repo_name
stringlengths
5
92
path
stringlengths
4
232
copies
stringclasses
19 values
size
stringlengths
4
7
content
stringlengths
721
1.04M
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
15
997
alpha_frac
float64
0.25
0.97
autogenerated
bool
1 class
yusufnb/umlsequence
tailbone/__init__.py
1
5640
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cgi import functools import json import logging import os import re import string import time import webapp2 from google.appengine import api from google.appengine.ext import ndb from google.appengine.ext import testbed PREFIX = "/api/" NAMESPACE = os.environ.get("NAMESPACE", "") DEBUG = os.environ.get("SERVER_SOFTWARE", "").startswith("Dev") # Custom Exceptions class AppError(Exception): pass class BreakError(Exception): pass class LoginError(Exception): pass # Extensions to the jsonifying of python results def json_extras(obj): """Extended json processing of types.""" if hasattr(obj, "get_result"): # RPC return obj.get_result() if hasattr(obj, "strftime"): # datetime return obj.strftime("%Y-%m-%dT%H:%M:%S.") + str(obj.microsecond / 1000) + "Z" if isinstance(obj, ndb.GeoPt): return {"lat": obj.lat, "lon": obj.lon} return None # Decorator to return the result of a function as json. It supports jsonp by default. def as_json(func): """Returns json when callback in url""" @functools.wraps(func) def wrapper(self, *args, **kwargs): self.response.headers["Content-Type"] = "application/json" if DEBUG: self.response.headers["Access-Control-Allow-Origin"] = "*" self.response.headers["Access-Control-Allow-Methods"] = "POST,GET,PUT,PATCH,HEAD,OPTIONS" self.response.headers["Access-Control-Allow-Headers"] = "Content-Type" else: api.namespace_manager.set_namespace(NAMESPACE) try: resp = func(self, *args, **kwargs) if resp == None: resp = {} except BreakError as e: return except LoginError as e: self.response.set_status(401) url = api.users.create_login_url(self.request.url) resp = { "error": e.__class__.__name__, "message": e.message, "url": url } if api.app_identity.get_application_id() != testbed.DEFAULT_APP_ID: logging.error(str(e)) except (AppError, api.datastore_errors.BadArgumentError, api.datastore_errors.BadRequestError) as e: self.response.set_status(400) resp = { "error": e.__class__.__name__, "message": e.message } if api.app_identity.get_application_id() != testbed.DEFAULT_APP_ID: logging.error(str(e)) if not isinstance(resp, str) and not isinstance(resp, unicode): resp = json.dumps(resp, default=json_extras) # # UNCOMMENT TO ENABLE JSONP # callback = self.request.get("callback") # if callback: # self.response.headers["Content-Type"] = "text/javascript" # resp = "%s(%s);" % (_callback, resp) self.response.out.write(resp) return wrapper # BaseHandler for error handling class BaseHandler(webapp2.RequestHandler): def handle_exception(self, exception, debug): # Log the error. logging.error(exception) # If the exception is a HTTPException, use its error code. # Otherwise use a generic 500 error code. if isinstance(exception, webapp2.HTTPException): self.response.set_status(exception.code) else: self.response.set_status(500) return {"error": str(exception)} re_json = re.compile(r"^application/json", re.IGNORECASE) # Parse the body of an upload based on the type if you are trying to post a cgi.FieldStorage object # you should instead upload those blob separately via the special /api/files url. def parse_body(self): if re_json.match(self.request.content_type): data = json.loads(self.request.body) else: data = {} for k,v in self.request.POST.items(): if isinstance(v, cgi.FieldStorage): raise AppError("Files should be uploaded separately as their own form to /api/files/ and \ then their ids should be uploaded and stored with the object.") if type(v) in [str, unicode]: try: v = json.loads(v) except ValueError: pass # TODO(doug): Bug when loading multiple json lists with same key # TODO(doug): Bug when loading a number that should be a string representation of said number if data.has_key(k): current = data[k] if isinstance(current, list): current.append(v) else: data[k] = [current,v] else: data[k] = v return data or {} # converting numbers to strings so that the user id is represented more consistently def convert_num_to_str(num): s = "" num = str(num) i = 0 l = len(num) letters = string.ascii_letters while True: if i == l-1: s += letters[int(num[i])] break if i >= l: break x = num[i] n = int(x+num[i+1]) if n < 52: s += letters[n] i += 2 else: s += letters[int(x)] i += 1 return s def convert_str_to_num(s): num = "" for x in s: num += str(string.ascii_letters.index(x)) return num # Fetch the current user id or None def current_user(required=False): u = api.users.get_current_user() if u: return convert_num_to_str(u.user_id()) if required: raise LoginError("User must be logged in.") return None
apache-2.0
-7,691,145,162,515,019,000
30.333333
99
0.661525
false
succhiello/hieratic-dynamodb
tests/test_flat.py
1
3792
from pytest import fixture, raises from datetime import datetime from boto3.dynamodb.conditions import Key from hieratic.collection import CollectionResource from hieratic.index import SimpleIndex @fixture def UsersResource(UserResource, ddb): @CollectionResource.define( item_class=UserResource, primary_index=SimpleIndex(('organization_id', int), ('id', int)), ) class UsersRes(CollectionResource): def __init__(self): CollectionResource.__init__( self, None, 'users', 'dynamodb', 'HieraticDynamoDBTestUser', ddb, ) return UsersRes class TestFlat(object): def test_flat(self, user_table, UsersResource, User): users_resource = UsersResource() now = datetime.now() user_resource = users_resource.create(User(organization_id=0, id=0, created_at=now, phone={ 'home': '00011112222', 'work': '33344445555', })) user = user_resource.data assert user.organization_id == 0 assert user.id == 0 assert user.created_at == now assert user.phone == { 'home': '00011112222', 'work': '33344445555', } user_resource = users_resource['0_0'] user = user_resource.data assert user.organization_id == 0 assert user.id == 0 assert user.created_at == now assert user.phone == { 'home': '00011112222', 'work': '33344445555', } user_ressource = users_resource.retrieve(0, 0) user = user_resource.data assert user.organization_id == 0 assert user.id == 0 assert user.created_at == now assert user.phone == { 'home': '00011112222', 'work': '33344445555', } user_resource.update(name='updated', phone={'work': '66677778888'}) user = user_resource.data assert user.name == 'updated' assert user.phone == { 'home': '00011112222', 'work': '66677778888', } raw_user = users_resource.engine.table.get_item(Key={ 'organization_id': 0, 'id': 0, })['Item'] assert raw_user['name'] == 'updated' assert raw_user['phone'] == { 'home': '00011112222', 'work': '66677778888', } user_resource.delete() user = user_resource.data assert user is None with raises(KeyError): users_resource['0_0'] with CollectionResource.get_context('dynamodb') as context: users_resource.create(User(organization_id=0, id=1), context) users_resource.create(User(organization_id=0, id=2), context) users_resource.create(User(organization_id=0, id=3), context) assert len(list(users_resource.query(KeyConditionExpression=Key('organization_id').eq(0)))) == 0 user_resources = [u_res for u_res in users_resource.query(KeyConditionExpression=Key('organization_id').eq(0))] assert [1, 2, 3] == [u_res.data.id for u_res in user_resources] assert [1, 3] == sorted( u_res.data.id for u_res in users_resource.bulk_get(Keys=[{'organization_id': 0, 'id': 1}, {'organization_id': 0, 'id': 3}]) ) with CollectionResource.get_context('dynamodb') as context: for u_res in user_resources: u_res.delete(context) assert len(list(users_resource.query(KeyConditionExpression=Key('organization_id').eq(0)))) == 3 assert len(list(users_resource.query(KeyConditionExpression=Key('organization_id').eq(0)))) == 0
mit
2,531,767,255,374,252,000
31.698276
119
0.565137
false
qiyeboy/SpiderBook
ch15/15.3.py
1
1487
#coding:utf-8 from scrapy.dupefilters import RFPDupeFilter class URLFilter(RFPDupeFilter): """根据url过滤""" def __init__(self, path=None,debug=False): self.urls_seen = set() RFPDupeFilter.__init__(self, path) def request_seen(self, request): if request.url in self.urls_seen: return True else: self.urls_seen.add(request.url) ''' from scrapy.dupefilters import RFPDupeFilter from w3lib.util.url import canonicalize_url class URLSha1Filter(RFPDupeFilter): """根据urlsha1过滤""" def __init__(self, path=None,debug=False): self.urls_seen = set() RFPDupeFilter.__init__(self, path) def request_seen(self, request): fp = hashlib.sha1() fp.update(canonicalize_url(request.url)) url_sha1 = fp.hexdigest() if url_sha1 in self.urls_seen: return True else: self.urls_seen.add(url_sha1) ''' ''' class URLBloomFilter(RFPDupeFilter): """根据urlhash_bloom过滤""" def __init__(self, path=None,debug=False): self.urls_sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH) RFPDupeFilter.__init__(self, path) def request_seen(self, request): fp = hashlib.sha1() fp.update(canonicalize_url(request.url)) url_sha1 = fp.hexdigest() if url_sha1 in self.urls_sbf: return True else: self.urls_sbf.add(url_sha1) '''
mit
5,596,792,075,468,190,000
28.877551
86
0.611073
false
red-hood/calendarserver
txweb2/dav/test/test_options.py
1
2178
## # Copyright (c) 2005-2015 Apple Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # DRI: Wilfredo Sanchez, [email protected] ## from txweb2.iweb import IResponse import txweb2.dav.test.util from txweb2.test.test_server import SimpleRequest class OPTIONS(txweb2.dav.test.util.TestCase): """ OPTIONS request """ def test_DAV1(self): """ DAV level 1 """ return self._test_level("1") def test_DAV2(self): """ DAV level 2 """ return self._test_level("2") test_DAV2.todo = "DAV level 2 unimplemented" def test_ACL(self): """ DAV ACL """ return self._test_level("access-control") def _test_level(self, level): def doTest(response): response = IResponse(response) dav = response.headers.getHeader("dav") if not dav: self.fail("no DAV header: %s" % (response.headers,)) self.assertIn(level, dav, "no DAV level %s header" % (level,)) return response return self.send(SimpleRequest(self.site, "OPTIONS", "/"), doTest)
apache-2.0
5,452,795,465,631,442,000
31.507463
80
0.671717
false
svalenti/FLOYDS_pipeline
site_code/plot_xmlguideinfo.py
1
6671
#!/opt/epd/bin/python import pyfits import os #import matplotlib #matplotlib.use('Agg') import scipy from numpy import array, where, nan from xml.dom import minidom from plot_guideinfo import plot_guideflux, plot_guidepos, plot_xposwtime, plot_yposwtime, plot_fwhmwtime, plot_guidestate def mk_guideinfo_plots(rootname, utstart, utstop, logname, debug=True): '''Generate plots from FITS guide images''' if debug: print 'mk_guide_plots: Got:', rootname, utstart, utstop, logname (timeimg_list, fileimg_list) = readlogfile(logname) timeimg = scipy.array(timeimg_list) fileimg = scipy.array(fileimg_list) #pull out all lines from the guide file that happened between utstart and utstop time_cull = timeimg * (timeimg > float(utstart)) * (timeimg < float(utstop)) timeimg_gd = timeimg[where(time_cull != 0)] fileimg_gd = fileimg[where(time_cull != 0)] if fileimg_gd.size <= 0: print 'No guide frames taken during exposure!' else: guidecheck = 1 mjd_list = read_mjd_from_guide_fits(fileimg_gd) mjd_arr = array(mjd_list) mjd_arr = mjd_arr - (min(mjd_arr)-0.1/60.0/24.0) mjd_arr_sec = mjd_arr*24.0*60.0*60.0 if debug >2: print mjd_list guidestate_list = read_guidestate_from_guide_fits(fileimg_gd) plot_guidestate(mjd_arr_sec,guidestate_list) guidestateplotname = rootname+'_guidestate.png' retval = os.system('mv yo.png '+guidestateplotname) if debug: print "mv from yo.png to",guidestateplotname,"had status",retval # xmlfiles_gd = [f.replace('.fits', '.fits.inst.guide.xml') for f in fileimg_gd] xmlfiles_gd = [f.replace('.fits', '.fits.guide.xml').replace('flash/', 'cat/') for f in fileimg_gd] if debug: print xmlfiles_gd (totcnts_gd, xcen_gd, ycen_gd, fwhm_gd) = read_stats_from_xml_files(xmlfiles_gd) plot_guideflux(mjd_arr_sec,totcnts_gd) guidecountplotname = rootname+'_guidecounts.png' retval = os.system('mv yo.png '+guidecountplotname) if debug: print "mv from yo.png to",guidecountplotname,"had status",retval plot_guidepos(xcen_gd,ycen_gd) guidexypos_plotname = rootname+'_guidexy.png' retval = os.system('mv yo_xy.png '+guidexypos_plotname) if debug: print "mv from yo_xy.png to",guidexypos_plotname,"had status",retval plot_xposwtime(mjd_arr_sec,xcen_gd) guidext_plotname = rootname+'_guidext.png' retval = os.system('mv yo_xt.png '+guidext_plotname) if debug: print "mv from yo_xt.png to",guidext_plotname,"had status",retval plot_yposwtime(mjd_arr_sec,ycen_gd) guideyt_plotname = rootname+'_guideyt.png' retval = os.system('mv yo_yt.png '+guideyt_plotname) if debug: print "mv from yo_yt.png to",guideyt_plotname,"had status",retval plot_fwhmwtime(mjd_arr_sec,fwhm_gd) guidefwhmt_plotname = rootname+'_guidefwhmt.png' retval = os.system('mv yo_fwhm.png '+guidefwhmt_plotname) if debug: print "mv from yo_fwhm.png to",guidefwhmt_plotname,"had status",retval return def readlogfile(logfile): '''Read in the new-style guide log which consists of UTC datetime of guide frame start (e.g. 20140411050644) and the path and filename of the guide image. The HHMMSS part of the datetime and the filenames are returned in 2 lists''' log_fh = open(logfile, 'r') timeimg = [] fileimg = [] for line in log_fh.readlines(): chunks = line.split() if len(chunks) == 2: timestr = chunks[0] timestr = timestr[8:] timeimg.append(float(timestr)) fileimg.append(chunks[1]) log_fh.close() return [timeimg, fileimg] def read_mjd_from_guide_fits(fits_images): '''Loops through the <fits_images> list of FITS guide frames, reading in the MJD and returning this as a list of floats''' mjd_list = [] for _fileimg in fits_images: headlist = pyfits.open(_fileimg) headnow = headlist[0].header mjdnow = headnow['MJD-OBS'] try: mjd_list.append(float(mjdnow)) except NameError: mjd_list = [float(mjdnow)] headlist.close() return mjd_list def read_guidestate_from_guide_fits(fits_images): '''Loops through the <fits_images> list of FITS guide frames, reading in the AGSTATE and returning this as a list of strings''' guidestate_list = [] for _fileimg in fits_images: headlist = pyfits.open(_fileimg) headnow = headlist[0].header guidestatenow = headnow['AGSTATE'] try: guidestate_list.append(guidestatenow) except NameError: guidestate_list = [guidestatenow] headlist.close() return guidestate_list def read_stats_from_xml_files(xmlfiles): totcnts_gd = [] xcen_gd = [] ycen_gd = [] fwhm_gd = [] for x in xmlfiles: (counts, fwhm, x_center, y_center) = read_xml_guide_file(x) if None not in [counts, fwhm, x_center, y_center]: totcnts_gd.append(counts) xcen_gd.append(x_center) ycen_gd.append(y_center) fwhm_gd.append(fwhm) else: print "No values found for", x return (totcnts_gd, xcen_gd, ycen_gd, fwhm_gd) def getXMLvalues(element, tag, debug=False): '''Extract the value from the searched-for tag in the passed element and return the value. Note: the above are semirandom words which probably don't have meaning or understanding...''' thing = element.getElementsByTagName(tag)[0] thing_value = thing.childNodes[0].data if debug: print thing_value return thing_value def read_xml_guide_file(guidefile, debug=False): guide_doc = minidom.parse(guidefile) centroids = guide_doc.getElementsByTagName("centroids") flux_value = nan fwhm_value = nan x_pixel = nan y_pixel = nan for centroid in centroids: guidestar = centroid.getElementsByTagName("guideStar")[0] gs_value = guidestar.childNodes[0] if debug: print gs_value if gs_value.data == 'true': if debug: print "Found guidestar", gs_value.nodeType, gs_value.nodeValue flux_value = getXMLvalues(centroid, "totalFlux") fwhm_value = getXMLvalues(centroid, "fwhm") guidepixel = centroid.getElementsByTagName("pixel")[0] x_pixel = getXMLvalues(guidepixel, "x") y_pixel = getXMLvalues(guidepixel, "y") return (flux_value, fwhm_value, x_pixel, y_pixel)
mit
424,357,099,756,460,800
34.484043
121
0.637086
false
GabrielRF/RastreioBot
async_routine.py
1
5684
import configparser import logging.handlers import sys from datetime import datetime from time import time, sleep from utils.misc import check_update from utils.misc import async_check_update from utils.misc import check_type import apis.apicorreios as correios import apis.apitrackingmore as trackingmore from rastreio import db as db_ops import random import requests import telebot import asyncio import motor.motor_asyncio from aiogram import Bot, Dispatcher, executor, types from aiogram.utils import executor config = configparser.ConfigParser() config.read('bot.conf') TOKEN = config['RASTREIOBOT']['TOKEN'] LOG_ALERTS_FILE = config['RASTREIOBOT']['alerts_log'] PATREON = config['RASTREIOBOT']['patreon'] INTERVAL = 0.03 logger_info = logging.getLogger('InfoLogger') handler_info = logging.handlers.TimedRotatingFileHandler( LOG_ALERTS_FILE, when='midnight', interval=1, backupCount=7, encoding='utf-8' ) #handler_info = logging.FileHandler(LOG_ALERTS_FILE) logger_info.setLevel(logging.DEBUG) logger_info.addHandler(handler_info) bot = Bot(token=TOKEN) dp = Dispatcher(bot) client = motor.motor_asyncio.AsyncIOMotorClient() db = client.rastreiobot async def get_package(code): print(code) stat = await async_check_update(code) if stat == 0: stat = 'Sistema dos Correios fora do ar.' elif stat == 1: stat = None elif stat == 3: stat = None else: cursor = await db.rastreiobot.update_one ( { "code" : code.upper() }, { "$set": { "stat" : stat, "time" : str(time()) } }) stat = 10 return stat def check_system(): try: URL = ('http://webservice.correios.com.br/') response = requests.get(URL, timeout=10) except: logger_info.info(str(datetime.now()) + '\tCorreios indisponível') return False if '200' in str(response): return True else: logger_info.info(str(datetime.now()) + '\tCorreios indisponível') return False def is_finished_package(old_state): old_state = old_state.lower() finished_states = [ 'objeto entregue ao', 'objeto apreendido por órgão de fiscalização', 'objeto devolvido', 'objeto roubado', 'delivered', 'postado', 'ect', ] for state in finished_states: if state in old_state: return True return False async def up_package(elem): code = elem['code'] should_retry_finished_package = random.randint(0,5) try: old_state = elem['stat'][len(elem['stat'])-1].lower() len_old_state = len(elem['stat']) except: old_state = "" len_old_state = 1 if is_finished_package(old_state) and not should_retry_finished_package: return stat = await get_package(code) if stat == 0: return cursor2 = await db.rastreiobot.find_one( { "code": code }) try: len_new_state = len(cursor2['stat']) except: len_new_state = 1 if len_old_state == len_new_state: return len_diff = len_new_state - len_old_state for user in elem.get('users', []): logger_info.info(str(datetime.now()) + ' ' + str(code) + ' \t' + str(user) + ' \t' + str(len_old_state) + '\t' + str(len_new_state) + '\t' + str(len_diff)) try: try: #pacote chines com codigo br message = (str(u'\U0001F4EE') + '<b>' + code + '</b> (' + elem['code_br'] + ')\n') except: message = (str(u'\U0001F4EE') + '<a href="https://t.me/rastreiobot?start=' + code + '">' + code + '</a>\n') try: if code not in elem[user]: message = message + '<b>' + elem[user] + '</b>\n' except: pass for k in reversed(range(1,len_diff+1)): message = ( message + '\n' + cursor2['stat'][len(cursor2['stat'])-k] + '\n') if 'objeto entregue' in message.lower() and user not in PATREON: message = (message + '\n' + str(u'\U0001F4B3') + ' Me ajude a manter o projeto vivo!\nEnvie /doar e veja as opções ' + str(u'\U0001F4B5')) if len_old_state < len_new_state: await bot.send_message(str(user), message, parse_mode='HTML', disable_web_page_preview=True) except Exception as e: logger_info.info(str(datetime.now()) + ' EXCEPT: ' + str(user) + ' ' + code + ' ' + str(e)) if 'deactivated' in str(e): db_ops.remove_user_from_package(code, str(user)) elif 'blocked' in str(e): db_ops.remove_user_from_package(code, str(user)) elif 'kicked' in str(e): db_ops.remove_user_from_package(code, str(user)) continue async def async_main(): cursor1 = db.rastreiobot.find() start = time() if check_system(): pass else: print("exit") return # await bot.send_message(str(-340600919), "oi", parse_mode='HTML', # disable_web_page_preview=True) tasks = [] n = 0 async for elem in cursor1: api_type = check_type(elem['code']) if api_type is correios: n += 1 tasks.append(up_package(elem)) await asyncio.gather(*tasks) if __name__ == '__main__': executor.start(dp, async_main()) # ida ao banco # chamada da api # fala com o usuario
gpl-3.0
-1,492,536,038,591,025,700
27.238806
123
0.563073
false
sunlightlabs/hanuman
extraction/migrations/0001_initial.py
1
1699
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.contrib.postgres.fields import uuid class Migration(migrations.Migration): dependencies = [ ('data_collection', '0004_auto_20150512_2124'), ] operations = [ migrations.CreateModel( name='Bio', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.TextField()), ('bio_text', django.contrib.postgres.fields.ArrayField(size=None, base_field=models.TextField(), blank=True)), ('url', models.URLField()), ('position', models.PositiveIntegerField(default=0)), ('automated', models.BooleanField(default=True)), ('firm', models.ForeignKey(to='data_collection.Firm')), ], ), migrations.CreateModel( name='FirmTrainingSet', fields=[ ('id', models.UUIDField(default=uuid.uuid4, serialize=False, editable=False, primary_key=True)), ('spider_complete', models.BooleanField(default=False)), ('page_classifier_trained', models.BooleanField(default=False)), ('element_classifier_trained', models.BooleanField(default=False)), ('extraction_complete', models.BooleanField(default=False)), ('firm', models.OneToOneField(to='data_collection.Firm')), ], ), migrations.AlterUniqueTogether( name='bio', unique_together=set([('url', 'position')]), ), ]
bsd-3-clause
-7,269,391,328,728,008,000
38.511628
126
0.576221
false
Ultimaker/Uranium
examples/definition_viewer/main.py
1
2488
# Copyright (c) 2017 Ultimaker B.V. # Uranium is released under the terms of the LGPLv3 or higher. import sys import os.path import signal import traceback from PyQt5.QtCore import QObject, QUrl, pyqtSlot, pyqtProperty, pyqtSignal from PyQt5.QtQml import QQmlApplicationEngine, qmlRegisterType from PyQt5.QtWidgets import QApplication import UM.Resources import UM.Settings import DefinitionTreeModel class DefinitionLoader(QObject): def __init__(self, parent = None): super().__init__(parent) self._metadata = {} self._definition_id = "" @pyqtSlot("QUrl", result = str) def load(self, file_path): try: definition = UM.Settings.DefinitionContainer(file_path.fileName()) dirname = os.path.dirname(file_path.toLocalFile()) UM.Resources.Resources.addSearchPath(dirname) UM.Resources.Resources.addSearchPath(os.path.realpath(os.path.join(dirname, ".."))) with open(file_path.toLocalFile(), encoding = "utf-8") as data: definition.deserialize(data.read()) self._metadata = dict(definition.metaData) self.metaDataChanged.emit() UM.Settings.ContainerRegistry.ContainerRegistry.getInstance().addContainer(definition) self._definition_id = definition.id self.loaded.emit() except Exception as e: error_text = "An exception occurred loading file {0}:\n".format(file_path) error_text += str(e) error_text += traceback.format_exc() self.error.emit(error_text) loaded = pyqtSignal() error = pyqtSignal(str, arguments=["errorText"]) metaDataChanged = pyqtSignal() @pyqtProperty("QVariantMap", notify=metaDataChanged) def metaData(self): return self._metadata @pyqtProperty(str, notify=loaded) def definitionId(self): return self._definition_id signal.signal(signal.SIGINT, signal.SIG_DFL) file_name = None if len(sys.argv) > 1: file_name = sys.argv[1] del sys.argv[1] app = QApplication(sys.argv) engine = QQmlApplicationEngine() qmlRegisterType(DefinitionLoader, "Example", 1, 0, "DefinitionLoader") qmlRegisterType(DefinitionTreeModel.DefinitionTreeModel, "Example", 1, 0, "DefinitionTreeModel") if file_name: engine.rootContext().setContextProperty("open_file", QUrl.fromLocalFile(file_name)) engine.load(os.path.join(os.path.dirname(os.path.abspath(__file__)), "main.qml")) app.exec_()
lgpl-3.0
230,418,118,665,629,400
30.897436
98
0.67926
false
vanyh/handkeinzungen-app
browsing/views.py
1
13527
from django_tables2 import SingleTableView, RequestConfig from bib.models import * from words.models import ForeignLemma, GermanLemma from .filters import * from .forms import * from .tables import * class GenericListView(SingleTableView): filter_class = None formhelper_class = None context_filter_name = 'filter' paginate_by = 25 template_name = 'browsing/generic_list.html' def get_queryset(self, **kwargs): qs = super(GenericListView, self).get_queryset() self.filter = self.filter_class(self.request.GET, queryset=qs) self.filter.form.helper = self.formhelper_class() return self.filter.qs def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) return table def get_context_data(self, **kwargs): context = super(GenericListView, self).get_context_data() # context[self.context_filter_name] = self.filter context['docstring'] = "{}".format(self.model.__doc__) try: context['class_name'] = self.model.get_alternative_classname() except AttributeError: if self.model.__name__.endswith('s'): context['class_name'] = "{}".format(self.model.__name__) else: context['class_name'] = "{}s".format(self.model.__name__) try: context['create_view_link'] = self.model.get_createview_url() except AttributeError: context['create_view_link'] = None return context class PlaceListView(GenericListView): model = Place table_class = PlaceTable filter_class = PlaceListFilter formhelper_class = PlaceFilterFormHelper init_columns = ['id', 'name', 'part_of'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(PlaceListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class AlternativeNameListView(GenericListView): model = AlternativeName table_class = AlternativeNameTable filter_class = AlternativeNameListFilter formhelper_class = AlternativeNameFilterFormHelper init_columns = ['id', 'name', 'part_of'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(AlternativeNameListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class GermanLemmaListView(GenericListView): model = GermanLemma table_class = GermanLemmaTable filter_class = GermanLemmaListFilter formhelper_class = GermanLemmaFilterFormHelper init_columns = ['lemma', 'url', 'pos', 'translation'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(GermanLemmaListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class ForeignLemmaListView(GenericListView): model = ForeignLemma table_class = ForeignLemmaTable filter_class = ForeignLemmaListFilter formhelper_class = ForeignLemmaFilterFormHelper init_columns = ['lemma', 'language', 'uebersetzung'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(ForeignLemmaListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class PartOfQuoteListView(GenericListView): model = PartOfQuote table_class = PartOfQuoteTable filter_class = PartOfQuoteListFilter formhelper_class = PartOfQuoteFilterFormHelper init_columns = ['text', 'part_of', 'source', 'speaker', 'language'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(PartOfQuoteListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class QuoteListView(GenericListView): model = Quote table_class = QuoteTable filter_class = QuoteListFilter formhelper_class = QuoteFilterFormHelper init_columns = ['text', 'book_source', 'zitatsprache'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(QuoteListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class WorkListView(GenericListView): model = Work table_class = WorkTable filter_class = WorkListFilter formhelper_class = WorkFilterFormHelper init_columns = ['title', 'veroeffentlicht', 'author', 'main_language', 'creation_start_date'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(WorkListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class BookListView(GenericListView): model = Book table_class = BookTable filter_class = BookListFilter formhelper_class = BookFilterFormHelper init_columns = ['title', 'bookauthor', 'publication_year'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(BookListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class PersonListView(GenericListView): model = Person table_class = PersonTable filter_class = PersonListFilter formhelper_class = PersonFilterFormHelper init_columns = ['first_name', 'last_name', 'person_gnd'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(PersonListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table class SpeakerListView(GenericListView): model = Speaker table_class = SpeakerTable filter_class = SpeakerListFilter formhelper_class = SpeakerFilterFormHelper init_columns = ['name', 'definition', 'alt_name', 'related_works'] def get_all_cols(self): all_cols = list(self.table_class.base_columns.keys()) return all_cols def get_context_data(self, **kwargs): context = super(SpeakerListView, self).get_context_data() context[self.context_filter_name] = self.filter togglable_colums = [x for x in self.get_all_cols() if x not in self.init_columns] context['togglable_colums'] = togglable_colums return context def get_table(self, **kwargs): table = super(GenericListView, self).get_table() RequestConfig(self.request, paginate={ 'page': 1, 'per_page': self.paginate_by}).configure(table) default_cols = self.init_columns all_cols = self.get_all_cols() selected_cols = self.request.GET.getlist("columns") + default_cols exclude_vals = [x for x in all_cols if x not in selected_cols] table.exclude = exclude_vals return table
mit
-3,883,044,588,713,250,000
38.437318
97
0.64922
false
mwhagedorn/basaGC
basagc/computer.py
1
11894
#!/usr/bin/env python2 # -*- coding: UTF-8 -*- """This file contains the guts of the guidance computer""" # This file is part of basaGC (https://github.com/cashelcomputers/basaGC), # copyright 2014 Tim Buchanan, cashelcomputers (at) gmail.com # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # # Includes code and images from the Virtual AGC Project # (http://www.ibiblio.org/apollo/index.html) by Ronald S. Burkey # <[email protected]> import wx import burn import config import utils import dsky import verbs import nouns import programs from telemachus import check_connection, get_telemetry import telemachus class Computer(object): """ This object models the core of the guidance computer. """ def __init__(self, gui): """ Class constructor. :param gui: the wxPython frame object :return: None """ utils.log(message="\n\n" + config.SHORT_LICENCE + "\n", log_level="INFO") self.gui = gui self.dsky = dsky.DSKY(self.gui, self) self.loop_timer = wx.Timer(gui) gui.Bind(wx.EVT_TIMER, self.main_loop, self.loop_timer) self.is_powered_on = False self.main_loop_table = [] self.gui.Bind(wx.EVT_CLOSE, self.quit) self.alarm_codes = [0, 0, 0] self.running_program = None self.noun_data = { "30": [], } self.next_burn = None self._burn_queue = [] self.is_ksp_connected = None self.ksp_paused_state = None self.is_direction_autopilot_engaged = False self.is_thrust_autopilot_engaged = False self.moi_burn_delta_v = 0.0 # a bit of a hack, need to rethink this burn.gc = self telemachus.gc = self verbs.gc = self verbs.dsky = self.dsky verbs.frame = self.gui nouns.gc = self nouns.dsky = self.dsky nouns.frame = self.gui programs.gc = self programs.dsky = self.dsky self.nouns = nouns.nouns self.verbs = verbs.verbs self.programs = programs.programs self.option_codes = { "00001": "", "00002": "", "00003": "", "00004": "", "00007": "", "00024": "", } self.on() def add_burn_to_queue(self, burn_object, execute=True): """ Adds a Burn object to the computer burn queue. If no burn is assigned to next_burn, load new burn to next_burn :param burn_object: a Burn object that contains parameters for the burn :param execute: if true, execute the added burn :return: None """ self._burn_queue.append(burn_object) if not self.next_burn: self.next_burn = self._burn_queue.pop() if execute: self.next_burn.execute() def remove_burn(self, this_burn): """ Removes a given Burn object from the computers burn queue :param this_burn: the Burn object to remove :return: None """ if this_burn == self.next_burn: self.next_burn = None if this_burn in self._burn_queue: self._burn_queue.remove(this_burn) def burn_complete(self): """ Removes a completed burn and loads next queued burn if available. :return: None """ utils.log("Removing {} from burn queue".format(self.next_burn)) self.next_burn = None if self._burn_queue: utils.log("Adding {} as next burn".format(self._burn_queue[0])) self.next_burn = self._burn_queue.pop() def disable_direction_autopilot(self): """ Disables the directional autopilot :return: None """ telemachus.disable_smartass() self.is_direction_autopilot_engaged = False utils.log("Autopilot disabled", log_level="INFO") def quit(self, event=None): """ Quits basaGC. :param event: wxPython event (not used) :return: None """ # disables SMARTASS try: telemachus.disable_smartass() except TypeError: pass # if self.loop_timer.is_running: # self.loop_timer.stop() self.gui.Destroy() def on(self): """ Turns the guidance computer on. :return: None """ utils.log("Computer booting...", log_level="INFO") # attempt to load telemetry listing try: telemachus.telemetry = telemachus.get_api_listing() except telemachus.KSPNotConnected: utils.log("Cannot retrieve telemetry listing - no connection to KSP", log_level="WARNING") self.dsky.annunciators["no_att"].on() else: utils.log("Retrieved telemetry listing", log_level="INFO") self.loop_timer.Start(config.LOOP_TIMER_INTERVAL) self.is_powered_on = True for display_item in self.dsky.static_display: display_item.on() def main_loop(self, event): """ The guidance computer main loop. :return: None """ # Check if we have a connection to KSP self.check_ksp_connection() # check KSP paused state self.check_paused_state() # if self.run_average_g_routine: # routines.average_g() for item in self.main_loop_table: item() def go_to_poo(self): """ Executes program 00. Name comes from NASA documentation :) :return: None """ poo = self.programs["00"]() poo.execute() def execute_verb(self, verb, noun=None, **kwargs): """ Executes the specified verb, optionally with the specified noun. :param verb: The verb to execute :param noun: The noun to supply to the verb :return: None """ if noun is not None: self.dsky.set_noun(noun) verb = str(verb) noun = str(noun) self.dsky.control_registers["verb"].display(verb) if int(verb) < 40: verb_to_execute = self.verbs[verb](noun) else: verb_to_execute = self.verbs[verb]() verb_to_execute.execute(**kwargs) def reset_alarm_codes(self): """ Resets the alarm codes. :return: None """ self.alarm_codes[2] = self.alarm_codes[0] self.alarm_codes[0] = 0 self.alarm_codes[1] = 0 def program_alarm(self, alarm_code): """ Sets the program alarm codes in memory and turns the PROG annunciator on. :param alarm_code: a 3 or 4 digit octal int of the alarm code to raise :return: None """ utils.log("PROGRAM ALARM {}: {}".format(str(alarm_code), config.ALARM_CODES[alarm_code]), log_level="ERROR") alarm_code += 1000 if self.alarm_codes[0] != 0: self.alarm_codes[1] = self.alarm_codes[0] self.alarm_codes[0] = alarm_code self.alarm_codes[2] = self.alarm_codes[0] self.dsky.annunciators["prog"].on() def poodoo_abort(self, alarm_code): """ Terminates the faulty program, and executes Program 00 (P00) :param alarm_code: a 3 digit octal int of the alarm code to raise :return: None """ alarm_message = config.ALARM_CODES[alarm_code] alarm_code += 2000 if self.alarm_codes[0] != 0: self.alarm_codes[1] = self.alarm_codes[0] self.alarm_codes[0] = alarm_code self.alarm_codes[2] = self.alarm_codes[0] self.dsky.annunciators["prog"].on() try: self.running_program[-1].terminate() except programs.ProgramTerminated: # this should happen if the program terminated successfully utils.log("P00DOO ABORT {}: {}".format(str(alarm_code), alarm_message), log_level="ERROR") poo = self.programs["00"]() poo.execute() def program_restart(self, alarm_code, message=None): """ Triggers a program restart. :param alarm_code: a 3 or 4 digit octal int of the alarm code to raise :param message: optional message to print to log :return: None """ # TODO: insert terminate and restart program utils.log("Program fresh start not implemented yet... watch this space...") if message: utils.log(message, log_level="ERROR") def computer_restart(self, alarm_code, message=None): """ Triggers a guidance computer hardware restart. The most severe of the errors! :param alarm_code: a 3 or 4 digit octal int of the alarm code to raise :param message: optional message to print to log :return: None """ # insert computer reboot # self.fresh_start() if message: utils.log(message, log_level="CRITICAL") pass def servicer(self): """ For future use. The servicer updates the spacecrafts state vector. """ pass def check_ksp_connection(self): """ checks if we have a connection to Telemachus / KSP :return: None """ if not check_connection(): if self.is_ksp_connected: # we have just lost the connection, illuminate NO ATT annunciator and log it self.dsky.annunciators["no_att"].on() utils.log("No connection to KSP, navigation functions unavailable", log_level="ERROR") self.is_ksp_connected = False else: if not self.is_ksp_connected: # have just regained connection, deluminate NO ATT annunciator and log it self.dsky.annunciators["no_att"].off() utils.log("Connection to KSP established", log_level="INFO") self.is_ksp_connected = True if not telemachus.telemetry: telemachus.get_api_listing() def check_paused_state(self): """ Checks the paused state of KSP, and illuminates STBY annunciator and logs state as necessary. :return: None """ if self.is_ksp_connected: paused_state = get_telemetry("paused") # if the paused state hasn't changed, skip any annunciator changes if paused_state != self.ksp_paused_state: if paused_state == 0: self.dsky.annunciators["stby"].off() utils.log("KSP unpaused, all systems go", log_level="INFO") elif paused_state == 1: self.dsky.annunciators["stby"].on() utils.log("KSP paused", log_level="INFO") elif paused_state == 2: self.dsky.annunciators["stby"].on() utils.log("No power to Telemachus antenna", log_level="WARNING") elif paused_state == 3: self.dsky.annunciators["stby"].on() utils.log("Telemachus antenna off", log_level="WARNING") elif paused_state == 4: self.dsky.annunciators["stby"].on() utils.log("No Telemachus antenna found", log_level="WARNING") self.ksp_paused_state = paused_state
gpl-2.0
8,683,317,448,400,047,000
32.223464
116
0.583656
false
scorpionis/docklet
src/nodemgr.py
1
6883
#!/usr/bin/python3 import threading, random, time, xmlrpc.client, sys #import network from nettools import netcontrol from log import logger import env ########################################## # NodeMgr # Description : manage the physical nodes # 1. list running nodes now # 2. update node list when new node joins # ETCD table : # machines/allnodes -- all nodes in docklet, for recovery # machines/runnodes -- run nodes of this start up ############################################## class NodeMgr(object): def __init__(self, networkmgr, etcdclient, addr, mode): self.addr = addr logger.info ("begin initialize on %s" % self.addr) self.networkmgr = networkmgr self.etcd = etcdclient self.mode = mode self.workerport = env.getenv('WORKER_PORT') # initialize the network logger.info ("initialize network") # 'docklet-br' not need ip address. Because every user has gateway #[status, result] = self.networkmgr.acquire_sysips_cidr() #self.networkmgr.printpools() #if not status: # logger.info ("initialize network failed, no IP for system bridge") # sys.exit(1) #self.bridgeip = result[0] #logger.info ("initialize bridge wih ip %s" % self.bridgeip) #network.netsetup("init", self.bridgeip) if self.mode == 'new': if netcontrol.bridge_exists('docklet-br'): netcontrol.del_bridge('docklet-br') netcontrol.new_bridge('docklet-br') else: if not netcontrol.bridge_exists('docklet-br'): logger.error("docklet-br not found") sys.exit(1) # init rpc list self.rpcs = [] # get allnodes # used in recovery mode, find alll the lost running nodes self.allnodes = self._nodelist_etcd("allnodes") self.runnodes = [] [status, runlist] = self.etcd.listdir("machines/runnodes") for node in runlist: nodeip = node['key'].rsplit('/',1)[1] if node['value'] == 'ok': logger.info ("running node %s" % nodeip) self.runnodes.append(nodeip) self.rpcs.append(xmlrpc.client.ServerProxy("http://%s:%s" % (nodeip, self.workerport))) logger.info ("add %s:%s in rpc client list" % (nodeip, self.workerport)) logger.info ("all nodes are: %s" % self.allnodes) logger.info ("run nodes are: %s" % self.runnodes) # start new thread to watch whether a new node joins logger.info ("start thread to watch new nodes ...") self.thread_watchnewnode = threading.Thread(target=self._watchnewnode) self.thread_watchnewnode.start() # wait for all nodes joins while(True): allin = True for node in self.allnodes: if node not in self.runnodes: allin = False break if allin: logger.info("all nodes necessary joins ...") break time.sleep(0.05) logger.info ("run nodes are: %s" % self.runnodes) # get nodes list from etcd table def _nodelist_etcd(self, which): if which == "allnodes" or which == "runnodes": [status, nodeinfo]=self.etcd.listdir("machines/"+which) if status: nodelist = [] for node in nodeinfo: nodelist.append(node["key"].rsplit('/', 1)[1]) return nodelist return [] # thread target : watch whether a new node joins def _watchnewnode(self): while(True): time.sleep(0.1) [status, runlist] = self.etcd.listdir("machines/runnodes") if not status: logger.warning ("get runnodes list failed from etcd ") continue for node in runlist: nodeip = node['key'].rsplit('/',1)[1] if node['value']=='waiting': # waiting state can be deleted, there is no use to let master check # this state because worker will change it and master will not change it now. # it is only preserved for compatible. logger.info ("%s want to joins, call it to init first" % nodeip) elif node['value']=='work': logger.info ("new node %s joins" % nodeip) # setup GRE tunnels for new nodes if self.addr == nodeip: logger.debug ("worker start on master node. not need to setup GRE") else: logger.debug ("setup GRE for %s" % nodeip) if netcontrol.gre_exists('docklet-br', nodeip): logger.debug("GRE for %s already exists, reuse it" % nodeip) else: netcontrol.setup_gre('docklet-br', nodeip) self.etcd.setkey("machines/runnodes/"+nodeip, "ok") if nodeip not in self.runnodes: self.runnodes.append(nodeip) # node not in all node list is a new node. if nodeip not in self.allnodes: self.allnodes.append(nodeip) self.etcd.setkey("machines/allnodes/"+nodeip, "ok") logger.debug ("all nodes are: %s" % self.allnodes) logger.debug ("run nodes are: %s" % self.runnodes) self.rpcs.append(xmlrpc.client.ServerProxy("http://%s:%s" % (nodeip, self.workerport))) logger.info ("add %s:%s in rpc client list" % (nodeip, self.workerport)) # add machine to the scheduler import dscheduler [status,total_cpus] = self.etcd.getkey("cpus/"+nodeip) [status,total_mems] = self.etcd.getkey("mems/"+nodeip) logger.info("add machine %s to scheduler, cpus: %s, mems: %s",nodeip, total_cpus, total_mems) dscheduler.add_machine(nodeip,total_cpus,total_mems) # get all run nodes' IP addr def get_nodeips(self): return self.allnodes def get_rpcs(self): return self.rpcs def get_onerpc(self): return self.rpcs[random.randint(0, len(self.rpcs)-1)] def rpc_to_ip(self, rpcclient): return self.runnodes[self.rpcs.index(rpcclient)] def ip_to_rpc(self, nodeip): return self.rpcs[self.runnodes.index(nodeip)] def get_allnodes(self): return self.allnodes
bsd-3-clause
-1,103,196,115,511,232,800
41.487654
117
0.527241
false
jasonleaster/Algorithm
Stack/Python_version/stack_by_two_queue.py
1
1379
class Stack(): def __init__(self, arg = []): self.Q1 = arg self.Q2 = [] def stack_empty(self): if len(self.Q1) == 0 and len(self.Q2) == 0: return True else: return False def push(self, x): if self.stack_empty() is True: self.Q1.append(x) elif len(self.Q1) != 0: self.Q1.append(x) else: self.Q2.append(x) def pop(self): val = None if self.stack_empty() == True: print "underflow" elif len(self.Q1) != 0: while len(self.Q1) != 0: if len(self.Q1) == 1: val = self.Q1[0] else: self.Q2.append(self.Q1[0]) self.Q1.remove(self.Q1[0]) else: while len(self.Q2) != 0: if len(self.Q2) == 1: val = self.Q2[0] else: self.Q1.append(self.Q2[0]) self.Q2.remove(self.Q2[0]) return val def show_stack(self): print "Queue 1 :", self.Q1 print "Queue 2 :", self.Q2 #----------------------- input_num = ['a', 'b', 'c'] stk = Stack(input_num) stk.pop() stk.show_stack() stk.pop() stk.show_stack() stk.push('d') stk.show_stack() stk.pop() stk.show_stack()
gpl-2.0
7,906,497,586,329,862,000
20.546875
51
0.423495
false
petertodd/replace-by-fee-tools
lib/python-bitcoinlib/bitcoin/core/script.py
1
34644
# Copyright (C) 2012-2015 The python-bitcoinlib developers # # This file is part of python-bitcoinlib. # # It is subject to the license terms in the LICENSE file found in the top-level # directory of this distribution. # # No part of python-bitcoinlib, including this file, may be copied, modified, # propagated, or distributed except according to the terms contained in the # LICENSE file. """Scripts Functionality to build scripts, as well as SignatureHash(). Script evaluation is in bitcoin.core.scripteval """ from __future__ import absolute_import, division, print_function import sys _bchr = chr _bord = ord if sys.version > '3': long = int _bchr = lambda x: bytes([x]) _bord = lambda x: x from io import BytesIO as _BytesIO else: from cStringIO import StringIO as _BytesIO import struct import bitcoin.core import bitcoin.core._bignum from .serialize import * MAX_SCRIPT_SIZE = 10000 MAX_SCRIPT_ELEMENT_SIZE = 520 MAX_SCRIPT_OPCODES = 201 OPCODE_NAMES = {} _opcode_instances = [] class CScriptOp(int): """A single script opcode""" __slots__ = [] @staticmethod def encode_op_pushdata(d): """Encode a PUSHDATA op, returning bytes""" if len(d) < 0x4c: return b'' + _bchr(len(d)) + d # OP_PUSHDATA elif len(d) <= 0xff: return b'\x4c' + _bchr(len(d)) + d # OP_PUSHDATA1 elif len(d) <= 0xffff: return b'\x4d' + struct.pack(b'<H', len(d)) + d # OP_PUSHDATA2 elif len(d) <= 0xffffffff: return b'\x4e' + struct.pack(b'<I', len(d)) + d # OP_PUSHDATA4 else: raise ValueError("Data too long to encode in a PUSHDATA op") @staticmethod def encode_op_n(n): """Encode a small integer op, returning an opcode""" if not (0 <= n <= 16): raise ValueError('Integer must be in range 0 <= n <= 16, got %d' % n) if n == 0: return OP_0 else: return CScriptOp(OP_1 + n-1) def decode_op_n(self): """Decode a small integer opcode, returning an integer""" if self == OP_0: return 0 if not (self == OP_0 or OP_1 <= self <= OP_16): raise ValueError('op %r is not an OP_N' % self) return int(self - OP_1+1) def is_small_int(self): """Return true if the op pushes a small integer to the stack""" if 0x51 <= self <= 0x60 or self == 0: return True else: return False def __str__(self): return repr(self) def __repr__(self): if self in OPCODE_NAMES: return OPCODE_NAMES[self] else: return 'CScriptOp(0x%x)' % self def __new__(cls, n): try: return _opcode_instances[n] except IndexError: assert len(_opcode_instances) == n _opcode_instances.append(super(CScriptOp, cls).__new__(cls, n)) return _opcode_instances[n] # Populate opcode instance table for n in range(0xff+1): CScriptOp(n) # push value OP_0 = CScriptOp(0x00) OP_FALSE = OP_0 OP_PUSHDATA1 = CScriptOp(0x4c) OP_PUSHDATA2 = CScriptOp(0x4d) OP_PUSHDATA4 = CScriptOp(0x4e) OP_1NEGATE = CScriptOp(0x4f) OP_RESERVED = CScriptOp(0x50) OP_1 = CScriptOp(0x51) OP_TRUE = OP_1 OP_2 = CScriptOp(0x52) OP_3 = CScriptOp(0x53) OP_4 = CScriptOp(0x54) OP_5 = CScriptOp(0x55) OP_6 = CScriptOp(0x56) OP_7 = CScriptOp(0x57) OP_8 = CScriptOp(0x58) OP_9 = CScriptOp(0x59) OP_10 = CScriptOp(0x5a) OP_11 = CScriptOp(0x5b) OP_12 = CScriptOp(0x5c) OP_13 = CScriptOp(0x5d) OP_14 = CScriptOp(0x5e) OP_15 = CScriptOp(0x5f) OP_16 = CScriptOp(0x60) # control OP_NOP = CScriptOp(0x61) OP_VER = CScriptOp(0x62) OP_IF = CScriptOp(0x63) OP_NOTIF = CScriptOp(0x64) OP_VERIF = CScriptOp(0x65) OP_VERNOTIF = CScriptOp(0x66) OP_ELSE = CScriptOp(0x67) OP_ENDIF = CScriptOp(0x68) OP_VERIFY = CScriptOp(0x69) OP_RETURN = CScriptOp(0x6a) # stack ops OP_TOALTSTACK = CScriptOp(0x6b) OP_FROMALTSTACK = CScriptOp(0x6c) OP_2DROP = CScriptOp(0x6d) OP_2DUP = CScriptOp(0x6e) OP_3DUP = CScriptOp(0x6f) OP_2OVER = CScriptOp(0x70) OP_2ROT = CScriptOp(0x71) OP_2SWAP = CScriptOp(0x72) OP_IFDUP = CScriptOp(0x73) OP_DEPTH = CScriptOp(0x74) OP_DROP = CScriptOp(0x75) OP_DUP = CScriptOp(0x76) OP_NIP = CScriptOp(0x77) OP_OVER = CScriptOp(0x78) OP_PICK = CScriptOp(0x79) OP_ROLL = CScriptOp(0x7a) OP_ROT = CScriptOp(0x7b) OP_SWAP = CScriptOp(0x7c) OP_TUCK = CScriptOp(0x7d) # splice ops OP_CAT = CScriptOp(0x7e) OP_SUBSTR = CScriptOp(0x7f) OP_LEFT = CScriptOp(0x80) OP_RIGHT = CScriptOp(0x81) OP_SIZE = CScriptOp(0x82) # bit logic OP_INVERT = CScriptOp(0x83) OP_AND = CScriptOp(0x84) OP_OR = CScriptOp(0x85) OP_XOR = CScriptOp(0x86) OP_EQUAL = CScriptOp(0x87) OP_EQUALVERIFY = CScriptOp(0x88) OP_RESERVED1 = CScriptOp(0x89) OP_RESERVED2 = CScriptOp(0x8a) # numeric OP_1ADD = CScriptOp(0x8b) OP_1SUB = CScriptOp(0x8c) OP_2MUL = CScriptOp(0x8d) OP_2DIV = CScriptOp(0x8e) OP_NEGATE = CScriptOp(0x8f) OP_ABS = CScriptOp(0x90) OP_NOT = CScriptOp(0x91) OP_0NOTEQUAL = CScriptOp(0x92) OP_ADD = CScriptOp(0x93) OP_SUB = CScriptOp(0x94) OP_MUL = CScriptOp(0x95) OP_DIV = CScriptOp(0x96) OP_MOD = CScriptOp(0x97) OP_LSHIFT = CScriptOp(0x98) OP_RSHIFT = CScriptOp(0x99) OP_BOOLAND = CScriptOp(0x9a) OP_BOOLOR = CScriptOp(0x9b) OP_NUMEQUAL = CScriptOp(0x9c) OP_NUMEQUALVERIFY = CScriptOp(0x9d) OP_NUMNOTEQUAL = CScriptOp(0x9e) OP_LESSTHAN = CScriptOp(0x9f) OP_GREATERTHAN = CScriptOp(0xa0) OP_LESSTHANOREQUAL = CScriptOp(0xa1) OP_GREATERTHANOREQUAL = CScriptOp(0xa2) OP_MIN = CScriptOp(0xa3) OP_MAX = CScriptOp(0xa4) OP_WITHIN = CScriptOp(0xa5) # crypto OP_RIPEMD160 = CScriptOp(0xa6) OP_SHA1 = CScriptOp(0xa7) OP_SHA256 = CScriptOp(0xa8) OP_HASH160 = CScriptOp(0xa9) OP_HASH256 = CScriptOp(0xaa) OP_CODESEPARATOR = CScriptOp(0xab) OP_CHECKSIG = CScriptOp(0xac) OP_CHECKSIGVERIFY = CScriptOp(0xad) OP_CHECKMULTISIG = CScriptOp(0xae) OP_CHECKMULTISIGVERIFY = CScriptOp(0xaf) # expansion OP_NOP1 = CScriptOp(0xb0) OP_NOP2 = CScriptOp(0xb1) OP_CHECKLOCKTIMEVERIFY = OP_NOP2 OP_NOP3 = CScriptOp(0xb2) OP_NOP4 = CScriptOp(0xb3) OP_NOP5 = CScriptOp(0xb4) OP_NOP6 = CScriptOp(0xb5) OP_NOP7 = CScriptOp(0xb6) OP_NOP8 = CScriptOp(0xb7) OP_NOP9 = CScriptOp(0xb8) OP_NOP10 = CScriptOp(0xb9) # template matching params OP_SMALLINTEGER = CScriptOp(0xfa) OP_PUBKEYS = CScriptOp(0xfb) OP_PUBKEYHASH = CScriptOp(0xfd) OP_PUBKEY = CScriptOp(0xfe) OP_INVALIDOPCODE = CScriptOp(0xff) OPCODE_NAMES.update({ OP_0: 'OP_0', OP_PUSHDATA1: 'OP_PUSHDATA1', OP_PUSHDATA2: 'OP_PUSHDATA2', OP_PUSHDATA4: 'OP_PUSHDATA4', OP_1NEGATE: 'OP_1NEGATE', OP_RESERVED: 'OP_RESERVED', OP_1: 'OP_1', OP_2: 'OP_2', OP_3: 'OP_3', OP_4: 'OP_4', OP_5: 'OP_5', OP_6: 'OP_6', OP_7: 'OP_7', OP_8: 'OP_8', OP_9: 'OP_9', OP_10: 'OP_10', OP_11: 'OP_11', OP_12: 'OP_12', OP_13: 'OP_13', OP_14: 'OP_14', OP_15: 'OP_15', OP_16: 'OP_16', OP_NOP: 'OP_NOP', OP_VER: 'OP_VER', OP_IF: 'OP_IF', OP_NOTIF: 'OP_NOTIF', OP_VERIF: 'OP_VERIF', OP_VERNOTIF: 'OP_VERNOTIF', OP_ELSE: 'OP_ELSE', OP_ENDIF: 'OP_ENDIF', OP_VERIFY: 'OP_VERIFY', OP_RETURN: 'OP_RETURN', OP_TOALTSTACK: 'OP_TOALTSTACK', OP_FROMALTSTACK: 'OP_FROMALTSTACK', OP_2DROP: 'OP_2DROP', OP_2DUP: 'OP_2DUP', OP_3DUP: 'OP_3DUP', OP_2OVER: 'OP_2OVER', OP_2ROT: 'OP_2ROT', OP_2SWAP: 'OP_2SWAP', OP_IFDUP: 'OP_IFDUP', OP_DEPTH: 'OP_DEPTH', OP_DROP: 'OP_DROP', OP_DUP: 'OP_DUP', OP_NIP: 'OP_NIP', OP_OVER: 'OP_OVER', OP_PICK: 'OP_PICK', OP_ROLL: 'OP_ROLL', OP_ROT: 'OP_ROT', OP_SWAP: 'OP_SWAP', OP_TUCK: 'OP_TUCK', OP_CAT: 'OP_CAT', OP_SUBSTR: 'OP_SUBSTR', OP_LEFT: 'OP_LEFT', OP_RIGHT: 'OP_RIGHT', OP_SIZE: 'OP_SIZE', OP_INVERT: 'OP_INVERT', OP_AND: 'OP_AND', OP_OR: 'OP_OR', OP_XOR: 'OP_XOR', OP_EQUAL: 'OP_EQUAL', OP_EQUALVERIFY: 'OP_EQUALVERIFY', OP_RESERVED1: 'OP_RESERVED1', OP_RESERVED2: 'OP_RESERVED2', OP_1ADD: 'OP_1ADD', OP_1SUB: 'OP_1SUB', OP_2MUL: 'OP_2MUL', OP_2DIV: 'OP_2DIV', OP_NEGATE: 'OP_NEGATE', OP_ABS: 'OP_ABS', OP_NOT: 'OP_NOT', OP_0NOTEQUAL: 'OP_0NOTEQUAL', OP_ADD: 'OP_ADD', OP_SUB: 'OP_SUB', OP_MUL: 'OP_MUL', OP_DIV: 'OP_DIV', OP_MOD: 'OP_MOD', OP_LSHIFT: 'OP_LSHIFT', OP_RSHIFT: 'OP_RSHIFT', OP_BOOLAND: 'OP_BOOLAND', OP_BOOLOR: 'OP_BOOLOR', OP_NUMEQUAL: 'OP_NUMEQUAL', OP_NUMEQUALVERIFY: 'OP_NUMEQUALVERIFY', OP_NUMNOTEQUAL: 'OP_NUMNOTEQUAL', OP_LESSTHAN: 'OP_LESSTHAN', OP_GREATERTHAN: 'OP_GREATERTHAN', OP_LESSTHANOREQUAL: 'OP_LESSTHANOREQUAL', OP_GREATERTHANOREQUAL: 'OP_GREATERTHANOREQUAL', OP_MIN: 'OP_MIN', OP_MAX: 'OP_MAX', OP_WITHIN: 'OP_WITHIN', OP_RIPEMD160: 'OP_RIPEMD160', OP_SHA1: 'OP_SHA1', OP_SHA256: 'OP_SHA256', OP_HASH160: 'OP_HASH160', OP_HASH256: 'OP_HASH256', OP_CODESEPARATOR: 'OP_CODESEPARATOR', OP_CHECKSIG: 'OP_CHECKSIG', OP_CHECKSIGVERIFY: 'OP_CHECKSIGVERIFY', OP_CHECKMULTISIG: 'OP_CHECKMULTISIG', OP_CHECKMULTISIGVERIFY: 'OP_CHECKMULTISIGVERIFY', OP_NOP1: 'OP_NOP1', OP_NOP2: 'OP_NOP2', OP_CHECKLOCKTIMEVERIFY: 'OP_CHECKLOCKTIMEVERIFY', OP_NOP3: 'OP_NOP3', OP_NOP4: 'OP_NOP4', OP_NOP5: 'OP_NOP5', OP_NOP6: 'OP_NOP6', OP_NOP7: 'OP_NOP7', OP_NOP8: 'OP_NOP8', OP_NOP9: 'OP_NOP9', OP_NOP10: 'OP_NOP10', OP_SMALLINTEGER: 'OP_SMALLINTEGER', OP_PUBKEYS: 'OP_PUBKEYS', OP_PUBKEYHASH: 'OP_PUBKEYHASH', OP_PUBKEY: 'OP_PUBKEY', OP_INVALIDOPCODE: 'OP_INVALIDOPCODE', }) OPCODES_BY_NAME = { 'OP_0': OP_0, 'OP_PUSHDATA1': OP_PUSHDATA1, 'OP_PUSHDATA2': OP_PUSHDATA2, 'OP_PUSHDATA4': OP_PUSHDATA4, 'OP_1NEGATE': OP_1NEGATE, 'OP_RESERVED': OP_RESERVED, 'OP_1': OP_1, 'OP_2': OP_2, 'OP_3': OP_3, 'OP_4': OP_4, 'OP_5': OP_5, 'OP_6': OP_6, 'OP_7': OP_7, 'OP_8': OP_8, 'OP_9': OP_9, 'OP_10': OP_10, 'OP_11': OP_11, 'OP_12': OP_12, 'OP_13': OP_13, 'OP_14': OP_14, 'OP_15': OP_15, 'OP_16': OP_16, 'OP_NOP': OP_NOP, 'OP_VER': OP_VER, 'OP_IF': OP_IF, 'OP_NOTIF': OP_NOTIF, 'OP_VERIF': OP_VERIF, 'OP_VERNOTIF': OP_VERNOTIF, 'OP_ELSE': OP_ELSE, 'OP_ENDIF': OP_ENDIF, 'OP_VERIFY': OP_VERIFY, 'OP_RETURN': OP_RETURN, 'OP_TOALTSTACK': OP_TOALTSTACK, 'OP_FROMALTSTACK': OP_FROMALTSTACK, 'OP_2DROP': OP_2DROP, 'OP_2DUP': OP_2DUP, 'OP_3DUP': OP_3DUP, 'OP_2OVER': OP_2OVER, 'OP_2ROT': OP_2ROT, 'OP_2SWAP': OP_2SWAP, 'OP_IFDUP': OP_IFDUP, 'OP_DEPTH': OP_DEPTH, 'OP_DROP': OP_DROP, 'OP_DUP': OP_DUP, 'OP_NIP': OP_NIP, 'OP_OVER': OP_OVER, 'OP_PICK': OP_PICK, 'OP_ROLL': OP_ROLL, 'OP_ROT': OP_ROT, 'OP_SWAP': OP_SWAP, 'OP_TUCK': OP_TUCK, 'OP_CAT': OP_CAT, 'OP_SUBSTR': OP_SUBSTR, 'OP_LEFT': OP_LEFT, 'OP_RIGHT': OP_RIGHT, 'OP_SIZE': OP_SIZE, 'OP_INVERT': OP_INVERT, 'OP_AND': OP_AND, 'OP_OR': OP_OR, 'OP_XOR': OP_XOR, 'OP_EQUAL': OP_EQUAL, 'OP_EQUALVERIFY': OP_EQUALVERIFY, 'OP_RESERVED1': OP_RESERVED1, 'OP_RESERVED2': OP_RESERVED2, 'OP_1ADD': OP_1ADD, 'OP_1SUB': OP_1SUB, 'OP_2MUL': OP_2MUL, 'OP_2DIV': OP_2DIV, 'OP_NEGATE': OP_NEGATE, 'OP_ABS': OP_ABS, 'OP_NOT': OP_NOT, 'OP_0NOTEQUAL': OP_0NOTEQUAL, 'OP_ADD': OP_ADD, 'OP_SUB': OP_SUB, 'OP_MUL': OP_MUL, 'OP_DIV': OP_DIV, 'OP_MOD': OP_MOD, 'OP_LSHIFT': OP_LSHIFT, 'OP_RSHIFT': OP_RSHIFT, 'OP_BOOLAND': OP_BOOLAND, 'OP_BOOLOR': OP_BOOLOR, 'OP_NUMEQUAL': OP_NUMEQUAL, 'OP_NUMEQUALVERIFY': OP_NUMEQUALVERIFY, 'OP_NUMNOTEQUAL': OP_NUMNOTEQUAL, 'OP_LESSTHAN': OP_LESSTHAN, 'OP_GREATERTHAN': OP_GREATERTHAN, 'OP_LESSTHANOREQUAL': OP_LESSTHANOREQUAL, 'OP_GREATERTHANOREQUAL': OP_GREATERTHANOREQUAL, 'OP_MIN': OP_MIN, 'OP_MAX': OP_MAX, 'OP_WITHIN': OP_WITHIN, 'OP_RIPEMD160': OP_RIPEMD160, 'OP_SHA1': OP_SHA1, 'OP_SHA256': OP_SHA256, 'OP_HASH160': OP_HASH160, 'OP_HASH256': OP_HASH256, 'OP_CODESEPARATOR': OP_CODESEPARATOR, 'OP_CHECKSIG': OP_CHECKSIG, 'OP_CHECKSIGVERIFY': OP_CHECKSIGVERIFY, 'OP_CHECKMULTISIG': OP_CHECKMULTISIG, 'OP_CHECKMULTISIGVERIFY': OP_CHECKMULTISIGVERIFY, 'OP_NOP1': OP_NOP1, 'OP_NOP2': OP_NOP2, 'OP_CHECKLOCKTIMEVERIFY': OP_CHECKLOCKTIMEVERIFY, 'OP_NOP3': OP_NOP3, 'OP_NOP4': OP_NOP4, 'OP_NOP5': OP_NOP5, 'OP_NOP6': OP_NOP6, 'OP_NOP7': OP_NOP7, 'OP_NOP8': OP_NOP8, 'OP_NOP9': OP_NOP9, 'OP_NOP10': OP_NOP10, 'OP_SMALLINTEGER': OP_SMALLINTEGER, 'OP_PUBKEYS': OP_PUBKEYS, 'OP_PUBKEYHASH': OP_PUBKEYHASH, 'OP_PUBKEY': OP_PUBKEY, } # Invalid even when occuring in an unexecuted OP_IF branch due to either being # disabled, or never having been implemented. DISABLED_OPCODES = frozenset((OP_VERIF, OP_VERNOTIF, OP_CAT, OP_SUBSTR, OP_LEFT, OP_RIGHT, OP_INVERT, OP_AND, OP_OR, OP_XOR, OP_2MUL, OP_2DIV, OP_MUL, OP_DIV, OP_MOD, OP_LSHIFT, OP_RSHIFT)) class CScriptInvalidError(Exception): """Base class for CScript exceptions""" pass class CScriptTruncatedPushDataError(CScriptInvalidError): """Invalid pushdata due to truncation""" def __init__(self, msg, data): self.data = data super(CScriptTruncatedPushDataError, self).__init__(msg) class CScript(bytes): """Serialized script A bytes subclass, so you can use this directly whenever bytes are accepted. Note that this means that indexing does *not* work - you'll get an index by byte rather than opcode. This format was chosen for efficiency so that the general case would not require creating a lot of little CScriptOP objects. iter(script) however does iterate by opcode. """ @classmethod def __coerce_instance(cls, other): # Coerce other into bytes if isinstance(other, CScriptOp): other = _bchr(other) elif isinstance(other, (int, long)): if 0 <= other <= 16: other = bytes(_bchr(CScriptOp.encode_op_n(other))) elif other == -1: other = bytes(_bchr(OP_1NEGATE)) else: other = CScriptOp.encode_op_pushdata(bitcoin.core._bignum.bn2vch(other)) elif isinstance(other, (bytes, bytearray)): other = CScriptOp.encode_op_pushdata(other) return other def __add__(self, other): # Do the coercion outside of the try block so that errors in it are # noticed. other = self.__coerce_instance(other) try: # bytes.__add__ always returns bytes instances unfortunately return CScript(super(CScript, self).__add__(other)) except TypeError: raise TypeError('Can not add a %r instance to a CScript' % other.__class__) def join(self, iterable): # join makes no sense for a CScript() raise NotImplementedError def __new__(cls, value=b''): if isinstance(value, bytes) or isinstance(value, bytearray): return super(CScript, cls).__new__(cls, value) else: def coerce_iterable(iterable): for instance in iterable: yield cls.__coerce_instance(instance) # Annoyingly on both python2 and python3 bytes.join() always # returns a bytes instance even when subclassed. return super(CScript, cls).__new__(cls, b''.join(coerce_iterable(value))) def raw_iter(self): """Raw iteration Yields tuples of (opcode, data, sop_idx) so that the different possible PUSHDATA encodings can be accurately distinguished, as well as determining the exact opcode byte indexes. (sop_idx) """ i = 0 while i < len(self): sop_idx = i opcode = _bord(self[i]) i += 1 if opcode > OP_PUSHDATA4: yield (opcode, None, sop_idx) else: datasize = None pushdata_type = None if opcode < OP_PUSHDATA1: pushdata_type = 'PUSHDATA(%d)' % opcode datasize = opcode elif opcode == OP_PUSHDATA1: pushdata_type = 'PUSHDATA1' if i >= len(self): raise CScriptInvalidError('PUSHDATA1: missing data length') datasize = _bord(self[i]) i += 1 elif opcode == OP_PUSHDATA2: pushdata_type = 'PUSHDATA2' if i + 1 >= len(self): raise CScriptInvalidError('PUSHDATA2: missing data length') datasize = _bord(self[i]) + (_bord(self[i+1]) << 8) i += 2 elif opcode == OP_PUSHDATA4: pushdata_type = 'PUSHDATA4' if i + 3 >= len(self): raise CScriptInvalidError('PUSHDATA4: missing data length') datasize = _bord(self[i]) + (_bord(self[i+1]) << 8) + (_bord(self[i+2]) << 16) + (_bord(self[i+3]) << 24) i += 4 else: assert False # shouldn't happen data = bytes(self[i:i+datasize]) # Check for truncation if len(data) < datasize: raise CScriptTruncatedPushDataError('%s: truncated data' % pushdata_type, data) i += datasize yield (opcode, data, sop_idx) def __iter__(self): """'Cooked' iteration Returns either a CScriptOP instance, an integer, or bytes, as appropriate. See raw_iter() if you need to distinguish the different possible PUSHDATA encodings. """ for (opcode, data, sop_idx) in self.raw_iter(): if opcode == 0: yield 0 elif data is not None: yield data else: opcode = CScriptOp(opcode) if opcode.is_small_int(): yield opcode.decode_op_n() else: yield CScriptOp(opcode) def __repr__(self): # For Python3 compatibility add b before strings so testcases don't # need to change def _repr(o): if isinstance(o, bytes): return "x('%s')" % bitcoin.core.b2x(o) else: return repr(o) ops = [] i = iter(self) while True: op = None try: op = _repr(next(i)) except CScriptTruncatedPushDataError as err: op = '%s...<ERROR: %s>' % (_repr(err.data), err) break except CScriptInvalidError as err: op = '<ERROR: %s>' % err break except StopIteration: break finally: if op is not None: ops.append(op) return "CScript([%s])" % ', '.join(ops) def is_p2sh(self): """Test if the script is a p2sh scriptPubKey Note that this test is consensus-critical. """ return (len(self) == 23 and _bord(self[0]) == OP_HASH160 and _bord(self[1]) == 0x14 and _bord(self[22]) == OP_EQUAL) def is_witness_scriptpubkey(self): """Returns true if this is a scriptpubkey signaling segregated witness data. """ return 3 <= len(self) <= 42 and CScriptOp(struct.unpack('<b',self[0])[0]).is_small_int() def witness_version(self): """Returns the witness version on [0,16]. """ return next(iter(self)) def is_witness_v0_keyhash(self): """Returns true if this is a scriptpubkey for V0 P2WPKH. """ return len(self) == 22 and self[0:2] == b'\x00\x14' def is_witness_v0_nested_keyhash(self): """Returns true if this is a scriptpubkey for V0 P2WPKH embedded in P2SH. """ return len(self) == 23 and self[0:3] == b'\x16\x00\x14' def is_witness_v0_scripthash(self): """Returns true if this is a scriptpubkey for V0 P2WSH. """ return len(self) == 34 and self[0:2] == b'\x00\x20' def is_witness_v0_nested_scripthash(self): """Returns true if this is a scriptpubkey for V0 P2WSH embedded in P2SH. """ return len(self) == 23 and self[0:2] == b'\xa9\x14' and self[-1] == b'\x87' def is_push_only(self): """Test if the script only contains pushdata ops Note that this test is consensus-critical. Scripts that contain invalid pushdata ops return False, matching the behavior in Bitcoin Core. """ try: for (op, op_data, idx) in self.raw_iter(): # Note how OP_RESERVED is considered a pushdata op. if op > OP_16: return False except CScriptInvalidError: return False return True def has_canonical_pushes(self): """Test if script only uses canonical pushes Not yet consensus critical; may be in the future. """ try: for (op, data, idx) in self.raw_iter(): if op > OP_16: continue elif op < OP_PUSHDATA1 and op > OP_0 and len(data) == 1 and _bord(data[0]) <= 16: # Could have used an OP_n code, rather than a 1-byte push. return False elif op == OP_PUSHDATA1 and len(data) < OP_PUSHDATA1: # Could have used a normal n-byte push, rather than OP_PUSHDATA1. return False elif op == OP_PUSHDATA2 and len(data) <= 0xFF: # Could have used a OP_PUSHDATA1. return False elif op == OP_PUSHDATA4 and len(data) <= 0xFFFF: # Could have used a OP_PUSHDATA2. return False except CScriptInvalidError: # Invalid pushdata return False return True def is_unspendable(self): """Test if the script is provably unspendable""" return (len(self) > 0 and _bord(self[0]) == OP_RETURN) def is_valid(self): """Return True if the script is valid, False otherwise The script is valid if all PUSHDATA's are valid; invalid opcodes do not make is_valid() return False. """ try: list(self) except CScriptInvalidError: return False return True def to_p2sh_scriptPubKey(self, checksize=True): """Create P2SH scriptPubKey from this redeemScript That is, create the P2SH scriptPubKey that requires this script as a redeemScript to spend. checksize - Check if the redeemScript is larger than the 520-byte max pushdata limit; raise ValueError if limit exceeded. Since a >520-byte PUSHDATA makes EvalScript() fail, it's not actually possible to redeem P2SH outputs with redeem scripts >520 bytes. """ if checksize and len(self) > MAX_SCRIPT_ELEMENT_SIZE: raise ValueError("redeemScript exceeds max allowed size; P2SH output would be unspendable") return CScript([OP_HASH160, bitcoin.core.Hash160(self), OP_EQUAL]) def GetSigOpCount(self, fAccurate): """Get the SigOp count. fAccurate - Accurately count CHECKMULTISIG, see BIP16 for details. Note that this is consensus-critical. """ n = 0 lastOpcode = OP_INVALIDOPCODE for (opcode, data, sop_idx) in self.raw_iter(): if opcode in (OP_CHECKSIG, OP_CHECKSIGVERIFY): n += 1 elif opcode in (OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY): if fAccurate and (OP_1 <= lastOpcode <= OP_16): n += opcode.decode_op_n() else: n += 20 lastOpcode = opcode return n class CScriptWitness(ImmutableSerializable): """An encoding of the data elements on the initial stack for (segregated witness) """ __slots__ = ['stack'] def __init__(self, stack=()): object.__setattr__(self, 'stack', stack) def __len__(self): return len(self.stack) def __iter__(self): return iter(self.stack) def __repr__(self): return 'CScriptWitness(' + ','.join("x('%s')" % bitcoin.core.b2x(s) for s in self.stack) + ')' def is_null(self): return len(self.stack) == 0 @classmethod def stream_deserialize(cls, f): n = VarIntSerializer.stream_deserialize(f) stack = tuple(BytesSerializer.stream_deserialize(f) for i in range(n)) return cls(stack) def stream_serialize(self, f): VarIntSerializer.stream_serialize(len(self.stack), f) for s in self.stack: BytesSerializer.stream_serialize(s, f) SIGHASH_ALL = 1 SIGHASH_NONE = 2 SIGHASH_SINGLE = 3 SIGHASH_ANYONECANPAY = 0x80 def FindAndDelete(script, sig): """Consensus critical, see FindAndDelete() in Satoshi codebase""" r = b'' last_sop_idx = sop_idx = 0 skip = True for (opcode, data, sop_idx) in script.raw_iter(): if not skip: r += script[last_sop_idx:sop_idx] last_sop_idx = sop_idx if script[sop_idx:sop_idx + len(sig)] == sig: skip = True else: skip = False if not skip: r += script[last_sop_idx:] return CScript(r) def IsLowDERSignature(sig): """ Loosely correlates with IsLowDERSignature() from script/interpreter.cpp Verifies that the S value in a DER signature is the lowest possible value. Used by BIP62 malleability fixes. """ length_r = sig[3] if isinstance(length_r, str): length_r = int(struct.unpack('B', length_r)[0]) length_s = sig[5 + length_r] if isinstance(length_s, str): length_s = int(struct.unpack('B', length_s)[0]) s_val = list(struct.unpack(str(length_s) + 'B', sig[6 + length_r:6 + length_r + length_s])) # If the S value is above the order of the curve divided by two, its # complement modulo the order could have been used instead, which is # one byte shorter when encoded correctly. max_mod_half_order = [ 0x7f,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0x5d,0x57,0x6e,0x73,0x57,0xa4,0x50,0x1d, 0xdf,0xe9,0x2f,0x46,0x68,0x1b,0x20,0xa0] return CompareBigEndian(s_val, [0]) > 0 and \ CompareBigEndian(s_val, max_mod_half_order) <= 0 def CompareBigEndian(c1, c2): """ Loosely matches CompareBigEndian() from eccryptoverify.cpp Compares two arrays of bytes, and returns a negative value if the first is less than the second, 0 if they're equal, and a positive value if the first is greater than the second. """ c1 = list(c1) c2 = list(c2) # Adjust starting positions until remaining lengths of the two arrays match while len(c1) > len(c2): if c1.pop(0) > 0: return 1 while len(c2) > len(c1): if c2.pop(0) > 0: return -1 while len(c1) > 0: diff = c1.pop(0) - c2.pop(0) if diff != 0: return diff return 0 def RawSignatureHash(script, txTo, inIdx, hashtype): """Consensus-correct SignatureHash Returns (hash, err) to precisely match the consensus-critical behavior of the SIGHASH_SINGLE bug. (inIdx is *not* checked for validity) If you're just writing wallet software you probably want SignatureHash() instead. """ HASH_ONE = b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' if inIdx >= len(txTo.vin): return (HASH_ONE, "inIdx %d out of range (%d)" % (inIdx, len(txTo.vin))) txtmp = bitcoin.core.CMutableTransaction.from_tx(txTo) for txin in txtmp.vin: txin.scriptSig = b'' txtmp.vin[inIdx].scriptSig = FindAndDelete(script, CScript([OP_CODESEPARATOR])) if (hashtype & 0x1f) == SIGHASH_NONE: txtmp.vout = [] for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 elif (hashtype & 0x1f) == SIGHASH_SINGLE: outIdx = inIdx if outIdx >= len(txtmp.vout): return (HASH_ONE, "outIdx %d out of range (%d)" % (outIdx, len(txtmp.vout))) tmp = txtmp.vout[outIdx] txtmp.vout = [] for i in range(outIdx): txtmp.vout.append(bitcoin.core.CTxOut()) txtmp.vout.append(tmp) for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 if hashtype & SIGHASH_ANYONECANPAY: tmp = txtmp.vin[inIdx] txtmp.vin = [] txtmp.vin.append(tmp) txtmp.wit = bitcoin.core.CTxWitness() s = txtmp.serialize() s += struct.pack(b"<i", hashtype) hash = bitcoin.core.Hash(s) return (hash, None) SIGVERSION_BASE = 0 SIGVERSION_WITNESS_V0 = 1 def SignatureHash(script, txTo, inIdx, hashtype, amount=None, sigversion=SIGVERSION_BASE): """Calculate a signature hash 'Cooked' version that checks if inIdx is out of bounds - this is *not* consensus-correct behavior, but is what you probably want for general wallet use. """ if sigversion == SIGVERSION_WITNESS_V0: hashPrevouts = b'\x00'*32 hashSequence = b'\x00'*32 hashOutputs = b'\x00'*32 if not (hashtype & SIGHASH_ANYONECANPAY): serialize_prevouts = bytes() for i in txTo.vin: serialize_prevouts += i.prevout.serialize() hashPrevouts = bitcoin.core.Hash(serialize_prevouts) if (not (hashtype & SIGHASH_ANYONECANPAY) and (hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE): serialize_sequence = bytes() for i in txTo.vin: serialize_sequence += struct.pack("<I", i.nSequence) hashSequence = bitcoin.core.Hash(serialize_sequence) if ((hashtype & 0x1f) != SIGHASH_SINGLE and (hashtype & 0x1f) != SIGHASH_NONE): serialize_outputs = bytes() for o in txTo.vout: serialize_outputs += o.serialize() hashOutputs = bitcoin.core.Hash(serialize_outputs) elif ((hashtype & 0x1f) == SIGHASH_SINGLE and inIdx < len(txTo.vout)): serialize_outputs = txTo.vout[inIdx].serialize() hashOutputs = bitcoin.core.Hash(serialize_outputs) f = _BytesIO() f.write(struct.pack("<i", txTo.nVersion)) f.write(hashPrevouts) f.write(hashSequence) txTo.vin[inIdx].prevout.stream_serialize(f) BytesSerializer.stream_serialize(script, f) f.write(struct.pack("<q", amount)) f.write(struct.pack("<I", txTo.vin[inIdx].nSequence)) f.write(hashOutputs) f.write(struct.pack("<i", txTo.nLockTime)) f.write(struct.pack("<i", hashtype)) return bitcoin.core.Hash(f.getvalue()) assert not script.is_witness_scriptpubkey() (h, err) = RawSignatureHash(script, txTo, inIdx, hashtype) if err is not None: raise ValueError(err) return h __all__ = ( 'MAX_SCRIPT_SIZE', 'MAX_SCRIPT_ELEMENT_SIZE', 'MAX_SCRIPT_OPCODES', 'OPCODE_NAMES', 'CScriptOp', # every opcode 'OP_0', 'OP_FALSE', 'OP_PUSHDATA1', 'OP_PUSHDATA2', 'OP_PUSHDATA4', 'OP_1NEGATE', 'OP_RESERVED', 'OP_1', 'OP_TRUE', 'OP_2', 'OP_3', 'OP_4', 'OP_5', 'OP_6', 'OP_7', 'OP_8', 'OP_9', 'OP_10', 'OP_11', 'OP_12', 'OP_13', 'OP_14', 'OP_15', 'OP_16', 'OP_NOP', 'OP_VER', 'OP_IF', 'OP_NOTIF', 'OP_VERIF', 'OP_VERNOTIF', 'OP_ELSE', 'OP_ENDIF', 'OP_VERIFY', 'OP_RETURN', 'OP_TOALTSTACK', 'OP_FROMALTSTACK', 'OP_2DROP', 'OP_2DUP', 'OP_3DUP', 'OP_2OVER', 'OP_2ROT', 'OP_2SWAP', 'OP_IFDUP', 'OP_DEPTH', 'OP_DROP', 'OP_DUP', 'OP_NIP', 'OP_OVER', 'OP_PICK', 'OP_ROLL', 'OP_ROT', 'OP_SWAP', 'OP_TUCK', 'OP_CAT', 'OP_SUBSTR', 'OP_LEFT', 'OP_RIGHT', 'OP_SIZE', 'OP_INVERT', 'OP_AND', 'OP_OR', 'OP_XOR', 'OP_EQUAL', 'OP_EQUALVERIFY', 'OP_RESERVED1', 'OP_RESERVED2', 'OP_1ADD', 'OP_1SUB', 'OP_2MUL', 'OP_2DIV', 'OP_NEGATE', 'OP_ABS', 'OP_NOT', 'OP_0NOTEQUAL', 'OP_ADD', 'OP_SUB', 'OP_MUL', 'OP_DIV', 'OP_MOD', 'OP_LSHIFT', 'OP_RSHIFT', 'OP_BOOLAND', 'OP_BOOLOR', 'OP_NUMEQUAL', 'OP_NUMEQUALVERIFY', 'OP_NUMNOTEQUAL', 'OP_LESSTHAN', 'OP_GREATERTHAN', 'OP_LESSTHANOREQUAL', 'OP_GREATERTHANOREQUAL', 'OP_MIN', 'OP_MAX', 'OP_WITHIN', 'OP_RIPEMD160', 'OP_SHA1', 'OP_SHA256', 'OP_HASH160', 'OP_HASH256', 'OP_CODESEPARATOR', 'OP_CHECKSIG', 'OP_CHECKSIGVERIFY', 'OP_CHECKMULTISIG', 'OP_CHECKMULTISIGVERIFY', 'OP_NOP1', 'OP_NOP2', 'OP_CHECKLOCKTIMEVERIFY', 'OP_NOP3', 'OP_NOP4', 'OP_NOP5', 'OP_NOP6', 'OP_NOP7', 'OP_NOP8', 'OP_NOP9', 'OP_NOP10', 'OP_SMALLINTEGER', 'OP_PUBKEYS', 'OP_PUBKEYHASH', 'OP_PUBKEY', 'OP_INVALIDOPCODE', 'OPCODES_BY_NAME', 'DISABLED_OPCODES', 'CScriptInvalidError', 'CScriptTruncatedPushDataError', 'CScript', 'CScriptWitness', 'SIGHASH_ALL', 'SIGHASH_NONE', 'SIGHASH_SINGLE', 'SIGHASH_ANYONECANPAY', 'FindAndDelete', 'RawSignatureHash', 'SignatureHash', 'IsLowDERSignature', 'SIGVERSION_BASE', 'SIGVERSION_WITNESS_V0', )
gpl-3.0
-7,740,762,687,538,103,000
28.58497
146
0.570777
false
DouFM/wang_fm
storage/music.py
1
1709
