._CreateOutputMediator() formatting_helper = tln.TLNFieldFormattingHelper(output_mediator) event, event_data, event_data_stream = ( containers_test_lib.CreateEventFromValues(self._TEST_EVENTS[0])) notes_string = formatting_helper._FormatNotes( event, event_data, event_data_stream) self.assertEqual( notes_string, 'File: OS: /var/log/syslog.1 inode: 12345678') def test_FormatTimestamp(self): """Tests the __FormatTimestamp function.""" output_mediator = self._CreateOutputMediator() formatting_helper = tln.TLNFieldFormattingHelper(output_mediator) event, event_data, event_data_stream = ( containers_test_lib.CreateEventFromValues(self._TEST_EVENTS[0])) timestamp_string = formatting_helper._FormatTimestamp( event, event_data, event_data_stream) self.assertEqual(timestamp_string, '1340821021') class TLNOutputModuleTest(test_lib.OutputModuleTestCase): """Tests for the TLN output module.""" # pylint: disable=protected-access _OS_PATH_SPEC = path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_OS, location='{0:s}{1:s}'.format( os.path.sep, os.path.join('cases', 'image.dd'))) _TEST_EVENTS = [ {'data_type': 'test:event', 'display_name': 'OS: /var/log/syslog.1', 'hostname': 'ubuntu', 'inode': 12345678, 'path_spec': path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_TSK, inode=15, location='/var/log/syslog.1', parent=_OS_PATH_SPEC), 'text': ( 'Reporter <CRON> PID: |8442| (pam_unix(cron:session): session\n ' 'closed for user root)'), 'timestamp': '2012-06-27 18:17:01', 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN, 'username': 'root'}] def testWriteHeader(self): """Tests the WriteHeader function.""" test_file_object = io.StringIO() output_mediator = self._CreateOutputMediator() output_module = tln.TLNOutputModule(output_mediator) output_module._file_object = test_file_object output_module.WriteHeader() header = test_file_object.getvalue() self.assertEqual(header, 'Time|Source|Host|User|Description\n') def testWriteEventBody(self): """Tests the WriteEventBody function.""" test_file_object = io.StringIO() output_mediator = self._CreateOutputMediator() formatters_directory_path = self._GetTestFilePath(['formatters']) output_mediator.ReadMessageFormattersFromDirectory( formatters_directory_path) output_module = tln.TLNOutputModule(output_mediator) output_module._file_object = test_file_object event, event_data, event_data_stream = ( containers_test_lib.CreateEventFromValues(self._TEST_EVENTS[0])) output_module.WriteEventBody( event, event_data, event_data_stream, event_data_stream) expected_event_body = ( '1340821021|FILE|ubuntu|root|2012-06-27T18:17:01+00:00; Unknown Time; ' 'Reporter <CRON> PID: 8442 (pam_unix(cron:session): ' 'session closed for user root)\n') event_body = test_file_object.getvalue() self.assertEqual(event_body, expected_event_body) self.assertEqual(event_body.count('|'), 4) class L2TTLNOutputModuleTest(test_lib.OutputModuleTestCase): """Tests for the log2timeline TLN output module.""" # pylint: disable=protected-access _OS_PATH_SPEC = path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_OS, location='{0:s}{1:s}'.format( os.path.sep, os.path.join('cases', 'image.dd'))) _TEST_EVENTS = [ {'data_type': 'test:event', 'display_name': 'OS: /var/log/syslog.1', 'hostname': 'ubuntu', 'inode': 12345678, 'path_spec': path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_TSK, inode=15, location='/var/log/syslog.1', parent=_OS_PATH_SPEC), 'text': ( 'Reporter <CRON> PID: |8442| (pam_unix(cron:session): session\n ' 'closed for user root)'), 'timestamp': '2012-06-27 18:17:01', 'timestamp_desc': definitions.TIME_DESCRIPTION_UNKNOWN, 'username': 'root'}] def testWriteHeader(self): """Tests the WriteHeader function.""" test_file_object = io.StringIO() output_mediator = self._CreateOutputMediator() output_module = tln.L2TTLNOutputModule(output_mediator) output_module._file_object = test_file_object output_module.WriteHeader() header = test_file_object.getvalue() self.assertEqual(header, 'Time|Source|Host|User|Description|TZ|Notes\n') def testWriteEventBody(self): """Tests the WriteEventBody function.""" test_file_object = io.StringIO() output_mediator = self._CreateOutputMediator() formatters_directory_path = self._GetTestFilePath(['formatters']) output_mediator.ReadMessageFormattersFromDirectory( formatters_directory_path) output_module = tln.L2TTLNOutputModule(output_mediator) output_module._file_object = test_file_object event, event_data, event_data_stream = ( containers_test_lib.CreateEventFromValues(self._TEST_EVENTS[0])) output_module.WriteEventBody( event, event_data, event_data_stream, event_data_stream) expected_event_body = ( '1340821021|FILE|ubuntu|root|2012-06-27T18:17:01+00:00; Unknown Time; ' 'Reporter <CRON> PID: 8442 (pam_unix(cron:session): ' 'session closed for user root)' '|UTC|File: OS: /var/log/syslog.1 inode: 12345678\n') event_body = test_file_object.getvalue() self.assertEqual(event_body, expected_event_body) self.assertEqual(event_body.count('|'), 6) if __name__ == '__main__': unittest.main()
apache-2.0
-3,306,304,721,288,736,300
34.707965
79
0.674473
false
jptomo/rpython-lang-scheme
rpython/rlib/parsing/makepackrat.py
1
24419
from __future__ import with_statement import py import sys from rpython.rlib.parsing.tree import Nonterminal, Symbol, RPythonVisitor from rpython.rlib.parsing.codebuilder import Codebuilder from rpython.rlib.objectmodel import we_are_translated class BacktrackException(Exception): def __init__(self, error=None): self.error = error if not we_are_translated(): Exception.__init__(self, error) class TreeOptimizer(RPythonVisitor): def visit_or(self, t): if len(t.children) == 1: return self.dispatch(t.children[0]) return self.general_nonterminal_visit(t) visit_commands = visit_or def visit_negation(self, t): child = self.dispatch(t.children[0]) if child.symbol == "negation": child.symbol = "lookahead" return child t.children[0] = child return t def general_nonterminal_visit(self, t): for i in range(len(t.children)): t.children[i] = self.dispatch(t.children[i]) return t def general_visit(self, t): return t syntax = r""" NAME: `[a-zA-Z_][a-zA-Z0-9_]*`; SPACE: ' '; COMMENT: `( *#[^\n]*\n)+`; IGNORE: `(#[^\n]*\n)|\n|\t| `; newline: COMMENT | `( *\n *)*`; REGEX: r = `\`[^\\\`]*(\\.[^\\\`]*)*\`` return {Symbol('REGEX', r, None)}; QUOTE: r = `'[^\']*'` return {Symbol('QUOTE', r, None)}; PYTHONCODE: r = `\{[^\n\}]*\}` return {Symbol('PYTHONCODE', r, None)}; EOF: !__any__; file: IGNORE* list [EOF]; list: content = production+ return {Nonterminal('list', content)}; production: name = NAME SPACE* args = productionargs ':' IGNORE* what = or_ IGNORE* ';' IGNORE* return {Nonterminal('production', [name, args, what])}; productionargs: '(' IGNORE* args = ( NAME [ IGNORE* ',' IGNORE* ] )* arg = NAME IGNORE* ')' IGNORE* return {Nonterminal('productionargs', args + [arg])} | return {Nonterminal('productionargs', [])}; or_: l = (commands ['|' IGNORE*])+ last = commands return {Nonterminal('or', l + [last])} | commands; commands: cmd = command newline cmds = (command [newline])+ return {Nonterminal('commands', [cmd] + cmds)} | command; command: simplecommand; simplecommand: return_ | if_ | named_command | repetition | choose | negation; return_: 'return' SPACE* code = PYTHONCODE IGNORE* return {Nonterminal('return', [code])}; if_: 'do' newline cmd = command SPACE* 'if' SPACE* condition = PYTHONCODE IGNORE* return {Nonterminal('if', [cmd, condition])} | 'if' SPACE* condition = PYTHONCODE IGNORE* return {Nonterminal('if', [condition])}; choose: 'choose' SPACE* name = NAME SPACE* 'in' SPACE* expr = PYTHONCODE IGNORE* cmds = commands return {Nonterminal('choose', [name, expr, cmds])}; commandchain: result = simplecommand+ return {Nonterminal('commands', result)}; named_command: name = NAME SPACE* '=' SPACE* cmd = command return {Nonterminal('named_command', [name, cmd])}; repetition: what = enclosed SPACE* '?' IGNORE* return {Nonterminal('maybe', [what])} | what = enclosed SPACE* repetition = ('*' | '+') IGNORE* return {Nonterminal('repetition', [repetition, what])}; negation: '!' SPACE* what = negation IGNORE* return {Nonterminal('negation', [what])} | enclosed; enclosed: '<' IGNORE* what = primary IGNORE* '>' IGNORE* return {Nonterminal('exclusive', [what])} | '[' IGNORE* what = or_ IGNORE* ']' IGNORE* return {Nonterminal('ignore', [what])} | ['(' IGNORE*] or_ [')' IGNORE*] | primary; primary: call | REGEX [IGNORE*] | QUOTE [IGNORE*]; call: x = NAME args = arguments IGNORE* return {Nonterminal("call", [x, args])}; arguments: '(' IGNORE* args = ( PYTHONCODE [IGNORE* ',' IGNORE*] )* last = PYTHONCODE ')' IGNORE* return {Nonterminal("args", args + [last])} | return {Nonterminal("args", [])}; """ class ErrorInformation(object): def __init__(self, pos, expected=None): if expected is None: expected = [] self.expected = expected self.pos = pos def __str__(self): return "ErrorInformation(%s, %s)" % (self.pos, self.expected) def get_line_column(self, source): pos = self.pos assert pos >= 0 uptoerror = source[:pos] lineno = uptoerror.count("\n") columnno = pos - uptoerror.rfind("\n") return lineno, columnno def nice_error_message(self, filename='<filename>', source=""): if source: lineno, columnno = self.get_line_column(source) result = [" File %s, line %s" % (filename, lineno + 1)] result.append(source.split("\n")[lineno]) result.append(" " * columnno + "^") else: result.append("<couldn't get source>") if self.expected: failure_reasons = self.expected if len(failure_reasons) > 1: all_but_one = failure_reasons[:-1] last = failure_reasons[-1] expected = "%s or '%s'" % ( ", ".join(["'%s'" % e for e in all_but_one]), last) else: expected = failure_reasons[0] result.append("ParseError: expected %s" % (expected, )) else: result.append("ParseError") return "\n".join(result) class Status(object): # status codes: NORMAL = 0 ERROR = 1 INPROGRESS = 2 LEFTRECURSION = 3 SOMESOLUTIONS = 4 _annspecialcase_ = 'specialize:ctr_location' # polymorphic def __repr__(self): return "Status(%s, %s, %s, %s)" % (self.pos, self.result, self.error, self.status) def __init__(self): self.pos = 0 self.error = None self.status = self.INPROGRESS self.result = None class ParserBuilder(RPythonVisitor, Codebuilder): def __init__(self): Codebuilder.__init__(self) self.initcode = [] self.names = {} self.matchers = {} def make_parser(self): m = {'Status': Status, 'Nonterminal': Nonterminal, 'Symbol': Symbol,} exec py.code.Source(self.get_code()).compile() in m return m['Parser'] def memoize_header(self, name, args): dictname = "_dict_%s" % (name, ) self.emit_initcode("self.%s = {}" % (dictname, )) if args: self.emit("_key = (self._pos, %s)" % (", ".join(args))) else: self.emit("_key = self._pos") self.emit("_status = self.%s.get(_key, None)" % (dictname, )) with self.block("if _status is None:"): self.emit("_status = self.%s[_key] = Status()" % ( dictname, )) with self.block("else:"): self.emit("_statusstatus = _status.status") with self.block("if _statusstatus == _status.NORMAL:"): self.emit("self._pos = _status.pos") self.emit("return _status") with self.block("elif _statusstatus == _status.ERROR:"): self.emit("raise BacktrackException(_status.error)") if self.have_call: with self.block( "elif (_statusstatus == _status.INPROGRESS or\n" " _statusstatus == _status.LEFTRECURSION):"): self.emit("_status.status = _status.LEFTRECURSION") with self.block("if _status.result is not None:"): self.emit("self._pos = _status.pos") self.emit("return _status") with self.block("else:"): self.emit("raise BacktrackException(None)") with self.block( "elif _statusstatus == _status.SOMESOLUTIONS:"): self.emit("_status.status = _status.INPROGRESS") self.emit("_startingpos = self._pos") self.start_block("try:") self.emit("_result = None") self.emit("_error = None") def memoize_footer(self, name, args): dictname = "_dict_%s" % (name, ) if self.have_call: with self.block( "if _status.status == _status.LEFTRECURSION:"): with self.block("if _status.result is not None:"): with self.block("if _status.pos >= self._pos:"): self.emit("_status.status = _status.NORMAL") self.emit("self._pos = _status.pos") self.emit("return _status") self.emit("_status.pos = self._pos") self.emit("_status.status = _status.SOMESOLUTIONS") self.emit("_status.result = %s" % (self.resultname, )) self.emit("_status.error = _error") self.emit("self._pos = _startingpos") self.emit("return self._%s(%s)" % (name, ', '.join(args))) else: self.emit("assert _status.status != _status.LEFTRECURSION") self.emit("_status.status = _status.NORMAL") self.emit("_status.pos = self._pos") self.emit("_status.result = %s" % (self.resultname, )) self.emit("_status.error = _error") self.emit("return _status") self.end_block("try") with self.block("except BacktrackException, _exc:"): self.emit("_status.pos = -1") self.emit("_status.result = None") self.combine_error('_exc.error') self.emit("_status.error = _error") self.emit("_status.status = _status.ERROR") self.emit("raise BacktrackException(_error)") def choice_point(self, name=None): var = "_choice%s" % (self.namecount, ) self.namecount += 1 self.emit("%s = self._pos" % (var, )) return var def revert(self, var): self.emit("self._pos = %s" % (var, )) def visit_list(self, t): self.start_block("class Parser(object):") for elt in t.children: self.dispatch(elt) with self.block("def __init__(self, inputstream):"): for line in self.initcode: self.emit(line) self.emit("self._pos = 0") self.emit("self._inputstream = inputstream") if self.matchers: self.emit_regex_code() self.end_block("class") def emit_regex_code(self): for regex, matcher in self.matchers.iteritems(): with self.block( "def _regex%s(self):" % (abs(hash(regex)), )): c = self.choice_point() self.emit("_runner = self._Runner(self._inputstream, self._pos)") self.emit("_i = _runner.recognize_%s(self._pos)" % ( abs(hash(regex)), )) self.start_block("if _runner.last_matched_state == -1:") self.revert(c) self.emit("raise BacktrackException") self.end_block("if") self.emit("_upto = _runner.last_matched_index + 1") self.emit("_pos = self._pos") self.emit("assert _pos >= 0") self.emit("assert _upto >= 0") self.emit("_result = self._inputstream[_pos: _upto]") self.emit("self._pos = _upto") self.emit("return _result") with self.block("class _Runner(object):"): with self.block("def __init__(self, text, pos):"): self.emit("self.text = text") self.emit("self.pos = pos") self.emit("self.last_matched_state = -1") self.emit("self.last_matched_index = -1") self.emit("self.state = -1") for regex, matcher in self.matchers.iteritems(): matcher = str(matcher).replace( "def recognize(runner, i)", "def recognize_%s(runner, i)" % (abs(hash(regex)), )) self.emit(str(matcher)) def visit_production(self, t): name = t.children[0] if name in self.names: raise Exception("name %s appears twice" % (name, )) self.names[name] = True otherargs = t.children[1].children argswithself = ", ".join(["self"] + otherargs) argswithoutself = ", ".join(otherargs) with self.block("def %s(%s):" % (name, argswithself)): self.emit("return self._%s(%s).result" % (name, argswithoutself)) self.start_block("def _%s(%s):" % (name, argswithself, )) self.namecount = 0 self.resultname = "_result" self.have_call = False self.created_error = False allother = self.store_code_away() self.dispatch(t.children[-1]) subsequent = self.restore_code(allother) self.memoize_header(name, otherargs) self.add_code(subsequent) self.memoize_footer(name, otherargs) self.end_block("def") def visit_or(self, t, first=False): possibilities = t.children if len(possibilities) > 1: self.start_block("while 1:") for i, p in enumerate(possibilities): c = self.choice_point() with self.block("try:"): self.dispatch(p) self.emit("break") with self.block("except BacktrackException, _exc:"): self.combine_error('_exc.error') self.revert(c) if i == len(possibilities) - 1: self.emit("raise BacktrackException(_error)") self.dispatch(possibilities[-1]) if len(possibilities) > 1: self.emit("break") self.end_block("while") def visit_commands(self, t): for elt in t.children: self.dispatch(elt) def visit_maybe(self, t): c = self.choice_point() with self.block("try:"): self.dispatch(t.children[0]) with self.block("except BacktrackException:"): self.revert(c) def visit_repetition(self, t): name = "_all%s" % (self.namecount, ) self.namecount += 1 self.emit("%s = []" % (name, )) if t.children[0] == '+': self.dispatch(t.children[1]) self.emit("%s.append(_result)" % (name, )) with self.block("while 1:"): c = self.choice_point() with self.block("try:"): self.dispatch(t.children[1]) self.emit("%s.append(_result)" % (name, )) with self.block("except BacktrackException, _exc:"): self.combine_error('_exc.error') self.revert(c) self.emit("break") self.emit("_result = %s" % (name, )) def visit_exclusive(self, t): self.resultname = "_enclosed" self.dispatch(t.children[0]) self.emit("_enclosed = _result") def visit_ignore(self, t): resultname = "_before_discard%i" % (self.namecount, ) self.namecount += 1 self.emit("%s = _result" % (resultname, )) self.dispatch(t.children[0]) self.emit("_result = %s" % (resultname, )) def visit_negation(self, t): c = self.choice_point() resultname = "_stored_result%i" % (self.namecount, ) self.namecount += 1 child = t.children[0] self.emit("%s = _result" % (resultname, )) with self.block("try:"): self.dispatch(child) with self.block("except BacktrackException:"): self.revert(c) self.emit("_result = %s" % (resultname, )) with self.block("else:"): # heuristic to get nice error messages sometimes if isinstance(child, Symbol) and child.symbol == "QUOTE": error = "self._ErrorInformation(%s, ['NOT %s'])" % ( c, child.additional_info[1:-1], ) else: error = "None" self.emit("raise BacktrackException(%s)" % (error, )) def visit_lookahead(self, t): resultname = "_stored_result%i" % (self.namecount, ) self.emit("%s = _result" % (resultname, )) c = self.choice_point() self.dispatch(t.children[0]) self.revert(c) self.emit("_result = %s" % (resultname, )) def visit_named_command(self, t): name = t.children[0] self.dispatch(t.children[1]) self.emit("%s = _result" % (name, )) def visit_return(self, t): self.emit("_result = (%s)" % (t.children[0].additional_info[1:-1], )) def visit_if(self, t): if len(t.children) == 2: self.dispatch(t.children[0]) with self.block("if not (%s):" % ( t.children[-1].additional_info[1:-1], )): self.emit("raise BacktrackException(") self.emit(" self._ErrorInformation(") self.emit(" _startingpos, ['condition not met']))") def visit_choose(self, t): with self.block("for %s in (%s):" % ( t.children[0], t.children[1].additional_info[1:-1], )): with self.block("try:"): self.dispatch(t.children[2]) self.emit("break") with self.block("except BacktrackException, _exc:"): self.combine_error('_exc.error') with self.block("else:"): self.emit("raise BacktrackException(_error)") def visit_call(self, t): self.have_call = True args = ", ".join(['(%s)' % (arg.additional_info[1:-1], ) for arg in t.children[1].children]) if t.children[0].startswith("_"): callname = t.children[0] self.emit("_result = self.%s(%s)" % (callname, args)) else: callname = "_" + t.children[0] self.emit("_call_status = self.%s(%s)" % (callname, args)) self.emit("_result = _call_status.result") self.combine_error('_call_status.error') def visit_REGEX(self, t): r = t.additional_info[1:-1].replace('\\`', '`') matcher = self.get_regex(r) self.emit("_result = self._regex%s()" % (abs(hash(r)), )) def visit_QUOTE(self, t): self.emit("_result = self.__chars__(%r)" % ( str(t.additional_info[1:-1]), )) def get_regex(self, r): from rpython.rlib.parsing.regexparse import parse_regex if r in self.matchers: return self.matchers[r] regex = parse_regex(r) if regex is None: raise ValueError( "%s is not a valid regular expression" % regextext) automaton = regex.make_automaton().make_deterministic() automaton.optimize() matcher = automaton.make_lexing_code() self.matchers[r] = py.code.Source(matcher) return matcher def combine_error(self, newerror): if self.created_error: self.emit( "_error = self._combine_errors(_error, %s)" % (newerror, )) else: self.emit("_error = %s" % (newerror, )) self.created_error = True class MetaPackratParser(type): def __new__(cls, name_, bases, dct): if '__doc__' not in dct or dct['__doc__'] is None: return type.__new__(cls, name_, bases, dct) from pypackrat import PyPackratSyntaxParser import sys, new, inspect frame = sys._getframe(1) source = dct['__doc__'] p = PyPackratSyntaxParser(source) try: t = p.file() except BacktrackException, exc: print exc.error.nice_error_message("<docstring>", source) lineno, _ = exc.error.get_line_column(source) errorline = source.split("\n")[lineno] try: code = frame.f_code source = inspect.getsource(code) lineno_in_orig = source.split("\n").index(errorline) if lineno_in_orig >= 0: print "probable error position:" print "file:", code.co_filename print "line:", lineno_in_orig + code.co_firstlineno + 1 except (IOError, ValueError): pass raise exc t = t.visit(TreeOptimizer()) visitor = ParserBuilder() t.visit(visitor) pcls = visitor.make_parser() forbidden = dict.fromkeys(("__weakref__ __doc__ " "__dict__ __module__").split()) initthere = "__init__" in dct #XXX XXX XXX if 'BacktrackException' not in frame.f_globals: raise Exception("must import BacktrackException") if 'Status' not in frame.f_globals: raise Exception("must import Status") result = type.__new__(cls, name_, bases, dct) for key, value in pcls.__dict__.iteritems(): if isinstance(value, type): value.__module__ = result.__module__ #XXX help the annotator if isinstance(value, type(lambda: None)): value = new.function(value.func_code, frame.f_globals) if not hasattr(result, key) and key not in forbidden: setattr(result, key, value) if result.__init__ == object.__init__: result.__init__ = pcls.__dict__['__init__'] result.init_parser = pcls.__dict__['__init__'] result._code = visitor.get_code() return result class PackratParser(object): __metaclass__ = MetaPackratParser _ErrorInformation = ErrorInformation _BacktrackException = BacktrackException def __chars__(self, chars): #print '__chars__(%s)' % (chars, ), self._pos try: for i in range(len(chars)): if self._inputstream[self._pos + i] != chars[i]: raise BacktrackException( self._ErrorInformation(self._pos, [chars])) self._pos += len(chars) return chars except IndexError: raise BacktrackException( self._ErrorInformation(self._pos, [chars])) def __any__(self): try: result = self._inputstream[self._pos] self._pos += 1 return result except IndexError: raise BacktrackException( self._ErrorInformation(self._pos, ['anything'])) def _combine_errors(self, error1, error2): if error1 is None: return error2 if (error2 is None or error1.pos > error2.pos or len(error2.expected) == 0): return error1 elif error2.pos > error1.pos or len(error1.expected) == 0: return error2 expected = [] already_there = {} for ep in [error1.expected, error2.expected]: for reason in ep: if reason not in already_there: already_there[reason] = True expected.append(reason) return ErrorInformation(error1.pos, expected) def test_generate(): f = py.path.local(__file__).dirpath().join("pypackrat.py") from pypackrat import PyPackratSyntaxParser p = PyPackratSyntaxParser(syntax) t = p.file() t = t.visit(TreeOptimizer()) visitor = ParserBuilder() t.visit(visitor) code = visitor.get_code() content = """ from rpython.rlib.parsing.tree import Nonterminal, Symbol from makepackrat import PackratParser, BacktrackException, Status %s class PyPackratSyntaxParser(PackratParser): def __init__(self, stream): self.init_parser(stream) forbidden = dict.fromkeys(("__weakref__ __doc__ " "__dict__ __module__").split()) initthere = "__init__" in PyPackratSyntaxParser.__dict__ for key, value in Parser.__dict__.iteritems(): if key not in PyPackratSyntaxParser.__dict__ and key not in forbidden: setattr(PyPackratSyntaxParser, key, value) PyPackratSyntaxParser.init_parser = Parser.__init__.im_func """ % (code, ) print content f.write(content)
mit
-3,646,075,986,021,694,500
31.645722
81
0.528113
false
mancoast/CPythonPyc_test
fail/311_test_builtin.py
1
44506
# Python test set -- built-in functions import test.support, unittest from test.support import fcmp, TESTFN, unlink, run_unittest, \ run_with_locale from operator import neg import sys, warnings, random, collections, io, fractions warnings.filterwarnings("ignore", "hex../oct.. of negative int", FutureWarning, __name__) warnings.filterwarnings("ignore", "integer argument expected", DeprecationWarning, "unittest") import builtins class Squares: def __init__(self, max): self.max = max self.sofar = [] def __len__(self): return len(self.sofar) def __getitem__(self, i): if not 0 <= i < self.max: raise IndexError n = len(self.sofar) while n <= i: self.sofar.append(n*n) n += 1 return self.sofar[i] class StrSquares: def __init__(self, max): self.max = max self.sofar = [] def __len__(self): return len(self.sofar) def __getitem__(self, i): if not 0 <= i < self.max: raise IndexError n = len(self.sofar) while n <= i: self.sofar.append(str(n*n)) n += 1 return self.sofar[i] class BitBucket: def write(self, line): pass test_conv_no_sign = [ ('0', 0), ('1', 1), ('9', 9), ('10', 10), ('99', 99), ('100', 100), ('314', 314), (' 314', 314), ('314 ', 314), (' \t\t 314 \t\t ', 314), (repr(sys.maxsize), sys.maxsize), (' 1x', ValueError), (' 1 ', 1), (' 1\02 ', ValueError), ('', ValueError), (' ', ValueError), (' \t\t ', ValueError), (str(b'\u0663\u0661\u0664 ','raw-unicode-escape'), 314), (chr(0x200), ValueError), ] test_conv_sign = [ ('0', 0), ('1', 1), ('9', 9), ('10', 10), ('99', 99), ('100', 100), ('314', 314), (' 314', ValueError), ('314 ', 314), (' \t\t 314 \t\t ', ValueError), (repr(sys.maxsize), sys.maxsize), (' 1x', ValueError), (' 1 ', ValueError), (' 1\02 ', ValueError), ('', ValueError), (' ', ValueError), (' \t\t ', ValueError), (str(b'\u0663\u0661\u0664 ','raw-unicode-escape'), 314), (chr(0x200), ValueError), ] class TestFailingBool: def __bool__(self): raise RuntimeError class TestFailingIter: def __iter__(self): raise RuntimeError class BuiltinTest(unittest.TestCase): def test_import(self): __import__('sys') __import__('time') __import__('string') __import__(name='sys') __import__(name='time', level=0) self.assertRaises(ImportError, __import__, 'spamspam') self.assertRaises(TypeError, __import__, 1, 2, 3, 4) self.assertRaises(ValueError, __import__, '') self.assertRaises(TypeError, __import__, 'sys', name='sys') def test_abs(self): # int self.assertEqual(abs(0), 0) self.assertEqual(abs(1234), 1234) self.assertEqual(abs(-1234), 1234) self.assertTrue(abs(-sys.maxsize-1) > 0) # float self.assertEqual(abs(0.0), 0.0) self.assertEqual(abs(3.14), 3.14) self.assertEqual(abs(-3.14), 3.14) # long self.assertEqual(abs(0), 0) self.assertEqual(abs(1234), 1234) self.assertEqual(abs(-1234), 1234) # str self.assertRaises(TypeError, abs, 'a') def test_all(self): self.assertEqual(all([2, 4, 6]), True) self.assertEqual(all([2, None, 6]), False) self.assertRaises(RuntimeError, all, [2, TestFailingBool(), 6]) self.assertRaises(RuntimeError, all, TestFailingIter()) self.assertRaises(TypeError, all, 10) # Non-iterable self.assertRaises(TypeError, all) # No args self.assertRaises(TypeError, all, [2, 4, 6], []) # Too many args self.assertEqual(all([]), True) # Empty iterator S = [50, 60] self.assertEqual(all(x > 42 for x in S), True) S = [50, 40, 60] self.assertEqual(all(x > 42 for x in S), False) def test_any(self): self.assertEqual(any([None, None, None]), False) self.assertEqual(any([None, 4, None]), True) self.assertRaises(RuntimeError, any, [None, TestFailingBool(), 6]) self.assertRaises(RuntimeError, all, TestFailingIter()) self.assertRaises(TypeError, any, 10) # Non-iterable self.assertRaises(TypeError, any) # No args self.assertRaises(TypeError, any, [2, 4, 6], []) # Too many args self.assertEqual(any([]), False) # Empty iterator S = [40, 60, 30] self.assertEqual(any(x > 42 for x in S), True) S = [10, 20, 30] self.assertEqual(any(x > 42 for x in S), False) def test_ascii(self): self.assertEqual(ascii(''), '\'\'') self.assertEqual(ascii(0), '0') self.assertEqual(ascii(0), '0') self.assertEqual(ascii(()), '()') self.assertEqual(ascii([]), '[]') self.assertEqual(ascii({}), '{}') a = [] a.append(a) self.assertEqual(ascii(a), '[[...]]') a = {} a[0] = a self.assertEqual(ascii(a), '{0: {...}}') def test_neg(self): x = -sys.maxsize-1 self.assertTrue(isinstance(x, int)) self.assertEqual(-x, sys.maxsize+1) # XXX(nnorwitz): This test case for callable should probably be removed. def test_callable(self): self.assertTrue(hasattr(len, '__call__')) def f(): pass self.assertTrue(hasattr(f, '__call__')) class C: def meth(self): pass self.assertTrue(hasattr(C, '__call__')) x = C() self.assertTrue(hasattr(x.meth, '__call__')) self.assertTrue(not hasattr(x, '__call__')) class D(C): def __call__(self): pass y = D() self.assertTrue(hasattr(y, '__call__')) y() def test_chr(self): self.assertEqual(chr(32), ' ') self.assertEqual(chr(65), 'A') self.assertEqual(chr(97), 'a') self.assertEqual(chr(0xff), '\xff') self.assertRaises(ValueError, chr, 1<<24) self.assertEqual(chr(sys.maxunicode), str(('\\U%08x' % (sys.maxunicode)).encode("ascii"), 'unicode-escape')) self.assertRaises(TypeError, chr) self.assertEqual(chr(0x0000FFFF), "\U0000FFFF") self.assertEqual(chr(0x00010000), "\U00010000") self.assertEqual(chr(0x00010001), "\U00010001") self.assertEqual(chr(0x000FFFFE), "\U000FFFFE") self.assertEqual(chr(0x000FFFFF), "\U000FFFFF") self.assertEqual(chr(0x00100000), "\U00100000") self.assertEqual(chr(0x00100001), "\U00100001") self.assertEqual(chr(0x0010FFFE), "\U0010FFFE") self.assertEqual(chr(0x0010FFFF), "\U0010FFFF") self.assertRaises(ValueError, chr, -1) self.assertRaises(ValueError, chr, 0x00110000) self.assertRaises((OverflowError, ValueError), chr, 2**32) def test_cmp(self): self.assertTrue(not hasattr(builtins, "cmp")) def test_compile(self): compile('print(1)\n', '', 'exec') bom = b'\xef\xbb\xbf' compile(bom + b'print(1)\n', '', 'exec') compile(source='pass', filename='?', mode='exec') compile(dont_inherit=0, filename='tmp', source='0', mode='eval') compile('pass', '?', dont_inherit=1, mode='exec') compile(memoryview(b"text"), "name", "exec") self.assertRaises(TypeError, compile) self.assertRaises(ValueError, compile, 'print(42)\n', '<string>', 'badmode') self.assertRaises(ValueError, compile, 'print(42)\n', '<string>', 'single', 0xff) self.assertRaises(TypeError, compile, chr(0), 'f', 'exec') self.assertRaises(TypeError, compile, 'pass', '?', 'exec', mode='eval', source='0', filename='tmp') compile('print("\xe5")\n', '', 'exec') self.assertRaises(TypeError, compile, chr(0), 'f', 'exec') self.assertRaises(ValueError, compile, str('a = 1'), 'f', 'bad') def test_delattr(self): import sys sys.spam = 1 delattr(sys, 'spam') self.assertRaises(TypeError, delattr) def test_dir(self): # dir(wrong number of arguments) self.assertRaises(TypeError, dir, 42, 42) # dir() - local scope local_var = 1 self.assertTrue('local_var' in dir()) # dir(module) import sys self.assertTrue('exit' in dir(sys)) # dir(module_with_invalid__dict__) import types class Foo(types.ModuleType): __dict__ = 8 f = Foo("foo") self.assertRaises(TypeError, dir, f) # dir(type) self.assertTrue("strip" in dir(str)) self.assertTrue("__mro__" not in dir(str)) # dir(obj) class Foo(object): def __init__(self): self.x = 7 self.y = 8 self.z = 9 f = Foo() self.assertTrue("y" in dir(f)) # dir(obj_no__dict__) class Foo(object): __slots__ = [] f = Foo() self.assertTrue("__repr__" in dir(f)) # dir(obj_no__class__with__dict__) # (an ugly trick to cause getattr(f, "__class__") to fail) class Foo(object): __slots__ = ["__class__", "__dict__"] def __init__(self): self.bar = "wow" f = Foo() self.assertTrue("__repr__" not in dir(f)) self.assertTrue("bar" in dir(f)) # dir(obj_using __dir__) class Foo(object): def __dir__(self): return ["kan", "ga", "roo"] f = Foo() self.assertTrue(dir(f) == ["ga", "kan", "roo"]) # dir(obj__dir__not_list) class Foo(object): def __dir__(self): return 7 f = Foo() self.assertRaises(TypeError, dir, f) # dir(traceback) try: raise IndexError except: self.assertEqual(len(dir(sys.exc_info()[2])), 4) def test_divmod(self): self.assertEqual(divmod(12, 7), (1, 5)) self.assertEqual(divmod(-12, 7), (-2, 2)) self.assertEqual(divmod(12, -7), (-2, -2)) self.assertEqual(divmod(-12, -7), (1, -5)) self.assertEqual(divmod(12, 7), (1, 5)) self.assertEqual(divmod(-12, 7), (-2, 2)) self.assertEqual(divmod(12, -7), (-2, -2)) self.assertEqual(divmod(-12, -7), (1, -5)) self.assertEqual(divmod(12, 7), (1, 5)) self.assertEqual(divmod(-12, 7), (-2, 2)) self.assertEqual(divmod(12, -7), (-2, -2)) self.assertEqual(divmod(-12, -7), (1, -5)) self.assertEqual(divmod(-sys.maxsize-1, -1), (sys.maxsize+1, 0)) self.assertTrue(not fcmp(divmod(3.25, 1.0), (3.0, 0.25))) self.assertTrue(not fcmp(divmod(-3.25, 1.0), (-4.0, 0.75))) self.assertTrue(not fcmp(divmod(3.25, -1.0), (-4.0, -0.75))) self.assertTrue(not fcmp(divmod(-3.25, -1.0), (3.0, -0.25))) self.assertRaises(TypeError, divmod) def test_eval(self): self.assertEqual(eval('1+1'), 2) self.assertEqual(eval(' 1+1\n'), 2) globals = {'a': 1, 'b': 2} locals = {'b': 200, 'c': 300} self.assertEqual(eval('a', globals) , 1) self.assertEqual(eval('a', globals, locals), 1) self.assertEqual(eval('b', globals, locals), 200) self.assertEqual(eval('c', globals, locals), 300) globals = {'a': 1, 'b': 2} locals = {'b': 200, 'c': 300} bom = b'\xef\xbb\xbf' self.assertEqual(eval(bom + b'a', globals, locals), 1) self.assertEqual(eval('"\xe5"', globals), "\xe5") self.assertRaises(TypeError, eval) self.assertRaises(TypeError, eval, ()) self.assertRaises(SyntaxError, eval, bom[:2] + b'a') def test_general_eval(self): # Tests that general mappings can be used for the locals argument class M: "Test mapping interface versus possible calls from eval()." def __getitem__(self, key): if key == 'a': return 12 raise KeyError def keys(self): return list('xyz') m = M() g = globals() self.assertEqual(eval('a', g, m), 12) self.assertRaises(NameError, eval, 'b', g, m) self.assertEqual(eval('dir()', g, m), list('xyz')) self.assertEqual(eval('globals()', g, m), g) self.assertEqual(eval('locals()', g, m), m) self.assertRaises(TypeError, eval, 'a', m) class A: "Non-mapping" pass m = A() self.assertRaises(TypeError, eval, 'a', g, m) # Verify that dict subclasses work as well class D(dict): def __getitem__(self, key): if key == 'a': return 12 return dict.__getitem__(self, key) def keys(self): return list('xyz') d = D() self.assertEqual(eval('a', g, d), 12) self.assertRaises(NameError, eval, 'b', g, d) self.assertEqual(eval('dir()', g, d), list('xyz')) self.assertEqual(eval('globals()', g, d), g) self.assertEqual(eval('locals()', g, d), d) # Verify locals stores (used by list comps) eval('[locals() for i in (2,3)]', g, d) eval('[locals() for i in (2,3)]', g, collections.UserDict()) class SpreadSheet: "Sample application showing nested, calculated lookups." _cells = {} def __setitem__(self, key, formula): self._cells[key] = formula def __getitem__(self, key): return eval(self._cells[key], globals(), self) ss = SpreadSheet() ss['a1'] = '5' ss['a2'] = 'a1*6' ss['a3'] = 'a2*7' self.assertEqual(ss['a3'], 210) # Verify that dir() catches a non-list returned by eval # SF bug #1004669 class C: def __getitem__(self, item): raise KeyError(item) def keys(self): return 1 # used to be 'a' but that's no longer an error self.assertRaises(TypeError, eval, 'dir()', globals(), C()) def test_exec(self): g = {} exec('z = 1', g) if '__builtins__' in g: del g['__builtins__'] self.assertEqual(g, {'z': 1}) exec('z = 1+1', g) if '__builtins__' in g: del g['__builtins__'] self.assertEqual(g, {'z': 2}) g = {} l = {} import warnings warnings.filterwarnings("ignore", "global statement", module="<string>") exec('global a; a = 1; b = 2', g, l) if '__builtins__' in g: del g['__builtins__'] if '__builtins__' in l: del l['__builtins__'] self.assertEqual((g, l), ({'a': 1}, {'b': 2})) def test_exec_redirected(self): savestdout = sys.stdout sys.stdout = None # Whatever that cannot flush() try: # Used to raise SystemError('error return without exception set') exec('a') except NameError: pass finally: sys.stdout = savestdout def test_filter(self): self.assertEqual(list(filter(lambda c: 'a' <= c <= 'z', 'Hello World')), list('elloorld')) self.assertEqual(list(filter(None, [1, 'hello', [], [3], '', None, 9, 0])), [1, 'hello', [3], 9]) self.assertEqual(list(filter(lambda x: x > 0, [1, -3, 9, 0, 2])), [1, 9, 2]) self.assertEqual(list(filter(None, Squares(10))), [1, 4, 9, 16, 25, 36, 49, 64, 81]) self.assertEqual(list(filter(lambda x: x%2, Squares(10))), [1, 9, 25, 49, 81]) def identity(item): return 1 filter(identity, Squares(5)) self.assertRaises(TypeError, filter) class BadSeq(object): def __getitem__(self, index): if index<4: return 42 raise ValueError self.assertRaises(ValueError, list, filter(lambda x: x, BadSeq())) def badfunc(): pass self.assertRaises(TypeError, list, filter(badfunc, range(5))) # test bltinmodule.c::filtertuple() self.assertEqual(list(filter(None, (1, 2))), [1, 2]) self.assertEqual(list(filter(lambda x: x>=3, (1, 2, 3, 4))), [3, 4]) self.assertRaises(TypeError, list, filter(42, (1, 2))) def test_getattr(self): import sys self.assertTrue(getattr(sys, 'stdout') is sys.stdout) self.assertRaises(TypeError, getattr, sys, 1) self.assertRaises(TypeError, getattr, sys, 1, "foo") self.assertRaises(TypeError, getattr) self.assertRaises(AttributeError, getattr, sys, chr(sys.maxunicode)) def test_hasattr(self): import sys self.assertTrue(hasattr(sys, 'stdout')) self.assertRaises(TypeError, hasattr, sys, 1) self.assertRaises(TypeError, hasattr) self.assertEqual(False, hasattr(sys, chr(sys.maxunicode))) # Check that hasattr allows SystemExit and KeyboardInterrupts by class A: def __getattr__(self, what): raise KeyboardInterrupt self.assertRaises(KeyboardInterrupt, hasattr, A(), "b") class B: def __getattr__(self, what): raise SystemExit self.assertRaises(SystemExit, hasattr, B(), "b") def test_hash(self): hash(None) self.assertEqual(hash(1), hash(1)) self.assertEqual(hash(1), hash(1.0)) hash('spam') self.assertEqual(hash('spam'), hash(b'spam')) hash((0,1,2,3)) def f(): pass self.assertRaises(TypeError, hash, []) self.assertRaises(TypeError, hash, {}) # Bug 1536021: Allow hash to return long objects class X: def __hash__(self): return 2**100 self.assertEquals(type(hash(X())), int) class Y(object): def __hash__(self): return 2**100 self.assertEquals(type(hash(Y())), int) class Z(int): def __hash__(self): return self self.assertEquals(hash(Z(42)), hash(42)) def test_hex(self): self.assertEqual(hex(16), '0x10') self.assertEqual(hex(16), '0x10') self.assertEqual(hex(-16), '-0x10') self.assertEqual(hex(-16), '-0x10') self.assertRaises(TypeError, hex, {}) def test_id(self): id(None) id(1) id(1) id(1.0) id('spam') id((0,1,2,3)) id([0,1,2,3]) id({'spam': 1, 'eggs': 2, 'ham': 3}) # Test input() later, alphabetized as if it were raw_input def test_iter(self): self.assertRaises(TypeError, iter) self.assertRaises(TypeError, iter, 42, 42) lists = [("1", "2"), ["1", "2"], "12"] for l in lists: i = iter(l) self.assertEqual(next(i), '1') self.assertEqual(next(i), '2') self.assertRaises(StopIteration, next, i) def test_isinstance(self): class C: pass class D(C): pass class E: pass c = C() d = D() e = E() self.assertTrue(isinstance(c, C)) self.assertTrue(isinstance(d, C)) self.assertTrue(not isinstance(e, C)) self.assertTrue(not isinstance(c, D)) self.assertTrue(not isinstance('foo', E)) self.assertRaises(TypeError, isinstance, E, 'foo') self.assertRaises(TypeError, isinstance) def test_issubclass(self): class C: pass class D(C): pass class E: pass c = C() d = D() e = E() self.assertTrue(issubclass(D, C)) self.assertTrue(issubclass(C, C)) self.assertTrue(not issubclass(C, D)) self.assertRaises(TypeError, issubclass, 'foo', E) self.assertRaises(TypeError, issubclass, E, 'foo') self.assertRaises(TypeError, issubclass) def test_len(self): self.assertEqual(len('123'), 3) self.assertEqual(len(()), 0) self.assertEqual(len((1, 2, 3, 4)), 4) self.assertEqual(len([1, 2, 3, 4]), 4) self.assertEqual(len({}), 0) self.assertEqual(len({'a':1, 'b': 2}), 2) class BadSeq: def __len__(self): raise ValueError self.assertRaises(ValueError, len, BadSeq()) class InvalidLen: def __len__(self): return None self.assertRaises(TypeError, len, InvalidLen()) class FloatLen: def __len__(self): return 4.5 self.assertRaises(TypeError, len, FloatLen()) class HugeLen: def __len__(self): return sys.maxsize + 1 self.assertRaises(OverflowError, len, HugeLen()) def test_map(self): self.assertEqual( list(map(lambda x: x*x, range(1,4))), [1, 4, 9] ) try: from math import sqrt except ImportError: def sqrt(x): return pow(x, 0.5) self.assertEqual( list(map(lambda x: list(map(sqrt, x)), [[16, 4], [81, 9]])), [[4.0, 2.0], [9.0, 3.0]] ) self.assertEqual( list(map(lambda x, y: x+y, [1,3,2], [9,1,4])), [10, 4, 6] ) def plus(*v): accu = 0 for i in v: accu = accu + i return accu self.assertEqual( list(map(plus, [1, 3, 7])), [1, 3, 7] ) self.assertEqual( list(map(plus, [1, 3, 7], [4, 9, 2])), [1+4, 3+9, 7+2] ) self.assertEqual( list(map(plus, [1, 3, 7], [4, 9, 2], [1, 1, 0])), [1+4+1, 3+9+1, 7+2+0] ) self.assertEqual( list(map(int, Squares(10))), [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] ) def Max(a, b): if a is None: return b if b is None: return a return max(a, b) self.assertEqual( list(map(Max, Squares(3), Squares(2))), [0, 1] ) self.assertRaises(TypeError, map) self.assertRaises(TypeError, map, lambda x: x, 42) class BadSeq: def __iter__(self): raise ValueError yield None self.assertRaises(ValueError, list, map(lambda x: x, BadSeq())) def badfunc(x): raise RuntimeError self.assertRaises(RuntimeError, list, map(badfunc, range(5))) def test_max(self): self.assertEqual(max('123123'), '3') self.assertEqual(max(1, 2, 3), 3) self.assertEqual(max((1, 2, 3, 1, 2, 3)), 3) self.assertEqual(max([1, 2, 3, 1, 2, 3]), 3) self.assertEqual(max(1, 2, 3.0), 3.0) self.assertEqual(max(1, 2.0, 3), 3) self.assertEqual(max(1.0, 2, 3), 3) for stmt in ( "max(key=int)", # no args "max(1, key=int)", # single arg not iterable "max(1, 2, keystone=int)", # wrong keyword "max(1, 2, key=int, abc=int)", # two many keywords "max(1, 2, key=1)", # keyfunc is not callable ): try: exec(stmt, globals()) except TypeError: pass else: self.fail(stmt) self.assertEqual(max((1,), key=neg), 1) # one elem iterable self.assertEqual(max((1,2), key=neg), 1) # two elem iterable self.assertEqual(max(1, 2, key=neg), 1) # two elems data = [random.randrange(200) for i in range(100)] keys = dict((elem, random.randrange(50)) for elem in data) f = keys.__getitem__ self.assertEqual(max(data, key=f), sorted(reversed(data), key=f)[-1]) def test_min(self): self.assertEqual(min('123123'), '1') self.assertEqual(min(1, 2, 3), 1) self.assertEqual(min((1, 2, 3, 1, 2, 3)), 1) self.assertEqual(min([1, 2, 3, 1, 2, 3]), 1) self.assertEqual(min(1, 2, 3.0), 1) self.assertEqual(min(1, 2.0, 3), 1) self.assertEqual(min(1.0, 2, 3), 1.0) self.assertRaises(TypeError, min) self.assertRaises(TypeError, min, 42) self.assertRaises(ValueError, min, ()) class BadSeq: def __getitem__(self, index): raise ValueError self.assertRaises(ValueError, min, BadSeq()) for stmt in ( "min(key=int)", # no args "min(1, key=int)", # single arg not iterable "min(1, 2, keystone=int)", # wrong keyword "min(1, 2, key=int, abc=int)", # two many keywords "min(1, 2, key=1)", # keyfunc is not callable ): try: exec(stmt, globals()) except TypeError: pass else: self.fail(stmt) self.assertEqual(min((1,), key=neg), 1) # one elem iterable self.assertEqual(min((1,2), key=neg), 2) # two elem iterable self.assertEqual(min(1, 2, key=neg), 2) # two elems data = [random.randrange(200) for i in range(100)] keys = dict((elem, random.randrange(50)) for elem in data) f = keys.__getitem__ self.assertEqual(min(data, key=f), sorted(data, key=f)[0]) def test_next(self): it = iter(range(2)) self.assertEqual(next(it), 0) self.assertEqual(next(it), 1) self.assertRaises(StopIteration, next, it) self.assertRaises(StopIteration, next, it) self.assertEquals(next(it, 42), 42) class Iter(object): def __iter__(self): return self def __next__(self): raise StopIteration it = iter(Iter()) self.assertEquals(next(it, 42), 42) self.assertRaises(StopIteration, next, it) def gen(): yield 1 return it = gen() self.assertEquals(next(it), 1) self.assertRaises(StopIteration, next, it) self.assertEquals(next(it, 42), 42) def test_oct(self): self.assertEqual(oct(100), '0o144') self.assertEqual(oct(100), '0o144') self.assertEqual(oct(-100), '-0o144') self.assertEqual(oct(-100), '-0o144') self.assertRaises(TypeError, oct, ()) def write_testfile(self): # NB the first 4 lines are also used to test input, below fp = open(TESTFN, 'w') try: fp.write('1+1\n') fp.write('1+1\n') fp.write('The quick brown fox jumps over the lazy dog') fp.write('.\n') fp.write('Dear John\n') fp.write('XXX'*100) fp.write('YYY'*100) finally: fp.close() def test_open(self): self.write_testfile() fp = open(TESTFN, 'r') try: self.assertEqual(fp.readline(4), '1+1\n') self.assertEqual(fp.readline(4), '1+1\n') self.assertEqual(fp.readline(), 'The quick brown fox jumps over the lazy dog.\n') self.assertEqual(fp.readline(4), 'Dear') self.assertEqual(fp.readline(100), ' John\n') self.assertEqual(fp.read(300), 'XXX'*100) self.assertEqual(fp.read(1000), 'YYY'*100) finally: fp.close() unlink(TESTFN) def test_ord(self): self.assertEqual(ord(' '), 32) self.assertEqual(ord('A'), 65) self.assertEqual(ord('a'), 97) self.assertEqual(ord('\x80'), 128) self.assertEqual(ord('\xff'), 255) self.assertEqual(ord(b' '), 32) self.assertEqual(ord(b'A'), 65) self.assertEqual(ord(b'a'), 97) self.assertEqual(ord(b'\x80'), 128) self.assertEqual(ord(b'\xff'), 255) self.assertEqual(ord(chr(sys.maxunicode)), sys.maxunicode) self.assertRaises(TypeError, ord, 42) self.assertEqual(ord(chr(0x10FFFF)), 0x10FFFF) self.assertEqual(ord("\U0000FFFF"), 0x0000FFFF) self.assertEqual(ord("\U00010000"), 0x00010000) self.assertEqual(ord("\U00010001"), 0x00010001) self.assertEqual(ord("\U000FFFFE"), 0x000FFFFE) self.assertEqual(ord("\U000FFFFF"), 0x000FFFFF) self.assertEqual(ord("\U00100000"), 0x00100000) self.assertEqual(ord("\U00100001"), 0x00100001) self.assertEqual(ord("\U0010FFFE"), 0x0010FFFE) self.assertEqual(ord("\U0010FFFF"), 0x0010FFFF) def test_pow(self): self.assertEqual(pow(0,0), 1) self.assertEqual(pow(0,1), 0) self.assertEqual(pow(1,0), 1) self.assertEqual(pow(1,1), 1) self.assertEqual(pow(2,0), 1) self.assertEqual(pow(2,10), 1024) self.assertEqual(pow(2,20), 1024*1024) self.assertEqual(pow(2,30), 1024*1024*1024) self.assertEqual(pow(-2,0), 1) self.assertEqual(pow(-2,1), -2) self.assertEqual(pow(-2,2), 4) self.assertEqual(pow(-2,3), -8) self.assertEqual(pow(0,0), 1) self.assertEqual(pow(0,1), 0) self.assertEqual(pow(1,0), 1) self.assertEqual(pow(1,1), 1) self.assertEqual(pow(2,0), 1) self.assertEqual(pow(2,10), 1024) self.assertEqual(pow(2,20), 1024*1024) self.assertEqual(pow(2,30), 1024*1024*1024) self.assertEqual(pow(-2,0), 1) self.assertEqual(pow(-2,1), -2) self.assertEqual(pow(-2,2), 4) self.assertEqual(pow(-2,3), -8) self.assertAlmostEqual(pow(0.,0), 1.) self.assertAlmostEqual(pow(0.,1), 0.) self.assertAlmostEqual(pow(1.,0), 1.) self.assertAlmostEqual(pow(1.,1), 1.) self.assertAlmostEqual(pow(2.,0), 1.) self.assertAlmostEqual(pow(2.,10), 1024.) self.assertAlmostEqual(pow(2.,20), 1024.*1024.) self.assertAlmostEqual(pow(2.,30), 1024.*1024.*1024.) self.assertAlmostEqual(pow(-2.,0), 1.) self.assertAlmostEqual(pow(-2.,1), -2.) self.assertAlmostEqual(pow(-2.,2), 4.) self.assertAlmostEqual(pow(-2.,3), -8.) for x in 2, 2, 2.0: for y in 10, 10, 10.0: for z in 1000, 1000, 1000.0: if isinstance(x, float) or \ isinstance(y, float) or \ isinstance(z, float): self.assertRaises(TypeError, pow, x, y, z) else: self.assertAlmostEqual(pow(x, y, z), 24.0) self.assertAlmostEqual(pow(-1, 0.5), 1j) self.assertAlmostEqual(pow(-1, 1/3), 0.5 + 0.8660254037844386j) self.assertRaises(TypeError, pow, -1, -2, 3) self.assertRaises(ValueError, pow, 1, 2, 0) self.assertRaises(TypeError, pow, -1, -2, 3) self.assertRaises(ValueError, pow, 1, 2, 0) self.assertRaises(TypeError, pow) def test_range(self): self.assertEqual(list(range(3)), [0, 1, 2]) self.assertEqual(list(range(1, 5)), [1, 2, 3, 4]) self.assertEqual(list(range(0)), []) self.assertEqual(list(range(-3)), []) self.assertEqual(list(range(1, 10, 3)), [1, 4, 7]) #self.assertEqual(list(range(5, -5, -3)), [5, 2, -1, -4]) #issue 6334: the internal stored range length was being #computed incorrectly in some cases involving large arguments. x = range(10**20, 10**20+10, 3) self.assertEqual(len(x), 4) self.assertEqual(len(list(x)), 4) x = range(10**20+10, 10**20, 3) self.assertEqual(len(x), 0) self.assertEqual(len(list(x)), 0) x = range(10**20, 10**20+10, -3) self.assertEqual(len(x), 0) self.assertEqual(len(list(x)), 0) x = range(10**20+10, 10**20, -3) self.assertEqual(len(x), 4) self.assertEqual(len(list(x)), 4) """ XXX(nnorwitz): # Now test range() with longs self.assertEqual(list(range(-2**100)), []) self.assertEqual(list(range(0, -2**100)), []) self.assertEqual(list(range(0, 2**100, -1)), []) self.assertEqual(list(range(0, 2**100, -1)), []) a = int(10 * sys.maxsize) b = int(100 * sys.maxsize) c = int(50 * sys.maxsize) self.assertEqual(list(range(a, a+2)), [a, a+1]) self.assertEqual(list(range(a+2, a, -1)), [a+2, a+1]) self.assertEqual(list(range(a+4, a, -2)), [a+4, a+2]) seq = list(range(a, b, c)) self.assertTrue(a in seq) self.assertTrue(b not in seq) self.assertEqual(len(seq), 2) seq = list(range(b, a, -c)) self.assertTrue(b in seq) self.assertTrue(a not in seq) self.assertEqual(len(seq), 2) seq = list(range(-a, -b, -c)) self.assertTrue(-a in seq) self.assertTrue(-b not in seq) self.assertEqual(len(seq), 2) self.assertRaises(TypeError, range) self.assertRaises(TypeError, range, 1, 2, 3, 4) self.assertRaises(ValueError, range, 1, 2, 0) self.assertRaises(ValueError, range, a, a + 1, int(0)) class badzero(int): def __eq__(self, other): raise RuntimeError __ne__ = __lt__ = __gt__ = __le__ = __ge__ = __eq__ # XXX This won't (but should!) raise RuntimeError if a is an int... self.assertRaises(RuntimeError, range, a, a + 1, badzero(1)) """ # Reject floats when it would require PyLongs to represent. # (smaller floats still accepted, but deprecated) self.assertRaises(TypeError, range, 1e100, 1e101, 1e101) self.assertRaises(TypeError, range, 0, "spam") self.assertRaises(TypeError, range, 0, 42, "spam") #NEAL self.assertRaises(OverflowError, range, -sys.maxsize, sys.maxsize) #NEAL self.assertRaises(OverflowError, range, 0, 2*sys.maxsize) self.assertRaises(OverflowError, len, range(0, sys.maxsize**10)) def test_input(self): self.write_testfile() fp = open(TESTFN, 'r') savestdin = sys.stdin savestdout = sys.stdout # Eats the echo try: sys.stdin = fp sys.stdout = BitBucket() self.assertEqual(input(), "1+1") self.assertEqual(input('testing\n'), "1+1") self.assertEqual(input(), 'The quick brown fox jumps over the lazy dog.') self.assertEqual(input('testing\n'), 'Dear John') # SF 1535165: don't segfault on closed stdin # sys.stdout must be a regular file for triggering sys.stdout = savestdout sys.stdin.close() self.assertRaises(ValueError, input) sys.stdout = BitBucket() sys.stdin = io.StringIO("NULL\0") self.assertRaises(TypeError, input, 42, 42) sys.stdin = io.StringIO(" 'whitespace'") self.assertEqual(input(), " 'whitespace'") sys.stdin = io.StringIO() self.assertRaises(EOFError, input) del sys.stdout self.assertRaises(RuntimeError, input, 'prompt') del sys.stdin self.assertRaises(RuntimeError, input, 'prompt') finally: sys.stdin = savestdin sys.stdout = savestdout fp.close() unlink(TESTFN) def test_repr(self): self.assertEqual(repr(''), '\'\'') self.assertEqual(repr(0), '0') self.assertEqual(repr(0), '0') self.assertEqual(repr(()), '()') self.assertEqual(repr([]), '[]') self.assertEqual(repr({}), '{}') a = [] a.append(a) self.assertEqual(repr(a), '[[...]]') a = {} a[0] = a self.assertEqual(repr(a), '{0: {...}}') def test_round(self): self.assertEqual(round(0.0), 0.0) self.assertEqual(type(round(0.0)), int) self.assertEqual(round(1.0), 1.0) self.assertEqual(round(10.0), 10.0) self.assertEqual(round(1000000000.0), 1000000000.0) self.assertEqual(round(1e20), 1e20) self.assertEqual(round(-1.0), -1.0) self.assertEqual(round(-10.0), -10.0) self.assertEqual(round(-1000000000.0), -1000000000.0) self.assertEqual(round(-1e20), -1e20) self.assertEqual(round(0.1), 0.0) self.assertEqual(round(1.1), 1.0) self.assertEqual(round(10.1), 10.0) self.assertEqual(round(1000000000.1), 1000000000.0) self.assertEqual(round(-1.1), -1.0) self.assertEqual(round(-10.1), -10.0) self.assertEqual(round(-1000000000.1), -1000000000.0) self.assertEqual(round(0.9), 1.0) self.assertEqual(round(9.9), 10.0) self.assertEqual(round(999999999.9), 1000000000.0) self.assertEqual(round(-0.9), -1.0) self.assertEqual(round(-9.9), -10.0) self.assertEqual(round(-999999999.9), -1000000000.0) self.assertEqual(round(-8.0, -1), -10.0) self.assertEqual(type(round(-8.0, -1)), float) self.assertEqual(type(round(-8.0, 0)), float) self.assertEqual(type(round(-8.0, 1)), float) # Check even / odd rounding behaviour self.assertEqual(round(5.5), 6) self.assertEqual(round(6.5), 6) self.assertEqual(round(-5.5), -6) self.assertEqual(round(-6.5), -6) # Check behavior on ints self.assertEqual(round(0), 0) self.assertEqual(round(8), 8) self.assertEqual(round(-8), -8) self.assertEqual(type(round(0)), int) self.assertEqual(type(round(-8, -1)), int) self.assertEqual(type(round(-8, 0)), int) self.assertEqual(type(round(-8, 1)), int) # test new kwargs self.assertEqual(round(number=-8.0, ndigits=-1), -10.0) self.assertRaises(TypeError, round) # test generic rounding delegation for reals class TestRound: def __round__(self): return 23 class TestNoRound: pass self.assertEqual(round(TestRound()), 23) self.assertRaises(TypeError, round, 1, 2, 3) self.assertRaises(TypeError, round, TestNoRound()) t = TestNoRound() t.__round__ = lambda *args: args self.assertRaises(TypeError, round, t) self.assertRaises(TypeError, round, t, 0) def test_setattr(self): setattr(sys, 'spam', 1) self.assertEqual(sys.spam, 1) self.assertRaises(TypeError, setattr, sys, 1, 'spam') self.assertRaises(TypeError, setattr) def test_sum(self): self.assertEqual(sum([]), 0) self.assertEqual(sum(list(range(2,8))), 27) self.assertEqual(sum(iter(list(range(2,8)))), 27) self.assertEqual(sum(Squares(10)), 285) self.assertEqual(sum(iter(Squares(10))), 285) self.assertEqual(sum([[1], [2], [3]], []), [1, 2, 3]) self.assertRaises(TypeError, sum) self.assertRaises(TypeError, sum, 42) self.assertRaises(TypeError, sum, ['a', 'b', 'c']) self.assertRaises(TypeError, sum, ['a', 'b', 'c'], '') self.assertRaises(TypeError, sum, [[1], [2], [3]]) self.assertRaises(TypeError, sum, [{2:3}]) self.assertRaises(TypeError, sum, [{2:3}]*2, {2:3}) class BadSeq: def __getitem__(self, index): raise ValueError self.assertRaises(ValueError, sum, BadSeq()) def test_type(self): self.assertEqual(type(''), type('123')) self.assertNotEqual(type(''), type(())) # We don't want self in vars(), so these are static methods @staticmethod def get_vars_f0(): return vars() @staticmethod def get_vars_f2(): BuiltinTest.get_vars_f0() a = 1 b = 2 return vars() def test_vars(self): self.assertEqual(set(vars()), set(dir())) import sys self.assertEqual(set(vars(sys)), set(dir(sys))) self.assertEqual(self.get_vars_f0(), {}) self.assertEqual(self.get_vars_f2(), {'a': 1, 'b': 2}) self.assertRaises(TypeError, vars, 42, 42) self.assertRaises(TypeError, vars, 42) def test_zip(self): a = (1, 2, 3) b = (4, 5, 6) t = [(1, 4), (2, 5), (3, 6)] self.assertEqual(list(zip(a, b)), t) b = [4, 5, 6] self.assertEqual(list(zip(a, b)), t) b = (4, 5, 6, 7) self.assertEqual(list(zip(a, b)), t) class I: def __getitem__(self, i): if i < 0 or i > 2: raise IndexError return i + 4 self.assertEqual(list(zip(a, I())), t) self.assertEqual(list(zip()), []) self.assertEqual(list(zip(*[])), []) self.assertRaises(TypeError, zip, None) class G: pass self.assertRaises(TypeError, zip, a, G()) # Make sure zip doesn't try to allocate a billion elements for the # result list when one of its arguments doesn't say how long it is. # A MemoryError is the most likely failure mode. class SequenceWithoutALength: def __getitem__(self, i): if i == 5: raise IndexError else: return i self.assertEqual( list(zip(SequenceWithoutALength(), range(2**30))), list(enumerate(range(5))) ) class BadSeq: def __getitem__(self, i): if i == 5: raise ValueError else: return i self.assertRaises(ValueError, list, zip(BadSeq(), BadSeq())) def test_bin(self): self.assertEqual(bin(0), '0b0') self.assertEqual(bin(1), '0b1') self.assertEqual(bin(-1), '-0b1') self.assertEqual(bin(2**65), '0b1' + '0' * 65) self.assertEqual(bin(2**65-1), '0b' + '1' * 65) self.assertEqual(bin(-(2**65)), '-0b1' + '0' * 65) self.assertEqual(bin(-(2**65-1)), '-0b' + '1' * 65) def test_bytearray_translate(self): x = bytearray(b"abc") self.assertRaises(ValueError, x.translate, b"1", 1) self.assertRaises(TypeError, x.translate, b"1"*256, 1) class TestSorted(unittest.TestCase): def test_basic(self): data = list(range(100)) copy = data[:] random.shuffle(copy) self.assertEqual(data, sorted(copy)) self.assertNotEqual(data, copy) data.reverse() random.shuffle(copy) self.assertEqual(data, sorted(copy, key=lambda x: -x)) self.assertNotEqual(data, copy) random.shuffle(copy) self.assertEqual(data, sorted(copy, reverse=1)) self.assertNotEqual(data, copy) def test_inputtypes(self): s = 'abracadabra' types = [list, tuple, str] for T in types: self.assertEqual(sorted(s), sorted(T(s))) s = ''.join(set(s)) # unique letters only types = [str, set, frozenset, list, tuple, dict.fromkeys] for T in types: self.assertEqual(sorted(s), sorted(T(s))) def test_baddecorator(self): data = 'The quick Brown fox Jumped over The lazy Dog'.split() self.assertRaises(TypeError, sorted, data, None, lambda x,y: 0) def test_main(verbose=None): test_classes = (BuiltinTest, TestSorted) run_unittest(*test_classes) # verify reference counting if verbose and hasattr(sys, "gettotalrefcount"): import gc counts = [None] * 5 for i in range(len(counts)): run_unittest(*test_classes) gc.collect() counts[i] = sys.gettotalrefcount() print(counts) if __name__ == "__main__": test_main(verbose=True)
gpl-3.0
7,221,118,868,111,259,000
33.608087
105
0.526199
false
skirpichev/omg
diofant/combinatorics/perm_groups.py
1
111562
from itertools import islice from math import log from random import choice, randrange from ..core import Basic from ..functions import factorial from ..ntheory import sieve from ..utilities import has_variety from ..utilities.iterables import is_sequence, uniq from ..utilities.randtest import _randrange from .permutations import (Cycle, Permutation, _af_commutes_with, _af_invert, _af_pow, _af_rmul, _af_rmuln) from .util import (_base_ordering, _check_cycles_alt_sym, _distribute_gens_by_base, _handle_precomputed_bsgs, _orbits_transversals_from_bsgs, _strip, _strip_af, _strong_gens_from_distr) rmul = Permutation.rmul_with_af _af_new = Permutation._af_new class PermutationGroup(Basic): """The class defining a Permutation group. PermutationGroup([p1, p2, ..., pn]) returns the permutation group generated by the list of permutations. This group can be supplied to Polyhedron if one desires to decorate the elements to which the indices of the permutation refer. Examples ======== >>> Permutation.print_cyclic = True The permutations corresponding to motion of the front, right and bottom face of a 2x2 Rubik's cube are defined: >>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) >>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) >>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) These are passed as permutations to PermutationGroup: >>> G = PermutationGroup(F, R, D) >>> G.order() 3674160 The group can be supplied to a Polyhedron in order to track the objects being moved. An example involving the 2x2 Rubik's cube is given there, but here is a simple demonstration: >>> a = Permutation(2, 1) >>> b = Permutation(1, 0) >>> G = PermutationGroup(a, b) >>> P = Polyhedron(list('ABC'), pgroup=G) >>> P.corners (A, B, C) >>> P.rotate(0) # apply permutation 0 >>> P.corners (A, C, B) >>> P.reset() >>> P.corners (A, B, C) Or one can make a permutation as a product of selected permutations and apply them to an iterable directly: >>> P10 = G.make_perm([0, 1]) >>> P10('ABC') ['C', 'A', 'B'] See Also ======== diofant.combinatorics.polyhedron.Polyhedron, diofant.combinatorics.permutations.Permutation References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" [2] Seress, A. "Permutation Group Algorithms" [3] https://en.wikipedia.org/wiki/Schreier_vector [4] https://en.wikipedia.org/wiki/Nielsen_transformation #Product_replacement_algorithm [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, Alice C.Niemeyer, and E.A.O'Brien. "Generating Random Elements of a Finite Group" [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 [7] https://web.archive.org/web/20170105021515/http://www.algorithmist.com:80/index.php/Union_Find [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer [11] https://groupprops.subwiki.org/wiki/Derived_subgroup [12] https://en.wikipedia.org/wiki/Nilpotent_group [13] https://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf """ is_group = True def __new__(cls, *args, **kwargs): """The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless ``dups`` keyword is False. """ if not args: args = [Permutation()] else: args = list(args[0] if is_sequence(args[0]) else args) if any(isinstance(a, Cycle) for a in args): args = [Permutation(a) for a in args] if has_variety(a.size for a in args): degree = kwargs.pop('degree', None) if degree is None: degree = max(a.size for a in args) for i in range(len(args)): if args[i].size != degree: args[i] = Permutation(args[i], size=degree) if kwargs.pop('dups', True): args = list(uniq([_af_new(list(a)) for a in args])) obj = Basic.__new__(cls, *args, **kwargs) obj._generators = args obj._order = None obj._center = [] obj._is_abelian = None obj._is_transitive = None obj._is_sym = None obj._is_alt = None obj._is_primitive = None obj._is_nilpotent = None obj._is_solvable = None obj._is_trivial = None obj._transitivity_degree = None obj._max_div = None obj._r = len(obj._generators) obj._degree = obj._generators[0].size # these attributes are assigned after running schreier_sims obj._base = [] obj._strong_gens = [] obj._basic_orbits = [] obj._transversals = [] # these attributes are assigned after running _random_pr_init obj._random_gens = [] return obj def __getitem__(self, i): return self._generators[i] def __contains__(self, i): """Return True if `i` is contained in PermutationGroup. Examples ======== >>> p = Permutation(1, 2, 3) >>> Permutation(3) in PermutationGroup(p) True """ if not isinstance(i, Permutation): raise TypeError('A PermutationGroup contains only Permutations as ' 'elements, not elements of type %s' % type(i)) return self.contains(i) def __len__(self): return len(self._generators) def __eq__(self, other): """Return True if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup. Examples ======== >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G = PermutationGroup([p, p**2]) >>> H = PermutationGroup([p**2, p]) >>> G.generators == H.generators False >>> G == H True """ if not isinstance(other, PermutationGroup): return False set_self_gens = set(self.generators) set_other_gens = set(other.generators) # before reaching the general case there are also certain # optimisation and obvious cases requiring less or no actual # computation. if set_self_gens == set_other_gens: return True # in the most general case it will check that each generator of # one group belongs to the other PermutationGroup and vice-versa for gen1 in set_self_gens: if not other.contains(gen1): return False for gen2 in set_other_gens: if not self.contains(gen2): return False return True def __hash__(self): return super().__hash__() def __mul__(self, other): """Return the direct product of two permutation groups as a permutation group. This implementation realizes the direct product by shifting the index set for the generators of the second group: so if we have G acting on n1 points and H acting on n2 points, G*H acts on n1 + n2 points. Examples ======== >>> G = CyclicGroup(5) >>> H = G*G >>> H PermutationGroup([ Permutation(9)(0, 1, 2, 3, 4), Permutation(5, 6, 7, 8, 9)]) >>> H.order() 25 """ gens1 = [perm._array_form for perm in self.generators] gens2 = [perm._array_form for perm in other.generators] n1 = self._degree n2 = other._degree start = list(range(n1)) end = list(range(n1, n1 + n2)) for i in range(len(gens2)): gens2[i] = [x + n1 for x in gens2[i]] gens2 = [start + gen for gen in gens2] gens1 = [gen + end for gen in gens1] together = gens1 + gens2 gens = [_af_new(x) for x in together] return PermutationGroup(gens) def _random_pr_init(self, r, n, _random_prec_n=None): r"""Initialize random generators for the product replacement algorithm. The implementation uses a modification of the original product replacement algorithm due to Leedham-Green, as described in [1], pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical analysis of the original product replacement algorithm, and [4]. The product replacement algorithm is used for producing random, uniformly distributed elements of a group ``G`` with a set of generators ``S``. For the initialization ``_random_pr_init``, a list ``R`` of ``\max\{r, |S|\}`` group generators is created as the attribute ``G._random_gens``, repeating elements of ``S`` if necessary, and the identity element of ``G`` is appended to ``R`` - we shall refer to this last element as the accumulator. Then the function ``random_pr()`` is called ``n`` times, randomizing the list ``R`` while preserving the generation of ``G`` by ``R``. The function ``random_pr()`` itself takes two random elements ``g, h`` among all elements of ``R`` but the accumulator and replaces ``g`` with a randomly chosen element from ``\{gh, g(~h), hg, (~h)g\}``. Then the accumulator is multiplied by whatever ``g`` was replaced by. The new value of the accumulator is then returned by ``random_pr()``. The elements returned will eventually (for ``n`` large enough) become uniformly distributed across ``G`` ([5]). For practical purposes however, the values ``n = 50, r = 11`` are suggested in [1]. Notes ===== THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute self._random_gens See Also ======== random_pr """ deg = self.degree random_gens = [x._array_form for x in self.generators] k = len(random_gens) if k < r: for i in range(k, r): random_gens.append(random_gens[i - k]) acc = list(range(deg)) random_gens.append(acc) self._random_gens = random_gens # handle randomized input for testing purposes if _random_prec_n is None: for i in range(n): self.random_pr() else: for i in range(n): self.random_pr(_random_prec=_random_prec_n[i]) def _union_find_merge(self, first, second, ranks, parents, not_rep): """Merges two classes in a union-find data structure. Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7]) Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, the list of class sizes, ``ranks``, and the list of elements that are not representatives, ``not_rep``, are changed due to class merging. See Also ======== minimal_block, _union_find_rep References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" [7] https://web.archive.org/web/20170105021515/http://www.algorithmist.com:80/index.php/Union_Find """ rep_first = self._union_find_rep(first, parents) rep_second = self._union_find_rep(second, parents) if rep_first != rep_second: # union by rank if ranks[rep_first] >= ranks[rep_second]: new_1, new_2 = rep_first, rep_second else: new_1, new_2 = rep_second, rep_first total_rank = ranks[new_1] + ranks[new_2] if total_rank > self.max_div: return -1 parents[new_2] = new_1 ranks[new_1] = total_rank not_rep.append(new_2) return 1 return 0 def _union_find_rep(self, num, parents): """Find representative of a class in a union-find data structure. Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. After the representative of the class to which ``num`` belongs is found, path compression is performed as an optimization ([7]). Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, is altered due to path compression. See Also ======== minimal_block, _union_find_merge References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" [7] https://web.archive.org/web/20170105021515/http://www.algorithmist.com:80/index.php/Union_Find """ rep, parent = num, parents[num] while parent != rep: rep = parent parent = parents[rep] # path compression temp, parent = num, parents[num] while parent != rep: parents[temp] = rep temp = parent parent = parents[temp] return rep @property def base(self): """Return a base from the Schreier-Sims algorithm. For a permutation group ``G``, a base is a sequence of points ``B = (b_1, b_2, ..., b_k)`` such that no element of ``G`` apart from the identity fixes all the points in ``B``. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. An alternative way to think of ``B`` is that it gives the indices of the stabilizer cosets that contain more than the identity permutation. Examples ======== >>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) >>> G.base [0, 2] See Also ======== strong_gens, basic_transversals, basic_orbits, basic_stabilizers """ if self._base == []: self.schreier_sims() return self._base def baseswap(self, base, strong_gens, pos, randomized=False, transversals=None, basic_orbits=None, strong_gens_distr=None): r"""Swap two consecutive base points in base and strong generating set. If a base for a group ``G`` is given by ``(b_1, b_2, ..., b_k)``, this function returns a base ``(b_1, b_2, ..., b_{i+1}, b_i, ..., b_k)``, where ``i`` is given by ``pos``, and a strong generating set relative to that base. The original base and strong generating set are not modified. The randomized version (default) is of Las Vegas type. Parameters ========== base, strong_gens The base and strong generating set. pos The position at which swapping is performed. randomized A switch between randomized and deterministic version. transversals The transversals for the basic orbits, if known. basic_orbits The basic orbits, if known. strong_gens_distr The strong generators distributed by basic stabilizers, if known. Returns ======= (base, strong_gens) ``base`` is the new base, and ``strong_gens`` is a generating set relative to it. Examples ======== >>> from diofant.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> S.base [0, 1, 2] >>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) >>> base, gens ([0, 2, 1], [Permutation(0, 1, 2, 3), Permutation(3)(0, 1), Permutation(1, 3, 2), Permutation(2, 3), Permutation(1, 3)]) check that base, gens is a BSGS >>> S1 = PermutationGroup(gens) >>> _verify_bsgs(S1, base, gens) True See Also ======== schreier_sims Notes ===== The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, ``|\beta_{i+1}^{\left\langle T\right\rangle}|`` should be replaced by ``|\beta_{i}^{\left\langle T\right\rangle}|``, and the same for the discussion of the algorithm. """ # construct the basic orbits, generators for the stabilizer chain # and transversal elements from whatever was provided transversals, basic_orbits, strong_gens_distr = \ _handle_precomputed_bsgs(base, strong_gens, transversals, basic_orbits, strong_gens_distr) base_len = len(base) degree = self.degree # size of orbit of base[pos] under the stabilizer we seek to insert # in the stabilizer chain at position pos + 1 size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ // len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) # initialize the wanted stabilizer by a subgroup if pos + 2 > base_len - 1: T = [] else: T = strong_gens_distr[pos + 2][:] # randomized version if randomized is True: stab_pos = PermutationGroup(strong_gens_distr[pos]) schreier_vector = stab_pos.schreier_vector(base[pos + 1]) # add random elements of the stabilizer until they generate it while len(_orbit(degree, T, base[pos])) != size: new = stab_pos.random_stab(base[pos + 1], schreier_vector=schreier_vector) T.append(new) # deterministic version else: Gamma = set(basic_orbits[pos]) Gamma.remove(base[pos]) if base[pos + 1] in Gamma: Gamma.remove(base[pos + 1]) # add elements of the stabilizer until they generate it by # ruling out member of the basic orbit of base[pos] along the way while len(_orbit(degree, T, base[pos])) != size: gamma = next(iter(Gamma)) x = transversals[pos][gamma] temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1]) if temp not in basic_orbits[pos + 1]: Gamma = Gamma - _orbit(degree, T, gamma) else: y = transversals[pos + 1][temp] el = rmul(x, y) if el(base[pos]) not in _orbit(degree, T, base[pos]): T.append(el) Gamma = Gamma - _orbit(degree, T, base[pos]) # build the new base and strong generating set strong_gens_new_distr = strong_gens_distr[:] strong_gens_new_distr[pos + 1] = T base_new = base[:] base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) for gen in T: if gen not in strong_gens_new: strong_gens_new.append(gen) return base_new, strong_gens_new @property def basic_orbits(self): """ Return the basic orbits relative to a base and strong generating set. If ``(b_1, b_2, ..., b_k)`` is a base for a group ``G``, and ``G^{(i)} = G_{b_1, b_2, ..., b_{i-1}}`` is the ``i``-th basic stabilizer (so that ``G^{(1)} = G``), the ``i``-th basic orbit relative to this base is the orbit of ``b_i`` under ``G^{(i)}``. See [1], pp. 87-89 for more information. Examples ======== >>> S = SymmetricGroup(4) >>> S.basic_orbits [[0, 1, 2, 3], [1, 2, 3], [2, 3]] See Also ======== base, strong_gens, basic_transversals, basic_stabilizers """ if self._basic_orbits == []: self.schreier_sims() return self._basic_orbits @property def basic_stabilizers(self): """ Return a chain of stabilizers relative to a base and strong generating set. The ``i``-th basic stabilizer ``G^{(i)}`` relative to a base ``(b_1, b_2, ..., b_k)`` is ``G_{b_1, b_2, ..., b_{i-1}}``. For more information, see [1], pp. 87-89. Examples ======== >>> A = AlternatingGroup(4) >>> A.schreier_sims() >>> A.base [0, 1] >>> for g in A.basic_stabilizers: ... print(g) ... PermutationGroup([ Permutation(3)(0, 1, 2), Permutation(1, 2, 3)]) PermutationGroup([ Permutation(1, 2, 3)]) See Also ======== base, strong_gens, basic_orbits, basic_transversals """ if self._transversals == []: self.schreier_sims() strong_gens = self._strong_gens base = self._base strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_stabilizers = [] for gens in strong_gens_distr: basic_stabilizers.append(PermutationGroup(gens)) return basic_stabilizers @property def basic_transversals(self): """ Return basic transversals relative to a base and strong generating set. The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information. Examples ======== >>> A = AlternatingGroup(4) >>> A.basic_transversals [{0: Permutation(3), 1: Permutation(3)(0, 1, 2), 2: Permutation(3)(0, 2, 1), 3: Permutation(0, 3, 1)}, {1: Permutation(3), 2: Permutation(1, 2, 3), 3: Permutation(1, 3, 2)}] See Also ======== strong_gens, base, basic_orbits, basic_stabilizers """ if self._transversals == []: self.schreier_sims() return self._transversals def center(self): r""" Return the center of a permutation group. The center for a group ``G`` is defined as ``Z(G) = \{z\in G | \forall g\in G, zg = gz \}``, the set of elements of ``G`` that commute with all elements of ``G``. It is equal to the centralizer of ``G`` inside ``G``, and is naturally a subgroup of ``G`` ([9]). Examples ======== >>> D = DihedralGroup(4) >>> G = D.center() >>> G.order() 2 See Also ======== centralizer Notes ===== This is a naive implementation that is a straightforward application of ``.centralizer()`` """ return self.centralizer(self) def centralizer(self, other): r""" Return the centralizer of a group/set/element. The centralizer of a set of permutations ``S`` inside a group ``G`` is the set of elements of ``G`` that commute with all elements of ``S``:: ``C_G(S) = \{ g \in G | gs = sg \forall s \in S\}`` ([10]) Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of the full symmetric group, we allow for ``S`` to have elements outside ``G``. It is naturally a subgroup of ``G``; the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators. Parameters ========== other a permutation group/list of permutations/single permutation Examples ======== >>> S = SymmetricGroup(6) >>> C = CyclicGroup(6) >>> H = S.centralizer(C) >>> H.is_subgroup(C) True See Also ======== subgroup_search Notes ===== The implementation is an application of ``.subgroup_search()`` with tests using a specific base for the group ``G``. """ if hasattr(other, 'generators'): if other.is_trivial or self.is_trivial: return self degree = self.degree identity = _af_new(list(range(degree))) orbits = other.orbits() num_orbits = len(orbits) orbits.sort(key=lambda x: -len(x)) long_base = [] orbit_reps = [None]*num_orbits orbit_reps_indices = [None]*num_orbits orbit_descr = [None]*degree for i in range(num_orbits): orbit = list(orbits[i]) orbit_reps[i] = orbit[0] orbit_reps_indices[i] = len(long_base) for point in orbit: orbit_descr[point] = i long_base = long_base + orbit base, strong_gens = self.schreier_sims_incremental(base=long_base) strong_gens_distr = _distribute_gens_by_base(base, strong_gens) i = 0 for i in range(len(base)): if strong_gens_distr[i] == [identity]: break base = base[:i] base_len = i for j in range(num_orbits): if base[base_len - 1] in orbits[j]: break rel_orbits = orbits[: j + 1] num_rel_orbits = len(rel_orbits) transversals = [None]*num_rel_orbits for j in range(num_rel_orbits): rep = orbit_reps[j] transversals[j] = dict( other.orbit_transversal(rep, pairs=True)) def trivial_test(x): return True tests = [None]*base_len for l in range(base_len): if base[l] in orbit_reps: tests[l] = trivial_test else: def test(computed_words, l=l): g = computed_words[l] rep_orb_index = orbit_descr[base[l]] rep = orbit_reps[rep_orb_index] im = g._array_form[base[l]] im_rep = g._array_form[rep] tr_el = transversals[rep_orb_index][base[l]] # using the definition of transversal, # base[l]^g = rep^(tr_el*g); # if g belongs to the centralizer, then # base[l]^g = (rep^g)^tr_el return im == tr_el._array_form[im_rep] tests[l] = test def prop(g): return [rmul(g, gen) for gen in other.generators] == \ [rmul(gen, g) for gen in other.generators] return self.subgroup_search(prop, base=base, strong_gens=strong_gens, tests=tests) elif hasattr(other, '__getitem__'): gens = list(other) return self.centralizer(PermutationGroup(gens)) elif hasattr(other, 'array_form'): return self.centralizer(PermutationGroup([other])) def commutator(self, G, H): """ Return the commutator of two subgroups. For a permutation group ``K`` and subgroups ``G``, ``H``, the commutator of ``G`` and ``H`` is defined as the group generated by all the commutators ``[g, h] = hgh^{-1}g^{-1}`` for ``g`` in ``G`` and ``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). Examples ======== >>> S = SymmetricGroup(5) >>> A = AlternatingGroup(5) >>> G = S.commutator(S, A) >>> G.is_subgroup(A) True See Also ======== derived_subgroup Notes ===== The commutator of two subgroups ``H, G`` is equal to the normal closure of the commutators of all the generators, i.e. ``hgh^{-1}g^{-1}`` for ``h`` a generator of ``H`` and ``g`` a generator of ``G`` ([1], p.28) """ ggens = G.generators hgens = H.generators commutators = [] for ggen in ggens: for hgen in hgens: commutator = rmul(hgen, ggen, ~hgen, ~ggen) if commutator not in commutators: commutators.append(commutator) res = self.normal_closure(commutators) return res def coset_factor(self, g, factor_index=False): """Return ``G``'s (self's) coset factorization of ``g`` If ``g`` is an element of ``G`` then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition, The permutations returned in ``f`` are those for which the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` and ``B = G.base``. f[i] is one of the permutations in ``self._basic_orbits[i]``. If factor_index==True, returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` belongs to ``self._basic_orbits[i]`` Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) Define g: >>> g = Permutation(7)(1, 2, 4)(3, 6, 5) Confirm that it is an element of G: >>> G.contains(g) True Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from u1 and u2 and the Identity permutation have been used: >>> f = G.coset_factor(g) >>> f[2]*f[1]*f[0] == g True >>> f1 = G.coset_factor(g, True) >>> f1 [0, 4, 4] >>> tr = G.basic_transversals >>> f[0] == tr[0][f1[0]] True If g is not an element of G then [] is returned: >>> c = Permutation(5, 6, 7) >>> G.coset_factor(c) [] see util._strip """ if isinstance(g, (Cycle, Permutation)): g = g.list() if len(g) != self._degree: # this could either adjust the size or return [] immediately # but we don't choose between the two and just signal a possible # error raise ValueError('g should be the same size as permutations of G') I = list(range(self._degree)) basic_orbits = self.basic_orbits transversals = self._transversals factors = [] base = self.base h = g for i in range(len(base)): beta = h[base[i]] if beta == base[i]: factors.append(beta) continue if beta not in basic_orbits[i]: return [] u = transversals[i][beta]._array_form h = _af_rmul(_af_invert(u), h) factors.append(beta) if h != I: return [] if factor_index: return factors tr = self.basic_transversals factors = [tr[i][factors[i]] for i in range(len(base))] return factors def coset_rank(self, g): """Rank using Schreier-Sims representation. The coset rank of ``g`` is the ordering number in which it appears in the lexicographic listing according to the coset decomposition The ordering is the same as in G.generate(method='coset'). If ``g`` does not belong to the group it returns None. Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) >>> c = Permutation(7)(2, 4)(3, 5) >>> G.coset_rank(c) 16 >>> G.coset_unrank(16) Permutation(7)(2, 4)(3, 5) See Also ======== coset_factor """ factors = self.coset_factor(g, True) if not factors: return rank = 0 b = 1 transversals = self._transversals base = self._base basic_orbits = self._basic_orbits for i in range(len(base)): k = factors[i] j = basic_orbits[i].index(k) rank += b*j b = b*len(transversals[i]) return rank def coset_unrank(self, rank, af=False): """Unrank using Schreier-Sims representation. coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None. """ if rank < 0 or rank >= self.order(): return base = self._base transversals = self._transversals basic_orbits = self._basic_orbits m = len(base) v = [0]*m for i in range(m): rank, c = divmod(rank, len(transversals[i])) v[i] = basic_orbits[i][c] a = [transversals[i][v[i]]._array_form for i in range(m)] h = _af_rmuln(*a) if af: return h else: return _af_new(h) @property def degree(self): """Returns the size of the permutations in the group. The number of permutations comprising the group is given by len(group); the number of permutations that can be generated by the group is given by group.order(). Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [Permutation(2), Permutation(2)(0, 1)] See Also ======== order """ return self._degree @property def elements(self): """Returns all the elements of the permutation group in a list """ return set(islice(self.generate(), None)) def derived_series(self): r"""Return the derived series for the group. The derived series for a group ``G`` is defined as ``G = G_0 > G_1 > G_2 > \ldots`` where ``G_i = [G_{i-1}, G_{i-1}]``, i.e. ``G_i`` is the derived subgroup of ``G_{i-1}``, for ``i\in\mathbb{N}``. When we have ``G_k = G_{k-1}`` for some ``k\in\mathbb{N}``, the series terminates. Returns ======= A list of permutation groups containing the members of the derived series in the order ``G = G_0, G_1, G_2, \ldots``. Examples ======== >>> A = AlternatingGroup(5) >>> len(A.derived_series()) 1 >>> S = SymmetricGroup(4) >>> len(S.derived_series()) 4 >>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) True >>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) True See Also ======== derived_subgroup """ res = [self] current = self next = self.derived_subgroup() while not current.is_subgroup(next): res.append(next) current = next next = next.derived_subgroup() return res def derived_subgroup(self): r"""Compute the derived subgroup. The derived subgroup, or commutator subgroup is the subgroup generated by all commutators ``[g, h] = hgh^{-1}g^{-1}`` for ``g, h\in G`` ; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]). Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([1, 0, 2, 4, 3]) >>> b = Permutation([0, 1, 3, 2, 4]) >>> G = PermutationGroup([a, b]) >>> C = G.derived_subgroup() >>> list(C.generate(af=True)) [[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] See Also ======== derived_series """ r = self._r gens = [p._array_form for p in self.generators] set_commutators = set() degree = self._degree rng = list(range(degree)) for i in range(r): for j in range(r): p1 = gens[i] p2 = gens[j] c = list(range(degree)) for k in rng: c[p2[p1[k]]] = p1[p2[k]] ct = tuple(c) if ct not in set_commutators: set_commutators.add(ct) cms = [_af_new(p) for p in set_commutators] G2 = self.normal_closure(cms) return G2 def generate(self, method='coset', af=False): """Return iterator to generate the elements of the group Iteration is done with one of these methods:: method='coset' using the Schreier-Sims coset representation method='dimino' using the Dimino method If af = True it yields the array form of the permutations Examples ======== >>> Permutation.print_cyclic = True The permutation group given in the tetrahedron object is also true groups: >>> G = tetrahedron.pgroup >>> G.is_group True Also the group generated by the permutations in the tetrahedron pgroup -- even the first two -- is a proper group: >>> H = PermutationGroup(G[0], G[1]) >>> J = PermutationGroup(list(H.generate())) >>> J PermutationGroup([ Permutation(0, 1)(2, 3), Permutation(3), Permutation(1, 2, 3), Permutation(1, 3, 2), Permutation(0, 3, 1), Permutation(0, 2, 3), Permutation(0, 3)(1, 2), Permutation(0, 1, 3), Permutation(3)(0, 2, 1), Permutation(0, 3, 2), Permutation(3)(0, 1, 2), Permutation(0, 2)(1, 3)]) >>> _.is_group True """ if method == 'coset': return self.generate_schreier_sims(af) elif method == 'dimino': return self.generate_dimino(af) else: raise NotImplementedError(f'No generation defined for {method}') def generate_dimino(self, af=False): """Yield group elements using Dimino's algorithm If af == True it yields the array form of the permutations References ========== [1] The Implementation of Various Algorithms for Permutation Groups in the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_dimino(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] """ idn = list(range(self.degree)) order = 0 element_list = [idn] set_element_list = {tuple(idn)} if af: yield idn else: yield _af_new(idn) gens = [p._array_form for p in self.generators] for i in range(len(gens)): # D elements of the subgroup G_i generated by gens[:i] D = element_list[:] N = [idn] while N: A = N N = [] for a in A: for g in gens[:i + 1]: ag = _af_rmul(a, g) if tuple(ag) not in set_element_list: # produce G_i*g for d in D: order += 1 ap = _af_rmul(d, ag) if af: yield ap else: p = _af_new(ap) yield p element_list.append(ap) set_element_list.add(tuple(ap)) N.append(ap) self._order = len(element_list) def generate_schreier_sims(self, af=False): """Yield group elements using the Schreier-Sims representation in coset_rank order If af = True it yields the array form of the permutations Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_schreier_sims(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], [0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] """ n = self._degree u = self.basic_transversals basic_orbits = self._basic_orbits if len(u) == 0: for x in self.generators: if af: yield x._array_form else: yield x return if len(u) == 1: for i in basic_orbits[0]: if af: yield u[0][i]._array_form else: yield u[0][i] return u = list(reversed(u)) basic_orbits = basic_orbits[::-1] # stg stack of group elements stg = [list(range(n))] posmax = [len(x) for x in u] n1 = len(posmax) - 1 pos = [0]*n1 h = 0 while 1: # backtrack when finished iterating over coset if pos[h] >= posmax[h]: if h == 0: return pos[h] = 0 h -= 1 stg.pop() continue p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) pos[h] += 1 stg.append(p) h += 1 if h == n1: if af: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) yield p else: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) p1 = _af_new(p) yield p1 stg.pop() h -= 1 @property def generators(self): """Returns the generators of the group. Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.generators [Permutation(1, 2), Permutation(2)(0, 1)] """ return self._generators def contains(self, g, strict=True): """Test if permutation ``g`` belong to self, ``G``. If ``g`` is an element of ``G`` it can be written as a product of factors drawn from the cosets of ``G``'s stabilizers. To see if ``g`` is one of the actual generators defining the group use ``G.has(g)``. If ``strict`` is not True, ``g`` will be resized, if necessary, to match the size of permutations in ``self``. Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation(1, 2) >>> b = Permutation(2, 3, 1) >>> G = PermutationGroup(a, b, degree=5) >>> G.contains(G[0]) # trivial check True >>> elem = Permutation([[2, 3]], size=5) >>> G.contains(elem) True >>> G.contains(Permutation(4)(0, 1, 2, 3)) False If strict is False, a permutation will be resized, if necessary: >>> H = PermutationGroup(Permutation(5)) >>> H.contains(Permutation(3)) False >>> H.contains(Permutation(3), strict=False) True To test if a given permutation is present in the group: >>> elem in G.generators False >>> G.has(elem) False See Also ======== coset_factor, diofant.core.basic.Basic.has """ if not isinstance(g, Permutation): return False if g.size != self.degree: if strict: return False g = Permutation(g, size=self.degree) if g in self.generators: return True return bool(self.coset_factor(g.array_form, True)) @property def is_abelian(self): """Test if the group is Abelian. Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.is_abelian False >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_abelian True """ if self._is_abelian is not None: return self._is_abelian self._is_abelian = True gens = [p._array_form for p in self.generators] for x in gens: for y in gens: if y <= x: continue if not _af_commutes_with(x, y): self._is_abelian = False return False return True def is_alt_sym(self, eps=0.05, _random_prec=None): r"""Monte Carlo test for the symmetric/alternating group for degrees >= 8. More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps. Notes ===== The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group ``G`` of degree ``n`` contains an element with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately ``\log(2)/\log(n)`` ([1], p.82; [2], pp. 226-227). The helper function ``_check_cycles_alt_sym`` is used to go over the cycles in a permutation and look for ones satisfying 1). Examples ======== >>> D = DihedralGroup(10) >>> D.is_alt_sym() False See Also ======== diofant.combinatorics.util._check_cycles_alt_sym """ if _random_prec is None: n = self.degree if n < 8: return False if not self.is_transitive(): return False if n < 17: c_n = 0.34 else: c_n = 0.57 d_n = (c_n*log(2))/log(n) N_eps = int(-log(eps)/d_n) for i in range(N_eps): perm = self.random_pr() if _check_cycles_alt_sym(perm): return True return False else: for i in range(_random_prec['N_eps']): perm = _random_prec[i] if _check_cycles_alt_sym(perm): return True return False @property def is_nilpotent(self): """Test if the group is nilpotent. A group ``G`` is nilpotent if it has a central series of finite length. Alternatively, ``G`` is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]). Examples ======== >>> C = CyclicGroup(6) >>> C.is_nilpotent True >>> S = SymmetricGroup(5) >>> S.is_nilpotent False See Also ======== lower_central_series, is_solvable """ if self._is_nilpotent is None: lcs = self.lower_central_series() terminator = lcs[len(lcs) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True self._is_nilpotent = True return True else: self._is_nilpotent = False return False else: return self._is_nilpotent def is_normal(self, gr, strict=True): """Test if G=self is a normal subgroup of gr. G is normal in gr if for each g2 in G, g1 in gr, g = g1*g2*g1**-1 belongs to G It is sufficient to check this for each g1 in gr.generator and g2 g2 in G.generator Examples ======== >>> Permutation.print_cyclic = True >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) >>> G1.is_normal(G) True """ d_self = self.degree d_gr = gr.degree new_self = self.copy() if not strict and d_self != d_gr: if d_self < d_gr: new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) else: gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) gens2 = [p._array_form for p in new_self.generators] gens1 = [p._array_form for p in gr.generators] for g1 in gens1: for g2 in gens2: p = _af_rmuln(g1, g2, _af_invert(g1)) if not new_self.coset_factor(p, True): return False return True def is_primitive(self, randomized=True): r"""Test if a group is primitive. A permutation group ``G`` acting on a set ``S`` is called primitive if ``S`` contains no nontrivial block under the action of ``G`` (a block is nontrivial if its cardinality is more than ``1``). Notes ===== The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form ``\{0, k\}`` for ``k`` ranging over representatives for the orbits of ``G_0``, the stabilizer of ``0``. This algorithm has complexity ``O(n^2)`` where ``n`` is the degree of the group, and will perform badly if ``G_0`` is small. There are two implementations offered: one finds ``G_0`` deterministically using the function ``stabilizer``, and the other (default) produces random elements of ``G_0`` using ``random_stab``, hoping that they generate a subgroup of ``G_0`` with not too many more orbits than G_0 (this is suggested in [1], p.83). Behavior is changed by the ``randomized`` flag. Examples ======== >>> D = DihedralGroup(10) >>> D.is_primitive() False See Also ======== minimal_block, random_stab """ if self._is_primitive is not None: return self._is_primitive n = self.degree if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0 and self.minimal_block([0, x]) != [0]*n: self._is_primitive = False return False self._is_primitive = True return True @property def is_solvable(self): """Test if the group is solvable. ``G`` is solvable if its derived series terminates with the trivial group ([1], p.29). Examples ======== >>> S = SymmetricGroup(3) >>> S.is_solvable True See Also ======== is_nilpotent, derived_series """ if self._is_solvable is None: ds = self.derived_series() terminator = ds[len(ds) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True return True else: self._is_solvable = False return False else: return self._is_solvable def is_subgroup(self, G, strict=True): """Return True if all elements of self belong to G. If ``strict`` is False then if ``self``'s degree is smaller than ``G``'s, the elements will be resized to have the same degree. Examples ======== Testing is strict by default: the degree of each group must be the same: >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) >>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) >>> G3 = PermutationGroup([p, p**2]) >>> assert G1.order() == G2.order() == G3.order() == 6 >>> G1.is_subgroup(G2) True >>> G1.is_subgroup(G3) False >>> G3.is_subgroup(PermutationGroup(G3[1])) False >>> G3.is_subgroup(PermutationGroup(G3[0])) True To ignore the size, set ``strict`` to False: >>> S3 = SymmetricGroup(3) >>> S5 = SymmetricGroup(5) >>> S3.is_subgroup(S5, strict=False) True >>> C7 = CyclicGroup(7) >>> G = S5*C7 >>> S5.is_subgroup(G, False) True >>> C7.is_subgroup(G, 0) False """ if not isinstance(G, PermutationGroup): return False if self == G: return True if G.order() % self.order() != 0: return False if self.degree == G.degree or \ (self.degree < G.degree and not strict): gens = self.generators else: return False return all(G.contains(g, strict=strict) for g in gens) def is_transitive(self, strict=True): """Test if the group is transitive. A group is transitive if it has a single orbit. If ``strict`` is False the group is transitive if it has a single orbit of length different from 1. Examples ======== >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G1 = PermutationGroup([a, b]) >>> G1.is_transitive() False >>> G1.is_transitive(strict=False) True >>> c = Permutation([2, 3, 0, 1]) >>> G2 = PermutationGroup([a, c]) >>> G2.is_transitive() True >>> d = Permutation([1, 0, 2, 3]) >>> e = Permutation([0, 1, 3, 2]) >>> G3 = PermutationGroup([d, e]) >>> G3.is_transitive() or G3.is_transitive(strict=False) False """ if self._is_transitive: # strict or not, if True then True return self._is_transitive if strict: if self._is_transitive is not None: # we only store strict=True return self._is_transitive ans = len(self.orbit(0)) == self.degree self._is_transitive = ans return ans got_orb = False for x in self.orbits(): if len(x) > 1: if got_orb: return False got_orb = True return got_orb @property def is_trivial(self): """Test if the group is the trivial group. This is true if the group contains only the identity permutation. Examples ======== >>> G = PermutationGroup([Permutation([0, 1, 2])]) >>> G.is_trivial True """ if self._is_trivial is None: self._is_trivial = len(self) == 1 and self[0].is_Identity return self._is_trivial def lower_central_series(self): r"""Return the lower central series for the group. The lower central series for a group ``G`` is the series ``G = G_0 > G_1 > G_2 > \ldots`` where ``G_k = [G, G_{k-1}]``, i.e. every term after the first is equal to the commutator of ``G`` and the previous term in ``G1`` ([1], p.29). Returns ======= A list of permutation groups in the order ``G = G_0, G_1, G_2, \ldots`` Examples ======== >>> A = AlternatingGroup(4) >>> len(A.lower_central_series()) 2 >>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) True See Also ======== commutator, derived_series """ res = [self] current = self next = self.commutator(self, current) while not current.is_subgroup(next): res.append(next) current = next next = self.commutator(self, current) return res @property def max_div(self): """Maximum proper divisor of the degree of a permutation group. Notes ===== Obviously, this is the degree divided by its minimal proper divisor (larger than ``1``, if one exists). As it is guaranteed to be prime, the ``sieve`` from ``diofant.ntheory`` is used. This function is also used as an optimization tool for the functions ``minimal_block`` and ``_union_find_merge``. Examples ======== >>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) >>> G.max_div 2 See Also ======== minimal_block, _union_find_merge """ if self._max_div is not None: return self._max_div n = self.degree if n == 1: return 1 for x in sieve: if n % x == 0: d = n//x self._max_div = d return d def minimal_block(self, points): r"""For a transitive group, finds the block system generated by ``points``. If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` is called a block under the action of ``G`` if for all ``g`` in ``G`` we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` partition the set ``S`` and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides ``|S|`` ([1], p.23). A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. For a transitive group, the equivalence classes of a ``G``-congruence and the blocks of a block system are the same thing ([1], p.23). The algorithm below checks the group for transitivity, and then finds the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), ..., (p_0,p_{k-1})`` which is the same as finding the maximal block system (i.e., the one with minimum block size) such that ``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set ``S`` using a union-find data structure. The running time is just above ``O(|points||S|)``. ([1], pp. 83-87; [7]). Examples ======== >>> D = DihedralGroup(10) >>> D.minimal_block([0, 5]) [0, 6, 2, 8, 4, 0, 6, 2, 8, 4] >>> D.minimal_block([0, 1]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] See Also ======== _union_find_rep, _union_find_merge, is_transitive, is_primitive """ if not self.is_transitive(): return False n = self.degree gens = self.generators # initialize the list of equivalence class representatives parents = list(range(n)) ranks = [1]*n not_rep = [] k = len(points) # the block size must divide the degree of the group if k > self.max_div: return [0]*n for i in range(k - 1): parents[points[i + 1]] = points[0] not_rep.append(points[i + 1]) ranks[points[0]] = k i = 0 len_not_rep = k - 1 while i < len_not_rep: temp = not_rep[i] i += 1 for gen in gens: # find has side effects: performs path compression on the list # of representatives delta = self._union_find_rep(temp, parents) # union has side effects: performs union by rank on the list # of representatives temp = self._union_find_merge(gen(temp), gen(delta), ranks, parents, not_rep) if temp == -1: return [0]*n len_not_rep += temp for i in range(n): # force path compression to get the final state of the equivalence # relation self._union_find_rep(i, parents) return parents def normal_closure(self, other, k=10): r"""Return the normal closure of a subgroup/set of permutations. If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` is defined as the intersection of all normal subgroups of ``G`` that contain ``A`` ([1], p.14). Alternatively, it is the group generated by the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a generator of the subgroup ``\left\langle S\right\rangle`` generated by ``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) ([1], p.73). Parameters ========== other a subgroup/list of permutations/single permutation k an implementation-specific parameter that determines the number of conjugates that are adjoined to ``other`` at once Examples ======== >>> S = SymmetricGroup(5) >>> C = CyclicGroup(5) >>> G = S.normal_closure(C) >>> G.order() 60 >>> G.is_subgroup(AlternatingGroup(5)) True See Also ======== commutator, derived_subgroup, random_pr Notes ===== The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm. """ if hasattr(other, 'generators'): degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in other.generators): return other Z = PermutationGroup(other.generators[:]) base, strong_gens = Z.schreier_sims_incremental() strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) self._random_pr_init(r=10, n=20) _loop = True while _loop: Z._random_pr_init(r=10, n=10) for i in range(k): g = self.random_pr() h = Z.random_pr() conj = h ^ g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: gens = Z.generators gens.append(conj) Z = PermutationGroup(gens) strong_gens.append(conj) temp_base, temp_strong_gens = \ Z.schreier_sims_incremental(base, strong_gens) base, strong_gens = temp_base, temp_strong_gens strong_gens_distr = \ _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) _loop = False for g in self.generators: for h in Z.generators: conj = h ^ g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: _loop = True break if _loop: break return Z elif hasattr(other, '__getitem__'): return self.normal_closure(PermutationGroup(other)) elif hasattr(other, 'array_form'): return self.normal_closure(PermutationGroup([other])) def orbit(self, alpha, action='tuples'): r"""Compute the orbit of alpha ``\{g(\alpha) | g \in G\}`` as a set. The time complexity of the algorithm used here is ``O(|Orb|*r)`` where ``|Orb|`` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> G.orbit(0) {0, 1, 2} >>> G.orbit([0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit_transversal """ return _orbit(self.degree, self.generators, alpha, action) def orbit_rep(self, alpha, beta, schreier_vector=None): """Return a group element which sends ``alpha`` to ``beta``. If ``beta`` is not in the orbit of ``alpha``, the function returns ``False``. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p.80 Examples ======== >>> Permutation.print_cyclic = True >>> G = AlternatingGroup(5) >>> G.orbit_rep(0, 4) Permutation(0, 4, 1, 2, 3) See Also ======== schreier_vector """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if schreier_vector[beta] is None: return False k = schreier_vector[beta] gens = [x._array_form for x in self.generators] a = [] while k != -1: a.append(gens[k]) beta = gens[k].index(beta) # beta = (~gens[k])(beta) k = schreier_vector[beta] if a: return _af_new(_af_rmuln(*a)) else: return _af_new(list(range(self._degree))) def orbit_transversal(self, alpha, pairs=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. For a permutation group ``G``, a transversal for the orbit ``Orb = \{g(\alpha) | g \in G\}`` is a set ``\{g_\beta | g_\beta(\alpha) = \beta\}`` for ``\beta \in Orb``. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs ``(\beta, g_\beta)``. For a proof of correctness, see [1], p.79 Examples ======== >>> Permutation.print_cyclic = True >>> G = DihedralGroup(6) >>> G.orbit_transversal(0) [Permutation(5), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 5)(1, 4)(2, 3), Permutation(0, 2, 4)(1, 3, 5), Permutation(5)(0, 4)(1, 3), Permutation(0, 3)(1, 4)(2, 5)] See Also ======== orbit """ return _orbit_transversal(self._degree, self.generators, alpha, pairs) def orbits(self, rep=False): """Return the orbits of self, ordered according to lowest element in each orbit. Examples ======== >>> a = Permutation(1, 5)(2, 3)(4, 0, 6) >>> b = Permutation(1, 5)(3, 4)(2, 6, 0) >>> G = PermutationGroup([a, b]) >>> G.orbits() [{0, 2, 3, 4, 6}, {1, 5}] """ return _orbits(self._degree, self._generators) def order(self): """Return the order of the group: the number of permutations that can be generated from elements of the group. The number of permutations comprising the group is given by len(group); the length of each permutation in the group is given by group.size. Examples ======== >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [Permutation(2), Permutation(2)(0, 1)] >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.order() 6 See Also ======== degree """ if self._order is not None: return self._order if self._is_sym: n = self._degree self._order = factorial(n) return self._order if self._is_alt: n = self._degree self._order = factorial(n)/2 return self._order basic_transversals = self.basic_transversals m = 1 for x in basic_transversals: m *= len(x) self._order = m return m def pointwise_stabilizer(self, points, incremental=True): r"""Return the pointwise stabilizer for a set of points. For a permutation group ``G`` and a set of points ``\{p_1, p_2,\ldots, p_k\}``, the pointwise stabilizer of ``p_1, p_2, \ldots, p_k`` is defined as ``G_{p_1,\ldots, p_k} = \{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\} ([1],p20). It is a subgroup of ``G``. Examples ======== >>> S = SymmetricGroup(7) >>> Stab = S.pointwise_stabilizer([2, 3, 5]) >>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) True See Also ======== stabilizer, schreier_sims_incremental Notes ===== When incremental == True, rather than the obvious implementation using successive calls to .stabilizer(), this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points. """ if incremental: base, strong_gens = self.schreier_sims_incremental(base=points) stab_gens = [] degree = self.degree for gen in strong_gens: if [gen(point) for point in points] == points: stab_gens.append(gen) if not stab_gens: stab_gens = _af_new(list(range(degree))) return PermutationGroup(stab_gens) else: gens = self._generators degree = self.degree for x in points: gens = _stabilizer(degree, gens, x) return PermutationGroup(gens) def make_perm(self, n, seed=None): """ Multiply ``n`` randomly selected permutations from pgroup together, starting with the identity permutation. If ``n`` is a list of integers, those integers will be used to select the permutations and they will be applied in L to R order: make_perm((A, B, C)) will give CBA(I) where I is the identity permutation. ``seed`` is used to set the seed for the random selection of permutations from pgroup. If this is a list of integers, the corresponding permutations from pgroup will be selected in the order give. This is mainly used for testing purposes. Examples ======== >>> Permutation.print_cyclic = True >>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] >>> G = PermutationGroup([a, b]) >>> G.make_perm(1, [0]) Permutation(0, 1)(2, 3) >>> G.make_perm(3, [0, 1, 0]) Permutation(0, 2, 3, 1) >>> G.make_perm([0, 1, 0]) Permutation(0, 2, 3, 1) See Also ======== random """ if is_sequence(n): if seed is not None: raise ValueError('If n is a sequence, seed should be None') n, seed = len(n), n else: try: n = int(n) except TypeError: raise ValueError('n must be an integer or a sequence.') randrange = _randrange(seed) # start with the identity permutation result = Permutation(list(range(self.degree))) m = len(self) for i in range(n): p = self[randrange(m)] result = rmul(result, p) return result def random(self, af=False): """Return a random group element.""" rank = randrange(self.order()) return self.coset_unrank(rank, af) def random_pr(self, gen_count=11, iterations=50, _random_prec=None): """Return a random group element using product replacement. For the details of the product replacement algorithm, see ``_random_pr_init`` In ``random_pr`` the actual 'product replacement' is performed. Notice that if the attribute ``_random_gens`` is empty, it needs to be initialized by ``_random_pr_init``. See Also ======== _random_pr_init """ if self._random_gens == []: self._random_pr_init(gen_count, iterations) random_gens = self._random_gens r = len(random_gens) - 1 # handle randomized input for testing purposes if _random_prec is None: s = randrange(r) t = randrange(r - 1) if t == s: t = r - 1 x = choice([1, 2]) e = choice([-1, 1]) else: s = _random_prec['s'] t = _random_prec['t'] if t == s: t = r - 1 x = _random_prec['x'] e = _random_prec['e'] if x == 1: random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) else: random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) return _af_new(random_gens[r]) def random_stab(self, alpha, schreier_vector=None, _random_prec=None): """Random element from the stabilizer of ``alpha``. The schreier vector for ``alpha`` is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81 See Also ======== random_pr, orbit_rep """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if _random_prec is None: rand = self.random_pr() else: rand = _random_prec['rand'] beta = rand(alpha) h = self.orbit_rep(alpha, beta, schreier_vector) return rmul(~h, rand) def schreier_sims(self): """Schreier-Sims algorithm. It computes the generators of the chain of stabilizers G > G_{b_1} > .. > G_{b1,..,b_r} > 1 in which G_{b_1,..,b_i} stabilizes b_1,..,b_i, and the corresponding ``s`` cosets. An element of the group can be written as the product h_1*..*h_s. We use the incremental Schreier-Sims algorithm. Examples ======== >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_sims() >>> G.basic_transversals [{0: Permutation(2)(0, 1), 1: Permutation(2), 2: Permutation(1, 2)}, {0: Permutation(2), 2: Permutation(0, 2)}] """ if self._transversals: return base, strong_gens = self.schreier_sims_incremental() self._base = base self._strong_gens = strong_gens if not base: self._transversals = [] self._basic_orbits = [] return strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr) self._transversals = transversals self._basic_orbits = [sorted(x) for x in basic_orbits] def schreier_sims_incremental(self, base=None, gens=None): """Extend a sequence of points and generating set to a base and strong generating set. Parameters ========== base The sequence of points to be extended to a base. Optional parameter with default value ``[]``. gens The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value ``self.generators``. Returns ======= (base, strong_gens) ``base`` is the base obtained, and ``strong_gens`` is the strong generating set relative to it. The original parameters ``base``, ``gens`` remain unchanged. Examples ======== >>> from diofant.combinatorics.testutil import _verify_bsgs >>> A = AlternatingGroup(7) >>> base = [2, 3] >>> seq = [2, 3] >>> base, strong_gens = A.schreier_sims_incremental(base=seq) >>> _verify_bsgs(A, base, strong_gens) True >>> base[:2] [2, 3] Notes ===== This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, ``base`` and ``gens`` are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators ``gens``, it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93. See Also ======== schreier_sims, schreier_sims_random """ if base is None: base = [] if gens is None: gens = self.generators[:] degree = self.degree id_af = list(range(degree)) # handle the trivial group if len(gens) == 1 and gens[0].is_Identity: return base, gens # prevent side effects _base, _gens = base[:], gens[:] # remove the identity as a generator _gens = [x for x in _gens if not x.is_Identity] # make sure no generator fixes all base points for gen in _gens: if all(x == gen._array_form[x] for x in _base): for new in id_af: if gen._array_form[new] != new: break else: assert None # can this ever happen? _base.append(new) # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(_base, _gens) # initialize the basic stabilizers, basic orbits and basic transversals orbs = {} transversals = {} base_len = len(_base) for i in range(base_len): transversals[i] = dict(_orbit_transversal(degree, strong_gens_distr[i], _base[i], pairs=True, af=True)) orbs[i] = list(transversals[i]) # main loop: amend the stabilizer chain until we have generators # for all stabilizers i = base_len - 1 while i >= 0: # this flag is used to continue with the main loop from inside # a nested loop continue_i = False # test the generators for being a strong generating set db = {} for beta, u_beta in list(transversals[i].items()): for gen in strong_gens_distr[i]: gb = gen._array_form[beta] u1 = transversals[i][gb] g1 = _af_rmul(gen._array_form, u_beta) if g1 != u1: # test if the schreier generator is in the i+1-th # would-be basic stabilizer y = True try: u1_inv = db[gb] except KeyError: u1_inv = db[gb] = _af_invert(u1) schreier_gen = _af_rmul(u1_inv, g1) h, j = _strip_af(schreier_gen, _base, orbs, transversals, i) if j <= base_len: # new strong generator h at level j y = False elif h: # h fixes all base points y = False moved = 0 while h[moved] == moved: moved += 1 _base.append(moved) base_len += 1 strong_gens_distr.append([]) if y is False: # if a new strong generator is found, update the # data structures and start over h = _af_new(h) for l in range(i + 1, j): strong_gens_distr[l].append(h) transversals[l] =\ dict(_orbit_transversal(degree, strong_gens_distr[l], _base[l], pairs=True, af=True)) orbs[l] = list(transversals[l]) i = j - 1 # continue main loop using the flag continue_i = True if continue_i is True: break if continue_i is True: break if continue_i is True: continue i -= 1 # build the strong generating set strong_gens = list(uniq(i for gens in strong_gens_distr for i in gens)) return _base, strong_gens def schreier_sims_random(self, base=None, gens=None, consec_succ=10, _random_prec=None): r"""Randomized Schreier-Sims algorithm. The randomized Schreier-Sims algorithm takes the sequence ``base`` and the generating set ``gens``, and extends ``base`` to a base, and ``gens`` to a strong generating set relative to that base with probability of a wrong answer at most ``2^{-consec\_succ}``, provided the random generators are sufficiently random. Parameters ========== base The sequence to be extended to a base. gens The generating set to be extended to a strong generating set. consec_succ The parameter defining the probability of a wrong answer. _random_prec An internal parameter used for testing purposes. Returns ======= (base, strong_gens) ``base`` is the base and ``strong_gens`` is the strong generating set relative to it. Examples ======== >>> from diofant.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(5) >>> base, strong_gens = S.schreier_sims_random(consec_succ=5) >>> _verify_bsgs(S, base, strong_gens) # doctest: +SKIP True Notes ===== The algorithm is described in detail in [1], pp. 97-98. It extends the orbits ``orbs`` and the permutation groups ``stabs`` to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to "sift" random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function ``_strip`` is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. The halting condition is for ``consec_succ`` consecutive successful sifts to pass. This makes sure that the current ``base`` and ``gens`` form a BSGS with probability at least ``1 - 1/\text{consec\_succ}``. See Also ======== schreier_sims """ if base is None: base = [] if gens is None: gens = self.generators base_len = len(base) n = self.degree # make sure no generator fixes all base points for gen in gens: if all(gen(x) == x for x in base): new = 0 while gen._array_form[new] == new: new += 1 base.append(new) base_len += 1 # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(base, gens) # initialize the basic stabilizers, basic transversals and basic orbits transversals = {} orbs = {} for i in range(base_len): transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], base[i], pairs=True)) orbs[i] = list(transversals[i]) # initialize the number of consecutive elements sifted c = 0 # start sifting random elements while the number of consecutive sifts # is less than consec_succ while c < consec_succ: if _random_prec is None: g = self.random_pr() else: g = _random_prec['g'].pop() h, j = _strip(g, base, orbs, transversals) y = True # determine whether a new base point is needed if j <= base_len: y = False elif not h.is_Identity: y = False moved = 0 while h(moved) == moved: moved += 1 base.append(moved) base_len += 1 strong_gens_distr.append([]) # if the element doesn't sift, amend the strong generators and # associated stabilizers and orbits if y is False: for l in range(1, j): strong_gens_distr[l].append(h) transversals[l] = dict(_orbit_transversal(n, strong_gens_distr[l], base[l], pairs=True)) orbs[l] = list(transversals[l]) c = 0 else: c += 1 # build the strong generating set strong_gens = strong_gens_distr[0][:] for gen in strong_gens_distr[1]: if gen not in strong_gens: strong_gens.append(gen) return base, strong_gens def schreier_vector(self, alpha): """Computes the schreier vector for ``alpha``. The Schreier vector efficiently stores information about the orbit of ``alpha``. It can later be used to quickly obtain elements of the group that send ``alpha`` to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use "None" instead of 0 to signify that an element doesn't belong to the orbit. For the algorithm and its correctness, see [2], pp.78-80. Examples ======== >>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) >>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_vector(0) [-1, None, 0, 1, None, 1, 0] See Also ======== orbit """ n = self.degree v = [None]*n v[alpha] = -1 orb = [alpha] used = [False]*n used[alpha] = True gens = self.generators r = len(gens) for b in orb: for i in range(r): temp = gens[i]._array_form[b] if used[temp] is False: orb.append(temp) used[temp] = True v[temp] = i return v def stabilizer(self, alpha): r"""Return the stabilizer subgroup of ``alpha``. The stabilizer of ``\alpha`` is the group ``G_\alpha = \{g \in G | g(\alpha) = \alpha\}``. For a proof of correctness, see [1], p.79. Examples ======== >>> Permutation.print_cyclic = True >>> G = DihedralGroup(6) >>> G.stabilizer(5) PermutationGroup([ Permutation(5)(0, 4)(1, 3), Permutation(5)]) See Also ======== orbit """ return PermGroup(_stabilizer(self._degree, self._generators, alpha)) @property def strong_gens(self): r"""Return a strong generating set from the Schreier-Sims algorithm. A generating set ``S = \{g_1, g_2, ..., g_t\}`` for a permutation group ``G`` is a strong generating set relative to the sequence of points (referred to as a "base") ``(b_1, b_2, ..., b_k)`` if, for ``1 \leq i \leq k`` we have that the intersection of the pointwise stabilizer ``G^{(i+1)} := G_{b_1, b_2, ..., b_i}`` with ``S`` generates the pointwise stabilizer ``G^{(i+1)}``. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. Examples ======== >>> D = DihedralGroup(4) >>> D.strong_gens [Permutation(0, 1, 2, 3), Permutation(0, 3)(1, 2), Permutation(1, 3)] >>> D.base [0, 1] See Also ======== base, basic_transversals, basic_orbits, basic_stabilizers """ if self._strong_gens == []: self.schreier_sims() return self._strong_gens def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, init_subgroup=None): """Find the subgroup of all elements satisfying the property ``prop``. This is done by a depth-first search with respect to base images that uses several tests to prune the search tree. Parameters ========== prop The property to be used. Has to be callable on group elements and always return ``True`` or ``False``. It is assumed that all group elements satisfying ``prop`` indeed form a subgroup. base A base for the supergroup. strong_gens A strong generating set for the supergroup. tests A list of callables of length equal to the length of ``base``. These are used to rule out group elements by partial base images, so that ``tests[l](g)`` returns False if the element ``g`` is known not to satisfy prop base on where g sends the first ``l + 1`` base points. init_subgroup if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter. Returns ======= res The subgroup of all elements satisfying ``prop``. The generating set for this group is guaranteed to be a strong generating set relative to the base ``base``. Examples ======== >>> from diofant.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(7) >>> def prop_even(x): ... return x.is_even >>> base, strong_gens = S.schreier_sims_incremental() >>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) >>> G.is_subgroup(AlternatingGroup(7)) True >>> _verify_bsgs(G, base, G.generators) True Notes ===== This function is extremely lenghty and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity. The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the ``tests`` parameter, so in practice, and for some computations, it's not terrible. A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentiones that this can be done by using ``.baseswap(...)``, however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function ``.stabilizer(...)`` on the previous basic stabilizer. """ # initialize BSGS and basic group properties def get_reps(orbits): # get the minimal element in the base ordering return [min(orbit, key=lambda x: base_ordering[x]) for orbit in orbits] def update_nu(l): temp_index = len(basic_orbits[l]) + 1 -\ len(res_basic_orbits_init_base[l]) # this corresponds to the element larger than all points if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] if base is None: base, strong_gens = self.schreier_sims_incremental() base_len = len(base) degree = self.degree identity = _af_new(list(range(degree))) base_ordering = _base_ordering(base, degree) # add an element larger than all points base_ordering.append(degree) # add an element smaller than all points base_ordering.append(-1) # compute BSGS-related structures strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr) # handle subgroup initialization and tests if init_subgroup is None: init_subgroup = PermutationGroup([identity]) if tests is None: def trivial_test(x): return True tests = [] for i in range(base_len): tests.append(trivial_test) # line 1: more initializations. res = init_subgroup f = base_len - 1 l = base_len - 1 # line 2: set the base for K to the base for G res_base = base[:] # line 3: compute BSGS and related structures for K res_base, res_strong_gens = res.schreier_sims_incremental( base=res_base) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_generators = res.generators res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i]) for i in range(base_len)] # initialize orbit representatives orbit_reps = [None]*base_len # line 4: orbit representatives for f-th basic stabilizer of K orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(orbits) # line 5: remove the base point from the representatives to avoid # getting the identity element as a generator for K orbit_reps[f].remove(base[f]) # line 6: more initializations c = [0]*base_len u = [identity]*base_len sorted_orbits = [None]*base_len for i in range(base_len): sorted_orbits[i] = basic_orbits[i][:] sorted_orbits[i].sort(key=lambda point: base_ordering[point]) # line 7: initializations mu = [None]*base_len nu = [None]*base_len # this corresponds to the element smaller than all points mu[l] = degree + 1 update_nu(l) # initialize computed words computed_words = [identity]*base_len # line 8: main loop while True: # apply all the tests while l < base_len - 1 and \ computed_words[l](base[l]) in orbit_reps[l] and \ base_ordering[mu[l]] < \ base_ordering[computed_words[l](base[l])] < \ base_ordering[nu[l]] and \ tests[l](computed_words): # line 11: change the (partial) base of K new_point = computed_words[l](base[l]) res_base[l] = new_point new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], new_point) res_strong_gens_distr[l + 1] = new_stab_gens # line 12: calculate minimal orbit representatives for the # l+1-th basic stabilizer orbits = _orbits(degree, new_stab_gens) orbit_reps[l + 1] = get_reps(orbits) # line 13: amend sorted orbits l += 1 temp_orbit = [computed_words[l - 1](point) for point in basic_orbits[l]] temp_orbit.sort(key=lambda point: base_ordering[point]) sorted_orbits[l] = temp_orbit # lines 14 and 15: update variables used minimality tests new_mu = degree + 1 for i in range(l): if base[l] in res_basic_orbits_init_base[i]: candidate = computed_words[i](base[i]) if base_ordering[candidate] > base_ordering[new_mu]: new_mu = candidate mu[l] = new_mu update_nu(l) # line 16: determine the new transversal element c[l] = 0 temp_point = sorted_orbits[l][c[l]] gamma = computed_words[l - 1]._array_form.index(temp_point) u[l] = transversals[l][gamma] # update computed words computed_words[l] = rmul(computed_words[l - 1], u[l]) # lines 17 & 18: apply the tests to the group element found g = computed_words[l] temp_point = g(base[l]) if l == base_len - 1 and \ base_ordering[mu[l]] < \ base_ordering[temp_point] < base_ordering[nu[l]] and \ temp_point in orbit_reps[l] and \ tests[l](computed_words) and \ prop(g): # line 19: reset the base of K res_generators.append(g) res_base = base[:] # line 20: recalculate basic orbits (and transversals) res_strong_gens.append(g) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i]) for i in range(base_len)] # line 21: recalculate orbit representatives # line 22: reset the search depth orbit_reps[f] = get_reps(orbits) l = f # line 23: go up the tree until in the first branch not fully # searched while l >= 0 and c[l] == len(basic_orbits[l]) - 1: l = l - 1 # line 24: if the entire tree is traversed, return K if l == -1: return PermutationGroup(res_generators) # lines 25-27: update orbit representatives if l < f: # line 26 f = l c[l] = 0 # line 27 temp_orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(temp_orbits) # line 28: update variables used for minimality testing mu[l] = degree + 1 temp_index = len(basic_orbits[l]) + 1 - \ len(res_basic_orbits_init_base[l]) if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] # line 29: set the next element from the current branch and update # accorndingly c[l] += 1 if l == 0: gamma = sorted_orbits[l][c[l]] else: gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) u[l] = transversals[l][gamma] if l == 0: computed_words[l] = u[l] else: computed_words[l] = rmul(computed_words[l - 1], u[l]) @property def transitivity_degree(self): r"""Compute the degree of transitivity of the group. A permutation group ``G`` acting on ``\Omega = \{0, 1, ..., n-1\}`` is ``k``-fold transitive, if, for any k points ``(a_1, a_2, ..., a_k)\in\Omega`` and any k points ``(b_1, b_2, ..., b_k)\in\Omega`` there exists ``g\in G`` such that ``g(a_1)=b_1, g(a_2)=b_2, ..., g(a_k)=b_k`` The degree of transitivity of ``G`` is the maximum ``k`` such that ``G`` is ``k``-fold transitive. ([8]) Examples ======== >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.transitivity_degree 3 See Also ======== is_transitive, orbit """ if self._transitivity_degree is None: n = self.degree G = self # if G is k-transitive, a tuple (a_0,..,a_k) # can be brought to (b_0,...,b_(k-1), b_k) # where b_0,...,b_(k-1) are fixed points; # consider the group G_k which stabilizes b_0,...,b_(k-1) # if G_k is transitive on the subset excluding b_0,...,b_(k-1) # then G is (k+1)-transitive for i in range(n): orb = G.orbit(i) if len(orb) != n - i: self._transitivity_degree = i return i G = G.stabilizer(i) self._transitivity_degree = n return n else: return self._transitivity_degree def _orbit(degree, generators, alpha, action='tuples'): r"""Compute the orbit of alpha ``\{g(\alpha) | g \in G\}`` as a set. The time complexity of the algorithm used here is ``O(|Orb|*r)`` where ``|Orb|`` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> _orbit(G.degree, G.generators, 0) {0, 1, 2} >>> _orbit(G.degree, G.generators, [0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit, orbit_transversal """ if not hasattr(alpha, '__getitem__'): alpha = [alpha] gens = [x._array_form for x in generators] if len(alpha) == 1 or action == 'union': orb = alpha used = [False]*degree for el in alpha: used[el] = True for b in orb: for gen in gens: temp = gen[b] if used[temp] is False: orb.append(temp) used[temp] = True return set(orb) elif action == 'tuples': alpha = tuple(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = tuple(gen[x] for x in b) if temp not in used: orb.append(temp) used.add(temp) return set(orb) elif action == 'sets': alpha = frozenset(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = frozenset(gen[x] for x in b) if temp not in used: orb.append(temp) used.add(temp) return {tuple(x) for x in orb} def _orbits(degree, generators): """Compute the orbits of G. If rep=False it returns a list of sets else it returns a list of representatives of the orbits Examples ======== >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> _orbits(a.size, [a, b]) [{0, 1, 2}] """ orbs = [] sorted_I = list(range(degree)) I = set(sorted_I) while I: i = sorted_I[0] orb = _orbit(degree, generators, i) orbs.append(orb) # remove all indices that are in this orbit I -= orb sorted_I = [i for i in sorted_I if i not in orb] return orbs def _orbit_transversal(degree, generators, alpha, pairs, af=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. generators generators of the group ``G`` For a permutation group ``G``, a transversal for the orbit ``Orb = \{g(\alpha) | g \in G\}`` is a set ``\{g_\beta | g_\beta(\alpha) = \beta\}`` for ``\beta \in Orb``. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs ``(\beta, g_\beta)``. For a proof of correctness, see [1], p.79 if af is True, the transversal elements are given in array form Examples ======== >>> Permutation.print_cyclic = True >>> G = DihedralGroup(6) >>> _orbit_transversal(G.degree, G.generators, 0, False) [Permutation(5), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 5)(1, 4)(2, 3), Permutation(0, 2, 4)(1, 3, 5), Permutation(5)(0, 4)(1, 3), Permutation(0, 3)(1, 4)(2, 5)] """ tr = [(alpha, list(range(degree)))] used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] for x, px in tr: for gen in gens: temp = gen[x] if used[temp] is False: tr.append((temp, _af_rmul(gen, px))) used[temp] = True if pairs: if not af: tr = [(x, _af_new(y)) for x, y in tr] return tr if af: return [y for _, y in tr] return [_af_new(y) for _, y in tr] def _stabilizer(degree, generators, alpha): r"""Return the stabilizer subgroup of ``alpha``. The stabilizer of ``\alpha`` is the group ``G_\alpha = \{g \in G | g(\alpha) = \alpha\}``. For a proof of correctness, see [1], p.79. degree degree of G generators generators of G Examples ======== >>> Permutation.print_cyclic = True >>> G = DihedralGroup(6) >>> _stabilizer(G.degree, G.generators, 5) [Permutation(5)(0, 4)(1, 3), Permutation(5)] See Also ======== orbit """ orb = [alpha] table = {alpha: list(range(degree))} table_inv = {alpha: list(range(degree))} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] stab_gens = [] for b in orb: for gen in gens: temp = gen[b] if used[temp] is False: gen_temp = _af_rmul(gen, table[b]) orb.append(temp) table[temp] = gen_temp table_inv[temp] = _af_invert(gen_temp) used[temp] = True else: schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) if schreier_gen not in stab_gens: stab_gens.append(schreier_gen) return [_af_new(x) for x in stab_gens] PermGroup = PermutationGroup
bsd-3-clause
75,722,258,632,304,220
33.023178
106
0.514781
false
lkmnds/dickord
console.py
1
1195
import logging import traceback import asyncio import requests import dickord route = dickord.route import config logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger('userbot') benis = dickord.Dicker(user_pass=('luna@localhost', 'fuck')) @benis.sensor('READY') async def ready_for_work(payload): u = benis.user logger.info(f"We are ready! name = {u.username}#{u.discriminator}, id = {u.id}") logger.info("Requesting channel") req = requests.get(route('channels/150501171201'), headers=benis.http.headers) print(req) print(req.json()) await asyncio.sleep(1) logger.info('aaaa') await benis.select_ass('portal 2 pinball') await asyncio.sleep(0.5) logger.info('sending typing') req = requests.post(route('channels/150501171201/typing'), headers=benis.http.headers) print(req) print(req.text) await asyncio.sleep(1) logger.info('meme') req = await benis.http.insert_benis('channels/150501171201/messages', \ {'content': 'meme'}) print(req) print(req.text) res, err_msg = benis.infinite_insert() if not res: print(f"Errored somewhere: {err_msg}") else: print("Exited with success")
mit
-1,654,092,541,386,538,200
24.425532
90
0.68954
false
samuelefiorini/cgm-tools
scripts/run_kf.py
1
2960
"""KF experiments development.""" from cgmtools import utils from cgmtools import plotting from cgmtools.forecast import kf import datetime import numpy as np import pickle as pkl ############################################################################### # Load full data set from pickle file (see data_wrangler.py) dfs_full = pkl.load(open('../../data/dfs_py3.pkl', 'rb')) # Keep only patients with more than `THRESHOLD` days of CGM acquisition _threshold = datetime.timedelta(days=3.5) # default dfs = utils.filter_patients(dfs_full, _threshold) burn_in = 300 # burn-in samples used to learn the best order via cv n_splits = 15 ph = 18 # prediction horizon # State-space model: # transition matrix (double integration model) F = np.array([[2, -1], [1, 0]]) # measures matrix H = np.array([1, 0]) # Get patients list patients = list(dfs.keys()) for idx in patients: df = utils.gluco_extract(dfs[idx], return_df=True) # Learn the best order via cv # lambda2_range = np.logspace(-12, -4, 10) lambda2_range = np.logspace(-12, -4, 3) sigma2_range = np.linspace(1, 40, 3) # sigma2_range = np.linspace(1, 40, 10) out = kf.grid_search(df, lambda2_range, sigma2_range, burn_in=burn_in, n_splits=15, F=F, H=H, return_mean_vld_error=True, return_initial_state_mean=True, return_initial_state_covariance=True, verbose=False) lambda2, sigma2, mse, X0, P0 = out print("[{}]:\tBest lambda {:2.12f}, sigma {:2.0f}".format(idx, lambda2, sigma2)) Q = np.array([[lambda2, 0], [0, 0]]) # transition_covariance R = sigma2 # observation (co)variance df = df.iloc[burn_in:] # don't mix-up training/test _kf = kf.cgmkalmanfilter(F=F, Q=Q, R=R, X0=X0, P0=P0) errs, forecast = kf.online_forecast(df, _kf, H, ph=18, lambda2=lambda2, sigma2=sigma2, verbose=True) # Save results reports error_summary = utils.forecast_report(errs) print(error_summary) # import matplotlib.pyplot as plt # plotting.cgm(df, forecast['ts'], title='Patient '+idx, # savefig=False) # plotting.residuals(df, forecast['ts'], skip_first=burn_in, # skip_last=ph, title='Patient '+idx, # savefig=False) # plt.show() # break # # dump it into a pkl pkl.dump(error_summary, open(idx+'.pkl', 'wb')) try: # Plot signal and its fit plotting.cgm(df, forecast['ts'], title='Patient '+idx, savefig=True) # Plot residuals plotting.residuals(df, forecast['ts'], skip_first=burn_in, skip_last=ph, title='Patient '+idx, savefig=True) except: print("Plotting failed for patient {}".format(idx))
gpl-3.0
4,648,840,799,209,392,000
35.54321
79
0.565203
false
ftomassetti/plaid
app/views/decorators.py
1
1552
from functools import wraps from flask import render_template, request, url_for from app.models import PatchState def filterable(f): """Filter a query""" @wraps(f) def wrapped(*args, **kwargs): d = f(*args, **kwargs) q = d['query'] state = request.args.get('state', None, type=str) if state: q = q.filter_by(state=PatchState.from_string(state)) # add more filters later d['query'] = q return d return wrapped def paginable(pagename, max_per_page=50): """Paginate a query""" def decorator(f): @wraps(f) def wrapped(*args, **kwargs): d = f(*args, **kwargs) q = d['query'] page = request.args.get('page', 1, type=int) per_page = request.args.get('per_page', max_per_page, type=int) p = q.paginate(page, per_page, False) if not p.items: d['page'] = None d[pagename] = q.paginate(1, per_page, False) else: d[pagename] = p return d return wrapped return decorator def render(template): """render a query""" def decorator(f): @wraps(f) def wrapped(*args, **kwargs): d = f(*args, **kwargs) def endpoint(**up): kwargs.update(up) return url_for(request.endpoint, **kwargs) d['endpoint'] = endpoint return render_template(template, **d) return wrapped return decorator
gpl-2.0
-1,112,586,424,140,818,000
24.442623
75
0.52384
false
citizenlabsgr/voter-engagement
api/core/management/commands/gendata.py
1
4551
import random from contextlib import suppress from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.sites.models import Site from django.core.management.base import BaseCommand from django.db.utils import IntegrityError from faker import Faker from api.elections.models import Election from api.voters.models import Status, Voter User = get_user_model() fake = Faker() def p(value): return value > random.random() class Command(BaseCommand): help = "Generate data for automated testing and manual review" def add_arguments(self, parser): parser.add_argument( 'emails', nargs='?', type=lambda value: value.split(','), default=[], ) def handle(self, *, emails, **_options): # pylint: disable=arguments-differ self.update_site() admin = self.get_or_create_superuser() users = [self.get_or_create_user(email) for email in emails] self.generate_review_data(admin, *users) def update_site(self): site = Site.objects.get(id=1) site.name = f"Voter Engagement {settings.BASE_NAME}" site.domain = settings.BASE_DOMAIN site.save() self.stdout.write(f"Updated site: {site}") def get_or_create_superuser(self, username="admin", password="password"): try: user = User.objects.create_superuser( username=username, email=f"{username}@{settings.BASE_DOMAIN}", password=password, ) self.stdout.write(f"Created new superuser: {user}") except IntegrityError: user = User.objects.get(username=username) self.stdout.write(f"Found existing superuser: {user}") return user def get_or_create_user(self, base_email, password="password"): username, email_domain = base_email.split('@') user, created = User.objects.get_or_create(username=username) user.email = f"{username}+{settings.BASE_NAME}@{email_domain}" user.set_password(password) user.save() if created: self.stdout.write(f"Created new user: {user}") else: self.stdout.write(f"Update user: {user}") return user def generate_review_data(self, *_users): while User.objects.count() < 10: with suppress(IntegrityError): username = fake.name().replace(' ', '') user = User.objects.create( username=username.lower() if p(0.30) else username, email=fake.email(), first_name=fake.first_name(), last_name=fake.last_name(), ) self.stdout.write(f"Created user: {user}") while Election.objects.count() < 5: with suppress(IntegrityError): name, date = self.fake_election() election = Election.objects.create( name=name, date=date, ) self.stdout.write(f"Created election: {election}") while Voter.objects.count() < 50: with suppress(IntegrityError): voter = Voter.objects.create( first_name=fake.first_name(), last_name=fake.last_name(), birth_date=fake.date(), zip_code=fake.zipcode(), email=fake.email(), ) self.stdout.write(f"Created voter: {voter}") while Status.objects.count() < 50: with suppress(IntegrityError): status = Status.objects.create( voter=self.random_voter(), election=self.random_election(), registered=True if p(0.90) else None, read_sample_ballot=True if p(0.80) else None, located_polling_location=True if p(0.70) else None, voted=True if p(0.60) else None, ) self.stdout.write(f"Created status: {status}") @staticmethod def fake_election(): date = fake.future_date(end_date="+2y") kind = random.choice(["General", "Midterm", "Special"]) return f"{date.year} {kind} Election", date @staticmethod def random_voter(): return random.choice(Voter.objects.all()) @staticmethod def random_election(): return random.choice(Election.objects.all())
mit
-1,028,694,120,705,746,800
32.711111
80
0.566249
false
RCPRG-ros-pkg/control_subsystem
common/set_big_stiffness.py
1
5158
#!/usr/bin/env python # Copyright (c) 2014, Robot Control and Pattern Recognition Group, Warsaw University of Technology # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Warsaw University of Technology nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYright HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import roslib roslib.load_manifest('velma_controller') import rospy from geometry_msgs.msg import * from cartesian_trajectory_msgs.msg import * import actionlib from actionlib_msgs.msg import * import tf import tf_conversions.posemath as pm import PyKDL def moveImpedance(k, t): global action_impedance_client action_impedance_goal = CartesianImpedanceGoal() action_impedance_goal.trajectory.header.stamp = rospy.Time.now() + rospy.Duration(0.2) action_impedance_goal.trajectory.points.append(CartesianImpedanceTrajectoryPoint( rospy.Duration(t), CartesianImpedance(k,Wrench(Vector3(0.7, 0.7, 0.7),Vector3(0.7, 0.7, 0.7))))) action_impedance_client.send_goal(action_impedance_goal) def moveWrist( wrist_frame, tool_frame, t, max_wrench): global action_trajectory_client # we are moving the tool, so: T_B_Wd*T_W_T wrist_pose = pm.toMsg(wrist_frame*tool_frame) action_trajectory_goal = CartesianTrajectoryGoal() action_trajectory_goal.trajectory.header.stamp = rospy.Time.now() + rospy.Duration(0.01) action_trajectory_goal.trajectory.points.append(CartesianTrajectoryPoint( rospy.Duration(t), wrist_pose, Twist())) action_trajectory_goal.wrench_constraint = max_wrench action_trajectory_client.send_goal(action_trajectory_goal) def moveTool(tool_frame, t): global action_tool_client tool_pose = pm.toMsg(tool_frame) action_tool_goal = CartesianTrajectoryGoal() action_tool_goal.trajectory.header.stamp = rospy.Time.now() action_tool_goal.trajectory.points.append(CartesianTrajectoryPoint( rospy.Duration(t), tool_pose, Twist())) action_tool_client.send_goal(action_tool_goal) if __name__ == '__main__': a = [] for arg in sys.argv: a.append(arg) if (len(a) > 1) and ((a[1]=="left") or ("right")): prefix = a[1] else: print "Usage: %s prefix"%a[0] exit(0) rospy.init_node('impedance_riser') listener = tf.TransformListener(); action_impedance_client = actionlib.SimpleActionClient("/" + prefix + "_arm/cartesian_impedance", CartesianImpedanceAction) action_impedance_client.wait_for_server() action_trajectory_client = actionlib.SimpleActionClient("/" + prefix + "_arm/cartesian_trajectory", CartesianTrajectoryAction) action_trajectory_client.wait_for_server() action_tool_client = actionlib.SimpleActionClient("/" + prefix + "_arm/tool_trajectory", CartesianTrajectoryAction) action_tool_client.wait_for_server() rospy.sleep(1.0) # save current wrist position time_now = rospy.Time.now() - rospy.Duration(1.0) listener.waitForTransform('torso_base', prefix+'_arm_7_link', time_now, rospy.Duration(4.0)) pose = listener.lookupTransform('torso_base', prefix+'_arm_7_link', time_now) T_B_W = pm.fromTf(pose) T_W_T = PyKDL.Frame() # tool transformation print "setting the tool to %s relative to wrist frame"%(T_W_T) # move both tool position and wrist position - the gripper holds its position print "moving wrist" # we assume that during the initialization there are no contact forces, so we limit the wrench moveWrist( T_B_W, T_W_T, 2.0, Wrench(Vector3(20, 20, 20), Vector3(4, 4, 4)) ) print "moving tool" moveTool( T_W_T, 2.0 ) rospy.sleep(2.0) # change the stiffness print "changing stiffness for door approach" moveImpedance(Wrench(Vector3(1200.0, 1200.0, 1200.0), Vector3(300.0, 300.0, 300.0)), 4.0) rospy.sleep(4.0)
bsd-3-clause
521,373,026,289,866,900
40.596774
130
0.722373
false
boada/planckClusters
MOSAICpipe/bpz-1.99.3/priors/prior_hdfn_gen.py
1
2464
from __future__ import division from past.utils import old_div from bpz_tools import * def function(z, m, nt): """HDFN prior from Benitez 2000 for Ellipticals, Spirals, and Irregular/Starbursts Returns an array pi[z[:],:nt] The input magnitude is F814W AB """ global zt_at_a nz = len(z) momin_hdf = 20. if m > 32.: m = 32. if m < 20.: m = 20. # nt Templates = nell Elliptical + nsp Spiral + nSB starburst try: # nt is a list of 3 values nell, nsp, nsb = nt except: # nt is a single value nell = 1 # 1 Elliptical in default template set nsp = 2 # 2 Spirals in default template set nsb = nt - nell - nsp # rest Irr/SB nn = nell, nsp, nsb nt = sum(nn) # See Table 1 of Benitez00 a = 2.465, 1.806, 0.906 zo = 0.431, 0.390, 0.0626 km = 0.0913, 0.0636, 0.123 k_t = 0.450, 0.147 a = repeat(a, nn) zo = repeat(zo, nn) km = repeat(km, nn) k_t = repeat(k_t, nn[:2]) # Fractions expected at m = 20: # 35% E/S0 # 50% Spiral # 15% Irr fo_t = 0.35, 0.5 fo_t = old_div(fo_t, array(nn[:2])) fo_t = repeat(fo_t, nn[:2]) #fo_t = [0.35, 0.5] #fo_t.append(1 - sum(fo_t)) #fo_t = array(fo_t) / array(nn) #fo_t = repeat(fo_t, nn) #print 'a', a #print 'zo', zo #print 'km', km #print 'fo_t', fo_t #print 'k_t', k_t dm = m - momin_hdf zmt = clip(zo + km * dm, 0.01, 15.) zmt_at_a = zmt**(a) #We define z**a as global to keep it #between function calls. That way it is # estimated only once try: xxx[9] = 3 zt_at_a.shape except NameError: zt_at_a = power.outer(z, a) #Morphological fractions nellsp = nell + nsp f_t = zeros((len(a), ), float) f_t[:nellsp] = fo_t * exp(-k_t * dm) f_t[nellsp:] = old_div((1. - add.reduce(f_t[:nellsp])), float(nsb)) #Formula: #zm=zo+km*(m_m_min) #p(z|T,m)=(z**a)*exp(-(z/zm)**a) p_i = zt_at_a[:nz, :nt] * exp(-clip( old_div(zt_at_a[:nz, :nt], zmt_at_a[:nt]), 0., 700.)) #This eliminates the very low level tails of the priors norm = add.reduce(p_i[:nz, :nt], 0) p_i[:nz, :nt] = where( less( old_div(p_i[:nz, :nt], norm[:nt]), old_div(1e-2, float(nz))), 0., old_div(p_i[:nz, :nt], norm[:nt])) norm = add.reduce(p_i[:nz, :nt], 0) p_i[:nz, :nt] = p_i[:nz, :nt] / norm[:nt] * f_t[:nt] return p_i
mit
-1,657,587,623,260,758,800
27
77
0.520292
false
pjiangtw/HOPE
WishCplex/WISHCPLEX.py
1
2949
#---------------------------------------------------------------------------------------- # Copyright, 2013: # # Stefano Ermon - Cornell University , [email protected] # Ashish Sabharwal - IBM Watson Research Center , [email protected] #---------------------------------------------------------------------------------------- import sys import math import random import os import argparse from WISHLogProcess import process_logs from WISHLogProcess import process_logs_cplex_LB from WISHLogProcess import process_logs_cplex_UB # version number __version__ = '1.0' ######################################### # Usage Information: # run "python WISH.py -h" for help ######################################### parser = argparse.ArgumentParser(description='Estimate the partition function using the WISH algorithm and CPLEX for the optimization.') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + __version__) parser.add_argument("infile", help="Graphical model (in UAI format)") parser.add_argument("outfolder", help="Folder where logs are stored") parser.add_argument('-alpha', '--alpha', type=float, help="Accuracy alpha", default=1.0) parser.add_argument('-delta', '--delta', type=float, help="Failure probability delta", default=0.1) parser.add_argument('-timeout', '--timeout', type=int, help="Timeout for each optimization instance (seconds)", default=10) args = parser.parse_args() print "Reading factor graph from " + args.infile inputfile = open(args.infile, "r") fileName, fileExtension = os.path.splitext(args.infile) ind = 0 origNbrFactor = 0 origNbrVar = 0 for l in inputfile: if not l.strip()=='': ind = ind +1 if ind==2: origNbrVar=int(l) elif ind==3: l = l.rstrip("\n") elif ind==4: ## add xor cpt tabe origNbrFactor = int(l) elif ind>5: break print "Model with " + str(origNbrVar) + "variables and "+str(origNbrFactor) +" factors" depth = origNbrVar T = 7 #int(math.ceil(math.log(origNbrVar)*math.log(1.0/args.delta)/args.alpha)) print "Using " + str(T) +" samples per level" os.system("mkdir "+args.outfolder) for i in range(0,depth+1): ## main for loop if i==0: sampnum=1 else: sampnum=T for t in range(1,sampnum+1): ## main for loop outfilenamelog = "%s.xor%d.loglen%d.%d.ILOGLUE.uai.LOG" % (os.path.basename(fileName) , i , 0 , t) cmdline = ("timeout %d ./WH_cplex -paritylevel 1 -number %d -seed 10 %s > %s") % (args.timeout , i , args.infile , args.outfolder +"/"+ outfilenamelog) os.system(cmdline) ## Parallel execution: ## ## assign this job to a separate core (a system dependent script is needed here) ## we provide an example based on Torque/PBS: ## ## os.system("qsub -v basedir="+basedir+",file="+infile+",level="+str(i)+",len="+str(0)+",outdir="+outdir+",sample="+str(t)+",timeout=900s"+" LaunchIloglue.sh") process_logs_cplex_LB(args.outfolder) process_logs_cplex_UB(args.outfolder)
apache-2.0
4,981,883,023,722,491,000
32.511364
162
0.631061
false
dsedivec/ansible-plugins
filter_plugins/hash.py
1
1283
# Copyright 2013 Dale Sedivec # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from ansible import errors try: import passlib.hash as passlib_hash except ImportError: passlib_hash = None def hash(data, algorithm_name, **kwargs): if not passlib_hash: raise errors.AnsibleError( "passlib must be installed to use the hash filter") try: algorithm = getattr(passlib_hash, algorithm_name) except AttributeError: raise errors.AnsibleError( "passlib doesn't contain algorithm %r" % (algorithm_name,)) return algorithm.encrypt(data, **kwargs) class FilterModule (object): def filters(self): return {"hash": hash}
gpl-3.0
2,962,180,769,414,720,000
31.897436
71
0.71629
false
abigailStev/lag_spectra
simple_cross_spectra.py
1
30460
#!/usr/bin/env """ Read in two extracted light curves (interest band and reference band), split into segments, compute the power spectra per band and cross spectrum of each segment, averages cross spectrum of all the segments, and computes frequency lags between the two bands. Example call: python simple_cross_spectra.py ./cygx1_i.lc ./cygx1_ref.lc -o "./cygx1" Enter python simple_cross_spectra.py -h at the command line for help. """ from __future__ import print_function from astropy.table import Table, Column from astropy.io import fits import numpy as np from scipy import fftpack import argparse import subprocess from datetime import datetime __author__ = "Abigail Stevens <A.L.Stevens at uva.nl>" __year__ = "2016" class Band(object): def __init__(self, n_bins=8192, dt=0.0078125): self.power = np.zeros(n_bins, dtype=np.float64) self.mean_rate = 0.0 self.rms = 0.0 self.freq = fftpack.fftfreq(n_bins, d=dt) ################################################################################ def type_power_of_two(num): """ Check if an input is a power of 2 (1 <= num < 2147483648), as an argparse type. Parameters ---------- num : int The number in question. Returns ------- n : int The number in question, if it's a power of two Raises ------ ArgumentTypeError if n isn't a power of two. """ n = int(num) x = 2 assert n > 0 if n == 1: return n else: while x <= n and x < 2147483648: if n == x: return n x *= 2 message = "%d is not a power of two." % n raise argparse.ArgumentTypeError(message) ################################################################################ def get_key_val(fits_file, ext, keyword): """ Get the value of a keyword from a FITS header. Keyword does not seem to be case-sensitive. Parameters ---------- fits_file : str File name of the FITS file. ext : int The FITS extension in which to search for the given keyword. keyword : str The keyword for which you want the associated value. Returns ------- any type Value of the given keyword. Raises ------ IOError if the input file isn't actually a FITS file. """ ext = np.int8(ext) assert (ext >= 0 and ext <= 2) keyword = str(keyword) try: hdulist = fits.open(fits_file) except IOError: print("\tERROR: File does not exist: %s" % fits_file) exit() key_value = hdulist[ext].header[keyword] hdulist.close() return key_value ################################################################################ def raw_to_absrms(power, mean_rate, n_bins, dt, noisy=True): """ Normalize the power spectrum to absolute rms^2 normalization. TODO: cite paper. Parameters ---------- power : np.array of floats The raw power at each Fourier frequency, as a 1-D or 2-D array. Size = (n_bins) or (n_bins, detchans). mean_rate : float The mean count rate for the light curve, in cts/s. n_bins : int Number of bins per segment of light curve. dt : float Timestep between bins in n_bins, in seconds. noisy : boolean True if there is Poisson noise in the power spectrum (i.e., from real data), False if there is no noise in the power spectrum (i.e., simulations without Poisson noise). Default is True. Returns ------- np.array of floats The noise-subtracted power spectrum in absolute rms^2 units, in the same size array as the input power. """ if noisy: noise = 2.0 * mean_rate else: noise = 0.0 return power * (2.0 * dt / np.float(n_bins)) - noise ################################################################################ def var_and_rms(power, df): """ Computes the variance and rms (root mean square) of a power spectrum. Assumes the negative-frequency powers have been removed. DOES NOT WORK ON 2-D POWER ARRAYS! Not sure why. TODO: cite textbook or paper. Parameters ---------- power : np.array of floats 1-D array (size = n_bins/2+1) of the raw power at each of the *positive* Fourier frequencies. df : float The step size between Fourier frequencies. Returns ------- variance : float The variance of the power spectrum. rms : float The rms of the power spectrum. """ variance = np.sum(power * df, axis=0) rms = np.where(variance >= 0, np.sqrt(variance), np.nan) return variance, rms ################################################################################ def cs_out(out_base, meta_dict, cs_avg, ci, ref): """ Saving header data, the cross spectrum, CoI power spectrum, and reference band power spectrum to a FITS file to use in the program make_lags.py to get cross-spectral lags. Cross spectra and power spectra are raw, as in un- normalized. Parameters ---------- out_base : str The name the FITS file to write the cross spectrum and power spectra to, for computing the lags. meta_dict : dict Dictionary of necessary meta-parameters for data analysis. cs_avg : np.array of complex numbers 2-D array of the averaged cross spectrum. Size = (n_bins, detchans). ci : ccf_lc.Lightcurve object The channel of interest light curve. Must already have freq, mean_rate, and power assigned. ref : ccf_lc.Lightcurve object The reference band light curve. Must already have mean_rate, rms, and power assigned. Returns ------- nothing, but writes to the file "*_cs.fits" """ out_file = out_base + "_cs.fits" out_dir = out_file[0:out_file.rfind("/")+1] if len(out_dir) >= 2: subprocess.call(['mkdir', '-p', out_dir]) print("Output sent to: %s" % out_file) out_table = Table() out_table.add_column(Column(data=ci.freq, name='FREQUENCY', unit='Hz')) out_table.add_column(Column(data=cs_avg, name='CROSS')) out_table.add_column(Column(data=ci.power, name='POWER_CI')) out_table.add_column(Column(data=ref.power, name='POWER_REF')) out_table.meta['TYPE'] = "Cross spectrum and power spectra, saved for lags." out_table.meta['DATE'] = str(datetime.now()) out_table.meta['EVTLIST'] = " " out_table.meta['DT'] = meta_dict['dt'] out_table.meta['DF'] = meta_dict['df'] out_table.meta['N_BINS'] = meta_dict['n_bins'] out_table.meta['SEGMENTS'] = meta_dict['n_seg'] out_table.meta['SEC_SEG'] = meta_dict['n_seconds'] out_table.meta['EXPOSURE'] = meta_dict['exposure'] out_table.meta['DETCHANS'] = meta_dict['detchans'] out_table.meta['RATE_CI'] = ci.mean_rate out_table.meta['RATE_REF'] = ref.mean_rate out_table.meta['RMS_REF'] = float(ref.rms) out_table.meta['NYQUIST'] = meta_dict['nyquist'] out_table.write(out_file, overwrite=True) ################################################################################ def make_cs(rate_ci, rate_ref, meta_dict): """ Generate the power spectra for each band and the cross spectrum for one segment of the light curve. Parameters ---------- rate_ci : np.array of floats 2-D array of the channel of interest light curve, Size = (n_bins). rate_ref : np.array of floats 1-D array of the reference band lightcurve, Size = (n_bins). meta_dict : dict Dictionary of necessary meta-parameters for data analysis. Returns ------- cs_seg : np.array of complex numbers 2-D array of the cross spectrum of each channel of interest with the reference band. ci_seg : Band object The channel of interest light curve. ref_seg : Band object The reference band light curve. """ assert np.shape(rate_ci) == (meta_dict['n_bins'], ),\ "ERROR: CoI light curve has wrong dimensions. Must have size (n_bins, "\ ")." assert np.shape(rate_ref) == (meta_dict['n_bins'], ), "ERROR: Reference "\ "light curve has wrong dimensions. Must have size (n_bins, )." ci_seg = Band(n_bins=meta_dict['n_bins'], dt=meta_dict['dt']) ref_seg = Band(n_bins=meta_dict['n_bins'], dt=meta_dict['dt']) ## Computing the mean count rate of the segment ci_seg.mean_rate = np.mean(rate_ci) ref_seg.mean_rate = np.mean(rate_ref) ## Subtracting the mean off each value of 'rate' rate_sub_mean_ci = np.subtract(rate_ci, ci_seg.mean_rate) rate_sub_mean_ref = np.subtract(rate_ref, ref_seg.mean_rate) ## Taking the FFT of the time-domain photon count rate ## SciPy is faster than NumPy or pyFFTW for my array sizes fft_data_ci = fftpack.fft(rate_sub_mean_ci) fft_data_ref = fftpack.fft(rate_sub_mean_ref) ## Computing the power from the fourier transform ci_seg.power = np.absolute(fft_data_ci) ** 2 ref_seg.power = np.absolute(fft_data_ref) ** 2 ## Computing the cross spectrum from the fourier transform cs_seg = np.multiply(fft_data_ci, np.conj(fft_data_ref)) return cs_seg, ci_seg, ref_seg ################################################################################ def lc_in(interest_file, ref_file, meta_dict): n_seg = 0 interest_band = Band(n_bins=meta_dict['n_bins'], dt=meta_dict['dt']) ref_band = Band(n_bins=meta_dict['n_bins'], dt=meta_dict['dt']) cross_spec = np.zeros(meta_dict['n_bins'], dtype=np.complex128) ## Open the light curve files and load the data as astropy tables try: interest_table = Table.read(interest_file) except IOError: print("\tERROR: File does not exist: %s" % interest_file) exit() try: ref_table = Table.read(ref_file) except IOError: print("\tERROR: File does not exist: %s" % ref_file) exit() start_time_i = interest_table['TIME'][0] end_time_i = interest_table['TIME'][-1] start_time_r = ref_table['TIME'][0] end_time_r = ref_table['TIME'][-1] len_i = len(interest_table['TIME']) len_r = len(ref_table['TIME']) # print("i: %.15f \t %.15f" % (start_time_i, end_time_i)) # print("r: %.15f \t %.15f" % (start_time_r, end_time_r)) # print("len i:", len_i) # print("len r:", len_r) # assert len_i == len_r # assert start_time_i == start_time_r # assert end_time_i == end_time_r ## The following is in case the two files aren't the exact same length. a = 0 ## start of bin index to make segment of data c = 0 b = meta_dict['n_bins'] ## end of bin index to make segment of data for ## inner for-loop d = meta_dict['n_bins'] if start_time_i > start_time_r: bin_diff = int((start_time_i - start_time_r) / meta_dict['dt']) assert bin_diff < len_r c += bin_diff d += bin_diff elif start_time_r > start_time_i: bin_diff = int((start_time_r - start_time_i) / meta_dict['dt']) assert bin_diff < len_i a += bin_diff b += bin_diff ## Loop through segments of the light curves while b <= len_i and d <= len_r: n_seg += 1 ## Extract the count rates for each segment rate_ci = interest_table["RATE"][a:b] rate_ref = ref_table["RATE"][c:d] ## Compute the power spectra and cross spectrum for that segment cs_seg, ci_seg, ref_seg = make_cs(rate_ci, rate_ref, meta_dict) assert int(len(cs_seg)) == meta_dict['n_bins'], "ERROR: "\ "Something went wrong in make_cs. Length of cross spectrum"\ " segment != n_bins." ## Keep running total (to be made into averages) cross_spec += cs_seg interest_band.power += ci_seg.power ref_band.power += ref_seg.power interest_band.mean_rate += ci_seg.mean_rate ref_band.mean_rate += ref_seg.mean_rate if (test is True) and (n_seg == 1): ## For testing break ## Clear loop variables for the next round rate_ci = None rate_ref = None cs_seg = None ci_seg = None ref_seg = None ## Increment the counters and indices a = b c = d b += meta_dict['n_bins'] d += meta_dict['n_bins'] ## Since the for-loop goes from i to j-1 (since that's how the range ## function works) it's ok that we set i=j here for the next round. ## This will not cause double-counting rows or skipping rows. return cross_spec, interest_band, ref_band, n_seg ################################################################################ def freq_lag_out(out_base, meta_dict, freq, phase, err_phase, tlag, err_tlag, ci_mean_rate, ref_mean_rate): """ Saving header data, the cross spectrum, CoI power spectrum, and reference band power spectrum to a FITS file to use in the program make_lags.py to get cross-spectral lags. Cross spectra and power spectra are raw, as in un- normalized. Parameters ---------- out_base : str The name the FITS file to write the cross spectrum and power spectra to, for computing the lags. meta_dict : dict Dictionary of necessary meta-parameters for data analysis. freq : np.array of floats 1-D array of the Fourier frequencies against which the lag-frequency spectrum is plotted. phase, err_phase : np.array of floats The phase and error in phase of the frequency lags, in radians. tlag, err_tlag : np.array of floats The time and error in time of the frequency lags, in seconds. ci_mean_rate : floats The mean photon count rate of each of the interest band, in cts/s. ref_mean_rate : float The mean photon count rate of the reference band, in cts/s. Returns ------- nothing, but writes to the file "*_lag-freq.fits" """ out_file = out_base + "_lag-freq.fits" out_dir = out_file[0:out_file.rfind("/")+1] if len(out_dir) >= 2: subprocess.call(['mkdir', '-p', out_dir]) print("Output sent to: %s" % out_file) out_table = Table() out_table.add_column(Column(data=freq, name='FREQUENCY', unit='Hz')) out_table.add_column(Column(data=phase, name='PHASE_LAG', unit='radian')) out_table.add_column(Column(data=err_phase, name='PHASE_LAG_ERR', unit='radian')) out_table.add_column(Column(data=tlag, name='TIME_LAG', unit='s')) out_table.add_column(Column(data=err_tlag, name='TIME_LAG_ERR', unit='s')) out_table.meta['TYPE'] = "Lag-frequency spectrum" out_table.meta['DATE'] = str(datetime.now()) out_table.meta['CS_DATA'] = out_base + "_cs.fits" out_table.meta['DT'] = meta_dict['dt'] out_table.meta['DF'] = meta_dict['df'] out_table.meta['N_BINS'] = meta_dict['n_bins'] out_table.meta['SEGMENTS'] = meta_dict['n_seg'] out_table.meta['SEC_SEG'] = meta_dict['n_seconds'] out_table.meta['EXPOSURE'] = meta_dict['exposure'] out_table.meta['DETCHANS'] = meta_dict['detchans'] out_table.meta['RATE_CI'] = ci_mean_rate out_table.meta['RATE_REF'] = ref_mean_rate out_table.meta['NYQUIST'] = meta_dict['nyquist'] out_table.write(out_file, overwrite=True) ################################################################################ def bias_term(ci, ref, meta_dict, n_range): """ Compute the bias term to be subtracted off the cross spectrum to compute the covariance spectrum. Equation in Equation in footnote 4 (section 2.1.3, page 12) of Uttley et al. 2014. Assumes power spectra are raw (not at all normalized, and not Poisson-noise- subtracted). Parameters ---------- ci : Band object The channel of interest or interest band. ci.power is raw (not normalized and not Poisson-noise-subtracted), of the frequencies to be averaged over, with size = 1 (if avg over freq) or n_bins/2+1 (if avg over energy). ci.mean_rate is in units of cts/s (size = 1 if avg over energy, size = detchans if avg over freq). Power and frequency have only the positive (tot en met Nyquist) frequencies. ref : Band object The reference band. ref.power is raw (not normalized and not Poisson- noise-subtracted), of the frequencies to be averaged over, with size = 1 (if avg over freq) or n_bins/2+1 (if avg over energy). ref.mean_rate is in units of cts/s. Power and frequency have only the positive (tot en met Nyquist) frequencies. meta_dict : dict Dictionary of meta-parameters needed for analysis. n_range : int Number of bins that will be averaged together for the lags. Energy bins for frequency lags, frequency bins for energy lags. Returns ------- n_squared : float The bias term to be subtracted off the cross spectrum for computing the covariance spectrum. Equation in footnote 4 (section 2.1.3, page 12) of Uttley et al. 2014. If you get an undefined error for the bias term, just set it equal to zero. """ ## Compute the Poisson noise level in absolute rms units Pnoise_ref = ref.mean_rate * 2.0 Pnoise_ci = ci.mean_rate * 2.0 ## Normalizing power spectra to absolute rms normalization ## Not subtracting the noise (yet)! abs_ci = ci.power * (2.0 * meta_dict['dt'] / float(n_range)) abs_ref = ref.power * (2.0 * meta_dict['dt'] / float(n_range)) temp_a = (abs_ref - Pnoise_ref) * Pnoise_ci temp_b = (abs_ci - Pnoise_ci) * Pnoise_ref temp_c = Pnoise_ref * Pnoise_ci n_squared = (temp_a + temp_b + temp_c) / (n_range * meta_dict['n_seg']) return n_squared ################################################################################ def compute_coherence(cross_spec, ci, ref, meta_dict, n_range): """ Compute the raw coherence of the cross spectrum. Coherence equation from Uttley et al 2014 eqn 11, bias term equation from footnote 4 on same page. Note that if the bias term gets way too wonky or undefined, it's usually tiny so you can just set it to zero. Parameters ---------- cross_spec : np.array of complex numbers 1-D array of the cross spectrum, averaged over the desired energy range or frequency range. Size = detchans (if avg over freq) or n_bins/2+1 (if avg over energy). Should be raw, not normalized or noise-subtracted. Eqn 9 of Uttley et al 2014. ci : Band object The channel of interest or interest band. ci.power is raw (not normalized and not Poisson-noise-subtracted), of the frequencies to be averaged over, with size = 1 (if avg over freq) or n_bins/2+1 (if avg over energy). ci.mean_rate is in units of cts/s (size = 1 if avg over energy, size = detchans if avg over freq). Power and frequency have only the positive (tot en met Nyquist) frequencies. ref : Band object The reference band. ref.power is raw (not normalized and not Poisson- noise-subtracted), of the frequencies to be averaged over, with size = 1 (if avg over freq) or n_bins/2+1 (if avg over energy). ref.mean_rate is in units of cts/s. Power and frequency have only the positive (tot en met Nyquist) frequencies. meta_dict : dict Dictionary of meta-parameters needed for analysis. n_range : int Number of frequency bins averaged over per new frequency bin for lags. For energy lags, this is the number of frequency bins averaged over. For frequency lags not re-binned in frequency, this is 1. Same as K in equations in Section 2 of Uttley et al. 2014. Returns ------- coherence : np.array of floats The raw coherence of the cross spectrum. (Uttley et al 2014, eqn 11) Size = n_bins/2+1 (if avg over energy) or detchans (if avg over freq). """ cs_bias = bias_term(ci, ref, meta_dict, n_range) powers = ci.power * ref.power crosses = cross_spec * np.conj(cross_spec) - cs_bias with np.errstate(all='ignore'): coherence = np.where(powers != 0, crosses / powers, 0) # print("Coherence shape:", np.shape(coherence)) # print(coherence) return np.real(coherence) ################################################################################ def get_phase_err(cs_avg, ci, ref, meta_dict, n_range): """ Compute the error on the complex phase (in radians) via the coherence. Power should NOT be Poisson-noise-subtracted or normalized. Parameters ---------- cs_avg : np.array of complex numbers 1-D array of the raw cross spectrum, averaged over Fourier segments and energy channels or frequency bins. Size = detchans (if avg over freq) or n_bins/2+1 (if avg over energy). Eqn 9 of Uttley et al 2014. ci : Band object The channel of interest or interest band. ci.power is raw (not normalized and not Poisson-noise-subtracted), of the frequencies to be averaged over, with size = 1 (if avg over freq) or n_bins/2+1 (if avg over energy). ci.mean_rate is in units of cts/s (size = 1 if avg over energy, size = detchans if avg over freq). Power and frequency have only the positive (tot en met Nyquist) frequencies. ref : Band object The reference band. ref.power is raw (not normalized and not Poisson- noise-subtracted), of the frequencies to be averaged over, with size = 1 (if avg over freq) or n_bins/2+1 (if avg over energy). ref.mean_rate is in units of cts/s. Power and frequency have only the positive (tot en met Nyquist) frequencies. meta_dict : Dictionary of meta-paramters needed for analysis. n_range : int Number of frequency bins averaged over per new frequency bin for lags. For energy lags, this is the number of frequency bins averaged over. For frequency lags not re-binned in frequency, this is 1. Same as K in equations in Section 2 of Uttley et al. 2014. Returns ------- phase_err : np.array of floats 1-D array of the error on the phase of the lag. """ # print("Pow ci:", np.shape(power_ci)) # print("Pow ref:", np.shape(power_ref)) # print("Pow cs:", np.shape(cs_avg)) coherence = compute_coherence(cs_avg, ci, ref, meta_dict, n_range) with np.errstate(all='ignore'): phase_err = np.sqrt(np.where(coherence != 0, (1 - coherence) / (2 * coherence * n_range * meta_dict['n_seg']), 0)) return phase_err ################################################################################ def phase_to_tlags(phase, f): """ Convert a complex-plane cross-spectrum phase (in radians) to a time lag (in seconds). Parameters ---------- phase : float or np.array of floats 1-D array of the phase of the lag, in radians. f : float or np.array of floats 1-D array of the Fourier frequency of the cross-spectrum, in Hz. Returns ------- tlags : float or np.array of floats 1-D array of the time of the lag, in seconds. """ if np.shape(phase) != np.shape(f): ## Reshaping (broadcasting) f to have same size as phase f = np.resize(np.repeat(f, np.shape(phase)[1]), np.shape(phase)) assert np.shape(phase) == np.shape(f), "ERROR: Phase array must have same "\ "dimensions as frequency array." with np.errstate(all='ignore'): tlags = np.where(f != 0, phase / (2.0 * np.pi * f), 0) return tlags ################################################################################ def main(interest_file, ref_file, out_base="./out", n_seconds=64, test=False): """ Read in two extracted light curves (interest band and reference band), split into segments, compute the power spectra per band and cross spectrum of each segment, averages cross spectrum of all the segments, and computes frequency lags between the two bands. Parameters ---------- interest_file : str The name of the .lc extracted light curve for the interest band. ref_file : str The name of the .lc extracted light curve for the reference band. out_base : str, default = "out" The base name to save output to. The extension will be appended to the end. n_seconds : int, default = 64 Number of seconds in each Fourier segment. Must be a power of 2, positive. test : bool, default = False If true, only computes one segment of data. If false, runs like normal. """ assert n_seconds > 0, "ERROR: Number of seconds per segment must be a "\ "positive integer." try: t_res = float(get_key_val(interest_file, 0, 'TIMEDEL')) except KeyError: t_res = float(get_key_val(interest_file, 1, 'TIMEDEL')) try: t_res_ref = float(get_key_val(ref_file, 0, 'TIMEDEL')) except KeyError: t_res_ref = float(get_key_val(ref_file, 1, 'TIMEDEL')) assert t_res == t_res_ref, "ERROR: Interest band and reference band have "\ "different time binnings. Code cannot currently cope with that." meta_dict = {'dt': t_res, ## assumes light curves are binned to desired ## resolution already 't_res': t_res, 'n_seconds': n_seconds, 'df': 1.0 / np.float(n_seconds), 'nyquist': 1.0 / (2.0 * t_res), 'n_bins': n_seconds * int(1.0 / t_res), 'detchans': 1, ## only using 1 interest band 'exposure': 0, ## will be computed later 'n_seg': 0} ## will be computed later ## Read in from the light curve files, compute power spectra and cross ## spectrum total_cross, total_ci, total_ref, total_seg = lc_in(interest_file, ref_file, meta_dict) ## Assign n_seg and exposure in meta_dict meta_dict['n_seg'] = total_seg meta_dict['exposure'] = meta_dict['dt'] * meta_dict['n_bins'] * \ meta_dict['n_seg'] ## Turn running totals into averages total_cross /= np.float(meta_dict['n_seg']) total_ci.power /= np.float(meta_dict['n_seg']) total_ci.mean_rate /= np.float(meta_dict['n_seg']) total_ref.power /= np.float(meta_dict['n_seg']) total_ref.mean_rate /= np.float(meta_dict['n_seg']) ## Only keeping the parts associated with positive Fourier frequencies ## numpy arrays slice at end-1, and we want to include 'nyq_index'; ## for frequency, abs is because the nyquist freq is both pos and neg, and ## we want it pos here. nyq_index = meta_dict['n_bins'] / 2 total_cross = total_cross[0:nyq_index + 1] total_ci.power = total_ci.power[0:nyq_index + 1] total_ci.freq = np.abs(total_ci.freq[0:nyq_index + 1]) total_ref.power = total_ref.power[0:nyq_index + 1] total_ref.freq = np.abs(total_ref.freq[0:nyq_index + 1]) ## Compute the variance and rms of the absolute-rms-normalized reference ## band power spectrum absrms_ref_pow = raw_to_absrms(total_ref.power, total_ref.mean_rate, meta_dict['n_bins'], meta_dict['dt'], noisy=True) total_ref.var, total_ref.rms = var_and_rms(absrms_ref_pow, meta_dict['df']) ## Save cross spectrum and power spectra to "*_cs.fits" cs_out(out_base, meta_dict, total_cross, total_ci, total_ref) ## Computing frequency lags ## Negative sign is so that a positive lag is a hard energy lag phase = -np.arctan2(total_cross.imag, total_cross.real) # print(np.shape(phase)) err_phase = get_phase_err(total_cross, total_ci, total_ref, meta_dict, 1) # print(np.shape(err_phase)) tlag = phase_to_tlags(phase, total_ci.freq) err_tlag = phase_to_tlags(err_phase, total_ci.freq) ## Save lag-frequency spectrum to "*_lag-freq.fits" freq_lag_out(out_base, meta_dict, total_ci.freq, phase, err_phase, tlag, err_tlag, total_ci.mean_rate, total_ref.mean_rate) ################################################################################ if __name__ == "__main__": ######################################### ## Parse input arguments and call 'main' ######################################### parser = argparse.ArgumentParser(usage="python simple_cross_spectra.py " "interest_band_file reference_band_file [OPTIONAL ARGUMENTS]", description=__doc__, epilog="For optional arguments, default values are given in "\ "brackets at end of description.") parser.add_argument('interest_band_file', help="The .lc background-"\ "subtracted extracted light curve for the interest band.") parser.add_argument('reference_band_file', help="The .lc background-"\ "subtracted extracted light curve for the reference band. Assumes "\ "it has the same time binning as the interest band.") parser.add_argument('-o', '--out', default="./out", dest='outbase', help="The base name for output files. Extension will be" " appended. [./out]") parser.add_argument('-n', '--n_sec', type=type_power_of_two, default=64, dest='n_seconds', help="Number of seconds in each " "Fourier segment. Must be a " "power of 2, positive, integer. " "[64]") parser.add_argument('--test', type=int, default=0, choices={0,1}, dest='test', help="Int flag: 0 if computing all " "segments, 1 if only computing one " "segment for testing. [0]") args = parser.parse_args() test = False if args.test == 1: test = True main(args.interest_band_file, args.reference_band_file, out_base=args.outbase, n_seconds=args.n_seconds, test=test)
mit
-7,282,821,186,421,364,000
35.090047
80
0.588969
false
mahyarap/httpclient
httpclient/httpclient.py
1
1653
#!/usr/bin/env python3 import sys import argparse from httpclient.http import HttpRequest __version__ = '0.1.0' def parse_cmd_options(args): """Parse the command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument('url', help='URL to send the request to') parser.add_argument('-m', '--method', default='GET', help='HTTP request method') parser.add_argument('-H', '--header', action='append', default=[], help='HTTP headers') parser.add_argument('-v', '--verbose', action='store_true', help='be verbose') parser.add_argument('-V', '--version', action='version', version='%(prog)s {}'.format(__version__), help='show version and exit') return parser.parse_args(args) def main(): args = parse_cmd_options(sys.argv[1:]) if args.url: headers = {} for header in args.header: key, val = header.split(':', maxsplit=1) headers[key.strip()] = val.strip() request = HttpRequest(args.url, method=args.method, headers=headers) response = request.send() if args.verbose: print(str(request)) if request.body is not None: print(str(request.body)) print(str(response)) if response.body is not None: print(response.body, end='') return 0 if __name__ == '__main__': sys.exit(main())
gpl-3.0
8,312,854,801,826,824,000
28
66
0.503932
false
mackal/faction.py
faction3.py
1
35996
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2014 Michael Cook <[email protected]> # # GPLv3 """ Processes an eqlog file and generates SQL to update factions Should work with a full log, but cleaning up the log will be quicker The file needs at least the zone enter messages, faction messages, and slain messages in their full to work IMPORTANT: faction messages from non-kills should be filtered out ... File prep: I just did a $ grep 'faction\\|slain\\|entered' on the log file to clean up the log for processing """ import re, sys, os import collections # str to str so we don't have to worry about string cat factiontable = { "Agents of Dreadspire": "396", "Agents of Mistmoore": "1", "Agnarr": "2", "Ak'Anon Strike Force V": "497", "Akheva": "3", "Allize Taeew": "4", "Allize Volew": "5", "Ancestors of the Crypt": "499", "Ancestors of Valdeholm": "498", "Anchorites of Brell Serilis": "6", "Ancient Cyclops": "481", "Ankhefenmut": "397", "Anti-mage": "8", "Antonius Bayle": "9", "Arboreans of Faydark": "10", "Arcane Scientists": "11", "Army of Light": "494", "Ashen Order": "12", "Askr the Lost": "13", "Aviak": "14", "Banker": "15", "Battalion of Marr": "16", "Beetle": "457", "Befallen Inhabitants": "17", "Bertoxxulous": "382", "Beta Neutral": "18", "Betrayers of Di`Zok": "19", "Bloodgills": "20", "Bloodsabers": "21", "Broken Skull Clan": "22", "Brood of Di`Zok": "23", "Brood of Kotiz": "24", "Brood of Ssraeshza": "25", "Brownie": "26", "Burning Dead": "27", "Burynai Legion": "28", "Butcherblock Bandits": "29", "Cabilis Residents": "30", "Carson McCabe": "31", "Cazic Thule": "368", "Chetari": "32", "Children of Dranik": "398", "Circle Of Unseen Hands": "33", "Citizens of Froststone": "399", "Citizens of Gukta": "35", "Citizens of Qeynos": "36", "Citizens of Seru": "37", "Citizens of Sharvahl": "483", "Citizens of Takish-Hiz": "38", "Clan Grikbar": "39", "Clan Kolbok": "40", "Clan Runnyeye": "41", "Class 41": "377", "Claws of Veeshan": "42", "Cleaving Tooth Clan": "383", "Clerics of Tunare": "43", "Clerics of Underfoot": "44", "Clockwork Gnome": "45", "Clurg": "46", "Coalition of Tradefolk": "47", "Coalition of TradeFolk III": "369", "Coalition of Tradefolk Underground": "48", "Coldain": "49", "Combine Empire": "50", "Commons Residents": "51", "Concillium Universus": "52", "Corrupt Qeynos Guards": "53", "Coterie Elite": "54", "Coterie of the Eternal Night": "55", "Craftkeepers": "56", "Craknek Warriors": "57", "Creatures of Darkhollow": "400", "Creatures of Gloomingdeep": "401", "Creatures of Justice": "58", "Creatures of Taelosia": "59", "Creep Reapers": "402", "Crescent Guards": "493", "Crimson Hands": "60", "Critters of Jaggedpine": "61", "Crusaders of Greenmist": "62", "Crushbone Orcs": "63", "Crystal Caverns Terrors/Spiders/Crawlers": "395", "Cult of the Arisen": "64", "Cult of the Great Saprophyte": "65", "Cursed Drakes": "403", "DaBashers": "66", "Dain Frostreaver IV": "67", "Dar Khura": "68", "Dark Bargainers": "69", "Dark Ones": "70", "Dark Reflection": "71", "Dark Reign": "404", "Dark Sendings": "72", "Darkpaws of Jaggedpine": "73", "Dawnhoppers": "74", "Death Fist Orcs": "405", "Deathfist Orcs": "75", "Deep Muses": "76", "Deep Sporali": "406", "Deeppockets": "77", "Deepshade Collective": "78", "Deepwater Knights": "79", "Defective Clockwork": "80", "Defenders of the Broodlands": "407", "Defenders of the Haven": "81", "Deklean Korgad": "408", "Denizens of Discord": "409", "Denizens of Fear": "82", "Denizens of Mischief": "391", "Dervish Cutthroats": "83", "Disciples of Kerafyrm": "84", "Disciples of Rhag`Zadune": "85", "Dismal Rage": "86", "Dranik Loyalists": "410", "Dreadguard Inner": "87", "Dreadguard Outer": "88", "Drusella Sathir": "89", "Dulaks Clan": "459", "Ebon Mask": "90", "Eldritch Collective": "91", "Elementals": "374", "Emerald Warriors": "92", "Emperor Ssraeshza": "93", "Erudite Citizen": "380", "EvilEye": "94", "Exiled Frogloks": "95", "Expedition 328": "411", "Eye of Seru": "96", "Faerie": "97", "Fallen Guard of Illsalin": "412", "Fallen of Bloody Kithicor": "98", "Faydarks Champions": "99", "FelGuard": "100", "Firiona Vie": "101", "Fizzlethorp": "414", "Fizzlethorpe": "102", "Followers of Korucust": "103", "Forgotten Guktan Spirits": "104", "Free Traders of Malgrinnor": "415", "The Freeport Militia": "105", "Frogloks of Guk": "106", "Frogloks of Krup": "107", "Frogloks of Kunark": "108", "Frogloks of Sebilis": "109", "Frostfoot Goblins": "110", "FungusMan": "111", "Gate Callers": "112", "Gate Keepers": "113", "Gelistial": "114", "Gem Choppers": "115", "Geonid Collective": "116", "Ghouls of Neriak": "117", "Giant Spider": "386", "Gladiators of Mata Muram": "416", "Goblin": "118", "Goblins of Cleaving Tooth": "119", "Goblins of Fire Peak": "120", "Goblins of Mountain Death": "121", "Gor Taku": "122", "Gralloks": "123", "Greater Brann Giants": "124", "Greater Jord Giants": "125", "Greater Vann Giants": "126", "Greater Vind Giants": "127", "Green Blood Knights": "128", "Greenfoot Goblins": "417", "Grieg": "129", "Grimlings of the Forest": "392", "Grimlings of the Moor": "130", "Grobb Merchants": "131", "Guardians of Shar Vahl": "132", "Guardians of the Vale": "133", "Guardians of Veeshan": "134", "Guards of Gloomingdeep": "475", "Guards of Qeynos": "135", "Guktan Elders": "136", "Guktan Suppliers": "484", "Gunthaks Clan": "458", "Hall of the Ebon Mask": "137", "Hand Legionnaries": "138", "Hand of Seru": "139", "Harbingers Clan": "373", "Haven Defenders": "140", "Haven Smugglers": "141", "Heart of Seru": "142", "Heretics": "143", "Hexxt": "144", "High Council of Erudin": "145", "High Council of Gukta": "146", "High Guard of Erudin": "147", "HighHold Citizens": "148", "Highpass Guards": "149", "HoHMaiden": "471", "Holgresh": "150", "Horde of Xalgoz": "151", "House of Fordel": "152", "House of Midst": "153", "House of Stout": "154", "Iksar": "371", "Indifferent": "463", "Indigo Brotherhood": "155", "Inhabitants of Air": "464", "Inhabitants of Firiona Vie": "418", "Inhabitants of Hate": "156", "Inhabitants of Tanaan": "157", "Innoruuk's Curse of the Cauldron": "158", "Invaders of the Moor": "503", "Jaggedpine Treefolk": "159", "Jaled-Dar": "160", "Johanius Barleou": "161", "Kaladim Citizens": "162", "Kaladim Merchants": "419", "Kane Bayle": "164", "Karana": "165", "Karana Bandits": "166", "Karana Residents": "167", "Katta Castellum Citizens": "168", "Kazon Stormhammer": "169", "Kedge": "420", "Keepers of the Art": "170", "Keepers of the Claw": "171", "Kejek Village": "172", "Kejekan": "173", "Kelethin Merchants": "174", "Kerra": "421", "Kerra Isle": "175", "Kessdona": "422", "Khati Sha": "423", "King Ak'Anon": "176", "King Aythox Thex": "379", "King Naythox Thex": "177", "King Tearis Thex": "178", "King Tormax": "179", "King Xorbb": "180", "Kingdom of Above and Below": "181", "Kithicor Residents": "182", "Knights of Thunder": "183", "Knights of Truth": "184", "Kobold": "185", "Kobolds of Fire Pit": "186", "Kobolds of Gloomingdeep": "424", "Koka'Vor Tribe": "501", "KOS": "366", "KOS Inhabitants of Air": "465", "KOS Plane of Disease": "466", "KOS Plane of Innovation": "468", "KOS Plane of Nightmare": "467", "KOS Plane of Storms": "489", "KOS Plane of Time": "469", "KOS_animal": "367", "Krag": "187", "Kromrif": "188", "Kromzek": "189", "Kunark Fire Giants": "190", "Lake Recondite Bandits": "191", "Lanys T`Vyl": "425", "League of Antonican Bards": "192", "Legion of Cabilis": "193", "Legion of Mata Muram": "194", "Lesser Brann Giants": "195", "Lesser Jord Giants": "196", "Lesser Vann Giants": "197", "Lesser Vind Giants": "198", "Lithiniath": "199", "Lizard Man": "200", "Lodikai": "201", "Lorekeepers of Gukta": "202", "Lost Kingdom of Lok": "203", "Lost Minions of Miragul": "204", "Loyals": "454", "Luclin": "205", "Madmen": "480", "Magus Conlegium": "206", "Mayong Mistmoore": "207", "Mayor Gubbin": "208", "Meldrath": "209", "Merchants of Ak'Anon": "210", "Merchants of Erudin": "211", "Merchants of Felwithe": "212", "Merchants of Halas": "213", "Merchants of Highpass": "214", "Merchants of Kaladim": "215", "Merchants of Ogguk": "216", "Merchants of Qeynos": "217", "Merchants of Rivervale": "218", "Mermaid": "426", "Mermaids": "375", "Miners Guild 249": "219", "Miners Guild 628": "220", "Minions of Scale": "221", "Minions of the Sunlord": "222", "Minions of Tirranun": "427", "Minions of Underfoot": "223", "Mountain Death Clan": "384", "Mucktail Gnolls": "224", "Murrissa Sandwhisper": "372", "Nadox Clan": "472", "Nadox Initiate": "225", "Nagafen": "226", "Najena": "227", "Nathyn Illuminious": "228", "Needlite": "460", "Neriak Merchants": "486", "Neriak Ogre": "378", "Neriak Trolls": "229", "Nest Guardians": "428", "New Alliance of Stone": "230", "Nihil": "231", "Nitram": "474", "Noobie Monsters KOS to Guards": "394", "Norrath's Keepers": "429", "Oggok Citizens": "233", "Oggok Guards": "232", "Ogguk Residents": "430", "Ogre": "431", "Ogre Warriors": "234", "OmensBatRat": "485", "OmensMurks": "487", "Opal Dark Briar": "235", "Oracle of Karnon": "236", "Oracle of Marud": "237", "Orc": "238", "Order of Autarkic Umbrage": "239", "Order of Three": "240", "Orphans": "452", "Othmir": "241", "Outcasts and Mutants": "242", "Overlord Mata Muram": "432", "Owlbears of the Moor": "505", "Pack of Tomar": "243", "Paebala": "244", "Paladins of Gukta": "245", "Paladins of Underfoot": "246", "Paludal_Mushrooms": "490", "Paludal_Underbulk": "491", "Peace Keepers": "247", "Phingel Autropos": "433", "Phinigel Autropos": "248", "Pickclaw Goblins": "249", "Pirates of Gunthak": "250", "Pirates of Iceclad": "251", "Pirates of the Pine": "252", "Pixie": "253", "Pixtt": "254", "Planar Collective": "455", "Planes_Neutral": "488", "Prexuz": "255", "Priests of Innoruuk": "256", "Priests of Life": "257", "Priests of Marr": "258", "Priests of Mischief": "259", "Primordial Malice": "260", "Prisoners of Justice": "261", "Progeny": "262", "Protectors of Growth": "263", "Protectors of Gukta": "264", "Protectors of Pine": "265", "Qeynos Citizens": "434", "QRG Protected Animals": "267", "Queen Cristanos Thex": "268", "Rallos Zek": "269", "Rav": "270", "Residents of Gloomingdeep": "476", "Residents of Jaggedpine": "271", "Residents of Karanas": "272", "Riftseekers": "435", "Rikkukin": "436", "Ring of Scale": "273", "Riptide Goblins": "274", "Rogues of the White Rose": "275", "Root of Innuruuk": "276", "Rujarkian Slavers": "277", "Rygorr Clan Snow Orcs": "278", "Sabertooths of Blackburrow": "279", "Sandworkers": "280", "Sarnak Collective": "281", "Scaled Mystics": "282", "Scions of Dreadspire": "437", "Scorchclaw Goblins": "438", "Seru": "284", "Servants of Aero": "285", "Servants of Hydro": "286", "Servants of Inferno": "287", "Servants of Saryrn": "288", "Servants of Terra": "289", "Servants of Tunare": "290", "Shadowed Men": "291", "Shadowknights of Night Keep": "292", "Shak Dratha": "293", "Shamen of Justice": "294", "Shamen of War": "295", "Shei Vinitras": "296", "Shik Nar": "297", "Shoulders of Seru": "298", "Shralok Orcs": "299", "Silent Fist Clan": "300", "Silla Herald": "496", "Sirens of the Grotto": "301", "Sky Talons": "439", "Skytalons": "302", "Snowfang Gnolls": "303", "Soldiers of Tunare": "304", "Solusek Mining Co": "305", "Song Weavers": "306", "Spider": "500", "Spire Spirits": "388", "Spirits of Katta Castellum": "307", "Spirocs of Timorous": "308", "Splitpaw Clan": "309", "Sporali": "310", "Sporali Collective": "440", "Steel Warriors": "311", "Steelslaves": "312", "Stillmoon Acolytes": "441", "Stone Hive Bixies": "313", "Storm Guard": "314", "Storm Guardians": "315", "Storm Reapers": "316", "Sustainers": "453", "Swamp Giants of Kunark": "370", "Swift Tails": "317", "Syrik Iceblood": "318", "Tarmok Tribe": "390", "Taruun": "319", "Temple Of Sol Ro": "442", "Temple of Solusek Ro": "320", "The Bloodtribe": "389", "The Cral Ligi Clan": "321", "The Dark Alliance": "443", "The Dead": "322", "The Forsaken": "323", "The Grol Baku Clan": "324", "The Guardians": "444", "The HotWingz": "325", "The Kromdek": "326", "The Kromdul": "327", "The Rainkeeper": "328", "The Recuso": "329", "The Sambata Tribe": "330", "The Spurned": "331", "The Tro Jeg Clan": "332", "The Truth": "333", "The Vas Ren Clan": "334", "The_Angry_Sambata": "492", "Thought Leeches": "335", "Thrall of Kly": "336", "Thunder Guardians": "445", "Tirranun": "446", "TizmakClan": "337", "Traders of the Haven": "338", "Trakanon": "339", "Treants of Jaggedpine": "340", "Tribe Vrodak": "341", "True Spirit": "342", "Trusik Tribe": "447", "Tserrina Syl'Tor": "343", "Tunare's Scouts": "283", "Tunarean Court": "344", "Ulthork": "345", "Undead Frogloks of Guk": "346", "Undead Residents of Kithicor": "381", "Underbulks": "461", "Unkempt Druids": "347", "Unrest Inhabitants": "376", "VahShir Crusaders": "348", "Valdanov Zevfeer": "349", "Validus Custodus": "350", "Veeshan": "351", "Velketor": "352", "Venril Sathir": "353", "Verish Mal": "456", "VillagerRoom": "482", "Vishimtar": "448", "Volkara": "449", "Volkara's Brood": "450", "Vornol Transon": "354", "Vox": "355", "Warlord Ngrub": "473", "Wayfarers Brotherhood": "356", "WehateThelin": "470", "Werewolf": "357", "Whisperling": "358", "Whistling Fist Brotherhood": "359", "Wisps": "462", "Witnesses of Hate": "393", "Wizards of Gukta": "360", "Wolves of the Moor": "504", "Wolves of the North": "361", "Yar`lir": "451", "Yelinak": "362", "Yunjo Slave Resistance": "363", "Zazamoukh": "364", "Zlandicar": "365", "Zordakalicus Ragefire": "385", "Zun'Muram": "502", "Human": "506", "Donovon":"507", } # There are some duplicate keys here, too lazy for now .. zonetable = { "The Abysmal Sea": 279, "The Acrylia Caverns": 154, "The Plane of Sky": 71, "Ak'Anon": 55, "The Akheva Ruins": 179, "Anguish, the Fallen Palace": 317, "Designer Apprentice": 999, "Arcstone, Isle of Spirits": 369, "The Arena": 77, "The Arena Two": 180, "Art Testing Domain": 996, "Ashengate, Reliquary of the Scale": 406, "Jewel of Atiiki": 418, "Aviak Village": 53, "Barindu, Hanging Gardens": 283, "Barren Coast": 422, "The Barter Hall": 346, "The Bazaar": 151, "Befallen": 36, "Befallen": 411, "The Gorge of King Xorbb": 16, "Temple of Bertoxxulous": 469, "Blackburrow": 17, "Blacksail Folly": 428, "The Bloodfields": 301, "Bloodmoon Keep": 445, "Bastion of Thunder": 209, "The Broodlands": 337, "The Buried Sea": 423, "The Burning Wood": 87, "Butcherblock Mountains": 68, "Cabilis East": 106, "Cabilis West": 82, "Dagnor's Cauldron": 70, "Nobles' Causeway": 303, "Accursed Temple of CazicThule": 48, "Muramite Proving Grounds": 304, "Muramite Proving Grounds": 305, "Muramite Proving Grounds": 306, "Muramite Proving Grounds": 307, "Muramite Proving Grounds": 308, "Muramite Proving Grounds": 309, "The Howling Stones": 105, "Chardok": 103, "Chardok: The Halls of Betrayal": 277, "The City of Mist": 90, "Loading": 190, "Cobaltscar": 117, "The Crypt of Decay": 200, "The Commonlands": 408, "West Commonlands": 21, "Corathus Creep": 365, "Sporali Caverns": 366, "The Corathus Mines": 367, "Crescent Reach": 394, "Crushbone": 58, "Crypt of Shade": 449, "The Crystal Caverns": 121, "Crystallos, Lair of the Awakened": 446, "Sunset Home": 26, "The Crypt of Dalnir": 104, "The Dawnshroud Peaks": 174, "Deadbone Reef": 427, "Lavaspinner's Lair": 341, "Tirranun's Delve": 342, "The Seething Wall": 373, "The Devastation": 372, "Direwind Cliffs": 405, "Korafax, Home of the Riders": 470, "Citadel of the Worldslayer": 471, "The Hive": 354, "The Hatchery": 355, "The Cocoons": 356, "Queen Sendaii`s Lair": 357, "Dragonscale Hills": 442, "Deepscar's Den": 451, "The Ruined City of Dranik": 336, "Catacombs of Dranik": 328, "Catacombs of Dranik": 329, "Catacombs of Dranik": 330, "Dranik's Hollows": 318, "Dranik's Hollows": 319, "Dranik's Hollows": 320, "Sewers of Dranik": 331, "Sewers of Dranik": 332, "Sewers of Dranik": 333, "Dranik's Scar": 302, "The Dreadlands": 86, "Dreadspire Keep": 351, "The Temple of Droga": 81, "Dulak's Harbor": 225, "Eastern Plains of Karana": 15, "The Undershore": 362, "Snarlstone Dens": 363, "Eastern Wastes": 116, "The Echo Caverns": 153, "East Commonlands": 22, "The Elddar Forest": 378, "Tunare's Shrine": 379, "The Emerald Jungle": 94, "Erudin": 24, "The Erudin Palace": 23, "Erud's Crossing": 98, "Marauders Mire": 130, "Everfrost Peaks": 30, "The Plane of Fear": 72, "The Feerrott": 47, "Northern Felwithe": 61, "Southern Felwithe": 62, "Ferubi, Forgotten Temple of Taelosia": 284, "The Forgotten Halls": 998, "The Field of Bone": 78, "Firiona Vie": 84, "Academy of Arcane Sciences": 385, "Arena": 388, "City Hall": 389, "East Freeport": 382, "Hall of Truth: Bounty": 391, "Freeport Militia House: My Precious": 387, "Freeport Sewers": 384, "Temple of Marr": 386, "Theater of the Tranquil": 390, "West Freeport": 383, "East Freeport": 10, "North Freeport": 8, "West Freeport": 9, "Frontier Mountains": 92, "Frostcrypt, Throne of the Shade King": 402, "The Tower of Frozen Shadow": 111, "The Fungus Grove": 157, "The Greater Faydark": 54, "The Great Divide": 118, "Grieg's End": 163, "Grimling Forest": 167, "Grobb": 52, "The Plane of Growth": 127, "The Mechamatic Guardian": 447, "Guild Hall": 345, "Guild Lobby": 344, "Deepest Guk: Cauldron of Lost Souls": 229, "The Drowning Crypt": 234, "The Ruins of Old Guk": 66, "Deepest Guk: Ancient Aqueducts": 239, "The Mushroom Grove": 244, "Deepest Guk: The Curse Reborn": 249, "Deepest Guk: Chapel of the Witnesses": 254, "The Root Garden": 259, "Deepest Guk: Accursed Sanctuary": 264, "The City of Guk": 65, "The Gulf of Gunthak": 224, "Gyrospire Beza": 440, "Gyrospire Zeka": 441, "Halas": 29, "Harbinger's Spire": 335, "Plane of Hate": 76, "The Plane of Hate": 186, "Hate's Fury": 228, "High Keep": 6, "Highpass Hold": 5, "Highpass Hold": 407, "HighKeep": 412, "Hills of Shade": 444, "The Halls of Honor": 211, "The Temple of Marr": 220, "The Hole": 39, "Hollowshade Moor": 166, "The Iceclad Ocean": 110, "Icefall Glacier": 400, "Ikkinz, Chambers of Transcendence": 294, "Ruins of Illsalin": 347, "Illsalin Marketplace": 348, "Temple of Korlach": 349, "The Nargil Pits": 350, "Inktu'Ta, the Unmasked Chapel": 296, "Innothule Swamp": 46, "The Innothule Swamp": 413, "The Jaggedpine Forest": 181, "Jardel's Hook": 424, "Kael Drakkel": 113, "Kaesora": 88, "South Kaladim": 60, "North Kaladim": 67, "Karnor's Castle": 102, "Katta Castellum": 160, "Katta Castrum": 416, "Kedge Keep": 64, "Kerra Isle": 74, "Kithicor Forest": 410, "Kithicor Forest": 20, "Kod'Taz, Broken Trial Grounds": 293, "Korascian Warrens": 476, "Kurn's Tower": 97, "Lake of Ill Omen": 85, "Lake Rathetear": 51, "The Lavastorm Mountains": 27, "Mons Letalis": 169, "The Lesser Faydark": 57, "Loading Zone": 184, "New Loading Zone": 185, "Loping Plains": 443, "The Maiden's Eye": 173, "Maiden's Grave": 429, "Meldrath's Majestic Mansion": 437, "Fortress Mechanotus": 436, "Goru`kar Mesa": 397, "Miragul's Menagerie: Silent Gallery": 232, "Miragul's Menagerie: Frozen Nightmare": 237, "The Spider Den": 242, "Miragul's Menagerie: Hushed Banquet": 247, "The Frosted Halls": 252, "The Forgotten Wastes": 257, "Miragul's Menagerie: Heart of the Menagerie": 262, "The Morbid Laboratory": 267, "The Theater of Imprisoned Horror": 271, "Miragul's Menagerie: Grand Library": 275, "The Plane of Mischief": 126, "The Castle of Mistmoore": 59, "Misty Thicket": 33, "The Misty Thicket": 415, "Mistmoore's Catacombs: Forlorn Caverns": 233, "Mistmoore's Catacombs: Dreary Grotto": 238, "Mistmoore's Catacombs: Struggles within the Progeny": 243, "Mistmoore's Catacombs: Chambers of Eternal Affliction": 248, "Mistmoore's Catacombs: Sepulcher of the Damned": 253, "Mistmoore's Catacombs: Scion Lair of Fury": 258, "Mistmoore's Catacombs: Cesspits of Putrescence": 263, "Mistmoore's Catacombs: Aisles of Blood": 268, "Mistmoore's Catacombs: Halls of Sanguinary Rites": 272, "Mistmoore's Catacombs: Infernal Sanctuary": 276, "Monkey Rock": 425, "Blightfire Moors": 395, "Marus Seru": 168, "The Crypt of Nadox": 227, "Najena": 44, "Natimbi, the Broken Shores": 280, "Dragon Necropolis": 123, "Nedaria's Landing": 182, "Nektropos": 28, "The Nektulos Forest": 25, "Shadowed Grove": 368, "Neriak - Foreign Quarter": 40, "Neriak - Commons": 41, "Neriak - 3rd Gate": 42, "Neriak Palace": 43, "Netherbian Lair": 161, "Nexus": 152, "The Lair of Terris Thule": 221, "The Northern Plains of Karana": 13, "North Desert of Ro": 392, "Northern Desert of Ro": 34, "The Mines of Nurga": 107, "Oasis of Marr": 37, "Oceangreen Hills": 466, "Oceangreen Village": 467, "The Ocean of Tears": 409, "Oggok": 49, "BlackBurrow": 468, "Old Bloodfields": 472, "Old Commonlands": 457, "City of Dranik": 474, "Field of Scale": 452, "Highpass Hold": 458, "Kaesora Library": 453, "Kaesora Hatchery": 454, "Bloody Kithicor": 456, "Kurn's Tower": 455, "Ocean of Tears": 69, "The Overthere": 93, "Paineel": 75, "The Paludal Caverns": 156, "The Lair of the Splitpaw": 18, "The Permafrost Caverns": 73, "The Plane of Air": 215, "The Plane of Disease": 205, "The Plane of Earth": 218, "The Plane of Earth": 222, "The Plane of Fire": 217, "The Plane of Innovation": 206, "The Plane of Justice": 201, "The Plane of Knowledge": 202, "The Plane of Nightmares": 204, "The Plane of Storms": 210, "Drunder, the Fortress of Zek": 214, "The Plane of Time": 219, "The Plane of Time": 223, "Torment, the Plane of Pain": 207, "The Plane of Tranquility": 203, "The Plane of Valor": 208, "Plane of War": 213, "The Plane of Water": 216, "The Precipice of War": 473, "Muramite Provinggrounds": 316, "The Qeynos Aqueduct System": 45, "The Western Plains of Karana": 12, "South Qeynos": 1, "North Qeynos": 2, "The Qeynos Hills": 4, "Qinimi, Court of Nihilia": 281, "The Surefall Glade": 3, "Qvic, Prayer Grounds of Calling": 295, "Qvic, the Hidden Vault": 299, "Sverag, Stronghold of Rage": 374, "Razorthorn, Tower of Sullon Zek": 375, "Rathe Council Chamber": 477, "The Rathe Mountains": 50, "Redfeather Isle": 430, "Relic, the Artifact City": 370, "Riftseekers' Sanctum": 334, "Rivervale": 19, "Riwwi, Coliseum of Games": 282, "Blackfeather Roost": 398, "The Rujarkian Hills: Bloodied Quarries": 230, "The Rujarkian Hills: Halls of War": 235, "The Rujarkian Hills: Wind Bridges": 240, "The Rujarkian Hills: Prison Break": 245, "The Rujarkian Hills: Drudge Hollows": 250, "The Rujarkian Hills: Fortified Lair of the Taskmasters": 255, "The Rujarkian Hills: Hidden Vale of Deceit": 260, "The Rujarkian Hills: Blazing Forge ": 265, "The Rujarkian Hills: Arena of Chance": 269, "The Rujarkian Hills: Barracks of War": 273, "The Liberated Citadel of Runnyeye": 11, "The Scarlet Desert": 175, "The Ruins of Sebilis": 89, "Shadeweaver's Thicket": 165, "Shadow Haven": 150, "Shadowrest": 187, "Shadow Spine": 364, "The City of Shar Vahl": 155, "The Open Sea": 435, "The Open Sea": 431, "The Open Sea": 432, "The Open Sea": 433, "The Open Sea": 434, "S.H.I.P. Workshop": 439, "Silyssar, New Chelsith": 420, "Siren's Grotto": 125, "The Skyfire Mountains": 91, "Skylance": 371, "Skyshrine": 114, "The Sleeper's Tomb": 128, "Sewers of Nihilia, Emanating Cre": 288, "Sewers of Nihilia, Lair of Trapp": 286, "Sewers of Nihilia, Purifying Pla": 287, "Sewers of Nihilia, Pool of Sludg": 285, "Solusek's Eye": 31, "Nagafen's Lair": 32, "The Caverns of Exile": 278, "The Tower of Solusek Ro": 212, "The Temple of Solusek Ro": 80, "Solteris, the Throne of Ro": 421, "The Southern Plains of Karana": 14, "South Desert of Ro": 393, "Southern Desert of Ro": 35, "Sanctus Seru": 159, "Ssraeshza Temple": 162, "The Steam Factory": 438, "Steamfont Mountains": 56, "The Steamfont Mountains": 448, "The Steppes": 399, "Stillmoon Temple": 338, "The Ascent": 339, "The Stonebrunt Mountains": 100, "Stone Hive": 396, "Suncrest Isle": 426, "Sunderock Springs": 403, "The Swamp of No Hope": 83, "Tacvi, The Broken Temple": 298, "Takish-Hiz: Sunken Library": 231, "Takish-Hiz: Shifting Tower": 236, "Takish-Hiz: Fading Temple": 241, "Takish-Hiz: Royal Observatory": 246, "Takish-Hiz: River of Recollection": 251, "Takish-Hiz: Sandfall Corridors": 256, "Takish-Hiz: Balancing Chamber": 261, "Takish-Hiz: Sweeping Tides": 266, "Takish-Hiz: Antiquated Palace": 270, "Ruins of Takish-Hiz": 376, "The Root of Ro": 377, "Takish-Hiz: Prismatic Corridors": 274, "The Temple of Veeshan": 124, "The Tenebrous Mountains": 172, "Thalassius, the Coral Keep": 417, "Theater of Blood": 380, "Deathknell, Tower of Dissonance": 381, "The Deep": 164, "The Grey": 171, "The Nest": 343, "The Void": 459, "The Void": 460, "The Void": 461, "The Void": 462, "The Void": 463, "The Void": 464, "The Void": 465, "Thundercrest Isles": 340, "The City of Thurgadin": 115, "Icewell Keep": 129, "Timorous Deep": 96, "Tipt, Treacherous Crags": 289, "The Torgiran Mines": 226, "Toskirakk": 475, "Toxxulia Forest": 38, "Toxxulia Forest": 414, "Trakanon's Teeth": 95, "EverQuest Tutorial": 183, "The Mines of Gloomingdeep": 188, "The Mines of Gloomingdeep": 189, "The Twilight Sea": 170, "Txevu, Lair of the Elite": 297, "The Umbral Plains": 176, "The Estate of Unrest": 63, "Uqua, the Ocean God Chantry": 292, "Valdeholm": 401, "Veeshan's Peak": 108, "Veksar": 109, "Velketor's Labyrinth": 112, "Vergalid Mines": 404, "Vex Thal": 158, "Vxed, the Crumbling Caverns": 290, "The Wakening Land": 119, "Wall of Slaughter": 300, "The Warrens": 101, "The Warsliks Woods": 79, "Stoneroot Falls": 358, "Prince's Manor": 359, "Caverns of the Lost": 360, "Lair of the Korlach": 361, "The Western Wastes": 120, "Yxtta, Pulpit of Exiles ": 291, "Zhisza, the Shissar Sanctuary": 419, "The Nektulos Forest": 25, "Brell's Rest": 480, "The Cooling Chamber": 483, "Pellucid Grotto": 488, "Arthicrex": 485, "The Foundation": 486, "The Underquarry": 482, "Brell's Arena": 492, "Volska's Husk": 489, "The Convorteum": 491, "The Library": 704, "Morell's Castle": 707, "Al'Kabor's Nightmare": 709, "Erudin Burning": 706, "The Feerrott": 700, "The Grounds": 703, "Miragul's Nightmare": 710, "Sanctum Somnium": 708, "Fear Itself": 711, "House of Thule": 701, "House of Thule, Upper Floors": 702, "The Well": 705, "Sunrise Hills": 712, "Argath, Bastion of Illdaera": 724, "Valley of Lunanyn": 725, "Sarith, City of Tides": 726, "Rubak Oseka, Temple of the Sea": 727, "Beasts' Domain": 728, "The Resplendent Temple": 729, "Pillars of Alra": 730, "Windsong Sanctuary": 731, "Erillion, City of Bronze": 732, "Sepulcher of Order": 733, "Sepulcher East": 734, "Sepulcher West": 735, "Wedding Chapel": 493, "Wedding Chapel": 494, "Lair of the Risen": 495, "The Bazaar": 151, "Brell's Temple": 490, "Fungal Forest": 481, "Lichen Creep": 487, "Kernagir, the Shining City": 484, "The Breeding Grounds": 757, "Chapterhouse of the Fallen": 760, "The Crystal Caverns: Fragment of Fear": 756, "East Wastes: Zeixshi-Kar's Awakening": 755, "Evantil, the Vile Oak": 758, "Grelleth's Palace, the Chateau of Filth": 759, "Kael Drakkel: The King's Madness": 754, "Shard's Landing": 752, "Valley of King Xorbb": 753, } def factionsetname(item): "Generates faction set name" return re.sub(' ', '', item[0]) + re.sub('-', '', item[1]) def cleanmobname(name): "Cleans mob name for DB look up" return re.sub(' ', '_', name) class FactionSet(object): """ FactionSet class name: name of the faction set primary: primary faction ID hits: faction hits assumes a dict like object faction ID: hit value """ def __init__(self, name, primid, hits): self.name = name self.primary = primid self.hits = hits.copy() def __repr__(self): return str((self.name, self.primary, self.hits)) # factionsets[name].hits[key] == factionsets[name][key] def __getitem__(self, key): return self.hits[key] # names need to be unique to the set to work def __eq__(self, other): return self.name == other.name def __contains__(self, key): "Wrapper to key in hits" return key in self.hits def generate_sql(self): "Generates SQL statements" statement = ('INSERT INTO npc_faction (name, primaryfaction) VALUES ' '(\'{}\', \'{}\');\n'.format(self.name, self.primary) + 'SELECT id INTO @setid FROM npc_faction WHERE name = ' '\'{}\' LIMIT 1;\n'.format(self.name)) for hit in self.hits: statement += ('INSERT INTO npc_faction_entries ' '(npc_faction_id, faction_id, value, npc_value) ' 'VALUES (@setid, \'{}\', \'{}\', \'{}\');\n' .format(hit, self.hits[hit], 1 if int(self.hits[hit]) < 0 else 0)) return statement class Mob(object): """ Mob class name: name of mob zone: zone ID for mob faction: faction set name """ def __init__(self, name, zone, faction): self.name = name self.zone = zone self.faction = faction def __repr__(self): return str((self.name, self.zone, self.faction)) def __eq__(self, other): return self.name == other.name and self.zone == other.zone def generate_sql(self): "Generates SQL statements" return ('UPDATE npc_types SET npc_faction_id = @{} WHERE ' 'name RLIKE \'{}\' AND id >= {} AND id <= {};' .format(self.faction, cleanmobname(self.name), self.zone * 1000, self.zone * 1000 + 999)) def main(filename): "Processes eqlog and generates SQL to update mob factions" if not os.path.exists(filename): print(filename + ' not found') exit(-1) pfaction = re.compile(r'\[.*\] Your faction standing with (.*) has been ' r'adjusted by (.*)\.') pslain1 = re.compile(r'\[.*\] You have slain (.*)!') pslain2 = re.compile(r'\[.*\] (.*) has been slain by .*!') penter = re.compile(r'\[.*\] You have entered (.*)\.') factions = {} # mob: mob object factionsets = {} # set name: set object hits = collections.OrderedDict() # faction ID: value nohits = [] # mobs with no faction hits setname = None primary = None zone = None eqlog = open(filename, 'r') for line in eqlog: m = penter.match(line) if m: if not re.search('PvP|levitation', line): zone = zonetable[m.group(1)] if \ m.group(1) in zonetable else m.group(1) continue m = pfaction.match(line) if m: if not setname and not hits.items(): setname = factionsetname(m.groups()) primary = factiontable[m.group(1)] hits[factiontable[m.group(1)]] = m.group(2) continue m = pslain1.match(line) if not m: m = pslain2.match(line) if m: # hits will be empty if no faction hits, so we skip it if m.group(1) not in factions and hits.items(): factions[m.group(1)] = Mob(m.group(1), zone, setname) if setname not in factionsets: factionsets[setname] = FactionSet(setname, primary, hits) elif not hits.items(): nohits.append(m.group(1)) hits.clear() setname = None primary = None continue eqlog.close() print('-- Faction set entries') for fset in factionsets.values(): print(fset.generate_sql()) print('-- Mob entries') for setname in factionsets: print('SELECT id INTO @{0} FROM npc_faction WHERE name = \'{0}\' ' 'LIMIT 1;'.format(setname)) print() # The zone limiting assumes the mob ids follows PEQ's scheme for mob in factions.values(): print(mob.generate_sql()) # This might output some pets if len(nohits): print('-- some of these might be pets') for mob in nohits: print('-- no faction hit {}'.format(mob)) return 0 if __name__ == '__main__': if len(sys.argv) != 2: print('Incorrect arguments. python ' + sys.argv[0] + ' filename') exit(-1) main(sys.argv[1])
gpl-3.0
-6,577,107,049,170,106,000
29.844045
80
0.576969
false
Tilapiatsu/modo-tila_batchexporter
lxserv/Tila_BatchTransform.py
1
2520
#!/usr/bin/env python import modo import lx import lxu.command import lxu.select import traceback import Tila_BatchExportModule as t from Tila_BatchExportModule import user_value from Tila_BatchExportModule import batch_export class CmdBatchExport(lxu.command.BasicCommand): def __init__(self): lxu.command.BasicCommand.__init__(self) reload(user_value) reload(t) user_value.add_User_Values(self, t.userValues) def cmd_Flags(self): return lx.symbol.fCMD_MODEL | lx.symbol.fCMD_UNDO def basic_Enable(self, msg): return True def cmd_Interact(self): pass def basic_Execute(self, msg, flags): reload(t) reload(batch_export) try: scn = modo.Scene() currScn = modo.scene.current() userSelection = scn.selected userSelectionCount = len(userSelection) olderSelection = [] currPath = currScn.filename if currPath is None: currPath = "" scnIndex = lx.eval('query sceneservice scene.index ? current') userValues = user_value.query_User_Values(self, t.kit_prefix) tbe = batch_export.TilaBacthExport userValues[1] = False userValues[2] = False if bool(userValues[0]): olderSelection = userSelection userSelection = tbe.select_visible_items(tbe(userSelection, userSelectionCount, scn, currScn, currPath, scnIndex, userValues)) userSelectionCount = len(userSelection) tbe.batch_transform(tbe(userSelection, userSelectionCount, scn, currScn, currPath, scnIndex, userValues)) if bool(userValues[0]): scn.select(olderSelection) except: lx.out(traceback.format_exc()) def cmd_Query(self, index, vaQuery): lx.notimpl() lx.bless(CmdBatchExport, t.TILA_BATCH_TRANSFORM)
mit
-7,176,125,561,679,100,000
28.658824
76
0.483333
false
no13bus/btcproject
btc/tasks.py
1
13215
#encoding=utf-8 from __future__ import absolute_import from celery import shared_task # from celery.task import task from btcproject import celery_app from btc.lib.okcoin import * from btc.lib.btceapi import * from btc.lib.bitfinex import * from btc.lib.huobi import * from btc.lib.btcchina import * from celery import Celery,platforms,group import time import pprint import datetime from btc.models import * from datetime import timedelta from django.utils.timezone import utc from django.conf import settings import logging import logging.handlers from mailer import Mailer from mailer import Message LOG_FILE = 'btc_celery.log' handler = logging.handlers.RotatingFileHandler(LOG_FILE, maxBytes = 1024*1024*20, backupCount = 10) fmt = '%(asctime)s - %(filename)s:%(lineno)s - %(name)s - %(message)s' formatter = logging.Formatter(fmt) handler.setFormatter(formatter) logger = logging.getLogger('btc_celery') logger.addHandler(handler) logger.setLevel(logging.DEBUG) @celery_app.task def send_btc_mail(subjectstring, messagestring): message = Message(From=settings.MAILSENDER,To=settings.TOLIST, charset="utf-8") message.Subject = subjectstring message.Html = messagestring mysender = Mailer(host=settings.MAILHOST, pwd=settings.MAILPWD, usr=settings.MAILSENDER) mysender.send(message) @celery_app.task def set_bool_task(): if settings.SENDBOOL == False: logger.debug('set_bool is seted to true') settings.SENDBOOL = True @celery_app.task def bitfinex_task_btc(bfx): payload = {} book = bfx.book(payload) bitfinex_seller_price = float(book['asks'][1]['price']) bitfinex_buyer_price = float(book['bids'][1]['price']) bitfinex_buyer_price_done = float(book['asks'][5]['price']) bitfinex_seller_price_done = float(book['bids'][5]['price']) return [bitfinex_seller_price, bitfinex_buyer_price, bitfinex_seller_price_done, bitfinex_buyer_price_done] @celery_app.task def bitfinex_task_ltc(bfx): payload = {} ltc_book = bfx.book(payload,'ltcusd') bitfinex_seller_price_ltc = float(ltc_book['asks'][1]['price']) bitfinex_buyer_price_ltc = float(ltc_book['bids'][1]['price']) bitfinex_buyer_price_ltc_done = float(ltc_book['bids'][5]['price']) bitfinex_seller_price_ltc_done = float(ltc_book['asks'][5]['price']) return [bitfinex_seller_price_ltc, bitfinex_buyer_price_ltc, bitfinex_seller_price_ltc_done, bitfinex_buyer_price_ltc_done] @celery_app.task def bitfinex_task_info(bfx): user_info = bfx.balances() if [i['amount'] for i in user_info if i['type']=='exchange' and i['currency']=='usd']: usd = float([i['amount'] for i in user_info if i['type']=='exchange' and i['currency']=='usd'][0]) else: usd = 0.0 if [i['amount'] for i in user_info if i['type']=='exchange' and i['currency']=='ltc']: ltc = float([i['amount'] for i in user_info if i['type']=='exchange' and i['currency']=='ltc'][0]) else: ltc = 0.0 if [i['amount'] for i in user_info if i['type']=='exchange' and i['currency']=='btc']: btc = float([i['amount'] for i in user_info if i['type']=='exchange' and i['currency']=='btc'][0]) else: btc = 0.0 return [usd,btc,ltc] @celery_app.task def btce_task_btc(btce): de = btce.get_Depth() btce_seller_price = de['bids'][1][0] btce_buyer_price = de['asks'][1][0] btce_seller_price_done = de['bids'][5][0] btce_buyer_price_done = de['asks'][5][0] return [btce_seller_price, btce_buyer_price, btce_seller_price_done, btce_buyer_price_done] @celery_app.task def btce_task_ltc(btce): ltc_de = btce.get_Depth('ltc_usd') btce_seller_price_ltc = ltc_de['bids'][1][0] btce_buyer_price_ltc = ltc_de['asks'][1][0] btce_seller_price_ltc_done = ltc_de['bids'][5][0] btce_buyer_price_ltc_done = ltc_de['asks'][5][0] return [btce_seller_price_ltc, btce_buyer_price_ltc, btce_seller_price_ltc_done, btce_buyer_price_ltc_done] @celery_app.task def btce_task_info(btce): user_info = btce.getInfo() usd = user_info['return']['funds']['usd'] btc = user_info['return']['funds']['btc'] ltc = user_info['return']['funds']['ltc'] return [usd,btc,ltc] @celery_app.task def okcoin_task_btc(okcoin,rate): de = okcoin.get_depth() okcoin_seller_price = de['asks'][-1][0] okcoin_buyer_price = de['bids'][1][0] okcoin_seller_price_done = de['asks'][-5][0] okcoin_buyer_price_done = de['bids'][5][0] return [okcoin_seller_price, okcoin_buyer_price, okcoin_seller_price_done, okcoin_buyer_price_done] @celery_app.task def okcoin_task_ltc(okcoin,rate): ltc_de = okcoin.get_depth_ltc() okcoin_seller_price_ltc = ltc_de['asks'][-1][0] okcoin_buyer_price_ltc = ltc_de['bids'][1][0] okcoin_seller_price_ltc_done = ltc_de['asks'][-5][0] okcoin_buyer_price_ltc_done = ltc_de['bids'][5][0] return [okcoin_seller_price_ltc, okcoin_buyer_price_ltc, okcoin_seller_price_ltc_done, okcoin_buyer_price_ltc_done] @celery_app.task def okcoin_task_info(okcoin,rate): user_info = okcoin.get_account() cny = float(user_info['info']['funds']['free']['cny']) ltc = float(user_info['info']['funds']['free']['ltc']) btc = float(user_info['info']['funds']['free']['btc']) return [cny,btc,ltc] @celery_app.task def huobi_task_btc(huobi,rate): de = huobi.get_depth('btc') huobi_seller_price = float(de['asks'][-1][0]) huobi_buyer_price = float(de['bids'][1][0]) huobi_buyer_price_done = float(de['bids'][5][0]) huobi_seller_price_done = float(de['asks'][-5][0]) return [huobi_seller_price, huobi_buyer_price, huobi_seller_price_done, huobi_buyer_price_done] @celery_app.task def huobi_task_ltc(huobi,rate): ltc_de = huobi.get_depth('ltc') huobi_seller_price_ltc = float(ltc_de['asks'][-1][0]) huobi_buyer_price_ltc = float(ltc_de['bids'][1][0]) huobi_buyer_price_ltc_done = float(ltc_de['bids'][5][0]) huobi_seller_price_ltc_done = float(ltc_de['asks'][-5][0]) return [huobi_seller_price_ltc, huobi_buyer_price_ltc, huobi_seller_price_ltc_done, huobi_buyer_price_ltc_done] @celery_app.task def huobi_task_info(huobi,rate): user_info = huobi.get_account_info() cny = float(user_info['available_cny_display']) if 'available_cny_display' in user_info else 0.0 ltc = float(user_info['available_ltc_display']) if 'available_ltc_display' in user_info else 0.0 btc = float(user_info['available_btc_display']) if 'available_btc_display' in user_info else 0.0 return [cny,btc,ltc] ### http.cannot requests @celery_app.task def btcchina_task_btc(btcchina,rate): de = btcchina.get_depth() btcchina_seller_price = de['asks'][-1][0] btcchina_buyer_price = de['bids'][1][0] btcchina_buyer_price_done = de['bids'][3][0] btcchina_seller_price_done = de['asks'][-3][0] return [btcchina_seller_price, btcchina_buyer_price, btcchina_seller_price_done, btcchina_buyer_price_done] @celery_app.task def btcchina_task_ltc(btcchina,rate): ltc_de = btcchina.get_depth('ltccny') btcchina_seller_price_ltc = ltc_de['asks'][-1][0] btcchina_buyer_price_ltc = ltc_de['bids'][1][0] btcchina_buyer_price_ltc_done = ltc_de['bids'][3][0] btcchina_seller_price_ltc_done = ltc_de['asks'][-3][0] return [btcchina_seller_price_ltc, btcchina_buyer_price_ltc, btcchina_seller_price_ltc_done, btcchina_buyer_price_ltc_done] @celery_app.task def btcchina_task_info(bc,rate): user_info = bc.get_account_info() cny = user_info['balance']['cny']['amount'] ltc = user_info['balance']['ltc']['amount'] btc = user_info['balance']['btc']['amount'] cny = float(cny) ltc = float(ltc) btc = float(btc) return [cny,btc,ltc] @celery_app.task def insert_buy_info(okcoin_buyprice,huobi_buyprice,btcchina_buyprice,bitfinex_buyprice,okcoin_buyprice_ltc,huobi_buyprice_ltc,btcchina_buyprice_ltc,bitfinex_buyprice_ltc,created): now = datetime.datetime.utcnow().replace(tzinfo=utc) p = Pricebuysell(okcoin_buyprice=okcoin_buyprice,huobi_buyprice=huobi_buyprice, btcchina_buyprice=btcchina_buyprice, bitfinex_buyprice=bitfinex_buyprice, okcoin_buyprice_ltc=okcoin_buyprice_ltc,huobi_buyprice_ltc=huobi_buyprice_ltc, btcchina_buyprice_ltc=btcchina_buyprice_ltc, bitfinex_buyprice_ltc=bitfinex_buyprice_ltc,created=now) p.save() ####实时抓取交易价格 并入mysql库 为了将其在前台显示出来 @celery_app.task def user_trade(): #### admin's settings user = Userprofile.objects.filter(id=1) user = user[0] rate = user.rate amount = user.amount ltcamount = user.ltcamount auto_trade = user.auto_trade user_id = user.user.id okcoin2bitfinex = user.okCoin2bitfinex bitfinex2okcoin = user.bitfinex2okCoin okcoin2huobi = user.okCoin2huobi huobi2okcoin = user.huobi2okCoin okcoin2btcchina = user.okCoin2btcchina btcchina2okcoin = user.btcchina2okCoin huobi2btcchina = user.huobi2btcchina btcchina2huobi = user.btcchina2huobi huobi2bitfinex = user.huobi2bitfinex bitfinex2huobi = user.bitfinex2huobi bitfinex2btcchina = user.bitfinex2btcchina btcchina2bitfinex = user.btcchina2bitfinex okcoin2bitfinex_ltc = user.okCoin2bitfinex_ltc bitfinex2okcoin_ltc = user.bitfinex2okCoin_ltc okcoin2huobi_ltc = user.okCoin2huobi_ltc huobi2okcoin_ltc = user.huobi2okCoin_ltc okcoin2btcchina_ltc = user.okCoin2btcchina_ltc btcchina2okcoin_ltc = user.btcchina2okCoin_ltc huobi2btcchina_ltc = user.huobi2btcchina_ltc btcchina2huobi_ltc = user.btcchina2huobi_ltc huobi2bitfinex_ltc = user.huobi2bitfinex_ltc bitfinex2huobi_ltc = user.bitfinex2huobi_ltc bitfinex2btcchina_ltc = user.bitfinex2btcchina_ltc btcchina2bitfinex_ltc = user.btcchina2bitfinex_ltc ## okcoin = OkCoin(user.okcoin_key.__str__(),user.okcoin_secret.__str__()) bfx = Bitfinex() bfx.key = user.bitfinex_key.__str__() bfx.secret = user.bitfinex_secret.__str__() huobi = HuoBi(user.huobi_key.__str__(), user.huobi_secret.__str__()) btcchina = BTCChina(user.btcchina_key.__str__(), user.btcchina_secret.__str__()) g=group(bitfinex_task_btc.s(bfx), huobi_task_btc.s(huobi, rate), btcchina_task_btc.s(btcchina, rate), okcoin_task_btc.s(okcoin, rate), bitfinex_task_ltc.s(bfx), huobi_task_ltc.s(huobi, rate), btcchina_task_ltc.s(btcchina, rate), okcoin_task_ltc.s(okcoin, rate), bitfinex_task_info.s(bfx),huobi_task_info.s(huobi, rate),btcchina_task_info.s(btcchina, rate),okcoin_task_info.s(okcoin, rate)) result = g().get() okcoin_buyprice_btc = result[3][1] huobi_buyprice_btc = result[1][1] btcchina_buyprice_btc = result[2][1] bitfinex_buyprice_btc = result[0][1] okcoin_sellprice_btc = result[3][0] huobi_sellprice_btc = result[1][0] btcchina_sellprice_btc = result[2][0] bitfinex_sellprice_btc = result[0][0] okcoin_buyprice_ltc = result[7][1] huobi_buyprice_ltc = result[5][1] btcchina_buyprice_ltc = result[6][1] bitfinex_buyprice_ltc = result[4][1] okcoin_sellprice_ltc = result[7][0] huobi_sellprice_ltc = result[5][0] btcchina_sellprice_ltc = result[6][0] bitfinex_sellprice_ltc = result[4][0] created = datetime.datetime.utcnow().replace(tzinfo=utc) insert_buy_info.delay(okcoin_buyprice_btc,huobi_buyprice_btc,btcchina_buyprice_btc,bitfinex_buyprice_btc, okcoin_buyprice_ltc,huobi_buyprice_ltc,btcchina_buyprice_ltc,bitfinex_buyprice_ltc,created) @celery_app.task def tradedate(): user = Userprofile.objects.filter(id=1) user = user[0] rate = user.rate amount = user.amount ltcamount = user.ltcamount auto_trade = user.auto_trade user_id = user.user.id huobi = HuoBi(user.huobi_key.__str__(), user.huobi_secret.__str__()) huobi_j = huobi.get_trades_history('btc') trade_dates = huobi_j['trades'] for data in trade_dates: price = data['price'] amount = data['amount'] mtype = data['type'] created_day = datetime.datetime.now().strftime("%Y-%m-%d") mtime = '%s %s' % (created_day, data['time']) now = datetime.datetime.utcnow().replace(tzinfo=utc) td = Tradedate.objects.filter(mtime=mtime,price=price,amount=amount,mtype=mtype) if not td: trade_item = Tradedate(mtime=mtime,price=price,amount=amount,mtype=mtype,created=now) trade_item.save() @celery_app.task def tradedate_analysis(): t_delta = datetime.timedelta(seconds=60) nowdate = datetime.datetime.now() start_time = nowdate.strftime("%Y-%m-%d %H:%M:%S") end_time = (nowdate - t_delta).strftime("%Y-%m-%d %H:%M:%S") td = Tradedate.objects.filter(mtime__gte=end_time, mtime__lte=start_time).order_by('-mtime') if not td: return avg_price = sum([item.price for item in td]) / len(td) avg_price = round(avg_price,4) buy_data = td.filter(mtype=u'买入') buy_amount = sum([item.amount for item in buy_data]) buy_amount = round(buy_amount,4) sell_data = td.filter(mtype=u'卖出') sell_amount = sum([item.amount for item in sell_data]) sell_amount = round(sell_amount,4) if buy_amount > sell_amount: buyorsell = 'buy' else: buyorsell = 'sell' if not Tradedate_analysis.objects.filter(start_time=start_time,end_time=end_time): now = datetime.datetime.utcnow().replace(tzinfo=utc) ta = Tradedate_analysis(buyorsell=buyorsell,avg_price=avg_price,start_time=start_time,end_time=end_time, buy_amount=buy_amount,sell_amount=sell_amount,created=now) ta.save()
mit
-85,900,734,797,334,750
36.043353
179
0.697713
false
valuesandvalue/valuesandvalue
vavs_project/fbdata/fields.py
1
2071
# fbdata.fields # DJANGO from django.db import models from django.utils import six # SOUTH from south.modelsinspector import add_introspection_rules class IntegerListField(models.Field): description = "Integer List" __metaclass__ = models.SubfieldBase def __init__(self, *args, **kwargs): kwargs['max_length'] = 120 super(IntegerListField, self).__init__(*args, **kwargs) def db_type(self, connection): return 'char(%s)' % self.max_length def get_internal_type(self): return 'CharField' def to_python(self, value): if isinstance(value, basestring): return [int(s) for s in value.split(',') if s.isdigit()] elif isinstance(value, list): return value def get_prep_value(self, value): return ','.join([str(v) for v in value]) def pre_save(self, model_instance, add): value = getattr(model_instance, self.attname) if not value and self.default: value = list(self.default) setattr(model_instance, self.attname, value) return value def get_prep_lookup(self, lookup_type, value): # We only handle 'exact' and 'in'. All others are errors. if lookup_type == 'exact': return self.get_prep_value(value) elif lookup_type == 'in': return [self.get_prep_value(v) for v in value] else: raise TypeError('Lookup type %r not supported.' % lookup_type) def value_to_string(self, obj): value = self._get_val_from_obj(obj) return self.get_db_prep_value(value) def formfield(self, **kwargs): defaults = {'max_length': self.max_length} defaults.update(kwargs) return super(IntegerListField, self).formfield(**defaults) add_introspection_rules([ ( [IntegerListField], # Class(es) these apply to [], # Positional arguments (not used) {}, # Keyword argument ), ], ["^fbdata\.fields\.IntegerListField"])
mit
5,486,886,093,068,114,000
30.378788
74
0.593916
false
jcurry/ZenPacks.ZenSystems.Juniper
ZenPacks/ZenSystems/Juniper/modeler/plugins/JuniperFPCMap.py
1
6265
########################################################################## # Author: Jane Curry, [email protected] # Date: February 28th, 2011 # Revised: Extra debugging added Aug 23, 2011 # # JuniperFPC modeler plugin # # This program can be used under the GNU General Public License version 2 # You can find full information here: http://www.zenoss.com/oss # ########################################################################## __doc__ = """JuniperFPCMap Gather table information from Juniper Contents tables """ import re from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetMap, GetTableMap class JuniperFPCMap(SnmpPlugin): """Map Juniper FPC table to model.""" maptype = "JuniperFPCMap" modname = "ZenPacks.ZenSystems.Juniper.JuniperFPC" relname = "JuniperFP" compname = "" snmpGetTableMaps = ( GetTableMap('jnxContentsTable', '.1.3.6.1.4.1.2636.3.1.8.1', { '.1': 'containerIndex', '.5': 'FPCType', '.6': 'FPCDescr', '.7': 'FPCSerialNo', '.8': 'FPCRevision', '.10': 'FPCPartNo', '.11': 'FPCChassisId', '.12': 'FPCChassisDescr', '.13': 'FPCChassisCLEI', } ), GetTableMap('jnxOperatingTable', '.1.3.6.1.4.1.2636.3.1.13.1', { '.6': 'FPCState', '.7': 'FPCTemp', '.8': 'FPCCPU', '.13': 'FPCUpTime', '.15': 'FPCMemory', } ), GetTableMap('jnxContainersTable', '.1.3.6.1.4.1.2636.3.1.6.1', { '.1': 'containerIndex', '.3': 'containerLevel', '.4': 'containerNextLevel', '.5': 'containerType', '.6': 'containerDescr', } ), ) def process(self, device, results, log): """collect snmp information from this device""" log.info('processing %s for device %s', self.name(), device.id) getdata, tabledata = results rm = self.relMap() contentsTable = tabledata.get('jnxContentsTable') operatingTable = tabledata.get('jnxOperatingTable') containersTable = tabledata.get('jnxContainersTable') # If no data supplied then simply return if not contentsTable: log.warn( 'No SNMP response from %s for the %s plugin for contents', device.id, self.name() ) log.warn( "Data= %s", tabledata ) return if not operatingTable: log.warn( 'No SNMP response from %s for the %s plugin for operating system', device.id, self.name() ) log.warn( "Data= %s", tabledata ) return if not containersTable: log.warn( 'No SNMP response from %s for the %s plugin for containers', device.id, self.name() ) log.warn( "Data= %s", tabledata ) return for oid, data in contentsTable.items(): try: om = self.objectMap(data) FPCDescr = om.FPCDescr # log.info(' FPCDescr is %s ' % (om.FPCDescr)) isaFPC = re.match(r'(.*FPC.*)', FPCDescr.upper()) if not isaFPC: continue else: for oid1, data1 in operatingTable.items(): if oid1 == oid: om.FPCState = data1['FPCState'] om.FPCTemp = data1['FPCTemp'] om.FPCCPU = data1['FPCCPU'] om.FPCUpTime = data1['FPCUpTime'] om.FPCMemory = data1['FPCMemory'] for oid2, data2 in containersTable.items(): # log.info( ' oid is %s - oid2 is %s - data is %s' % (oid, oid2 , data2)) if oid.startswith(oid2): om.containerDescr = data2['containerDescr'] if data2['containerLevel'] == 1: om.containerDescr = '....' + om.containerDescr elif data2['containerLevel'] == 2: om.containerDescr = '........' + om.containerDescr om.containerParentIndex = data2['containerNextLevel'] if om.containerParentIndex != 0: for oid3, data3 in containersTable.items(): if oid3.endswith(str(om.containerParentIndex)): om.containerParentDescr = data3['containerDescr'] om.snmpindex = oid1.strip('.') # Convert FPCUpTime from milliseconds to hours om.FPCUpTime = om.FPCUpTime / 1000 / 60 / 60 /24 # Transform numeric FPCState into a status string via operatingStateLookup if (om.FPCState < 1 or om.FPCState > 7): om.FPCState = 1 om.FPCState = self.operatingStateLookup[om.FPCState] om.id = self.prepId( om.FPCDescr.replace(' ','_') + '_' + str( om.snmpindex.replace('.','_') ) ) except (KeyError, IndexError, AttributeError, TypeError), errorInfo: log.warn( ' Error in %s modeler plugin %s' % ( self.name(), errorInfo)) continue rm.append(om) # log.info('rm %s' % (rm) ) return rm operatingStateLookup = { 1: 'Unknown', 2: 'Running', 3: 'Ready', 4: 'Reset', 5: 'RunningAtFullSpeed (Fan)', 6: 'Down', 7: 'Standby' }
gpl-2.0
707,825,517,397,618,400
43.75
116
0.444054
false
kussj/mesosbeat
scripts/generate_field_docs.py
1
2634
#!/usr/bin/env python """ This script generates markdown documentation from the fields yml file. Usage: python generate_field_docs.py file.yml file.asciidoc """ import sys import yaml SECTIONS = [ ("env", "Common"), ("cluster_health", "Contains elasticsearch cluster health statistics"), ("cluster_stats", "Contains elasticsearch cluster stats statistics"), ("cluster_node", "Contains elasticsearch node stats statistics")] def document_fields(output, section): if "anchor" in section: output.write("[[exported-fields-{}]]\n".format(section["anchor"])) output.write("=== {} Fields\n\n".format(section["name"])) if "description" in section: output.write("{}\n\n".format(section["description"])) output.write("\n") for field in section["fields"]: if "type" in field and field["type"] == "group": for sec, name in SECTIONS: if sec == field["name"]: field["anchor"] = field["name"] field["name"] = name break document_fields(output, field) else: document_field(output, field) def document_field(output, field): if "path" not in field: field["path"] = field["name"] output.write("==== {}\n\n".format(field["path"])) if "type" in field: output.write("type: {}\n\n".format(field["type"])) if "example" in field: output.write("example: {}\n\n".format(field["example"])) if "format" in field: output.write("format: {}\n\n".format(field["format"])) if "required" in field: output.write("required: {}\n\n".format(field["required"])) if "description" in field: output.write("{}\n\n".format(field["description"])) def fields_to_asciidoc(input, output): output.write(""" //// This file is generated! See etc/fields.yml and scripts/generate_field_docs.py //// [[exported-fields]] == Exported Fields This document describes the fields that are exported by ApacheBeat. They are grouped in the following categories: """) for doc, _ in SECTIONS: output.write("* <<exported-fields-{}>>\n".format(doc)) output.write("\n") docs = yaml.load(input) for doc, name in SECTIONS: if doc in docs: section = docs[doc] if "type" in section: if section["type"] == "group": section["name"] = name section["anchor"] = doc document_fields(output, section) if __name__ == "__main__": if len(sys.argv) != 3: print ("Usage: %s file.yml file.asciidoc" % (sys.argv[0])) sys.exit(1) input = open(sys.argv[1], 'r') output = open(sys.argv[2], 'w') try: fields_to_asciidoc(input, output) finally: input.close() output.close()
apache-2.0
-3,599,554,905,244,448,000
24.572816
77
0.629461
false
fragaria/BorIS
post_migration_restart.py
1
2733
""" This is script should bring existing installations in line with the state in repository. It is supposed to be run after: 1. The migration_restart branch has been merged to master and deployed. 2. south_migrationhistory has been truncated. 3. The initial migrations for clients and services have been faked. """ from django.contrib.auth.management import create_permissions from django.contrib.auth.models import Permission from django.contrib.contenttypes.models import ContentType from django.core.management import call_command from django.db.models import get_models, get_app from boris.services.management import proxy_permissions_fix # First, create the missing permissions. create_permissions(get_app('services'), get_models(), 2) # Then remove the obsolete permissions. # Obsolete models contenttypes = ( ('services', 'crisisintervention'), ('clients', 'riskybehavior'), ) for app_label, model in contenttypes: try: ct = ContentType.objects.get(app_label=app_label, model=model) except ContentType.DoesNotExist: print 'ContentType for %s not found!' % model else: qset = Permission.objects.filter(content_type=ct) print "Deleting %i permissions for %s" % (qset.count(), model) qset.delete() # Remove services proxy permissions. services_ct = ContentType.objects.get(app_label='services', model='service') codenames = [ 'add_utilitywork', 'change_utilitywork', 'delete_utilitywork', 'add_incomeexamination', 'change_incomeexamination', 'delete_incomeexamination', 'add_individualcounselling', 'change_individualcounselling', 'delete_individualcounselling', 'add_phoneusage', 'change_phoneusage', 'delete_phoneusage', ] print "Deleting the proxy permissions: %s" % ', '.join(codenames) for codename in codenames: qset = Permission.objects.filter(codename=codename, content_type=services_ct) if qset.count() != 1: print "Something's wrong with the %s permission." % codename else: qset.delete() # Run the proxy permissions fix hook. services = get_app('services') proxy_permissions_fix.delete_proxy_permissions(services, get_models(services), 2) # Delete the obsolete contenttypes. contenttypes = ( ('clients', 'riskybehavior'), ('services', 'practitionerencounter'), ) for app_label, model in contenttypes: try: ct = ContentType.objects.get(app_label=app_label, model=model) except ContentType.DoesNotExist: print 'ContentType for %s not found!' % model else: print "Deleting contenttype: %s, %s" % (app_label, model) ct.delete() # Finally, reload the group permissions fixture. call_command('loaddata', 'groups.json')
mit
-3,734,604,905,836,807,700
32.329268
81
0.716429
false
ars599/mom5
test/test_bit_reproducibility.py
1
1741
from __future__ import print_function import os import sys import re from model_test_setup import ModelTestSetup from test_run import tests as test_specs class TestBitReproducibility(ModelTestSetup): def __init__(self): super(TestBitReproducibility, self).__init__() def checksums_to_dict(self, filename): """ Look at each line an make a dictionary entry. """ regex = re.compile(r'\[chksum\]\s+(.*)\s+(-?[0-9]+)$') dict = {} with open(filename) as f: for line in f: m = regex.match(line) if m is not None: dict[m.group(1).rstrip()] = int(m.group(2)) return dict def expected_checksums(self, test_name): filename = os.path.join(self.my_dir, 'checksums', '{}.txt'.format(test_name)) return self.checksums_to_dict(filename) def produced_checksums(self, test_name): """ Extract checksums from model run output. """ filename = os.path.join(self.work_dir, test_name, 'fms.out') return self.checksums_to_dict(filename) def check_run(self, key): # Compare expected to produced. expected = self.expected_checksums(key) produced = self.produced_checksums(key) for k in expected: assert(produced.has_key(k)) if expected[k] != produced[k]: print('{}: expected {}, produced {}'.format(key, expected[k], produced[k])) assert(expected[k] == produced[k]) def test_checksums(self): for k in test_specs.keys(): yield self.check_run, k
gpl-2.0
3,605,980,634,809,117,700
26.203125
77
0.546238
false
ATenderholt/cclib
test/bridge/testpyquante.py
1
2276
# -*- coding: utf-8 -*- # # Copyright (c) 2020, the cclib development team # # This file is part of cclib (http://cclib.github.io) and is distributed under # the terms of the BSD 3-Clause License. import unittest import numpy from cclib.bridge import cclib2pyquante from ..test_data import getdatafile from cclib.parser.utils import find_package from numpy.testing import assert_array_almost_equal class PyquanteTest(unittest.TestCase): """Tests for the cclib2pyquante bridge in cclib.""" def setUp(self): super(PyquanteTest, self).setUp() self._found_pyquante = find_package("PyQuante") self.data, self.logfile = getdatafile("Gaussian", "basicGaussian16", ["water_ccsd.log"]) def test_makepyquante(self): # Test older PyQuante bridge from PyQuante.hartree_fock import hf from PyQuante.Molecule import Molecule reference = Molecule( "h2o", [(8, (0, 0, 0.119159)), (1, (0, 0.790649, -0.476637)), (1, (0, -0.790649, -0.476637)),], units="Angstroms", ) refen, reforbe, reforbs = hf(reference) pyqmol = cclib2pyquante.makepyquante(self.data) en, orbe, orbs = hf(pyqmol) self.assertAlmostEqual(en, refen, delta=1.0e-6) class pyquante2Test(unittest.TestCase): """Tests for the cclib2pyquante bridge in cclib.""" def setUp(self): super(pyquante2Test, self).setUp() self._found_pyquante2 = find_package("pyquante2") self.data, self.logfile = getdatafile("Gaussian", "basicGaussian16", ["water_ccsd.log"]) def test_makepyquante(self): # Test pyquante2 bridge from pyquante2 import molecule, rhf, h2o, basisset bfs = basisset(h2o) # Copied from water_ccsd.log refmol = molecule( [(8, 0.0, 0.0, 0.119159), (1, 0, 0.790649, -0.476637), (1, 0, -0.790649, -0.476637)], units="Angstroms", ) refsolver = rhf(refmol, bfs) refsolver.converge() pyqmol = cclib2pyquante.makepyquante(self.data) pyqsolver = rhf(pyqmol, bfs) pyqsolver.converge() assert_array_almost_equal(refsolver.energies[-1], pyqsolver.energies[-1], decimal=6) if __name__ == "__main__": unittest.main()
bsd-3-clause
-8,485,751,219,183,631,000
29.756757
100
0.631371
false
Zlash65/erpnext
erpnext/controllers/item_variant.py
1
11842
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import cstr, flt import json, copy from six import string_types class ItemVariantExistsError(frappe.ValidationError): pass class InvalidItemAttributeValueError(frappe.ValidationError): pass class ItemTemplateCannotHaveStock(frappe.ValidationError): pass @frappe.whitelist() def get_variant(template, args=None, variant=None, manufacturer=None, manufacturer_part_no=None): """Validates Attributes and their Values, then looks for an exactly matching Item Variant :param item: Template Item :param args: A dictionary with "Attribute" as key and "Attribute Value" as value """ item_template = frappe.get_doc('Item', template) if item_template.variant_based_on=='Manufacturer' and manufacturer: return make_variant_based_on_manufacturer(item_template, manufacturer, manufacturer_part_no) else: if isinstance(args, string_types): args = json.loads(args) if not args: frappe.throw(_("Please specify at least one attribute in the Attributes table")) return find_variant(template, args, variant) def make_variant_based_on_manufacturer(template, manufacturer, manufacturer_part_no): '''Make and return a new variant based on manufacturer and manufacturer part no''' from frappe.model.naming import append_number_if_name_exists variant = frappe.new_doc('Item') copy_attributes_to_variant(template, variant) variant.manufacturer = manufacturer variant.manufacturer_part_no = manufacturer_part_no variant.item_code = append_number_if_name_exists('Item', template.name) return variant def validate_item_variant_attributes(item, args=None): if isinstance(item, string_types): item = frappe.get_doc('Item', item) if not args: args = {d.attribute.lower():d.attribute_value for d in item.attributes} attribute_values, numeric_values = get_attribute_values(item) for attribute, value in args.items(): if not value: continue if attribute.lower() in numeric_values: numeric_attribute = numeric_values[attribute.lower()] validate_is_incremental(numeric_attribute, attribute, value, item.name) else: attributes_list = attribute_values.get(attribute.lower(), []) validate_item_attribute_value(attributes_list, attribute, value, item.name) def validate_is_incremental(numeric_attribute, attribute, value, item): from_range = numeric_attribute.from_range to_range = numeric_attribute.to_range increment = numeric_attribute.increment if increment == 0: # defensive validation to prevent ZeroDivisionError frappe.throw(_("Increment for Attribute {0} cannot be 0").format(attribute)) is_in_range = from_range <= flt(value) <= to_range precision = max(len(cstr(v).split(".")[-1].rstrip("0")) for v in (value, increment)) #avoid precision error by rounding the remainder remainder = flt((flt(value) - from_range) % increment, precision) is_incremental = remainder==0 or remainder==increment if not (is_in_range and is_incremental): frappe.throw(_("Value for Attribute {0} must be within the range of {1} to {2} in the increments of {3} for Item {4}")\ .format(attribute, from_range, to_range, increment, item), InvalidItemAttributeValueError, title=_('Invalid Attribute')) def validate_item_attribute_value(attributes_list, attribute, attribute_value, item): allow_rename_attribute_value = frappe.db.get_single_value('Item Variant Settings', 'allow_rename_attribute_value') if allow_rename_attribute_value: pass elif attribute_value not in attributes_list: frappe.throw(_("The value {0} is already assigned to an exisiting Item {2}.").format( attribute_value, attribute, item), InvalidItemAttributeValueError, title=_('Rename Not Allowed')) def get_attribute_values(item): if not frappe.flags.attribute_values: attribute_values = {} numeric_values = {} for t in frappe.get_all("Item Attribute Value", fields=["parent", "attribute_value"]): attribute_values.setdefault(t.parent.lower(), []).append(t.attribute_value) for t in frappe.get_all('Item Variant Attribute', fields=["attribute", "from_range", "to_range", "increment"], filters={'numeric_values': 1, 'parent': item.variant_of}): numeric_values[t.attribute.lower()] = t frappe.flags.attribute_values = attribute_values frappe.flags.numeric_values = numeric_values return frappe.flags.attribute_values, frappe.flags.numeric_values def find_variant(template, args, variant_item_code=None): conditions = ["""(iv_attribute.attribute={0} and iv_attribute.attribute_value={1})"""\ .format(frappe.db.escape(key), frappe.db.escape(cstr(value))) for key, value in args.items()] conditions = " or ".join(conditions) from erpnext.portal.product_configurator.utils import get_item_codes_by_attributes possible_variants = [i for i in get_item_codes_by_attributes(args, template) if i != variant_item_code] for variant in possible_variants: variant = frappe.get_doc("Item", variant) if len(args.keys()) == len(variant.get("attributes")): # has the same number of attributes and values # assuming no duplication as per the validation in Item match_count = 0 for attribute, value in args.items(): for row in variant.attributes: if row.attribute==attribute and row.attribute_value== cstr(value): # this row matches match_count += 1 break if match_count == len(args.keys()): return variant.name @frappe.whitelist() def create_variant(item, args): if isinstance(args, string_types): args = json.loads(args) template = frappe.get_doc("Item", item) variant = frappe.new_doc("Item") variant.variant_based_on = 'Item Attribute' variant_attributes = [] for d in template.attributes: variant_attributes.append({ "attribute": d.attribute, "attribute_value": args.get(d.attribute) }) variant.set("attributes", variant_attributes) copy_attributes_to_variant(template, variant) make_variant_item_code(template.item_code, template.item_name, variant) return variant @frappe.whitelist() def enqueue_multiple_variant_creation(item, args): # There can be innumerable attribute combinations, enqueue if isinstance(args, string_types): variants = json.loads(args) total_variants = 1 for key in variants: total_variants *= len(variants[key]) if total_variants >= 600: frappe.throw(_("Please do not create more than 500 items at a time")) return if total_variants < 10: return create_multiple_variants(item, args) else: frappe.enqueue("erpnext.controllers.item_variant.create_multiple_variants", item=item, args=args, now=frappe.flags.in_test); return 'queued' def create_multiple_variants(item, args): count = 0 if isinstance(args, string_types): args = json.loads(args) args_set = generate_keyed_value_combinations(args) for attribute_values in args_set: if not get_variant(item, args=attribute_values): variant = create_variant(item, attribute_values) variant.save() count +=1 return count def generate_keyed_value_combinations(args): """ From this: args = {"attr1": ["a", "b", "c"], "attr2": ["1", "2"], "attr3": ["A"]} To this: [ {u'attr1': u'a', u'attr2': u'1', u'attr3': u'A'}, {u'attr1': u'b', u'attr2': u'1', u'attr3': u'A'}, {u'attr1': u'c', u'attr2': u'1', u'attr3': u'A'}, {u'attr1': u'a', u'attr2': u'2', u'attr3': u'A'}, {u'attr1': u'b', u'attr2': u'2', u'attr3': u'A'}, {u'attr1': u'c', u'attr2': u'2', u'attr3': u'A'} ] """ # Return empty list if empty if not args: return [] # Turn `args` into a list of lists of key-value tuples: # [ # [(u'attr2', u'1'), (u'attr2', u'2')], # [(u'attr3', u'A')], # [(u'attr1', u'a'), (u'attr1', u'b'), (u'attr1', u'c')] # ] key_value_lists = [[(key, val) for val in args[key]] for key in args.keys()] # Store the first, but as objects # [{u'attr2': u'1'}, {u'attr2': u'2'}] results = key_value_lists.pop(0) results = [{d[0]: d[1]} for d in results] # Iterate the remaining # Take the next list to fuse with existing results for l in key_value_lists: new_results = [] for res in results: for key_val in l: # create a new clone of object in result obj = copy.deepcopy(res) # to be used with every incoming new value obj[key_val[0]] = key_val[1] # and pushed into new_results new_results.append(obj) results = new_results return results def copy_attributes_to_variant(item, variant): # copy non no-copy fields exclude_fields = ["naming_series", "item_code", "item_name", "show_in_website", "show_variant_in_website", "opening_stock", "variant_of", "valuation_rate"] if item.variant_based_on=='Manufacturer': # don't copy manufacturer values if based on part no exclude_fields += ['manufacturer', 'manufacturer_part_no'] allow_fields = [d.field_name for d in frappe.get_all("Variant Field", fields = ['field_name'])] if "variant_based_on" not in allow_fields: allow_fields.append("variant_based_on") for field in item.meta.fields: # "Table" is part of `no_value_field` but we shouldn't ignore tables if (field.reqd or field.fieldname in allow_fields) and field.fieldname not in exclude_fields: if variant.get(field.fieldname) != item.get(field.fieldname): if field.fieldtype == "Table": variant.set(field.fieldname, []) for d in item.get(field.fieldname): row = copy.deepcopy(d) if row.get("name"): row.name = None variant.append(field.fieldname, row) else: variant.set(field.fieldname, item.get(field.fieldname)) variant.variant_of = item.name if 'description' not in allow_fields: if not variant.description: variant.description = "" if item.variant_based_on=='Item Attribute': if variant.attributes: attributes_description = item.description + " " for d in variant.attributes: attributes_description += "<div>" + d.attribute + ": " + cstr(d.attribute_value) + "</div>" if attributes_description not in variant.description: variant.description += attributes_description def make_variant_item_code(template_item_code, template_item_name, variant): """Uses template's item code and abbreviations to make variant's item code""" if variant.item_code: return abbreviations = [] for attr in variant.attributes: item_attribute = frappe.db.sql("""select i.numeric_values, v.abbr from `tabItem Attribute` i left join `tabItem Attribute Value` v on (i.name=v.parent) where i.name=%(attribute)s and (v.attribute_value=%(attribute_value)s or i.numeric_values = 1)""", { "attribute": attr.attribute, "attribute_value": attr.attribute_value }, as_dict=True) if not item_attribute: continue # frappe.throw(_('Invalid attribute {0} {1}').format(frappe.bold(attr.attribute), # frappe.bold(attr.attribute_value)), title=_('Invalid Attribute'), # exc=InvalidItemAttributeValueError) abbr_or_value = cstr(attr.attribute_value) if item_attribute[0].numeric_values else item_attribute[0].abbr abbreviations.append(abbr_or_value) if abbreviations: variant.item_code = "{0}-{1}".format(template_item_code, "-".join(abbreviations)) variant.item_name = "{0}-{1}".format(template_item_name, "-".join(abbreviations)) @frappe.whitelist() def create_variant_doc_for_quick_entry(template, args): variant_based_on = frappe.db.get_value("Item", template, "variant_based_on") args = json.loads(args) if variant_based_on == "Manufacturer": variant = get_variant(template, **args) else: existing_variant = get_variant(template, args) if existing_variant: return existing_variant else: variant = create_variant(template, args=args) variant.name = variant.item_code validate_item_variant_attributes(variant, args) return variant.as_dict()
gpl-3.0
1,849,677,033,109,478,400
33.932153
121
0.708326
false
FlorianLudwig/scope
setup.py
1
2287
# -*- coding: utf-8 -*- import os import sys from distutils.command.sdist import sdist from setuptools import setup, find_packages import setuptools.command.test class TestCommand(setuptools.command.test.test): def finalize_options(self): setuptools.command.test.test.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): fails = [] from tox._config import parseconfig from tox._cmdline import Session config = parseconfig(self.test_args, 'tox') retcode = Session(config).runcommand() if retcode != 0: fails.append('tox returned errors') import pep8 style_guide = pep8.StyleGuide(config_file=BASE_PATH + '/.pep8') style_guide.input_dir(BASE_PATH + '/rw') if style_guide.options.report.get_count() != 0: fails.append('pep8 returned errros for rw/') style_guide = pep8.StyleGuide(config_file=BASE_PATH + '/.pep8') style_guide.input_dir(BASE_PATH + '/test') if style_guide.options.report.get_count() != 0: fails.append('pep8 returned errros for test/') if fails: print('\n'.join(fails)) sys.exit(1) setup( name="scope", version="0.0.1", url='https://github.com/FlorianLudwig/scoe', description='call-stack based, nested dependecy injection', author='Florian Ludwig', install_requires=['tornado>=4.0.0,<5.0'], extras_requires={ 'test': ['tox', 'pytest', 'pep8'], 'docs': ['sphinx_rtd_theme'] }, packages=['scope'], include_package_data=True, package_data={ 'rw': ['*.html', '*.css', 'templates/html5', 'templates/form', 'templates/nginx'] }, cmdclass={ 'test': TestCommand }, license="http://www.apache.org/licenses/LICENSE-2.0", classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], )
apache-2.0
-363,262,786,118,607,400
31.211268
89
0.601224
false
lewisodriscoll/sasview
src/sas/sascalc/simulation/pointsmodelpy/tests/testlores2d.py
3
3235
from __future__ import print_function def test_lores2d(phi): from sasModeling.pointsmodelpy import pointsmodelpy from sasModeling.iqPy import iqPy from sasModeling.geoshapespy import geoshapespy #lores model is to hold several geometric objects lm = pointsmodelpy.new_loresmodel(0.1) #generate single geometry shape c = geoshapespy.new_cylinder(10,40) geoshapespy.set_center(c,1,1,1) geoshapespy.set_orientation(c,0,0,0) #add single geometry shape to lores model pointsmodelpy.lores_add(lm,c,3.0) #retrieve the points from lores model for sas calculation vp = pointsmodelpy.new_point3dvec() pointsmodelpy.get_lorespoints(lm,vp) #Calculate I(Q) and P(r) 2D pointsmodelpy.distdistribution_xy(lm,vp) pointsmodelpy.outputPR_xy(lm,"out_xy.pr") iq = iqPy.new_iq(100,0.001, 0.3) pointsmodelpy.calculateIQ_2D(lm,iq,phi) iqPy.OutputIQ(iq, "out_xy.iq") def get2d(): from math import pi from Numeric import arange,zeros from enthought.util.numerix import Float,zeros from sasModeling.file2array import readfile2array from sasModeling.pointsmodelpy import pointsmodelpy from sasModeling.geoshapespy import geoshapespy lm = pointsmodelpy.new_loresmodel(0.1) sph = geoshapespy.new_sphere(20) pointsmodelpy.lores_add(lm,sph,1.0) vp = pointsmodelpy.new_point3dvec() pointsmodelpy.get_lorespoints(lm,vp) pointsmodelpy.distdistribution_xy(lm,vp) value_grid = zeros((100,100),Float) width, height = value_grid.shape print(width,height) I = pointsmodelpy.calculateI_Qxy(lm,0.00001,0.000002) print(I) Imax = 0 for i in range(width): for j in range(height): qx = float(i-50)/200.0 qy = float(j-50)/200.0 value_grid[i,j] = pointsmodelpy.calculateI_Qxy(lm,qx,qy) if value_grid[i][j] > Imax: Imax = value_grid[i][j] for i in range(width): for j in range(height): value_grid[i][j] = value_grid[i][j]/Imax value_grid[50,50] = 1 return value_grid def get2d_2(): from math import pi from Numeric import arange,zeros from enthought.util.numerix import Float,zeros from sasModeling.file2array import readfile2array from sasModeling.pointsmodelpy import pointsmodelpy from sasModeling.geoshapespy import geoshapespy lm = pointsmodelpy.new_loresmodel(0.1) cyn = geoshapespy.new_cylinder(5,20) geoshapespy.set_orientation(cyn,0,0,90) pointsmodelpy.lores_add(lm,cyn,1.0) vp = pointsmodelpy.new_point3dvec() pointsmodelpy.get_lorespoints(lm,vp) pointsmodelpy.distdistribution_xy(lm,vp) value_grid = zeros((100,100),Float) width, height = value_grid.shape print(width,height) I = pointsmodelpy.calculateI_Qxy(lm,0.00001,0.000002) print(I) Imax = 0 for i in range(width): for j in range(height): qx = float(i-50)/200.0 qy = float(j-50)/200.0 value_grid[i,j] = pointsmodelpy.calculateI_Qxy(lm,qx,qy) if value_grid[i][j] > Imax: Imax = value_grid[i][j] for i in range(width): for j in range(height): value_grid[i][j] = value_grid[i][j]/Imax value_grid[50,50] = 1 return value_grid if __name__ == "__main__": print("start to test lores 2D") # test_lores2d(10) value_grid = get2d_2() print(value_grid) print("pass")
bsd-3-clause
863,925,136,733,527,400
26.415254
62
0.705719
false
zhaochao/fuel-web
nailgun/nailgun/utils/zabbix.py
1
3931
# -*- coding: utf-8 -*- # Copyright 2013 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import simplejson as json import urllib2 from nailgun.errors import errors from nailgun.logger import logger class ZabbixManager(object): @classmethod def _make_zabbix_request(cls, url, method, params, auth=None): header = {'Content-type': 'application/json'} data = {'jsonrpc': '2.0', 'id': '1', 'method': method, 'params': params} if auth: data['auth'] = auth logger.debug("Zabbix request: %s", data) request = urllib2.Request(url, json.dumps(data), header) try: response = urllib2.urlopen(request) except urllib2.URLError as e: raise errors.CannotMakeZabbixRequest( "Can't make a request to Zabbix: {0}".format(e) ) result = json.loads(response.read()) logger.debug("Zabbix response: %s", result) if 'error' in result: code = result['error']['code'] msg = result['error']['message'] data = result['error'].get('data', '') raise errors.ZabbixRequestError( "Zabbix returned error code {0}, {1}: {2}".format( code, msg, data ) ) return result['result'] @classmethod def _zabbix_auth(cls, url, user, password): method = 'user.authenticate' params = {'user': user, 'password': password} auth_hash = cls._make_zabbix_request(url, method, params) return auth_hash @classmethod def _get_zabbix_hostid(cls, url, auth, name): method = 'host.get' params = {'filter': {'host': name}} result = cls._make_zabbix_request(url, method, params, auth=auth) if len(result) == 0: logger.info("Host %s does not exist in zabbix, skipping", name) return None return result[0]['hostid'] @classmethod def remove_from_zabbix(cls, zabbix, nodes): url = zabbix['url'] user = zabbix['user'] password = zabbix['password'] auth = cls._zabbix_auth(url, user, password) hostids = [] method = "host.delete" for node in nodes: name = node['slave_name'] hostid = cls._get_zabbix_hostid(url, auth, name) if hostid: hostids.append(hostid) if hostids: cls._make_zabbix_request(url, method, hostids, auth=auth) @classmethod def get_zabbix_node(cls, cluster): zabbix_nodes = filter( lambda node: filter( lambda role: role.name == 'zabbix-server', node.role_list ), cluster.nodes ) if not zabbix_nodes: return None return zabbix_nodes[0] @classmethod def get_zabbix_credentials(cls, cluster): creds = {} zabbix_node = cls.get_zabbix_node(cluster) attributes = cluster.attributes zabbix_attrs = attributes.editable['zabbix'] creds['user'] = zabbix_attrs['username']['value'] creds['password'] = zabbix_attrs['password']['value'] creds['url'] = "http://{0}/zabbix/api_jsonrpc.php".format( zabbix_node.ip ) return creds
apache-2.0
-6,961,527,353,915,873,000
30.198413
78
0.568303
false
lixiangning888/whole_project
modules/signatures_orginal_20151110/multiple_ua.py
1
2186
# Copyright (C) 2015 KillerInstinct # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from lib.cuckoo.common.abstracts import Signature class Multiple_UA(Signature): name = "multiple_useragents" description = "Network activity contains more than one unique useragent." severity = 3 categories = ["network"] authors = ["KillerInstinct"] minimum = "1.2" evented = True def __init__(self, *args, **kwargs): Signature.__init__(self, *args, **kwargs) self.useragents = list() self.procs = list() filter_apinames = set(["InternetOpenA", "InternetOpenW"]) def on_call(self, call, process): # Dict whitelist with process name as key, and useragents as values whitelist = { "acrord32.exe": ["Mozilla/3.0 (compatible; Acrobat 5.0; Windows)"], "iexplore.exe": ["VCSoapClient", "Shockwave Flash"], } ua = self.get_argument(call, "Agent") proc = process["process_name"].lower() if proc in whitelist.keys() and ua in whitelist[proc]: return None else: if ua not in self.useragents: if self.results["target"]["category"] == "file" or proc != "iexplore.exe": self.useragents.append(ua) self.procs.append((process["process_name"], ua)) def on_complete(self): if len(self.useragents) < 2: return False for item in self.procs: self.data.append({"Process" : item[0]}) self.data.append({"User-Agent" : item[1]}) return True
lgpl-3.0
7,584,770,034,356,479,000
36.050847
90
0.63495
false
maclogan/VirtualPenPal
chatterbot/conversation/statement.py
1
4801
# -*- coding: utf-8 -*- from .response import Response from datetime import datetime class Statement(object): """ A statement represents a single spoken entity, sentence or phrase that someone can say. """ def __init__(self, text, **kwargs): self.text = text self.in_response_to = kwargs.pop('in_response_to', []) # The date and time that this statement was created at self.created_at = kwargs.pop('created_at', datetime.now()) self.extra_data = kwargs.pop('extra_data', {}) # This is the confidence with which the chat bot believes # this is an accurate response. This value is set when the # statement is returned by the chat bot. self.confidence = 0 self.storage = None def __str__(self): return self.text def __repr__(self): return '<Statement text:%s>' % (self.text) def __hash__(self): return hash(self.text) def __eq__(self, other): if not other: return False if isinstance(other, Statement): return self.text == other.text return self.text == other def save(self): """ Save the statement in the database. """ self.storage.update(self) def add_extra_data(self, key, value): """ This method allows additional data to be stored on the statement object. Typically this data is something that pertains just to this statement. For example, a value stored here might be the tagged parts of speech for each word in the statement text. - key = 'pos_tags' - value = [('Now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('different', 'JJ')] :param key: The key to use in the dictionary of extra data. :type key: str :param value: The value to set for the specified key. """ self.extra_data[key] = value def add_response(self, response): """ Add the response to the list of statements that this statement is in response to. If the response is already in the list, increment the occurrence count of that response. :param response: The response to add. :type response: `Response` """ if not isinstance(response, Response): raise Statement.InvalidTypeException( 'A {} was recieved when a {} instance was expected'.format( type(response), type(Response('')) ) ) updated = False for index in range(0, len(self.in_response_to)): if response.text == self.in_response_to[index].text: self.in_response_to[index].occurrence += 1 updated = True if not updated: self.in_response_to.append(response) def remove_response(self, response_text): """ Removes a response from the statement's response list based on the value of the response text. :param response_text: The text of the response to be removed. :type response_text: str """ for response in self.in_response_to: if response_text == response.text: self.in_response_to.remove(response) return True return False def get_response_count(self, statement): """ Find the number of times that the statement has been used as a response to the current statement. :param statement: The statement object to get the count for. :type statement: `Statement` :returns: Return the number of times the statement has been used as a response. :rtype: int """ for response in self.in_response_to: if statement.text == response.text: return response.occurrence return 0 def serialize(self): """ :returns: A dictionary representation of the statement object. :rtype: dict """ data = {} data['text'] = self.text data['in_response_to'] = [] data['created_at'] = self.created_at data['extra_data'] = self.extra_data for response in self.in_response_to: data['in_response_to'].append(response.serialize()) return data @property def response_statement_cache(self): """ This property is to allow ChatterBot Statement objects to be swappable with Django Statement models. """ return self.in_response_to class InvalidTypeException(Exception): def __init__(self, value='Recieved an unexpected value type.'): self.value = value def __str__(self): return repr(self.value)
bsd-3-clause
6,238,078,572,523,169,000
29.579618
96
0.580712
false
mozman/ezdxf
examples/render/render_ellipse.py
1
1255
# Copyright (c) 2018-2019, Manfred Moitzi # License: MIT License from math import radians import ezdxf from ezdxf.render.forms import ellipse from ezdxf.math import Matrix44 NAME = 'ellipse.dxf' doc = ezdxf.new('R12', setup=True) msp = doc.modelspace() def render(points): msp.add_polyline2d(list(points)) def tmatrix(x, y, angle): return Matrix44.chain( Matrix44.z_rotate(radians(angle)), Matrix44.translate(x, y, 0), ) for axis in [0.5, 0.75, 1., 1.5, 2., 3.]: render(ellipse(200, rx=5., ry=axis)) attribs = { 'color': 1, 'linetype': 'DASHDOT', } msp.add_line((-7, 0), (+7, 0), dxfattribs=attribs) msp.add_line((0, -5), (0, +5), dxfattribs=attribs) for rotation in [0, 30, 45, 60, 90]: m = tmatrix(20, 0, rotation) render(m.transform_vertices(ellipse(100, rx=5., ry=2.))) for startangle in [0, 30, 45, 60, 90]: m = tmatrix(40, 0, startangle) render(m.transform_vertices( ellipse(90, rx=5., ry=2., start_param=radians(startangle), end_param= radians(startangle+90))) ) render(m.transform_vertices( ellipse(90, rx=5., ry=2., start_param=radians(startangle+180), end_param= radians(startangle+270))) ) doc.saveas(NAME) print("drawing '%s' created.\n" % NAME)
mit
-3,324,645,544,781,303,000
24.612245
107
0.641434
false
tochev/obshtestvo.bg
projects/admin.py
1
20632
from django.contrib import admin from django.contrib.contenttypes.generic import GenericTabularInline from django.forms import ModelForm from django.contrib.auth.admin import UserAdmin from django.contrib.auth.forms import UserCreationForm, UserChangeForm from suit.widgets import * from pagedown.widgets import AdminPagedownWidget from .models import * from django import forms from django.utils.safestring import mark_safe from django.core.urlresolvers import reverse import reversion from suit.admin import SortableTabularInline, SortableModelAdmin from django.db import models from django.templatetags.static import static from django.utils.html import urlize, format_html from django.utils.translation import ugettext_lazy as _ from django.utils.encoding import smart_text from django.core.exceptions import ValidationError from django.contrib.admin.options import IncorrectLookupParameters from guardian.models import UserObjectPermission, GroupObjectPermission from django.db.models.signals import post_save, pre_delete from django.dispatch import receiver @receiver(post_save, sender=User) def user_perobject_permissions(sender, instance, created, **kwargs): if created: assign_perm('change_user', instance, instance) @receiver(pre_delete, sender=User) def remove_user_perobject_permissions(sender, instance, **kwargs): UserObjectPermission.objects.filter(user_id=instance.pk).delete() def prepare_lookup_value(key, value): if key.endswith('__in') and type(value) == 'str': value = value.split(',') if key.endswith('__isnull'): value = not (value.lower() in ('', 'false', '0')) return value class MultipleFilter(admin.RelatedFieldListFilter): # title = _('skills') # parameter_name = 'skills' template = 'admin/filter_multiple.html' def __init__(self, field, request, params, model, model_admin, field_path): super(MultipleFilter, self).__init__( field, request, params, model, model_admin, field_path) self.lookup_val = request.GET.getlist(self.lookup_kwarg, None) self.used_parameters = {} for p in self.expected_parameters(): if p in request.GET: value = request.GET.getlist(p) if self.lookup_kwarg == p else request.GET.get(p) self.used_parameters[p] = prepare_lookup_value(p, value) def queryset(self, request, queryset): try: if self.lookup_kwarg in self.used_parameters: for lookup in self.used_parameters[self.lookup_kwarg]: value = {self.lookup_kwarg: lookup} queryset = queryset.filter(**value) else: queryset.filter(**self.used_parameters) return queryset except ValidationError as e: raise IncorrectLookupParameters(e) def choices(self, cl): from django.contrib.admin.views.main import EMPTY_CHANGELIST_VALUE yield { 'selected': self.lookup_val is None and not self.lookup_val_isnull, 'query_string': cl.get_query_string({}, [self.lookup_kwarg, self.lookup_kwarg_isnull]), 'display': _('All'), } for pk_val, val in self.lookup_choices: yield { 'selected': smart_text(pk_val) in self.lookup_val, 'query_string': cl.get_query_string({ self.lookup_kwarg: pk_val, }, [self.lookup_kwarg_isnull]), 'display': val, } if (isinstance(self.field, models.related.RelatedObject) and self.field.field.null or hasattr(self.field, 'rel') and self.field.null): yield { 'selected': bool(self.lookup_val_isnull), 'query_string': cl.get_query_string({ self.lookup_kwarg_isnull: 'True', }, [self.lookup_kwarg]), 'display': EMPTY_CHANGELIST_VALUE, } def close_link(instance): if not instance.id: return '' url = reverse('admin:%s_%s_change' % ( instance._meta.app_label, instance._meta.module_name), args=[instance.id] ) + 'tools/' + 'toolfunc' return mark_safe(u'<a href="{u}">Close</a>'.format(u=url)) def avatar(obj): if (obj.facebook): url = u'http://graph.facebook.com/%s/picture?width=40&amp;height=40' % obj.facebook.split('=' if 'profile.php' in obj.facebook else '/')[-1] else: url = static('img/user-silhouette.png') return mark_safe(u'<img width="40" height="40" src="%s" />' % url) # from guardian.admin import GuardedModelAdmin class UserActivityInline(admin.TabularInline): model = UserActivity suit_classes = 'suit-tab suit-tab-activities' extra = 1 class MyUserChangeForm(UserChangeForm): class Meta(UserChangeForm.Meta): model = User class MyUserCreationForm(UserCreationForm): class Meta(UserCreationForm.Meta): model = User class MyUserAdmin(UserAdmin): form = MyUserChangeForm inlines = (UserActivityInline,) add_form = MyUserCreationForm suit_form_tabs = ( ('system', 'System'), ('common', 'Common'), ('activities', 'Activities'), ) fieldsets = ( (None, { 'classes': ('suit-tab suit-tab-system',), 'fields': ('username', 'password')} ), (_('Personal info'), { 'classes': ('suit-tab suit-tab-system',), 'fields': ('first_name', 'last_name', 'email')} ), (_('Permissions'), { 'classes': ('suit-tab suit-tab-system',), 'fields': ('is_active', 'is_staff', 'is_superuser', 'groups', 'user_permissions') }), (_('Important dates'), { 'classes': ('suit-tab suit-tab-system',), 'fields': ('last_login', 'date_joined')} ), (_('Custom'), { 'classes': ('suit-tab suit-tab-common',), 'fields': ('profession','is_available','available_after','bio', 'avatar')} ), ) class ProjectActivityFrom(ModelForm): class Meta: widgets = { 'can_accomodate': EnclosedInput(append='icon-user', attrs={'class': 'input-mini'}), } class ProjectActivityInline(SortableTabularInline): model = ProjectActivity suit_classes = 'suit-tab suit-tab-activities' sortable = 'order' extra = 0 form = ProjectActivityFrom def advanced(self, instance): if not instance.id: return '' url = reverse('admin:%s_%s_change' % ( instance._meta.app_label, instance._meta.module_name), args=[instance.id] ) return mark_safe(u'<a href="{u}">Edit</a>'.format(u=url) + ' ' + close_link(instance)) readonly_fields = ('advanced',) class TaskInline(SortableTabularInline): model = Task suit_classes = 'suit-tab suit-tab-tasks' sortable = 'order' extra = 0 class ProjectMotiveInline(SortableTabularInline): model = ProjectMotive suit_classes = 'suit-tab suit-tab-motives' sortable = 'order' extra = 0 class ProjectMilestoneFrom(ModelForm): class Meta: widgets = { # 'percent': RangeInput(append='%', attrs={"min":1, "max":100}), 'percent': EnclosedInput(append='%', attrs={'class': 'input-mini'}), 'target_date': forms.TextInput(attrs={'class': 'input-mini'}), } class ProjectMilestoneInline(SortableTabularInline): form = ProjectMilestoneFrom model = ProjectMilestone suit_classes = 'suit-tab suit-tab-milestones' sortable = 'order' extra = 0 class ProjectUsageExampleStepForm(ModelForm): class Meta: widgets = { # 'percent': RangeInput(append='%', attrs={"min":1, "max":100}), 'example_number': EnclosedInput(attrs={'class': 'input-mini'}), 'icon':EnclosedInput(append='icon-heart', attrs={'class': 'input-mini'}), } class ProjectUsageExampleStepInline(SortableTabularInline): model = ProjectUsageExampleStep suit_classes = 'suit-tab suit-tab-usage-examples' sortable = 'order' extra = 0 form = ProjectUsageExampleStepForm class RangeInput(EnclosedInput): """HTML5 Range Input.""" input_type = 'range' class ProjectAdminForm(ModelForm): class Meta: widgets = { 'url': EnclosedInput(prepend='icon-globe'), 'pm_url': EnclosedInput(prepend='icon-globe'), 'facebook_group': EnclosedInput(prepend='icon-globe'), 'github_repo': EnclosedInput(prepend='icon-globe'), 'strategy': AdminPagedownWidget(), 'description': AdminPagedownWidget() } class ProjectAdmin(reversion.VersionAdmin, SortableModelAdmin): list_display = ('name',) sortable = 'order' form = ProjectAdminForm search_fields = ['name'] list_filter = ['is_featured'] prepopulated_fields = {"slug": ("name",)} inlines = [ ProjectActivityInline, ProjectMotiveInline, ProjectUsageExampleStepInline, ProjectMilestoneInline, ] suit_form_tabs = ( ('general', 'General'), ('strategy', 'Strategy'), ('description', 'Description'), # ('advanced', 'Advanced Settings'), ('activities', 'Activities'), ('milestones', 'Milestones'), ('motives', 'Motives'), ('usage-examples', 'Usage examples steps'), ) formfield_overrides = { models.TextField: {'widget': AutosizedTextarea(attrs={'rows':2, 'cols':50})}, } fieldsets = ( (None, { 'classes': ('suit-tab suit-tab-general',), 'fields': ('name', 'slug', 'url', 'short_description', 'is_forced_active','is_public','has_static_page',) }), ('Management', { 'classes': ('suit-tab suit-tab-general',), 'fields': ('pm_url', 'facebook_group', 'github_repo',) }), ('Media', { 'classes': ('suit-tab suit-tab-general',), 'fields': ( 'logo', 'logo_styled', 'logo_thumb', 'cover_image', 'complimenting_color', ) }), ('Homepage', { 'classes': ('suit-tab suit-tab-general',), 'fields': ('is_featured',) }), (None, { 'classes': ('suit-tab suit-tab-strategy',), 'fields': ('strategy',) }), (None, { 'classes': ('suit-tab suit-tab-description',), 'fields': ( 'description', )} ), ) class SkillGroupAdmin(SortableModelAdmin): list_display = ('name',) sortable = 'order' class SkillAdmin(admin.ModelAdmin): list_display = ('name',) search_fields = ['name'] class ProjectActivityAdminBase(admin.ModelAdmin): inlines = (UserActivityInline, TaskInline) def tools(self, instance): return close_link(instance) list_display = ('name', 'project', 'tools') def toolfunc(self, request, obj): pass toolfunc.label = "Close" # optional toolfunc.short_description = "This will be the tooltip of the button" # optional hobjectactions = ('toolfunc', ) class ProjectActivityAdmin(ProjectActivityAdminBase, reversion.VersionAdmin): suit_form_tabs = ( ('general', 'General'), ('tasks', 'Tasks'), ('activities', 'User activities'), ) fieldsets = ( (None, { 'classes': ('suit-tab suit-tab-general',), 'fields': ('name', 'project',) }), ('Settings', { 'classes': ('suit-tab suit-tab-general',), 'fields': ('is_organisational', 'is_template', 'can_accomodate', ) }), ) # template, prepopulated forms: # http://stackoverflow.com/questions/2223375/multiple-modeladmins-views-for-same-model-in-django-admin # http://stackoverflow.com/questions/936376/prepopulate-django-non-model-form class ProjectActivityTemplate(ProjectActivity): class Meta: proxy = True class ProjectActivityTemplateForm(forms.ModelForm): class Meta: model = ProjectActivityTemplate is_template = forms.BooleanField(widget=forms.HiddenInput(), initial=1) order = forms.IntegerField(widget=forms.HiddenInput(), initial=0) class ProjectActivityTemplateAdmin(ProjectActivityAdminBase): form = ProjectActivityTemplateForm inlines = [] fields = ('name', 'is_organisational', 'can_accomodate', 'order', 'is_template',) def queryset(self, request): return self.model.objects.filter(is_template=True) class MemberAdminFrom(forms.ModelForm): class Meta: widgets = { 'facebook':EnclosedInput(prepend='icon-share'), 'email':EnclosedInput(prepend='icon-envelope'), # 'types': autocomplete_light.MultipleChoiceWidget(autocomplete='MemberTypeAutocomplete'), # 'skills': autocomplete_light.MultipleChoiceWidget(autocomplete='SkillAutocomplete'), # 'projects_interests': autocomplete_light.MultipleChoiceWidget(autocomplete='ProjectAutocomplete'), } class MemberAdmin(admin.ModelAdmin): model = Member form = MemberAdminFrom ordering = ('name',) search_fields = ['name'] list_filter = ('projects_interests', ('skills', MultipleFilter),'types', 'last_contacted_at') list_display = (avatar, 'name', 'facebook_as_link', 'email', 'skills_display') suit_form_tabs = ( ('general', _('General')), ('specifics', _('Specifics')), # ('integration', _('System')), ) formfield_overrides = { models.TextField: {'widget': AutosizedTextarea(attrs={'rows':2, 'cols':50})}, models.DateTimeField: {'widget': SuitSplitDateTimeWidget}, models.DateField: {'widget': SuitDateWidget}, } def skills_display(self, member): return ', '.join([obj.name for obj in member.skills.all()]) skills_display.short_description = _('skills') def facebook_as_link(self, obj): return format_html(urlize(obj.facebook)) facebook_as_link.short_description = 'Facebook' fieldsets = ( (None, { 'classes': ('suit-tab suit-tab-general',), 'fields': ('name', 'facebook', 'email', 'date_joined',) }), (_('Expectations'), { 'classes': ('suit-tab suit-tab-general',), 'fields': ( 'availability', 'available_after', ) }), (_("Member's preferences"), { 'classes': ('suit-tab suit-tab-general',), 'fields': ('skills', 'types', 'projects_interests','offered_help', ) }), (_('Self-description & Comments'), { 'classes': ('suit-tab suit-tab-general',), 'fields': ('intro', 'comment') }), (_('Communication'), { 'classes': ('suit-tab suit-tab-specifics',), 'fields': ('last_contacted_at', 'latest_answer', 'contact_frequency', ) }), # ('User', { # 'classes': ('suit-tab suit-tab-integration',), # 'fields': ('user', 'update_from_user') # }), ) # from guardian.admin import GuardedModelAdmin class UpdateInline(GenericTabularInline): model = Update suit_classes = 'suit-tab suit-tab-updates' extra = 0 formfield_overrides = { models.TextField: {'widget': AutosizedTextarea(attrs={'rows':1, 'cols':100})}, models.DateTimeField: {'widget': SuitSplitDateTimeWidget}, models.DateField: {'widget': SuitDateWidget}, } class OrganisationAdmin(admin.ModelAdmin): model = Organisation inlines = (UpdateInline,) list_filter = ('middlemen',('types', MultipleFilter)) list_display = ('name','representatives', 'types_display') search_fields = ['name'] suit_form_tabs = ( ('general', _('General')), ('updates', _('Updates')), ) formfield_overrides = { models.TextField: {'widget': AutosizedTextarea(attrs={'rows':3, 'cols':70})}, models.DateTimeField: {'widget': SuitSplitDateTimeWidget}, models.DateField: {'widget': SuitDateWidget}, } def types_display(self, org): return ', '.join([obj.name for obj in org.types.all()]) types_display.short_description = _('relation type') fieldsets = ( (None, { 'classes': ('suit-tab suit-tab-general',), 'fields': ('name', 'types','strategy') }), (_('Contact'), { 'classes': ('suit-tab suit-tab-general',), 'fields': ('middlemen', 'representatives', 'contact', ) }), (_('About'), { 'classes': ('suit-tab suit-tab-general',), 'fields': ('comment', 'found_via', 'working_with', ) }), (_('Partner'), { 'classes': ('suit-tab suit-tab-general',), 'fields': ('partnered_project', 'provided_help',) }), ) class SponsorOrg(Organisation): class Meta: proxy = True verbose_name = Organisation._meta.verbose_name verbose_name_plural = Organisation._meta.verbose_name class SponsorOrgAdmin(OrganisationAdmin): def has_add_permission(self, request): return False def queryset(self, request): return self.model.objects.filter(types__id=2) class PartnerOrg(Organisation): class Meta: proxy = True verbose_name = Organisation._meta.verbose_name verbose_name_plural = Organisation._meta.verbose_name class PartnerOrgAdmin(OrganisationAdmin): def has_add_permission(self, request): return False def queryset(self, request): return self.model.objects.exclude(partnered_project=None) class AvailableMember(Member): class Meta: proxy = True verbose_name = Member._meta.verbose_name verbose_name_plural = Member._meta.verbose_name class AvailableMemberAdmin(MemberAdmin): def has_add_permission(self, request): return False def queryset(self, request): return self.model.objects.filter(availability=Member.AVAILABLE) class PaidMember(Member): class Meta: proxy = True verbose_name = Member._meta.verbose_name verbose_name_plural = Member._meta.verbose_name class PaidMemberAdmin(MemberAdmin): def has_add_permission(self, request): return False def queryset(self, request): return self.model.objects.filter(availability=Member.ONLY_PAID) class ReaderMember(Member): class Meta: proxy = True verbose_name = Member._meta.verbose_name verbose_name_plural = Member._meta.verbose_name class ReaderMemberAdmin(MemberAdmin): def has_add_permission(self, request): return False def queryset(self, request): return self.model.objects.filter(availability=Member.ONLY_READER) class EventAdmin(admin.ModelAdmin): model = Event ordering = ('name',) search_fields = ['name'] list_filter = ('date', ('organizers', MultipleFilter)) list_display = ('name', 'date') suit_form_tabs = ( ('general', _('General')), # ('integration', _('System')), ) formfield_overrides = { models.TextField: {'widget': AutosizedTextarea(attrs={'rows':2, 'cols':60})}, models.DateTimeField: {'widget': SuitSplitDateTimeWidget}, models.DateField: {'widget': SuitDateWidget}, } fieldsets = ( (None, { 'classes': ('suit-tab suit-tab-general',), 'fields': ('name', 'date', 'contact') }), (_('details'), { 'classes': ('suit-tab suit-tab-general',), 'fields': ( 'strategy', 'organizers', 'comment') }), ) admin.site.register(Organisation, OrganisationAdmin) admin.site.register(SponsorOrg, SponsorOrgAdmin) admin.site.register(PartnerOrg, PartnerOrgAdmin) admin.site.register(Event, EventAdmin) admin.site.register(Member, MemberAdmin) admin.site.register(ReaderMember, ReaderMemberAdmin) admin.site.register(AvailableMember, AvailableMemberAdmin) admin.site.register(PaidMember, PaidMemberAdmin) admin.site.register(OrganisationType) admin.site.register(MemberType) admin.site.register(Skill, SkillAdmin) admin.site.register(SkillGroup, SkillGroupAdmin) admin.site.register(UserProjectPause) admin.site.register(ProjectActivity, ProjectActivityAdmin) admin.site.register(ProjectActivityTemplate, ProjectActivityTemplateAdmin) admin.site.register(Project, ProjectAdmin) admin.site.register(User, MyUserAdmin) admin.site.register(UserActivity)
unlicense
-5,973,505,790,476,279,000
33.61745
148
0.612253
false
MarkWh1te/xueqiu_predict
crawler/stock.py
1
2487
from flask import Flask from flask import render_template, request from utils import Base,engine from sqlalchemy.orm import scoped_session, sessionmaker from models import Stock, StockDetail from flask_bootstrap import Bootstrap from flask import Blueprint from flask_paginate import Pagination,get_page_args from sqlalchemy import desc def create_app(): app = Flask(__name__) Bootstrap(app) return app app = create_app() # @app.route('/') # def hello_world(): # return 'Hello, World!' @app.route('/detail/<stock_id>') def detail(stock_id): print(stock_id) page = request.args.get('page', type=int, default=1) per_page = 15 if per_page: stocks = StockDetail.query.filter(StockDetail.stock_id == stock_id).\ order_by(desc(StockDetail.create_time)).limit(per_page) if page: stocks = stocks.offset((page-1)*per_page) pagination = Pagination(page=page, per_page=per_page, # total=stocks.count(), total = StockDetail.query.filter(StockDetail.stock_id == stock_id).count(), record_name='record', format_total=True, format_number=True, css_framework="bootstrap3" ) return render_template('detail.html', stocks=stocks, page=page, per_page=per_page, pagination=pagination) @app.route('/') def index(): # stocks = Stock.query.all() page = request.args.get('page', type=int, default=1) per_page = 15 if per_page: stocks = Stock.query.limit(per_page) if page: stocks = stocks.offset((page-1)*per_page) pagination = Pagination(page=page, per_page=per_page, total=Stock.query.count(), record_name='stocks', format_total=True, format_number=True, css_framework="bootstrap3" ) return render_template('index.html', stocks=stocks, page=page, per_page=per_page, pagination=pagination) if __name__ == "__main__": app.run(host='0.0.0.0')
mit
-7,122,884,169,626,361,000
32.608108
103
0.51347
false
jsilter/scipy
scipy/linalg/special_matrices.py
1
27627
from __future__ import division, print_function, absolute_import import math import numpy as np from scipy.lib.six import xrange from scipy.lib.six import string_types __all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel', 'hadamard', 'leslie', 'all_mat', 'kron', 'block_diag', 'companion', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft'] #----------------------------------------------------------------------------- # matrix construction functions #----------------------------------------------------------------------------- # # *Note*: tri{,u,l} is implemented in numpy, but an important bug was fixed in # 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards # compatibility. def tri(N, M=None, k=0, dtype=None): """ Construct (N, M) matrix filled with ones at and below the k-th diagonal. The matrix has A[i,j] == 1 for i <= j + k Parameters ---------- N : integer The size of the first dimension of the matrix. M : integer or None The size of the second dimension of the matrix. If `M` is None, `M = N` is assumed. k : integer Number of subdiagonal below which matrix is filled with ones. `k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 superdiagonal. dtype : dtype Data type of the matrix. Returns ------- tri : (N, M) ndarray Tri matrix. Examples -------- >>> from scipy.linalg import tri >>> tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> tri(3, 5, -1, dtype=int) array([[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0]]) """ if M is None: M = N if isinstance(M, string_types): #pearu: any objections to remove this feature? # As tri(N,'d') is equivalent to tri(N,dtype='d') dtype = M M = N m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)), -k) if dtype is None: return m else: return m.astype(dtype) def tril(m, k=0): """ Make a copy of a matrix with elements above the k-th diagonal zeroed. Parameters ---------- m : array_like Matrix whose elements to return k : integer Diagonal above which to zero elements. `k` == 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 superdiagonal. Returns ------- tril : ndarray Return is the same shape and type as `m`. Examples -------- >>> from scipy.linalg import tril >>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = np.asarray(m) out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char) * m return out def triu(m, k=0): """ Make a copy of a matrix with elements below the k-th diagonal zeroed. Parameters ---------- m : array_like Matrix whose elements to return k : int, optional Diagonal below which to zero elements. `k` == 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0 superdiagonal. Returns ------- triu : ndarray Return matrix with zeroed elements below the k-th diagonal and has same shape and type as `m`. Examples -------- >>> from scipy.linalg import triu >>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = np.asarray(m) out = (1 - tri(m.shape[0], m.shape[1], k - 1, m.dtype.char)) * m return out def toeplitz(c, r=None): """ Construct a Toeplitz matrix. The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed. Parameters ---------- c : array_like First column of the matrix. Whatever the actual shape of `c`, it will be converted to a 1-D array. r : array_like First row of the matrix. If None, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the result is a Hermitian matrix. r[0] is ignored; the first row of the returned matrix is ``[c[0], r[1:]]``. Whatever the actual shape of `r`, it will be converted to a 1-D array. Returns ------- A : (len(c), len(r)) ndarray The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. See also -------- circulant : circulant matrix hankel : Hankel matrix Notes ----- The behavior when `c` or `r` is a scalar, or when `c` is complex and `r` is None, was changed in version 0.8.0. The behavior in previous versions was undocumented and is no longer supported. Examples -------- >>> from scipy.linalg import toeplitz >>> toeplitz([1,2,3], [1,4,5,6]) array([[1, 4, 5, 6], [2, 1, 4, 5], [3, 2, 1, 4]]) >>> toeplitz([1.0, 2+3j, 4-1j]) array([[ 1.+0.j, 2.-3.j, 4.+1.j], [ 2.+3.j, 1.+0.j, 2.-3.j], [ 4.-1.j, 2.+3.j, 1.+0.j]]) """ c = np.asarray(c).ravel() if r is None: r = c.conjugate() else: r = np.asarray(r).ravel() # Form a 1D array of values to be used in the matrix, containing a reversed # copy of r[1:], followed by c. vals = np.concatenate((r[-1:0:-1], c)) a, b = np.ogrid[0:len(c), len(r) - 1:-1:-1] indx = a + b # `indx` is a 2D array of indices into the 1D array `vals`, arranged so # that `vals[indx]` is the Toeplitz matrix. return vals[indx] def circulant(c): """ Construct a circulant matrix. Parameters ---------- c : (N,) array_like 1-D array, the first column of the matrix. Returns ------- A : (N, N) ndarray A circulant matrix whose first column is `c`. See also -------- toeplitz : Toeplitz matrix hankel : Hankel matrix Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import circulant >>> circulant([1, 2, 3]) array([[1, 3, 2], [2, 1, 3], [3, 2, 1]]) """ c = np.asarray(c).ravel() a, b = np.ogrid[0:len(c), 0:-len(c):-1] indx = a + b # `indx` is a 2D array of indices into `c`, arranged so that `c[indx]` is # the circulant matrix. return c[indx] def hankel(c, r=None): """ Construct a Hankel matrix. The Hankel matrix has constant anti-diagonals, with `c` as its first column and `r` as its last row. If `r` is not given, then `r = zeros_like(c)` is assumed. Parameters ---------- c : array_like First column of the matrix. Whatever the actual shape of `c`, it will be converted to a 1-D array. r : array_like Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed. r[0] is ignored; the last row of the returned matrix is ``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be converted to a 1-D array. Returns ------- A : (len(c), len(r)) ndarray The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. See also -------- toeplitz : Toeplitz matrix circulant : circulant matrix Examples -------- >>> from scipy.linalg import hankel >>> hankel([1, 17, 99]) array([[ 1, 17, 99], [17, 99, 0], [99, 0, 0]]) >>> hankel([1,2,3,4], [4,7,7,8,9]) array([[1, 2, 3, 4, 7], [2, 3, 4, 7, 7], [3, 4, 7, 7, 8], [4, 7, 7, 8, 9]]) """ c = np.asarray(c).ravel() if r is None: r = np.zeros_like(c) else: r = np.asarray(r).ravel() # Form a 1D array of values to be used in the matrix, containing `c` # followed by r[1:]. vals = np.concatenate((c, r[1:])) a, b = np.ogrid[0:len(c), 0:len(r)] indx = a + b # `indx` is a 2D array of indices into the 1D array `vals`, arranged so # that `vals[indx]` is the Hankel matrix. return vals[indx] def hadamard(n, dtype=int): """ Construct a Hadamard matrix. Constructs an n-by-n Hadamard matrix, using Sylvester's construction. `n` must be a power of 2. Parameters ---------- n : int The order of the matrix. `n` must be a power of 2. dtype : numpy dtype The data type of the array to be constructed. Returns ------- H : (n, n) ndarray The Hadamard matrix. Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import hadamard >>> hadamard(2, dtype=complex) array([[ 1.+0.j, 1.+0.j], [ 1.+0.j, -1.-0.j]]) >>> hadamard(4) array([[ 1, 1, 1, 1], [ 1, -1, 1, -1], [ 1, 1, -1, -1], [ 1, -1, -1, 1]]) """ # This function is a slightly modified version of the # function contributed by Ivo in ticket #675. if n < 1: lg2 = 0 else: lg2 = int(math.log(n, 2)) if 2 ** lg2 != n: raise ValueError("n must be an positive integer, and n must be " "a power of 2") H = np.array([[1]], dtype=dtype) # Sylvester's construction for i in range(0, lg2): H = np.vstack((np.hstack((H, H)), np.hstack((H, -H)))) return H def leslie(f, s): """ Create a Leslie matrix. Given the length n array of fecundity coefficients `f` and the length n-1 array of survival coefficents `s`, return the associated Leslie matrix. Parameters ---------- f : (N,) array_like The "fecundity" coefficients. s : (N-1,) array_like The "survival" coefficients, has to be 1-D. The length of `s` must be one less than the length of `f`, and it must be at least 1. Returns ------- L : (N, N) ndarray The array is zero except for the first row, which is `f`, and the first sub-diagonal, which is `s`. The data-type of the array will be the data-type of ``f[0]+s[0]``. Notes ----- .. versionadded:: 0.8.0 The Leslie matrix is used to model discrete-time, age-structured population growth [1]_ [2]_. In a population with `n` age classes, two sets of parameters define a Leslie matrix: the `n` "fecundity coefficients", which give the number of offspring per-capita produced by each age class, and the `n` - 1 "survival coefficients", which give the per-capita survival rate of each age class. References ---------- .. [1] P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945) .. [2] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245 (Dec. 1948) Examples -------- >>> from scipy.linalg import leslie >>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7]) array([[ 0.1, 2. , 1. , 0.1], [ 0.2, 0. , 0. , 0. ], [ 0. , 0.8, 0. , 0. ], [ 0. , 0. , 0.7, 0. ]]) """ f = np.atleast_1d(f) s = np.atleast_1d(s) if f.ndim != 1: raise ValueError("Incorrect shape for f. f must be one-dimensional") if s.ndim != 1: raise ValueError("Incorrect shape for s. s must be one-dimensional") if f.size != s.size + 1: raise ValueError("Incorrect lengths for f and s. The length" " of s must be one less than the length of f.") if s.size == 0: raise ValueError("The length of s must be at least 1.") tmp = f[0] + s[0] n = f.size a = np.zeros((n, n), dtype=tmp.dtype) a[0] = f a[list(range(1, n)), list(range(0, n - 1))] = s return a @np.deprecate def all_mat(*args): return list(map(np.matrix, args)) def kron(a, b): """ Kronecker product. The result is the block matrix:: a[0,0]*b a[0,1]*b ... a[0,-1]*b a[1,0]*b a[1,1]*b ... a[1,-1]*b ... a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b Parameters ---------- a : (M, N) ndarray Input array b : (P, Q) ndarray Input array Returns ------- A : (M*P, N*Q) ndarray Kronecker product of `a` and `b`. Examples -------- >>> from numpy import array >>> from scipy.linalg import kron >>> kron(array([[1,2],[3,4]]), array([[1,1,1]])) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) """ if not a.flags['CONTIGUOUS']: a = np.reshape(a, a.shape) if not b.flags['CONTIGUOUS']: b = np.reshape(b, b.shape) o = np.outer(a, b) o = o.reshape(a.shape + b.shape) return np.concatenate(np.concatenate(o, axis=1), axis=1) def block_diag(*arrs): """ Create a block diagonal matrix from provided arrays. Given the inputs `A`, `B` and `C`, the output will have these arrays arranged on the diagonal:: [[A, 0, 0], [0, B, 0], [0, 0, C]] Parameters ---------- A, B, C, ... : array_like, up to 2-D Input arrays. A 1-D array or array_like sequence of length `n`is treated as a 2-D array with shape ``(1,n)``. Returns ------- D : ndarray Array with `A`, `B`, `C`, ... on the diagonal. `D` has the same dtype as `A`. Notes ----- If all the input arrays are square, the output is known as a block diagonal matrix. Examples -------- >>> from scipy.linalg import block_diag >>> A = [[1, 0], ... [0, 1]] >>> B = [[3, 4, 5], ... [6, 7, 8]] >>> C = [[7]] >>> block_diag(A, B, C) [[1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 3 4 5 0] [0 0 6 7 8 0] [0 0 0 0 0 7]] >>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]]) array([[ 1., 0., 0., 0., 0.], [ 0., 2., 3., 0., 0.], [ 0., 0., 0., 4., 5.], [ 0., 0., 0., 6., 7.]]) """ if arrs == (): arrs = ([],) arrs = [np.atleast_2d(a) for a in arrs] bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2] if bad_args: raise ValueError("arguments in the following positions have dimension " "greater than 2: %s" % bad_args) shapes = np.array([a.shape for a in arrs]) out = np.zeros(np.sum(shapes, axis=0), dtype=arrs[0].dtype) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs[i] r += rr c += cc return out def companion(a): """ Create a companion matrix. Create the companion matrix [1]_ associated with the polynomial whose coefficients are given in `a`. Parameters ---------- a : (N,) array_like 1-D array of polynomial coefficients. The length of `a` must be at least two, and ``a[0]`` must not be zero. Returns ------- c : (N-1, N-1) ndarray The first row of `c` is ``-a[1:]/a[0]``, and the first sub-diagonal is all ones. The data-type of the array is the same as the data-type of ``1.0*a[0]``. Raises ------ ValueError If any of the following are true: a) ``a.ndim != 1``; b) ``a.size < 2``; c) ``a[0] == 0``. Notes ----- .. versionadded:: 0.8.0 References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> from scipy.linalg import companion >>> companion([1, -10, 31, -30]) array([[ 10., -31., 30.], [ 1., 0., 0.], [ 0., 1., 0.]]) """ a = np.atleast_1d(a) if a.ndim != 1: raise ValueError("Incorrect shape for `a`. `a` must be " "one-dimensional.") if a.size < 2: raise ValueError("The length of `a` must be at least 2.") if a[0] == 0: raise ValueError("The first coefficient in `a` must not be zero.") first_row = -a[1:] / (1.0 * a[0]) n = a.size c = np.zeros((n - 1, n - 1), dtype=first_row.dtype) c[0] = first_row c[list(range(1, n - 1)), list(range(0, n - 2))] = 1 return c def hilbert(n): """ Create a Hilbert matrix of order `n`. Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`. Parameters ---------- n : int The size of the array to create. Returns ------- h : (n, n) ndarray The Hilbert matrix. See Also -------- invhilbert : Compute the inverse of a Hilbert matrix. Notes ----- .. versionadded:: 0.10.0 Examples -------- >>> from scipy.linalg import hilbert >>> hilbert(3) array([[ 1. , 0.5 , 0.33333333], [ 0.5 , 0.33333333, 0.25 ], [ 0.33333333, 0.25 , 0.2 ]]) """ values = 1.0 / (1.0 + np.arange(2 * n - 1)) h = hankel(values[:n], r=values[n - 1:]) return h def invhilbert(n, exact=False): """ Compute the inverse of the Hilbert matrix of order `n`. The entries in the inverse of a Hilbert matrix are integers. When `n` is greater than 14, some entries in the inverse exceed the upper limit of 64 bit integers. The `exact` argument provides two options for dealing with these large integers. Parameters ---------- n : int The order of the Hilbert matrix. exact : bool If False, the data type of the array that is returned is np.float64, and the array is an approximation of the inverse. If True, the array is the exact integer inverse array. To represent the exact inverse when n > 14, the returned array is an object array of long integers. For n <= 14, the exact inverse is returned as an array with data type np.int64. Returns ------- invh : (n, n) ndarray The data type of the array is np.float64 if `exact` is False. If `exact` is True, the data type is either np.int64 (for n <= 14) or object (for n > 14). In the latter case, the objects in the array will be long integers. See Also -------- hilbert : Create a Hilbert matrix. Notes ----- .. versionadded:: 0.10.0 Examples -------- >>> from scipy.linalg import invhilbert >>> invhilbert(4) array([[ 16., -120., 240., -140.], [ -120., 1200., -2700., 1680.], [ 240., -2700., 6480., -4200.], [ -140., 1680., -4200., 2800.]]) >>> invhilbert(4, exact=True) array([[ 16, -120, 240, -140], [ -120, 1200, -2700, 1680], [ 240, -2700, 6480, -4200], [ -140, 1680, -4200, 2800]], dtype=int64) >>> invhilbert(16)[7,7] 4.2475099528537506e+19 >>> invhilbert(16, exact=True)[7,7] 42475099528537378560L """ from scipy.special import comb if exact: if n > 14: dtype = object else: dtype = np.int64 else: dtype = np.float64 invh = np.empty((n, n), dtype=dtype) for i in xrange(n): for j in xrange(0, i + 1): s = i + j invh[i, j] = ((-1) ** s * (s + 1) * comb(n + i, n - j - 1, exact) * comb(n + j, n - i - 1, exact) * comb(s, i, exact) ** 2) if i != j: invh[j, i] = invh[i, j] return invh def pascal(n, kind='symmetric', exact=True): """ Returns the n x n Pascal matrix. The Pascal matrix is a matrix containing the binomial coefficients as its elements. Parameters ---------- n : int The size of the matrix to create; that is, the result is an n x n matrix. kind : str, optional Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'. exact : bool, optional If `exact` is True, the result is either an array of type numpy.uint64 (if n < 35) or an object array of Python long integers. If `exact` is False, the coefficients in the matrix are computed using `scipy.special.comb` with `exact=False`. The result will be a floating point array, and the values in the array will not be the exact coefficients, but this version is much faster than `exact=True`. Returns ------- p : (n, n) ndarray The Pascal matrix. See Also -------- invpascal Notes ----- See http://en.wikipedia.org/wiki/Pascal_matrix for more information about Pascal matrices. .. versionadded:: 0.11.0 Examples -------- >>> from scipy.linalg import pascal >>> pascal(4) array([[ 1, 1, 1, 1], [ 1, 2, 3, 4], [ 1, 3, 6, 10], [ 1, 4, 10, 20]], dtype=uint64) >>> pascal(4, kind='lower') array([[1, 0, 0, 0], [1, 1, 0, 0], [1, 2, 1, 0], [1, 3, 3, 1]], dtype=uint64) >>> pascal(50)[-1, -1] 25477612258980856902730428600L >>> from scipy.special import comb >>> comb(98, 49, exact=True) 25477612258980856902730428600L """ from scipy.special import comb if kind not in ['symmetric', 'lower', 'upper']: raise ValueError("kind must be 'symmetric', 'lower', or 'upper'") if exact: if n >= 35: L_n = np.empty((n, n), dtype=object) L_n.fill(0) else: L_n = np.zeros((n, n), dtype=np.uint64) for i in range(n): for j in range(i + 1): L_n[i, j] = comb(i, j, exact=True) else: L_n = comb(*np.ogrid[:n, :n]) if kind is 'lower': p = L_n elif kind is 'upper': p = L_n.T else: p = np.dot(L_n, L_n.T) return p def invpascal(n, kind='symmetric', exact=True): """ Returns the inverse of the n x n Pascal matrix. The Pascal matrix is a matrix containing the binomial coefficients as its elements. Parameters ---------- n : int The size of the matrix to create; that is, the result is an n x n matrix. kind : str, optional Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'. exact : bool, optional If `exact` is True, the result is either an array of type `numpy.int64` (if `n` <= 35) or an object array of Python integers. If `exact` is False, the coefficients in the matrix are computed using `scipy.special.comb` with `exact=False`. The result will be a floating point array, and for large `n`, the values in the array will not be the exact coefficients. Returns ------- invp : (n, n) ndarray The inverse of the Pascal matrix. See Also -------- pascal Notes ----- .. versionadded:: 0.16.0 References ---------- .. [1] "Pascal matrix", http://en.wikipedia.org/wiki/Pascal_matrix .. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical Gazette, 59(408), pp. 111-112, 1975. Examples -------- >>> from scipy.linalg import invpascal, pascal >>> invp = invpascal(5) >>> invp array([[ 5, -10, 10, -5, 1], [-10, 30, -35, 19, -4], [ 10, -35, 46, -27, 6], [ -5, 19, -27, 17, -4], [ 1, -4, 6, -4, 1]]) >>> p = pascal(5) >>> p.dot(invp) array([[ 1., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 1.]]) An example of the use of `kind` and `exact`: >>> invpascal(5, kind='lower', exact=False) array([[ 1., -0., 0., -0., 0.], [-1., 1., -0., 0., -0.], [ 1., -2., 1., -0., 0.], [-1., 3., -3., 1., -0.], [ 1., -4., 6., -4., 1.]]) """ from scipy.special import comb if kind not in ['symmetric', 'lower', 'upper']: raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.") if kind == 'symmetric': if exact: if n > 34: dt = object else: dt = np.int64 else: dt = np.float64 invp = np.empty((n, n), dtype=dt) for i in range(n): for j in range(0, i + 1): v = 0 for k in range(n - i): v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j, exact=exact) invp[i, j] = (-1)**(i - j) * v if i != j: invp[j, i] = invp[i, j] else: # For the 'lower' and 'upper' cases, we computer the inverse by # changing the sign of every other diagonal of the pascal matrix. invp = pascal(n, kind=kind, exact=exact) if invp.dtype == np.uint64: # This cast from np.uint64 to int64 OK, because if `kind` is not # "symmetric", the values in invp are all much less than 2**63. invp = invp.view(np.int64) # The toeplitz matrix has alternating bands of 1 and -1. invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype) return invp def dft(n, scale=None): """ Discrete Fourier transform matrix. Create the matrix that computes the discrete Fourier transform of a sequence [1]_. The n-th primitive root of unity used to generate the matrix is exp(-2*pi*i/n), where i = sqrt(-1). Parameters ---------- n : int Size the matrix to create. scale : str, optional Must be None, 'sqrtn', or 'n'. If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`. If `scale` is 'n', the matrix is divided by `n`. If `scale` is None (the default), the matrix is not normalized, and the return value is simply the Vandermonde matrix of the roots of unity. Returns ------- m : (n, n) ndarray The DFT matrix. Notes ----- When `scale` is None, multiplying a vector by the matrix returned by `dft` is mathematically equivalent to (but much less efficient than) the calculation performed by `scipy.fftpack.fft`. .. versionadded:: 0.14.0 References ---------- .. [1] "DFT matrix", http://en.wikipedia.org/wiki/DFT_matrix Examples -------- >>> np.set_printoptions(precision=5, suppress=True) >>> x = np.array([1, 2, 3, 0, 3, 2, 1, 0]) >>> m = dft(8) >>> m.dot(x) # Comute the DFT of x array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j, -0.+4.j, -2.+2.j]) Verify that ``m.dot(x)`` is the same as ``fft(x)``. >>> from scipy.fftpack import fft >>> fft(x) # Same result as m.dot(x) array([ 12.+0.j, -2.-2.j, 0.-4.j, -2.+2.j, 4.+0.j, -2.-2.j, 0.+4.j, -2.+2.j]) """ if scale not in [None, 'sqrtn', 'n']: raise ValueError("scale must be None, 'sqrtn', or 'n'; " "%r is not valid." % (scale,)) omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1) m = omegas ** np.arange(n) if scale == 'sqrtn': m /= math.sqrt(n) elif scale == 'n': m /= n return m