#!/usr/bin/env python # encoding: utf-8 import mongoengine from .base import BaseMongoStorage from config import DB_HOST, DB_PORT, DB_NAME mongoengine.connect(DB_NAME, host=DB_HOST, port=DB_PORT) class MusicStorage(BaseMongoStorage, mongoengine.Document): """store music info key str title str artist str album str company str public_time str kbps str cover file audio file upload_date datetime uuid str """ title = mongoengine.StringField(max_length=256, default='') artist = mongoengine.StringField(max_length=256, default='') album = mongoengine.StringField(max_length=256, default='') company = mongoengine.StringField(max_length=256, default='') public_time = mongoengine.StringField(max_length=10, default='') kbps = mongoengine.StringField(max_length=5, default='') cover = mongoengine.FileField() audio = mongoengine.FileField() upload_date = mongoengine.DateTimeField() uuid = mongoengine.StringField(unique=True) meta = { 'ordering': ['-upload_date'] } def __str__(self): return 'title=%s, artist=%s, album=%s' % (self.title, self.artist, self.album) def delete(self): self.cover.delete() self.audio.delete() super(MusicStorage, self).delete() def update(self, **kwargs): cover = kwargs.pop('cover', None) audio = kwargs.pop('audio', None) if cover: self.cover.replace(cover) if audio: self.audio.replace(audio) self.save() super(MusicStorage, self).update(**kwargs)
mit
-6,727,684,040,444,985,000
28.982456
86
0.607958
false
hikaruAi/timeShoot
mainwindow.py
1
4123
MainForm.setObjectName(_fromUtf8("MainForm")) MainForm.resize(281, 120) MainWindow.browseButton = QtGui.QPushButton(MainForm) MainWindow.browseButton.setGeometry(QtCore.QRect(150, 30, 51, 21)) MainWindow.browseButton.setFlat(False) MainWindow.browseButton.setObjectName(_fromUtf8("browseButton")) MainWindow.ouputText = QtGui.QLineEdit(MainForm) MainWindow.ouputText.setGeometry(QtCore.QRect(10, 30, 141, 20)) MainWindow.ouputText.setObjectName(_fromUtf8("ouputText")) MainWindow.label = QtGui.QLabel(MainForm) MainWindow.label.setGeometry(QtCore.QRect(10, 10, 71, 16)) MainWindow.label.setObjectName(_fromUtf8("label")) MainWindow.label_2 = QtGui.QLabel(MainForm) MainWindow.label_2.setGeometry(QtCore.QRect(10, 60, 91, 16)) MainWindow.label_2.setObjectName(_fromUtf8("label_2")) MainWindow.formatBox = QtGui.QComboBox(MainForm) MainWindow.formatBox.setGeometry(QtCore.QRect(120, 80, 69, 22)) MainWindow.formatBox.setObjectName(_fromUtf8("formatBox")) MainWindow.formatBox.addItem(_fromUtf8("")) MainWindow.formatBox.addItem(_fromUtf8("")) MainWindow.formatBox.addItem(_fromUtf8("")) MainWindow.formatBox.addItem(_fromUtf8("")) MainWindow.formatBox.addItem(_fromUtf8("")) MainWindow.label_3 = QtGui.QLabel(MainForm) MainWindow.label_3.setGeometry(QtCore.QRect(120, 60, 61, 16)) MainWindow.label_3.setObjectName(_fromUtf8("label_3")) MainWindow.delayBox = QtGui.QDoubleSpinBox(MainForm) MainWindow.delayBox.setGeometry(QtCore.QRect(10, 80, 81, 22)) MainWindow.delayBox.setDecimals(3) MainWindow.delayBox.setMinimum(0.001) MainWindow.delayBox.setMaximum(999999.999) MainWindow.delayBox.setSingleStep(5.0) MainWindow.delayBox.setProperty("value", 5.0) MainWindow.delayBox.setObjectName(_fromUtf8("delayBox")) MainWindow.mainButton = QtGui.QPushButton(MainForm) MainWindow.mainButton.setGeometry(QtCore.QRect(210, 10, 61, 41)) MainWindow.mainButton.setObjectName(_fromUtf8("mainButton")) MainWindow.stopButton = QtGui.QPushButton(MainForm) MainWindow.stopButton.setGeometry(QtCore.QRect(210, 60, 61, 41)) MainWindow.stopButton.setObjectName(_fromUtf8("stopButton")) QtCore.QMetaObject.connectSlotsByName(MainForm) MainForm.setTabOrder(MainWindow.browseButton, MainWindow.delayBox) MainForm.setTabOrder(MainWindow.delayBox, MainWindow.formatBox) MainForm.setTabOrder(MainWindow.formatBox, MainWindow.mainButton) MainForm.setTabOrder(MainWindow.mainButton, MainWindow.stopButton) MainForm.setTabOrder(MainWindow.stopButton, MainWindow.ouputText) MainForm.setWindowTitle(QtGui.QApplication.translate("MainForm", "Title", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.browseButton.setText(QtGui.QApplication.translate("MainForm", "Browse", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.label.setText(QtGui.QApplication.translate("MainForm", "Output :", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.label_2.setText(QtGui.QApplication.translate("MainForm", "Delay (seconds) :", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.formatBox.setItemText(0, QtGui.QApplication.translate("MainForm", "png", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.formatBox.setItemText(1, QtGui.QApplication.translate("MainForm", "jpg", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.formatBox.setItemText(2, QtGui.QApplication.translate("MainForm", "mp4", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.formatBox.setItemText(3, QtGui.QApplication.translate("MainForm", "avi", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.formatBox.setItemText(4, QtGui.QApplication.translate("MainForm", "mov", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.label_3.setText(QtGui.QApplication.translate("MainForm", "Format:", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.mainButton.setText(QtGui.QApplication.translate("MainForm", "Start", None, QtGui.QApplication.UnicodeUTF8)) MainWindow.stopButton.setText(QtGui.QApplication.translate("MainForm", "Stop", None, QtGui.QApplication.UnicodeUTF8))
gpl-3.0
7,120,725,703,614,476,000
70.086207
131
0.770313
false
bamford/astrobamf
cosmology.py
1
17513
# cosmology.py # (formerly distance_modulus.py) from math import log, sqrt, pi, sin, cos, exp from nr import erffc #from ppgplot_spb import * from checkarray import checkarray import scipy.integrate import numpy as N # WMAP 1-year results h0_WMAP1 = 0.71 H0_WMAP1 = h0_WMAP1 * 100.0 omega_m0_WMAP1 = 0.135 / h0_WMAP1**2 # WMAP 3-year results h0_WMAP3 = 0.73 H0_WMAP3 = h0_WMAP3 * 100.0 omega_m0_WMAP3 = 0.127 / h0_WMAP3**2 H0_std = 70.0 omega_m0_std = 0.30 omega_lambda0_std = 1.0 - omega_m0_std H0_classical = 75.0 q0_classical = 0.05 c0 = 299792.458 # km/s # mass of Sun in kg M_sun_kg = 1.9889e30 # kg # Mpc in kilometres Mpc_km = 3.0857e19 # km # Newton's gravitational constant G_N = 6.673e-11 # m**3 kg**(-1) s**(-2) # Number of square degrees over full sky sky_sq_deg = 4*pi * (180/pi)**2 # The distance modulus for a flat universe with # omega_matter + omega_lambda = 1 def dmod_flat(z, H0=H0_std, omega_m0=omega_m0_std): dL = dL_flat(z, H0, omega_m0) mu = 5.0 * N.log10(dL*1.E6) - 5.0 return mu # Luminosity distance for a flat universe with # omega_matter + omega_lambda = 1 # in Mpc def dL_flat(z, H0=H0_std, omega_m0=omega_m0_std): dL = (1.0+z) * (c0/H0) * dc(omega_m0, z) return dL # Comoving distance for a flat universe with # omega_matter + omega_lambda = 1 # in Mpc def dC_flat(z, H0=H0_std, omega_m0=omega_m0_std): dC = (c0/H0) * dc(omega_m0, z) return dC # Angular diameter distance for a flat universe with # omega_matter + omega_lambda = 1 def dA_flat(z, H0=H0_std, omega_m0=omega_m0_std): dA = dL_flat(z, H0, omega_m0) / (1.0+z)**2 return dA # Angular scale distance for a flat universe arcsec_in_rad = 180*60*60/pi kpc_in_Mpc = 10**3 ang_scale_conversion = kpc_in_Mpc / arcsec_in_rad def ang_scale_flat(z, H0=H0_std, omega_m0=omega_m0_std): # kpc/arcsec dA = dA_flat(z, H0, omega_m0) ang_scale = dA * ang_scale_conversion return ang_scale # The distance modulus for a classical universe with # omega_lambda = 0 def dmod_classical(z, H0=H0_classical, q0=q0_classical): dL = dL_classical(z, H0, q0) mu = 5.0 * N.log10(dL*1.E6) - 5.0 return mu # Luminosity distance for a classical universe with # omega_lambda = 0 # in Mpc def dL_classical(z, H0=H0_classical, q0=q0_classical): dL = c0/(H0*q0*q0) * (q0*z + (q0-1.0) * (sqrt(1.0 + 2.0*q0*z)-1.)) return dL # Angular diameter distance for a classical universe with # omega_lambda = 0 def dA_classical(z, H0=H0_classical, q0=q0_classical): dA = dL_classical(z, H0, q0) / (1.0+z)**2 return dA # calculate comoving distance (to a factor) for a flat lambda universe # old integration method def dc_old(omega_m0, z, dz=None): # probably not very efficient: # takes 0.25 cpu seconds for z=1.5 # 0.08 cpu seconds for z=0.5 # should use clever integration technique instead if dz is None: dz = 0.00001 d = 0.0 rom0 = 1.0/omega_m0 rsom0 = 1.0/sqrt(omega_m0) for z1 in (N.arange(int(z/dz)+1) * dz): d = d + rsom0 * dz/sqrt((1.0+z1)**3.0 - 1.0 + rom0) return d # calculate comoving distance (to a factor) for a flat lambda universe # improved integration method def dc_no_array(omega_m0, z): # function to integrate rom0 = 1.0/omega_m0 rsom0 = 1.0/sqrt(omega_m0) def rEz(z1): return rsom0 / sqrt((1.0+z1)**3.0 - 1.0 + rom0) d, derr = scipy.integrate.quad(rEz, 0.0, z) return d # calculate comoving distance (to a factor) for a flat lambda universe # improved integration method, added support for arrays def dc(omega_m0, z): tz = str(type(z)) if 'float' in tz or 'int' in tz: z = [z] z = N.asarray(z) d = N.zeros(z.shape) for i, zi in enumerate(z): # function to integrate rom0 = 1.0/omega_m0 rsom0 = 1.0/sqrt(omega_m0) def rEz(z1): return rsom0 / sqrt((1.0+z1)**3.0 - 1.0 + rom0) di, dierr = scipy.integrate.quad(rEz, 0.0, zi, limit=100) d[i] = di if len(d) == 1: d = d[0] return d # calculate the look-back time for a flat lambda universe def lt_flat_old(z, H0=H0_std, omega_m0=omega_m0_std, dz=None): # probably not very efficient # should use clever integration technique instead # dz=0.0001 gives an accuracy of 0.01 Gyr for all z # dz=0.00001 gives an accuracy of 0.001 Gyr for all z if dz is None: dz = 0.00001 t = 0.0 omega_lambda = 1.0 - omega_m0 for z1 in (N.arange(int(z/dz)+1) * dz): zfactor = 1.0 + z1 t = t + dz / ( zfactor * sqrt( zfactor**2 * (1+omega_m0*z1) - z1*(2+z1)*omega_lambda ) ) # t currently a fraction of the Hubble time # convert into Gyr mperpc = 3.085677581e16 secperday = 31557600 H0persec = H0 * 1.0e-3 / mperpc H0perGyr = H0persec * secperday * 1.0e9 t = t / H0perGyr return t # calculate the look-back time for a flat lambda universe # improved integration method def lt_flat(z, H0=H0_std, omega_m0=omega_m0_std): omega_lambda = 1.0 - omega_m0 z = N.asarray(z) d = N.zeros(z.shape) for i, zi in enumerate(z): # function to integrate def intfn(z1): zfactor = 1.0 + z1 return 1.0 / (zfactor * sqrt(zfactor**2 * (1+omega_m0*z1) - z1*(2+z1)*omega_lambda)) t, terr = scipy.integrate.quad(intfn, 0.0, zi) # t currently a fraction of the Hubble time # convert into Gyr mperpc = 3.085677581e16 secperday = 31557600 H0persec = H0 * 1.0e-3 / mperpc H0perGyr = H0persec * secperday * 1.0e9 d[i] = t / H0perGyr if len(d) == 1: d = d[0] return d return t # calculate age of a flat universe def age_flat(z, H0=H0_std, omega_m0=omega_m0_std): mperpc = 3.085677581e16 secperday = 31557600 H0persec = H0 * 1.0e-3 / mperpc H0perGyr = H0persec * secperday * 1.0e9 soom0 = sqrt(1.0-omega_m0) age_now = 2.0/(3.0*H0perGyr) * 1.0/(2*soom0) * log((1+soom0)/(1-soom0)) lbt = lt_flat(z, H0, omega_m0) age = age_now - lbt return age # calculate ratio of comoving volume elements at two redshifts # deduced from MIT astronomy course notes by Edmund Bertschinger, 1999 #http://ocw.mit.edu/NR/rdonlyres/Physics/8-942Fall2001/2F658E61-68A8-40F4-9168-B7AD0E23CA49/0/cosmog.pdf def vol_ratio(z1, z2, H0=H0_std, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): # ratio of comoving volume element at z1 to that at z2 Hz1 = H(z1, H0, omega_m0, omega_lambda0) Hz2 = H(z2, H0, omega_m0, omega_lambda0) dc1 = dc(omega_m0, z1) dc2 = dc(omega_m0, z2) return Hz2/Hz1 * (dc1/dc2)**2 # calculate the comoving volume enclosed between two redshifts # deduced from eqn. 9 in Shen et al, 2003, MNRAS, 343, 978 # All-sky, in cubic Mpc def vol(zmin, zmax, H0=H0_std, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): zmax = checkarray(zmax) zmin = checkarray(zmin) v = N.zeros(zmax.shape) # function to integrate def intfn(z): return (4*pi * dA_flat(z, H0, omega_m0)**2 * (1+z)**2 * c0 / H(z, H0, omega_m0, omega_lambda0)) for i in range(len(zmax)): zmini = zmin[i] zmaxi = zmax[i] vi, vierr = scipy.integrate.quadrature(intfn, zmini, zmaxi, tol=1.0e-3, maxiter=100) # this tol is easily sufficient for any reasonable zmin, zmax v[i] = vi if len(v) == 1: v = v[0] return v # calculate the maximum redshift at which an object with absolute # magnitude mabs could be included in a survey limited to apparent # magnitude mapplim. Optimised to do many objects in one go. def zmax(mabs, mapplim, zlow, zhigh, nz=None): mabs = checkarray(mabs) if nz is None: deltaz = 0.001 nz = int((zhigh-zlow)/deltaz) deltaz = (zhigh-zlow)/float(nz) zlist = N.arange(zhigh+deltaz/10, zlow, -deltaz) dmodlist = dmod_flat(zlist) mabslist = mapplim - dmodlist i = N.searchsorted(mabslist, mabs, side='left') ihigh = i == nz+1 N.putmask(i, ihigh, nz) ilow = i == 0 N.putmask(i, ilow, 1) z1 = zlist[i-1] z2 = zlist[i] m1 = mabslist[i-1] m2 = mabslist[i] s = (z2-z1)/(m2-m1) zmax = z1 + s*(mabs-m1) N.putmask(zmax, ilow, zhigh) N.putmask(zmax, ihigh, zlow) if zmax.shape == (1,): zmax = zmax[0] return zmax # calculate the maximum redshift at which an object with absolute # size rkpc could be included in a survey limited to apparent # size raslim. Optimised to do many objects in one go. def zmax_size(rkpc, raslim, zlow, zhigh, nz=None): rkpc = checkarray(rkpc) if nz is None: deltaz = 0.001 nz = int((zhigh-zlow)/deltaz) deltaz = (zhigh-zlow)/float(nz) zlist = N.arange(zlow, zhigh+deltaz/10, deltaz) angscalelist = ang_scale_flat(zlist) rkpclist = raslim * angscalelist i = N.searchsorted(rkpclist, rkpc) ihigh = i == nz+1 N.putmask(i, ihigh, nz) ilow = i == 0 N.putmask(i, ilow, 1) z1 = zlist[i-1] z2 = zlist[i] r1 = rkpclist[i-1] r2 = rkpclist[i] s = (z2-z1)/(r2-r1) zmax = z1 + s*(rkpc-r1) N.putmask(zmax, ilow, zlow) N.putmask(zmax, ihigh, zhigh) if zmax.shape == (1,): zmax = zmax[0] return zmax # calculate the maximum redshift at which an object with absolute # surface brightness sbabs (could be included in a survey limited to # apparent surface brightness sbapplim. # Optimised to do many objects in one go. def zmax_sb(sbabs, sbapplim, zlow, zhigh, nz=None): sbabs = checkarray(sbabs) if nz is None: deltaz = 0.001 nz = int((zhigh-zlow)/deltaz) deltaz = (zhigh-zlow)/float(nz) zlist = N.arange(zhigh+deltaz/10, zlow, -deltaz) dmodlist = dmod_flat(zlist) angscalelist = ang_scale_flat(zlist) sbabslist = sbapplim - dmodlist + 2.5*N.log10(angscalelist**2) i = N.searchsorted(sbabslist, sbabs) ihigh = i == nz+1 N.putmask(i, ihigh, nz) ilow = i == 0 N.putmask(i, ilow, 1) z1 = zlist[i-1] z2 = zlist[i] sb1 = sbabslist[i-1] sb2 = sbabslist[i] s = (z2-z1)/(sb2-sb1) zmax = z1 + s*(sbabs-sb1) N.putmask(zmax, ilow, zhigh) N.putmask(zmax, ihigh, zlow) if zmax.shape == (1,): zmax = zmax[0] return zmax #---------------------------------------------------------------------- # Calculate some cosmological structure formation information # from the equations in Mo & White, 2002, MNRAS, 336, 112. # calculate the number of haloes per unit comoving volume at # redshift z with mass in the interval [M, M+dM] # using the Sheth & Tormen (1999, 2001, 2002) function def n(M, z, dM, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): A = 0.322 a = 0.707 q = 0.3 rho_m0 = omega_m0_std * rho_c(H(z)) nu0 = nu_from_M(M, z, omega_m0, omega_lambda0) nu1 = nu_from_M(M+dM, z, omega_m0, omega_lambda0) nu0_primed = sqrt(a) * nu0 print 'nu0_primed:', nu0_primed nu1_primed = sqrt(a) * nu1 dnu_primed_by_dM = (nu1_primed - nu0_primed) / dM print 'dnu_primed_by_dM:', dnu_primed_by_dM term1 = 1.0 + 1.0/(nu0_primed**(2*q)) term2 = sqrt(2.0/pi) * (rho_m0 / M) * dnu_primed_by_dM term3 = exp(-(nu0_primed**2) / 2.0) print 'term1:', term1 print 'term2:', term2 print 'term3:', term3 return A * term1 * term2 * term3 # calculate the fraction of all mass in haloes with mass exceeding M # (eqn. 15) def F(nu): return 0.4 * (1.0 + 0.4/(nu**0.4)) * erffc(0.85*nu/sqrt(2)) # calculate the sigmaM corresponding to a given nu, # the sigma of the halo in terms of a density contrast def sigmaM_from_nu(nu, z, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): delta_c = 1.69 return delta_c / (nu * D(z, omega_m0, omega_lambda0)) # calculate nu, the sigma of the halo in terms of a density # contrast, given sigmaM def nu_from_M(M, z, H0=H0_std, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): delta_c = 1.69 R = R_Lagrangian(M, H0, omega_m0) varM = var(R, H0, omega_m0) sigmaM = sqrt(varM) Dz = D(z, omega_m0, omega_lambda0) print 'Dz:', Dz print 'sigmaM:', sigmaM return delta_c / (sigmaM * Dz) # calculate the growth factor for linear perturbations # following Carroll, Press & Turner Edwin (1992), as given by # Mo & White (2002) def D(z, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): omega_mz = omega_m(z, omega_m0, omega_lambda0) omega_lambdaz = omega_lambda(z, omega_m0, omega_lambda0) return g(z, omega_mz, omega_lambdaz) / (g(0, omega_m0, omega_lambda0) * (1.0+z)) # calculate function used in D (eqn. 10) def g(z, omega_m, omega_lambda): term1 = omega_m**(4.0/7.0) - omega_lambda term2 = (1 + omega_m/2.0)*(1+omega_lambda/70.0) return (5.0/2.0) * omega_m / (term1 + term2) # calcuate omega_matter at any redshift (eqn. 2) def omega_m(z, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): return omega_m0 * (1.0+z)**3 / (E(z, omega_m0, omega_lambda0)**2) # calcuate omega_lambda at any redshift (eqn. 11) def omega_lambda(z, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): return omega_lambda0 / (E(z, omega_m0, omega_lambda0)**2) # calculate the factor giving the evolution of the hubble constant # as a function of redshift (eqn. 3) def E(z, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): omega_total = omega_m0 + omega_lambda0 return N.sqrt(omega_lambda0 + (1.0 - omega_total) * (1.0+z)**2 + omega_m0 * (1.0+z)**3) # calculate the Hubble constant at any redshift (eqn. 2) def H(z, H0=H0_std, omega_m0=omega_m0_std, omega_lambda0=omega_lambda0_std): return H0 * E(z, omega_m0, omega_lambda0) # calculate Lagrangian radius of a halo of mass M def R_Lagrangian(M, H0=H0_std, omega_m0=omega_m0_std): return (3.0 * M / (4 * pi * omega_m0 * rho_c(H0)))**(1.0/3.0) # calculate critical density of universe given Hubble constant def rho_c(H): # H in km s**(-1) Mpc**(-1) H = H / Mpc_km# s**(-1) rho = 3.0 * H**2 / (8.0 * pi * G_N) # kg m**(-3) return rho / M_sun_kg * (Mpc_km * 1000.0)**3 # M_sun Mpc**(-3) # transfer function representing differential growth since early times # from Bardeen et al. (1986) as given in Mo & White (2002) eqn. 8. def T(k, H0=H0_std, omega_m0=omega_m0_std): q = k / (omega_m0 * (H0/100.0)**2) if abs(q) < 1.0e-6: term1 = 1.0 else: term1 = log(1 + 2.34*q) / (2.34*q) term2 = 1 + 3.89*q + (16.1*q)**2 + (5.46*q)**3 + (6.71*q)**4 return term1 * term2**(-1.0/4.0) # approximation of CDM power spectrum (eqn. 7) def P(k, H0=H0_std, omega_m0=omega_m0_std): return k * T(k, H0, omega_m0)**2 # calculate normalisation of P def intP(H0=H0_std, omega_m0=omega_m0_std, dk=None): if dk is None: dk = 0.0001 #pgopen('P_func.ps/ps') k_array = [] term_array = [] sum = 0.0 i = 0 kmax = 0 while 1: k = (i+0.0)*dk term = P(k, H0, omega_m0) sum = sum + term * dk k_array.append(k) term_array.append(term) if i > 0: if kmax == 0: if (term / sum) < 0.01: kmax = i*2 else: if i >= kmax: #print 'integration took %i steps'%i break #print k, sum, term, term*dk / sum else: pass #print k, sum, term i = i+1 #k_array = N.array(k_array) #term_array = N.array(term_array) #pgenv(0.0, 1.0, 0.0, 12.0) #pgline(k_array, term_array/sum) #pgclos() return sum # variance of Gaussian density field at a given radius def var(R, H0=H0_std, omega_m0=omega_m0_std, dk=None): # this is integrated using a very simple method # the function consists of a number of similarly spaced, # decreasing peaks, with only the first three contributing # significantly to the integral (first is much bigger) if dk is None: dk = 0.01 / R # seems to give about 1000 steps and # decent accuracy (<1%) for 0.03 < R < 100 #f = file('var_func', 'w') #pgopen('var_func.ps/ps') #k_array = [] #term_array = [] sum = 0.0 i = 0 kmax = None while 1: k = i*dk term = k**2 * P(k, H0, omega_m0) * W(k*R)**2 sum = sum + term * dk #f.write('%16.6g%16.6g%16.6g\n'%(k, term, sum)) #k_array.append(k) #term_array.append(term) if i > 0: if kmax is None: if (term / sum) < 0.01: # given good sampling provided by choice of dk # above, this occurs at end of first peak, so # setting kmax to three times this point gets # all three significant peaks. kmax = i*3 else: if i >= kmax: #print 'integration took %i steps'%i break #print k, sum, term, term*dk / sum else: pass #print k, sum, term i = i+1 #f.close() #k_array = N.array(k_array) #term_array = N.array(term_array) #pgenv(0.0, k, 0.0, 2.0e-5) #pgline(k_array, term_array) #pgclos() arb_scaling = 1.0e18 return sum / (2.0 * pi**2) / intP() * arb_scaling # Fourier transform of a top-hat filter with radius R # for use by var (x=kR) def W(x): if x < 1e-6: return 1.0 else: return 3.0 * (sin(x) - x*cos(x)) / x**3
mit
5,570,644,595,929,895,000
31.857411
104
0.600525
false
deepakgupta1313/models
syntaxnet/syntaxnet/graph_builder.py
1
23995
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Builds parser models.""" import tensorflow as tf import syntaxnet.load_parser_ops from tensorflow.python.ops import control_flow_ops as cf from tensorflow.python.ops import state_ops from tensorflow.python.platform import tf_logging as logging from syntaxnet.ops import gen_parser_ops def BatchedSparseToDense(sparse_indices, output_size): """Batch compatible sparse to dense conversion. This is useful for one-hot coded target labels. Args: sparse_indices: [batch_size] tensor containing one index per batch output_size: needed in order to generate the correct dense output Returns: A [batch_size, output_size] dense tensor. """ eye = tf.diag(tf.fill([output_size], tf.constant(1, tf.float32))) return tf.nn.embedding_lookup(eye, sparse_indices) def EmbeddingLookupFeatures(params, sparse_features, allow_weights): """Computes embeddings for each entry of sparse features sparse_features. Args: params: list of 2D tensors containing vector embeddings sparse_features: 1D tensor of strings. Each entry is a string encoding of dist_belief.SparseFeatures, and represents a variable length list of feature ids, and optionally, corresponding weights values. allow_weights: boolean to control whether the weights returned from the SparseFeatures are used to multiply the embeddings. Returns: A tensor representing the combined embeddings for the sparse features. For each entry s in sparse_features, the function looks up the embeddings for each id and sums them into a single tensor weighing them by the weight of each id. It returns a tensor with each entry of sparse_features replaced by this combined embedding. """ if not isinstance(params, list): params = [params] # Lookup embeddings. sparse_features = tf.convert_to_tensor(sparse_features) indices, ids, weights = gen_parser_ops.unpack_sparse_features(sparse_features) embeddings = tf.nn.embedding_lookup(params, ids) if allow_weights: # Multiply by weights, reshaping to allow broadcast. broadcast_weights_shape = tf.concat_v2([tf.shape(weights), [1]], 0) embeddings *= tf.reshape(weights, broadcast_weights_shape) # Sum embeddings by index. return tf.unsorted_segment_sum(embeddings, indices, tf.size(sparse_features)) class GreedyParser(object): """Builds a Chen & Manning style greedy neural net parser. Builds a graph with an optional reader op connected at one end and operations needed to train the network on the other. Supports multiple network instantiations sharing the same parameters and network topology. The following named nodes are added to the training and eval networks: epochs: a tensor containing the current epoch number cost: a tensor containing the current training step cost gold_actions: a tensor containing actions from gold decoding feature_endpoints: a list of sparse feature vectors logits: output of the final layer before computing softmax The training network also contains: train_op: an op that executes a single training step Typical usage: parser = graph_builder.GreedyParser(num_actions, num_features, num_feature_ids, embedding_sizes, hidden_layer_sizes) parser.AddTraining(task_context, batch_size=5) with tf.Session('local') as sess: # This works because the session uses the same default graph as the # GraphBuilder did. sess.run(parser.inits.values()) while True: tf_epoch, _ = sess.run([parser.training['epoch'], parser.training['train_op']]) if tf_epoch[0] > 0: break """ def __init__(self, num_actions, num_features, num_feature_ids, embedding_sizes, hidden_layer_sizes, seed=None, gate_gradients=False, use_locking=False, embedding_init=1.0, relu_init=1e-4, bias_init=0.2, softmax_init=1e-4, averaging_decay=0.9999, use_averaging=True, check_parameters=True, check_every=1, allow_feature_weights=False, only_train='', arg_prefix=None, **unused_kwargs): """Initialize the graph builder with parameters defining the network. Args: num_actions: int size of the set of parser actions num_features: int list of dimensions of the feature vectors num_feature_ids: int list of same length as num_features corresponding to the sizes of the input feature spaces embedding_sizes: int list of same length as num_features of the desired embedding layer sizes hidden_layer_sizes: int list of desired relu layer sizes; may be empty seed: optional random initializer seed to enable reproducibility gate_gradients: if True, gradient updates are computed synchronously, ensuring consistency and reproducibility use_locking: if True, use locking to avoid read-write contention when updating Variables embedding_init: sets the std dev of normal initializer of embeddings to embedding_init / embedding_size ** .5 relu_init: sets the std dev of normal initializer of relu weights to relu_init bias_init: sets constant initializer of relu bias to bias_init softmax_init: sets the std dev of normal initializer of softmax init to softmax_init averaging_decay: decay for exponential moving average when computing averaged parameters, set to 1 to do vanilla averaging use_averaging: whether to use moving averages of parameters during evals check_parameters: whether to check for NaN/Inf parameters during training check_every: checks numerics every check_every steps. allow_feature_weights: whether feature weights are allowed. only_train: the comma separated set of parameter names to train. If empty, all model parameters will be trained. arg_prefix: prefix for context parameters. """ self._num_actions = num_actions self._num_features = num_features self._num_feature_ids = num_feature_ids self._embedding_sizes = embedding_sizes self._hidden_layer_sizes = hidden_layer_sizes self._seed = seed self._gate_gradients = gate_gradients self._use_locking = use_locking self._use_averaging = use_averaging self._check_parameters = check_parameters self._check_every = check_every self._allow_feature_weights = allow_feature_weights self._only_train = set(only_train.split(',')) if only_train else None self._feature_size = len(embedding_sizes) self._embedding_init = embedding_init self._relu_init = relu_init self._softmax_init = softmax_init self._arg_prefix = arg_prefix # Parameters of the network with respect to which training is done. self.params = {} # Other variables, with respect to which no training is done, but which we # nonetheless need to save in order to capture the state of the graph. self.variables = {} # Operations to initialize any nodes that require initialization. self.inits = {} # Training- and eval-related nodes. self.training = {} self.evaluation = {} self.saver = None # Nodes to compute moving averages of parameters, called every train step. self._averaging = {} self._averaging_decay = averaging_decay # Pretrained embeddings that can be used instead of constant initializers. self._pretrained_embeddings = {} # After the following 'with' statement, we'll be able to re-enter the # 'params' scope by re-using the self._param_scope member variable. See for # instance _AddParam. with tf.name_scope('params') as self._param_scope: self._relu_bias_init = tf.constant_initializer(bias_init) @property def embedding_size(self): size = 0 for i in range(self._feature_size): size += self._num_features[i] * self._embedding_sizes[i] return size def _AddParam(self, shape, dtype, name, initializer=None, return_average=False): """Add a model parameter w.r.t. we expect to compute gradients. _AddParam creates both regular parameters (usually for training) and averaged nodes (usually for inference). It returns one or the other based on the 'return_average' arg. Args: shape: int list, tensor shape of the parameter to create dtype: tf.DataType, data type of the parameter name: string, name of the parameter in the TF graph initializer: optional initializer for the paramter return_average: if False, return parameter otherwise return moving average Returns: parameter or averaged parameter """ if name not in self.params: step = tf.cast(self.GetStep(), tf.float32) # Put all parameters and their initializing ops in their own scope # irrespective of the current scope (training or eval). with tf.name_scope(self._param_scope): self.params[name] = tf.get_variable(name, shape, dtype, initializer) param = self.params[name] if initializer is not None: self.inits[name] = state_ops.init_variable(param, initializer) if self._averaging_decay == 1: logging.info('Using vanilla averaging of parameters.') ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)), num_updates=None) else: ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay, num_updates=step) self._averaging[name + '_avg_update'] = ema.apply([param]) self.variables[name + '_avg_var'] = ema.average(param) self.inits[name + '_avg_init'] = state_ops.init_variable( ema.average(param), tf.zeros_initializer) return (self.variables[name + '_avg_var'] if return_average else self.params[name]) def GetStep(self): def OnesInitializer(shape, dtype=tf.float32, partition_info=None): return tf.ones(shape, dtype) return self._AddVariable([], tf.int32, 'step', OnesInitializer) def _AddVariable(self, shape, dtype, name, initializer=None): if name in self.variables: return self.variables[name] self.variables[name] = tf.get_variable(name, shape, dtype, initializer) if initializer is not None: self.inits[name] = state_ops.init_variable(self.variables[name], initializer) return self.variables[name] def _ReluWeightInitializer(self): with tf.name_scope(self._param_scope): return tf.random_normal_initializer(stddev=self._relu_init, seed=self._seed) def _EmbeddingMatrixInitializer(self, index, embedding_size): if index in self._pretrained_embeddings: return self._pretrained_embeddings[index] else: return tf.random_normal_initializer( stddev=self._embedding_init / embedding_size**.5, seed=self._seed) def _AddEmbedding(self, features, num_features, num_ids, embedding_size, index, return_average=False): """Adds an embedding matrix and passes the `features` vector through it.""" embedding_matrix = self._AddParam( [num_ids, embedding_size], tf.float32, 'embedding_matrix_%d' % index, self._EmbeddingMatrixInitializer(index, embedding_size), return_average=return_average) embedding = EmbeddingLookupFeatures(embedding_matrix, tf.reshape(features, [-1], name='feature_%d' % index), self._allow_feature_weights) return tf.reshape(embedding, [-1, num_features * embedding_size]) def _BuildNetwork(self, feature_endpoints, return_average=False): """Builds a feed-forward part of the net given features as input. The network topology is already defined in the constructor, so multiple calls to BuildForward build multiple networks whose parameters are all shared. It is the source of the input features and the use of the output that distinguishes each network. Args: feature_endpoints: tensors with input features to the network return_average: whether to use moving averages as model parameters Returns: logits: output of the final layer before computing softmax """ assert len(feature_endpoints) == self._feature_size # Create embedding layer. embeddings = [] for i in range(self._feature_size): embeddings.append(self._AddEmbedding(feature_endpoints[i], self._num_features[i], self._num_feature_ids[i], self._embedding_sizes[i], i, return_average=return_average)) last_layer = tf.concat_v2(embeddings, 1) last_layer_size = self.embedding_size # Create ReLU layers. for i, hidden_layer_size in enumerate(self._hidden_layer_sizes): weights = self._AddParam( [last_layer_size, hidden_layer_size], tf.float32, 'weights_%d' % i, self._ReluWeightInitializer(), return_average=return_average) bias = self._AddParam([hidden_layer_size], tf.float32, 'bias_%d' % i, self._relu_bias_init, return_average=return_average) last_layer = tf.nn.relu_layer(last_layer, weights, bias, name='layer_%d' % i) last_layer_size = hidden_layer_size # Create softmax layer. softmax_weight = self._AddParam( [last_layer_size, self._num_actions], tf.float32, 'softmax_weight', tf.random_normal_initializer(stddev=self._softmax_init, seed=self._seed), return_average=return_average) softmax_bias = self._AddParam( [self._num_actions], tf.float32, 'softmax_bias', tf.zeros_initializer, return_average=return_average) logits = tf.nn.xw_plus_b(last_layer, softmax_weight, softmax_bias, name='logits') return {'logits': logits} def _AddGoldReader(self, task_context, batch_size, corpus_name): features, epochs, gold_actions = ( gen_parser_ops.gold_parse_reader(task_context, self._feature_size, batch_size, corpus_name=corpus_name, arg_prefix=self._arg_prefix)) return {'gold_actions': tf.identity(gold_actions, name='gold_actions'), 'epochs': tf.identity(epochs, name='epochs'), 'feature_endpoints': features} def _AddDecodedReader(self, task_context, batch_size, transition_scores, corpus_name): features, epochs, eval_metrics, documents = ( gen_parser_ops.decoded_parse_reader(transition_scores, task_context, self._feature_size, batch_size, corpus_name=corpus_name, arg_prefix=self._arg_prefix)) return {'eval_metrics': eval_metrics, 'epochs': tf.identity(epochs, name='epochs'), 'feature_endpoints': features, 'documents': documents} def _AddCostFunction(self, batch_size, gold_actions, logits): """Cross entropy plus L2 loss on weights and biases of the hidden layers.""" dense_golden = BatchedSparseToDense(gold_actions, self._num_actions) cross_entropy = tf.div( tf.reduce_sum( tf.nn.softmax_cross_entropy_with_logits( labels=dense_golden, logits=logits)), batch_size) regularized_params = [tf.nn.l2_loss(p) for k, p in self.params.items() if k.startswith('weights') or k.startswith('bias')] l2_loss = 1e-4 * tf.add_n(regularized_params) if regularized_params else 0 return {'cost': tf.add(cross_entropy, l2_loss, name='cost')} def AddEvaluation(self, task_context, batch_size, evaluation_max_steps=300, corpus_name='documents'): """Builds the forward network only without the training operation. Args: task_context: file path from which to read the task context. batch_size: batch size to request from reader op. evaluation_max_steps: max number of parsing actions during evaluation, only used in beam parsing. corpus_name: name of the task input to read parses from. Returns: Dictionary of named eval nodes. """ def _AssignTransitionScores(): return tf.assign(nodes['transition_scores'], nodes['logits'], validate_shape=False) def _Pass(): return tf.constant(-1.0) unused_evaluation_max_steps = evaluation_max_steps with tf.name_scope('evaluation'): nodes = self.evaluation nodes['transition_scores'] = self._AddVariable( [batch_size, self._num_actions], tf.float32, 'transition_scores', tf.constant_initializer(-1.0)) nodes.update(self._AddDecodedReader(task_context, batch_size, nodes[ 'transition_scores'], corpus_name)) nodes.update(self._BuildNetwork(nodes['feature_endpoints'], return_average=self._use_averaging)) nodes['eval_metrics'] = cf.with_dependencies( [tf.cond(tf.greater(tf.size(nodes['logits']), 0), _AssignTransitionScores, _Pass)], nodes['eval_metrics'], name='eval_metrics') return nodes def _IncrementCounter(self, counter): return state_ops.assign_add(counter, 1, use_locking=True) def _AddLearningRate(self, initial_learning_rate, decay_steps): """Returns a learning rate that decays by 0.96 every decay_steps. Args: initial_learning_rate: initial value of the learning rate decay_steps: decay by 0.96 every this many steps Returns: learning rate variable. """ step = self.GetStep() return cf.with_dependencies( [self._IncrementCounter(step)], tf.train.exponential_decay(initial_learning_rate, step, decay_steps, 0.96, staircase=True)) def AddPretrainedEmbeddings(self, index, embeddings_path, task_context): """Embeddings at the given index will be set to pretrained values.""" def _Initializer(shape, dtype=tf.float32, partition_info=None): unused_dtype = dtype t = gen_parser_ops.word_embedding_initializer( vectors=embeddings_path, task_context=task_context, embedding_init=self._embedding_init) t.set_shape(shape) return t self._pretrained_embeddings[index] = _Initializer def AddTraining(self, task_context, batch_size, learning_rate=0.1, decay_steps=4000, momentum=0.9, corpus_name='documents'): """Builds a trainer to minimize the cross entropy cost function. Args: task_context: file path from which to read the task context batch_size: batch size to request from reader op learning_rate: initial value of the learning rate decay_steps: decay learning rate by 0.96 every this many steps momentum: momentum parameter used when training with momentum corpus_name: name of the task input to read parses from Returns: Dictionary of named training nodes. """ with tf.name_scope('training'): nodes = self.training nodes.update(self._AddGoldReader(task_context, batch_size, corpus_name)) nodes.update(self._BuildNetwork(nodes['feature_endpoints'], return_average=False)) nodes.update(self._AddCostFunction(batch_size, nodes['gold_actions'], nodes['logits'])) # Add the optimizer if self._only_train: trainable_params = [v for k, v in self.params.iteritems() if k in self._only_train] else: trainable_params = self.params.values() lr = self._AddLearningRate(learning_rate, decay_steps) optimizer = tf.train.MomentumOptimizer(lr, momentum, use_locking=self._use_locking) train_op = optimizer.minimize(nodes['cost'], var_list=trainable_params) for param in trainable_params: slot = optimizer.get_slot(param, 'momentum') self.inits[slot.name] = state_ops.init_variable(slot, tf.zeros_initializer) self.variables[slot.name] = slot numerical_checks = [ tf.check_numerics(param, message='Parameter is not finite.') for param in trainable_params if param.dtype.base_dtype in [tf.float32, tf.float64] ] check_op = tf.group(*numerical_checks) avg_update_op = tf.group(*self._averaging.values()) train_ops = [train_op] if self._check_parameters: train_ops.append(check_op) if self._use_averaging: train_ops.append(avg_update_op) nodes['train_op'] = tf.group(*train_ops, name='train_op') return nodes def AddSaver(self, slim_model=False): """Adds ops to save and restore model parameters. Args: slim_model: whether only averaged variables are saved. Returns: the saver object. """ # We have to put the save op in the root scope otherwise running # "save/restore_all" won't find the "save/Const" node it expects. with tf.name_scope(None): variables_to_save = self.params.copy() variables_to_save.update(self.variables) if slim_model: for key in variables_to_save.keys(): if not key.endswith('avg_var'): del variables_to_save[key] self.saver = tf.train.Saver(variables_to_save) return self.saver
apache-2.0
-1,037,172,848,354,709,400
41.096491
80
0.612086
false
MissionCriticalCloud/marvin
marvin/cloudstackAPI/addVpnUser.py
1
2003
"""Adds vpn users""" from baseCmd import * from baseResponse import * class addVpnUserCmd (baseCmd): typeInfo = {} def __init__(self): self.isAsync = "true" """password for the username""" """Required""" self.password = None self.typeInfo['password'] = 'string' """username for the vpn user""" """Required""" self.username = None self.typeInfo['username'] = 'string' """an optional account for the vpn user. Must be used with domainId.""" self.account = None self.typeInfo['account'] = 'string' """an optional domainId for the vpn user. If the account parameter is used, domainId must also be used.""" self.domainid = None self.typeInfo['domainid'] = 'uuid' """add vpn user to the specific project""" self.projectid = None self.typeInfo['projectid'] = 'uuid' self.required = ["password", "username", ] class addVpnUserResponse (baseResponse): typeInfo = {} def __init__(self): """the vpn userID""" self.id = None self.typeInfo['id'] = 'string' """the account of the remote access vpn""" self.account = None self.typeInfo['account'] = 'string' """the domain name of the account of the remote access vpn""" self.domain = None self.typeInfo['domain'] = 'string' """the domain id of the account of the remote access vpn""" self.domainid = None self.typeInfo['domainid'] = 'string' """the project name of the vpn""" self.project = None self.typeInfo['project'] = 'string' """the project id of the vpn""" self.projectid = None self.typeInfo['projectid'] = 'string' """the state of the Vpn User""" self.state = None self.typeInfo['state'] = 'string' """the username of the vpn user""" self.username = None self.typeInfo['username'] = 'string'
apache-2.0
2,789,623,737,036,903,000
32.949153
114
0.572142
false
pekzeki/SoundcloudNetwork
favorite_information.py
1
1765
# import MySQLdb def getPlaylistInformation(client, user_id, favoritesCount): favoritesList = list() favorite_url = '/users/' + str(user_id) + '/favorites' for i in range(0, favoritesCount, 50): favorites = client.get(favorite_url, offset=i) favoritesList.append(favorites) return favoritesList def insertDB(user_id, favoritesList): database = MySQLdb.connect(host="127.0.0.1", user = "root", passwd="", db = "soundcloud") database.set_character_set('utf8') cursor = database.cursor() for favorites in favoritesList: for favorite in favorites: query = "INSERT INTO T_FAVORITEINFO (TRACKID, FAVUSERID) VALUES (%s, %s)" TRACKID = favorite.id FAVUSERID = favorite.user_id values = (TRACKID, FAVUSERID) cursor.execute(query, values) query = "INSERT INTO T_ACTIVITY (USERID, ACTIVITYTYPE, FAVORITEID) VALUES (%s, %s, %s)" USERID = user_id ACTIVITYTYPE = "12" FAVORITEID = cursor.lastrowid values = (USERID, ACTIVITYTYPE, FAVORITEID) cursor.execute(query, values) cursor.close() database.commit() database.close() from py2neo import Graph def add2Neo4J(user_id, favoritesList): graph = Graph() tx = graph.cypher.begin() for favorites in favoritesList: for favorite in favorites: tx.append("MATCH (u1:User), (t1:Track) WHERE u1.id = {A} AND t1.id = {B} CREATE UNIQUE (t1)-[:FAVORITED_BY]->(u1)", {"A":user_id, "B":favorite.id}) tx.process() tx.commit()
mit
3,434,409,342,504,076,300
29.431034
128
0.561473
false
lamestation/LEAM
games/maps/03_ParallaxScrolling.py
1
1111
#/usr/bin/env python from lame import gfx from lame import map from lame import ctrl def main(): xoffset = 0 offsetw = 0 w1 = 0 dx = 0 map.start(gfx.start()) gfx.limit(gfx.FULLSPEED) cavelake = gfx.load('gfx/cavelake.png') cave = map.load('gfx/cave.tmx') cave2 = map.load('gfx/cave2.tmx') w1 = map.width(cave) * 8 - 128 h1 = map.height(cave) * 8 - 64 w2 = map.width(cave2) * 8 - 128 h2 = map.height(cave2) * 8 - 64 dx = w1 // w2 dy = h1 // h2 yoffset = 64 while True: ctrl.update() if ctrl.left(): if xoffset > 0: xoffset -= 2 if ctrl.right(): if xoffset < w1: xoffset += 2 if ctrl.up(): if yoffset > 0: yoffset -= 2 if ctrl.down(): if yoffset < h1: yoffset += 2 gfx.blit(cavelake) gfx.invertcolor(True) map.draw(cave2, xoffset // dx, yoffset // dy) gfx.invertcolor(False) map.draw(cave, xoffset, yoffset) gfx.draw() main()
gpl-3.0
-1,402,535,558,148,705,500
22.638298
53
0.49505
false
sanger-pathogens/gff3toembl
gff3toembl/EMBLContig.py
1
19185
import re from textwrap import TextWrapper from six.moves.urllib.parse import unquote as gff3_unescape class EMBLContig(object): def __init__(self): self.header = None self.features = {} self.sequence = None def format(self): try: header = self.header.format() except AttributeError: raise ValueError("Could not format contig, no header data found") feature_strings = [feature.format() for feature in self.sorted_features()] features = "".join(feature_strings) try: sequence = self.sequence.format() except AttributeError: raise ValueError("Could not format contig, no sequence data found") formatted_string = header + features + sequence header_features_formatted_string = header + features line_lengths = map(len, header_features_formatted_string.split('\n')) maximum_line_length = max(line_lengths) if maximum_line_length > 80: raise ValueError("Could not format contig, a line exceeded 80 characters in length") return formatted_string def add_header(self, **kwargs): if self.header != None: raise ValueError("Contig already has header data") header = EMBLHeader(**kwargs) self.header = header def add_feature(self, sequence_id, **kwargs): feature = EMBLFeature(**kwargs) unique_feature_reference = "{}_{}_{}_{}".format(sequence_id, feature.feature_type, feature.start, feature.end) if unique_feature_reference in self.features: # we're already seen a feature in this region so don't add another return False elif feature.format() == None: # some feature types should be ignored; format() returns None in these cases return False else: self.features[unique_feature_reference] = feature return True def add_sequence(self, sequence_string): if self.sequence != None: raise ValueError("Contig already has sequence data") sequence = EMBLSequence(sequence_string) self.sequence = sequence def sorted_features(self): # Features should be sorted by start and then by end irrespective of strand def sort_key(feature): return (feature.start, feature.end) return sorted(self.features.values(), key=sort_key) class EMBLFeature(object): inference_to_db_xref_map = { 'similar to AA sequence:UniProtKB': 'UniProtKB/Swiss-Prot', 'protein motif:Pfam': 'PFAM', 'protein motif:CLUSTERS': "CDD", 'protein motif:Cdd': "CDD", 'protein motif:TIGRFAMs': "TIGRFAM" } def __init__(self, feature_type, start, end, strand, feature_attributes, locus_tag=None, translation_table=11): # Picks a feature builder and builds the feature # Most features are built with a default but some are either a little different or # should just be ignored feature_builder = self.pick_feature_builder(feature_type) feature_builder(feature_type=feature_type, start=start, end=end, strand=strand, feature_attributes=feature_attributes, locus_tag=locus_tag, translation_table=translation_table) def pick_feature_builder(self, feature_type): feature_builders = { 'CDS': self.create_CDS_feature, 'source': self.create_source_feature, 'ncRNA': self.create_empty_feature } return feature_builders.get(feature_type, self.create_default_feature) def create_default_feature(self, feature_type, start, end, strand, feature_attributes, locus_tag, translation_table): self.feature_type = feature_type self.start = start self.end = end self.strand = strand self.locus_tag = locus_tag self.translation_table = translation_table self.attributes = [] for attribute_key, attribute_value in feature_attributes.items(): attribute_creator = self.lookup_attribute_creator(attribute_key) new_attributes = attribute_creator(attribute_key, attribute_value) self.attributes += new_attributes def create_CDS_feature(self, **kwargs): self.create_default_feature(**kwargs) self.attributes += self.create_translation_table_attributes('transl_table', self.translation_table) def create_source_feature(self, feature_type, start, end, strand, feature_attributes, locus_tag, translation_table): self.feature_type = feature_type self.start = start self.end = end self.strand = strand self.locus_tag = locus_tag self.translation_table = translation_table organism = feature_attributes['organism'] db_xref = feature_attributes['db_xref'] note = feature_attributes['note'] # We hard code the order and composition of attributes for source features # Source features are only created as part of the header self.attributes = [("organism", organism), ("mol_type", "genomic DNA"), ("db_xref", db_xref), ("note", note)] def create_empty_feature(self, **kwargs): # Some features should be ignored. This is how this is done self.format = lambda: None def format(self): coordinates = self.format_coordinates(self.start, self.end, self.strand) header_string = "FT {feature_type: <16}{coordinates}".format( feature_type=self.feature_type, coordinates=coordinates) attribute_strings = [header_string] for attribute_key,attribute_value in self.attributes: attribute_strings.append(self.format_attribute(attribute_key, attribute_value)) return '\n'.join(attribute_strings) + '\n' def format_attribute(self, key, value): # Looks up a formatter for an attribute and formats the attribute # Some attributes are formatted a little differently # Also un-escapes the GFF3 mandated percent encoding here formatter = self.lookup_attribute_formatter(key) return formatter(key, gff3_unescape(str(value))) def lookup_attribute_formatter(self, attribute_type): formatters = { 'transl_table': self.number_attribute_formatter, 'product': self.product_attribute_formatter, 'codon_start': self.number_attribute_formatter, } return formatters.get(attribute_type, self.default_attribute_formatter) def number_attribute_formatter(self, key, value): # transl_table attributes do not have their values in quotes wrapper = TextWrapper() wrapper.initial_indent='FT ' wrapper.subsequent_indent='FT ' wrapper.width=80 # can use 80 characters plus the new line attribute_text_template='/{attribute_key}={attribute_value}' attribute_text=attribute_text_template.format(attribute_key=key, attribute_value=value) return wrapper.fill(attribute_text) def product_attribute_formatter(self, key, value): # Products can include very long enzyme names which we don't want to break wrapper = TextWrapper() wrapper.initial_indent='FT ' wrapper.subsequent_indent='FT ' wrapper.width=80 # can use 80 characters plus the new line wrapper.break_on_hyphens=True attribute_text_template='/{attribute_key}="{attribute_value}"' attribute_text=attribute_text_template.format(attribute_key=key, attribute_value=value) return wrapper.fill(attribute_text) def default_attribute_formatter(self, key, value): wrapper = TextWrapper() wrapper.initial_indent='FT ' wrapper.subsequent_indent='FT ' wrapper.width=80 # can use 80 characters plus the new line attribute_text_template='/{attribute_key}="{attribute_value}"' attribute_text=attribute_text_template.format(attribute_key=key, attribute_value=value) return wrapper.fill(attribute_text) def format_coordinates(self, start, end, strand): if strand == '-': return "complement({start}..{end})".format(start=start, end=end) else: return "{start}..{end}".format(start=start, end=end) def lookup_attribute_creator(self, attribute_key): # These functions take attributes and reformat them into a list # of (key, values) which are later formatted into strings by other # methods. There is quite a lot of variation between these such as # whether to keep more than one value for a given attribute type. attribute_creator_table = { 'product': self.create_product_attributes, 'locus_tag': self.create_locus_tag_attributes, 'eC_number': self.create_EC_number_attributes, 'inference': self.create_inference_attributes, 'protein_id': self.ignore_attributes, 'ID': self.ignore_attributes, 'codon_start': self.create_number_attributes, 'colour': self.ignore_attributes } return attribute_creator_table.get(attribute_key, self.create_default_attributes) def create_number_attributes(self, attribute_key, attribute_value): def strip_quotes(value): return value.strip('"') def remove_empty_strings(value): return value != '' attribute_values = attribute_value.split(',') attribute_values = map(strip_quotes, attribute_values) attribute_values = list(filter(remove_empty_strings, attribute_values)) if len(attribute_values) > 0: first_attribute_value = attribute_values[0] else: return [] try: first_attribute_value = int(first_attribute_value) except TypeError: first_attribute_value = 0 return [(attribute_key, first_attribute_value)] def create_default_attributes(self, attribute_key, attribute_value): def strip_quotes(value): return value.strip('"') def remove_empty_strings(value): return value != '' attribute_values = attribute_value.split(',') attribute_values = map(strip_quotes, attribute_values) attribute_values = list(filter(remove_empty_strings, attribute_values)) if len(attribute_values) > 0: first_attribute_value = attribute_values[0] else: return [] return [(attribute_key, first_attribute_value)] def create_product_attributes(self, attribute_key, attribute_value): def remove_hypotheticals(value): return 'hypothetical protein' not in value.lower() def replace_unknown_with_uncharacterised(value): return value.replace("nknown","ncharacterised") def strip_quotes(value): return value.strip('"') def remove_empty_strings(value): return value != '' # attribute_value may be a comma deliminated list of values # only some of which might be valid attribute_values = attribute_value.split(',') attribute_values = map(strip_quotes, attribute_values) attribute_values = filter(remove_hypotheticals, attribute_values) attribute_values = map(replace_unknown_with_uncharacterised, attribute_values) attribute_values = list(filter(remove_empty_strings, attribute_values)) chosen_value = attribute_values[0] if len(attribute_values) > 0 else 'Uncharacterised protein' return [('product', chosen_value)] def create_locus_tag_attributes(self, attribute_key, attribute_value): if self.locus_tag == None: return [('locus_tag', attribute_value.strip('"'))] else: attribute_value_suffix = attribute_value.split('_')[-1] return [('locus_tag', "{}_{}".format(self.locus_tag, attribute_value_suffix.strip('"')))] def create_EC_number_attributes(self, attribute_key, attribute_value): attribute_values = attribute_value.split(',') def deduplicate_values(values): return list(set(values)) def strip_quotes(value): return value.strip('"') attribute_values = deduplicate_values(attribute_values) attribute_values = map(strip_quotes, attribute_values) def remove_invalidnumber(value): return re.match("^[\d]+\.[\d-]+\.[\d-]+\.[\d-]+$", value) attribute_values = filter(remove_invalidnumber, attribute_values) return [('EC_number', value) for value in attribute_values] def create_inference_attributes(self, attribute_key, attribute_value): def strip_quotes(value): return value.strip('"') attribute_values = attribute_value.split(',') attribute_values = map(strip_quotes, attribute_values) attributes = [] for value in attribute_values: if self.should_convert_to_db_xref(value): attributes.append(('db_xref', self.convert_to_db_xref(value))) else: attributes.append(('inference', value)) return attributes def ignore_attributes(self, attribute_key, attribute_value): return [] def should_convert_to_db_xref(self, attribute_value): for search_text in self.inference_to_db_xref_map: if search_text in attribute_value: return True return False def convert_to_db_xref(self, attribute_value): for search_text, replacement_text in self.inference_to_db_xref_map.items(): if search_text in attribute_value: return attribute_value.replace(search_text, replacement_text) raise ValueError("Failed to convert inference attribute '%s' to db_xref" % attribute_value) def create_translation_table_attributes(self, attribute_key, attribute_value): return [('transl_table', attribute_value)] class EMBLHeader(object): def __init__(self, authors="Pathogen Genomics", classification="UNC", genome_type="circular", organism=None, project="", publication="Unpublished", sequence_identifier="", sequence_length="", sequence_name=None, taxon_id=None, title="Draft assembly annotated with Prokka", ): self.authors=authors self.classification=classification self.genome_type=genome_type self.organism=organism self.project=project self.publication=publication self.sequence_identifier=self.remove_non_word_characters(sequence_identifier) self.sequence_length=sequence_length self.sequence_name=sequence_name self.taxon_id=taxon_id self.title=title source_attributes = self.build_source_attributes(organism, taxon_id, sequence_name) self.source_feature = EMBLFeature(feature_type='source', start=1, end=sequence_length, strand='+', feature_attributes=source_attributes) self.header_template = """\ ID XXX; XXX; {genome_type}; genomic DNA; STD; {classification}; {sequence_length} BP. XX AC XXX; XX AC * _{sequence_identifier} XX {project_line} XX DE XXX; XX RN [1] {publication_authors} {publication_title} {publication_name} XX FH Key Location/Qualifiers FH """ def header_attribute_formatter(self, key, header_text, quote_character, final_character): wrapper = TextWrapper() wrapper.initial_indent=key + ' ' wrapper.subsequent_indent=key + ' ' wrapper.width=80 # can use 80 characters plus the new line attribute_text_template='{attribute_quote_character}{attribute_header_text}{attribute_quote_character}{attribute_final_character}' attribute_text=attribute_text_template.format(attribute_header_text = header_text, attribute_quote_character = quote_character, attribute_final_character = final_character) return wrapper.fill(attribute_text) def remove_non_word_characters(self, sequence_identifier): return re.sub(r'\W+', '', sequence_identifier) def format(self): project_line = self.header_attribute_formatter("PR", "Project:" + self.project, '', ';' ) publication_authors = self.header_attribute_formatter("RA", self.authors,'',';' ) publication_title = self.header_attribute_formatter("RT", self.title,'"',';' ) publication_name = self.header_attribute_formatter("RL", self.publication,'','.' ) return self.header_template.format(project_line = project_line, publication_authors = publication_authors, publication_title = publication_title, publication_name = publication_name, **self.__dict__) + self.source_feature.format() def build_source_attributes(self, organism, taxon_id, sequence_name): def empty_string_if_none(value): return value if value else '' organism = empty_string_if_none(organism) taxon_id = empty_string_if_none(taxon_id) sequence_name = empty_string_if_none(sequence_name) return {"organism": organism, "db_xref": "taxon:{}".format(taxon_id), "note": sequence_name} class EMBLSequence(object): def __init__(self, sequence_string): nucleotide_counts = self.calculate_nucleotide_counts(sequence_string) self.header = self.format_header(nucleotide_counts) self.body = self.format_sequence_body(sequence_string) self.length = len(sequence_string) def format(self): return self.header + '\n' + self.body def calculate_nucleotide_counts(self, sequence): sequence = sequence.lower() counts = {} counts['a'] = sequence.count('a') counts['c'] = sequence.count('c') counts['g'] = sequence.count('g') counts['t'] = sequence.count('t') count_of_acgt = sum(counts.values()) counts['other'] = len(sequence) - count_of_acgt return counts def format_header(self, nucleotide_counts): # The SQ line can exceed 80 characters template = "XX\nSQ Sequence {total} BP; {a} A; {c} C; {g} G; {t} T; {other} other;" total_counts = sum(nucleotide_counts.values()) nucleotide_counts['total'] = total_counts return template.format(**nucleotide_counts) def format_sequence_body(self, sequence_string): sequence_string = sequence_string.lower() lines = self.split_sequence(sequence_string) def format_a_line(line): # a line looks like: # (["1234567890", "12345", '', '', '', ''], 15) # and should look like # " 1234567890 12345 15" blocks_of_sequence, end_of_line = line format_arguments = blocks_of_sequence + [end_of_line] return " {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:>9}".format(*format_arguments) formatted_lines = map(format_a_line, lines) return '\n'.join(formatted_lines) + '\n' def split_line_of_sequence(self, line_of_sequence): # Turns "123456789012345" into ["1234567890", "12345", '', '', '', ''] splits = [] line_breaks = range(0, 60, 10) for line_break in line_breaks: split = line_of_sequence[line_break:line_break+10] splits.append(split) return splits def split_sequence(self, sequence_string): splits = [] sequence_length = len(sequence_string) for start_of_line in range(0, sequence_length, 60): # might not actually be the end of the line if the line isn't long enough end_of_line = start_of_line + 60 line_of_sequence = sequence_string[start_of_line:end_of_line] length_of_line = len(line_of_sequence) end_of_line = start_of_line + length_of_line # actually end of the line splits.append((self.split_line_of_sequence(line_of_sequence), end_of_line)) return splits
gpl-3.0
967,759,466,079,958,900
41.44469
134
0.666927
false
vsoch/docfish
docfish/apps/users/models.py
1
7665
''' Copyright (c) 2017 Vanessa Sochat Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from django.conf import settings from django.contrib.auth import get_user_model from django.db.models.signals import post_save from django.dispatch import receiver from rest_framework.authtoken.models import Token from django.contrib.auth.models import User from django.contrib.postgres.fields import JSONField from django.core.urlresolvers import reverse from django.db import models from docfish.settings import MEDIA_ROOT from itertools import chain import collections import operator import os ####################################################################################################### # Supporting Functions and Variables ################################################################## ####################################################################################################### # Create a token for the user when the user is created (with oAuth2) @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) # Get path to where images are stored for teams def get_image_path(instance, filename): team_folder = os.path.join(MEDIA_ROOT,'teams') if not os.path.exists(team_folder): os.mkdir(team_folder) return os.path.join('teams', filename) TEAM_TYPES = (('invite', 'Invite only. The user must be invited by the team administrator.'), ('institution', 'Institution only. Any user with the same institution as the creator can join'), ('open','Open. Anyone can join the team without asking.')) REQUEST_CHOICES = (("denied", 'Request has not been granted.'), ("pending", 'Request is pending.'), ("granted", 'Request has been granted'),) ####################################################################################################### # Teams ############################################################################################### ####################################################################################################### class Team(models.Model): '''A user team is a group of individuals that are annotating reports together. They can be reports across collections, or institutions, however each user is only allowed to join one team. ''' name = models.CharField(max_length=250, null=False, blank=False,verbose_name="Team Name") owner = models.ForeignKey(User, blank=True, verbose_name="Team owner and adminstrator.") created_at = models.DateTimeField('date of creation', auto_now_add=True) updated_at = models.DateTimeField('date of last update', auto_now=True) collection_ids = JSONField(default=[]) team_image = models.ImageField(upload_to=get_image_path, blank=True, null=True) metrics_updated_at = models.DateTimeField('date of last calculation of rank and annotations',blank=True,null=True) ranking = models.PositiveIntegerField(blank=True,null=True, verbose_name="team ranking based on total number of annotations, calculated once daily.") annotation_count = models.IntegerField(blank=False,null=False, verbose_name="team annotation count, calculated once daily.", default=0) permission = models.CharField(choices=TEAM_TYPES, default='open', max_length=100, verbose_name="Permission level for joining the team.") members = models.ManyToManyField(User, related_name="team_members", related_query_name="team_members", blank=True, help_text="Members of the team. By default, creator is made member.") # would more ideally be implemented with User model, but this will work # we will constrain each user to joining one team on view side def collections(self): from docfish.apps.main.models import Collection return Collection.objects.filter(id__in=self.collection_ids) def __str__(self): return "%s:%s" %(self.id,self.name) def __unicode__(self): return "%s:%s" %(self.id,self.name) def get_absolute_url(self): return reverse('team_details', args=[str(self.id)]) def contender_collections(self): from docfish.apps.main.models import Collection owner_collections = Collection.objects.filter(owner=self.owner) public_collections = Collection.objects.exclude(owner=self.owner,private=False) return list(chain(owner_collections,public_collections)) def add_collection(self,cid): if cid not in self.collection_ids: self.collection_ids.append(cid) def remove_collection(self,cid): self.collection_ids = [x for x in self.collection_ids if x != cid] self.save() def has_collections(self): if len(self.collection_ids) > 0: return True return False def get_label(self): return "users" class Meta: app_label = 'users' class MembershipInvite(models.Model): '''An invitation to join a team. ''' code = models.CharField(max_length=200, null=False, blank=False) team = models.ForeignKey(Team) def __str__(self): return "<%s:%s>" %(self.id,self.team.name) def __unicode__(self): return "<%s:%s>" %(self.id,self.team.name) def get_label(self): return "users" class Meta: app_label = 'users' unique_together = (("code", "team"),) class MembershipRequest(models.Model): '''A request for membership is tied to a team. A user is granted access if the owner grants him/her permission. ''' user = models.ForeignKey(User) team = models.ForeignKey(Team) created_at = models.DateTimeField('date of request', auto_now_add=True) status = models.CharField(max_length=200, null=False, verbose_name="Status of request", default="pending",choices=REQUEST_CHOICES) def __str__(self): return "<%s:%s>" %(self.user,self.team.name) def __unicode__(self): return "<%s:%s>" %(self.user,self.team.name) def get_label(self): return "users" class Meta: app_label = 'users' unique_together = (("user", "team"),)
mit
-7,754,442,776,888,561,000
40.209677
131
0.604436
false
zasdfgbnm/tensorflow
tensorflow/python/framework/tensor_util_test.py
1
37338