bsd-3-clause
4,770,515,006,507,963,000
27.07622
79
0.508452
false
rthouvenin/meteography
meteography/neighbors.py
1
2176
# -*- coding: utf-8 -*- """ Wrapper around sklearn k-neighbors estimators that can work in batches on pytables arrays (or other disk-backed arrays that support slicing) """ import numpy as np from sklearn.neighbors import NearestNeighbors as SKNN from meteography.dataset import PIXEL_TYPE class NearestNeighbors: BATCH_SIZE = 20 * 1024 * 1024 # 20 Mb def __init__(self, **kwargs): self.sknn = SKNN(1, algorithm='brute', **kwargs) def fit(self, X, y=None): self.X = X self.y = y self.batch_len = max(1, self.BATCH_SIZE // X.shape[1]) self.nb_batch = 0 self.batch = None if len(X) > 0: self._reset_nb_batch() def _reset_nb_batch(self): old = self.nb_batch self.nb_batch = len(self.X) // self.batch_len if len(self.X) % self.batch_len: self.nb_batch += 1 oldincr = (old > 1) incr = (self.nb_batch > 1) if self.batch is None or oldincr != incr: self.batch = np.empty((self.batch_len+incr, self.X.shape[1]), dtype=PIXEL_TYPE) return self.nb_batch def _get_batch(self, b, extra_row): start = b * self.batch_len end = min(start+self.batch_len, len(self.X)) actual_len = end - start self.batch[:actual_len] = self.X[start:end] has_extra = 0 if extra_row is not None: has_extra = 1 self.batch[actual_len] = self.X[extra_row] if actual_len+has_extra == self.batch.shape[0]: return self.batch else: return self.batch[:actual_len+has_extra] def predict(self, input_row): self._reset_nb_batch() nearest = None for b in range(self.nb_batch): batch = self._get_batch(b, nearest) self.sknn.fit(batch) i_batch = self.sknn.kneighbors([input_row], return_distance=False) i_batch = i_batch[0][0] if i_batch != (batch.shape[0]-1) or b == 0: nearest = b * self.batch_len + i_batch if self.y is None: return nearest return self.y[nearest]
mit
2,629,343,150,644,379,000
30.536232
78
0.554688
false
MTG/essentia
test/src/unittests/standard/test_nsgiconstantq.py
1
4838
#!/usr/bin/env python # Copyright (C) 2006-2021 Music Technology Group - Universitat Pompeu Fabra # # This file is part of Essentia # # Essentia is free software: you can redistribute it and/or modify it under # the terms of the GNU Affero General Public License as published by the Free # Software Foundation (FSF), either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the Affero GNU General Public License # version 3 along with this program. If not, see http://www.gnu.org/licenses/ from essentia_test import * import essentia.standard as ess import numpy as np testdir = join(filedir(), 'nsgiconstantq') class TestNSGIConstantQ(TestCase): def testSynthetiseSine(self): x = essentia.array(np.sin(2 * np.pi * 1000 * np.arange(2**12) / 44100)) CQ, CQDC, DCNF = NSGConstantQ(inputSize=2**12)(x) # At the moment data needs to be transformed into a list of lists CQList= list(CQ) for i in range(len(CQList)): CQList[i] = list(CQList[i]) y = NSGIConstantQ(inputSize=2**12)(CQList, CQDC, DCNF) self.assertAlmostEqualVectorFixedPrecision(x, y, 3) def testSynthetiseSineLocalPhase(self): x = essentia.array(np.sin(2 * np.pi * 1000 * np.arange(2**12) / 44100)) CQ, CQDC, DCNF= NSGConstantQ(inputSize=2**12, phaseMode='local')(x) # At the moment data needs to be transformed into a list of lists CQList= list(CQ) for i in range(len(CQList)): CQList[i] = list(CQList[i]) y = NSGIConstantQ(inputSize=2**12, phaseMode='local')(CQList, CQDC, DCNF) self.assertAlmostEqualVectorFixedPrecision(x, y, 3) def testSynthetiseSineOddSize(self): # Test the reconstruction capabilities for signals with an odd length. inputSize = 2 ** 12 + 1 x = essentia.array(np.sin(2 * np.pi * 1000 * np.arange(inputSize) / 44100)) CQ, CQDC, DCNF= NSGConstantQ(inputSize=inputSize)(x) y = NSGIConstantQ(inputSize=inputSize)(CQ, CQDC, DCNF) self.assertAlmostEqualVectorFixedPrecision(x, y, 5) def testSynthetiseDC(self): x = essentia.array(np.ones(2**12)) CQ, CQDC, DCNF = NSGConstantQ(inputSize=2**12)(x) CQList= list(CQ) for i in range(len(CQList)): CQList[i] = list(CQList[i]) y = NSGIConstantQ(inputSize=2**12)(CQList, CQDC, DCNF) self.assertAlmostEqualVectorFixedPrecision(x, y, 1) def testInvalidParam(self): self.assertConfigureFails(NSGIConstantQ(), {'phaseMode': 'none'}) self.assertConfigureFails(NSGIConstantQ(), {'inputSize': -1}) self.assertConfigureFails(NSGIConstantQ(), {'inputSize': 0}) self.assertConfigureFails(NSGIConstantQ(), {'minFrequency': 30000}) self.assertConfigureFails(NSGIConstantQ(), {'minFrequency': 1000, 'maxFrequency': 500}) self.assertConfigureFails(NSGIConstantQ(), {'maxFrequency': 0}) self.assertConfigureFails(NSGIConstantQ(), {'binsPerOctave': 0}) self.assertConfigureFails(NSGIConstantQ(), {'sampleRate': 0}) self.assertConfigureFails(NSGIConstantQ(), {'gamma': -1}) self.assertConfigureFails(NSGIConstantQ(), {'minimumWindow': 1}) self.assertConfigureFails(NSGIConstantQ(), {'windowSizeFactor': 0}) self.assertConfigureFails(NSGIConstantQ(), {'minimumWindow': 1}) def testReconfigure(self): # The configuration of this algorithm is done the first time it is computed and # it will automatically change each time the input vectors modify their length. x = essentia.array(np.sin(2 * np.pi * 1000 * np.arange(2**12) / 44100)) CQ, CQDC, DCNF = NSGConstantQ(inputSize=2**12)(x) CQList= list(CQ) for i in range(len(CQList)): CQList[i] = list(CQList[i]) nsgiconstantq = NSGIConstantQ() nsgiconstantq(CQList, CQDC, DCNF) # Reuse the algorith with different input shapes x = essentia.array(np.sin(2 * np.pi * 1000 * np.arange(2**13) / 44100)) CQ, CQDC, DCNF = NSGConstantQ(inputSize=2**13)(x) CQList= list(CQ) for i in range(len(CQList)): CQList[i] = list(CQList[i]) nsgiconstantq = NSGIConstantQ() nsgiconstantq(CQList, CQDC, DCNF) suite = allTests(TestNSGIConstantQ) if __name__ == '__main__': TextTestRunner(verbosity=2).run(suite)
agpl-3.0
-3,107,686,161,840,203,300
36.215385
89
0.641794
false
nickretallack/babel
babel/messages/pofile.py
1
17024
# -*- coding: utf-8 -*- # # Copyright (C) 2007-2011 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://babel.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://babel.edgewall.org/log/. """Reading and writing of files in the ``gettext`` PO (portable object) format. :see: `The Format of PO Files <http://www.gnu.org/software/gettext/manual/gettext.html#PO-Files>`_ """ import os import re from babel.messages.catalog import Catalog, Message from babel.util import wraptext from babel._compat import text_type __all__ = ['read_po', 'write_po'] def unescape(string): r"""Reverse `escape` the given string. >>> print unescape('"Say:\\n \\"hello, world!\\"\\n"') Say: "hello, world!" <BLANKLINE> :param string: the string to unescape :return: the unescaped string """ def replace_escapes(match): m = match.group(1) if m == 'n': return '\n' elif m == 't': return '\t' elif m == 'r': return '\r' # m is \ or " return m return re.compile(r'\\([\\trn"])').sub(replace_escapes, string[1:-1]) def denormalize(string): r"""Reverse the normalization done by the `normalize` function. >>> print denormalize(r'''"" ... "Say:\n" ... " \"hello, world!\"\n"''') Say: "hello, world!" <BLANKLINE> >>> print denormalize(r'''"" ... "Say:\n" ... " \"Lorem ipsum dolor sit " ... "amet, consectetur adipisicing" ... " elit, \"\n"''') Say: "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " <BLANKLINE> :param string: the string to denormalize :return: the denormalized string :rtype: `unicode` or `str` """ if '\n' in string: escaped_lines = string.splitlines() if string.startswith('""'): escaped_lines = escaped_lines[1:] lines = map(unescape, escaped_lines) return ''.join(lines) else: return unescape(string) def read_po(fileobj, locale=None, domain=None, ignore_obsolete=False, charset=None): """Read messages from a ``gettext`` PO (portable object) file from the given file-like object and return a `Catalog`. >>> from datetime import datetime >>> from StringIO import StringIO >>> buf = StringIO(''' ... #: main.py:1 ... #, fuzzy, python-format ... msgid "foo %(name)s" ... msgstr "quux %(name)s" ... ... # A user comment ... #. An auto comment ... #: main.py:3 ... msgid "bar" ... msgid_plural "baz" ... msgstr[0] "bar" ... msgstr[1] "baaz" ... ''') >>> catalog = read_po(buf) >>> catalog.revision_date = datetime(2007, 04, 01) >>> for message in catalog: ... if message.id: ... print (message.id, message.string) ... print ' ', (message.locations, message.flags) ... print ' ', (message.user_comments, message.auto_comments) (u'foo %(name)s', u'quux %(name)s') ([(u'main.py', 1)], set([u'fuzzy', u'python-format'])) ([], []) ((u'bar', u'baz'), (u'bar', u'baaz')) ([(u'main.py', 3)], set([])) ([u'A user comment'], [u'An auto comment']) .. versionadded:: 1.0 Added support for explicit charset argument. :param fileobj: the file-like object to read the PO file from :param locale: the locale identifier or `Locale` object, or `None` if the catalog is not bound to a locale (which basically means it's a template) :param domain: the message domain :param ignore_obsolete: whether to ignore obsolete messages in the input :param charset: the character set of the catalog. :return: a catalog object representing the parsed PO file :rtype: `Catalog` """ catalog = Catalog(locale=locale, domain=domain, charset=charset) counter = [0] offset = [0] messages = [] translations = [] locations = [] flags = [] user_comments = [] auto_comments = [] obsolete = [False] context = [] in_msgid = [False] in_msgstr = [False] in_msgctxt = [False] def _add_message(): translations.sort() if len(messages) > 1: msgid = tuple([denormalize(m) for m in messages]) else: msgid = denormalize(messages[0]) if isinstance(msgid, (list, tuple)): string = [] for idx in range(catalog.num_plurals): try: string.append(translations[idx]) except IndexError: string.append((idx, '')) string = tuple([denormalize(t[1]) for t in string]) else: string = denormalize(translations[0][1]) if context: msgctxt = denormalize('\n'.join(context)) else: msgctxt = None message = Message(msgid, string, list(locations), set(flags), auto_comments, user_comments, lineno=offset[0] + 1, context=msgctxt) if obsolete[0]: if not ignore_obsolete: catalog.obsolete[msgid] = message else: catalog[msgid] = message del messages[:]; del translations[:]; del context[:]; del locations[:]; del flags[:]; del auto_comments[:]; del user_comments[:]; obsolete[0] = False counter[0] += 1 def _process_message_line(lineno, line): if line.startswith('msgid_plural'): in_msgid[0] = True msg = line[12:].lstrip() messages.append(msg) elif line.startswith('msgid'): in_msgid[0] = True offset[0] = lineno txt = line[5:].lstrip() if messages: _add_message() messages.append(txt) elif line.startswith('msgstr'): in_msgid[0] = False in_msgstr[0] = True msg = line[6:].lstrip() if msg.startswith('['): idx, msg = msg[1:].split(']', 1) translations.append([int(idx), msg.lstrip()]) else: translations.append([0, msg]) elif line.startswith('msgctxt'): if messages: _add_message() in_msgid[0] = in_msgstr[0] = False context.append(line[7:].lstrip()) elif line.startswith('"'): if in_msgid[0]: messages[-1] += u'\n' + line.rstrip() elif in_msgstr[0]: translations[-1][1] += u'\n' + line.rstrip() elif in_msgctxt[0]: context.append(line.rstrip()) for lineno, line in enumerate(fileobj.readlines()): line = line.strip() if not isinstance(line, text_type): line = line.decode(catalog.charset) if line.startswith('#'): in_msgid[0] = in_msgstr[0] = False if messages and translations: _add_message() if line[1:].startswith(':'): for location in line[2:].lstrip().split(): pos = location.rfind(':') if pos >= 0: try: lineno = int(location[pos + 1:]) except ValueError: continue locations.append((location[:pos], lineno)) elif line[1:].startswith(','): for flag in line[2:].lstrip().split(','): flags.append(flag.strip()) elif line[1:].startswith('~'): obsolete[0] = True _process_message_line(lineno, line[2:].lstrip()) elif line[1:].startswith('.'): # These are called auto-comments comment = line[2:].strip() if comment: # Just check that we're not adding empty comments auto_comments.append(comment) else: # These are called user comments user_comments.append(line[1:].strip()) else: _process_message_line(lineno, line) if messages: _add_message() # No actual messages found, but there was some info in comments, from which # we'll construct an empty header message elif not counter[0] and (flags or user_comments or auto_comments): messages.append(u'') translations.append([0, u'']) _add_message() return catalog WORD_SEP = re.compile('(' r'\s+|' # any whitespace r'[^\s\w]*\w+[a-zA-Z]-(?=\w+[a-zA-Z])|' # hyphenated words r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w)' # em-dash ')') def escape(string): r"""Escape the given string so that it can be included in double-quoted strings in ``PO`` files. >>> escape('''Say: ... "hello, world!" ... ''') '"Say:\\n \\"hello, world!\\"\\n"' :param string: the string to escape :return: the escaped string """ return '"%s"' % string.replace('\\', '\\\\') \ .replace('\t', '\\t') \ .replace('\r', '\\r') \ .replace('\n', '\\n') \ .replace('\"', '\\"') def normalize(string, prefix='', width=76): r"""Convert a string into a format that is appropriate for .po files. >>> print normalize('''Say: ... "hello, world!" ... ''', width=None) "" "Say:\n" " \"hello, world!\"\n" >>> print normalize('''Say: ... "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " ... ''', width=32) "" "Say:\n" " \"Lorem ipsum dolor sit " "amet, consectetur adipisicing" " elit, \"\n" :param string: the string to normalize :param prefix: a string that should be prepended to every line :param width: the maximum line width; use `None`, 0, or a negative number to completely disable line wrapping :return: the normalized string """ if width and width > 0: prefixlen = len(prefix) lines = [] for line in string.splitlines(True): if len(escape(line)) + prefixlen > width: chunks = WORD_SEP.split(line) chunks.reverse() while chunks: buf = [] size = 2 while chunks: l = len(escape(chunks[-1])) - 2 + prefixlen if size + l < width: buf.append(chunks.pop()) size += l else: if not buf: # handle long chunks by putting them on a # separate line buf.append(chunks.pop()) break lines.append(u''.join(buf)) else: lines.append(line) else: lines = string.splitlines(True) if len(lines) <= 1: return escape(string) # Remove empty trailing line if lines and not lines[-1]: del lines[-1] lines[-1] += '\n' return u'""\n' + u'\n'.join([(prefix + escape(l)) for l in lines]) def write_po(fileobj, catalog, width=76, no_location=False, omit_header=False, sort_output=False, sort_by_file=False, ignore_obsolete=False, include_previous=False): r"""Write a ``gettext`` PO (portable object) template file for a given message catalog to the provided file-like object. >>> catalog = Catalog() >>> catalog.add(u'foo %(name)s', locations=[('main.py', 1)], ... flags=('fuzzy',)) <Message...> >>> catalog.add((u'bar', u'baz'), locations=[('main.py', 3)]) <Message...> >>> from io import BytesIO >>> buf = BytesIO() >>> write_po(buf, catalog, omit_header=True) >>> print buf.getvalue() #: main.py:1 #, fuzzy, python-format msgid "foo %(name)s" msgstr "" <BLANKLINE> #: main.py:3 msgid "bar" msgid_plural "baz" msgstr[0] "" msgstr[1] "" <BLANKLINE> <BLANKLINE> :param fileobj: the file-like object to write to :param catalog: the `Catalog` instance :param width: the maximum line width for the generated output; use `None`, 0, or a negative number to completely disable line wrapping :param no_location: do not emit a location comment for every message :param omit_header: do not include the ``msgid ""`` entry at the top of the output :param sort_output: whether to sort the messages in the output by msgid :param sort_by_file: whether to sort the messages in the output by their locations :param ignore_obsolete: whether to ignore obsolete messages and not include them in the output; by default they are included as comments :param include_previous: include the old msgid as a comment when updating the catalog """ def _normalize(key, prefix=''): return normalize(key, prefix=prefix, width=width) def _write(text): if isinstance(text, text_type): text = text.encode(catalog.charset, 'backslashreplace') fileobj.write(text) def _write_comment(comment, prefix=''): # xgettext always wraps comments even if --no-wrap is passed; # provide the same behaviour if width and width > 0: _width = width else: _width = 76 for line in wraptext(comment, _width): _write('#%s %s\n' % (prefix, line.strip())) def _write_message(message, prefix=''): if isinstance(message.id, (list, tuple)): if message.context: _write('%smsgctxt %s\n' % (prefix, _normalize(message.context, prefix))) _write('%smsgid %s\n' % (prefix, _normalize(message.id[0], prefix))) _write('%smsgid_plural %s\n' % ( prefix, _normalize(message.id[1], prefix) )) for idx in range(catalog.num_plurals): try: string = message.string[idx] except IndexError: string = '' _write('%smsgstr[%d] %s\n' % ( prefix, idx, _normalize(string, prefix) )) else: if message.context: _write('%smsgctxt %s\n' % (prefix, _normalize(message.context, prefix))) _write('%smsgid %s\n' % (prefix, _normalize(message.id, prefix))) _write('%smsgstr %s\n' % ( prefix, _normalize(message.string or '', prefix) )) messages = list(catalog) if sort_output: messages.sort() elif sort_by_file: messages.sort(lambda x,y: cmp(x.locations, y.locations)) for message in messages: if not message.id: # This is the header "message" if omit_header: continue comment_header = catalog.header_comment if width and width > 0: lines = [] for line in comment_header.splitlines(): lines += wraptext(line, width=width, subsequent_indent='# ') comment_header = u'\n'.join(lines) _write(comment_header + u'\n') for comment in message.user_comments: _write_comment(comment) for comment in message.auto_comments: _write_comment(comment, prefix='.') if not no_location: locs = u' '.join([u'%s:%d' % (filename.replace(os.sep, '/'), lineno) for filename, lineno in message.locations]) _write_comment(locs, prefix=':') if message.flags: _write('#%s\n' % ', '.join([''] + sorted(message.flags))) if message.previous_id and include_previous: _write_comment('msgid %s' % _normalize(message.previous_id[0]), prefix='|') if len(message.previous_id) > 1: _write_comment('msgid_plural %s' % _normalize( message.previous_id[1] ), prefix='|') _write_message(message) _write('\n') if not ignore_obsolete: for message in catalog.obsolete.values(): for comment in message.user_comments: _write_comment(comment) _write_message(message, prefix='#~ ') _write('\n')
bsd-3-clause
6,471,569,443,023,267,000
34.101031
84
0.520266
false
drallensmith/neat-python
examples/xor/evolve-feedforward-parallel.py
1
3373
""" A parallel version of XOR using neat.parallel. Since XOR is a simple experiment, a parallel version probably won't run any faster than the single-process version, due to the overhead of inter-process communication. If your evaluation function is what's taking up most of your processing time (and you should check by using a profiler while running single-process), you should see a significant performance improvement by evaluating in parallel. This example is only intended to show how to do a parallel experiment in neat-python. You can of course roll your own parallelism mechanism or inherit from ParallelEvaluator if you need to do something more complicated. """ from __future__ import print_function import math import os import time import neat import visualize # 2-input XOR inputs and expected outputs. xor_inputs = [(0.0, 0.0), (0.0, 1.0), (1.0, 0.0), (1.0, 1.0)] xor_outputs = [ (0.0,), (1.0,), (1.0,), (0.0,)] def eval_genome(genome, config): """ This function will be run in parallel by ParallelEvaluator. It takes two arguments (a single genome and the genome class configuration data) and should return one float (that genome's fitness). Note that this function needs to be in module scope for multiprocessing.Pool (which is what ParallelEvaluator uses) to find it. Because of this, make sure you check for __main__ before executing any code (as we do here in the last few lines in the file), otherwise you'll have made a fork bomb instead of a neuroevolution demo. :) """ net = neat.nn.FeedForwardNetwork.create(genome, config) error = 4.0 for xi, xo in zip(xor_inputs, xor_outputs): output = net.activate(xi) error -= (output[0] - xo[0]) ** 2 return error def run(config_file): # Load configuration. config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, config_file) # Create the population, which is the top-level object for a NEAT run. p = neat.Population(config) # Add a stdout reporter to show progress in the terminal. p.add_reporter(neat.StdOutReporter(True)) stats = neat.StatisticsReporter() p.add_reporter(stats) # Run for up to 300 generations. pe = neat.ParallelEvaluator(4, eval_genome) winner = p.run(pe.evaluate, 300) # Display the winning genome. print('\nBest genome:\n{!s}'.format(winner)) # Show output of the most fit genome against training data. print('\nOutput:') winner_net = neat.nn.FeedForwardNetwork.create(winner, config) for xi, xo in zip(xor_inputs, xor_outputs): output = winner_net.activate(xi) print("input {!r}, expected output {!r}, got {!r}".format(xi, xo, output)) node_names = {-1:'A', -2: 'B', 0:'A XOR B'} visualize.draw_net(config, winner, True, node_names = node_names) visualize.plot_stats(stats, ylog=False, view=True) visualize.plot_species(stats, view=True) if __name__ == '__main__': # Determine path to configuration file. This path manipulation is # here so that the script will run successfully regardless of the # current working directory. local_dir = os.path.dirname(__file__) config_path = os.path.join(local_dir, 'config-feedforward') run(config_path)
bsd-3-clause
-4,725,489,445,653,296,000
35.27957
82
0.688111
false
IDNoise/NoiseIDE
NoiseIDEPython/idn_snippet_completer.py
1
1650
import os from idn_completer import Completer import core import yaml class SnippetCompleter(Completer): def __init__(self, stc): Completer.__init__(self, stc) self.snippets = [] for path in [os.path.join(core.MainFrame.cwd, "data", "erlang", "ide_snippets.yaml"), os.path.join(core.MainFrame.cwd, "data", "erlang", "user_snippets.yaml"), os.path.join(core.Project.projectDir, "snippets.yaml")]: if os.path.exists(path): stream = file(path, 'r') data = yaml.load(stream) if data: self.snippets += data def OnUpdate(self, text, nextChar = None): self.list.Clear() core.Log(text) i = len(text) - 1 while i >= 0 and text[i].isalpha(): self.prefix += text[i] i -= 1 self.prefix = self.prefix[::-1] core.Log(self.prefix) for snippet in self.snippets: if self.prefix == "" or snippet['id'].startswith(self.prefix): self.list.Append(snippet['id'], snippet['desc'] + "<br/><br/>" + snippet['snippet']) def AutoComplete(self, text): snippet = "" for m in self.snippets: if m['id'] == text: snippet = m['snippet'] if not snippet: return startPos = self.stc.GetCurrentPos() - len(self.prefix) self.stc.SetSelectionStart(startPos) self.stc.SetSelectionEnd(self.stc.GetCurrentPos()) self.stc.ReplaceSelection(snippet) self.HideCompleter() self.stc.StartSnippetEditing(startPos, snippet)
gpl-2.0
3,293,013,052,869,466,000
32
100
0.555152
false
activityhistory/TracesVisualizer
dayview/scripts/extract.py
1
8057
#!/usr/bin/python # -*- coding: utf-8 -*- # TESTING FILE made.by.a.fox. 12.2.15 # Updated by acrule 01.21.16 #FEATURE LIST # Y connect to db # Y write to file # Y Write JSON format # Accept input date parameter #KNOWN ISSUES # 2. no formatting or conversion of datetime stamps import re import os import sys import json import sqlite3 as lite import collections import time import datetime db_file = os.path.expanduser('~/.traces/traces.sqlite') #looks for db under ~/.traces con = lite.connect(db_file) with con: data = [] #master data container apps = [] #list of apps windows = [] # list of windows urls = [] appevents = [] #list of application events windowevents = [] #list of window events urlevents = [] exps = [] #list of experiences images = [] #list of screenshots words = [] #list of keywords cur = con.cursor() #SQL query strings appsSQL = "SELECT * FROM app" windowsSQL = "SELECT * FROM window" urlSQL = "SELECT * FROM url" activeappSQL = "SELECT a.id, a.app_id, a.event, a.time as startt, min(b.time) AS endt FROM appevent a, appevent b WHERE a.app_id = b.app_id AND a.event = 'Active' AND b.event in ('Inactive', 'Close') AND a.time < b.time AND a.time IS NOT NULL AND b.time IS NOT NULL GROUP BY startt" activewindowSQL = "SELECT a.id, a.window_id, a.event, a.time as startt, min(b.time) AS endt FROM windowevent a, windowevent b WHERE a.window_id = b.window_id AND a.event = 'Active' AND b.event in ('Inactive', 'Close') AND a.time < b.time AND a.time IS NOT NULL AND b.time IS NOT NULL GROUP BY startt" activeurlSQL = "SELECT a.id, a.url_id, a.app_id, a.window_id, a.event, a.time as startt, min(b.time) AS endt FROM urlevent a, urlevent b WHERE a.url_id = b.url_id AND a.window_id = b.window_id AND a.app_id = b.app_id AND a.event = 'Active' AND b.event in ('Inactive', 'Close') AND a.time < b.time AND a.time IS NOT NULL AND b.time IS NOT NULL GROUP BY startt" experienceSQL = "SELECT * FROM experience" wordsSQL = "SELECT * FROM keys" #GET list of applications cur.execute(appsSQL) rows = cur.fetchall() for row in rows: a = collections.OrderedDict() a['id'] = row[0] a['time'] = row[1] a['name'] = row[2] apps.append(a) #GET list of windows cur.execute(windowsSQL) rows = cur.fetchall() for row in rows: w = collections.OrderedDict() w['id'] = row[0] w['time'] = row[1] w['name'] = row[2] w['app'] = row[3] windows.append(w) #GET list of urls cur.execute(urlSQL) rows = cur.fetchall() for row in rows: u = collections.OrderedDict() u['id'] = row[0] u['time'] = row[1] u['title'] = row[2] u['url'] = row[3] u['host'] = row[4] urls.append(u) #GET list intervals for primary application cur.execute(activeappSQL) rows = cur.fetchall() for row in rows: a = collections.OrderedDict() a['id'] = row[0] a['appid'] = row[1] a['event'] = row[2] a['start'] = row[3] a['end'] = row[4] appevents.append(a) #GET list intervals for primary window cur.execute(activewindowSQL) rows = cur.fetchall() for row in rows: w = collections.OrderedDict() w['id'] = row[0] w['windowid'] = row[1] w['appid'] = (item for item in windows if item["id"] == row[1]).next()['app'] w['event'] = row[2] w['start'] = row[3] w['end'] = row[4] windowevents.append(w) #GET list intervals for urls cur.execute(activeurlSQL) rows = cur.fetchall() for row in rows: u = collections.OrderedDict() u['id'] = row[0] u['urlid'] = row[1] u['appid'] = row[2] u['windowid'] = row[3] u['event'] = row[4] u['start'] = row[5] u['end'] = row[6] urlevents.append(u) #GET list of experiences cur.execute(experienceSQL) rows = cur.fetchall() for row in rows: a = collections.OrderedDict() a['id'] = row[0] a['text'] = row[2] exps.append(a) #GET list of screenshots image_dir = os.path.expanduser('~/.traces/screenshots') #looks for db under ~/.traces for y in os.listdir(image_dir): y_dir = os.path.join(image_dir,y) if not os.path.isdir(y_dir): continue for m in os.listdir(y_dir): m_dir = os.path.join(y_dir, m) if not os.path.isdir(m_dir): continue for d in os.listdir(m_dir): d_dir = os.path.join(m_dir, d) if not os.path.isdir(d_dir): continue for h in os.listdir(d_dir): h_dir = os.path.join(d_dir, h) if not os.path.isdir(h_dir): continue h_images = os.listdir(h_dir) for image in h_images: #make sure the file is an image if image[-4:] == '.jpg': i = collections.OrderedDict() image_time = datetime.datetime.strptime(image[0:19], '%y%m%d-%H%M%S%f') i['time'] = (image_time - datetime.datetime(1970,1,1)).total_seconds() + time.timezone #add timezone offset i['image'] = os.path.join("screenshots", y, m, d, h, image) images.append(i) #GET keywords cmd_rows = [] newWord = ['Enter','Left','Right','Up','Down','Tab','Escape', ' '] starttime = 0.0 app = 0 window = 0 s = '' cur.execute(wordsSQL) rows = cur.fetchall() for row in rows: if 'Cmd' in row[3]: cmd_rows.append(row) else: text = str(row[2]) # if its a char indicating a new word, save our text token if text in newWord: # save our data if len(s) > 0: k = collections.OrderedDict() k['time'] = starttime #datetime.datetime.fromtimestamp(starttime).strftime("%H:%M %m/%d/%y") k['text'] = s #just pass the whole string for now k['app'] = app k['window'] = window words.append(k) #reset tracking time starttime = float(row[1]) s = '' # if its a regular char on the same window, just keep building the string elif int(row[5]) == window: # and float(row[1]) - time <= 300.0: if text == 'Backspace': s = s[:-1] else: s += row[2] #else its a regular char but we switched windows, save the data else: if len(s) > 0: k = collections.OrderedDict() k['time'] = starttime #datetime.datetime.fromtimestamp(starttime).strftime("%H:%M %m/%d/%y") k['text'] = s #just pass teh whole string for now k['app'] = app k['window'] = window words.append(k) #reset tracking variables window = int(row[5]) app = int(row[4]) starttime = float(row[1]) #write the character to start the next word if text in newWord or text == 'Backspace': s = '' else: s = row[2] #ASSEMBLE apps and experince into json d = collections.OrderedDict() d['apps']=apps d['window']=windows d['url']=urls d['appevents']=appevents d['windowevents']=windowevents d['urlevents']=urlevents d['exps']=exps d['images']=images d['words']=words data = d #WRITE file file = 'extract.json' z = open(file,'w') z.writelines(json.dumps(data))
gpl-2.0
-7,282,651,105,888,489,000
32.995781
363
0.52563
false
solanolabs/rply
rply/parser.py
1
2619
from rply.errors import ParsingError class LRParser(object): def __init__(self, lr_table, error_handler): self.lr_table = lr_table self.error_handler = error_handler def parse(self, tokenizer, state=None): from rply.token import Token lookahead = None lookaheadstack = [] statestack = [0] symstack = [Token("$end", None)] current_state = 0 while True: if lookahead is None: if lookaheadstack: lookahead = lookaheadstack.pop() else: lookahead = tokenizer.next() if lookahead is None: lookahead = Token("$end", None) ltype = lookahead.gettokentype() if ltype in self.lr_table.lr_action[current_state]: t = self.lr_table.lr_action[current_state][ltype] if t > 0: statestack.append(t) current_state = t symstack.append(lookahead) lookahead = None continue elif t < 0: # reduce a symbol on the stack and emit a production p = self.lr_table.grammar.productions[-t] pname = p.name plen = p.getlength() start = len(symstack) + (-plen - 1) assert start >= 0 targ = symstack[start:] del targ[0] start = len(symstack) + (-plen) assert start >= 0 del symstack[start:] del statestack[start:] if state is None: value = p.func(targ) else: value = p.func(state, targ) symstack.append(value) current_state = self.lr_table.lr_goto[statestack[-1]][pname] statestack.append(current_state) continue else: n = symstack[-1] return n else: # TODO: actual error handling here if self.error_handler is not None: if state is None: self.error_handler(lookahead) else: self.error_handler(state, lookahead) raise AssertionError("For now, error_handler must raise.") else: raise ParsingError(lookahead.getsourcepos())
bsd-3-clause
457,821,966,247,470,600
35.887324
80
0.450554
false
cortesi/pry
libpry/explain.py
1
3089
""" A module for printing "nice" messages from assertion statements. """ import tokenize, parser class _Wrap: def __init__(self, *lines): self.lines = list(lines) def __call__(self): if not self.lines: raise StopIteration else: return self.lines.pop(0) class Expression: def __init__(self, s): self.s = s.strip() def show(self, glob, loc): try: return repr(eval(self.s, glob, loc)) except SyntaxError, v: return "<could not be evaluated>" def __eq__(self, other): return self.s == other.s class Explain: _specialOps = set(["==", "!=", "<", ">", ]) _specialNames = set(["not", "and", "or"]) def __init__(self, expr=None, glob=None, loc=None): self.expr, self.glob, self.loc = expr, glob, loc if self.expr: self.parsed, self.expr = self.parseExpression(self.expr) def parseExpression(self, expr): """ Parses an expression into components. It understands the following delimiters: ==, !=, >, <, not, and, or In each of these cases, the variables "x" and "y" will be evaluated. Discards the second (message) clause of an assertion expression. Returns None if the expression could not be interpreted. """ nest = 0 rem = expr # A list of (str, start, end) tuples. delimiters = [] try: for i in list(tokenize.generate_tokens(_Wrap(expr))): name, txt = tokenize.tok_name[i[0]], i[1] start, end = i[2][1], i[3][1] if name == "OP" and (txt == "(" or txt == "["): nest += 1 elif name == "OP" and (txt == ")" or txt == "]"): nest -= 1 elif nest == 0: if name == "OP" and txt in self._specialOps: delimiters.append((txt, start, end)) elif name == "NAME" and txt in self._specialNames: delimiters.append((txt, start, end)) elif name == "OP" and txt == ",": rem = expr[:start] break except tokenize.TokenError: return None, None if delimiters: ret = [] cur = 0 for s, start, end in delimiters: if start > cur: ret.append(Expression(rem[cur:start])) ret.append(s) cur = end ret.append(Expression(rem[end:])) return ret, rem else: return [Expression(rem)], rem def __str__(self): l = [] l.append(" :: Re-evaluating expression:\n") l.append(" :: %s\n"%self.expr) l.append(" ::") for i in self.parsed: if isinstance(i, Expression): l.append(i.show(self.glob, self.loc)) else: l.append(i) return " ".join(l)
mit
6,707,783,616,712,852,000
31.861702
80
0.471997
false
davidmarin/msd
msd/category_data.py
1
3297
# Copyright 2014-2015 SpendRight, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Supporting data for msd.category.""" # too vague to be useful BAD_CATEGORIES = { 'Commercial Products', 'Industry Innovators', 'Other', } # strip these USELESS_CATEGORY_SUFFIXES = [ ' Brands', ' Products', ] # custom corrections to categories (after normalization) CATEGORY_ALIASES = { 'Accessories': 'Fashion Accessories', 'Bananas and Pineapple': 'Bananas and Pineapples', 'Food and Beverage': 'Food and Beverages', 'Food and Drink': 'Food and Beverages', 'Fun and Games': 'Toys and Games', 'Misc. Food': 'Food', 'Occ. Safety and Health Consulting': ( 'Occupational Safety and Health Consulting') } # Categories that we can't just split on "and"; e.g. # Home and Office Furniture, Skin and Hair Care CATEGORY_SPLITS = { 'IT Software and Services/Web Design': { 'IT Software', 'IT Services', 'Web Design', }, 'Renewable Energy Generation and Installation': { 'Renewable Energy Generation', 'Renewable Energy Installation', }, 'Sport and Outdoor - Clothing and Shoes': { 'Sport Clothing', 'Sport Shoes', 'Outdoor Clothing', 'Outdoor Shoes', }, 'Home and Office Furniture': { 'Home Furniture', 'Office Furniture', }, 'Education and Training Services': { 'Education Services', 'Training Services', }, 'Sports Equipment, Toys and Accessories': { 'Sports Equipment', 'Toys', 'Sports Accessories', }, 'Skin and Hair Care': { 'Skin Care', 'Hair Care', }, 'Sport and Outdoor Clothing': { 'Sport Clothing', 'Outdoor Clothing', }, 'Surf, Beach and Swimwear': { 'Surf Wear', 'Beachwear', 'Swimwear', }, 'Film and Music Production': { 'Film Production', 'Music Production', }, 'Baby and Children Clothing': { 'Baby Clothing', 'Children Clothing', }, 'Catering and Meeting/Event Management': { 'Catering', 'Meeting Management', 'Event Management', }, 'Waste Reduction Consulting and Services': { 'Waste Reduction Consulting', 'Waste Reduction Services', }, 'Automotive Sales and Repair': { 'Automotive Sales', 'Automotive Repair', }, 'Web Design and Development': { 'Web Design', 'Web Development', }, 'Pet Toys, Bedding and Apparel': { 'Pet Toys', 'Pet Bedding', 'Pet Apparel', }, 'Housewares, Home Furnishings, and Accessories': { 'Housewares', 'Home Furnishings', 'Home Accessories', }, }
apache-2.0
-2,630,639,732,445,051,000
26.247934
74
0.605096
false
ThomasMarcel/selection-naturelle
user/models.py
1
1507
import json import logging from google.appengine.ext import ndb from lib import tools default_permissions = {'reader': 0, 'administrator': 0} class User(ndb.Model): username = ndb.StringProperty() email = ndb.StringProperty() password=ndb.StringProperty() first_name = ndb.StringProperty() last_name = ndb.StringProperty() permissions = ndb.JsonProperty(default=json.dumps(default_permissions)) active = ndb.BooleanProperty(default=False) notes = ndb.TextProperty() created = ndb.DateTimeProperty(auto_now_add=True) modified = ndb.DateTimeProperty(auto_now=True) @classmethod def get_by_username(cls, username): return cls.query(cls.username == username).get() @classmethod def get_by_email(cls, email): return cls.query(cls.email == email).get() @classmethod def reset_permissions(cls): cls.permissions = json.dumps(default_permissions) @classmethod def get_by_urlkey(cls, userkey): return cls.query(User.key == ndb.Key(urlsafe = userkey)).get() def to_dict(cls): return { 'key': cls.key, 'username': cls.username, 'email': cls.email, 'password': cls.password, 'first_name': cls.first_name, 'last_name': cls.last_name, 'permissions': cls.permissions, 'active': cls.active, 'notes': cls.notes, 'created': cls.created, 'modified': cls.modified }
apache-2.0
-5,442,921,198,355,938,000
28
75
0.624419
false
viz4biz/PyDataNYC2015
enaml/mpl_canvas.py
1
2532
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ from atom.api import Typed, ForwardTyped, Bool, observe, set_default, Value, List, Enum from enaml.core.declarative import d_ from .control import Control, ProxyControl #: Delay the import of matplotlib until needed. This removes the hard #: dependecy on matplotlib for the rest of the Enaml code base. def Figure(): from matplotlib.figure import Figure return Figure class ProxyMPLCanvas(ProxyControl): """ The abstract definition of a proxy MPLCanvas object. """ #: A reference to the MPLCanvas declaration. declaration = ForwardTyped(lambda: MPLCanvas) def set_figure(self, figure): raise NotImplementedError def set_toolbar_visible(self, visible): raise NotImplementedError def set_toolbar_location(self, location): raise NotImplementedError def set_event_actions(self, actions): raise NotImplementedError def draw(self): raise NotImplementedError class MPLCanvas(Control): """ A control which can be used to embded a matplotlib figure. """ #: The matplotlib figure to display in the widget. figure = d_(ForwardTyped(Figure)) #: Whether or not the matplotlib figure toolbar is visible. toolbar_visible = d_(Bool(False)) toolbar_location = d_(Enum('top', 'bottom')) event_actions = d_(List(Value())) #: Matplotlib figures expand freely in height and width by default. hug_width = set_default('ignore') hug_height = set_default('ignore') #: A reference to the ProxyMPLCanvas object. proxy = Typed(ProxyMPLCanvas) def draw(self): """ Request draw on the Figure """ if self.proxy_is_active: self.proxy.draw() #-------------------------------------------------------------------------- # Observers #-------------------------------------------------------------------------- @observe('figure', 'toolbar_visible', 'toolbar_location', 'event_actions') def _update_proxy(self, change): """ An observer which sends state change to the proxy. """ # The superclass handler implementation is sufficient. super(MPLCanvas, self)._update_proxy(change)
apache-2.0
-4,969,528,589,405,369,000
31.050633
87
0.600711
false
LiGhT1EsS/cobra
cobra/scheduler/report.py
1
4364
# -*- coding: utf-8 -*- """ scheduler.report ~~~~~~~~~~~~~~~~ Implements automation report Cobra data :author: Feei <[email protected]> :homepage: https://github.com/wufeifei/cobra :license: MIT, see LICENSE for more details. :copyright: Copyright (c) 2017 Feei. All rights reserved """ import os import subprocess import base64 import datetime from cobra.utils.log import logging from cobra.utils.config import Config import smtplib from smtplib import SMTPException from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart logging = logging.getLogger(__name__) phantomjs = '/usr/local/bin/phantomjs' time_types = ['w', 'm', 'q'] time_type_des = { 'w': '周', 'm': '月', 'q': '季' } class Report(object): def __init__(self, time_type, month=None): if time_type not in time_types: logging.critical('Time type exception') return self.time_type_de = time_type_des[time_type] # mail mark = '' if month is None: c_month = int(datetime.datetime.today().strftime("%m")) else: c_month = int(month) if time_type == 'w': c_week = int(datetime.datetime.today().strftime("%U")) mark = 'W{week}'.format(week=c_week) elif time_type == 'm': mark = 'M{month}'.format(month=c_month) elif time_type == 'q': c_quarter = 0 if c_month in [1, 2, 3]: c_quarter = 1 elif c_month in [4, 5, 6]: c_quarter = 2 elif c_month in [7, 8, 9]: c_quarter = 3 elif c_month in [10, 11, 12]: c_quarter = 4 mark = 'Q{quarter}'.format(quarter=c_quarter) self.subject = '[Cobra] 代码安全{0}报({mark})'.format(self.time_type_de, mark=mark) self.user = Config('email', 'user').value self.name = Config('email', 'name').value self.to = Config('report', 'to').value self.host = Config('email', 'host').value self.port = Config('email', 'port').value self.password = Config('email', 'password').value self.param = [phantomjs, os.path.join(Config().project_directory, 'scheduler', 'report.js'), Config().project_directory, time_type] if month is not None: self.param.append(month) def run(self): capture = self.capture() if capture is False: logging.critical('Capture failed') return False # send notification if self.notification(capture): return True else: logging.critical('Notification failed') return False def capture(self): """ Use PhantomJS to capture report page :return: boolean """ capture = None p = subprocess.Popen(self.param, stdout=subprocess.PIPE) result, err = p.communicate() if 'Critical' in result: logging.critical('Capture exception') return False lines = result.split('\n') for l in lines: if 'reports' in l: capture = l.split(':')[1].strip() if capture is None: logging.critical('get capture image file failed') return False else: return os.path.join(Config().project_directory, capture) def notification(self, capture_path): """ Email notification :param capture_path: :return: boolean """ msg = MIMEMultipart() msg['Subject'] = self.subject msg['From'] = '{0}<{1}>'.format(self.name, self.user) msg['To'] = self.to with open(capture_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) text = MIMEText('<img src="data:image/png;base64,{0}">'.format(encoded_string), 'html') msg.attach(text) try: s = smtplib.SMTP(self.host, self.port) s.ehlo() s.starttls() s.ehlo() s.login(self.user, self.password) s.sendmail(self.user, self.to, msg.as_string()) s.quit() return True except SMTPException: logging.critical('Send mail failed') return False
mit
8,891,019,861,325,576,000
29.405594
139
0.548298
false
gsnedders/Template-Python
t/directive_test.py
1
4424
from template import Template from template.test import TestCase, main class DirectiveTest(TestCase): def testDirectives(self): ttobjs = (('tt', Template()), ('pre', Template({ 'PRE_CHOMP': 1 })), ('post', Template({ 'POST_CHOMP': 1 })), ('trim', Template({ 'INCLUDE_PATH': 'test/lib', 'TRIM': 1 }))) self.Expect(DATA, ttobjs, self._callsign()) DATA = r""" #------------------------------------------------------------------------ # basic directives #------------------------------------------------------------------------ -- test -- [% a %] [%a%] -- expect -- alpha alpha -- test -- pre [% a %] pre[% a %] -- expect -- pre alpha prealpha -- test -- [% a %] post [% a %]post -- expect -- alpha post alphapost -- test -- pre [% a %] post pre[% a %]post -- expect -- pre alpha post prealphapost -- test -- [% a %][%b%][% c %] -- expect -- alphabravocharlie -- test -- [% a %][%b %][% c %][% d %] -- expect -- alphabravocharliedelta #------------------------------------------------------------------------ # comments #------------------------------------------------------------------------ -- test -- [%# this is a comment which should be ignored in totality %]hello world -- expect -- hello world -- test -- [% # this is a one-line comment a %] -- expect -- alpha -- test -- [% # this is a two-line comment a = # here's the next line b -%] [% a %] -- expect -- bravo -- test -- [% a = c # this is a comment on the end of the line b = d # so is this -%] a: [% a %] b: [% b %] -- expect -- a: charlie b: delta #------------------------------------------------------------------------ # manual chomping #------------------------------------------------------------------------ -- test -- [% a %] [% b %] -- expect -- alpha bravo -- test -- [% a -%] [% b %] -- expect -- alphabravo -- test -- [% a -%] [% b %] -- expect -- alpha bravo -- test -- [% a %] [%- b %] -- expect -- alphabravo -- test -- [% a %] [%- b %] -- expect -- alphabravo -- test -- start [% a %] [% b %] end -- expect -- start alpha bravo end -- test -- start [%- a %] [% b -%] end -- expect -- startalpha bravoend -- test -- start [%- a -%] [% b -%] end -- expect -- startalphabravoend -- test -- start [%- a %] [%- b -%] end -- expect -- startalphabravoend #------------------------------------------------------------------------ # PRE_CHOMP enabled #------------------------------------------------------------------------ -- test -- -- use pre -- start [% a %] mid [% b %] end -- expect -- startalpha midbravo end -- test -- start [% a %] mid [% b %] end -- expect -- startalpha midbravo end -- test -- start [%+ a %] mid [% b %] end -- expect -- start alpha midbravo end -- test -- start [%+ a %] mid [% b %] end -- expect -- start alpha midbravo end -- test -- start [%- a %] mid [%- b %] end -- expect -- startalpha midbravo end #------------------------------------------------------------------------ # POST_CHOMP enabled #------------------------------------------------------------------------ -- test -- -- use post -- start [% a %] mid [% b %] end -- expect -- start alphamid bravoend -- test -- start [% a %] mid [% b %] end -- expect -- start alphamid bravoend -- test -- start [% a +%] mid [% b %] end -- expect -- start alpha mid bravoend -- test -- start [% a +%] [% b +%] end -- expect -- start alpha bravo end -- test -- start [% a -%] mid [% b -%] end -- expect -- start alphamid bravoend #------------------------------------------------------------------------ # TRIM enabled #------------------------------------------------------------------------ -- test -- -- use trim -- [% INCLUDE trimme %] -- expect -- I am a template element file which will get TRIMmed -- test -- [% BLOCK foo %] this is block foo [% END -%] [% BLOCK bar %] this is block bar [% END %] [% INCLUDE foo %] [% INCLUDE bar %] end -- expect -- this is block foo this is block bar end -- test -- <foo>[% PROCESS foo %]</foo> <bar>[% PROCESS bar %]</bar> [% BLOCK foo %] this is block foo [% END -%] [% BLOCK bar %] this is block bar [% END -%] end -- expect -- <foo>this is block foo</foo> <bar>this is block bar</bar> end -- test -- [% r; r = s; "-"; r %]. -- expect -- romeo-sierra. -- test -- [% IF a; b; ELSIF c; d; ELSE; s; END %] -- expect -- bravo """
artistic-2.0
1,009,830,628,860,374,400
11.288889
76
0.419304
false
AlexStarov/Shop
applications/delivery2/migrations/0002_auto_20161124_2123.py
1
4727
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import applications.delivery2.models class Migration(migrations.Migration): dependencies = [ ('delivery2', '0001_initial'), ] operations = [ migrations.CreateModel( name='EmailImageTemplate', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.CharField(max_length=256, verbose_name='\u041f\u0443\u0442\u044c')), ('image', models.ImageField(upload_to=applications.delivery2.models.upload_to, null=True, verbose_name='\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435', blank=True)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='\u0414\u0430\u0442\u0430 \u0441\u043e\u0437\u0434\u0430\u043d\u0438\u044f', null=True)), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='\u0414\u0430\u0442\u0430 \u043e\u0431\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u044f', null=True)), ], options={ 'ordering': ['-created_at'], 'db_table': 'Delivery2_EmailImageTemplate', 'verbose_name': '\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435 \u0432 \u043f\u0438\u0441\u044c\u043c\u0435', 'verbose_name_plural': '\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f \u0432 \u043f\u0438\u0441\u044c\u043c\u0435', }, ), migrations.CreateModel( name='EmailSubject', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('subject', models.CharField(default='\u0422\u0435\u043c\u0430', max_length=256, verbose_name='\u0422\u0435\u043c\u0430 \u043f\u0438\u0441\u044c\u043c\u0430')), ('chance', models.DecimalField(default=1, verbose_name='\u0412\u0435\u0440\u043e\u044f\u0442\u043d\u043e\u0441\u0442\u044c', max_digits=4, decimal_places=2)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='\u0414\u0430\u0442\u0430 \u0441\u043e\u0437\u0434\u0430\u043d\u0438\u044f', null=True)), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='\u0414\u0430\u0442\u0430 \u043e\u0431\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u044f', null=True)), ], options={ 'ordering': ['-created_at'], 'db_table': 'Delivery2_EmailSubject', 'verbose_name': '\u0422\u0435\u043c\u0430', 'verbose_name_plural': '\u0422\u0435\u043c\u044b', }, ), migrations.RemoveField( model_name='subject', name='delivery', ), migrations.RemoveField( model_name='delivery', name='template', ), migrations.AddField( model_name='emailtemplate', name='name', field=models.CharField(null=True, default=b'<built-in method now of type object at 0x83c4c20>', max_length=64, blank=True, unique=True, verbose_name='\u041d\u0430\u0437\u0432\u0430\u043d\u0438\u0435'), ), migrations.AlterField( model_name='delivery', name='task_id', field=models.CharField(max_length=255, null=True, verbose_name='task id', blank=True), ), migrations.AlterField( model_name='emailtemplate', name='template', field=models.FileField(upload_to=applications.delivery2.models.upload_to, null=True, verbose_name='\u0428\u0430\u0431\u043b\u043e\u043d', blank=True), ), migrations.AlterField( model_name='message', name='subject', field=models.ForeignKey(verbose_name='\u0423\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044c \u043d\u0430 subject', blank=True, to='delivery2.EmailSubject', null=True), ), migrations.AlterModelTable( name='emailtemplate', table='Delivery2_EmailTemplate', ), migrations.DeleteModel( name='Subject', ), migrations.AddField( model_name='emailsubject', name='delivery', field=models.ForeignKey(to='delivery2.Delivery'), ), migrations.AddField( model_name='emailimagetemplate', name='template', field=models.ForeignKey(related_name='images', verbose_name='\u0428\u0430\u0431\u043b\u043e\u043d', to='delivery2.EmailTemplate'), ), ]
apache-2.0
-7,083,899,874,331,063,000
50.380435
213
0.609477
false
mammix2/ccoin-dev
contrib/pyminer/pyminer.py
1
6435
#!/usr/bin/python # # Copyright (c) 2011 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # import time import json import pprint import hashlib import struct import re import base64 import httplib import sys from multiprocessing import Process ERR_SLEEP = 15 MAX_NONCE = 1000000L settings = {} pp = pprint.PrettyPrinter(indent=4) class BitcoinRPC: OBJID = 1 def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def rpc(self, method, params=None): self.OBJID += 1 obj = { 'version' : '1.1', 'method' : method, 'id' : self.OBJID } if params is None: obj['params'] = [] else: obj['params'] = params self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print "JSON-RPC: no response" return None body = resp.read() resp_obj = json.loads(body) if resp_obj is None: print "JSON-RPC: cannot JSON-decode body" return None if 'error' in resp_obj and resp_obj['error'] != None: return resp_obj['error'] if 'result' not in resp_obj: print "JSON-RPC: no result in object" return None return resp_obj['result'] def getblockcount(self): return self.rpc('getblockcount') def getwork(self, data=None): return self.rpc('getwork', data) def uint32(x): return x & 0xffffffffL def bytereverse(x): return uint32(( ((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24) )) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i+4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return ''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i+4]) out_words.reverse() return ''.join(out_words) class Miner: def __init__(self, id): self.id = id self.max_nonce = MAX_NONCE def work(self, datastr, targetstr): # decode work data hex string to binary static_data = datastr.decode('hex') static_data = bufreverse(static_data) # the first 76b of 80b do not change blk_hdr = static_data[:76] # decode 256-bit target value targetbin = targetstr.decode('hex') targetbin = targetbin[::-1] # byte-swap and dword-swap targetbin_str = targetbin.encode('hex') target = long(targetbin_str, 16) # pre-hash first 76b of block header static_hash = hashlib.sha256() static_hash.update(blk_hdr) for nonce in xrange(self.max_nonce): # encode 32-bit nonce value nonce_bin = struct.pack("<I", nonce) # hash final 4b, the nonce value hash1_o = static_hash.copy() hash1_o.update(nonce_bin) hash1 = hash1_o.digest() # sha256 hash of sha256 hash hash_o = hashlib.sha256() hash_o.update(hash1) hash = hash_o.digest() # quick test for winning solution: high 32 bits zero? if hash[-4:] != '\0\0\0\0': continue # convert binary hash to 256-bit Python long hash = bufreverse(hash) hash = wordreverse(hash) hash_str = hash.encode('hex') l = long(hash_str, 16) # proof-of-work test: hash < target if l < target: print time.asctime(), "PROOF-OF-WORK found: %064x" % (l,) return (nonce + 1, nonce_bin) else: print time.asctime(), "PROOF-OF-WORK false positive %064x" % (l,) # return (nonce + 1, nonce_bin) return (nonce + 1, None) def submit_work(self, rpc, original_data, nonce_bin): nonce_bin = bufreverse(nonce_bin) nonce = nonce_bin.encode('hex') solution = original_data[:152] + nonce + original_data[160:256] param_arr = [ solution ] result = rpc.getwork(param_arr) print time.asctime(), "--> Upstream RPC result:", result def iterate(self, rpc): work = rpc.getwork() if work is None: time.sleep(ERR_SLEEP) return if 'data' not in work or 'target' not in work: time.sleep(ERR_SLEEP) return time_start = time.time() (hashes_done, nonce_bin) = self.work(work['data'], work['target']) time_end = time.time() time_diff = time_end - time_start self.max_nonce = long( (hashes_done * settings['scantime']) / time_diff) if self.max_nonce > 0xfffffffaL: self.max_nonce = 0xfffffffaL if settings['hashmeter']: print "HashMeter(%d): %d hashes, %.2f Khash/sec" % ( self.id, hashes_done, (hashes_done / 1000.0) / time_diff) if nonce_bin is not None: self.submit_work(rpc, work['data'], nonce_bin) def loop(self): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpass']) if rpc is None: return while True: self.iterate(rpc) def miner_thread(id): miner = Miner(id) miner.loop() if __name__ == '__main__': if len(sys.argv) != 2: print "Usage: pyminer.py CONFIG-FILE" sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 10464 if 'threads' not in settings: settings['threads'] = 1 if 'hashmeter' not in settings: settings['hashmeter'] = 0 if 'scantime' not in settings: settings['scantime'] = 30L if 'rpcuser' not in settings or 'rpcpass' not in settings: print "Missing username and/or password in cfg file" sys.exit(1) settings['port'] = int(settings['port']) settings['threads'] = int(settings['threads']) settings['hashmeter'] = int(settings['hashmeter']) settings['scantime'] = long(settings['scantime']) thr_list = [] for thr_id in range(settings['threads']): p = Process(target=miner_thread, args=(thr_id,)) p.start() thr_list.append(p) time.sleep(1) # stagger threads print settings['threads'], "mining threads started" print time.asctime(), "Miner Starts - %s:%s" % (settings['host'], settings['port']) try: for thr_proc in thr_list: thr_proc.join() except KeyboardInterrupt: pass print time.asctime(), "Miner Stops - %s:%s" % (settings['host'], settings['port'])
mit
8,596,083,419,467,708,000
24.535714
84
0.648951
false
John-Lin/invoice-net
website.py
1
1459
#!/usr/bin/env python # -*- coding: UTF-8 -*- from bottle import route, run, template, view #from bottle import jinja2_view from invoice_prize import * @route('/hello') def hello(): return "Hello World!" @route('/invoice') @view('invoice_template') def invoive(): (results, date) = get_result() date = date[0].decode('UTF-8') special = prize(results, 0) first = prize(results, 1) second = prize(results, 2) third = prize(results, 3) fourth = prize(results, 4) fifth = prize(results, 5) sixth = prize(results, 6) sixth_plus = prize(results, 7) special2 = prize(results, 8) return dict(date=date, special2=special2, special=special, first=first, second=second, third=third, fourth=fourth, fifth=fifth, sixth=sixth, sixth_plus=sixth_plus) @route('/invoice_M') @view('invoiceM_template') def invoive(): (results, date) = get_result() date = date[0].decode('UTF-8') special = prize(results, 0) first = prize(results, 1) second = prize(results, 2) third = prize(results, 3) fourth = prize(results, 4) fifth = prize(results, 5) sixth = prize(results, 6) sixth_plus = prize(results, 7) special2 = prize(results, 8) return dict(date=date, special2=special2, special=special, first=first, second=second, third=third, fourth=fourth, fifth=fifth, sixth=sixth, sixth_plus=sixth_plus) run(host='localhost', port=8080, debug=True, reloader=True)
mit
5,745,852,764,212,994,000
27.607843
62
0.655243
false
jeonghoonkang/BerePi
apps/data.go.kr/get_public_micro_particle.py
1
3613
# -*- coding: utf-8 -*- # Author : https://github.com/kmlee408 # https://github.com/jeonghoonkang ''' 부산 URL= http://openapi.airkorea.or.kr/openapi/services/rest/ArpltnInforInqireSvc/getCtprvnRltmMesureDnsty?serviceKey=fCRWi0DoCfoCPMHyDwai3trva10y4qb8mh9aysoHzvLKDWw6Q2bWOsvuM4%2BsRdvE4dPiKqBFD7vj7%2FM2noCe2g%3D%3D&ver=1.3&pageSize=10&pageNo=1&sidoName=%EB%B6%80%EC%82%B0&startPage=1&numOfRows=100 실행 방법= $python mdust_pusan.py (지역을 바꾸고 싶으면 misaemunji 함수 안에 location = '경기' 와 같은 식으로 변경) (측정 가능 지역: 서울, 부산, 대구, 인천, 광주, 대전, 울산, 경기, 강원, 충북, 충남, 전북, 전남, 경북, 경남, 제주, 세종) ''' import requests from urllib import urlencode, quote_plus from bs4 import BeautifulSoup import pandas as pd import keytxt # 서비스키는 data.go.kr 에서 받아야 함 # https://www.data.go.kr/dataset/15000581/openapi.do?mypageFlag=Y service_key = keytxt.key def misaemunji(service_key, location=None, spot=None): #location으로 가능한 것: 서울, 부산, 대구, 인천, 광주, 대전, 울산, 경기, 강원, 충북, 충남, 전북, 전남, 경북, 경남, 제주, 세종 #시도별 실시간 측정 조회 api URL ='http://openapi.airkorea.or.kr/openapi/services/rest/ArpltnInforInqireSvc/getCtprvnRltmMesureDnsty?serviceKey=' # URL 인자 설정 및 인코딩 queryParams = '&' + urlencode({quote_plus('numOfRows') : '100', # 최대로 설정 quote_plus('pageSize'): '10', quote_plus('pageNo') : '1', quote_plus('startPage') :'1', quote_plus('sidoName') : location, quote_plus('ver') : '1.3' }) if location == None : exit ('you shoud write location such like 부산') r = requests.get(URL+service_key+queryParams) html = r.text soup = BeautifulSoup(html, 'html.parser') #parsing info_ = soup.select('item') misae_station = {} for info__ in info_: datetime_ = info__.datatime.text list_ = [str(info__.pm10value.text),str(info__.pm25value.text)] # list 미세먼지 측정값 2가지 misae_station[info__.stationname.text.encode('utf-8')] =list_ # misae_station 은 기상대 이름별로 pm2.5, pm10 데이터를 담고 있음 #dataframe 생성 index_list = ['미세먼지10','초미세먼지2.5'] df = pd.DataFrame(misae_station, index = index_list) if spot != None : if spot in misae_station: ''' print('측정시간 : ' + str(datetime_)), 2018-11-08 20:00 print('측정지역 : ') print(location) print(spot) print('(단위 : ㎍/㎥)') print misae_station[spot][1] ''' return (str(datetime_), str(spot), 'pm2.5', misae_station[spot][1] ) def get_public_mise(loc='서울', station='강남구'): kangnam = misaemunji(service_key, location=loc, spot=station) return kangnam if __name__ == '__main__': kangnam = misaemunji(service_key, location='서울', spot='강남구') #location으로 가능한 것: 서울, 부산, 대구, 인천, 광주, 대전, 울산, 경기, 강원, 충북, 충남, 전북, 전남, 경북, 경남, 제주, 세종 print kangnam
bsd-2-clause
2,974,692,860,236,816,000
36.134146
300
0.560601
false
cysuncn/python
spark/crm/PROC_O_LNA_XDXT_ENT_AUTH.py
1
2786
#coding=UTF-8 from pyspark import SparkContext, SparkConf, SQLContext, Row, HiveContext from pyspark.sql.types import * from datetime import date, datetime, timedelta import sys, re, os st = datetime.now() conf = SparkConf().setAppName('PROC_O_LNA_XDXT_ENT_AUTH').setMaster(sys.argv[2]) sc = SparkContext(conf = conf) sc.setLogLevel('WARN') if len(sys.argv) > 5: if sys.argv[5] == "hive": sqlContext = HiveContext(sc) else: sqlContext = SQLContext(sc) hdfs = sys.argv[3] dbname = sys.argv[4] #处理需要使用的日期 etl_date = sys.argv[1] #etl日期 V_DT = etl_date #上一日日期 V_DT_LD = (date(int(etl_date[0:4]), int(etl_date[4:6]), int(etl_date[6:8])) + timedelta(-1)).strftime("%Y%m%d") #月初日期 V_DT_FMD = date(int(etl_date[0:4]), int(etl_date[4:6]), 1).strftime("%Y%m%d") #上月末日期 V_DT_LMD = (date(int(etl_date[0:4]), int(etl_date[4:6]), 1) + timedelta(-1)).strftime("%Y%m%d") #10位日期 V_DT10 = (date(int(etl_date[0:4]), int(etl_date[4:6]), int(etl_date[6:8]))).strftime("%Y-%m-%d") V_STEP = 0 O_CI_XDXT_ENT_AUTH = sqlContext.read.parquet(hdfs+'/O_CI_XDXT_ENT_AUTH/*') O_CI_XDXT_ENT_AUTH.registerTempTable("O_CI_XDXT_ENT_AUTH") #任务[21] 001-01:: V_STEP = V_STEP + 1 sql = """ SELECT A.CUSTOMERID AS CUSTOMERID ,A.SERIALNO AS SERIALNO ,A.CERTTYPE AS CERTTYPE ,A.AUTHDATE AS AUTHDATE ,A.CERTNAME AS CERTNAME ,A.CERTID AS CERTID ,A.CERTRESULT AS CERTRESULT ,A.CERTORG AS CERTORG ,A.VALIDDATE AS VALIDDATE ,A.INPUTORGID AS INPUTORGID ,A.INPUTUSERID AS INPUTUSERID ,A.INPUTDATE AS INPUTDATE ,A.REMARK AS REMARK ,A.TRADENAME AS TRADENAME ,A.NAME_RENDING AS NAME_RENDING ,A.FR_ID AS FR_ID ,V_DT AS ODS_ST_DATE ,'LNA' AS ODS_SYS_ID FROM O_CI_XDXT_ENT_AUTH A --企业资质与认证信息 """ sql = re.sub(r"\bV_DT\b", "'"+V_DT10+"'", sql) F_CI_XDXT_ENT_AUTH = sqlContext.sql(sql) F_CI_XDXT_ENT_AUTH.registerTempTable("F_CI_XDXT_ENT_AUTH") dfn="F_CI_XDXT_ENT_AUTH/"+V_DT+".parquet" F_CI_XDXT_ENT_AUTH.cache() nrows = F_CI_XDXT_ENT_AUTH.count() F_CI_XDXT_ENT_AUTH.write.save(path=hdfs + '/' + dfn, mode='overwrite') F_CI_XDXT_ENT_AUTH.unpersist() ret = os.system("hdfs dfs -rm -r /"+dbname+"/F_CI_XDXT_ENT_AUTH/"+V_DT_LD+".parquet") et = datetime.now() print("Step %d start[%s] end[%s] use %d seconds, insert F_CI_XDXT_ENT_AUTH lines %d") % (V_STEP, st.strftime("%H:%M:%S"), et.strftime("%H:%M:%S"), (et-st).seconds, nrows)
gpl-3.0
4,066,141,725,929,621,000
37.140845
170
0.574225
false
rowinggolfer/openmolar2
src/lib_openmolar/admin/db_orm/admin_teeth_present.py
1
3093
#! /usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### ## ## ## Copyright 2010-2012, Neil Wallace <[email protected]> ## ## ## ## This program is free software: you can redistribute it and/or modify ## ## it under the terms of the GNU General Public License as published by ## ## the Free Software Foundation, either version 3 of the License, or ## ## (at your option) any later version. ## ## ## ## This program is distributed in the hope that it will be useful, ## ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## ## GNU General Public License for more details. ## ## ## ## You should have received a copy of the GNU General Public License ## ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## ## ## ############################################################################### ''' Provides a DemoGenerator for teeth_present table provides schema and insert query for the teeth_present table data on which teeth are present in the patients mouth ''' from random import randint from PyQt4 import QtSql from lib_openmolar.common.db_orm import InsertableRecord TABLENAME = "teeth_present" class DemoGenerator(object): def __init__(self, database): q_query= QtSql.QSqlQuery( "select min(ix), max(ix) from patients", database) if q_query.first(): self.min_patient_id = q_query.value(0).toInt()[0] self.max_patient_id = q_query.value(1).toInt()[0] else: self.min_patient_id, self.max_patient_id = 0,0 self.length = self.max_patient_id - self.min_patient_id self.record = InsertableRecord(database, TABLENAME) self.record.remove(self.record.indexOf("dent_key")) self.record.remove(self.record.indexOf('checked_date')) def demo_queries(self): ''' return a list of queries to populate a demo database ''' for patient_id in xrange(self.min_patient_id, self.max_patient_id+1): self.record.clearValues() #set values, or allow defaults self.record.setValue('patient_id', patient_id) self.record.setValue('checked_by', 'demo_installer') yield self.record.insert_query if __name__ == "__main__": from lib_openmolar.admin.connect import DemoAdminConnection sc = DemoAdminConnection() sc.connect() builder = DemoGenerator(sc) print builder.demo_queries().next()
gpl-3.0
-1,188,628,920,479,698,700
41.369863
79
0.515681
false
dormouse/read
database/models.py
1
5390
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import datetime from sqlalchemy import Column, ForeignKey from sqlalchemy.dialects.sqlite import INTEGER, TEXT, DATETIME, BOOLEAN from sqlalchemy.orm import column_property, relationship from sqlalchemy.sql import func from sqlalchemy import and_ from database.database import book_base, rss_base class BookJob(book_base): """ Jobs for book """ __tablename__ = 'book_job' id = Column(INTEGER, primary_key=True) type_code = Column(TEXT, ForeignKey('book_dict.code')) type = relationship( "BookDict", primaryjoin="and_(BookJob.type_code==BookDict.code," "BookDict.name=='job_type')", backref='job_type' ) file_name = Column(TEXT) url = Column(TEXT) create_time = Column(DATETIME, default=datetime.datetime.utcnow) last_update = Column(DATETIME, default=datetime.datetime.utcnow) status_code = Column(TEXT, ForeignKey('book_dict.code')) status = relationship( "BookDict", primaryjoin="and_(BookJob.status_code==BookDict.code," "BookDict.name=='job_status')", backref='job_status' ) def __init__(self, url): self.url = url def __repr__(self): return 'BookJob %s' % self.url class BookDict(book_base): """ BookDict """ __tablename__ = 'book_dict' id = Column(INTEGER, primary_key=True) name = Column(TEXT) code = Column(TEXT) value = Column(TEXT) class Node(rss_base): __tablename__ = 'node' id = Column(INTEGER, primary_key=True) parent_id = Column(INTEGER, ForeignKey('node.id')) category = Column(TEXT) children = relationship("Node") data_id = Column(INTEGER) # RssAction.id or RssFolder.id or RssFeed.id rank = Column(INTEGER) # rank for display in tree def __repr__(self): return "Node:{}".format(self.id) class RssCommand(rss_base): __tablename__ = 'rss_command' id = Column(INTEGER, primary_key=True) title = Column(TEXT) command = Column(TEXT) def __repr__(self): return "Commander:{}".format(self.title) class RssFolder(rss_base): __tablename__ = 'rss_folder' id = Column(INTEGER, primary_key=True) title = Column(TEXT) def __repr__(self): return "folder:{}".format(self.title) class RssFeed(rss_base): __tablename__ = 'rss_feed' id = Column(INTEGER, primary_key=True) title = Column(TEXT) subtitle = Column(TEXT) url = Column(TEXT) encoding = Column(TEXT) language = Column(TEXT) author = Column(TEXT) site_url = Column(TEXT) published = Column(DATETIME) updated = Column(DATETIME) def __repr__(self): return "feed:{}".format(self.title) class RssItem(rss_base): __tablename__ = 'rss_item' id = Column(INTEGER, primary_key=True) author = Column(TEXT) feed_id = Column(INTEGER, ForeignKey('rss_feed.id'), info={'relationFieldName': 'feed'} ) feed = relationship("RssFeed") published = Column(DATETIME) link = Column(TEXT) title = Column(TEXT) summary = Column(TEXT) content = Column(TEXT) is_read = Column(BOOLEAN) @property def foreignKeyFieldNames(self): # a list of name of field which have foreign key cols = self.__table__.columns fieldNames = [col.name for col in cols] return filter(self.isForeignKeyField, fieldNames) @property def foreignKeyRelationFieldNames(self): return [self.relationFieldName(name) for name in self.foreignKeyFieldNames] @property def allFieldNames(self): cols = self.__table__.columns fieldNames = [col.name for col in cols] return fieldNames + self.foreignKeyRelationFieldNames def __repr__(self): return '<item {0}>'.format(self.title) def updateByDict(self, dictData): for name, value in dictData.item_rows(): setattr(self, name, value) def isForeignKeyField(self, name): """ 判断是否是一个外键字段 """ if self.__table__.columns[name].foreign_keys: return True else: return False def relationFieldName(self, name): """ 返回外键字段对应的关系字段 """ cols = self.__table__.columns relationName = dict(cols)[name].info['relationFieldName'] return relationName def valuesAsDict(self, fieldNames=None): names = fieldNames if fieldNames else self.allFieldNames values = self.valuesAsList(names) return dict(zip(names, values)) def valuesAsList(self, fieldNames): """ 根据字段列表返回相应的值 :param fieldNames: 字段名称,类型:list :return: 字段值,类型: list """ return [self.fieldValue(name) for name in fieldNames] def fieldValue(self, fieldName): """ 根据字段名称返回其值,关系字段返回其中文字典短名称 :param fieldName: 字段名称 :return: 字段值 """ value = getattr(self, fieldName, None) if fieldName == 'published': value = value.strftime("%Y年%m月%d日 %X") return value # return value.value_short if isinstance(value, ModelCqDict) else value
lgpl-3.0
7,813,540,119,064,889,000
27.839779
79
0.615134
false
fengkaicnic/traffic
traffic/crypto.py
1
12797
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Wrappers around standard crypto data elements. Includes root and intermediate CAs, SSH key_pairs and x509 certificates. """ from __future__ import absolute_import import hashlib import os import string from traffic import context from traffic import db from traffic import exception from traffic import flags from traffic.openstack.common import cfg from traffic.openstack.common import log as logging from traffic.openstack.common import timeutils from traffic import utils LOG = logging.getLogger(__name__) crypto_opts = [ cfg.StrOpt('ca_file', default='cacert.pem', help=_('Filename of root CA')), cfg.StrOpt('key_file', default=os.path.join('private', 'cakey.pem'), help=_('Filename of private key')), cfg.StrOpt('crl_file', default='crl.pem', help=_('Filename of root Certificate Revocation List')), cfg.StrOpt('keys_path', default='$state_path/keys', help=_('Where we keep our keys')), cfg.StrOpt('ca_path', default='$state_path/CA', help=_('Where we keep our root CA')), cfg.BoolOpt('use_project_ca', default=False, help=_('Should we use a CA for each project?')), cfg.StrOpt('user_cert_subject', default='/C=US/ST=California/O=OpenStack/' 'OU=trafficDev/CN=%.16s-%.16s-%s', help=_('Subject for certificate for users, %s for ' 'project, user, timestamp')), cfg.StrOpt('project_cert_subject', default='/C=US/ST=California/O=OpenStack/' 'OU=trafficDev/CN=project-ca-%.16s-%s', help=_('Subject for certificate for projects, %s for ' 'project, timestamp')), ] FLAGS = flags.FLAGS FLAGS.register_opts(crypto_opts) def ca_folder(project_id=None): if FLAGS.use_project_ca and project_id: return os.path.join(FLAGS.ca_path, 'projects', project_id) return FLAGS.ca_path def ca_path(project_id=None): return os.path.join(ca_folder(project_id), FLAGS.ca_file) def key_path(project_id=None): return os.path.join(ca_folder(project_id), FLAGS.key_file) def crl_path(project_id=None): return os.path.join(ca_folder(project_id), FLAGS.crl_file) def fetch_ca(project_id=None): if not FLAGS.use_project_ca: project_id = None ca_file_path = ca_path(project_id) if not os.path.exists(ca_file_path): raise exception.CryptoCAFileNotFound(project_id=project_id) with open(ca_file_path, 'r') as cafile: return cafile.read() def ensure_ca_filesystem(): """Ensure the CA filesystem exists.""" ca_dir = ca_folder() if not os.path.exists(ca_path()): genrootca_sh_path = os.path.join(os.path.dirname(__file__), 'CA', 'genrootca.sh') start = os.getcwd() utils.ensure_tree(ca_dir) os.chdir(ca_dir) utils.execute("sh", genrootca_sh_path) os.chdir(start) def _generate_fingerprint(public_key_file): (out, err) = utils.execute('ssh-keygen', '-q', '-l', '-f', public_key_file) fingerprint = out.split(' ')[1] return fingerprint def generate_fingerprint(public_key): with utils.tempdir() as tmpdir: try: pubfile = os.path.join(tmpdir, 'temp.pub') with open(pubfile, 'w') as f: f.write(public_key) return _generate_fingerprint(pubfile) except exception.ProcessExecutionError: raise exception.InvalidKeypair() def generate_key_pair(bits=1024): # what is the magic 65537? with utils.tempdir() as tmpdir: keyfile = os.path.join(tmpdir, 'temp') utils.execute('ssh-keygen', '-q', '-b', bits, '-N', '', '-t', 'rsa', '-f', keyfile, '-C', 'Generated by traffic') fingerprint = _generate_fingerprint('%s.pub' % (keyfile)) if not os.path.exists(keyfile): raise exception.FileNotFound(keyfile) private_key = open(keyfile).read() public_key_path = keyfile + '.pub' if not os.path.exists(public_key_path): raise exception.FileNotFound(public_key_path) public_key = open(public_key_path).read() return (private_key, public_key, fingerprint) def fetch_crl(project_id): """Get crl file for project.""" if not FLAGS.use_project_ca: project_id = None crl_file_path = crl_path(project_id) if not os.path.exists(crl_file_path): raise exception.CryptoCRLFileNotFound(project_id) with open(crl_file_path, 'r') as crlfile: return crlfile.read() def decrypt_text(project_id, text): private_key = key_path(project_id) if not os.path.exists(private_key): raise exception.ProjectNotFound(project_id=project_id) try: dec, _err = utils.execute('openssl', 'rsautl', '-decrypt', '-inkey', '%s' % private_key, process_input=text) return dec except exception.ProcessExecutionError: raise exception.DecryptionFailure() def revoke_cert(project_id, file_name): """Revoke a cert by file name.""" start = os.getcwd() os.chdir(ca_folder(project_id)) # NOTE(vish): potential race condition here utils.execute('openssl', 'ca', '-config', './openssl.cnf', '-revoke', file_name) utils.execute('openssl', 'ca', '-gencrl', '-config', './openssl.cnf', '-out', FLAGS.crl_file) os.chdir(start) def revoke_certs_by_user(user_id): """Revoke all user certs.""" admin = context.get_admin_context() for cert in db.certificate_get_all_by_user(admin, user_id): revoke_cert(cert['project_id'], cert['file_name']) def revoke_certs_by_project(project_id): """Revoke all project certs.""" # NOTE(vish): This is somewhat useless because we can just shut down # the vpn. admin = context.get_admin_context() for cert in db.certificate_get_all_by_project(admin, project_id): revoke_cert(cert['project_id'], cert['file_name']) def revoke_certs_by_user_and_project(user_id, project_id): """Revoke certs for user in project.""" admin = context.get_admin_context() for cert in db.certificate_get_all_by_user_and_project(admin, user_id, project_id): revoke_cert(cert['project_id'], cert['file_name']) def _project_cert_subject(project_id): """Helper to generate user cert subject.""" return FLAGS.project_cert_subject % (project_id, timeutils.isotime()) def _user_cert_subject(user_id, project_id): """Helper to generate user cert subject.""" return FLAGS.user_cert_subject % (project_id, user_id, timeutils.isotime()) def generate_x509_cert(user_id, project_id, bits=1024): """Generate and sign a cert for user in project.""" subject = _user_cert_subject(user_id, project_id) with utils.tempdir() as tmpdir: keyfile = os.path.abspath(os.path.join(tmpdir, 'temp.key')) csrfile = os.path.join(tmpdir, 'temp.csr') utils.execute('openssl', 'genrsa', '-out', keyfile, str(bits)) utils.execute('openssl', 'req', '-new', '-key', keyfile, '-out', csrfile, '-batch', '-subj', subject) private_key = open(keyfile).read() csr = open(csrfile).read() (serial, signed_csr) = sign_csr(csr, project_id) fname = os.path.join(ca_folder(project_id), 'newcerts/%s.pem' % serial) cert = {'user_id': user_id, 'project_id': project_id, 'file_name': fname} db.certificate_create(context.get_admin_context(), cert) return (private_key, signed_csr) def _ensure_project_folder(project_id): if not os.path.exists(ca_path(project_id)): geninter_sh_path = os.path.join(os.path.dirname(__file__), 'CA', 'geninter.sh') start = os.getcwd() os.chdir(ca_folder()) utils.execute('sh', geninter_sh_path, project_id, _project_cert_subject(project_id)) os.chdir(start) def generate_vpn_files(project_id): project_folder = ca_folder(project_id) key_fn = os.path.join(project_folder, 'server.key') crt_fn = os.path.join(project_folder, 'server.crt') if os.path.exists(crt_fn): return # NOTE(vish): The 2048 is to maintain compatibility with the old script. # We are using "project-vpn" as the user_id for the cert # even though that user may not really exist. Ultimately # this will be changed to be launched by a real user. At # that point we will can delete this helper method. key, csr = generate_x509_cert('project-vpn', project_id, 2048) with open(key_fn, 'w') as keyfile: keyfile.write(key) with open(crt_fn, 'w') as crtfile: crtfile.write(csr) def sign_csr(csr_text, project_id=None): if not FLAGS.use_project_ca: project_id = None if not project_id: return _sign_csr(csr_text, ca_folder()) _ensure_project_folder(project_id) project_folder = ca_folder(project_id) return _sign_csr(csr_text, ca_folder(project_id)) def _sign_csr(csr_text, ca_folder): with utils.tempdir() as tmpdir: inbound = os.path.join(tmpdir, 'inbound.csr') outbound = os.path.join(tmpdir, 'outbound.csr') with open(inbound, 'w') as csrfile: csrfile.write(csr_text) LOG.debug(_('Flags path: %s'), ca_folder) start = os.getcwd() # Change working dir to CA utils.ensure_tree(ca_folder) os.chdir(ca_folder) utils.execute('openssl', 'ca', '-batch', '-out', outbound, '-config', './openssl.cnf', '-infiles', inbound) out, _err = utils.execute('openssl', 'x509', '-in', outbound, '-serial', '-noout') serial = string.strip(out.rpartition('=')[2]) os.chdir(start) with open(outbound, 'r') as crtfile: return (serial, crtfile.read()) # Copyright (c) 2006-2009 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # http://code.google.com/p/boto def compute_md5(fp): """Compute an md5 hash. :type fp: file :param fp: File pointer to the file to MD5 hash. The file pointer will be reset to the beginning of the file before the method returns. :rtype: tuple :returns: the hex digest version of the MD5 hash """ m = hashlib.md5() fp.seek(0) s = fp.read(8192) while s: m.update(s) s = fp.read(8192) hex_md5 = m.hexdigest() # size = fp.tell() fp.seek(0) return hex_md5
apache-2.0
-3,505,826,213,502,774,300
34.64624
79
0.616238
false
arpitmathur/CourseAvailabilityChecker
courseCheck.py
1
1898
__author__ = 'Arpit' import find import time import sys import gmailer #initialize datastructures courses = [] semester = [] email = [] flag = 0 #parse changeme with open('CHANGEME.txt') as fp: for line in fp: if(line[0] == "\n" or line[0] == "#"): continue line = line.rstrip() if(line == "START" or line == "EMAIL START"): continue elif(line == "EMAIL END"): break elif(line == "END"): flag = 2 elif(flag == 0): semester = (line.rsplit(',')) flag = 1 elif(flag == 1): courses.append(line.rsplit(',')) elif(flag == 2): email = (line.rsplit(',')) flag = 0 count = 0 sleepTime = 300 #while a course isn't available while courses: count = count + 1 if count!=1: print ("Please wait for " + str(sleepTime/60) + " minutes before the next attempt!") #sleep five minutes time.sleep(sleepTime) print ("Aaaaaaaand we're back! \n") print ('Attempt: ' + str(count)) try: for course in list(courses): print ("Checking: " + str(course[0]) + ' ' + str(course[1]) + ' - CRN: ' + str(course[2])) #check availability flag = find.search(semester, course) if( flag == 1): print ('Success!') print ('Sending email now!') courses.remove(course) try: gmailer.sendemail(email[0], email[0], "", str(course[0]) + " " + str(course[1]) + " IS OPEN", "The CRN is " + str(course[2]) + ". Register now!", email[0], email[1] ) except: raise ValueError() else: print ("It's Closed!") except ValueError: print ("Fix your email credentials!") sys.exit() except: print ("oops")
mit
7,397,628,063,815,961,000
27.343284
186
0.494731
false
argonnexraydetector/RoachFirmPy
Roach2DevelopmentTree/pyfiles/pca.py
1
3520
import numpy as np from scipy import linalg import random as rnd import matplotlib import matplotlib.pyplot ''' execfile('pca.py') p = pulseTrain(1000) e = eigens(p) plot(e['eigenvectors'][0]) plot(e['eigenvectors'][1]) testan(e,2); ''' print 'running pca.py' def makePulse(L=100.0,t1=10.0,t2=1.0,a1=1.0,a2=1.0,n=0.1): rnd.seed(None) e1=a1*np.exp(-1*np.arange(L)/t1); e2=a2*(1.0 - np.exp(-1*np.arange(L)/t2)); p1=e1*e2 noise=[] for k in range(int(L)): noise.append(rnd.gauss(0.0,n)) noise=np.array(noise) p1=p1+noise return(p1) def pulseTrain(N=100): plist=[] for n in range(N): amp = 0.5 + 0.02*rnd.random() amp2 = 0.2 + 0.02*rnd.random() xx=rnd.random() if xx>=0.5: tc = 10 else: tc = 4 pls=makePulse( a1=amp, a2=amp2, t2=4, t1=tc, n=0.001) plist.append(pls.tolist()) D=np.array(plist).transpose() plotTrain(D) return(D) def plotTrain(D): matplotlib.pyplot.figure(1) N=D.shape[0] L=D.shape[1] matplotlib.pyplot.clf() for k in range(N): matplotlib.pyplot.plot(D.transpose()[k]) matplotlib.pyplot.figure(2) matplotlib.pyplot.clf() matplotlib.pyplot.pcolor(D) def eigens(D): Z=np.dot(D,D.transpose() ) #Z =np.cov(D) evals,evecs=linalg.eig(Z) evals = np.real(evals) evecs = np.real(evecs) matplotlib.pyplot.figure(1) matplotlib.pyplot.clf() matplotlib.pyplot.plot(np.real(evals)) matplotlib.pyplot.figure(2) matplotlib.pyplot.clf() matplotlib.pyplot.pcolor(evecs * evals) matplotlib.pyplot.figure(3) matplotlib.pyplot.clf() matplotlib.pyplot.pcolor(Z) matplotlib.pyplot.figure(4) matplotlib.pyplot.plot(evecs * evals) retdata = {} retdata['eigenvalues'] = np.real(evals) retdata['eigenvectors'] = np.real(evecs).transpose() retdata['covariance'] = Z return(retdata) def eigenPulseTrain(eigendata,numcomponents=2,N=100): pulsestruct =np.array( [ [0.1,1.0],[1.0,0.1] , [0.5,0.5] , [0.1,-1.0]]) pulses = [] for n in range(N): pulse = np.array([0.0] * len(eigendata['eigenvectors'][0]) ) r = rand() psindex = floor(rand() * len(pulsestruct)) ps = pulsestruct[psindex] ps = ps* (1.0 + 0.2*rand(numcomponents)) for c in range(numcomponents): eigpulse = eigendata['eigenvectors'][c] pulse = pulse + eigpulse * ps[c] pulses.append(pulse) pulses = np.array(pulses) figure(1) clf() plot(pulses.transpose()) return(pulses) def testan(eigendata,numcomponents): #p = pulseTrain().transpose() p = eigenPulseTrain(eigendata) figure(10) Rvals = [] for pulse in p: rvalp = [0.0] * (1+numcomponents) energy = 0.0 for c in range(numcomponents): filt = eigendata['eigenvectors'][c] fp = np.convolve(pulse,filt) rvalp[c] =(np.dot(fp,fp)) #rvalp[c] =max(fp) energy = energy + rvalp[c] rvalp[numcomponents] = energy Rvals.append(rvalp) if numcomponents==2: plot(rvalp[0],rvalp[1],'.') return(np.array(Rvals) )
gpl-2.0
-1,943,123,093,516,862,700
20.469512
75
0.537216
false
why2pac/dp-tornado
dp_tornado/helper/io/image/__init__.py
1
12413
# -*- coding: utf-8 -*- import tempfile from dp_tornado.engine.helper import Helper as dpHelper class ImageHelper(dpHelper): def compare(self, i1, i2, error=0): i1 = self.load(i1) i2 = self.load(i2) if not i1 or not i2: return None s1 = i1.size s2 = i2.size if s1[0] != s2[0] or s2[1] != s2[1]: print('size ne,', s1, s2) return False i1 = i1.load() i2 = i2.load() for i in range(s1[0]): for j in range(s1[1]): if i1[i, j] != i2[i, j]: if error: for k in range(len(i1[i, j])): if abs(i1[i, j][k] - i2[i, j][k]) > error: print('pixel ne,', i1[i, j], i2[i, j], abs(i1[i, j][k] - i2[i, j][k]), error) return False else: return False return True def _driver(self, options=None, **kwargs): if not options and kwargs: options = kwargs if options and 'driver' in options and options['driver'] == 'wand': return self.helper.io.image.driver.wand return self.helper.io.image.driver.pillow def load(self, src, options=None, **kwargs): if not options and kwargs: options = kwargs tmp = None drivers = [] pillow_image = self.helper.io.image.driver.pillow.Image wand_image = self.helper.io.image.driver.wand.Image if pillow_image: drivers.append(pillow_image) if wand_image: drivers.append(wand_image) try: if isinstance(src, tuple(drivers)): return src elif self.helper.web.url.validate(src): code, res = self.helper.web.http.get.raw(src) if code != 200: raise Exception('The specified image url is invalid.') tmp = tempfile.NamedTemporaryFile(delete=False) tmp.write(res) tmp.close() tmp = tmp.name else: tmp = None if not tmp and not src: raise Exception('The specified image is invalid.') img = self._driver(options=options).load(tmp if tmp else src) if not img: raise Exception('The specified image is invalid.') return img except Exception as e: self.logging.exception(e) return False finally: if tmp: self.helper.io.file.remove(tmp) def execute(self, src, fn, options=None, **kwargs): if not options and kwargs: options = kwargs img = self.load(src, options=options) if not img: return False try: return fn(img, options) except Exception as e: self.logging.exception(e) return False def size(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): if not img: return -1, -1 return img.width, img.height return self.execute(src, fn, options=options) def crop(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): crop = kwargs['crop'] if 'crop' in kwargs else None if not crop: return img e_top = 0 e_left = 0 e_right = 0 e_bottom = 0 if self.helper.misc.type.check.string(crop): crop = crop.split(',') crop = [int(e.strip()) for e in crop] if self.helper.misc.type.check.numeric(crop): e_top = e_left = e_right = e_bottom = crop elif isinstance(crop, (tuple, list)): if len(crop) == 1: e_top = e_left = e_right = e_bottom = crop[0] elif len(crop) == 2: e_top = e_bottom = crop[0] e_left = e_right = crop[1] elif len(crop) == 4: e_top = crop[0] e_right = crop[1] e_bottom = crop[2] e_left = crop[3] img = self._driver(options=kwargs).crop(img, e_left, e_top, img.size[0] - e_right, img.size[1] - e_bottom) return img return self.execute(src, fn, options=options) def border(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): border = int(kwargs['border']) if 'border' in kwargs else 0 border_color = kwargs['border_color'] if 'border_color' in kwargs else '#000000' if not border: return img if '_org' in kwargs and 'radius' in kwargs and kwargs['radius']: return img img = self._driver(options=kwargs).border(img, border, border_color) return img return self.execute(src, fn, options=options) def radius(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): radius = int(kwargs['radius'] or 0) if 'radius' in kwargs else None border = int(kwargs['border']) if 'border' in kwargs else 0 border_color = kwargs['border_color'] if 'border_color' in kwargs else '#000000' if not radius: return img elif '__radius_processed__' in img.__dict__: return img img = self._driver(options=kwargs).radius(img, radius, border, border_color) img.__dict__['__radius_processed__'] = True return img return self.execute(src, fn, options=options) def colorize(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): colorize = kwargs['colorize'] if 'colorize' in kwargs else None if not colorize: return img img = self._driver(options=kwargs).colorize(img, colorize) return img return self.execute(src, fn, options=options) def resize(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): size = kwargs['size'] if 'size' in kwargs else None mode = kwargs['mode'] if 'mode' in kwargs else None scale = int(kwargs['scale']) if 'scale' in kwargs else 1 limit = True if 'limit' in kwargs and kwargs['limit'] else False border = int(kwargs['border']) if 'border' in kwargs else 0 if not size: return img width_new, height_new = size width_origin, height_origin = img.size if scale > 1: if limit: scale_max_width = float(width_origin) / float(width_new) scale_max_height = float(height_origin) / float(height_new) scale_max = min(scale, scale_max_width, scale_max_height) else: scale_max = scale if scale_max > 1: width_new = int(width_new * scale_max) height_new = int(height_new * scale_max) if not width_new: width_new = width_origin * height_new / height_origin mode = self.helper.io.image.mode.resize if not height_new: height_new = height_origin * width_new / width_origin mode = self.helper.io.image.mode.resize if border: width_new -= border * 2 height_new -= border * 2 if not mode: mode = self.helper.io.image.mode.resize if mode not in self.helper.io.image.mode.modes: raise Exception('The specified mode is not supported.') seqs = [] for i, im in self._driver(options=kwargs).iter_seqs(img, kwargs): # Image Resizing if mode == self.helper.io.image.mode.center: im = self._driver(options=kwargs).resize(im, width_new, height_new, kwargs) elif mode == self.helper.io.image.mode.fill: ratio_origin = float(width_origin) / float(height_origin) ratio_new = float(width_new) / float(height_new) if ratio_origin > ratio_new: tw = int(round(height_new * ratio_origin)) im = self._driver(options=kwargs).resize(im, tw, height_new) left = int(round((tw - width_new) / 2.0)) im = self._driver(options=kwargs).crop(im, left, 0, left + width_new, height_new) elif ratio_origin < ratio_new: th = int(round(width_new / ratio_origin)) im = self._driver(options=kwargs).resize(im, width_new, th) top = int(round((th - height_new) / 2.0)) im = self._driver(options=kwargs).crop(im, 0, top, width_new, top + height_new) else: im = self._driver(options=kwargs).resize(im, width_new, height_new) elif mode == self.helper.io.image.mode.resize: if width_new > width_origin or height_new > height_origin: width_new = width_origin height_new = height_origin im = self._driver(options=kwargs).resize(im, width_new, height_new) seqs.append(im) img = seqs[0] seqs.remove(img) img.__dict__['__frames__'] = seqs return img return self.execute(src, fn, options=options) def save(self, src, options=None, **o_kwargs): if not options and o_kwargs: options = o_kwargs def fn(img, kwargs): ext = kwargs['format'] if 'format' in kwargs else None dest = kwargs['dest'] if 'dest' in kwargs else None if not dest: return None if not ext and self.helper.misc.type.check.string(dest): ext = self.helper.io.path.ext(dest, dot='').lower() if not ext and self.helper.misc.type.check.string(src): ext = self.helper.io.path.ext(src, dot='').lower() if not ext and '_org' in kwargs and kwargs['_org'] and self.helper.misc.type.check.string(kwargs['_org']): ext = self.helper.io.path.ext(kwargs['_org'], dot='').lower() if dest == 's3': # TODO return False if not self._driver(options=kwargs).save(img, ext, dest, kwargs): return False return True return self.execute(src, fn, options=options) def manipulate(self, src, options=None, **kwargs): if not options and kwargs: options = kwargs options['_org'] = src try: img = self.load(src, options=options) # Crop img = self.crop(img, options=options) if not img: return False # Resize img = self.resize(img, options=options) if not img: return False # Radius img = self.radius(img, options=options) if not img: return False # Border img = self.border(img, options=options) if not img: return False # Colorize img = self.colorize(img, options=options) if not img: return False # Save saved = self.save(img, options=options) if saved is None: return img elif saved is False: return False return True except Exception as e: self.logging.exception(e) return False
mit
5,356,887,573,378,849,000
29.649383
118
0.498107
false
kgarrison343/recipe-site
polls/views.py
1
1213
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, Http404, HttpResponseRedirect from django.urls import reverse from django.views import generic from .models import Question, Choice # Create your views here. class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): return Question.objects.order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): return render(request, 'polls/detail.html', { 'question': question, 'error_message': "You didn't select a valid choice.", }) else: selected_choice.votes += 1 selected_choice.save() return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))
mit
-1,490,559,948,873,557,200
30.921053
82
0.693322
false
mads-bertelsen/McCode
tools/Python/mcrun/mcrun.py
1
12659
#!/usr/bin/env python3 from os import mkdir from os.path import isfile, isdir, abspath, dirname, basename, join from shutil import copyfile from optparse import OptionParser, OptionGroup, OptionValueError from decimal import Decimal, InvalidOperation from datetime import datetime from mccode import McStas, Process from optimisation import Scanner, LinearInterval, MultiInterval #import config import sys sys.path.append(join(dirname(__file__), '..')) from mccodelib import mccode_config from log import getLogger, setupLogger, setLogLevel, McRunException from log import DEBUG LOG = getLogger('main') # File path friendly date format (avoid ':' and white space) DATE_FORMAT_PATH = "%Y%m%d_%H%M%S" # Helper functions def build_checker(accept, msg='Invalid value'): ''' Build checker from accept() function ''' def checker(option, _opt_str, value, parser): ''' value must be acceptable ''' if not accept(value): raise OptionValueError('option %s: %s (was: "%s")' % \ (option, msg, value)) # Update parser with accepted value setattr(parser.values, option.dest, value) return checker def add_mcrun_options(parser): ''' Add option group for McRun options to parser ''' # McRun options opt = OptionGroup(parser, 'mcrun options') add = opt.add_option add('-c', '--force-compile', action='store_true', help='force rebuilding of instrument') add('-p', '--param', metavar='FILE', help='read parameters from file FILE') add('-N', '--numpoints', type=int, metavar='NP', help='set number of scan points') add('-L', '--list', action='store_true', help='use a fixed list of points for linear scanning') add('-M', '--multi', action='store_true', help='run a multi-dimensional scan') add('--autoplot', action='store_true', help='open plotter on generated dataset') add('--embed', action='store_true', default=True, help='store copy of instrument file in output directory') # Multiprocessing add('--mpi', metavar='NB_CPU', help='spread simulation over NB_CPU machines using MPI') add('--machines', metavar='machines', help='defines path of MPI machinefile to use in parallel mode') # Optimisation add('--optimise-file', metavar='FILE', help='store scan results in FILE ' '(defaults to: "mccode.dat")') add('--no-cflags', action='store_true', default=False, help='disable optimising compiler flags for faster compilation') add('--verbose', action='store_true', default=False, help='enable verbose output') add('--write-user-config', action='store_true', default=False, help='generate a user config file') parser.add_option_group(opt) def add_mcstas_options(parser): ''' Add option group for McStas options to parser ''' opt = OptionGroup(parser, 'Instrument options') add = opt.add_option # Misc options check_seed = build_checker(lambda seed: seed != 0, 'SEED cannot be 0') add('-s', '--seed', metavar='SEED', type=int, action='callback', callback=check_seed, help='set random seed (must be: SEED != 0)') add('-n', '--ncount', metavar='COUNT', type=float, default=1000000, help='set number of neutrons to simulate') add('-t', '--trace', action='store_true', default=False, help='enable trace of neutron through instrument') add('-g', '--gravitation', '--gravity', action='store_true', default=False, help='enable gravitation for all trajectories') # Data options dir_exists = lambda path: isdir(abspath(path)) def check_file(exist=True): ''' Validate the path to a file ''' if exist: is_valid = isfile else: def is_valid(path): ''' Ensure path to file exists and filename is provided ''' if path == "." or path == "./" or path == ".\\": return True if not dir_exists(dirname(path)): return False return not isdir(abspath(path)) return build_checker(is_valid, 'invalid path') add('-d', '--dir', metavar='DIR', type=str, action='callback', callback=check_file(exist=False), help='put all data files in directory DIR') add('--format', metavar='FORMAT', default='McStas', help='output data files using format FORMAT ' '(format list obtained from <instr>.%s -h)' % mccode_config.platform["EXESUFFIX"]) add('--no-output-files', action='store_true', default=False, help='Do not write any data files') # Information add('-i', '--info', action='store_true', default=False, help='Detailed instrument information') parser.add_option_group(opt) def expand_options(options): ''' Add extra options based on previous choices ''' # McCode version and library options.mccode_bin = mccode_config.configuration['MCCODE'] options.mccode_lib = mccode_config.configuration['MCCODE_LIB_DIR'] # MPI if options.mpi is not None: options.use_mpi = True options.cc = mccode_config.compilation['MPICC'] options.mpirun = mccode_config.compilation['MPIRUN'] else: options.use_mpi = False options.cc = mccode_config.compilation['CC'] # Output dir if options.dir is None: instr = options.instr instr = instr.endswith('.instr') and instr[:-6] or instr # use unique directory when unspecified options.dir = "%s_%s" % \ (basename(instr), datetime.strftime(datetime.now(), DATE_FORMAT_PATH)) # alert user LOG.info('No output directory specified (--dir)') # Output file if options.optimise_file is None: # use mccode.dat when unspecified options.optimise_file = '%s/mccode.dat' % options.dir def is_decimal(string): ''' Check if string is parsable as decimal/float ''' try: Decimal(string) return True except InvalidOperation: return False def get_parameters(options): ''' Get fixed and scan/optimise parameters ''' fixed_params = {} intervals = {} for param in options.params: if '=' in param: key, value = param.split('=', 1) interval = value.split(',') # When just one point is present, fix as constant if len(interval) == 1: fixed_params[key] = value else: LOG.debug('interval: %s', interval) intervals[key] = interval else: LOG.warning('Ignoring invalid parameter: "%s"', param) return (fixed_params, intervals) def find_instr_file(instr): # Remove [-mpi].out to avoid parsing a binary file instr = clean_quotes(instr) if instr.endswith("-mpi." + mccode_config.platform['EXESUFFIX']): instr = instr[:-(5 + len(mccode_config.platform['EXESUFFIX']))] if instr.endswith("." + mccode_config.platform['EXESUFFIX']): instr = instr[:-(1 + len(mccode_config.platform['EXESUFFIX']))] # Append ".instr" if needed if not isfile(instr) and isfile(instr + ".instr"): instr += ".instr" return instr def clean_quotes(string): ''' Remove all leading and ending quotes (" and \') ''' return string.strip('"' + "'") def main(): ''' Main routine ''' setupLogger() # Add options usage = ('usage: %prog [-cpnN] Instr [-sndftgahi] ' 'params={val|min,max|min,guess,max}...') parser = OptionParser(usage, version=mccode_config.configuration['MCCODE_VERSION']) add_mcrun_options(parser) add_mcstas_options(parser) # Parse options (options, args) = parser.parse_args() # Write user config file and exit if options.write_user_config: mccode_config.save_user_config() quit() # Extract instrument and parameters if len(args) == 0: print(parser.get_usage()) parser.exit() # Set path of instrument-file after locating it options.instr = find_instr_file(args[0]) if options.param: # load params from file text = open(options.param).read() import re params = re.findall('[^=^\s^t]+=[^=^\s^t]+', text) options.params = map(clean_quotes, params) else: # Clean out quotes (perl mcgui requires this step) options.params = map(clean_quotes, args[1:]) # On windows, ensure that backslashes in the filename are escaped if sys.platform == "win32": options.instr = options.instr.replace("\\","\\\\") # Fill out extra information expand_options(options) if options.verbose: setLogLevel(DEBUG) # Inform user of what is happening # TODO: More info? LOG.info('Using directory: "%s"' % options.dir) if options.dir == "." or options.dir == "./" or options == ".\\": LOG.warning('Existing files in "%s" will be overwritten!' % options.dir) LOG.warning(' - and datafiles catenated...') options.dir = ''; # Run McStas mcstas = McStas(options.instr) mcstas.prepare(options) (fixed_params, intervals) = get_parameters(options) # Indicate end of setup / start of computations LOG.info('===') if options.info: print('info!') mcstas.run(override_mpi=False) exit() # Set fixed parameters for key, value in fixed_params.items(): mcstas.set_parameter(key, value) # Check for linear scanning interval_points = None # Can't both do list and interval scanning if options.list and options.numpoints: raise OptionValueError('--numpoints cannot be used with --list') if options.list: if len(intervals) == 0: raise OptionValueError( '--list was chosen but no lists was presented.') pointlist=list(intervals.values()) points = len(pointlist[0]) if not(all(map(lambda i: len(i) == points, intervals.values()))): raise OptionValueError( 'All variables much have an equal amount of points.') interval_points = LinearInterval.from_list( points, intervals) scan = options.multi or options.numpoints if ((options.numpoints is not None and options.numpoints < 2) or (scan and options.numpoints is None)): raise OptionValueError( ('Cannot scan variable(s) %s using only one data point. ' 'Please use -N to specify the number of points.') % \ ', '.join(intervals.keys())) # Check that input is valid decimals if not all(map(lambda i: len(i) == 2 and all(map(is_decimal, i)), intervals.values())): raise OptionValueError('Could not parse intervals -- result: %s' % str(intervals)) if options.multi is not None: interval_points = MultiInterval.from_range( options.numpoints, intervals) elif options.numpoints is not None: interval_points = LinearInterval.from_range( options.numpoints, intervals) # Parameters for linear scanning present if interval_points: scanner = Scanner(mcstas, intervals) scanner.set_points(interval_points) if (not options.dir == ''): mkdir(options.dir) scanner.run() else: # Only run a simulation if we have a nonzero ncount if not options.ncount == 0.0: mcstas.run() if isdir(options.dir): LOG.info('Placing instr file copy %s in dataset %s',options.instr,options.dir) copyfile(options.instr, join(options.dir,basename(options.instr))) if options.autoplot is not None: if isdir(options.dir): LOG.info('Running plotter %s on dataset %s',mccode_config.configuration['MCPLOT'],options.dir) Process(mccode_config.configuration['MCPLOT']).run([options.dir]) if __name__ == '__main__': try: mccode_config.load_user_config() mccode_config.check_env_vars() main() except KeyboardInterrupt: LOG.fatal('User interrupt.') except OptionValueError as e: LOG.fatal(str(e)) except McRunException as e: LOG.fatal(str(e))
gpl-2.0
2,498,550,659,349,612,000
30.967172
106
0.598704
false
bobmcwhirter/drools
lib/utility-scripts/docbot-masseur.py
1
2159
#!/usr/bin/python # # This script will flatten out a folder based docbook manual into a docbot friendly "flat" structure # (and update links in files accordingly) # Author: Michael Neale # import os, sys, shutil def flatten(root, output) : if not os.path.isdir(output): os.mkdir(output) if not os.path.isdir(os.path.join(output, "images")): os.mkdir(os.path.join(output, "images")) sections = {} top_files = [] names = os.listdir(root) for name in names: if os.path.isdir(os.path.join(root, name)) : if not name == ".svn": flattenDir(root, name, output, sections) else: if name.endswith(".xml") : top_files.append(name) elif name != ".svn": shutil.copyfile(os.path.join(root, name), os.path.join(output, name)) for file in top_files: contents = open(os.path.join(root, file), "r").read() for section in sections: contents = contents.replace(section, sections[section]) outfile = open(os.path.join(output, file), "w") outfile.write(contents) def flattenDir(root, dir, output, sections): docs = [] images = [] names = os.listdir(os.path.join(root, dir)) for name in names: if name.endswith(".xml"): docs.append(name) else: if name != ".svn": images.append(name) shutil.copyfile(os.path.join(root, dir, name), os.path.join(output, "images", dir + "_" + name)) for doc in docs: new_name = dir + "_" + doc sections[dir + "/" + doc] = new_name file = open(os.path.join(root, dir, doc), "r").read() outfile = open(os.path.join(output, new_name), "w") for img in images: file = file.replace(img, "images/" + dir + "_" + img) outfile.write(file) if len(sys.argv) < 2: print "2 arguments required: <path to root of documentation> <output path>. eg: docbot-masseur.py ./something ./output" else: flatten(sys.argv[1], sys.argv[2])
apache-2.0
6,316,199,486,616,234,000
31.223881
123
0.552571
false
enthought/traitsgui
enthought/pyface/i_directory_dialog.py
1
1873
#------------------------------------------------------------------------------ # Copyright (c) 2005, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in enthought/LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # Thanks for using Enthought open source! # # Author: Enthought, Inc. # Description: <Enthought pyface package component> #------------------------------------------------------------------------------ """ The interface for a dialog that allows the user to browse for a directory. """ # Enthought library imports. from enthought.traits.api import Bool, Unicode # Local imports. from i_dialog import IDialog class IDirectoryDialog(IDialog): """ The interface for a dialog that allows the user to browse for a directory. """ #### 'IDirectoryDialog' interface ######################################### # The default path. The default (ie. the default default path) is toolkit # specific. # FIXME v3: The default should be the current directory. (It seems wx is # the problem, although the file dialog does the right thing.) default_path = Unicode # The message to display in the dialog. The default is toolkit specific. message = Unicode # True iff the dialog should include a button that allows the user to # create a new directory. new_directory = Bool(True) # The path of the chosen directory. path = Unicode class MDirectoryDialog(object): """ The mixin class that contains common code for toolkit specific implementations of the IDirectoryDialog interface. """ #### EOF ######################################################################
bsd-3-clause
852,909,260,676,528,000
33.685185
79
0.619861
false
ristorantino/fiscalberry
Traductores/TraductorFiscal.py
1
7099
# -*- coding: utf-8 -*- from Traductores.TraductorInterface import TraductorInterface import math class TraductorFiscal(TraductorInterface): def dailyClose(self, type): "Comando X o Z" # cancelar y volver a un estado conocido self.comando.cancelAnyDocument() self.comando.start() ret = self.comando.dailyClose(type) self.comando.close() return ret def imprimirAuditoria(self, desde, hasta): "Imprimir Auditoria" #Solo compatible para Epson 1G y 2G por el momento... #desde & hasta parametros que pueden ser números de zetas o fechas en formato ddmmyyyy self.comando.start() ret = self.comando.imprimirAuditoria(desde, hasta) self.comando.close() return ret def getStatus(self, *args): "getStatus" self.comando.start() ret = self.comando.getStatus(list(args)) self.comando.close() return ret def setHeader(self, *args): "SetHeader" self.comando.start() ret = self.comando.setHeader(list(args)) self.comando.close() return ret def setTrailer(self, *args): "SetTrailer" self.comando.start() ret = self.comando.setTrailer(list(args)) self.comando.close() return ret def openDrawer(self, *args): "Abrir caja registradora" self.comando.start() ret = self.comando.openDrawer() self.comando.close() return ret def getLastNumber(self, tipo_cbte): "Devuelve el último número de comprobante" self.comando.start() letra_cbte = tipo_cbte[-1] if len(tipo_cbte) > 1 else None ret = self.comando.getLastNumber(letra_cbte) self.comando.close() return ret def cancelDocument(self, *args): "Cancelar comprobante en curso" self.comando.start() self.comando.cancelAnyDocument() self.comando.close() def printTicket(self, encabezado=None, items=[], pagos=[], percepciones=[], addAdditional=None, setHeader=None, setTrailer=None): if setHeader: self.setHeader(*setHeader) if setTrailer: self.setTrailer(*setTrailer) self.comando.start() try: if encabezado: self._abrirComprobante(**encabezado) else: self._abrirComprobante() for item in items: self._imprimirItem(**item) if percepciones: for percepcion in percepciones: self._imprimirPercepcion(**percepcion) if pagos: for pago in pagos: self._imprimirPago(**pago) if addAdditional: self.comando.addAdditional(**addAdditional) rta = self._cerrarComprobante() self.comando.close() return rta except Exception, e: self.cancelDocument() raise def _abrirComprobante(self, tipo_cbte="T", # tique tipo_responsable="CONSUMIDOR_FINAL", tipo_doc="SIN_CALIFICADOR", nro_doc=" ", # sin especificar nombre_cliente=" ", domicilio_cliente=" ", referencia=None, # comprobante original (ND/NC) **kwargs ): "Creo un objeto factura (internamente) e imprime el encabezado" # crear la estructura interna self.factura = {"encabezado": dict(tipo_cbte=tipo_cbte, tipo_responsable=tipo_responsable, tipo_doc=tipo_doc, nro_doc=nro_doc, nombre_cliente=nombre_cliente, domicilio_cliente=domicilio_cliente, referencia=referencia), "items": [], "pagos": [], "percepciones": []} printer = self.comando letra_cbte = tipo_cbte[-1] if len(tipo_cbte) > 1 else None # mapear el tipo de cliente (posicion/categoria) pos_fiscal = printer.ivaTypes.get(tipo_responsable) # mapear el numero de documento según RG1361 doc_fiscal = printer.docTypes.get(tipo_doc) ret = False # enviar los comandos de apertura de comprobante fiscal: if tipo_cbte.startswith('T'): if letra_cbte: ret = printer.openTicket(letra_cbte) else: ret = printer.openTicket() elif tipo_cbte.startswith("F"): ret = printer.openBillTicket(letra_cbte, nombre_cliente, domicilio_cliente, nro_doc, doc_fiscal, pos_fiscal) elif tipo_cbte.startswith("ND"): ret = printer.openDebitNoteTicket(letra_cbte, nombre_cliente, domicilio_cliente, nro_doc, doc_fiscal, pos_fiscal) elif tipo_cbte.startswith("NC"): ret = printer.openBillCreditTicket(letra_cbte, nombre_cliente, domicilio_cliente, nro_doc, doc_fiscal, pos_fiscal, referencia) return ret def _imprimirItem(self, ds, qty, importe, alic_iva=21., itemNegative=False, discount=0, discountDescription='', discountNegative=False): "Envia un item (descripcion, cantidad, etc.) a una factura" if importe < 0: importe = math.fabs(importe) itemNegative = True self.factura["items"].append(dict(ds=ds, qty=qty, importe=importe, alic_iva=alic_iva, itemNegative=itemNegative, discount=discount, discountDescription=discountDescription, discountNegative=discountNegative)) # Nota: no se calcula neto, iva, etc (deben venir calculados!) if discountDescription == '': discountDescription = ds return self.comando.addItem(ds, float(qty), float(importe), float(alic_iva), itemNegative, float(discount), discountDescription, discountNegative) def _imprimirPago(self, ds, importe): "Imprime una linea con la forma de pago y monto" self.factura["pagos"].append(dict(ds=ds, importe=importe)) return self.comando.addPayment(ds, float(importe)) def _imprimirPercepcion(self, ds, importe): "Imprime una linea con nombre de percepcion y monto" self.factura["percepciones"].append(dict(ds=ds, importe=importe)) return self.comando.addPerception(ds, float(importe)) def _cerrarComprobante(self, *args): "Envia el comando para cerrar un comprobante Fiscal" return self.comando.closeDocument()
mit
-7,636,467,503,041,819,000
36.539683
133
0.552361
false
k-j-m/Pyxon
pyxon/decode.py
1
5564
# Dict of the form: # { cls: [propname]} # cls: class that has been written with the @sprop annotation # propname: name of the property class_sprops = {} # Dict of the form: # {cls: {name:(fn, inv_fn)}} # cls: class that has been written with @cprop annotations # name: class attribute name # fn: function to turn json data into the corresponding attribute type # inv_fn: inverse of fn class_cprops = {} # Dict of the form: # {AbstractClass:specifier_property} # AbstractClass: the class that we're trying to (de)serialize # specifier_property: the name of the json property that # will indicate the concrete class name specifier_properties = {} # Dict of the form {AbstractClass: {label: ConcreteClass}} # Used to retrieve the concrete implementation of an # abstract class based on a string label. class_specifiers = {} # {ConcreteClass: (AbstractClass, concrete_label)} conc_to_abstract = {} def add_type_property(data,cls): """ Given some JSON data and the class from which it was produced, this function returns the JSON data with any required type annotations added to it. """ if not cls in conc_to_abstract: return data abstract_cls, concrete_label = conc_to_abstract[cls] prop_name = specifier_properties[abstract_cls] data[prop_name] = concrete_label return data class MetaSProp(type): """ Metaclass designed specifically to let us use dot notation for specifying simple class properties. This metaclass contains the decorator logic for the @cprop decorator. """ def __getattr__(prop_cls,key): def sprop2(cls): simple_props = class_sprops.get(cls,[]) simple_props.append(key) class_sprops[cls]=simple_props return cls return sprop2 class sprop: """ Decorator used to add simple properties to a class. The logic for this decorator is contained in the metaclass MetaSProp. The reason for this is to allow simple dot notation to specify parameter. Example: >>> @sprop.x >>> @sprop.y >>> class Foo(object): pass """ __metaclass__ = MetaSProp class MetaCProp(type): """ Metaclass for the cprop calculated property decorator. This class contains all of the decorator logic. The reason for using a metaclass rather than something simpler is to allow us to use dot notation when adding calculated properties. """ def __getattr__(prop_cls,key): def cprop2(f1, f2): def cprop3(cls): cprops = class_cprops.get(cls,{}) cprops[key]=(f1,f2) class_cprops[cls]=cprops return cls return cprop3 return cprop2 class cprop: """ Decorator for adding calculated properties to a class. A calculated property is needed when the json data can't be added to the class directly, for example when creating some other user classes from the data before adding as properties. The decorator needs to be given 2 functions as arguments: fun1: a function that takes JSON data and converts to some other data type fun2: the inverse of fun1, which takes some data type and converts it into JSON data Note: ideally the following will hold for any value of x >>> fun2(fun1(x)) == x Example: @sprop.x class Foo(object): pass @cprop.y(f1=obj(Foo), f2=unobjectify) class Bar(object): pass """ __metaclass__ = MetaCProp # Decorator annotations def subtyped(using): """ Decorator used to indicate that a class will be subtyped. The using= parameter is used to indicate which JSON property will contain the name of the subclass. A sensible value for thsi will be @type, but this wil all depend on how you have set up the rest of the system. Example: @subtyped(using='@type') class Foo(object): pass """ # Because this is a parameterised decorator that we call, we # now need to create and return the decorator proper. def subtyped2(cls): specifier_properties[cls]=using return cls return subtyped2 def extending(super_cls, named): """ This decorator is used to indicate which superclass a class extends. This could potentially be interpreted from the classes mro, but that starts to get tricky and we would still need to add extra info to say what the class will be named in the data. This label is needed because we can't necessarily rely on the class name and the class label in the data being the same. Example: @extending(Foo, named='Bar') class Baz(Foo): pass """ def extending2(cls): conc_to_abstract[cls]=super_cls,named clsmap = class_specifiers.get(super_cls,{}) clsmap[named]=cls class_specifiers[super_cls]=clsmap return cls return extending2 def conc2(data, cls): """ Returns the appropriate concrete class of a subtyped class based on the content of some JSON data. If the class is not subtyped then it gets returned. """ s1 = set(specifier_properties.keys()) s2 = set(class_specifiers.keys()) assert s1==s2, "You need to use @subtyped and @extending as a pair!:\n%s\n%s" % (str(s1), str(s2)) if not cls in specifier_properties: return cls prop_name = specifier_properties[cls] cls_label = data[prop_name] concrete_cls = class_specifiers[cls][cls_label] return concrete_cls
mit
950,680,876,732,445,200
28.913978
102
0.663192
false
twitter/pants
src/python/pants/subsystem/subsystem_client_mixin.py
1
6246
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals from builtins import object from twitter.common.collections import OrderedSet from pants.option.arg_splitter import GLOBAL_SCOPE from pants.option.optionable import OptionableFactory from pants.option.scope import ScopeInfo from pants.util.objects import datatype class SubsystemClientError(Exception): pass class SubsystemDependency(datatype([ 'subsystem_cls', 'scope', 'removal_version', 'removal_hint', ]), OptionableFactory): """Indicates intent to use an instance of `subsystem_cls` scoped to `scope`.""" def __new__(cls, subsystem_cls, scope, removal_version=None, removal_hint=None): return super(SubsystemDependency, cls).__new__(cls, subsystem_cls, scope, removal_version, removal_hint) def is_global(self): return self.scope == GLOBAL_SCOPE @property def optionable_cls(self): # Fills the OptionableFactory contract. return self.subsystem_cls @property def options_scope(self): """The subscope for options of `subsystem_cls` scoped to `scope`. This is the scope that option values are read from when initializing the instance indicated by this dependency. """ if self.is_global(): return self.subsystem_cls.options_scope else: return self.subsystem_cls.subscope(self.scope) class SubsystemClientMixin(object): """A mixin for declaring dependencies on subsystems. Must be mixed in to an Optionable. """ @classmethod def subsystem_dependencies(cls): """The subsystems this object uses. Override to specify your subsystem dependencies. Always add them to your superclass's value. Note: Do not call this directly to retrieve dependencies. See subsystem_dependencies_iter(). :return: A tuple of SubsystemDependency instances. In the common case where you're an optionable and you want to get an instance scoped to you, call subsystem_cls.scoped(cls) to get an appropriate SubsystemDependency. As a convenience, you may also provide just a subsystem_cls, which is shorthand for SubsystemDependency(subsystem_cls, GLOBAL SCOPE) and indicates that we want to use the global instance of that subsystem. """ return tuple() @classmethod def subsystem_dependencies_iter(cls): """Iterate over the direct subsystem dependencies of this Optionable.""" for dep in cls.subsystem_dependencies(): if isinstance(dep, SubsystemDependency): yield dep else: yield SubsystemDependency(dep, GLOBAL_SCOPE, removal_version=None, removal_hint=None) @classmethod def subsystem_closure_iter(cls): """Iterate over the transitive closure of subsystem dependencies of this Optionable. :rtype: :class:`collections.Iterator` of :class:`SubsystemDependency` :raises: :class:`pants.subsystem.subsystem_client_mixin.SubsystemClientMixin.CycleException` if a dependency cycle is detected. """ seen = set() dep_path = OrderedSet() def iter_subsystem_closure(subsystem_cls): if subsystem_cls in dep_path: raise cls.CycleException(list(dep_path) + [subsystem_cls]) dep_path.add(subsystem_cls) for dep in subsystem_cls.subsystem_dependencies_iter(): if dep not in seen: seen.add(dep) yield dep for d in iter_subsystem_closure(dep.subsystem_cls): yield d dep_path.remove(subsystem_cls) for dep in iter_subsystem_closure(cls): yield dep class CycleException(Exception): """Thrown when a circular subsystem dependency is detected.""" def __init__(self, cycle): message = 'Cycle detected:\n\t{}'.format(' ->\n\t'.join( '{} scope: {}'.format(optionable_cls, optionable_cls.options_scope) for optionable_cls in cycle)) super(SubsystemClientMixin.CycleException, self).__init__(message) @classmethod def known_scope_infos(cls): """Yield ScopeInfo for all known scopes for this optionable, in no particular order. :rtype: set of :class:`pants.option.scope.ScopeInfo` :raises: :class:`pants.subsystem.subsystem_client_mixin.SubsystemClientMixin.CycleException` if a dependency cycle is detected. """ known_scope_infos = set() optionables_path = OrderedSet() # To check for cycles at the Optionable level, ignoring scope. def collect_scope_infos(optionable_cls, scoped_to, removal_version=None, removal_hint=None): if optionable_cls in optionables_path: raise cls.CycleException(list(optionables_path) + [optionable_cls]) optionables_path.add(optionable_cls) scope = (optionable_cls.options_scope if scoped_to == GLOBAL_SCOPE else optionable_cls.subscope(scoped_to)) scope_info = ScopeInfo( scope, optionable_cls.options_scope_category, optionable_cls, removal_version=removal_version, removal_hint=removal_hint ) if scope_info not in known_scope_infos: known_scope_infos.add(scope_info) for dep in scope_info.optionable_cls.subsystem_dependencies_iter(): # A subsystem always exists at its global scope (for the purpose of options # registration and specification), even if in practice we only use it scoped to # some other scope. # # NB: We do not apply deprecations to this implicit global copy of the scope, because if # the intention was to deprecate the entire scope, that could be accomplished by # deprecating all options in the scope. collect_scope_infos(dep.subsystem_cls, GLOBAL_SCOPE) if not dep.is_global(): collect_scope_infos(dep.subsystem_cls, scope, removal_version=dep.removal_version, removal_hint=dep.removal_hint) optionables_path.remove(scope_info.optionable_cls) collect_scope_infos(cls, GLOBAL_SCOPE) return known_scope_infos
apache-2.0
7,956,763,797,131,338,000
36.401198
108
0.686519
false
thieme/rxnconcompiler
tests/test_data/bngl_rules/mapk_data/rules_mapk_bind_data.py
1
2006
#!/usr/bin/env python """ rules_mapk_bind_data.py contains dictionary with BIND reactions from MAPK network. {rxncon_quick_string: 'Rules': [rule1, rule2 ...], 'Tags': [rtype ...]} """ MAPK_BIND_DATA = { # ASSOCCIATION # BIND no contingencies 'Hot1_BIND_Hot1Site': { 'Rules':[ 'Hot1(AssocHot1Site) + Hot1Site(AssocHot1) <-> Hot1(AssocHot1Site!1).Hot1Site(AssocHot1!1)'], 'Tags': [ 1, 'BIND', 'Hot1', 'Hot1Site', 'no contingencies']}, 'Rlm1_BIND_Rlm1Site': { 'Rules':[ 'Rlm1(AssocRlm1Site) + Rlm1Site(AssocRlm1) <-> Rlm1(AssocRlm1Site!1).Rlm1Site(AssocRlm1!1)'], 'Tags': [ 1, 'BIND', 'Rlm1', 'Rlm1Site', 'no contingencies']}, 'Smp1_BIND_Smp1Site': { 'Rules':[ 'Smp1(AssocSmp1Site) + Smp1Site(AssocSmp1) <-> Smp1(AssocSmp1Site!1).Smp1Site(AssocSmp1!1)'], 'Tags': [ 1, 'BIND', 'Smp1', 'Smp1Site', 'no contingencies']}, 'Ste12_[n/HTH]_BIND_PRE': { 'Rules':[ 'Ste12(nHTH) + PRE(AssocSte12) <-> PRE(AssocSte12!1).Ste12(nHTH!1)'], 'Tags': [ 1, 'BIND', 'Ste12', 'PRE', 'no contingencies']}, 'Sko1_[bZIP]_BIND_CRE': { 'Rules':[ 'Sko1(bZIP) + CRE(AssocSko1) <-> CRE(AssocSko1!1).Sko1(bZIP!1)'], 'Tags': [ 1, 'BIND', 'Sko1', 'CRE', 'no contingencies']}, 'Tec1_[n/TEA]_BIND_TCS': { 'Rules':[ 'Tec1(nTEA) + TCS(AssocTec1) <-> TCS(AssocTec1!1).Tec1(nTEA!1)'], 'Tags': [ 1, 'BIND', 'Tec1', 'TCS', 'no contingencies']}, # BIND contingencies 'Swi4_BIND_SCBFKS2; ! Slt2_[DB]--Swi4_[c]; x Swi4_[n]--Swi4_[c]': { 'Rules':[ 'Slt2(DB!1).Swi4(AssocSCBFKS2,c!1,n) + SCBFKS2(AssocSwi4) <-> SCBFKS2(AssocSwi4!1).Slt2(DB!2).Swi4(AssocSCBFKS2!1,c!2,n)'], 'Tags': [ 1, 'BIND', 'Swi4', 'SCBFKS2', 'contingencies', 'complicated']}, 'Swi4_BIND_SCBG1; x Slt2_[DB]--Swi4_[c]; x Swi4_[n]--Swi4_[c]': { 'Rules':[ 'Swi4(AssocSCBG1,c,n) + SCBG1(AssocSwi4) <-> SCBG1(AssocSwi4!1).Swi4(AssocSCBG1!1,c,n)'], 'Tags': [ 1, 'BIND', 'Swi4', 'SCBG1', 'contingencies', 'complicated']}, } DATA = [MAPK_BIND_DATA]
lgpl-3.0
-9,080,213,258,389,551,000
30.857143
127
0.590229
false
AutorestCI/azure-sdk-for-python
azure-mgmt-compute/azure/mgmt/compute/v2017_03_30/operations/virtual_machine_extension_images_operations.py
1
10932
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class VirtualMachineExtensionImagesOperations(object): """VirtualMachineExtensionImagesOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An objec model deserializer. :ivar api_version: Client Api Version. Constant value: "2017-03-30". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2017-03-30" self.config = config def get( self, location, publisher_name, type, version, custom_headers=None, raw=False, **operation_config): """Gets a virtual machine extension image. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param type: :type type: str :param version: :type version: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: VirtualMachineExtensionImage or ClientRawResponse if raw=true :rtype: ~azure.mgmt.compute.v2017_03_30.models.VirtualMachineExtensionImage or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions/{version}' path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'type': self._serialize.url("type", type, 'str'), 'version': self._serialize.url("version", version, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualMachineExtensionImage', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def list_types( self, location, publisher_name, custom_headers=None, raw=False, **operation_config): """Gets a list of virtual machine extension image types. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: list or ClientRawResponse if raw=true :rtype: list[~azure.mgmt.compute.v2017_03_30.models.VirtualMachineExtensionImage] or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types' path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('[VirtualMachineExtensionImage]', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def list_versions( self, location, publisher_name, type, filter=None, top=None, orderby=None, custom_headers=None, raw=False, **operation_config): """Gets a list of virtual machine extension image versions. :param location: The name of a supported Azure region. :type location: str :param publisher_name: :type publisher_name: str :param type: :type type: str :param filter: The filter to apply on the operation. :type filter: str :param top: :type top: int :param orderby: :type orderby: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: list or ClientRawResponse if raw=true :rtype: list[~azure.mgmt.compute.v2017_03_30.models.VirtualMachineExtensionImage] or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/publishers/{publisherName}/artifacttypes/vmextension/types/{type}/versions' path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'publisherName': self._serialize.url("publisher_name", publisher_name, 'str'), 'type': self._serialize.url("type", type, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, 'str') query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('[VirtualMachineExtensionImage]', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
mit
-586,315,393,133,818,900
43.620408
181
0.644621
false
kamailio/kamcli
kamcli/commands/cmd_db.py
1
28309
import os import sys import click from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.exc import SQLAlchemyError from kamcli.cli import pass_context from kamcli.ioutils import ioutils_dbres_print from kamcli.ioutils import ioutils_formats_list from kamcli.dbutils import dbutils_exec_sqlfile KDB_GROUP_BASIC = ["standard"] KDB_GROUP_STANDARD = [ "acc", "lcr", "domain", "group", "permissions", "registrar", "usrloc", "msilo", "alias_db", "uri_db", "speeddial", "avpops", "auth_db", "pdt", "dialog", "dispatcher", "dialplan", "topos", ] KDB_GROUP_EXTRA = [ "imc", "cpl", "siptrace", "domainpolicy", "carrierroute", "drouting", "userblacklist", "userblocklist", "htable", "purple", "uac", "pipelimit", "mtree", "sca", "mohqueue", "rtpproxy", "rtpengine", "secfilter", ] KDB_GROUP_PRESENCE = ["presence", "rls"] KDB_GROUP_UID = [ "uid_auth_db", "uid_avp_db", "uid_domain", "uid_gflags", "uid_uri_db", ] @click.group( "db", help="Raw database operations", short_help="Raw database operations" ) @pass_context def cli(ctx): pass @cli.command("query", short_help="Run SQL statement") @click.option( "oformat", "--output-format", "-F", type=click.Choice(["raw", "json", "table", "dict"]), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("query", metavar="<query>") @pass_context def db_query(ctx, oformat, ostyle, query): e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute(query.encode("ascii", "ignore").decode()) ioutils_dbres_print(ctx, oformat, ostyle, res) @cli.command("connect", short_help="Launch db cli and connect to database") @pass_context def db_connect(ctx): dbtype = ctx.gconfig.get("db", "type") if dbtype.lower() == "mysql": scmd = ("mysql -h {0} -u {1} -p{2} {3}").format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ('psql "postgresql://{0}:{1}@{2}/{3}"').format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), ) elif dbtype == "sqlite": scmd = ("sqlite3 {0} ").format( ctx.gconfig.get("db", "dbpath"), ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("clirun", short_help="Run SQL statement via cli") @click.argument("query", metavar="<query>") @pass_context def db_clirun(ctx, query): dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": scmd = ('mysql -h {0} -u {1} -p{2} -e "{3} ;" {4}').format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), query, ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ('psql "postgresql://{0}:{1}@{2}/{3}" -c "{4} ;"').format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), query, ) elif dbtype == "sqlite": scmd = ('sqlite3 {0} "{1} "').format( ctx.gconfig.get("db", "dbpath"), query, ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("clishow", short_help="Show content of table via cli") @click.argument("table", metavar="<table>") @pass_context def db_clishow(ctx, table): dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": scmd = ( 'mysql -h {0} -u {1} -p{2} -e "select * from {3} ;" {4}' ).format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), table, ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}/{3}" -c "select * from {4} ;"' ).format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), table, ) elif dbtype == "sqlite": scmd = ('sqlite3 {0} "select * from {1} "').format( ctx.gconfig.get("db", "dbpath"), table, ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("clishowg", short_help="Show content of table via cli") @click.argument("table", metavar="<table>") @pass_context def db_clishowg(ctx, table): dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": scmd = ( r'mysql -h {0} -u {1} -p{2} -e "select * from {3} \G" {4}' ).format( ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), table, ctx.gconfig.get("db", "dbname"), ) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}/{3}" -c "\\x" -c "select * from {4} ;" -c "\\x"' ).format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), table, ) elif dbtype == "sqlite": scmd = ('sqlite3 -line {0} "select * from {1} "').format( ctx.gconfig.get("db", "dbpath"), table, ) else: ctx.log("unsupported database type [%s]", dbtype) sys.exit() os.system(scmd) @cli.command("show", short_help="Show content of a table") @click.option( "oformat", "--output-format", "-F", type=click.Choice(ioutils_formats_list), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("table", metavar="<table>") @pass_context def db_show(ctx, oformat, ostyle, table): ctx.vlog("Content of database table [%s]", table) e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute("select * from {0}".format(table)) ioutils_dbres_print(ctx, oformat, ostyle, res) @cli.command( "showcreate", short_help="Show create statement of of a database table" ) @click.option( "oformat", "--output-format", "-F", type=click.Choice(ioutils_formats_list), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("table", metavar="<table>") @pass_context def db_showcreate(ctx, oformat, ostyle, table): ctx.vlog("Show create of database table [%s]", table) dbtype = ctx.gconfig.get("db", "type") if dbtype == "mysql": e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute("show create table {0}".format(table)) ioutils_dbres_print(ctx, oformat, ostyle, res) elif dbtype == "postgresql": scmd = ('psql "postgresql://{0}:{1}@{2}/{3}" -c "\\d {4} "').format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ctx.gconfig.get("db", "dbname"), table, ) os.system(scmd) elif dbtype == "sqlite": scmd = ('sqlite3 {0} ".schema {1} "').format( ctx.gconfig.get("db", "dbpath"), table, ) os.system(scmd) else: ctx.log("unsupported database type [%s]", dbtype) @cli.command("runfile", short_help="Run SQL statements in a file") @click.argument("fname", metavar="<fname>") @pass_context def db_runfile(ctx, fname): """Run SQL statements in a file \b Parameters: <fname> - name to the file with the SQL statements """ ctx.vlog("Run statements in the file [%s]", fname) e = create_engine(ctx.gconfig.get("db", "rwurl")) dbutils_exec_sqlfile(ctx, e, fname) def db_create_mysql_host_users( ctx, e, nousers, nogrants, dbname, dbhost, dbrwuser, dbrwpassword, dbrouser, dbropassword, ): if not nousers: e.execute( "CREATE USER {0!r}@{1!r} IDENTIFIED BY {2!r}".format( dbrwuser, dbhost, dbrwpassword ) ) if not nogrants: e.execute( "GRANT ALL PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrwuser, dbhost ) ) if not nousers: e.execute( "CREATE USER {0!r}@{1!r} IDENTIFIED BY {2!r}".format( dbrouser, dbhost, dbropassword ) ) if not nogrants: e.execute( "GRANT SELECT PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrouser, dbhost ) ) def db_create_mysql_users(ctx, e, dbname, nousers, nogrants): dbhost = ctx.gconfig.get("db", "host") dbrwuser = ctx.gconfig.get("db", "rwuser") dbrwpassword = ctx.gconfig.get("db", "rwpassword") dbrouser = ctx.gconfig.get("db", "rouser") dbropassword = ctx.gconfig.get("db", "ropassword") dbaccesshost = ctx.gconfig.get("db", "accesshost") db_create_mysql_host_users( ctx, e, dbname, dbhost, dbrwuser, dbrwpassword, dbrouser, dbropassword ) if dbhost != "localhost": db_create_mysql_host_users( ctx, e, nousers, nogrants, dbname, "localhost", dbrwuser, dbrwpassword, dbrouser, dbropassword, ) if len(dbaccesshost) > 0: db_create_mysql_host_users( ctx, e, nousers, nogrants, dbname, dbaccesshost, dbrwuser, dbrwpassword, dbrouser, dbropassword, ) def db_create_sql_group(ctx, e, dirpath, dbgroup): for t in dbgroup: fname = dirpath + "/" + t + "-create.sql" dbutils_exec_sqlfile(ctx, e, fname) def db_create_sql_table_groups(ctx, e, ldirectory, alltables): db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_BASIC) db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_STANDARD) option = "y" if not alltables: print("Do you want to create extra tables? (y/n):", end=" ") option = input() if option == "y": db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_EXTRA) if not alltables: print("Do you want to create presence tables? (y/n):", end=" ") option = input() if option == "y": db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_PRESENCE) if not alltables: print("Do you want to create uid tables? (y/n):", end=" ") option = input() if option == "y": db_create_sql_group(ctx, e, ldirectory, KDB_GROUP_UID) def db_create_mysql(ctx, ldbname, ldirectory, nousers, nogrants, alltables): e = create_engine(ctx.gconfig.get("db", "adminurl")) e.execute("create database {0}".format(ldbname)) db_create_mysql_users(ctx, e, ldbname, nousers, nogrants) e.execute("use {0}".format(ldbname)) db_create_sql_table_groups(ctx, e, ldirectory, alltables) def db_create_postgresql( ctx, ldbname, ldirectory, nousers, nogrants, nofunctions, alltables ): scmd = ( 'psql "postgresql://{0}:{1}@{2}" -c "create database {3} "' ).format( ctx.gconfig.get("db", "adminuser"), ctx.gconfig.get("db", "adminpassword"), ctx.gconfig.get("db", "host"), ldbname, ) os.system(scmd) e = create_engine(ctx.gconfig.get("db", "adminurl")) if not nogrants: e.execute( "CREATE USER {0} WITH PASSWORD '{1}';".format( ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ) ) e.execute( "GRANT CONNECT ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rwuser"), ) ) if ctx.gconfig.get("db", "rwuser") != ctx.gconfig.get("db", "rouser"): e.execute( "CREATE USER {0} WITH PASSWORD '{1}';".format( ctx.gconfig.get("db", "rouser"), ctx.gconfig.get("db", "ropassword"), ) ) e.execute( "GRANT CONNECT ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rouser"), ) ) e.dispose() e = create_engine( "{0}+{1}://{2}:{3}@{4}/{5}".format( ctx.gconfig.get("db", "type"), ctx.gconfig.get("db", "driver"), ctx.gconfig.get("db", "rwuser"), ctx.gconfig.get("db", "rwpassword"), ctx.gconfig.get("db", "host"), ldbname, ) ) if not nofunctions: e.execute( "CREATE FUNCTION concat(text, text) RETURNS text AS 'SELECT $1 || $2;' LANGUAGE 'sql';" ) e.execute( "CREATE FUNCTION rand() RETURNS double precision AS 'SELECT random();' LANGUAGE 'sql';" ) db_create_sql_table_groups(ctx, e, ldirectory, alltables) e.dispose() e = create_engine(ctx.gconfig.get("db", "adminurl")) if not nogrants: e.execute( "GRANT ALL PRIVILEGES ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rwuser"), ) ) if ctx.gconfig.get("db", "rwuser") != ctx.gconfig.get("db", "rouser"): e.execute( "GRANT SELECT ON DATABASE {0} TO {1};".format( ldbname, ctx.gconfig.get("db", "rouser"), ) ) def db_create_sqlite(ctx, ldbname, ldirectory, alltables): e = create_engine( "{0}+{1}:///{2}".format( ctx.gconfig.get("db", "type"), ctx.gconfig.get("db", "driver"), ldbname, ) ) db_create_sql_table_groups(ctx, e, ldirectory, alltables) @cli.command("create", short_help="Create database structure") @click.option( "dbname", "--dbname", "-d", default="", help="Database name or path to the folder for database", ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @click.option( "nousers", "--no-users", "-U", is_flag=True, help="Do not create users", ) @click.option( "nogrants", "--no-grants", "-G", is_flag=True, help="Do not grant privileges", ) @click.option( "nofunctions", "--no-functions", "-F", is_flag=True, help="Do not create additional SQL functions", ) @click.option( "alltables", "--all-tables", "-a", is_flag=True, help="Create all tables without asking for confirmation", ) @pass_context def db_create( ctx, dbname, scriptsdirectory, nousers, nogrants, nofunctions, alltables ): """Create database structure \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype == "sqlite": ldbname = ctx.gconfig.get("db", "dbpath") else: ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory ctx.vlog("Creating database [%s] structure", ldbname) if dbtype == "mysql": db_create_mysql(ctx, ldbname, ldirectory, nousers, nogrants, alltables) return elif dbtype == "postgresql": db_create_postgresql( ctx, ldbname, ldirectory, nousers, nogrants, nofunctions, alltables ) return elif dbtype == "sqlite": db_create_sqlite(ctx, ldbname, ldirectory, alltables) return else: ctx.vlog("Database type [%s] not supported yet", dbtype) return @cli.command("create-dbonly", short_help="Create database only") @click.option( "dbname", "--dbname", "-d", default="", help="Database name or path to the folder for database", ) @pass_context def db_create_dbonly(ctx, dbname): """Create database only \b """ ctx.vlog("Creating only database [%s]", dbname) dbtype = ctx.gconfig.get("db", "type") if dbtype == "sqlite": ldbname = ctx.gconfig.get("db", "dbpath") else: ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname if dbtype == "mysql": e = create_engine(ctx.gconfig.get("db", "adminurl")) e.execute("create database {0}".format(ldbname)) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}" -c "create database {3} "' ).format( ctx.gconfig.get("db", "adminuser"), ctx.gconfig.get("db", "adminpassword"), ctx.gconfig.get("db", "host"), ldbname, ) os.system(scmd) elif dbtype == "sqlite": ctx.vlog("Database file for type [%s] is created on first use", dbtype) else: ctx.vlog("Database type [%s] not supported yet", dbtype) return @cli.command("drop", short_help="Drop database") @click.option( "dbname", "--dbname", "-d", default="", help="Database name or path to the database", ) @click.option( "yes", "--yes", "-y", is_flag=True, help="Do not ask for confirmation", ) @pass_context def db_drop(ctx, dbname, yes): """Drop database \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype == "sqlite": ldbname = ctx.gconfig.get("db", "dbpath") else: ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname if not yes: print("Dropping database. Are you sure? (y/n):", end=" ") option = input() if option != "y": ctx.vlog("Skip dropping database [%s]", ldbname) return ctx.vlog("Dropping database [%s]", ldbname) if dbtype == "mysql": e = create_engine(ctx.gconfig.get("db", "adminurl")) e.execute("drop database {0}".format(ldbname)) elif dbtype == "postgresql": scmd = ( 'psql "postgresql://{0}:{1}@{2}" -c "drop database {3} "' ).format( ctx.gconfig.get("db", "adminuser"), ctx.gconfig.get("db", "adminpassword"), ctx.gconfig.get("db", "host"), ldbname, ) os.system(scmd) elif dbtype == "sqlite": if not os.path.isfile(ldbname): ctx.vlog("Database file [%s] does not exist", ldbname) else: os.remove(ldbname) return else: ctx.vlog("Database type [%s] not supported yet", dbtype) return def db_create_tables_list(ctx, directory, group): dbtype = ctx.gconfig.get("db", "type") if dbtype != "mysql": ctx.vlog("Database type [%s] not supported yet", dbtype) return ldirectory = "" if len(directory) > 0: ldirectory = directory e = create_engine(ctx.gconfig.get("db", "rwurl")) db_create_sql_group(ctx, e, ldirectory, group) @cli.command("create-tables-basic", short_help="Create basic database tables") @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_basic(ctx, scriptsdirectory): """Create basic database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_BASIC) @cli.command( "create-tables-standard", short_help="Create standard database tables" ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_standard(ctx, scriptsdirectory): """Create standard database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_STANDARD) @cli.command("create-tables-extra", short_help="Create extra database tables") @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_extra(ctx, scriptsdirectory): """Create extra database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_EXTRA) @cli.command( "create-tables-presence", short_help="Create presence database tables" ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_presence(ctx, scriptsdirectory): """Create presence database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_PRESENCE) @cli.command("create-tables-uid", short_help="Create uid database tables") @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @pass_context def db_create_tables_uid(ctx, scriptsdirectory): """Create uid database tables \b """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory db_create_tables_list(ctx, ldirectory, KDB_GROUP_UID) @cli.command( "create-tables-group", short_help="Create the group of database tables for a specific extension", ) @click.option( "scriptsdirectory", "--scripts-directory", "-s", default="", help="Path to the directory with db schema files", ) @click.argument("gname", metavar="<gname>") @pass_context def db_create_tables_group(ctx, scriptsdirectory, gname): """Create the group of database tables for a specific extension \b Parameters: <gname> - the name of the group of tables """ ldirectory = ctx.gconfig.get("db", "scriptsdirectory") if len(scriptsdirectory) > 0: ldirectory = scriptsdirectory e = create_engine(ctx.gconfig.get("db", "rwurl")) fpath = ldirectory + "/" + gname + "-create.sql" dbutils_exec_sqlfile(ctx, e, fpath) @cli.command("grant", short_help="Create db access users and grant privileges") @click.option( "dbname", "--dbname", "-d", default="", help="Database name", ) @pass_context def db_grant(ctx, dbname): """Create db access users and grant privileges \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype != "mysql": ctx.vlog("Database type [%s] not supported yet", dbtype) return ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname ctx.vlog("Creating only database [%s]", ldbname) e = create_engine(ctx.gconfig.get("db", "adminurl")) db_create_mysql_users(ctx, e, ldbname, False, False) def db_revoke_host_users(ctx, e, dbname, dbhost, dbrwuser, dbrouser): e.execute( "REVOKE ALL PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrwuser, dbhost ) ) e.execute("DROP USER {0!r}@{1!r}".format(dbrwuser, dbhost)) e.execute( "REVOKE SELECT PRIVILEGES ON {0}.* TO {1!r}@{2!r}".format( dbname, dbrouser, dbhost ) ) e.execute("DROP USER {0!r}@{1!r}".format(dbrouser, dbhost)) def db_revoke_users(ctx, e, dbname): dbhost = ctx.gconfig.get("db", "host") dbrwuser = ctx.gconfig.get("db", "rwuser") dbrouser = ctx.gconfig.get("db", "rouser") dbaccesshost = ctx.gconfig.get("db", "accesshost") db_revoke_host_users(ctx, e, dbname, dbhost, dbrwuser, dbrouser) if dbhost != "localhost": db_revoke_host_users( ctx, e, dbname, "localhost", dbrwuser, dbrouser, ) if len(dbaccesshost) > 0: db_revoke_host_users( ctx, e, dbname, dbaccesshost, dbrwuser, dbrouser, ) @cli.command("revoke", short_help="Revoke db access privileges") @click.option( "dbname", "--dbname", "-d", default="", help="Database name", ) @pass_context def db_revoke(ctx, dbname): """Revoke db access privileges \b """ dbtype = ctx.gconfig.get("db", "type") if dbtype != "mysql": ctx.vlog("Database type [%s] not supported yet", dbtype) return ldbname = ctx.gconfig.get("db", "dbname") if len(dbname) > 0: ldbname = dbname ctx.vlog("Revoke access to database [%s]", ldbname) e = create_engine(ctx.gconfig.get("db", "adminurl")) db_revoke_users(ctx, e, ldbname) @cli.command( "version-set", short_help="Set the version number for a table structure" ) @click.option( "vertable", "--version-table", default="version", help="Name of the table with version records", ) @click.argument("table", metavar="<table>") @click.argument("version", metavar="<version>", type=int) @pass_context def db_version_set(ctx, vertable, table, version): """Set the version number for a table structure \b Parameters: <table> - Name of the table to set the version for <version> - Version number """ e = create_engine(ctx.gconfig.get("db", "rwurl")) e.execute( "delete from {0} where table_name={1!r}".format( vertable.encode("ascii", "ignore").decode(), table.encode("ascii", "ignore").decode(), ) ) e.execute( "insert into {0} (table_name, table_version) values ({1!r}, {2})".format( vertable.encode("ascii", "ignore").decode(), table.encode("ascii", "ignore").decode(), version, ) ) @cli.command( "version-get", short_help="Get the version number for a table structure" ) @click.option( "vertable", "--version-table", default="version", help="Name of the table with version records", ) @click.option( "oformat", "--output-format", "-F", type=click.Choice(["raw", "json", "table", "dict"]), default=None, help="Format the output", ) @click.option( "ostyle", "--output-style", "-S", default=None, help="Style of the output (tabulate table format)", ) @click.argument("table", metavar="<table>") @pass_context def db_version_get(ctx, vertable, oformat, ostyle, table): """Get the version number for a table structure \b Parameters: <table> - Name of the table to get the version for """ e = create_engine(ctx.gconfig.get("db", "rwurl")) res = e.execute( "select * from {0} where table_name={1!r}".format( vertable.encode("ascii", "ignore").decode(), table.encode("ascii", "ignore").decode(), ) ) ioutils_dbres_print(ctx, oformat, ostyle, res)
gpl-2.0
5,029,327,672,222,936,000
26.863189
99
0.560528
false
aidin36/beneath-a-binary-sky
src/actions/water_action.py
1
2052
# This file is part of Beneath a Binary Sky. # Copyright (C) 2016, Aidin Gharibnavaz <[email protected]> # # Beneath a Binary Sky is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Beneath a Binary Sky is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Beneath a Binary Sky. If not, see # <http://www.gnu.org/licenses/>. import time from actions.action import Action from actions.exceptions import InvalidArgumentsError, RobotHaveNoWaterError from world.world import World from database.exceptions import LockAlreadyAquiredError class WaterAction(Action): def __init__(self): super().__init__() self._world = World() def do_action(self, robot, args): '''Waters the square robot stands on. @param robot: Instance of `objects.robot.Robot'. ''' if len(args) != 1: raise InvalidArgumentsError("`water' action takes no arguments.") if not robot.get_has_water(): raise RobotHaveNoWaterError("Robot does not carry water.") try: square = self._world.get_square(robot.get_location(), for_update=True) except LockAlreadyAquiredError: # Waiting a little, and trying one more time. time.sleep(0.02) square = self._world.get_square(robot.get_location(), for_update=True) # Note: we don't raise an exception if there's no plant. A robot can waste its water. plant = square.get_plant() if plant is not None: plant.set_water_level(100) robot.set_honor(robot.get_honor() + 1) robot.set_has_water(False)
gpl-3.0
8,472,158,464,183,048,000
35
93
0.679825
false
mdsalman729/flexpret_project
emulator/concurrit-poplsyntax/concurrit-poplsyntax/bench/pfscan/inputs/in2/config/getpthreadfunctions.py
1
1909
## # getpthreadfunctions.py - outputs the pthread man page to mapthread.txt # parses the latter, creates a dictionary with pairs # (functionname, list of function args where last element is result type) # marshals dictionary to pthreaddict file # # Author - Christos Stergiou ([email protected]) # import os,re,marshal os.system('man pthread | col -b > manpthread.txt') filemp = open('manpthread.txt') filedict = open('pthreaddict','w') try: pfuncs = dict() previousmatch = False funcargtypesstr = '' funcname = '' funcrettype = '' for line in filemp: line = line.rstrip('\n') funcargtypeslist = [] if previousmatch: previousmatch = False funcargtypesstr = funcargtypesstr + ' ' + line.strip()[0:-2] else: #matchobj = re.search('[\t ]*[([a-zA-Z0-9_]+)[\t ]+([a-zA-Z0-9_]+)\(([a-z]+.*$)', line) matchobj = re.search('[\t ]*([a-zA-Z0-9_]+( \*)?)[\t ]*([a-zA-Z0-9_]+)\(([a-z]+.*$)', line) if matchobj: funcname = matchobj.group(3) funcrettype = matchobj.group(1) funcargtypesstr = matchobj.group(4); if not re.search(';$', matchobj.group(4)): # function arguments continue to next line previousmatch = True continue else: # remove ');' from end of line funcargtypesstr = funcargtypesstr[0:-2] if matchobj or previousmatch: funcargtypeslist = re.split(', ', funcargtypesstr) funcargtypeslist.reverse() funcargtypeslist.append(funcrettype) funcargtypeslist.reverse() print funcname,"->",funcargtypeslist pfuncs[funcname] = funcargtypeslist finally: marshal.dump(pfuncs,filedict) filemp.close() filedict.close()
bsd-3-clause
-8,134,398,863,236,522,000
33.709091
103
0.566789
false
henaras/sahara
sahara/service/volumes.py
1
8618
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg from oslo_log import log as logging from sahara import conductor as c from sahara import context from sahara import exceptions as ex from sahara.i18n import _ from sahara.i18n import _LE from sahara.utils import cluster_progress_ops as cpo from sahara.utils.openstack import cinder from sahara.utils.openstack import nova from sahara.utils import poll_utils conductor = c.API LOG = logging.getLogger(__name__) CONF = cfg.CONF CONF.import_opt('api_version', 'sahara.utils.openstack.cinder', group='cinder') def _count_instances_to_attach(instances): result = 0 for instance in instances: if instance.node_group.volumes_per_node > 0: result += 1 return result def _count_volumes_to_mount(instances): return sum([inst.node_group.volumes_per_node for inst in instances]) def attach_to_instances(instances): instances_to_attach = _count_instances_to_attach(instances) if instances_to_attach == 0: return cpo.add_provisioning_step( instances[0].cluster_id, _("Attach volumes to instances"), instances_to_attach) with context.ThreadGroup() as tg: for instance in instances: if instance.node_group.volumes_per_node > 0: with context.set_current_instance_id(instance.instance_id): tg.spawn( 'attach-volumes-for-instance-%s' % instance.instance_name, _attach_volumes_to_node, instance.node_group, instance) @poll_utils.poll_status( 'await_attach_volumes', _("Await for attaching volumes to instances"), sleep=2) def _await_attach_volumes(instance, devices): return _count_attached_devices(instance, devices) == len(devices) @cpo.event_wrapper(mark_successful_on_exit=True) def _attach_volumes_to_node(node_group, instance): ctx = context.ctx() size = node_group.volumes_size volume_type = node_group.volume_type devices = [] for idx in range(1, node_group.volumes_per_node + 1): display_name = "volume_" + instance.instance_name + "_" + str(idx) device = _create_attach_volume( ctx, instance, size, volume_type, node_group.volume_local_to_instance, display_name, node_group.volumes_availability_zone) devices.append(device) LOG.debug("Attached volume {device} to instance".format(device=device)) _await_attach_volumes(instance, devices) paths = instance.node_group.storage_paths() for idx in range(0, instance.node_group.volumes_per_node): LOG.debug("Mounting volume {volume} to instance" .format(volume=devices[idx])) _mount_volume(instance, devices[idx], paths[idx]) LOG.debug("Mounted volume to instance") @poll_utils.poll_status( 'volume_available_timeout', _("Await for volume become available"), sleep=1) def _await_available(volume): volume = cinder.get_volume(volume.id) if volume.status == 'error': raise ex.SystemError(_("Volume %s has error status") % volume.id) return volume.status == 'available' def _create_attach_volume(ctx, instance, size, volume_type, volume_local_to_instance, name=None, availability_zone=None): if CONF.cinder.api_version == 1: kwargs = {'size': size, 'display_name': name} else: kwargs = {'size': size, 'name': name} kwargs['volume_type'] = volume_type if availability_zone is not None: kwargs['availability_zone'] = availability_zone if volume_local_to_instance: kwargs['scheduler_hints'] = {'local_to_instance': instance.instance_id} volume = cinder.client().volumes.create(**kwargs) conductor.append_volume(ctx, instance, volume.id) _await_available(volume) resp = nova.client().volumes.create_server_volume( instance.instance_id, volume.id, None) return resp.device def _count_attached_devices(instance, devices): code, part_info = instance.remote().execute_command('cat /proc/partitions') count = 0 for line in part_info.split('\n')[1:]: tokens = line.split() if len(tokens) > 3: dev = '/dev/' + tokens[3] if dev in devices: count += 1 return count def mount_to_instances(instances): if len(instances) == 0: return cpo.add_provisioning_step( instances[0].cluster_id, _("Mount volumes to instances"), _count_volumes_to_mount(instances)) with context.ThreadGroup() as tg: for instance in instances: with context.set_current_instance_id(instance.instance_id): devices = _find_instance_volume_devices(instance) # Since formating can take several minutes (for large disks) # and can be done in parallel, launch one thread per disk. for idx in range(0, instance.node_group.volumes_per_node): tg.spawn( 'mount-volume-%d-to-node-%s' % (idx, instance.instance_name), _mount_volume_to_node, instance, idx, devices[idx]) def _find_instance_volume_devices(instance): volumes = nova.client().volumes.get_server_volumes(instance.instance_id) devices = [volume.device for volume in volumes] return devices @cpo.event_wrapper(mark_successful_on_exit=True) def _mount_volume_to_node(instance, idx, device): LOG.debug("Mounting volume {device} to instance".format(device=device)) mount_point = instance.node_group.storage_paths()[idx] _mount_volume(instance, device, mount_point) LOG.debug("Mounted volume to instance") def _mount_volume(instance, device_path, mount_point): with instance.remote() as r: try: # Mount volumes with better performance options: # - reduce number of blocks reserved for root to 1% # - use 'dir_index' for faster directory listings # - use 'extents' to work faster with large files # - disable journaling # - enable write-back # - do not store access time fs_opts = '-m 1 -O dir_index,extents,^has_journal' mount_opts = '-o data=writeback,noatime,nodiratime' r.execute_command('sudo mkdir -p %s' % mount_point) r.execute_command('sudo mkfs.ext4 %s %s' % (fs_opts, device_path)) r.execute_command('sudo mount %s %s %s' % (mount_opts, device_path, mount_point)) except Exception: LOG.error(_LE("Error mounting volume to instance")) raise def detach_from_instance(instance): for volume_id in instance.volumes: _detach_volume(instance, volume_id) _delete_volume(volume_id) @poll_utils.poll_status( 'detach_volume_timeout', _("Await for volume become detached"), sleep=2) def _await_detach(volume_id): volume = cinder.get_volume(volume_id) if volume.status not in ['available', 'error']: return False return True def _detach_volume(instance, volume_id): volume = cinder.get_volume(volume_id) try: LOG.debug("Detaching volume {id} from instance".format(id=volume_id)) nova.client().volumes.delete_server_volume(instance.instance_id, volume_id) except Exception: LOG.error(_LE("Can't detach volume {id}").format(id=volume.id)) detach_timeout = CONF.timeouts.detach_volume_timeout LOG.debug("Waiting {timeout} seconds to detach {id} volume".format( timeout=detach_timeout, id=volume_id)) _await_detach(volume_id) def _delete_volume(volume_id): LOG.debug("Deleting volume {volume}".format(volume=volume_id)) volume = cinder.get_volume(volume_id) try: volume.delete() except Exception: LOG.error(_LE("Can't delete volume {volume}").format( volume=volume.id))
apache-2.0
-8,491,081,074,740,166,000
34.465021
79
0.640752
false
niboshi/chainer
chainerx/_docs/routines.py
1
127367
import chainerx from chainerx import _docs def set_docs(): _docs_creation() _docs_evaluation() _docs_indexing() _docs_linalg() _docs_logic() _docs_loss() _docs_manipulation() _docs_math() _docs_sorting() _docs_statistics() _docs_connection() _docs_normalization() _docs_pooling() _docs_rnn() def _docs_creation(): _docs.set_doc( chainerx.empty, """empty(shape, dtype, device=None) Returns an array without initializing the elements. Args: shape (tuple of ints): Shape of the array. dtype: Data type of the array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: :class:`~chainerx.ndarray`: New array with elements not initialized. .. seealso:: :func:`numpy.empty` """) _docs.set_doc( chainerx.empty_like, """empty_like(a, device=None) Returns a new array with same shape and dtype of a given array. Args: a (~chainerx.ndarray): Prototype array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: :class:`~chainerx.ndarray`: New array with same shape and dtype as ``a`` \ with elements not initialized. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.empty_like` """) _docs.set_doc( chainerx.eye, """eye(N, M=None, k=0, dtype=float64, device=None) Returns a 2-D array with ones on the diagonals and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D array with given diagonals filled with ones and zeros elsewhere. .. seealso:: :func:`numpy.eye` """) _docs.set_doc( chainerx.tri, """tri(N, M=None, k=0, dtype=float32, device=None) Returns a 2-D array with ones at and below the given diagonal and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D array with given diagonals filled ones at and below the given diagonal and zeros elsewhere. .. seealso:: :func:`numpy.tri` """) _docs.set_doc( chainerx.tril, """tril(m, k=0) Lower triangle of an array. Returns a copy of an array with elements above the k-th diagonal zeroed. Args: m (~chainerx.ndarray): Input array. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. Returns: ~chainerx.ndarray: Lower triangle of ``m``. .. seealso:: :func:`numpy.tril` """) _docs.set_doc( chainerx.triu, """triu(m, k=0) Upper triangle of an array. Returns a copy of an array with elements below the k-th diagonal zeroed. Args: m (~chainerx.ndarray): Input array. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. Returns: ~chainerx.ndarray: Upper triangle of ``m``. .. seealso:: :func:`numpy.triu` """) _docs.set_doc( chainerx.identity, """identity(n, dtype=None, device=None) Returns a 2-D identity array. It is equivalent to ``eye(n, n, dtype)``. Args: n (int): Number of rows and columns. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D identity array. .. seealso:: :func:`numpy.identity` """) _docs.set_doc( chainerx.ones, """ones(shape, dtype, device=None) Returns a new array of given shape and dtype, filled with ones. Args: shape (tuple of ints): Shape of the array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. .. seealso:: :func:`numpy.ones` """) _docs.set_doc( chainerx.ones_like, """ones_like(a, device=None) Returns an array of ones with same shape and dtype as a given array. Args: a (~chainerx.ndarray): Prototype array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.ones_like` """) _docs.set_doc( chainerx.zeros, """zeros(shape, dtype, device=None) Returns a new array of given shape and dtype, filled with zeros. Args: shape (tuple of ints): Shape of the array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. .. seealso:: :func:`numpy.zeros` """) _docs.set_doc( chainerx.zeros_like, """zeros_like(a, device=None) Returns an array of zeros with same shape and dtype as a given array. Args: a (~chainerx.ndarray): Prototype array. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.zeros_like` """) _docs.set_doc( chainerx.full, """full(shape, fill_value, dtype, device=None) Returns a new array of given shape and dtype, filled with a given value. Args: shape (tuple of ints): Shape of the array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. .. seealso:: :func:`numpy.full` """) _docs.set_doc( chainerx.full_like, """full_like(a, fill_value, dtype=None, device=None) Returns a full array with same shape and dtype as a given array. Args: a (~chainerx.ndarray): Prototype array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the prototype array. .. seealso:: :func:`numpy.full_like` """) _docs.set_doc( chainerx.array, """array(object, dtype=None, copy=True, device=None) Creates an array. Args: object: A :class:`~chainerx.ndarray` object or any other object that can be passed to :func:`numpy.array`. dtype: Data type. If omitted, it's inferred from the input. copy (bool): If ``True``, the object is always copied. Otherwise, a copy will only be made if it is needed to satisfy any of the other requirements (dtype, device, etc.). device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: New array. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the input array. .. seealso:: :func:`numpy.array` """) _docs.set_doc( chainerx.asarray, """asarray(a, dtype=None, device=None) Converts an object to an array. Args: a: The source object. dtype: Data type. If omitted, it's inferred from the input. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: Array interpretation of ``a``. If ``a`` is already an \ ndarray on the given device with matching dtype, no copy is performed. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the input array. .. seealso:: :func:`numpy.asarray` """) _docs.set_doc( chainerx.ascontiguousarray, """ascontiguousarray(a, dtype=None, device=None) Returns a C-contiguous array. Args: a (~chainerx.ndarray): Source array. dtype: Data type. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: C-contiguous array. A copy will be made only if needed. Warning: If ``device`` argument is omitted, the new array is created on the default device, not the device of the input array. .. seealso:: :func:`numpy.ascontiguousarray` """) _docs.set_doc( chainerx.copy, """copy(a) Creates a copy of a given array. Args: a (~chainerx.ndarray): Source array. Returns: ~chainerx.ndarray: A copy array on the same device as ``a``. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.copy` """) _docs.set_doc( chainerx.frombuffer, """frombuffer(buffer, dtype=float, count=-1, offset=0, device=None) Returns a 1-D array interpretation of a buffer. The given ``buffer`` memory must be usable on the given device, otherwise, an error is raised. Note: The ``native`` backend requires a buffer of main memory, and the ``cuda`` backend requires a buffer of CUDA memory. No copy is performed. Args: buffer: An object that exposes the buffer interface. dtype: Data type of the returned array. count (int): Number of items to read. -1 means all data in the buffer. offset (int): Start reading the buffer from this offset (in bytes). device (~chainerx.Device): Device of the returned array. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: 1-D array interpretation of ``buffer``. .. seealso:: :func:`numpy.frombuffer` """) _docs.set_doc( chainerx.arange, """arange([start=0, ]stop, [step=1, ]dtype=None, device=None) Returns an array with evenly spaced values within a given interval. Values are generated within the half-open interval [``start``, ``stop``). The first three arguments are mapped like the ``range`` built-in function, i.e. ``start`` and ``step`` are optional. Args: start: Start of the interval. stop: End of the interval. step: Step width between each pair of consecutive values. dtype: Data type specifier. It is inferred from other arguments by default. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: The 1-D array of range values. .. seealso:: :func:`numpy.arange` """) _docs.set_doc( chainerx.linspace, """linspace(start, stop, num=50, endpoint=True, dtype=None, device=None) Returns an array with evenly spaced numbers over a specified interval. Instead of specifying the step width like :func:`chainerx.arange()`, this function requires the total number of elements specified. Args: start: Start of the interval. stop: End of the interval. num: Number of elements. endpoint (bool): If ``True``, the stop value is included as the last element. Otherwise, the stop value is omitted. dtype: Data type specifier. It is inferred from the start and stop arguments by default. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: The 1-D array of ranged values. .. seealso:: :func:`numpy.linspace` """) # NOQA _docs.set_doc( chainerx.diag, """diag(v, k=0, device=None) Returns a diagonal or a diagonal array. Args: v (~chainerx.ndarray): Array object. k (int): Index of diagonals. Zero indicates the main diagonal, a positive value an upper diagonal, and a negative value a lower diagonal. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: If ``v`` is a 1-D array, then it returns a 2-D array with the specified diagonal filled by ``v``. If ``v`` is a 2-D array, then it returns the specified diagonal of ``v``. In latter case, if ``v`` is a :class:`chainerx.ndarray` object, then its view is returned. Note: The argument ``v`` does not support array-like objects yet. .. seealso:: :func:`numpy.diag` """) _docs.set_doc( chainerx.diagflat, """diagflat(v, k=0, device=None) Creates a diagonal array from the flattened input. Args: v (~chainerx.ndarray): Array object. k (int): Index of diagonals. See :func:`chainerx.diag`. device (~chainerx.Device): Device on which the array is allocated. If omitted, :ref:`the default device <chainerx_device>` is chosen. Returns: ~chainerx.ndarray: A 2-D diagonal array with the diagonal copied from ``v``. Note: The argument ``v`` does not support array-like objects yet. .. seealso:: :func:`numpy.diagflat` """) _docs.set_doc( chainerx.meshgrid, """meshgrid(xi, indexing='xy') Returns coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn. Args: xi (sequence of :class:`~chainerx.ndarray`\\ s): 1-D arrays representing the coordinates of a grid. indexing (str): {‘xy’, ‘ij’}, optional Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. Returns: list of :class:`~chainerx.ndarray`\\ s: For vectors x1, x2,…, ‘xn’ with lengths Ni=len(xi), return (N1, N2, N3,...Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3,...Nn) shaped arrays if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on. .. seealso:: :func:`numpy.meshgrid` """) def _docs_evaluation(): _docs.set_doc( chainerx.accuracy, """accuracy(y, t, ignore_label=None) Computes multiclass classification accuracy of the minibatch. Args: y (~chainerx.ndarray): Array whose (i, j, k, ...)-th element indicates the score of the class j at the (i, k, ...)-th sample. The prediction label :math:`\\hat t` is calculated by the formula :math:`\\hat t(i, k, ...) = \\operatorname{\\mathrm{argmax}}_j \ y(i, j, k, ...)`. t (~chainerx.ndarray): Array of ground truth labels. ignore_label (int or None): Skip calculating accuracy if the true label is ``ignore_label``. Returns: :func:`~chainerx.ndarray`: A variable holding a scalar \ array of the accuracy. Note: This function is non-differentiable. .. seealso:: :func:`chainer.functions.accuracy` .. admonition:: Example We show the most common case, when ``y`` is the two dimensional array. >>> y = chainerx.array([[0.1, 0.7, 0.2], # prediction label is 1 ... [8.0, 1.0, 2.0], # prediction label is 0 ... [-8.0, 1.0, 2.0], # prediction label is 2 ... [-8.0, -1.0, -2.0]]) # prediction label is 1 >>> t = chainerx.array([1, 0, 2, 1], chainerx.int32) >>> chainerx.accuracy(y, t) \ # 100% accuracy because all samples are correct array(1., shape=(), dtype=float64, device='native:0') >>> t = chainerx.array([1, 0, 0, 0], chainerx.int32) >>> chainerx.accuracy(y, t) \ # 50% accuracy because 1st and 2nd samples are correct array(0.5, shape=(), dtype=float64, device='native:0') >>> chainerx.accuracy(y, t, ignore_label=0) \ # 100% accuracy because of ignoring the 2nd, 3rd and 4th samples. array(1., shape=(), dtype=float64, device='native:0') """) def _docs_indexing(): _docs.set_doc( chainerx.take, """take(a, indices, axis) Takes elements from an array along an axis. Args: a (~chainerx.ndarray): Source array. indices (~chainerx.ndarray): The indices of the values to extract. When indices are out of bounds, they are wrapped around. axis (int): The axis over which to select values. mode (str): Specifies how out-of-bounds indices will behave. 'raise' - raise an error 'wrap' - wrap around 'clip' - clip to the range Returns: :func:`~chainerx.ndarray`: Output array. Note: This function currently does not support ``axis=None`` Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. Note: The default mode for the native backend is 'raise', while for the cuda backend is 'wrap' in order to prevent device synchronization. 'raise' mode is currently not supported in the CUDA backend. .. seealso:: :func:`numpy.take` """) _docs.set_doc( chainerx.where, """where(condition, x, y) Return elements chosen from ``x`` or ``y`` depending on condition. Args: condition (~chainerx.ndarray): Where True, yield ``x``, otherwise yield ``y``. x (~chainerx.ndarray): Values from which to choose. y (~chainerx.ndarray): Values from which to choose. Returns: :func:`~chainerx.ndarray`: An array with elements from ``x`` where condition is True, and elements from ``y`` elsewhere. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x`` and ``y``. .. seealso:: :func:`numpy.where` """) _docs.set_doc( chainerx.nonzero, """nonzero(a) Return the indices of the elements that are non-zero. Args: a (~chainerx.ndarray): Input array. Returns: tuple of :func:`~chainerx.ndarray`: Indices of elements that are non-zero. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :func:`numpy.nonzero` """) def _docs_linalg(): _docs.set_doc( chainerx.dot, """dot(a, b) Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (~chainerx.ndarray): The left argument. b (~chainerx.ndarray): The right argument. Returns: :class:`~chainerx.ndarray`: Output array. Note: This function currently does not support N > 2 dimensional arrays. Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``a`` and ``b``. .. seealso:: :func:`numpy.dot` """) _docs.set_doc( chainerx.linalg.solve, """solve(a, b) Solves a linear matrix equation, or system of linear scalar equations. It computes the exact solution of ``x`` in ``ax = b``, where ``a`` is a square and full rank matrix, ``b`` can be a vector, or a rectangular matrix. When ``b`` is matrix, its columns are treated as separate vectors representing multiple right-hand sides. Args: a (~chainerx.ndarray): Coefficient matrix. b (~chainerx.ndarray): "dependent variable" values. Returns: :class:`~chainerx.ndarray`: Solution to the system ``ax = b``. Shape is identical to ``b``. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.solve` """) _docs.set_doc( chainerx.linalg.inv, """inv(a) Computes the inverse of a matrix. This function computes matrix ``a_inv`` from square matrix ``a`` such that ``dot(a, a_inv) = dot(a_inv, a) = eye(a.shape[0])``. Args: a (~chainerx.ndarray): The matrix to be inverted. Returns: :class:`~chainerx.ndarray`: The inverse of a matrix. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.inv` """) _docs.set_doc( chainerx.linalg.svd, """svd(a, full_matrices=True, compute_uv=True) Singular Value Decomposition. Factorizes the matrix ``a`` into two unitary matrices ``U`` and ``Vt``, and a 1-D array ``s`` of singular values such that ``a == U * S * Vt``, where ``S`` is a suitably shaped matrix of zeros with main diagonal ``s`` and ``*`` represents a dot product. Args: a (~chainerx.ndarray): The input matrix with dimension ``(M, N)``. full_matrices (bool): If True, it returns u and v with dimensions ``(M, M)`` and ``(N, N)``. Otherwise, the dimensions of u and v are respectively ``(M, K)`` and ``(K, N)``, where ``K = min(M, N)``. compute_uv (bool): If False, only singular values are computed. Returns: tuple of :class:`chainerx.ndarray`: A tuple of ``(U, s, Vt)`` such that ``a = U * diag(s) * Vt``. When ``compute_uv`` is False only singular values ``s`` are returned. Note: * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) * The SVD is commonly written as `a = U * diag(s) * V^T`. The ``Vt`` returned by this function is `V^T`. * During backpropagation, this function requires ``U`` and ``Vt`` computed, therefore differentiation does not work for ``compute_uv=False``. * Backpropagation is not implemented for ``full_matrices=True``. .. seealso:: :func:`numpy.linalg.svd` """) _docs.set_doc( chainerx.linalg.pinv, """pinv(a, rcond=1e-15) Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values. Args: a (~chainerx.ndarray): The input matrix to be pseudo-inverted. rcond (float): Cutoff for small singular values. Returns: :class:`~chainerx.ndarray`: The pseudo-inverse of ``a``. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.pinv` """) _docs.set_doc( chainerx.linalg.qr, """qr(a, mode='reduced') Compute the qr factorization of a matrix. Factor the matrix ``a`` as *qr*, where ``q`` is orthonormal and ``r`` is upper-triangular. Args: a (~chainerx.ndarray): Matrix to be factored. mode (str): The mode of decomposition. 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,), where ``(M, N)`` is the shape of the input matrix and ``K = min(M, N)`` Returns: q (~chainerx.ndarray): A matrix with orthonormal columns. r (~chainerx.ndarray): The upper-triangular matrix. Note: * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) * Backpropagation is not implemented for non-square output matrix ``r``. * Backpropagation is not implemented for 'r' or 'raw' modes. .. seealso:: :func:`numpy.linalg.qr` """) _docs.set_doc( chainerx.linalg.cholesky, """cholesky(a) Computes the Cholesky decomposition of a matrix. Returns the Cholesky decomposition, :math:`A = L L^T`, for the square matrix ``a``. Args: a (~chainerx.ndarray): Symmetric positive-definite input matrix. Returns: :class:`~chainerx.ndarray`: Output array. Cholesky factor of ``a``. Note: The forward computation does not necessarily check if the input matrix is symmetric (e.g. the native backend relying on LAPACK does not). However, both the forward and the backward computations assume that it is and their results are unspecified otherwise. The computed gradient is always a symmetric matrix. More specifically, the gradient is computed as if the function is restricted to a Riemannian submanifold of :math:`R_{n \times n}` consisting just of positive-definite symmetric matrices and is faithful to the mathematical definition of the Cholesky decomposition. Note: * GPU implementation of the Cholesky decomposition routine is based on cuSOLVER library. Older versions (<10.1) of it might not raise an error for some non positive-definite matrices. * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.cholesky` """) _docs.set_doc( chainerx.linalg.eigh, """eigh(a, UPLO='L') Compute the eigenvalues and eigenvectors of a real symmetric matrix. Args: a (~chainerx.ndarray): Real symmetric matrix whose eigenvalues and eigenvectors are to be computed. UPLO (str): Specifies whether the calculation is done with the lower triangular part of a ('L', default) or the upper triangular part ('U'). Returns: tuple of :class:`~chainerx.ndarray`: Returns a tuple ``(w, v)``. ``w`` contains eigenvalues and ``v`` contains eigenvectors. ``v[:, i]`` is an eigenvector corresponding to an eigenvalue ``w[i]``. Note: Although ``UPLO`` can be specified to ignore either the strictly lower or upper part of the input matrix, the backward computation assumes that the inputs is symmetric and the computed gradient is always a symmetric matrix with respect to ``UPLO``. More specifically, the gradient is computed as if the function is restricted to a Riemannian submanifold of :math:`R_{n \times n}` consisting just of symmetric matrices and is faithful to the mathematical definition of the eigenvalue decomposition of symmetric matrices. Note: The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) .. seealso:: :func:`numpy.linalg.eigh` """) _docs.set_doc( chainerx.linalg.eigvalsh, """eigvalsh(a, UPLO='L') Compute the eigenvalues of a real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Args: a (~chainerx.ndarray): Real symmetric matrix whose eigenvalues and eigenvectors are to be computed. UPLO (str): Specifies whether the calculation is done with the lower triangular part of a (‘L’, default) or the upper triangular part (‘U’). (optional). Returns: :class:`~chainerx.ndarray`: Returns eigenvalues as a vector. Note: * The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) * Backpropagation requires eigenvectors and, therefore, is not implemented for this function. ``linalg.eigh`` should be used instead. .. seealso:: :func:`numpy.linalg.eigvalsh` """) def _docs_logic(): _docs.set_doc( chainerx.all, """all(x) Test whether all array elements along a given axis evaluate to True. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which AND reduction is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.all` """) _docs.set_doc( chainerx.any, """any(x) Test whether any array element along a given axis evaluate to True. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which OR reduction is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.any` """) _docs.set_doc( chainerx.logical_not, """logical_not(x) Returns an array of NOT x element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_not` """) _docs.set_doc( chainerx.logical_and, """logical_and(x1, x2) Returns an array of x1 AND x2 element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_and` """) _docs.set_doc( chainerx.logical_or, """logical_or(x1, x2) Returns an array of x1 OR x2 element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_or` """) _docs.set_doc( chainerx.logical_xor, """logical_xor(x1, x2) Returns an array of x1 XOR x2 element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.logical_xor` """) _docs.set_doc( chainerx.greater, """greater(x1, x2) Returns an array of (x1 > x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.greater` """) _docs.set_doc( chainerx.greater_equal, """greater_equal(x1, x2) Returns an array of (x1 >= x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.greater_equal` """) _docs.set_doc( chainerx.less, """less(x1, x2) Returns an array of (x1 < x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.less` """) _docs.set_doc( chainerx.less_equal, """less_equal(x1, x2) Returns an array of (x1 <= x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.less_equal` """) _docs.set_doc( chainerx.equal, """equal(x1, x2) Returns an array of (x1 == x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.equal` """) _docs.set_doc( chainerx.not_equal, """not_equal(x1, x2) Returns an array of (x1 != x2) element-wise. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Output array of type bool. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.not_equal` """) def _docs_loss(): _docs.set_doc( chainerx.absolute_error, """Element-wise absolute error function. Computes the element-wise absolute error :math:`L` between two inputs :math:`x_1` and :math:`x_2` defined as follows. .. math:: L = |x_1 - x_2| Args: x1 (~chainerx.ndarray): Input variable. x2 (~chainerx.ndarray): Input variable. Returns: :class:`~chainerx.ndarray`: A variable holding an array representing the absolute error of two inputs. .. seealso:: :func:`chainer.functions.absolute_error` """) _docs.set_doc( chainerx.squared_error, """Element-wise squared error function. Computes the element-wise squared error :math:`L` between two inputs :math:`x_1` and :math:`x_2` defined as follows. .. math:: L = (x_1 - x_2)^2 Can be used to compute mean squared error by just calling `mean()` on the output array. Args: x0 (~chainerx.ndarray): Input variable. x1 (~chainerx.ndarray): Input variable. Returns: :class:`~chainerx.ndarray`: A variable holding an array representing the squared error of two inputs. .. seealso:: :func:`chainer.functions.squared_error` """) _docs.set_doc( chainerx.huber_loss, """Element-wise Huber loss. The Huber loss is similar to the squared error but is less sensitive to outliers in the data. It is defined as .. math:: L_{\\delta}(a) = \\left \\{ \\begin{array}{cc} \\frac{1}{2} a^2 & {\\rm if~|a| \\leq \\delta} \\\\ \\delta (|a| - \\frac{1}{2} \\delta) & {\\rm otherwise,} \\end{array} \\right. where :math:`a = x - t` is the difference between the input :math:`x` and the target :math:`t`. See: `Huber loss - Wikipedia <https://en.wikipedia.org/wiki/Huber_loss>`_. Args: x (~chainerx.ndarray): Input variable. t (~chainerx.ndarray): Target variable for regression. delta (float): Constant variable for Huber loss function as used in definition. Returns: :class:`~chainerx.ndarray`: A variable object holding an array representing the Huber loss :math:`L_{\\delta}` of the two inputs. .. seealso:: :func:`chainer.functions.huber_loss` """) _docs.set_doc( chainerx.gaussian_kl_divergence, """Element-wise KL-divergence of Gaussian variables from the standard one. Given two variable ``mean`` representing :math:`\\mu` and ``ln_var`` representing :math:`\\log(\\sigma^2)`, this function calculates the element-wise KL-divergence between the given multi-dimensional Gaussian :math:`N(\\mu, S)` and the standard Gaussian :math:`N(0, I)` .. math:: D_{\\mathbf{KL}}(N(\\mu, S) \\| N(0, I)), where :math:`S` is a diagonal matrix such that :math:`S_{ii} = \\sigma_i^2` and :math:`I` is an identity matrix. Args: mean (~chainerx.ndarray): A variable representing mean of given gaussian distribution, :math:`\\mu`. ln_var (~chainerx.ndarray): A variable representing logarithm of variance of given gaussian distribution, :math:`\\log(\\sigma^2)`. Returns: :class:`~chainerx.ndarray`: A variable representing KL-divergence between given gaussian distribution and the standard gaussian. .. seealso:: :func:`chainer.functions.gaussian_kl_divergence` """) _docs.set_doc( chainerx.sigmoid_cross_entropy, """sigmoid_cross_entropy(x1, x2) Element-wise cross entropy loss for pre-sigmoid activations. Args: x1 (~chainerx.ndarray): An array whose (i, j)-th element indicates the unnormalized log probability of the j-th unit at the i-th example. x2 (~chainerx.ndarray): An array whose (i, j)-th element indicates a signed integer vector of ground truth labels 0 or 1. If ``x2[i, j] == -1``, corresponding ``x1[i, j]`` is ignored. Loss is zero if all ground truth labels are -1. Returns: :class:`~chainerx.ndarray`: An array of the cross entropy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x1`` only. """) _docs.set_doc( chainerx.softmax_cross_entropy, """softmax_cross_entropy(x1, x2) Element-wise cross entropy loss for pre-softmax activations. Args: x1 (~chainerx.ndarray): An array whose element indicates unnormalized log probability: the first axis of the array represents the number of samples, and the second axis represents the number of classes. x2 (~chainerx.ndarray): A signed integer vector of ground truth labels. If ``x2[i] == -1``, corresponding ``x1[i]`` is ignored. Returns: :class:`~chainerx.ndarray`: An array of the cross entropy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x1`` only. """) def _docs_manipulation(): _docs.set_doc( chainerx.reshape, """reshape(a, newshape) Returns a reshaped array. Args: a (~chainerx.ndarray): Array to be reshaped. newshape (int or tuple of ints): The new shape of the array to return. If it is an integer, then it is treated as a tuple of length one. It should be compatible with ``a.size``. One of the elements can be -1, which is automatically replaced with the appropriate value to make the shape compatible with ``a.size``. Returns: :class:`~chainerx.ndarray`: A reshaped view of ``a`` if possible, otherwise a copy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.reshape` """) _docs.set_doc( chainerx.ravel, """ravel(a) Returns a flattened array. Args: a (~chainerx.ndarray): Array to be flattened. Returns: :class:`~chainerx.ndarray`: A flattened view of ``a`` if possible, otherwise a copy. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.ravel` """) _docs.set_doc( chainerx.transpose, """transpose(a, axes=None) Permutes the dimensions of an array. Args: a (~chainerx.ndarray): Array to permute the dimensions. axes (tuple of ints): Permutation of the dimensions. This function reverses the shape by default. Returns: ~chainerx.ndarray: A view of ``a`` with the dimensions permuted. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.transpose` """) _docs.set_doc( chainerx.broadcast_to, """broadcast_to(array, shape) Broadcasts an array to a given shape. Args: array (~chainerx.ndarray): Array to broadcast. shape (tuple of ints): The shape of the desired array. Returns: ~chainerx.ndarray: Broadcasted view. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``array``. .. seealso:: :func:`numpy.broadcast_to` """) _docs.set_doc( chainerx.squeeze, """squeeze(a, axis=None) Removes size-one axes from the shape of an array. Args: a (~chainerx.ndarray): Array to be reshaped. axis (int or tuple of ints): Axes to be removed. This function removes all size-one axes by default. If one of the specified axes is not of size one, an exception is raised. Returns: ~chainerx.ndarray: An array without (specified) size-one axes. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.squeeze` """) _docs.set_doc( chainerx.concatenate, """concatenate(arrays, axis=0) Joins arrays along an axis. Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be joined. All of these should have the same dimensionalities except the specified axis. axis (int): The axis to join arrays along. Returns: ~chainerx.ndarray: Joined array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.concatenate` """) _docs.set_doc( chainerx.stack, """stack(arrays, axis=0) Stacks arrays along a new axis. Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. axis (int): Axis along which the arrays are stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.stack` """) _docs.set_doc( chainerx.hstack, """hstack(arrays) Stack arrays in sequence horizontally (column wise). Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.hstack` """) _docs.set_doc( chainerx.vstack, """vstack(arrays) Stack arrays in sequence vertically (row wise). Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.vstack` """) _docs.set_doc( chainerx.dstack, """dstack(arrays) Stack arrays in sequence depth wise (along third axis). Args: arrays (sequence of :class:`~chainerx.ndarray`\\ s): Arrays to be stacked. Returns: ~chainerx.ndarray: Stacked array. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays in ``arrays``. .. seealso:: :func:`numpy.dstack` """) _docs.set_doc( chainerx.atleast_2d, """atleast_2d(a) View inputs as arrays with at least two dimensions. Args: a (~chainerx.ndarray): Array. Returns: ~chainerx.ndarray: An array with a.ndim >= 2. Copies are avoided where possible, and views with two or more dimensions are returned. Note: * Arrays that already have two or more dimensions are preserved. * During backpropagation, this function propagates the gradient of the output array to the input arrays in ``a``. .. seealso:: :func:`numpy.atleast_2d` """) _docs.set_doc( chainerx.atleast_3d, """atleast_3d(a) View inputs as arrays with at least three dimensions. Args: a (~chainerx.ndarray): Array. Returns: ~chainerx.ndarray: An array with a.ndim >= 3. Copies are avoided where possible, and views with three or more dimensions are returned. Note: * Arrays that already have three or more dimensions are preserved. * During backpropagation, this function propagates the gradient of the output array to the input arrays in ``a``. .. seealso:: :func:`numpy.atleast_3d` """) _docs.set_doc( chainerx.split, """split(ary, indices_or_sections, axis=0) Splits an array into multiple sub arrays along a given axis. Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. axis (int): Axis along which the array is split. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.split` """) _docs.set_doc( chainerx.dsplit, """dsplit(ary, indices_or_sections) Split array into multiple sub-arrays along the 3rd axis (depth). Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.dsplit` """) _docs.set_doc( chainerx.vsplit, """vsplit(ary, indices_or_sections) Splits an array into multiple sub-arrays vertically (row-wise). Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.vsplit` """) _docs.set_doc( chainerx.hsplit, """hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally (column-wise). Args: ary (~chainerx.ndarray): Array to split. indices_or_sections (int or sequence of ints): A value indicating how to divide the axis. If it is an integer, then is treated as the number of sections, and the axis is evenly divided. Otherwise, the integers indicate indices to split at. Note that a sequence on the device memory is not allowed. Returns: list of :class:`~chainerx.ndarray`\\ s: A list of sub arrays. Each array \ is a partial view of the input array. Note: During backpropagation, this function propagates the gradients of the output arrays to the input array ``ary``. .. seealso:: :func:`numpy.hsplit` """) _docs.set_doc( chainerx.swapaxes, """swapaxes(a, axis1, axis2) Interchange two axes of an array. Args: a (~chainerx.ndarray): Array to swapaxes. axis1 (int): First Axis axis2 (int): Second Axis Returns: ~chainerx.ndarray: Swaped array. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``a``. .. seealso:: :func:`numpy.swapaxes` """) _docs.set_doc( chainerx.repeat, """repeat(a, repeats, axis=None) Constructs an array by repeating a given array. Args: a (~chainerx.ndarray): Array to repeat. repeats (int or tuple of ints): The number of times which each element of a is repeated. axis (int): The axis along which to repeat values. Returns: ~chainerx.ndarray: The repeated output array. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.repeat` """) _docs.set_doc( chainerx.expand_dims, """expand_dims(a, axis) Expand the shape of an array. Args: a (~chainerx.ndarray): Input Array. axis (int): Position in the expanded axes where the new axis is placed. Returns: ~chainerx.ndarray: Output array. Note: * Output array may or may not be a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``a``. .. seealso:: :func:`numpy.expand_dims` """) _docs.set_doc( chainerx.flip, """flip(m, axis) Reverse the order of elements in an array along the given axis. Args: m (~chainerx.ndarray): Input Array. axis (int or tuple of ints): Axis or axes along which to flip over. The default, axis=None, will flip over all of the axes of the input array. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple. Returns: ~chainerx.ndarray: A view of m with the entries of axis reversed. Since a view is returned, this operation is done in constant time. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``m``. .. seealso:: :func:`numpy.flip` """) _docs.set_doc( chainerx.fliplr, """fliplr(m) Flip array in the left/right direction. Args: m (~chainerx.ndarray): Input Array. Returns: ~chainerx.ndarray: A view of m with the columns reversed. Since a view is returned, this operation is done in constant time. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``m``. .. seealso:: :func:`numpy.fliplr` """) _docs.set_doc( chainerx.flipud, """flipud(m) Flip array in the up/down direction. Args: m (~chainerx.ndarray): Input Array. Returns: ~chainerx.ndarray: A view of m with the rows reversed. Since a view is returned, this operation is done in constant time. Note: * Output array is a view of the input array. * During backpropagation, this function propagates the gradients of the output arrays to the input array ``m``. .. seealso:: :func:`numpy.flipud` """) _docs.set_doc( chainerx.moveaxis, """moveaxis(a, source, destination) Move axes of an array to new positions. Other axes remain in their original order. Args: a (~chainerx.ndarray): Input Array. source (int or tuple of ints): Original positions of the axes to move. These must be unique. destintation (int or tuple of ints): Destination positions for each of the original axes. These must also be unique. Returns: ~chainerx.ndarray: Array with moved axes. This array is a view of the input array. Note: * During backpropagation, this function propagates the gradients of the output arrays to the input array ``a``. .. seealso:: :func:`numpy.moveaxis` """) def _docs_math(): _docs.set_doc( chainerx.negative, """negative(x) Numerical negative, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = -x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.negative` """) _docs.set_doc( chainerx.add, """add(x1, x2) Add arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 + x_2`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.add` """) _docs.set_doc( chainerx.subtract, """subtract(x1, x2) Subtract arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 - x_2`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.subtract` """) _docs.set_doc( chainerx.multiply, """multiply(x1, x2) Multiply arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 \\times x_2`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.multiply` """) _docs.set_doc( chainerx.divide, """divide(x1, x2) Divide arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\frac{x_1}{x_2}`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.divide` """) _docs.set_doc( chainerx.sum, """sum(a, axis=None, keepdims=False) Sum of array elements over a given axis. Args: a (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which a sum is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: The sum of input elements over a given axis. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.sum` """) _docs.set_doc( chainerx.maximum, """maximum(x1, x2) Maximum arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = max(\\{x_1, x_2\\})`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.maximum` """) _docs.set_doc( chainerx.minimum, """minimum(x1, x2) Minimum arguments, element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = min(\\{x_1, x_2\\})`. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.minimum` """) _docs.set_doc( chainerx.remainder, """remainder(x1, x2) Return element-wise remainder of division. Args: x1 (~chainerx.ndarray or scalar): Input array. x2 (~chainerx.ndarray or scalar): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: The element-wise remainder of the quotient ``floor_divide(x1, x2)``. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x1`` and ``x2``. .. seealso:: :data:`numpy.remainder` """) _docs.set_doc( chainerx.exp, """exp(x) Numerical exponential, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\exp x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.exp` """) _docs.set_doc( chainerx.log, """log(x) Natural logarithm, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\ln x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log` """) _docs.set_doc( chainerx.log10, """log10(x) Base 10 logarithm, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\log_{10} x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log10` """) _docs.set_doc( chainerx.log2, """log2(x) Base 2 logarithm, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\log_{2} x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log2` """) _docs.set_doc( chainerx.log1p, """log1p(x) Natural logarithm of one plus the input, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\log(1 + x)`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.log1p` """) _docs.set_doc( chainerx.logsumexp, """logsumexp(x, axis=None, keepdims=False) The log of the sum of exponentials of input array. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which a sum is performed. The flattened array is used by default. keepdims (bool): If this is set to ``True``, the reduced axes are left in the result as dimensions with size one. Returns: :class:`~chainerx.ndarray`: The log of the sum of exponentials of input elements over a given axis. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. """) _docs.set_doc( chainerx.log_softmax, """log_softmax(x, axis=None) The log of the softmax of input array. Args: x (~chainerx.ndarray): Input array. axis (None or int or tuple of ints): Axis or axes along which a sum is performed. The flattened array is used by default. Returns: :class:`~chainerx.ndarray`: The log of the softmax of input elements over a given axis. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. """) _docs.set_doc( chainerx.square, """square(x) Returns the element-wise square of the input. Args: x (~chainerx.ndarray or scalar): Input data Returns: ~chainerx.ndarray: Returned array: :math:`y = x * x`. A scalar is returned if ``x`` is a scalar. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.square` """) _docs.set_doc( chainerx.sqrt, """sqrt(x) Non-negative square-root, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\sqrt x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.sqrt` """) _docs.set_doc( chainerx.sinh, """sinh(x) Hyperbolic Sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\sinh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.sinh` """) _docs.set_doc( chainerx.cosh, """cosh(x) Hyperbolic Cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\cosh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.cosh` """) _docs.set_doc( chainerx.tanh, """tanh(x) Element-wise hyperbolic tangent function. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\tanh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.tanh` """) _docs.set_doc( chainerx.sigmoid, """sigmoid(x) Element-wise sigmoid logistic function. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`f(x) = (1 + \\exp(-x))^{-1}`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :func:`chainer.functions.sigmoid` """) _docs.set_doc( chainerx.sin, """sin(x) Sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\sin x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.sin` """) _docs.set_doc( chainerx.cos, """cos(x) Cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\cos x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.cos` """) _docs.set_doc( chainerx.ceil, """ceil(x) Return the ceiling of the input, element-wise.. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The ceiling of each element in array. .. seealso:: :data:`numpy.ceil` """) _docs.set_doc( chainerx.tan, """tan(x) Tangent, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\tan x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.tan` """) _docs.set_doc( chainerx.relu, """Rectified Linear Unit function. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\max (0, x)`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. """) _docs.set_doc( chainerx.tree_lstm, """tree_lstm(*inputs) TreeLSTM unit as an activation function. This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the children cell states :math:`c_{\\text{1}}, c_{\\text{2}}, \\dots, c_{\\text{N}}`, and the incoming signal :math:`x`. First, the incoming signal :math:`x` is split into (3 + N) arrays :math:`a, i, o, f_{\\text{1}}, f_{\\text{2}}, ..., f_{\\text{N}}` of the same shapes along the second axis. It means that :math:`x` 's second axis must have (3 + N) times of the length of each :math:`c_{n}`. The splitted input signals are corresponding to - :math:`a` : sources of cell input - :math:`i` : sources of input gate - :math:`o` : sources of output gate - :math:`f_{n}` : sources of forget gate for n-th ary Second, it computes outputs as .. math:: c &= \\tanh(a) \\text{sigmoid}(i) \\\\ & + c_{\\text{1}} \\text{sigmoid}(f_{\\text{1}}), \\\\ & + c_{\\text{2}} \\text{sigmoid}(f_{\\text{2}}), \\\\ & + ..., \\\\ & + c_{\\text{N}} \\text{sigmoid}(f_{\\text{N}}), \\\\ h &= \\tanh(c) \\text{sigmoid}(o). These are returned as a tuple of (N + 1) variables. Args: inputs (list of :class:`~chainerx.array`): Variable arguments which include all cell vectors from child-nodes, and an input vector. Each of the cell vectors and the input vector is :class:`~chainerx.array`. The input vector must have the second dimension whose size is (N + 3) times of that of each cell, where N denotes the total number of cells. Returns: tuple: Two :class:`~chainerx.array` objects ``c`` and ``h``. ``c`` is the updated cell state. ``h`` indicates the outgoing signal. See the papers for details: `Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks <https://www.aclweb.org/anthology/P15-1150>`_ and `A Fast Unified Model for Parsing and Sentence Understanding <https://arxiv.org/pdf/1603.06021.pdf>`_. Tai et al.'s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman et al. Specifically, eq. 10 in Tai et al. only has one :math:`W` matrix to be applied to :math:`x`, consistently for all children. On the other hand, Bowman et al.'s model has multiple matrices, each of which affects the forget gate for each child's cell individually. .. admonition:: Example Assuming ``y`` is the current input signal, ``c`` is the previous cell state, and ``h`` is the previous output signal from an :meth:`~chainerx.tree_lstm` function. Each of ``y``, ``c`` and ``h`` has ``n_units`` channels. Using 2-ary (binary) TreeLSTM, most typical preparation of ``x`` is >>> c1 = chainerx.ones((4, 10), dtype = chainerx.float32) >>> c2 = chainerx.ones((4, 10), dtype = chainerx.float32) >>> x = chainerx.ones((4, 50), dtype = chainerx.float32) >>> c, h = chainerx.tree_lstm(c1, c2, x) """) _docs.set_doc( chainerx.slstm, """slstm(c_prev1, c_prev2, x1, x2) S-LSTM units as an activation function. This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states ``c_prev1`` and ``c_prev2``, and input arrays ``x1`` and ``x2``. First both input arrays ``x1`` and ``x2`` are split into eight arrays :math:`a_1, i_1, f_1, o_1`, and :math:`a_2, i_2, f_2, o_2`. They have the same shape along the second axis. It means that ``x1`` and ``x2`` 's second axis must have 4 times the length of ``c_prev1`` and ``c_prev2``. The split input arrays are corresponding to - :math:`a_i` : sources of cell input - :math:`i_i` : sources of input gate - :math:`f_i` : sources of forget gate - :math:`o_i` : sources of output gate It computes the updated cell state ``c`` and the outgoing signal ``h`` as. .. math:: c &= \\tanh(a_1 + a_2) \\sigma(i_1 + i_2) + c_{\\text{prev}1} \\sigma(f_1) + c_{\\text{prev}2} \\sigma(f_2), \\\\ h &= \\tanh(c) \\sigma(o_1 + o_2), where :math:`\\sigma` is the elementwise sigmoid function. The function returns ``c`` and ``h`` as a tuple. Args: c_prev1 (:class:`~chainerx.array`): Variable that holds the previous cell state of the first child node. The cell state should be a zero array or the output of the previous call of LSTM. c_prev2 (:class:`~chainerx.array`): Variable that holds the previous cell state of the second child node. x1 (:class:`~chainerx.array`): Variable that holds the sources of cell input, input gate, forget gate and output gate from the first child node. It must have the second dimension whose size is four times of that of the cell state. x2 (:class:`~chainerx.array`): Variable that holds the input sources from the second child node. Returns: tuple: Two :class:`~chainerx.array` objects ``c`` and ``h``. ``c`` is the cell state. ``h`` indicates the outgoing signal. See detail in paper: `Long Short-Term Memory Over Tree Structures <https://arxiv.org/abs/1503.04881>`_. .. admonition:: Example Assuming ``c1``, ``c2`` is the previous cell state of children, and ``h1``, ``h2`` is the previous outgoing signal from children. Each of ``c1``, ``c2``, ``h1`` and ``h2`` has ``n_units`` channels. Most typical preparation of ``x1``, ``x2`` is: >>> n_units = 100 >>> c1 = chainerx.ones((1, n_units), np.float32) >>> c2 = chainerx.ones((1, n_units), np.float32) >>> x1 = chainerx.ones((1, 4 * n_units), chainerx.float32) >>> x2 = chainerx.ones((1, 4 * n_units), chainerx.float32) >>> c, h = chainerx.slstm(c1, c2, x1, x2) """) _docs.set_doc( chainerx.arcsin, """arcsin(x) Inverse sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arcsin x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arcsin` """) _docs.set_doc( chainerx.arccos, """arccos(x) Trigonometric inverse cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arccos x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arccos` """) _docs.set_doc( chainerx.arctan, """arctan(x) Trigonometric inverse tangent, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arctan x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arctan` """) _docs.set_doc( chainerx.arctan2, """arctan2(x1, x2) Element-wise arc tangent of :math:`\\frac{x_1}{x_2}` choosing the quadrant correctly. Args: x1 (~chainerx.ndarray): Input array. x2 (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returns an array where each element represents :math:`\\theta` in the range :math:`[-\\pi, \\pi]`, such that :math:`x_1 = r \\sin(\\theta)` and :math:`x_2 = r \\cos(\\theta)` for some :math:`r > 0`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x1`` and/or ``x2``. .. seealso:: :data:`numpy.arctan2` """) _docs.set_doc( chainerx.arcsinh, """arcsinh(x) Inverse hyperbolic sine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arcsinh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arcsinh` """) _docs.set_doc( chainerx.arccosh, """arccosh(x) Inverse hypberbolic inverse cosine, element-wise Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = \\arccosh x`. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. seealso:: :data:`numpy.arccosh` """) _docs.set_doc( chainerx.fabs, """fabs(x) Compute the absolute values element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The absolute values of x, the returned values are always floats. .. seealso:: :data:`numpy.fabs` """) _docs.set_doc( chainerx.sign, """sign(x) Returns an element-wise indication of the sign of a number. The sign function returns :math:`-1 if x < 0, 0 if x==0, 1 if x > 0`. ``nan`` is returned for ``nan`` inputs. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The sign of x. .. seealso:: :data:`numpy.sign` """) _docs.set_doc( chainerx.floor, """floor(x) Return the floor of the input, element-wise. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: The floor of each element in array. .. seealso:: :data:`numpy.floor` """) _docs.set_doc( chainerx.isnan, """isnan(x) Test element-wise for NaN and return result as a boolean array. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: True where ``x`` is NaN, false otherwise Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.isnan` """) _docs.set_doc( chainerx.isfinite, """isfinite(x) Test element-wise for finiteness (not infinity or not Not a Number). Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: True where x is not positive infinity, negative infinity, or NaN; false otherwise. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.isfinite` """) _docs.set_doc( chainerx.isinf, """isinf(x) Test element-wise for positive or negative infinity. Args: x (~chainerx.ndarray): Input array. Returns: :class:`~chainerx.ndarray`: True where ``x`` is positive or negative infinity, false otherwise. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.isinf` """) _docs.set_doc( chainerx.bitwise_and, """bitwise_and(x1, x2) Compute the bit-wise AND of two arrays element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 \\& x_2` Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.bitwise_and` """) _docs.set_doc( chainerx.bitwise_or, """bitwise_or(x1, x2) Compute the bit-wise OR of two arrays element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 | x_2` Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.bitwise_or` """) _docs.set_doc( chainerx.bitwise_xor, """bitwise_xor(x1, x2) Compute the bit-wise XOR of two arrays element-wise. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Returned array: :math:`y = x_1 \\oplus x_2` Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.bitwise_xor` """) _docs.set_doc( chainerx.left_shift, """left_shift(x1, x2) Shift the bits of an integer to the left. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Return `x1` with bits shifted `x2` times to the left. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.left_shift` """) # NOQA _docs.set_doc( chainerx.right_shift, """right_shift(x1, x2) Shift the bits of an integer to the right. Args: x1 (~chainerx.ndarray or scalar): Input array of integers. x2 (~chainerx.ndarray or scalar): Input array of integers. Returns: :class:`~chainerx.ndarray`: Return `x1` with bits shifted `x2` times to the right. Note: During backpropagation, this function does not propagate gradients. .. seealso:: :data:`numpy.right_shift` """) # NOQA def _docs_sorting(): _docs.set_doc( chainerx.argmax, """argmax(a, axis=None) Returns the indices of the maximum along an axis. Args: a (~chainerx.ndarray): Array to take the indices of the maximum of. axis (None or int): Along which axis to compute the maximum. The flattened array is used by default. Returns: :class:`~chainerx.ndarray`: The indices of the maximum of ``a``, along the axis if specified. .. seealso:: :func:`numpy.argmax` """) _docs.set_doc( chainerx.argmin, """argmin(a, axis=None) Returns the indices of the minimum along an axis. Args: a (~chainerx.ndarray): Array to take the indices of the minimum of. axis (None or int): Along which axis to compute the minimum. The flattened array is used by default. Returns: :class:`~chainerx.ndarray`: The indices of the minimum of ``a``, along the axis if specified. .. seealso:: :func:`numpy.argmin` """) def _docs_statistics(): _docs.set_doc( chainerx.amax, """amax(a, axis=None, keepdims=False) Returns the maximum of an array or the maximum along an axis. Note: When at least one element is NaN, the corresponding max value will be NaN. Args: a (~chainerx.ndarray): Array to take the maximum. axis (None or int or tuple of ints): Along which axis to take the maximum. The flattened array is used by default. If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes. keepdims (bool): If ``True``, the axis is remained as an axis of size one. Returns: :class:`~chainerx.ndarray`: The maximum of ``a``, along the axis if specified. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.amax` """) _docs.set_doc( chainerx.amin, """amin(a, axis=None, keepdims=False) Returns the minimum of an array or the minimum along an axis. Note: When at least one element is NaN, the corresponding min value will be NaN. Args: a (~chainerx.ndarray): Array to take the minimum. axis (None or int or tuple of ints): Along which axis to take the minimum. The flattened array is used by default. If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or all the axes. keepdims (bool): If ``True``, the axis is remained as an axis of size one. Returns: :class:`~chainerx.ndarray`: The minimum of ``a``, along the axis if specified. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``a``. .. seealso:: :func:`numpy.amin` """) _docs.set_doc( chainerx.mean, """mean(a, axis=None, keepdims=False) Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. Args: a (~chainerx.ndarray): Array to take the mean of. axis (None or int or tuple of ints): Along which axis or axes to compute the mean. The flattened array is used by default. keepdims (bool): If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Returns: :class:`~chainerx.ndarray`: The mean of ``a``, along the axis or axes if specified. .. seealso:: :func:`numpy.mean` """) _docs.set_doc( chainerx.var, """var(a, axis=None, keepdims=False) Compute the arithmetic var along the specified axis. Returns the var of the array elements. The var is taken over the flattened array by default, otherwise over the specified axis. Args: a (~chainerx.ndarray): Array to take the var of. axis (None or int or tuple of ints): Along which axis or axes to compute the var. The flattened array is used by default. keepdims (bool): If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Returns: :class:`~chainerx.ndarray`: The var of ``a``, along the axis or axes if specified. .. seealso:: :func:`numpy.var` """) def _docs_connection(): _docs.set_doc( chainerx.conv, """conv(x, w, b=None, stride=1, pad=0, cover_all=False) N-dimensional convolution. This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in ConvNets. It takes three arrays: the input ``x``, the filter weight ``w`` and the bias vector ``b``. Notation: here is a notation for dimensionalities. - :math:`N` is the number of spatial dimensions. - :math:`n` is the batch size. - :math:`c_I` and :math:`c_O` are the number of the input and output channels, respectively. - :math:`d_1, d_2, ..., d_N` are the size of each axis of the input's spatial dimensions, respectively. - :math:`k_1, k_2, ..., k_N` are the size of each axis of the filters, respectively. - :math:`l_1, l_2, ..., l_N` are the size of each axis of the output's spatial dimensions, respectively. - :math:`p_1, p_2, ..., p_N` are the size of each axis of the spatial padding size, respectively. Then the ``conv`` function computes correlations between filters and patches of size :math:`(k_1, k_2, ..., k_N)` in ``x``. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are extracted at positions shifted by multiples of ``stride`` from the first position ``(-p_1, -p_2, ..., -p_N)`` for each spatial axis. Let :math:`(s_1, s_2, ..., s_N)` be the stride of filter application. Then, the output size :math:`(l_1, l_2, ..., l_N)` is determined by the following equations: .. math:: l_n = (d_n + 2p_n - k_n) / s_n + 1 \\ \\ (n = 1, ..., N) If ``cover_all`` option is ``True``, the filter will cover the all spatial locations. So, if the last stride of filter does not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In this case, the output size is determined by the following equations: .. math:: l_n = (d_n + 2p_n - k_n + s_n - 1) / s_n + 1 \\ \\ (n = 1, ..., N) Args: x (:class:`~chainerx.ndarray`): Input array of shape :math:`(n, c_I, d_1, d_2, ..., d_N)`. w (:class:`~chainerx.ndarray`): Weight array of shape :math:`(c_O, c_I, k_1, k_2, ..., k_N)`. b (None or :class:`~chainerx.ndarray`): One-dimensional bias array with length :math:`c_O` (optional). stride (:class:`int` or :class:`tuple` of :class:`int` s): Stride of filter applications :math:`(s_1, s_2, ..., s_N)`. ``stride=s`` is equivalent to ``(s, s, ..., s)``. pad (:class:`int` or :class:`tuple` of :class:`int` s): Spatial padding width for input arrays :math:`(p_1, p_2, ..., p_N)`. ``pad=p`` is equivalent to ``(p, p, ..., p)``. cover_all (bool): If ``True``, all spatial locations are convoluted into some output pixels. It may make the output size larger. `cover_all` needs to be ``False`` if you want to use ``cuda`` backend. Returns: ~chainerx.ndarray: Output array of shape :math:`(n, c_O, l_1, l_2, ..., l_N)`. Note: In ``cuda`` backend, this function uses cuDNN implementation for its forward and backward computation. Note: In ``cuda`` backend, this function has following limitations yet: - The ``cover_all=True`` option is not supported yet. - The ``dtype`` must be ``float32`` or ``float64`` (``float16`` is not supported yet.) Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``x``, ``w``, and ``b``. .. seealso:: :func:`chainer.functions.convolution_nd` .. admonition:: Example >>> n = 10 >>> c_i, c_o = 3, 1 >>> d1, d2, d3 = 30, 40, 50 >>> k1, k2, k3 = 10, 10, 10 >>> p1, p2, p3 = 5, 5, 5 >>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).\ astype(np.float32) >>> x.shape (10, 3, 30, 40, 50) >>> w = chainerx.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).\ astype(np.float32) >>> w.shape (1, 3, 10, 10, 10) >>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32) >>> b.shape (1,) >>> s1, s2, s3 = 2, 4, 6 >>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3),\ pad=(p1, p2, p3)) >>> y.shape (10, 1, 16, 11, 9) >>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1) >>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1) >>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1) >>> y.shape == (n, c_o, l1, l2, l3) True >>> y = chainerx.conv(x, w, b, stride=(s1, s2, s3),\ pad=(p1, p2, p3), cover_all=True) >>> y.shape == (n, c_o, l1, l2, l3 + 1) True """) _docs.set_doc( chainerx.conv_transpose, """conv_transpose(x, w, b=None, stride=1, pad=0, outsize=None) N-dimensional transposed convolution. This is an implementation of N-dimensional transposed convolution, which is previously known as **deconvolution** in Chainer. .. _Deconvolutional Networks: \ ://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf It takes three arrays: the input ``x``, the filter weight ``w``, and the bias vector ``b``. Notation: here is a notation for dimensionalities. - :math:`N` is the number of spatial dimensions. - :math:`n` is the batch size. - :math:`c_I` and :math:`c_O` are the number of the input and output channels, respectively. - :math:`d_1, d_2, ..., d_N` are the size of each axis of the input's spatial dimensions, respectively. - :math:`k_1, k_2, ..., k_N` are the size of each axis of the filters, respectively. - :math:`p_1, p_2, ..., p_N` are the size of each axis of the spatial padding size, respectively. - :math:`s_1, s_2, ..., s_N` are the stride of each axis of filter application, respectively. If ``outsize`` option is ``None``, the output size :math:`(l_1, l_2, ..., l_N)` is determined by the following equations with the items in the above list: .. math:: l_n = s_n (d_n - 1) + k_n - 2 p_n \\ \\ (n = 1, ..., N) If ``outsize`` option is given, the output size is determined by ``outsize``. In this case, the ``outsize`` :math:`(l_1, l_2, ..., l_N)` must satisfy the following equations: .. math:: d_n = \\lfloor (l_n + 2p_n - k_n) / s_n \\rfloor + 1 \\ \\ \ (n = 1, ..., N) Args: x (:class:`~chainerx.ndarray`): Input array of shape :math:`(n, c_I, d_1, d_2, ..., d_N)`. w (:class:`~chainerx.ndarray`): Weight array of shape :math:`(c_I, c_O, k_1, k_2, ..., k_N)`. b (None or :class:`~chainerx.ndarray`): One-dimensional bias array with length :math:`c_O` (optional). stride (:class:`int` or :class:`tuple` of :class:`int` s): Stride of filter applications :math:`(s_1, s_2, ..., s_N)`. ``stride=s`` is equivalent to ``(s, s, ..., s)``. pad (:class:`int` or :class:`tuple` of :class:`int` s): Spatial padding width for input arrays :math:`(p_1, p_2, ..., p_N)`. ``pad=p`` is equivalent to ``(p, p, ..., p)``. outsize (None or :class:`tuple` of :class:`int` s): Expected output size of deconvolutional operation. It should be a tuple of ints :math:`(l_1, l_2, ..., l_N)`. Default value is ``None`` and the outsize is estimated by input size, stride and pad. Returns: ~chainerx.ndarray: Output array of shape :math:`(n, c_O, l_1, l_2, ..., l_N)`. Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``x``, ``w``, and ``b``. .. seealso:: :func:`chainer.functions.deconvolution_nd` .. admonition:: Example **Example1**: the case when ``outsize`` is not given. >>> n = 10 >>> c_i, c_o = 3, 1 >>> d1, d2, d3 = 5, 10, 15 >>> k1, k2, k3 = 10, 10, 10 >>> p1, p2, p3 = 5, 5, 5 >>> x = chainerx.random.uniform(0, 1, (n, c_i, d1, d2, d3)).\ astype(np.float32) >>> x.shape (10, 3, 5, 10, 15) >>> w = chainerx.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).\ astype(np.float32) >>> w.shape (3, 1, 10, 10, 10) >>> b = chainerx.random.uniform(0, 1, (c_o)).astype(np.float32) >>> b.shape (1,) >>> s1, s2, s3 = 2, 4, 6 >>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), \ pad=(p1, p2, p3)) >>> y.shape (10, 1, 8, 36, 84) >>> l1 = s1 * (d1 - 1) + k1 - 2 * p1 >>> l2 = s2 * (d2 - 1) + k2 - 2 * p2 >>> l3 = s3 * (d3 - 1) + k3 - 2 * p3 >>> y.shape == (n, c_o, l1, l2, l3) True **Example2**: the case when ``outsize`` is given. >>> n = 10 >>> c_i, c_o = 3, 1 >>> d1, d2, d3 = 5, 10, 15 >>> k1, k2, k3 = 10, 10, 10 >>> p1, p2, p3 = 5, 5, 5 >>> x = chainerx.array(np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).\ astype(np.float32)) >>> x.shape (10, 3, 5, 10, 15) >>> w = chainerx.array(np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).\ astype(np.float32)) >>> w.shape (3, 1, 10, 10, 10) >>> b = chainerx.array(np.random.uniform(0, 1, (c_o)).astype(np.float32)) >>> b.shape (1,) >>> s1, s2, s3 = 2, 4, 6 >>> l1, l2, l3 = 9, 38, 87 >>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1 True >>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1 True >>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1 True >>> y = chainerx.conv_transpose(x, w, b, stride=(s1, s2, s3), \ pad=(p1, p2, p3), outsize=(l1, l2, l3)) >>> y.shape (10, 1, 9, 38, 87) >>> y.shape == (n, c_o, l1, l2, l3) True """) _docs.set_doc( chainerx.linear, """linear(x, W, b=None, n_batch_axis=1) Linear function, or affine transformation. It accepts two or three arguments: an input minibatch ``x``, a weight matrix ``W``, and optionally a bias vector ``b``. It computes .. math:: Y = xW^\\top + b. Args: x (~chainerx.ndarray): Input array, which is a :math:`(s_1, s_2, ..., s_n)`-shaped array. W (~chainerx.ndarray): Weight variable of shape :math:`(M, N)`, where :math:`(N = s_{\\rm n\\_batch\\_axes} * ... * s_n)`. b (~chainerx.ndarray): Bias variable (optional) of shape :math:`(M,)`. n_batch_axes (int): The number of batch axes. The default is 1. The input variable is reshaped into (:math:`{\\rm n\\_batch\\_axes} + 1`)-dimensional tensor. This should be greater than 0. Returns: :class:`~chainerx.ndarray`: Output array with shape of :math:`(s_1, ..., s_{\\rm n\\_batch\\_axes}, M)`. Note: During backpropagation, this function propagates the gradient of the output array to input arrays ``x``, ``W`` and ``b``. """) _docs.set_doc( chainerx.lstm, """lstm(c_prev, x) Long Short-Term Memory units as an activation function. This function implements LSTM units with forget gates. Let the previous cell state ``c_prev`` and the input array ``x``. First, the input array ``x`` is split into four arrays :math:`a, i, f, o` of the same shapes along the second axis. It means that ``x`` 's second axis must have 4 times the ``c_prev`` 's second axis. The split input arrays are corresponding to: - :math:`a` : sources of cell input - :math:`i` : sources of input gate - :math:`f` : sources of forget gate - :math:`o` : sources of output gate Second, it computes the updated cell state ``c`` and the outgoing signal ``h`` as .. math:: c &= \\tanh(a) \\sigma(i) + c_{\\text{prev}} \\sigma(f), \\\\ h &= \\tanh(c) \\sigma(o), where :math:`\\sigma` is the elementwise sigmoid function. These are returned as a tuple of two variables. This function supports variable length inputs. The mini-batch size of the current input must be equal to or smaller than that of the previous one. When mini-batch size of ``x`` is smaller than that of ``c``, this function only updates ``c[0:len(x)]`` and doesn't change the rest of ``c``, ``c[len(x):]``. So, please sort input sequences in descending order of lengths before applying the function. Args: c_prev (:class:`~chainerx.array`): Variable that holds the previous cell state. The cell state should be a zero array or the output of the previous call of LSTM. x (:class:`~chainer.array`): Variable that holds the sources of cell input, input gate, forget gate and output gate. It must have the second dimension whose size is four times of that of the cell state. Returns: tuple: Two :class:`~chainerx.array` objects ``c`` and ``h``. ``c`` is the updated cell state. ``h`` indicates the outgoing signal. See the original paper proposing LSTM with forget gates: `Long Short-Term Memory in Recurrent Neural Networks <http://www.felixgers.de/papers/phd.pdf>`_. .. admonition:: Example Assuming ``y`` is the current incoming signal, ``c`` is the previous cell state, and ``h`` is the previous outgoing signal from an ``lstm`` function. Each of ``y``, ``c`` and ``h`` has ``n_units`` channels. Most typical preparation of ``x`` is >>> n_units = 100 >>> c_prev = chainerx.zeros((1, n_units), chainerx.float32) >>> x = chainerx.zeros((1, 4 * n_units), chainerx.float32) >>> c, h = chainerx.lstm(c_prev, x) It corresponds to calculate the input array ``x``, or the input sources :math:`a, i, f, o`, from the current incoming signal ``y`` and the previous outgoing signal ``h``. Different parameters are used for different kind of input sources. """) def _docs_normalization(): _docs.set_doc( chainerx.batch_norm, """batch_norm(x, gamma, beta, running_mean, running_var, eps=2e-5, \ decay=0.9, axis=None) Batch normalization function. It takes the input array ``x`` and two parameter arrays ``gamma`` and ``beta``. The parameter arrays must both have the same size. Args: x (~chainerx.ndarray): Input array. gamma (~chainerx.ndarray): Scaling parameter of normalized data. beta (~chainerx.ndarray): Shifting parameter of scaled normalized data. running_mean (~chainerx.ndarray): Running average of the mean. This is a running average of the mean over several mini-batches using the decay parameter. The function takes a previous running average, and updates the array in-place by the new running average. running_var (~chainerx.ndarray): Running average of the variance. This is a running average of the variance over several mini-batches using the decay parameter. The function takes a previous running average, and updates the array in-place by the new running average. eps (float): Epsilon value for numerical stability. decay (float): Decay rate of moving average. It is used during training. axis (int, tuple of int or None): Axis over which normalization is performed. When axis is ``None``, the first axis is treated as the batch axis and will be reduced during normalization. Note: During backpropagation, this function propagates the gradient of the output array to the input arrays ``x``, ``gamma`` and ``beta``. See: `Batch Normalization: Accelerating Deep Network Training by Reducing\ Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`_ """) _docs.set_doc( chainerx.fixed_batch_norm, """fixed_batch_norm(x, gamma, beta, mean, var, eps=2e-5, axis=None) Batch normalization function with fixed statistics. This is a variant of :func:`~chainerx.batch_norm`, where the mean and array statistics are given by the caller as fixed variables. Args: x (~chainerx.ndarray): Input array. gamma (~chainerx.ndarray): Scaling parameter of normalized data. beta (~chainerx.ndarray): Shifting parameter of scaled normalized data. mean (~chainerx.ndarray): Shifting parameter of input. var (~chainerx.ndarray): Square of scaling parameter of input. eps (float): Epsilon value for numerical stability. axis (int, tuple of int or None): Axis over which normalization is performed. When axis is ``None``, the first axis is treated as the batch axis and will be reduced during normalization. Note: During backpropagation, this function does not propagate gradients. """) def _docs_pooling(): _docs.set_doc( chainerx.max_pool, """max_pool(x, ksize, stride=None, pad=0, cover_all=False) Spatial max pooling function. This acts similarly to :func:`~chainerx.conv`, but it computes the maximum of input spatial patch for each channel without any parameter instead of computing the inner products. Args: x (~chainerx.ndarray): Input array. ksize (int or tuple of ints): Size of pooling window. ``ksize=k`` and ``ksize=(k, k, ..., k)`` are equivalent. stride (int or tuple of ints or None): Stride of pooling applications. ``stride=s`` and ``stride=(s, s, ..., s)`` are equivalent. If ``None`` is specified, then it uses same stride as the pooling window size. pad (int or tuple of ints): Spatial padding width for the input array. ``pad=p`` and ``pad=(p, p, ..., p)`` are equivalent. cover_all (bool): If ``True``, all spatial locations are pooled into some output pixels. It may make the output size larger. Returns: :class:`~chainerx.ndarray`: Output array. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. This function is only differentiable up to the second order. .. note:: In ``cuda`` backend, only 2 and 3 dim arrays are supported as ``x`` because cuDNN pooling supports 2 and 3 spatial dimensions. """) _docs.set_doc( chainerx.average_pool, """average_pool(x, ksize, stride=None, pad=0, pad_mode='ignore') Spatial average pooling function. This acts similarly to :func:`~chainerx.conv`, but it computes the average of input spatial patch for each channel without any parameter instead of computing the inner products. Args: x (~chainerx.ndarray): Input array. ksize (int or tuple of ints): Size of pooling window. ``ksize=k`` and ``ksize=(k, k, ..., k)`` are equivalent. stride (int or tuple of ints or None): Stride of pooling applications. ``stride=s`` and ``stride=(s, s, ..., s)`` are equivalent. If ``None`` is specified, then it uses same stride as the pooling window size. pad (int or tuple of ints): Spatial padding width for the input array. ``pad=p`` and ``pad=(p, p, ..., p)`` are equivalent. pad_mode ({'zero', 'ignore'}): Specifies how padded region is treated. * 'zero' -- the values in the padded region are treated as 0 * 'ignore' -- padded region is ignored (default) Returns: :class:`~chainerx.ndarray`: Output array. Note: During backpropagation, this function propagates the gradient of the output array to the input array ``x``. .. note:: In ``cuda`` backend, only 2 and 3 dim arrays are supported as ``x`` because cuDNN pooling supports 2 and 3 spatial dimensions. """) def _docs_rnn(): _docs.set_doc( chainerx.n_step_lstm, """n_step_lstm(n_layers, hx, cx, ws, bs, xs) Stacked Uni-directional Long Short-Term Memory function. This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: i_t &= \\sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4) \\\\ f_t &= \\sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5) \\\\ o_t &= \\sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6) \\\\ a_t &= \\tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7) \\\\ c_t &= f_t \\cdot c_{t-1} + i_t \\cdot a_t \\\\ h_t &= o_t \\cdot \\tanh(c_t) As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Eight weight matrices and eight bias vectors are required for each layer. So, when :math:`S` layers exist, you need to prepare :math:`8S` weight matrices and :math:`8S` bias vectors. If the number of layers ``n_layers`` is greater than :math:`1`, the input of the ``k``-th layer is the hidden state ``h_t`` of the ``k-1``-th layer. Note that all input variables except the first layer may have different shape from the first layer. Args: n_layers(int): The number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(S, B, N)`` where ``S`` is the number of layers and is equal to ``n_layers``, ``B`` is the mini-batch size, and ``N`` is the dimension of the hidden units. cx (:class:`~chainerx.array`): Variable holding stacked cell states. It has the same shape as ``hx``. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents the weights for the i-th layer. Each ``ws[i]`` is a list containing eight matrices. ``ws[i][j]`` corresponds to :math:`W_j` in the equation. Only ``ws[0][j]`` where ``0 <= j < 4`` are ``(N, I)``-shaped as they are multiplied with input variables, where ``I`` is the size of the input and ``N`` is the dimension of the hidden units. All other matrices are ``(N, N)``-shaped. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represents the biases for the i-th layer. Each ``bs[i]`` is a list containing eight vectors. ``bs[i][j]`` corresponds to :math:`b_j` in the equation. The shape of each matrix is ``(N,)`` where ``N`` is the dimension of the hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is the mini-batch size for time ``t``. When sequences has different lengths, they must be sorted in descending order of their lengths. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing three elements, ``hy``, ``cy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is the same as ``hx``. - ``cy`` is an updated cell states whose shape is the same as ``cx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is the mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. .. note:: The dimension of hidden units is limited to only one size ``N``. If you want to use variable dimension of hidden units, please use :class:`chainerx.lstm`. .. seealso:: :func:`chainerx.lstm` .. admonition:: Example >>> import chainerx as chx >>> batchs = [3, 2, 1] # support variable length sequences >>> in_size, out_size, n_layers = 3, 2, 2 >>> xs = [chx.ones((b, in_size)).astype(chx.float32) for b in batchs] >>> [x.shape for x in xs] [(3, 3), (2, 3), (1, 3)] >>> h_shape = (n_layers, batchs[0], out_size) >>> hx = chx.ones(h_shape).astype(chx.float32) >>> cx = chx.ones(h_shape).astype(chx.float32) >>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size >>> ws = [] >>> bs = [] >>> for n in range(n_layers): ... ws.append([chx.ones((out_size, w_in(n, i))).\ astype(np.float32) for i in range(8)]) ... bs.append([chx.ones((out_size,)).astype(chx.float32) \ for _ in range(8)]) ... >>> ws[0][0].shape # ws[0][:4].shape are (out_size, in_size) (2, 3) >>> ws[1][0].shape # others are (out_size, out_size) (2, 2) >>> bs[0][0].shape (2,) >>> hy, cy, ys = chx.n_step_lstm( ... n_layers, hx, cx, ws, bs, xs) >>> hy.shape (2, 3, 2) >>> cy.shape (2, 3, 2) >>> [y.shape for y in ys] [(3, 2), (2, 2), (1, 2)] """) _docs.set_doc( chainerx.n_step_bilstm, """n_step_bilstm(n_layers, hx, cx, ws, bs, xs) Stacked Bi-directional Long Short-Term Memory function. This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: i^{f}_t &=& \\sigma(W^{f}_0 x_t + W^{f}_4 h_{t-1} + b^{f}_0 + b^{f}_4), \\\\ f^{f}_t &=& \\sigma(W^{f}_1 x_t + W^{f}_5 h_{t-1} + b^{f}_1 + b^{f}_5), \\\\ o^{f}_t &=& \\sigma(W^{f}_2 x_t + W^{f}_6 h_{t-1} + b^{f}_2 + b^{f}_6), \\\\ a^{f}_t &=& \\tanh(W^{f}_3 x_t + W^{f}_7 h_{t-1} + b^{f}_3 + b^{f}_7), \\\\ c^{f}_t &=& f^{f}_t \\cdot c^{f}_{t-1} + i^{f}_t \\cdot a^{f}_t, \\\\ h^{f}_t &=& o^{f}_t \\cdot \\tanh(c^{f}_t), \\\\ i^{b}_t &=& \\sigma(W^{b}_0 x_t + W^{b}_4 h_{t-1} + b^{b}_0 + b^{b}_4), \\\\ f^{b}_t &=& \\sigma(W^{b}_1 x_t + W^{b}_5 h_{t-1} + b^{b}_1 + b^{b}_5), \\\\ o^{b}_t &=& \\sigma(W^{b}_2 x_t + W^{b}_6 h_{t-1} + b^{b}_2 + b^{b}_6), \\\\ a^{b}_t &=& \\tanh(W^{b}_3 x_t + W^{b}_7 h_{t-1} + b^{b}_3 + b^{b}_7), \\\\ c^{b}_t &=& f^{b}_t \\cdot c^{b}_{t-1} + i^{b}_t \\cdot a^{b}_t, \\\\ h^{b}_t &=& o^{b}_t \\cdot \\tanh(c^{b}_t), \\\\ h_t &=& [h^{f}_t; h^{b}_t] where :math:`W^{f}` is the weight matrices for forward-LSTM, :math:`W^{b}` is weight matrices for backward-LSTM. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Eight weight matrices and eight bias vectors are required for each layer of each direction. So, when :math:`S` layers exist, you need to prepare :math:`16S` weight matrices and :math:`16S` bias vectors. If the number of layers ``n_layers`` is greater than :math:`1`, the input of the ``k``-th layer is the hidden state ``h_t`` of the ``k-1``-th layer. Note that all input variables except the first layer may have different shape from the first layer. Args: n_layers(int): The number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(2S, B, N)`` where ``S`` is the number of layers and is equal to ``n_layers``, ``B`` is the mini-batch size, and ``N`` is the dimension of the hidden units. Because of bi-direction, the first dimension length is ``2S``. cx (:class:`~chainerx.array`): Variable holding stacked cell states. It has the same shape as ``hx``. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[2 * l + m]`` represents the weights for the l-th layer of the m-th direction. (``m == 0`` means the forward direction and ``m == 1`` means the backward direction.) Each ``ws[i]`` is a list containing eight matrices. ``ws[i][j]`` corresponds to :math:`W_j` in the equation. ``ws[0][j]`` and ``ws[1][j]`` where ``0 <= j < 4`` are ``(N, I)``-shaped because they are multiplied with input variables, where ``I`` is the size of the input. ``ws[i][j]`` where ``2 <= i`` and ``0 <= j < 4`` are ``(N, 2N)``-shaped because they are multiplied with two hidden layers :math:`h_t = [h^{f}_t; h^{b}_t]`. All other matrices are ``(N, N)``-shaped. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[2 * l + m]`` represents the weights for the l-th layer of m-th direction. (``m == 0`` means the forward direction and ``m == 1`` means the backward direction.) Each ``bs[i]`` is a list containing eight vectors. ``bs[i][j]`` corresponds to :math:`b_j` in the equation. The shape of each matrix is ``(N,)``. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is the mini-batch size for time ``t``. When sequences has different lengths, they must be sorted in descending order of their lengths. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing three elements, ``hy``, ``cy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is the same as ``hx``. - ``cy`` is an updated cell states whose shape is the same as ``cx``. - ``ys`` is a list of :class:`~chainer.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, 2N)`` where ``B_t`` is the mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. .. admonition:: Example >>> import chainerx as chx >>> batchs = [3, 2, 1] # support variable length sequences >>> in_size, out_size, n_layers = 3, 2, 2 >>> dropout_ratio = 0.0 >>> xs = [chx.ones((b, in_size)).astype(chx.float32) for b in batchs] >>> [x.shape for x in xs] [(3, 3), (2, 3), (1, 3)] >>> h_shape = (n_layers * 2, batchs[0], out_size) >>> hx = chx.ones(h_shape).astype(chx.float32) >>> cx = chx.ones(h_shape).astype(chx.float32) >>> def w_in(i, j): ... if i == 0 and j < 4: ... return in_size ... elif i > 0 and j < 4: ... return out_size * 2 ... else: ... return out_size ... >>> ws = [] >>> bs = [] >>> for n in range(n_layers): ... for direction in (0, 1): ... ws.append([chx.ones((out_size, w_in(n, i))).\ astype(np.float32) for i in range(8)]) ... bs.append([chx.ones((out_size,)).astype(chx.float32) \ for _ in range(8)]) ... >>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, in_size) (2, 3) >>> ws[2][0].shape # ws[2:][:4].shape are (out_size, 2 * out_size) (2, 4) >>> ws[0][4].shape # others are (out_size, out_size) (2, 2) >>> bs[0][0].shape (2,) >>> hy, cy, ys = chx.n_step_bilstm( ... n_layers, hx, cx, ws, bs, xs) >>> hy.shape (4, 3, 2) >>> cy.shape (4, 3, 2) >>> [y.shape for y in ys] [(3, 4), (2, 4), (1, 4)] """) _docs.set_doc( chainerx.n_step_gru, """n_step_gru(n_layers, hx, ws, bs, xs) Stacked Uni-directional Gated Recurrent Unit function. This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state :math:`h_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` for each time :math:`t` from input :math:`x_t`. .. math:: r_t &= \\sigma(W_0 x_t + W_3 h_{t-1} + b_0 + b_3) \\\\ z_t &= \\sigma(W_1 x_t + W_4 h_{t-1} + b_1 + b_4) \\\\ h'_t &= \\tanh(W_2 x_t + b_2 + r_t \\cdot (W_5 h_{t-1} + b_5)) \\\\ h_t &= (1 - z_t) \\cdot h'_t + z_t \\cdot h_{t-1} As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Six weight matrices and six bias vectors are required for each layers. So, when :math:`S` layers exists, you need to prepare :math:`6S` weight matrices and :math:`6S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (~chainerx.array): Variable holding stacked hidden states. Its shape is ``(S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents weights for i-th layer. Each ``ws[i]`` is a list containing six matrices. ``ws[i][j]`` is corresponding with ``W_j`` in the equation. Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(N, I)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represnents biases for i-th layer. Each ``bs[i]`` is a list containing six vectors. ``bs[i][j]`` is corresponding with ``b_j`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]`` """) _docs.set_doc( chainerx.n_step_bigru, """n_step_bigru(n_layers, hx, ws, bs, xs) Stacked Bi-directional Gated Recurrent Unit function. This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state :math:`h_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` for each time :math:`t` from input :math:`x_t`. .. math:: r^{f}_t &= \\sigma(W^{f}_0 x_t + W^{f}_3 h_{t-1} + b^{f}_0 + b^{f}_3) \\\\ z^{f}_t &= \\sigma(W^{f}_1 x_t + W^{f}_4 h_{t-1} + b^{f}_1 + b^{f}_4) \\\\ h^{f'}_t &= \\tanh(W^{f}_2 x_t + b^{f}_2 + r^{f}_t \\cdot (W^{f}_5 h_{t-1} + b^{f}_5)) \\\\ h^{f}_t &= (1 - z^{f}_t) \\cdot h^{f'}_t + z^{f}_t \\cdot h_{t-1} \\\\ r^{b}_t &= \\sigma(W^{b}_0 x_t + W^{b}_3 h_{t-1} + b^{b}_0 + b^{b}_3) \\\\ z^{b}_t &= \\sigma(W^{b}_1 x_t + W^{b}_4 h_{t-1} + b^{b}_1 + b^{b}_4) \\\\ h^{b'}_t &= \\tanh(W^{b}_2 x_t + b^{b}_2 + r^{b}_t \\cdot (W^{b}_5 h_{t-1} + b^{b}_5)) \\\\ h^{b}_t &= (1 - z^{b}_t) \\cdot h^{b'}_t + z^{b}_t \\cdot h_{t-1} \\\\ h_t &= [h^{f}_t; h^{b}_t] \\\\ where :math:`W^{f}` is weight matrices for forward-GRU, :math:`W^{b}` is weight matrices for backward-GRU. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Six weight matrices and six bias vectors are required for each layers. So, when :math:`S` layers exists, you need to prepare :math:`6S` weight matrices and :math:`6S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(2S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents weights for i-th layer. Each ``ws[i]`` is a list containing six matrices. ``ws[i][j]`` is corresponding with ``W_j`` in the equation. Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(N, I)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represnents biases for i-th layer. Each ``bs[i]`` is a list containing six vectors. ``bs[i][j]`` is corresponding with ``b_j`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. """) _docs.set_doc( chainerx.n_step_rnn, """n_step_rnn(n_layers, hx, ws, bs, xs, activation='tanh') Stacked Uni-directional RNN function for sequence inputs. This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: h_t = f(W_0 x_t + W_1 h_{t-1} + b_0 + b_1) where :math:`f` is an activation function. Weight matrices :math:`W` contains two matrices :math:`W_0` and :math:`W_1`. :math:`W_0` is a parameter for an input sequence. :math:`W_1` is a parameter for a hidden state. Bias matrices :math:`b` contains two matrices :math:`b_0` and :math:`b_1`. :math:`b_0` is a parameter for an input sequence. :math:`b_1` is a parameter for a hidden state. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Two weight matrices and two bias vectors are required for each layer. So, when :math:`S` layers exist, you need to prepare :math:`2S` weight matrices and :math:`2S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i]`` represents weights for i-th layer. Each ``ws[i]`` is a list containing two matrices. ``ws[i][j]`` is corresponding with ``W_j`` in the equation. Only ``ws[0][j]`` where ``0 <= j < 1`` is ``(N, I)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i]`` represnents biases for i-th layer. Each ``bs[i]`` is a list containing two vectors. ``bs[i][j]`` is corresponding with ``b_j`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. activation (str): Activation function name. Please select ``tanh`` or ``relu``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. """) _docs.set_doc( chainerx.n_step_birnn, """n_step_birnn(n_layers, hx, ws, bs, xs, activation='tanh') Stacked Bi-directional RNN function for sequence inputs. This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`, an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors :math:`b`. This function calculates hidden states :math:`h_t` and :math:`c_t` for each time :math:`t` from input :math:`x_t`. .. math:: h^{f}_t &=& f(W^{f}_0 x_t + W^{f}_1 h_{t-1} + b^{f}_0 + b^{f}_1), \\\\ h^{b}_t &=& f(W^{b}_0 x_t + W^{b}_1 h_{t-1} + b^{b}_0 + b^{b}_1), \\\\ h_t &=& [h^{f}_t; h^{f}_t], \\\\ where :math:`f` is an activation function. Weight matrices :math:`W` contains two matrices :math:`W^{f}` and :math:`W^{b}`. :math:`W^{f}` is weight matrices for forward directional RNN. :math:`W^{b}` is weight matrices for backward directional RNN. :math:`W^{f}` contains :math:`W^{f}_0` for an input sequence and :math:`W^{f}_1` for a hidden state. :math:`W^{b}` contains :math:`W^{b}_0` for an input sequence and :math:`W^{b}_1` for a hidden state. Bias matrices :math:`b` contains two matrices :math:`b^{f}` and :math:`b^{f}`. :math:`b^{f}` contains :math:`b^{f}_0` for an input sequence and :math:`b^{f}_1` for a hidden state. :math:`b^{b}` contains :math:`b^{b}_0` for an input sequence and :math:`b^{b}_1` for a hidden state. As the function accepts a sequence, it calculates :math:`h_t` for all :math:`t` with one call. Two weight matrices and two bias vectors are required for each layer. So, when :math:`S` layers exist, you need to prepare :math:`2S` weight matrices and :math:`2S` bias vectors. If the number of layers ``n_layers`` is greather than :math:`1`, input of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer. Note that all input variables except first layer may have different shape from the first layer. Args: n_layers(int): Number of layers. hx (:class:`~chainerx.array`): Variable holding stacked hidden states. Its shape is ``(2S, B, N)`` where ``S`` is number of layers and is equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is dimension of hidden units. Because of bi-direction, the first dimension length is ``2S``. ws (list of list of :class:`~chainerx.array`): Weight matrices. ``ws[i + di]`` represents weights for i-th layer. Note that ``di = 0`` for forward-RNN and ``di = 1`` for backward-RNN. Each ``ws[i + di]`` is a list containing two matrices. ``ws[i + di][j]`` is corresponding with ``W^{f}_j`` if ``di = 0`` and corresponding with ``W^{b}_j`` if ``di = 1`` in the equation. Only ``ws[0][j]`` and ``ws[1][j]`` where ``0 <= j < 1`` are ``(I, N)`` shape as they are multiplied with input variables. All other matrices has ``(N, N)`` shape. bs (list of list of :class:`~chainerx.array`): Bias vectors. ``bs[i + di]`` represnents biases for i-th layer. Note that ``di = 0`` for forward-RNN and ``di = 1`` for backward-RNN. Each ``bs[i + di]`` is a list containing two vectors. ``bs[i + di][j]`` is corresponding with ``b^{f}_j`` if ``di = 0`` and corresponding with ``b^{b}_j`` if ``di = 1`` in the equation. Shape of each matrix is ``(N,)`` where ``N`` is dimension of hidden units. xs (list of :class:`~chainerx.array`): A list of :class:`~chainerx.array` holding input values. Each element ``xs[t]`` holds input value for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is mini-batch size for time ``t``, and ``I`` is size of input units. Note that this function supports variable length sequences. When sequneces has different lengths, sort sequences in descending order by length. So ``xs`` needs to satisfy ``xs[t].shape[0] >= xs[t + 1].shape[0]``. activation (str): Activation function name. Please select ``tanh`` or ``relu``. Returns: tuple: This function returns a tuple containing two elements, ``hy`` and ``ys``. - ``hy`` is an updated hidden states whose shape is same as ``hx``. - ``ys`` is a list of :class:`~chainerx.array` . Each element ``ys[t]`` holds hidden states of the last layer corresponding to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is mini-batch size for time ``t``, and ``N`` is size of hidden units. Note that ``B_t`` is the same value as ``xs[t]``. """)
mit
5,753,944,707,664,617,000
31.275539
86
0.637194
false
jeremiedecock/snippets
python/pygtk/python_gtk3_pygobject/tree_view_cellrender_text_ellipsize.py
1
2818
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2015 Jérémie DECOCK (http://www.jdhp.org) """ This is a simple Python GTK+3 TreeView CellRenderText snippet. See: http://python-gtk-3-tutorial.readthedocs.org/en/latest/cellrenderers.html#cellrenderertext """ from gi.repository import Gtk as gtk from gi.repository import Pango as pango # Countries, population (as in 2015) and continent. DATA_LIST = [("China", 1370130000, "Asia"), ("India", 1271980000, "Asia"), ("United States", 321107000, "North America"), ("Indonesia", 255461700, "Asia"), ("Brazil", 204388000, "South America"), ("Pakistan", 189936000, "Asia"), ("Nigeria", 183523000, "Africa"), ("Bangladesh", 158425000, "Asia"), ("Russia", 146267288, "Eurasia"), ("Japan", 126880000, "Asia")] def main(): window = gtk.Window() window.set_default_size(300, 450) window.set_border_width(18) # Creating the ListStore model liststore = gtk.ListStore(str, int, str) for item in DATA_LIST: liststore.append(list(item)) # Creating the treeview and add the columns treeview = gtk.TreeView(liststore) for column_index, column_title in enumerate(["Country", "Population", "Continent"]): renderer = gtk.CellRendererText() column = gtk.TreeViewColumn(column_title, renderer, text=column_index) column.set_resizable(True) # Let the column be resizable # Use ellipsize for the "Population" and "Continent" columns if column_title in ("Population", "Continent"): renderer.set_property("ellipsize", pango.EllipsizeMode.END) renderer.set_property("ellipsize-set", True) if column_title == "Population": column.set_expand(True) # This column will use all the space left treeview.append_column(column) # Scrolled window scrolled_window = gtk.ScrolledWindow() scrolled_window.set_border_width(0) scrolled_window.set_shadow_type(gtk.ShadowType.IN) # should be gtk.ShadowType.IN, gtk.ShadowType.OUT, gtk.ShadowType.ETCHED_IN or gtk.ShadowType.ETCHED_OUT scrolled_window.set_policy(gtk.PolicyType.AUTOMATIC, gtk.PolicyType.ALWAYS) # should be gtk.PolicyType.AUTOMATIC, gtk.PolicyType.ALWAYS or gtk.PolicyType.NEVER scrolled_window.add(treeview) window.add(scrolled_window) window.connect("delete-event", gtk.main_quit) # ask to quit the application when the close button is clicked window.show_all() # display the window gtk.main() # GTK+ main loop if __name__ == '__main__': main()
mit
-8,133,782,412,095,077,000
39.228571
188
0.620384
false
ikosenn/sms-log-handler
sms_log_handler/sms_handler.py
1
2049
import datetime import logging from typing import Dict from .utils import import_from_string class SMSHandler(logging.Handler): def __init__(self, provider_config: Dict) -> None: """ Initializes the SMSHandler params: provider_config: The provider configurations. { provider_key: <key_id> provider_secret: <secret_key> provider_send_to: [<an array of phone numbers>] } """ super().__init__(self) self.provider_class_str = provider_config.get( 'provider_class', 'sms_log_handler.providers.africastalking.AfricasTalkingProvider') self.provider_class = import_from_string(self.provider_class_str) self.key = provider_config.get('provider_key', '') self.secret = provider_config.get('provider_secret', '') self.phone_numbers = provider_config.get('provider_send_to', []) def emit(self, record) -> None: """ Sends the message """ to_send = self._construct_message(record) sms_provider = self.provider_class(self.key, self.secret) sms_provider.send(self.phone_numbers, to_send) def _construct_message(self, record) -> str: """ Contruct and format the mesage to be sent. i.e MODULE: sms_log_handler.sms_handler LEVEL: ERROR TIME: 21, May 2017 10:54 MESSAGE: Duplicate records found in the user model """ msg = ( 'MODULE: {module_path}\n\nLEVEL: {level}\n\nTIME: {time}\n\n' 'MESSAGE: {msg}') date_time = datetime.datetime.fromtimestamp(record.created) date_time = date_time.strftime('%d, %b %Y %H:%M') formatted_msg = msg.format( level=record.levelname, time=date_time, msg=record.getMessage(), module_path=record.name, line_no=record.lineno) return formatted_msg
mit
6,605,223,552,672,128,000
33.728814
79
0.564178
false
mistoll/ros_buildfarm
ros_buildfarm/jenkins.py
1
11344
# Copyright 2014-2016 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ast import literal_eval import copy import difflib import sys from xml.etree import ElementTree from jenkinsapi.jenkins import Jenkins from jenkinsapi.utils.requester import Requester from jenkinsapi.views import Views from .jenkins_credentials import get_credentials from .templates import expand_template JENKINS_MANAGEMENT_VIEW = 'Manage' class CrumbRequester(Requester): """Adapter for Requester inserting the crumb in every request.""" def __init__(self, *args, **kwargs): super(CrumbRequester, self).__init__(*args, **kwargs) self._baseurl = kwargs['baseurl'] self._last_crumb_data = None def post_url(self, *args, **kwargs): if self._last_crumb_data: # first try request with previous crumb if available response = self._post_url_with_crumb( self._last_crumb_data, *args, **kwargs) # code 403 might indicate that the crumb is not valid anymore if response.status_code != 403: return response # fetch new crumb (if server has crumbs enabled) if self._last_crumb_data is not False: self._last_crumb_data = self._get_crumb_data() return self._post_url_with_crumb( self._last_crumb_data, *args, **kwargs) def _get_crumb_data(self): response = self.get_url(self._baseurl + '/crumbIssuer/api/python') if response.status_code in [404]: print('The Jenkins master does not require a crumb') return False if response.status_code not in [200]: raise RuntimeError('Failed to fetch crumb: %s' % response.text) crumb_issuer_response = literal_eval(response.text) crumb_request_field = crumb_issuer_response['crumbRequestField'] crumb = crumb_issuer_response['crumb'] print('Fetched crumb: %s' % crumb) return {crumb_request_field: crumb} def _post_url_with_crumb(self, crumb_data, *args, **kwargs): if crumb_data: if len(args) >= 5: headers = args[4] else: headers = kwargs.setdefault('headers', {}) headers.update(crumb_data) return super(CrumbRequester, self).post_url(*args, **kwargs) class JenkinsProxy(Jenkins): """Proxy for Jenkins instance caching data for performance reasons.""" def __init__(self, *args, **kwargs): requester_kwargs = copy.copy(kwargs) requester_kwargs['baseurl'] = args[0] kwargs['requester'] = CrumbRequester(**requester_kwargs) super(JenkinsProxy, self).__init__(*args, **kwargs) self.__jobs = None @property def jobs(self): if self.__jobs is None: self.__jobs = super(JenkinsProxy, self).jobs return self.__jobs def connect(jenkins_url): print("Connecting to Jenkins '%s'" % jenkins_url) username, password = get_credentials(jenkins_url) jenkins = JenkinsProxy(jenkins_url, username=username, password=password) print("Connected to Jenkins version '%s'" % jenkins.version) return jenkins def configure_management_view(jenkins, dry_run=False): return configure_view( jenkins, JENKINS_MANAGEMENT_VIEW, include_regex='^((?!__).)*$', dry_run=dry_run) def configure_view( jenkins, view_name, include_regex=None, filter_queue=True, template_name='generic_view.xml.em', dry_run=False): view_config = get_view_config( template_name, view_name, include_regex=include_regex, filter_queue=filter_queue) if not jenkins: return view_config view_type = _get_view_type(view_config) create_view = view_name not in jenkins.views dry_run_suffix = ' (dry run)' if dry_run else '' if create_view: print( "Creating view '%s' of type '%s'%s" % (view_name, view_type, dry_run_suffix)) view = jenkins.views.create(view_name, view_type=view_type) \ if not dry_run else None remote_view_config = view.get_config() \ if view else None else: print("Ensure that view '%s' exists" % view_name) view = jenkins.views[view_name] remote_view_config = view.get_config() remote_view_type = _get_view_type(remote_view_config) if remote_view_type != view_type: del jenkins.views[view_name] print( "Recreating view '%s' of type '%s'%s" % (view_name, view_type, dry_run_suffix)) view = jenkins.views.create(view_name, view_type=view_type) \ if not dry_run else None remote_view_config = view.get_config() \ if view else None if not remote_view_config: print('Can not produce diff during dry run if the view is new or of different type', file=sys.stderr) return None diff = _diff_configs(remote_view_config, view_config) # evaluate generator since it might yield no values diff = list(diff) if not diff: print("Skipped '%s' because the config is the same" % view_name) else: print("Updating view '%s'%s" % (view_name, dry_run_suffix)) if not create_view: print(' ', '<<<') for line in diff: print(' ', line.rstrip('\n')) print(' ', '>>>') try: response_text = view.update_config(view_config) \ if not dry_run else None except Exception: print("Failed to configure view '%s' with config:\n%s" % (view_name, view_config), file=sys.stderr) raise if response_text: raise RuntimeError( "Failed to configure view '%s':\n%s" % (view_name, response_text)) return view def get_view_config( template_name, view_name, include_regex=None, filter_queue=True, data=None): view_data = copy.deepcopy(data) if data is not None else {} view_data.update({ 'view_name': view_name, 'include_regex': include_regex, 'filter_queue': filter_queue, }) view_config = expand_template(template_name, view_data) return view_config def _get_view_type(view_config): root = ElementTree.fromstring(view_config) root.tag if root.tag == 'hudson.model.ListView': return Views.LIST_VIEW if root.tag == 'hudson.plugins.view.dashboard.Dashboard': return Views.DASHBOARD_VIEW assert False, 'Unknown list type: ' + root.tag def configure_job(jenkins, job_name, job_config, view=None, dry_run=False): dry_run_suffix = ' (dry run)' if dry_run else '' response_text = None try: if not jenkins.has_job(job_name): print("Creating job '%s'%s" % (job_name, dry_run_suffix)) job = jenkins.create_job(job_name, job_config) \ if not dry_run else None else: job = jenkins.get_job(job_name) remote_job_config = job.get_config() diff = _diff_configs(remote_job_config, job_config) # evaluate generator since it might yield no values diff = list(diff) if not diff: print("Skipped '%s' because the config is the same" % job_name) else: print("Updating job '%s'%s" % (job_name, dry_run_suffix)) print(' ', '<<<') for line in diff: print(' ', line.rstrip('\n')) print(' ', '>>>') response_text = job.update_config(job_config) \ if not dry_run else None if response_text: print('Failed to update job config:\n%s' % response_text) raise RuntimeError() except Exception: print("Failed to configure job '%s' with config:\n%s" % (job_name, job_config), file=sys.stderr) raise if response_text: raise RuntimeError( "Failed to configure job '%s':\n%s" % (job_name, response_text)) if view is not None: if job_name not in view: print( "Adding job '%s' to view '%s'%s" % (job_name, view.name, dry_run_suffix)) job = view.add_job(job_name, job) \ if not dry_run else job else: print("Job '%s' is already in view '%s'" % (job_name, view.name)) return job def invoke_job(jenkins, job_name, cause=None): try: if not jenkins.has_job(job_name): print("Failed to invoke job '%s' because it does not exist" % job_name, file=sys.stderr) return False job = jenkins.get_job(job_name) if not job.is_enabled(): print("Failed to invoke job '%s' because it is disabled" % job_name, file=sys.stderr) return False if job.is_queued(): print("Skipped to invoke job '%s' because it is queued" % job_name, file=sys.stderr) return False if job.is_running(): print("Skipped to invoke job '%s' because it is running" % job_name, file=sys.stderr) return False print("Invoking job '%s'" % job_name) job.invoke(cause=cause) except Exception: print("Failed to invoke job '%s'" % job_name, file=sys.stderr) raise return True def _diff_configs(remote_config, new_config): remote_root = ElementTree.fromstring(remote_config) new_root = ElementTree.fromstring(new_config) # ignore description which contains timestamp if remote_root.find('description') is not None: remote_root.find('description').text = '' if new_root.find('description') is not None: new_root.find('description').text = '' if ElementTree.tostring(remote_root) == ElementTree.tostring(new_root): return [] xml1 = ElementTree.tostring(remote_root, encoding='unicode') xml2 = ElementTree.tostring(new_root, encoding='unicode') lines1 = xml1.splitlines() lines2 = xml2.splitlines() return difflib.unified_diff( lines1, lines2, 'remote config', 'new config', n=0) def remove_jobs(jenkins, job_prefix, excluded_job_names, dry_run=False): dry_run_suffix = ' (dry run)' if dry_run else '' for job_name in jenkins.jobs.keys(): if not job_name.startswith(job_prefix): continue if job_name in excluded_job_names: continue print("Deleting job '%s'%s" % (job_name, dry_run_suffix)) if dry_run: continue jenkins.delete_job(job_name)
apache-2.0
-2,348,657,980,131,072,000
36.071895
92
0.596703
false
MatanRubin/my.vim
virgene/config_mgr.py
1
4165
import json import os from os import path from typing import List import jinja2 from virgene.common_defs import SRC_DIR, TEMPLATES_DIR, FEATURES_DIR from virgene.config import Config from virgene.default_encoder import DefaultEncoder from virgene.feature_decoder import FeatureDecoder class ConfigMgr: def __init__(self): self.jinja_env = jinja2.Environment( loader=jinja2.FileSystemLoader(path.join(SRC_DIR, 'templates')), keep_trailing_newline=True, trim_blocks=True, lstrip_blocks=True, line_statement_prefix='%', line_comment_prefix='##' ) self.config = None @staticmethod def load_config_path(config_path) -> Config: return Config.from_json(ConfigMgr.read_json_path(config_path)) @staticmethod def read_json_path(json_path) -> json: with open(json_path) as json_file: return json.load(json_file) # XXX this is convenient but not very good def get_template(self, template_string_or_path) -> jinja2.Template: if path.exists(path.join(TEMPLATES_DIR, template_string_or_path)): template = self.jinja_env.get_template(template_string_or_path) else: template = jinja2.Template(template_string_or_path) return template def generate(self, config: Config) -> str: """ Receives a vimrc configuration object and return a string containing the corresponding vimrc file content :param config: Config """ snippets = [] plugins = [] plugin_configs = [] builtins = [] for feature in config.features: if not feature.is_enabled(): continue rendered_feature = feature.render(self.jinja_env) if feature.feature_type == "Snippet": snippets.append(rendered_feature) if feature.feature_type == "Plugin": plugins.append(feature) plugin_configs.append(rendered_feature) if feature.feature_type == "Builtin": builtins.append(rendered_feature) vimrc_template = self.jinja_env.get_template("vimrc_template.j2") return vimrc_template.render(snippets=snippets, plugins=plugins, plugin_configurations=plugin_configs, builtins=builtins) @staticmethod def build_default_config() -> Config: installed_features = ConfigMgr.read_installed_features() config = Config() for feature in installed_features: config.add_feature(feature) return config @staticmethod def write_config(config: Config, output_path: [str, None]): """ Writes a Config object to file, or to stdout if output_path is None :param config: vimrc configuration object :param output_path: path to output file :return: """ if output_path is None: return json.dumps(config, cls=DefaultEncoder, indent=4) else: with open(output_path, 'w') as output_file: output_file.write( json.dumps(config, cls=DefaultEncoder, indent=4)) @staticmethod def write_default_config(output_path=None): config = ConfigMgr.build_default_config() ConfigMgr.write_config(config, output_path) @staticmethod def read_installed_features(): feature_paths = [path.join(FEATURES_DIR, x) for x in os.listdir(FEATURES_DIR)] features = [FeatureDecoder.decode_from_path(x) for x in feature_paths] return [x for x in features if x.installed] def render_plugin_configs(self, plugin_jsons) -> List[str]: """ takes a list of plugin jsons and produces a list of generated templates, one per plugin json """ templates = [self.jinja_env.get_template(x.template_path) for x in plugin_jsons] return [template.render(plugin=plugin_json) for template, plugin_json in zip(templates, plugin_jsons)]
gpl-3.0
-4,063,867,231,558,727,700
35.535088
80
0.612485
false
QLRace/minqlx-plugins
spec_delay.py
1
2290
# This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. """ Stops people spectating then quickly joining the 'free' team. This is to stop people firing a rocket, then spectating and joining then using the knockback from the rocket which would count as a strafe time. """ import minqlx class spec_delay(minqlx.Plugin): def __init__(self): super().__init__() self.add_hook("player_disconnect", self.handle_player_disconnect) self.add_hook("team_switch_attempt", self.handle_team_switch_attempt) self.add_hook("team_switch", self.handle_team_switch) self.spec_delays = set() def handle_player_disconnect(self, player, reason): """Sets spec delay when a player disconnects.""" self.spec_delays.add(player.steam_id) self.allow_join(player) def handle_team_switch_attempt(self, player, old_team, new_team): """Stops the player joining if spec delay is true.""" if new_team != "spectator" and old_team == "spectator" and player.steam_id in self.spec_delays: player.tell("^6You must wait 15 seconds before joining after spectating") return minqlx.RET_STOP_EVENT def handle_team_switch(self, player, old_team, new_team): """Sets a delay on joining when the player joins spectator""" if new_team == "spectator" and old_team == "free": # Set spec delay self.spec_delays.add(player.steam_id) self.allow_join(player) # This is only needed to stop \team s; team f elif new_team == "free" and old_team == "spectator" and player.steam_id in self.spec_delays: player.tell("^6You must wait 15 seconds before joining after spectating") return minqlx.RET_STOP_EVENT @minqlx.delay(15.1) def allow_join(self, player): """Allows the player to join after 15.1 seconds.""" try: self.spec_delays.remove(player.steam_id) player.center_print("^6You can join now") except KeyError: return except AttributeError: return
gpl-3.0
6,870,827,062,680,719,000
41.407407
103
0.653275
false
vnsofthe/odoo-dev
addons/rhwl_gene/rhwl_gene_check.py
1
1376
# -*- coding: utf-8 -*- snp_check={ "rs1042713":["A","G"], "rs1050152":["C","T"], "rs1051266":["C","T"], "rs1136410":["A","G"], "rs1229984":["C","T"], "rs1234315":["C","T"], "rs12720461":["C","T"], "rs13306517":["A","G"], "rs1544410":["C","T"], "rs16944":["A","G"], "rs1695":["A","G"], "rs1799724":["C","T"], "rs1799782":["A","G"], "rs1799793":["C","T"], "rs1799895":["C","G"], "rs1799983":["G","T"], "rs1799998":["A","G"], "rs1800566":["A","G"], "rs1800629":["A","G"], "rs1800795":["C","G"], "rs1801131":["G","T"], "rs1801133":["A","G"], "rs1884444":["G","T"], "rs2031920":["C","T"], "rs2066702":["A","G"], "rs2069514":["A","G"], "rs2073618":["C","G"], "rs2107538":["C","T"], "rs2221903":["C","T"], "rs2228570":["A","G"], "rs2230806":["C","T"], "rs2241766":["G","T"], "rs2274223":["A","G"], "rs231775":["A","G"], "rs25487":["C","T"], "rs285":["C","T"], "rs31480":["C","T"], "rs320":["G","T"], "rs34637584":["A","G"], "rs34778348":["A","G"], "rs429358":["C","T"], "rs4646903":["A","G"], "rs4646994":"ID", "rs4673":["A","G"], "rs4880":["A","G"], "rs5051":["C","T"], "rs5186":["A","C"], "rs5443":["C","T"], "rs660339":["A","G"], "rs662":["C","T"], "rs6682925":["C","T"], "rs671":["A","G"], "rs693":["A","G"], "rs708272":["A","G"], "rs731236":["A","G"], "rs7412":["C","T"], "rs769214":["A","G"], "rs9344":["A","G"], "rs9642880":["G","T"], "GSTM1":["P","D"], "GSTT1":["P","D"], }
agpl-3.0
-3,808,686,540,482,914,000
20.5
23
0.457122
false
cmancone/mygrations
tests/formats/mysql/definitions/test_database.py
1
3304
import unittest from mygrations.formats.mysql.file_reader.database import database as database_reader from mygrations.formats.mysql.file_reader.create_parser import create_parser class test_database(unittest.TestCase): def _get_sample_db(self): strings = [ """ CREATE TABLE `logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `message` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """, """ CREATE TABLE `more_logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `more_messages` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """ ] return database_reader(strings) def test_simple(self): db1 = self._get_sample_db() strings = [ """ CREATE TABLE `logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `message` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """, """ CREATE TABLE `less_logs` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `more_messages` TEXT NOT NULL, `traceback` text, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; """ ] db2 = database_reader(strings) #differences = db2 - db1 #self.assertEquals( [], differences ) def test_add_table(self): db = self._get_sample_db() new_table = create_parser() new_table.parse( """CREATE TABLE `log_changes` ( `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `log_id` INT(10) UNSIGNED NOT NULL, `type_id` INT(10) UNSIGNED NOT NULL, `change` VARCHAR(255), PRIMARY KEY (id), KEY `log_changes_log_id` (`log_id`), KEY `log_changes_type_id` (`type_id`) ); """ ) db.add_table(new_table) self.assertEquals(3, len(db.tables)) self.assertTrue('log_changes' in db.tables) self.assertEquals(new_table, db.tables['log_changes']) def test_remove_table(self): db1 = self._get_sample_db() db1.remove_table(db1.tables['more_logs']) self.assertEquals(1, len(db1.tables)) self.assertTrue('logs' in db1.tables) self.assertFalse('more_logs' in db1.tables) def test_exception_on_remove_invalid_table(self): db1 = self._get_sample_db() new_table = create_parser() new_table.parse( """CREATE TABLE `log_changes` ( `id` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, `log_id` INT(10) UNSIGNED NOT NULL, `type_id` INT(10) UNSIGNED NOT NULL, `change` VARCHAR(255), PRIMARY KEY (id), KEY `log_changes_log_id` (`log_id`), KEY `log_changes_type_id` (`type_id`) ); """ ) with self.assertRaises(ValueError): db1.remove_table(new_table)
mit
6,008,796,254,061,185,000
31.07767
85
0.521186
false
Tsumiki-Chan/Neko-Chan
commands/purge.py
1
1524
from functions import search, logger DESC = "Delete x messages" USAGE="purge [*amount*] [*user* `optional`]" async def init(bot): chat=bot.message.channel try: if len(bot.args) == 0: await bot.sendMessage( "Didn't receive any arguments! Usage: {}".format(USAGE)) return False try: bot.args[0] = int(bot.args[0]) except: await bot.sendMessage( "`{}` is not a valid number.".format(bot.args[0])) return False if len(bot.args) > 1: if len(bot.message.raw_mentions)>0: user = await search.user(chat, bot.message.raw_mentions[0]) else: user = list(bot.args) user.pop(0) user = await search.user(chat, " ".join(user)) if user is not None: def is_me(m): check = (m.author == user) if check: bot.args[0] = bot.args[0]-1 return (bot.args[0]>=0) await bot.client.purge_from(chat, limit=500, check=is_me) #await bot.sendMessage( user.display_name)) else: await bot.sendMessage( "Could not find any user with \"`{}`\"".format(user)) return False else: await bot.client.purge_from(chat, limit=bot.args[0]+1, check=None) return False except Exception: logger.PrintException(bot.message) return False
gpl-3.0
-421,751,238,183,873,100
33.636364
92
0.509186
false
gigglearrows/anniesbot
pajbot/models/twitter.py
1
5731
import logging from datetime import datetime from pajbot.tbutil import time_since, tweet_prettify_urls from pajbot.models.db import DBManager, Base import tweepy from sqlalchemy import Column, Integer, String log = logging.getLogger('pajbot') class TwitterUser(Base): __tablename__ = 'tb_twitter_following' id = Column(Integer, primary_key=True) username = Column(String(32)) def __init__(self, username): self.username = username class TwitterManager: def __init__(self, bot): self.bot = bot self.db_session = DBManager.create_session() self.twitter_client = None self.twitter_stream = None self.listener = None if 'twitter' in bot.config: self.use_twitter_stream = 'streaming' in bot.config['twitter'] and bot.config['twitter']['streaming'] == '1' try: self.twitter_auth = tweepy.OAuthHandler(bot.config['twitter']['consumer_key'], bot.config['twitter']['consumer_secret']) self.twitter_auth.set_access_token(bot.config['twitter']['access_token'], bot.config['twitter']['access_token_secret']) self.twitter_client = tweepy.API(self.twitter_auth) if self.use_twitter_stream: self.connect_to_twitter_stream() bot.execute_every(60 * 5, self.check_twitter_connection) except: log.exception('Twitter authentication failed.') self.twitter_client = None def commit(self): self.db_session.commit() def reload(self): if self.listener: self.listener.relevant_users = [] for user in self.db_session.query(TwitterUser): self.listener.relevant_users.append(user.username) return self def follow_user(self, username): """Add `username` to our relevant_users list.""" if self.listener: if username not in self.listener.relevant_users: self.db_session.add(TwitterUser(username)) self.listener.relevant_users.append(username) log.info('Now following {0}'.format(username)) return True return False def unfollow_user(self, username): """Stop following `username`, if we are following him.""" if self.listener: if username in self.listener.relevant_users: user = self.db_session.query(TwitterUser).filter_by(username=username).one_or_none() if user: self.db_session.delete(user) self.listener.relevant_users.remove(username) log.info('No longer following {0}'.format(username)) return True else: log.warning('Trying to unfollow someone we are not following') return False return False def initialize_listener(self): if self.listener is None: class MyStreamListener(tweepy.StreamListener): def __init__(self, bot): tweepy.StreamListener.__init__(self) self.relevant_users = [] self.bot = bot def on_status(self, tweet): if tweet.user.screen_name.lower() in self.relevant_users: if not tweet.text.startswith('RT ') and tweet.in_reply_to_screen_name is None: tw = tweet_prettify_urls(tweet) self.bot.say('New tweet from {0}: {1}'.format(tweet.user.screen_name, tw.replace("\n", " "))) def on_error(self, status): log.warning('Unhandled in twitter stream: {0}'.format(status)) self.listener = MyStreamListener(self.bot) def initialize_twitter_stream(self): if self.twitter_stream is None: self.twitter_stream = tweepy.Stream(self.twitter_auth, self.listener, retry_420=3 * 60, daemonize_thread=True) def connect_to_twitter_stream(self): """Connect to the twitter stream. This will print out messages in the chat if a "relevant user" tweets something """ try: self.initialize_listener() self.initialize_twitter_stream() self.twitter_stream.userstream(_with='followings', replies='all', async=True) except: log.exception('Exception caught while trying to connect to the twitter stream') def check_twitter_connection(self): """Check if the twitter stream is running. If it's not running, try to restart it. """ try: if self.twitter_stream.running is False: self.connect_to_twitter_stream() except: log.exception('Caught exception while checking twitter connection') def get_last_tweet(self, username): if self.twitter_client: try: public_tweets = self.twitter_client.user_timeline(username) for tweet in public_tweets: if not tweet.text.startswith('RT ') and tweet.in_reply_to_screen_name is None: tw = tweet_prettify_urls(tweet) return '{0} ({1} ago)'.format(tw.replace("\n", " "), time_since(datetime.now().timestamp(), tweet.created_at.timestamp(), format='short')) except Exception: log.exception('Exception caught while getting last tweet') return 'FeelsBadMan' else: return 'Twitter not set up FeelsBadMan' return 'FeelsBadMan' def quit(self): if self.twitter_stream: self.twitter_stream.disconnect()
mit
-5,920,211,949,906,276,000
38.524138
162
0.583842
false
mSOHU/http2
test/benchmark2.py
1
1422
# -*- coding: utf-8 -*- """ copied from https://github.com/bdarnell/tornado_http2/blob/master/tornado_http2/test/benchmark.py """ import time import logging from tornado.ioloop import IOLoop from tornado.options import define, options, parse_command_line, enable_pretty_logging from http2 import SimpleAsyncHTTP2Client logging.getLogger('http2').setLevel(logging.INFO) enable_pretty_logging() define('n', help='number of queries', default=1000) define('h', help='host', default='http2.akamai.com') define('p', help='port', default=None, type=int) define('s', help='use https, [1|0]', default=True) define('c', help='max streams concurrency', default=30) done_count = [0] io_loop = IOLoop.instance() def callback(value): done_count[0] += 1 if done_count[0] == options.n: io_loop.stop() elapsed = time.time() - start_time print 'HTTP/2: %d requests in %0.3fs: %f QPS' % (options.n, elapsed, options.n / elapsed) if __name__ == '__main__': options.logging = "info" parse_command_line() client = SimpleAsyncHTTP2Client( host=options.h, port=options.p, secure=options.s, max_streams=options.c, connect_timeout=5, enable_push=False, initial_window_size=2**24-1, ) start_time = time.time() for i in range(options.n): io_loop.add_callback(lambda: client.fetch('/', callback=callback)) io_loop.start()
apache-2.0
-6,296,171,402,591,293,000
25.830189
97
0.658228
false
JenningsWu/personality-extractor
Classifier.py
1
8693
# Classify partited data # sentences description type(desc_type):action(0), speech(1), description(2) # Character Personality type(personality): # [impulsive(1)/calm(0),Extrovert(1)/Introvert(0), # Optimistic(1)/pessimistic(0)] import glob import json import io # Data Structures # {word:[probability of 3 desc_type]} descTypeProb = dict() # {word:{desctype:6 probabilities for each personalites},...} personalityProb = dict() descType = [0, 0, 0] # action, speech, description descTypeOutput = -1 # action(0), speech(1), description(2) # impulsive,calm, Extrovert, Introvert, Optimistic, pessimistic personality = [0, 0, 0, 0, 0, 0] # [impulsive(1)/calm(0),Extrovert(1)/Introvert(0),Optimistic(1)/pessimistic(0)] personalityOutput = [0, 0, 0] actionCount = 0 speechCount = 0 descriptionCount = 0 totalCount = 0 diffWordCount = 0 sentenceTypePrior = [0,0,0]#[0]:quote [1]: normal [2]:half personalityPrior = [0,0,0,0,0,0] tagFiles = 'train/developing data/' modelPath = 'model.txt' testDataFiles = 'train/developing data/*.json' #variables for experiment totalDescType = [0,0,0]#speech,description,action speech = [0,0]#correct,wrong description = [0,0] action = [0,0] totalPersonality = [0,0,0,0,0,0] impulsive = [0,0] calm = [0,0] extrovert = [0,0] introvert = [0,0] optimistic = [0,0] pessimistic = [0,0] # parsing tag data def parseTagFile(path): tagFile = open(tagPath,'r') tagDict = dict() while True: line = tagFile.readline() if line: charName = line.strip('\n').decode('utf-8') #print charName line = tagFile.readline() tags = line.strip('\n').split() if tags[0] == '\xe5\x86\xb2\xe5\x8a\xa8': # Impulsive tags[0] = 1; else: tags[0] = 0 if tags[1] == '\xe5\xa4\x96\xe5\x90\x91': # Extrovert tags[1] = 1; else: tags[1] = 0 if tags[2] == '\xe4\xb9\x90\xe8\xa7\x82': # Optimistic tags[2] = 1; else: tags[2] = 0 #print tags tagDict.setdefault(charName,[]) tagDict[charName] = tags #print tagDict else: break tagFile.close() return tagDict # load model modelFile = open(modelPath, 'r') sentenceTypePrior = modelFile.readline().split() for i in range (0,3): descType[i] = float(sentenceTypePrior[i]) personalityPrior = modelFile.readline().split() for i in range(0,6): personality[i] = float(personalityPrior[i]) diffWordCount = int(modelFile.readline()) for i in range(0, diffWordCount): line = modelFile.readline() data = line.strip('\n').split('\t') data[0] = data[0].decode('utf-8') descTypeProb.setdefault(data[0], [0,0,0]) for j in range(0, 3): descTypeProb[data[0]][j] = data[j + 1] while True: line = modelFile.readline() if line: data = line.strip('\n').split('\t') data[0] = data[0].decode('utf-8') # print data personalityProb.setdefault(data[0], {}) for i in range(0, 3): personalityProb[data[0]].setdefault(i, [0, 0, 0, 0, 0, 0]) for j in range(0, 6): personalityProb[data[0]][i][j] = data[i * 6 + j + 1] else: break modelFile.close() # load test data testDataPath = glob.glob(testDataFiles) for t in testDataPath: test = open(t, 'r') t = t.decode('gb2312') #print t novelName = t[10:len(t)-9] #print novelName tagPath = tagFiles + novelName + '.tag' tagDict = parseTagFile(tagPath) dataSets = json.load(test, encoding='utf-8') test.close() print 'Novel Name: ', novelName.encode('gb2312') print '\n' # analyze & output: for dataSet in dataSets: personality = [0, 0, 0, 0, 0, 0] cname = '' for name in tagDict.keys(): if name not in dataSet['chars']: continue else: cname = name if cname == '': continue else: #print 1 for i in range (0,3): if tagDict[cname][i]==1: totalPersonality[2*i]+=1 else: totalPersonality[2*i+1]+=1 print 'Character:', cname.encode('gb2312') print 'Aliases:\n' for i in dataSet['chars']: print i.encode('gb2312'),'\t' print '\nsentences:\n' for i in dataSet['sentences']: sentence = '' typeTag = i['type'] #typeTag ==0:speech if typeTag == 1 : typeTag = 2#action elif typeTag ==3: typeTag = 1#description totalDescType[typeTag]+=1 descType = [0,0,0] for j in i['tokens']: word = j['word'] sentence += word try: for k in range(0, 3): #print descTypeProb[word][k] descType[k] += float(descTypeProb[word][k]) except: continue #print descType if descType[0] > descType[1] and descType[0] > descType[2]: descTypeOutput = 0 elif descType[1]>descType[0] and descType[1] > descType[2]: descTypeOutput = 1 else: descTypeOutput = 2 print sentence.encode('utf-8') #print typeTag if descTypeOutput == 0: print "Description Type: Speech" speechCount += 1 if typeTag == descTypeOutput: speech[0]+=1 else: speech[1]+=1 elif descTypeOutput == 1: print "Description Type: Description" descriptionCount += 1 if typeTag == descTypeOutput: description[0]+=1 else: description[1]+=1 else: print "Description Type: Action" actionCount += 1 if typeTag == descTypeOutput: action[0]+=1 else: action[1]+=1 for j in i['tokens']: word = j['word'] try: for k in range(0, 6): personality[k] += float( personalityProb[word][descTypeOutput][k]) except: continue for k in range(0, 3): if personality[2 * k] > personality[2 * k + 1]: personalityOutput[k] = 1 else: personalityOutput[k] = 0 print '\nPersonality:\n' if personalityOutput[0] == 1: print 'impulsive;' if tagDict[cname][0] == 1: impulsive[0]+=1 else: impulsive[1]+=1 else: print 'calm;' if tagDict[cname][0] == 0: calm[0]+=1 else: calm[1]+=1 if personalityOutput[1] == 1: print 'extrovert;' if tagDict[cname][1] == 1: extrovert[0]+=1 else: extrovert[1]+=1 else: print 'introvert;' if tagDict[cname][1] == 0: introvert[0]+=1 else: introvert[1]+=1 if personalityOutput[2] == 1: print 'optimistic.' if tagDict[cname][2] == 1: optimistic[0]+=1 else: optimistic[1]+=1 else: print 'pessimistic.' if tagDict[cname][2] == 0: pessimistic[0]+=1 else: pessimistic[1]+=1 print '\n' totalCount = actionCount + speechCount + descriptionCount print'\nWriting Style:\n' print'Speech:', speechCount / float(totalCount) print'Action:', actionCount / float(totalCount) print'Description:', descriptionCount / float(totalCount) print totalDescType,speech,description,action print totalPersonality,impulsive,calm,extrovert,introvert,optimistic,pessimistic
gpl-3.0
8,126,149,522,154,109,000
33.224409
80
0.484643
false
masasin/advent_of_code_2015
day_11.py
1
3790