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for tensor_util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_state_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class TensorUtilTest(test.TestCase): def testFloat(self): value = 10.0 t = tensor_util.make_tensor_proto(value) self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape {} float_val: %.1f """ % value, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array(value, dtype=np.float32), a) def testFloatN(self): t = tensor_util.make_tensor_proto([10.0, 20.0, 30.0]) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([10.0, 20.0, 30.0], dtype=np.float32), a) def testFloatTyped(self): t = tensor_util.make_tensor_proto([10.0, 20.0, 30.0], dtype=dtypes.float32) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([10.0, 20.0, 30.0], dtype=np.float32), a) def testFloatTypeCoerce(self): t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtypes.float32) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([10.0, 20.0, 30.0], dtype=np.float32), a) def testFloatTypeCoerceNdarray(self): arr = np.asarray([10, 20, 30], dtype="int") t = tensor_util.make_tensor_proto(arr, dtype=dtypes.float32) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([10.0, 20.0, 30.0], dtype=np.float32), a) def testFloatSizes(self): t = tensor_util.make_tensor_proto([10.0, 20.0, 30.0], shape=[1, 3]) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 1 } dim { size: 3 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 1 } dim { size: 3 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([[10.0, 20.0, 30.0]], dtype=np.float32), a) def testFloatSizes2(self): t = tensor_util.make_tensor_proto([10.0, 20.0, 30.0], shape=[3, 1]) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } dim { size: 1 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } dim { size: 1 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([[10.0], [20.0], [30.0]], dtype=np.float32), a) def testFloatSizesLessValues(self): t = tensor_util.make_tensor_proto(10.0, shape=[1, 3]) self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 1 } dim { size: 3 } } float_val: 10.0 """, t) # No conversion to Ndarray for this one: not enough values. def testFloatNpArrayFloat64(self): t = tensor_util.make_tensor_proto( np.array([[10.0, 20.0, 30.0]], dtype=np.float64)) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_DOUBLE tensor_shape { dim { size: 1 } dim { size: 3 } } tensor_content: "@$\000\000\000\000\000\000@4\000\000\000\000\000\000@>\000\000\000\000\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_DOUBLE tensor_shape { dim { size: 1 } dim { size: 3 } } tensor_content: "\000\000\000\000\000\000$@\000\000\000\000\000\0004@\000\000\000\000\000\000>@" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float64, a.dtype) self.assertAllClose( np.array([[10.0, 20.0, 30.0]], dtype=np.float64), tensor_util.MakeNdarray(t)) def testFloatTypesWithImplicitRepeat(self): for dtype, nptype in [(dtypes.float32, np.float32), (dtypes.float64, np.float64)]: t = tensor_util.make_tensor_proto([10.0], shape=[3, 4], dtype=dtype) a = tensor_util.MakeNdarray(t) self.assertAllClose( np.array( [[10.0, 10.0, 10.0, 10.0], [10.0, 10.0, 10.0, 10.0], [10.0, 10.0, 10.0, 10.0]], dtype=nptype), a) def testFloatMutateArray(self): t = tensor_util.make_tensor_proto([10.0, 20.0, 30.0], dtype=dtypes.float32) a = tensor_util.MakeNdarray(t) a[0] = 5.0 self.assertEquals(np.float32, a.dtype) self.assertAllClose(np.array([5.0, 20.0, 30.0], dtype=np.float32), a) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "A \000\000A\240\000\000A\360\000\000" """, t) else: self.assertProtoEquals(""" dtype: DT_FLOAT tensor_shape { dim { size: 3 } } tensor_content: "\000\000 A\000\000\240A\000\000\360A" """, t) def testHalf(self): t = tensor_util.make_tensor_proto(np.array([10.0, 20.0], dtype=np.float16)) self.assertProtoEquals(""" dtype: DT_HALF tensor_shape { dim { size: 2 } } half_val: 18688 half_val: 19712 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.float16, a.dtype) self.assertAllClose(np.array([10.0, 20.0], dtype=np.float16), a) def testInt(self): t = tensor_util.make_tensor_proto(10) self.assertProtoEquals(""" dtype: DT_INT32 tensor_shape {} int_val: 10 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int32, a.dtype) self.assertAllClose(np.array(10, dtype=np.int32), a) def testLargeInt(self): value = np.iinfo(np.int64).max t = tensor_util.make_tensor_proto(value) self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape {} int64_val: %d """ % value, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int64, a.dtype) self.assertAllClose(np.array(value, dtype=np.int64), a) def testLargeNegativeInt(self): # We don't use the min np.int64 value here # because it breaks np.abs(). # # np.iinfo(np.int64).min = -9223372036854775808 # np.iinfo(np.int64).max = 9223372036854775807 # np.abs(-9223372036854775808) = -9223372036854775808 value = np.iinfo(np.int64).min + 1 t = tensor_util.make_tensor_proto(value) self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape {} int64_val: %d """ % value, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int64, a.dtype) self.assertAllClose(np.array(value, dtype=np.int64), a) def testIntNDefaultType(self): t = tensor_util.make_tensor_proto([10, 20, 30, 40], shape=[2, 2]) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 2 } } tensor_content: "\000\000\000\\n\000\000\000\024\000\000\000\036\000\000\000(" """, t) else: self.assertProtoEquals(""" dtype: DT_INT32 tensor_shape { dim { size: 2 } dim { size: 2 } } tensor_content: "\\n\000\000\000\024\000\000\000\036\000\000\000(\000\000\000" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int32, a.dtype) self.assertAllClose(np.array([[10, 20], [30, 40]], dtype=np.int32), a) def testIntTypes(self): for dtype, nptype in [(dtypes.int32, np.int32), (dtypes.uint8, np.uint8), (dtypes.uint16, np.uint16), (dtypes.int16, np.int16), (dtypes.int8, np.int8)]: # Test with array. t = tensor_util.make_tensor_proto([10, 20, 30], dtype=dtype) self.assertEquals(dtype, t.dtype) self.assertProtoEquals("dim { size: 3 }", t.tensor_shape) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) # Test with ndarray. t = tensor_util.make_tensor_proto(np.array([10, 20, 30], dtype=nptype)) self.assertEquals(dtype, t.dtype) self.assertProtoEquals("dim { size: 3 }", t.tensor_shape) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) def testIntTypesWithImplicitRepeat(self): for dtype, nptype in [(dtypes.int64, np.int64), (dtypes.int32, np.int32), (dtypes.uint8, np.uint8), (dtypes.uint16, np.uint16), (dtypes.int16, np.int16), (dtypes.int8, np.int8)]: self.assertAllEqual( np.array( [[10, 10, 10, 10], [10, 10, 10, 10], [10, 10, 10, 10]], dtype=nptype), tensor_util.MakeNdarray( tensor_util.make_tensor_proto( [10], shape=[3, 4], dtype=dtype))) def testIntMixedWithDimension(self): # Github issue: 11974 dtype = dtypes.int32 nptype = np.int32 t = tensor_util.make_tensor_proto( [10, tensor_shape.Dimension(20), 30], dtype=dtype) self.assertEquals(dtype, t.dtype) a = tensor_util.MakeNdarray(t) self.assertEquals(nptype, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=nptype), a) def testLong(self): t = tensor_util.make_tensor_proto(10, dtype=dtypes.int64) self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape {} int64_val: 10 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int64, a.dtype) self.assertAllClose(np.array(10, dtype=np.int64), a) def testLongN(self): t = tensor_util.make_tensor_proto( [10, 20, 30], shape=[1, 3], dtype=dtypes.int64) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape { dim { size: 1 } dim { size: 3 } } tensor_content: "\000\000\000\000\000\000\000\\n\000\000\000\000\000\000\000\024\000\000\000\000\000\000\000\036" """, t) else: self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape { dim { size: 1 } dim { size: 3 } } tensor_content: "\\n\000\000\000\000\000\000\000\024\000\000\000\000\000\000\000\036\000\000\000\000\000\000\000" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int64, a.dtype) self.assertAllClose(np.array([[10, 20, 30]], dtype=np.int64), a) def testLongNpArray(self): t = tensor_util.make_tensor_proto(np.array([10, 20, 30])) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape { dim { size: 3 } } tensor_content: "\000\000\000\000\000\000\000\\n\000\000\000\000\000\000\000\024\000\000\000\000\000\000\000\036" """, t) else: self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape { dim { size: 3 } } tensor_content: "\\n\000\000\000\000\000\000\000\024\000\000\000\000\000\000\000\036\000\000\000\000\000\000\000" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.int64, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=np.int64), a) def testQuantizedTypes(self): # Test with array. data = [(21,), (22,), (23,)] t = tensor_util.make_tensor_proto(data, dtype=dtypes.qint32) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_QINT32 tensor_shape { dim { size: 3 } } tensor_content: "\000\000\000\025\000\000\000\026\000\000\000\027" """, t) else: self.assertProtoEquals(""" dtype: DT_QINT32 tensor_shape { dim { size: 3 } } tensor_content: "\025\000\000\000\026\000\000\000\027\000\000\000" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(dtypes.qint32.as_numpy_dtype, a.dtype) self.assertAllEqual(np.array(data, dtype=a.dtype), a) t = tensor_util.make_tensor_proto(data, dtype=dtypes.quint8) self.assertProtoEquals(""" dtype: DT_QUINT8 tensor_shape { dim { size: 3 } } tensor_content: "\025\026\027" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(dtypes.quint8.as_numpy_dtype, a.dtype) self.assertAllEqual(np.array(data, dtype=a.dtype), a) t = tensor_util.make_tensor_proto(data, dtype=dtypes.qint8) self.assertProtoEquals(""" dtype: DT_QINT8 tensor_shape { dim { size: 3 } } tensor_content: "\025\026\027" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(dtypes.qint8.as_numpy_dtype, a.dtype) self.assertAllEqual(np.array(data, dtype=a.dtype), a) t = tensor_util.make_tensor_proto(data, dtype=dtypes.quint16) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_QUINT16 tensor_shape { dim { size: 3 } } tensor_content: "\000\025\000\026\000\027" """, t) else: self.assertProtoEquals(""" dtype: DT_QUINT16 tensor_shape { dim { size: 3 } } tensor_content: "\025\000\026\000\027\000" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(dtypes.quint16.as_numpy_dtype, a.dtype) self.assertAllEqual(np.array(data, dtype=a.dtype), a) t = tensor_util.make_tensor_proto(data, dtype=dtypes.qint16) if sys.byteorder == "big": self.assertProtoEquals(""" dtype: DT_QINT16 tensor_shape { dim { size: 3 } } tensor_content: "\000\025\000\026\000\027" """, t) else: self.assertProtoEquals(""" dtype: DT_QINT16 tensor_shape { dim { size: 3 } } tensor_content: "\025\000\026\000\027\000" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(dtypes.qint16.as_numpy_dtype, a.dtype) self.assertAllEqual(np.array(data, dtype=a.dtype), a) def testString(self): t = tensor_util.make_tensor_proto("foo") self.assertProtoEquals(""" dtype: DT_STRING tensor_shape {} string_val: "foo" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertEquals([b"foo"], a) def testStringWithImplicitRepeat(self): t = tensor_util.make_tensor_proto("f", shape=[3, 4]) a = tensor_util.MakeNdarray(t) self.assertAllEqual(np.array([[b"f"] * 4] * 3, dtype=np.object), a) def testStringN(self): t = tensor_util.make_tensor_proto([b"foo", b"bar", b"baz"], shape=[1, 3]) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 1 } dim { size: 3 } } string_val: "foo" string_val: "bar" string_val: "baz" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array([[b"foo", b"bar", b"baz"]]), a) def testStringNpArray(self): t = tensor_util.make_tensor_proto( np.array([[b"a", b"ab"], [b"abc", b"abcd"]])) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 2 } dim { size: 2 } } string_val: "a" string_val: "ab" string_val: "abc" string_val: "abcd" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array([[b"a", b"ab"], [b"abc", b"abcd"]]), a) def testArrayMethod(self): class Wrapper(object): def __array__(self): return np.array([b"foo", b"bar", b"baz"]) t = tensor_util.make_tensor_proto(Wrapper(), shape=[1, 3]) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 1 } dim { size: 3 } } string_val: "foo" string_val: "bar" string_val: "baz" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array([[b"foo", b"bar", b"baz"]]), a) def testArrayInterface(self): class Wrapper(object): @property def __array_interface__(self): return np.array([b"foo", b"bar", b"baz"]).__array_interface__ t = tensor_util.make_tensor_proto(Wrapper(), shape=[1, 3]) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 1 } dim { size: 3 } } string_val: "foo" string_val: "bar" string_val: "baz" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array([[b"foo", b"bar", b"baz"]]), a) def testStringTuple(self): t = tensor_util.make_tensor_proto((b"a", b"ab", b"abc", b"abcd")) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 4 } } string_val: "a" string_val: "ab" string_val: "abc" string_val: "abcd" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array((b"a", b"ab", b"abc", b"abcd")), a) def testStringNestedTuple(self): t = tensor_util.make_tensor_proto(((b"a", b"ab"), (b"abc", b"abcd"))) self.assertProtoEquals(""" dtype: DT_STRING tensor_shape { dim { size: 2 } dim { size: 2 } } string_val: "a" string_val: "ab" string_val: "abc" string_val: "abcd" """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.object, a.dtype) self.assertAllEqual(np.array(((b"a", b"ab"), (b"abc", b"abcd"))), a) def testComplex64(self): t = tensor_util.make_tensor_proto((1 + 2j), dtype=dtypes.complex64) self.assertProtoEquals(""" dtype: DT_COMPLEX64 tensor_shape {} scomplex_val: 1 scomplex_val: 2 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex64, a.dtype) self.assertAllEqual(np.array(1 + 2j), a) def testComplex128(self): t = tensor_util.make_tensor_proto((1 + 2j), dtype=dtypes.complex128) self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape {} dcomplex_val: 1 dcomplex_val: 2 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array(1 + 2j), a) def testComplexWithImplicitRepeat(self): for dtype, np_dtype in [(dtypes.complex64, np.complex64), (dtypes.complex128, np.complex128)]: t = tensor_util.make_tensor_proto((1 + 1j), shape=[3, 4], dtype=dtype) a = tensor_util.MakeNdarray(t) self.assertAllClose( np.array( [[(1 + 1j), (1 + 1j), (1 + 1j), (1 + 1j)], [(1 + 1j), (1 + 1j), (1 + 1j), (1 + 1j)], [(1 + 1j), (1 + 1j), (1 + 1j), (1 + 1j)]], dtype=np_dtype), a) def testComplex64N(self): t = tensor_util.make_tensor_proto( [(1 + 2j), (3 + 4j), (5 + 6j)], shape=[1, 3], dtype=dtypes.complex64) self.assertProtoEquals(""" dtype: DT_COMPLEX64 tensor_shape { dim { size: 1 } dim { size: 3 } } scomplex_val: 1 scomplex_val: 2 scomplex_val: 3 scomplex_val: 4 scomplex_val: 5 scomplex_val: 6 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex64, a.dtype) self.assertAllEqual(np.array([[(1 + 2j), (3 + 4j), (5 + 6j)]]), a) def testComplex128N(self): t = tensor_util.make_tensor_proto( [(1 + 2j), (3 + 4j), (5 + 6j)], shape=[1, 3], dtype=dtypes.complex128) self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape { dim { size: 1 } dim { size: 3 } } dcomplex_val: 1 dcomplex_val: 2 dcomplex_val: 3 dcomplex_val: 4 dcomplex_val: 5 dcomplex_val: 6 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array([[(1 + 2j), (3 + 4j), (5 + 6j)]]), a) def testComplex64NpArray(self): t = tensor_util.make_tensor_proto( np.array([[(1 + 2j), (3 + 4j)], [(5 + 6j), (7 + 8j)]]), dtype=dtypes.complex64) # scomplex_val are real_0, imag_0, real_1, imag_1, ... self.assertProtoEquals(""" dtype: DT_COMPLEX64 tensor_shape { dim { size: 2 } dim { size: 2 } } scomplex_val: 1 scomplex_val: 2 scomplex_val: 3 scomplex_val: 4 scomplex_val: 5 scomplex_val: 6 scomplex_val: 7 scomplex_val: 8 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex64, a.dtype) self.assertAllEqual( np.array([[(1 + 2j), (3 + 4j)], [(5 + 6j), (7 + 8j)]]), a) def testComplex128NpArray(self): t = tensor_util.make_tensor_proto( np.array([[(1 + 2j), (3 + 4j)], [(5 + 6j), (7 + 8j)]]), dtype=dtypes.complex128) # scomplex_val are real_0, imag_0, real_1, imag_1, ... self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape { dim { size: 2 } dim { size: 2 } } dcomplex_val: 1 dcomplex_val: 2 dcomplex_val: 3 dcomplex_val: 4 dcomplex_val: 5 dcomplex_val: 6 dcomplex_val: 7 dcomplex_val: 8 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual( np.array([[(1 + 2j), (3 + 4j)], [(5 + 6j), (7 + 8j)]]), a) def testUnsupportedDTypes(self): with self.assertRaises(TypeError): tensor_util.make_tensor_proto(np.array([1]), 0) with self.assertRaises(TypeError): tensor_util.make_tensor_proto(3, dtype=dtypes.qint8) with self.assertRaises(TypeError): tensor_util.make_tensor_proto([3], dtype=dtypes.qint8) # Validate the helpful error message when trying to convert an # unconvertible list as strings. with self.assertRaisesRegexp(TypeError, "Failed to convert object"): tensor_util.make_tensor_proto([tensor_shape.Dimension(1)]) def testTensorShapeVerification(self): array = np.array([[1], [2]]) correct_shape = (2, 1) incorrect_shape = (1, 2) tensor_util.make_tensor_proto(array, shape=correct_shape, verify_shape=True) with self.assertRaises(TypeError): tensor_util.make_tensor_proto( array, shape=incorrect_shape, verify_shape=True) def testShapeTooLarge(self): with self.assertRaises(ValueError): tensor_util.make_tensor_proto(np.array([1, 2]), shape=[1]) def testLowRankSupported(self): t = tensor_util.make_tensor_proto(np.array(7)) self.assertProtoEquals(""" dtype: DT_INT64 tensor_shape {} int64_val: 7 """, t) def testShapeEquals(self): t = tensor_util.make_tensor_proto([10, 20, 30, 40], shape=[2, 2]) self.assertTrue(tensor_util.ShapeEquals(t, [2, 2])) self.assertTrue(tensor_util.ShapeEquals(t, (2, 2))) self.assertTrue( tensor_util.ShapeEquals(t, tensor_shape.as_shape([2, 2]).as_proto())) self.assertFalse(tensor_util.ShapeEquals(t, [5, 3])) self.assertFalse(tensor_util.ShapeEquals(t, [1, 4])) self.assertFalse(tensor_util.ShapeEquals(t, [4])) def testMockArray(self): class MockArray(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return np.asarray(self.array, dtype) with self.test_session() as sess: ma = MockArray(np.array([10, 20, 30])) t = ops.convert_to_tensor(ma) a = sess.run(t) self.assertEquals(np.int64, a.dtype) self.assertAllClose(np.array([10, 20, 30], dtype=np.int64), a) class ConstantValueTest(test.TestCase): def testConstant(self): np_val = np.random.rand(3, 4, 7).astype(np.float32) tf_val = constant_op.constant(np_val) self.assertAllClose(np_val, tensor_util.constant_value(tf_val)) np_val = np.random.rand(3, 0, 7).astype(np.float32) tf_val = constant_op.constant(np_val) self.assertAllClose(np_val, tensor_util.constant_value(tf_val)) def testUnknown(self): tf_val = gen_state_ops._variable( shape=[3, 4, 7], dtype=dtypes.float32, name="tf_val", container="", shared_name="") self.assertIs(None, tensor_util.constant_value(tf_val)) def testShape(self): np_val = np.array([1, 2, 3], dtype=np.int32) tf_val = array_ops.shape(constant_op.constant(0.0, shape=[1, 2, 3])) c_val = tensor_util.constant_value(tf_val) self.assertAllEqual(np_val, c_val) self.assertEqual(np.int32, c_val.dtype) def testFill(self): np_val = np.array([-1, -1, -1], dtype=np.float32) tf_val = array_ops.fill([3], constant_op.constant(-1.0)) c_val = tensor_util.constant_value(tf_val) self.assertAllEqual(np_val, c_val) self.assertEqual(np.float32, c_val.dtype) def testSize(self): tf_val = array_ops.size(constant_op.constant(0.0, shape=[1, 2, 3])) c_val = tensor_util.constant_value(tf_val) self.assertEqual(6, c_val) def testSizeOfScalar(self): tf_val = array_ops.size(constant_op.constant(0.0)) c_val = tensor_util.constant_value(tf_val) self.assertEqual(1, c_val) self.assertEqual(np.ndarray, type(c_val)) def testRank(self): tf_val = array_ops.rank(constant_op.constant(0.0, shape=[1, 2, 3])) c_val = tensor_util.constant_value(tf_val) self.assertEqual(np.ndarray, type(c_val)) self.assertEqual((), c_val.shape) self.assertEqual(3, c_val) # Repeat test using array_ops.rank_internal to avoid the optimization that # happens in the rank function. tf_val = array_ops.rank_internal( constant_op.constant( 0.0, shape=[1, 2, 3]), optimize=False) c_val = tensor_util.constant_value(tf_val) self.assertEqual(np.ndarray, type(c_val)) self.assertEqual((), c_val.shape) self.assertEqual(3, c_val) self.assertEqual([3], c_val) def testCast(self): np_val = np.random.rand(3, 4, 7).astype(np.float32) tf_val = math_ops.cast(constant_op.constant(np_val), dtypes.float64) c_val = tensor_util.constant_value(tf_val) self.assertAllClose(np_val.astype(np.float64), c_val) np_val = np.random.rand(3, 0, 7).astype(np.float32) tf_val = math_ops.cast(constant_op.constant(np_val), dtypes.float64) c_val = tensor_util.constant_value(tf_val) self.assertAllClose(np_val.astype(np.float64), c_val) def testConcat(self): np_val = np.random.rand(3, 4, 7).astype(np.float32) tf_val = array_ops.concat( [np_val[0:1, :, :], np_val[1:2, :, :], np_val[2:3, :, :]], 0) c_val = tensor_util.constant_value(tf_val) self.assertAllClose(np_val, c_val) tf_val = array_ops.concat( [np_val[0, :, :], np_val[1, :, :], np_val[2, :, :]], array_ops.placeholder(dtypes.int32)) c_val = tensor_util.constant_value(tf_val) self.assertIs(None, c_val) tf_val = array_ops.concat([ np_val[0, :, :], array_ops.placeholder(dtypes.float32), np_val[2, :, :] ], 1) c_val = tensor_util.constant_value(tf_val) self.assertIs(None, c_val) def testPack_Axis0(self): inputs = [np.random.rand(4, 7) for _ in range(3)] np_val = np.array(inputs) tf_val = array_ops.stack(inputs) c_val = tensor_util.constant_value(tf_val) self.assertAllClose(np_val, c_val) tf_val = array_ops.stack( [inputs[0], array_ops.placeholder(dtypes.float32), inputs[2]]) c_val = tensor_util.constant_value(tf_val) self.assertIs(None, c_val) def testPack_Axis1(self): inputs = [np.random.rand(4, 7) for _ in range(3)] tf_val = array_ops.stack(inputs, axis=1) c_val = tensor_util.constant_value(tf_val) self.assertIsNone(c_val) tf_val = array_ops.stack( [inputs[0], array_ops.placeholder(dtypes.float32), inputs[2]], axis=1) c_val = tensor_util.constant_value(tf_val) self.assertIs(None, c_val) def testPack_Partial_Axis0(self): input_ = np.random.rand(4, 7) tf_val = array_ops.stack([input_, array_ops.placeholder(dtypes.float32)]) c_val = tensor_util.constant_value(tf_val, partial=True) self.assertAllClose(input_, c_val[0]) self.assertIsNone(c_val[1]) def testPack_Partial_Axis1(self): input_ = np.random.rand(4, 7) tf_val = array_ops.stack([input_, array_ops.placeholder(dtypes.float32)], axis=1) c_val = tensor_util.constant_value(tf_val, partial=True) self.assertIsNone(c_val) def testEqual(self): # Scalar inputs. tf_val = math_ops.equal(constant_op.constant(1), constant_op.constant(1)) self.assertEqual(tensor_util.constant_value(tf_val), True) tf_val = math_ops.equal(constant_op.constant(1), constant_op.constant(0)) self.assertEqual(tensor_util.constant_value(tf_val), False) # Shaped inputs with broadcast semantics. tf_val = math_ops.equal(constant_op.constant([[0, 1]]), constant_op.constant([[0], [1]])) c_val = tensor_util.constant_value(tf_val) self.assertAllEqual(c_val, [[True, False], [False, True]]) def testNotEqual(self): # Scalar inputs. tf_val = math_ops.not_equal(constant_op.constant(1), constant_op.constant(1)) self.assertEqual(tensor_util.constant_value(tf_val), False) tf_val = math_ops.not_equal(constant_op.constant(1), constant_op.constant(0)) self.assertEqual(tensor_util.constant_value(tf_val), True) # Shaped inputs with broadcast semantics. tf_val = math_ops.not_equal(constant_op.constant([[0, 1]]), constant_op.constant([[0], [1]])) c_val = tensor_util.constant_value(tf_val) self.assertAllEqual(c_val, [[False, True], [True, False]]) class ConstantValueAsShapeTest(test.TestCase): @test_util.run_in_graph_and_eager_modes() def testConstant(self): np_val = np.random.rand(3).astype(np.int32) tf_val = constant_op.constant(np_val) self.assertEqual( tensor_shape.TensorShape(np_val), tensor_util.constant_value_as_shape(tf_val)) tf_val = constant_op.constant([], dtype=dtypes.int32) self.assertEqual( tensor_shape.TensorShape([]), tensor_util.constant_value_as_shape(tf_val)) @test_util.run_in_graph_and_eager_modes() def testShape(self): tf_val = array_ops.shape(constant_op.constant(0.0, shape=[1, 2, 3])) c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual(tensor_shape.TensorShape([1, 2, 3]), c_val) @test_util.run_in_graph_and_eager_modes() def testMinusOneBecomesNone(self): tf_val = constant_op.constant([-1, 1, -1], shape=[3]) c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([None, 1, None], c_val.as_list()) def testPack(self): tf_val = array_ops.stack( [constant_op.constant(16), 37, array_ops.placeholder(dtypes.int32)]) c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([16, 37, None], c_val.as_list()) def testConcat(self): tf_val = array_ops.concat( [[16, 37], array_ops.placeholder( dtypes.int32, shape=(2,))], 0) c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([16, 37, None, None], c_val.as_list()) tf_val = array_ops.concat( [[16, 37], array_ops.placeholder( dtypes.int32, shape=(1,)), [48]], 0) c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([16, 37, None, 48], c_val.as_list()) def testSlice(self): tf_val = array_ops.placeholder(dtypes.int32, shape=(4,))[0:2] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([None, None], c_val.as_list()) # begin:end tf_val = constant_op.constant([10, 20, 30])[1:3] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([20, 30], c_val.as_list()) # begin:end:stride tf_val = array_ops.strided_slice( constant_op.constant([10, 20, 30]), [1], [3], strides=[2]) c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([20], c_val.as_list()) # [1, 2, 16, 37, None, 48] tf_val_orig = array_ops.concat( [[1, 2, 16, 37], array_ops.placeholder( dtypes.int32, shape=(1,)), [48]], 0) # begin: no end tf_val = tf_val_orig[2:] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([16, 37, None, 48], c_val.as_list()) # begin::negative slice tf_val = tf_val_orig[2::-1] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([16, 2, 1], c_val.as_list()) # :end:negative slice tf_val = tf_val_orig[:1:-2] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([48, 37], c_val.as_list()) # begin:end:negative slice tf_val = tf_val_orig[3:1:-1] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([37, 16], c_val.as_list()) # begin:negative end:slice tf_val = tf_val_orig[1:-3:1] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([2, 16], c_val.as_list()) # negative begin::slice tf_val = tf_val_orig[-3::1] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([37, None, 48], c_val.as_list()) # negative begin::negative slice tf_val = tf_val_orig[-3::-1] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([37, 16, 2, 1], c_val.as_list()) # negative begin:negative end:negative slice tf_val = tf_val_orig[-3:-5:-1] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([37, 16], c_val.as_list()) # Do not support shape inference for additional arguments tf_val = constant_op.constant([10, 20, 30])[...] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual([None, None, None], c_val.as_list()) # Do not support shape inference for tensor slices. tf_val = constant_op.constant([10, 20, 30])[ array_ops.placeholder(dtypes.int32, shape=()):] c_val = tensor_util.constant_value_as_shape(tf_val) self.assertEqual(tensor_shape.unknown_shape(), c_val) # Do not support shape inference for higher rank with self.assertRaises(ValueError): tf_val = constant_op.constant([[10], [20], [30]])[:, 0:] c_val = tensor_util.constant_value_as_shape(tf_val) if __name__ == "__main__": test.main()
apache-2.0
7,437,894,312,507,629,000
34.661891
121
0.604773
false
johnthebrave/sentiment-mining
src/nn.py
1
9990
__author__ = 'alexei' import gensim from data_processing.mongo import MongoORM from data_processing.util import Timer from pprint import pprint as pp import nltk from nltk.stem import WordNetLemmatizer as wnl wnl = wnl() from pybrain.datasets import SupervisedDataSet from pybrain.supervised.trainers import BackpropTrainer from pybrain.tools.shortcuts import buildNetwork from pybrain.structure.modules import TanhLayer import numpy as np splitters = {"but", "however", "although", "though", "moreover"} ignore_pos_set = {"c", "e", "p", "t", "w"} ignore_word_set = {"of", "a", "an", "it", "the", "that", "this", "these", "those", "\\"} def w2vec_model(): model = gensim.models.Word2Vec.load('../data/w2v_for_rotten.model') model.init_sims(replace=True) return model def miner(text, deps, features, negation): #, feature_vectors, model): # pp(text) sentences = [] # vectors = [] current_sentence = [] # current_vec = None negate = False for dep in deps: if dep[0] == 'neg': negate = True negation.append(negate) for j in xrange(len(text)): word = text[j] if word in ignore_word_set: continue if word in splitters: if len(current_sentence) > 0: sentences.append(current_sentence) # vectors.append(current_vec) # current_vec = None current_sentence = [] continue pos = nltk.pos_tag([word])[0][1].lower() if pos[0] in ignore_pos_set: continue # if word in model: # if current_vec is None: # current_vec = model[word] # else: # current_vec += model[word] current_sentence.append(word) if len(current_sentence) > 0: sentences.append(current_sentence) # vectors.append(current_vec) if len(sentences) > 1: features.append(sentences) # feature_vectors.append(current_vec) else: features += sentences # feature_vectors += vectors def augument_dataset_with_negation(): t = Timer() mongo = MongoORM("rotten") phrases = mongo.get_collection("phrases") for phrase in phrases: negation = [] idx = 0 while idx < len(phrase["deps"]): deps = phrase["deps"][idx] neg = False for dep in deps: if dep[0] == 'neg': neg = True if neg: negation.append(True) else: negation.append(False) idx += 1 mongo.update_item("training_set", {"_id": phrase["_id"]}, {"$set": {"neg": negation}}) t.measure("rotten corpus augumented in: ") def build_rotten_dataset(): t = Timer() mongo = MongoORM("rotten") phrases = mongo.get_collection("phrases") for phrase in phrases: sentiment = phrase["sentiment"] features = [] negation = [] idx = 0 while idx < len(phrase["text"]): miner(phrase["text"][idx], phrase["deps"][idx], features, negation) idx += 1 if len(features) > 0: item = {"_id": phrase["_id"], "features": features, "neg": negation, "label": sentiment} mongo.upsert_item("training_set", item) t.measure("rotten corpus built in: ") from pybrain.datasets import SupervisedDataSet from pybrain.supervised.trainers import BackpropTrainer from pybrain.tools.shortcuts import buildNetwork from pybrain.tools.xml.networkwriter import NetworkWriter from pybrain.tools.xml.networkreader import NetworkReader def make_vector(model, feature_list): vector = np.zeros(100, dtype="float32") for feature in feature_list: if feature in model: vector += model[feature] else: # backoff to naive solution return None return vector def build_training_set(): model = w2vec_model() t = Timer() mongo = MongoORM("rotten") tset = mongo.get_collection("training_set") ds = SupervisedDataSet(100, 1) count = 0 for train_set in tset: features = train_set["features"] label = int(train_set["label"]) vectors = [] if len(features) > 1: continue for feature in features: if type(feature[0]) is not list: vector = make_vector(model, feature) if vector is None: continue vectors.append(vector) ds.addSample(tuple(list(vector)), (label,)) count += 1 else: continue # if len(feature) > 2 or type(feature[0][0]) is list: # print features # exit(0) # # vectors.append(make_vector(model, feature[0])) # vectors.append(make_vector(model, feature[1])) t.measure("rotten training set built in: ") pp("Dataset size for single phrases: " + str(count)) t = Timer() net = buildNetwork(100, 100, 1, bias=True) #, hiddenclass=TanhLayer) trainer = BackpropTrainer(net, ds) trainer.trainUntilConvergence(verbose=True, validationProportion=0.15, maxEpochs=1000000, continueEpochs=10) t.measure("network train for single phrases: ") NetworkWriter.writeToFile(net, '../data/single_phrase_nn.xml') # print net.activateOnDataset(ds) def test_ann(): net = NetworkReader.readFrom('../data/single_phrase_nn.xml') model = w2vec_model() vector = np.zeros(100, dtype="float32") vector += model["great"] vector += model["movie"] ds = [list(vector)] ds2 = SupervisedDataSet(100, 1) ds2.addSample(tuple(ds), (4,)) print net.activateOnDataset(ds2) def curiosity_query(): t = Timer() mongo_rotten = MongoORM("rotten") mongo_words = MongoORM("words") tset = mongo_rotten.get_collection("training_set") count = 0 ds = SupervisedDataSet(6, 1) negs = {"n't", "not", "nor"} for train_set in tset: features = train_set["features"] if len(features) > 1: continue if type(features[0][0]) is list: continue score = [0, 0, 0, 0, 0] if len(train_set["neg"]) != 0: negation = train_set["neg"][0] if not negation: negation = 0 else: negation = 1 else: negation = 0 for feature in features[0]: if feature in negs: negation = 1 positive = mongo_words.get_item_by_id("positive", feature) if positive: score[positive["label"]] += 1 continue negative = mongo_words.get_item_by_id("negative", feature) if negative: score[negative["label"]] += 1 continue score[2] += 1 score = [negation] + score ds.addSample(tuple(score), (int(train_set["label"]),)) positive_count = float(score[5]) + float(0.5 * score[4]) negative_count = float(score[1]) + float(0.5 * score[2]) if negative_count == 0 and positive_count == 0: verdict = 2 elif negative_count > 0 and not negation: if negative_count > 1.0: verdict = 0 else: verdict = 1 elif negative_count > 0 and negation: verdict = 1 elif positive_count > 0 and negation: verdict = 1 elif positive_count > 2: verdict = 4 else: verdict = 3 if abs(verdict - train_set["label"]) > 1: # # if count > 10: pp((positive_count, negative_count)) pp((score, "verdict", verdict, "label", train_set["label"], features)) print count += 1 if count == 10: exit(0) # positive_count = float(score[4]) + float(0.5 * score[3]) # negative_count = float(score[0]) + float(0.5 * score[1]) # negative_count *= 2.5 # # verdict = 0 # if positive_count > 0 and negative_count > 0: # if positive_count - negative_count > 0: # verdict = 3 # elif positive_count - negative_count < 0: # verdict = 1 # else: # verdict = 2 # else: # if positive_count >= 1.0: # verdict = 4 # elif positive_count > 0: # verdict = 3 # elif negative_count >= 1.0: # verdict = 0 # elif negative_count > 0: # verdict = 1 # else: # verdict = 2 # # if score[4] > 2 or score[0] > 2: # if abs(verdict - train_set["label"]) > 1: # # if count > 10: # pp((positive_count, negative_count)) # pp((score, "verdict", verdict, "label", train_set["label"], features)) # print # # count += 1 # if count == 20: # exit(0) # exit(0) t.measure("curiosity satisfied in: ") # ds.saveToFile("greedy_data.xml") # # print "sents with no deps: ", count # # print len(ds) # net = buildNetwork(6, 1, 1, bias=True) # trainer = BackpropTrainer(net, ds) # trainer.trainUntilConvergence(verbose=True, validationProportion=0.20, maxEpochs=10000, continueEpochs=10) # # t.measure("greedy algo: ") # NetworkWriter.writeToFile(net, '../data/greedy.xml') def main(): # augument_dataset_with_negation() # build_rotten_dataset() # build_training_set() # curiosity_query() test_ann() if __name__ == "__main__": main()
gpl-2.0
-3,132,925,131,072,069,600
25.571809
112
0.530831
false
m2dsupsdlclass/lectures-labs
labs/08_frameworks/pytorch/fashion_mnist.py
1
7549
import torch import torch.nn.functional as F import torch.nn as nn from matplotlib.cm import get_cmap from torch.autograd import Variable from torch.utils.data import TensorDataset, DataLoader from torchvision import datasets from torchvision.transforms import transforms import matplotlib.pyplot as plt english_labels = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] cuda = False batch_size = 32 lr = 0.01 momentum = 0.9 log_interval = 10 epochs = 6 kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {} train_data = datasets.FashionMNIST('data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), ])) train_loader = DataLoader(train_data, batch_size=128, shuffle=False, **kwargs) # Lets's compute the average mean and std of the train images. We will # use them for normalizing data later on. n_samples_seen = 0. mean = 0 std = 0 for train_batch, train_target in train_loader: batch_size = train_batch.shape[0] train_batch = train_batch.view(batch_size, -1) this_mean = torch.mean(train_batch, dim=1) this_std = torch.sqrt( torch.mean((train_batch - this_mean[:, None]) ** 2, dim=1)) mean += torch.sum(this_mean, dim=0) std += torch.sum(this_std, dim=0) n_samples_seen += batch_size mean /= n_samples_seen std /= n_samples_seen train_data = datasets.FashionMNIST('data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])) test_data = datasets.FashionMNIST('data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])) train_loader = DataLoader(train_data, batch_size=32, shuffle=True, **kwargs) test_loader = DataLoader(test_data, batch_size=32, shuffle=False, **kwargs) class VGGCell(nn.Module): def __init__(self, in_channel, out_channel, depth, max_pooling=True): super(VGGCell, self).__init__() self.convs = nn.ModuleList() for i in range(depth): if i == 0: self.convs.append(nn.Conv2d(in_channel, out_channel, kernel_size=(3, 3), padding=1)) else: self.convs.append(nn.Conv2d(out_channel, out_channel, kernel_size=(3, 3), padding=1)) self.max_pooling = max_pooling def forward(self, x): for conv in self.convs: x = conv(x) if self.max_pooling: x = F.max_pool2d(x, kernel_size=(2, 2)) return x class Model(nn.Module): def __init__(self): super(Model, self).__init__() vgg1 = VGGCell(1, 32, 1, max_pooling=True) vgg2 = VGGCell(32, 64, 1, max_pooling=True) self.vggs = nn.ModuleList([vgg1, vgg2]) self.dropout_2d = nn.Dropout2d(p=0.25) self.fc1 = nn.Linear(7 * 7 * 64, 256) self.dropout = nn.Dropout(p=0.5) self.fc2 = nn.Linear(256, 10) def forward(self, x): for vgg in self.vggs: x = self.dropout_2d(vgg(x)) x = x.view(-1, 7 * 7 * 64) x = F.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return F.log_softmax(x, dim=1) # Let's test our model on CPU model = Model() img, target = train_data[0] # n_channel, width, height print(img.shape) fig, ax = plt.subplots(1, 1) ax.imshow(img[0].numpy(), cmap=get_cmap('gray')) plt.show() # First dimension should contain batch_size img = img[None, :] img = Variable(img) pred = model(img) print(target, english_labels[target]) print(pred) if cuda: model.cuda() optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, last_epoch=-1) def train(epoch): model.train() train_loss = 0 for batch_idx, (data, target) in enumerate(train_loader): if cuda: data, target = data.cuda(), target.cuda() batch_size = data.shape[0] data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() train_loss += loss.data[0] * batch_size if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch + 1, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) train_loss /= len(test_loader.dataset) return train_loss def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss _, pred = output.data.max(dim=1) # get the index of the max log-probability correct += torch.sum(pred == target.data.long()) test_loss /= len(test_loader.dataset) test_accuracy = correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f},' ' Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * test_accuracy)) return test_loss, test_accuracy logs = {'epoch': [], 'train_loss': [], 'test_loss': [], 'test_accuracy': [], 'lr': []} for epoch in range(epochs): train_loss = train(epoch) test_loss, test_accuracy = test() logs['epoch'].append(epoch) logs['train_loss'].append(train_loss) logs['test_loss'].append(test_loss) logs['test_accuracy'].append(test_accuracy) logs['lr'].append(optimizer.param_groups[0]['lr']) scheduler.step(epoch) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 12)) ax1.plot(logs['epoch'], list(zip(logs['train_loss'], logs['test_loss'], logs['test_accuracy']))) ax1.legend(['Train loss', 'Test loss', 'Test accuracy']) ax2.plot(logs['epoch'], logs['lr'], label='Learning rate') ax2.legend() # Let's see what our model can do test_img, true_target = test_data[42] fig, ax = plt.subplots(1, 1) ax.imshow(test_img[0].numpy(), cmap=get_cmap('gray')) plt.show() test_img = test_img[None, :] if cuda: test_img = test_img.cuda() test_img = Variable(test_img, volatile=True) pred = model(test_img) _, target = torch.max(pred, dim=1) target = target.data[0] print(english_labels[target])
mit
-6,136,229,963,483,149,000
31.821739
78
0.543913
false
arturtamborski/wypok
wypok/posts/models.py
1
1761
from django.urls import reverse from django.contrib.auth import get_user_model from django.db import models from django.conf import settings from wypok.validators import FileValidator from wypok.utils.markup import markup from wypok.utils.slugify import slugify_max from sections.models import Section def posts_attachment_path(instance, filename): return settings.POSTS_ATTACHMENT_PATH.format(id=instance.id, name=filename) class PostQuerySet(models.QuerySet): pass class Post(models.Model): class Meta: ordering = ('-date',) objects = PostQuerySet.as_manager() section = models.ForeignKey(Section, on_delete=models.CASCADE) author = models.ForeignKey(get_user_model(), on_delete=models.CASCADE) title = models.CharField(max_length=256) slug = models.SlugField(max_length=32, editable=False) link = models.URLField(max_length=256, default='', blank=True) date = models.DateTimeField(auto_now_add=True, editable=False) content = models.TextField(blank=True) content_html = models.TextField(editable=False, blank=True) attachment = models.FileField(max_length=256, blank=True, null=True, upload_to=posts_attachment_path, validators=[FileValidator(content_types=settings.POSTS_ALLOWED_CONTENT_TYPES)]) def save(self, *args, **kwargs): self.slug = slugify_max(self.title, 32) self.content_html = markup(self.content) self.full_clean() super().save(*args, **kwargs) def __str__(self): return self.slug def prettify(self): return self.title def get_owner(self): return self.author def get_absolute_url(self): return reverse('sections:posts:detail', args=[self.section, self.id, self.slug])
mit
-3,024,259,250,169,399,000
30.446429
88
0.707553
false
skoslowski/gnuradio
grc/core/blocks/_build.py
1
5788
# Copyright 2016 Free Software Foundation, Inc. # This file is part of GNU Radio # # SPDX-License-Identifier: GPL-2.0-or-later # from __future__ import absolute_import import itertools import re from ..Constants import ADVANCED_PARAM_TAB from ..utils import to_list from ..Messages import send_warning from .block import Block from ._flags import Flags from ._templates import MakoTemplates def build( id, label="", category="", flags="", documentation="", value=None, asserts=None, parameters=None, inputs=None, outputs=None, templates=None, cpp_templates=None, **kwargs ): block_id = id cls = type(str(block_id), (Block,), {}) cls.key = block_id cls.label = label or block_id.title() cls.category = [cat.strip() for cat in category.split("/") if cat.strip()] cls.flags = Flags(flags) if re.match(r"options$|variable|virtual", block_id): cls.flags.set(Flags.NOT_DSP, Flags.DISABLE_BYPASS) cls.documentation = {"": documentation.strip("\n\t ").replace("\\\n", "")} cls.asserts = [_single_mako_expr(a, block_id) for a in to_list(asserts)] cls.inputs_data = build_ports(inputs, "sink") if inputs else [] cls.outputs_data = build_ports(outputs, "source") if outputs else [] cls.parameters_data = build_params( parameters or [], bool(cls.inputs_data), bool(cls.outputs_data), cls.flags, block_id, ) cls.extra_data = kwargs templates = templates or {} cls.templates = MakoTemplates( imports=templates.get("imports", ""), make=templates.get("make", ""), callbacks=templates.get("callbacks", []), var_make=templates.get("var_make", ""), ) cpp_templates = cpp_templates or {} cls.cpp_templates = MakoTemplates( includes=cpp_templates.get("includes", []), make=cpp_templates.get("make", ""), callbacks=cpp_templates.get("callbacks", []), var_make=cpp_templates.get("var_make", ""), link=cpp_templates.get("link", []), translations=cpp_templates.get("translations", []), declarations=cpp_templates.get("declarations", ""), ) # todo: MakoTemplates.compile() to check for errors cls.value = _single_mako_expr(value, block_id) return cls def build_ports(ports_raw, direction): ports = [] port_ids = set() stream_port_ids = itertools.count() for i, port_params in enumerate(ports_raw): port = port_params.copy() port["direction"] = direction port_id = port.setdefault("id", str(next(stream_port_ids))) if port_id in port_ids: raise Exception( 'Port id "{}" already exists in {}s'.format(port_id, direction) ) port_ids.add(port_id) ports.append(port) return ports def build_params(params_raw, have_inputs, have_outputs, flags, block_id): params = [] def add_param(**data): params.append(data) if flags.SHOW_ID in flags: add_param(id="id", name="ID", dtype="id", hide="none") else: add_param(id="id", name="ID", dtype="id", hide="all") if not flags.not_dsp: add_param( id="alias", name="Block Alias", dtype="string", hide="part", category=ADVANCED_PARAM_TAB, ) if have_outputs or have_inputs: add_param( id="affinity", name="Core Affinity", dtype="int_vector", hide="part", category=ADVANCED_PARAM_TAB, ) if have_outputs: add_param( id="minoutbuf", name="Min Output Buffer", dtype="int", hide="part", default="0", category=ADVANCED_PARAM_TAB, ) add_param( id="maxoutbuf", name="Max Output Buffer", dtype="int", hide="part", default="0", category=ADVANCED_PARAM_TAB, ) base_params_n = {} for param_data in params_raw: param_id = param_data["id"] if param_id in params: raise Exception('Param id "{}" is not unique'.format(param_id)) if "option_attributes" in param_data: _validate_option_attributes(param_data, block_id) base_key = param_data.get("base_key", None) param_data_ext = base_params_n.get(base_key, {}).copy() param_data_ext.update(param_data) add_param(**param_data_ext) base_params_n[param_id] = param_data_ext add_param( id="comment", name="Comment", dtype="_multiline", hide="part", default="", category=ADVANCED_PARAM_TAB, ) return params def _single_mako_expr(value, block_id): if not value: return None value = value.strip() if not (value.startswith("${") and value.endswith("}")): raise ValueError("{} is not a mako substitution in {}".format(value, block_id)) return value[2:-1].strip() def _validate_option_attributes(param_data, block_id): if param_data["dtype"] != "enum": send_warning( "{} - option_attributes are for enums only, ignoring".format(block_id) ) del param_data["option_attributes"] else: for key in list(param_data["option_attributes"].keys()): if key in dir(str): del param_data["option_attributes"][key] send_warning( '{} - option_attribute "{}" overrides str, ignoring'.format( block_id, key ) )
gpl-3.0
5,468,785,309,365,975,000
27.234146
87
0.555632
false
LewisSarcasm/PingAI
hello.py
1
1770
import pygame, sys from pygame.locals import * import random WIDTH = 640 HEIGHT = 480 screen = pygame.display.set_mode((WIDTH, HEIGHT), 0, 32) pygame.display.set_caption("PongAI") clock = pygame.time.Clock() balls = [] for _ in range(500): ball = { "x": random.randrange(0, WIDTH), "y": random.randrange(0, HEIGHT), "xvel": random.randrange(-4, 4), "yvel": random.randrange(-4, 4), "r": 10, "color": (random.randrange(0, 0xFF), random.randrange(0, 0xFF), random.randrange(0, 0xFF)) } balls.append(ball) bat = { "x": 30, "y": HEIGHT/2, "width": 10, # actually, half the width and height "height": 50, "color": (0xFF, 0xFF, 0xFF) } while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() screen.fill((0, 0, 0)) # clear the screen with black for ball in balls: pygame.draw.rect(screen, ball["color"], (ball["x"]-ball["r"], ball["y"]-ball["r"], ball["r"]*2, ball["r"]*2), 0) ball["x"] += ball["xvel"] ball["y"] += ball["yvel"] # wall collision if (ball["xvel"] > 0 and ball["x"] + ball["r"] > WIDTH) or (ball["xvel"] < 0 and ball["x"] - ball["r"] < 0): ball["xvel"] *= -1 if (ball["yvel"] > 0 and ball["y"] + ball["r"] > HEIGHT) or (ball["yvel"] < 0 and ball["y"] - ball["r"] < 0): ball["yvel"] *= -1 # bat collision if (abs(ball["y"] - bat["y"]) < (bat["height"] + ball["r"])) and ((ball["xvel"] > 0 and ball["x"] > WIDTH/2 and ball["x"] + ball["r"] > bat["x"] - bat["width"]) or (ball["xvel"] < 0 and ball["x"] < WIDTH/2 and ball["x"] - ball["r"] < bat["x"] + bat["width"])): ball["xvel"] *= -1 pygame.draw.rect(screen, bat["color"], (bat["x"]-bat["width"], bat["y"]-bat["height"], bat["width"]*2, bat["height"]*2), 0) pygame.display.update() clock.tick(60)
mit
-7,116,693,056,600,813,000
29.517241
262
0.575141
false
ales-erjavec/orange-bio
orangecontrib/bio/ontology.py
2
32024
""" ============================== OBO Ontology (:mod:`ontology`) ============================== This module provides an interface for parsing, creating and manipulating of `OBO ontologies <http://www.obofoundry.org/>`_. Construct an ontology from scratch with custom terms :: >>> term = OBOObject("Term", id="foo:bar", name="Foo bar") >>> print(term) [Term] id: foo:bar name: Foo bar >>> ontology = OBOOntology() >>> ontology.add_object(term) >>> ontology.add_header_tag("created-by", "ales") # add a header tag >>> from six import StringIO >>> buffer = StringIO() >>> ontology.write(buffer) # Save the ontology to a file like object >>> print(buffer.getvalue()) # Print the contents of the buffer created-by: ales <BLANKLINE> [Term] id: foo:bar name: Foo bar <BLANKLINE> To load an ontology from a file, pass the file or filename to the :class:`OBOOntology` constructor or call its load method :: >>> _ = buffer.seek(0) # rewind >>> ontology = OBOOntology(buffer) >>> # Or equivalently >>> _ = buffer.seek(0) # rewind >>> ontology = OBOOntology() >>> ontology.load(buffer) See the definition of the `.obo file format <http://www.geneontology.org/GO.format.obo-1_2.shtml>`_. """ from __future__ import print_function import sys import re import warnings import keyword import operator from functools import reduce from collections import defaultdict import six from six import StringIO try: from urllib2 import urlopen except ImportError: from urllib.request import urlopen if sys.version_info >= (3,): intern = sys.intern #: These are builtin OBO objects present in any ontology by default. BUILTIN_OBO_OBJECTS = [ """[Typedef] id: is_a name: is_a range: OBO:TERM_OR_TYPE domain: OBO:TERM_OR_TYPE definition: The basic subclassing relationship [OBO:defs]""", """[Typedef] id: disjoint_from name: disjoint_from range: OBO:TERM domain: OBO:TERM definition: Indicates that two classes are disjoint [OBO:defs]""", """[Typedef] id: instance_of name: instance_of range: OBO:TERM domain: OBO:INSTANCE definition: Indicates the type of an instance [OBO:defs]""", """[Typedef] id: inverse_of name: inverse_of range: OBO:TYPE domain: OBO:TYPE definition: Indicates that one relationship type is the inverse of another [OBO:defs]""", """[Typedef] id: union_of name: union_of range: OBO:TERM domain: OBO:TERM definition: Indicates that a term is the union of several others [OBO:defs]""", """[Typedef] id: intersection_of name: intersection_of range: OBO:TERM domain: OBO:TERM definition: Indicates that a term is the intersection of several others [OBO:defs]""" ] def _split_and_strip(string, sep): """ Split the `string` by separator `sep` in to two parts and strip any whitespace between the inner parts. """ head, tail = _split_esc(string, sep) return head.rstrip(" "), tail.lstrip(" ") def _rsplit_and_strip(string, sep): """ Right split the `string` by separator `sep` in to two parts and strip any whitespace between the inner parts. """ head, tail = _rsplit_esc(string, sep) return head.rstrip(" "), tail.lstrip(" ") def _find_esc(string, char): i = string.find(char) while i != -1: if (i > 0 and string[i - 1] != "\\") or string[i - 1] != "\\": return i else: i = string.find(char, i + 1) return i def _rfind_esc(string, char): i = string.rfind(char) while i != -1: if (i > 0 and string[i - 1] != "\\") or string[i - 1] != "\\": return i else: i = string.rfind(char, 0, i - 1) return i def _split_esc(string, sep, _find_esc=_find_esc): i = _find_esc(string, sep) if i != -1: return string[:i], string[i + 1:] else: return string, "" def _rsplit_esc(string, sep): i = _rfind_esc(string, sep) if i != -1: return string[:i], string[i + 1:] else: return string, "" def parse_tag_value(tag_value_string): """ Parse a tag value string and return a four-tuple containing a (tag, value, modifiers, comment). If comment or modifiers are not present the corresponding entry will be ``None``. >>> parse_tag_value("foo: bar {modifier=frob} ! Comment") ('foo', 'bar', 'modifier=frob', 'Comment') >>> parse_tag_value("foo: bar") ('foo', 'bar', None, None) >>> parse_tag_value("foo: bar [baz:0] { fizz=buzz } ! Comment") ('foo', 'bar [baz:0]', 'fizz=buzz', 'Comment') """ comment = modifiers = None # First get rid of the comment if present if _rfind_esc(tag_value_string, "!") != -1: tag_value_string, comment = _rsplit_and_strip(tag_value_string, "!") # Split on the first unescaped ":" tag, value = _split_and_strip(tag_value_string, ":") # Split the value on { to get the modifiers if present value = value.rstrip() if value.endswith("}") and not value.endswith(r"\}") and \ _rfind_esc(value, "{") != -1: value, modifiers = _rsplit_and_strip(value, "{") # remove closing } and any whitespace modifiers = modifiers[: -1].rstrip() return tag, value, modifiers, comment _quotedstr_re = re.compile(r'"(.*?(?<!\\))"') class OBOObject(object): """ A generic OBO object (e.g. Term, Typedef, Instance, ...). Example:: >>> term = OBOObject(stanza_type="Term", id="FOO:001", name="bar") >>> term = OBOObject( ... stanza_type="Term", ... id="FOO:001", ... name="bar", ... def_="Example definition { modifier=frob } ! Comment" ... ) ... An alternative way to specify tags in the constructor:: >>> term = OBOObject(stanza_type="Term", id="FOO:001", name="bar", ... def_=("Example definition", ... [("modifier", "frob")], ... "Comment")) ... .. note:: Note the use of ``def_`` to define the 'def' tag. This is to avoid the name clash with the python's ``def`` keyword. .. seealso:: :class:`Term` :class:`Typedef` :class:`Instance` """ Dispatch = {} def __init__(self, stanza_type="Term", **kwargs): """ Initialize from keyword arguments. """ self.stanza_type = stanza_type self.tag_values = [] self.values = {} sorted_tags = sorted( six.iteritems(kwargs), key=lambda key_val: chr(1) if key_val[0] == "id" else key_val[0] ) for tag, value in sorted_tags: if isinstance(value, six.string_types): tag, value, modifiers, comment = \ parse_tag_value(name_demangle(tag) + ": " + value) elif isinstance(value, tuple): tag, value, modifiers, comment = \ ((name_demangle(tag),) + value + (None, None))[:4] self.add_tag(tag, value, modifiers, comment) self.related = set() @property def is_annonymous(self): """ Is this object anonymous. """ value = self.get_values("is_annonymous") return bool(value) @property def id(self): """ The id of this object. """ value = self.get_values("id") return value[0] if value else None @property def name(self): """ Name of this object """ value = self.get_values("name") return value[0] if value else None @property def namespace(self): """ namespace tag or None if not defined """ values = self.get_values("namespace") assert 0 <= len(values) <= 1 return values[0] if values else None @property def alt_id(self): return self.get_values("alt_id") @property def subset(self): return self.get_values("subset") @property def definition(self): # synonym for def_ return self.def_ @property def def_(self): values = self.get_values("def") assert 0 <= len(values) <= 1 if not values: return None definition = values[0] match = _quotedstr_re.match(definition) return match.groups()[0] @property def comment(self): values = self.get_values("comment") assert 0 <= len(values) <= 1 return values[0] if values else None @property def synonyms(self): values = self.get_values("synonym") syn = [] for v in values: match = _quotedstr_re.match(v) syn.append(match.groups()[0]) return syn def name_mangle(self, tag): return name_mangle(tag) def name_demangle(self, tag): return name_demangle(tag) def add_tag(self, tag, value, modifiers=None, comment=None): """ Add `tag`, `value` pair to the object with optional modifiers and comment. Example:: >>> term = OBOObject("Term") >>> term.add_tag("id", "FOO:002", comment="This is an id") >>> print(term) [Term] id: FOO:002 ! This is an id """ tag = intern(tag) # a small speed and memory benefit self.tag_values.append((tag, value, modifiers, comment)) self.values.setdefault(tag, []).append(value) def add_tags(self, tag_value_iter): for tag, value, modifiers, comment in tag_value_iter: self.tag_values.append((tag, value, modifiers, comment)) self.values.setdefault(tag, []).append(value) def update(self, other): """ Update the term with tag value pairs from `other` (:class:`OBOObject`). The tag value pairs are appended to the end except for the `id` tag. """ for tag, value, modifiers, comment in other.tag_values: if tag != "id": self.add_tag(tag, value, modifiers, comment) def get_values(self, tag): try: return self.values[tag] except KeyError: return [] def tag_count(self): """ Return the number of tags in this object. """ return len(self.tag_values) def tags(self): """ Return an list of all (tag, value, modifiers, comment) tuples. """ return list(self.tag_values) def _format_single_tag(self, index): """ Return a formated string representing index-th tag pair value. Example:: >>> term = OBOObject( ... "Term", id="FOO:001", name="bar", ... def_="Example definition {modifier=frob} ! Comment") ... >>> term._format_single_tag(0) 'id: FOO:001' >>> term._format_single_tag(1) 'def: Example definition { modifier=frob } ! Comment' .. Why by index, and not by tag? Multiple tags are allowed. """ tag, value, modifiers, comment = self.tag_values[index] res = ["%s: %s" % (tag, value)] if modifiers: res.append("{ %s }" % modifiers) if comment: res.append("! " + comment) return " ".join(res) def format_stanza(self): """ Return a string stanza representation of this object. """ stanza = ["[%s]" % self.stanza_type] for i in range(self.tag_count()): stanza.append(self._format_single_tag(i)) return "\n".join(stanza) @classmethod def parse_stanza(cls, stanza): r""" Parse and return an OBOObject instance from a stanza string. >>> term = OBOObject.parse_stanza( ... '''[Term] ... id: FOO:001 ... name: bar ... ''') >>> print(term.id, term.name) FOO:001 bar """ lines = stanza.splitlines() stanza_type = lines[0].strip("[]") tag_values = [parse_tag_value(line) for line in lines[1:] if ":" in line] obo = OBOObject.Dispatch[stanza_type]() obo.add_tags(tag_values) return obo def related_objects(self): """ Return a list of tuple pairs where the first element is relationship (typedef id) and the second object id whom the relationship applies to. """ result = [(type_id, id) for type_id in ["is_a"] # TODO add other defined Typedef ids for id in self.values.get(type_id, [])] result = result + [tuple(r.split(None, 1)) for r in self.values.get("relationship", [])] return result def __str__(self): """ Return a string representation of the object in OBO format """ return self.format_stanza() def __repr__(self): return ("{0.__name__}(id={1.id!r}, name={1.name}, ...)" .format(type(self), self)) def __iter__(self): """ Iterates over sub terms """ return iter(self.related_objects()) class Term(OBOObject): """ A 'Term' object in the ontology. """ def __init__(self, *args, **kwargs): OBOObject.__init__(self, "Term", *args, **kwargs) @property def is_obsolete(self): """ Is this term obsolete. """ value = self.get_values("is_obsolete") return value[0].lower() == "true" if value else False class Typedef(OBOObject): """ A 'Typedef' object in the ontology. """ def __init__(self, *args, **kwargs): OBOObject.__init__(self, "Typedef", *args, **kwargs) class Instance(OBOObject): """ An 'Instance' object in the ontology """ def __init__(self, *args, **kwargs): OBOObject.__init__(self, "Instance", *args, **kwargs) OBOObject.Dispatch = {"Term": Term, "Typedef": Typedef, "Instance": Instance} class OBOParser(object): r""" A simple parser for .obo files (inspired by xml.dom.pulldom) >>> from six import StringIO >>> file = StringIO(''' ... header_tag: header_value ... [Term] ... id: FOO:001 { modifier=bar } ! comment ... ''') >>> parser = OBOParser(file) >>> for event, value in parser: ... print(event, value) ... HEADER_TAG ['header_tag', 'header_value'] START_STANZA Term TAG_VALUE ('id', 'FOO:001', 'modifier=bar', 'comment') CLOSE_STANZA None """ def __init__(self, file): self.file = file def parse(self, progress_callback=None): """ Parse the file and yield parse events. .. todo List events and values """ data = self.file.read() header = data[: data.index("\n[")] body = data[data.index("\n[") + 1:] for line in header.splitlines(): if line.strip(): yield "HEADER_TAG", line.split(": ", 1) current = None # For speed make these functions local startswith = str.startswith endswith = str.endswith parse_tag_value_ = parse_tag_value for line in body.splitlines(): if startswith(line, "[") and endswith(line, "]"): yield "START_STANZA", line.strip("[]") current = line elif startswith(line, "!"): yield "COMMENT", line[1:] elif line: yield "TAG_VALUE", parse_tag_value_(line) else: # empty line is the end of a term yield "CLOSE_STANZA", None current = None if current is not None: yield "CLOSE_STANZA", None def __iter__(self): """ Iterate over parse events (same as parse()) """ return self.parse() class OBOOntology(object): """ An class representing an OBO ontology. :param file-like file: A optional file like object describing the ontology in obo format. """ BUILTINS = BUILTIN_OBO_OBJECTS def __init__(self, file=None): self.objects = [] self.header_tags = [] self.id2term = {} self.alt2id = {} self._resolved_imports = [] self._invalid_cache_flag = False self._related_to = {} # First load the built in OBO objects builtins = StringIO("\n" + "\n\n".join(self.BUILTINS) + "\n") self.load(builtins) if file: self.load(file) def add_object(self, obj): """ Add an :class:`OBOObject` instance to this ontology. """ if obj.id in self.id2term: raise ValueError("OBOObject with id: %s already in " "the ontology" % obj.id) self.objects.append(obj) self.id2term[obj.id] = obj self._invalid_cache_flag = True def add_header_tag(self, tag, value): """ Add header tag, value pair to this ontology. """ self.header_tags.append((tag, value)) def load(self, file, progress_callback=None): """ Load terms from a file. :param file-like file: A file-like like object describing the ontology in obo format. :param function progress_callback: An optional function callback to report on the progress. """ if isinstance(file, six.string_types): if six.PY3: file = open(file, "r", encoding="utf-8") else: file = open(file, "rb") parser = OBOParser(file) current = None tag_values = [] for event, value in parser.parse(progress_callback=progress_callback): if event == "TAG_VALUE": tag_values.append(value) elif event == "START_STANZA": current = OBOObject.Dispatch[value]() elif event == "CLOSE_STANZA": current.add_tags(tag_values) self.add_object(current) current = None tag_values = [] elif event == "HEADER_TAG": self.add_header_tag(*value) elif event != "COMMENT": raise Exception("Parse Error! Unknown parse " "event {0}".format(event)) imports = [value for tag, value in self.header_tags if tag == "import"] if imports: warnings.warn("Import header tags are not supported") # while imports: # url = imports.pop(0) # if uri not in self._resolved_imports: # imported = self.parse_file(open(url, "rb")) # ontology.update(imported) # self._resolved_imports.append(uri) def dump(self, file): # deprecated use write self.write(file) def write(self, stream): """ Write the contents of the ontology to a `file` in .obo format. :param file-like file: A file like object. """ if isinstance(stream, six.string_types): if six.PY3: stream = open(stream, "w", encoding="utf-8") else: stream = open(stream, "wb") for key, value in self.header_tags: stream.write(key + ": " + value + "\n") # Skip the builtins for obj in self.objects[len(self.BUILTINS):]: stream.write("\n") stream.write(obj.format_stanza()) stream.write("\n") def update(self, other): """ Update this ontology with the terms from `other`. """ for term in other: if term.id in self: if not term.is_annonymous: self.term(term.id).update(term) else: # Do nothing pass else: self.add_object(term) self._invalid_cache_flag = True def _cache_validate(self, force=False): """ Update the relations cache if `self._invalid_cache` flag is set. """ if self._invalid_cache_flag or force: self._cache_relations() def _cache_relations(self): """ Collect all relations from parent to a child and store it in ``self._related_to`` member. """ related_to = defaultdict(list) for obj in self.objects: for rel_type, id in self.related_terms(obj): term = self.term(id) related_to[term].append((rel_type, obj)) self._related_to = related_to self._invalid_cache_flag = False def term(self, id): """ Return the :class:`OBOObject` associated with this id. :param str id: Term id string. """ if isinstance(id, six.string_types): if id in self.id2term: return self.id2term[id] elif id in self.alt2id: return self.id2term[self.alt2id[id]] else: raise ValueError("Unknown term id: %r" % id) elif isinstance(id, OBOObject): return id def terms(self): """ Return all :class:`Term` instances in the ontology. """ return [obj for obj in self.objects if obj.stanza_type == "Term"] def term_by_name(self, name): """ Return the term with name `name`. """ terms = [t for t in self.terms() if t.name == name] if len(terms) != 1: raise ValueError("Unknown term name: %r" % name) return terms[0] def typedefs(self): """ Return all :class:`Typedef` instances in the ontology. """ return [obj for obj in self.objects if obj.stanza_type == "Typedef"] def instances(self): """ Return all :class:`Instance` instances in the ontology. """ return [obj for obj in self.objects if obj.stanza_type == "Instance"] def root_terms(self): """ Return all root terms (terms without any parents). """ return [term for term in self.terms() if not self.parent_terms(term)] def related_terms(self, term): """ Return a list of (`rel_type`, `term_id`) tuples where `rel_type` is relationship type (e.g. 'is_a', 'has_part', ...) and `term_id` is the id of the term in the relationship. """ term = self.term(term) if not isinstance(term, OBOObject) else term related = [(tag, value) for tag in ["is_a"] # TODO: add other typedef ids for value in term.values.get(tag, [])] relationships = term.values.get("relationship", []) for rel in relationships: related.append(tuple(rel.split(None, 1))) return related def edge_types(self): """ Return a list of all edge types in the ontology. """ return [obj.id for obj in self.objects if obj.stanza_type == "Typedef"] def parent_edges(self, term): """ Return a list of (rel_type, parent_term) tuples. """ term = self.term(term) parents = [] for rel_type, parent in self.related_terms(term): parents.append((rel_type, self.term(parent))) return parents def child_edges(self, term): """ Return a list of (rel_type, source_term) tuples. """ self._cache_validate() term = self.term(term) return self._related_to.get(term, []) def super_terms(self, term): """ Return a set of all super terms of `term` up to the most general one. """ terms = self.parent_terms(term) visited = set() queue = set(terms) while queue: term = queue.pop() visited.add(term) queue.update(self.parent_terms(term) - visited) return visited def sub_terms(self, term): """ Return a set of all sub terms for `term`. """ terms = self.child_terms(term) visited = set() queue = set(terms) while queue: term = queue.pop() visited.add(term) queue.update(self.child_terms(term) - visited) return visited def child_terms(self, term): """ Return a set of all child terms for this `term`. """ self._cache_validate() term = self.term(term) children = [] for rel_type, term in self.child_edges(term): children.append(term) return set(children) def parent_terms(self, term): """ Return a set of all parent terms for this `term`. """ term = self.term(term) parents = [] for rel_type, id in self.parent_edges(term): parents.append(self.term(id)) return set(parents) def relations(self): """ Return a list of all relations in the ontology. """ relations = [] for obj in self.objects: for type_id, id in obj.related: target_term = self.term(id) relations.append((obj, type_id, target_term)) return relations def __len__(self): """ Return the number of all objects in the ontology. """ return len(self.objects) def __iter__(self): """ Return an iterator over all objects in the ontology. """ return iter(self.objects) def __contains__(self, oboid): return oboid in self.id2term def __getitem__(self, oboid): """ Get the object by it's id `oboid` """ return self.id2term[oboid] def to_network(self, terms=None): """ Return an Orange.network.Network instance constructed from this ontology. """ edge_types = self.edge_types() terms = self.terms() from Orange.orng import orngNetwork import orange network = orngNetwork.Network(len(terms), True, len(edge_types)) network.objects = dict([(term.id, i) for i, term in enumerate(terms)]) edges = defaultdict(set) for term in self.terms(): related = self.related_terms(term) for relType, relTerm in related: edges[(term.id, relTerm)].add(relType) edgeitems = edges.items() for (src, dst), eTypes in edgeitems: network[src, dst] = [1 if e in eTypes else 0 for e in edge_types] domain = orange.Domain([orange.StringVariable("id"), orange.StringVariable("name"), orange.StringVariable("def"), ], False) items = orange.ExampleTable(domain) for term in terms: ex = orange.Example(domain, [term.id, term.name, term.values.get("def", [""])[0]]) items.append(ex) relationships = set([", ".join(sorted(eTypes)) for (_, _), eTypes in edgeitems]) domain = orange.Domain([orange.FloatVariable("u"), orange.FloatVariable("v"), orange.EnumVariable("relationship", values=list(edge_types)) ], False) id2index = dict([(term.id, i + 1) for i, term in enumerate(terms)]) links = orange.ExampleTable(domain) for (src, dst), eTypes in edgeitems: ex = orange.Example(domain, [id2index[src], id2index[dst], eTypes.pop()]) links.append(ex) network.items = items network.links = links network.optimization = None return network def to_networkx(self, terms=None): """ Return a NetworkX graph of this ontology. """ import networkx graph = networkx.DiGraph() edge_types = self.edge_types() edge_colors = {"is_a": "red"} if terms is None: terms = self.terms() else: terms = [self.term(term) for term in terms] super_terms = [self.super_terms(term) for term in terms] terms = reduce(operator.ior, super_terms, set(terms)) for term in terms: graph.add_node(term.id, name=term.name) for term in terms: for rel_type, rel_term in self.related_terms(term): rel_term = self.term(rel_term) if rel_term in terms: graph.add_edge(term.id, rel_term.id, label=rel_type, color=edge_colors.get(rel_type, "blue")) return graph def to_graphviz(self, terms=None): """ Return an pygraphviz.AGraph representation of the ontology. If `terms` is not `None` it must be a list of terms in the ontology. The graph will in this case contain only the super graph of those terms. """ import pygraphviz as pgv graph = pgv.AGraph(directed=True, name="ontology") edge_types = self.edge_types() edge_colors = {"is_a": "red"} if terms is None: terms = self.terms() else: terms = [self.term(term) for term in terms] super_terms = [self.super_terms(term) for term in terms] terms = reduce(operator.ior, super_terms, set(terms)) for term in terms: graph.add_node(term.id, label=term.name) for root in self.root_terms(): node = graph.get_node(root.id) node.attr["rank"] = "max" for term in terms: for rel_type, rel_term in self.related_terms(term): rel_term = self.term(rel_term) if rel_term in terms: graph.add_edge(term.id, rel_term.id, label=rel_type, color=edge_colors.get(rel_type, "blue")) return graph def name_mangle(tag): """ Mangle tag name if it conflicts with python keyword. >>> name_mangle("def"), name_mangle("class") ('def_', 'class_') """ if keyword.iskeyword(tag): return tag + "_" else: return tag def name_demangle(tag): """ Reverse of `name_mangle`. """ if tag.endswith("_") and keyword.iskeyword(tag[:-1]): return tag[:-1] else: return tag def load(file): """ Load an ontology from a .obo file. """ return OBOOntology(file) def foundry_ontologies(): """ Return a list of ontologies available from the OBOFoundry `website <http://www.obofoundry.org/>`_. The list contains a tuples of the form `(title, url)` for instance ``('Biological process', 'http://purl.obolibrary.org/obo/go.obo')`` """ warnings.warn( "foundry_ontologies is deprecated and most likely returns an " "empty list", DeprecationWarning, stacklevel=2 ) stream = urlopen("http://www.obofoundry.org/") encoding = stream.headers.get_charsets("utf-8")[0] text = stream.read().decode(encoding) pattern = r'<td class=".+?">\s*<a href=".+?">(.+?)</a>\s*</td>\s*<td class=".+?">.*?</td>\s*<td class=".+?">.*?</td>\s*?<td class=".+?">\s*<a href="(.+?obo)">.+?</a>' return re.findall(pattern, text) if __name__ == "__main__": import doctest stanza = '''[Term] id: FOO:001 name: bar ''' seinfeld = StringIO(""" [Typedef] id: parent [Typedef] id: child inverse_of: parent ! not actually used yet [Term] id: 001 name: George [Term] id: 002 name: Estelle relationship: parent 001 ! George [Term] id: 003 name: Frank relationship: parent 001 ! George """) # TODO: fill the ontology with all characters term = OBOObject.parse_stanza(stanza) seinfeld = OBOOntology(seinfeld) print(seinfeld.child_edges("001")) doctest.testmod(extraglobs={"stanza": stanza, "term": term}, optionflags=doctest.ELLIPSIS)
gpl-3.0
2,057,996,227,598,516,200
27.902527
170
0.544529
false
miketonks/governor
helpers/ha.py
1
4532
import sys, time, re, urllib2, json, psycopg2 import logging from base64 import b64decode import helpers.errors import inspect logger = logging.getLogger(__name__) def lineno(): """Returns the current line number in our program.""" return inspect.currentframe().f_back.f_lineno class Ha: def __init__(self, state_handler, etcd): self.state_handler = state_handler self.etcd = etcd def acquire_lock(self): return self.etcd.attempt_to_acquire_leader(self.state_handler.name) def update_lock(self): return self.etcd.update_leader(self.state_handler) def update_last_leader_operation(self): return self.etcd.update_last_leader_operation(self.state_handler.last_operation) def is_unlocked(self): return self.etcd.leader_unlocked() def has_lock(self): return self.etcd.am_i_leader(self.state_handler.name) def fetch_current_leader(self): return self.etcd.current_leader() def run_cycle(self): try: if self.state_handler.is_healthy(): if self.is_unlocked(): logging.info("Leader is unlocked - starting election") if self.state_handler.is_healthiest_node(self.etcd): if self.acquire_lock(): if not self.state_handler.is_leader(): self.state_handler.promote() return "promoted self to leader by acquiring session lock" return "acquired session lock as a leader" else: if self.state_handler.is_leader(): self.state_handler.demote(self.fetch_current_leader()) return "demoted self due after trying and failing to obtain lock" else: self.state_handler.follow_the_leader(self.fetch_current_leader()) return "following new leader after trying and failing to obtain lock" else: if self.state_handler.is_leader(): self.state_handler.demote(self.fetch_current_leader()) return "demoting self because i am not the healthiest node" elif self.fetch_current_leader() is None: self.state_handler.follow_no_leader() return "waiting on leader to be elected because i am not the healthiest node" else: self.state_handler.follow_the_leader(self.fetch_current_leader()) return "following a different leader because i am not the healthiest node" else: if self.has_lock(): self.update_lock() if not self.state_handler.is_leader(): self.state_handler.promote() return "promoted self to leader because i had the session lock" else: return "I am the leader with the lock" else: logger.debug("does not have lock") if self.state_handler.is_leader(): self.state_handler.demote(self.fetch_current_leader()) return "demoting self because i do not have the lock and i was a leader" else: self.state_handler.follow_the_leader(self.fetch_current_leader()) return "I am a secondary and i am following a leader" else: if not self.state_handler.is_running(): self.state_handler.start(master=self.has_lock()) return "postgresql was stopped. starting again." return "no action. not healthy enough to do anything." except helpers.errors.CurrentLeaderError: logger.error("failed to fetch current leader from etcd") except psycopg2.OperationalError: logger.error("Error communicating with Postgresql. Will try again.") except helpers.errors.HealthiestMemberError: logger.error("failed to determine healthiest member fromt etcd") def run(self): while True: self.run_cycle() time.sleep(10)
mit
4,333,031,349,101,279,700
43.871287
105
0.541483
false
kitefishlabs/Genomic
genomic5.py
1
16909