""" http://adventofcode.com/day/10 --- Day 11: Corporate Policy --- Santa's previous password expired, and he needs help choosing a new one. To help him remember his new password after the old one expires, Santa has devised a method of coming up with a password based on the previous one. Corporate policy dictates that passwords must be exactly eight lowercase letters (for security reasons), so he finds his new password by incrementing his old password string repeatedly until it is valid. Incrementing is just like counting with numbers: xx, xy, xz, ya, yb, and so on. Increase the rightmost letter one step; if it was z, it wraps around to a, and repeat with the next letter to the left until one doesn't wrap around. Unfortunately for Santa, a new Security-Elf recently started, and he has imposed some additional password requirements: - Passwords must include one increasing straight of at least three letters, like abc, bcd, cde, and so on, up to xyz. They cannot skip letters; abd doesn't count. - Passwords may not contain the letters i, o, or l, as these letters can be mistaken for other characters and are therefore confusing. - Passwords must contain at least two different, non-overlapping pairs of letters, like aa, bb, or zz. For example: - hijklmmn meets the first requirement (because it contains the straight hij) but fails the second requirement (because it contains i and l). - abbceffg meets the third requirement (because it repeats bb and ff) but fails the first requirement. - abbcegjk fails the third requirement, because it only has one double letter (bb). - The next password after abcdefgh is abcdffaa. - The next password after ghijklmn is ghjaabcc, because you eventually skip all the passwords that start with ghi..., since i is not allowed. Given Santa's current password (your puzzle input), what should his next password be? --- Part Two --- Santa's password expired again. What's the next one? """ import re from string import ascii_lowercase def find_next_password(password, n=1): for i in range(n): password = increment_password(password) while not validate(password): password = increment_password(password) return password def validate(password): # Requirement 2 if re.search(r"[iol]", password): return False # Requirement 1 for i in range(len(password) - 2): if password[i:i+3] in ascii_lowercase: break else: return False # Requirement 3 return True if re.search(r"(\w)\1.*(\w)\2", password) else False def increment_password(password): if password.endswith("z"): i_z = password.index("z") n_z = len(password) - i_z boundary_letter = password[i_z - 1] return password[:i_z - 1] + next_letter(boundary_letter) + "a" * n_z else: return password[:-1] + next_letter(password[-1]) def next_letter(c): try: return ascii_lowercase[ascii_lowercase.index(c) + 1] except IndexError: # z return "a" def part_one(): with open("inputs/day_11_input.txt") as fin: password = fin.readline().strip() print("Next password: {}".format(find_next_password(password))) def part_two(): with open("inputs/day_11_input.txt") as fin: password = fin.readline().strip() print("Next password: {}".format(find_next_password(password, 2))) def main(): with open("inputs/day_11_input.txt") as fin: password = fin.readline().strip() next_password = find_next_password(password) print("Next password: {}".format(next_password)) print("Next next password: {}".format(find_next_password(next_password))) if __name__ == "__main__": main()
mit
9,128,645,441,959,390,000
31.956522
80
0.683113
false
NicolasHug/Surprise
surprise/dataset.py
1
9634
""" The :mod:`dataset <surprise.dataset>` module defines the :class:`Dataset` class and other subclasses which are used for managing datasets. Users may use both *built-in* and user-defined datasets (see the :ref:`getting_started` page for examples). Right now, three built-in datasets are available: * The `movielens-100k <http://grouplens.org/datasets/movielens/>`_ dataset. * The `movielens-1m <http://grouplens.org/datasets/movielens/>`_ dataset. * The `Jester <http://eigentaste.berkeley.edu/dataset/>`_ dataset 2. Built-in datasets can all be loaded (or downloaded if you haven't already) using the :meth:`Dataset.load_builtin` method. Summary: .. autosummary:: :nosignatures: Dataset.load_builtin Dataset.load_from_file Dataset.load_from_folds """ from __future__ import (absolute_import, division, print_function, unicode_literals) from collections import defaultdict import sys import os import itertools from six.moves import input from .reader import Reader from .builtin_datasets import download_builtin_dataset from .builtin_datasets import BUILTIN_DATASETS from .trainset import Trainset class Dataset: """Base class for loading datasets. Note that you should never instantiate the :class:`Dataset` class directly (same goes for its derived classes), but instead use one of the three available methods for loading datasets.""" def __init__(self, reader): self.reader = reader @classmethod def load_builtin(cls, name='ml-100k', prompt=True): """Load a built-in dataset. If the dataset has not already been loaded, it will be downloaded and saved. You will have to split your dataset using the :meth:`split <DatasetAutoFolds.split>` method. See an example in the :ref:`User Guide <cross_validate_example>`. Args: name(:obj:`string`): The name of the built-in dataset to load. Accepted values are 'ml-100k', 'ml-1m', and 'jester'. Default is 'ml-100k'. prompt(:obj:`bool`): Prompt before downloading if dataset is not already on disk. Default is True. Returns: A :obj:`Dataset` object. Raises: ValueError: If the ``name`` parameter is incorrect. """ try: dataset = BUILTIN_DATASETS[name] except KeyError: raise ValueError('unknown dataset ' + name + '. Accepted values are ' + ', '.join(BUILTIN_DATASETS.keys()) + '.') # if dataset does not exist, offer to download it if not os.path.isfile(dataset.path): answered = not prompt while not answered: print('Dataset ' + name + ' could not be found. Do you want ' 'to download it? [Y/n] ', end='') choice = input().lower() if choice in ['yes', 'y', '', 'omg this is so nice of you!!']: answered = True elif choice in ['no', 'n', 'hell no why would i want that?!']: answered = True print("Ok then, I'm out!") sys.exit() download_builtin_dataset(name) reader = Reader(**dataset.reader_params) return cls.load_from_file(file_path=dataset.path, reader=reader) @classmethod def load_from_file(cls, file_path, reader): """Load a dataset from a (custom) file. Use this if you want to use a custom dataset and all of the ratings are stored in one file. You will have to split your dataset using the :meth:`split <DatasetAutoFolds.split>` method. See an example in the :ref:`User Guide <load_from_file_example>`. Args: file_path(:obj:`string`): The path to the file containing ratings. reader(:obj:`Reader <surprise.reader.Reader>`): A reader to read the file. """ return DatasetAutoFolds(ratings_file=file_path, reader=reader) @classmethod def load_from_folds(cls, folds_files, reader): """Load a dataset where folds (for cross-validation) are predefined by some files. The purpose of this method is to cover a common use case where a dataset is already split into predefined folds, such as the movielens-100k dataset which defines files u1.base, u1.test, u2.base, u2.test, etc... It can also be used when you don't want to perform cross-validation but still want to specify your training and testing data (which comes down to 1-fold cross-validation anyway). See an example in the :ref:`User Guide <load_from_folds_example>`. Args: folds_files(:obj:`iterable` of :obj:`tuples`): The list of the folds. A fold is a tuple of the form ``(path_to_train_file, path_to_test_file)``. reader(:obj:`Reader <surprise.reader.Reader>`): A reader to read the files. """ return DatasetUserFolds(folds_files=folds_files, reader=reader) @classmethod def load_from_df(cls, df, reader): """Load a dataset from a pandas dataframe. Use this if you want to use a custom dataset that is stored in a pandas dataframe. See the :ref:`User Guide<load_from_df_example>` for an example. Args: df(`Dataframe`): The dataframe containing the ratings. It must have three columns, corresponding to the user (raw) ids, the item (raw) ids, and the ratings, in this order. reader(:obj:`Reader <surprise.reader.Reader>`): A reader to read the file. Only the ``rating_scale`` field needs to be specified. """ return DatasetAutoFolds(reader=reader, df=df) def read_ratings(self, file_name): """Return a list of ratings (user, item, rating, timestamp) read from file_name""" with open(os.path.expanduser(file_name)) as f: raw_ratings = [self.reader.parse_line(line) for line in itertools.islice(f, self.reader.skip_lines, None)] return raw_ratings def construct_trainset(self, raw_trainset): raw2inner_id_users = {} raw2inner_id_items = {} current_u_index = 0 current_i_index = 0 ur = defaultdict(list) ir = defaultdict(list) # user raw id, item raw id, translated rating, time stamp for urid, irid, r, timestamp in raw_trainset: try: uid = raw2inner_id_users[urid] except KeyError: uid = current_u_index raw2inner_id_users[urid] = current_u_index current_u_index += 1 try: iid = raw2inner_id_items[irid] except KeyError: iid = current_i_index raw2inner_id_items[irid] = current_i_index current_i_index += 1 ur[uid].append((iid, r)) ir[iid].append((uid, r)) n_users = len(ur) # number of users n_items = len(ir) # number of items n_ratings = len(raw_trainset) trainset = Trainset(ur, ir, n_users, n_items, n_ratings, self.reader.rating_scale, raw2inner_id_users, raw2inner_id_items) return trainset def construct_testset(self, raw_testset): return [(ruid, riid, r_ui_trans) for (ruid, riid, r_ui_trans, _) in raw_testset] class DatasetUserFolds(Dataset): """A derived class from :class:`Dataset` for which folds (for cross-validation) are predefined.""" def __init__(self, folds_files=None, reader=None): Dataset.__init__(self, reader) self.folds_files = folds_files # check that all files actually exist. for train_test_files in self.folds_files: for f in train_test_files: if not os.path.isfile(os.path.expanduser(f)): raise ValueError('File ' + str(f) + ' does not exist.') class DatasetAutoFolds(Dataset): """A derived class from :class:`Dataset` for which folds (for cross-validation) are not predefined. (Or for when there are no folds at all).""" def __init__(self, ratings_file=None, reader=None, df=None): Dataset.__init__(self, reader) self.has_been_split = False # flag indicating if split() was called. if ratings_file is not None: self.ratings_file = ratings_file self.raw_ratings = self.read_ratings(self.ratings_file) elif df is not None: self.df = df self.raw_ratings = [(uid, iid, float(r), None) for (uid, iid, r) in self.df.itertuples(index=False)] else: raise ValueError('Must specify ratings file or dataframe.') def build_full_trainset(self): """Do not split the dataset into folds and just return a trainset as is, built from the whole dataset. User can then query for predictions, as shown in the :ref:`User Guide <train_on_whole_trainset>`. Returns: The :class:`Trainset <surprise.Trainset>`. """ return self.construct_trainset(self.raw_ratings)
bsd-3-clause
877,863,226,206,800,500
34.289377
79
0.585219
false
dpressel/baseline
api-examples/layers_classify_pytorch.py
1
6102
import argparse import baseline.embeddings from eight_mile.confusion import ConfusionMatrix import baseline from eight_mile.pytorch.optz import OptimizerManager, EagerOptimizer import baseline.pytorch.embeddings import eight_mile.pytorch.layers as L import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, TensorDataset import logging import numpy as np import time import torch def to_device(m): return m.cuda() def to_host(o): return o.cpu().float().numpy() parser = argparse.ArgumentParser(description='Train a Layers model with PyTorch API') parser.add_argument('--model_type', help='What type of model to build', type=str, default='default') parser.add_argument('--poolsz', help='How many hidden units for pooling', type=int, default=100) parser.add_argument('--stacksz', help='How many hidden units for stacking', type=int, nargs='+') parser.add_argument('--name', help='(optional) signature name', type=str) parser.add_argument('--epochs', help='Number of epochs to train', type=int, default=2) parser.add_argument('--batchsz', help='Batch size', type=int, default=50) parser.add_argument('--filts', help='Parallel convolution filter widths (if default model)', type=int, default=[3, 4, 5], nargs='+') parser.add_argument('--mxlen', help='Maximum post length (number of words) during training', type=int, default=100) parser.add_argument('--train', help='Training file', default='../data/stsa.binary.phrases.train') parser.add_argument('--valid', help='Validation file', default='../data/stsa.binary.dev') parser.add_argument('--test', help='Testing file', default='../data/stsa.binary.test') parser.add_argument('--embeddings', help='Pretrained embeddings file', default='/data/embeddings/GoogleNews-vectors-negative300.bin') parser.add_argument('--ll', help='Log level', type=str, default='info') parser.add_argument('--lr', help='Learning rate', type=float, default=0.001) parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)") args = parser.parse_known_args()[0] feature_desc = { 'word': { 'vectorizer': baseline.Token1DVectorizer(mxlen=100, transform_fn=baseline.lowercase), 'embed': {'file': args.embeddings, 'type': 'default', 'unif': 0.25} } } # Create a reader that is using our vectorizers to parse a TSV file # with rows like: # <label>\t<sentence>\n class DictionaryDatasetWrapper(Dataset): def __init__(self, x, x_lengths, y): self.tensor_dataset = TensorDataset(x, x_lengths, y) def __getitem__(self, index): # stuff x, x_length, y = self.tensor_dataset[index] return {'word': x.to(args.device), "lengths": x_length.to(args.device)}, y.to(args.device) def __len__(self): return len(self.tensor_dataset) class Data: def __init__(self, ts, batchsz): self.ds = self._to_tensors(ts) self.batchsz = batchsz def _to_tensors(self, ts): x = [] x_lengths = [] y = [] for sample in ts: x.append(sample['word'].squeeze()) x_lengths.append(sample['word_lengths'].squeeze()) y.append(sample['y'].squeeze()) return DictionaryDatasetWrapper(torch.tensor(np.stack(x), dtype=torch.long), torch.tensor(np.stack(x_lengths), dtype=torch.long), torch.tensor(np.stack(y), dtype=torch.long)) def get_input(self, training=False): return DataLoader(self.ds, batch_size=self.batchsz, shuffle=training) vectorizers = {k: v['vectorizer'] for k, v in feature_desc.items()} reader = baseline.TSVSeqLabelReader(vectorizers, clean_fn=baseline.TSVSeqLabelReader.do_clean) train_file = args.train valid_file = args.valid test_file = args.test # This builds a set of counters vocabs, labels = reader.build_vocab([train_file, valid_file, test_file]) # This builds a set of embeddings objects, these are typically not DL-specific # but if they happen to be addons, they can be embeddings = dict() for k, v in feature_desc.items(): embed_config = v['embed'] embeddings_for_k = baseline.embeddings.load_embeddings('word', embed_file=embed_config['file'], known_vocab=vocabs[k], embed_type=embed_config.get('type', 'default'), unif=embed_config.get('unif', 0.), use_mmap=True) embeddings[k] = embeddings_for_k['embeddings'] # Reset the vocab to the embeddings one vocabs[k] = embeddings_for_k['vocab'] train_set = Data(reader.load(train_file, vocabs=vocabs, batchsz=1), args.batchsz) valid_set = Data(reader.load(valid_file, vocabs=vocabs, batchsz=1), args.batchsz) test_set = Data(reader.load(test_file, vocabs=vocabs, batchsz=1), args.batchsz) stacksz = len(args.filts) * args.poolsz num_epochs = 2 model = to_device( L.EmbedPoolStackModel(2, L.EmbeddingsStack(embeddings), L.WithoutLength(L.ParallelConv(300, args.poolsz, args.filts)), L.Highway(stacksz)) ) def loss(model, x, y): y_ = model(x) l = F.nll_loss(y_, y) return l optimizer = EagerOptimizer(loss, optim="adam", lr=0.001) for epoch in range(num_epochs): loss_acc = 0. step = 0 start = time.time() for x, y in train_set.get_input(training=True): loss_value = optimizer.update(model, x, y) loss_acc += loss_value step += 1 print('training time {}'.format(time.time() - start)) mean_loss = loss_acc / step print('Training Loss {}'.format(mean_loss)) cm = ConfusionMatrix(['0', '1']) for x, y in valid_set.get_input(): with torch.no_grad(): y_ = np.argmax(to_host(model(x)), axis=1) cm.add_batch(y, y_) print(cm) print(cm.get_all_metrics()) print('FINAL') cm = ConfusionMatrix(['0', '1']) with torch.no_grad(): for x, y in test_set.get_input(): y_ = np.argmax(to_host(model(x)), axis=1) cm.add_batch(y, y_) print(cm) print(cm.get_all_metrics())
apache-2.0
7,061,987,987,167,613,000
36.666667
182
0.653228
false
usc-isi/extra-specs
nova/api/openstack/compute/contrib/quotas.py
1
3875
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api.openstack import xmlutil from nova import db from nova.db.sqlalchemy import api as sqlalchemy_api from nova import exception from nova import quota authorize = extensions.extension_authorizer('compute', 'quotas') class QuotaTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('quota_set', selector='quota_set') root.set('id') for resource in quota.quota_resources: elem = xmlutil.SubTemplateElement(root, resource) elem.text = resource return xmlutil.MasterTemplate(root, 1) class QuotaSetsController(object): def _format_quota_set(self, project_id, quota_set): """Convert the quota object to a result dict""" result = dict(id=str(project_id)) for resource in quota.quota_resources: result[resource] = quota_set[resource] return dict(quota_set=result) def _validate_quota_limit(self, limit): # NOTE: -1 is a flag value for unlimited if limit < -1: msg = _("Quota limit must be -1 or greater.") raise webob.exc.HTTPBadRequest(explanation=msg) @wsgi.serializers(xml=QuotaTemplate) def show(self, req, id): context = req.environ['nova.context'] authorize(context) try: sqlalchemy_api.authorize_project_context(context, id) return self._format_quota_set(id, quota.get_project_quotas(context, id)) except exception.NotAuthorized: raise webob.exc.HTTPForbidden() @wsgi.serializers(xml=QuotaTemplate) def update(self, req, id, body): context = req.environ['nova.context'] authorize(context) project_id = id for key in body['quota_set'].keys(): if key in quota.quota_resources: value = int(body['quota_set'][key]) self._validate_quota_limit(value) try: db.quota_update(context, project_id, key, value) except exception.ProjectQuotaNotFound: db.quota_create(context, project_id, key, value) except exception.AdminRequired: raise webob.exc.HTTPForbidden() return {'quota_set': quota.get_project_quotas(context, project_id)} @wsgi.serializers(xml=QuotaTemplate) def defaults(self, req, id): authorize(req.environ['nova.context']) return self._format_quota_set(id, quota._get_default_quotas()) class Quotas(extensions.ExtensionDescriptor): """Quotas management support""" name = "Quotas" alias = "os-quota-sets" namespace = "http://docs.openstack.org/compute/ext/quotas-sets/api/v1.1" updated = "2011-08-08T00:00:00+00:00" def get_resources(self): resources = [] res = extensions.ResourceExtension('os-quota-sets', QuotaSetsController(), member_actions={'defaults': 'GET'}) resources.append(res) return resources
apache-2.0
-5,099,529,885,917,966,000
33.598214
79
0.634065
false
isotoma/alm.solrindex
alm/solrindex/schema.py
1
2814
"""Parser of a Solr schema.xml""" from alm.solrindex.interfaces import ISolrField from alm.solrindex.interfaces import ISolrFieldHandler from alm.solrindex.interfaces import ISolrSchema from elementtree.ElementTree import parse from zope.component import getUtility from zope.component import queryUtility from zope.interface import implements import logging import urllib2 log = logging.getLogger(__name__) class SolrSchema(object): implements(ISolrSchema) uniqueKey = None defaultSearchField = None def __init__(self, solr_uri=None): self.fields = [] if solr_uri: f = self.download_from(solr_uri) try: self.xml_init(f) finally: f.close() def download_from(self, solr_uri): """Get schema.xml from a running Solr instance""" schema_uris = ('%s/admin/file/?file=schema.xml', # solr 1.3 '%s/admin/get-file.jsp?file=schema.xml') # solr 1.2 for i, uri in enumerate(schema_uris): uri = uri % solr_uri log.debug('getting schema from %s', uri) try: f = urllib2.urlopen(uri) except urllib2.URLError: if i < len(schema_uris) - 1: # try the next URI continue raise return f def xml_init(self, f): """Initialize this instance from a Solr schema.xml""" tree = parse(f) e = tree.find('uniqueKey') if e is not None: self.uniqueKey = e.text.strip() e = tree.find('defaultSearchField') if e is not None: self.defaultSearchField = e.text.strip() types = {} for e in tree.findall('types/fieldType'): types[e.attrib['name']] = e for e in tree.findall('fields/field'): t = types[e.attrib['type']] self.fields.append(SolrField(e, t)) class SolrField(object): implements(ISolrField) _boolean_attrs = ( 'indexed', 'stored', 'required', 'multiValued', ) def __init__(self, elem, fieldType): self.name = elem.attrib['name'] self.type = elem.attrib['type'] self.java_class = fieldType.attrib['class'] for attr in self._boolean_attrs: value = elem.get(attr) if value is not None: value = {'true': True, 'false': False}[value.lower()] setattr(self, attr, value) handler = queryUtility(ISolrFieldHandler, name=self.name) if handler is None: handler = queryUtility( ISolrFieldHandler, name=self.java_class) if handler is None: handler = getUtility(ISolrFieldHandler) self.handler = handler
bsd-3-clause
2,881,713,634,405,479,000
29.586957
75
0.569652
false
yaukwankiu/armor
tests/modifiedMexicanHatTest5a.py
1
2438
# supplementing modifiedMexicanHatTest5.py # outputing the charts, given the results import numpy as np import matplotlib.pyplot as plt from armor import pattern from armor import defaultParameters as dp dbz = pattern.DBZ DS = pattern.DBZstream dataFolder = dp.root + "labLogs/2014-5-2-modifiedMexicanHatTest5/" outputFolder= dataFolder WRFnames = [ "WRF"+("0"+str(v))[-2:] for v in range(1,21)] sigmas = [1, 2, 4, 5, 8 ,10 ,16, 20, 32, 40, 64, 80, 128, 160, 256, 320,] allWRFsStreamMean = 0. dbzCount = 0 for WRFname in WRFnames: ds = DS(dataFolder=dataFolder, name="kongrey" + WRFname, outputFolder="", imageFolder="", key1=WRFname, # keywords to pick out specific files key2="LOGspec.dat", key3="kongreywrf", #safety check preload=True, imageExtension = '.png', #added 2013-09-27 dataExtension = '.dat', ) print "\n==================\nSaving histograms for ", ds.name for dbzpattern in ds: dbzCount += 1 streamMeanUpdate = np.array([(dbzpattern.matrix==v).sum() for v in sigmas]) allWRFsStreamMean = 1.* ((allWRFsStreamMean*(dbzCount -1)) + streamMeanUpdate ) / dbzCount histogramName = "kongreywrf" + dbzpattern.dataTime + WRFname + "_LOGspec_histogram"+ ds.imageExtension print dbzpattern.name, "->", histogramName plt.clf() dbzpattern.histogram(display=False, outputPath=outputFolder+histogramName) plt.close() plt.plot(sigmas, allWRFsStreamMean) plt.title(ds.name + '- average laplacian-of-gaussian max-response spectrum for ' +str(dbzCount) + 'WRF patterns') plt.savefig(outputFolder + ds.name + "_all_wrfs_average_LoG_max_response spectrum.png") plt.close() """ # run modifiedMexicanHatTest6a.py and then: allWRFsStreamMean = array([ 2562.4375, 655.5625, 526.15 , 741.51 , 858.6425, 1457.79 , 1710.095 , 2971.355 , 3561.9125, 4406.915 , 1488.0375, 59.5925, 0. , 0. , 0. , 0. ]) streamMeanCOMPREF = streamMean sigmas = np.array(sigmas) plt.close() plt.plot(sigmas, streamMeanCOMPREF) plt.plot(sigmas[:-4]*4, allWRFsStreamMean[:-4]*16) plt.title("COMPREF and WRFs mean max-response LOG spectra from Kong-Rey data") plt.show() """
cc0-1.0
-1,526,503,526,948,186,400
38.967213
113
0.609516
false
Abdoctor/behave
behave/i18n.py
1
27520
# -*- coding: UTF-8 -*- # -- FILE GENERATED BY: convert_i18n_yaml.py with i18n.yml # pylint: disable=line-too-long languages = \ {'ar': {'and': [u'*', u'\u0648'], 'background': [u'\u0627\u0644\u062e\u0644\u0641\u064a\u0629'], 'but': [u'*', u'\u0644\u0643\u0646'], 'examples': [u'\u0627\u0645\u062b\u0644\u0629'], 'feature': [u'\u062e\u0627\u0635\u064a\u0629'], 'given': [u'*', u'\u0628\u0641\u0631\u0636'], 'name': [u'Arabic'], 'native': [u'\u0627\u0644\u0639\u0631\u0628\u064a\u0629'], 'scenario': [u'\u0633\u064a\u0646\u0627\u0631\u064a\u0648'], 'scenario_outline': [u'\u0633\u064a\u0646\u0627\u0631\u064a\u0648 \u0645\u062e\u0637\u0637'], 'then': [u'*', u'\u0627\u0630\u0627\u064b', u'\u062b\u0645'], 'when': [u'*', u'\u0645\u062a\u0649', u'\u0639\u0646\u062f\u0645\u0627']}, 'bg': {'and': [u'*', u'\u0418'], 'background': [u'\u041f\u0440\u0435\u0434\u0438\u0441\u0442\u043e\u0440\u0438\u044f'], 'but': [u'*', u'\u041d\u043e'], 'examples': [u'\u041f\u0440\u0438\u043c\u0435\u0440\u0438'], 'feature': [u'\u0424\u0443\u043d\u043a\u0446\u0438\u043e\u043d\u0430\u043b\u043d\u043e\u0441\u0442'], 'given': [u'*', u'\u0414\u0430\u0434\u0435\u043d\u043e'], 'name': [u'Bulgarian'], 'native': [u'\u0431\u044a\u043b\u0433\u0430\u0440\u0441\u043a\u0438'], 'scenario': [u'\u0421\u0446\u0435\u043d\u0430\u0440\u0438\u0439'], 'scenario_outline': [u'\u0420\u0430\u043c\u043a\u0430 \u043d\u0430 \u0441\u0446\u0435\u043d\u0430\u0440\u0438\u0439'], 'then': [u'*', u'\u0422\u043e'], 'when': [u'*', u'\u041a\u043e\u0433\u0430\u0442\u043e']}, 'ca': {'and': [u'*', u'I'], 'background': [u'Rerefons', u'Antecedents'], 'but': [u'*', u'Per\xf2'], 'examples': [u'Exemples'], 'feature': [u'Caracter\xedstica', u'Funcionalitat'], 'given': [u'*', u'Donat', u'Donada', u'At\xe8s', u'Atesa'], 'name': [u'Catalan'], 'native': [u'catal\xe0'], 'scenario': [u'Escenari'], 'scenario_outline': [u"Esquema de l'escenari"], 'then': [u'*', u'Aleshores', u'Cal'], 'when': [u'*', u'Quan']}, 'cs': {'and': [u'*', u'A', u'A tak\xe9'], 'background': [u'Pozad\xed', u'Kontext'], 'but': [u'*', u'Ale'], 'examples': [u'P\u0159\xedklady'], 'feature': [u'Po\u017eadavek'], 'given': [u'*', u'Pokud'], 'name': [u'Czech'], 'native': [u'\u010cesky'], 'scenario': [u'Sc\xe9n\xe1\u0159'], 'scenario_outline': [u'N\xe1\u010drt Sc\xe9n\xe1\u0159e', u'Osnova sc\xe9n\xe1\u0159e'], 'then': [u'*', u'Pak'], 'when': [u'*', u'Kdy\u017e']}, 'cy-GB': {'and': [u'*', u'A'], 'background': [u'Cefndir'], 'but': [u'*', u'Ond'], 'examples': [u'Enghreifftiau'], 'feature': [u'Arwedd'], 'given': [u'*', u'Anrhegedig a'], 'name': [u'Welsh'], 'native': [u'Cymraeg'], 'scenario': [u'Scenario'], 'scenario_outline': [u'Scenario Amlinellol'], 'then': [u'*', u'Yna'], 'when': [u'*', u'Pryd']}, 'da': {'and': [u'*', u'Og'], 'background': [u'Baggrund'], 'but': [u'*', u'Men'], 'examples': [u'Eksempler'], 'feature': [u'Egenskab'], 'given': [u'*', u'Givet'], 'name': [u'Danish'], 'native': [u'dansk'], 'scenario': [u'Scenarie'], 'scenario_outline': [u'Abstrakt Scenario'], 'then': [u'*', u'S\xe5'], 'when': [u'*', u'N\xe5r']}, 'de': {'and': [u'*', u'Und'], 'background': [u'Grundlage'], 'but': [u'*', u'Aber'], 'examples': [u'Beispiele'], 'feature': [u'Funktionalit\xe4t'], 'given': [u'*', u'Angenommen', u'Gegeben sei'], 'name': [u'German'], 'native': [u'Deutsch'], 'scenario': [u'Szenario'], 'scenario_outline': [u'Szenariogrundriss'], 'then': [u'*', u'Dann'], 'when': [u'*', u'Wenn']}, 'en': {'and': [u'*', u'And'], 'background': [u'Background'], 'but': [u'*', u'But'], 'examples': [u'Examples', u'Scenarios'], 'feature': [u'Feature'], 'given': [u'*', u'Given'], 'name': [u'English'], 'native': [u'English'], 'scenario': [u'Scenario'], 'scenario_outline': [u'Scenario Outline', u'Scenario Template'], 'then': [u'*', u'Then'], 'when': [u'*', u'When']}, 'en-Scouse': {'and': [u'*', u'An'], 'background': [u'Dis is what went down'], 'but': [u'*', u'Buh'], 'examples': [u'Examples'], 'feature': [u'Feature'], 'given': [u'*', u'Givun', u'Youse know when youse got'], 'name': [u'Scouse'], 'native': [u'Scouse'], 'scenario': [u'The thing of it is'], 'scenario_outline': [u'Wharrimean is'], 'then': [u'*', u'Dun', u'Den youse gotta'], 'when': [u'*', u'Wun', u'Youse know like when']}, 'en-au': {'and': [u'*', u'N'], 'background': [u'Background'], 'but': [u'*', u'Cept'], 'examples': [u'Cobber'], 'feature': [u'Crikey'], 'given': [u'*', u'Ya know how'], 'name': [u'Australian'], 'native': [u'Australian'], 'scenario': [u'Mate'], 'scenario_outline': [u'Blokes'], 'then': [u'*', u'Ya gotta'], 'when': [u'*', u'When']}, 'en-lol': {'and': [u'*', u'AN'], 'background': [u'B4'], 'but': [u'*', u'BUT'], 'examples': [u'EXAMPLZ'], 'feature': [u'OH HAI'], 'given': [u'*', u'I CAN HAZ'], 'name': [u'LOLCAT'], 'native': [u'LOLCAT'], 'scenario': [u'MISHUN'], 'scenario_outline': [u'MISHUN SRSLY'], 'then': [u'*', u'DEN'], 'when': [u'*', u'WEN']}, 'en-pirate': {'and': [u'*', u'Aye'], 'background': [u'Yo-ho-ho'], 'but': [u'*', u'Avast!'], 'examples': [u'Dead men tell no tales'], 'feature': [u'Ahoy matey!'], 'given': [u'*', u'Gangway!'], 'name': [u'Pirate'], 'native': [u'Pirate'], 'scenario': [u'Heave to'], 'scenario_outline': [u'Shiver me timbers'], 'then': [u'*', u'Let go and haul'], 'when': [u'*', u'Blimey!']}, 'en-tx': {'and': [u'*', u"And y'all"], 'background': [u'Background'], 'but': [u'*', u"But y'all"], 'examples': [u'Examples'], 'feature': [u'Feature'], 'given': [u'*', u"Given y'all"], 'name': [u'Texan'], 'native': [u'Texan'], 'scenario': [u'Scenario'], 'scenario_outline': [u"All y'all"], 'then': [u'*', u"Then y'all"], 'when': [u'*', u"When y'all"]}, 'eo': {'and': [u'*', u'Kaj'], 'background': [u'Fono'], 'but': [u'*', u'Sed'], 'examples': [u'Ekzemploj'], 'feature': [u'Trajto'], 'given': [u'*', u'Donita\u0135o'], 'name': [u'Esperanto'], 'native': [u'Esperanto'], 'scenario': [u'Scenaro'], 'scenario_outline': [u'Konturo de la scenaro'], 'then': [u'*', u'Do'], 'when': [u'*', u'Se']}, 'es': {'and': [u'*', u'Y'], 'background': [u'Antecedentes'], 'but': [u'*', u'Pero'], 'examples': [u'Ejemplos'], 'feature': [u'Caracter\xedstica'], 'given': [u'*', u'Dado', u'Dada', u'Dados', u'Dadas'], 'name': [u'Spanish'], 'native': [u'espa\xf1ol'], 'scenario': [u'Escenario'], 'scenario_outline': [u'Esquema del escenario'], 'then': [u'*', u'Entonces'], 'when': [u'*', u'Cuando']}, 'et': {'and': [u'*', u'Ja'], 'background': [u'Taust'], 'but': [u'*', u'Kuid'], 'examples': [u'Juhtumid'], 'feature': [u'Omadus'], 'given': [u'*', u'Eeldades'], 'name': [u'Estonian'], 'native': [u'eesti keel'], 'scenario': [u'Stsenaarium'], 'scenario_outline': [u'Raamstsenaarium'], 'then': [u'*', u'Siis'], 'when': [u'*', u'Kui']}, 'fi': {'and': [u'*', u'Ja'], 'background': [u'Tausta'], 'but': [u'*', u'Mutta'], 'examples': [u'Tapaukset'], 'feature': [u'Ominaisuus'], 'given': [u'*', u'Oletetaan'], 'name': [u'Finnish'], 'native': [u'suomi'], 'scenario': [u'Tapaus'], 'scenario_outline': [u'Tapausaihio'], 'then': [u'*', u'Niin'], 'when': [u'*', u'Kun']}, 'fr': {'and': [u'*', u'Et'], 'background': [u'Contexte'], 'but': [u'*', u'Mais'], 'examples': [u'Exemples'], 'feature': [u'Fonctionnalit\xe9'], 'given': [u'*', u'Soit', u'Etant donn\xe9', u'Etant donn\xe9e', u'Etant donn\xe9s', u'Etant donn\xe9es', u'\xc9tant donn\xe9', u'\xc9tant donn\xe9e', u'\xc9tant donn\xe9s', u'\xc9tant donn\xe9es'], 'name': [u'French'], 'native': [u'fran\xe7ais'], 'scenario': [u'Sc\xe9nario'], 'scenario_outline': [u'Plan du sc\xe9nario', u'Plan du Sc\xe9nario'], 'then': [u'*', u'Alors'], 'when': [u'*', u'Quand', u'Lorsque', u"Lorsqu'<"]}, 'he': {'and': [u'*', u'\u05d5\u05d2\u05dd'], 'background': [u'\u05e8\u05e7\u05e2'], 'but': [u'*', u'\u05d0\u05d1\u05dc'], 'examples': [u'\u05d3\u05d5\u05d2\u05de\u05d0\u05d5\u05ea'], 'feature': [u'\u05ea\u05db\u05d5\u05e0\u05d4'], 'given': [u'*', u'\u05d1\u05d4\u05d9\u05e0\u05ea\u05df'], 'name': [u'Hebrew'], 'native': [u'\u05e2\u05d1\u05e8\u05d9\u05ea'], 'scenario': [u'\u05ea\u05e8\u05d7\u05d9\u05e9'], 'scenario_outline': [u'\u05ea\u05d1\u05e0\u05d9\u05ea \u05ea\u05e8\u05d7\u05d9\u05e9'], 'then': [u'*', u'\u05d0\u05d6', u'\u05d0\u05d6\u05d9'], 'when': [u'*', u'\u05db\u05d0\u05e9\u05e8']}, 'hr': {'and': [u'*', u'I'], 'background': [u'Pozadina'], 'but': [u'*', u'Ali'], 'examples': [u'Primjeri', u'Scenariji'], 'feature': [u'Osobina', u'Mogu\u0107nost', u'Mogucnost'], 'given': [u'*', u'Zadan', u'Zadani', u'Zadano'], 'name': [u'Croatian'], 'native': [u'hrvatski'], 'scenario': [u'Scenarij'], 'scenario_outline': [u'Skica', u'Koncept'], 'then': [u'*', u'Onda'], 'when': [u'*', u'Kada', u'Kad']}, 'hu': {'and': [u'*', u'\xc9s'], 'background': [u'H\xe1tt\xe9r'], 'but': [u'*', u'De'], 'examples': [u'P\xe9ld\xe1k'], 'feature': [u'Jellemz\u0151'], 'given': [u'*', u'Amennyiben', u'Adott'], 'name': [u'Hungarian'], 'native': [u'magyar'], 'scenario': [u'Forgat\xf3k\xf6nyv'], 'scenario_outline': [u'Forgat\xf3k\xf6nyv v\xe1zlat'], 'then': [u'*', u'Akkor'], 'when': [u'*', u'Majd', u'Ha', u'Amikor']}, 'id': {'and': [u'*', u'Dan'], 'background': [u'Dasar'], 'but': [u'*', u'Tapi'], 'examples': [u'Contoh'], 'feature': [u'Fitur'], 'given': [u'*', u'Dengan'], 'name': [u'Indonesian'], 'native': [u'Bahasa Indonesia'], 'scenario': [u'Skenario'], 'scenario_outline': [u'Skenario konsep'], 'then': [u'*', u'Maka'], 'when': [u'*', u'Ketika']}, 'is': {'and': [u'*', u'Og'], 'background': [u'Bakgrunnur'], 'but': [u'*', u'En'], 'examples': [u'D\xe6mi', u'Atbur\xf0ar\xe1sir'], 'feature': [u'Eiginleiki'], 'given': [u'*', u'Ef'], 'name': [u'Icelandic'], 'native': [u'\xcdslenska'], 'scenario': [u'Atbur\xf0ar\xe1s'], 'scenario_outline': [u'L\xfdsing Atbur\xf0ar\xe1sar', u'L\xfdsing D\xe6ma'], 'then': [u'*', u'\xde\xe1'], 'when': [u'*', u'\xdeegar']}, 'it': {'and': [u'*', u'E'], 'background': [u'Contesto'], 'but': [u'*', u'Ma'], 'examples': [u'Esempi'], 'feature': [u'Funzionalit\xe0'], 'given': [u'*', u'Dato', u'Data', u'Dati', u'Date'], 'name': [u'Italian'], 'native': [u'italiano'], 'scenario': [u'Scenario'], 'scenario_outline': [u'Schema dello scenario'], 'then': [u'*', u'Allora'], 'when': [u'*', u'Quando']}, 'ja': {'and': [u'*', u'\u304b\u3064<'], 'background': [u'\u80cc\u666f'], 'but': [u'*', u'\u3057\u304b\u3057<', u'\u4f46\u3057<', u'\u305f\u3060\u3057<'], 'examples': [u'\u4f8b', u'\u30b5\u30f3\u30d7\u30eb'], 'feature': [u'\u30d5\u30a3\u30fc\u30c1\u30e3', u'\u6a5f\u80fd'], 'given': [u'*', u'\u524d\u63d0<'], 'name': [u'Japanese'], 'native': [u'\u65e5\u672c\u8a9e'], 'scenario': [u'\u30b7\u30ca\u30ea\u30aa'], 'scenario_outline': [u'\u30b7\u30ca\u30ea\u30aa\u30a2\u30a6\u30c8\u30e9\u30a4\u30f3', u'\u30b7\u30ca\u30ea\u30aa\u30c6\u30f3\u30d7\u30ec\u30fc\u30c8', u'\u30c6\u30f3\u30d7\u30ec', u'\u30b7\u30ca\u30ea\u30aa\u30c6\u30f3\u30d7\u30ec'], 'then': [u'*', u'\u306a\u3089\u3070<'], 'when': [u'*', u'\u3082\u3057<']}, 'ko': {'and': [u'*', u'\uadf8\ub9ac\uace0<'], 'background': [u'\ubc30\uacbd'], 'but': [u'*', u'\ud558\uc9c0\ub9cc<', u'\ub2e8<'], 'examples': [u'\uc608'], 'feature': [u'\uae30\ub2a5'], 'given': [u'*', u'\uc870\uac74<', u'\uba3c\uc800<'], 'name': [u'Korean'], 'native': [u'\ud55c\uad6d\uc5b4'], 'scenario': [u'\uc2dc\ub098\ub9ac\uc624'], 'scenario_outline': [u'\uc2dc\ub098\ub9ac\uc624 \uac1c\uc694'], 'then': [u'*', u'\uadf8\ub7ec\uba74<'], 'when': [u'*', u'\ub9cc\uc77c<', u'\ub9cc\uc57d<']}, 'lt': {'and': [u'*', u'Ir'], 'background': [u'Kontekstas'], 'but': [u'*', u'Bet'], 'examples': [u'Pavyzd\u017eiai', u'Scenarijai', u'Variantai'], 'feature': [u'Savyb\u0117'], 'given': [u'*', u'Duota'], 'name': [u'Lithuanian'], 'native': [u'lietuvi\u0173 kalba'], 'scenario': [u'Scenarijus'], 'scenario_outline': [u'Scenarijaus \u0161ablonas'], 'then': [u'*', u'Tada'], 'when': [u'*', u'Kai']}, 'lu': {'and': [u'*', u'an', u'a'], 'background': [u'Hannergrond'], 'but': [u'*', u'awer', u'm\xe4'], 'examples': [u'Beispiller'], 'feature': [u'Funktionalit\xe9it'], 'given': [u'*', u'ugeholl'], 'name': [u'Luxemburgish'], 'native': [u'L\xebtzebuergesch'], 'scenario': [u'Szenario'], 'scenario_outline': [u'Plang vum Szenario'], 'then': [u'*', u'dann'], 'when': [u'*', u'wann']}, 'lv': {'and': [u'*', u'Un'], 'background': [u'Konteksts', u'Situ\u0101cija'], 'but': [u'*', u'Bet'], 'examples': [u'Piem\u0113ri', u'Paraugs'], 'feature': [u'Funkcionalit\u0101te', u'F\u012b\u010da'], 'given': [u'*', u'Kad'], 'name': [u'Latvian'], 'native': [u'latvie\u0161u'], 'scenario': [u'Scen\u0101rijs'], 'scenario_outline': [u'Scen\u0101rijs p\u0113c parauga'], 'then': [u'*', u'Tad'], 'when': [u'*', u'Ja']}, 'nl': {'and': [u'*', u'En'], 'background': [u'Achtergrond'], 'but': [u'*', u'Maar'], 'examples': [u'Voorbeelden'], 'feature': [u'Functionaliteit'], 'given': [u'*', u'Gegeven', u'Stel'], 'name': [u'Dutch'], 'native': [u'Nederlands'], 'scenario': [u'Scenario'], 'scenario_outline': [u'Abstract Scenario'], 'then': [u'*', u'Dan'], 'when': [u'*', u'Als']}, 'no': {'and': [u'*', u'Og'], 'background': [u'Bakgrunn'], 'but': [u'*', u'Men'], 'examples': [u'Eksempler'], 'feature': [u'Egenskap'], 'given': [u'*', u'Gitt'], 'name': [u'Norwegian'], 'native': [u'norsk'], 'scenario': [u'Scenario'], 'scenario_outline': [u'Scenariomal', u'Abstrakt Scenario'], 'then': [u'*', u'S\xe5'], 'when': [u'*', u'N\xe5r']}, 'pl': {'and': [u'*', u'Oraz', u'I'], 'background': [u'Za\u0142o\u017cenia'], 'but': [u'*', u'Ale'], 'examples': [u'Przyk\u0142ady'], 'feature': [u'W\u0142a\u015bciwo\u015b\u0107'], 'given': [u'*', u'Zak\u0142adaj\u0105c', u'Maj\u0105c'], 'name': [u'Polish'], 'native': [u'polski'], 'scenario': [u'Scenariusz'], 'scenario_outline': [u'Szablon scenariusza'], 'then': [u'*', u'Wtedy'], 'when': [u'*', u'Je\u017celi', u'Je\u015bli']}, 'pt': {'and': [u'*', u'E'], 'background': [u'Contexto'], 'but': [u'*', u'Mas'], 'examples': [u'Exemplos'], 'feature': [u'Funcionalidade'], 'given': [u'*', u'Dado', u'Dada', u'Dados', u'Dadas'], 'name': [u'Portuguese'], 'native': [u'portugu\xeas'], 'scenario': [u'Cen\xe1rio', u'Cenario'], 'scenario_outline': [u'Esquema do Cen\xe1rio', u'Esquema do Cenario'], 'then': [u'*', u'Ent\xe3o', u'Entao'], 'when': [u'*', u'Quando']}, 'ro': {'and': [u'*', u'Si', u'\u0218i', u'\u015ei'], 'background': [u'Context'], 'but': [u'*', u'Dar'], 'examples': [u'Exemple'], 'feature': [u'Functionalitate', u'Func\u021bionalitate', u'Func\u0163ionalitate'], 'given': [u'*', u'Date fiind', u'Dat fiind', u'Dati fiind', u'Da\u021bi fiind', u'Da\u0163i fiind'], 'name': [u'Romanian'], 'native': [u'rom\xe2n\u0103'], 'scenario': [u'Scenariu'], 'scenario_outline': [u'Structura scenariu', u'Structur\u0103 scenariu'], 'then': [u'*', u'Atunci'], 'when': [u'*', u'Cand', u'C\xe2nd']}, 'ru': {'and': [u'*', u'\u0418', u'\u041a \u0442\u043e\u043c\u0443 \u0436\u0435'], 'background': [u'\u041f\u0440\u0435\u0434\u044b\u0441\u0442\u043e\u0440\u0438\u044f', u'\u041a\u043e\u043d\u0442\u0435\u043a\u0441\u0442'], 'but': [u'*', u'\u041d\u043e', u'\u0410'], 'examples': [u'\u041f\u0440\u0438\u043c\u0435\u0440\u044b'], 'feature': [u'\u0424\u0443\u043d\u043a\u0446\u0438\u044f', u'\u0424\u0443\u043d\u043a\u0446\u0438\u043e\u043d\u0430\u043b', u'\u0421\u0432\u043e\u0439\u0441\u0442\u0432\u043e'], 'given': [u'*', u'\u0414\u043e\u043f\u0443\u0441\u0442\u0438\u043c', u'\u0414\u0430\u043d\u043e', u'\u041f\u0443\u0441\u0442\u044c'], 'name': [u'Russian'], 'native': [u'\u0440\u0443\u0441\u0441\u043a\u0438\u0439'], 'scenario': [u'\u0421\u0446\u0435\u043d\u0430\u0440\u0438\u0439'], 'scenario_outline': [u'\u0421\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430 \u0441\u0446\u0435\u043d\u0430\u0440\u0438\u044f'], 'then': [u'*', u'\u0422\u043e', u'\u0422\u043e\u0433\u0434\u0430'], 'when': [u'*', u'\u0415\u0441\u043b\u0438', u'\u041a\u043e\u0433\u0434\u0430']}, 'sk': {'and': [u'*', u'A'], 'background': [u'Pozadie'], 'but': [u'*', u'Ale'], 'examples': [u'Pr\xedklady'], 'feature': [u'Po\u017eiadavka'], 'given': [u'*', u'Pokia\u013e'], 'name': [u'Slovak'], 'native': [u'Slovensky'], 'scenario': [u'Scen\xe1r'], 'scenario_outline': [u'N\xe1\u010drt Scen\xe1ru'], 'then': [u'*', u'Tak'], 'when': [u'*', u'Ke\u010f']}, 'sr-Cyrl': {'and': [u'*', u'\u0418'], 'background': [u'\u041a\u043e\u043d\u0442\u0435\u043a\u0441\u0442', u'\u041e\u0441\u043d\u043e\u0432\u0430', u'\u041f\u043e\u0437\u0430\u0434\u0438\u043d\u0430'], 'but': [u'*', u'\u0410\u043b\u0438'], 'examples': [u'\u041f\u0440\u0438\u043c\u0435\u0440\u0438', u'\u0421\u0446\u0435\u043d\u0430\u0440\u0438\u0458\u0438'], 'feature': [u'\u0424\u0443\u043d\u043a\u0446\u0438\u043e\u043d\u0430\u043b\u043d\u043e\u0441\u0442', u'\u041c\u043e\u0433\u0443\u045b\u043d\u043e\u0441\u0442', u'\u041e\u0441\u043e\u0431\u0438\u043d\u0430'], 'given': [u'*', u'\u0417\u0430\u0434\u0430\u0442\u043e', u'\u0417\u0430\u0434\u0430\u0442\u0435', u'\u0417\u0430\u0434\u0430\u0442\u0438'], 'name': [u'Serbian'], 'native': [u'\u0421\u0440\u043f\u0441\u043a\u0438'], 'scenario': [u'\u0421\u0446\u0435\u043d\u0430\u0440\u0438\u043e', u'\u041f\u0440\u0438\u043c\u0435\u0440'], 'scenario_outline': [u'\u0421\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430 \u0441\u0446\u0435\u043d\u0430\u0440\u0438\u0458\u0430', u'\u0421\u043a\u0438\u0446\u0430', u'\u041a\u043e\u043d\u0446\u0435\u043f\u0442'], 'then': [u'*', u'\u041e\u043d\u0434\u0430'], 'when': [u'*', u'\u041a\u0430\u0434\u0430', u'\u041a\u0430\u0434']}, 'sr-Latn': {'and': [u'*', u'I'], 'background': [u'Kontekst', u'Osnova', u'Pozadina'], 'but': [u'*', u'Ali'], 'examples': [u'Primeri', u'Scenariji'], 'feature': [u'Funkcionalnost', u'Mogu\u0107nost', u'Mogucnost', u'Osobina'], 'given': [u'*', u'Zadato', u'Zadate', u'Zatati'], 'name': [u'Serbian (Latin)'], 'native': [u'Srpski (Latinica)'], 'scenario': [u'Scenario', u'Primer'], 'scenario_outline': [u'Struktura scenarija', u'Skica', u'Koncept'], 'then': [u'*', u'Onda'], 'when': [u'*', u'Kada', u'Kad']}, 'sv': {'and': [u'*', u'Och'], 'background': [u'Bakgrund'], 'but': [u'*', u'Men'], 'examples': [u'Exempel'], 'feature': [u'Egenskap'], 'given': [u'*', u'Givet'], 'name': [u'Swedish'], 'native': [u'Svenska'], 'scenario': [u'Scenario'], 'scenario_outline': [u'Abstrakt Scenario', u'Scenariomall'], 'then': [u'*', u'S\xe5'], 'when': [u'*', u'N\xe4r']}, 'tr': {'and': [u'*', u'Ve'], 'background': [u'Ge\xe7mi\u015f'], 'but': [u'*', u'Fakat', u'Ama'], 'examples': [u'\xd6rnekler'], 'feature': [u'\xd6zellik'], 'given': [u'*', u'Diyelim ki'], 'name': [u'Turkish'], 'native': [u'T\xfcrk\xe7e'], 'scenario': [u'Senaryo'], 'scenario_outline': [u'Senaryo tasla\u011f\u0131'], 'then': [u'*', u'O zaman'], 'when': [u'*', u'E\u011fer ki']}, 'uk': {'and': [u'*', u'\u0406', u'\u0410 \u0442\u0430\u043a\u043e\u0436', u'\u0422\u0430'], 'background': [u'\u041f\u0435\u0440\u0435\u0434\u0443\u043c\u043e\u0432\u0430'], 'but': [u'*', u'\u0410\u043b\u0435'], 'examples': [u'\u041f\u0440\u0438\u043a\u043b\u0430\u0434\u0438'], 'feature': [u'\u0424\u0443\u043d\u043a\u0446\u0456\u043e\u043d\u0430\u043b'], 'given': [u'*', u'\u041f\u0440\u0438\u043f\u0443\u0441\u0442\u0438\u043c\u043e', u'\u041f\u0440\u0438\u043f\u0443\u0441\u0442\u0438\u043c\u043e, \u0449\u043e', u'\u041d\u0435\u0445\u0430\u0439', u'\u0414\u0430\u043d\u043e'], 'name': [u'Ukrainian'], 'native': [u'\u0423\u043a\u0440\u0430\u0457\u043d\u0441\u044c\u043a\u0430'], 'scenario': [u'\u0421\u0446\u0435\u043d\u0430\u0440\u0456\u0439'], 'scenario_outline': [u'\u0421\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430 \u0441\u0446\u0435\u043d\u0430\u0440\u0456\u044e'], 'then': [u'*', u'\u0422\u043e', u'\u0422\u043e\u0434\u0456'], 'when': [u'*', u'\u042f\u043a\u0449\u043e', u'\u041a\u043e\u043b\u0438']}, 'uz': {'and': [u'*', u'\u0412\u0430'], 'background': [u'\u0422\u0430\u0440\u0438\u0445'], 'but': [u'*', u'\u041b\u0435\u043a\u0438\u043d', u'\u0411\u0438\u0440\u043e\u043a', u'\u0410\u043c\u043c\u043e'], 'examples': [u'\u041c\u0438\u0441\u043e\u043b\u043b\u0430\u0440'], 'feature': [u'\u0424\u0443\u043d\u043a\u0446\u0438\u043e\u043d\u0430\u043b'], 'given': [u'*', u'\u0410\u0433\u0430\u0440'], 'name': [u'Uzbek'], 'native': [u'\u0423\u0437\u0431\u0435\u043a\u0447\u0430'], 'scenario': [u'\u0421\u0446\u0435\u043d\u0430\u0440\u0438\u0439'], 'scenario_outline': [u'\u0421\u0446\u0435\u043d\u0430\u0440\u0438\u0439 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430\u0441\u0438'], 'then': [u'*', u'\u0423\u043d\u0434\u0430'], 'when': [u'*', u'\u0410\u0433\u0430\u0440']}, 'vi': {'and': [u'*', u'V\xe0'], 'background': [u'B\u1ed1i c\u1ea3nh'], 'but': [u'*', u'Nh\u01b0ng'], 'examples': [u'D\u1eef li\u1ec7u'], 'feature': [u'T\xednh n\u0103ng'], 'given': [u'*', u'Bi\u1ebft', u'Cho'], 'name': [u'Vietnamese'], 'native': [u'Ti\u1ebfng Vi\u1ec7t'], 'scenario': [u'T\xecnh hu\u1ed1ng', u'K\u1ecbch b\u1ea3n'], 'scenario_outline': [u'Khung t\xecnh hu\u1ed1ng', u'Khung k\u1ecbch b\u1ea3n'], 'then': [u'*', u'Th\xec'], 'when': [u'*', u'Khi']}, 'zh-CN': {'and': [u'*', u'\u800c\u4e14<'], 'background': [u'\u80cc\u666f'], 'but': [u'*', u'\u4f46\u662f<'], 'examples': [u'\u4f8b\u5b50'], 'feature': [u'\u529f\u80fd'], 'given': [u'*', u'\u5047\u5982<'], 'name': [u'Chinese simplified'], 'native': [u'\u7b80\u4f53\u4e2d\u6587'], 'scenario': [u'\u573a\u666f'], 'scenario_outline': [u'\u573a\u666f\u5927\u7eb2'], 'then': [u'*', u'\u90a3\u4e48<'], 'when': [u'*', u'\u5f53<']}, 'zh-TW': {'and': [u'*', u'\u800c\u4e14<', u'\u4e26\u4e14<'], 'background': [u'\u80cc\u666f'], 'but': [u'*', u'\u4f46\u662f<'], 'examples': [u'\u4f8b\u5b50'], 'feature': [u'\u529f\u80fd'], 'given': [u'*', u'\u5047\u8a2d<'], 'name': [u'Chinese traditional'], 'native': [u'\u7e41\u9ad4\u4e2d\u6587'], 'scenario': [u'\u5834\u666f', u'\u5287\u672c'], 'scenario_outline': [u'\u5834\u666f\u5927\u7db1', u'\u5287\u672c\u5927\u7db1'], 'then': [u'*', u'\u90a3\u9ebc<'], 'when': [u'*', u'\u7576<']}}
bsd-2-clause
-8,859,400,245,196,874,000
43.820847
149
0.470712
false
ingwinlu/simpleMediaCenter
test/test_AutoPlayerSelect.py
1
2359
from simpleMediaCenter.interface.Interface import InterfaceListable from simpleMediaCenter.player.Omxplayer import Omxplayer from simpleMediaCenter.player.Twitchplayer import Twitchplayer from simpleMediaCenter.player.Youtubeplayer import Youtubeplayer from simpleMediaCenter.browser.Browser import * import logging import unittest class TestAutoPlayerSelect(unittest.TestCase): def test_auto_select(self): logging.info("creating player objects") omxplayer = Omxplayer("-o both") twitchplayer = Twitchplayer("-o both") youtubeplayer = Youtubeplayer("-o both") playerlist = InterfaceListable([omxplayer,twitchplayer, youtubeplayer]) logging.info("creating browser objects") fileBrowser = FileBrowser() twitchWinluBrowser = TwitchBrowser('winlu') twitchKillerkakaduBrowser = TwitchBrowser('killerkakadu') youtubeBrowser = YoutubeBrowser() browserList = InterfaceListable([fileBrowser,twitchWinluBrowser,twitchKillerkakaduBrowser,youtubeBrowser]) browserList.setActive(0) for supportedPlayer in browserList.getActive().getSupportedPlayers(): id = playerlist.getIDfromName(supportedPlayer) if (id is not None): break self.assertEqual(id,0) browserList.setActive(1) for supportedPlayer in browserList.getActive().getSupportedPlayers(): id = playerlist.getIDfromName(supportedPlayer) if (id is not None): break self.assertEqual(id,1) browserList.setActive(2) for supportedPlayer in browserList.getActive().getSupportedPlayers(): id = playerlist.getIDfromName(supportedPlayer) if (id is not None): break self.assertEqual(id,1) browserList.setActive(3) for supportedPlayer in browserList.getActive().getSupportedPlayers(): id = playerlist.getIDfromName(supportedPlayer) if (id is not None): break self.assertEqual(id,2) def suite(self): testSuite = unittest.TestSuite() testSuite.addTest(unittest.makeSuite(TestAutoPlayerSelect)) return testSuite
gpl-2.0
-2,013,993,086,357,953,300
35.859375
114
0.64858
false
matthiaskrgr/cppcheck
addons/naming.py
1
2383
#!/usr/bin/env python # # cppcheck addon for naming conventions # # Example usage (variable name must start with lowercase, function name must start with uppercase): # $ cppcheck --dump path-to-src/ # $ python addons/naming.py --var='[a-z].*' --function='[A-Z].*' path-to-src/*.dump # import cppcheckdata import sys import re RE_VARNAME = None RE_PRIVATE_MEMBER_VARIABLE = None RE_FUNCTIONNAME = None for arg in sys.argv[1:]: if arg[:6] == '--var=': RE_VARNAME = arg[6:] elif arg.startswith('--private-member-variable='): RE_PRIVATE_MEMBER_VARIABLE = arg[arg.find('=')+1:] elif arg[:11] == '--function=': RE_FUNCTIONNAME = arg[11:] FoundError = False def reportError(token, severity, msg): global FoundError FoundError = True sys.stderr.write( '[' + token.file + ':' + str(token.linenr) + '] (' + severity + ') naming.py: ' + msg + '\n') for arg in sys.argv[1:]: if not arg[-5:] == '.dump': continue print('Checking ' + arg + '...') data = cppcheckdata.parsedump(arg) for cfg in data.configurations: if len(data.configurations) > 1: print('Checking ' + arg + ', config "' + cfg.name + '"...') if RE_VARNAME: for var in cfg.variables: res = re.match(RE_VARNAME, var.nameToken.str) if not res: reportError(var.typeStartToken, 'style', 'Variable ' + var.nameToken.str + ' violates naming convention') if RE_PRIVATE_MEMBER_VARIABLE: for var in cfg.variables: if (var.access is None) or var.access != 'Private': continue res = re.match(RE_PRIVATE_MEMBER_VARIABLE, var.nameToken.str) if not res: reportError(var.typeStartToken, 'style', 'Private member variable ' + var.nameToken.str + ' violates naming convention') if RE_FUNCTIONNAME: for scope in cfg.scopes: if scope.type == 'Function': res = re.match(RE_FUNCTIONNAME, scope.className) if not res: reportError( scope.bodyStart, 'style', 'Function ' + scope.className + ' violates naming convention') if FoundError: print('FoundError') sys.exit(1)
gpl-3.0
-6,974,778,811,751,254,000
34.567164
116
0.5577
false
scbzyhx/sdn_access_network
log_info.py
1
1618
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License import logging from ryu.base import app_manager from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from events import FlowRateEvent,FlowEvent class LOG_INFO(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(LOG_INFO, self).__init__(*args, **kwargs) self.rate_logger = open("rate.log",'wr') self.flow_logger = open("flow.log",'wr') if self.CONF.enable_debugger: self.logger.setLevel(logging.DEBUG) @set_ev_cls(FlowRateEvent) def flowrate_handler(self, ev): self.rate_logger.write("%s\n" % ev) self.rate_logger.flush() @set_ev_cls(FlowEvent) def flowevent_handler(self,ev): self.flow_logger.write("%s\n" % ev) self.flow_logger.flush() def __del__(self): if self.rate_logger is not None: self.rate_logger.close() if self.flow_logger is not None: self.flow_logger.close()
gpl-2.0
-2,271,025,446,576,273,400
33.425532
69
0.68047
false
enthought/traitsgui
enthought/pyface/action/action_item.py
1
4849
#------------------------------------------------------------------------------ # Copyright (c) 2005, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in enthought/LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enth373ought.com/licenses/BSD.txt # Thanks for using Enthought open source! # # Author: Enthought, Inc. # Description: <Enthought pyface package component> #------------------------------------------------------------------------------ """ An action manager item that represents an actual action. """ # Enthought library imports. from enthought.traits.api import Any, Instance, List, Property, Str # Local imports. from action import Action from action_manager_item import ActionManagerItem # Import the toolkit specific versions of the internal classes. from enthought.pyface.toolkit import toolkit_object _MenuItem = toolkit_object('action.action_item:_MenuItem') _Tool = toolkit_object('action.action_item:_Tool') _PaletteTool = toolkit_object('action.action_item:_PaletteTool') class ActionItem(ActionManagerItem): """ An action manager item that represents an actual action. """ #### 'ActionManagerItem' interface ######################################## # The item's unique identifier ('unique' in this case means unique within # its group). id = Property(Str) #### 'ActionItem' interface ############################################### # The action! action = Instance(Action) # The toolkit specific control created for this item. control = Any # The toolkit specific Id of the control created for this item. # # We have to keep the Id as well as the control because wx tool bar tools # are created as 'wxObjectPtr's which do not have Ids, and the Id is # required to manipulate the state of a tool via the tool bar 8^( # FIXME v3: Why is this part of the public interface? control_id = Any #### Private interface #################################################### # All of the internal instances that wrap this item. _wrappers = List(Any) ########################################################################### # 'ActionManagerItem' interface. ########################################################################### #### Trait properties ##################################################### def _get_id(self): """ Return's the item's Id. """ return self.action.id #### Trait change handlers ################################################ def _enabled_changed(self, trait_name, old, new): """ Static trait change handler. """ self.action.enabled = new return def _visible_changed(self, trait_name, old, new): """ Static trait change handler. """ self.action.visible = True return ########################################################################### # 'ActionItem' interface. ########################################################################### def add_to_menu(self, parent, menu, controller): """ Adds the item to a menu. """ if (controller is None) or controller.can_add_to_menu(self.action): wrapper = _MenuItem(parent, menu, self, controller) # fixme: Martin, who uses this information? if controller is None: self.control = wrapper.control self.control_id = wrapper.control_id self._wrappers.append(wrapper) return def add_to_toolbar(self, parent, tool_bar, image_cache, controller, show_labels=True): """ Adds the item to a tool bar. """ if (controller is None) or controller.can_add_to_toolbar(self.action): wrapper = _Tool( parent, tool_bar, image_cache, self, controller, show_labels ) # fixme: Martin, who uses this information? if controller is None: self.control = wrapper.control self.control_id = wrapper.control_id self._wrappers.append(wrapper) return def add_to_palette(self, tool_palette, image_cache, show_labels=True): """ Adds the item to a tool palette. """ wrapper = _PaletteTool(tool_palette, image_cache, self, show_labels) self._wrappers.append(wrapper) return def destroy(self): """ Called when the action is no longer required. By default this method calls 'destroy' on the action itself. """ self.action.destroy() return #### EOF ######################################################################
bsd-3-clause
2,791,425,329,490,104,300
32.673611
79
0.541761
false
simleo/pydoop-features
pyfeatures/app/deserialize.py
1
2362
# BEGIN_COPYRIGHT # # Copyright (C) 2014-2017 Open Microscopy Environment: # - University of Dundee # - CRS4 # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # END_COPYRIGHT """\ Deserialize BioImgPlane records. """ import sys import os import warnings from contextlib import closing import errno try: from pyavroc import AvroFileReader except ImportError: from pyfeatures.pyavroc_emu import AvroFileReader warnings.warn("pyavroc not found, using standard avro lib\n") import numpy as np from libtiff import TIFF from pyfeatures.bioimg import BioImgPlane # no schema needed for deserialization def iterplanes(avro_file): with open(avro_file, 'rb') as f: reader = AvroFileReader(f) for r in reader: yield BioImgPlane(r) def run(logger, args, extra_argv=None): try: os.makedirs(args.out_dir) except OSError as e: if e.errno != errno.EEXIST: sys.exit('Cannot create output dir: %s' % e) for p in iterplanes(args.avro_file): pixels = p.get_xy() out_tag = '%s-z%04d-c%04d-t%04d' % (p.name, p.z, p.c, p.t) logger.info("writing plane %s", out_tag) if args.img: out_fn = os.path.join(args.out_dir, '%s.tif' % out_tag) with closing(TIFF.open(out_fn, mode="w")) as fo: fo.write_image(pixels) else: out_fn = os.path.join(args.out_dir, '%s.npy' % out_tag) np.save(out_fn, pixels) return 0 def add_parser(subparsers): parser = subparsers.add_parser("deserialize", description=__doc__) parser.add_argument('avro_file', metavar='AVRO_FILE') parser.add_argument('out_dir', metavar='OUT_DIR') parser.add_argument('--img', action='store_true', help='write images instead of .npy dumps') parser.set_defaults(func=run) return parser
apache-2.0
2,729,805,358,433,821,700
29.675325
77
0.664691
false
lakshmi-kannan/st2
st2common/st2common/models/api/action.py
1
24297
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from st2common.util import isotime from st2common.util import schema as util_schema from st2common import log as logging from st2common.constants.pack import DEFAULT_PACK_NAME from st2common.models.api.base import BaseAPI from st2common.models.api.base import APIUIDMixin from st2common.models.api.tag import TagsHelper from st2common.models.api.notification import (NotificationSubSchemaAPI, NotificationsHelper) from st2common.models.db.action import ActionDB from st2common.models.db.actionalias import ActionAliasDB from st2common.models.db.executionstate import ActionExecutionStateDB from st2common.models.db.liveaction import LiveActionDB from st2common.models.db.runner import RunnerTypeDB from st2common.constants.action import LIVEACTION_STATUSES from st2common.models.system.common import ResourceReference __all__ = [ 'ActionAPI', 'ActionCreateAPI', 'LiveActionAPI', 'LiveActionCreateAPI', 'RunnerTypeAPI', 'AliasExecutionAPI', 'ActionAliasAPI', 'ActionAliasMatchAPI' ] LOG = logging.getLogger(__name__) class RunnerTypeAPI(BaseAPI): """ The representation of an RunnerType in the system. An RunnerType has a one-to-one mapping to a particular ActionRunner implementation. """ model = RunnerTypeDB schema = { "title": "Runner", "description": "A handler for a specific type of actions.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action runner.", "type": "string", "default": None }, "uid": { "type": "string" }, "name": { "description": "The name of the action runner.", "type": "string", "required": True }, "description": { "description": "The description of the action runner.", "type": "string" }, "enabled": { "description": "Enable or disable the action runner.", "type": "boolean", "default": True }, "runner_module": { "description": "The python module that implements the " "action runner for this type.", "type": "string", "required": True }, "query_module": { "description": "The python module that implements the " "results tracker (querier) for the runner.", "type": "string", "required": False }, "runner_parameters": { "description": "Input parameters for the action runner.", "type": "object", "patternProperties": { "^\w+$": util_schema.get_action_parameters_schema() }, 'additionalProperties': False } }, "additionalProperties": False } def __init__(self, **kw): # Ideally, you should not do that. You should not redefine __init__ to validate and then set # default values, instead you should define defaults in schema and use BaseAPI __init__ # validator to unwrap them. The problem here is that draft schema also contains default # values and we don't want them to be unwrapped at the same time. I've tried to remove the # default values from draft schema, but, either because of a bug or some weird intention, it # has continued to resolve $ref'erenced properties against the initial draft schema, not the # modified one for key, value in kw.items(): setattr(self, key, value) if not hasattr(self, 'runner_parameters'): setattr(self, 'runner_parameters', dict()) @classmethod def to_model(cls, runner_type): name = runner_type.name description = runner_type.description enabled = getattr(runner_type, 'enabled', True) runner_module = str(runner_type.runner_module) runner_parameters = getattr(runner_type, 'runner_parameters', dict()) query_module = getattr(runner_type, 'query_module', None) model = cls.model(name=name, description=description, enabled=enabled, runner_module=runner_module, runner_parameters=runner_parameters, query_module=query_module) return model class ActionAPI(BaseAPI, APIUIDMixin): """ The system entity that represents a Stack Action/Automation in the system. """ model = ActionDB schema = { "title": "Action", "description": "An activity that happens as a response to the external event.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action.", "type": "string" }, "ref": { "description": "System computed user friendly reference for the action. \ Provided value will be overridden by computed value.", "type": "string" }, "uid": { "type": "string" }, "name": { "description": "The name of the action.", "type": "string", "required": True }, "description": { "description": "The description of the action.", "type": "string" }, "enabled": { "description": "Enable or disable the action from invocation.", "type": "boolean", "default": True }, "runner_type": { "description": "The type of runner that executes the action.", "type": "string", "required": True }, "entry_point": { "description": "The entry point for the action.", "type": "string", "default": "" }, "pack": { "description": "The content pack this action belongs to.", "type": "string", "default": DEFAULT_PACK_NAME }, "parameters": { "description": "Input parameters for the action.", "type": "object", "patternProperties": { "^\w+$": util_schema.get_action_parameters_schema() }, 'additionalProperties': False, "default": {} }, "tags": { "description": "User associated metadata assigned to this object.", "type": "array", "items": {"type": "object"} }, "notify": { "description": "Notification settings for action.", "type": "object", "properties": { "on-complete": NotificationSubSchemaAPI, "on-failure": NotificationSubSchemaAPI, "on-success": NotificationSubSchemaAPI }, "additionalProperties": False } }, "additionalProperties": False } def __init__(self, **kw): for key, value in kw.items(): setattr(self, key, value) if not hasattr(self, 'parameters'): setattr(self, 'parameters', dict()) if not hasattr(self, 'entry_point'): setattr(self, 'entry_point', '') @classmethod def from_model(cls, model, mask_secrets=False): action = cls._from_model(model) action['runner_type'] = action['runner_type']['name'] action['tags'] = TagsHelper.from_model(model.tags) if getattr(model, 'notify', None): action['notify'] = NotificationsHelper.from_model(model.notify) return cls(**action) @classmethod def to_model(cls, action): name = getattr(action, 'name', None) description = getattr(action, 'description', None) enabled = bool(getattr(action, 'enabled', True)) entry_point = str(action.entry_point) pack = str(action.pack) runner_type = {'name': str(action.runner_type)} parameters = getattr(action, 'parameters', dict()) tags = TagsHelper.to_model(getattr(action, 'tags', [])) ref = ResourceReference.to_string_reference(pack=pack, name=name) if getattr(action, 'notify', None): notify = NotificationsHelper.to_model(action.notify) else: # We use embedded document model for ``notify`` in action model. If notify is # set notify to None, Mongoengine interprets ``None`` as unmodified # field therefore doesn't delete the embedded document. Therefore, we need # to use an empty document. notify = NotificationsHelper.to_model({}) model = cls.model(name=name, description=description, enabled=enabled, entry_point=entry_point, pack=pack, runner_type=runner_type, tags=tags, parameters=parameters, notify=notify, ref=ref) return model class ActionCreateAPI(ActionAPI, APIUIDMixin): """ API model for create action operation. """ schema = copy.deepcopy(ActionAPI.schema) schema['properties']['data_files'] = { 'description': 'Optional action script and data files which are written to the filesystem.', 'type': 'array', 'items': { 'type': 'object', 'properties': { 'file_path': { 'type': 'string', 'required': True }, 'content': { 'type': 'string', 'required': True }, }, 'additionalProperties': False }, 'default': [] } class ActionUpdateAPI(ActionAPI, APIUIDMixin): """ API model for update action operation. """ schema = copy.deepcopy(ActionCreateAPI.schema) del schema['properties']['pack']['default'] class LiveActionAPI(BaseAPI): """The system entity that represents the execution of a Stack Action/Automation in the system. """ model = LiveActionDB schema = { "title": "liveaction", "description": "An execution of an action.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action execution.", "type": "string" }, "status": { "description": "The current status of the action execution.", "type": "string", "enum": LIVEACTION_STATUSES }, "start_timestamp": { "description": "The start time when the action is executed.", "type": "string", "pattern": isotime.ISO8601_UTC_REGEX }, "end_timestamp": { "description": "The timestamp when the action has finished.", "type": "string", "pattern": isotime.ISO8601_UTC_REGEX }, "action": { "description": "Reference to the action to be executed.", "type": "string", "required": True }, "parameters": { "description": "Input parameters for the action.", "type": "object", "patternProperties": { "^\w+$": { "anyOf": [ {"type": "array"}, {"type": "boolean"}, {"type": "integer"}, {"type": "number"}, {"type": "object"}, {"type": "string"}, {"type": "null"} ] } }, 'additionalProperties': False }, "result": { "anyOf": [{"type": "array"}, {"type": "boolean"}, {"type": "integer"}, {"type": "number"}, {"type": "object"}, {"type": "string"}] }, "context": { "type": "object" }, "callback": { "type": "object" }, "runner_info": { "type": "object" }, "notify": { "description": "Notification settings for liveaction.", "type": "object", "properties": { "on-complete": NotificationSubSchemaAPI, "on-failure": NotificationSubSchemaAPI, "on-success": NotificationSubSchemaAPI }, "additionalProperties": False } }, "additionalProperties": False } @classmethod def from_model(cls, model, mask_secrets=False): doc = super(cls, cls)._from_model(model, mask_secrets=mask_secrets) if model.start_timestamp: doc['start_timestamp'] = isotime.format(model.start_timestamp, offset=False) if model.end_timestamp: doc['end_timestamp'] = isotime.format(model.end_timestamp, offset=False) if getattr(model, 'notify', None): doc['notify'] = NotificationsHelper.from_model(model.notify) return cls(**doc) @classmethod def to_model(cls, live_action): action = live_action.action if getattr(live_action, 'start_timestamp', None): start_timestamp = isotime.parse(live_action.start_timestamp) else: start_timestamp = None if getattr(live_action, 'end_timestamp', None): end_timestamp = isotime.parse(live_action.end_timestamp) else: end_timestamp = None status = getattr(live_action, 'status', None) parameters = getattr(live_action, 'parameters', dict()) context = getattr(live_action, 'context', dict()) callback = getattr(live_action, 'callback', dict()) result = getattr(live_action, 'result', None) if getattr(live_action, 'notify', None): notify = NotificationsHelper.to_model(live_action.notify) else: notify = None model = cls.model(action=action, start_timestamp=start_timestamp, end_timestamp=end_timestamp, status=status, parameters=parameters, context=context, callback=callback, result=result, notify=notify) return model class LiveActionCreateAPI(LiveActionAPI): """ API model for action execution create (run action) operations. """ schema = copy.deepcopy(LiveActionAPI.schema) schema['properties']['user'] = { 'description': 'User context under which action should run (admins only)', 'type': 'string', 'default': None } class ActionExecutionStateAPI(BaseAPI): """ System entity that represents state of an action in the system. This is used only in tests for now. """ model = ActionExecutionStateDB schema = { "title": "ActionExecutionState", "description": "Execution state of an action.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action execution state.", "type": "string" }, "execution_id": { "type": "string", "description": "ID of the action execution.", "required": True }, "query_context": { "type": "object", "description": "query context to be used by querier.", "required": True }, "query_module": { "type": "string", "description": "Name of the query module.", "required": True } }, "additionalProperties": False } @classmethod def to_model(cls, state): execution_id = state.execution_id query_module = state.query_module query_context = state.query_context model = cls.model(execution_id=execution_id, query_module=query_module, query_context=query_context) return model class ActionAliasAPI(BaseAPI, APIUIDMixin): """ Alias for an action in the system. """ model = ActionAliasDB schema = { "title": "ActionAlias", "description": "Alias for an action.", "type": "object", "properties": { "id": { "description": "The unique identifier for the action alias.", "type": "string" }, "ref": { "description": "System computed user friendly reference for the alias. \ Provided value will be overridden by computed value.", "type": "string" }, "uid": { "type": "string" }, "name": { "type": "string", "description": "Name of the action alias.", "required": True }, "pack": { "description": "The content pack this actionalias belongs to.", "type": "string", "required": True }, "description": { "type": "string", "description": "Description of the action alias.", "default": None }, "enabled": { "description": "Flag indicating of action alias is enabled.", "type": "boolean", "default": True }, "action_ref": { "type": "string", "description": "Reference to the aliased action.", "required": True }, "formats": { "type": "array", "items": { "anyOf": [ {"type": "string"}, { "type": "object", "properties": { "display": {"type": "string"}, "representation": { "type": "array", "items": {"type": "string"} } } } ] }, "description": "Possible parameter format." }, "ack": { "type": "object", "properties": { "enabled": {"type": "boolean"}, "format": {"type": "string"}, "extra": {"type": "object"}, "append_url": {"type": "boolean"} }, "description": "Acknowledgement message format." }, "result": { "type": "object", "properties": { "enabled": {"type": "boolean"}, "format": {"type": "string"}, "extra": {"type": "object"} }, "description": "Execution message format." }, "extra": { "type": "object", "description": "Extra parameters, usually adapter-specific." } }, "additionalProperties": False } @classmethod def to_model(cls, alias): name = alias.name description = getattr(alias, 'description', None) pack = alias.pack ref = ResourceReference.to_string_reference(pack=pack, name=name) enabled = getattr(alias, 'enabled', True) action_ref = alias.action_ref formats = alias.formats ack = getattr(alias, 'ack', None) result = getattr(alias, 'result', None) extra = getattr(alias, 'extra', None) model = cls.model(name=name, description=description, pack=pack, ref=ref, enabled=enabled, action_ref=action_ref, formats=formats, ack=ack, result=result, extra=extra) return model class AliasExecutionAPI(BaseAPI): """ Alias for an action in the system. """ model = None schema = { "title": "AliasExecution", "description": "Execution of an ActionAlias.", "type": "object", "properties": { "name": { "type": "string", "description": "Name of the action alias which matched.", "required": True }, "format": { "type": "string", "description": "Format string which matched.", "required": True }, "command": { "type": "string", "description": "Command used in chat.", "required": True }, "user": { "type": "string", "description": "User that requested the execution.", "default": "channel" # TODO: This value doesnt get set }, "source_channel": { "type": "string", "description": "Channel from which the execution was requested. This is not the \ channel as defined by the notification system.", "required": True }, "notification_channel": { "type": "string", "description": "StackStorm notification channel to use to respond.", "required": False }, "notification_route": { "type": "string", "description": "StackStorm notification route to use to respond.", "required": False } }, "additionalProperties": False } @classmethod def to_model(cls, aliasexecution): # probably should be unsupported raise NotImplementedError() @classmethod def from_model(cls, aliasexecution): raise NotImplementedError() class ActionAliasMatchAPI(BaseAPI): """ API model used for alias match API endpoint. """ model = None schema = { "title": "ActionAliasMatchAPI", "description": "ActionAliasMatchAPI.", "type": "object", "properties": { "command": { "type": "string", "description": "Command string to try to match the aliases against.", "required": True } }, "additionalProperties": False } @classmethod def to_model(cls, aliasexecution): raise NotImplementedError() @classmethod def from_model(cls, aliasexecution): raise NotImplementedError()
apache-2.0
578,311,950,099,190,000
34.52193
100
0.503519
false
cagriulas/algorithm-analysis-17
w3/complexity_graphic.py
1
3297
import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation import random import time def maxsubsumOn(vector): max_ending_here = max_so_far = vector[0] for x in vector[1:]: max_ending_here = max(x, max_ending_here + x) max_so_far = max(max_so_far, max_ending_here) return max_so_far def maxsubsumOn3(vector): maxsum = 0 vectorlen = len(vector) for i in range(vectorlen): for j in range(i,vectorlen): thissum=0 for k in range (i,j): thissum=thissum+vector[k] if(thissum>maxsum): maxsum=thissum return maxsum def find_max_triple(a,b,c): if a>b: if b>c: return a elif a>c: return a else: return c elif b>c: return b else: return c def find_middle(list): middle=int(len(list)/2) sum_left_max=0 sum_left=0 for i in range(middle-1,-1,-1): sum_left=sum_left+list[i] if sum_left>sum_left_max: sum_left_max=sum_left sum_right_max=0 sum_right=0 for i in range(middle,len(list)): sum_right=sum_right+list[i] if sum_right>sum_right_max: sum_right_max=sum_right return sum_left_max+sum_right_max def maxsubsumOnlogn(array): if(len(array)<2): return sum(array) else: middle=int(len(array)/2) sum_left=maxsubsumOnlogn(array[0:middle - 1]) sum_right=maxsubsumOnlogn(array[middle:]) sum_middle=find_middle(array) return find_max_triple(sum_left,sum_right,sum_middle) if __name__ == '__main__': nib = random.sample(range(-500, 500), k=100) nonib = random.sample(range(-5000, 5000), k=500) zuybin = random.sample(range(-50000, 50000), k=1000) noylim = random.sample(range(-500000, 500000), k=2000) circle = {'nib': nib, 'nonib': nonib, 'zuybin': zuybin, 'noylim': noylim} times = {} for key in circle: print(key) print(circle[key], times, time.time()) print(key) start = time.time() maxsubsumOnlogn(circle[key]) times['nlogn' + key] = time.time() - start # start = time.time() # maxsubsumOn3(circle[key]) # times['n3' + key] = time.time() - start start = time.time() maxsubsumOn(circle[key]) times['n' + key] = time.time() - start x = np.array([100, 500, 1000, 2000]) # n3 = np.array([times['n3nib'], # times['n3nonib'], # times['n3zuybin'], # times['n3noylim']]) nlogn = np.array([times['nlognnib'], times['nlognnonib'], times['nlognzuybin'], times['nlognnoylim']]) n = np.array([times['nnib'], times['nnonib'], times['nzuybin'], times['nnoylim']]) # plt.plot(x, n3*100) plt.plot(x, nlogn*100) plt.plot(x, n * 100) plt.xticks(x) plt.xlabel('Dizi uzunluğu') plt.ylabel('Zaman (milisaniye)') plt.legend(['n3', 'nlogn', 'n'], loc='upper left') plt.savefig('foo.png', dpi=1000)
unlicense
-8,398,150,691,713,920,000
25.376
58
0.533374
false
mvaled/sentry
src/sentry/south_migrations/0504_fix_state.py
1
139898
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): # Flag to indicate if this migration is too risky # to run online and needs to be coordinated for offline is_dangerous = False def forwards(self, orm): pass def backwards(self, orm): pass models = { 'sentry.activity': { 'Meta': {'unique_together': '()', 'object_name': 'Activity', 'index_together': '()'}, 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {'null': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True'}) }, 'sentry.alertrule': { 'Meta': {'unique_together': "(('organization', 'name'),)", 'object_name': 'AlertRule', 'index_together': '()'}, 'aggregation': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'alert_threshold': ('django.db.models.fields.IntegerField', [], {}), 'dataset': ('django.db.models.fields.TextField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.TextField', [], {}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']", 'null': 'True', 'db_index': 'False'}), 'query': ('django.db.models.fields.TextField', [], {}), 'query_subscriptions': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'query_subscriptions'", 'symmetrical': 'False', 'through': "orm['sentry.AlertRuleQuerySubscription']", 'to': "orm['sentry.QuerySubscription']"}), 'resolution': ('django.db.models.fields.IntegerField', [], {}), 'resolve_threshold': ('django.db.models.fields.IntegerField', [], {}), 'status': ('django.db.models.fields.SmallIntegerField', [], {'default': '0'}), 'threshold_period': ('django.db.models.fields.IntegerField', [], {}), 'threshold_type': ('django.db.models.fields.SmallIntegerField', [], {}), 'time_window': ('django.db.models.fields.IntegerField', [], {}) }, 'sentry.alertrulequerysubscription': { 'Meta': {'unique_together': '()', 'object_name': 'AlertRuleQuerySubscription', 'index_together': '()'}, 'alert_rule': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.AlertRule']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'query_subscription': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.QuerySubscription']", 'unique': 'True'}) }, 'sentry.apiapplication': { 'Meta': {'unique_together': '()', 'object_name': 'ApiApplication', 'index_together': '()'}, 'allowed_origins': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'client_id': ('django.db.models.fields.CharField', [], {'default': "'632724aa8a6747ac8820b551b4e9cf78dd03d0733a5245eb99aa0b0007915d59'", 'unique': 'True', 'max_length': '64'}), 'client_secret': ('sentry.db.models.fields.encrypted.EncryptedTextField', [], {'default': "'cdecdb1341e047278e36a677d56c524c0cf0496928d848f49d92285f200e2297'"}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'homepage_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'default': "'Viable Leopard'", 'max_length': '64', 'blank': 'True'}), 'owner': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}), 'privacy_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}), 'redirect_uris': ('django.db.models.fields.TextField', [], {}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'terms_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}) }, 'sentry.apiauthorization': { 'Meta': {'unique_together': "(('user', 'application'),)", 'object_name': 'ApiAuthorization', 'index_together': '()'}, 'application': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ApiApplication']", 'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'scope_list': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'scopes': ('django.db.models.fields.BigIntegerField', [], {'default': 'None'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.apigrant': { 'Meta': {'unique_together': '()', 'object_name': 'ApiGrant', 'index_together': '()'}, 'application': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ApiApplication']"}), 'code': ('django.db.models.fields.CharField', [], {'default': "'f361c0810f9542ce8fb51e4035979100'", 'max_length': '64', 'db_index': 'True'}), 'expires_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2019, 9, 12, 0, 0)', 'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'redirect_uri': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'scope_list': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'scopes': ('django.db.models.fields.BigIntegerField', [], {'default': 'None'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.apikey': { 'Meta': {'unique_together': '()', 'object_name': 'ApiKey', 'index_together': '()'}, 'allowed_origins': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32'}), 'label': ('django.db.models.fields.CharField', [], {'default': "'Default'", 'max_length': '64', 'blank': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'key_set'", 'to': "orm['sentry.Organization']"}), 'scope_list': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'scopes': ('django.db.models.fields.BigIntegerField', [], {'default': 'None'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}) }, 'sentry.apitoken': { 'Meta': {'unique_together': '()', 'object_name': 'ApiToken', 'index_together': '()'}, 'application': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ApiApplication']", 'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'expires_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2019, 10, 12, 0, 0)', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'refresh_token': ('django.db.models.fields.CharField', [], {'default': "'4949a993e47e43f9b1b953de3904efb036b4efe5bbd14dcea3e5d35c7f5c510a'", 'max_length': '64', 'unique': 'True', 'null': 'True'}), 'scope_list': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'scopes': ('django.db.models.fields.BigIntegerField', [], {'default': 'None'}), 'token': ('django.db.models.fields.CharField', [], {'default': "'d2b53d6a4e9642d7aedd311f28b31fb9fdb08e4a509f45ae86fca706d9224865'", 'unique': 'True', 'max_length': '64'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.assistantactivity': { 'Meta': {'unique_together': "(('user', 'guide_id'),)", 'object_name': 'AssistantActivity', 'db_table': "'sentry_assistant_activity'", 'index_together': '()'}, 'dismissed_ts': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'guide_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'useful': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}), 'viewed_ts': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}) }, 'sentry.auditlogentry': { 'Meta': {'unique_together': '()', 'object_name': 'AuditLogEntry', 'index_together': '()'}, 'actor': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'blank': 'True', 'related_name': "u'audit_actors'", 'null': 'True', 'to': "orm['sentry.User']"}), 'actor_key': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ApiKey']", 'null': 'True', 'blank': 'True'}), 'actor_label': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'event': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.GenericIPAddressField', [], {'max_length': '39', 'null': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'target_object': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'target_user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'blank': 'True', 'related_name': "u'audit_targets'", 'null': 'True', 'to': "orm['sentry.User']"}) }, 'sentry.authenticator': { 'Meta': {'unique_together': "(('user', 'type'),)", 'object_name': 'Authenticator', 'db_table': "'auth_authenticator'", 'index_together': '()'}, 'config': ('sentry.db.models.fields.encrypted.EncryptedPickledObjectField', [], {}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedAutoField', [], {'primary_key': 'True'}), 'last_used_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.authidentity': { 'Meta': {'unique_together': "(('auth_provider', 'ident'), ('auth_provider', 'user'))", 'object_name': 'AuthIdentity', 'index_together': '()'}, 'auth_provider': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.AuthProvider']"}), 'data': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'last_synced': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_verified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.authprovider': { 'Meta': {'unique_together': '()', 'object_name': 'AuthProvider', 'index_together': '()'}, 'config': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'default_global_access': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'default_role': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '50'}), 'default_teams': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.Team']", 'symmetrical': 'False', 'blank': 'True'}), 'flags': ('django.db.models.fields.BigIntegerField', [], {'default': '0'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_sync': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']", 'unique': 'True'}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'sync_time': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}) }, 'sentry.broadcast': { 'Meta': {'unique_together': '()', 'object_name': 'Broadcast', 'index_together': '()'}, 'cta': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_expires': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2019, 9, 19, 0, 0)', 'null': 'True', 'blank': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'upstream_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'blank': 'True'}) }, 'sentry.broadcastseen': { 'Meta': {'unique_together': "(('broadcast', 'user'),)", 'object_name': 'BroadcastSeen', 'index_together': '()'}, 'broadcast': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Broadcast']"}), 'date_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.commit': { 'Meta': {'unique_together': "(('repository_id', 'key'),)", 'object_name': 'Commit', 'index_together': "(('repository_id', 'date_added'),)"}, 'author': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.CommitAuthor']", 'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'message': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'repository_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}) }, 'sentry.commitauthor': { 'Meta': {'unique_together': "(('organization_id', 'email'), ('organization_id', 'external_id'))", 'object_name': 'CommitAuthor', 'index_together': '()'}, 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '164', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}) }, 'sentry.commitfilechange': { 'Meta': {'unique_together': "(('commit', 'filename'),)", 'object_name': 'CommitFileChange', 'index_together': '()'}, 'commit': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Commit']"}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '1'}) }, 'sentry.counter': { 'Meta': {'unique_together': '()', 'object_name': 'Counter', 'db_table': "'sentry_projectcounter'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'unique': 'True'}), 'value': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}) }, 'sentry.dashboard': { 'Meta': {'unique_together': "(('organization', 'title'),)", 'object_name': 'Dashboard', 'index_together': '()'}, 'created_by': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'sentry.deletedorganization': { 'Meta': {'unique_together': '()', 'object_name': 'DeletedOrganization', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'actor_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'actor_label': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date_deleted': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.GenericIPAddressField', [], {'max_length': '39', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'reason': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}) }, 'sentry.deletedproject': { 'Meta': {'unique_together': '()', 'object_name': 'DeletedProject', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'actor_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'actor_label': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date_deleted': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.GenericIPAddressField', [], {'max_length': '39', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'organization_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'organization_slug': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'reason': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}) }, 'sentry.deletedteam': { 'Meta': {'unique_together': '()', 'object_name': 'DeletedTeam', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'actor_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'actor_label': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date_deleted': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.GenericIPAddressField', [], {'max_length': '39', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'organization_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'organization_slug': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'reason': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}) }, 'sentry.deploy': { 'Meta': {'unique_together': '()', 'object_name': 'Deploy', 'index_together': '()'}, 'date_finished': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_started': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'environment_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'notified': ('django.db.models.fields.NullBooleanField', [], {'default': 'False', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, 'sentry.discoversavedquery': { 'Meta': {'unique_together': '()', 'object_name': 'DiscoverSavedQuery', 'index_together': '()'}, 'created_by': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'projects': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.Project']", 'through': "orm['sentry.DiscoverSavedQueryProject']", 'symmetrical': 'False'}), 'query': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}) }, 'sentry.discoversavedqueryproject': { 'Meta': {'unique_together': "(('project', 'discover_saved_query'),)", 'object_name': 'DiscoverSavedQueryProject', 'index_together': '()'}, 'discover_saved_query': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.DiscoverSavedQuery']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.distribution': { 'Meta': {'unique_together': "(('release', 'name'),)", 'object_name': 'Distribution', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}) }, 'sentry.email': { 'Meta': {'unique_together': '()', 'object_name': 'Email', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('sentry.db.models.fields.citext.CIEmailField', [], {'unique': 'True', 'max_length': '75'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}) }, 'sentry.environment': { 'Meta': {'unique_together': "(('organization_id', 'name'),)", 'object_name': 'Environment', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'projects': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.Project']", 'through': "orm['sentry.EnvironmentProject']", 'symmetrical': 'False'}) }, 'sentry.environmentproject': { 'Meta': {'unique_together': "(('project', 'environment'),)", 'object_name': 'EnvironmentProject', 'index_together': '()'}, 'environment': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Environment']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_hidden': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.event': { 'Meta': {'unique_together': "(('project_id', 'event_id'),)", 'object_name': 'Event', 'db_table': "'sentry_message'", 'index_together': "(('group_id', 'datetime'),)"}, 'data': ('sentry.db.models.fields.node.NodeField', [], {'null': 'True', 'blank': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'db_column': "'message_id'"}), 'group_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'time_spent': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], {'null': 'True'}) }, 'sentry.eventattachment': { 'Meta': {'unique_together': "(('project_id', 'event_id', 'file'),)", 'object_name': 'EventAttachment', 'index_together': "(('project_id', 'date_added'),)"}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.TextField', [], {}), 'project_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}) }, 'sentry.eventprocessingissue': { 'Meta': {'unique_together': "(('raw_event', 'processing_issue'),)", 'object_name': 'EventProcessingIssue', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'processing_issue': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ProcessingIssue']"}), 'raw_event': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.RawEvent']"}) }, 'sentry.eventtag': { 'Meta': {'unique_together': "(('event_id', 'key_id', 'value_id'),)", 'object_name': 'EventTag', 'index_together': "(('group_id', 'key_id', 'value_id'),)"}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'event_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'group_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'project_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'value_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}) }, 'sentry.eventuser': { 'Meta': {'unique_together': "(('project_id', 'ident'), ('project_id', 'hash'))", 'object_name': 'EventUser', 'index_together': "(('project_id', 'email'), ('project_id', 'username'), ('project_id', 'ip_address'))"}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True'}), 'hash': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'ip_address': ('django.db.models.fields.GenericIPAddressField', [], {'max_length': '39', 'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}) }, 'sentry.externalissue': { 'Meta': {'unique_together': "(('organization_id', 'integration_id', 'key'),)", 'object_name': 'ExternalIssue', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'integration_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'metadata': ('sentry.db.models.fields.jsonfield.JSONField', [], {'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'title': ('django.db.models.fields.TextField', [], {'null': 'True'}) }, 'sentry.featureadoption': { 'Meta': {'unique_together': "(('organization', 'feature_id'),)", 'object_name': 'FeatureAdoption', 'index_together': '()'}, 'applicable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_completed': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'feature_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}) }, 'sentry.file': { 'Meta': {'unique_together': '()', 'object_name': 'File', 'index_together': '()'}, 'blob': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'legacy_blob'", 'null': 'True', 'to': "orm['sentry.FileBlob']"}), 'blobs': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.FileBlob']", 'through': "orm['sentry.FileBlobIndex']", 'symmetrical': 'False'}), 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '40', 'null': 'True', 'db_index': 'True'}), 'headers': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.TextField', [], {}), 'path': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'size': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'sentry.fileblob': { 'Meta': {'unique_together': '()', 'object_name': 'FileBlob', 'index_together': '()'}, 'checksum': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '40'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'path': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'size': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}) }, 'sentry.fileblobindex': { 'Meta': {'unique_together': "(('file', 'blob', 'offset'),)", 'object_name': 'FileBlobIndex', 'index_together': '()'}, 'blob': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.FileBlob']"}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'offset': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}) }, 'sentry.fileblobowner': { 'Meta': {'unique_together': "(('blob', 'organization'),)", 'object_name': 'FileBlobOwner', 'index_together': '()'}, 'blob': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.FileBlob']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}) }, 'sentry.group': { 'Meta': {'unique_together': "(('project', 'short_id'),)", 'object_name': 'Group', 'db_table': "'sentry_groupedmessage'", 'index_together': "(('project', 'first_release'), ('project', 'id'))"}, 'active_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {'null': 'True', 'blank': 'True'}), 'first_release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']", 'null': 'True', 'on_delete': 'models.PROTECT'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_public': ('django.db.models.fields.NullBooleanField', [], {'default': 'False', 'null': 'True', 'blank': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'level': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'num_comments': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'null': 'True'}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'resolved_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'db_index': 'True'}), 'score': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], {'default': '0'}), 'short_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'time_spent_count': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], {'default': '0'}), 'time_spent_total': ('sentry.db.models.fields.bounded.BoundedIntegerField', [], {'default': '0'}), 'times_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '1', 'db_index': 'True'}) }, 'sentry.groupassignee': { 'Meta': {'unique_together': '()', 'object_name': 'GroupAssignee', 'db_table': "'sentry_groupasignee'", 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'assignee_set'", 'unique': 'True', 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'assignee_set'", 'to': "orm['sentry.Project']"}), 'team': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'sentry_assignee_set'", 'null': 'True', 'to': "orm['sentry.Team']"}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'sentry_assignee_set'", 'null': 'True', 'to': "orm['sentry.User']"}) }, 'sentry.groupbookmark': { 'Meta': {'unique_together': "(('project', 'user', 'group'),)", 'object_name': 'GroupBookmark', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'bookmark_set'", 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'bookmark_set'", 'to': "orm['sentry.Project']"}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'sentry_bookmark_set'", 'to': "orm['sentry.User']"}) }, 'sentry.groupcommitresolution': { 'Meta': {'unique_together': "(('group_id', 'commit_id'),)", 'object_name': 'GroupCommitResolution', 'index_together': '()'}, 'commit_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'group_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}) }, 'sentry.groupemailthread': { 'Meta': {'unique_together': "(('email', 'group'), ('email', 'msgid'))", 'object_name': 'GroupEmailThread', 'index_together': '()'}, 'date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'groupemail_set'", 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'msgid': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'groupemail_set'", 'to': "orm['sentry.Project']"}) }, 'sentry.groupenvironment': { 'Meta': {'unique_together': "(('group', 'environment'),)", 'object_name': 'GroupEnvironment', 'index_together': "(('environment', 'first_release'),)"}, 'environment': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Environment']"}), 'first_release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']", 'null': 'True', 'on_delete': 'models.DO_NOTHING'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}) }, 'sentry.grouphash': { 'Meta': {'unique_together': "(('project', 'hash'),)", 'object_name': 'GroupHash', 'index_together': '()'}, 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'null': 'True'}), 'group_tombstone_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'hash': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'state': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}) }, 'sentry.grouplink': { 'Meta': {'unique_together': "(('group_id', 'linked_type', 'linked_id'),)", 'object_name': 'GroupLink', 'index_together': '()'}, 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'group_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'linked_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'linked_type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '1'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'db_index': 'True'}), 'relationship': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '2'}) }, 'sentry.groupmeta': { 'Meta': {'unique_together': "(('group', 'key'),)", 'object_name': 'GroupMeta', 'index_together': '()'}, 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'sentry.groupredirect': { 'Meta': {'unique_together': "(('organization_id', 'previous_short_id', 'previous_project_slug'),)", 'object_name': 'GroupRedirect', 