import sc, random, contextlib, wave, os, math import shlex, subprocess, signal import NRTOSCParser3 import numpy as np import scipy.signal # generator class for weighted random numbers # # Pass in one or the other: # - weights: custom weights array # - size: size of "standard" weights array that algo should make on its own # # call next to actually make the random selection # class RandomGenerator_8Bit(object): def __init__(self, initval=-1): if initval >= 0: self.val = initval else: self.val = random.randint(0,128) def next(self, scale=1.0): self.val = random.randint(0,128) def __call__(self): return self.next() # helper function def midi2hz(m): return pow(2.0, (m/12.0)) # slot assignments for sigmaSynth ALPHA = 0 C_DELAY = 1 BETA = 2 D_MULT = 3 GAMMA = 4 MS_BINS = 5 class GenomicExplorer: def __init__(self, anchor, sfilenames, size=20, kdepth=10): #, start_state=[1.0, 0.0, 1.0, 1.0, 1.0, 0.0] self.anchor = anchor self.sfpaths = [(anchor + '/snd/' + sfilename) for sfilename in sfilenames] self.filenames = sfilenames self.sfinfos = [] for path in self.sfpaths: with contextlib.closing(wave.open(path,'r')) as f: frames = f.getnframes() rate = f.getframerate() dur = frames/float(rate) self.sfinfos += [{'rate':rate,'dur':dur}] self.mutation_prob = 0.05 #self.xover_prob = 0.05 self.depth = kdepth # 'alpha', 'c_delay', 'beta', 'd_mult', 'gamma', 'ms_bins' self.parser = NRTOSCParser3.NRTOSCParser3(anchor=self.anchor) self.rawtable, self.rawmaps, self.dists = dict(), dict(), dict() print self.sfpaths print self.sfinfos self.init_population(size=size) def init_population(self, size): self.population = [] for n in range(size): #start = [random.randrange(500, 1000)*0.001, random.randrange(0,50)*0.001, random.randrange(500, 1000)*0.001, random.randrange(100,1000)*0.01, random.randrange(500, 1000)*0.001, random.randrange(0,5000)*0.01] self.population += [Genome()] #random seed # self.population += [Genome(starter)] self.population[0] = Genome(values=[0,0,0,0,0,0]) self.analyze_individual(0) self.activate_raw_data(0) self.compare_all_individuals(aflag=True) def mutate_pop(self): for indiv in range(1, len(self.population)): if random.random() < self.mutation_prob: print "indiv: ", indiv self.population[ indiv ].mutate() self.do_update_cascade(indiv) def do_update_cascade(self, index, clearedits=False): if clearedits is True: self.population[ index ].edits = 0 else: self.population[ index ].edits += 1 self.analyze_individual( index ) self.activate_raw_data( index ) self.compare_individual_chi_squared( index ) # self.compare_individual( index ) def mate(self, a, b, kill_index): # cut = random.randint(0,5) offspring = None if random.random() < 0.5: offspring = self.population[a].values[:] else: offspring = self.population[b].values[:] # basic gene selection from 2 parents for i in range(6): if random.random() < 0.5: offspring[i] = self.population[a].values[i] else: offspring[i] = self.population[b].values[i] self.population[kill_index] = Genome(offspring) self.do_update_cascade(kill_index, True) def sort_by_distances(self, depth): sorted_dists = [[k, self.dists[k], self.population[k].age, self.population[k].edits] for k in sorted(self.dists.keys())] sorted_dists = sorted(sorted_dists[1:], key = lambda row: row[1]) # + (maxedits - row[3]))) return sorted_dists[:depth], sorted_dists[(-1*depth):] def reproduce(self, depth=25): kills, duplicates = self.sort_by_distances(depth) print 'depth: ', depth # depth # of times: choose 2 random parents to mate and overwrite replacement in unfit individual's slot for n in range(depth): print 'num. duplicates: ', len(duplicates) aidx = duplicates[ random.randint(0, depth-1) ][0] bidx = duplicates[ random.randint(0, depth-1) ][0] kidx = kills[ random.randint(0, depth-1) ][0] self.mate(aidx, bidx, kidx) def age_pop(self): for i in range(len(self.population)): self.population[i].age += 1 def iterate(self, iters=1): sc.quit() for iter in range(iters): self.age_pop() self.mutate_pop() # self.crossover() if (iter%20)==0: print self.population[0].age self.reproduce(self.depth) def print_all_individuals(self): print '== pop ===========================' for g in self.population: print g def start_sc(self): try: sc.start(verbose=1, spew=1, startscsynth=1) except OSError: # in case we've already started the synth print 'QUIT!' sc.quit() print 'sfpath: ', self.sfpath for i, sfpath in enumerate(self.sfpaths): bnum = sc.loadSnd(sfpath, wait=False) print 'bnum: ', bnum self.infos[i]['bnum'] = bnum return 1 # |outbus=20, srcbufNum, start=0.0, dur=1.0, transp=1.0, c_delay=0.0, c_decay=0.0, d_mult=1.0, d_amp=0.7, ms_bins=0, alpha=1, beta=1, gamma=1| def play_genome(self, index): vals = self.population[index].realvalues if vals[C_DELAY] < 1.0: cdelay = 0.0 else: cdelay = vals[C_DELAY] decay = 0.9 tr = self.population[index].tratio if index == 0: slot = 0 else: slot = 1 print '===================\n', self.infos[slot]['dur'] sc.Synth('sigmaSynth', args=[ 'srcbufNum', self.infos[slot]['bnum'], 'start', 0, 'dur', self.infos[slot]['dur']*1000, 'transp', tr, 'c_delay', cdelay, 'c_decay', decay, 'd_mult', vals[D_MULT], 'ms_bins', vals[MS_BINS], 'alpha', vals[ALPHA], 'beta', vals[BETA], 'gamma', vals[GAMMA]]) def analyze_individual(self, index): # oscpath = os.path.join(self.anchor, 'snd', 'osc', `index`, (os.path.splitext(self.filename)[0] + '_sigmaAnalyzer.osc')) # mdpath = os.path.join(self.anchor, 'snd', 'md', `index`, self.filename) vals = self.population[index].realvalues if vals[C_DELAY] < 1.0: cdelay = 0.0 else: cdelay = vals[C_DELAY] decay = 0.9 tr = self.population[index].tratio if index == 0: slot = 0 else: slot = 1 oscpath, mdpath = self.parser.createNRTScore(self.sfpaths[slot], index=index, tratio=tr, srate=self.sfinfos[slot]['rate'], duration=self.sfinfos[slot]['dur'], params=[ 'c_delay', cdelay, 'c_decay', decay, 'd_mult', vals[D_MULT], 'ms_bins', vals[MS_BINS], 'alpha', vals[ALPHA], 'beta', vals[BETA], 'gamma', vals[GAMMA]]) cmd = 'scsynth -N ' + oscpath + ' _ _ 44100 WAVE float32 -o 1' # print cmd args = shlex.split(cmd) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) #, shell=True, close_fds=True) # print 'PID: ', p.pid rc = p.wait() # print 'RC: ', rc if rc == 1: num_frames = int(math.ceil(self.sfinfos[slot]['dur'] / 0.04 / tr)) # print 'num frames: ', num_frames self.rawtable[index] = (mdpath, num_frames) # print self.rawtable def render_individual(self, index): vals = self.population[index].realvalues if vals[C_DELAY] < 1.0: cdelay = 0.0 else: cdelay = vals[C_DELAY] decay = 0.9 tr = self.population[index].tratio if index == 0: slot = 0 else: slot = 1 oscpath, mdpath = self.parser.createNRTScore(self.sfpaths[slot], index=index, tratio=tr, srate=self.sfinfos[slot]['rate'], duration=self.sfinfos[slot]['dur'], params=[ 'c_delay', cdelay, 'c_decay', decay, 'd_mult', vals[D_MULT], 'ms_bins', vals[MS_BINS], 'alpha', vals[ALPHA], 'beta', vals[BETA], 'gamma', vals[GAMMA]]) cmd = 'scsynth -N ' + oscpath + ' _ ' + os.path.join(self.anchor, 'snd', 'out', (str(index) + '.aiff')) + ' 44100 AIFF int16 -o 1' args = shlex.split(cmd) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) #, shell=True, close_fds=True) rc = p.wait() if rc == 1: print 'SUCCESS: ', os.path.join(self.anchor, 'snd', 'out', (str(index) + '.aiff')) rc = 0 else: return None cmd = 'sox -b 16 ' + os.path.join(self.anchor, 'snd', 'out', (str(index) + '.aiff')) + ' ' + os.path.join(self.anchor, 'snd', 'out', (str(index) + '.wav')) # + '; rm ' + os.path.join(self.anchor, 'snd', 'out', (str(index) + '.aiff')) print cmd args = shlex.split(cmd) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) #, shell=True, close_fds=True) rc = p.wait() print rc if rc == 1: ' DOUBLE SUCCESS!!' def activate_raw_data(self, index): mdpath = self.rawtable[index][0] num_frames = self.rawtable[index][1] self.rawmaps[index] = np.memmap(mdpath, dtype=np.float32, mode='r', offset=272, shape=(num_frames, 25)) """ COMPARE_ALL_INDIVIDUALS: ... to individual in slot 0! """ def compare_all_individuals(self, aflag=False): for i in range(1, len(self.population)): if aflag: self.analyze_individual(i) self.activate_raw_data(i) # self.compare_individual_chi_squared(i) self.compare_individual(i) print self.dists return self.dists """ COMPARE_INDIVIDUAL: ... to individual in the slot that is stipulated by the arg zeroindex! - by convention, we should usually put what we are comparing to in slot 0 """ def compare_individual(self, index, zeroindex=0): i_length = self.rawmaps[index].shape[0] zr0_length = self.rawmaps[zeroindex].shape[0] print i_length, ' | ', zr0_length # i1_length = self.rawmaps[index-1].shape[0] ## <--- NEIGHBOR comparison # print i_length, ' | ', i1_length, ' | ', zr0_length # based on length comparison, resample the mutated individuals so that they are same length as the zeroth individual (that does not mutate) # if indiv. is longer, resample indiv., take abs. diff., sum, div. by length if zr0_length < i_length: zero_dist = float(np.sum(np.abs(scipy.signal.signaltools.resample(self.rawmaps[index], zr0_length, window='hanning') - self.rawmaps[0]))) / float(zr0_length) # print self.dists[index] # if zeroth indiv. is longer, resample zeroth indiv., take abs. diff., sum, div. by length, then do same comparison with "neighbor" elif i_length < zr0_length: zero_dist = float(np.sum(np.abs(self.rawmaps[index] - scipy.signal.signaltools.resample(self.rawmaps[0], float(i_length), window='hanning')))) / float(i_length) else: # otherwise, take abs. diff., sum, div. by length, then do same comparison with "neighbor" # print 'ZERO' zero_dist = float(np.sum(np.abs(self.rawmaps[index][:,1:] - self.rawmaps[0][:,1:]))) / float(zr0_length) ### CHECK THIS DISTANCE CALCULATION!!!!!! power_dist = float(np.sqrt(np.sum(np.abs(self.rawmaps[index][:,0] - self.rawmaps[0][:,0])))) / float(zr0_length) print (zero_dist, (power_dist * 10.0)) zero_dist += (power_dist * 10.0) # if i1_length < i_length: # neighbor_dist = float(np.sum(np.abs(scipy.signal.signaltools.resample(self.rawmaps[index-1], i_length, window='hanning') - self.rawmaps[index]))) / float(i_length) # elif i_length < i1_length: # neighbor_dist = float(np.sum(np.abs(self.rawmaps[index-1] - scipy.signal.signaltools.resample(self.rawmaps[index], i1_length, window='hanning')))) / float(i1_length) # else: # print 'ZERO-NEIGHBOR' # neighbor_dist = float(np.sum(np.abs(self.rawmaps[index-1] - scipy.signal.signaltools.resample(self.rawmaps[index], i1_length, window='hanning')))) / float(i1_length) # self.dists[index] = zero_dist + neighbor_dist self.dists[index] = zero_dist def compare_individual_chi_squared(self, index): i_length = self.rawmaps[index].shape[0] i1_length = self.rawmaps[index-1].shape[0] zr0_length = self.rawmaps[0].shape[0] # print i_length, '|', zr0_length # based on length comparison, resample the mutated individuals so that they are same length as the zeroth individual (that does not mutate) # if indiv. is longer, resample indiv., take abs. diff., sum, div. by length if zr0_length < i_length: zero_dist = scipy.stats.mstats.chisquare(scipy.signal.signaltools.resample(self.rawmaps[index], zr0_length, window='hanning'), self.rawmaps[0]) # print self.dists[index] # if zeroth indiv. is longer, resample zeroth indiv., take abs. diff., sum, div. by length, then do same comparison with "neighbor" elif i_length < zr0_length: zero_dist = scipy.stats.mstats.chisquare(self.rawmaps[index], scipy.signal.signaltools.resample(self.rawmaps[0], i_length, window='hanning')) else: # otherwise, take abs. diff., sum, div. by length, then do same comparison with "neighbor" print 'CHI-ZERO' zero_dist = scipy.stats.mstats.chisquare(self.rawmaps[index], self.rawmaps[0]) if i1_length < i_length: neighbor_dist = scipy.stats.mstats.chisquare(scipy.signal.signaltools.resample(self.rawmaps[index-1], i_length, window='hanning') - self.rawmaps[index]) elif i_length < i1_length: neighbor_dist = scipy.stats.mstats.chisquare(self.rawmaps[index-1], scipy.signal.signaltools.resample(self.rawmaps[index], i1_length, window='hanning')) else: print 'CHI-NEIGHBOR' neighbor_dist = scipy.stats.mstats.chisquare(self.rawmaps[index-1], scipy.signal.signaltools.resample(self.rawmaps[index], i1_length, window='hanning')) nsum = np.sum(np.abs(neighbor_dist[0].data[:24])) zsum = np.sum(np.abs(zero_dist[0].data[:24])) nasum = neighbor_dist[0].data[24] zasum = zero_dist[0].data[24] self.dists[index] = nsum + zsum - (24.0 * nasum) - (24.0 * zasum) class Genome: def __init__(self, values=None, slotranges=[[1.0,0.5],[0.0,0.05],[1.0, 0.5],[1.0,10.],[1.0,0.5],[0.0,50.]]): # """ # 'alpha', 'c_delay', 'beta', 'd_mult', 'gamma', 'ms_bins' # [[1.0,0.5],[0.0,0.05],[1.0,0.5],[1.0,10.],[1.0,0.5],[0.0,50.]] # """ self.tratio = 1.0 # CHECK THIS... WHY IS IT HERE/in Hertz!!! ??? self.boundaries = slotranges self.generators = [RandomGenerator_8Bit(-1) for n in range(6)] ### CONSTANT WARNING #StaticGenerator_8Bit(VAL) ??? if values is None: print 'values is None, generators are seeded randomly!' self.values = [gen.val for gen in self.generators] else: self.values = values self.bitlength = len(self.values) * 8 self.binarystring = vals_to_binarystring(self.values) # print self.values # print type(self.values[0]) self.realvalues = [lininterp(val,self.boundaries[i]) for i,val in enumerate(self.values)] self.age = 0 self.edits = 0 def __repr__(self): print tuple(self.values) print ((self.age, self.edits) + tuple(self.values) + tuple(self.binarystring)) return "%9i/%9i || %.6f|%.6f|%.6f|%.6f|%.6f|%.6f" % ((self.age, self.edits) + tuple(self.realvalues)) # + tuple(self.binarystring) def mutate(self): pos = random.randint(0,(self.bitlength-1)) # flip bit print 'bit flipped to: ', abs(1 - int(self.binarystring[pos],2)) self.binarystring = substitute_char_in_string(self.binarystring, pos, abs(1 - int(self.binarystring[pos],2))) # recalc binary string self.values = binarystring_to_vals(self.binarystring) print "values: ", self.values self.realvalues = [lininterp(val,self.boundaries[i]) for i,val in enumerate(self.values)] # def xover_sub(self, pos, incomingSeq, headortail=0): # if headortail == 0: # print '<<>> ', self.binarystring # print '<<>> ', pos # print '<<>> ', incomingSeq # self.binarystring = incomingSeq[:pos] + self.binarystring[pos:] # else: # print '<<>> ', self.binarystring # print '<<>> ', pos # print '<<>> ', incomingSeq # self.binarystring = self.binarystring[:pos] + incomingSeq[:(len(self.binarystring)-pos)] # # recalc binary string # print '==== ', self.binarystring # self.values = binarystring_to_vals(self.binarystring) # print "values: ", self.values # self.realvalues = [lininterp(val,self.boundaries[i]) for i,val in enumerate(self.values)] def lininterp(val,bounds=[0.,1.]): return (((val/128.0)*(bounds[1]-bounds[0]))+bounds[0]) def substitute_char_in_string(s, p, c): l = list(s) l[p] = str(c) return "".join(l) # def substitute_string_head(s, p, snew): # s1 = snew[:] # print '++++ ', s1 # s2 = s[p:] # print '++++ ', s2 # return (s1 + s2)[:len(s)] # # def substitute_string_tail(s, p, snew): # s1 = s[:p] # print '==== ', s1 # print len(s) # print p # s2 = snew[:(len(s)-p)] # print '==== ', s2 # return (s1 + s2)[:len(s)] def vals_to_binarystring(vals = [0, 0, 0, 0, 0]): return ''.join((("{0:08b}".format(val)) for val in vals)) # never a '0bXXX' string! def binarystring_to_vals(binstring): mystring = binstring[:] length = len(mystring) / 8 # ignore the last digits if it doesn't chunk into 8-item substrings res = [] # print mystring[(n*8):((n+1)*8)] return [int(mystring[(n*8):((n+1)*8)], 2) for n in range(length)] # if __name__=='__main__': # genex = GenomicExplorer('/Users/kfl/dev/python/sc-0.3.1/genomic', 'test.wav') # genex.analyze_genome(1)
gpl-3.0
3,330,973,013,081,838,600
33.161616
235
0.644923
false
squillero/sgx
sgx/algorithms/__init__.py
1
1569
# -*- coding: utf-8 -*- ############################################################################# # _________ ____________ ___ # # / _____// _____/\ \/ / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # \_____ \/ \ ___ \ / THE E(X)TENDED (S)ELFISH (G)ENE ALGORITHM # # / \ \_\ \/ \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # /_________/\________/___/\ \ https://github.com/squillero/sgx # # \_/ # # # # A quick 'n dirty versatile population-less evolutionary optimizer loosely # # inspired by a cool interpretation of the Darwinian theory. # # # ############################################################################# # Copyright 2021 Giovanni Squillero # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .simple import *
lgpl-3.0
7,524,890,428,544,134,000
53.103448
77
0.40854
false
9468305/script
geetest_offline/util.py
1
3599
#!/usr/local/bin/python3 # -*- coding: utf-8 -*- ''' geetest常用公共方法 ''' SPLIT_ARRAY_JS = ''' function getSplitArray() { for (var a, b = "6_11_7_10_4_12_3_1_0_5_2_9_8".split("_"), c = [], d = 0, e = 52; d < e; d++) a = 2 * parseInt(b[parseInt(d % 26 / 2)]) + d % 2, parseInt(d / 2) % 2 || (a += d % 2 ? -1 : 1), a += d < 26 ? 26 : 0, c.push(a); return c } ''' USERRESPONSE_JS = ''' function userresponse(a, b) { for (var c = b.slice(32), d = [], e = 0; e < c.length; e++) { var f = c.charCodeAt(e); d[e] = f > 57 ? f - 87 : f - 48 } c = 36 * d[0] + d[1]; var g = Math.round(a) + c; b = b.slice(0, 32); var h, i = [ [], [], [], [], [] ], j = {}, k = 0; e = 0; for (var l = b.length; e < l; e++) h = b.charAt(e), j[h] || (j[h] = 1, i[k].push(h), k++, k = 5 == k ? 0 : k); for (var m, n = g, o = 4, p = "", q = [1, 2, 5, 10, 50]; n > 0;) n - q[o] >= 0 ? (m = parseInt(Math.random() * i[o].length, 10), p += i[o][m], n -= q[o]) : (i.splice(o, 1), q.splice(o, 1), o -= 1); return p } ''' OFFLINE_SAMPLE = ((186, 1, 98), (82, 0, 136), (61, 5, 108), (128, 2, 7), (130, 4, 99), (189, 3, 65), (108, 5, 285), (136, 0, 36), (41, 0, 263), (124, 3, 185)) TRACE_JS = ''' var tracer = function () { c = function (traceArray) { for (var b, c, d, e = [], f = 0, g = [], h = 0, i = traceArray.length - 1; h < i; h++) { b = Math.round(traceArray[h + 1][0] - traceArray[h][0]), c = Math.round(traceArray[h + 1][1] - traceArray[h][1]), d = Math.round(traceArray[h + 1][2] - traceArray[h][2]), g.push([b, c, d]), 0 == b && 0 == c && 0 == d || (0 == b && 0 == c ? f += d : (e.push([b, c, d + f]), f = 0)); } return 0 !== f && e.push([b, c, f]), e }, d = function (a) { var b = "()*,-./0123456789:?@ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqr", c = b.length, d = "", e = Math.abs(a), f = parseInt(e / c); f >= c && (f = c - 1), f && (d = b.charAt(f)), e %= c; var g = ""; return a < 0 && (g += "!"), d && (g += "$"), g + d + b.charAt(e) }, e = function (a) { for (var b = [ [1, 0], [2, 0], [1, -1], [1, 1], [0, 1], [0, -1], [3, 0], [2, -1], [2, 1] ], c = "stuvwxyz~", d = 0, e = b.length; d < e; d++) if (a[0] == b[d][0] && a[1] == b[d][1]) return c[d]; return 0 }, f = function (traceArray) { for (var b, f = c(traceArray), g = [], h = [], i = [], j = 0, k = f.length; j < k; j++) { b = e(f[j]), b ? h.push(b) : (g.push(d(f[j][0])), h.push(d(f[j][1]))), i.push(d(f[j][2])); } return g.join("") + "!!" + h.join("") + "!!" + i.join("") }, g = function (traceArray) { var a = f(traceArray); return encodeURIComponent(a) }; return { trace: g } }(); exports.tracer = tracer; ''' def has_key(database, key): '''安全的检查leveldb是否存在key''' try: database.Get(key) return True except KeyError: return False
mit
-119,942,036,943,591,280
31.669811
144
0.35332
false
tseaver/google-cloud-python
talent/google/cloud/talent_v4beta1/gapic/enums.py
1
48648
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrappers for protocol buffer enum types.""" import enum class AvailabilitySignalType(enum.IntEnum): """ The type of candidate availability signal. Attributes: AVAILABILITY_SIGNAL_TYPE_UNSPECIFIED (int): Default value. JOB_APPLICATION (int): Job application signal. In the context of ``Profile.availability_signals``, this signal is related to the candidate's most recent application. ``last_update_time`` is calculated from max(\ ``Application.create_time``) from all ``Application`` records where ``Application.source`` is any of the following: ``APPLY_DIRECT_WEB`` ``APPLY_DIRECT_MOBILE_WEB`` ``APPLY_DIRECT_MOBILE_APP`` ``APPLY_DIRECT_IN_PERSON`` ``APPLY_INDIRECT`` In the context of ``AvailabilityFilter``, the filter is applied on ``Profile.availability_signals`` where ``type`` is JOB\_APPLICATION. RESUME_UPDATE (int): Resume update signal. In the context of ``Profile.availability_signals``, this signal is related to the candidate's most recent update to their resume. For a ``SummarizedProfile.summary``, ``last_update_time`` is calculated from max(\ ``Profile.resume_update_time``) from all ``SummarizedProfile.profiles``. In the context of ``AvailabilityFilter``, the filter is applied on ``Profile.availability_signals`` where ``type`` is RESUME\_UPDATE. CANDIDATE_UPDATE (int): Candidate update signal. In the context of ``Profile.availability_signals``, this signal is related to the candidate's most recent update to their profile. For a ``SummarizedProfile.summary``, ``last_update_time`` is calculated from max(\ ``Profile.candidate_update_time``) from all ``SummarizedProfile.profiles``. In the context of ``AvailabilityFilter``, the filter is applied on ``Profile.availability_signals`` where ``type`` is CANDIDATE\_UPDATE. CLIENT_SUBMISSION (int): Client submission signal. In the context of ``Profile.availability_signals``, this signal is related to the candidate's most recent submission. ``last_update_time`` is calculated from max(\ ``Application.create_time``) from all ``Application`` records where ``Application.stage`` is any of the following: ``HIRING_MANAGER_REVIEW`` ``INTERVIEW`` ``OFFER_EXTENDED`` ``OFFER_ACCEPTED`` ``STARTED`` In the context of ``AvailabilityFilter``, the filter is applied on ``Profile.availability_signals`` where ``type`` is CLIENT\_SUBMISSION. """ AVAILABILITY_SIGNAL_TYPE_UNSPECIFIED = 0 JOB_APPLICATION = 1 RESUME_UPDATE = 2 CANDIDATE_UPDATE = 3 CLIENT_SUBMISSION = 4 class CommuteMethod(enum.IntEnum): """ Method for commute. Attributes: COMMUTE_METHOD_UNSPECIFIED (int): Commute method isn't specified. DRIVING (int): Commute time is calculated based on driving time. TRANSIT (int): Commute time is calculated based on public transit including bus, metro, subway, and so on. WALKING (int): Commute time is calculated based on walking time. CYCLING (int): Commute time is calculated based on biking time. """ COMMUTE_METHOD_UNSPECIFIED = 0 DRIVING = 1 TRANSIT = 2 WALKING = 3 CYCLING = 4 class CompanySize(enum.IntEnum): """ An enum that represents the size of the company. Attributes: COMPANY_SIZE_UNSPECIFIED (int): Default value if the size isn't specified. MINI (int): The company has less than 50 employees. SMALL (int): The company has between 50 and 99 employees. SMEDIUM (int): The company has between 100 and 499 employees. MEDIUM (int): The company has between 500 and 999 employees. BIG (int): The company has between 1,000 and 4,999 employees. BIGGER (int): The company has between 5,000 and 9,999 employees. GIANT (int): The company has 10,000 or more employees. """ COMPANY_SIZE_UNSPECIFIED = 0 MINI = 1 SMALL = 2 SMEDIUM = 3 MEDIUM = 4 BIG = 5 BIGGER = 6 GIANT = 7 class ContactInfoUsage(enum.IntEnum): """ Enum that represents the usage of the contact information. Attributes: CONTACT_INFO_USAGE_UNSPECIFIED (int): Default value. PERSONAL (int): Personal use. WORK (int): Work use. SCHOOL (int): School use. """ CONTACT_INFO_USAGE_UNSPECIFIED = 0 PERSONAL = 1 WORK = 2 SCHOOL = 3 class DegreeType(enum.IntEnum): """ Educational degree level defined in International Standard Classification of Education (ISCED). Attributes: DEGREE_TYPE_UNSPECIFIED (int): Default value. Represents no degree, or early childhood education. Maps to ISCED code 0. Ex) Kindergarten PRIMARY_EDUCATION (int): Primary education which is typically the first stage of compulsory education. ISCED code 1. Ex) Elementary school LOWER_SECONDARY_EDUCATION (int): Lower secondary education; First stage of secondary education building on primary education, typically with a more subject-oriented curriculum. ISCED code 2. Ex) Middle school UPPER_SECONDARY_EDUCATION (int): Middle education; Second/final stage of secondary education preparing for tertiary education and/or providing skills relevant to employment. Usually with an increased range of subject options and streams. ISCED code 3. Ex) High school ADULT_REMEDIAL_EDUCATION (int): Adult Remedial Education; Programmes providing learning experiences that build on secondary education and prepare for labour market entry and/or tertiary education. The content is broader than secondary but not as complex as tertiary education. ISCED code 4. ASSOCIATES_OR_EQUIVALENT (int): Associate's or equivalent; Short first tertiary programmes that are typically practically-based, occupationally-specific and prepare for labour market entry. These programmes may also provide a pathway to other tertiary programmes. ISCED code 5. BACHELORS_OR_EQUIVALENT (int): Bachelor's or equivalent; Programmes designed to provide intermediate academic and/or professional knowledge, skills and competencies leading to a first tertiary degree or equivalent qualification. ISCED code 6. MASTERS_OR_EQUIVALENT (int): Master's or equivalent; Programmes designed to provide advanced academic and/or professional knowledge, skills and competencies leading to a second tertiary degree or equivalent qualification. ISCED code 7. DOCTORAL_OR_EQUIVALENT (int): Doctoral or equivalent; Programmes designed primarily to lead to an advanced research qualification, usually concluding with the submission and defense of a substantive dissertation of publishable quality based on original research. ISCED code 8. """ DEGREE_TYPE_UNSPECIFIED = 0 PRIMARY_EDUCATION = 1 LOWER_SECONDARY_EDUCATION = 2 UPPER_SECONDARY_EDUCATION = 3 ADULT_REMEDIAL_EDUCATION = 4 ASSOCIATES_OR_EQUIVALENT = 5 BACHELORS_OR_EQUIVALENT = 6 MASTERS_OR_EQUIVALENT = 7 DOCTORAL_OR_EQUIVALENT = 8 class EmploymentType(enum.IntEnum): """ An enum that represents the employment type of a job. Attributes: EMPLOYMENT_TYPE_UNSPECIFIED (int): The default value if the employment type isn't specified. FULL_TIME (int): The job requires working a number of hours that constitute full time employment, typically 40 or more hours per week. PART_TIME (int): The job entails working fewer hours than a full time job, typically less than 40 hours a week. CONTRACTOR (int): The job is offered as a contracted, as opposed to a salaried employee, position. CONTRACT_TO_HIRE (int): The job is offered as a contracted position with the understanding that it's converted into a full-time position at the end of the contract. Jobs of this type are also returned by a search for ``EmploymentType.CONTRACTOR`` jobs. TEMPORARY (int): The job is offered as a temporary employment opportunity, usually a short-term engagement. INTERN (int): The job is a fixed-term opportunity for students or entry-level job seekers to obtain on-the-job training, typically offered as a summer position. VOLUNTEER (int): The is an opportunity for an individual to volunteer, where there's no expectation of compensation for the provided services. PER_DIEM (int): The job requires an employee to work on an as-needed basis with a flexible schedule. FLY_IN_FLY_OUT (int): The job involves employing people in remote areas and flying them temporarily to the work site instead of relocating employees and their families permanently. OTHER_EMPLOYMENT_TYPE (int): The job does not fit any of the other listed types. """ EMPLOYMENT_TYPE_UNSPECIFIED = 0 FULL_TIME = 1 PART_TIME = 2 CONTRACTOR = 3 CONTRACT_TO_HIRE = 4 TEMPORARY = 5 INTERN = 6 VOLUNTEER = 7 PER_DIEM = 8 FLY_IN_FLY_OUT = 9 OTHER_EMPLOYMENT_TYPE = 10 class HtmlSanitization(enum.IntEnum): """ Option for HTML content sanitization on user input fields, for example, job description. By setting this option, user can determine whether and how sanitization is performed on these fields. Attributes: HTML_SANITIZATION_UNSPECIFIED (int): Default value. HTML_SANITIZATION_DISABLED (int): Disables sanitization on HTML input. SIMPLE_FORMATTING_ONLY (int): Sanitizes HTML input, only accepts bold, italic, ordered list, and unordered list markup tags. """ HTML_SANITIZATION_UNSPECIFIED = 0 HTML_SANITIZATION_DISABLED = 1 SIMPLE_FORMATTING_ONLY = 2 class JobBenefit(enum.IntEnum): """ An enum that represents employee benefits included with the job. Attributes: JOB_BENEFIT_UNSPECIFIED (int): Default value if the type isn't specified. CHILD_CARE (int): The job includes access to programs that support child care, such as daycare. DENTAL (int): The job includes dental services covered by a dental insurance plan. DOMESTIC_PARTNER (int): The job offers specific benefits to domestic partners. FLEXIBLE_HOURS (int): The job allows for a flexible work schedule. MEDICAL (int): The job includes health services covered by a medical insurance plan. LIFE_INSURANCE (int): The job includes a life insurance plan provided by the employer or available for purchase by the employee. PARENTAL_LEAVE (int): The job allows for a leave of absence to a parent to care for a newborn child. RETIREMENT_PLAN (int): The job includes a workplace retirement plan provided by the employer or available for purchase by the employee. SICK_DAYS (int): The job allows for paid time off due to illness. VACATION (int): The job includes paid time off for vacation. VISION (int): The job includes vision services covered by a vision insurance plan. """ JOB_BENEFIT_UNSPECIFIED = 0 CHILD_CARE = 1 DENTAL = 2 DOMESTIC_PARTNER = 3 FLEXIBLE_HOURS = 4 MEDICAL = 5 LIFE_INSURANCE = 6 PARENTAL_LEAVE = 7 RETIREMENT_PLAN = 8 SICK_DAYS = 9 VACATION = 10 VISION = 11 class JobCategory(enum.IntEnum): """ An enum that represents the categorization or primary focus of specific role. This value is different than the "industry" associated with a role, which is related to the categorization of the company listing the job. Attributes: JOB_CATEGORY_UNSPECIFIED (int): The default value if the category isn't specified. ACCOUNTING_AND_FINANCE (int): An accounting and finance job, such as an Accountant. ADMINISTRATIVE_AND_OFFICE (int): An administrative and office job, such as an Administrative Assistant. ADVERTISING_AND_MARKETING (int): An advertising and marketing job, such as Marketing Manager. ANIMAL_CARE (int): An animal care job, such as Veterinarian. ART_FASHION_AND_DESIGN (int): An art, fashion, or design job, such as Designer. BUSINESS_OPERATIONS (int): A business operations job, such as Business Operations Manager. CLEANING_AND_FACILITIES (int): A cleaning and facilities job, such as Custodial Staff. COMPUTER_AND_IT (int): A computer and IT job, such as Systems Administrator. CONSTRUCTION (int): A construction job, such as General Laborer. CUSTOMER_SERVICE (int): A customer service job, such s Cashier. EDUCATION (int): An education job, such as School Teacher. ENTERTAINMENT_AND_TRAVEL (int): An entertainment and travel job, such as Flight Attendant. FARMING_AND_OUTDOORS (int): A farming or outdoor job, such as Park Ranger. HEALTHCARE (int): A healthcare job, such as Registered Nurse. HUMAN_RESOURCES (int): A human resources job, such as Human Resources Director. INSTALLATION_MAINTENANCE_AND_REPAIR (int): An installation, maintenance, or repair job, such as Electrician. LEGAL (int): A legal job, such as Law Clerk. MANAGEMENT (int): A management job, often used in conjunction with another category, such as Store Manager. MANUFACTURING_AND_WAREHOUSE (int): A manufacturing or warehouse job, such as Assembly Technician. MEDIA_COMMUNICATIONS_AND_WRITING (int): A media, communications, or writing job, such as Media Relations. OIL_GAS_AND_MINING (int): An oil, gas or mining job, such as Offshore Driller. PERSONAL_CARE_AND_SERVICES (int): A personal care and services job, such as Hair Stylist. PROTECTIVE_SERVICES (int): A protective services job, such as Security Guard. REAL_ESTATE (int): A real estate job, such as Buyer's Agent. RESTAURANT_AND_HOSPITALITY (int): A restaurant and hospitality job, such as Restaurant Server. SALES_AND_RETAIL (int): A sales and/or retail job, such Sales Associate. SCIENCE_AND_ENGINEERING (int): A science and engineering job, such as Lab Technician. SOCIAL_SERVICES_AND_NON_PROFIT (int): A social services or non-profit job, such as Case Worker. SPORTS_FITNESS_AND_RECREATION (int): A sports, fitness, or recreation job, such as Personal Trainer. TRANSPORTATION_AND_LOGISTICS (int): A transportation or logistics job, such as Truck Driver. """ JOB_CATEGORY_UNSPECIFIED = 0 ACCOUNTING_AND_FINANCE = 1 ADMINISTRATIVE_AND_OFFICE = 2 ADVERTISING_AND_MARKETING = 3 ANIMAL_CARE = 4 ART_FASHION_AND_DESIGN = 5 BUSINESS_OPERATIONS = 6 CLEANING_AND_FACILITIES = 7 COMPUTER_AND_IT = 8 CONSTRUCTION = 9 CUSTOMER_SERVICE = 10 EDUCATION = 11 ENTERTAINMENT_AND_TRAVEL = 12 FARMING_AND_OUTDOORS = 13 HEALTHCARE = 14 HUMAN_RESOURCES = 15 INSTALLATION_MAINTENANCE_AND_REPAIR = 16 LEGAL = 17 MANAGEMENT = 18 MANUFACTURING_AND_WAREHOUSE = 19 MEDIA_COMMUNICATIONS_AND_WRITING = 20 OIL_GAS_AND_MINING = 21 PERSONAL_CARE_AND_SERVICES = 22 PROTECTIVE_SERVICES = 23 REAL_ESTATE = 24 RESTAURANT_AND_HOSPITALITY = 25 SALES_AND_RETAIL = 26 SCIENCE_AND_ENGINEERING = 27 SOCIAL_SERVICES_AND_NON_PROFIT = 28 SPORTS_FITNESS_AND_RECREATION = 29 TRANSPORTATION_AND_LOGISTICS = 30 class JobLevel(enum.IntEnum): """ An enum that represents the required experience level required for the job. Attributes: JOB_LEVEL_UNSPECIFIED (int): The default value if the level isn't specified. ENTRY_LEVEL (int): Entry-level individual contributors, typically with less than 2 years of experience in a similar role. Includes interns. EXPERIENCED (int): Experienced individual contributors, typically with 2+ years of experience in a similar role. MANAGER (int): Entry- to mid-level managers responsible for managing a team of people. DIRECTOR (int): Senior-level managers responsible for managing teams of managers. EXECUTIVE (int): Executive-level managers and above, including C-level positions. """ JOB_LEVEL_UNSPECIFIED = 0 ENTRY_LEVEL = 1 EXPERIENCED = 2 MANAGER = 3 DIRECTOR = 4 EXECUTIVE = 5 class JobView(enum.IntEnum): """ An enum that specifies the job attributes that are returned in the ``MatchingJob.job`` or ``ListJobsResponse.jobs`` fields. Attributes: JOB_VIEW_UNSPECIFIED (int): Default value. JOB_VIEW_ID_ONLY (int): A ID only view of job, with following attributes: ``Job.name``, ``Job.requisition_id``, ``Job.language_code``. JOB_VIEW_MINIMAL (int): A minimal view of the job, with the following attributes: ``Job.name``, ``Job.requisition_id``, ``Job.title``, ``Job.company``, ``Job.DerivedInfo.locations``, ``Job.language_code``. JOB_VIEW_SMALL (int): A small view of the job, with the following attributes in the search results: ``Job.name``, ``Job.requisition_id``, ``Job.title``, ``Job.company``, ``Job.DerivedInfo.locations``, ``Job.visibility``, ``Job.language_code``, ``Job.description``. JOB_VIEW_FULL (int): All available attributes are included in the search results. """ JOB_VIEW_UNSPECIFIED = 0 JOB_VIEW_ID_ONLY = 1 JOB_VIEW_MINIMAL = 2 JOB_VIEW_SMALL = 3 JOB_VIEW_FULL = 4 class Outcome(enum.IntEnum): """ The overall outcome /decision / result indicator. Attributes: OUTCOME_UNSPECIFIED (int): Default value. POSITIVE (int): A positive outcome / passing indicator (for example, candidate was recommended for hiring or to be moved forward in the hiring process, candidate passed a test). NEUTRAL (int): A neutral outcome / no clear indicator (for example, no strong reccommendation either to move forward / not move forward, neutral score). NEGATIVE (int): A negative outcome / failing indicator (for example, candidate was recommended to NOT move forward in the hiring process, failed a test). OUTCOME_NOT_AVAILABLE (int): The assessment outcome is not available or otherwise unknown (for example, candidate did not complete assessment). """ OUTCOME_UNSPECIFIED = 0 POSITIVE = 1 NEUTRAL = 2 NEGATIVE = 3 OUTCOME_NOT_AVAILABLE = 4 class PostingRegion(enum.IntEnum): """ An enum that represents the job posting region. In most cases, job postings don't need to specify a region. If a region is given, jobs are eligible for searches in the specified region. Attributes: POSTING_REGION_UNSPECIFIED (int): If the region is unspecified, the job is only returned if it matches the ``LocationFilter``. ADMINISTRATIVE_AREA (int): In addition to exact location matching, job posting is returned when the ``LocationFilter`` in the search query is in the same administrative area as the returned job posting. For example, if a ``ADMINISTRATIVE_AREA`` job is posted in "CA, USA", it's returned if ``LocationFilter`` has "Mountain View". Administrative area refers to top-level administrative subdivision of this country. For example, US state, IT region, UK constituent nation and JP prefecture. NATION (int): In addition to exact location matching, job is returned when ``LocationFilter`` in search query is in the same country as this job. For example, if a ``NATION_WIDE`` job is posted in "USA", it's returned if ``LocationFilter`` has 'Mountain View'. TELECOMMUTE (int): Job allows employees to work remotely (telecommute). If locations are provided with this value, the job is considered as having a location, but telecommuting is allowed. """ POSTING_REGION_UNSPECIFIED = 0 ADMINISTRATIVE_AREA = 1 NATION = 2 TELECOMMUTE = 3 class SkillProficiencyLevel(enum.IntEnum): """ Enum that represents the skill proficiency level. Attributes: SKILL_PROFICIENCY_LEVEL_UNSPECIFIED (int): Default value. UNSKILLED (int): Lacks any proficiency in this skill. FUNDAMENTAL_AWARENESS (int): Have a common knowledge or an understanding of basic techniques and concepts. NOVICE (int): Have the level of experience gained in a classroom and/or experimental scenarios or as a trainee on-the-job. INTERMEDIATE (int): Be able to successfully complete tasks in this skill as requested. Help from an expert may be required from time to time, but can usually perform skill independently. ADVANCED (int): Can perform the actions associated with this skill without assistance. EXPERT (int): Known as an expert in this area. """ SKILL_PROFICIENCY_LEVEL_UNSPECIFIED = 0 UNSKILLED = 6 FUNDAMENTAL_AWARENESS = 1 NOVICE = 2 INTERMEDIATE = 3 ADVANCED = 4 EXPERT = 5 class Visibility(enum.IntEnum): """ Deprecated. All resources are only visible to the owner. An enum that represents who has view access to the resource. Attributes: VISIBILITY_UNSPECIFIED (int): Default value. ACCOUNT_ONLY (int): The resource is only visible to the GCP account who owns it. SHARED_WITH_GOOGLE (int): The resource is visible to the owner and may be visible to other applications and processes at Google. SHARED_WITH_PUBLIC (int): The resource is visible to the owner and may be visible to all other API clients. """ VISIBILITY_UNSPECIFIED = 0 ACCOUNT_ONLY = 1 SHARED_WITH_GOOGLE = 2 SHARED_WITH_PUBLIC = 3 class Application(object): class ApplicationStage(enum.IntEnum): """ The stage of the application. Attributes: APPLICATION_STAGE_UNSPECIFIED (int): Default value. NEW (int): Candidate has applied or a recruiter put candidate into consideration but candidate is not yet screened / no decision has been made to move or not move the candidate to the next stage. SCREEN (int): A recruiter decided to screen the candidate for this role. HIRING_MANAGER_REVIEW (int): Candidate is being / was sent to the customer / hiring manager for detailed review. INTERVIEW (int): Candidate was approved by the client / hiring manager and is being / was interviewed for the role. OFFER_EXTENDED (int): Candidate will be / has been given an offer of employment. OFFER_ACCEPTED (int): Candidate has accepted their offer of employment. STARTED (int): Candidate has begun (or completed) their employment or assignment with the employer. """ APPLICATION_STAGE_UNSPECIFIED = 0 NEW = 1 SCREEN = 2 HIRING_MANAGER_REVIEW = 3 INTERVIEW = 4 OFFER_EXTENDED = 5 OFFER_ACCEPTED = 6 STARTED = 7 class ApplicationState(enum.IntEnum): """ Enum that represents the application status. Attributes: APPLICATION_STATE_UNSPECIFIED (int): Default value. IN_PROGRESS (int): The current stage is in progress or pending, for example, interviews in progress. CANDIDATE_WITHDREW (int): The current stage was terminated by a candidate decision. EMPLOYER_WITHDREW (int): The current stage was terminated by an employer or agency decision. COMPLETED (int): The current stage is successfully completed, but the next stage (if applicable) has not begun. CLOSED (int): The current stage was closed without an exception, or terminated for reasons unrealated to the candidate. """ APPLICATION_STATE_UNSPECIFIED = 0 IN_PROGRESS = 1 CANDIDATE_WITHDREW = 2 EMPLOYER_WITHDREW = 3 COMPLETED = 4 CLOSED = 5 class BatchOperationMetadata(object): class State(enum.IntEnum): """ Attributes: STATE_UNSPECIFIED (int): Default value. INITIALIZING (int): The batch operation is being prepared for processing. PROCESSING (int): The batch operation is actively being processed. SUCCEEDED (int): The batch operation is processed, and at least one item has been successfully processed. FAILED (int): The batch operation is done and no item has been successfully processed. CANCELLING (int): The batch operation is in the process of cancelling after ``google.longrunning.Operations.CancelOperation`` is called. CANCELLED (int): The batch operation is done after ``google.longrunning.Operations.CancelOperation`` is called. Any items processed before cancelling are returned in the response. """ STATE_UNSPECIFIED = 0 INITIALIZING = 1 PROCESSING = 2 SUCCEEDED = 3 FAILED = 4 CANCELLING = 5 CANCELLED = 6 class CommuteFilter(object): class RoadTraffic(enum.IntEnum): """ The traffic density to use when calculating commute time. Attributes: ROAD_TRAFFIC_UNSPECIFIED (int): Road traffic situation isn't specified. TRAFFIC_FREE (int): Optimal commute time without considering any traffic impact. BUSY_HOUR (int): Commute time calculation takes in account the peak traffic impact. """ ROAD_TRAFFIC_UNSPECIFIED = 0 TRAFFIC_FREE = 1 BUSY_HOUR = 2 class CompensationFilter(object): class FilterType(enum.IntEnum): """ Specify the type of filtering. Attributes: FILTER_TYPE_UNSPECIFIED (int): Filter type unspecified. Position holder, INVALID, should never be used. UNIT_ONLY (int): Filter by ``base compensation entry's`` unit. A job is a match if and only if the job contains a base CompensationEntry and the base CompensationEntry's unit matches provided ``units``. Populate one or more ``units``. See ``CompensationInfo.CompensationEntry`` for definition of base compensation entry. UNIT_AND_AMOUNT (int): Filter by ``base compensation entry's`` unit and amount / range. A job is a match if and only if the job contains a base CompensationEntry, and the base entry's unit matches provided ``CompensationUnit`` and amount or range overlaps with provided ``CompensationRange``. See ``CompensationInfo.CompensationEntry`` for definition of base compensation entry. Set exactly one ``units`` and populate ``range``. ANNUALIZED_BASE_AMOUNT (int): Filter by annualized base compensation amount and ``base compensation entry's`` unit. Populate ``range`` and zero or more ``units``. ANNUALIZED_TOTAL_AMOUNT (int): Filter by annualized total compensation amount and ``base compensation entry's`` unit . Populate ``range`` and zero or more ``units``. """ FILTER_TYPE_UNSPECIFIED = 0 UNIT_ONLY = 1 UNIT_AND_AMOUNT = 2 ANNUALIZED_BASE_AMOUNT = 3 ANNUALIZED_TOTAL_AMOUNT = 4 class CompensationInfo(object): class CompensationType(enum.IntEnum): """ The type of compensation. For compensation amounts specified in non-monetary amounts, describe the compensation scheme in the ``CompensationEntry.description``. For example, tipping format is described in ``CompensationEntry.description`` (for example, "expect 15-20% tips based on customer bill.") and an estimate of the tips provided in ``CompensationEntry.amount`` or ``CompensationEntry.range`` ($10 per hour). For example, equity is described in ``CompensationEntry.description`` (for example, "1% - 2% equity vesting over 4 years, 1 year cliff") and value estimated in ``CompensationEntry.amount`` or ``CompensationEntry.range``. If no value estimate is possible, units are ``CompensationUnit.COMPENSATION_UNIT_UNSPECIFIED`` and then further clarified in ``CompensationEntry.description`` field. Attributes: COMPENSATION_TYPE_UNSPECIFIED (int): Default value. BASE (int): Base compensation: Refers to the fixed amount of money paid to an employee by an employer in return for work performed. Base compensation does not include benefits, bonuses or any other potential compensation from an employer. BONUS (int): Bonus. SIGNING_BONUS (int): Signing bonus. EQUITY (int): Equity. PROFIT_SHARING (int): Profit sharing. COMMISSIONS (int): Commission. TIPS (int): Tips. OTHER_COMPENSATION_TYPE (int): Other compensation type. """ COMPENSATION_TYPE_UNSPECIFIED = 0 BASE = 1 BONUS = 2 SIGNING_BONUS = 3 EQUITY = 4 PROFIT_SHARING = 5 COMMISSIONS = 6 TIPS = 7 OTHER_COMPENSATION_TYPE = 8 class CompensationUnit(enum.IntEnum): """ Pay frequency. Attributes: COMPENSATION_UNIT_UNSPECIFIED (int): Default value. HOURLY (int): Hourly. DAILY (int): Daily. WEEKLY (int): Weekly MONTHLY (int): Monthly. YEARLY (int): Yearly. ONE_TIME (int): One time. OTHER_COMPENSATION_UNIT (int): Other compensation units. """ COMPENSATION_UNIT_UNSPECIFIED = 0 HOURLY = 1 DAILY = 2 WEEKLY = 3 MONTHLY = 4 YEARLY = 5 ONE_TIME = 6 OTHER_COMPENSATION_UNIT = 7 class CompleteQueryRequest(object): class CompletionScope(enum.IntEnum): """ Enum to specify the scope of completion. Attributes: COMPLETION_SCOPE_UNSPECIFIED (int): Default value. TENANT (int): Suggestions are based only on the data provided by the client. PUBLIC (int): Suggestions are based on all jobs data in the system that's visible to the client """ COMPLETION_SCOPE_UNSPECIFIED = 0 TENANT = 1 PUBLIC = 2 class CompletionType(enum.IntEnum): """ Enum to specify auto-completion topics. Attributes: COMPLETION_TYPE_UNSPECIFIED (int): Default value. JOB_TITLE (int): Only suggest job titles. COMPANY_NAME (int): Only suggest company names. COMBINED (int): Suggest both job titles and company names. """ COMPLETION_TYPE_UNSPECIFIED = 0 JOB_TITLE = 1 COMPANY_NAME = 2 COMBINED = 3 class DeviceInfo(object): class DeviceType(enum.IntEnum): """ An enumeration describing an API access portal and exposure mechanism. Attributes: DEVICE_TYPE_UNSPECIFIED (int): The device type isn't specified. WEB (int): A desktop web browser, such as, Chrome, Firefox, Safari, or Internet Explorer) MOBILE_WEB (int): A mobile device web browser, such as a phone or tablet with a Chrome browser. ANDROID (int): An Android device native application. IOS (int): An iOS device native application. BOT (int): A bot, as opposed to a device operated by human beings, such as a web crawler. OTHER (int): Other devices types. """ DEVICE_TYPE_UNSPECIFIED = 0 WEB = 1 MOBILE_WEB = 2 ANDROID = 3 IOS = 4 BOT = 5 OTHER = 6 class EmployerFilter(object): class EmployerFilterMode(enum.IntEnum): """ Enum indicating which set of ``Profile.employment_records`` to search against. Attributes: EMPLOYER_FILTER_MODE_UNSPECIFIED (int): Default value. ALL_EMPLOYMENT_RECORDS (int): Apply to all employers in ``Profile.employment_records``. CURRENT_EMPLOYMENT_RECORDS_ONLY (int): Apply only to current employer in ``Profile.employment_records``. PAST_EMPLOYMENT_RECORDS_ONLY (int): Apply only to past (not current) employers in ``Profile.employment_records``. """ EMPLOYER_FILTER_MODE_UNSPECIFIED = 0 ALL_EMPLOYMENT_RECORDS = 1 CURRENT_EMPLOYMENT_RECORDS_ONLY = 2 PAST_EMPLOYMENT_RECORDS_ONLY = 3 class JobEvent(object): class JobEventType(enum.IntEnum): """ An enumeration of an event attributed to the behavior of the end user, such as a job seeker. Attributes: JOB_EVENT_TYPE_UNSPECIFIED (int): The event is unspecified by other provided values. IMPRESSION (int): The job seeker or other entity interacting with the service has had a job rendered in their view, such as in a list of search results in a compressed or clipped format. This event is typically associated with the viewing of a jobs list on a single page by a job seeker. VIEW (int): The job seeker, or other entity interacting with the service, has viewed the details of a job, including the full description. This event doesn't apply to the viewing a snippet of a job appearing as a part of the job search results. Viewing a snippet is associated with an ``impression``). VIEW_REDIRECT (int): The job seeker or other entity interacting with the service performed an action to view a job and was redirected to a different website for job. APPLICATION_START (int): The job seeker or other entity interacting with the service began the process or demonstrated the intention of applying for a job. APPLICATION_FINISH (int): The job seeker or other entity interacting with the service submitted an application for a job. APPLICATION_QUICK_SUBMISSION (int): The job seeker or other entity interacting with the service submitted an application for a job with a single click without entering information. If a job seeker performs this action, send only this event to the service. Do not also send ``JobEventType.APPLICATION_START`` or ``JobEventType.APPLICATION_FINISH`` events. APPLICATION_REDIRECT (int): The job seeker or other entity interacting with the service performed an action to apply to a job and was redirected to a different website to complete the application. APPLICATION_START_FROM_SEARCH (int): The job seeker or other entity interacting with the service began the process or demonstrated the intention of applying for a job from the search results page without viewing the details of the job posting. If sending this event, JobEventType.VIEW event shouldn't be sent. APPLICATION_REDIRECT_FROM_SEARCH (int): The job seeker, or other entity interacting with the service, performs an action with a single click from the search results page to apply to a job (without viewing the details of the job posting), and is redirected to a different website to complete the application. If a candidate performs this action, send only this event to the service. Do not also send ``JobEventType.APPLICATION_START``, ``JobEventType.APPLICATION_FINISH`` or ``JobEventType.VIEW`` events. APPLICATION_COMPANY_SUBMIT (int): This event should be used when a company submits an application on behalf of a job seeker. This event is intended for use by staffing agencies attempting to place candidates. BOOKMARK (int): The job seeker or other entity interacting with the service demonstrated an interest in a job by bookmarking or saving it. NOTIFICATION (int): The job seeker or other entity interacting with the service was sent a notification, such as an email alert or device notification, containing one or more jobs listings generated by the service. HIRED (int): The job seeker or other entity interacting with the service was employed by the hiring entity (employer). Send this event only if the job seeker was hired through an application that was initiated by a search conducted through the Cloud Talent Solution service. SENT_CV (int): A recruiter or staffing agency submitted an application on behalf of the candidate after interacting with the service to identify a suitable job posting. INTERVIEW_GRANTED (int): The entity interacting with the service (for example, the job seeker), was granted an initial interview by the hiring entity (employer). This event should only be sent if the job seeker was granted an interview as part of an application that was initiated by a search conducted through / recommendation provided by the Cloud Talent Solution service. """ JOB_EVENT_TYPE_UNSPECIFIED = 0 IMPRESSION = 1 VIEW = 2 VIEW_REDIRECT = 3 APPLICATION_START = 4 APPLICATION_FINISH = 5 APPLICATION_QUICK_SUBMISSION = 6 APPLICATION_REDIRECT = 7 APPLICATION_START_FROM_SEARCH = 8 APPLICATION_REDIRECT_FROM_SEARCH = 9 APPLICATION_COMPANY_SUBMIT = 10 BOOKMARK = 11 NOTIFICATION = 12 HIRED = 13 SENT_CV = 14 INTERVIEW_GRANTED = 15 class Location(object): class LocationType(enum.IntEnum): """ An enum which represents the type of a location. Attributes: LOCATION_TYPE_UNSPECIFIED (int): Default value if the type isn't specified. COUNTRY (int): A country level location. ADMINISTRATIVE_AREA (int): A state or equivalent level location. SUB_ADMINISTRATIVE_AREA (int): A county or equivalent level location. LOCALITY (int): A city or equivalent level location. POSTAL_CODE (int): A postal code level location. SUB_LOCALITY (int): A sublocality is a subdivision of a locality, for example a city borough, ward, or arrondissement. Sublocalities are usually recognized by a local political authority. For example, Manhattan and Brooklyn are recognized as boroughs by the City of New York, and are therefore modeled as sublocalities. SUB_LOCALITY_1 (int): A district or equivalent level location. SUB_LOCALITY_2 (int): A smaller district or equivalent level display. NEIGHBORHOOD (int): A neighborhood level location. STREET_ADDRESS (int): A street address level location. """ LOCATION_TYPE_UNSPECIFIED = 0 COUNTRY = 1 ADMINISTRATIVE_AREA = 2 SUB_ADMINISTRATIVE_AREA = 3 LOCALITY = 4 POSTAL_CODE = 5 SUB_LOCALITY = 6 SUB_LOCALITY_1 = 7 SUB_LOCALITY_2 = 8 NEIGHBORHOOD = 9 STREET_ADDRESS = 10 class LocationFilter(object): class TelecommutePreference(enum.IntEnum): """ Specify whether to include telecommute jobs. Attributes: TELECOMMUTE_PREFERENCE_UNSPECIFIED (int): Default value if the telecommute preference isn't specified. TELECOMMUTE_EXCLUDED (int): Exclude telecommute jobs. TELECOMMUTE_ALLOWED (int): Allow telecommute jobs. """ TELECOMMUTE_PREFERENCE_UNSPECIFIED = 0 TELECOMMUTE_EXCLUDED = 1 TELECOMMUTE_ALLOWED = 2 class Phone(object): class PhoneType(enum.IntEnum): """ Enum that represents the type of the telephone. Attributes: PHONE_TYPE_UNSPECIFIED (int): Default value. LANDLINE (int): A landline. MOBILE (int): A mobile. FAX (int): A fax. PAGER (int): A pager. TTY_OR_TDD (int): A TTY (test telephone) or TDD (telecommunication device for the deaf). VOICEMAIL (int): A voicemail. VIRTUAL (int): A virtual telephone number is a number that can be routed to another number and managed by the user via Web, SMS, IVR, and so on. It is associated with a particular person, and may be routed to either a MOBILE or LANDLINE number. The ``phone usage`` should be set to PERSONAL for these phone types. Some more information can be found here: https://en.wikipedia.org/wiki/Personal\_Numbers VOIP (int): Voice over IP numbers. This includes TSoIP (Telephony Service over IP). MOBILE_OR_LANDLINE (int): In some regions (e.g. the USA), it is impossible to distinguish between fixed-line and mobile numbers by looking at the phone number itself. """ PHONE_TYPE_UNSPECIFIED = 0 LANDLINE = 1 MOBILE = 2 FAX = 3 PAGER = 4 TTY_OR_TDD = 5 VOICEMAIL = 6 VIRTUAL = 7 VOIP = 8 MOBILE_OR_LANDLINE = 9 class ProfileEvent(object): class ProfileEventType(enum.IntEnum): """ The enum represents types of client events for a candidate profile. Attributes: PROFILE_EVENT_TYPE_UNSPECIFIED (int): Default value. IMPRESSION (int): Send this event when a ``ProfileEvent.profiles`` was sent as a part of a result set for a CTS API call and was rendered in the end user's UI (that is, the ``ProfileEvent.recruiter``). VIEW (int): The VIEW event records the action of a candidate's profile being viewed by an end user. This is critical to tracking product metrics and should be sent for every profile VIEW that happens in your system, whether the event is associated with an API call (for example, a recruiter making a request for a result set and clicking on a profile) or not (a recruiter using the system to view profile details without making a request). For a VIEW events associated with API calls, the ``ClientEvent.request_id`` should be populated. If the VIEW is not associated with an API call, ``request_id`` should not be populated. This event requires a valid recruiter and one valid ID in profiles. BOOKMARK (int): The profile is bookmarked. """ PROFILE_EVENT_TYPE_UNSPECIFIED = 0 IMPRESSION = 1 VIEW = 2 BOOKMARK = 3 class Resume(object): class ResumeType(enum.IntEnum): """ The format of a structured resume. Attributes: RESUME_TYPE_UNSPECIFIED (int): Default value. HRXML (int): The profile contents in HR-XML format. See https://schemas.liquid-technologies.com/hr-xml/2007-04-15/ for more information about Human Resources XML. OTHER_RESUME_TYPE (int): Resume type not specified. """ RESUME_TYPE_UNSPECIFIED = 0 HRXML = 1 OTHER_RESUME_TYPE = 2 class SearchJobsRequest(object): class DiversificationLevel(enum.IntEnum): """ Controls whether highly similar jobs are returned next to each other in the search results. Jobs are identified as highly similar based on their titles, job categories, and locations. Highly similar results are clustered so that only one representative job of the cluster is displayed to the job seeker higher up in the results, with the other jobs being displayed lower down in the results. Attributes: DIVERSIFICATION_LEVEL_UNSPECIFIED (int): The diversification level isn't specified. DISABLED (int): Disables diversification. Jobs that would normally be pushed to the last page would not have their positions altered. This may result in highly similar jobs appearing in sequence in the search results. SIMPLE (int): Default diversifying behavior. The result list is ordered so that highly similar results are pushed to the end of the last page of search results. """ DIVERSIFICATION_LEVEL_UNSPECIFIED = 0 DISABLED = 1 SIMPLE = 2 class SearchMode(enum.IntEnum): """ A string-represented enumeration of the job search mode. The service operate differently for different modes of service. Attributes: SEARCH_MODE_UNSPECIFIED (int): The mode of the search method isn't specified. The default search behavior is identical to JOB\_SEARCH search behavior. JOB_SEARCH (int): The job search matches against all jobs, and featured jobs (jobs with promotionValue > 0) are not specially handled. FEATURED_JOB_SEARCH (int): The job search matches only against featured jobs (jobs with a promotionValue > 0). This method doesn't return any jobs having a promotionValue <= 0. The search results order is determined by the promotionValue (jobs with a higher promotionValue are returned higher up in the search results), with relevance being used as a tiebreaker. """ SEARCH_MODE_UNSPECIFIED = 0 JOB_SEARCH = 1 FEATURED_JOB_SEARCH = 2 class CustomRankingInfo(object): class ImportanceLevel(enum.IntEnum): """ The importance level for ``CustomRankingInfo.ranking_expression``. Attributes: IMPORTANCE_LEVEL_UNSPECIFIED (int): Default value if the importance level isn't specified. NONE (int): The given ranking expression is of None importance, existing relevance score (determined by API algorithm) dominates job's final ranking position. LOW (int): The given ranking expression is of Low importance in terms of job's final ranking position compared to existing relevance score (determined by API algorithm). MILD (int): The given ranking expression is of Mild importance in terms of job's final ranking position compared to existing relevance score (determined by API algorithm). MEDIUM (int): The given ranking expression is of Medium importance in terms of job's final ranking position compared to existing relevance score (determined by API algorithm). HIGH (int): The given ranking expression is of High importance in terms of job's final ranking position compared to existing relevance score (determined by API algorithm). EXTREME (int): The given ranking expression is of Extreme importance, and dominates job's final ranking position with existing relevance score (determined by API algorithm) ignored. """ IMPORTANCE_LEVEL_UNSPECIFIED = 0 NONE = 1 LOW = 2 MILD = 3 MEDIUM = 4 HIGH = 5 EXTREME = 6 class Tenant(object): class DataUsageType(enum.IntEnum): """ Enum that represents how user data owned by the tenant is used. Attributes: DATA_USAGE_TYPE_UNSPECIFIED (int): Default value. AGGREGATED (int): Data owned by this tenant is used to improve search/recommendation quality across tenants. ISOLATED (int): Data owned by this tenant is used to improve search/recommendation quality for this tenant only. """ DATA_USAGE_TYPE_UNSPECIFIED = 0 AGGREGATED = 1 ISOLATED = 2 class TimeFilter(object): class TimeField(enum.IntEnum): """ Time fields can be used in TimeFilter. Attributes: TIME_FIELD_UNSPECIFIED (int): Default value. CREATE_TIME (int): Earliest profile create time. UPDATE_TIME (int): Latest profile update time. """ TIME_FIELD_UNSPECIFIED = 0 CREATE_TIME = 1 UPDATE_TIME = 2
apache-2.0
-5,653,163,422,906,155,000
41.673684
120
0.669812
false
JeremyOT/Toto
toto/messaging.py
1
1817
from threading import Thread from traceback import format_exc import zmq import logging class MessageQueue(): def __init__(self): self.__handlers = {} self.__zmq_context = zmq.Context() self.__out_socket = self.__zmq_context.socket(zmq.PUSH) self.__thread = None self.__protocol = None self.__port = 0 self.__interface = None self.on_recv = None @property def port(self): return self.__port @property def interface(self): return self.__interface @property def protocol(self): return self.__protocol def address(self): return '%s://%s:%s' % (protocol, interface, port) def connect_output(self, *addresses): for address in addresses: self.__socket.connect(addresses) def start_listening(self, on_recv=None, port=0, protocol='tcp', interface='*'): if self.__thread: return if on_recv: self.on_recv = on_recv self.__protocol = protocol self.__interface = interface def listen(): context = zmq.Context() socket = context.socket(zmq.PULL) if port: self.__port = port socket.bind(self.address) else: self.__port = socket.bind_to_random_port('%s://%s', protocol, interface) while True: try: message = socket.recv() if on_recv: on_recv(message) except Exception as e: logging.error(format_exc()) self.__thread = None self.__thread = Thread(target=listen) self.__thread.daemon = True self.__thread.start() def send(self, message): self.__out_socket.send(message) _instances = {} @classmethod def instance(cls, name='MessageQueue'): try: return cls._instances[name] except: cls._instances[name] = cls() return cls._instances[name]
mit
-1,360,145,696,010,402,300
23.226667
81
0.605394
false
allspeak/api.allspeak.eu
web/project/user/views.py
1
6116
from flask import render_template, Blueprint, request, redirect, url_for, flash, abort, jsonify from sqlalchemy.exc import IntegrityError from flask_login import login_user, current_user, login_required, logout_user from threading import Thread from itsdangerous import URLSafeTimedSerializer from datetime import datetime import os from .forms import LoginForm, EmailForm, PasswordForm, NewPatientForm from project import db, app from project.models import User user_blueprint = Blueprint('user', __name__) def can_operate_on(user_from, user_to): return (user_from.role == User.ADMIN or user_from.id == user_to.id or user_to.role == User.PATIENT) def flash_errors(form): for field, errors in form.errors.items(): for error in errors: flash(u"Error in the %s field - %s" % ( getattr(form, field).label.text, error ), 'info') ################ #### routes #### ################ @user_blueprint.route('/', methods=['GET']) @login_required def index(): return redirect(current_user.get_homepage()) @user_blueprint.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm(request.form) if request.method == 'POST': if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user is not None and user.is_correct_password(form.password.data): user.authenticated = True user.refresh_login() db.session.add(user) db.session.commit() login_user(user) flash('Thanks for logging in, {}'.format(current_user.email)) if user.role == User.ADMIN: redirect_url = url_for('user.view_users') else: redirect_url = url_for('user.view_patients') return redirect(redirect_url) else: flash('ERROR! Incorrect login credentials.', 'error') return render_template('login.html', form=form) @user_blueprint.route('/logout') @login_required def logout(): user = current_user user.authenticated = False db.session.add(user) db.session.commit() logout_user() flash('Goodbye!', 'info') return redirect(url_for('user.login')) @user_blueprint.route('/<int:id>/user_profile') @login_required def user_profile(id): user = User.query.filter(User.id == id).first() if not can_operate_on(current_user, user): abort(403) return render_template('user_profile.html', user=user) @user_blueprint.route('/<int:id>/email_change', methods=["GET", "POST"]) @login_required def user_email_change(id): user = User.query.filter(User.id == id).first() if not can_operate_on(current_user, user): abort(403) form = EmailForm() if request.method == 'POST': if form.validate_on_submit(): try: user_check = User.query.filter_by(email=form.email.data).first() if user_check is None: user.email = form.email.data db.session.add(user) db.session.commit() return redirect(url_for('user.user_profile', id=user.id)) else: flash('Sorry, that email already exists!', 'error') except IntegrityError: flash('Error! That email already exists!', 'error') return render_template('email_change.html', form=form, user=user) @user_blueprint.route('/<int:id>/password_change', methods=["GET", "POST"]) @login_required def user_password_change(id): user = User.query.filter(User.id == id).first() if not can_operate_on(current_user, user): abort(403) form = PasswordForm() if request.method == 'POST': if form.validate_on_submit(): user.password = form.password.data db.session.add(user) db.session.commit() flash('Password has been updated!', 'success') return redirect(url_for('user.user_profile', id=user.id)) return render_template('password_change.html', form=form, user=user) @user_blueprint.route('/view_patients') @login_required def view_patients(): if current_user.role == User.PATIENT: abort(403) else: users = User.query.filter( User.role == User.PATIENT).order_by(User.id).all() return render_template('view_patients.html', users=users) @user_blueprint.route('/view_users') @login_required def view_users(): if current_user.role != User.ADMIN: abort(403) else: users = User.query.order_by(User.id).all() return render_template('view_users.html', users=users) @user_blueprint.route('/new_patient', methods=['GET', 'POST']) def new_patient(): form = NewPatientForm(request.form) if request.method == 'POST': if form.validate_on_submit(): try: new_user = User(role=User.PATIENT) db.session.add(new_user) db.session.commit() flash('New patient added', 'success') return redirect(url_for('user.user_profile', id=new_user.id)) except IntegrityError: db.session.rollback() flash('An error happened', 'error') return render_template('new_patient.html', form=form) @user_blueprint.route('/<int:id>/api_key_reset', methods=["GET", "POST"]) @login_required def api_key_reset(id): user = User.query.filter(User.id == id).first() if not can_operate_on(current_user, user): abort(403) if request.method == 'POST': try: user.regenerate_api_key() db.session.add(user) db.session.commit() flash('api key reset completed with success', 'success') return redirect(url_for('user.user_profile', id=user.id)) except IntegrityError: db.session.rollback() flash('An error happened', 'error') return render_template('api_key_reset.html', user=user)
mit
-7,856,011,717,960,179,000
32.977778
95
0.600065
false
TuSimple/simpledet
models/FPN/assign_layer_fpn.py
1
2616
""" Assign Layer operator for FPN author: Yi Jiang, Chenxia Han """ import mxnet as mx import numpy as np class AssignLayerFPNOperator(mx.operator.CustomOp): def __init__(self, rcnn_stride, roi_canonical_scale, roi_canonical_level): super().__init__() self.rcnn_stride = rcnn_stride self.roi_canonical_scale = roi_canonical_scale self.roi_canonical_level = roi_canonical_level def forward(self, is_train, req, in_data, out_data, aux): all_rois = in_data[0] rcnn_stride = self.rcnn_stride scale0 = self.roi_canonical_scale lvl0 = self.roi_canonical_level k_min = np.log2(min(rcnn_stride)) k_max = np.log2(max(rcnn_stride)) rois_area = (all_rois[:, :, 2] - all_rois[:, :, 0] + 1) \ * (all_rois[:, :, 3] - all_rois[:, :, 1] + 1) scale = mx.nd.sqrt(rois_area) target_lvls = mx.nd.floor(lvl0 + mx.nd.log2(scale / scale0 + 1e-6)) target_lvls = mx.nd.clip(target_lvls, k_min, k_max) target_stride = (2 ** target_lvls).astype('uint8') for i, s in enumerate(rcnn_stride): lvl_rois = mx.nd.zeros_like(all_rois) lvl_inds = mx.nd.expand_dims(target_stride == s, axis=2).astype('float32') lvl_inds = mx.nd.broadcast_like(lvl_inds, lvl_rois) lvl_rois = mx.nd.where(lvl_inds, all_rois, lvl_rois) self.assign(out_data[i], req[i], lvl_rois) def backward(self, req, out_grad, in_data, out_data, in_grad, aux): self.assign(in_grad[0], req[0], 0) @mx.operator.register('assign_layer_fpn') class AssignLayerFPNProp(mx.operator.CustomOpProp): def __init__(self, rcnn_stride, roi_canonical_scale, roi_canonical_level): super().__init__(need_top_grad=False) self.rcnn_stride = eval(rcnn_stride) self.roi_canonical_scale = int(roi_canonical_scale) self.roi_canonical_level = int(roi_canonical_level) def list_arguments(self): return ['rois'] def list_outputs(self): rois_list = ['rois_s{}'.format(s) for s in self.rcnn_stride] return rois_list def infer_shape(self, in_shape): rpn_rois_shape = in_shape[0] output_rois_shape = [rpn_rois_shape] * len(self.rcnn_stride) return [rpn_rois_shape], output_rois_shape def create_operator(self, ctx, shapes, dtypes): return AssignLayerFPNOperator(self.rcnn_stride, self.roi_canonical_scale, self.roi_canonical_level) def declare_backward_dependency(self, out_grad, in_data, out_data): return []
apache-2.0
4,098,218,341,457,388,000
34.835616
86
0.606651
false
NullRecursive/WebLanches
loja/migrations/0010_auto_20161119_2248.py
1
1216
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('loja', '0009_auto_20161117_2110'), ] operations = [ migrations.CreateModel( name='Item', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('quantidade', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Pedido', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('meus_itens', models.TextField(null=True)), ('usuario', models.ForeignKey(to='loja.Usuario')), ], ), migrations.AlterField( model_name='produto', name='imagem', field=models.ImageField(upload_to='loja/static/product_images'), ), migrations.AddField( model_name='item', name='id_produto', field=models.ForeignKey(to='loja.Produto'), ), ]
mit
-4,721,522,809,531,881,000
30.179487
114
0.536184
false
dhamaniasad/readitbetter
docs/conf.py
1
8452
#!/usr/bin/env python # -*- coding: utf-8 -*- # # readitbetter documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import readitbetter # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'readitbetter' copyright = u'2015, Asad Dhamani' # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = readitbetter.__version__ # The full version, including alpha/beta/rc tags. release = readitbetter.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'readitbetterdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'readitbetter.tex', u'readitbetter Documentation', u'Asad Dhamani', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'readitbetter', u'readitbetter Documentation', [u'Asad Dhamani'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'readitbetter', u'readitbetter Documentation', u'Asad Dhamani', 'readitbetter', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
mit
-5,454,957,879,573,766,000
29.734545
76
0.706342
false
bitcraft/pyglet
contrib/scene2d/examples/los.py
1
1819
# Lots Of Sprites """ Results (us per sprite per frame): sprites AMD64/mesa AMD64/nv6.6k MacBook Pro AMD/nv7.8k 2000 28.3 29.3 20.6 22.0 after __slots__ removal sprites AMD64/mesa AMD64/nv6.6k MacBook Pro AMD/nv7.8k 2000 """ import os import sys import random from pyglet import options options['debug_gl'] = False from pyglet.window import Window from pyglet import clock from scene2d import * from pyglet.gl import * w = Window(600, 600, vsync=False) img = Image2d.load('examples/noisy/ball.png') class BouncySprite(Sprite): dx = dy = 0 def update(self): # move, check bounds p = self.properties self.x += self.dx self.y += self.dy if self.x < 0: self.x = 0 self.dx = -self.dx elif self.right > 600: self.right = 600 self.dx = -self.dx if self.y < 0: self.y = 0 self.dy = -self.dy elif self.top > 600: self.top = 600 self.dy = -self.dy sprites = list() numsprites = int(sys.argv[1]) for i in range(numsprites): x = random.randint(0, w.width - img.width) y = random.randint(0, w.height - img.height) s = BouncySprite(x, y, img.width, img.height, img) s.dx = random.randint(-10, 10) s.dy = random.randint(-10, 10) sprites.append(s) view = FlatView.from_window(w, sprites=sprites) view.fx, view.fy = w.width / 2, w.height / 2 t = 0 numframes = 0 while 1: if w.has_exit: print('FPS:', clock.get_fps()) print('us per sprite:', float(t) / (numsprites * numframes) * 1000000) break t += clock.tick() w.dispatch_events() for s in sprites: s.update() view.clear() view.draw() w.flip() numframes += 1 w.close()
bsd-3-clause
-3,383,312,969,358,007,000
21.182927
78
0.575041
false
maltouzes/pixel-fighters-2D
change_background.py
1
1084
""" This file is a part of pixel-fighters-2D made by Maltouzes """ def change_background(self, keycode): """ Change the background """ if keycode[1] == '&': self.img_back.source = (self.path + '/background/fight-backgrounds-16.gif') self.default_y_character = 110 elif keycode[1] == '\xc3\xa9': self.img_back.source = (self.path + '/background/fight-backgrounds-07.gif') self.default_y_character = 130 elif keycode[1] == '"': self.img_back.source = (self.path + '/background/fight-backgrounds-01.gif') self.default_y_character = 40 elif keycode[1] == "'": self.img_back.source = (self.path + '/background/fight-backgrounds-04.gif') self.default_y_character = 105 elif keycode[1] == '(': self.img_back.source = (self.path + '/background/fight-backgrounds-15.gif') self.default_y_character = 135 self.restart_game()
gpl-3.0
5,851,817,295,676,720,000
40.692308
71
0.52952
false
manz/python-mapnik
test/python_tests/copy_test.py
1
2951
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, mapnik from nose.tools import * from .utilities import execution_path, run_all def setup(): # All of the paths used are relative, if we run the tests # from another directory we need to chdir() os.chdir(execution_path('.')) def test_image_16_8_simple(): im = mapnik.Image(2,2,mapnik.ImageType.gray16) im.set_pixel(0,0, 256) im.set_pixel(0,1, 999) im.set_pixel(1,0, 5) im.set_pixel(1,1, 2) im2 = im.copy(mapnik.ImageType.gray8) eq_(im2.get_pixel(0,0), 255) eq_(im2.get_pixel(0,1), 255) eq_(im2.get_pixel(1,0), 5) eq_(im2.get_pixel(1,1), 2) # Cast back! im = im2.copy(mapnik.ImageType.gray16) eq_(im.get_pixel(0,0), 255) eq_(im.get_pixel(0,1), 255) eq_(im.get_pixel(1,0), 5) eq_(im.get_pixel(1,1), 2) def test_image_32f_8_simple(): im = mapnik.Image(2,2,mapnik.ImageType.gray32f) im.set_pixel(0,0, 120.1234) im.set_pixel(0,1, -23.4) im.set_pixel(1,0, 120.6) im.set_pixel(1,1, 360.2) im2 = im.copy(mapnik.ImageType.gray8) eq_(im2.get_pixel(0,0), 120) eq_(im2.get_pixel(0,1), 0) eq_(im2.get_pixel(1,0), 120) # Notice this is truncated! eq_(im2.get_pixel(1,1), 255) def test_image_offset_and_scale(): im = mapnik.Image(2,2,mapnik.ImageType.gray16) eq_(im.offset, 0.0) eq_(im.scaling, 1.0) im.offset = 1.0 im.scaling = 2.0 eq_(im.offset, 1.0) eq_(im.scaling, 2.0) def test_image_16_8_scale_and_offset(): im = mapnik.Image(2,2,mapnik.ImageType.gray16) im.set_pixel(0,0, 256) im.set_pixel(0,1, 258) im.set_pixel(1,0, 99999) im.set_pixel(1,1, 615) offset = 255 scaling = 3 im2 = im.copy(mapnik.ImageType.gray8, offset, scaling) eq_(im2.get_pixel(0,0), 0) eq_(im2.get_pixel(0,1), 1) eq_(im2.get_pixel(1,0), 255) eq_(im2.get_pixel(1,1), 120) # pixels will be a little off due to offsets in reverting! im3 = im2.copy(mapnik.ImageType.gray16) eq_(im3.get_pixel(0,0), 255) # Rounding error with ints eq_(im3.get_pixel(0,1), 258) # same eq_(im3.get_pixel(1,0), 1020) # The other one was way out of range for our scale/offset eq_(im3.get_pixel(1,1), 615) # same def test_image_16_32f_scale_and_offset(): im = mapnik.Image(2,2,mapnik.ImageType.gray16) im.set_pixel(0,0, 256) im.set_pixel(0,1, 258) im.set_pixel(1,0, 0) im.set_pixel(1,1, 615) offset = 255 scaling = 3.2 im2 = im.copy(mapnik.ImageType.gray32f, offset, scaling) eq_(im2.get_pixel(0,0), 0.3125) eq_(im2.get_pixel(0,1), 0.9375) eq_(im2.get_pixel(1,0), -79.6875) eq_(im2.get_pixel(1,1), 112.5) im3 = im2.copy(mapnik.ImageType.gray16) eq_(im3.get_pixel(0,0), 256) eq_(im3.get_pixel(0,1), 258) eq_(im3.get_pixel(1,0), 0) eq_(im3.get_pixel(1,1), 615) if __name__ == "__main__": setup() exit(run_all(eval(x) for x in dir() if x.startswith("test_")))
lgpl-2.1
391,526,796,492,739,460
30.731183
91
0.606574
false
wdv4758h/ZipPy
mx.zippy/suite.py
1
3597
suite = { "mxversion" : "2.8.0", "name" : "zippy", "libraries" : { "JLINE09" : { "path" : "lib/jline-0.9.95-SNAPSHOT.jar", "urls" : [ "http://mirrors.ibiblio.org/maven2/jline/jline/0.9.94/jline-0.9.94.jar", ], "sha1" : "99a18e9a44834afdebc467294e1138364c207402", }, "JYTHON" : { "path" : "lib/jython-standalone-2.7-b3.jar", "urls" : [ "http://repo1.maven.org/maven2/org/python/jython-standalone/2.7-b3/jython-standalone-2.7-b3.jar", ], "sha1" : "56411f652bcf4acce8e9fb3bc7d06b4a0e926aaf", }, "JAMM" : { "path" : "lib/jamm-0.2.5.jar", "urls" : [ "http://central.maven.org/maven2/com/github/stephenc/jamm/0.2.5/jamm-0.2.5.jar", ], "sha1" : "0422d3543c01df2f1d8bd1f3064adb54fb9e93f3", }, }, "projects" : { "edu.uci.python.nodes" : { "sourceDirs" : ["src"], "dependencies" : ["edu.uci.python.runtime","com.oracle.truffle.api","com.oracle.truffle.api.dsl","JYTHON"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "annotationProcessors" : ["com.oracle.truffle.dsl.processor"], "workingSets" : "Truffle,Python", }, "edu.uci.python.parser" : { "sourceDirs" : ["src"], "dependencies" : ["edu.uci.python.nodes","edu.uci.python.profiler","edu.uci.python.builtins","JYTHON"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "workingSets" : "Truffle,Python", }, "edu.uci.python.shell" : { "sourceDirs" : ["src"], "dependencies" : ["JLINE09","edu.uci.python.nodes","edu.uci.python.profiler","edu.uci.python.runtime","edu.uci.python.parser","edu.uci.python.builtins", "JYTHON","JAVA_ALLOCATION_INSTRUMENTER"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "workingSets" : "Truffle,Python", }, "edu.uci.python.profiler" : { "sourceDirs" : ["src"], "dependencies" : ["edu.uci.python.nodes","JYTHON"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "workingSets" : "Truffle,Python", }, "edu.uci.python.builtins" : { "sourceDirs" : ["src"], "dependencies" : ["edu.uci.python.nodes","edu.uci.python.runtime","edu.uci.python.profiler","com.oracle.truffle.api","com.oracle.truffle.api.dsl","JYTHON"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "annotationProcessors" : ["com.oracle.truffle.dsl.processor"], "workingSets" : "Truffle,Python", }, "edu.uci.python.runtime" : { "sourceDirs" : ["src"], "dependencies" : ["com.oracle.truffle.api","JYTHON","ASM","JAMM"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "workingSets" : "Truffle,Python", }, "edu.uci.python.benchmark" : { "sourceDirs" : ["src"], "dependencies" : ["edu.uci.python.nodes","edu.uci.python.runtime","JUNIT"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "workingSets" : "Truffle,Python", }, "edu.uci.python.test" : { "sourceDirs" : ["src"], "dependencies" : ["edu.uci.python.nodes","edu.uci.python.runtime","edu.uci.python.shell","JUNIT"], "checkstyle" : "edu.uci.python.runtime", "javaCompliance" : "1.8", "workingSets" : "Truffle,Python", }, }, "distributions" : { "ZIPPY" : { "path" : "zippy.jar", "dependencies" : [ "edu.uci.python.shell", ], "sourcesPath" : "zippy-sources.jar", }, }, }
bsd-3-clause
-1,377,687,197,379,758,300
32
162
0.57409
false
SchwarzerWolf/KSFH
modules/base.py
1
4197
#!/usr/bin/env python """ SchwarzerWolf.cc ************************** *date = '2017-10-30' * *module_version = '0.0.4'* ************************** *********************************************************************** *[KSFH - Kraftsport und Fitness Helfer] * *Module -> './modules/base.py' * * * *Copyleft [2017] - [SchwarzerWolf.cc] * *This program is free software: you can redistribute it and/or modify * *it under the terms of the GNU General Public License as published by * *the Free Software Foundation, either version 3 of the License, or * *(at your option) any later version. * * * *This program is distributed in the hope that it will be useful, * *but WITHOUT ANY WARRANTY; without even the implied warranty of * *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * *GNU General Public License for more details. * * * *You should have received a copy of the GNU General Public License * *along with this program. If not, see <http://www.gnu.org/licenses/>.* *********************************************************************** """ # Imports # ********************************************************************** import tkinter as tk from modules.version import program_title, program_date, program_version # ********************************************************************** class Base(tk.Frame): def __init__(self, nb): tk.Frame.__init__(self, master=nb) # Pics :-) self.pic_swolf = tk.PhotoImage( file='./propaganda/schwarzerwolf_header.png') self.pic_deb = tk.PhotoImage( file='./propaganda/debian_100.png') self.pic_tux = tk.PhotoImage( file='./propaganda/tux_153.png') self.pic_python = tk.PhotoImage( file='./propaganda/python-powered_130.png') # Center text self.grid_columnconfigure(0, weight=1) self.configure(background='#000000') # Modules self.gui() def gui(self): """ Starts all gui methods. :return: """ self.gui_main() self.gui_propaganda() def gui_main(self): """ The main gui. Contains everything that is not in a frame (except the frames themselves). :return: """ title = tk.Label(master=self, text=program_title, font=('Helvetica', 18), bg='#000000', fg='#ffffff', pady=15) proginfo = tk.Label(master=self, font=('Helvetica', 11), bg='#000000', fg='#ffffff', text='Version: {version}\n{date}'.format( version=program_version, date=program_date)) schwarzerwolf = tk.Label(master=self, bg='#000000', image=self.pic_swolf) title.grid(row=0) proginfo.grid(row=1) schwarzerwolf.grid(row=2) def gui_propaganda(self): """ Displays the images. """ frame_one = tk.Frame(master=self, bg='#000000') debian = tk.Label(master=frame_one, bg='#000000', image=self.pic_deb) tux = tk.Label(master=frame_one, bg='#000000', image=self.pic_tux) python = tk.Label(master=frame_one, bg='#000000', image=self.pic_python) # Grids frame_one.grid(row=3) debian.grid(row=4, sticky=tk.W) tux.grid(row=4, padx=250) python.grid(row=4, sticky=tk.E)
gpl-3.0
-7,002,189,345,975,905,000
33.121951
72
0.432452
false
Philips14171/qt-creator-opensource-src-4.2.1
share/qtcreator/debugger/creatortypes.py
1
8306
############################################################################ # # Copyright (C) 2016 The Qt Company Ltd. # Contact: https://www.qt.io/licensing/ # # This file is part of Qt Creator. # # Commercial License Usage # Licensees holding valid commercial Qt licenses may use this file in # accordance with the commercial license agreement provided with the # Software or, alternatively, in accordance with the terms contained in # a written agreement between you and The Qt Company. For licensing terms # and conditions see https://www.qt.io/terms-conditions. For further # information use the contact form at https://www.qt.io/contact-us. # # GNU General Public License Usage # Alternatively, this file may be used under the terms of the GNU # General Public License version 3 as published by the Free Software # Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT # included in the packaging of this file. Please review the following # information to ensure the GNU General Public License requirements will # be met: https://www.gnu.org/licenses/gpl-3.0.html. # ############################################################################ from dumper import * def stripTypeName(value): type = value.type try: type = type.target() except: pass return str(type.unqualified()) def extractPointerType(d, value): postfix = "" while stripTypeName(value) == "CPlusPlus::PointerType": postfix += "*" value = d.downcast(value["_elementType"]["_type"]) try: return readLiteral(d, value["_name"]) + postfix except: typeName = str(value.type.unqualified().target()) if typeName == "CPlusPlus::IntegerType": return "int" + postfix elif typeName == "CPlusPlus::VoidType": return "void" + postfix return "<unsupported>" def readTemplateName(d, value): name = readLiteral(d, value["_identifier"]) + "<" args = value["_templateArguments"] impl = args["_M_impl"] start = impl["_M_start"] size = impl["_M_finish"] - start try: d.check(0 <= size and size <= 100) d.checkPointer(start) for i in range(int(size)): if i > 0: name += ", " name += extractPointerType(d, d.downcast(start[i]["_type"])) except: return "<not accessible>" name += ">" return name def readLiteral(d, value): if d.isNull(value): return "<null>" value = d.downcast(value) type = value.type.unqualified() try: type = type.target() except: pass typestr = str(type) if typestr == "CPlusPlus::TemplateNameId": return readTemplateName(d, value) elif typestr == "CPlusPlus::QualifiedNameId": return readLiteral(d, value["_base"]) + "::" + readLiteral(d, value["_name"]) try: return d.extractBlob(value["_chars"], value["_size"]).toString() except: return "<unsupported>" def dumpLiteral(d, value): d.putValue(d.hexencode(readLiteral(d, value)), "latin1") def qdump__Core__Id(d, value): val = value.extractPointer() try: name = d.parseAndEvaluate("Core::nameForId(0x%x)" % val) d.putSimpleCharArray(name.pointer()) except: d.putValue(val) d.putPlainChildren(value) def qdump__Debugger__Internal__GdbMi(d, value): val = d.encodeString(value["m_name"]) + "3a002000" \ + d.encodeString(value["m_data"]) d.putValue(val, "utf16") d.putPlainChildren(value) def qdump__Debugger__Internal__DisassemblerLine(d, value): d.putByteArrayValue(value["m_data"]) d.putPlainChildren(value) def qdump__Debugger__Internal__WatchData(d, value): d.putStringValue(value["iname"]) d.putPlainChildren(value) def qdump__Debugger__Internal__WatchItem(d, value): d.putStringValue(value["iname"]) d.putPlainChildren(value) def qdump__Debugger__Internal__BreakpointModelId(d, value): d.putValue("%s.%s" % (int(value["m_majorPart"]), int(value["m_minorPart"]))) d.putPlainChildren(value) def qdump__Debugger__Internal__ThreadId(d, value): d.putValue("%s" % value["m_id"]) d.putPlainChildren(value) def qdump__CPlusPlus__ByteArrayRef(d, value): d.putSimpleCharArray(value["m_start"], value["m_length"]) d.putPlainChildren(value) def qdump__CPlusPlus__Identifier(d, value): d.putSimpleCharArray(value["_chars"], value["_size"]) d.putPlainChildren(value) def qdump__CPlusPlus__Symbol(d, value): dumpLiteral(d, value["_name"]) d.putBetterType(value.type) d.putPlainChildren(value) def qdump__CPlusPlus__Class(d, value): qdump__CPlusPlus__Symbol(d, value) def qdump__CPlusPlus__IntegerType(d, value): d.putValue(value["_kind"]) d.putPlainChildren(value) def qdump__CPlusPlus__FullySpecifiedType(d, value): type = d.downcast(value["_type"]) typeName = stripTypeName(type) if typeName == "CPlusPlus::NamedType": dumpLiteral(d, type["_name"]) elif typeName == "CPlusPlus::PointerType": d.putValue(d.hexencode(extractPointerType(d, type)), "latin1") d.putPlainChildren(value) def qdump__CPlusPlus__NamedType(d, value): dumpLiteral(d, value["_name"]) d.putBetterType(value.type) d.putPlainChildren(value) def qdump__CPlusPlus__PointerType(d, value): d.putValue(d.hexencode(extractPointerType(d, value)), "latin1") d.putPlainChildren(value) def qdump__CPlusPlus__TemplateNameId(d, value): dumpLiteral(d, value) d.putBetterType(value.type) d.putPlainChildren(value) def qdump__CPlusPlus__QualifiedNameId(d, value): dumpLiteral(d, value) d.putPlainChildren(value) def qdump__CPlusPlus__Literal(d, value): dumpLiteral(d, value) d.putPlainChildren(value) def qdump__CPlusPlus__StringLiteral(d, value): d.putSimpleCharArray(value["_chars"], value["_size"]) d.putPlainChildren(value) def qdump__CPlusPlus__Internal__Value(d, value): d.putValue(value["l"]) d.putPlainChildren(value) def qdump__Utils__FileName(d, value): d.putStringValue(value) d.putPlainChildren(value) def qdump__Utils__ElfSection(d, value): d.putByteArrayValue(value["name"]) d.putPlainChildren(value) def qdump__CPlusPlus__Token(d, value): k = value["f"]["kind"] e = int(k) type = str(k.cast(d.lookupType("CPlusPlus::Kind")))[11:] # Strip "CPlusPlus::" try: if e == 6: type = readLiteral(d, value["identifier"]) + " (%s)" % type elif e >= 7 and e <= 23: type = readLiteral(d, value["literal"]) + " (%s)" % type except: pass d.putValue(type) d.putPlainChildren(value) def qdump__CPlusPlus__Internal__PPToken(d, value): data, size, alloc = d.byteArrayData(value["m_src"]) length = int(value["f"]["utf16chars"]) offset = int(value["utf16charOffset"]) #warn("size: %s, alloc: %s, offset: %s, length: %s, data: %s" # % (size, alloc, offset, length, data)) d.putValue(d.readMemory(data + offset, min(100, length)), "latin1") d.putPlainChildren(value) def qdump__ProString(d, value): try: s = value["m_string"] data, size, alloc = d.stringData(s) data += 2 * int(value["m_offset"]) size = int(value["m_length"]) s = d.readMemory(data, 2 * size) d.putValue(s, "utf16") except: d.putEmptyValue() d.putPlainChildren(value) def qdump__ProKey(d, value): qdump__ProString(d, value) d.putBetterType(value.type) def qdump__Core__GeneratedFile(d, value): d.putStringValue(value["m_d"]["d"]["path"]) d.putPlainChildren(value) def qdump__ProjectExplorer__Node(d, value): d.putStringValue(value["m_filePath"]) d.putPlainChildren(value) def qdump__ProjectExplorer__FolderNode(d, value): d.putStringValue(value["m_displayName"]) d.putPlainChildren(value) def qdump__ProjectExplorer__ProjectNode(d, value): qdump__ProjectExplorer__FolderNode(d, value) def qdump__CMakeProjectManager__Internal__CMakeProjectNode(d, value): qdump__ProjectExplorer__FolderNode(d, value) def qdump__QmakeProjectManager__QmakePriFileNode(d, value): qdump__ProjectExplorer__FolderNode(d, value) def qdump__QmakeProjectManager__QmakeProFileNode(d, value): qdump__ProjectExplorer__FolderNode(d, value)
gpl-3.0
-1,459,053,719,158,352,600
31.700787
85
0.646641
false
hongquan/saleor
saleor/userprofile/models.py
1
6670
from __future__ import unicode_literals import re from django.contrib.auth.hashers import (check_password, make_password, is_password_usable) from django.contrib.auth.models import BaseUserManager, PermissionsMixin from django.db import models from django.forms.models import model_to_dict from django.utils import timezone from django.utils.encoding import python_2_unicode_compatible from django.utils.safestring import mark_safe from django.utils.translation import pgettext_lazy from unidecode import unidecode from ..core.countries import COUNTRY_CHOICES class AddressManager(models.Manager): def as_data(self, address): return model_to_dict(address, exclude=['id', 'user']) def are_identical(self, addr1, addr2): data1 = self.as_data(addr1) data2 = self.as_data(addr2) return data1 == data2 def store_address(self, user, address): data = self.as_data(address) address, created = user.addresses.get_or_create(**data) return address @python_2_unicode_compatible class Address(models.Model): first_name = models.CharField( pgettext_lazy('Address field', 'first name'), max_length=256) last_name = models.CharField( pgettext_lazy('Address field', 'last name'), max_length=256) company_name = models.CharField( pgettext_lazy('Address field', 'company name'), max_length=256, blank=True) street_address_1 = models.CharField( pgettext_lazy('Address field', 'street address 1'), max_length=256) street_address_2 = models.CharField( pgettext_lazy('Address field', 'street address 2'), max_length=256, blank=True) city = models.CharField( pgettext_lazy('Address field', 'city'), max_length=256) postal_code = models.CharField( pgettext_lazy('Address field', 'postal code'), max_length=20) country = models.CharField( pgettext_lazy('Address field', 'country'), choices=COUNTRY_CHOICES, max_length=2) country_area = models.CharField( pgettext_lazy('Address field', 'country administrative area'), max_length=128, blank=True) phone = models.CharField( pgettext_lazy('Address field', 'phone number'), max_length=30, blank=True) objects = AddressManager() def __str__(self): return '%s %s' % (self.first_name, self.last_name) def __repr__(self): return ( 'Address(first_name=%r, last_name=%r, company_name=%r, ' 'street_address_1=%r, street_address_2=%r, city=%r, ' 'postal_code=%r, country=%r, country_area=%r, phone=%r)' % ( self.first_name, self.last_name, self.company_name, self.street_address_1, self.street_address_2, self.city, self.postal_code, self.country, self.country_area, self.phone)) class UserManager(BaseUserManager): def get_or_create(self, **kwargs): defaults = kwargs.pop('defaults', {}) try: return self.get_query_set().get(**kwargs), False except self.model.DoesNotExist: defaults.update(kwargs) return self.create_user(**defaults), True def create_user(self, email, password=None, is_staff=False, is_active=True, **extra_fields): 'Creates a User with the given username, email and password' email = UserManager.normalize_email(email) user = self.model(email=email, is_active=is_active, is_staff=is_staff, **extra_fields) if password: user.set_password(password) user.save() return user def create_superuser(self, email, password=None, **extra_fields): return self.create_user(email, password, is_staff=True, is_superuser=True, **extra_fields) def store_address(self, user, address, billing=False, shipping=False): entry = Address.objects.store_address(user, address) changed = False if billing and not user.default_billing_address_id: user.default_billing_address = entry changed = True if shipping and not user.default_shipping_address_id: user.default_shipping_address = entry changed = True if changed: user.save() @python_2_unicode_compatible class User(PermissionsMixin, models.Model): email = models.EmailField(unique=True) addresses = models.ManyToManyField(Address) is_staff = models.BooleanField( pgettext_lazy('User field', 'staff status'), default=False) is_active = models.BooleanField( pgettext_lazy('User field', 'active'), default=False) password = models.CharField( pgettext_lazy('User field', 'password'), max_length=128, editable=False) date_joined = models.DateTimeField( pgettext_lazy('User field', 'date joined'), default=timezone.now, editable=False) last_login = models.DateTimeField( pgettext_lazy('User field', 'last login'), default=timezone.now, editable=False) default_shipping_address = models.ForeignKey( Address, related_name='+', null=True, blank=True, on_delete=models.SET_NULL, verbose_name=pgettext_lazy('User field', 'default shipping address')) default_billing_address = models.ForeignKey( Address, related_name='+', null=True, blank=True, on_delete=models.SET_NULL, verbose_name=pgettext_lazy('User field', 'default billing address')) USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] objects = UserManager() def __str__(self): return self.get_username() def natural_key(self): return (self.get_username(),) def get_full_name(self): return self.email def get_short_name(self): return self.email def get_username(self): 'Return the identifying username for this User' return self.email def is_anonymous(self): return False def is_authenticated(self): return True def set_password(self, raw_password): self.password = make_password(raw_password) def check_password(self, raw_password): def setter(raw_password): self.set_password(raw_password) self.save(update_fields=['password']) return check_password(raw_password, self.password, setter) def set_unusable_password(self): self.password = make_password(None) def has_usable_password(self): return is_password_usable(self.password)
bsd-3-clause
2,852,591,300,496,579,600
34.105263
77
0.634183
false
jasonmule/arbtt-swag-reporter
arbtt2xapi.py
1
2536
#!/usr/bin/env python from __future__ import print_function import os from config import lrs, activity_map from arbtt_record import ArbttRecord from tincan import ( RemoteLRS, Statement, Agent, Verb, Activity, ActivityDefinition, Extensions, Context, LanguageMap, ) def create_statement(arbtt_csv_entry): """Creates a Tincan statement from arbtt csv input""" arbtt_record = ArbttRecord(arbtt_csv_entry) app = arbtt_record.application duration = arbtt_record.duration # XXX: Look for a cleaner way to get user details user = os.environ['LOGNAME'] email_address = "%[email protected]" % (user,) actor = Agent( name=user, mbox='mailto:'+email_address, ) verb = Verb( id='http://adlnet.gov/expapi/verbs/interacted', display=LanguageMap({'en-US': 'interacted'}), ) # Get activity from config or set the activity as 'unknown' activity_from_map = activity_map.get(app, "unknown") object = Activity( id=os.path.join(lrs['activities_uri'], activity_from_map), definition=ActivityDefinition( name=LanguageMap({'en-US': activity_from_map}), extensions=Extensions( {'http://id.tincanapi.com/extension/duration': duration}, ), ), ) context = Context( platform=app ) # Construct the statement return Statement( actor=actor, verb=verb, object=object, context=context, ) if __name__ == '__main__': import fileinput import sys csv_entries = (l.strip() for l in fileinput.input()) remote_lrs = RemoteLRS( endpoint=lrs['endpoint'], # RemoteLRS uses HTTP Basic Auth # so username, password will be sent out # with the authorization header. username=lrs['username'], password=lrs['password'], ) for csv_entry in csv_entries: try: statement = create_statement(csv_entry) except ValueError, e: # ignore invalid entries print("Failed to create statement for %s with the error: %s" % (csv_entry, e), file=sys.stderr) continue # XXX: Look out for response == None # and possibly add the statement to a retry queue response = remote_lrs.save_statement(statement) if not response.success: print("Failed to save statement for %s" % (csv_entry,))
mit
-238,710,388,698,091,500
24.616162
73
0.594243
false
mbuhot/mbuhot-euler-solutions
python/problem-098.py
1
2320
#! /usr/bin/env python3 from collections import defaultdict from itertools import combinations, permutations, count from math import sqrt description = ''' Anagramic squares Problem 98 By replacing each of the letters in the word CARE with 1, 2, 9, and 6 respectively, we form a square number: 1296 = 362. What is remarkable is that, by using the same digital substitutions, the anagram, RACE, also forms a square number: 9216 = 962. We shall call CARE (and RACE) a square anagram word pair and specify further that leading zeroes are not permitted, neither may a different letter have the same digital value as another letter. Using words.txt (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand common English words, find all the square anagram word pairs (a palindromic word is NOT considered to be an anagram of itself). What is the largest square number formed by any member of such a pair? NOTE: All anagrams formed must be contained in the given text file. ''' def encodes(encoding, word, expected): return all(encoding[c] == expected[i] for (i,c) in enumerate(word)) def squares(n): for i in count(1): sqstr = str(i*i) if len(sqstr) < n: continue elif len(sqstr) > n: break else: yield sqstr def squareEncodings(letters, word1, word2): for sq1str in squares(len(word1)): c2d = dict(zip(word1, sq1str)) d2c = dict(zip(sq1str, word1)) if not encodes(c2d, word1, sq1str): continue if not encodes(d2c, sq1str, word1): continue for sq2str in squares(len(word1)): if encodes(c2d, word2, sq2str): yield (c2d, int(sq1str), int(sq2str)) def squareAnagrams(anagrams): for (letters, wordset) in anagrams.items(): print(wordset) for (word1, word2) in combinations(wordset, 2): for (encoding, n1, n2) in squareEncodings(letters, word1, word2): yield(word1, word2, encoding, n1, n2) def readAnagrams(): with open('words-98.txt', 'r') as f: words = [w[1:-1] for w in f.read().split(',')] anagrams = defaultdict(set) for word in words: key = ''.join(sorted(word)) anagrams[key].add(word) return dict((k,v) for (k,v) in anagrams.items() if len(v) > 1) anagrams = readAnagrams() results = squareAnagrams(anagrams) print(max(results, key=lambda x: max(x[3], x[4])))
mit
7,893,644,826,818,010,000
38.322034
442
0.701293
false
manpen/thrill
frontends/swig_python/python_rpyc.py
4
1113
#!/usr/bin/env python ########################################################################## # frontends/swig_python/python_rpyc.py # # Part of Project Thrill - http://project-thrill.org # # Copyright (C) 2015 Timo Bingmann <[email protected]> # # All rights reserved. Published under the BSD-2 license in the LICENSE file. ########################################################################## from RemoteThrill import * # rt = RemoteThrill([["localhost", 18861]], ["localhost:1234"]) rt = RemoteThrill([["localhost", 18861], ["localhost", 18862]], ["localhost:1234", "localhost:1235"]) def genfunc(x): print("gen", x) return int(x + 10) dia1 = rt.Generate(genfunc, 16) print(dia1.AllGather()) dia2 = rt.Distribute(range(1, 100)) print("dia2.AllGather", dia2.AllGather()) print("dia2.Size", dia2.Size()) dia2pairs = dia2.Map(lambda x: [x, x]) dia3 = dia2pairs.ReduceBy(lambda x: (x[0] % 10), lambda x, y: (x[0], x[1] + y[1])) print("dia3.AllGather", dia3.AllGather()) ##########################################################################
bsd-2-clause
218,308,223,493,588,000
28.289474
77
0.510332
false
gentimouton/swarch
pubsub-events/gamemanager.py
1
4172
""" Node connecting to the broker like a normal player, except it stores an up-to-date game state by subscribing to all in-game events, and it runs the whole game with its own tick. """ from __future__ import division # So to make division be float instead of int from network import poll_for, Handler from random import randint import time ##################### game logic ############# TICK_DURATION = 0.05 # seconds # game state borders = [[0, 0, 2, 300], [0, 0, 400, 2], [398, 0, 2, 300], [0, 298, 400, 2]] pellets = [[randint(10, 390), randint(10, 290), 5, 5] for _ in range(4)] players = {} # map a player name to a player object # map inputs received from clients to directions input_dir = {'up': [0, -1], 'down': [0, 1], 'left': [-1, 0], 'right': [1, 0]} class Player: def __init__(self, name): self.name = name self.revive() def revive(self): self.box = [randint(10, 380), randint(10, 280), 10, 10] self.dir = input_dir['down'] # original direction: downwards self.speed = 2 def change_dir(self, inputt): self.dir = input_dir[inputt] def move(self): self.box[0] += self.dir[0] * self.speed self.box[1] += self.dir[1] * self.speed def grow_and_slow(self, qty=2): self.box[2] += qty self.box[3] += qty self.speed -= self.speed / 6 def collide_borders(self): [self.revive() for border in borders if collide_boxes(self.box, border)] def collide_other_players(self): for p in players.values(): # only the player with lowest id of the pair detects the collision if self.name < p.name and collide_boxes(self.box, p.box): playerw, pw = self.box[2], p.box[2] # widths if playerw > pw: self.grow_and_slow(pw) p.revive() elif playerw < pw: p.grow_and_slow(playerw) self.revive() else: # they have same width: kill both p.revive() self.revive() def collide_pellets(self): for index, pellet in enumerate(pellets): if collide_boxes(self.box, pellet): self.grow_and_slow() pellets[index] = [randint(10, 390), randint(10, 290), 5, 5] def update(self): self.move() self.collide_borders() self.collide_other_players() self.collide_pellets() def collide_boxes(box1, box2): x1, y1, w1, h1 = box1 x2, y2, w2, h2 = box2 return x1 < x2 + w2 and y1 < y2 + h2 and x2 < x1 + w1 and y2 < y1 + h1 ################### network ############## event_queue = [] # list of events # events can be class GameManager(Handler): def on_open(self): self.do_send(('_sub', 'join')) self.do_send(('_sub', 'change_dir')) def on_msg(self, data): mtype, mdata = data event_queue.append((mtype, mdata)) gm = GameManager('localhost', 8888) # connect asynchronously, as a node ######################### loop ####################### def apply_events(): # apply events onto game state global event_queue for mtype, mdata in event_queue: if mtype == 'join' and mdata not in players: # players should provide a unique name to identify themselves players[mdata] = Player(mdata) elif mtype == 'change_dir': pname, dir = mdata players[pname].change_dir(dir) event_queue = [] def update_simulation(): [player.update() for player in players.values()] def publish_state(): # Send the whole game state serialized_players = {p.name: p.box for p in players.values()} state = {'borders': borders, 'pellets': pellets, 'players': serialized_players} gm.do_send(('state', state)) while 1: loop_start = time.time() apply_events() update_simulation() publish_state() poll_for(TICK_DURATION - (time.time() - loop_start)) # poll until tick is over
mit
6,486,540,832,240,276,000
30.847328
83
0.546021
false
elvandy/nltools
nltools/tests/test_analysis.py
1
1328
from __future__ import division import os import nibabel as nb import pandas as pd from nltools.simulator import Simulator from nltools.analysis import Roc from nltools.data import Brain_Data import matplotlib matplotlib.use('TkAgg') def test_roc(tmpdir): sim = Simulator() r = 10 sigma = .1 y = [0, 1] n_reps = 10 # output_dir = str(tmpdir) dat = sim.create_data(y, sigma, reps=n_reps, output_dir=None) # dat = Brain_Data(data=sim.data, Y=sim.y) algorithm = 'svm' # output_dir = str(tmpdir) # cv = {'type': 'kfolds', 'n_folds': 5, 'subject_id': sim.rep_id} extra = {'kernel': 'linear'} output = dat.predict(algorithm='svm', plot=False, **extra) # Single-Interval roc = Roc(input_values=output['yfit_all'], binary_outcome=output['Y'] == 1) roc.calculate() roc.summary() assert roc.accuracy == 1 # Forced Choice binary_outcome = output['Y'] == 1 forced_choice = list(range(int(len(binary_outcome)/2))) + list(range(int(len(binary_outcome)/2))) forced_choice = forced_choice.sort() roc_fc = Roc(input_values=output['yfit_all'], binary_outcome=binary_outcome, forced_choice=forced_choice) roc_fc.calculate() assert roc_fc.accuracy == 1 assert roc_fc.accuracy == roc_fc.auc == roc_fc.sensitivity == roc_fc.specificity
mit
3,994,434,864,774,681,000
30.619048
109
0.651355
false
andremilke/utility
bruteforcehttppostuser.py
1
2616
import requests import datetime import sys class BruteForceService(object): def __init__(self, _listpass, _url, _user, _quote): self._listpass = _listpass self._url = _url self._user = _user self._quote = _quote def bruteForce(self): fpass = open(_listpass, encoding="utf8", errors='ignore') #try: # with requests.Session() as s: # gettoken = s.get(_url,timeout = 3) #gottoken = gettoken.content.split('name="token"')[1].split('"')[1] # print(gettoken.content) #except requests.exceptions.RequestException as e: # print('exception caught', e) headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:65.0) Gecko/20100101 Firefox/65.0', 'Accept-Language': 'pt-BR,pt;q=0.8,en-US;q=0.5,en;q=0.3', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Content-Type': 'application/x-www-form-urlencoded', 'Cache-Control': 'no-cache', 'Connection': 'Keep-Alive'} start = datetime.datetime.now() for line in fpass: try: passw = line.rstrip("\n") print("Trying.. %s" % (passw)) with requests.Session() as s: _post_data = data = {'password': passw,'login': _user} _post_response = s.post(url=_url, data=_post_data, headers=headers) result = _post_response.text if _quote not in result: end = datetime.datetime.now() totaltime = end - start time = int(totaltime.total_seconds() / 60) print("[+] Password founded %s" % (passw)) print("[+} Duration (minutes): %s" % (time)) #print(result) break _post_response.close() except requests.exceptions.RequestException as e: print('exception caught', e) if __name__ == "__main__": if len(sys.argv) == 5: _listpass = sys.argv[1] _url = sys.argv[2] _user = sys.argv[3] _quote = sys.argv[4] brutehttp = BruteForceService(_listpass, _url, _user, _quote) brutehttp.bruteForce() else: print("It is necessary to inform: password list, url, user and invalid quote")
gpl-3.0
9,022,212,661,332,924,000
40.885246
172
0.487003
false
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/openmdao.lib-0.13.0-py2.7.egg/openmdao/lib/drivers/test/test_newton.py
1
17894
""" Test the Newton solver """ import unittest import numpy # pylint: disable=F0401,E0611 from openmdao.lib.drivers.newton_solver import NewtonSolver from openmdao.lib.optproblems.scalable import Discipline from openmdao.lib.optproblems.sellar import Discipline1_WithDerivatives, \ Discipline2_WithDerivatives, \ Discipline1, Discipline2 from openmdao.main.api import Assembly, Component, set_as_top, Driver from openmdao.main.hasparameters import HasParameters from openmdao.main.interfaces import IHasParameters, implements from openmdao.main.test.simpledriver import SimpleDriver from openmdao.main.datatypes.api import Float from openmdao.test.execcomp import ExecComp, ExecCompWithDerivatives from openmdao.util.testutil import assert_rel_error from openmdao.util.decorators import add_delegate class Sellar_MDA(Assembly): def configure(self): self.add('d1', Discipline1_WithDerivatives()) self.d1.x1 = 1.0 self.d1.y1 = 1.0 self.d1.y2 = 1.0 self.d1.z1 = 5.0 self.d1.z2 = 2.0 self.add('d2', Discipline2_WithDerivatives()) self.d2.y1 = 1.0 self.d2.y2 = 1.0 self.d2.z1 = 5.0 self.d2.z2 = 2.0 self.connect('d1.y1', 'd2.y1') #self.connect('d2.y2', 'd1.y2') self.add('driver', NewtonSolver()) self.driver.workflow.add(['d1', 'd2']) self.driver.add_parameter('d1.y2', low=-1e99, high=1e99) self.driver.add_constraint('d1.y2 = d2.y2') class Sellar_MDA_subbed(Assembly): def configure(self): self.add('d1', Discipline1_WithDerivatives()) self.d1.x1 = 1.0 self.d1.y1 = 1.0 self.d1.y2 = 1.0 self.d1.z1 = 5.0 self.d1.z2 = 2.0 self.add('d2', Discipline2_WithDerivatives()) self.d2.y1 = 1.0 self.d2.y2 = 1.0 self.d2.z1 = 5.0 self.d2.z2 = 2.0 self.connect('d1.y1', 'd2.y1') #self.connect('d2.y2', 'd1.y2') self.add('subdriver', NewtonSolver()) self.driver.workflow.add(['subdriver']) self.subdriver.workflow.add(['d1', 'd2']) self.driver.add_parameter('d1.y2', low=-1e99, high=1e99) self.driver.add_constraint('d1.y2 = d2.y2') class Sellar_MDA_Mixed(Assembly): def configure(self): self.add('d1', Discipline1()) self.d1.x1 = 1.0 self.d1.y1 = 1.0 self.d1.y2 = 1.0 self.d1.z1 = 5.0 self.d1.z2 = 2.0 self.add('d2', Discipline2_WithDerivatives()) self.d2.y1 = 1.0 self.d2.y2 = 1.0 self.d2.z1 = 5.0 self.d2.z2 = 2.0 self.connect('d1.y1', 'd2.y1') #self.connect('d2.y2', 'd1.y2') self.add('driver', NewtonSolver()) self.driver.workflow.add(['d1', 'd2']) self.driver.add_parameter('d1.y2', low=-1e99, high=1e99) self.driver.add_constraint('d1.y2 = d2.y2') class Sellar_MDA_Mixed_Flipped(Assembly): def configure(self): self.add('d1', Discipline1_WithDerivatives()) self.d1.x1 = 1.0 self.d1.y1 = 1.0 self.d1.y2 = 1.0 self.d1.z1 = 5.0 self.d1.z2 = 2.0 self.add('d2', Discipline2()) self.d2.y1 = 1.0 self.d2.y2 = 1.0 self.d2.z1 = 5.0 self.d2.z2 = 2.0 self.connect('d1.y1', 'd2.y1') #self.connect('d2.y2', 'd1.y2') self.add('driver', NewtonSolver()) self.driver.workflow.add(['d1', 'd2']) self.driver.add_parameter('d1.y2', low=-1e99, high=1e99) self.driver.add_constraint('d1.y2 = d2.y2') class Sellar_MDA_None(Assembly): def configure(self): self.add('d1', Discipline1()) self.d1.x1 = 1.0 self.d1.y1 = 1.0 self.d1.y2 = 1.0 self.d1.z1 = 5.0 self.d1.z2 = 2.0 self.add('d2', Discipline2()) self.d2.y1 = 1.0 self.d2.y2 = 1.0 self.d2.z1 = 5.0 self.d2.z2 = 2.0 self.connect('d1.y1', 'd2.y1') #self.connect('d2.y2', 'd1.y2') self.add('driver', NewtonSolver()) self.driver.workflow.add(['d1', 'd2']) self.driver.add_parameter('d1.y2', low=-1e99, high=1e99) self.driver.add_constraint('d1.y2 = d2.y2') class Scalable_MDA(Assembly): def configure(self): self.add('d1', Discipline(prob_size=2)) self.add('d2', Discipline(prob_size=2)) self.connect('d1.y_out', 'd2.y_in') #self.connect('d2.y_out', 'd1.y_in') self.add('driver', NewtonSolver()) self.driver.workflow.add(['d1', 'd2']) self.driver.add_parameter('d1.y_in', low=-1e99, high=1e99) self.driver.add_constraint('d2.y_out = d1.y_in') ##self.driver.add_constraint('d1.y_in = d2.y_out') class Newton_SolverTestCase(unittest.TestCase): """test the Newton Solver component""" def setUp(self): self.top = set_as_top(Sellar_MDA()) def tearDown(self): self.top = None def test_newton(self): print self.top.d1.y1, self.top.d2.y1, self.top.d1.y2, self.top.d2.y2 self.top.run() print self.top.d1.y1, self.top.d2.y1, self.top.d1.y2, self.top.d2.y2 assert_rel_error(self, self.top.d1.y1, self.top.d2.y1, 1.0e-4) assert_rel_error(self, self.top.d1.y2, self.top.d2.y2, 1.0e-4) def test_newton_flip_constraint(self): self.top.driver.clear_constraints() self.top.driver.add_constraint('d2.y2 = d1.y2') self.top.run() assert_rel_error(self, self.top.d1.y1, self.top.d2.y1, 1.0e-4) assert_rel_error(self, self.top.d1.y2, self.top.d2.y2, 1.0e-4) def test_newton_mixed(self): self.top = set_as_top(Sellar_MDA_Mixed()) self.top.run() assert_rel_error(self, self.top.d1.y1, self.top.d2.y1, 1.0e-4) assert_rel_error(self, self.top.d1.y2, self.top.d2.y2, 1.0e-4) def test_newton_mixed_flipped(self): self.top = set_as_top(Sellar_MDA_Mixed_Flipped()) self.top.run() assert_rel_error(self, self.top.d1.y1, self.top.d2.y1, 1.0e-4) assert_rel_error(self, self.top.d1.y2, self.top.d2.y2, 1.0e-4) def test_newton_none(self): self.top = set_as_top(Sellar_MDA_None()) self.top.run() assert_rel_error(self, self.top.d1.y1, self.top.d2.y1, 1.0e-4) assert_rel_error(self, self.top.d1.y2, self.top.d2.y2, 1.0e-4) def test_scalable_newton(self): # This verifies that it works for arrays self.top = set_as_top(Scalable_MDA()) self.top.d1.x = self.top.d2.x = numpy.array([[3.0], [-1.5]]) self.top.d1.z = self.top.d2.z = numpy.array([[-1.3], [2.45]]) self.top.d1.C_y = numpy.array([[1.1, 1.3], [1.05, 1.13]]) self.top.d2.C_y = numpy.array([[0.95, 0.98], [0.97, 0.95]]) self.top.run() assert_rel_error(self, self.top.d1.y_out[0], self.top.d2.y_in[0], 1.0e-4) assert_rel_error(self, self.top.d1.y_out[1], self.top.d2.y_in[1], 1.0e-4) assert_rel_error(self, self.top.d2.y_out[0], self.top.d1.y_in[0], 1.0e-4) assert_rel_error(self, self.top.d2.y_out[1], self.top.d1.y_in[1], 1.0e-4) def test_general_solver(self): a = set_as_top(Assembly()) comp = a.add('comp', ExecComp(exprs=["f=a * x**n + b * x - c"])) comp.n = 77.0/27.0 comp.a = 1.0 comp.b = 1.0 comp.c = 10.0 comp.x = 0.0 driver = a.add('driver', NewtonSolver()) driver.workflow.add('comp') driver.add_parameter('comp.x', 0, 100) driver.add_constraint('comp.f=0') self.top.driver.gradient_options.fd_step = 0.01 self.top.driver.gradient_options.fd_step_type = 'relative' a.run() assert_rel_error(self, a.comp.x, 2.06720359226, .0001) assert_rel_error(self, a.comp.f, 0, .0001) # The following test generates warnings due to nans and infs in u and df # vectors in the newton backtracking. The test doesn't actually check # anything except apparently that we don't raise an exception, so it's # not really a good test. #def test_initial_run(self): #class MyComp(Component): #x = Float(0.0, iotype='in') #xx = Float(0.0, iotype='in', low=-100000, high=100000) #f_x = Float(iotype='out') #y = Float(iotype='out') #def execute(self): #if self.xx != 1.0: #self.raise_exception("Lazy", RuntimeError) #self.f_x = 2.0*self.x #self.y = self.x #@add_delegate(HasParameters) #class SpecialDriver(Driver): #implements(IHasParameters) #def execute(self): #self.set_parameters([1.0]) #top = set_as_top(Assembly()) #top.add('comp', MyComp()) #top.add('driver', NewtonSolver()) #top.add('subdriver', SpecialDriver()) #top.driver.workflow.add('subdriver') #top.subdriver.workflow.add('comp') #top.subdriver.add_parameter('comp.xx') #top.driver.add_parameter('comp.x') #top.driver.add_constraint('comp.y = 1.0') #top.driver.max_iteration = 2 #top.run() def test_newton_nested(self): # Make sure derivatives across the newton-solved system are correct. top = set_as_top(Assembly()) top.add('driver', SimpleDriver()) top.add('d1', Discipline1_WithDerivatives()) top.d1.x1 = 1.0 top.d1.y1 = 1.0 top.d1.y2 = 1.0 top.d1.z1 = 5.0 top.d1.z2 = 2.0 top.add('d2', Discipline2_WithDerivatives()) top.d2.y1 = 1.0 top.d2.y2 = 1.0 top.d2.z1 = 5.0 top.d2.z2 = 2.0 top.connect('d1.y1', 'd2.y1') top.add('solver', NewtonSolver()) top.solver.atol = 1e-9 top.solver.workflow.add(['d1', 'd2']) top.solver.add_parameter('d1.y2', low=-1e99, high=1e99) top.solver.add_constraint('d1.y2 = d2.y2') top.driver.workflow.add(['solver']) top.driver.add_parameter('d1.z1', low=-100, high=100) top.driver.add_objective('d1.y1 + d1.y2') top.run() J = top.driver.calc_gradient(mode='forward') print J assert_rel_error(self, J[0][0], 10.77542099, 1e-5) J = top.driver.calc_gradient(mode='adjoint') print J assert_rel_error(self, J[0][0], 10.77542099, 1e-5) top.driver.gradient_options.fd_step = 1e-7 top.driver.gradient_options.fd_form = 'central' J = top.driver.calc_gradient(mode='fd') print J assert_rel_error(self, J[0][0], 10.77542099, 1e-5) def test_equation(self): top = set_as_top(Assembly()) top.add('precomp', ExecCompWithDerivatives(['y=x'], ['dy_dx = 1'])) top.precomp.x = 1.0 expr = ['y = 3.0*x*x -4.0*x'] deriv = ['dy_dx = 6.0*x -4.0'] top.add('comp', ExecCompWithDerivatives(expr, deriv)) top.driver.workflow.add(['comp']) top.add('driver', NewtonSolver()) top.driver.add_parameter('comp.x') top.driver.add_constraint('precomp.y - comp.y = 1.0 - 2.0') top.run() print top.comp.x, top.comp.y assert_rel_error(self, top.comp.x, -0.38742588, 1e-4) class Sellar_MDA_Cycles(Assembly): def configure(self): self.add('d1', Discipline1_WithDerivatives()) self.d1.x1 = 1.0 self.d1.y1 = 1.0 self.d1.y2 = 1.0 self.d1.z1 = 5.0 self.d1.z2 = 2.0 self.add('d2', Discipline2_WithDerivatives()) self.d2.y1 = 1.0 self.d2.y2 = 1.0 self.d2.z1 = 5.0 self.d2.z2 = 2.0 self.connect('d1.y1', 'd2.y1') self.connect('d2.y2', 'd1.y2') self.add('driver', NewtonSolver()) self.driver.workflow.add(['d1', 'd2']) class SysX(Component): z = Float(1.0, iotype='in') x = Float(1.0, iotype='out') def execute(self): self.x = 0.8*self.z + 2 def provideJ(self): return numpy.array([[0.8]]) def list_deriv_vars(self): return ['z'], ['x'] class SysY(Component): x = Float(1.0, iotype='in') z = Float(1.0, iotype='in') y = Float(1.0, iotype='out') def execute(self): self.y = -0.2*self.z + 4.0*self.x + 3 def provideJ(self): return numpy.array([[4.0, -0.2]]) def list_deriv_vars(self): return ['x', 'z'], ['y'] class SysZ(Component): x = Float(1.0, iotype='in') y = Float(1.0, iotype='in') z = Float(1.0, iotype='out') def execute(self): self.z = 1.0*self.x - 1.0*self.y - 1.0 def provideJ(self): return numpy.array([[1.0, -1.0]]) def list_deriv_vars(self): return ['x', 'y'], ['z'] class DoubleCycle(Assembly): def configure(self): self.add('SysX', SysX()) self.add('SysY', SysY()) self.add('SysZ', SysZ()) self.connect('SysX.x', 'SysY.x') self.connect('SysX.x', 'SysZ.x') self.connect('SysY.y', 'SysZ.y') self.connect('SysZ.z', 'SysX.z') self.connect('SysZ.z', 'SysY.z') self.add('driver', NewtonSolver()) self.driver.workflow.add(['SysX', 'SysY', 'SysZ']) #self.driver.add_parameter('SysX.z') #self.driver.add_constraint('SysX.z = SysZ.z') class DoubleCycle_1PC(Assembly): def configure(self): self.add('SysX', SysX()) self.add('SysY', SysY()) self.add('SysZ', SysZ()) self.connect('SysX.x', 'SysY.x') self.connect('SysX.x', 'SysZ.x') self.connect('SysY.y', 'SysZ.y') self.connect('SysZ.z', 'SysY.z') self.add('driver', NewtonSolver()) self.driver.workflow.add(['SysX', 'SysY', 'SysZ']) self.driver.add_parameter('SysX.z') self.driver.add_constraint('SysX.z = SysZ.z') class Newton_SolverTestCase_with_Cycles(unittest.TestCase): """test the Newton Solver component with cycles""" def setUp(self): self.top = set_as_top(Sellar_MDA_Cycles()) def tearDown(self): self.top = None def test_newton(self): self.top.run() assert_rel_error(self, self.top.d1.y1, self.top.d2.y1, 1.0e-4) assert_rel_error(self, self.top.d1.y2, self.top.d2.y2, 1.0e-4) def test_newton_nested(self): # Make sure derivatives across the newton-solved system are correct. top = set_as_top(Assembly()) top.add('driver', SimpleDriver()) top.add('d1', Discipline1_WithDerivatives()) top.d1.x1 = 1.0 top.d1.y1 = 1.0 top.d1.y2 = 1.0 top.d1.z1 = 5.0 top.d1.z2 = 2.0 top.add('d2', Discipline2_WithDerivatives()) top.d2.y1 = 1.0 top.d2.y2 = 1.0 top.d2.z1 = 5.0 top.d2.z2 = 2.0 top.connect('d1.y1', 'd2.y1') top.connect('d2.y2', 'd1.y2') top.add('solver', NewtonSolver()) top.solver.atol = 1e-9 top.solver.workflow.add(['d1', 'd2']) top.driver.workflow.add(['solver']) top.driver.add_parameter('d1.z1', low=-100, high=100) top.driver.add_objective('d1.y1 + d1.y2') top.run() J = top.driver.calc_gradient(mode='forward') assert_rel_error(self, J[0][0], 10.77542099, 1e-5) J = top.driver.calc_gradient(mode='adjoint') assert_rel_error(self, J[0][0], 10.77542099, 1e-5) top.driver.gradient_options.fd_step = 1e-7 top.driver.gradient_options.fd_form = 'central' J = top.driver.calc_gradient(mode='fd') assert_rel_error(self, J[0][0], 10.77542099, 1e-5) def test_for_push_scatters(self): # This test will fail when we go to push scatters. The problem is # that Newton (and linear Gauss Siedel) both need to poke values # directly into the u vector and expects those values to be # scattered. To make it work, we need to manually scatter them during # execution of those solvers. top = set_as_top(DoubleCycle_1PC()) top.run() assert_rel_error(self, top.SysX.x, -0.5, .0001) assert_rel_error(self, top.SysY.y, 1.625, .0001) assert_rel_error(self, top.SysZ.z, -3.125, .0001) def test_for_push_scatters__cycle_only(self): # This test will fail when we go to push scatters. See Above. # However, this flavor of the test was added because of a key error # in the code that finds the smallest edges to break. top = set_as_top(DoubleCycle()) top.run() assert_rel_error(self, top.SysX.x, -0.5, .0001) assert_rel_error(self, top.SysY.y, 1.625, .0001) assert_rel_error(self, top.SysZ.z, -3.125, .0001) if __name__ == "__main__": unittest.main()
gpl-2.0
6,668,682,735,263,272,000
28.528053
77
0.532525
false
jirenz/CS229_Project
hearthbreaker/cards/minions/druid.py
1
11367
from hearthbreaker.cards.base import MinionCard, ChoiceCard from hearthbreaker.game_objects import Minion from hearthbreaker.tags.action import Give, Damage, Silence, Transform, Draw, Heal, \ Summon, AddCard, GiveManaCrystal, Remove, Kill from hearthbreaker.tags.base import Choice, Buff, Effect, Battlecry, Deathrattle, ActionTag from hearthbreaker.tags.card_source import CardList, ObjectSource from hearthbreaker.tags.condition import IsType, GreaterThan from hearthbreaker.tags.event import Damaged, TurnEnded from hearthbreaker.tags.selector import CharacterSelector, MinionSelector, SelfSelector, UserPicker, BothPlayer, \ PlayerSelector, HeroSelector, Count, DeadMinionSelector from hearthbreaker.constants import CHARACTER_CLASS, CARD_RARITY, MINION_TYPE from hearthbreaker.tags.status import ChangeAttack, ChangeHealth, Taunt, ManaChange from hearthbreaker.cards.spells.neutral import spare_part_list class Moonfire(ChoiceCard): def __init__(self): super().__init__("Moonfire", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, ref_name="moonfire_keeper") class Dispel(ChoiceCard): def __init__(self): super().__init__("Dispel", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class KeeperOfTheGrove(MinionCard): def __init__(self): super().__init__("Keeper of the Grove", 4, CHARACTER_CLASS.DRUID, CARD_RARITY.RARE, choices=[ Choice(Moonfire(), Damage(2), CharacterSelector(players=BothPlayer(), picker=UserPicker())), Choice(Dispel(), Silence(), MinionSelector(players=BothPlayer(), picker=UserPicker())) ]) def create_minion(self, player): return Minion(2, 4) class CatDruid(MinionCard): def __init__(self): super().__init__("Druid of the Claw", 5, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, MINION_TYPE.BEAST, ref_name="Druid of the Claw (cat)") def create_minion(self, p): return Minion(4, 4, charge=True) class BearDruid(MinionCard): def __init__(self): super().__init__("Druid of the Claw", 5, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, MINION_TYPE.BEAST, ref_name="Druid of the Claw (bear)") def create_minion(self, p): return Minion(4, 6, taunt=True) class CatForm(ChoiceCard): def __init__(self): super().__init__("Cat Form", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class BearForm(ChoiceCard): def __init__(self): super().__init__("Bear Form", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class DruidOfTheClaw(MinionCard): def __init__(self): super().__init__("Druid of the Claw", 5, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, choices=[ Choice(CatForm(), Transform(CatDruid()), SelfSelector()), Choice(BearForm(), Transform(BearDruid()), SelfSelector()) ]) def create_minion(self, player): return Minion(4, 4) class AncientSecrets(ChoiceCard): def __init__(self): super().__init__("Ancient Secrets", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class AncientTeachings(ChoiceCard): def __init__(self): super().__init__("Ancient Teachings", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class AncientOfLore(MinionCard): def __init__(self): super().__init__("Ancient of Lore", 7, CHARACTER_CLASS.DRUID, CARD_RARITY.EPIC, choices=[ Choice(AncientSecrets(), Heal(5), HeroSelector()), Choice(AncientTeachings(), Draw(3), PlayerSelector()) ]) def create_minion(self, player): return Minion(5, 5) class Health(ChoiceCard): def __init__(self): super().__init__("Rooted", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class Attack(ChoiceCard): def __init__(self): super().__init__("Uproot", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class AncientOfWar(MinionCard): def __init__(self): super().__init__("Ancient of War", 7, CHARACTER_CLASS.DRUID, CARD_RARITY.EPIC, choices=[ Choice(Health(), Give([Buff(ChangeHealth(5)), Buff(Taunt())]), SelfSelector()), Choice(Attack(), Give([Buff(ChangeAttack(5))]), SelfSelector()), ]) def create_minion(self, player): return Minion(5, 5) class IronbarkProtector(MinionCard): def __init__(self): super().__init__("Ironbark Protector", 8, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) def create_minion(self, player): return Minion(8, 8, taunt=True) class TauntTreant(MinionCard): def __init__(self): super().__init__("Treant", 1, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, ref_name="Treant (taunt)") def create_minion(self, p): return Minion(2, 2, taunt=True) class Treant(MinionCard): def __init__(self): super().__init__("Treant", 1, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) def create_minion(self, _): return Minion(2, 2) class ChargeTreant(MinionCard): def __init__(self): super().__init__("Treant", 1, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, ref_name="Treant (charge)") def create_minion(self, player): return Minion(2, 2, charge=True, effects=[Effect(TurnEnded(), ActionTag(Kill(), SelfSelector()))]) class PoisonSeedsTreant(MinionCard): def __init__(self): super().__init__("Treant", 1, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, ref_name="Treant (poison seeds)") def create_minion(self, player): return Minion(2, 2) class Panther(MinionCard): def __init__(self): super().__init__("Panther", 2, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, MINION_TYPE.BEAST) def create_minion(self, _): return Minion(3, 2, MINION_TYPE.BEAST) class IncreaseStats(ChoiceCard): def __init__(self): super().__init__("Give your other minions +2/+2 and taunt", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.LEGENDARY, False) class SummonTreants(ChoiceCard): def __init__(self): super().__init__("Summon two 2/2 Treants with taunt", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.LEGENDARY, False) class Cenarius(MinionCard): def __init__(self): super().__init__("Cenarius", 9, CHARACTER_CLASS.DRUID, CARD_RARITY.LEGENDARY, choices=[ Choice(IncreaseStats(), Give([Buff(ChangeAttack(2)), Buff(ChangeHealth(2)), Buff(Taunt())]), MinionSelector()), Choice(SummonTreants(), Summon(TauntTreant(), 2), PlayerSelector()) ]) def create_minion(self, player): return Minion(5, 8) class AttackMode(ChoiceCard): def __init__(self): super().__init__("Attack Mode", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class TankMode(ChoiceCard): def __init__(self): super().__init__("Tank Mode", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class AnodizedRoboCub(MinionCard): def __init__(self): super().__init__("Anodized Robo Cub", 2, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, minion_type=MINION_TYPE.MECH, choices=[Choice(AttackMode(), Give([Buff(ChangeAttack(1))]), SelfSelector()), Choice(TankMode(), Give([Buff(ChangeHealth(1))]), SelfSelector())]) def create_minion(self, player): return Minion(2, 2, taunt=True) class MechBearCat(MinionCard): def __init__(self): super().__init__("Mech-Bear-Cat", 6, CHARACTER_CLASS.DRUID, CARD_RARITY.RARE, minion_type=MINION_TYPE.MECH) def create_minion(self, player): return Minion(7, 6, effects=[Effect(Damaged(), ActionTag(AddCard(CardList(spare_part_list)), PlayerSelector()))]) class CobraForm(MinionCard): def __init__(self): super().__init__("Druid of the Fang", 5, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, MINION_TYPE.BEAST, ref_name="Druid of the Fang (cobra)") def create_minion(self, player): return Minion(7, 7) class DruidOfTheFang(MinionCard): def __init__(self): super().__init__("Druid of the Fang", 5, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, battlecry=Battlecry(Transform(CobraForm()), SelfSelector(), GreaterThan(Count(MinionSelector(IsType(MINION_TYPE.BEAST))), value=0))) def create_minion(self, player): return Minion(4, 4) class Malorne(MinionCard): def __init__(self): super().__init__("Malorne", 7, CHARACTER_CLASS.DRUID, CARD_RARITY.LEGENDARY, minion_type=MINION_TYPE.BEAST) def create_minion(self, player): return Minion(9, 7, deathrattle=[Deathrattle(AddCard(ObjectSource(SelfSelector()), add_to_deck=True), PlayerSelector()), Deathrattle(Remove(), SelfSelector())]) class GiftOfMana(ChoiceCard): def __init__(self): super().__init__("Gift of Mana", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.RARE) class GiftOfCards(ChoiceCard): def __init__(self): super().__init__("Gift of Cards", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.RARE) class GroveTender(MinionCard): def __init__(self): super().__init__("Grove Tender", 3, CHARACTER_CLASS.DRUID, CARD_RARITY.RARE, choices=[ Choice(GiftOfMana(), GiveManaCrystal(), PlayerSelector(players=BothPlayer())), Choice(GiftOfCards(), Draw(), PlayerSelector(players=BothPlayer())) ]) def create_minion(self, player): return Minion(2, 4) class FlameCat(MinionCard): def __init__(self): super().__init__("Druid of the Flame", 3, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, MINION_TYPE.BEAST, ref_name="Druid of the Flame (cat)") def create_minion(self, p): return Minion(5, 2) class FlameBird(MinionCard): def __init__(self): super().__init__("Druid of the Flame", 3, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, False, MINION_TYPE.BEAST, ref_name="Druid of the Flame (bird)") def create_minion(self, p): return Minion(2, 5) class FlameCatForm(ChoiceCard): def __init__(self): super().__init__("Flame Cat Form", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class FlameBirdForm(ChoiceCard): def __init__(self): super().__init__("Flame Bird Form", 0, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON) class DruidOfTheFlame(MinionCard): def __init__(self): super().__init__("Druid of the Flame", 3, CHARACTER_CLASS.DRUID, CARD_RARITY.COMMON, choices=[ Choice(FlameCatForm(), Transform(FlameCat()), SelfSelector()), Choice(FlameBirdForm(), Transform(FlameBird()), SelfSelector()) ]) def create_minion(self, player): return Minion(2, 2) class VolcanicLumberer(MinionCard): def __init__(self): super().__init__("Volcanic Lumberer", 9, CHARACTER_CLASS.DRUID, CARD_RARITY.RARE, buffs=[Buff(ManaChange(Count(DeadMinionSelector(players=BothPlayer())), -1))]) def create_minion(self, player): return Minion(7, 8, taunt=True)
mit
5,221,729,277,601,726,000
34.521875
118
0.622064
false
honmaple/flask-apscheduler
sche/api.py
1
6046
#!/usr/bin/env python # -*- coding: utf-8 -*- # ************************************************************************** # Copyright © 2016 jianglin # File Name: api.py # Author: jianglin # Email: [email protected] # Created: 2016-11-11 16:05:44 (CST) # Last Update: Sunday 2018-09-30 17:50:04 (CST) # By: # Description: # ************************************************************************** from flask import request from flask import Blueprint from flask.views import MethodView from apscheduler.jobstores.base import ConflictingIdError, JobLookupError from sche import sche from .utils import HTTP, Serializer import json class ScheView(MethodView): def get(self): ins = sche.status() return HTTP.OK(data=ins) def post(self): """start scheduler.""" if not sche.running: sche.start(paused=True) ins = sche.status() return HTTP.OK(data=ins) def delete(self): """shutdown scheduler.""" if sche.running: sche.resume() ins = sche.status() return HTTP.OK(data=ins) class ScheJobView(MethodView): def get(self): request_data = request.args.to_dict() trigger = request_data.get('trigger') jobs = sche.get_jobs() ins = Serializer(jobs, trigger=trigger).data return HTTP.OK(data=ins) def post(self): ''' :param trigger:date or interval or crontab :param job:if job is None,the default func is http_request ''' request_data = request.get_json() trigger = request_data.get('trigger') kwargs = request_data.get('kwargs') if trigger == 'interval' and kwargs: request_data['kwargs'] = json.loads(kwargs) try: job = sche.add_job(**request_data) ins = Serializer(job).data return HTTP.OK(data=ins) except ConflictingIdError: msg = 'Job ID %s is exists' % request_data.get('id') return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) def put(self): request_data = request.get_json() job_ids = request_data.pop('jobs', []) success_ids = [] for pk in job_ids: try: sche.remove_job(pk) msg = 'Job ID %s delete success' % pk success_ids.append(pk) except JobLookupError: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) msg = '{} delete success!'.format(','.join(success_ids)) return HTTP.OK(data=success_ids, message=msg) class ScheJobItemView(MethodView): def get(self, pk): job = sche.get_job(pk) if not job: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) ins = Serializer(job).data return HTTP.OK(data=ins) def put(self, pk): request_data = request.get_json() try: sche.modify_job(pk, **request_data) job = sche.get_job(pk) ins = Serializer(job).data return HTTP.OK(data=ins) except JobLookupError: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) def delete(self, pk): try: sche.remove_job(pk) msg = 'Job ID %s delete success' % pk return HTTP.OK(message=msg) except JobLookupError: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) class ScheJobPauseView(MethodView): def post(self, pk): """Pauses a job.""" try: sche.pause_job(pk) job = sche.get_job(pk) ins = Serializer(job).data return HTTP.OK(data=ins) except JobLookupError: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) class ScheJobResumeView(MethodView): def post(self, pk): """Resumes a job.""" try: sche.resume_job(pk) job = sche.get_job(pk) ins = Serializer(job).data return HTTP.OK(data=ins) except JobLookupError: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) class ScheJobExecuteView(MethodView): def post(self, pk): """Executes a job.""" try: sche.run_job(pk) job = sche.get_job(pk) ins = Serializer(job).data return HTTP.OK(data=ins) except JobLookupError: msg = 'Job ID %s not found' % pk return HTTP.BAD_REQUEST(message=msg) except Exception as e: msg = str(e) return HTTP.SERVER_ERROR(message=msg) def init_app(app, url_prefix='/api/scheduler'): site = Blueprint('sche', __name__, url_prefix=url_prefix) sche_endpoint = [ ("/status", ScheView.as_view('status')), ("", ScheJobView.as_view('job')), ("/<pk>", ScheJobItemView.as_view('job_item')), ('/<pk>/pause', ScheJobPauseView.as_view('job_pause')), ('/<pk>/resume', ScheJobResumeView.as_view('job_resume')), ('/<pk>/execute', ScheJobExecuteView.as_view('job_execute')), ] for url, endpoint in sche_endpoint: site.add_url_rule( url, view_func=endpoint, ) app.register_blueprint(site)
bsd-3-clause
1,439,876,263,449,702,100
30.649215
76
0.540116
false
kbr/fritzconnection
fritzconnection/lib/fritzwlan.py
1
4692
""" Module to get informations about WLAN devices. """ # This module is part of the FritzConnection package. # https://github.com/kbr/fritzconnection # License: MIT (https://opensource.org/licenses/MIT) # Author: Bernd Strebel, Klaus Bremer import itertools from ..core.exceptions import FritzServiceError from .fritzbase import AbstractLibraryBase # important: don't set an extension number here: SERVICE = 'WLANConfiguration' class FritzWLAN(AbstractLibraryBase): """ Class to list all known wlan devices. All parameters are optional. If given, they have the following meaning: `fc` is an instance of FritzConnection, `address` the ip of the Fritz!Box, `port` the port to connect to, `user` the username, `password` the password, `timeout` a timeout as floating point number in seconds, `use_tls` a boolean indicating to use TLS (default False). The *service* parameter specifies the configuration in use. Typically this is 1 for 2.4 GHz, 2 for 5 GHz and 3 for a guest network. This can vary depending on the router model and change with future standards. """ def __init__(self, *args, service=1, **kwargs): super().__init__(*args, **kwargs) self.service = service def _action(self, actionname, **kwargs): service = f'{SERVICE}{self.service}' return self.fc.call_action(service, actionname, **kwargs) @property def host_number(self): """ Number of registered wlan devices for the active WLANConfiguration. """ result = self._action('GetTotalAssociations') return result['NewTotalAssociations'] @property def total_host_number(self): """ Total NewAssociatedDeviceIndexumber of registered wlan devices for all WLANConfigurations. """ total = 0 _service = self.service for service in itertools.count(1): self.service = service try: total += self.host_number except FritzServiceError: break self.service = _service return total @property def ssid(self): """The WLAN SSID""" result = self._action('GetSSID') return result['NewSSID'] @ssid.setter def ssid(self, value): self._action('SetSSID', NewSSID=value) @property def channel(self): """The WLAN channel in use""" return self.channel_infos()['NewChannel'] @property def alternative_channels(self): """Alternative channels (as string)""" return self.channel_infos()['NewPossibleChannels'] def channel_infos(self): """ Return a dictionary with the keys *NewChannel* and *NewPossibleChannels* indicating the active channel and alternative ones. """ return self._action('GetChannelInfo') def set_channel(self, number): """ Set a new channel. *number* must be a valid channel number for the active WLAN. (Valid numbers are listed by *alternative_channels*.) """ self._action('SetChannel', NewChannel=number) def get_generic_host_entry(self, index): """ Return a dictionary with informations about the device internally stored at the position 'index'. """ result = self._action( 'GetGenericAssociatedDeviceInfo', NewAssociatedDeviceIndex=index ) return result def get_specific_host_entry(self, mac_address): """ Return a dictionary with informations about the device with the given 'mac_address'. """ result = self._action( 'GetSpecificAssociatedDeviceInfo', NewAssociatedDeviceMACAddress=mac_address ) return result def get_hosts_info(self): """ Returns a list of dictionaries with information about the known hosts. The dict-keys are: 'service', 'index', 'status', 'mac', 'ip', 'signal', 'speed' """ informations = [] for index in itertools.count(): try: host = self.get_generic_host_entry(index) except IndexError: break informations.append({ 'service': self.service, 'index': index, 'status': host['NewAssociatedDeviceAuthState'], 'mac': host['NewAssociatedDeviceMACAddress'], 'ip': host['NewAssociatedDeviceIPAddress'], 'signal': host['NewX_AVM-DE_SignalStrength'], 'speed': host['NewX_AVM-DE_Speed'] }) return informations
mit
-4,079,132,736,566,051,000
31.811189
87
0.610827
false
wangjun/dodo-1
dodo.py
1
12198
#!/usr/bin/env python import argparse import calendar import json import re import time import os import sys from datetime import datetime from time import mktime DODO_FILE = os.path.join(os.getcwd(), 'DODO') VERSION = "0.99" class TerminalColors(object): """ Color class for listing out dodos """ HEADER = '\033[95m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' def __init__(self): pass statuses = { '+': 'add', '*': 'accepted', '-': 'rejected', '#': 'working', '.': 'complete' } def pretty_date(date_string): timestamp = calendar.timegm((datetime.strptime(date_string, "%d-%m-%y %H:%M")).timetuple()) date = datetime.fromtimestamp(timestamp) diff = datetime.now() - date s = diff.seconds if diff.days > 7 or diff.days < 0: return date.strftime('%d %b %y') elif diff.days == 1: return '1 day ago' elif diff.days > 1: return '{} days ago'.format(diff.days) elif s <= 1: return 'just now' elif s < 60: return '{} seconds ago'.format(s) elif s < 120: return '1 minute ago' elif s < 3600: return '{} minutes ago'.format(s/60) elif s < 7200: return '1 hour ago' else: return '{} hours ago'.format(s/3600) def parse_dodo(line): if line: do_id = re.search("#\d+", line).group()[1:] do_status = re.search(r'\[\[\W+\]\]', line).group()[2:-2] do_time = re.search(r'(<<.+>>)', line) do_description = re.search(r'({{.+}})', line) if do_time: do_time = do_time.group().replace("<<", "").replace(">>", "") do_user = re.search(r'(\(\(.+\)\))', line) if do_user: do_user = do_user.group().replace("((", "").replace("))", "") if do_description: do_description = do_description.group().replace("{{", "").replace("}}", "") return { "id": do_id, "time": do_time, "user": do_user, "status": do_status, "description": do_description } def dodo_load(args): global DODO_FILE do_dict = {} DODO_FILE = args.file or DODO_FILE with open(DODO_FILE, 'r') as file_inst: contents = file_inst.readlines() for content in contents: do_data = parse_dodo(content) do_dict.update({do_data["id"]: do_data}) return do_dict def dodo_unload(final_do_base): content = "" for key, value in sorted(iter(final_do_base.items()), key=lambda key_value: int(key_value[0])): content += "#%s [[%s]] <<%s>> ((%s)) {{%s}}\n" % (value["id"], value["status"], value["time"], value["user"], value["description"]) dodo_write(content, "w") def dodo_init(args): file_name = args.file or DODO_FILE try: try: open(file_name, "r") print("DoDo already exist.") except IOError: file_inst = open(file_name, "w") file_inst.close() print("Successfully initialized DoDo") except IOError: print("Cannot create file in the following location: %s" % file_name) def dodo_write(content, mode="a"): global DODO_FILE, do_base file_inst = open(DODO_FILE, mode) file_inst.write(content) file_inst.close() dodo_list() def dodo_new_id (): if len (do_base) == 0: return "1" else: return str(max(int(id) for id in do_base.keys()) + 1) def dodo_change_status(args, mod_do_base, status): if not args.id: print("ID (-id) can't be empty. May be try creating the task first") return do_entry = mod_do_base.get(args.id) if do_entry: do_entry["status"] = status if args.desc: do_entry["description"] = args.desc if args.user: do_entry["user"] = args.user if args.time: do_entry["time"] = args.time else: if not args.desc: print("Description (-d) can't be empty") return do_id = dodo_new_id () do_description = args.desc do_user = args.user do_time = args.time or time.strftime("%d-%m-%y %H:%M", time.gmtime()) mod_do_base[do_id] = { "id": do_id, "time": do_time, "user": do_user, "status": status, "description": do_description } dodo_unload(mod_do_base) return def dodo_add(args): """ + add/proposed * accepted - rejected # working . complete """ do_user = args.user if args.operation in ["add", "propose", "c"]: if args.id: print("Error: DoDo assigns id for you.") exit() do_id = dodo_new_id () do_description = args.desc do_time = args.time or time.strftime("%d-%m-%y %H:%M", time.gmtime()) do_base[do_id] = { "id": do_id, "time": do_time, "user": do_user, "status": "+", "description": do_description } dodo_unload(do_base) elif args.operation == "accept": dodo_change_status(args, do_base, "*") elif args.operation == "reject": dodo_change_status(args, do_base, "-") elif args.operation == "workon": dodo_change_status(args, do_base, "#") elif args.operation == "finish": dodo_change_status(args, do_base, ".") elif args.operation in ["remove" or "d"]: try: do_base.pop(args.id) except KeyError: print("No task with id %s" % args.id) dodo_unload(do_base) elif args.operation == "flush": for do_entry in list(do_base.values()): if do_entry["status"] in ["-", "."]: do_base.pop(do_entry["id"]) dodo_unload(do_base) return def dodo_list(): global do_base print("%s%sID\tStatus\t\tDate(-t)\tOwner(-u)\t\tDescription (-d)\n%s" % (TerminalColors.BOLD, TerminalColors.UNDERLINE, TerminalColors.END)) for key, value in sorted(iter(do_base.items()), key=lambda key_value1: int(key_value1[0])): color = TerminalColors.YELLOW if value["status"] == ".": color = TerminalColors.GREEN elif value["status"] in ["-", 'x']: color = TerminalColors.RED elif value["status"] == "#": color = TerminalColors.UNDERLINE + TerminalColors.YELLOW elif value["status"] == "+": color = TerminalColors.BLUE user = value["user"] if value["user"] != "None" else "anonymous" human_time = pretty_date(value["time"]) print("%s%s\t[%s]\t\t%s\t(%s)\t\t%s%s" % (color, value["id"], value["status"], human_time, user, value["description"], TerminalColors.END)) print("\n%sAvailable Operations: c accept propose reject workon finish remove d flush\n" \ "Available Options: -id -d(description) -u(user) -t(time) -f(file)\n" \ "Status: + proposed - rejected * accepted # working . complete%s" % ( TerminalColors.BOLD, TerminalColors.END)) def dodo_import(args): """ Sample import JSON format (same as taskwarrior export format) {"id":1,"description":"Read Docs Now","entry":"20150405T020324Z","status":"pending", "uuid":"1ac1893d-db66-40d7-bf67-77ca7c51a3fc","urgency":"0"} """ do_user = args.user json_file = args.input json_source = json.loads(open(json_file).read()) for task in json_source: do_id = dodo_new_id () do_description = task["description"] utc_time = time.strptime(task["entry"], "%Y%m%dT%H%M%S%fZ") do_time = time.strftime("%d-%m-%y %H:%M", utc_time) do_status = "+" if task["status"] == "pending": do_status = "+" if task["status"] == "completed": do_status = "." do_base[do_id] = { "id": do_id, "time": do_time, "user": do_user, "status": do_status, "description": do_description } dodo_unload(do_base) print("Imported %d tasks successfully" % len(json_source)) def dodo_export(args): """ {"id":1,"description":"Read Docs Now","entry":"20150405T020324Z","status":"pending", "uuid":"1ac1893d-db66-40d7-bf67-77ca7c51a3fc","urgency":"0"} Time is in UTC """ dodo_data = [] for instance in sorted(list(do_base.values()), key=lambda value: int(value["id"])): dodo_data.append({ "id": instance["id"], "time": instance["time"], "user": instance["user"], "status": statuses[instance["status"]], "description": instance["description"] } ) if args.output: try: file_name = args.output file_inst = open(file_name, "w") file_inst.write(json.dumps(dodo_data)) file_inst.close() print("%sExported DODO to %s%s" % \ (TerminalColors.GREEN, file_name, TerminalColors.END)) except IOError: print("%sExport failed; Check for permission to create/edit %s%s" % \ (TerminalColors.RED, args.output, TerminalColors.END)) else: print("%sUse -e or --export to <filename.json> to export to a file.%s" % \ (TerminalColors.YELLOW, TerminalColors.END)) print("%s" % TerminalColors.GREEN) print(dodo_data) print("%s" % TerminalColors.END) def dodo_switch(args): global do_base if args.operation == "init": dodo_init(args) elif args.operation in ['add', 'propose', 'accept', 'reject', 'workon', 'finish', 'flush', 'remove', "c", "d"]: dodo_add(args) elif args.operation == 'import': dodo_import(args) elif args.operation == 'export': dodo_export(args) else: dodo_list() if __name__ == "__main__": default_operation = 'list' default_user = os.path.split(os.path.expanduser('~'))[-1] parser = argparse.ArgumentParser() parser.add_argument("operation", nargs='?', default=default_operation, choices=[ 'accept', 'add', 'finish', 'flush', 'list', 'propose', 'reject', 'remove', 'workon' ], help="The operation to perform") parser.add_argument("quick_access", nargs='?', default='', help="Task ID for a operation or Description for the new task") parser.add_argument("-d", "--desc", "--description", help="Task Description") parser.add_argument("-u", "--user", default=default_user, help="User ID") parser.add_argument("-t", "--time", help="Expected/Completed Date - 11-03-2015") parser.add_argument("--id", help="List all existing dodos") parser.add_argument("-f", "--file", help="DODO filename") parser.add_argument("-i", "--input", help="Import from JSON file") parser.add_argument("-o", "--output", help="Export to JSON file") arguments = parser.parse_args() if (arguments.operation == default_operation and not os.path.isfile(arguments.file or DODO_FILE)): parser.print_help() sys.exit(0) quick_access = arguments.quick_access if quick_access: if arguments.quick_access.isdigit(): arguments.id = quick_access elif quick_access: arguments.desc = quick_access global do_base do_base = {} if arguments.operation == "init": dodo_init(arguments) else: do_base = dodo_load(arguments) dodo_switch(arguments)