'index_together': '()'}, 'group_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'previous_group_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'unique': 'True'}), 'previous_project_slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'null': 'True'}), 'previous_short_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}) }, 'sentry.grouprelease': { 'Meta': {'unique_together': "(('group_id', 'release_id', 'environment'),)", 'object_name': 'GroupRelease', 'index_together': '()'}, 'environment': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '64'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'release_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}) }, 'sentry.groupresolution': { 'Meta': {'unique_together': '()', 'object_name': 'GroupResolution', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'unique': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}) }, 'sentry.grouprulestatus': { 'Meta': {'unique_together': "(('rule', 'group'),)", 'object_name': 'GroupRuleStatus', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_active': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'rule': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Rule']"}), 'status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}) }, 'sentry.groupseen': { 'Meta': {'unique_together': "(('user', 'group'),)", 'object_name': 'GroupSeen', 'index_together': '()'}, 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'db_index': 'False'}) }, 'sentry.groupshare': { 'Meta': {'unique_together': '()', 'object_name': 'GroupShare', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'unique': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True'}), 'uuid': ('django.db.models.fields.CharField', [], {'default': "'23a7c5b16b854d838db1285f502ca2ed'", 'unique': 'True', 'max_length': '32'}) }, 'sentry.groupsnooze': { 'Meta': {'unique_together': '()', 'object_name': 'GroupSnooze', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'count': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'unique': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'state': ('sentry.db.models.fields.jsonfield.JSONField', [], {'null': 'True'}), 'until': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'user_count': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'user_window': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'window': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}) }, 'sentry.groupsubscription': { 'Meta': {'unique_together': "(('group', 'user'),)", 'object_name': 'GroupSubscription', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'subscription_set'", 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'subscription_set'", 'to': "orm['sentry.Project']"}), 'reason': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.grouptagkey': { 'Meta': {'unique_together': "(('project_id', 'group_id', 'key'),)", 'object_name': 'GroupTagKey', 'index_together': '()'}, 'group_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'values_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.grouptagvalue': { 'Meta': {'unique_together': "(('group_id', 'key', 'value'),)", 'object_name': 'GroupTagValue', 'db_table': "'sentry_messagefiltervalue'", 'index_together': "(('project_id', 'key', 'value', 'last_seen'),)"}, 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'group_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'times_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.grouptombstone': { 'Meta': {'unique_together': '()', 'object_name': 'GroupTombstone', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {'null': 'True', 'blank': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'level': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '40', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'previous_group_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'unique': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.identity': { 'Meta': {'unique_together': "(('idp', 'external_id'), ('idp', 'user'))", 'object_name': 'Identity', 'index_together': '()'}, 'data': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_verified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'idp': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.IdentityProvider']"}), 'scopes': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.identityprovider': { 'Meta': {'unique_together': "(('type', 'external_id'),)", 'object_name': 'IdentityProvider', 'index_together': '()'}, 'config': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'sentry.incident': { 'Meta': {'unique_together': "(('organization', 'identifier'),)", 'object_name': 'Incident', 'index_together': '()'}, 'alert_rule': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['sentry.AlertRule']", 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'date_detected': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_started': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'detection_uuid': ('sentry.db.models.fields.uuid.UUIDField', [], {'max_length': '32', 'null': 'True', 'db_index': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'incidents'", 'symmetrical': 'False', 'through': "orm['sentry.IncidentGroup']", 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'identifier': ('django.db.models.fields.IntegerField', [], {}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'projects': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'incidents'", 'symmetrical': 'False', 'through': "orm['sentry.IncidentProject']", 'to': "orm['sentry.Project']"}), 'query': ('django.db.models.fields.TextField', [], {}), 'status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}), 'title': ('django.db.models.fields.TextField', [], {}), 'type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}) }, 'sentry.incidentactivity': { 'Meta': {'unique_together': '()', 'object_name': 'IncidentActivity', 'index_together': '()'}, 'comment': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'event_stats_snapshot': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.TimeSeriesSnapshot']", 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Incident']"}), 'previous_value': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True'}), 'value': ('django.db.models.fields.TextField', [], {'null': 'True'}) }, 'sentry.incidentgroup': { 'Meta': {'unique_together': "(('group', 'incident'),)", 'object_name': 'IncidentGroup', 'index_together': '()'}, 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'db_index': 'False'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Incident']"}) }, 'sentry.incidentproject': { 'Meta': {'unique_together': "(('project', 'incident'),)", 'object_name': 'IncidentProject', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Incident']"}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'db_index': 'False'}) }, 'sentry.incidentseen': { 'Meta': {'unique_together': "(('user', 'incident'),)", 'object_name': 'IncidentSeen', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Incident']"}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'db_index': 'False'}) }, 'sentry.incidentsnapshot': { 'Meta': {'unique_together': '()', 'object_name': 'IncidentSnapshot', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'event_stats_snapshot': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.TimeSeriesSnapshot']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['sentry.Incident']", 'unique': 'True'}), 'total_events': ('django.db.models.fields.IntegerField', [], {}), 'unique_users': ('django.db.models.fields.IntegerField', [], {}) }, 'sentry.incidentsubscription': { 'Meta': {'unique_together': "(('incident', 'user'),)", 'object_name': 'IncidentSubscription', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Incident']", 'db_index': 'False'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.incidentsuspectcommit': { 'Meta': {'unique_together': "(('incident', 'commit'),)", 'object_name': 'IncidentSuspectCommit', 'index_together': '()'}, 'commit': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Commit']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'incident': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Incident']", 'db_index': 'False'}), 'order': ('django.db.models.fields.SmallIntegerField', [], {}) }, 'sentry.integration': { 'Meta': {'unique_together': "(('provider', 'external_id'),)", 'object_name': 'Integration', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'metadata': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'organizations': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'integrations'", 'symmetrical': 'False', 'through': "orm['sentry.OrganizationIntegration']", 'to': "orm['sentry.Organization']"}), 'projects': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'integrations'", 'symmetrical': 'False', 'through': "orm['sentry.ProjectIntegration']", 'to': "orm['sentry.Project']"}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'null': 'True'}) }, 'sentry.integrationexternalproject': { 'Meta': {'unique_together': "(('organization_integration_id', 'external_id'),)", 'object_name': 'IntegrationExternalProject', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'organization_integration_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'resolved_status': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'unresolved_status': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'sentry.integrationfeature': { 'Meta': {'unique_together': "(('sentry_app', 'feature'),)", 'object_name': 'IntegrationFeature', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'feature': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'sentry_app': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.SentryApp']"}), 'user_description': ('django.db.models.fields.TextField', [], {'null': 'True'}) }, 'sentry.latestrelease': { 'Meta': {'unique_together': "(('repository_id', 'environment_id'),)", 'object_name': 'LatestRelease', 'index_together': '()'}, 'commit_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'deploy_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'environment_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'release_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'repository_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}) }, 'sentry.lostpasswordhash': { 'Meta': {'unique_together': '()', 'object_name': 'LostPasswordHash', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'hash': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'unique': 'True'}) }, 'sentry.monitor': { 'Meta': {'unique_together': '()', 'object_name': 'Monitor', 'index_together': "(('type', 'next_checkin'),)"}, 'config': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'guid': ('sentry.db.models.fields.uuid.UUIDField', [], {'auto_add': "'uuid:uuid4'", 'unique': 'True', 'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_checkin': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'next_checkin': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.monitorcheckin': { 'Meta': {'unique_together': '()', 'object_name': 'MonitorCheckIn', 'index_together': '()'}, 'config': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'duration': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'guid': ('sentry.db.models.fields.uuid.UUIDField', [], {'auto_add': "'uuid:uuid4'", 'unique': 'True', 'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'location': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.MonitorLocation']", 'null': 'True'}), 'monitor': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Monitor']"}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.monitorlocation': { 'Meta': {'unique_together': '()', 'object_name': 'MonitorLocation', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'guid': ('sentry.db.models.fields.uuid.UUIDField', [], {'auto_add': "'uuid:uuid4'", 'unique': 'True', 'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.option': { 'Meta': {'unique_together': '()', 'object_name': 'Option', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'value': ('sentry.db.models.fields.encrypted.EncryptedPickledObjectField', [], {}) }, 'sentry.organization': { 'Meta': {'unique_together': '()', 'object_name': 'Organization', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'default_role': ('django.db.models.fields.CharField', [], {'default': "'member'", 'max_length': '32'}), 'flags': ('django.db.models.fields.BigIntegerField', [], {'default': '1'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'members': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'org_memberships'", 'symmetrical': 'False', 'through': "orm['sentry.OrganizationMember']", 'to': "orm['sentry.User']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.organizationaccessrequest': { 'Meta': {'unique_together': "(('team', 'member'),)", 'object_name': 'OrganizationAccessRequest', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'member': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.OrganizationMember']"}), 'team': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Team']"}) }, 'sentry.organizationavatar': { 'Meta': {'unique_together': '()', 'object_name': 'OrganizationAvatar', 'index_together': '()'}, 'avatar_type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32', 'db_index': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'avatar'", 'unique': 'True', 'to': "orm['sentry.Organization']"}) }, 'sentry.organizationintegration': { 'Meta': {'unique_together': "(('organization', 'integration'),)", 'object_name': 'OrganizationIntegration', 'index_together': '()'}, 'config': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'default_auth_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'integration': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Integration']"}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.organizationmember': { 'Meta': {'unique_together': "(('organization', 'user'), ('organization', 'email'))", 'object_name': 'OrganizationMember', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True', 'blank': 'True'}), 'flags': ('django.db.models.fields.BigIntegerField', [], {'default': '0'}), 'has_global_access': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'member_set'", 'to': "orm['sentry.Organization']"}), 'role': ('django.db.models.fields.CharField', [], {'default': "'member'", 'max_length': '32'}), 'teams': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.Team']", 'symmetrical': 'False', 'through': "orm['sentry.OrganizationMemberTeam']", 'blank': 'True'}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '64', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'token_expires_at': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True'}), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '50', 'blank': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'blank': 'True', 'related_name': "u'sentry_orgmember_set'", 'null': 'True', 'to': "orm['sentry.User']"}) }, 'sentry.organizationmemberteam': { 'Meta': {'unique_together': "(('team', 'organizationmember'),)", 'object_name': 'OrganizationMemberTeam', 'db_table': "'sentry_organizationmember_teams'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedAutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'organizationmember': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.OrganizationMember']"}), 'team': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Team']"}) }, 'sentry.organizationonboardingtask': { 'Meta': {'unique_together': "(('organization', 'task'),)", 'object_name': 'OrganizationOnboardingTask', 'index_together': '()'}, 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_completed': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'project_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'task': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True'}) }, 'sentry.organizationoption': { 'Meta': {'unique_together': "(('organization', 'key'),)", 'object_name': 'OrganizationOption', 'db_table': "'sentry_organizationoptions'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'value': ('sentry.db.models.fields.encrypted.EncryptedPickledObjectField', [], {}) }, 'sentry.platformexternalissue': { 'Meta': {'unique_together': "(('group_id', 'service_type'),)", 'object_name': 'PlatformExternalIssue', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'display_name': ('django.db.models.fields.TextField', [], {}), 'group_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'service_type': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'web_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}) }, 'sentry.processingissue': { 'Meta': {'unique_together': "(('project', 'checksum', 'type'),)", 'object_name': 'ProcessingIssue', 'index_together': '()'}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, 'sentry.project': { 'Meta': {'unique_together': "(('organization', 'slug'),)", 'object_name': 'Project', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'first_event': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'flags': ('django.db.models.fields.BigIntegerField', [], {'default': '0', 'null': 'True'}), 'forced_color': ('django.db.models.fields.CharField', [], {'max_length': '6', 'null': 'True', 'blank': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'null': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'teams': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'teams'", 'symmetrical': 'False', 'through': "orm['sentry.ProjectTeam']", 'to': "orm['sentry.Team']"}) }, 'sentry.projectavatar': { 'Meta': {'unique_together': '()', 'object_name': 'ProjectAvatar', 'index_together': '()'}, 'avatar_type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32', 'db_index': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'avatar'", 'unique': 'True', 'to': "orm['sentry.Project']"}) }, 'sentry.projectbookmark': { 'Meta': {'unique_together': "(('project', 'user'),)", 'object_name': 'ProjectBookmark', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True', 'blank': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.projectdebugfile': { 'Meta': {'unique_together': '()', 'object_name': 'ProjectDebugFile', 'db_table': "'sentry_projectdsymfile'", 'index_together': "(('project', 'debug_id'), ('project', 'code_id'))"}, 'code_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'cpu_name': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'null': 'True'}), 'debug_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'db_column': "'uuid'"}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'object_name': ('django.db.models.fields.TextField', [], {}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}) }, 'sentry.projectintegration': { 'Meta': {'unique_together': "(('project', 'integration'),)", 'object_name': 'ProjectIntegration', 'index_together': '()'}, 'config': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'integration': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Integration']"}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.projectkey': { 'Meta': {'unique_together': '()', 'object_name': 'ProjectKey', 'index_together': '()'}, 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'key_set'", 'to': "orm['sentry.Project']"}), 'public_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'rate_limit_count': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'rate_limit_window': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'roles': ('django.db.models.fields.BigIntegerField', [], {'default': '1'}), 'secret_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}) }, 'sentry.projectoption': { 'Meta': {'unique_together': "(('project', 'key'),)", 'object_name': 'ProjectOption', 'db_table': "'sentry_projectoptions'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'value': ('sentry.db.models.fields.encrypted.EncryptedPickledObjectField', [], {}) }, 'sentry.projectownership': { 'Meta': {'unique_together': '()', 'object_name': 'ProjectOwnership', 'index_together': '()'}, 'auto_assignment': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'fallthrough': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'unique': 'True'}), 'raw': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'schema': ('sentry.db.models.fields.jsonfield.JSONField', [], {'null': 'True'}) }, 'sentry.projectplatform': { 'Meta': {'unique_together': "(('project_id', 'platform'),)", 'object_name': 'ProjectPlatform', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'platform': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}) }, 'sentry.projectredirect': { 'Meta': {'unique_together': "(('organization', 'redirect_slug'),)", 'object_name': 'ProjectRedirect', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'redirect_slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}) }, 'sentry.projectteam': { 'Meta': {'unique_together': "(('project', 'team'),)", 'object_name': 'ProjectTeam', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'team': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Team']"}) }, 'sentry.promptsactivity': { 'Meta': {'unique_together': "(('user', 'feature', 'organization_id', 'project_id'),)", 'object_name': 'PromptsActivity', 'index_together': '()'}, 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'feature': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.pullrequest': { 'Meta': {'unique_together': "(('repository_id', 'key'),)", 'object_name': 'PullRequest', 'db_table': "'sentry_pull_request'", 'index_together': "(('repository_id', 'date_added'), ('organization_id', 'merge_commit_sha'))"}, 'author': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.CommitAuthor']", 'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'merge_commit_sha': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'message': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'repository_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'title': ('django.db.models.fields.TextField', [], {'null': 'True'}) }, 'sentry.pullrequestcommit': { 'Meta': {'unique_together': "(('pull_request', 'commit'),)", 'object_name': 'PullRequestCommit', 'db_table': "'sentry_pullrequest_commit'", 'index_together': '()'}, 'commit': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Commit']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'pull_request': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.PullRequest']"}) }, 'sentry.querysubscription': { 'Meta': {'unique_together': '()', 'object_name': 'QuerySubscription', 'index_together': '()'}, 'aggregation': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'dataset': ('django.db.models.fields.TextField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'query': ('django.db.models.fields.TextField', [], {}), 'resolution': ('django.db.models.fields.IntegerField', [], {}), 'subscription_id': ('django.db.models.fields.TextField', [], {'unique': 'True'}), 'time_window': ('django.db.models.fields.IntegerField', [], {}), 'type': ('django.db.models.fields.TextField', [], {}) }, 'sentry.rawevent': { 'Meta': {'unique_together': "(('project', 'event_id'),)", 'object_name': 'RawEvent', 'index_together': '()'}, 'data': ('sentry.db.models.fields.node.NodeField', [], {'null': 'True', 'blank': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.recentsearch': { 'Meta': {'unique_together': "(('user', 'organization', 'type', 'query_hash'),)", 'object_name': 'RecentSearch', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'query': ('django.db.models.fields.TextField', [], {}), 'query_hash': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'type': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'db_index': 'False'}) }, 'sentry.relay': { 'Meta': {'unique_together': '()', 'object_name': 'Relay', 'index_together': '()'}, 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_internal': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'public_key': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'relay_id': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}) }, 'sentry.release': { 'Meta': {'unique_together': "(('organization', 'version'),)", 'object_name': 'Release', 'index_together': '()'}, 'authors': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'commit_count': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'null': 'True'}), 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_released': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_started': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_commit_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'last_deploy_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'new_groups': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'owner': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'projects': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "u'releases'", 'symmetrical': 'False', 'through': "orm['sentry.ReleaseProject']", 'to': "orm['sentry.Project']"}), 'ref': ('django.db.models.fields.CharField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'total_deploys': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'null': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '250'}) }, 'sentry.releasecommit': { 'Meta': {'unique_together': "(('release', 'commit'), ('release', 'order'))", 'object_name': 'ReleaseCommit', 'index_together': '()'}, 'commit': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Commit']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'order': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}) }, 'sentry.releaseenvironment': { 'Meta': {'unique_together': "(('organization', 'release', 'environment'),)", 'object_name': 'ReleaseEnvironment', 'db_table': "'sentry_environmentrelease'", 'index_together': '()'}, 'environment': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Environment']"}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}) }, 'sentry.releasefile': { 'Meta': {'unique_together': "(('release', 'ident'),)", 'object_name': 'ReleaseFile', 'index_together': "(('release', 'name'),)"}, 'dist': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Distribution']", 'null': 'True'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'name': ('django.db.models.fields.TextField', [], {}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}) }, 'sentry.releaseheadcommit': { 'Meta': {'unique_together': "(('repository_id', 'release'),)", 'object_name': 'ReleaseHeadCommit', 'index_together': '()'}, 'commit': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Commit']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}), 'repository_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}) }, 'sentry.releaseproject': { 'Meta': {'unique_together': "(('project', 'release'),)", 'object_name': 'ReleaseProject', 'db_table': "'sentry_release_project'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'new_groups': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'null': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}) }, 'sentry.releaseprojectenvironment': { 'Meta': {'unique_together': "(('project', 'release', 'environment'),)", 'object_name': 'ReleaseProjectEnvironment', 'index_together': '()'}, 'environment': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Environment']"}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_deploy_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'new_issues_count': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'release': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Release']"}) }, 'sentry.repository': { 'Meta': {'unique_together': "(('organization_id', 'name'), ('organization_id', 'provider', 'external_id'))", 'object_name': 'Repository', 'index_together': '()'}, 'config': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'integration_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}) }, 'sentry.reprocessingreport': { 'Meta': {'unique_together': "(('project', 'event_id'),)", 'object_name': 'ReprocessingReport', 'index_together': '()'}, 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.rule': { 'Meta': {'unique_together': '()', 'object_name': 'Rule', 'index_together': '()'}, 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'environment_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}) }, 'sentry.savedsearch': { 'Meta': {'unique_together': "(('project', 'name'), ('organization', 'owner', 'type'))", 'object_name': 'SavedSearch', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_global': ('django.db.models.fields.NullBooleanField', [], {'default': 'False', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']", 'null': 'True'}), 'owner': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']", 'null': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'query': ('django.db.models.fields.TextField', [], {}), 'type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0', 'null': 'True'}) }, 'sentry.savedsearchuserdefault': { 'Meta': {'unique_together': "(('project', 'user'),)", 'object_name': 'SavedSearchUserDefault', 'db_table': "'sentry_savedsearch_userdefault'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'savedsearch': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.SavedSearch']"}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.scheduleddeletion': { 'Meta': {'unique_together': "(('app_label', 'model_name', 'object_id'),)", 'object_name': 'ScheduledDeletion', 'index_together': '()'}, 'aborted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'actor_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_scheduled': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2019, 10, 12, 0, 0)'}), 'guid': ('django.db.models.fields.CharField', [], {'default': "'1556f91e60d4439cbcffdc7c81bb756d'", 'unique': 'True', 'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'in_progress': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'model_name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'object_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {}) }, 'sentry.scheduledjob': { 'Meta': {'unique_together': '()', 'object_name': 'ScheduledJob', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_scheduled': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'payload': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}) }, 'sentry.sentryapp': { 'Meta': {'unique_together': '()', 'object_name': 'SentryApp', 'index_together': '()'}, 'application': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'sentry_app'", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['sentry.ApiApplication']"}), 'author': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_deleted': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'events': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_alertable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.TextField', [], {}), 'overview': ('django.db.models.fields.TextField', [], {'null': 'True'}), 'owner': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'owned_sentry_apps'", 'to': "orm['sentry.Organization']"}), 'proxy_user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'sentry_app'", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['sentry.User']"}), 'redirect_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}), 'schema': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'scope_list': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'scopes': ('django.db.models.fields.BigIntegerField', [], {'default': 'None'}), 'slug': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'uuid': ('django.db.models.fields.CharField', [], {'default': "'3d8204ac-6b09-46e5-86a4-77da6bec90b4'", 'max_length': '64'}), 'verify_install': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'webhook_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}) }, 'sentry.sentryappavatar': { 'Meta': {'unique_together': '()', 'object_name': 'SentryAppAvatar', 'index_together': '()'}, 'avatar_type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32', 'db_index': 'True'}), 'sentry_app': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'avatar'", 'unique': 'True', 'to': "orm['sentry.SentryApp']"}) }, 'sentry.sentryappcomponent': { 'Meta': {'unique_together': '()', 'object_name': 'SentryAppComponent', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'schema': ('sentry.db.models.fields.encrypted.EncryptedJsonField', [], {'default': '{}'}), 'sentry_app': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'components'", 'to': "orm['sentry.SentryApp']"}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'uuid': ('sentry.db.models.fields.uuid.UUIDField', [], {'auto_add': "'uuid:uuid4'", 'unique': 'True', 'max_length': '32'}) }, 'sentry.sentryappinstallation': { 'Meta': {'unique_together': '()', 'object_name': 'SentryAppInstallation', 'index_together': '()'}, 'api_grant': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'sentry_app_installation'", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['sentry.ApiGrant']"}), 'api_token': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "u'sentry_app_installation'", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['sentry.ApiToken']"}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_deleted': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'sentry_app_installations'", 'to': "orm['sentry.Organization']"}), 'sentry_app': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'installations'", 'to': "orm['sentry.SentryApp']"}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'uuid': ('django.db.models.fields.CharField', [], {'default': "'05c99e26-e5aa-4cd8-b7db-bacc31f3171f'", 'max_length': '64'}) }, 'sentry.sentryappinstallationtoken': { 'Meta': {'unique_together': "(('sentry_app_installation', 'api_token'),)", 'object_name': 'SentryAppInstallationToken', 'index_together': '()'}, 'api_token': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ApiToken']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'sentry_app_installation': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.SentryAppInstallation']"}) }, 'sentry.servicehook': { 'Meta': {'unique_together': '()', 'object_name': 'ServiceHook', 'index_together': '()'}, 'actor_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'application': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ApiApplication']", 'null': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'events': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'django.db.models.fields.TextField', [], {})}), 'guid': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'organization_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'secret': ('sentry.db.models.fields.encrypted.EncryptedTextField', [], {'default': "'c6ab63d377fd48a2b2d162ef7402be07165ff1b2fbc2413d9fca00c1ac0c6471'"}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '512'}), 'version': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.servicehookproject': { 'Meta': {'unique_together': "(('service_hook', 'project_id'),)", 'object_name': 'ServiceHookProject', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'service_hook': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.ServiceHook']"}) }, 'sentry.tagkey': { 'Meta': {'unique_together': "(('project_id', 'key'),)", 'object_name': 'TagKey', 'db_table': "'sentry_filterkey'", 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'db_index': 'True'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'values_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.tagvalue': { 'Meta': {'unique_together': "(('project_id', 'key', 'value'),)", 'object_name': 'TagValue', 'db_table': "'sentry_filtervalue'", 'index_together': "(('project_id', 'key', 'last_seen'),)"}, 'data': ('sentry.db.models.fields.gzippeddict.GzippedDictField', [], {'null': 'True', 'blank': 'True'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'project_id': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'null': 'True', 'db_index': 'True'}), 'times_seen': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.team': { 'Meta': {'unique_together': "(('organization', 'slug'),)", 'object_name': 'Team', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}) }, 'sentry.teamavatar': { 'Meta': {'unique_together': '()', 'object_name': 'TeamAvatar', 'index_together': '()'}, 'avatar_type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32', 'db_index': 'True'}), 'team': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'avatar'", 'unique': 'True', 'to': "orm['sentry.Team']"}) }, 'sentry.timeseriessnapshot': { 'Meta': {'unique_together': '()', 'object_name': 'TimeSeriesSnapshot', 'index_together': '()'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'end': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'period': ('django.db.models.fields.IntegerField', [], {}), 'start': ('django.db.models.fields.DateTimeField', [], {}), 'values': ('sentry.db.models.fields.array.ArrayField', [], {'of': (u'sentry.db.models.fields.array.ArrayField', [], {'null': 'True'})}) }, 'sentry.user': { 'Meta': {'unique_together': '()', 'object_name': 'User', 'db_table': "'auth_user'", 'index_together': '()'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'flags': ('django.db.models.fields.BigIntegerField', [], {'default': '0', 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedAutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_managed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_password_expired': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_sentry_app': ('django.db.models.fields.NullBooleanField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_active': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_password_change': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'db_column': "'first_name'", 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'session_nonce': ('django.db.models.fields.CharField', [], {'max_length': '12', 'null': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128'}) }, 'sentry.useravatar': { 'Meta': {'unique_together': '()', 'object_name': 'UserAvatar', 'index_together': '()'}, 'avatar_type': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'file': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.File']", 'unique': 'True', 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ident': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '32', 'db_index': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'avatar'", 'unique': 'True', 'to': "orm['sentry.User']"}) }, 'sentry.useremail': { 'Meta': {'unique_together': "(('user', 'email'),)", 'object_name': 'UserEmail', 'index_together': '()'}, 'date_hash_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'is_verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'related_name': "u'emails'", 'to': "orm['sentry.User']"}), 'validation_hash': ('django.db.models.fields.CharField', [], {'default': "u'5VTVHt0BarZ69mqs53xvSzi66LbRQnJ9'", 'max_length': '32'}) }, 'sentry.userip': { 'Meta': {'unique_together': "(('user', 'ip_address'),)", 'object_name': 'UserIP', 'index_together': '()'}, 'country_code': ('django.db.models.fields.CharField', [], {'max_length': '16', 'null': 'True'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.GenericIPAddressField', [], {'max_length': '39'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'region_code': ('django.db.models.fields.CharField', [], {'max_length': '16', 'null': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.useroption': { 'Meta': {'unique_together': "(('user', 'project', 'key'), ('user', 'organization', 'key'))", 'object_name': 'UserOption', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'organization': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Organization']", 'null': 'True'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}), 'value': ('sentry.db.models.fields.encrypted.EncryptedPickledObjectField', [], {}) }, 'sentry.userpermission': { 'Meta': {'unique_together': "(('user', 'permission'),)", 'object_name': 'UserPermission', 'index_together': '()'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'permission': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'user': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.User']"}) }, 'sentry.userreport': { 'Meta': {'unique_together': "(('project', 'event_id'),)", 'object_name': 'UserReport', 'index_together': "(('project', 'event_id'), ('project', 'date_added'))"}, 'comments': ('django.db.models.fields.TextField', [], {}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'environment': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Environment']", 'null': 'True'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'event_user_id': ('sentry.db.models.fields.bounded.BoundedBigIntegerField', [], {'null': 'True'}), 'group': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Group']", 'null': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'project': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}) }, 'sentry.widget': { 'Meta': {'unique_together': "(('dashboard', 'order'), ('dashboard', 'title'))", 'object_name': 'Widget', 'index_together': '()'}, 'dashboard': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Dashboard']"}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'display_options': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'display_type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'order': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'sentry.widgetdatasource': { 'Meta': {'unique_together': "(('widget', 'name'), ('widget', 'order'))", 'object_name': 'WidgetDataSource', 'index_together': '()'}, 'data': ('sentry.db.models.fields.jsonfield.JSONField', [], {'default': '{}'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'order': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'status': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {'default': '0'}), 'type': ('sentry.db.models.fields.bounded.BoundedPositiveIntegerField', [], {}), 'widget': ('sentry.db.models.fields.foreignkey.FlexibleForeignKey', [], {'to': "orm['sentry.Widget']"}) } } complete_apps = ['sentry']
bsd-3-clause
-5,910,418,855,912,723,000
94.820548
255
0.579794
false
maas/maas
src/maasserver/models/tests/test_filesystemgroup.py
1
104094
# Copyright 2015-2019 Canonical Ltd. This software is licensed under the # GNU Affero General Public License version 3 (see the file LICENSE). """Tests for `FilesystemGroup`.""" import random import re from unittest import skip from uuid import uuid4 from django.core.exceptions import PermissionDenied, ValidationError from django.http import Http404 from testtools import ExpectedException from testtools.matchers import Equals, Is, MatchesStructure, Not from maasserver.enum import ( CACHE_MODE_TYPE, FILESYSTEM_GROUP_RAID_TYPES, FILESYSTEM_GROUP_TYPE, FILESYSTEM_TYPE, PARTITION_TABLE_TYPE, ) from maasserver.models.blockdevice import MIN_BLOCK_DEVICE_SIZE from maasserver.models.filesystem import Filesystem from maasserver.models.filesystemgroup import ( Bcache, BcacheManager, FilesystemGroup, LVM_PE_SIZE, RAID, RAID_SUPERBLOCK_OVERHEAD, RAIDManager, VMFS, VolumeGroup, VolumeGroupManager, ) from maasserver.models.partition import PARTITION_ALIGNMENT_SIZE from maasserver.models.partitiontable import PARTITION_TABLE_EXTRA_SPACE from maasserver.models.physicalblockdevice import PhysicalBlockDevice from maasserver.models.virtualblockdevice import VirtualBlockDevice from maasserver.permissions import NodePermission from maasserver.testing.factory import factory from maasserver.testing.orm import reload_objects from maasserver.testing.testcase import MAASServerTestCase from maasserver.utils.converters import ( machine_readable_bytes, round_size_to_nearest_block, ) from maasserver.utils.orm import reload_object from maastesting.matchers import MockCalledOnceWith, MockNotCalled class TestManagersGetObjectOr404(MAASServerTestCase): """Tests for the `get_object_or_404` on the managers.""" scenarios = ( ("FilesystemGroup", {"model": FilesystemGroup, "type": None}), ( "VolumeGroup", {"model": VolumeGroup, "type": FILESYSTEM_GROUP_TYPE.LVM_VG}, ), ("RAID", {"model": RAID, "type": FILESYSTEM_GROUP_TYPE.RAID_0}), ("Bcache", {"model": Bcache, "type": FILESYSTEM_GROUP_TYPE.BCACHE}), ) def test_raises_Http404_when_invalid_node(self): user = factory.make_admin() filesystem_group = factory.make_FilesystemGroup(group_type=self.type) self.assertRaises( Http404, self.model.objects.get_object_or_404, factory.make_name("system_id"), filesystem_group.id, user, NodePermission.view, ) def test_raises_Http404_when_invalid_device(self): user = factory.make_admin() node = factory.make_Node() self.assertRaises( Http404, self.model.objects.get_object_or_404, node.system_id, random.randint(0, 100), user, NodePermission.view, ) def test_view_raises_PermissionDenied_when_user_not_owner(self): user = factory.make_User() node = factory.make_Node(owner=factory.make_User()) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertRaises( PermissionDenied, self.model.objects.get_object_or_404, node.system_id, filesystem_group.id, user, NodePermission.view, ) def test_view_returns_device_by_name(self): user = factory.make_User() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.name, user, NodePermission.view, ).id, ) def test_view_returns_device_when_no_owner(self): user = factory.make_User() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.view ).id, ) def test_view_returns_device_when_owner(self): user = factory.make_User() node = factory.make_Node(owner=user) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.view ).id, ) def test_edit_raises_PermissionDenied_when_user_not_owner(self): user = factory.make_User() node = factory.make_Node(owner=factory.make_User()) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertRaises( PermissionDenied, self.model.objects.get_object_or_404, node.system_id, filesystem_group.id, user, NodePermission.edit, ) def test_edit_returns_device_when_user_is_owner(self): user = factory.make_User() node = factory.make_Node(owner=user) filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.edit ).id, ) def test_admin_raises_PermissionDenied_when_user_requests_admin(self): user = factory.make_User() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertRaises( PermissionDenied, self.model.objects.get_object_or_404, node.system_id, filesystem_group.id, user, NodePermission.admin, ) def test_admin_returns_device_when_admin(self): user = factory.make_admin() node = factory.make_Node() filesystem_group = factory.make_FilesystemGroup( node=node, group_type=self.type ) self.assertEqual( filesystem_group.id, self.model.objects.get_object_or_404( node.system_id, filesystem_group.id, user, NodePermission.admin ).id, ) class TestManagersFilterByBlockDevice(MAASServerTestCase): """Tests for the managers `filter_by_block_device`.""" def test_volume_group_on_block_device(self): block_device = factory.make_PhysicalBlockDevice() filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_block_device( block_device ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_partition(self): block_device = factory.make_PhysicalBlockDevice(size=10 * 1024 ** 3) partition_table = factory.make_PartitionTable( block_device=block_device ) partition = factory.make_Partition( size=5 * 1024 ** 3, partition_table=partition_table ) filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_block_device( block_device ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_two_partitions(self): block_device = factory.make_PhysicalBlockDevice() partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = VolumeGroup.objects.filter_by_block_device( block_device ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_one ) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_block_device( block_device_one ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_partitions(self): block_device = factory.make_PhysicalBlockDevice() partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_block_device(block_device) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) cache_set = factory.make_CacheSet(block_device=block_device_one) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=block_device_two, ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_block_device( block_device_one ) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_partitions(self): device_size = random.randint( MIN_BLOCK_DEVICE_SIZE * 4, MIN_BLOCK_DEVICE_SIZE * 1024 ) block_device = factory.make_PhysicalBlockDevice( size=device_size + PARTITION_TABLE_EXTRA_SPACE ) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition( partition_table=partition_table, size=device_size // 2 ) partition_two = factory.make_Partition( partition_table=partition_table, size=device_size // 2 ) cache_set = factory.make_CacheSet(partition=partition_one) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_block_device(block_device) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) class TestManagersFilterByNode(MAASServerTestCase): """Tests for the managers `filter_by_node`.""" def test_volume_group_on_block_device(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_partition(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition = factory.make_Partition(partition_table=partition_table) filesystem = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem] ) filesystem_groups = VolumeGroup.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_volume_group_on_two_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = VolumeGroup.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_one ) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=block_device_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_raid_on_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_one ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=[filesystem_one, filesystem_two], ) filesystem_groups = RAID.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_block_devices(self): node = factory.make_Node() block_device_one = factory.make_PhysicalBlockDevice(node=node) cache_set = factory.make_CacheSet(block_device=block_device_one) block_device_two = factory.make_PhysicalBlockDevice(node=node) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=block_device_two, ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) def test_bcache_on_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) partition_table = factory.make_PartitionTable( block_device=block_device ) partition_one = factory.make_Partition(partition_table=partition_table) partition_two = factory.make_Partition(partition_table=partition_table) cache_set = factory.make_CacheSet(partition=partition_one) filesystem_backing = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, partition=partition_two ) filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=[filesystem_backing], ) filesystem_groups = Bcache.objects.filter_by_node(node) result_filesystem_group_ids = [ fsgroup.id for fsgroup in filesystem_groups ] self.assertItemsEqual( [filesystem_group.id], result_filesystem_group_ids ) class TestFilesystemGroupManager(MAASServerTestCase): """Tests for the `FilesystemGroupManager`.""" def test_get_available_name_for_returns_next_idx(self): filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE ) filesystem_group.save() prefix = filesystem_group.get_name_prefix() current_idx = int(filesystem_group.name.replace(prefix, "")) self.assertEqual( "%s%s" % (prefix, current_idx + 1), FilesystemGroup.objects.get_available_name_for(filesystem_group), ) def test_get_available_name_for_ignores_bad_int(self): filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE ) filesystem_group.save() prefix = filesystem_group.get_name_prefix() filesystem_group.name = "%s%s" % (prefix, factory.make_name("bad")) filesystem_group.save() self.assertEqual( "%s0" % prefix, FilesystemGroup.objects.get_available_name_for(filesystem_group), ) class TestVolumeGroupManager(MAASServerTestCase): """Tests for the `VolumeGroupManager`.""" def test_create_volume_group_with_name_and_uuid(self): block_device = factory.make_PhysicalBlockDevice() name = factory.make_name("vg") vguuid = "%s" % uuid4() volume_group = VolumeGroup.objects.create_volume_group( name, [block_device], [], uuid=vguuid ) self.assertEqual(name, volume_group.name) self.assertEqual(vguuid, volume_group.uuid) def test_create_volume_group_with_block_devices(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] name = factory.make_name("vg") volume_group = VolumeGroup.objects.create_volume_group( name, block_devices, [] ) block_devices_in_vg = [ filesystem.block_device.actual_instance for filesystem in volume_group.filesystems.all() ] self.assertItemsEqual(block_devices, block_devices_in_vg) def test_create_volume_group_with_partitions(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice( node=node, size=(MIN_BLOCK_DEVICE_SIZE * 3) + PARTITION_TABLE_EXTRA_SPACE, ) partition_table = factory.make_PartitionTable( block_device=block_device ) partitions = [ partition_table.add_partition(size=MIN_BLOCK_DEVICE_SIZE) for _ in range(2) ] name = factory.make_name("vg") volume_group = VolumeGroup.objects.create_volume_group( name, [], partitions ) partitions_in_vg = [ filesystem.partition for filesystem in volume_group.filesystems.all() ] self.assertItemsEqual(partitions, partitions_in_vg) def test_create_volume_group_with_block_devices_and_partitions(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] block_device = factory.make_PhysicalBlockDevice( node=node, size=(MIN_BLOCK_DEVICE_SIZE * 3) + PARTITION_TABLE_EXTRA_SPACE, ) partition_table = factory.make_PartitionTable( block_device=block_device ) partitions = [ partition_table.add_partition(size=MIN_BLOCK_DEVICE_SIZE) for _ in range(2) ] name = factory.make_name("vg") volume_group = VolumeGroup.objects.create_volume_group( name, block_devices, partitions ) block_devices_in_vg = [ filesystem.block_device.actual_instance for filesystem in volume_group.filesystems.all() if filesystem.block_device is not None ] partitions_in_vg = [ filesystem.partition for filesystem in volume_group.filesystems.all() if filesystem.partition is not None ] self.assertItemsEqual(block_devices, block_devices_in_vg) self.assertItemsEqual(partitions, partitions_in_vg) class TestFilesystemGroup(MAASServerTestCase): """Tests for the `FilesystemGroup` model.""" def test_virtual_device_raises_AttributeError_for_lvm(self): fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG ) with ExpectedException(AttributeError): fsgroup.virtual_device def test_virtual_device_returns_VirtualBlockDevice_for_group(self): fsgroup = factory.make_FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.LVM_VG ) ) self.assertEqual( VirtualBlockDevice.objects.get(filesystem_group=fsgroup), fsgroup.virtual_device, ) def test_get_numa_node_indexes_all_same(self): fsgroup = factory.make_FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.VMFS6 ) ) self.assertEqual(fsgroup.get_numa_node_indexes(), [0]) def test_get_numa_node_indexes_multiple(self): node = factory.make_Node() numa_nodes = [ node.default_numanode, factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), ] block_devices = [ factory.make_PhysicalBlockDevice(numa_node=numa_node) for numa_node in numa_nodes ] filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) for block_device in block_devices ] fsgroup = factory.make_FilesystemGroup( node=node, filesystems=filesystems, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, ) self.assertEqual(fsgroup.get_numa_node_indexes(), [0, 1, 2]) def test_get_numa_node_indexes_nested(self): node = factory.make_Node() numa_nodes = [ node.default_numanode, factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), factory.make_NUMANode(node=node), ] # 2 physical disks have filesystems on them directly filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice( numa_node=numa_node ), ) for numa_node in numa_nodes[:2] ] # the 3 remaining disks are part of another filesystem group which gets # added to the first nested_filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice( numa_node=numa_node ), ) for numa_node in numa_nodes[2:] ] nested_group = factory.make_FilesystemGroup( node=node, filesystems=nested_filesystems, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, ) virtual_block_device = factory.make_VirtualBlockDevice( filesystem_group=nested_group ) filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=virtual_block_device, ) ) fsgroup = factory.make_FilesystemGroup( node=node, filesystems=filesystems, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, ) self.assertEqual(fsgroup.get_numa_node_indexes(), [0, 1, 2, 3, 4]) def test_get_node_returns_first_filesystem_node(self): fsgroup = factory.make_FilesystemGroup() self.assertEqual( fsgroup.filesystems.first().get_node(), fsgroup.get_node() ) def test_get_node_returns_None_if_no_filesystems(self): fsgroup = FilesystemGroup() self.assertIsNone(fsgroup.get_node()) def test_get_size_returns_0_if_lvm_without_filesystems(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.LVM_VG) self.assertEqual(0, fsgroup.get_size()) def test_get_size_returns_sum_of_all_filesystem_sizes_for_lvm(self): node = factory.make_Node() block_size = 4096 total_size = 0 filesystems = [] for _ in range(3): size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) total_size += size block_device = factory.make_PhysicalBlockDevice( node=node, size=size, block_size=block_size ) filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) # Reserve one extent per filesystem for LVM headers. extents = (total_size // LVM_PE_SIZE) - 3 self.assertEqual(extents * LVM_PE_SIZE, fsgroup.get_size()) def test_get_size_returns_0_if_raid_without_filesystems(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.RAID_0) self.assertEqual(0, fsgroup.get_size()) def test_get_size_returns_smallest_disk_size_for_raid_0(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) large_size = random.randint(small_size + 1, small_size + (10 ** 5)) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=large_size ), ), ] fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems ) # Size should be twice the smallest device (the rest of the larger # device remains unused. self.assertEqual( (small_size * 2) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size() ) def test_get_size_returns_smallest_disk_size_for_raid_1(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) large_size = random.randint(small_size + 1, small_size + (10 ** 5)) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=large_size ), ), ] fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems ) self.assertEqual( small_size - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size() ) def test_get_size_returns_correct_disk_size_for_raid_5(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) other_size = random.randint(small_size + 1, small_size + (10 ** 5)) number_of_raid_devices = random.randint(2, 9) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ) ] for _ in range(number_of_raid_devices): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) # Spares are ignored and not taken into calculation. for _ in range(3): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_5, filesystems=filesystems ) self.assertEqual( (small_size * number_of_raid_devices) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size(), ) def test_get_size_returns_correct_disk_size_for_raid_6(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) other_size = random.randint(small_size + 1, small_size + (10 ** 5)) number_of_raid_devices = random.randint(3, 9) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ) ] for _ in range(number_of_raid_devices): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) # Spares are ignored and not taken into calculation. for _ in range(3): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_6, filesystems=filesystems ) self.assertEqual( (small_size * (number_of_raid_devices - 1)) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size(), ) @skip("XXX: GavinPanella 2015-12-04 bug=1522965: Fails spuriously.") def test_get_size_returns_correct_disk_size_for_raid_10(self): node = factory.make_Node() small_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) other_size = random.randint(small_size + 1, small_size + (10 ** 5)) number_of_raid_devices = random.randint(3, 9) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=small_size ), ) ] for _ in range(number_of_raid_devices): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) # Spares are ignored and not taken into calculation. for _ in range(3): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice( node=node, size=other_size ), ) ) fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems ) self.assertEqual( (small_size * (number_of_raid_devices + 1) // 2) - RAID_SUPERBLOCK_OVERHEAD, fsgroup.get_size(), ) def test_get_size_returns_0_if_bcache_without_backing(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.BCACHE) self.assertEqual(0, fsgroup.get_size()) def test_get_size_returns_size_of_backing_device_with_bcache(self): node = factory.make_Node() backing_size = random.randint( MIN_BLOCK_DEVICE_SIZE, MIN_BLOCK_DEVICE_SIZE ** 2 ) cache_set = factory.make_CacheSet(node=node) backing_block_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=backing_block_device, ) ] fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_mode=CACHE_MODE_TYPE.WRITEBACK, cache_set=cache_set, filesystems=filesystems, ) self.assertEqual(backing_size, fsgroup.get_size()) def test_get_size_returns_total_size_with_vmfs(self): vmfs = factory.make_VMFS() self.assertEqual(vmfs.get_total_size(), vmfs.get_size()) def test_get_total_size(self): vmfs = factory.make_VMFS() size = 0 for fs in vmfs.filesystems.all(): size += fs.get_size() self.assertEqual(size, vmfs.get_total_size()) def test_is_lvm_returns_true_when_LVM_VG(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.LVM_VG) self.assertTrue(fsgroup.is_lvm()) def test_is_lvm_returns_false_when_not_LVM_VG(self): fsgroup = FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.LVM_VG ) ) self.assertFalse(fsgroup.is_lvm()) def test_is_raid_returns_true_for_all_raid_types(self): fsgroup = FilesystemGroup() for raid_type in FILESYSTEM_GROUP_RAID_TYPES: fsgroup.group_type = raid_type self.assertTrue( fsgroup.is_raid(), "is_raid should return true for %s" % raid_type, ) def test_is_raid_returns_false_for_LVM_VG(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.LVM_VG) self.assertFalse(fsgroup.is_raid()) def test_is_raid_returns_false_for_BCACHE(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.BCACHE) self.assertFalse(fsgroup.is_raid()) def test_is_bcache_returns_true_when_BCACHE(self): fsgroup = FilesystemGroup(group_type=FILESYSTEM_GROUP_TYPE.BCACHE) self.assertTrue(fsgroup.is_bcache()) def test_is_bcache_returns_false_when_not_BCACHE(self): fsgroup = FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.BCACHE ) ) self.assertFalse(fsgroup.is_bcache()) def test_is_vmfs(self): vmfs = factory.make_VMFS() self.assertTrue(vmfs.is_vmfs()) def test_creating_vmfs_automatically_creates_mounted_fs(self): part = factory.make_Partition() name = factory.make_name("datastore") vmfs = VMFS.objects.create_vmfs(name, [part]) self.assertEqual( "/vmfs/volumes/%s" % name, vmfs.virtual_device.get_effective_filesystem().mount_point, ) def test_can_save_new_filesystem_group_without_filesystems(self): fsgroup = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) fsgroup.save() self.expectThat(fsgroup.id, Not(Is(None))) self.expectThat(fsgroup.filesystems.count(), Equals(0)) def test_cannot_save_without_filesystems(self): fsgroup = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) fsgroup.save() with ExpectedException( ValidationError, re.escape( "{'__all__': ['At least one filesystem must have " "been added.']}" ), ): fsgroup.save(force_update=True) def test_cannot_save_without_filesystems_from_different_nodes(self): filesystems = [factory.make_Filesystem(), factory.make_Filesystem()] with ExpectedException( ValidationError, re.escape( "{'__all__': ['All added filesystems must belong to " "the same node.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems, ) def test_cannot_save_volume_group_if_invalid_filesystem(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ), ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Volume group can only contain lvm " "physical volumes.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems, ) def test_can_save_volume_group_if_valid_filesystems(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ), factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ), ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) def test_cannot_save_volume_group_if_logical_volumes_larger(self): node = factory.make_Node() filesystem_one = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ) filesystem_two = factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=factory.make_PhysicalBlockDevice(node=node), ) filesystems = [filesystem_one, filesystem_two] volume_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) factory.make_VirtualBlockDevice( size=volume_group.get_size(), filesystem_group=volume_group ) filesystem_two.delete() with ExpectedException( ValidationError, re.escape( "['Volume group cannot be smaller than its " "logical volumes.']" ), ): volume_group.save() def test_cannot_save_raid_0_with_less_than_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems, ) def test_cannot_save_raid_0_with_spare_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(2) ] filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems, ) def test_can_save_raid_0_with_exactly_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(2) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems ) def test_can_save_raid_0_with_more_then_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(10) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0, filesystems=filesystems ) def test_cannot_save_raid_1_with_less_than_2_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 1 must have at least 2 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems, ) def test_can_save_raid_1_with_spare_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(2) ] filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems ) def test_can_save_raid_1_with_2_or_more_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(2, 10)) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_1, filesystems=filesystems ) def test_cannot_save_raid_5_with_less_than_3_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(1, 2)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 5 must have at least 3 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_5, filesystems=filesystems, ) def test_can_save_raid_5_with_3_or_more_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(3, 10)) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_5, filesystems=filesystems ) def test_cannot_save_raid_6_with_less_than_4_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(1, 3)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_6, filesystems=filesystems, ) def test_can_save_raid_6_with_4_or_more_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(4, 10)) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_6, filesystems=filesystems ) def test_cannot_save_raid_10_with_less_than_3_raid_devices(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(1, 2)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 10 must have at least 3 raid " "devices and any number of spares.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems, ) def test_can_save_raid_10_with_3_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(3) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems ) def test_can_save_raid_10_with_4_or_more_raid_devices_and_spares(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(4, 10)) ] for _ in range(random.randint(1, 5)): filesystems.append( factory.make_Filesystem( fstype=FILESYSTEM_TYPE.RAID_SPARE, block_device=factory.make_PhysicalBlockDevice(node=node), ) ) # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_10, filesystems=filesystems ) def test_cannot_save_bcache_without_cache_set(self): node = factory.make_Node() filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Bcache requires an assigned cache set.']}" ), ): filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, filesystems=filesystems, ) filesystem_group.cache_set = None filesystem_group.save() def test_cannot_save_bcache_without_backing(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) with ExpectedException( ValidationError, re.escape( "{'__all__': ['At least one filesystem must have " "been added.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=[], ) def test_cannot_save_bcache_with_logical_volume_as_backing(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_VirtualBlockDevice(node=node), ) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Bcache cannot use a logical volume as a " "backing device.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=filesystems, ) def test_can_save_bcache_with_cache_set_and_backing(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_PhysicalBlockDevice(node=node), ) ] # Test is that this does not raise an exception. factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=filesystems, ) def test_cannot_save_bcache_with_multiple_backings(self): node = factory.make_Node() cache_set = factory.make_CacheSet(node=node) filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.BCACHE_BACKING, block_device=factory.make_PhysicalBlockDevice(node=node), ) for _ in range(random.randint(2, 10)) ] with ExpectedException( ValidationError, re.escape( "{'__all__': ['Bcache can only contain one backing " "device.']}" ), ): factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE, cache_set=cache_set, filesystems=filesystems, ) def test_save_doesnt_overwrite_uuid(self): uuid = uuid4() fsgroup = factory.make_FilesystemGroup(uuid=uuid) self.assertEqual("%s" % uuid, fsgroup.uuid) def test_save_doesnt_allow_changing_group_type(self): fsgroup = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.RAID_0 ) fsgroup.save() fsgroup.group_type = FILESYSTEM_GROUP_TYPE.RAID_1 error = self.assertRaises(ValidationError, fsgroup.save) self.assertEqual( "Cannot change the group_type of a FilesystemGroup.", error.message ) def test_save_calls_create_or_update_for_when_filesystems_linked(self): mock_create_or_update_for = self.patch( VirtualBlockDevice.objects, "create_or_update_for" ) filesystem_group = factory.make_FilesystemGroup() self.assertThat( mock_create_or_update_for, MockCalledOnceWith(filesystem_group) ) def test_save_doesnt_call_create_or_update_for_when_no_filesystems(self): mock_create_or_update_for = self.patch( VirtualBlockDevice.objects, "create_or_update_for" ) filesystem_group = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) filesystem_group.save() self.assertThat(mock_create_or_update_for, MockNotCalled()) def test_get_lvm_allocated_size_and_get_lvm_free_space(self): """Check get_lvm_allocated_size and get_lvm_free_space methods.""" backing_volume_size = machine_readable_bytes("10G") node = factory.make_Node() fsgroup = FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, name=factory.make_name("vg"), ) fsgroup.save() block_size = 4096 for i in range(5): block_device = factory.make_BlockDevice( node=node, size=backing_volume_size, block_size=block_size ) factory.make_Filesystem( filesystem_group=fsgroup, fstype=FILESYSTEM_TYPE.LVM_PV, block_device=block_device, ) # Size should be 50 GB minus one extent per filesystem for LVM headers. pv_total_size = 50 * 1000 ** 3 extents = (pv_total_size // LVM_PE_SIZE) - 5 usable_size = extents * LVM_PE_SIZE self.assertEqual(usable_size, fsgroup.get_size()) # Allocate two VirtualBlockDevice's factory.make_VirtualBlockDevice( filesystem_group=fsgroup, size=35 * 1000 ** 3 ) factory.make_VirtualBlockDevice( filesystem_group=fsgroup, size=5 * 1000 ** 3 ) expected_size = round_size_to_nearest_block( 40 * 1000 ** 3, PARTITION_ALIGNMENT_SIZE, False ) self.assertEqual(expected_size, fsgroup.get_lvm_allocated_size()) self.assertEqual( usable_size - expected_size, fsgroup.get_lvm_free_space() ) def test_get_virtual_block_device_block_size_returns_backing_for_bc(self): # This test is not included in the scenario below # `TestFilesystemGroupGetVirtualBlockDeviceBlockSize` because it has # different logic that doesn't fit in the scenario. filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.BCACHE ) filesystem = filesystem_group.get_bcache_backing_filesystem() self.assertEqual( filesystem.get_block_size(), filesystem_group.get_virtual_block_device_block_size(), ) def test_delete_deletes_filesystems_not_block_devices(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=bd ) for bd in block_devices ] filesystem_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG, filesystems=filesystems ) filesystem_group.delete() deleted_filesystems = reload_objects(Filesystem, filesystems) kept_block_devices = reload_objects(PhysicalBlockDevice, block_devices) self.assertItemsEqual([], deleted_filesystems) self.assertItemsEqual(block_devices, kept_block_devices) def test_delete_cannot_delete_volume_group_with_logical_volumes(self): volume_group = factory.make_FilesystemGroup( group_type=FILESYSTEM_GROUP_TYPE.LVM_VG ) factory.make_VirtualBlockDevice( size=volume_group.get_size(), filesystem_group=volume_group ) error = self.assertRaises(ValidationError, volume_group.delete) self.assertEqual( "This volume group has logical volumes; it cannot be deleted.", error.message, ) def test_delete_deletes_virtual_block_device(self): filesystem_group = factory.make_FilesystemGroup( group_type=factory.pick_enum( FILESYSTEM_GROUP_TYPE, but_not=FILESYSTEM_GROUP_TYPE.LVM_VG ) ) virtual_device = filesystem_group.virtual_device filesystem_group.delete() self.assertIsNone( reload_object(virtual_device), "VirtualBlockDevice should have been deleted.", ) class TestFilesystemGroupGetNiceName(MAASServerTestCase): scenarios = [ ( FILESYSTEM_GROUP_TYPE.LVM_VG, { "group_type": FILESYSTEM_GROUP_TYPE.LVM_VG, "name": "volume group", }, ), ( FILESYSTEM_GROUP_TYPE.RAID_0, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_0, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_1, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_1, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_5, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_5, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_6, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_6, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_10, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_10, "name": "RAID"}, ), ( FILESYSTEM_GROUP_TYPE.BCACHE, {"group_type": FILESYSTEM_GROUP_TYPE.BCACHE, "name": "Bcache"}, ), ( FILESYSTEM_GROUP_TYPE.VMFS6, {"group_type": FILESYSTEM_GROUP_TYPE.VMFS6, "name": "VMFS"}, ), ] def test_returns_prefix(self): filesystem_group = factory.make_FilesystemGroup( group_type=self.group_type ) self.assertEqual(self.name, filesystem_group.get_nice_name()) class TestFilesystemGroupGetNamePrefix(MAASServerTestCase): scenarios = [ ( FILESYSTEM_GROUP_TYPE.LVM_VG, {"group_type": FILESYSTEM_GROUP_TYPE.LVM_VG, "prefix": "vg"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_0, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_0, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_1, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_1, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_5, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_5, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_6, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_6, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.RAID_10, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_10, "prefix": "md"}, ), ( FILESYSTEM_GROUP_TYPE.BCACHE, {"group_type": FILESYSTEM_GROUP_TYPE.BCACHE, "prefix": "bcache"}, ), ( FILESYSTEM_GROUP_TYPE.VMFS6, {"group_type": FILESYSTEM_GROUP_TYPE.VMFS6, "prefix": "vmfs"}, ), ] def test_returns_prefix(self): filesystem_group = factory.make_FilesystemGroup( group_type=self.group_type ) self.assertEqual(self.prefix, filesystem_group.get_name_prefix()) class TestFilesystemGroupGetVirtualBlockDeviceBlockSize(MAASServerTestCase): scenarios = [ ( FILESYSTEM_GROUP_TYPE.LVM_VG, {"group_type": FILESYSTEM_GROUP_TYPE.LVM_VG, "block_size": 4096}, ), ( FILESYSTEM_GROUP_TYPE.RAID_0, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_0, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_1, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_1, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_5, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_5, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_6, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_6, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.RAID_10, {"group_type": FILESYSTEM_GROUP_TYPE.RAID_10, "block_size": 512}, ), ( FILESYSTEM_GROUP_TYPE.VMFS6, {"group_type": FILESYSTEM_GROUP_TYPE.VMFS6, "block_size": 1024}, ), # For BCACHE see # `test_get_virtual_block_device_block_size_returns_backing_for_bc` # above. ] def test_returns_block_size(self): filesystem_group = factory.make_FilesystemGroup( group_type=self.group_type ) self.assertEqual( self.block_size, filesystem_group.get_virtual_block_device_block_size(), ) class TestVolumeGroup(MAASServerTestCase): def test_objects_is_VolumeGroupManager(self): self.assertIsInstance(VolumeGroup.objects, VolumeGroupManager) def test_group_type_set_to_LVM_VG(self): obj = VolumeGroup() self.assertEqual(FILESYSTEM_GROUP_TYPE.LVM_VG, obj.group_type) def test_update_block_devices_and_partitions(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] new_block_device = factory.make_PhysicalBlockDevice(node=node) partition_block_device = factory.make_PhysicalBlockDevice( node=node, size=(MIN_BLOCK_DEVICE_SIZE * 4) + PARTITION_TABLE_EXTRA_SPACE, ) partition_table = factory.make_PartitionTable( block_device=partition_block_device ) partitions = [ partition_table.add_partition(size=MIN_BLOCK_DEVICE_SIZE) for _ in range(2) ] new_partition = partition_table.add_partition( size=MIN_BLOCK_DEVICE_SIZE ) initial_bd_filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, block_device=bd ) for bd in block_devices ] initial_part_filesystems = [ factory.make_Filesystem( fstype=FILESYSTEM_TYPE.LVM_PV, partition=part ) for part in partitions ] volume_group = factory.make_VolumeGroup( filesystems=initial_bd_filesystems + initial_part_filesystems ) deleted_block_device = block_devices[0] updated_block_devices = [new_block_device] + block_devices[1:] deleted_partition = partitions[0] update_partitions = [new_partition] + partitions[1:] volume_group.update_block_devices_and_partitions( updated_block_devices, update_partitions ) self.assertIsNone(deleted_block_device.get_effective_filesystem()) self.assertIsNone(deleted_partition.get_effective_filesystem()) self.assertEqual( volume_group.id, new_block_device.get_effective_filesystem().filesystem_group.id, ) self.assertEqual( volume_group.id, new_partition.get_effective_filesystem().filesystem_group.id, ) for device in block_devices[1:] + partitions[1:]: self.assertEqual( volume_group.id, device.get_effective_filesystem().filesystem_group.id, ) def test_create_logical_volume(self): volume_group = factory.make_VolumeGroup() name = factory.make_name() vguuid = "%s" % uuid4() size = random.randint(MIN_BLOCK_DEVICE_SIZE, volume_group.get_size()) logical_volume = volume_group.create_logical_volume( name=name, uuid=vguuid, size=size ) logical_volume = reload_object(logical_volume) expected_size = round_size_to_nearest_block( size, PARTITION_ALIGNMENT_SIZE, False ) self.assertThat( logical_volume, MatchesStructure.byEquality( name=name, uuid=vguuid, size=expected_size, block_size=volume_group.get_virtual_block_device_block_size(), ), ) class TestRAID(MAASServerTestCase): def test_objects_is_RAIDManager(self): self.assertIsInstance(RAID.objects, RAIDManager) def test_init_raises_ValueError_if_group_type_not_set_to_raid_type(self): self.assertRaises( ValueError, RAID, group_type=FILESYSTEM_GROUP_TYPE.LVM_VG ) def test_create_raid(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] for bd in block_devices[5:]: factory.make_PartitionTable(block_device=bd) partitions = [ bd.get_partitiontable().add_partition() for bd in block_devices[5:] ] spare_block_device = block_devices[0] spare_partition = partitions[0] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, block_devices=block_devices[1:5], partitions=partitions[1:], spare_devices=[spare_block_device], spare_partitions=[spare_partition], ) self.assertEqual("md0", raid.name) self.assertEqual( (6 * partitions[1].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) self.assertEqual(FILESYSTEM_GROUP_TYPE.RAID_6, raid.group_type) self.assertEqual(uuid, raid.uuid) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( 8, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID).count() ) self.assertEqual( 2, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID_SPARE).count(), ) def test_create_raid_0_with_a_spare_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=10 * 1000 ** 4) for _ in range(10) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_0, uuid=uuid, block_devices=block_devices[1:], partitions=[], spare_devices=block_devices[:1], spare_partitions=[], ) def test_create_raid_without_devices_fails(self): uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['At least one filesystem must have been " "added.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_0, uuid=uuid, block_devices=[], partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_0_with_one_element_fails(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 0 must have at least 2 raid " "devices and no spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_0, uuid=uuid, block_devices=[block_device], partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_1_with_spares(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] for bd in block_devices[5:]: factory.make_PartitionTable(block_device=bd) partitions = [ bd.get_partitiontable().add_partition() for bd in block_devices[5:] ] # Partition size will be smaller than the disk, because of overhead. spare_block_device = block_devices[0] spare_partition = partitions[0] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_1, uuid=uuid, block_devices=block_devices[1:5], partitions=partitions[1:], spare_devices=[spare_block_device], spare_partitions=[spare_partition], ) self.assertEqual("md0", raid.name) self.assertEqual( partitions[1].size - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) self.assertEqual(FILESYSTEM_GROUP_TYPE.RAID_1, raid.group_type) self.assertEqual(uuid, raid.uuid) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( 8, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID).count() ) self.assertEqual( 2, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID_SPARE).count(), ) def test_create_raid_1_with_one_element_fails(self): node = factory.make_Node() block_device = factory.make_PhysicalBlockDevice(node=node) uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 1 must have at least 2 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_1, uuid=uuid, block_devices=[block_device], partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_5_with_spares(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] for bd in block_devices[5:]: factory.make_PartitionTable(block_device=bd) partitions = [ bd.get_partitiontable().add_partition() for bd in block_devices[5:] ] spare_block_device = block_devices[0] spare_partition = partitions[0] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices[1:5], partitions=partitions[1:], spare_devices=[spare_block_device], spare_partitions=[spare_partition], ) self.assertEqual("md0", raid.name) self.assertEqual( (7 * partitions[1].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) self.assertEqual(FILESYSTEM_GROUP_TYPE.RAID_5, raid.group_type) self.assertEqual(uuid, raid.uuid) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( 8, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID).count() ) self.assertEqual( 2, raid.filesystems.filter(fstype=FILESYSTEM_TYPE.RAID_SPARE).count(), ) def test_create_raid_5_with_2_elements_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=10 * 1000 ** 4) for _ in range(2) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 5 must have at least 3 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_6_with_3_elements_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(3) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, block_devices=block_devices, partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_10_with_2_elements_fails(self): node = factory.make_Node() block_devices = [ factory.make_PhysicalBlockDevice(node=node) for _ in range(2) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 10 must have at least 3 raid " "devices and any number of spares.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_10, uuid=uuid, block_devices=block_devices, partitions=[], spare_devices=[], spare_partitions=[], ) def test_create_raid_with_block_device_from_other_node_fails(self): node1 = factory.make_Node() node2 = factory.make_Node() block_devices_1 = [ factory.make_PhysicalBlockDevice(node=node1) for _ in range(5) ] block_devices_2 = [ factory.make_PhysicalBlockDevice(node=node2) for _ in range(5) ] uuid = str(uuid4()) with ExpectedException( ValidationError, re.escape( "{'__all__': ['All added filesystems must belong to the " "same node.']}" ), ): RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_1, uuid=uuid, block_devices=block_devices_1 + block_devices_2, partitions=[], spare_devices=[], spare_partitions=[], ) def test_add_device_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice(node=node, size=device_size) raid.add_device(device, FILESYSTEM_TYPE.RAID) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (10 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_spare_device_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice(node=node, size=device_size) raid.add_device(device, FILESYSTEM_TYPE.RAID_SPARE) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_partition_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() raid.add_partition(partition, FILESYSTEM_TYPE.RAID) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (10 * partition.size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_spare_partition_to_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() raid.add_partition(partition, FILESYSTEM_TYPE.RAID_SPARE) self.assertEqual(11, raid.filesystems.count()) self.assertEqual( (9 * partition.size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_device_from_another_node_to_array_fails(self): node = factory.make_Node() other_node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice( node=other_node, size=device_size ) with ExpectedException( ValidationError, re.escape( "['Device needs to be from the same node as the rest of the " "array.']" ), ): raid.add_device(device, FILESYSTEM_TYPE.RAID) self.assertEqual(10, raid.filesystems.count()) # Still 10 devices self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_partition_from_another_node_to_array_fails(self): node = factory.make_Node() other_node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=other_node, size=device_size ) ).add_partition() with ExpectedException( ValidationError, re.escape( "['Partition must be on a device from the same node as " "the rest of the array.']" ), ): raid.add_partition(partition, FILESYSTEM_TYPE.RAID) self.assertEqual(10, raid.filesystems.count()) # Nothing added self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_add_already_used_device_to_array_fails(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) device = factory.make_PhysicalBlockDevice(node=node, size=device_size) Filesystem.objects.create( block_device=device, mount_point="/export/home", fstype=FILESYSTEM_TYPE.EXT4, ) with ExpectedException( ValidationError, re.escape("['There is another filesystem on this device.']"), ): raid.add_device(device, FILESYSTEM_TYPE.RAID) self.assertEqual(10, raid.filesystems.count()) # Nothing added. self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_remove_device_from_array_invalidates_array_fails(self): """Checks it's not possible to remove a device from an RAID in such way as to make the RAID invalid (a 1-device RAID-0/1, a 2-device RAID-5 etc). The goal is to make sure we trigger the RAID internal validation. """ node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(4) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, block_devices=block_devices, ) fsids_before = [fs.id for fs in raid.filesystems.all()] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): raid.remove_device(block_devices[0]) self.assertEqual(4, raid.filesystems.count()) self.assertEqual( (2 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) # Ensure the filesystems are the exact same before and after. self.assertItemsEqual( fsids_before, [fs.id for fs in raid.filesystems.all()] ) def test_remove_partition_from_array_invalidates_array_fails(self): """Checks it's not possible to remove a partition from an RAID in such way as to make the RAID invalid (a 1-device RAID-0/1, a 2-device RAID-5 etc). The goal is to make sure we trigger the RAID internal validation. """ node = factory.make_Node(bios_boot_method="uefi") device_size = 10 * 1000 ** 4 partitions = [ factory.make_PartitionTable( table_type=PARTITION_TABLE_TYPE.GPT, block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ), ).add_partition() for _ in range(4) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_6, uuid=uuid, partitions=partitions, ) fsids_before = [fs.id for fs in raid.filesystems.all()] with ExpectedException( ValidationError, re.escape( "{'__all__': ['RAID level 6 must have at least 4 raid " "devices and any number of spares.']}" ), ): raid.remove_partition(partitions[0]) self.assertEqual(4, raid.filesystems.count()) self.assertEqual( (2 * partitions[0].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) # Ensure the filesystems are the exact same before and after. self.assertItemsEqual( fsids_before, [fs.id for fs in raid.filesystems.all()] ) def test_remove_device_from_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices[:-2], spare_devices=block_devices[-2:], ) raid.remove_device(block_devices[0]) self.assertEqual(9, raid.filesystems.count()) self.assertEqual( (6 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) def test_remove_partition_from_array(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 partitions = [ factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, partitions=partitions[:-2], spare_partitions=partitions[-2:], ) raid.remove_partition(partitions[0]) self.assertEqual(9, raid.filesystems.count()) self.assertEqual( (6 * partitions[0].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) def test_remove_invalid_partition_from_array_fails(self): node = factory.make_Node(bios_boot_method="uefi") device_size = 10 * 1000 ** 4 partitions = [ factory.make_PartitionTable( table_type=PARTITION_TABLE_TYPE.GPT, block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ), ).add_partition() for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, partitions=partitions, ) with ExpectedException( ValidationError, re.escape("['Partition does not belong to this array.']"), ): raid.remove_partition( factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=device_size ) ).add_partition() ) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( (9 * partitions[0].size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size(), ) def test_remove_device_from_array_fails(self): node = factory.make_Node() device_size = 10 * 1000 ** 4 block_devices = [ factory.make_PhysicalBlockDevice(node=node, size=device_size) for _ in range(10) ] uuid = str(uuid4()) raid = RAID.objects.create_raid( name="md0", level=FILESYSTEM_GROUP_TYPE.RAID_5, uuid=uuid, block_devices=block_devices, ) with ExpectedException( ValidationError, re.escape("['Device does not belong to this array.']"), ): raid.remove_device( factory.make_PhysicalBlockDevice(node=node, size=device_size) ) self.assertEqual(10, raid.filesystems.count()) self.assertEqual( (9 * device_size) - RAID_SUPERBLOCK_OVERHEAD, raid.get_size() ) class TestBcache(MAASServerTestCase): def test_objects_is_BcacheManager(self): self.assertIsInstance(Bcache.objects, BcacheManager) def test_group_type_set_to_BCACHE(self): obj = Bcache() self.assertEqual(FILESYSTEM_GROUP_TYPE.BCACHE, obj.group_type) def test_create_bcache_with_physical_block_devices(self): """Checks creation of a Bcache with physical block devices for caching and backing roles.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_set = factory.make_CacheSet(node=node) backing_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) uuid = str(uuid4()) bcache = Bcache.objects.create_bcache( name="bcache0", uuid=uuid, cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) # Verify the filesystems were properly created on the target devices self.assertEqual(backing_size, bcache.get_size()) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_device.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_device.get_effective_filesystem().filesystem_group ) def test_create_bcache_with_virtual_block_devices(self): """Checks creation of a Bcache with virtual block devices for caching and backing roles.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_size = 1000 ** 4 # A caching device that's ridiculously fast to read from, but slow for # writing to it. cache_device = RAID.objects.create_raid( block_devices=[ factory.make_PhysicalBlockDevice(node=node, size=cache_size) for _ in range(10) ], level=FILESYSTEM_GROUP_TYPE.RAID_1, ).virtual_device cache_set = factory.make_CacheSet(block_device=cache_device) # A ridiculously reliable backing store. backing_device = RAID.objects.create_raid( block_devices=[ factory.make_PhysicalBlockDevice(node=node, size=backing_size) for _ in range(12) ], # 10 data devices, 2 checksum devices. level=FILESYSTEM_GROUP_TYPE.RAID_6, ).virtual_device bcache = Bcache.objects.create_bcache( cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEAROUND, ) # Verify the filesystems were properly created on the target devices self.assertEqual( (10 * backing_size) - RAID_SUPERBLOCK_OVERHEAD, bcache.get_size() ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_CACHE, cache_device.get_effective_filesystem().fstype, ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_device.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_device.get_effective_filesystem().filesystem_group ) def test_create_bcache_with_partitions(self): """Checks creation of a Bcache with partitions for caching and backing roles.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_size = 1000 ** 4 cache_partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=cache_size ) ).add_partition() cache_set = factory.make_CacheSet(partition=cache_partition) backing_partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=backing_size ) ).add_partition() uuid = str(uuid4()) bcache = Bcache.objects.create_bcache( name="bcache0", uuid=uuid, cache_set=cache_set, backing_partition=backing_partition, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) # Verify the filesystems were properly created on the target devices self.assertEqual(backing_partition.size, bcache.get_size()) self.assertEqual( FILESYSTEM_TYPE.BCACHE_CACHE, cache_partition.get_effective_filesystem().fstype, ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_partition.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_partition.get_effective_filesystem().filesystem_group, ) def test_create_bcache_with_block_devices_and_partition(self): """Checks creation of a Bcache with a partition for caching and a physical block device for backing.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_size = 1000 ** 4 cache_partition = factory.make_PartitionTable( block_device=factory.make_PhysicalBlockDevice( node=node, size=cache_size ) ).add_partition() cache_set = factory.make_CacheSet(partition=cache_partition) backing_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) uuid = str(uuid4()) bcache = Bcache.objects.create_bcache( name="bcache0", uuid=uuid, cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) # Verify the filesystems were properly created on the target devices self.assertEqual(backing_size, bcache.get_size()) self.assertEqual( FILESYSTEM_TYPE.BCACHE_CACHE, cache_partition.get_effective_filesystem().fstype, ) self.assertEqual( FILESYSTEM_TYPE.BCACHE_BACKING, backing_device.get_effective_filesystem().fstype, ) self.assertEqual(cache_set, bcache.cache_set) self.assertEqual( bcache, backing_device.get_effective_filesystem().filesystem_group ) def test_delete_bcache(self): """Ensures deletion of a bcache also deletes bcache filesystems from caching and backing devices.""" node = factory.make_Node() backing_size = 10 * 1000 ** 4 cache_set = factory.make_CacheSet(node=node) backing_device = factory.make_PhysicalBlockDevice( node=node, size=backing_size ) bcache = Bcache.objects.create_bcache( cache_set=cache_set, backing_device=backing_device, cache_mode=CACHE_MODE_TYPE.WRITEBACK, ) bcache.delete() # Verify both filesystems were deleted. self.assertIsNone(backing_device.get_effective_filesystem()) # Verify the cache_set is not deleted. self.assertIsNotNone(reload_object(cache_set))
agpl-3.0
4,331,299,812,725,828,600
36.123395
79
0.574106
false
MGEScan/mgescan
mgescan/utils.py
1
1147
import time import os, errno import subprocess as sub def get_abspath(path): try: return os.path.abspath(path) except: # print [DEBUG] Failed to convert a path to an absolute path return path def create_directory(path, skipifexists=True): if not os.path.exists(path): os.makedirs(path) else: if skipifexists: new_path = path + ".1" return create_directory(new_path, skipifexists) return get_abspath(path) def exists(path): try: return os.path.exists(path) except: return False def silentremove(filename): try: os.remove(filename) except OSError as e: # this would be "except OSError, e:" before Python 2.6 if e.errno != errno.ENOENT: # errno.ENOENT = no such file or directory raise # re-raise exception if a different error occured def cmd_exists(cmd): return sub.call(["which", cmd], stdout=sub.PIPE, stderr=sub.PIPE) == 0 def check_cmd(cmd): if not cmd_exists(cmd): print "=" * 50 print "[Error] " + cmd + " is not found. " print "=" * 50 time.sleep(3)
gpl-3.0
8,974,377,971,734,298,000
25.674419
79
0.61116
false