bsd-3-clause
7,399,795,372,359,604,000
32.237057
115
0.523364
false
slapec/yaat
dev/yaat/settings.py
1
2472
# # # Most stuff has been disabled. # See: INSTALLED_APPS, MIDDLEWARE_CLASSES, DATABASES # # # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) STATIC_URL = '/yatable/' # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '+eyduytyp4o(p+ve6-ko==gfnz^m0&k&wymjjt#hev074p43m6' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( # 'django.contrib.admin', # 'django.contrib.auth', 'django.contrib.contenttypes', # 'django.contrib.sessions', # 'django.contrib.messages', 'django.contrib.staticfiles', 'yatable' ) MIDDLEWARE_CLASSES = ( # 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', # 'django.middleware.csrf.CsrfViewMiddleware', # 'django.contrib.auth.middleware.AuthenticationMiddleware', # 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', # 'django.contrib.messages.middleware.MessageMiddleware', # 'django.middleware.clickjacking.XFrameOptionsMiddleware', # 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'yaat.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', # 'django.contrib.auth.context_processors.auth', # 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'yaat.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/
mit
893,957,678,182,100,600
24.484536
72
0.673139
false
lcoandrade/DsgTools
core/ServerManagementTools/earthCoverageManager.py
1
3653
# -*- coding: utf-8 -*- """ /*************************************************************************** DsgTools A QGIS plugin Brazilian Army Cartographic Production Tools ------------------- begin : 2017-02-24 git sha : $Format:%H$ copyright : (C) 2017 by Philipe Borba - Cartographic Engineer @ Brazilian Army email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ #General imports from osgeo import ogr from uuid import uuid4 import codecs, os, json, binascii #DSG Tools imports from DsgTools.core.Factories.DbFactory.dbFactory import DbFactory from DsgTools.core.ServerManagementTools.genericDbManager import GenericDbManager from DsgTools.core.Utils.utils import Utils #qgis.PyQt imports from qgis.PyQt.Qt import QObject class EarthCoverageManager(GenericDbManager): """ This class manages the customizations on dsgtools databases. """ def __init__(self, serverAbstractDb, dbDict, edgvVersion, parentWidget = None): super(self.__class__,self).__init__(serverAbstractDb, dbDict, edgvVersion, parentWidget = None) def materializeIntoDatabase(self, abstractDb, propertyDict): """ Method that is reimplemented in each child when installing a property involves changing any sort of database structure """ jsonDict = self.utils.instantiateJsonDict(propertyDict['jsondict']) abstractDb.createCentroidAuxStruct(list(jsonDict['earthCoverageDict'].keys()), useTransaction = False) def updateMaterializationFromDatabase(self, abstractDb, propertyDict, oldPropertyDict): """ Method that is reimplemented in each child when updating a property involves changing any sort of database structure """ newJsonDict = self.utils.instantiateJsonDict(propertyDict['jsondict']) oldJsonDict = self.utils.instantiateJsonDict(oldPropertyDict['jsondict']) abstractDb.updateEarthCoverageDict(newJsonDict, oldJsonDict, useTransaction = True) def undoMaterializationFromDatabase(self, abstractDb, propertyName, settingType, edgvVersion): """ Method that is reimplemented in each child when uninstalling a property involves changing any sort of database structure """ jsonDict = self.utils.instantiateJsonDict(abstractDb.getRecordFromAdminDb(settingType, propertyName, edgvVersion)['jsondict']) abstractDb.dropCentroids(list(jsonDict['earthCoverageDict'].keys()), useTransaction = False) def hasStructuralChanges(self, dbNameList): """ Method that is reimplemented in each child """ structuralChanges = [] for dbName in dbNameList: abstractDb = self.instantiateAbstractDb(dbName) if abstractDb.checkCentroidAuxStruct(): structuralChanges.append(dbName) return structuralChanges
gpl-2.0
-2,215,078,940,906,647,600
48.364865
134
0.594032
false
ualvesdias/dicgen
dicgen.py
1
2243
#!/usr/bin/env python import itertools as it import sys import progressbar as pb from time import time, ctime # The generator itself def generator(string,minLen,maxLen,prevCount): count = 0 bar = pb.ProgressBar(maxval = prevCount).start() # This for loops from the min length to the max for length in range(minLen,maxLen+1): # This for computes each combination and writes it into the file for perm in it.product(string, repeat=length): outFile.write(str(''.join(perm))) outFile.write('\n') count += 1 bar.update(count) # The main function. It shows the number of lines # that will be created, as well as the filesize. # It also calls the generator and shows the result in the screen def main(): # var declarations global outputFile, outFile prevCount = 0 prevSize = 0 # Calculates the preview numbers for ln in range(minLen, maxLen+1): prevCount += len(string)**ln prevSize += prevCount * ln # Filesize in MB, GB and PB mByte = prevSize / (1024**2) gByte = mByte / 1024 tByte = gByte / 1024 pByte = tByte / 1024 print("Attention!") print("Size in MB: %.2f" % mByte) print("Size in GB: %.2f" % gByte) print("Size in TB: %.2f" % tByte) print("Size in PB: %.2f" % pByte) print("\ndicgen is about to generate a file with %i lines." % prevCount) while True: # Confirmation proceed = raw_input('Are you sure you want to proceed?\n[Y]es [N]o: ') if proceed.lower() == 'y' or proceed.lower() == 'yes': print("Initiating operation...") outFile = open(outputFile,'w') startTime = time() print("Start time: %s" % ctime(startTime)) generator(string,minLen,maxLen,prevCount) endTime = time() print("Done.\nEnd time: %s" % ctime(endTime)) print("Total operation time: %.2f seconds." % (float(endTime - startTime))) print("The file %s is ready to be used." % outputFile) break elif proceed.lower() == 'n' or proceed.lower() == 'no': print('Aborting...') break else: print('Please, type yes or no.') if __name__ == "__main__": try: string = sys.argv[1] minLen = int(sys.argv[2]) maxLen = int(sys.argv[3]) outputFile = sys.argv[4] except: print("Usage: python dicgen.py <characters> <min-range> <max-range> <output-file>") sys.exit(1) main()
gpl-3.0
6,836,051,558,800,038,000
28.12987
85
0.666964
false
krstnschwpwr/speedcontrol
speed_ctrl/settings.py
1
2616
import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'jfwya!*^^@unv%s$-#-#us9x6z%1ym!uvspde2zu#unrp&(gos' if 'SPEEDTRACKER_ENV' in os.environ and os.environ['SPEEDTRACKER_ENV'] == 'production': DEBUG = False ALLOWED_HOSTS = ['*'] else: DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = [ 'probe.apps.ProbeConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'speed_ctrl.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'probe/templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'speed_ctrl.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databasespip DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'speed.sqlite'), } } REST_FRAMEWORK = { 'DEFAULT_RENDERER_CLASSES': ( 'probe.renderers.PrtgRenderer', 'rest_framework.renderers.JSONRenderer', ) } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LANGUAGE_CODE = 'en-gb' TIME_ZONE = 'Europe/Berlin' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/'
mit
-2,287,553,738,804,210,000
25.424242
91
0.652905
false
virginiacc/owning-a-home
src/_lib/wordpress_journey_processor.py
1
2377
import sys import json import os.path import requests import dateutil.parser def posts_at_url(url): current_page = 1 max_page = sys.maxint while current_page <= max_page: url = os.path.expandvars(url) resp = requests.get(url, params={'page':current_page, 'count': '-1'}) results = json.loads(resp.content) current_page += 1 max_page = results['pages'] for p in results['posts']: yield p def documents(name, url, **kwargs): for post in posts_at_url(url): yield process_journey(post) def process_journey(item): del item['comments'] del item['date'] custom_fields = item['custom_fields'] item['_id'] = item['slug'] if item['parent'] != 0: # This is a step item item['has_parent'] = True if custom_fields.get('what_to_know'): item['what_to_know'] = custom_fields['what_to_know'][0] if custom_fields.get('how_to_take_action'): item['how_to_take_action'] = \ custom_fields['how_to_take_action'][0] if custom_fields.get('key_tool'): key_tool = {} key_tool['url'] = custom_fields['key_tool'][0] key_tool['text'] = custom_fields['key_tool'][1] item['key_tool'] = key_tool else: # This is a phase item item['has_parent'] = False # create list of tools item['tools'] = [] for x in xrange(0,2): tool = {} fields = ['description', 'link'] for field in fields: field_name = 'tools_%s_%s' % (str(x), field) if field_name in custom_fields: if field == 'link': tool['url'] = custom_fields[field_name][0] tool['text'] = custom_fields[field_name][1] else: tool[field] = custom_fields[field_name][0] if tool: item['tools'].append(tool) # create list of milestones milestones = [] for x in xrange(0,3): key = 'milestones_%s_milestone' % x if key in custom_fields: milestones.append(custom_fields[key][0]) if milestones: item['milestones'] = milestones return item
cc0-1.0
1,026,639,759,227,327,500
28.7125
77
0.506521
false
bashrc/zeronet-debian
src/src/lib/pyelliptic/ecc.py
1
18500
#!/usr/bin/python #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2011 Yann GUIBET <[email protected]> # See LICENSE for details. from hashlib import sha512 from .openssl import OpenSSL from .cipher import Cipher from .hash import hmac_sha256, equals from struct import pack, unpack class ECC: """ Asymmetric encryption with Elliptic Curve Cryptography (ECC) ECDH, ECDSA and ECIES import pyelliptic alice = pyelliptic.ECC() # default curve: sect283r1 bob = pyelliptic.ECC(curve='sect571r1') ciphertext = alice.encrypt("Hello Bob", bob.get_pubkey()) print bob.decrypt(ciphertext) signature = bob.sign("Hello Alice") # alice's job : print pyelliptic.ECC( pubkey=bob.get_pubkey()).verify(signature, "Hello Alice") # ERROR !!! try: key = alice.get_ecdh_key(bob.get_pubkey()) except: print("For ECDH key agreement,\ the keys must be defined on the same curve !") alice = pyelliptic.ECC(curve='sect571r1') print alice.get_ecdh_key(bob.get_pubkey()).encode('hex') print bob.get_ecdh_key(alice.get_pubkey()).encode('hex') """ def __init__(self, pubkey=None, privkey=None, pubkey_x=None, pubkey_y=None, raw_privkey=None, curve='sect283r1'): """ For a normal and High level use, specifie pubkey, privkey (if you need) and the curve """ if type(curve) == str: self.curve = OpenSSL.get_curve(curve) else: self.curve = curve if pubkey_x is not None and pubkey_y is not None: self._set_keys(pubkey_x, pubkey_y, raw_privkey) elif pubkey is not None: curve, pubkey_x, pubkey_y, i = ECC._decode_pubkey(pubkey) if privkey is not None: curve2, raw_privkey, i = ECC._decode_privkey(privkey) if curve != curve2: raise Exception("Bad ECC keys ...") self.curve = curve self._set_keys(pubkey_x, pubkey_y, raw_privkey) else: self.privkey, self.pubkey_x, self.pubkey_y = self._generate() def _set_keys(self, pubkey_x, pubkey_y, privkey): if self.raw_check_key(privkey, pubkey_x, pubkey_y) < 0: self.pubkey_x = None self.pubkey_y = None self.privkey = None raise Exception("Bad ECC keys ...") else: self.pubkey_x = pubkey_x self.pubkey_y = pubkey_y self.privkey = privkey @staticmethod def get_curves(): """ static method, returns the list of all the curves available """ return OpenSSL.curves.keys() def get_curve(self): return OpenSSL.get_curve_by_id(self.curve) def get_curve_id(self): return self.curve def get_pubkey(self): """ High level function which returns : curve(2) + len_of_pubkeyX(2) + pubkeyX + len_of_pubkeyY + pubkeyY """ return b''.join((pack('!H', self.curve), pack('!H', len(self.pubkey_x)), self.pubkey_x, pack('!H', len(self.pubkey_y)), self.pubkey_y )) def get_privkey(self): """ High level function which returns curve(2) + len_of_privkey(2) + privkey """ return b''.join((pack('!H', self.curve), pack('!H', len(self.privkey)), self.privkey )) @staticmethod def _decode_pubkey(pubkey): i = 0 curve = unpack('!H', pubkey[i:i + 2])[0] i += 2 tmplen = unpack('!H', pubkey[i:i + 2])[0] i += 2 pubkey_x = pubkey[i:i + tmplen] i += tmplen tmplen = unpack('!H', pubkey[i:i + 2])[0] i += 2 pubkey_y = pubkey[i:i + tmplen] i += tmplen return curve, pubkey_x, pubkey_y, i @staticmethod def _decode_privkey(privkey): i = 0 curve = unpack('!H', privkey[i:i + 2])[0] i += 2 tmplen = unpack('!H', privkey[i:i + 2])[0] i += 2 privkey = privkey[i:i + tmplen] i += tmplen return curve, privkey, i def _generate(self): try: pub_key_x = OpenSSL.BN_new() pub_key_y = OpenSSL.BN_new() key = OpenSSL.EC_KEY_new_by_curve_name(self.curve) if key == 0: raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ...") if (OpenSSL.EC_KEY_generate_key(key)) == 0: raise Exception("[OpenSSL] EC_KEY_generate_key FAIL ...") if (OpenSSL.EC_KEY_check_key(key)) == 0: raise Exception("[OpenSSL] EC_KEY_check_key FAIL ...") priv_key = OpenSSL.EC_KEY_get0_private_key(key) group = OpenSSL.EC_KEY_get0_group(key) pub_key = OpenSSL.EC_KEY_get0_public_key(key) if (OpenSSL.EC_POINT_get_affine_coordinates_GFp(group, pub_key, pub_key_x, pub_key_y, 0 )) == 0: raise Exception( "[OpenSSL] EC_POINT_get_affine_coordinates_GFp FAIL ...") privkey = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(priv_key)) pubkeyx = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(pub_key_x)) pubkeyy = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(pub_key_y)) OpenSSL.BN_bn2bin(priv_key, privkey) privkey = privkey.raw OpenSSL.BN_bn2bin(pub_key_x, pubkeyx) pubkeyx = pubkeyx.raw OpenSSL.BN_bn2bin(pub_key_y, pubkeyy) pubkeyy = pubkeyy.raw self.raw_check_key(privkey, pubkeyx, pubkeyy) return privkey, pubkeyx, pubkeyy finally: OpenSSL.EC_KEY_free(key) OpenSSL.BN_free(pub_key_x) OpenSSL.BN_free(pub_key_y) def get_ecdh_key(self, pubkey): """ High level function. Compute public key with the local private key and returns a 512bits shared key """ curve, pubkey_x, pubkey_y, i = ECC._decode_pubkey(pubkey) if curve != self.curve: raise Exception("ECC keys must be from the same curve !") return sha512(self.raw_get_ecdh_key(pubkey_x, pubkey_y)).digest() def raw_get_ecdh_key(self, pubkey_x, pubkey_y): try: ecdh_keybuffer = OpenSSL.malloc(0, 32) other_key = OpenSSL.EC_KEY_new_by_curve_name(self.curve) if other_key == 0: raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ...") other_pub_key_x = OpenSSL.BN_bin2bn(pubkey_x, len(pubkey_x), 0) other_pub_key_y = OpenSSL.BN_bin2bn(pubkey_y, len(pubkey_y), 0) other_group = OpenSSL.EC_KEY_get0_group(other_key) other_pub_key = OpenSSL.EC_POINT_new(other_group) if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(other_group, other_pub_key, other_pub_key_x, other_pub_key_y, 0)) == 0: raise Exception( "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ...") if (OpenSSL.EC_KEY_set_public_key(other_key, other_pub_key)) == 0: raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ...") if (OpenSSL.EC_KEY_check_key(other_key)) == 0: raise Exception("[OpenSSL] EC_KEY_check_key FAIL ...") own_key = OpenSSL.EC_KEY_new_by_curve_name(self.curve) if own_key == 0: raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ...") own_priv_key = OpenSSL.BN_bin2bn( self.privkey, len(self.privkey), 0) if (OpenSSL.EC_KEY_set_private_key(own_key, own_priv_key)) == 0: raise Exception("[OpenSSL] EC_KEY_set_private_key FAIL ...") OpenSSL.ECDH_set_method(own_key, OpenSSL.ECDH_OpenSSL()) ecdh_keylen = OpenSSL.ECDH_compute_key( ecdh_keybuffer, 32, other_pub_key, own_key, 0) if ecdh_keylen != 32: raise Exception("[OpenSSL] ECDH keylen FAIL ...") return ecdh_keybuffer.raw finally: OpenSSL.EC_KEY_free(other_key) OpenSSL.BN_free(other_pub_key_x) OpenSSL.BN_free(other_pub_key_y) OpenSSL.EC_POINT_free(other_pub_key) OpenSSL.EC_KEY_free(own_key) OpenSSL.BN_free(own_priv_key) def check_key(self, privkey, pubkey): """ Check the public key and the private key. The private key is optional (replace by None) """ curve, pubkey_x, pubkey_y, i = ECC._decode_pubkey(pubkey) if privkey is None: raw_privkey = None curve2 = curve else: curve2, raw_privkey, i = ECC._decode_privkey(privkey) if curve != curve2: raise Exception("Bad public and private key") return self.raw_check_key(raw_privkey, pubkey_x, pubkey_y, curve) def raw_check_key(self, privkey, pubkey_x, pubkey_y, curve=None): if curve is None: curve = self.curve elif type(curve) == str: curve = OpenSSL.get_curve(curve) else: curve = curve try: key = OpenSSL.EC_KEY_new_by_curve_name(curve) if key == 0: raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ...") if privkey is not None: priv_key = OpenSSL.BN_bin2bn(privkey, len(privkey), 0) pub_key_x = OpenSSL.BN_bin2bn(pubkey_x, len(pubkey_x), 0) pub_key_y = OpenSSL.BN_bin2bn(pubkey_y, len(pubkey_y), 0) if privkey is not None: if (OpenSSL.EC_KEY_set_private_key(key, priv_key)) == 0: raise Exception( "[OpenSSL] EC_KEY_set_private_key FAIL ...") group = OpenSSL.EC_KEY_get0_group(key) pub_key = OpenSSL.EC_POINT_new(group) if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(group, pub_key, pub_key_x, pub_key_y, 0)) == 0: raise Exception( "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ...") if (OpenSSL.EC_KEY_set_public_key(key, pub_key)) == 0: raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ...") if (OpenSSL.EC_KEY_check_key(key)) == 0: raise Exception("[OpenSSL] EC_KEY_check_key FAIL ...") return 0 finally: OpenSSL.EC_KEY_free(key) OpenSSL.BN_free(pub_key_x) OpenSSL.BN_free(pub_key_y) OpenSSL.EC_POINT_free(pub_key) if privkey is not None: OpenSSL.BN_free(priv_key) def sign(self, inputb, digest_alg=OpenSSL.EVP_ecdsa): """ Sign the input with ECDSA method and returns the signature """ try: size = len(inputb) buff = OpenSSL.malloc(inputb, size) digest = OpenSSL.malloc(0, 64) md_ctx = OpenSSL.EVP_MD_CTX_create() dgst_len = OpenSSL.pointer(OpenSSL.c_int(0)) siglen = OpenSSL.pointer(OpenSSL.c_int(0)) sig = OpenSSL.malloc(0, 151) key = OpenSSL.EC_KEY_new_by_curve_name(self.curve) if key == 0: raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ...") priv_key = OpenSSL.BN_bin2bn(self.privkey, len(self.privkey), 0) pub_key_x = OpenSSL.BN_bin2bn(self.pubkey_x, len(self.pubkey_x), 0) pub_key_y = OpenSSL.BN_bin2bn(self.pubkey_y, len(self.pubkey_y), 0) if (OpenSSL.EC_KEY_set_private_key(key, priv_key)) == 0: raise Exception("[OpenSSL] EC_KEY_set_private_key FAIL ...") group = OpenSSL.EC_KEY_get0_group(key) pub_key = OpenSSL.EC_POINT_new(group) if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(group, pub_key, pub_key_x, pub_key_y, 0)) == 0: raise Exception( "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ...") if (OpenSSL.EC_KEY_set_public_key(key, pub_key)) == 0: raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ...") if (OpenSSL.EC_KEY_check_key(key)) == 0: raise Exception("[OpenSSL] EC_KEY_check_key FAIL ...") OpenSSL.EVP_MD_CTX_init(md_ctx) OpenSSL.EVP_DigestInit_ex(md_ctx, digest_alg(), None) if (OpenSSL.EVP_DigestUpdate(md_ctx, buff, size)) == 0: raise Exception("[OpenSSL] EVP_DigestUpdate FAIL ...") OpenSSL.EVP_DigestFinal_ex(md_ctx, digest, dgst_len) OpenSSL.ECDSA_sign(0, digest, dgst_len.contents, sig, siglen, key) if (OpenSSL.ECDSA_verify(0, digest, dgst_len.contents, sig, siglen.contents, key)) != 1: raise Exception("[OpenSSL] ECDSA_verify FAIL ...") return sig.raw[:siglen.contents.value] finally: OpenSSL.EC_KEY_free(key) OpenSSL.BN_free(pub_key_x) OpenSSL.BN_free(pub_key_y) OpenSSL.BN_free(priv_key) OpenSSL.EC_POINT_free(pub_key) OpenSSL.EVP_MD_CTX_destroy(md_ctx) def verify(self, sig, inputb, digest_alg=OpenSSL.EVP_ecdsa): """ Verify the signature with the input and the local public key. Returns a boolean """ try: bsig = OpenSSL.malloc(sig, len(sig)) binputb = OpenSSL.malloc(inputb, len(inputb)) digest = OpenSSL.malloc(0, 64) dgst_len = OpenSSL.pointer(OpenSSL.c_int(0)) md_ctx = OpenSSL.EVP_MD_CTX_create() key = OpenSSL.EC_KEY_new_by_curve_name(self.curve) if key == 0: raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ...") pub_key_x = OpenSSL.BN_bin2bn(self.pubkey_x, len(self.pubkey_x), 0) pub_key_y = OpenSSL.BN_bin2bn(self.pubkey_y, len(self.pubkey_y), 0) group = OpenSSL.EC_KEY_get0_group(key) pub_key = OpenSSL.EC_POINT_new(group) if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(group, pub_key, pub_key_x, pub_key_y, 0)) == 0: raise Exception( "[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ...") if (OpenSSL.EC_KEY_set_public_key(key, pub_key)) == 0: raise Exception("[OpenSSL] EC_KEY_set_public_key FAIL ...") if (OpenSSL.EC_KEY_check_key(key)) == 0: raise Exception("[OpenSSL] EC_KEY_check_key FAIL ...") OpenSSL.EVP_MD_CTX_init(md_ctx) OpenSSL.EVP_DigestInit_ex(md_ctx, digest_alg(), None) if (OpenSSL.EVP_DigestUpdate(md_ctx, binputb, len(inputb))) == 0: raise Exception("[OpenSSL] EVP_DigestUpdate FAIL ...") OpenSSL.EVP_DigestFinal_ex(md_ctx, digest, dgst_len) ret = OpenSSL.ECDSA_verify( 0, digest, dgst_len.contents, bsig, len(sig), key) if ret == -1: return False # Fail to Check else: if ret == 0: return False # Bad signature ! else: return True # Good return False finally: OpenSSL.EC_KEY_free(key) OpenSSL.BN_free(pub_key_x) OpenSSL.BN_free(pub_key_y) OpenSSL.EC_POINT_free(pub_key) OpenSSL.EVP_MD_CTX_destroy(md_ctx) @staticmethod def encrypt(data, pubkey, ephemcurve=None, ciphername='aes-256-cbc'): """ Encrypt data with ECIES method using the public key of the recipient. """ curve, pubkey_x, pubkey_y, i = ECC._decode_pubkey(pubkey) return ECC.raw_encrypt(data, pubkey_x, pubkey_y, curve=curve, ephemcurve=ephemcurve, ciphername=ciphername) @staticmethod def raw_encrypt(data, pubkey_x, pubkey_y, curve='sect283r1', ephemcurve=None, ciphername='aes-256-cbc'): if ephemcurve is None: ephemcurve = curve ephem = ECC(curve=ephemcurve) key = sha512(ephem.raw_get_ecdh_key(pubkey_x, pubkey_y)).digest() key_e, key_m = key[:32], key[32:] pubkey = ephem.get_pubkey() iv = OpenSSL.rand(OpenSSL.get_cipher(ciphername).get_blocksize()) ctx = Cipher(key_e, iv, 1, ciphername) ciphertext = iv + pubkey + ctx.ciphering(data) mac = hmac_sha256(key_m, ciphertext) return ciphertext + mac def decrypt(self, data, ciphername='aes-256-cbc'): """ Decrypt data with ECIES method using the local private key """ blocksize = OpenSSL.get_cipher(ciphername).get_blocksize() iv = data[:blocksize] i = blocksize curve, pubkey_x, pubkey_y, i2 = ECC._decode_pubkey(data[i:]) i += i2 ciphertext = data[i:len(data)-32] i += len(ciphertext) mac = data[i:] key = sha512(self.raw_get_ecdh_key(pubkey_x, pubkey_y)).digest() key_e, key_m = key[:32], key[32:] if not equals(hmac_sha256(key_m, data[:len(data) - 32]), mac): raise RuntimeError("Fail to verify data") ctx = Cipher(key_e, iv, 0, ciphername) return ctx.ciphering(ciphertext)
gpl-2.0
-4,182,418,134,125,974,000
39.130152
79
0.517622
false
drgarcia1986/simple-settings
tests/strategies/test_toml.py
1
1306
import pytest skip = False try: from simple_settings.strategies.toml_file import SettingsLoadStrategyToml except ImportError: skip = True @pytest.mark.skipif(skip, reason='Installed without Toml') class TestTomlStrategy: @pytest.fixture def strategy_toml(self): return SettingsLoadStrategyToml def test_should_check_a_valid_toml_file(self, strategy_toml): assert strategy_toml.is_valid_file('foo.toml') is True def test_should_check_a_invalid_toml_file(self, strategy_toml): assert strategy_toml.is_valid_file('foo.bar') is False def test_should_load_dict_with_settings_of_toml_file(self, strategy_toml): settings = strategy_toml.load_settings_file( 'tests/samples/simple_toml_file.toml' ) assert settings['SIMPLE_STRING'] == 'simple' assert settings['COMPLEX_DICT'] == {'complex': 'dict', 'foo': 'bar'} assert settings['COMPLEX_LIST'] == ['foo', 'bar'] assert settings['SIMPLE_INTEGER'] == 1 assert settings['SIMPLE_BOOL'] is True def test_should_raise_error_invalid_toml_file_content(self, strategy_toml): with pytest.raises(Exception): settings = strategy_toml.load_settings_file( 'tests/samples/invalid_toml_file.toml' )
mit
-2,855,346,663,281,709,600
33.368421
79
0.663859
false
javidombro/CGR
voip_p2p.py
1
7182
#!/usr/bin/env python3 import pyaudio import socket import sys import zlib import time import threading from threading import Thread import argparse import audioop from threading import Timer import RPi.GPIO as gpio dicIPSO = {} #Diccionario IP - StreamOutput recordEvent = threading.Event() clientEvent = threading.Event() exitFlag = False debug = True squelch = False squelchValue = 0 mask_tx = "" mask_rx = [] IP = "" IPBroadcast = "255.255.255.255" addr = "" ptt_timer = "" gpioEnable = False port = "" FORMAT = pyaudio.paInt16 CHUNK = 2205 CHANNELS = 1 RATE = 44100 udp = "" pi = pyaudio.PyAudio() streamInput = "" def pdebug(tPrint): global debug if debug: print(tPrint) def exitVoip(): global exitFlag exitFlag = True def set_squelch(pValue): global squelchValue squelchValue = pValue pdebug("Squelch seteado a: "+ str(squelchValue)) def squelch_on(): global squelch squelch = True pdebug("Squelch Encendido") def squelch_off(): global squelch squelch = False pdebug("Squelch Apagado") def squelch_toggle(): global squelch if squelch: squelch_off() else: squelch_on() def sel_masc_rx(pMask_rx): global mask_rx if not (pMask_rx in mask_rx): mask_rx.append(pMask_rx) pdebug("Mascara de Recepcion "+ pMask_rx.decode("utf-8") + " agregada") def desel_masc_rx(pMask_rx): global mask_rx if pMask_rx in mask_rx: mask_rx.remove(pMask_rx) pdebug("Mascara de Recepcion " + pMask_rx.decode("utf-8") + " removida") def sel_masc_tx(pMask_tx): global mask_tx mask_tx = pMask_tx pdebug("Mascara de Transmision seteada a: " + pMask_tx.decode("utf-8")) def set_IP(pIP): global IP IP = pIP pdebug("IP Seteada a: " + pIP) def get_masc_rx(): return mask_rx def getStreamOutput(IPP): #IPP = IP Parametro #Devuelve el StreamOutput asociado a la IP, si no existe, lo crea y lanza un Thread asociado a dicho stream if IPP in dicIPSO: return(dicIPSO[IPP]) else: po = pyaudio.PyAudio() streamOutput = po.open(format=FORMAT, channels=CHANNELS, rate=RATE, output=True, frames_per_buffer=CHUNK ) dicIPSO[IPP] = streamOutput #Mapeamos la IP al StreamOutput return(streamOutput) #Server Methods def tServer(CHUNK): global exitFlag global IP global mask_rx global ptt_timer global gpioEnable udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) udp.bind(('', port)) iprecive = "" silence = chr(0)*2 while (not exitFlag): try: udpData, addr = udp.recvfrom(CHUNK+8) iprecive = addr[0] compMascara = udpData[:8] if (not(iprecive == IP) and (compMascara in mask_rx)): if gpioEnable: #Activamos el PTT de VHF ptt_timer.cancel() ptt_timer = Timer(1.0,timeout) ptt_timer.start() gpio.output(18,True) encSoundData = udpData[8:] #Decodificamos el audio soundData = audioop.alaw2lin(encSoundData,2) #obtenemos el framesOutput correspondiente a la IP so = getStreamOutput(iprecive) so.write(soundData,CHUNK) #print(silence) free = so.get_write_available() # How much space is left in the buffer? #print(free) if free > CHUNK: # Is there a lot of space in the buffer? tofill = free - CHUNK so.write(silence * tofill) # Fill it with silence except: pass udp.close() def enableGPIO(): global gpioEnable gpio.setmode(gpio.BCM) gpio.setup(18,gpio.OUT) gpioEnable = True def disableGPIO(): global gpioEnable gpioEnable = False def callbackInput(in_data, frame_count, time_info, status): global udp global clientEvent global streamInput audio = in_data encSoundData = audioop.lin2alaw(audio,2) #Agregamos la mascara (La mascara DEBE estar en BYTEARRAY) tosend = bytearray() tosend.extend(mask_tx) tosend.extend(encSoundData) ids = str(len(in_data)) fcs = str(frame_count) #print("INDATA = "+ids) #print("FRAMECOUNT = "+ fcs) #print("MANDANDO") udp.sendto(tosend, (IPBroadcast, port)) return (audio, pyaudio.paContinue) def ptt_on(): global streamInput streamInput.start_stream() pdebug("PTT Presionado") #print("Despertar Thread Record") def ptt_on(ip): global streamInput global IPBroadcast streamInput.start_stream() pdebug("PTT Presionado") IPBroadcast = ip # print("Despertar Thread Record") def ptt_off(): global streamInput streamInput.stop_stream() pdebug("PTT Liberado") def faltante(): if (IP == ""): return("IP") else: if(mask_tx == ""): return("Mascara de Transmision") def get_ip(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # doesn't even have to be reachable s.connect(('10.255.255.255', 0)) IP = s.getsockname()[0] except: IP = '127.0.0.1' finally: s.close() return IP def timeout(): global ptt_timer gpio.output(18,False) def start(setgpioEnable=False): global IP global streamInput global udp global ptt_timer global gpioEnable global port gpioEnable = setgpioEnable if not gpioEnable: pdebug("VOIP en modo CLIENTE") else: pdebug("VOIP en modo Conexion GPIO") port = 50001 IP = get_ip() sel_masc_tx(b'\x00\x00\x00\x00\x00\x00\x00\x01') sel_masc_rx(b'\x00\x00\x00\x00\x00\x00\x00\x01') udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) udp.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) #Para habilitar el Broadcast if IP == "" or mask_tx == "": ErrorFalta = faltante() print("Por favor especifique la " + ErrorFalta) else: pdebug("IP seteada a: " + IP) pdebug("Mascara de Transmision seteada a: " + mask_tx.decode("utf-8") ) #Server #print("Preparando Stream de Grabacion...") streamInput = pi.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, frames_per_buffer = CHUNK, stream_callback = callbackInput ) streamInput.stop_stream() if gpioEnable: ptt_timer = Timer(1.0, timeout) gpio.setmode(gpio.BCM) gpio.setup(18,gpio.OUT) #print("Activando Server...") TServer = Thread(target = tServer, args=(CHUNK,)) TServer.setDaemon(True) TServer.start()
gpl-3.0
-7,545,945,220,337,320,000
24.468085
111
0.574353
false
Zentyal/zentyal-swift-middleware
setup.py
1
1147
#!/usr/bin/python # Copyright 2012 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup import swift3 setup(name='swift3', version=swift3.version, description='Swift AmazonS3 API emulation Middleware', author='OpenStack, LLC.', author_email='[email protected]', url='https://github.com/fujita/swift3', packages=['swift3'], requires=['swift(>=1.4)', 'python_dateutil(>=2.1)'], entry_points={'paste.filter_factory': ['swift3=swift3.middleware:filter_factory', 's3auth=swift3.auth:filter_factory']})
apache-2.0
703,918,658,693,047,300
36
74
0.691369
false
maguro/flask-MenuManager
setup.py
1
2624
# !/usr/bin/env python # # (C) Copyright 2014 Alan Cabrera # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from io import open import sys from setuptools import setup from setuptools.command.test import test as TestCommand class ToxCommand(TestCommand): user_options = [('tox-args=', 'a', "Arguments to pass to tox")] def initialize_options(self): TestCommand.initialize_options(self) self.tox_args = '' def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import tox import shlex errno = tox.cmdline(args=shlex.split(self.tox_args)) sys.exit(errno) setup( name='flask-MenuManager', version='1.0', url='https://github.com/maguro/flask-MenuManager/', license='Apache License (http://www.apache.org/licenses/LICENSE-2.0)', author='Alan Cabrera', author_email='[email protected]', description='An easy way to build and manage menus in Flask', # don't ever depend on refcounting to close files anywhere else long_description=open('README.md', encoding='utf-8').read(), package_dir={'': 'src'}, packages=['flask_MenuManager'], zip_safe=False, platforms='any', install_requires=[ 'Flask' ], tests_require=['tox'], cmdclass={'test': ToxCommand}, classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", ], )
apache-2.0
7,186,223,080,216,033,000
29.870588
74
0.650915
false
marcusangeloni/smc2016
processing/feature_extraction.py
1
9777
#!/usr/bin/env python # vim: set fileencoding=utf-8 : # Marcus de Assis Angeloni <[email protected]> # Thu 7 Apr 2016 21:12:03 import numpy import bob.ip.base import bob.ip.gabor import os import sys import math import skimage.feature from skimage.feature import greycomatrix, greycoprops from scipy.stats import itemfreq import argparse from datetime import datetime # compute tan and triggs illumination def compute_tanTriggs(image): tt = bob.ip.base.TanTriggs(gamma = 0.2, sigma0 = 1., sigma1 = 2., radius = 5, threshold = 10., alpha = 0.1) data = tt(image) return data # compute gray-level co-occurrence matrix descriptor def compute_glcm(image): glcm = greycomatrix(image, distances = [1, 2, 3, 4], angles = [0, numpy.pi/4, numpy.pi/2, 3*numpy.pi/4], levels = 256, symmetric = False, normed = True) features = numpy.zeros((6, glcm.shape[2] * glcm.shape[3]), dtype = numpy.float64) features[0, :] = greycoprops(glcm, 'contrast').flatten() features[1, :] = greycoprops(glcm, 'energy').flatten() features[2, :] = greycoprops(glcm, 'homogeneity').flatten() features[3, :] = greycoprops(glcm, 'dissimilarity').flatten() features[4, :] = greycoprops(glcm, 'correlation').flatten() features[5, :] = greycoprops(glcm, 'ASM').flatten() return features # compute 2D Discrete Cosine Transform descriptor def compute_dct(image): # block = 12x12, overlap = 11x11, normalized block, normalized features dct = bob.ip.base.DCTFeatures(coefficients = 45, block_size = (12, 12), block_overlap = (11, 11), normalize_block = True, normalize_dct = True) features = dct(image) return features # compute local binary patterns def compute_lbp(image, P, R, blockSize, overlap): stepY = blockSize[0] - overlap[0] stepX = blockSize[1] - overlap[1] bins = P * (P - 1) + 3 lbp = bob.ip.base.LBP(neighbors = P, radius = R, circular = True, to_average = False, add_average_bit = False, uniform = True, rotation_invariant = False) lbpImage = lbp(image) nBlocksY = (lbpImage.shape[0] - overlap[0]) // stepY nBlocksX = (lbpImage.shape[1] - overlap[1]) // stepX totalBlocks = nBlocksY * nBlocksX features = numpy.zeros((totalBlocks, bins), dtype = numpy.float64) idx = 0 y1 = 0 y2 = blockSize[0] while (y2 <= lbpImage.shape[0]): x1 = 0 x2 = blockSize[1] while (x2 <= lbpImage.shape[1]): block = lbpImage[y1:y2, x1:x2] values = itemfreq(block.ravel()) for v in values: features[idx, int(v[0])] = v[1] x1 += stepX x2 += stepX idx += 1 y1 += stepY y2 += stepY return features # compute multiscale local binary pattern descriptor def compute_mlbp(image, P, blockSize, overlap): # R = 1 features_r1 = compute_lbp(image[2:image.shape[0]-2, 2:image.shape[1]-2], P, 1, blockSize, overlap) # to get the same dimension of radius = 3 # R = 3 features_r3 = compute_lbp(image, P, 3, blockSize, overlap) features = numpy.concatenate((features_r1, features_r3), axis=1) return features # compute histogram of oriented gradients def compute_hog(image, pixels_cell): features = skimage.feature.hog(image, orientations = 9, pixels_per_cell = pixels_cell, cells_per_block=(1, 1)) return features # compute histogram of oriented gradients descriptor def compute_hog_descriptor(image): # blocos de 4x4 features_b4 = compute_hog(image, (4, 4)) #bloco de 8x8 features_b8 = compute_hog(image, (8, 8)) features = numpy.concatenate((features_b4, features_b8)) return features # compute gabor wavelet descriptor def compute_gabor(image): gwt = bob.ip.gabor.Transform(number_of_scales = 5, number_of_directions = 8, sigma = 2 * math.pi, k_max = math.pi / 2., k_fac = math.sqrt(.5), power_of_k = 0, dc_free = True) image_c = image.astype(numpy.complex128) trafo_image = gwt.transform(image_c) features = numpy.abs(trafo_image) return features ################# # main block ################# # Get arguments parser = argparse.ArgumentParser(description='Feature extraction') parser.add_argument('image_dir', default='', help='Image directory root (with facial parts folders and npy files)') parser.add_argument('output_dir', default='', help='Output directory with extracted features') parser.add_argument('features', default='', help='Features to be extracted [all, dct, mlbp, hog, gabor, glcm]') args = parser.parse_args() if (not(os.path.exists(args.image_dir))): print('Image directory root (\"' + args.image_dir + '\") not found.') exit() if (not(os.path.exists(args.output_dir))): os.mkdir(args.output_dir) if not(args.features in ['all', 'dct', 'mlbp', 'hog', 'gabor', 'glcm']): print('Features not implemented (\"' + args.image_dir + '\"). Available: [all, dct, mlbp, hog, gabor, glcm]') exit() image_dir = args.image_dir output_dir = args.output_dir features = args.features print(datetime.now().strftime('%d/%m/%Y %H:%M:%S') + " - feature extraction started") print("Image directory: " + image_dir) print("Output directory: " + output_dir) print("Selected features: " + features) partList = os.listdir(image_dir) for part in partList: in_part_dir = os.path.join(image_dir, part) print (in_part_dir) if (not(os.path.isdir(in_part_dir))): continue print (datetime.now().strftime('%d/%m/%Y %H:%M:%S') + " - Current facial part " + part) out_part_dir = os.path.join(output_dir, part) # create feature directories if (not(os.path.exists(out_part_dir))): os.mkdir(out_part_dir) if (features in ['all', 'dct']): dct_dir = os.path.join(out_part_dir, 'dct') if (not(os.path.exists(dct_dir))): os.mkdir(dct_dir) if (features in ['all', 'mlbp']): mlbp_dir = os.path.join(out_part_dir, 'mlbp') if (not(os.path.exists(mlbp_dir))): os.mkdir(mlbp_dir) if (features in ['all', 'hog']): hog_dir = os.path.join(out_part_dir, 'hog') if (not(os.path.exists(hog_dir))): os.mkdir(hog_dir) if (features in ['all', 'gabor']): gabor_dir = os.path.join(out_part_dir, 'gabor') if (not(os.path.exists(gabor_dir))): os.mkdir(gabor_dir) if (features in ['all', 'glcm']): glcm_dir = os.path.join(out_part_dir, 'glcm') if (not(os.path.exists(glcm_dir))): os.mkdir(glcm_dir) images = os.listdir(in_part_dir) for i in images: if (i[len(i)-3:len(i)] != 'npy'): # check the file extension continue print (datetime.now().strftime('%d/%m/%Y %H:%M:%S') + " - Current file " + i) img = numpy.load(os.path.join(in_part_dir, i)) tt_img = compute_tanTriggs(img) if (features in ['all', 'dct']): descriptor = compute_dct(tt_img) numpy.save(os.path.join(dct_dir, i), descriptor) if (features in ['all', 'gabor']): descriptor = compute_gabor(tt_img) numpy.save(os.path.join(gabor_dir, i), descriptor) if (features in ['all', 'glcm']): descriptor = compute_glcm(img) # without tan and triggs numpy.save(os.path.join(glcm_dir, i), descriptor) if (features in ['all', 'hog']): # remove border according to each facial if (part =='eyebrows'): img_hog = tt_img[2:18, 3:139] elif (part =='eyes'): img_hog = tt_img[3:27, 2:154] elif (part == 'nose'): img_hog = tt_img[1:113, 1:161] elif (part == 'mouth'): img_hog = tt_img[1:81, 3:139] else: img_hog = None print('HOG not calculated due to facial part is unknown (' + part + ')') if not(img_hog is None): descriptor = compute_hog_descriptor(img_hog) numpy.save(os.path.join(hog_dir, i), descriptor) if (features in ['all', 'mlbp']): # neighbors, block size and overlap according to each facial part if (part in ['eyebrows', 'eyes']): descriptor = compute_mlbp(tt_img, 8, (8, 8), (4, 4)) elif (part == 'nose'): descriptor = compute_mlbp(tt_img, 8, (16, 16), (8, 8)) elif (part == 'mouth'): descriptor = compute_mlbp(tt_img, 4, (16, 16), (8, 8)) else: descriptor = None print('MLBP not calculated due to facial part is unknown (' + part + ')') if not(descriptor is None): numpy.save(os.path.join(mlbp_dir, i), descriptor) print(datetime.now().strftime('%d/%m/%Y %H:%M:%S') + " - feature extraction finished")
apache-2.0
-5,217,122,152,457,738,000
33.797153
144
0.542293
false
codesociety/friartuck
friar_tuck_run.py
1
5477
""" MIT License Copyright (c) 2017 Code Society Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time import argparse import sys from friartuck.api import FriarTuckLive, Order import logging from os import path import configparser parser = argparse.ArgumentParser(description='FriarTuck Quant Robinhood Broker Application') parser.add_argument('--algo_script', action="store", dest="algo_script", help="Algorithm script file") parser.add_argument('--config_file', action="store", dest="config_file", help="Configuration file which should include credentials") parser.add_argument('--data_frequency', action="store", dest="data_frequency", help="[1m, 5m, 15m, 1h, 1d] The frequency of bar data... default is 1h") # parser.add_argument('--tzone', action="store", dest="tzone", help="Time_zone") log = logging.getLogger("friar_tuck") PATH = path.abspath(path.dirname(__file__)) ROOT = path.dirname(PATH) friar_tuck = None def get_config(config_filename): friar_config = configparser.ConfigParser( interpolation=configparser.ExtendedInterpolation(), allow_no_value=True, delimiters='=', inline_comment_prefixes='#' ) local_filename = config_filename.replace('.cfg', '_local.cfg') if path.isfile(local_filename): config_filename = local_filename with open(config_filename, 'r') as file: friar_config.read_file(file) return friar_config def get_datetime(): return friar_tuck.get_datetime() def lookup_security(symbol): return friar_tuck.fetch_and_build_security(symbol) def get_order(order): # Checking to see if the order is the Order object, if yes, use the id if isinstance(order, Order): return friar_tuck.get_order(order.id) return friar_tuck.get_order(order) def get_last_filled_buy_order(security): return friar_tuck.get_last_filled_buy_order(security=security) def get_last_filled_sell_order(security): return friar_tuck.get_last_filled_sell_order(security=security) def get_last_filled_orders_by_side(security): return friar_tuck.get_last_filled_orders_by_side(security=security) def get_open_orders(security=None): return friar_tuck.get_open_orders(security) def cancel_order(order): # Checking to see if the order is the Order object, if yes, use the id if isinstance(order, Order): return friar_tuck.cancel_order(order.id) return friar_tuck.cancel_order(order) def order_shares(security, shares, order_type=None, time_in_force='gfd'): return friar_tuck.order_shares(security, shares, order_type, time_in_force) def order_value(security, amount, order_type=None, time_in_force='gfd'): return friar_tuck.order_value(security, amount, order_type, time_in_force) def start_engine(input_args): args = parser.parse_args(input_args) global trading_algo, config trading_algo = __import__(args.algo_script) config_file = args.config_file data_frequency = args.data_frequency if not data_frequency: data_frequency = "1h" CONFIG_FILENAME = path.join(PATH, config_file) config = get_config(CONFIG_FILENAME) # os.environ['TZ'] = 'US/Eastern' # time.tzset() if (not config.get('LOGIN', 'username')) or (not config.get('LOGIN', 'password')): exit('no login credentials given') """Start Shell Setup""" global friar_tuck friar_tuck = FriarTuckLive(config=config, data_frequency=data_frequency) trading_algo.friar_tuck = friar_tuck trading_algo.lookup_security = lookup_security trading_algo.get_order = get_order trading_algo.get_last_filled_buy_order = get_last_filled_buy_order trading_algo.get_last_filled_sell_order = get_last_filled_sell_order trading_algo.get_last_filled_orders_by_side = get_last_filled_orders_by_side trading_algo.get_open_orders = get_open_orders trading_algo.cancel_order = cancel_order trading_algo.order_shares = order_shares trading_algo.order_value = order_value trading_algo.get_datetime = get_datetime friar_tuck.set_active_algo(trading_algo) friar_tuck.run_engine() """End Shell Setup""" if __name__ == "__main__": # if len(sys.argv) <= 2: # exit("Too less arguments calling script") start_engine(sys.argv[1:]) while 1: # log.info("Alive and well: %s" % datetime.datetime.now()) time.sleep(60) friar_tuck.stop_engine() time.sleep(1)
mit
4,185,251,554,969,019,400
31.408284
102
0.708782
false
adalke/rdkit
rdkit/Dbase/UnitTestDbUtils.py
1
4157
# $Id$ # # Copyright (C) 2002-2006 greg Landrum and Rational Discovery LLC # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # """unit testing code for the database utilities """ from rdkit import RDConfig import unittest,os,tempfile from rdkit.Dbase import DbUtils from rdkit.Dbase.DbConnection import DbConnect class TestCase(unittest.TestCase): def setUp(self): #print '\n%s: '%self.shortDescription(), self.baseDir = os.path.join(RDConfig.RDCodeDir,'Dbase','test_data') self.dbName = RDConfig.RDTestDatabase if RDConfig.useSqlLite: tmpf,tempName = tempfile.mkstemp(suffix='sqlt') self.tempDbName = tempName else: self.tempDbName='::RDTests' self.colHeads=('int_col','floatCol','strCol') self.colTypes=('integer','float','string') def tearDown(self): if RDConfig.useSqlLite and os.path.exists(self.tempDbName): try: os.unlink(self.tempDbName) except: import traceback traceback.print_exc() def _confirm(self,tblName,dbName=None): if dbName is None: dbName = self.dbName conn = DbConnect(dbName,tblName) res = conn.GetColumnNamesAndTypes() assert len(res)==len(self.colHeads),'bad number of columns' names = [x[0] for x in res] for i in range(len(names)): assert names[i].upper()==self.colHeads[i].upper(),'bad column head' if RDConfig.useSqlLite: # doesn't seem to be any column type info available return types = [x[1] for x in res] for i in range(len(types)): assert types[i]==self.colTypes[i],'bad column type' def test1Txt(self): """ test reading from a text file """ with open(os.path.join(self.baseDir,'dbtest.csv'),'r') as inF: tblName = 'fromtext' DbUtils.TextFileToDatabase(self.tempDbName,tblName,inF) self._confirm(tblName,dbName=self.tempDbName) def test3Txt(self): """ test reading from a text file including null markers""" with open(os.path.join(self.baseDir,'dbtest.nulls.csv'),'r') as inF: tblName = 'fromtext2' DbUtils.TextFileToDatabase(self.tempDbName,tblName,inF,nullMarker='NA') self._confirm(tblName,dbName=self.tempDbName) def testGetData1(self): """ basic functionality """ d = DbUtils.GetData(self.dbName,'ten_elements',forceList=1) assert len(d)==10 assert tuple(d[0])==(0,11) assert tuple(d[2])==(4,31) with self.assertRaisesRegexp(IndexError, ""): d[11] def testGetData2(self): """ using a RandomAccessDbResultSet """ d = DbUtils.GetData(self.dbName,'ten_elements',forceList=0,randomAccess=1) assert tuple(d[0])==(0,11) assert tuple(d[2])==(4,31) assert len(d)==10 with self.assertRaisesRegexp(IndexError, ""): d[11] def testGetData3(self): """ using a DbResultSet """ d = DbUtils.GetData(self.dbName,'ten_elements',forceList=0,randomAccess=0) with self.assertRaisesRegexp(TypeError, ""): len(d) rs = [] for thing in d: rs.append(thing) assert len(rs)==10 assert tuple(rs[0])==(0,11) assert tuple(rs[2])==(4,31) def testGetData4(self): """ using a RandomAccessDbResultSet with a Transform """ fn = lambda x:(x[0],x[1]*2) d = DbUtils.GetData(self.dbName,'ten_elements',forceList=0,randomAccess=1, transform=fn) assert tuple(d[0])==(0,22) assert tuple(d[2])==(4,62) assert len(d)==10 with self.assertRaisesRegexp(IndexError, ""): d[11] def testGetData5(self): """ using a DbResultSet with a Transform """ fn = lambda x:(x[0],x[1]*2) d = DbUtils.GetData(self.dbName,'ten_elements',forceList=0,randomAccess=0, transform=fn) with self.assertRaisesRegexp(TypeError, ""): len(d) rs = [] for thing in d: rs.append(thing) assert len(rs)==10 assert tuple(rs[0])==(0,22) assert tuple(rs[2])==(4,62) if __name__ == '__main__': unittest.main()
bsd-3-clause
924,426,392,574,821,400
29.343066
78
0.639163
false
slugbucket/package-inventory-server
python/PackageInventoryServer.py
1
1237
#!/usr/bin/env python # # Run the server with # $ export FLASK_APP=PackageInventoryServer.py # $ flask run --host=0.0.0.0 # from flask import Flask, abort, request import os.path app = Flask(__name__) # # Based on http://flask.pocoo.org/docs/0.11/quickstart/#routing # @app.route('/package-inventory/<hostname>', methods=["GET"]) def get_inventory_package(hostname): fn = "cache/%s" % hostname if os.path.isfile(fn): fh = open(fn ,"r") return( fh.read() ) else: abort(404) @app.route('/package-inventory/packages/new', methods=["POST"]) def post_inventory_package(): if validate_input(request) == False: abort(400) jdata = request.get_json() if (jdata['hostname'] != None): hostname = jdata['hostname'] else: hostname = request.host fn = "cache/%s" % hostname fh = open(fn ,"w") if fh.write( str(request.data, 'utf-8') ): st = "{\"status\":\"Received packages for %s.\"}" % hostname return ( st ) else: abort(400) # Method to check that the input data matches expectations def validate_input(request): if( request.is_json == False ): return False return 1 if __name__ == "__main__": app.run()
apache-2.0
-1,550,531,850,034,835,200
24.244898
68
0.602264
false
leapp-to/prototype
leapp/snactor/commands/repo/__init__.py
1
8710
from __future__ import print_function import json import os import subprocess import sys from leapp.utils.clicmd import command, command_opt, command_arg from leapp.utils.repository import requires_repository, find_repository_basedir, get_repository_name, \ get_repository_id, add_repository_link, get_user_config_repos, get_user_config_repo_data, \ get_global_repositories_data from leapp.exceptions import CommandError, UsageError _MAIN_LONG_DESCRIPTION = ''' This group of commands are around managing repositories. For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @command('repo', help='Repository related commands', description=_MAIN_LONG_DESCRIPTION) def repo(args): # noqa; pylint: disable=unused-argument pass _HEALTH_CHECK_LONG_DESCRIPTION = ''' Health check is used to remove stale repository entries from the user local repository registration. For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @repo.command('health-check', help='Checks registered repositories and removes missing entries', description=_HEALTH_CHECK_LONG_DESCRIPTION) def health_check(args): # noqa; pylint: disable=unused-argument to_remove = [] data = get_user_config_repo_data() if not data: return for uuid, path in data.get('repos', {}).items(): if not os.path.isdir(path): print('Removing repository {uuid} => {path}'.format(uuid=uuid, path=path)) to_remove.append(uuid) for uuid in to_remove: data.get('repos', {}).pop(uuid, None) with open(get_user_config_repos(), 'w') as f: json.dump(data, f) _LIST_LONG_DESCRIPTION = ''' Lists repositories on the system. By default it will list all registered user repositories. It also can list global repositories on the system which usually reside in /usr/share/leapp-repository/ by using the --global commandline flag. When using the --all commandline flag, all repositories user and globally are listed. For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @repo.command('list', help='Lists repositories', description=_LIST_LONG_DESCRIPTION) @command_opt('global', is_flag=True, help='List globally available repositories only.') @command_opt('all', is_flag=True, help='List all available user and global repositories.') def list_repos(args): global_repos = {} if getattr(args, 'global', None) or args.all: global_repos = get_global_repositories_data() for entry in global_repos.values(): print('{name:<35} [{uuid}] => {path}'.format(name=entry['name'], path=entry['path'], uuid=entry['id'])) if not getattr(args, 'global', None): user_repos = get_user_config_repo_data() for path in user_repos.get('repos', {}).values(): if os.path.isdir(path): name = get_repository_name(path) uuid = get_repository_id(path) print('{name:<35} [{uuid}] => {path}'.format(name=name, path=path, uuid=uuid)) def register_path(path): """ Calling this function will register a path to be a well :param path: Path to the repository repository :return: """ path = os.path.abspath(os.path.realpath(path)) data = {} repos = get_user_config_repos() if os.path.isfile(repos): with open(repos) as f: data = json.load(f) data.setdefault('repos', {}).update({get_repository_id(path): path}) with open(repos, 'w') as f: json.dump(data, f) _REGISTER_LONG_DESCRIPTION = ''' Registers the current user repository in the users repository registry. For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @repo.command('register', help='Registers the current repository in the user repository registry.', description=_REGISTER_LONG_DESCRIPTION) @requires_repository def register_repo(args): # noqa; pylint: disable=unused-argument base_dir = find_repository_basedir('.') if base_dir: register_path(base_dir) print('Repository successfully registered') _LINK_LONG_DESCRIPTION = ''' Links a given repository to the current repository. Linking a repository is needed, when the current repository requires things like Tags, Models, Topics, Workflows etc from another repository and needs to be executable with `snactor`. Snactor does not know otherwise that it will need to load the content from another repository. Linking the repositories will make snactor load the items from the linked repositories. Repositories can be linked by path, name and repository id. When using the repository name, beware that the first matching name will be linked. Therefore it's recommended to rather link repositories by path or repository id. Usage: $ snactor repo link --path ../../other-repository For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @repo.command('link', help='Links a given repository to the current one', description=_LINK_LONG_DESCRIPTION) @command_opt('path', help='Path to the repository to link') @command_opt('name', help='Name of the repository to link') @command_opt('uuid', help='UUID of the repository to link', ) @requires_repository def link_repo(args): if not any((args.path, args.name, args.uuid)): raise UsageError('Please specify either --path, --name or --uuid to link another repository.') data = get_user_config_repo_data() path = args.path if not path: if args.uuid: path = data.get('repos', {}).get(args.uuid, None) elif args.name: for repository_path in data.get('repos', {}).values(): if os.path.isdir(repository_path): if args.name == get_repository_name(repository_path): path = repository_path break if not path: raise UsageError('Please specify a valid repository name, uuid or path') if add_repository_link('.', get_repository_id(path)): print('Added link to repository {path} - {name}'.format(path=path, name=get_repository_name(path))) _FIND_LONG_DESCRIPTION = ''' Searches for all repositories and registers them. When not specifying --path - It will search from the current working directory for existing leapp repositories and registers all found repositories with the users repository registration. By using --skip-registration it can be used to just detect repositories without registering them. If another path should be scanned than the current working directory pass the --path flag. For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @repo.command('find', help='Find and registers all repositories') @command_opt('skip-registration', is_flag=True, help='Do not register discovered repositories.') @command_opt('path', help='Path to scan from - If not specified the current working directory is assumed') def find_repositories(args): path = args.path or os.path.realpath('.') result = subprocess.check_output(['/usr/bin/find', '-L', path, '-name', '.leapp']).decode('utf-8') for repository in result.split('\n'): if repository.strip(): repository = os.path.dirname(repository) if not args.skip_registration: print('Registering {path}'.format(path=repository)) register_path(repository) else: print(repository) _REPOSITORY_CONFIG = ''' [repositories] repo_path=${repository:root_dir} [database] path=${repository:state_dir}/leapp.db ''' _LONG_DESCRIPTION = ''' Creates a new local repository for writing Actors, Models, Tags, Topics, and Workflows or adding shared files, tools or libraries. For more information please consider reading the documentation at: https://red.ht/leapp-docs ''' @repo.command('new', help='Creates a new repository', description=_LONG_DESCRIPTION) @command_arg('name') def new_repository(args): name = args.name basedir = os.path.join('.', name) if os.path.isdir(basedir): raise CommandError("Directory already exists: {}".format(basedir)) os.mkdir(basedir) repository_dir = os.path.join(basedir, '.leapp') os.mkdir(repository_dir) with open(os.path.join(repository_dir, 'info'), 'w') as f: json.dump({ 'name': name }, f) with open(os.path.join(repository_dir, 'leapp.conf'), 'w') as f: f.write(_REPOSITORY_CONFIG) register_path(basedir) sys.stdout.write("New repository {} has been created in {}\n".format(name, os.path.realpath(name)))
lgpl-2.1
6,380,800,431,282,541,000
36.381974
111
0.691848
false
007gzs/django_restframework_apiview
apiview/code.py
1
1380
# encoding: utf-8 from __future__ import absolute_import, unicode_literals class CodeData(object): def __init__(self, code, tag, message): self.code = code self.message = message self.tag = tag def __str__(self): return str(self.code) def __eq__(self, other): if isinstance(other, CodeData): return other.code == self.code elif isinstance(other, type(self.code)): return other == self.code else: return super(CodeData, self).__eq__(other) def get_res_dict(self, **kwargs): ret = dict(kwargs) ret['code'] = self.code if 'message' not in ret: ret['message'] = self.message return ret class Code(object): def __init__(self, code_define): codes = set() self._list = list() self._dict = dict() self._tags = list() for tag, code, message in code_define: assert code not in codes and not hasattr(self, tag) setattr(self, tag, CodeData(code, tag, message)) codes.add(code) self._tags.append(tag) self._list.append((code, message)) self._dict[code] = message def get_list(self): return self._list def get_dict(self): return self._dict def get_tags(self): return self._tags
lgpl-3.0
-7,000,125,340,502,342,000
25.037736
63
0.546377
false
jittat/ku-eng-direct-admission
application/views/account.py
1
13340
# -*- coding: utf-8 -*- from django.http import HttpResponseRedirect, HttpResponseForbidden from django.shortcuts import render_to_response, get_object_or_404 from django.core.urlresolvers import reverse from django.conf import settings from django import forms from MySQLdb import IntegrityError from commons.utils import redirect_to_index, submission_deadline_passed from application.views import redirect_to_first_form from application.views import redirect_to_applicant_first_page from application.models import Applicant from application.models import SubmissionInfo from application.models import Registration from application.forms import LoginForm, ForgetPasswordForm from application.forms import RegistrationForm, ActivationNameForm from commons.email import send_password_by_email, send_activation_by_email from commons.models import Announcement from commons.decorators import within_submission_deadline ALLOWED_LOGOUT_REDIRECTION = ['http://admission.eng.ku.ac.th'] def login(request): announcements = Announcement.get_all_enabled_annoucements() if not settings.LOGIN_ENABLED: # login disabled if request.method == 'POST': return HttpResponseForbidden() else: return render_to_response('application/wait.html', { 'announcements': announcements }) error_messages = [] if request.method == 'POST': form = LoginForm(request.POST) if form.is_valid(): passwd = form.cleaned_data['password'] national_id = form.cleaned_data['national_id'] applicants = list(Applicant.objects.filter(national_id=national_id).all()) if len(applicants)!=0: applicant = applicants[0] else: applicant = None if applicant!=None: if applicant.activation_required: email = applicant.email return render_to_response( 'application/registration/activation-required.html', { 'email': email }) elif applicant.check_password(passwd): # authenticated if not applicant.has_logged_in: applicant.has_logged_in = True applicant.save() request.session['applicant_id'] = applicant.id return redirect_to_applicant_first_page(applicant) from django.forms.util import ErrorList form._errors['password'] = ErrorList(['รหัสผ่านผิดพลาด']) error_messages.append('รหัสผ่านผิดพลาด') else: form = LoginForm() return render_to_response('application/start.html', { 'form': form, 'submission_deadline_passed': submission_deadline_passed(), 'errors': error_messages, 'announcements': announcements }) def logout(request): next_url = None if 'url' in request.GET: next_url = request.GET['url'] if next_url[0]!='/': next_url = 'http://' + next_url request.session.flush() if next_url and (next_url in ALLOWED_LOGOUT_REDIRECTION): return HttpResponseRedirect(next_url) else: return redirect_to_index(request) def duplicate_email_error(applicant, email, first_name, last_name): # query set is lazy, so we have to force it, using list(). old_registrations = list(applicant.registrations.all()) new_registration = Registration(applicant=applicant, first_name=first_name, last_name=last_name) new_registration.random_and_save() send_activation_by_email(applicant, new_registration.activation_key) applicant.activation_required = True applicant.save() return render_to_response('application/registration/duplicate.html', { 'applicant': applicant, 'email': email, 'old_registrations': old_registrations, 'new_registration': new_registration, 'step_name': "อีเมล์นี้มีการลงทะเบียนไว้แล้ว ต้องมีการยืนยันอีเมล์" }) def validate_email_and_national_id(email, national_id): applicant = Applicant.get_applicant_by_national_id(national_id) if applicant!=None: return (False, 'national_id', applicant) else: applicant = Applicant.get_applicant_by_email(email) if applicant!=None: return (False, 'email', applicant) else: return (True, None, None) def registration_error(error_field, applicant, email, national_id, first_name, last_name): if error_field == 'email': return duplicate_email_error(applicant, email, first_name, last_name) else: return render_to_response( 'application/registration/duplicate-nat-id-error.html', { 'national_id': national_id, 'step_name': u'เกิดปัญหาในการลงทะเบียน เนื่องจากมีการใช้รหัสประจำตัวประชาชนซ้ำ'}) @within_submission_deadline def register(request): if request.method == 'POST': if 'cancel' in request.POST: return redirect_to_index(request) form = RegistrationForm(request.POST) if form.is_valid(): email = form.cleaned_data['email'] first_name=form.cleaned_data['first_name'] last_name=form.cleaned_data['last_name'] national_id=form.cleaned_data['national_id'] result, error_field, applicant = ( validate_email_and_national_id(email, national_id)) if result: try: applicant = form.get_applicant() passwd = applicant.random_password() applicant.save() except IntegrityError: # somehow, it gets error result, error_field, applicant = ( validate_email_and_national_id(email, national_id)) return registration_error(error_field, applicant, email, national_id, first_name, last_name) registration = Registration( applicant=applicant, first_name=first_name, last_name=last_name) registration.random_and_save() send_password_by_email(applicant, passwd) return render_to_response( 'application/registration/success.html', {'email': form.cleaned_data['email'], 'step_name': "การลงทะเบียนเรียบร้อย" }) else: if not applicant.has_logged_in: return registration_error(error_field, applicant, email, national_id, first_name, last_name) # e-mail or national id has been registered and logged in from django.forms.util import ErrorList from commons.utils import admin_email if error_field == 'email': dup_obj = u'อีเมล์' else: dup_obj = u'รหัสประจำตัวประชาชน' form._errors['__all__'] = ErrorList([ u"""%(dup_obj)sนี้ถูกลงทะเบียนและถูกใช้แล้ว ถ้าอีเมล์นี้เป็นของคุณจริงและยังไม่เคยลงทะเบียน กรุณาติดต่อผู้ดูแลระบบทางอีเมล์ <a href="mailto:%(email)s">%(email)s</a> หรือทางเว็บบอร์ด อาจมีผู้ไม่ประสงค์ดีนำอีเมล์คุณไปใช้""" % {'dup_obj': dup_obj, 'email': admin_email()}]) else: form = RegistrationForm() return render_to_response('application/registration/register.html', { 'form': form }) @within_submission_deadline def activate(request, activation_key): try: registration = Registration.objects.get(activation_key=activation_key) except Registration.DoesNotExist: return render_to_response( 'application/registration/activation-not-required.html', {'step_name': "ไม่จำเป็นต้องมีการยืนยันอีเมล์"}) applicant = registration.applicant if not applicant.activation_required: return render_to_response( 'application/registration/activation-not-required.html', {'step_name': "ไม่จำเป็นต้องมีการยืนยันอีเมล์"}) if not applicant.verify_activation_key(activation_key): return render_to_response( 'application/registration/incorrect-activation-key.html', {'applicant': applicant, 'step_name': "รหัสยืนยันผิดพลาด" }) if request.method == 'GET': # get a click from e-mail name_form = ActivationNameForm(initial={ 'title': applicant.title, 'first_name': applicant.first_name, 'last_name': applicant.last_name}) else: name_form = ActivationNameForm(request.POST) if name_form.is_valid(): applicant.activation_required = False applicant.title = name_form.cleaned_data['title'] applicant.first_name = name_form.cleaned_data['first_name'] applicant.last_name = name_form.cleaned_data['last_name'] passwd = applicant.random_password() applicant.save() registration = Registration( applicant=applicant, first_name=applicant.first_name, last_name=applicant.last_name) registration.random_and_save() send_password_by_email(applicant, passwd) return render_to_response( 'application/registration/activation-successful.html', {'applicant': applicant}) return render_to_response( 'application/registration/activation-name-confirmation.html', {'applicant': applicant, 'form': name_form, 'activation_key': activation_key, 'no_first_page_link': True, 'step_name': "การยืนยันอีเมล์ - รหัสสำหรับยืนยันถูกต้อง" }) def forget_password(request): if request.method == 'POST': form = ForgetPasswordForm(request.POST) if form.is_valid(): email = form.cleaned_data['email']['email'] applicant = form.cleaned_data['email']['applicant'] if applicant.can_request_password(): if applicant.activation_required: return duplicate_email_error(applicant, email, applicant.first_name, applicant.last_name) new_pwd = applicant.random_password() applicant.save() send_password_by_email(applicant, new_pwd) return render_to_response( 'application/registration/password-sent.html', {'email': email, 'step_name': "ส่งรหัสผ่านให้แล้ว"}) else: return render_to_response( 'application/registration/too-many-requests.html', {'email': email, 'step_name': "ขอรหัสผ่านบ่อยครั้งเกินไป"}) else: form = ForgetPasswordForm() return render_to_response('application/forget.html', { 'form': form })
agpl-3.0
-2,274,095,997,374,761,200
40.1
102
0.537064
false
chapmanb/cloudbiolinux
data_fabfile.py
1
3179
"""Fabric deployment file to install genomic data on remote instances. Designed to automatically download and manage biologically associated data on cloud instances like Amazon EC2. Fabric (http://docs.fabfile.org) manages automation of remote servers. Usage: fab -i key_file -H servername -f data_fabfile.py install_data """ import os import sys from fabric.main import load_settings from fabric.api import * from fabric.contrib.files import * from fabric.context_managers import path try: import boto except ImportError: boto = None # preferentially use local cloudbio directory for to_remove in [p for p in sys.path if p.find("cloudbiolinux-") > 0]: sys.path.remove(to_remove) sys.path.append(os.path.dirname(__file__)) from cloudbio.utils import _setup_logging, _configure_fabric_environment from cloudbio.biodata import genomes # -- Host specific setup env.remove_old_genomes = False def setup_environment(): """Setup environment with required data file locations. """ _setup_logging(env) _add_defaults() _configure_fabric_environment(env, ignore_distcheck=True) def _add_defaults(): """Defaults from fabricrc.txt file; loaded if not specified at commandline. """ env.config_dir = os.path.join(os.path.dirname(__file__), "config") conf_file = "tool_data_table_conf.xml" env.tool_data_table_conf_file = os.path.join(os.path.dirname(__file__), "installed_files", conf_file) if not env.has_key("distribution"): config_file = os.path.join(env.config_dir, "fabricrc.txt") if os.path.exists(config_file): env.update(load_settings(config_file)) CONFIG_FILE = os.path.join(os.path.dirname(__file__), "config", "biodata.yaml") def install_data(config_source=CONFIG_FILE): """Main entry point for installing useful biological data. """ setup_environment() genomes.install_data(config_source) def install_data_raw(config_source=CONFIG_FILE): """Installing useful biological data building from scratch. Useful for debugging. """ setup_environment() genomes.install_data(config_source, approaches=["raw"]) def install_data_s3(config_source=CONFIG_FILE, do_setup_environment=True): """Install data using pre-existing genomes present on Amazon s3. """ setup_environment() genomes.install_data_s3(config_source) def install_data_rsync(config_source=CONFIG_FILE): """Install data using Galaxy rsync data servers. """ setup_environment() genomes.install_data_rsync(config_source) def install_data_ggd(recipe, organism): """Install data using Get Genomics Data (GGD) recipes. """ setup_environment() from cloudbio.biodata import ggd, genomes genome_dir = os.path.join(genomes._make_genome_dir(), organism) recipe_file = os.path.join(os.path.dirname(__file__), "ggd-recipes", organism, "%s.yaml" % recipe) ggd.install_recipe(genome_dir, env, recipe_file, organism) def upload_s3(config_source=CONFIG_FILE): """Upload prepared genome files by identifier to Amazon s3 buckets. """ setup_environment() genomes.upload_s3(config_source)
mit
-2,308,734,205,961,331,700
33.182796
102
0.702108
false
eirannejad/pyRevit
pyrevitlib/rpw/db/transform.py
1
1871
""" Transform Wrappers """ import math import rpw from rpw import DB from rpw.base import BaseObjectWrapper class Transform(BaseObjectWrapper): """ `DB.Transform` Wrapper Attributes: _revit_object (DB.XYZ): Wrapped ``DB.Transform`` """ _revit_object_class = DB.Transform @classmethod def rotate_vector(cls, vector, rotation, center=None, axis=None, radians=False): """ Rotate a Vector or point Usage: >>> from rpw import db >>> db.Transform.rotate_vector(SomeVector, 90.0) Args: vector (``point-like``): Point like element. rotation (``float``): Rotation in degrees. center (``point-like``, optional): Center of rotation [default: 0,0,0] axis (``point-like``, optional): Axis of rotation [default: 0,0,1] radians (``bool``, optional): True for rotation angle is in radians [default: False] Returns: ``point-like``: Rotate Vector """ XYZ = rpw.db.XYZ vector = XYZ(vector) if radians: angle_rad = rotation else: angle_rad = math.radians(rotation) axis = XYZ(DB.XYZ(0,0,1)) if not axis else XYZ(axis) center = XYZ(DB.XYZ(0,0,0)) if not center else XYZ(center) transform = cls._revit_object_class.CreateRotationAtPoint( axis.unwrap(), angle_rad, center.unwrap()) return XYZ(transform.OfVector(vector.unwrap())) @classmethod def move(cls, vector, object): """ Rotate a Vector by Degrees """ raise NotImplemented # vector = XYZ(vector) # transform = cls._revit_object_class.CreateTranslation(vector)
gpl-3.0
-1,232,147,447,180,251,000
31.824561
96
0.544094
false
Karaage-Cluster/python-tldap
tldap/utils.py
1
1651
# Copyright 2012-2014 Brian May # # This file is part of python-tldap. # # python-tldap is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # python-tldap is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with python-tldap If not, see <http://www.gnu.org/licenses/>. """ Contains ConnectionHandler which represents a list of connections. """ import sys from threading import local DEFAULT_LDAP_ALIAS = "default" def load_backend(backend_name): __import__(backend_name) return sys.modules[backend_name] class ConnectionHandler(object): """ Contains a list of known LDAP connections. """ def __init__(self, databases): self.databases = databases self._connections = local() def __getitem__(self, alias): if hasattr(self._connections, alias): return getattr(self._connections, alias) db = self.databases[alias] backend = load_backend(db['ENGINE']) conn = backend.LDAPwrapper(db) setattr(self._connections, alias, conn) return conn def __iter__(self): return iter(self.databases) def all(self): """ Return list of all connections. """ return [self[alias] for alias in self]
gpl-3.0
-3,364,013,351,599,750,000
29.018182
74
0.688674
false
katsumin/HomeRpi
bp35c0_join2.py
1
1963
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import sys sys.path.append("/home/pi/HomeRpi") import serial import time import ConfigParser iniFile = ConfigParser.SafeConfigParser() iniFile.read('./config.ini') args = sys.argv # シリアルポート初期化 serialPortDev = iniFile.get('smartmeter', 'serial_port') baudRate = iniFile.get('smartmeter', 'serial_bps') ser = serial.Serial(serialPortDev, int(baudRate)) # 関数 def waitOk() : while True : line = ser.readline() print(line, end="") if line.startswith("OK") : break # コマンド送信 while True : ser.write("SKVER\r\n") line = ser.readline() if line.startswith("OK") : break #pwd = args[1] pwd = iniFile.get('smartmeter', 'pwd') ser.write("SKSETPWD C {0}\r\n".format(pwd)) waitOk() #bid = args[2] bid = iniFile.get('smartmeter', 'bid') ser.write("SKSETRBID {0}\r\n".format(bid)) waitOk() scanRes = {} ser.write("SKSCAN 2 FFFFFFFF 6 0\r\n") while True : line = ser.readline() print(line, end="") if line.startswith("EVENT 22") : break elif line.startswith(" ") : cols = line.strip().split(':') scanRes[cols[0]] = cols[1] ser.write("SKSREG S2 " + scanRes["Channel"] + "\r\n") waitOk() ser.write("SKSREG S3 " + scanRes["Pan ID"] + "\r\n") waitOk() ser.write("SKLL64 " + scanRes["Addr"] + "\r\n") while True : line = ser.readline() print(line, end="") if not line.startswith("SKLL64") : ipv6Addr = line.strip() break print(ipv6Addr) iniFile.set('smartmeter','address',ipv6Addr) fp=open('./config.ini','w') iniFile.write(fp) fp.close() #ipv6Addr = "FE80:0000:0000:0000:021C:6400:03CE:BD79" command = "SKJOIN {0}\r\n".format(ipv6Addr) ser.write(command) while True: line = ser.readline() print(line, end="") if line.startswith("EVENT 24") : break elif line.startswith("EVENT 25") : break
mit
-3,208,476,356,250,593,000
20.897727
56
0.622211
false
cmuphyscomp/hmv-s16
Grasshopper/MocapDemo/optirecv.py
1
7577
# optirecv.py : motion capture data receiver for use within Grasshopper ghpython objects # Copyright (c) 2016, Garth Zeglin. All rights reserved. Licensed under the # terms of the BSD 3-clause license. # use RhinoCommon API import Rhino # Make sure that the Python libraries that are also contained within this course # package are on the load path. This adds the python/ folder to the load path # *after* the current folder. The path manipulation assumes that this module is # still located within the Grasshopper/MocapDemo subfolder, and so the package # modules are at ../../python. import sys, os sys.path.insert(1, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))), "python")) # import the Optitrack stream decoder import optirx # import a quaternion conversion function from optitrack.geometry import quaternion_to_xaxis_yaxis # load the Grasshopper utility functions from the course packages from ghutil import * # share the mocap coordinate conversion code with the CSV loader from optiload import rotated_point, rotated_orientation, plane_or_null #================================================================ class OptitrackReceiver(object): def __init__(self, version_string, ip_address=None): # The version string should be of the form "2900" and should match the SDK version of the Motive software. # E.g. Motive 1.9 == SDK 2.9.0.0 == "2900" # Motive 1.8 == SDK 2.8.0.0 == "2800" self.sdk_version = tuple(map(int,version_string)) # e.g. result is (2,9,0,0) # create a multicast UDP receiver socket self.receiver = optirx.mkdatasock(ip_address=ip_address) # set non-blocking mode so the socket can be polled self.receiver.setblocking(0) # Keep track of the most recent results. These are stored as normal Python list structures, but # already rotated into Rhino coordinate conventions. self.positions = list() # list of Point3d objects self.rotations = list() # list of [x,y,z,w] quaternions as Python list of numbers self.bodynames = list() # list of name strings associated with the bodies return #================================================================ def make_plane_list(self): """Return the received rigid body frames as a list of Plane or None (for missing data), one entry per rigid body stream.""" # convert each quaternion into a pair of X,Y basis vectors basis_vectors = [quaternion_to_xaxis_yaxis(rot) for rot in self.rotations] # Extract the X and Y axis basis elements into lists of Vector3d objects. xaxes = [Rhino.Geometry.Vector3d(*(basis[0])) for basis in basis_vectors] yaxes = [Rhino.Geometry.Vector3d(*(basis[1])) for basis in basis_vectors] # Generate either Plane or None for each coordinate frame. planes = [plane_or_null(origin, x, y) for origin,x,y in zip(self.positions, xaxes, yaxes)] return planes #================================================================ def _markers_coincide(self, m1, m2): """For now, an exact match (could be fuzzy match).""" return m1[0] == m2[0] and m1[1] == m2[1] and m1[2] == m2[2] def _identify_rigid_bodies(self, sets, bodies): """Compare marker positions to associate a named marker set with a rigid body. :param sets: dictionary of lists of marker coordinate triples :param bodies: list of rigid bodies :return: dictionary mapping body ID numbers to body name Some of the relevant fields: bodies[].markers is a list of marker coordinate triples bodies[].id is an integer body identifier with the User Data field specified for the body in Motive """ # for now, do a simple direct comparison on a single marker on each body mapping = dict() for body in bodies: marker1 = body.markers[0] try: for name,markerset in sets.items(): if name != 'all': for marker in markerset: if self._markers_coincide(marker1, marker): mapping[body.id] = name raise StopIteration except StopIteration: pass return mapping #================================================================ def poll(self): """Poll the mocap receiver port and return True if new data is available.""" try: data = self.receiver.recv(optirx.MAX_PACKETSIZE) except: return False packet = optirx.unpack(data, version=self.sdk_version) if type(packet) is optirx.SenderData: version = packet.natnet_version print "NatNet version received:", version elif type(packet) is optirx.FrameOfData: nbodies = len(packet.rigid_bodies) # print "Received frame data with %d rigid bodies." % nbodies # print "Received FrameOfData with sets:", packet.sets # There appears to be one marker set per rigid body plus 'all'. # print "Received FrameOfData with names:", packet.sets.keys() # print "First marker of first marker set:", packet.sets.values()[0][0] # print "Received FrameOfData with rigid body IDs:", [body.id for body in packet.rigid_bodies] # print "First marker of first rigid body:", packet.rigid_bodies[0].markers[0] # print "First tracking flag of first rigid body:", packet.rigid_bodies[0].tracking_valid # compare markers to associate the numbered rigid bodies with the named marker sets mapping = self._identify_rigid_bodies( packet.sets, packet.rigid_bodies) # print "Body identification:", mapping if nbodies > 0: # print packet.rigid_bodies[0] # rotate the coordinates into Rhino conventions and save them in the object instance as Python lists self.positions = [ rotated_point(body.position) if body.tracking_valid else None for body in packet.rigid_bodies] self.rotations = [ rotated_orientation(body.orientation) for body in packet.rigid_bodies] self.bodynames = [ mapping.get(body.id, '<Missing>') for body in packet.rigid_bodies] # return a new data indication return True elif type(packet) is optirx.ModelDefs: print "Received ModelDefs:", packet else: print "Received unhandled NatNet packet type:", packet # else return a null result return False #================================================================ def frames_to_tree(frame_list): """Utility function to convert a list of list of Plane objects representing a trajectory segment into a GH data tree.""" # Transpose the frame list for output. As accumulated, it is a list of lists: # [[body1_sample0, body2_sample0, body3_sample0, ...], [body1_sample1, body2_sample1, body3_sample1, ...], ...] segment = zip(*frame_list) # Convert a Python list-of-lists into a data tree. Segment is a list of trajectories: # [[body1_sample0, body1_sample1, body1_sample2, ...], [body2_sample0, body2_sample1, body2_sample2, ...], ...] return list_to_tree(segment) #================================================================
bsd-3-clause
5,983,820,118,657,110,000
46.955696
131
0.60776
false
KarlPineau/patrimeph
lookForErrors.py
1
1377
import re import math import json import operator from collections import Counter import collections import xml.etree.ElementTree as ET import urllib.request import urllib.parse tree = ET.parse('workingDirectory/skos.rdf') root = tree.getroot() namespaces = {"skos": "http://www.w3.org/2004/02/skos/core#", "xml": "http://www.w3.org/XML/1998/namespace", "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#"} arrayNamespace = [] arrayFalse = [] for preConcept in root.findall('.//skos:Concept', namespaces): for preAttrib in preConcept.attrib: arrayNamespace.append(preConcept.attrib[preAttrib]) for broader in root.findall('.//skos:broader', namespaces): for attrib in broader.attrib: if broader.attrib[attrib] not in arrayNamespace: arrayFalse.append(" > broader > "+broader.attrib[attrib]) for narrower in root.findall('.//skos:narrower', namespaces): for attrib in narrower.attrib: if narrower.attrib[attrib] not in arrayNamespace: arrayFalse.append(" > narrower > "+narrower.attrib[attrib]) for related in root.findall('.//skos:related', namespaces): for attrib in related.attrib: if related.attrib[attrib] not in arrayNamespace: arrayFalse.append(" > related > "+related.attrib[attrib]) # print(arrayNamespace) for error in arrayFalse: print(error)
mit
9,186,682,194,282,567,000
32.585366
71
0.694989
false
sri13/nas_sor_code
implementSOR.py
1
4374
# -*- coding: utf-8 -*- """ """ import numpy as np def get_euclid_norm(matrix): """ this function accepts one vector the calling function should compute this vector as the difference of two vectors the standard Euclidean distance formula sqrt(x1^2+x2^2+....+xn^2) is applied """ sum = 0 for each_val in matrix: sum+=each_val**2 return np.sqrt(sum) def get_residual(A, x, b): """ return the residual error Ax-b for an approximation of x input parameters should be numpy arrays this is not as simple as using numpy.dot because A is in CSR format """ adotx = [] for i in range(0,len(b)): adotx.append(0.0) #i should really do a DOT function instead of coding it explicitly here and in SOR also for j in range (0, len(b)): first_nz = A[1][(A[2][j]-1)] - 1 #pos of first non zero on row for k in range(A[2][j]-1, A[2][j+1]-1): adotx[j] = adotx[j] + A[0][k] * x[k - (A[2][j]-1) + first_nz] return get_euclid_norm(np.subtract(adotx, b)) def get_x_seq(xold, xnew): """ this function computes Euclidean distance between successive iterations of x input parameters should be numpy arrays """ return get_euclid_norm(np.subtract(xnew, xold)) def chk_diverge(xold, xnew, A, b): """ check if previous approx of x was closer than new approx of x """ dist_old = get_residual(A, xold, b) dist_new = get_residual(A, xnew, b) if dist_old < dist_new: return True else: return False def chk_converge(A, xnew, b, xold, x_seq_tol, res_tol, flag): #checks both residual and x_seq for convergence if flag == True: return -1 #required to enter sparse_sor loop elif get_residual(A, xnew, b) < res_tol: return 2 #dict value for this stopping reason elif get_x_seq(xold, xnew) < x_seq_tol: return 1 elif chk_diverge(xold, xnew, A, b) == True: return 4 return -1 def sparse_sor(matrix_a, vector_b, matrix_x, dimension_n, max_it=50, \ x_tol=1e-13, res_tol=1e-13, w=1.25 ): num_it = 1 stop_reason = 6 #something has gone wrong if this does not get overwritten later matrix_x_last_it = np.array([0.0]) matrix_x_new = np.array(matrix_x) matrix_a_np = np.array(matrix_a) vector_b_np = np.array(vector_b) flag = True #required to enter while loop first time only while num_it <= max_it and \ chk_converge(matrix_a_np, matrix_x_new, vector_b_np, matrix_x_last_it, x_tol, res_tol, flag) == -1: flag = False matrix_x_last_it = np.array(matrix_x_new[:]) for i in range(0,len(vector_b)): sum = 0 first_nz = matrix_a_np[1][(matrix_a_np[2][i]-1)] - 1 #pos of first non zero on row for j in range(matrix_a_np[2][i]-1, matrix_a_np[2][i+1]-1): sum = sum + matrix_a_np[0][j] * matrix_x_new[j - \ (matrix_a_np[2][i]-1) + first_nz] if matrix_a_np[1][j] == i+1: d = matrix_a[0][j] matrix_x_new[i] = matrix_x_new[i] + w * (vector_b_np[i] - sum) / d num_it+=1 conv = chk_converge(matrix_a_np, matrix_x_new, vector_b_np, matrix_x_last_it, \ x_tol, res_tol, False) if num_it-1 == max_it: stop_reason = 3 elif conv != -1: stop_reason = conv # processIO.output(err.args[1], max_it, num_it, x_tol, res_tol, matrix_x, output_filename,err.args[0]) # set_output(stop_reason, max_it, num_it-1, x_tol, res_tol,matrix_x_new, ) return (stop_reason, max_it, num_it-1, matrix_x_new ) def dense_SOR(matrix_a,vector_b,dimension_n,max_iteration,w,matrix_x): print("Dense SOR Calculation") it_counter=0 while(it_counter<=max_iteration): for row_counter in range(dimension_n): sum=0.0 for col_counter in range(dimension_n): sum = sum + matrix_a[row_counter,col_counter]*matrix_x[col_counter] matrix_x[row_counter]=matrix_x[row_counter]+w*(vector_b[row_counter]-sum) \ /matrix_a[row_counter,row_counter] # print("Iteration: ",it_counter,"\n","X:",matrix_x) it_counter+=1 return
gpl-3.0
-6,432,232,432,044,914,000
36.067797
116
0.568587
false
lebinh/ministat
setup.py
1
2736
# Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='ministat', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.0.2', description='A mini statistics library for Python inspired by the `ministat` command', long_description=long_description, # The project's main homepage. url='https://github.com/lebinh/ministat', # Author details author='Binh Le', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='ministat statistic', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ 'dev': [], 'test': [], }, )
mit
5,320,854,888,845,466,000
33.2125
90
0.652778
false
FedericoCeratto/debian-python-logging-tree
logging_tree/tests/test_format.py
1
5711
"""Tests for the `logging_tree.format` module.""" import logging import logging.handlers import unittest import sys from logging_tree.format import build_description, printout from logging_tree.tests.case import LoggingTestCase if sys.version_info >= (3,): from io import StringIO else: from StringIO import StringIO class FakeFile(StringIO): def __init__(self, filename, mode, encoding=None): self.filename = filename StringIO.__init__(self) def __repr__(self): return '<file %r>' % self.filename def fileno(self): return 0 class FormatTests(LoggingTestCase): def setUp(self): # Prevent logging file handlers from trying to open real files. # (The keyword delay=1, which defers any actual attempt to open # a file, did not appear until Python 2.6.) logging.open = FakeFile super(FormatTests, self).setUp() def tearDown(self): del logging.open super(FormatTests, self).tearDown() def test_printout(self): stdout, sys.stdout = sys.stdout, StringIO() printout() self.assertEqual(sys.stdout.getvalue(), '<--""\n Level WARNING\n') sys.stdout = stdout def test_simple_tree(self): logging.getLogger('a') logging.getLogger('a.b').setLevel(logging.DEBUG) logging.getLogger('x.c') self.assertEqual(build_description(), '''\ <--"" Level WARNING | o<--"a" | Level NOTSET so inherits level WARNING | | | o<--"a.b" | Level DEBUG | o<--[x] | o<--"x.c" Level NOTSET so inherits level WARNING ''') def test_fancy_tree(self): logging.getLogger('').setLevel(logging.DEBUG) log = logging.getLogger('db') log.setLevel(logging.INFO) log.propagate = False log.disabled = 1 log.addFilter(MyFilter()) handler = logging.StreamHandler() log.addHandler(handler) handler.addFilter(logging.Filter('db.errors')) logging.getLogger('db.errors') logging.getLogger('db.stats') log = logging.getLogger('www.status') log.setLevel(logging.DEBUG) log.addHandler(logging.FileHandler('/foo/log.txt')) log.addHandler(MyHandler()) self.assertEqual(build_description(), '''\ <--"" Level DEBUG | o "db" | Level INFO | Propagate OFF | Disabled | Filter <MyFilter> | Handler Stream %r | Filter name='db.errors' | | | o<--"db.errors" | | Level NOTSET so inherits level INFO | | | o<--"db.stats" | Level NOTSET so inherits level INFO | o<--[www] | o<--"www.status" Level DEBUG Handler File '/foo/log.txt' Handler <MyHandler> ''' % (sys.stderr,)) def test_most_handlers(self): ah = logging.getLogger('').addHandler ah(logging.handlers.RotatingFileHandler( '/bar/one.txt', maxBytes=10000, backupCount=3)) ah(logging.handlers.SocketHandler('server.example.com', 514)) ah(logging.handlers.DatagramHandler('server.example.com', 1958)) ah(logging.handlers.SysLogHandler()) ah(logging.handlers.SMTPHandler( 'mail.example.com', 'Server', 'Sysadmin', 'Logs!')) # ah(logging.handlers.NTEventLogHandler()) ah(logging.handlers.HTTPHandler('api.example.com', '/logs', 'POST')) ah(logging.handlers.BufferingHandler(20000)) sh = logging.StreamHandler() ah(logging.handlers.MemoryHandler(30000, target=sh)) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler RotatingFile '/bar/one.txt' maxBytes=10000 backupCount=3 Handler Socket server.example.com 514 Handler Datagram server.example.com 1958 Handler SysLog ('localhost', 514) facility=1 Handler SMTP via mail.example.com to ['Sysadmin'] Handler HTTP POST to http://api.example.com//logs Handler Buffering capacity=20000 Handler Memory capacity=30000 dumping to: Handler Stream %r ''' % (sh.stream,)) logging.getLogger('').handlers[3].socket.close() # or Python 3 warning def test_2_dot_5_handlers(self): if sys.version_info < (2, 5): return ah = logging.getLogger('').addHandler ah(logging.handlers.TimedRotatingFileHandler('/bar/two.txt')) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler TimedRotatingFile '/bar/two.txt' when='H' interval=3600 backupCount=0 ''') def test_2_dot_6_handlers(self): if sys.version_info < (2, 6): return ah = logging.getLogger('').addHandler ah(logging.handlers.WatchedFileHandler('/bar/three.txt')) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler WatchedFile '/bar/three.txt' ''') def test_nested_handlers(self): h1 = logging.StreamHandler() h2 = logging.handlers.MemoryHandler(30000, target=h1) h2.addFilter(logging.Filter('worse')) h3 = logging.handlers.MemoryHandler(30000, target=h2) h3.addFilter(logging.Filter('bad')) logging.getLogger('').addHandler(h3) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler Memory capacity=30000 dumping to: Filter name='bad' Handler Memory capacity=30000 dumping to: Filter name='worse' Handler Stream %r ''' % (h1.stream,)) class MyFilter(object): def __repr__(self): return '<MyFilter>' class MyHandler(object): def __repr__(self): return '<MyHandler>' if __name__ == '__main__': # for Python <= 2.4 unittest.main()
bsd-2-clause
-7,244,357,543,753,971,000
27.989848
80
0.614778
false
hunter007/baidupy
baidu/api/iplocation.py
1
1068
# -*- coding:utf-8 -*- from __future__ import unicode_literals from baidu.api.base import BaseAPI class IPLocationAPI(BaseAPI): scope = 'location' version = '' def get_location_info(self, ip='', coor=''): """ 获取 IP 对应的位置信息 1.获取指定IP的位置信息:指定IP值,返回该IP对应的位置信息; 2.获取当前设备IP的地址信息:根据用户设备当前的IP返回位置信息; :param ip: ip不出现,或者出现且为空字符串的情况下, 会使用当前访问者的IP地址作为定位参数 :param coor: coor不出现时,默认为百度墨卡托坐标; coor="bd09ll"时,返回为百度经纬度坐标 ..tips: coor="bd09ll"时,即其它接口中描述的 coor_type=3。 """ params = {} if ip: params['ip'] = ip if coor: if str(coor).lower() == 'bd09ll': params['coor'] = 'bd09ll' return self.get('/ip', params=params)
mit
-3,485,742,135,887,327,700
26.310345
53
0.541667
false
xuru/pyvisdk
pyvisdk/do/compute_resource_config_info.py
1
1074
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def ComputeResourceConfigInfo(vim, *args, **kwargs): '''Configuration of the compute resource; applies to both standalone hosts and clusters.''' obj = vim.client.factory.create('ns0:ComputeResourceConfigInfo') # do some validation checking... if (len(args) + len(kwargs)) < 1: raise IndexError('Expected at least 2 arguments got: %d' % len(args)) required = [ 'vmSwapPlacement' ] optional = [ 'spbmEnabled', 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
mit
-5,653,184,942,584,587,000
30.617647
124
0.608939
false
typemytype/RoboFontExtensions
ramsaySt/RamsaySt.roboFontExt/lib/ramsayStData.py
1
3963
from AppKit import NSColor, NSObject from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor _baseDefaultKey = "com.typemytype.ramsaySt" _fillColorDefaultKey = "%s.fillColor" % _baseDefaultKey _strokeColorDefaultKey = "%s.strokeColor" %_baseDefaultKey _showPreviewDefaultKey = "%s.showPreview" %_baseDefaultKey _dataDefaultKey = "%s.data" % _baseDefaultKey class RamsayStDataItem(NSObject): def __new__(cls, *args, **kwargs): return cls.alloc().init() def __init__(self, glyphName, value): self._glyphName = glyphName self._value = list(value) def getRamsaySt(self): return self._value def glyphName(self): return self._glyphName def setGlyphName_(self, value): if value is None: return self._glyphName = value def left(self): return self._value[0] def setLeft_(self, value): if value is None: value = " " self._value[0] = value def right(self): return self._value[1] def setRight_(self, value): if value is None: value = " " self._value[1] = value class RamsayStDataCollection(object): _fallBackFillColor = NSColor.colorWithCalibratedRed_green_blue_alpha_(.34, .54, .92, .7) _fallBackStrokeColor = NSColor.blackColor() _fallbackData = {'-': ('n', 'H'), 'A': ('H', 'V'), 'C': ('c', 'G'), 'B': ('P', 'D'), 'E': ('B', 'F'), 'D': ('B', 'P'), 'G': ('C', 'O'), 'F': ('P', 'E'), 'I': ('J', 'H'), 'H': ('I', 'P'), 'K': ('k', 'I'), 'J': ('j', 'I'), 'M': ('H', 'N'), 'L': ('I', 'H'), 'O': ('C', 'o'), 'N': ('M', 'V'), 'Q': ('O', 'G'), 'P': ('R', 'p'), 'S': ('C', 's'), 'R': ('B', 'P'), 'U': ('u', 'H'), 'T': ('I', 'H'), 'W': ('w', 'V'), 'V': ('v', 'W'), 'Y': ('y', 'V'), 'X': ('x', 'Y'), 'Z': ('z', 'X'), 'a': ('n', 'e'), 'c': ('e', 'C'), 'b': ('d', 'p'), 'e': ('o', 'c'), 'd': ('q', 'b'), 'g': ('o', 'q'), 'f': ('i', 't'), 'i': ('period', 'j'), 'h': ('l', 'n'), 'k': ('h', 'K'), 'j': ('i', 'period'), 'm': ('n', 'w'), 'l': ('h', 'k'), 'o': ('c', 'O'), 'n': ('h', 'm'), 'q': ('d', 'p'), 'p': ('q', 'P'), 's': ('e', 'S'), 'r': ('s', 'n'), 'u': ('v', 'n'), 't': ('s', 'f'), 'w': ('v', 'W'), 'v': ('u', 'w'), 'y': ('v', 'Y'), 'x': ('y', 'X'), 'z': ('x', 'Z')} _fallbackShowPreview = True def __init__(self): self.load() def load(self): self.fillColor = getExtensionDefaultColor(_fillColorDefaultKey, self._fallBackFillColor) self.strokeColor = getExtensionDefaultColor(_strokeColorDefaultKey, self._fallBackStrokeColor) self.showPreview = getExtensionDefault(_showPreviewDefaultKey, self._fallbackShowPreview) self.data = getExtensionDefault(_dataDefaultKey, self._fallbackData) def save(self): setExtensionDefaultColor(_fillColorDefaultKey, self.fillColor) setExtensionDefaultColor(_strokeColorDefaultKey, self.strokeColor) setExtensionDefault(_showPreviewDefaultKey, self.showPreview) setExtensionDefault(_dataDefaultKey, self.data) def keys(self): return self.data.keys() def __contains__(self, key): return key in self.data def get(self, value, fallback=("n", "n")): return self.data.get(value, fallback) def set(self, item): key = item.glyphName() if key is None: return self.data[key] = item.getRamsaySt() def setItems(self, data): self.data = dict() for item in data: self.data[item.glyphName()] = item.getRamsaySt() self.save() def getItems(self): keys = list(self.data.keys()) keys.sort() return [RamsayStDataItem(key, self.data[key]) for key in keys] def newItem(self, glyphName): return RamsayStDataItem(glyphName, (" ", " ")) RamsayStData = RamsayStDataCollection()
mit
6,503,598,902,005,581,000
39.865979
931
0.533434
false
cpaulik/xray
xray/test/test_dataset.py
1
86929
from copy import copy, deepcopy from textwrap import dedent try: import cPickle as pickle except ImportError: import pickle try: import dask.array as da except ImportError: pass import numpy as np import pandas as pd from xray import (align, concat, conventions, backends, Dataset, DataArray, Variable, Coordinate, auto_combine, open_dataset, set_options) from xray.core import indexing, utils from xray.core.pycompat import iteritems, OrderedDict from . import (TestCase, unittest, InaccessibleArray, UnexpectedDataAccess, requires_dask) def create_test_data(seed=None): rs = np.random.RandomState(seed) _vars = {'var1': ['dim1', 'dim2'], 'var2': ['dim1', 'dim2'], 'var3': ['dim3', 'dim1']} _dims = {'dim1': 8, 'dim2': 9, 'dim3': 10} obj = Dataset() obj['time'] = ('time', pd.date_range('2000-01-01', periods=20)) obj['dim1'] = ('dim1', np.arange(_dims['dim1'], dtype='int64')) obj['dim2'] = ('dim2', 0.5 * np.arange(_dims['dim2'])) obj['dim3'] = ('dim3', list('abcdefghij')) for v, dims in sorted(_vars.items()): data = rs.normal(size=tuple(_dims[d] for d in dims)) obj[v] = (dims, data, {'foo': 'variable'}) obj.coords['numbers'] = ('dim3', np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 3], dtype='int64')) return obj class InaccessibleVariableDataStore(backends.InMemoryDataStore): def get_variables(self): def lazy_inaccessible(x): data = indexing.LazilyIndexedArray(InaccessibleArray(x.values)) return Variable(x.dims, data, x.attrs) return dict((k, lazy_inaccessible(v)) for k, v in iteritems(self._variables)) class TestDataset(TestCase): def test_repr(self): data = create_test_data(seed=123) data.attrs['foo'] = 'bar' # need to insert str dtype at runtime to handle both Python 2 & 3 expected = dedent("""\ <xray.Dataset> Dimensions: (dim1: 8, dim2: 9, dim3: 10, time: 20) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ... * dim1 (dim1) int64 0 1 2 3 4 5 6 7 * dim2 (dim2) float64 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 * dim3 (dim3) %s 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' numbers (dim3) int64 0 1 2 0 0 1 1 2 2 3 Data variables: var1 (dim1, dim2) float64 -1.086 0.9973 0.283 -1.506 -0.5786 1.651 ... var2 (dim1, dim2) float64 1.162 -1.097 -2.123 1.04 -0.4034 -0.126 ... var3 (dim3, dim1) float64 0.5565 -0.2121 0.4563 1.545 -0.2397 0.1433 ... Attributes: foo: bar""") % data['dim3'].dtype actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) print(actual) self.assertEqual(expected, actual) with set_options(display_width=100): max_len = max(map(len, repr(data).split('\n'))) assert 90 < max_len < 100 expected = dedent("""\ <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: *empty*""") actual = '\n'.join(x.rstrip() for x in repr(Dataset()).split('\n')) print(actual) self.assertEqual(expected, actual) # verify that ... doesn't appear for scalar coordinates data = Dataset({'foo': ('x', np.ones(10))}).mean() expected = dedent("""\ <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: foo float64 1.0""") actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) print(actual) self.assertEqual(expected, actual) # verify long attributes are truncated data = Dataset(attrs={'foo': 'bar' * 1000}) self.assertTrue(len(repr(data)) < 1000) def test_constructor(self): x1 = ('x', 2 * np.arange(100)) x2 = ('x', np.arange(1000)) z = (['x', 'y'], np.arange(1000).reshape(100, 10)) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): Dataset({'a': x1, 'b': x2}) with self.assertRaisesRegexp(ValueError, 'must be defined with 1-d'): Dataset({'a': x1, 'x': z}) with self.assertRaisesRegexp(TypeError, 'must be an array or'): Dataset({'x': (1, 2, 3, 4, 5, 6, 7)}) with self.assertRaisesRegexp(ValueError, 'already exists as a scalar'): Dataset({'x': 0, 'y': ('x', [1, 2, 3])}) # verify handling of DataArrays expected = Dataset({'x': x1, 'z': z}) actual = Dataset({'z': expected['z']}) self.assertDatasetIdentical(expected, actual) def test_constructor_1d(self): expected = Dataset({'x': (['x'], 5.0 + np.arange(5))}) actual = Dataset({'x': 5.0 + np.arange(5)}) self.assertDatasetIdentical(expected, actual) actual = Dataset({'x': [5, 6, 7, 8, 9]}) self.assertDatasetIdentical(expected, actual) def test_constructor_0d(self): expected = Dataset({'x': ([], 1)}) for arg in [1, np.array(1), expected['x']]: actual = Dataset({'x': arg}) self.assertDatasetIdentical(expected, actual) d = pd.Timestamp('2000-01-01T12') args = [True, None, 3.4, np.nan, 'hello', u'uni', b'raw', np.datetime64('2000-01-01T00'), d, d.to_datetime()] for arg in args: print(arg) expected = Dataset({'x': ([], arg)}) actual = Dataset({'x': arg}) self.assertDatasetIdentical(expected, actual) def test_constructor_auto_align(self): a = DataArray([1, 2], [('x', [0, 1])]) b = DataArray([3, 4], [('x', [1, 2])]) # verify align uses outer join expected = Dataset({'a': ('x', [1, 2, np.nan]), 'b': ('x', [np.nan, 3, 4])}) actual = Dataset({'a': a, 'b': b}) self.assertDatasetIdentical(expected, actual) # regression test for GH346 self.assertIsInstance(actual.variables['x'], Coordinate) # variable with different dimensions c = ('y', [3, 4]) expected2 = expected.merge({'c': c}) actual = Dataset({'a': a, 'b': b, 'c': c}) self.assertDatasetIdentical(expected2, actual) # variable that is only aligned against the aligned variables d = ('x', [3, 2, 1]) expected3 = expected.merge({'d': d}) actual = Dataset({'a': a, 'b': b, 'd': d}) self.assertDatasetIdentical(expected3, actual) e = ('x', [0, 0]) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): Dataset({'a': a, 'b': b, 'e': e}) def test_constructor_compat(self): data = OrderedDict([('x', DataArray(0, coords={'y': 1})), ('y', ('z', [1, 1, 1]))]) with self.assertRaisesRegexp(ValueError, 'conflicting value'): Dataset(data, compat='equals') expected = Dataset({'x': 0}, {'y': ('z', [1, 1, 1])}) actual = Dataset(data) self.assertDatasetIdentical(expected, actual) actual = Dataset(data, compat='broadcast_equals') self.assertDatasetIdentical(expected, actual) data = OrderedDict([('y', ('z', [1, 1, 1])), ('x', DataArray(0, coords={'y': 1}))]) actual = Dataset(data) self.assertDatasetIdentical(expected, actual) original = Dataset({'a': (('x', 'y'), np.ones((2, 3)))}, {'c': (('x', 'y'), np.zeros((2, 3)))}) expected = Dataset({'a': ('x', np.ones(2)), 'b': ('y', np.ones(3))}, {'c': (('x', 'y'), np.zeros((2, 3)))}) # use an OrderedDict to ensure test results are reproducible; otherwise # the order of appearance of x and y matters for the order of # dimensions in 'c' actual = Dataset(OrderedDict([('a', original['a'][:, 0].drop('y')), ('b', original['a'][0].drop('x'))])) self.assertDatasetIdentical(expected, actual) data = {'x': DataArray(0, coords={'y': 3}), 'y': ('z', [1, 1, 1])} with self.assertRaisesRegexp(ValueError, 'conflicting value'): Dataset(data) data = {'x': DataArray(0, coords={'y': 1}), 'y': [1, 1]} actual = Dataset(data) expected = Dataset({'x': 0}, {'y': [1, 1]}) self.assertDatasetIdentical(expected, actual) def test_constructor_with_coords(self): with self.assertRaisesRegexp(ValueError, 'redundant variables and co'): Dataset({'a': ('x', [1])}, {'a': ('x', [1])}) ds = Dataset({}, {'a': ('x', [1])}) self.assertFalse(ds.data_vars) self.assertItemsEqual(ds.coords.keys(), ['x', 'a']) def test_properties(self): ds = create_test_data() self.assertEqual(ds.dims, {'dim1': 8, 'dim2': 9, 'dim3': 10, 'time': 20}) self.assertItemsEqual(ds, list(ds.variables)) self.assertItemsEqual(ds.keys(), list(ds.variables)) self.assertNotIn('aasldfjalskdfj', ds.variables) self.assertIn('dim1', repr(ds.variables)) self.assertEqual(len(ds), 8) self.assertItemsEqual(ds.data_vars, ['var1', 'var2', 'var3']) self.assertItemsEqual(ds.data_vars.keys(), ['var1', 'var2', 'var3']) self.assertIn('var1', ds.data_vars) self.assertNotIn('dim1', ds.data_vars) self.assertNotIn('numbers', ds.data_vars) self.assertEqual(len(ds.data_vars), 3) self.assertItemsEqual(ds.indexes, ['dim1', 'dim2', 'dim3', 'time']) self.assertEqual(len(ds.indexes), 4) self.assertIn('dim1', repr(ds.indexes)) self.assertItemsEqual(ds.coords, ['time', 'dim1', 'dim2', 'dim3', 'numbers']) self.assertIn('dim1', ds.coords) self.assertIn('numbers', ds.coords) self.assertNotIn('var1', ds.coords) self.assertEqual(len(ds.coords), 5) self.assertEqual(Dataset({'x': np.int64(1), 'y': np.float32([1, 2])}).nbytes, 16) def test_attr_access(self): ds = Dataset({'tmin': ('x', [42], {'units': 'Celcius'})}, attrs={'title': 'My test data'}) self.assertDataArrayIdentical(ds.tmin, ds['tmin']) self.assertDataArrayIdentical(ds.tmin.x, ds.x) self.assertEqual(ds.title, ds.attrs['title']) self.assertEqual(ds.tmin.units, ds['tmin'].attrs['units']) self.assertLessEqual(set(['tmin', 'title']), set(dir(ds))) self.assertIn('units', set(dir(ds.tmin))) # should defer to variable of same name ds.attrs['tmin'] = -999 self.assertEqual(ds.attrs['tmin'], -999) self.assertDataArrayIdentical(ds.tmin, ds['tmin']) def test_variable(self): a = Dataset() d = np.random.random((10, 3)) a['foo'] = (('time', 'x',), d) self.assertTrue('foo' in a.variables) self.assertTrue('foo' in a) a['bar'] = (('time', 'x',), d) # order of creation is preserved self.assertEqual(list(a), ['foo', 'time', 'x', 'bar']) self.assertTrue(all([a['foo'][i].values == d[i] for i in np.ndindex(*d.shape)])) # try to add variable with dim (10,3) with data that's (3,10) with self.assertRaises(ValueError): a['qux'] = (('time', 'x'), d.T) def test_modify_inplace(self): a = Dataset() vec = np.random.random((10,)) attributes = {'foo': 'bar'} a['x'] = ('x', vec, attributes) self.assertTrue('x' in a.coords) self.assertIsInstance(a.coords['x'].to_index(), pd.Index) self.assertVariableIdentical(a.coords['x'], a.variables['x']) b = Dataset() b['x'] = ('x', vec, attributes) self.assertVariableIdentical(a['x'], b['x']) self.assertEqual(a.dims, b.dims) # this should work a['x'] = ('x', vec[:5]) a['z'] = ('x', np.arange(5)) with self.assertRaises(ValueError): # now it shouldn't, since there is a conflicting length a['x'] = ('x', vec[:4]) arr = np.random.random((10, 1,)) scal = np.array(0) with self.assertRaises(ValueError): a['y'] = ('y', arr) with self.assertRaises(ValueError): a['y'] = ('y', scal) self.assertTrue('y' not in a.dims) def test_coords_properties(self): # use an OrderedDict for coordinates to ensure order across python # versions # use int64 for repr consistency on windows data = Dataset(OrderedDict([('x', ('x', np.array([-1, -2], 'int64'))), ('y', ('y', np.array([0, 1, 2], 'int64'))), ('foo', (['x', 'y'], np.random.randn(2, 3)))]), OrderedDict([('a', ('x', np.array([4, 5], 'int64'))), ('b', np.int64(-10))])) self.assertEqual(4, len(data.coords)) self.assertItemsEqual(['x', 'y', 'a', 'b'], list(data.coords)) self.assertVariableIdentical(data.coords['x'], data['x'].variable) self.assertVariableIdentical(data.coords['y'], data['y'].variable) self.assertIn('x', data.coords) self.assertIn('a', data.coords) self.assertNotIn(0, data.coords) self.assertNotIn('foo', data.coords) with self.assertRaises(KeyError): data.coords['foo'] with self.assertRaises(KeyError): data.coords[0] expected = dedent("""\ Coordinates: * x (x) int64 -1 -2 * y (y) int64 0 1 2 a (x) int64 4 5 b int64 -10""") actual = repr(data.coords) self.assertEqual(expected, actual) self.assertEqual({'x': 2, 'y': 3}, data.coords.dims) def test_coords_modify(self): data = Dataset({'x': ('x', [-1, -2]), 'y': ('y', [0, 1, 2]), 'foo': (['x', 'y'], np.random.randn(2, 3))}, {'a': ('x', [4, 5]), 'b': -10}) actual = data.copy(deep=True) actual.coords['x'] = ('x', ['a', 'b']) self.assertArrayEqual(actual['x'], ['a', 'b']) actual = data.copy(deep=True) actual.coords['z'] = ('z', ['a', 'b']) self.assertArrayEqual(actual['z'], ['a', 'b']) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): data.coords['x'] = ('x', [-1]) actual = data.copy() del actual.coords['b'] expected = data.reset_coords('b', drop=True) self.assertDatasetIdentical(expected, actual) with self.assertRaises(KeyError): del data.coords['not_found'] with self.assertRaises(KeyError): del data.coords['foo'] actual = data.copy(deep=True) actual.coords.update({'c': 11}) expected = data.merge({'c': 11}).set_coords('c') self.assertDatasetIdentical(expected, actual) def test_coords_set(self): one_coord = Dataset({'x': ('x', [0]), 'yy': ('x', [1]), 'zzz': ('x', [2])}) two_coords = Dataset({'zzz': ('x', [2])}, {'x': ('x', [0]), 'yy': ('x', [1])}) all_coords = Dataset(coords={'x': ('x', [0]), 'yy': ('x', [1]), 'zzz': ('x', [2])}) actual = one_coord.set_coords('x') self.assertDatasetIdentical(one_coord, actual) actual = one_coord.set_coords(['x']) self.assertDatasetIdentical(one_coord, actual) actual = one_coord.set_coords('yy') self.assertDatasetIdentical(two_coords, actual) actual = one_coord.set_coords(['yy', 'zzz']) self.assertDatasetIdentical(all_coords, actual) actual = one_coord.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = two_coords.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords(['yy', 'zzz']) self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords('zzz') self.assertDatasetIdentical(two_coords, actual) with self.assertRaisesRegexp(ValueError, 'cannot remove index'): one_coord.reset_coords('x') actual = all_coords.reset_coords('zzz', drop=True) expected = all_coords.drop('zzz') self.assertDatasetIdentical(expected, actual) expected = two_coords.drop('zzz') self.assertDatasetIdentical(expected, actual) def test_coords_to_dataset(self): orig = Dataset({'foo': ('y', [-1, 0, 1])}, {'x': 10, 'y': [2, 3, 4]}) expected = Dataset(coords={'x': 10, 'y': [2, 3, 4]}) actual = orig.coords.to_dataset() self.assertDatasetIdentical(expected, actual) def test_coords_merge(self): orig_coords = Dataset(coords={'a': ('x', [1, 2])}).coords other_coords = Dataset(coords={'b': ('x', ['a', 'b'])}).coords expected = Dataset(coords={'a': ('x', [1, 2]), 'b': ('x', ['a', 'b'])}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'x': ('x', ['a'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'x': ('x', ['a', 'b'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'x': ('x', ['a', 'b', 'c'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'a': ('x', [8, 9])}).coords expected = Dataset(coords={'x': range(2)}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'x': np.nan}).coords actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(orig_coords.to_dataset(), actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(orig_coords.to_dataset(), actual) def test_coords_merge_mismatched_shape(self): orig_coords = Dataset(coords={'a': ('x', [1, 1])}).coords other_coords = Dataset(coords={'a': 1}).coords expected = orig_coords.to_dataset() actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'a': ('y', [1])}).coords expected = Dataset(coords={'a': (['x', 'y'], [[1], [1]])}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected.T, actual) orig_coords = Dataset(coords={'a': ('x', [np.nan])}).coords other_coords = Dataset(coords={'a': np.nan}).coords expected = orig_coords.to_dataset() actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) def test_equals_and_identical(self): data = create_test_data(seed=42) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = create_test_data(seed=42) data2.attrs['foobar'] = 'baz' self.assertTrue(data.equals(data2)) self.assertFalse(data.identical(data2)) del data2['time'] self.assertFalse(data.equals(data2)) data = create_test_data(seed=42).rename({'var1': None}) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = data.reset_coords() self.assertFalse(data2.equals(data)) self.assertFalse(data2.identical(data)) def test_equals_failures(self): data = create_test_data() self.assertFalse(data.equals('foo')) self.assertFalse(data.identical(123)) self.assertFalse(data.broadcast_equals({1: 2})) def test_broadcast_equals(self): data1 = Dataset(coords={'x': 0}) data2 = Dataset(coords={'x': [0]}) self.assertTrue(data1.broadcast_equals(data2)) self.assertFalse(data1.equals(data2)) self.assertFalse(data1.identical(data2)) def test_attrs(self): data = create_test_data(seed=42) data.attrs = {'foobar': 'baz'} self.assertTrue(data.attrs['foobar'], 'baz') self.assertIsInstance(data.attrs, OrderedDict) @requires_dask def test_chunk(self): data = create_test_data() for v in data.variables.values(): self.assertIsInstance(v.data, np.ndarray) self.assertEqual(data.chunks, {}) reblocked = data.chunk() for v in reblocked.variables.values(): self.assertIsInstance(v.data, da.Array) expected_chunks = dict((d, (s,)) for d, s in data.dims.items()) self.assertEqual(reblocked.chunks, expected_chunks) reblocked = data.chunk({'time': 5, 'dim1': 5, 'dim2': 5, 'dim3': 5}) expected_chunks = {'time': (5,) * 4, 'dim1': (5, 3), 'dim2': (5, 4), 'dim3': (5, 5)} self.assertEqual(reblocked.chunks, expected_chunks) reblocked = data.chunk(expected_chunks) self.assertEqual(reblocked.chunks, expected_chunks) # reblock on already blocked data reblocked = reblocked.chunk(expected_chunks) self.assertEqual(reblocked.chunks, expected_chunks) self.assertDatasetIdentical(reblocked, data) with self.assertRaisesRegexp(ValueError, 'some chunks'): data.chunk({'foo': 10}) @requires_dask def test_dask_is_lazy(self): store = InaccessibleVariableDataStore() create_test_data().dump_to_store(store) ds = open_dataset(store).chunk() with self.assertRaises(UnexpectedDataAccess): ds.load() with self.assertRaises(UnexpectedDataAccess): ds['var1'].values # these should not raise UnexpectedDataAccess: ds.var1.data ds.isel(time=10) ds.isel(time=slice(10), dim1=[0]).isel(dim1=0, dim2=-1) ds.transpose() ds.mean() ds.fillna(0) ds.rename({'dim1': 'foobar'}) ds.set_coords('var1') ds.drop('var1') def test_isel(self): data = create_test_data() slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 2)} ret = data.isel(**slicers) # Verify that only the specified dimension was altered self.assertItemsEqual(data.dims, ret.dims) for d in data.dims: if d in slicers: self.assertEqual(ret.dims[d], np.arange(data.dims[d])[slicers[d]].size) else: self.assertEqual(data.dims[d], ret.dims[d]) # Verify that the data is what we expect for v in data: self.assertEqual(data[v].dims, ret[v].dims) self.assertEqual(data[v].attrs, ret[v].attrs) slice_list = [slice(None)] * data[v].values.ndim for d, s in iteritems(slicers): if d in data[v].dims: inds = np.nonzero(np.array(data[v].dims) == d)[0] for ind in inds: slice_list[ind] = s expected = data[v].values[slice_list] actual = ret[v].values np.testing.assert_array_equal(expected, actual) with self.assertRaises(ValueError): data.isel(not_a_dim=slice(0, 2)) ret = data.isel(dim1=0) self.assertEqual({'time': 20, 'dim2': 9, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1']) ret = data.isel(time=slice(2), dim1=0, dim2=slice(5)) self.assertEqual({'time': 2, 'dim2': 5, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1']) ret = data.isel(time=0, dim1=0, dim2=slice(5)) self.assertItemsEqual({'dim2': 5, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1', 'time']) def test_sel(self): data = create_test_data() int_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(2), 'dim3': slice(3)} loc_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 0.5), 'dim3': slice('a', 'c')} self.assertDatasetEqual(data.isel(**int_slicers), data.sel(**loc_slicers)) data['time'] = ('time', pd.date_range('2000-01-01', periods=20)) self.assertDatasetEqual(data.isel(time=0), data.sel(time='2000-01-01')) self.assertDatasetEqual(data.isel(time=slice(10)), data.sel(time=slice('2000-01-01', '2000-01-10'))) self.assertDatasetEqual(data, data.sel(time=slice('1999', '2005'))) times = pd.date_range('2000-01-01', periods=3) self.assertDatasetEqual(data.isel(time=slice(3)), data.sel(time=times)) self.assertDatasetEqual(data.isel(time=slice(3)), data.sel(time=(data['time.dayofyear'] <= 3))) td = pd.to_timedelta(np.arange(3), unit='days') data = Dataset({'x': ('td', np.arange(3)), 'td': td}) self.assertDatasetEqual(data, data.sel(td=td)) self.assertDatasetEqual(data, data.sel(td=slice('3 days'))) self.assertDatasetEqual(data.isel(td=0), data.sel(td='0 days')) self.assertDatasetEqual(data.isel(td=0), data.sel(td='0h')) self.assertDatasetEqual(data.isel(td=slice(1, 3)), data.sel(td=slice('1 days', '2 days'))) def test_isel_points(self): data = create_test_data() pdim1 = [1, 2, 3] pdim2 = [4, 5, 1] pdim3 = [1, 2, 3] actual = data.isel_points(dim1=pdim1, dim2=pdim2, dim3=pdim3, dim='test_coord') assert 'test_coord' in actual.coords assert actual.coords['test_coord'].shape == (len(pdim1), ) actual = data.isel_points(dim1=pdim1, dim2=pdim2) assert 'points' in actual.coords np.testing.assert_array_equal(pdim1, actual['dim1']) # test that the order of the indexers doesn't matter self.assertDatasetIdentical(data.isel_points(dim1=pdim1, dim2=pdim2), data.isel_points(dim2=pdim2, dim1=pdim1)) # make sure we're raising errors in the right places with self.assertRaisesRegexp(ValueError, 'All indexers must be the same length'): data.isel_points(dim1=[1, 2], dim2=[1, 2, 3]) with self.assertRaisesRegexp(ValueError, 'dimension bad_key does not exist'): data.isel_points(bad_key=[1, 2]) with self.assertRaisesRegexp(TypeError, 'Indexers must be integers'): data.isel_points(dim1=[1.5, 2.2]) with self.assertRaisesRegexp(TypeError, 'Indexers must be integers'): data.isel_points(dim1=[1, 2, 3], dim2=slice(3)) with self.assertRaisesRegexp(ValueError, 'Indexers must be 1 dimensional'): data.isel_points(dim1=1, dim2=2) with self.assertRaisesRegexp(ValueError, 'Existing dimension names are not valid'): data.isel_points(dim1=[1, 2], dim2=[1, 2], dim='dim2') # test to be sure we keep around variables that were not indexed ds = Dataset({'x': [1, 2, 3, 4], 'y': 0}) actual = ds.isel_points(x=[0, 1, 2]) self.assertDataArrayIdentical(ds['y'], actual['y']) # tests using index or DataArray as a dim stations = Dataset() stations['station'] = ('station', ['A', 'B', 'C']) stations['dim1s'] = ('station', [1, 2, 3]) stations['dim2s'] = ('station', [4, 5, 1]) actual = data.isel_points(dim1=stations['dim1s'], dim2=stations['dim2s'], dim=stations['station']) assert 'station' in actual.coords assert 'station' in actual.dims self.assertDataArrayIdentical(actual['station'].drop(['dim1', 'dim2']), stations['station']) # make sure we get the default points coordinate when a list is passed actual = data.isel_points(dim1=stations['dim1s'], dim2=stations['dim2s'], dim=['A', 'B', 'C']) assert 'points' in actual.coords # can pass a numpy array data.isel_points(dim1=stations['dim1s'], dim2=stations['dim2s'], dim=np.array([4, 5, 6])) def test_sel_points(self): data = create_test_data() pdim1 = [1, 2, 3] pdim2 = [4, 5, 1] pdim3 = [1, 2, 3] expected = data.isel_points(dim1=pdim1, dim2=pdim2, dim3=pdim3, dim='test_coord') actual = data.sel_points(dim1=data.dim1[pdim1], dim2=data.dim2[pdim2], dim3=data.dim3[pdim3], dim='test_coord') self.assertDatasetIdentical(expected, actual) data = Dataset({'foo': (('x', 'y'), np.arange(9).reshape(3, 3))}) expected = Dataset({'foo': ('points', [0, 4, 8])}, {'x': ('points', range(3)), 'y': ('points', range(3))}) actual = data.sel_points(x=[0.1, 1.1, 2.5], y=[0, 1.2, 2.0], method='pad') self.assertDatasetIdentical(expected, actual) def test_sel_method(self): data = create_test_data() if pd.__version__ >= '0.16': expected = data.sel(dim1=1) actual = data.sel(dim1=0.95, method='nearest') self.assertDatasetIdentical(expected, actual) expected = data.sel(dim2=[1.5]) actual = data.sel(dim2=[1.45], method='backfill') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(NotImplementedError, 'slice objects'): data.sel(dim2=slice(1, 3), method='ffill') def test_loc(self): data = create_test_data() expected = data.sel(dim3='a') actual = data.loc[dict(dim3='a')] self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(TypeError, 'can only lookup dict'): data.loc['a'] with self.assertRaises(TypeError): data.loc[dict(dim3='a')] = 0 def test_reindex_like(self): data = create_test_data() data['letters'] = ('dim3', 10 * ['a']) expected = data.isel(dim1=slice(10), time=slice(13)) actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) expected = data.copy(deep=True) expected['dim3'] = ('dim3', list('cdefghijkl')) expected['var3'][:-2] = expected['var3'][2:] expected['var3'][-2:] = np.nan expected['letters'] = expected['letters'].astype(object) expected['letters'][-2:] = np.nan expected['numbers'] = expected['numbers'].astype(float) expected['numbers'][:-2] = expected['numbers'][2:].values expected['numbers'][-2:] = np.nan actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) def test_reindex(self): data = create_test_data() self.assertDatasetIdentical(data, data.reindex()) expected = data.isel(dim1=slice(10)) actual = data.reindex(dim1=data['dim1'][:10]) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].values) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].to_index()) self.assertDatasetIdentical(actual, expected) # test dict-like argument actual = data.reindex({'dim1': data['dim1'][:10]}) self.assertDatasetIdentical(actual, expected) with self.assertRaisesRegexp(ValueError, 'cannot specify both'): data.reindex({'x': 0}, x=0) with self.assertRaisesRegexp(ValueError, 'dictionary'): data.reindex('foo') # out of order expected = data.sel(dim1=data['dim1'][:10:-1]) actual = data.reindex(dim1=data['dim1'][:10:-1]) self.assertDatasetIdentical(actual, expected) # regression test for #279 expected = Dataset({'x': ('time', np.random.randn(5))}) time2 = DataArray(np.arange(5), dims="time2") actual = expected.reindex(time=time2) self.assertDatasetIdentical(actual, expected) # another regression test ds = Dataset({'foo': (['x', 'y'], np.zeros((3, 4)))}) expected = Dataset({'foo': (['x', 'y'], np.zeros((3, 2))), 'x': [0, 1, 3]}) expected['foo'][-1] = np.nan actual = ds.reindex(x=[0, 1, 3], y=[0, 1]) self.assertDatasetIdentical(expected, actual) def test_reindex_method(self): ds = Dataset({'x': ('y', [10, 20])}) y = [-0.5, 0.5, 1.5] actual = ds.reindex(y=y, method='backfill') expected = Dataset({'x': ('y', [10, 20, np.nan]), 'y': y}) self.assertDatasetIdentical(expected, actual) actual = ds.reindex(y=y, method='pad') expected = Dataset({'x': ('y', [np.nan, 10, 20]), 'y': y}) self.assertDatasetIdentical(expected, actual) alt = Dataset({'y': y}) actual = ds.reindex_like(alt, method='pad') self.assertDatasetIdentical(expected, actual) def test_align(self): left = create_test_data() right = left.copy(deep=True) right['dim3'] = ('dim3', list('cdefghijkl')) right['var3'][:-2] = right['var3'][2:] right['var3'][-2:] = np.random.randn(*right['var3'][-2:].shape) right['numbers'][:-2] = right['numbers'][2:] right['numbers'][-2:] = -10 intersection = list('cdefghij') union = list('abcdefghijkl') left2, right2 = align(left, right, join='inner') self.assertArrayEqual(left2['dim3'], intersection) self.assertDatasetIdentical(left2, right2) left2, right2 = align(left, right, join='outer') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertArrayEqual(left2['dim3'], union) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='left') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], left['dim3']) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='right') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], right['dim3']) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) with self.assertRaisesRegexp(ValueError, 'invalid value for join'): align(left, right, join='foobar') with self.assertRaises(TypeError): align(left, right, foo='bar') def test_variable_indexing(self): data = create_test_data() v = data['var1'] d1 = data['dim1'] d2 = data['dim2'] self.assertVariableEqual(v, v[d1.values]) self.assertVariableEqual(v, v[d1]) self.assertVariableEqual(v[:3], v[d1 < 3]) self.assertVariableEqual(v[:, 3:], v[:, d2 >= 1.5]) self.assertVariableEqual(v[:3, 3:], v[d1 < 3, d2 >= 1.5]) self.assertVariableEqual(v[:3, :2], v[range(3), range(2)]) self.assertVariableEqual(v[:3, :2], v.loc[d1[:3], d2[:2]]) def test_drop_variables(self): data = create_test_data() self.assertDatasetIdentical(data, data.drop([])) expected = Dataset(dict((k, data[k]) for k in data if k != 'time')) actual = data.drop('time') self.assertDatasetIdentical(expected, actual) actual = data.drop(['time']) self.assertDatasetIdentical(expected, actual) expected = Dataset(dict((k, data[k]) for k in ['dim2', 'dim3', 'time', 'numbers'])) actual = data.drop('dim1') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'cannot be found'): data.drop('not_found_here') def test_drop_index_labels(self): data = Dataset({'A': (['x', 'y'], np.random.randn(2, 3)), 'x': ['a', 'b']}) actual = data.drop(1, 'y') expected = data.isel(y=[0, 2]) self.assertDatasetIdentical(expected, actual) actual = data.drop(['a'], 'x') expected = data.isel(x=[1]) self.assertDatasetIdentical(expected, actual) actual = data.drop(['a', 'b'], 'x') expected = data.isel(x=slice(0, 0)) self.assertDatasetIdentical(expected, actual) with self.assertRaises(ValueError): # not contained in axis data.drop(['c'], dim='x') def test_copy(self): data = create_test_data() for copied in [data.copy(deep=False), copy(data)]: self.assertDatasetIdentical(data, copied) for k in data: v0 = data.variables[k] v1 = copied.variables[k] self.assertIs(v0, v1) copied['foo'] = ('z', np.arange(5)) self.assertNotIn('foo', data) for copied in [data.copy(deep=True), deepcopy(data)]: self.assertDatasetIdentical(data, copied) for k in data: v0 = data.variables[k] v1 = copied.variables[k] self.assertIsNot(v0, v1) def test_rename(self): data = create_test_data() newnames = {'var1': 'renamed_var1', 'dim2': 'renamed_dim2'} renamed = data.rename(newnames) variables = OrderedDict(data.variables) for k, v in iteritems(newnames): variables[v] = variables.pop(k) for k, v in iteritems(variables): dims = list(v.dims) for name, newname in iteritems(newnames): if name in dims: dims[dims.index(name)] = newname self.assertVariableEqual(Variable(dims, v.values, v.attrs), renamed[k]) self.assertEqual(v.encoding, renamed[k].encoding) self.assertEqual(type(v), type(renamed.variables[k])) self.assertTrue('var1' not in renamed) self.assertTrue('dim2' not in renamed) with self.assertRaisesRegexp(ValueError, "cannot rename 'not_a_var'"): data.rename({'not_a_var': 'nada'}) # verify that we can rename a variable without accessing the data var1 = data['var1'] data['var1'] = (var1.dims, InaccessibleArray(var1.values)) renamed = data.rename(newnames) with self.assertRaises(UnexpectedDataAccess): renamed['renamed_var1'].values def test_rename_inplace(self): times = pd.date_range('2000-01-01', periods=3) data = Dataset({'z': ('x', [2, 3, 4]), 't': ('t', times)}) copied = data.copy() renamed = data.rename({'x': 'y'}) data.rename({'x': 'y'}, inplace=True) self.assertDatasetIdentical(data, renamed) self.assertFalse(data.equals(copied)) self.assertEquals(data.dims, {'y': 3, 't': 3}) # check virtual variables self.assertArrayEqual(data['t.dayofyear'], [1, 2, 3]) def test_swap_dims(self): original = Dataset({'x': [1, 2, 3], 'y': ('x', list('abc')), 'z': 42}) expected = Dataset({'z': 42}, {'x': ('y', [1, 2, 3]), 'y': list('abc')}) actual = original.swap_dims({'x': 'y'}) self.assertDatasetIdentical(expected, actual) self.assertIsInstance(actual.variables['y'], Coordinate) self.assertIsInstance(actual.variables['x'], Variable) roundtripped = actual.swap_dims({'y': 'x'}) self.assertDatasetIdentical(original.set_coords('y'), roundtripped) actual = original.copy() actual.swap_dims({'x': 'y'}, inplace=True) self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'cannot swap'): original.swap_dims({'y': 'x'}) with self.assertRaisesRegexp(ValueError, 'replacement dimension'): original.swap_dims({'x': 'z'}) def test_update(self): data = create_test_data(seed=0) expected = data.copy() var2 = Variable('dim1', np.arange(8)) actual = data.update({'var2': var2}) expected['var2'] = var2 self.assertDatasetIdentical(expected, actual) actual = data.copy() actual_result = actual.update(data, inplace=True) self.assertIs(actual_result, actual) self.assertDatasetIdentical(expected, actual) actual = data.update(data, inplace=False) expected = data self.assertIsNot(actual, expected) self.assertDatasetIdentical(expected, actual) other = Dataset(attrs={'new': 'attr'}) actual = data.copy() actual.update(other) self.assertDatasetIdentical(expected, actual) def test_update_auto_align(self): ds = Dataset({'x': ('t', [3, 4])}) expected = Dataset({'x': ('t', [3, 4]), 'y': ('t', [np.nan, 5])}) actual = ds.copy() other = {'y': ('t', [5]), 't': [1]} with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): actual.update(other) actual.update(Dataset(other)) self.assertDatasetIdentical(expected, actual) actual = ds.copy() other = Dataset({'y': ('t', [5]), 't': [100]}) actual.update(other) expected = Dataset({'x': ('t', [3, 4]), 'y': ('t', [np.nan] * 2)}) self.assertDatasetIdentical(expected, actual) def test_merge(self): data = create_test_data() ds1 = data[['var1']] ds2 = data[['var3']] expected = data[['var1', 'var3']] actual = ds1.merge(ds2) self.assertDatasetIdentical(expected, actual) actual = ds2.merge(ds1) self.assertDatasetIdentical(expected, actual) actual = data.merge(data) self.assertDatasetIdentical(data, actual) actual = data.reset_coords(drop=True).merge(data) self.assertDatasetIdentical(data, actual) actual = data.merge(data.reset_coords(drop=True)) self.assertDatasetIdentical(data, actual) with self.assertRaises(ValueError): ds1.merge(ds2.rename({'var3': 'var1'})) with self.assertRaisesRegexp(ValueError, 'cannot merge'): data.reset_coords().merge(data) with self.assertRaisesRegexp(ValueError, 'cannot merge'): data.merge(data.reset_coords()) def test_merge_broadcast_equals(self): ds1 = Dataset({'x': 0}) ds2 = Dataset({'x': ('y', [0, 0])}) actual = ds1.merge(ds2) self.assertDatasetIdentical(ds2, actual) actual = ds2.merge(ds1) self.assertDatasetIdentical(ds2, actual) actual = ds1.copy() actual.update(ds2) self.assertDatasetIdentical(ds2, actual) ds1 = Dataset({'x': np.nan}) ds2 = Dataset({'x': ('y', [np.nan, np.nan])}) actual = ds1.merge(ds2) self.assertDatasetIdentical(ds2, actual) def test_merge_compat(self): ds1 = Dataset({'x': 0}) ds2 = Dataset({'x': 1}) for compat in ['broadcast_equals', 'equals', 'identical']: with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat=compat) ds2 = Dataset({'x': [0, 0]}) for compat in ['equals', 'identical']: with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat=compat) ds2 = Dataset({'x': ((), 0, {'foo': 'bar'})}) with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat='identical') with self.assertRaisesRegexp(ValueError, 'compat=\S+ invalid'): ds1.merge(ds2, compat='foobar') def test_merge_auto_align(self): ds1 = Dataset({'a': ('x', [1, 2])}) ds2 = Dataset({'b': ('x', [3, 4]), 'x': [1, 2]}) expected = Dataset({'a': ('x', [1, 2, np.nan]), 'b': ('x', [np.nan, 3, 4])}) self.assertDatasetIdentical(expected, ds1.merge(ds2)) self.assertDatasetIdentical(expected, ds2.merge(ds1)) expected = expected.isel(x=slice(2)) self.assertDatasetIdentical(expected, ds1.merge(ds2, join='left')) self.assertDatasetIdentical(expected, ds2.merge(ds1, join='right')) expected = expected.isel(x=slice(1, 2)) self.assertDatasetIdentical(expected, ds1.merge(ds2, join='inner')) self.assertDatasetIdentical(expected, ds2.merge(ds1, join='inner')) def test_getitem(self): data = create_test_data() self.assertIsInstance(data['var1'], DataArray) self.assertVariableEqual(data['var1'], data.variables['var1']) with self.assertRaises(KeyError): data['notfound'] with self.assertRaises(KeyError): data[['var1', 'notfound']] actual = data[['var1', 'var2']] expected = Dataset({'var1': data['var1'], 'var2': data['var2']}) self.assertDatasetEqual(expected, actual) actual = data['numbers'] expected = DataArray(data['numbers'].variable, [data['dim3']], name='numbers') self.assertDataArrayIdentical(expected, actual) actual = data[dict(dim1=0)] expected = data.isel(dim1=0) self.assertDatasetIdentical(expected, actual) def test_getitem_hashable(self): data = create_test_data() data[(3, 4)] = data['var1'] + 1 expected = data['var1'] + 1 expected.name = (3, 4) self.assertDataArrayIdentical(expected, data[(3, 4)]) with self.assertRaisesRegexp(KeyError, "('var1', 'var2')"): data[('var1', 'var2')] def test_virtual_variables(self): # access virtual variables data = create_test_data() expected = DataArray(1 + np.arange(20), coords=[data['time']], dims='time', name='dayofyear') self.assertDataArrayIdentical(expected, data['time.dayofyear']) self.assertArrayEqual(data['time.month'].values, data.variables['time'].to_index().month) self.assertArrayEqual(data['time.season'].values, 'DJF') # test virtual variable math self.assertArrayEqual(data['time.dayofyear'] + 1, 2 + np.arange(20)) self.assertArrayEqual(np.sin(data['time.dayofyear']), np.sin(1 + np.arange(20))) # ensure they become coordinates expected = Dataset({}, {'dayofyear': data['time.dayofyear']}) actual = data[['time.dayofyear']] self.assertDatasetEqual(expected, actual) # non-coordinate variables ds = Dataset({'t': ('x', pd.date_range('2000-01-01', periods=3))}) self.assertTrue((ds['t.year'] == 2000).all()) def test_time_season(self): ds = Dataset({'t': pd.date_range('2000-01-01', periods=12, freq='M')}) expected = ['DJF'] * 2 + ['MAM'] * 3 + ['JJA'] * 3 + ['SON'] * 3 + ['DJF'] self.assertArrayEqual(expected, ds['t.season']) def test_slice_virtual_variable(self): data = create_test_data() self.assertVariableEqual(data['time.dayofyear'][:10], Variable(['time'], 1 + np.arange(10))) self.assertVariableEqual(data['time.dayofyear'][0], Variable([], 1)) def test_setitem(self): # assign a variable var = Variable(['dim1'], np.random.randn(8)) data1 = create_test_data() data1['A'] = var data2 = data1.copy() data2['A'] = var self.assertDatasetIdentical(data1, data2) # assign a dataset array dv = 2 * data2['A'] data1['B'] = dv.variable data2['B'] = dv self.assertDatasetIdentical(data1, data2) # can't assign an ND array without dimensions with self.assertRaisesRegexp(ValueError, 'dimensions .* must have the same len'): data2['C'] = var.values.reshape(2, 4) # but can assign a 1D array data1['C'] = var.values data2['C'] = ('C', var.values) self.assertDatasetIdentical(data1, data2) # can assign a scalar data1['scalar'] = 0 data2['scalar'] = ([], 0) self.assertDatasetIdentical(data1, data2) # can't use the same dimension name as a scalar var with self.assertRaisesRegexp(ValueError, 'cannot merge'): data1['newvar'] = ('scalar', [3, 4, 5]) # can't resize a used dimension with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): data1['dim1'] = data1['dim1'][:5] # override an existing value data1['A'] = 3 * data2['A'] self.assertVariableEqual(data1['A'], 3 * data2['A']) with self.assertRaises(NotImplementedError): data1[{'x': 0}] = 0 def test_setitem_auto_align(self): ds = Dataset() ds['x'] = ('y', range(3)) ds['y'] = 1 + np.arange(3) expected = Dataset({'x': ('y', range(3)), 'y': 1 + np.arange(3)}) self.assertDatasetIdentical(ds, expected) ds['y'] = DataArray(range(3), dims='y') expected = Dataset({'x': ('y', range(3))}) self.assertDatasetIdentical(ds, expected) ds['x'] = DataArray([1, 2], dims='y') expected = Dataset({'x': ('y', [1, 2, np.nan])}) self.assertDatasetIdentical(ds, expected) ds['x'] = 42 expected = Dataset({'x': 42, 'y': range(3)}) self.assertDatasetIdentical(ds, expected) ds['x'] = DataArray([4, 5, 6, 7], dims='y') expected = Dataset({'x': ('y', [4, 5, 6])}) self.assertDatasetIdentical(ds, expected) def test_assign(self): ds = Dataset() actual = ds.assign(x = [0, 1, 2], y = 2) expected = Dataset({'x': [0, 1, 2], 'y': 2}) self.assertDatasetIdentical(actual, expected) self.assertEqual(list(actual), ['x', 'y']) self.assertDatasetIdentical(ds, Dataset()) actual = actual.assign(y = lambda ds: ds.x ** 2) expected = Dataset({'y': ('x', [0, 1, 4])}) self.assertDatasetIdentical(actual, expected) actual = actual.assign_coords(z = 2) expected = Dataset({'y': ('x', [0, 1, 4])}, {'z': 2}) self.assertDatasetIdentical(actual, expected) ds = Dataset({'a': ('x', range(3))}, {'b': ('x', ['A'] * 2 + ['B'])}) actual = ds.groupby('b').assign(c = lambda ds: 2 * ds.a) expected = ds.merge({'c': ('x', [0, 2, 4])}) self.assertDatasetIdentical(actual, expected) actual = ds.groupby('b').assign(c = lambda ds: ds.a.sum()) expected = ds.merge({'c': ('x', [1, 1, 2])}) self.assertDatasetIdentical(actual, expected) actual = ds.groupby('b').assign_coords(c = lambda ds: ds.a.sum()) expected = expected.set_coords('c') self.assertDatasetIdentical(actual, expected) def test_delitem(self): data = create_test_data() all_items = set(data) self.assertItemsEqual(data, all_items) del data['var1'] self.assertItemsEqual(data, all_items - set(['var1'])) del data['dim1'] self.assertItemsEqual(data, set(['time', 'dim2', 'dim3', 'numbers'])) self.assertNotIn('dim1', data.dims) self.assertNotIn('dim1', data.coords) def test_squeeze(self): data = Dataset({'foo': (['x', 'y', 'z'], [[[1], [2]]])}) for args in [[], [['x']], [['x', 'z']]]: def get_args(v): return [set(args[0]) & set(v.dims)] if args else [] expected = Dataset(dict((k, v.squeeze(*get_args(v))) for k, v in iteritems(data.variables))) expected.set_coords(data.coords, inplace=True) self.assertDatasetIdentical(expected, data.squeeze(*args)) # invalid squeeze with self.assertRaisesRegexp(ValueError, 'cannot select a dimension'): data.squeeze('y') def test_groupby(self): data = Dataset({'z': (['x', 'y'], np.random.randn(3, 5))}, {'x': ('x', list('abc')), 'c': ('x', [0, 1, 0])}) groupby = data.groupby('x') self.assertEqual(len(groupby), 3) expected_groups = {'a': 0, 'b': 1, 'c': 2} self.assertEqual(groupby.groups, expected_groups) expected_items = [('a', data.isel(x=0)), ('b', data.isel(x=1)), ('c', data.isel(x=2))] for actual, expected in zip(groupby, expected_items): self.assertEqual(actual[0], expected[0]) self.assertDatasetEqual(actual[1], expected[1]) identity = lambda x: x for k in ['x', 'c', 'y']: actual = data.groupby(k, squeeze=False).apply(identity) self.assertDatasetEqual(data, actual) def test_groupby_returns_new_type(self): data = Dataset({'z': (['x', 'y'], np.random.randn(3, 5))}) actual = data.groupby('x').apply(lambda ds: ds['z']) expected = data['z'] self.assertDataArrayIdentical(expected, actual) actual = data['z'].groupby('x').apply(lambda x: x.to_dataset()) expected = data self.assertDatasetIdentical(expected, actual) def test_groupby_iter(self): data = create_test_data() for n, (t, sub) in enumerate(list(data.groupby('dim1'))[:3]): self.assertEqual(data['dim1'][n], t) self.assertVariableEqual(data['var1'][n], sub['var1']) self.assertVariableEqual(data['var2'][n], sub['var2']) self.assertVariableEqual(data['var3'][:, n], sub['var3']) def test_groupby_errors(self): data = create_test_data() with self.assertRaisesRegexp(ValueError, 'must be 1 dimensional'): data.groupby('var1') with self.assertRaisesRegexp(ValueError, 'must have a name'): data.groupby(np.arange(10)) with self.assertRaisesRegexp(ValueError, 'length does not match'): data.groupby(data['dim1'][:3]) with self.assertRaisesRegexp(ValueError, "must have a 'dims'"): data.groupby(data.coords['dim1'].to_index()) def test_groupby_reduce(self): data = Dataset({'xy': (['x', 'y'], np.random.randn(3, 4)), 'xonly': ('x', np.random.randn(3)), 'yonly': ('y', np.random.randn(4)), 'letters': ('y', ['a', 'a', 'b', 'b'])}) expected = data.mean('y') expected['yonly'] = expected['yonly'].variable.expand_dims({'x': 3}) actual = data.groupby('x').mean() self.assertDatasetAllClose(expected, actual) actual = data.groupby('x').mean('y') self.assertDatasetAllClose(expected, actual) letters = data['letters'] expected = Dataset({'xy': data['xy'].groupby(letters).mean(), 'xonly': (data['xonly'].mean().variable .expand_dims({'letters': 2})), 'yonly': data['yonly'].groupby(letters).mean()}) actual = data.groupby('letters').mean() self.assertDatasetAllClose(expected, actual) def test_groupby_math(self): reorder_dims = lambda x: x.transpose('dim1', 'dim2', 'dim3', 'time') ds = create_test_data() for squeeze in [True, False]: grouped = ds.groupby('dim1', squeeze=squeeze) expected = reorder_dims(ds + ds.coords['dim1']) actual = grouped + ds.coords['dim1'] self.assertDatasetIdentical(expected, reorder_dims(actual)) actual = ds.coords['dim1'] + grouped self.assertDatasetIdentical(expected, reorder_dims(actual)) ds2 = 2 * ds expected = reorder_dims(ds + ds2) actual = grouped + ds2 self.assertDatasetIdentical(expected, reorder_dims(actual)) actual = ds2 + grouped self.assertDatasetIdentical(expected, reorder_dims(actual)) grouped = ds.groupby('numbers') zeros = DataArray([0, 0, 0, 0], [('numbers', range(4))]) expected = ((ds + Variable('dim3', np.zeros(10))) .transpose('dim3', 'dim1', 'dim2', 'time')) actual = grouped + zeros self.assertDatasetEqual(expected, actual) actual = zeros + grouped self.assertDatasetEqual(expected, actual) with self.assertRaisesRegexp(ValueError, 'dimensions .* do not exist'): grouped + ds with self.assertRaisesRegexp(ValueError, 'dimensions .* do not exist'): ds + grouped with self.assertRaisesRegexp(TypeError, 'only support binary ops'): grouped + 1 with self.assertRaisesRegexp(TypeError, 'only support binary ops'): grouped + grouped with self.assertRaisesRegexp(TypeError, 'in-place operations'): ds += grouped ds = Dataset({'x': ('time', np.arange(100)), 'time': pd.date_range('2000-01-01', periods=100)}) with self.assertRaisesRegexp(ValueError, 'no overlapping labels'): ds + ds.groupby('time.month') def test_groupby_math_virtual(self): ds = Dataset({'x': ('t', [1, 2, 3])}, {'t': pd.date_range('20100101', periods=3)}) grouped = ds.groupby('t.day') actual = grouped - grouped.mean() expected = Dataset({'x': ('t', [0, 0, 0])}, ds[['t', 't.day']]) self.assertDatasetIdentical(actual, expected) def test_groupby_nan(self): # nan should be excluded from groupby ds = Dataset({'foo': ('x', [1, 2, 3, 4])}, {'bar': ('x', [1, 1, 2, np.nan])}) actual = ds.groupby('bar').mean() expected = Dataset({'foo': ('bar', [1.5, 3]), 'bar': [1, 2]}) self.assertDatasetIdentical(actual, expected) def test_resample_and_first(self): times = pd.date_range('2000-01-01', freq='6H', periods=10) ds = Dataset({'foo': (['time', 'x', 'y'], np.random.randn(10, 5, 3)), 'bar': ('time', np.random.randn(10), {'meta': 'data'}), 'time': times}) actual = ds.resample('1D', dim='time', how='first') expected = ds.isel(time=[0, 4, 8]) self.assertDatasetIdentical(expected, actual) # upsampling expected_time = pd.date_range('2000-01-01', freq='3H', periods=19) expected = ds.reindex(time=expected_time) for how in ['mean', 'sum', 'first', 'last', np.mean]: actual = ds.resample('3H', 'time', how=how) self.assertDatasetEqual(expected, actual) def test_to_array(self): ds = Dataset(OrderedDict([('a', 1), ('b', ('x', [1, 2, 3]))]), coords={'c': 42}, attrs={'Conventions': 'None'}) data = [[1, 1, 1], [1, 2, 3]] coords = {'x': range(3), 'c': 42, 'variable': ['a', 'b']} dims = ('variable', 'x') expected = DataArray(data, coords, dims, attrs=ds.attrs) actual = ds.to_array() self.assertDataArrayIdentical(expected, actual) actual = ds.to_array('abc', name='foo') expected = expected.rename({'variable': 'abc'}).rename('foo') self.assertDataArrayIdentical(expected, actual) def test_to_and_from_dataframe(self): x = np.random.randn(10) y = np.random.randn(10) t = list('abcdefghij') ds = Dataset(OrderedDict([('a', ('t', x)), ('b', ('t', y)), ('t', ('t', t))])) expected = pd.DataFrame(np.array([x, y]).T, columns=['a', 'b'], index=pd.Index(t, name='t')) actual = ds.to_dataframe() # use the .equals method to check all DataFrame metadata assert expected.equals(actual), (expected, actual) # verify coords are included actual = ds.set_coords('b').to_dataframe() assert expected.equals(actual), (expected, actual) # check roundtrip self.assertDatasetIdentical(ds, Dataset.from_dataframe(actual)) # test a case with a MultiIndex w = np.random.randn(2, 3) ds = Dataset({'w': (('x', 'y'), w)}) ds['y'] = ('y', list('abc')) exp_index = pd.MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1], ['a', 'b', 'c', 'a', 'b', 'c']], names=['x', 'y']) expected = pd.DataFrame(w.reshape(-1), columns=['w'], index=exp_index) actual = ds.to_dataframe() self.assertTrue(expected.equals(actual)) # check roundtrip self.assertDatasetIdentical(ds, Dataset.from_dataframe(actual)) # check pathological cases df = pd.DataFrame([1]) actual = Dataset.from_dataframe(df) expected = Dataset({0: ('index', [1])}) self.assertDatasetIdentical(expected, actual) df = pd.DataFrame() actual = Dataset.from_dataframe(df) expected = Dataset() self.assertDatasetIdentical(expected, actual) # regression test for GH278 # use int64 to ensure consistent results for the pandas .equals method # on windows (which requires the same dtype) ds = Dataset({'x': pd.Index(['bar']), 'a': ('y', np.array([1], 'int64'))}).isel(x=0) # use .loc to ensure consistent results on Python 3 actual = ds.to_dataframe().loc[:, ['a', 'x']] expected = pd.DataFrame([[1, 'bar']], index=pd.Index([0], name='y'), columns=['a', 'x']) assert expected.equals(actual), (expected, actual) ds = Dataset({'x': np.array([0], 'int64'), 'y': np.array([1], 'int64')}) actual = ds.to_dataframe() idx = pd.MultiIndex.from_arrays([[0], [1]], names=['x', 'y']) expected = pd.DataFrame([[]], index=idx) assert expected.equals(actual), (expected, actual) # regression test for GH449 df = pd.DataFrame(np.zeros((2, 2))) df.columns = ['foo', 'foo'] with self.assertRaisesRegexp(ValueError, 'non-unique columns'): Dataset.from_dataframe(df) def test_pickle(self): data = create_test_data() roundtripped = pickle.loads(pickle.dumps(data)) self.assertDatasetIdentical(data, roundtripped) # regression test for #167: self.assertEqual(data.dims, roundtripped.dims) def test_lazy_load(self): store = InaccessibleVariableDataStore() create_test_data().dump_to_store(store) for decode_cf in [True, False]: ds = open_dataset(store, decode_cf=decode_cf) with self.assertRaises(UnexpectedDataAccess): ds.load() with self.assertRaises(UnexpectedDataAccess): ds['var1'].values # these should not raise UnexpectedDataAccess: ds.isel(time=10) ds.isel(time=slice(10), dim1=[0]).isel(dim1=0, dim2=-1) def test_dropna(self): x = np.random.randn(4, 4) x[::2, 0] = np.nan y = np.random.randn(4) y[-1] = np.nan ds = Dataset({'foo': (('a', 'b'), x), 'bar': (('b', y))}) expected = ds.isel(a=slice(1, None, 2)) actual = ds.dropna('a') self.assertDatasetIdentical(actual, expected) expected = ds.isel(b=slice(1, 3)) actual = ds.dropna('b') self.assertDatasetIdentical(actual, expected) actual = ds.dropna('b', subset=['foo', 'bar']) self.assertDatasetIdentical(actual, expected) expected = ds.isel(b=slice(1, None)) actual = ds.dropna('b', subset=['foo']) self.assertDatasetIdentical(actual, expected) expected = ds.isel(b=slice(3)) actual = ds.dropna('b', subset=['bar']) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('a', subset=[]) self.assertDatasetIdentical(actual, ds) actual = ds.dropna('a', subset=['bar']) self.assertDatasetIdentical(actual, ds) actual = ds.dropna('a', how='all') self.assertDatasetIdentical(actual, ds) actual = ds.dropna('b', how='all', subset=['bar']) expected = ds.isel(b=[0, 1, 2]) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('b', thresh=1, subset=['bar']) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('b', thresh=2) self.assertDatasetIdentical(actual, ds) actual = ds.dropna('b', thresh=4) expected = ds.isel(b=[1, 2, 3]) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('a', thresh=3) expected = ds.isel(a=[1, 3]) self.assertDatasetIdentical(actual, ds) with self.assertRaisesRegexp(ValueError, 'a single dataset dimension'): ds.dropna('foo') with self.assertRaisesRegexp(ValueError, 'invalid how'): ds.dropna('a', how='somehow') with self.assertRaisesRegexp(TypeError, 'must specify how or thresh'): ds.dropna('a', how=None) def test_fillna(self): ds = Dataset({'a': ('x', [np.nan, 1, np.nan, 3])}) # fill with -1 actual = ds.fillna(-1) expected = Dataset({'a': ('x', [-1, 1, -1, 3])}) self.assertDatasetIdentical(expected, actual) actual = ds.fillna({'a': -1}) self.assertDatasetIdentical(expected, actual) other = Dataset({'a': -1}) actual = ds.fillna(other) self.assertDatasetIdentical(expected, actual) actual = ds.fillna({'a': other.a}) self.assertDatasetIdentical(expected, actual) # fill with range(4) b = DataArray(range(4), dims='x') actual = ds.fillna(b) expected = b.rename('a').to_dataset() self.assertDatasetIdentical(expected, actual) actual = ds.fillna(expected) self.assertDatasetIdentical(expected, actual) actual = ds.fillna(range(4)) self.assertDatasetIdentical(expected, actual) actual = ds.fillna(b[:3]) self.assertDatasetIdentical(expected, actual) # left align variables ds['b'] = np.nan actual = ds.fillna({'a': -1, 'c': 'foobar'}) expected = Dataset({'a': ('x', [-1, 1, -1, 3]), 'b': np.nan}) self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'no overlapping'): ds.fillna({'x': 0}) with self.assertRaisesRegexp(ValueError, 'no overlapping'): ds.fillna(Dataset(coords={'a': 0})) # groupby expected = Dataset({'a': ('x', range(4))}) for target in [ds, expected]: target.coords['b'] = ('x', [0, 0, 1, 1]) actual = ds.groupby('b').fillna(DataArray([0, 2], dims='b')) self.assertDatasetIdentical(expected, actual) actual = ds.groupby('b').fillna(Dataset({'a': ('b', [0, 2])})) self.assertDatasetIdentical(expected, actual) def test_where(self): ds = Dataset({'a': ('x', range(5))}) expected = Dataset({'a': ('x', [np.nan, np.nan, 2, 3, 4])}) actual = ds.where(ds > 1) self.assertDatasetIdentical(expected, actual) actual = ds.where(ds.a > 1) self.assertDatasetIdentical(expected, actual) actual = ds.where(ds.a.values > 1) self.assertDatasetIdentical(expected, actual) actual = ds.where(True) self.assertDatasetIdentical(ds, actual) expected = ds.copy(deep=True) expected['a'].values = [np.nan] * 5 actual = ds.where(False) self.assertDatasetIdentical(expected, actual) # 2d ds = Dataset({'a': (('x', 'y'), [[0, 1], [2, 3]])}) expected = Dataset({'a': (('x', 'y'), [[np.nan, 1], [2, 3]])}) actual = ds.where(ds > 0) self.assertDatasetIdentical(expected, actual) # groupby ds = Dataset({'a': ('x', range(5))}, {'c': ('x', [0, 0, 1, 1, 1])}) cond = Dataset({'a': ('c', [True, False])}) expected = ds.copy(deep=True) expected['a'].values = [0, 1] + [np.nan] * 3 actual = ds.groupby('c').where(cond) self.assertDatasetIdentical(expected, actual) def test_reduce(self): data = create_test_data() self.assertEqual(len(data.mean().coords), 0) actual = data.max() expected = Dataset(dict((k, v.max()) for k, v in iteritems(data.data_vars))) self.assertDatasetEqual(expected, actual) self.assertDatasetEqual(data.min(dim=['dim1']), data.min(dim='dim1')) for reduct, expected in [('dim2', ['dim1', 'dim3', 'time']), (['dim2', 'time'], ['dim1', 'dim3']), (('dim2', 'time'), ['dim1', 'dim3']), ((), ['dim1', 'dim2', 'dim3', 'time'])]: actual = data.min(dim=reduct).dims print(reduct, actual, expected) self.assertItemsEqual(actual, expected) self.assertDatasetEqual(data.mean(dim=[]), data) def test_reduce_bad_dim(self): data = create_test_data() with self.assertRaisesRegexp(ValueError, 'Dataset does not contain'): ds = data.mean(dim='bad_dim') def test_reduce_non_numeric(self): data1 = create_test_data(seed=44) data2 = create_test_data(seed=44) add_vars = {'var4': ['dim1', 'dim2']} for v, dims in sorted(add_vars.items()): size = tuple(data1.dims[d] for d in dims) data = np.random.random_integers(0, 100, size=size).astype(np.str_) data1[v] = (dims, data, {'foo': 'variable'}) self.assertTrue('var4' not in data1.mean()) self.assertDatasetEqual(data1.mean(), data2.mean()) self.assertDatasetEqual(data1.mean(dim='dim1'), data2.mean(dim='dim1')) def test_reduce_strings(self): expected = Dataset({'x': 'a'}) ds = Dataset({'x': ('y', ['a', 'b'])}) actual = ds.min() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 'b'}) actual = ds.max() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 0}) actual = ds.argmin() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 1}) actual = ds.argmax() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': b'a'}) ds = Dataset({'x': ('y', np.array(['a', 'b'], 'S1'))}) actual = ds.min() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': u'a'}) ds = Dataset({'x': ('y', np.array(['a', 'b'], 'U1'))}) actual = ds.min() self.assertDatasetIdentical(expected, actual) def test_reduce_dtypes(self): # regression test for GH342 expected = Dataset({'x': 1}) actual = Dataset({'x': True}).sum() self.assertDatasetIdentical(expected, actual) # regression test for GH505 expected = Dataset({'x': 3}) actual = Dataset({'x': ('y', np.array([1, 2], 'uint16'))}).sum() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 1 + 1j}) actual = Dataset({'x': ('y', [1, 1j])}).sum() self.assertDatasetIdentical(expected, actual) def test_reduce_keep_attrs(self): data = create_test_data() _attrs = {'attr1': 'value1', 'attr2': 2929} attrs = OrderedDict(_attrs) data.attrs = attrs # Test dropped attrs ds = data.mean() self.assertEqual(ds.attrs, {}) for v in ds.data_vars.values(): self.assertEqual(v.attrs, {}) # Test kept attrs ds = data.mean(keep_attrs=True) self.assertEqual(ds.attrs, attrs) for k, v in ds.data_vars.items(): self.assertEqual(v.attrs, data[k].attrs) def test_reduce_argmin(self): # regression test for #205 ds = Dataset({'a': ('x', [0, 1])}) expected = Dataset({'a': ([], 0)}) actual = ds.argmin() self.assertDatasetIdentical(expected, actual) actual = ds.argmin('x') self.assertDatasetIdentical(expected, actual) def test_reduce_scalars(self): ds = Dataset({'x': ('a', [2, 2]), 'y': 2, 'z': ('b', [2])}) expected = Dataset({'x': 0, 'y': 0, 'z': 0}) actual = ds.var() self.assertDatasetIdentical(expected, actual) def test_reduce_only_one_axis(self): def mean_only_one_axis(x, axis): if not isinstance(axis, (int, np.integer)): raise TypeError('non-integer axis') return x.mean(axis) ds = Dataset({'a': (['x', 'y'], [[0, 1, 2, 3, 4]])}) expected = Dataset({'a': ('x', [2])}) actual = ds.reduce(mean_only_one_axis, 'y') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(TypeError, 'non-integer axis'): ds.reduce(mean_only_one_axis) with self.assertRaisesRegexp(TypeError, 'non-integer axis'): ds.reduce(mean_only_one_axis, ['x', 'y']) def test_count(self): ds = Dataset({'x': ('a', [np.nan, 1]), 'y': 0, 'z': np.nan}) expected = Dataset({'x': 1, 'y': 1, 'z': 0}) actual = ds.count() self.assertDatasetIdentical(expected, actual) def test_apply(self): data = create_test_data() data.attrs['foo'] = 'bar' self.assertDatasetIdentical(data.apply(np.mean), data.mean()) expected = data.mean(keep_attrs=True) actual = data.apply(lambda x: x.mean(keep_attrs=True), keep_attrs=True) self.assertDatasetIdentical(expected, actual) self.assertDatasetIdentical(data.apply(lambda x: x, keep_attrs=True), data.drop('time')) def scale(x, multiple=1): return multiple * x actual = data.apply(scale, multiple=2) self.assertDataArrayEqual(actual['var1'], 2 * data['var1']) self.assertDataArrayIdentical(actual['numbers'], data['numbers']) actual = data.apply(np.asarray) expected = data.drop('time') # time is not used on a data var self.assertDatasetEqual(expected, actual) def make_example_math_dataset(self): variables = OrderedDict( [('bar', ('x', np.arange(100, 400, 100))), ('foo', (('x', 'y'), 1.0 * np.arange(12).reshape(3, 4)))]) coords = {'abc': ('x', ['a', 'b', 'c']), 'y': 10 * np.arange(4)} ds = Dataset(variables, coords) ds['foo'][0, 0] = np.nan return ds def test_dataset_number_math(self): ds = self.make_example_math_dataset() self.assertDatasetIdentical(ds, +ds) self.assertDatasetIdentical(ds, ds + 0) self.assertDatasetIdentical(ds, 0 + ds) self.assertDatasetIdentical(ds, ds + np.array(0)) self.assertDatasetIdentical(ds, np.array(0) + ds) actual = ds.copy(deep=True) actual += 0 self.assertDatasetIdentical(ds, actual) def test_unary_ops(self): ds = self.make_example_math_dataset() self.assertDatasetIdentical(ds.apply(abs), abs(ds)) self.assertDatasetIdentical(ds.apply(lambda x: x + 4), ds + 4) for func in [lambda x: x.isnull(), lambda x: x.round(), lambda x: x.astype(int)]: self.assertDatasetIdentical(ds.apply(func), func(ds)) self.assertDatasetIdentical(ds.isnull(), ~ds.notnull()) # don't actually patch these methods in with self.assertRaises(AttributeError): ds.item with self.assertRaises(AttributeError): ds.searchsorted def test_dataset_array_math(self): ds = self.make_example_math_dataset() expected = ds.apply(lambda x: x - ds['foo']) self.assertDatasetIdentical(expected, ds - ds['foo']) self.assertDatasetIdentical(expected, -ds['foo'] + ds) self.assertDatasetIdentical(expected, ds - ds['foo'].variable) self.assertDatasetIdentical(expected, -ds['foo'].variable + ds) actual = ds.copy(deep=True) actual -= ds['foo'] self.assertDatasetIdentical(expected, actual) expected = ds.apply(lambda x: x + ds['bar']) self.assertDatasetIdentical(expected, ds + ds['bar']) actual = ds.copy(deep=True) actual += ds['bar'] self.assertDatasetIdentical(expected, actual) expected = Dataset({'bar': ds['bar'] + np.arange(3)}) self.assertDatasetIdentical(expected, ds[['bar']] + np.arange(3)) self.assertDatasetIdentical(expected, np.arange(3) + ds[['bar']]) def test_dataset_dataset_math(self): ds = self.make_example_math_dataset() self.assertDatasetIdentical(ds, ds + 0 * ds) self.assertDatasetIdentical(ds, ds + {'foo': 0, 'bar': 0}) expected = ds.apply(lambda x: 2 * x) self.assertDatasetIdentical(expected, 2 * ds) self.assertDatasetIdentical(expected, ds + ds) self.assertDatasetIdentical(expected, ds + ds.data_vars) self.assertDatasetIdentical(expected, ds + dict(ds.data_vars)) actual = ds.copy(deep=True) expected_id = id(actual) actual += ds self.assertDatasetIdentical(expected, actual) self.assertEqual(expected_id, id(actual)) self.assertDatasetIdentical(ds == ds, ds.notnull()) subsampled = ds.isel(y=slice(2)) expected = 2 * subsampled self.assertDatasetIdentical(expected, subsampled + ds) self.assertDatasetIdentical(expected, ds + subsampled) def test_dataset_math_auto_align(self): ds = self.make_example_math_dataset() subset = ds.isel(x=slice(2), y=[1, 3]) expected = 2 * subset actual = ds + subset self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'no overlapping labels'): ds.isel(x=slice(1)) + ds.isel(x=slice(1, None)) actual = ds + ds[['bar']] expected = (2 * ds[['bar']]).merge(ds.coords) self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'no overlapping data'): ds + Dataset() with self.assertRaisesRegexp(ValueError, 'no overlapping data'): Dataset() + Dataset() ds2 = Dataset(coords={'bar': 42}) with self.assertRaisesRegexp(ValueError, 'no overlapping data'): ds + ds2 # maybe unary arithmetic with empty datasets should raise instead? self.assertDatasetIdentical(Dataset() + 1, Dataset()) for other in [ds.isel(x=slice(2)), ds.bar.isel(x=slice(0))]: actual = ds.copy(deep=True) other = ds.isel(x=slice(2)) actual += other expected = ds + other.reindex_like(ds) self.assertDatasetIdentical(expected, actual) def test_dataset_math_errors(self): ds = self.make_example_math_dataset() with self.assertRaises(TypeError): ds['foo'] += ds with self.assertRaises(TypeError): ds['foo'].variable += ds with self.assertRaisesRegexp(ValueError, 'must have the same'): ds += ds[['bar']] # verify we can rollback in-place operations if something goes wrong # nb. inplace datetime64 math actually will work with an integer array # but not floats thanks to numpy's inconsistent handling other = DataArray(np.datetime64('2000-01-01T12'), coords={'c': 2}) actual = ds.copy(deep=True) with self.assertRaises(TypeError): actual += other self.assertDatasetIdentical(actual, ds) def test_dataset_transpose(self): ds = Dataset({'a': (('x', 'y'), np.random.randn(3, 4)), 'b': (('y', 'x'), np.random.randn(4, 3))}) actual = ds.transpose() expected = ds.apply(lambda x: x.transpose()) self.assertDatasetIdentical(expected, actual) actual = ds.T self.assertDatasetIdentical(expected, actual) actual = ds.transpose('x', 'y') expected = ds.apply(lambda x: x.transpose('x', 'y')) self.assertDatasetIdentical(expected, actual) ds = create_test_data() actual = ds.transpose() for k in ds: self.assertEqual(actual[k].dims[::-1], ds[k].dims) new_order = ('dim2', 'dim3', 'dim1', 'time') actual = ds.transpose(*new_order) for k in ds: expected_dims = tuple(d for d in new_order if d in ds[k].dims) self.assertEqual(actual[k].dims, expected_dims) with self.assertRaisesRegexp(ValueError, 'arguments to transpose'): ds.transpose('dim1', 'dim2', 'dim3') with self.assertRaisesRegexp(ValueError, 'arguments to transpose'): ds.transpose('dim1', 'dim2', 'dim3', 'time', 'extra_dim') def test_dataset_diff_n1_simple(self): ds = Dataset({'foo': ('x', [5, 5, 6, 6])}) actual = ds.diff('x') expected = Dataset({'foo': ('x', [0, 1, 0])}) expected.coords['x'].values = [1, 2, 3] self.assertDatasetEqual(expected, actual) def test_dataset_diff_n1_lower(self): ds = Dataset({'foo': ('x', [5, 5, 6, 6])}) actual = ds.diff('x', label='lower') expected = Dataset({'foo': ('x', [0, 1, 0])}) expected.coords['x'].values = [0, 1, 2] self.assertDatasetEqual(expected, actual) def test_dataset_diff_n1(self): ds = create_test_data(seed=1) actual = ds.diff('dim2') expected = dict() expected['var1'] = DataArray(np.diff(ds['var1'].values, axis=1), [ds['dim1'].values, ds['dim2'].values[1:]], ['dim1', 'dim2']) expected['var2'] = DataArray(np.diff(ds['var2'].values, axis=1), [ds['dim1'].values, ds['dim2'].values[1:]], ['dim1', 'dim2']) expected['var3'] = ds['var3'] expected = Dataset(expected, coords={'time': ds['time'].values}) expected.coords['numbers'] = ('dim3', ds['numbers'].values) self.assertDatasetEqual(expected, actual) def test_dataset_diff_n2(self): ds = create_test_data(seed=1) actual = ds.diff('dim2', n=2) expected = dict() expected['var1'] = DataArray(np.diff(ds['var1'].values, axis=1, n=2), [ds['dim1'].values, ds['dim2'].values[2:]], ['dim1', 'dim2']) expected['var2'] = DataArray(np.diff(ds['var2'].values, axis=1, n=2), [ds['dim1'].values, ds['dim2'].values[2:]], ['dim1', 'dim2']) expected['var3'] = ds['var3'] expected = Dataset(expected, coords={'time': ds['time'].values}) expected.coords['numbers'] = ('dim3', ds['numbers'].values) self.assertDatasetEqual(expected, actual) def test_dataset_diff_exception_n_neg(self): ds = create_test_data(seed=1) with self.assertRaisesRegexp(ValueError, 'must be non-negative'): ds.diff('dim2', n=-1) def test_dataset_diff_exception_label_str(self): ds = create_test_data(seed=1) with self.assertRaisesRegexp(ValueError, '\'label\' argument has to'): ds.diff('dim2', label='raise_me') def test_real_and_imag(self): attrs = {'foo': 'bar'} ds = Dataset({'x': ((), 1 + 2j, attrs)}, attrs=attrs) expected_re = Dataset({'x': ((), 1, attrs)}, attrs=attrs) self.assertDatasetIdentical(ds.real, expected_re) expected_im = Dataset({'x': ((), 2, attrs)}, attrs=attrs) self.assertDatasetIdentical(ds.imag, expected_im)
apache-2.0
-6,595,006,660,729,003,000
39.5831
88
0.551531
false
zwimer/IntroToOpenSourceLabs
Lab6/markdown.py/test_markdown_unittest.py
1
1156
''' Test markdown.py with unittest To run tests: python test_markdown_unittest.py ''' import unittest from markdown_adapter import run_markdown class TestMarkdownPy(unittest.TestCase): def setUp(self): pass def test_non_marked_lines(self): ''' Non-marked lines should only get 'p' tags around all input ''' self.assertEqual( run_markdown('this line has no special handling'), '<p>this line has no special handling</p>') def test_em(self): ''' Lines surrounded by asterisks should be wrapped in 'em' tags ''' self.assertEqual( run_markdown('*this should be wrapped in em tags*'), '<p><em>this should be wrapped in em tags</em></p>') def test_strong(self): ''' Lines surrounded by double asterisks should be wrapped in 'strong' tags ''' self.assertEqual( run_markdown('**this should be wrapped in strong tags**'), '<p><strong>this should be wrapped in strong tags</strong></p>') if __name__ == '__main__': unittest.main()
mit
2,382,812,926,050,376,000
27.195122
80
0.577855
false
fuchsia-mirror/third_party-pyyaml
lib3/yaml/reader.py
1
6874
# This module contains abstractions for the input stream. You don't have to # looks further, there are no pretty code. # # We define two classes here. # # Mark(source, line, column) # It's just a record and its only use is producing nice error messages. # Parser does not use it for any other purposes. # # Reader(source, data) # Reader determines the encoding of `data` and converts it to unicode. # Reader provides the following methods and attributes: # reader.peek(length=1) - return the next `length` characters # reader.forward(length=1) - move the current position to `length` characters. # reader.index - the number of the current character. # reader.line, stream.column - the line and the column of the current character. __all__ = ['Reader', 'ReaderError'] from .error import YAMLError, Mark import codecs, re class ReaderError(YAMLError): def __init__(self, name, position, character, encoding, reason): self.name = name self.character = character self.position = position self.encoding = encoding self.reason = reason def __str__(self): if isinstance(self.character, bytes): return "'%s' codec can't decode byte #x%02x: %s\n" \ " in \"%s\", position %d" \ % (self.encoding, ord(self.character), self.reason, self.name, self.position) else: return "unacceptable character #x%04x: %s\n" \ " in \"%s\", position %d" \ % (self.character, self.reason, self.name, self.position) class Reader(object): # Reader: # - determines the data encoding and converts it to a unicode string, # - checks if characters are in allowed range, # - adds '\0' to the end. # Reader accepts # - a `bytes` object, # - a `str` object, # - a file-like object with its `read` method returning `str`, # - a file-like object with its `read` method returning `unicode`. # Yeah, it's ugly and slow. def __init__(self, stream): self.name = None self.stream = None self.stream_pointer = 0 self.eof = True self.buffer = '' self.pointer = 0 self.raw_buffer = None self.raw_decode = None self.encoding = None self.index = 0 self.line = 0 self.column = 0 if isinstance(stream, str): self.name = "<unicode string>" self.check_printable(stream) self.buffer = stream+'\0' elif isinstance(stream, bytes): self.name = "<byte string>" self.raw_buffer = stream self.determine_encoding() else: self.stream = stream self.name = getattr(stream, 'name', "<file>") self.eof = False self.raw_buffer = None self.determine_encoding() def peek(self, index=0): try: return self.buffer[self.pointer+index] except IndexError: self.update(index+1) return self.buffer[self.pointer+index] def prefix(self, length=1): if self.pointer+length >= len(self.buffer): self.update(length) return self.buffer[self.pointer:self.pointer+length] def forward(self, length=1): if self.pointer+length+1 >= len(self.buffer): self.update(length+1) while length: ch = self.buffer[self.pointer] self.pointer += 1 self.index += 1 if ch in '\n\x85\u2028\u2029' \ or (ch == '\r' and self.buffer[self.pointer] != '\n'): self.line += 1 self.column = 0 elif ch != '\uFEFF': self.column += 1 length -= 1 def get_mark(self): if self.stream is None: return Mark(self.name, self.index, self.line, self.column, self.buffer, self.pointer) else: return Mark(self.name, self.index, self.line, self.column, None, None) def determine_encoding(self): while not self.eof and (self.raw_buffer is None or len(self.raw_buffer) < 2): self.update_raw() if isinstance(self.raw_buffer, bytes): if self.raw_buffer.startswith(codecs.BOM_UTF16_LE): self.raw_decode = codecs.utf_16_le_decode self.encoding = 'utf-16-le' elif self.raw_buffer.startswith(codecs.BOM_UTF16_BE): self.raw_decode = codecs.utf_16_be_decode self.encoding = 'utf-16-be' else: self.raw_decode = codecs.utf_8_decode self.encoding = 'utf-8' self.update(1) NON_PRINTABLE = re.compile('[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]') def check_printable(self, data): match = self.NON_PRINTABLE.search(data) if match: character = match.group() position = self.index+(len(self.buffer)-self.pointer)+match.start() raise ReaderError(self.name, position, ord(character), 'unicode', "special characters are not allowed") def update(self, length): if self.raw_buffer is None: return self.buffer = self.buffer[self.pointer:] self.pointer = 0 while len(self.buffer) < length: if not self.eof: self.update_raw() if self.raw_decode is not None: try: data, converted = self.raw_decode(self.raw_buffer, 'strict', self.eof) except UnicodeDecodeError as exc: character = self.raw_buffer[exc.start] if self.stream is not None: position = self.stream_pointer-len(self.raw_buffer)+exc.start else: position = exc.start raise ReaderError(self.name, position, character, exc.encoding, exc.reason) else: data = self.raw_buffer converted = len(data) self.check_printable(data) self.buffer += data self.raw_buffer = self.raw_buffer[converted:] if self.eof: self.buffer += '\0' self.raw_buffer = None break def update_raw(self, size=4096): data = self.stream.read(size) if self.raw_buffer is None: self.raw_buffer = data else: self.raw_buffer += data self.stream_pointer += len(data) if not data: self.eof = True #try: # import psyco # psyco.bind(Reader) #except ImportError: # pass
mit
-3,708,321,917,766,483,000
34.989529
107
0.547134
false
i3visio/osrframework
osrframework/wrappers/theverge.py
1
3897
################################################################################ # # Copyright 2015-2020 Félix Brezo and Yaiza Rubio # # This program is part of OSRFramework. You can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ################################################################################ __author__ = "Felix Brezo, Yaiza Rubio <[email protected]>" __version__ = "2.0" from osrframework.utils.platforms import Platform class Theverge(Platform): """A <Platform> object for Theverge""" def __init__(self): self.platformName = "Theverge" self.tags = ["news", "tech"] ######################## # Defining valid modes # ######################## self.isValidMode = {} self.isValidMode["phonefy"] = False self.isValidMode["usufy"] = True self.isValidMode["searchfy"] = False ###################################### # Search URL for the different modes # ###################################### # Strings with the URL for each and every mode self.url = {} #self.url["phonefy"] = "http://anyurl.com//phone/" + "<phonefy>" self.url["usufy"] = "http://www.theverge.com/users/" + "<usufy>" #self.url["searchfy"] = "http://anyurl.com/search/" + "<searchfy>" ###################################### # Whether the user needs credentials # ###################################### self.needsCredentials = {} #self.needsCredentials["phonefy"] = False self.needsCredentials["usufy"] = False #self.needsCredentials["searchfy"] = False ################# # Valid queries # ################# # Strings that will imply that the query number is not appearing self.validQuery = {} # The regular expression '.+' will match any query. #self.validQuery["phonefy"] = ".*" self.validQuery["usufy"] = ".+" #self.validQuery["searchfy"] = ".*" ################### # Not_found clues # ################### # Strings that will imply that the query number is not appearing self.notFoundText = {} #self.notFoundText["phonefy"] = [] self.notFoundText["usufy"] = [ '<title>404 Not found</title>' ] #self.notFoundText["searchfy"] = [] ######################### # Fields to be searched # ######################### self.fieldsRegExp = {} # Definition of regular expressions to be searched in phonefy mode #self.fieldsRegExp["phonefy"] = {} # Example of fields: #self.fieldsRegExp["phonefy"]["i3visio.location"] = "" # Definition of regular expressions to be searched in usufy mode self.fieldsRegExp["usufy"] = {} # Example of fields: #self.fieldsRegExp["usufy"]["i3visio.location"] = "" # Definition of regular expressions to be searched in searchfy mode #self.fieldsRegExp["searchfy"] = {} # Example of fields: #self.fieldsRegExp["searchfy"]["i3visio.location"] = "" ################ # Fields found # ################ # This attribute will be feeded when running the program. self.foundFields = {}
agpl-3.0
5,413,026,602,366,703,000
37.96
80
0.523101
false
NerdWallet/versionalchemy
tests/test_api.py
1
17354
from __future__ import absolute_import, division import copy from datetime import datetime from itertools import chain import six import sqlalchemy as sa from six.moves import range, zip from sqlalchemy import func from tests.models import ArchiveTable, MultiColumnUserTable, UserTable from tests.utils import SQLiteTestBase from versionalchemy.api import delete, get from versionalchemy.api.data import _get_conditions_list from versionalchemy.utils import get_dialect try: from unittest import mock # PY3 except ImportError: import mock class TestDeleteAPI(SQLiteTestBase): def setUp(self): super(TestDeleteAPI, self).setUp() p1 = UserTable(**self.p1) p3 = UserTable(**self.p3) self.session.add_all([p1, p3]) self.session.flush() p1.col1 = 'change1' p2 = UserTable(**self.p2) self.session.add_all([p1, p2]) self.session.flush() p1.col3 = False p1.col1 = 'change2' self.session.add(p1) self.session.flush() p1.col2 = 15 p2.col2 = 12 self.session.add_all([p1, p2]) self.session.flush() def test_delete_single_row(self): conds = [{'product_id': 10}] delete(UserTable, self.session, conds=conds) self._verify_deleted(conds[0]) def test_delete_multi_row(self): conds = [{'product_id': 11}, {'product_id': 10}] delete(UserTable, self.session, conds=conds) for c in conds: self._verify_deleted(c) def test_delete_rollback(self): conds = [{'product_id': 10}] cond_list_1 = _get_conditions_list(UserTable, conds) with mock.patch( 'versionalchemy.api.data._get_conditions_list', side_effect=[cond_list_1, Exception()] ): try: delete(UserTable, self.session, conds=conds) self.assertTrue(False, 'Should have raised an exception') except Exception: version_col_names = UserTable.va_version_columns and_clause = sa.and_(*[ getattr(UserTable.ArchiveTable, col_name) == conds[0][col_name] for col_name in version_col_names ]) res = self.session.execute( sa.select([func.count(UserTable.ArchiveTable.va_id)]) .where(and_clause) ) self.assertEqual(res.scalar(), 4) and_clause = sa.and_(*[ getattr(UserTable, col_name) == conds[0][col_name] for col_name in version_col_names ]) res = self.session.execute( sa.select([func.count(UserTable.id)]) .where(and_clause) ) self.assertEqual(res.scalar(), 1) class TestMultiColDeleteAPI(SQLiteTestBase): UserTable = MultiColumnUserTable def setUp(self): super(TestMultiColDeleteAPI, self).setUp() r1 = { 'product_id_1': 11, 'product_id_2': 'foo', 'col1': 'foo', 'col2': 100, } p1 = self.UserTable(**r1) r2 = { 'product_id_1': 11, 'product_id_2': 'bar', 'col1': 'foo', 'col2': 100, } p2 = self.UserTable(**r2) self.session.add_all([p1, p2]) self.session.flush() p1.col1 = 'change1' self.session.add(p1) self.session.flush() p1.col1 = 'change2' self.session.add(p1) self.session.flush() p1.col2 = 15 p2.col2 = 12 self.session.add_all([p1, p2]) self.session.flush() def test_delete_single_row(self): conds = [{'product_id_1': 11, 'product_id_2': 'foo'}] delete(self.UserTable, self.session, conds=conds) self._verify_deleted(conds[0]) def test_delete_multi_row(self): conds = [ {'product_id_1': 11, 'product_id_2': 'bar'}, {'product_id_1': 11, 'product_id_2': 'foo'} ] delete(self.UserTable, self.session, conds=conds) for c in conds: self._verify_deleted(c) class TestGetAPI(SQLiteTestBase): def setUp(self): super(TestGetAPI, self).setUp() self.p1_history, self.p2_history, self.p3_history = [], [], [] self.t1 = datetime.utcfromtimestamp(10) p1 = UserTable(**self.p1) p3 = UserTable(**self.p3) with mock.patch('versionalchemy.models.datetime') as p: p.now.return_value = self.t1 self.session.add_all([p1, p3]) self.session.flush() self.p1_history.append(self._history(p1, self.t1, 0)) self.p3_history.append(self._history(p3, self.t1, 0)) self.t2 = datetime.utcfromtimestamp(20) p1.col1 = 'change1' p2 = UserTable(**self.p2) with mock.patch('versionalchemy.models.datetime') as p: p.now.return_value = self.t2 self.session.add_all([p1, p2]) self.session.flush() self.p1_history.append(self._history(p1, self.t2, 1)) self.p2_history.append(self._history(p2, self.t2, 0)) self.t3 = datetime.utcfromtimestamp(30) p1.col3 = False p1.col1 = 'change2' with mock.patch('versionalchemy.models.datetime') as p: p.now.return_value = self.t3 self.session.add(p1) self.session.flush() self.p1_history.append(self._history(p1, self.t3, 2)) self.t4 = datetime.utcfromtimestamp(40) p1.col2 = 15 p2.col2 = 12 with mock.patch('versionalchemy.models.datetime') as p: p.now.return_value = self.t4 self.session.add_all([p1, p2]) self.session.flush() self.p1_history.append(self._history(p1, self.t4, 3)) self.p2_history.append(self._history(p2, self.t4, 1)) def test_get_single_product_no_change(self): ''' Performs a query for p3 which has no changes for current time, previous time slice, a time period that includes t1, and a time period that does not include t1. ''' conds = [{'product_id': 2546}] result = get(UserTable, self.session, conds=conds) self._assert_result(result, self.p3_history) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(5), conds=conds, ) self.assertEqual(len(result), 0) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(15), conds=conds, ) self._assert_result(result, self.p3_history) result = get( UserTable, self.session, t1=self.t1, conds=conds, ) self._assert_result(result, self.p3_history) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(5), t2=datetime.utcfromtimestamp(11), conds=conds, ) self._assert_result(result, self.p3_history) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(11), t2=datetime.utcfromtimestamp(15), conds=conds, ) self.assertEqual(len(result), 0) def test_get_single_product_with_change(self): ''' Performs a query for p1 which has been changed 3 times for current time, previous time slices, and various time periods. ''' conds = [{'product_id': 10}] result = get(UserTable, self.session, conds=conds) self._assert_result(result, self.p1_history[-1:]) result = get(UserTable, self.session, t1=datetime.utcfromtimestamp(15), conds=conds) self._assert_result(result, self.p1_history[:1]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(35), conds=conds, ) self._assert_result(result, self.p1_history[2:3]) result = get( UserTable, self.session, t2=datetime.utcfromtimestamp(35), conds=conds, ) self._assert_result(result, self.p1_history[:3]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(11), t2=datetime.utcfromtimestamp(45), conds=conds, ) self._assert_result(result, self.p1_history[1:]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(11), t2=datetime.utcfromtimestamp(35), conds=conds, ) self._assert_result(result, self.p1_history[1:3]) def test_get_multiple_products(self): conds = [{'product_id': 10}, {'product_id': 11}] result = get(UserTable, self.session, conds=conds) self._assert_result(result, [self.p1_history[-1], self.p2_history[-1]]) result = get(UserTable, self.session, t1=datetime.utcfromtimestamp(15), conds=conds) self._assert_result(result, self.p1_history[:1]) result = get(UserTable, self.session, t1=datetime.utcfromtimestamp(25), conds=conds) self._assert_result(result, [self.p1_history[1], self.p2_history[0]]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(11), t2=datetime.utcfromtimestamp(45), conds=conds, ) self._assert_result(result, list(chain(self.p1_history[1:], self.p2_history))) def test_get_all_products(self): result = get(UserTable, self.session) self._assert_result(result, [self.p1_history[-1], self.p2_history[-1], self.p3_history[-1]]) result = get(UserTable, self.session, t1=datetime.utcfromtimestamp(31)) self._assert_result(result, [self.p1_history[2], self.p2_history[0], self.p3_history[0]]) result = get(UserTable, self.session, t1=datetime.utcfromtimestamp(11)) self._assert_result(result, [self.p1_history[0], self.p3_history[0]]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(11), t2=datetime.utcfromtimestamp(45), ) self._assert_result(result, list(chain(self.p1_history[1:], self.p2_history))) def test_get_products_after_va_id(self): result = get( UserTable, self.session, va_id=3, ) self._assert_result(result, [ self.p1_history[1], self.p1_history[2], self.p1_history[3], self.p2_history[1] ]) def test_fields_query(self): ''' Test specifying fields and make sure dedup happens correctly. ''' def prune_data(d, fields): return {k: d[k] for k in fields} conds = [{'product_id': 10}] fields = ['col2'] result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(9), t2=datetime.utcfromtimestamp(45), conds=conds, fields=fields, ) expected = [self.p1_history[0], self.p1_history[3]] self._assert_result(result, expected, fields=fields) fields = ['col1', 'col2'] result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(9), t2=datetime.utcfromtimestamp(45), conds=conds, fields=fields, ) self._assert_result(result, self.p1_history, fields=fields) fields = ['col1'] result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(9), t2=datetime.utcfromtimestamp(45), fields=fields, ) self._assert_result( result, list(chain(self.p1_history[:3], self.p2_history[:1], self.p3_history)), fields=fields, ) fields = ['col1', 'col2'] result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(11), conds=conds, fields=fields, ) self._assert_result(result, self.p1_history[:1], fields=fields) fields = ['col1', 'col2'] result = get( UserTable, self.session, conds=conds, fields=fields, ) self._assert_result(result, self.p1_history[-1:], fields=fields) fields = ['col1', 'invalid_col'] result = get( UserTable, self.session, conds=conds, fields=fields, ) self.p1_history[-1]['va_data']['invalid_col'] = None self._assert_result(result, self.p1_history[-1:], fields=fields) def test_failure_conditions(self): ''' Pass invalid conds arguments and ensure the query fails. ''' conds = [{'product_id': 10, 'foo': 15}] with self.assertRaises(ValueError): get(UserTable, self.session, t1=datetime.utcfromtimestamp(31), conds=conds) conds = [{'pid': 10}] with self.assertRaises(ValueError): get(UserTable, self.session, t1=datetime.utcfromtimestamp(31), conds=conds) with self.assertRaises(ValueError): get(UserTable, self.session, page=-10) def test_paging_results(self): self.session.execute('delete from {}'.format(UserTable.__tablename__)) self.session.execute('delete from {}'.format(ArchiveTable.__tablename__)) t = datetime.utcfromtimestamp(10000) with mock.patch('versionalchemy.models.datetime') as p: p.now.return_value = t history = [] self.p1['col2'] = 0 p1 = UserTable(**self.p1) self.session.add(p1) self.session.commit() history.append(self._history(p1, t, self.p1['col2'])) # make 500 changes for i in range(500): self.p1['col2'] += 1 self.p1['col3'] = int(i < 250) self.p1['col1'] = 'foobar' + '1' * ((i + 1) // 10) [setattr(p1, k, v) for k, v in six.iteritems(self.p1)] self.session.add(p1) self.session.commit() history.append(self._history(p1, t, self.p1['col2'])) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(0), t2=datetime.utcfromtimestamp(10000000000), page=1, page_size=1000, ) self._assert_result(result, history) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(0), t2=datetime.utcfromtimestamp(10000000000), page=1, page_size=100 ) self._assert_result(result, history[:100]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(0), t2=datetime.utcfromtimestamp(10000000000), page=3, page_size=100 ) self._assert_result(result, history[200:300]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(0), t2=datetime.utcfromtimestamp(10000000000), page=5, page_size=100 ) self._assert_result(result, history[400:500]) result = get( UserTable, self.session, t1=datetime.utcfromtimestamp(0), t2=datetime.utcfromtimestamp(10000000000), fields=['col1'], page=1, page_size=80 ) self._assert_result(result, history[0:80:10], fields=['col1']) def _assert_result(self, result, expected, fields=None): self.assertEqual(len(result), len(expected)) for res, exp in zip(result, expected): res = copy.deepcopy(res) exp = copy.deepcopy(exp) self.assertEqual(res['va_id'], exp['va_data']['va_id']) del res['va_id'] if 'id' in res['va_data']: del res['va_data']['id'] del res['user_id'] del exp['va_data']['id'] del exp['va_data']['va_id'] if fields is not None: for k in list(exp['va_data']): if k not in fields: del exp['va_data'][k] self.assertEqual(res, exp) def _history(self, row, ts, version): self.assertEqual(row.version(self.session), version) d = row._to_dict(get_dialect(self.session)) self.assertNotIn('va_id', d) d['va_id'] = row.va_id return { 'va_data': d, 'va_updated_at': ts, 'va_deleted': False, 'va_version': version, 'product_id': row.product_id }
mit
-9,028,803,835,334,087,000
32.501931
100
0.535093
false
Crompulence/cpl-library
examples/sockets/OpenFOAM/OpenFOAM-3.0.1/cpl-socket/tests/stressC-P/test_forces.py
1
5435
import pytest import numpy as np from cplpy import run_test, prepare_config, parametrize_file import os import sys import subprocess try: from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile except: "Error: PyFoam package is required to run the tests" sys.exit() # -----Forces TESTS----- # EXPLANATION: MD_FNAME = "dummyMD_forces.py" MD_ARGS = MD_FNAME MD_EXEC = "python" CFD_FNAME = "test_forces_case" CFD_ARGS = "-parallel -case " + CFD_FNAME CFD_EXEC = "CPLIcoFoam" TEST_TEMPLATE_DIR = os.path.join(os.environ["CPL_PATH"], "test/templates") TEST_DIR = os.path.dirname(os.path.realpath(__file__)) @pytest.fixture() def prepare_config_fix(tmpdir): prepare_config(tmpdir, TEST_DIR, MD_FNAME, CFD_FNAME) def compare_forces(tol, cfd_params, md_fname="md_forces.dat", openfoam_dir="test_forces_case/2"): ncx, ncy, ncz = cfd_params["ncx"], cfd_params["ncy"], cfd_params["ncz"] Lx, Ly, Lz = cfd_params["lx"], cfd_params["ly"], cfd_params["lz"] s_xy = ParsedParameterFile(openfoam_dir + "/sigmaxy")["internalField"] s_yz = ParsedParameterFile(openfoam_dir + "/sigmayz")["internalField"] s_yy = ParsedParameterFile(openfoam_dir + "/sigmayy")["internalField"] cell_cx = ParsedParameterFile(openfoam_dir + "/ccx")["internalField"] cell_cy = ParsedParameterFile(openfoam_dir + "/ccy")["internalField"] cell_cz = ParsedParameterFile(openfoam_dir + "/ccz")["internalField"] openfoam_cells = {} cell_no = 0 for cell_no in xrange(0, len(s_xy)): cell_coord = (float(cell_cx[cell_no]), float(cell_cy[cell_no]), float(cell_cz[cell_no])) # Openfoam output cell centres with 6 decimal figures k = "{0:.5f}".format(cell_coord[0]), "{0:.5f}".format(cell_coord[1]),\ "{0:.5f}".format(cell_coord[2]) openfoam_cells[k] = np.array([float(s_xy[cell_no]), float(s_yy[cell_no]), float(s_yz[cell_no])]) # Line format of dummy md forces file -- > x y z sxy syy szy with open(md_fname, "r") as cfd_file: cfd_lines = cfd_file.readlines() md_lines = [l[:-1].split(" ") for l in cfd_lines] md_cells = {} for l in md_lines: k = "{0:.5f}".format(float(l[0])), "{0:.5f}".format(float(l[1])), "{0:.5f}".format(float(l[2])) md_cells[k] = np.array([float(l[3]), float(l[4]), float(l[5])]) for k in md_cells.keys(): try: diff_forces = abs(md_cells[k] - openfoam_cells[k]) if (np.any(diff_forces > tol)): print md_cells[k] print openfoam_cells[k] assert False except KeyError: print "Cell not found: cell " + k assert False # -----FORCES TESTS----- # EXPLANATION: See README-test located in this folder. @pytest.mark.parametrize("cfdprocs, mdprocs, cells, err_msg", [ ((3, 3, 3), (3, 3, 3), (15, 15, 15), ""), ((1, 2, 1), (3, 2, 2), (30, 36, 24), ""), ((4, 3, 3), (4, 3, 3), (20, 15, 27), ""), ((3, 3, 3), (3, 3, 3), (30, 15, 21), "")]) def test_forcesC2P(prepare_config_fix, cfdprocs, mdprocs, cells, err_msg): MD_PARAMS = {"lx": 300.0, "ly": 300.0, "lz": 300.0} MD_PARAMS["npx"], MD_PARAMS["npy"], MD_PARAMS["npz"] = mdprocs CFD_PARAMS = {"lx": 300.0, "ly": 300.0, "lz": 300.0} CFD_PARAMS["npx"], CFD_PARAMS["npy"], CFD_PARAMS["npz"] = cfdprocs CFD_PARAMS["ncx"], CFD_PARAMS["ncy"], CFD_PARAMS["ncz"] = cells # Needed for decomposParDict CFD_PARAMS["nprocs"] = cfdprocs[0]*cfdprocs[1]*cfdprocs[2] CONFIG_PARAMS = {"cfd_bcx": 1, "cfd_bcy": 0, "cfd_bcz": 0, "olap_xlo": 1, "olap_xhi": cells[0], "olap_ylo": 1, "olap_yhi": 5, "olap_zlo": 1, "olap_zhi": cells[2], "cnst_xlo": 1, "cnst_xhi": cells[0], "cnst_ylo": 3, "cnst_yhi": 5, "cnst_zlo": 1, "cnst_zhi": cells[2], "tstep_ratio": 1, } # Parametrize OpenFOAM files mesh_file = os.path.join(CFD_FNAME+"/", "constant/polyMesh/blockMeshDict") parametrize_file(mesh_file, mesh_file, CFD_PARAMS) control_dict_file = os.path.join(CFD_FNAME+"/", "system/decomposeParDict") parametrize_file(control_dict_file, control_dict_file, CFD_PARAMS) try: subprocess.check_output(["blockMesh", "-case", CFD_FNAME]) except: assert False try: subprocess.check_output(["decomposePar", "-case", CFD_FNAME]) except: assert False correct = run_test(TEST_TEMPLATE_DIR, CONFIG_PARAMS, MD_EXEC, MD_FNAME, MD_ARGS, CFD_EXEC, CFD_FNAME, CFD_ARGS, MD_PARAMS, CFD_PARAMS, err_msg, True) if correct: # Reconstruct the fields from processor directories. try: subprocess.check_output(["reconstructPar", "-case", CFD_FNAME]) except: assert False # Reconstruct the fields from processor directories. try: subprocess.check_output(["writeCellCentres", "-case", CFD_FNAME]) except: assert False # Calculate stress components using ... try: subprocess.check_output(["stressComponents", "-case", CFD_FNAME]) except: assert False compare_forces(1e-6, CFD_PARAMS)
gpl-3.0
-8,364,304,484,368,054,000
37.274648
103
0.570377
false
danielfaust/AutobahnPython
examples/serial2ws/serial2ws.py
1
4492
############################################################################### ## ## Copyright 2012 Tavendo GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### import sys, time if sys.platform == 'win32': ## on windows, we need to use the following reactor for serial support ## http://twistedmatrix.com/trac/ticket/3802 ## from twisted.internet import win32eventreactor win32eventreactor.install() from twisted.internet import reactor print "Using Twisted reactor", reactor.__class__ print from twisted.python import usage, log from twisted.protocols.basic import LineReceiver from twisted.internet.serialport import SerialPort from twisted.web.server import Site from twisted.web.static import File from autobahn.websocket import listenWS from autobahn.wamp import WampServerFactory, WampServerProtocol, exportRpc class Serial2WsOptions(usage.Options): optParameters = [ ['baudrate', 'b', 9600, 'Serial baudrate'], ['port', 'p', 3, 'Serial port to use'], ['webport', 'w', 8080, 'Web port to use for embedded Web server'], ['wsurl', 's', "ws://localhost:9000", 'WebSocket port to use for embedded WebSocket server'] ] ## MCU protocol ## class McuProtocol(LineReceiver): ## need a reference to our WS-MCU gateway factory to dispatch PubSub events ## def __init__(self, wsMcuFactory): self.wsMcuFactory = wsMcuFactory ## this method is exported as RPC and can be called by connected clients ## @exportRpc("control-led") def controlLed(self, status): if status: print "turn on LED" self.transport.write('1') else: print "turn off LED" self.transport.write('0') def connectionMade(self): log.msg('Serial port connected.') def lineReceived(self, line): try: ## parse data received from MCU ## data = [int(x) for x in line.split()] ## construct PubSub event from raw data ## evt = {'id': data[0], 'value': data[1]} ## publish event to all clients subscribed to topic ## self.wsMcuFactory._dispatchEvent("http://example.com/mcu#analog-value", evt) log.msg("Analog value: %s" % str(evt)); except ValueError: log.err('Unable to parse value %s' % line) ## WS-MCU protocol ## class WsMcuProtocol(WampServerProtocol): def onSessionOpen(self): ## register topic prefix under which we will publish MCU measurements ## self.registerForPubSub("http://example.com/mcu#", True) ## register methods for RPC ## self.registerForRpc(self.factory.mcuProtocol, "http://example.com/mcu-control#") ## WS-MCU factory ## class WsMcuFactory(WampServerFactory): protocol = WsMcuProtocol def __init__(self, url): WampServerFactory.__init__(self, url) self.mcuProtocol = McuProtocol(self) if __name__ == '__main__': ## parse options ## o = Serial2WsOptions() try: o.parseOptions() except usage.UsageError, errortext: print '%s %s' % (sys.argv[0], errortext) print 'Try %s --help for usage details' % sys.argv[0] sys.exit(1) baudrate = int(o.opts['baudrate']) port = int(o.opts['port']) webport = int(o.opts['webport']) wsurl = o.opts['wsurl'] ## start Twisted log system ## log.startLogging(sys.stdout) ## create Serial2Ws gateway factory ## wsMcuFactory = WsMcuFactory(wsurl) listenWS(wsMcuFactory) ## create serial port and serial port protocol ## log.msg('About to open serial port %d [%d baud] ..' % (port, baudrate)) serialPort = SerialPort(wsMcuFactory.mcuProtocol, port, reactor, baudrate = baudrate) ## create embedded web server for static files ## webdir = File(".") web = Site(webdir) reactor.listenTCP(webport, web) ## start Twisted reactor .. ## reactor.run()
apache-2.0
-472,536,809,727,559,940
26.900621
98
0.637133
false
benformosa/Toolbox
yaml2csv.py
1
1493
#!/usr/bin/env python2 import argparse import csv import itertools import sys import yaml def main(): parser = argparse.ArgumentParser( description='Convert a YAML mapping or sequence of mappings to a CSV' ) parser.add_argument( 'file', type=argparse.FileType('r'), default=sys.stdin, help='YAML file to process', ) parser.add_argument( '-s', '--sort-headers', action='store_true', help='Sort headers', ) parser.add_argument( '-e', '--headers', type=str, default=None, help='Comma-separated list of headers', ) args = parser.parse_args() data = yaml.safe_load(args.file) if type(data) is dict: data = [data] if type(data) is list: if not args.headers: headers = set(flatten([d.keys() for d in data])) else: headers = args.headers.split(',') if args.sort_headers: headers = sorted(headers) writer = csv.DictWriter(sys.stdout, fieldnames=headers) writer.writeheader() writer.writerows(data) else: print("Error: data is not a YAML sequence or mapping") sys.exit(1) def flatten(list_of_lists): """Flatten one level of nesting From itertools docs """ return list(itertools.chain.from_iterable(list_of_lists)) if __name__ == '__main__': main()
unlicense
8,178,630,155,088,478,000
24.741379
81
0.553918
false
jonzobrist/Percona-Server-5.1
kewpie/percona_tests/innodbCrash/innodbCrash2_test.py
1
5311
#! /usr/bin/env python # -*- mode: python; indent-tabs-mode: nil; -*- # vim:expandtab:shiftwidth=2:tabstop=2:smarttab: # # Copyright (C) 2011 Patrick Crews # # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import os import signal import threading import time from percona_tests.innodbCrash.innodbCrashTestCase import innodbCrashTestCase from percona_tests.innodbCrash import suite_config server_requirements = suite_config.server_requirements server_requests = suite_config.server_requests servers = suite_config.servers test_executor = suite_config.test_executor class Worker(threading.Thread): def __init__( self , xid , thread_desc , time_delay , test_executor , server , logging): threading.Thread.__init__(self) self.server = server self.xid = xid self.desc = thread_desc self.time_delay = time_delay self.test_executor = test_executor self.logging = logging self.start() def finish(self): return def run(self): try: self.logging.test_debug( "Will crash after:%d seconds" %(self.time_delay)) time.sleep(self.time_delay) pid = None timeout = self.time_delay*6 decrement = .25 while not pid and timeout: pid = self.server.get_pid() time.sleep(decrement) timeout -= decrement self.logging.test_debug( "Crashing server: port: %s, pid: %s" %(self.server.master_port, pid)) try: os.kill(int(self.server.pid), signal.SIGKILL) self.logging.test_debug( "Killed server pid: %s" %pid) except OSError, e: self.logging.test_debug( "Didn't kill server pid: %s" %pid) self.logging.test_debug( e) except Exception, e: print "caught (%s)" % e finally: self.finish() class basicTest(innodbCrashTestCase): """ This test case creates a master-slave pair then generates a randgen load against the master The master server is killed after %kill_db_after seconds and restarted. We restart the slave, then ensure the master and slave have matching table checksums once they are synced and the test load is stopped """ def test_crash(self): self.initialize(test_executor, servers, suite_config) workers = [] # create our table self.test_bed_cmd = "./gendata.pl --spec=conf/percona/percona_no_blob.zz " self.create_test_bed() # generate our workload via randgen test_seq = [ "./gentest.pl" , "--grammar=conf/percona/translog_concurrent1.yy" , "--queries=%d" %(self.randgen_queries_per_thread) , "--threads=%d" %(self.randgen_threads) , "--sqltrace" , "--debug" , "--seed=%s" %(self.randgen_seed) ] while self.crashes: self.logging.test_debug( "Crashes remaining: %d" %(self.crashes)) self.crashes -= 1 worker = Worker( 1 , 'time_delay_kill_thread' , self.kill_db_after , self.test_executor , self.master_server , self.logging ) workers.append(worker) randgen_process = self.get_randgen_process(test_seq, self.test_executor, self.master_server) #if not self.master_server.ping(quiet=True) and (randgen_process.poll() is None): # Our server is dead, but randgen is running, we kill it to speed up testing #randgen_process.send_signal(signal.SIGINT) for w in workers: w.join() time.sleep(2) while not randgen_process.poll(): randgen_process.send_signal(signal.SIGINT) retcode = self.master_server.start() timeout = 300 decrement = 1 while timeout and not self.master_server.ping(quiet=True): time.sleep(decrement) timeout -= decrement self.slave_server.slave_stop() self.slave_server.slave_start() self.master_server.wait_sync_with_slaves([self.slave_server],timeout=60) result = self.check_slaves_by_checksum(self.master_server,[self.slave_server]) self.assertEqual(result,None,msg=result)
bsd-3-clause
-8,189,090,280,763,392,000
36.935714
106
0.585577
false
eaobservatory/hedwig
test/test_jcmt_calc_s2.py
1
4087
# Copyright (C) 2017 East Asian Observatory # All Rights Reserved. # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful,but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc.,51 Franklin # Street, Fifth Floor, Boston, MA 02110-1301, USA from __future__ import absolute_import, division, print_function, \ unicode_literals from hedwig.facility.jcmt.calculator_scuba2 import SCUBA2Calculator from .base_calculator import CalculatorTestCase expect = { SCUBA2Calculator.CALC_TIME: { 2: { 'input': 'pos pos_type tau map samp pix850 pix450 wl rms', 'output': 'time', }, 1: { 'input': 'pos pos_type tau map mf pix850 pix450 wl rms', 'output': 'time', }, }, SCUBA2Calculator.CALC_RMS: { 2: { 'input': 'pos pos_type tau map samp pix850 pix450 time', 'output': 'rms_850 rms_450', }, 1: { 'input': 'pos pos_type tau map mf pix850 pix450 time', 'output': 'rms_850 rms_450', }, }, } conversions = [ ('time w/ mf', SCUBA2Calculator.CALC_TIME, { 1: { 'map': 'daisy', 'pos': 65.43, 'pos_type': 'dec', 'tau': 0.040, 'pix850': None, 'pix450': None, 'mf': True, 'wl': 850, 'rms': 1.5, }, 2: { 'map': 'daisy', 'pos': 65.43, 'pos_type': 'dec', 'tau': 0.040, 'samp': 'mf', 'pix850': None, 'pix450': None, 'wl': 850, 'rms': 1.5, } }), ('time w/o mf', SCUBA2Calculator.CALC_TIME, { 1: { 'map': 'daisy', 'pos': 22.22, 'pos_type': 'zen', 'tau': 0.080, 'pix850': 8, 'pix450': 4, 'mf': False, 'wl': 850, 'rms': 1.5, }, 2: { 'map': 'daisy', 'pos': 22.22, 'pos_type': 'zen', 'tau': 0.080, 'samp': 'custom', 'pix850': 8, 'pix450': 4, 'wl': 850, 'rms': 1.5, }, }), ('rms w/ mf', SCUBA2Calculator.CALC_RMS, { 1: { 'map': 'pong1800', 'pos': 1.2345, 'pos_type': 'am', 'tau': 0.123, 'pix850': None, 'pix450': None, 'mf': True, 'time': 4.5, }, 2: { 'map': 'pong1800', 'pos': 1.2345, 'pos_type': 'am', 'tau': 0.123, 'samp': 'mf', 'pix850': None, 'pix450': None, 'time': 4.5, }, }), ('rms w/o mf', SCUBA2Calculator.CALC_RMS, { 1: { 'map': 'pong900', 'pos': 72.25, 'pos_type': 'el', 'tau': 0.0987, 'pix850': 13, 'pix450': 8, 'mf': False, 'time': 2.76, }, 2: { 'map': 'pong900', 'pos': 72.25, 'pos_type': 'el', 'tau': 0.0987, 'samp': 'custom', 'pix850': 13, 'pix450': 8, 'time': 2.76, }, }), ] class JCMTS2CalcTestCase(CalculatorTestCase): calculator_class = SCUBA2Calculator def test_basic(self): self._test_basic(expect) def test_convert_version(self): self._test_convert_version(conversions)
gpl-3.0
-2,924,925,457,265,718,000
25.031847
79
0.457793
false
tombstone/models
official/nlp/bert/run_pretraining.py
1
7381
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run masked LM/next sentence pre-training for BERT in TF 2.x.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from absl import logging import gin import tensorflow as tf from official.modeling import performance from official.nlp import optimization from official.nlp.bert import bert_models from official.nlp.bert import common_flags from official.nlp.bert import configs from official.nlp.bert import input_pipeline from official.nlp.bert import model_training_utils from official.utils.misc import distribution_utils flags.DEFINE_string('input_files', None, 'File path to retrieve training data for pre-training.') # Model training specific flags. flags.DEFINE_integer( 'max_seq_length', 128, 'The maximum total input sequence length after WordPiece tokenization. ' 'Sequences longer than this will be truncated, and sequences shorter ' 'than this will be padded.') flags.DEFINE_integer('max_predictions_per_seq', 20, 'Maximum predictions per sequence_output.') flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.') flags.DEFINE_integer('num_steps_per_epoch', 1000, 'Total number of training steps to run per epoch.') flags.DEFINE_float('warmup_steps', 10000, 'Warmup steps for Adam weight decay optimizer.') flags.DEFINE_bool('use_next_sentence_label', True, 'Whether to use next sentence label to compute final loss.') flags.DEFINE_bool('train_summary_interval', 0, 'Step interval for training ' 'summaries. If the value is a negative number, ' 'then training summaries are not enabled.') common_flags.define_common_bert_flags() FLAGS = flags.FLAGS def get_pretrain_dataset_fn(input_file_pattern, seq_length, max_predictions_per_seq, global_batch_size, use_next_sentence_label=True): """Returns input dataset from input file string.""" def _dataset_fn(ctx=None): """Returns tf.data.Dataset for distributed BERT pretraining.""" input_patterns = input_file_pattern.split(',') batch_size = ctx.get_per_replica_batch_size(global_batch_size) train_dataset = input_pipeline.create_pretrain_dataset( input_patterns, seq_length, max_predictions_per_seq, batch_size, is_training=True, input_pipeline_context=ctx, use_next_sentence_label=use_next_sentence_label) return train_dataset return _dataset_fn def get_loss_fn(): """Returns loss function for BERT pretraining.""" def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args): return tf.reduce_mean(losses) return _bert_pretrain_loss_fn def run_customized_training(strategy, bert_config, init_checkpoint, max_seq_length, max_predictions_per_seq, model_dir, steps_per_epoch, steps_per_loop, epochs, initial_lr, warmup_steps, end_lr, optimizer_type, input_files, train_batch_size, use_next_sentence_label=True, train_summary_interval=0, custom_callbacks=None): """Run BERT pretrain model training using low-level API.""" train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length, max_predictions_per_seq, train_batch_size, use_next_sentence_label) def _get_pretrain_model(): """Gets a pretraining model.""" pretrain_model, core_model = bert_models.pretrain_model( bert_config, max_seq_length, max_predictions_per_seq, use_next_sentence_label=use_next_sentence_label) optimizer = optimization.create_optimizer( initial_lr, steps_per_epoch * epochs, warmup_steps, end_lr, optimizer_type) pretrain_model.optimizer = performance.configure_optimizer( optimizer, use_float16=common_flags.use_float16(), use_graph_rewrite=common_flags.use_graph_rewrite()) return pretrain_model, core_model trained_model = model_training_utils.run_customized_training_loop( strategy=strategy, model_fn=_get_pretrain_model, loss_fn=get_loss_fn(), scale_loss=FLAGS.scale_loss, model_dir=model_dir, init_checkpoint=init_checkpoint, train_input_fn=train_input_fn, steps_per_epoch=steps_per_epoch, steps_per_loop=steps_per_loop, epochs=epochs, sub_model_export_name='pretrained/bert_model', train_summary_interval=train_summary_interval, custom_callbacks=custom_callbacks) return trained_model def run_bert_pretrain(strategy, custom_callbacks=None): """Runs BERT pre-training.""" bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) if not strategy: raise ValueError('Distribution strategy is not specified.') # Runs customized training loop. logging.info('Training using customized training loop TF 2.0 with distributed' 'strategy.') performance.set_mixed_precision_policy(common_flags.dtype()) return run_customized_training( strategy, bert_config, FLAGS.init_checkpoint, # Used to initialize only the BERT submodel. FLAGS.max_seq_length, FLAGS.max_predictions_per_seq, FLAGS.model_dir, FLAGS.num_steps_per_epoch, FLAGS.steps_per_loop, FLAGS.num_train_epochs, FLAGS.learning_rate, FLAGS.warmup_steps, FLAGS.end_lr, FLAGS.optimizer_type, FLAGS.input_files, FLAGS.train_batch_size, FLAGS.use_next_sentence_label, FLAGS.train_summary_interval, custom_callbacks=custom_callbacks) def main(_): gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param) if not FLAGS.model_dir: FLAGS.model_dir = '/tmp/bert20/' strategy = distribution_utils.get_distribution_strategy( distribution_strategy=FLAGS.distribution_strategy, num_gpus=FLAGS.num_gpus, tpu_address=FLAGS.tpu) if strategy: print('***** Number of cores used : ', strategy.num_replicas_in_sync) run_bert_pretrain(strategy) if __name__ == '__main__': app.run(main)
apache-2.0
-6,846,756,583,402,169,000
36.467005
80
0.637583
false
junh1024/Reaper-Surround
Scripts/SetPanAccordingToName.py
1
1858
#Some Codes from "Rename tracks to take source filename", -- Set pan for selected track(s) (SPK77) #This script by junh1024 sets pans of tracks according to their suffixes. Useful for say, film dialogue. See global variables below for pans. from reaper_python import * from contextlib import contextmanager # import os @contextmanager def undoable(message): RPR_Undo_BeginBlock2(0) try: yield finally: RPR_Undo_EndBlock2(0, message, -1) debug = True #disable for using def msg(m): if 'debug' in globals(): RPR_ShowConsoleMsg(m) #Track suffixes L=-0.15 #initial Left pan, everything else is derived modularly. Change to taste. R=-L LW=2*L RW=-LW LC=(2*L)/3 RC=-LC #these have parenting set later on SL=-1 SR=-SL RR=C=0 #last 2 of naRR,center pans # msg(L) # msg(R) # msg(LW) # msg(RW) # msg(LC) # msg(RC) with undoable("Set Pan According To Track Suffix"): # for i in range(RPR_CountTracks(0)): #for all tracks, get track # trackId = RPR_GetTrack(0, i) for i in range(RPR_CountSelectedTracks(0)): #for selected tracks, get track trackId = RPR_GetSelectedTrack(0, i) suffix = str(RPR_GetSetMediaTrackInfo_String(trackId, "P_NAME", "", False )[3] )[-2:].lstrip().upper() #get actual track name, last 2 chars, remove whitespace) if(suffix==''): continue if(suffix[0] == 'S'): #anything rear/surround. I'm not doing else cuz there may be top pans. RPR_SetMediaTrackInfo_Value(trackId, "C_MAINSEND_OFFS", 4) #set parent ch 5/6 rear/surround if(suffix in globals()): #if a suffix is one of the global preset pans, see global variables above RPR_SetMediaTrackInfo_Value(trackId, "D_PAN", eval(suffix)) #set it according to the pan designated by the suffix REFLECTION USED if(suffix in ('C,RR,L,R,LW,RW,LC,RC'.split(','))): #anything front RPR_SetMediaTrackInfo_Value(trackId, "C_MAINSEND_OFFS", 0)
gpl-3.0
5,251,573,571,839,216,000
27.584615
161
0.705597
false
yassen-itlabs/py-linux-traffic-control
tests/util/iperf_proc.py
1
7324
""" Iperf network performance testing module. Used by tests for simple bandwidth measurements; uses iperf. """ import time from pyltc.util.cmdline import CommandLine # FIXME: Do we need these? Remove if not. OUTPUT_REGEXP = r'^\[.*?\]\s+\d+\.\d+\-\d+\.\d+\s+sec\s+\d[\.\d]+\s+\w+\s+(\d+)\s+bits/sec.*$' TIMEOUT = 60 class Iperf3Server(object): """Used for running iperf server component iperf3 -s 127.0.0.1 -p 5005 -1 -i 0 -f b iperf -[u]s -B 127.0.0.1 -p 9003 -f b""" def __init__(self, iperf_bin='iperf', host='127.0.0.1', port=5001): self._iperf_bin = iperf_bin self._host = host self._port = port self.cmd = None self.thread = None def run(self, protocol): cmd_tmpl = "{} -s -B {} -p {} -f b -y C" if protocol == 'tcp' else "{} -us -B {} -p {} -f b -y C" cmd_text = cmd_tmpl.format(self._iperf_bin, self._host, self._port) print('cmd_text(server): {!r}'.format(cmd_text)) self.cmd = CommandLine(cmd_text) self.cmd.execute_daemon() return self.cmd def join(self): # TODO: Perhaps not used anymore? self.thread.join() class Iperf3Client(object): """Parent of TCPClient and UDPClient""" def __init__(self, iperf_bin='iperf', host='127.0.0.1', port=5001, duration=4): self._iperf_bin = iperf_bin self._host = host self._port = port self._duration = duration class TCPClient(Iperf3Client): """Used for running iperf client component in TCP mode. iperf3 -s 127.0.0.1 -p 5005 -1 -i 0 -f b iperf -[u]s -B 127.0.0.1 -p 9003 -f b""" def __init__(self, iperf_bin='iperf', host='127.0.0.1', port=5001, duration=4): super(TCPClient, self).__init__(iperf_bin=iperf_bin, host=host, port=port, duration=duration) def run(self): cmd_text = "{} -c {} -p {} -t {} -f b".format(self._iperf_bin, self._host, self._port, self._duration) print('cmd_text(tcpclient): {!r}'.format(cmd_text)) self.cmd = CommandLine(cmd_text).execute_daemon() return self.cmd class UDPClient(Iperf3Client): """Used for running iperf client component in TCP mode. iperf3 -s 127.0.0.1 -p 5005 -1 -i 0 -f b iperf -[u]s -B 127.0.0.1 -p 9003 -f b""" def __init__(self, sendrate, iperf_bin='iperf', host='127.0.0.1', port=5001, duration=4): super(UDPClient, self).__init__(iperf_bin=iperf_bin, host=host, port=port, duration=duration) self._sendrate = sendrate def run(self): cmd_text = "{} -uc {} -p {} -t {} -f b -b {}".format(self._iperf_bin, self._host, self._port, self._duration, self._sendrate) print('cmd_text(udpclient): {!r}'.format(cmd_text)) self.cmd = CommandLine(cmd_text).execute_daemon() return self.cmd class NetPerfTest(object): """Parent of TCPNetPerfTest and UDPNetPerfTest, which wrap the iperf server-client functionallity.""" def __init__(self, sendrate, iperf_bin='iperf', host='127.0.0.1', port=5001, duration=4): self._sendrate = sendrate self._iperf_bin = iperf_bin self._ip = host self._port = port self._duration = duration def _gather_server_output(self, server_cmd, client_cmd): output_line = None with server_cmd._proc.stdout: for line in iter(server_cmd._proc.stdout.readline, b''): if line: output_line = line rc = server_cmd.terminate() if rc != None: break print('Unexpected None returncode after kill()!..') server_cmd._proc.stderr.close() client_cmd._proc.stdout.close() client_cmd._proc.stderr.close() assert output_line, 'No output from iperf server! cmdline: {}'.format(server_cmd.cmdline) return output_line def run(self): raise NotImplemented('Abstract method.') class TCPNetPerfTest(NetPerfTest): """Wraps the iperf server-client functionallity for tcp.""" def __init__(self, sendrate, iperf_bin='iperf', host='127.0.0.1', port=5001, duration=4): """``sendrate`` is only a dummy argument here, to conform to NetPerfTest interface.""" super(TCPNetPerfTest, self).__init__('dummy', iperf_bin=iperf_bin, host=host, port=port, duration=duration) def run(self): server = Iperf3Server(iperf_bin=self._iperf_bin, host=self._ip, port=self._port) server_cmd = server.run("tcp") time.sleep(0.1) client = TCPClient(iperf_bin=self._iperf_bin, host=self._ip, port=self._port, duration=self._duration) client_cmd = client.run() output_line = self._gather_server_output(server_cmd, client_cmd) return int(output_line.split(b',')[8]) class UDPNetPerfTest(NetPerfTest): """Wraps the iperf server-client functionallity for udp.""" def __init__(self, sendrate, iperf_bin='iperf', host='127.0.0.1', port=5001, duration=4): super(UDPNetPerfTest, self).__init__(sendrate, iperf_bin=iperf_bin, host=host, port=port, duration=duration) def run(self): server = Iperf3Server(iperf_bin=self._iperf_bin, host=self._ip, port=self._port) server_cmd = server.run("udp") time.sleep(0.1) client = UDPClient(self._sendrate, iperf_bin=self._iperf_bin, host=self._ip, port=self._port, duration=self._duration) client_cmd = client.run() output_line = self._gather_server_output(server_cmd, client_cmd) return int(output_line.split(b',')[8]) #________________________________________ # Test Section Below TODO: Make sure these are also executed on each build import unittest class ServerClientTest(unittest.TestCase): def test_creation(self): Iperf3Server(iperf_bin='iperf_bin3', host='127.0.0.3', port=30300) TCPClient(iperf_bin='iperf_bin4', host='127.0.0.4', port=40400, duration=44) UDPClient('10mbit', iperf_bin='iperf_bin5', host='127.0.0.5', port=50500, duration=55) @unittest.skip("sould be removed/reworked") # TODO: rework or remove def test_simple(self): # seems unusable at this point server = Iperf3Server(iperf_bin='iperf', host='127.0.0.1', port=40400) server.run("tcp") time.sleep(0.1) client = TCPClient(iperf_bin='iperf', host='127.0.0.1', port=40400, duration=4) client.run() server.join() bandwidth = server.get_bandwidth() print(bandwidth) class TestNetPerfTest(unittest.TestCase): def test_creation(self): TCPNetPerfTest('dummy', iperf_bin='iperf_bin7', host='127.0.0.7', port=7700, duration=77) UDPNetPerfTest('8mbit', iperf_bin='iperf_bin8', host='127.0.0.8', port=8800, duration=88) def test_tcp(self): tcp_netperf = TCPNetPerfTest('dummy', host='127.0.0.1', port=18003, duration=3) bandwidth = tcp_netperf.run() print(bandwidth) def test_tcp_2(self): tcp_netperf = TCPNetPerfTest('dummy', host='127.0.0.1', port=8003, duration=3) bandwidth = tcp_netperf.run() print(bandwidth) def test_udp(self): udp_netperf = UDPNetPerfTest('10mbit', host='127.0.0.1', port=17007, duration=3) bandwidth = udp_netperf.run() print(bandwidth) if __name__ == '__main__': unittest.main()
mit
-6,457,629,180,857,245,000
36.177665
133
0.608957
false
rgerkin/python-neo
neo/core/block.py
1
5206
# -*- coding: utf-8 -*- ''' This module defines :class:`Block`, the main container gathering all the data, whether discrete or continous, for a given recording session. base class used by all :module:`neo.core` classes. :class:`Block` derives from :class:`Container`, from :module:`neo.core.container`. ''' # needed for python 3 compatibility from __future__ import absolute_import, division, print_function from datetime import datetime from neo.core.container import Container, unique_objs class Block(Container): ''' Main container gathering all the data, whether discrete or continous, for a given recording session. A block is not necessarily temporally homogeneous, in contrast to :class:`Segment`. *Usage*:: >>> from neo.core import (Block, Segment, ChannelIndex, ... AnalogSignal) >>> from quantities import nA, kHz >>> import numpy as np >>> >>> # create a Block with 3 Segment and 2 ChannelIndex objects ,,, blk = Block() >>> for ind in range(3): ... seg = Segment(name='segment %d' % ind, index=ind) ... blk.segments.append(seg) ... >>> for ind in range(2): ... chx = ChannelIndex(name='Array probe %d' % ind, ... index=np.arange(64)) ... blk.channel_indexes.append(chx) ... >>> # Populate the Block with AnalogSignal objects ... for seg in blk.segments: ... for chx in blk.channel_indexes: ... a = AnalogSignal(np.random.randn(10000, 64)*nA, ... sampling_rate=10*kHz) ... chx.analogsignals.append(a) ... seg.analogsignals.append(a) *Required attributes/properties*: None *Recommended attributes/properties*: :name: (str) A label for the dataset. :description: (str) Text description. :file_origin: (str) Filesystem path or URL of the original data file. :file_datetime: (datetime) The creation date and time of the original data file. :rec_datetime: (datetime) The date and time of the original recording. *Properties available on this object*: :list_units: descends through hierarchy and returns a list of :class:`Unit` objects existing in the block. This shortcut exists because a common analysis case is analyzing all neurons that you recorded in a session. Note: Any other additional arguments are assumed to be user-specific metadata and stored in :attr:`annotations`. *Container of*: :class:`Segment` :class:`ChannelIndex` ''' _container_child_objects = ('Segment', 'ChannelIndex') _child_properties = ('Unit',) _recommended_attrs = ((('file_datetime', datetime), ('rec_datetime', datetime), ('index', int)) + Container._recommended_attrs) _repr_pretty_attrs_keys_ = (Container._repr_pretty_attrs_keys_ + ('file_origin', 'file_datetime', 'rec_datetime', 'index')) _repr_pretty_containers = ('segments',) def __init__(self, name=None, description=None, file_origin=None, file_datetime=None, rec_datetime=None, index=None, **annotations): ''' Initalize a new :class:`Block` instance. ''' super(Block, self).__init__(name=name, description=description, file_origin=file_origin, **annotations) self.file_datetime = file_datetime self.rec_datetime = rec_datetime self.index = index self.regionsofinterest = [] # temporary workaround. # the goal is to store all sub-classes of RegionOfInterest in a single list # but this will need substantial changes to container handling @property def data_children_recur(self): ''' All data child objects stored in the current object, obtained recursively. ''' # subclassing this to remove duplicate objects such as SpikeTrain # objects in both Segment and Unit # Only Block can have duplicate items right now, so implement # this here for performance reasons. return tuple(unique_objs(super(Block, self).data_children_recur)) def list_children_by_class(self, cls): ''' List all children of a particular class recursively. You can either provide a class object, a class name, or the name of the container storing the class. ''' # subclassing this to remove duplicate objects such as SpikeTrain # objects in both Segment and Unit # Only Block can have duplicate items right now, so implement # this here for performance reasons. return unique_objs(super(Block, self).list_children_by_class(cls)) @property def list_units(self): ''' Return a list of all :class:`Unit` objects in the :class:`Block`. ''' return self.list_children_by_class('unit')
bsd-3-clause
-1,240,157,085,246,349,600
37.562963
87
0.599116
false